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Summary

The human body has evolved to perform sophisticated tasks from locomotion to the

use of tools. At the same time our body movements can carry information indicative

of our intentions, inter-personal attitudes and emotional states. Because our body is

specialised to perform a variety of everyday tasks, in most situations emotional effects

are only visible through subtle changes in the qualities of movements and actions. This

dissertation focuses on the automatic analysis of emotional effects in everyday actions.

In the past most efforts to recognise emotions from the human body have focused on

expressive gestures which are archetypal and exaggerated expressions of emotions. While

these are easier to recognise by humans and computational pattern recognisers they very

rarely occur in natural scenarios. The principal contribution of this dissertation is hence

the inference of emotional states from everyday actions such as walking, knocking and

throwing. The implementation of the system draws inspiration from a variety of disciplines

including psychology, character animation and speech recognition. Complex actions are

modelled using Hidden Markov Models and motion primitives.

The manifestation of emotions in everyday actions is very subtle and even humans are

far from perfect at picking up and interpreting the relevant cues because emotional in-

fluences are usually minor compared to constraints arising from the action context or

differences between individuals. This dissertation describes a holistic approach which

models emotional, action and personal influences in order to maximise the discriminabil-

ity of different emotion classes. A pipeline is developed which incrementally removes the

biases introduced by different action contexts and individual differences. The resulting

signal is described in terms of posture and dynamic features and classified into one of

several emotion classes using statistically trained Support Vector Machines. The system

also goes beyond isolated expressions and is able to classify natural action sequences. I

use Level Building to segment action sequences and combine component classifications

using an incremental voting scheme which is suitable for online applications.

The system is comprehensively evaluated along a number of dimensions using a corpus of

motion-captured actions. For isolated actions I evaluate the generalisation performance

to new subjects. For action sequences I study the effects of reusing models trained on

the isolated cases vs . adapting models to connected samples. The dissertation also eval-

uates the role of modelling the influence of individual user differences. I develop and

evaluate a regression-based adaptation scheme. The results bring us an important step

closer to recognising emotions from body movements, embracing the complexity of body

movements in natural scenarios.
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Chapter 1

Introduction

1.1 Towards emotionally intelligent machines

The ubiquitous deployment of computer technology throughout peoples’ private and pro-

fessional lives has been a trend which seems set to continue. New technologies often hold

the potential to make our lives more pleasurable or manageable. However, there is a con-

stant conflict between the utility technology provides and the complexity of operating it.

The traditional command-and-control interaction paradigm has been largely technology-

centred, leaving the human user to learn and adapt to its use. Three recent trends mean

that this traditional paradigm will not be scalable to future technologies.

• The number of computers found in our environment is becoming large enough to

make a traditional technology-centred interaction mode inefficient and frustrating.

For example, the complexity of many modern-day car dashboards is likely to con-

fuse even the most technology-savvy users. Often the requirement to interact with

additional technologies such as satellite navigation or mobile phones increases the

mental strain on drivers still further.

• Hardware advances mean that devices are constantly shrinking in size, making phys-

ical controls impractical. For example, the current generation of portable music

players and mobile phones is hitting this limit and new interaction styles such as

voice control are starting to become mainstream.

• The use of computer technology is becoming a fundamental requirement for a ma-

jority of people from all age groups, backgrounds and abilities. This means that

technology-centric designs which are targeted at specialised and trained users are

no longer optimal for all potential user groups.

A very popular goal for computer science research has therefore been to endow machines

with more intelligence in order to reduce the amount of explicit information users need to
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provide through command and control interfaces. The goal is therefore to give machines

more human-like abilities to communicate with users. One highly important aspect in

the domain of human-human interaction is the communication of emotions. Being able

to infer emotional states through non-verbal cues allows humans to empathise and reason

about each others’ underlying intents and goals. Affective Computing is the branch of

computer science which aims to exploit the power of emotions to facilitate more effective

human-machine interaction. Picard identified the goal of Affective Computing as giving

machines the ability to recognise, express and regulate emotions [Pic97].

Multiple scenarios where these kinds of emotionally intelligent machines could aid human-

machine interaction have been described over the last years. As the explicit control of all

computational devices in our environment becomes overwhelming, explicit command and

control could be replaced by wearable devices [LN04, KTP06] or sentient environments

[KFN07] which automatically pick up a person’s emotion-communicating cues, infer user

intents and react to them appropriately. As electronic devices such as portable music

players are becoming too small to make the physical interaction through buttons etc.

impractical, new sensors such as motion-sensitive could accelerometers allow the commu-

nication of emotions to control the device either implicitly or explicitly (e.g . see eMoto’s

use of emotional gestures [FSH04, SSH05]). Finally, endowing technology with emotional

intelligence is one way of making interactions more natural and therefore suitable for

diverse user groups, such as autistic or elderly users. For example, research aiming to

introduce robots into everyday scenarios usually addresses issues of emotion detection

from human users and emotion modelling and expression within the robot [Bre04, FA05].

1.2 The role of the body

In this dissertation I will look in detail at the role of the body for communicating emotions.

I am aiming to develop a computational model for detecting emotions from general body

motions. This kind of system could eventually be used by wearable or sentient systems

as well as social robots to sense the emotions of humans from cues in their movements.

A particular aim of this dissertation is to develop an approach which is as applicable

as possible to real-world situations in which emotional body cues are likely to occur.

In particular, I am not focusing on traditional human-computer interaction scenarios in

which a user is engaged in front of a single desktop machine. Instead, I am primarily

interested in the expression of emotions in everyday scenarios in which activities like

walking, picking up objects etc. are modulated by emotional qualities.

This approach also means that I will avoid the analysis of previously studied emotion

archetypes. These are body expressions which are exaggerated to express a certain emo-

tion. While exaggerated emotional expressions may be naturally occurring during the

communication with infants [TAD00, AZ07], in most everyday interactions our emotional



1.3. OPEN RESEARCH PROBLEMS AND CHALLENGES 17

expressions are softened by display rules and constraints arising from concurrent activi-

ties. While everyone would recognise an archetypal body expression of joy with an erect

upper body, raised head and energetically raised arms, in a more natural scenario joy

might only manifest itself in a subtly different walking style. In this dissertation I will

focus on analysing the latter problem and to detect emotion as it appears in everyday

activities.

1.3 Open research problems and challenges

Being such a salient aspect of human-human communication, automatic emotion recog-

nition has been an active research area over the last decade. Most efforts have focused on

separate modalities, targeting facial expressions and head gestures, voice quality, physio-

logical signals such as skin conductance and more recently brain signals. Other researchers

have studied the expression of emotions through different aspects of body motions such

as posture, emotional gestures, archetypal expressions or movements qualities. In many

cases those efforts have not been motivated by practical applications and early databases

have been largely collected under controlled laboratory conditions. While many of the

previous studies have made significant progress towards the construction of emotionally

aware machines, there are a number of open research problems. In this thesis, I am

aiming to advance the knowledge with respect to the following key problems which pose

significant research challenges:

1. The communication of emotions through body expressions is generally less under-

stood than for other modalities, especially the voice and face. The field of psychology

which has in the past inspired many computational approaches has traditionally ig-

nored bodily cues and more recent results need to be evaluated and incorporated

into computational systems.

2. To the best of my knowledge there have been no previous attempts to infer emotions

automatically from a variety of everyday actions. In this scenario most of the motion

signal is dominated by the action performed and emotional variations are very subtle.

The motions to analyse are also likely to be subject to greater statistical noise as

the recording procedures are less controlled than for more archetypal expressions

and actions can blend into each other seamlessly.

3. These kinds of natural scenarios also give rise to greater inter-personal differences.

Although a few approaches for other modalities have targeted the issue of personal

differences, it has been largely neglected by the affective computing community and

is virtually unexplored for the field of body expressions.
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Figure 1.1: Factors affecting the final observable motion signal.

1.4 A holistic view of body movement

In order to meet these challenges, I will put forward a more holistic view than most

previous work. Like previous studies, I will treat emotion recognition as a statistical

pattern recognition problem. In order to detect different emotions I will consider both

posture and movement qualities as predictive indicators. However, this dissertation will

not treat emotion in isolation. In her PhD thesis, Helena Paterson recently discussed

many of the issues relevant to this work from a psychological perspective and highlighted

the significant three-way interactions between the individual, emotion and action [Pat02].

My work embraces these recent insights and analyses the impact of different categories

of actions and the importance of individual movement styles for the task of emotion

recognition (see Figure 1.1). The resulting holistic model is more robust to different

action patterns and individual variations while capturing prevalent emotion cues.

I advocate the view that an emotion recognition system which is to function in a natural

environment will require a certain “getting-to-know” period during which it builds a model

for the person-specific movement parameters. Throughout this dissertation I will aim to

make this personalisation as light-weight as possible. In other areas of intelligent human-

machine interaction these kinds of personalisation are already standard procedure. For

example, speaker adaptation in state-of-the-art speech recognition systems ensures that

recognition performance is optimal for large-vocabulary and unstructured tasks.

1.5 Dissertation outline

At the heart of this dissertation lies the development of a pipeline which allows the

inference of emotions from raw body motion signals. The pipeline incorporates various

models of action patterns, the effect of individual movement style as well as emotional

variations. The material will be presented as follows.
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Chapter 2 surveys the background material for this dissertation from a number of dif-

ferent disciplines. I will give evidence for bodily cues of emotional expression as described

in psychological experiments and compare them to other modalities such as the face and

voice. I will also cover the importance of body cues for the expression of emotions from a

character animation perspective. The chapter then surveys previously developed systems

which use these cues in different ways to detect emotions. Finally, I will present the

corpus of body motions used for the majority of this dissertation.

Chapter 3 serves as a practical introduction to a number of important issues relating

to recognising emotions from body expressions. I will describe statistical features used to

capture the emotional content from body posture and motion qualities. This chapter also

explores the discriminability of different emotion classes and starts to explore the issue of

personal differences in expression. In this chapter I am using a small corpus of archetypal

expressions which I collected using a novel music-based environment.

Chapter 4 moves away from archetypal expressions and describes methods for analysing

complex everyday body movements. Initially, I focus on distinguishing different categories

of actions such as walking, knocking and throwing. I then explore two approaches to

understanding these kinds of complex actions in terms of basic motion primitives such as

a series of arm raises or walking cycles.

Chapter 5 combines the results from the motion analysis in Chapter 4 and the emotional

features developed in Chapter 3 to build an emotion classification pipeline for isolated

complex actions. In this chapter I also formally explore the issue of personal motion

idiosyncrasies and describe a user adaptation framework akin to speaker adaptation in

speech recognition systems.

Chapter 6 explores how body motions change when they are performed in natural se-

quences rather than being recorded in isolation. I describe a method for segmenting

sequences of complex actions and generalise the emotion recognition pipeline to deal with

connected action sequences.

Chapter 7 summarises the contributions made by this work and concludes with directions

for future research based on my results.

1.6 Publications

Some of the results described in this dissertation have appeared in the following publica-

tions:

1. Daniel Bernhardt and Peter Robinson: Detecting emotions from connected ac-

tion sequences. In Proceedings of the International Visual Informatics Conference,

November 2009.
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2. Daniel Bernhardt and Peter Robinson: Interactive control of music using emotional

body expressions. In CHI’08: Proceedings of the ACM Conference on Computer-

Human Interaction, pages 3117–3122. ACM, 2008.

3. Daniel Bernhardt and Peter Robinson: Detecting affect from non-stylised body mo-

tions. In ACII’07: Proceedings of the Second International Conference on Affective

Computing and Intelligent Interaction, pages 59–70. Springer, 2007.

4. Daniel Bernhardt: Posture, gesture and motion quality: a multilateral approach to

affect recognition from human body motion. In ACII’07: Proceedings of the Doctoral

Consortium at the Second International Conference on Affective Computing and

Intelligent Interaction, pages 49–56. 2007.



Chapter 2

Background

Although my research investigates primarily computational methods for the detection of

emotions, it draws on many related fields for inspiration. Only very recently results on

the human body have started to emerge out of work conducted by the affective computing

community. The majority of relevant results are still to be found in psychological studies

and models, systems developed for animating emotional body motion and recognition

approaches developed for other modalities, primarily the face and voice. This chapter

summarises the most important results from these fields. I conclude by introducing the

data I will use throughout this dissertation to develop my computational models.

2.1 Modelling emotions

The term emotion has been used to denote a variety of concepts both in academic and

everyday lay use alike. For example, it is commonly seen and used as a synonym for

concepts such as feeling, affect or mood [SP01]. In this section I will give a succinct

overview over the more recent consensus among psychologists about the conceptualisation

of emotions. A suitable definition will set the scope for the computational models aimed

at detecting emotions from body movements in the following chapters.

2.1.1 Emotions and other affective phenomena

Emotions are commonly seen as one of a number of different affective phenomena intrinsic

in human experience such as mood, interpersonal stance, attitude and personality traits

[Sch05a]. All of these affective phenomena have the power to bring about changes in

the human physiology and psyche. They can be distinguished based on a number of

dimensions including intensity, duration, as well as the degree of coordination between

different modalities. Table 2.1 summarises these and additional dimensions. As opposed

to some other affective phenomena, emotions are triggered by certain events and are of
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relatively short duration. Picard compares emotional responses to the attenuating sound

level of a struck bell [Pic97]. The emotional responses from various bodily subsystems

are highly synchronised and often cause a change in behaviour as the eliciting event is

relevant to a person’s well-being or goals. Mood, for example largely differs along most of

those dimensions by generally having longer-term but milder effects on a person. While

my work is largely targeting the detection of emotion, we will return to some of the

characteristics of mood in Section 2.4.4.

Based on a clear understanding of the emotion concept, we can now turn to the question

of how a computational system might detect different emotions from the human body

or other modalities. For this we need to build a more detailed understanding of which

aspects of a person’s physical and mental state are affected by changes in emotion. The

following definition by Scherer [Sch00] focuses on the effects that emotions have on several

response components :

Emotions are episodes of coordinated changes in several components (including

at least neurophysiological activation, motor expression, and subjective feeling

but possibly also action tendencies and cognitive processes) in response to

external or internal events of major significance to the organism.

This definition is the essence of the Component Process Model of emotions and lists a

number of components influenced by emotions. Each serves a different function [SP01]:

• peripheral physiological activation component: system regulation

• motor expression component: communication of reaction and behavioral intention

• subjective feeling component: monitoring of internal state and organism-environ-

ment interaction

• action tendencies (motivational) component: preparation and direction of actions

• cognitive component: evaluation of objects and events.

The first three components are commonly referred to as the emotional response triad

[SP01]. Both the motor expressions and to some extent the peripheral physiological

components can yield information for inferring emotions from directly visible components.

Inferring emotions from these externally visible cues has been termed the social-perceptual

approach and has been demonstrated to be a fundamental component used by humans to

understand emotions in other human beings [TFS00]. This data-driven model of emotion

recognition lends itself well to a computational implementation. In this dissertation I

will focus on the motor expressions produced by the human body in particular to infer

emotional states.
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Figure 2.1: Ekman’s basic emotions (angry, afraid, disgusted, surprised, happy, sad) as ex-

pressed in the face (from [EF76]) and through body posture (from [Cou04]).

2.1.2 Models of differentiation

From everyday use people are very familiar with differentiating between emotions using

labels such as cheerful, tense or angry. Nevertheless, emotions are inherently complex

phenomena, continuously developing and changing over time. It is therefore not surpris-

ing to find a number of different approaches to structuring and differentiating between

different emotions in the psychology literature. Often different models are particularly

suitable for describing a subset of the components of emotion (e.g . motor expression).

While the model of discrete emotions is well-suited to address the motor and behavioural

effects of emotions, dimensional and meaning-based methods have been argued to be par-

ticularly good for capturing subjective feelings. These three models were outlined by

Scherer [Sch00] and I describe them briefly below.

Discrete models

The idea of discrete emotions stems from the neuropsychological idea that certain emo-

tional reactions are innate in the form of neural circuits and neuromotor programs [Sch00].
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Figure 2.2: Dimensional emotion models proposed by (a) Russell [PRP05] and (b) Breazeal

[Bre04].

A discrete view of emotions was first postulated by Darwin [Dar72] and has more recently

been adopted by Ekman and Izard who argue that a number of basic emotions are ex-

pressed through corresponding prototypical facial expressions [Ekm92, Iza94]. The num-

ber of basic emotions proposed varies from author to author but is generally assumed not

to exceed 15. Figure 2.1 shows six basic emotions expressed through facial expressions

and body postures. One problem with discrete emotions is their inability to capture the

large variety of distinct emotional experiences that we would intuitively postulate. It

is therefore necessary to allow a blending of different basic emotions into more complex

emotion mixtures.

Dimensional models

The notion of emotion mixtures, especially within the realms of subjective feelings, leads

to the idea of continuous emotion spaces. In these models emotions are usually placed

within a low-dimensional space. The circumplex model proposed by Russell uses two

orthogonal dimensions: valence (pleasantness) and arousal (activation) [PRP05]. The

standard emotions as identified by Russell lie on a circle in this space (see Figure 2.2(a)).

Although valence and arousal are the most commonly used dimensions for modelling

emotions, other authors have used additional dimensions such as attention [Wun05], stance

[Bre04] or action tendency [KSBB05] (see Figure 2.2(b)). Note how the latter additional

dimensions help to capture aspects of the emotional process that go beyond the subjective

feeling component.
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Table 2.2: Body motions and postures associated with certain emotions as noted by Darwin

[Dar72] (from Wallbott [Wal98]).

Joy Various purposeless movements, jumping, dancing for joy,

clapping of hands, stamping, while laughing head nod to

and fro, body held erect and head upright

Sadness Motionless, passive, head hangs on contracted chest

Shame Turning away the whole body, more especially the face,

avert, bend down, awkward, nervous movements

Fear/terror/

horror

Head sinks between shoulders, motionless or crouches down,

arms thrown wildly over head, arms violently protruded as

if to push away

Anger/rage Whole body trembles, intend to push or strike violently

away, gestures become purposeless or frantic, pacing up and

down, shaking fist, head erect, chest well expanded, feet

planted firmly on the ground, one or both elbows squared

or arms rigidly suspended by the sides

Disgust Gestures as if to push away or to guard oneself, spitting,

arms pressed close to the sides, shoulders raised as when

horror is experienced

Contempt Turning away of the whole body, snapping one’s fingers

Meaning oriented models

These models are very much structured around linguistic concepts of emotions and their

understanding within a society. Often emotional concepts are organised in hierarchies or

taxonomies based on generality or semantic significance. For example, the OCC model

developed by Ortony, Clore and Collins [OCC75] proposes a structure for different emotion

concepts based on cognitive eliciting conditions involving events, objects and other agents.

Another approach was taken by Scherer who built a comprehensive taxonomy of emotion

terms and categories [Sch05a]. Meaning oriented models are usually very intuitive to

understand for people otherwise unfamiliar with emotion theory. They are therefore

often used for labelling emotion displays by untrained labellers. Because of the semantic

structure and intriguing intuitive appeal, models like the OCC have often been proposed

for implementations of real-world artificial intelligence-based systems.

2.2 Emotional body expressions

The first rigorous evidence for the expression of emotions through the body are found

in Darwin’s seminal work The expression of the emotions in man and animals [Dar72].
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Figure 2.3: Archetypal expressions associated with (a) disgust, (b) anger, (c) helplessness and

(d) surprise collected by Darwin [Dar72].

In it he lists behaviours specific to certain emotional categories, many of which are now

regarded as basic emotions. Table 2.2 lists some examples. Darwin also collected a num-

ber of photographs depicting archetypal gestures associated with some emotions (see

Figure 2.3). In the century that followed many researchers compiled similar lists of

stereotypical expressions, e.g . in [GP06, BRI+05, Wal98]. Other authors have argued

for similarly distinct patterns of emotional body expressions along a number of more ab-

stract dimensions, using terms such as speed, force, energy, expansiveness or directness

[Mei89, SW90, MKZA99].

While Darwin seemed convinced that different emotions give rise to specific body move-

ments and postures, some more recent psychological work has been more nuanced. Some

psychologists even suggested that body expressions can be merely an indication of emo-

tion intensity rather than an emotion itself [EF74]. I will come back to this view in

Section 2.2.1. Other authors have argued that the body carries emotional information in

much weaker form than originally claimed by Darwin and than may be accredited to other

modalities like the face. An important attribute of the body is that it is primarily used to

perform manipulatory actions and to facilitate locomotion. Emotions are hence often only

noted as secondary signatures on top of those more fundamental actions [RCB98, ABC96].

Furthermore, several authors have mentioned that body posture and motion are suscep-

tible to individual idiosyncrasies [Cou04, Mei89, Wal98, Ste92]. For example, Wallbott

found that in one of his experiments the amount of variation observed in the data due to

emotions was nearly matched by that due to individual differences in expressions [Wal98].

This brief overview hence suggests that there is significant emotion-related information in

body expressions. However, there are other effects like underlying actions and individual

idiosyncrasies which also have a large impact on body expressions.

In the next two sections I will expand on these themes while discussing emotional body

expressions as treated within the humanities and animation communities.
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2.2.1 Emotional body expressions and the humanities

The study of the role of different modalities in the communication (encoding and decoding)

of emotions has a long tradition in psychology. It has been frequently noted, however,

that conclusive results about the particular role of the body are missing due to a lack

of studies [VdSRdG07, ADGY04]. Given the striking saliency of the human face as a

communication channel of emotions, it is maybe not surprising that many early studies

focused on the face. They often concluded that facial expressions account for the large

majority of emotional cues. Work by Ekman lead to the influential quantity but not quality

hypothesis [Wal98, Ekm64, EF74]. He postulated that body movements merely provide

information of the intensity of an emotion. He argued that body motions could not give

any indication about which emotion gave rise to it. This notion was in clear conflict with

Darwin’s original observations and many authors have since found convincing evidence

for a systematic encoding of emotional “quantity” information in both body posture and

gestures.

Emotions in body posture

Posture is usually defined as the static configuration of body parts, including head pose,

as well as arm, leg and trunk configuration. Starting with Darwin (see Table 2.2 and

Figure 2.3), there have been more or less detailed descriptions of specific postures adopted

in connection with different emotions [BC01, Wal98, Mei89, Bul87]. More recent studies

by Coulson and De Silva et al . explored the effect of different posture features more

systematically [Cou04, DSBB04]. Both studies independently confirmed that features like

head and chest bend, elbow bend and hand-shoulder distances are statistically significant

indicators of emotions.

Emotions in body movement

Similarly systematic investigations have revealed the significance of dynamic motion cues

for the communication of emotions. In fact, Atkinson et al . recently showed that static

form and dynamic motion cues provide distinct contributions to the communication of

emotion through the body [ADGY04]. In other studies authors have demonstrated the

importance of dynamic motion cues for the encoding and decoding of emotions in different

contexts including interpersonal dialogues [Bul87, CBF+05], dance [CLV03, DTLM96], in-

fant expressions [CSM93] and everyday actions [PPBS01]. Most of these studies stress

the importance of certain movement qualities such as jerkiness, energy or speed as dis-

criminating attributes. In 1990 these results had been predicted by Scherer and Wallbott

who argued that emotions in the body are likely to be detectable through changes in the

speed, rhythm and fluidity of movements [SW90]. This is mainly due to the fact that the
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human body has evolved to primarily support life-preserving functions. The overwhelm-

ing evidence therefore points to the importance of dynamic qualities when it comes to the

encoding of emotions through the body.

Structure of body expressions

Social scientists have also been among the first to study human movement in a principled

way. In order to facilitate their studies, researchers in the humanities have long sought

to devise notation schemes which let them break down complex motion sequences into

fundamental building blocks (primitives). The goal is usually to represent motions as

objectively as possible and leave social or emotional interpretations to a later stage. Bull

and Birdwhistell devised complex and complete systems for describing body posture and

motion in anthropological and psychological observations [Bir70, Bul87]. The goal of

Bull’s Body Movement Scoring System [Bul87] was explicitly to develop a system as

complete as the Facial Action Coding System [EF78] — now a defacto standard for coding

facial expressions in psychology and more recently for the computational analysis of facial

expressions. Birdwhistell called his motion primitives kinemes and argued for fundamental

similarities between bodily and natural language. The similarity between body and spoken

language will be a returning theme throughout this dissertation. Other coding systems

have tried to explicitly incorporate the crucially dynamic aspects of body motion. For

example, Labanotation [Lab75] was originally developed to record dance steps but was

later extended with additional dimensions describing the spatial, dynamic and rhythmic

aspects. Movements can be described along a number of Effort and Shape dimensions

with attributes such as indirect, light, sudden or spreading [Hut77].

2.2.2 Emotional body animations

A very different field of study which has focused on emotional body motion is character

animation. Since the very early days of animation there has been a strong focus on

portraying characters as emotionally convincing in order to catch the imagination and

empathy of audiences. Though less formal, there is an immense amount of insight that

can be gained from the animation community. This kind of knowledge is captured well in

a quote by John Lasseter, director and producer of many pioneering films by Pixar and

Disney. He gives some insights from an early animation piece involving two extremely

expressive characters in the form of desk lights (c.f . Figure 2.4) [Las87]:

One character would not do a particular action the same way in two different

emotional states. An example of this, in Luxo Jr., is the action of Jr. hopping.

When he is chasing the ball, he is very excited, happy, all his thoughts on the

ball. His hops are fast, his head up looking at the ball, with very little time
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Figure 2.4: Examples of emotional body expressions in animation. Left: A sketch from The

illusion of life: Disney Animation [JT95], top right: Luxo Jr. and Luxo Sr. in a Pixar animation

from 1987 [Las87], bottom right: part of the cover art of the book Character emotion in 2D and

3D animation by Les Pardew [Par07]

on the ground between hops because he can’t wait to get to the ball. After

he pops the ball, however, his hop changes drastically, reflecting his sadness

that the object of all of his thoughts and energy just a moment ago is now

dead. As he hops off, each hop is slower, with much more time on the ground

between hops, his head down. [. . . ]

No two characters would do the same action in the same way. For example,

in Luxo Jr., both Dad and Jr. bat the ball with their heads. Yet Dad, who

is larger and older, leans over the ball and uses only his shade to bat it. Jr.,

however, who is smaller, younger, and full of excited energy, whacks the ball

with his shade, putting his whole body into it.

In order to make character behaviour believable, Lasseter highlights many of the issues

already familiar to us from the insights of detailed psychological studies:

• influence of different emotions on the appearance of actions

• significance of dynamic motion qualities as well as body posture

• impact of individual idiosyncrasies on the appearance of actions.

Many of these ideas have been the subject of academic research in computer animation

of film characters and more recently avatars. Figure 2.4 shows some examples of emo-

tional body expressions from traditional and modern animation. Systems developed in

recent research frequently aim to provide better means for animators to control the ex-

pressions of their characters. Many of the approaches are based on the notion of affective
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transforms applied to an underlying basic or neutral animation [VGS+06]. One of the

earliest approaches developed by Amaya et al . was based on two such transforms affect-

ing the speed and spatial amplitude parameters of motions [ABC96]. They also noted

that different emotional styles might be encoded through different phase relationships

between various body joints. A more complex set of transformations has been described

by Polichroniadis who proposes additional parameters such as constant posture offsets,

body swing and shake [Pol01].

While Polichroniadis’ parameters are motivated by diverse sources, Costa et al . used La-

ban’s Effort/Shape framework discussed in Section 2.2.1. Their EMOTE system uses

Effort and Shape parameters as a basis for interpolation between traditional animation

key frames [CCZB00]. In a related system they demonstrate how the EMOTE param-

eterisation can be used to drive animations through natural language instructions like

walk proudly [ZBC00]. In this case adverbs like slowly, proudly or happily map to specific

Effort and Shape parameters affecting the quality of body motions. This verb/adverb

analogy was also used by Rose et al . who treated adverbs like happily, sadly, uphill or

downhill as parameters in their own right [RCB98]. By interpolating between actions of

the same type (verbs), they derive new motions with different stylistic qualities.

Finally, Liu et al . describe a set of parameters which capture the biophysical elements

of style, for example tendon elasticity and relative preferences of muscle uses at each

joint [LHP05]. They describe a way to learn and represent emotional styles as certain

combinations of these parameters. A similar abstract notion of style is employed by

Brand and Hertzman [BH00]. They define Style Machines as stochastic models which can

generate new motion sequences based on a style parameter and a probabilistic description

of the underlying action.

Gestures

A relatively independent trait of body movements often discussed by the animation com-

munity are body gestures. They are seen as fundamental to creating believable characters

or avatars [VGS+06]. A gesture can be defined as a visible action when it is used as

an utterance or as part of an utterance in the context of interpersonal communication

[Cas08, Ken04]. Gestures are often regarded as intimately linked to verbal language

[VGS+06, mcn92] but are sometimes also more generally regarded as an action which

manifests deliberate expressiveness [Ken04]. Douglas-Cowie et al . reported that in con-

versational contexts only 20% of these kinds of deliberate actions are informative of emo-

tions [DCDM+05]. They found that in real-world scenarios explicit body gestures were

the least informative out of a number of cues from multiple modalities including speech,

eyes, mouth, head and brows. Because affective gestures like arm raises, hand claps and

the like are relatively easy to analyse with well-established gesture recognition algorithms,

several researchers have in the past limited their modelling of emotional body signals to
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affective gestures [BRI+05, DSOMM06, CKC08]. In this dissertation I will focus on the

less explicitly communicated emotions in everyday actions as summarised in the next

section.

2.2.3 Everyday actions vs. emotion archetypes

We have seen in previous sections that body motions can be complex and that the body

can perform different functions in different contexts. For this dissertation I will distinguish

between two fundamental types of body motions: everyday actions and inherently affective

gestures. I regard as affective or expressive gesture any kind of body motion which is

motivated by the deliberate expression of affective content. Everyday or complex actions

on the other hand are motions which are motivated by goals other than communicating

affect.

Examples for everyday actions are activities such as walking, sitting down or certain

kinds of gestures such as pointing movements or iconic gestures describing the spatial

extent of objects. Expressive gestures, on the other hand constitute emotional body

movements such as raising one’s arms in joy or parts of expressive dance performances.

One particularly pertinent class of affective gestures are emotion archetypes which are

the kinds of exemplary motions which come to peoples’ minds when they hear a certain

emotion word [CS05]. Note that, while motions arising from everyday actions are not

intended to convey emotions and are indeed usually carried out to achieve some other goal,

qualities of those motions can convey certain emotional information [Cas08]. Indeed, many

of the animation techniques described above target transformations of everyday actions

in order to convey a certain emotional content. Lasseter’s description of a happy vs . sad

Luxo Jr. is a perfect example of how an action such as walking can have clear emotional

qualities.

2.3 Detecting emotions from face, speech and body

Much research in the past has been devoted to the study of automatic emotion recog-

nition from the face and human speech (for a comprehensive overview see [CDCT+02]).

Comparatively little work has still been done on emotion detection from the human body

— one of the major motivations for the work described in this dissertation. Given such

a large volume of work on other modalities, it is tempting to assume that the techniques

developed for the face and speech can be readily applied to motion signals. There are,

however, fundamental differences which need to be addressed. In particular, despite the

seeming similarities between facial and bodily expressions of emotions (after all the face

is just a specialised subsystem of the human body), there is evidence for very different

emotional patterns.
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Compared to the human body, the face has been argued to be relatively free of functional

constraints — its intricate muscles are specialised to produce subtle facial expressions

[SW90]. Notable exceptions include activities such as speaking, chewing and squint-

ing which can significantly impact facial movements. Although Pantic and Rothkrantz

pointed out the significant impact of speech articulation on the detection and interpreta-

tion of facial expressions [PR02], much of the facial expression recognition research has

focused on isolated expressions without such complicating actions. By the definition in

Section 2.2.3, these expressions amount to affective gestures — the motions themselves

contain immediate emotional meaning. This is most notably the case for facial expressions

of basic emotions where early rule-based systems linked expressions to discrete emotions

(e.g . smiling implies happiness). These systems ignore the presence of non-expressive

speech motions often found in natural scenarios. Nevertheless, because speech is usually

the only source of non-expressive signals in the face, an analysis on the basis of affec-

tive expressions alone is certainly justified and has produced some convincing results (see

Section 2.3.1 for details).

Emotion detection from auditory speech signals, on the other hand, is very different. In

speech large parts of the signal are shaped by the “non-expressive” verbalisation of words

and phrases. Only certain sonic qualities are usually indicative of emotional meaning.

Early research by Cowie and Douglas-Cowie identified a number of features in the prosodic

domain which they showed to be linked to emotions [CDC96]. Over the following decade

authors proposed many new features capturing speech qualities. We saw in previous

sections that there is convincing evidence that emotions from the body are also likely to

be encoded by qualities rather than explicit, affective motions and gestures.

Relatively few authors have discussed the role of motion qualities with respect to facial

expressions. Studies by Pantic, Valstar, Cohn and others which have considered qualities

[CS04, SKA+06, VPAC06, VP07, VGP07] usually focus on the detection of spontaneous

vs . posed expressions such as smiles and brow actions rather than the detection of emo-

tions. Some exceptions include the work by Zhang and Ji who use dynamical models to

capture durations of facial expressions and their effect on emotional interpretations [ZJ05].

Some other works exist which discuss dynamics of facial actions [PP06], how to use the

dynamics of facial expressions for the detection of identity [LBF+04], pain [LBL07] and

the intensity of smiles [WLF+09]. This dissertation focuses on the use of motion qualities

rather than the detection of explicit gestures for emotion recognition — this makes it

in some ways similar to the analysis of emotion in speech and is related to some of the

recent works discussing emotion analysis from facial dynamics. Even though the research

groups of Pantic and Cohn have in the past stressed the importance of facial dynamics

for emotion analysis [PP06, Coh06], this is still a largely unexplored area.

It is worth noting at this point that other sources of emotional information have been

investigated in the recent past. Those usually fall under the physiological activation

component of the emotional response triad (c.f . Section 2.1.1). Popular sources of in-
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formation are electromyogram, blood volume pressure, skin conductivity and respiration

[PVH01, GPP08]. More recently researchers have started to analyse brain activity in

order to infer emotional states [HDR08]. Because these methods are not concerned with

the motor expression of emotions, I will largely focus on how emotion is expressed in the

face and voice to draw inspiration for my body-based approach.

2.3.1 Automatic emotion recognition from facial expressions

Despite the underlying difference in expression of emotions, studies on facial expression

recognition are relevant for this research. Fundamentally, both problems are commonly

solved using pattern recognition techniques. The comprehensive literature on facial ex-

pression analysis provides a good background on the use of different machine learning

techniques such as Support Vector Machines [BLV+08, MK03], Dynamic Time Warping

[RD08], Hidden Markov Models [ZTPH08, PBL02, KR05] or Dynamic Bayesian Networks

[KR05] for emotion recognition. I will touch on all of these techniques throughout this

dissertation.

Facial expression recognition has revealed a great deal about the importance of dynamic

information when looking for subtle emotional cues. Early systems tackling a small

number of basic emotions found that simple static models worked well in distinguish-

ing between them [PR00]. As the systems aimed to analyse more subtle facial expres-

sions, it emerged that dynamic information is very important for detecting emotions

[Kal05, PP06, Coh06, RD08]. This work naturally lead to the analysis of more natural

sequences of facial expressions rather than the artificial isolated displays often found in

early databases. It is not surprising, however, that Pardás et al . report that detecting

emotions from natural sequences is generally harder than when applied to isolated ex-

pressions [PBL02]. They also confirmed that functional movements produced by speech

represent a major complication for facial expression recognition.

Other relevant areas include the development of a universal coding system for facial actions

— the Facial Action Coding System [EF78]. Many similar systems have been proposed for

the body in the past, but because of their complexity none has so far been widely adopted

as a standard. Many facial analysis systems have relied on Ekman’s basic action units as

primitive building blocks and several authors have worked on the automatic extraction of

action units from facial motion sequences [TKC02, VP06, BLF+06, ZDlTCZ09, TLJ07]. I

will investigate to what extent the analysis of body movements can benefit from similarly

basic motion primitives.

Finally, studies on facial expressions have tackled issues concerning the impact of indi-

vidual differences in expression on training and recognition performance. While systems

trained and tested on the same subjects tend to perform very well, holding out certain

subjects’ data for testing produces worse results (e.g . see [CSG+03]). This effect can be



2.3. DETECTING EMOTIONS FROM FACE, SPEECH AND BODY 35

very significant. It means that recognition rates obtained for the former setup are not

very good indicators for the generalisation performance of a system to previously unseen

subjects or users — clearly a desirable property of a real-world system. Similar effects

were found when using different corpora for testing and training [LBF+04]. I am aiming to

report reliable figures by employing a cross-validation technique which reliably estimates

the recognition performance for unseen subjects.

2.3.2 Automatic emotion recognition from vocal expressions

The issue of subject differences has also been the topic of several voice-based emotion

recognition systems. Speaker adaptation is now an established concept in the field of

speech recognition and has been finding its way into the emotion recognition community.

Vogt and André, for example, demonstrated that augmenting emotion recognition with

a gender detection stage leads to better performance [VA06]. While the difference in

gender may not be quite as pronounced for body motions as it is in speech [Mei89], the

general ideas of adapting the recognition framework to user differences is useful. Other

authors have stressed the more general importance of speaker normalisation for emotion

recognition [SAE07, VSWR07, KCHL03]. All of these approaches are targeted at removing

signal bias introduced by the individuality of speakers. In another study, Forbes-Riley

and Litman investigated the role of additional context information such as gender and

higher-level dialogue features [FRL04]. All of these techniques are immediately relevant

for my work on human body expressions.

As it is mainly the quality of both speech and body motions which is important for

the expression of emotions, it is also worth considering the features commonly used to

capture emotional differences in speech. The most commonly used features are acoustic

or prosodic in nature and hence capture the quality of speech:

• pitch (fundamental frequency)

• intensity (vocal energy)

• speech rate/duration

• pitch contour

• phonetic features.

Among those, pitch and energy have been argued to be the most informative for affect

recognition [KCHL03]. Although the domains are very different, speech features such as

energy, speech rate, velocity and acceleration of pitch [KCHL03, SS08] are surprisingly

similar to the qualities which psychologists and animators have argued to be indicative of

emotion in body movements. Like in the field of facial affect recognition, early works on
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emotion recognition from the voice often postulated specific acoustic correlations for emo-

tion expressions. Those had among others been summarised by Cowie et al . [CDCT+02].

Basic emotions recorded under laboratory conditions are relatively easy to distinguish us-

ing these kinds of correlates. More natural speech as it arises in call centres, meetings and

interviews, however, makes emotion recognition far more challenging. In those scenarios

prosodic features are affect by emotion as well as a range of other linguistic factors like

accents and intonation [Moz02]. this problem is reminiscent of emotion recognition from

body motions in many every-day scenarios. The dynamics of one’s body movements are

often influenced significantly by the particular action one is carrying out – in the same

way that speech qualities are significantly affected by functional linguistic factors as well

as emotional factors.

As one possible solution to this problem the speech community has proposed the use

of different features. Several authors have shown that higher-level lexical or linguistic

features like occurrences of word repetitions, corrections or different uses of parts-of-speech

and words can be very valuable for distinguishing emotions in more natural scenarios

[LR04, BFH+03].

Finally, the pattern recognition techniques that have been employed to distinguish be-

tween different emotional patterns in speech have ranged from simple methods like k-

Nearest-Neighbour, template matching and heuristic rules to state-of-the-art classifiers

such as boosted decision trees or Support Vector Machines [ZPRH07].

2.3.3 Automatic emotion recognition from body expressions

Having mentioned the considerable progress made in emotion recognition from the face

and voice, I now turn to the previous efforts in emotion recognition from the body. As in

other fields of study, until recently the body had been largely ignored by the community

as a source of affective information. Furthermore, the vast majority of efforts have to

date focused on detecting emotions from emotional gestures and motions [KKVB+05,

KSBB05, CLV03, BRI+05, GP07]. To gather representative data, subjects are in many

cases instructed to act out certain emotions, which inevitably leads to explicitly affective

gestures and archetypes.

One notable exception is some of the recent work by Castellano et al . who also con-

sider some non-expressive scenarios such as a piano performance [CMC+08] or a simple

non-propositional arm gesture [CVC07]. In both cases the data was acquired using a

conventional DV camera. As the motions themselves carry little or no emotional meaning

in these scenarios, they use movement qualities to distinguish emotions. For that pur-

pose the InfoMus Lab at the University of Genova developed the EyesWeb Expressive

Gesture Processing Library [CMV04]. It is designed to facilitate the real-time analysis of

expressive gesture in full-body human movement based on computer vision algorithms.
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Features used by Castellano et al . include the quantity of motion and contraction index

of the upper body as well as velocity, acceleration and fluidity of limbs and head. When

distinguishing between the four emotion classes anger, joy, pleasure and sadness their

Bayesian Network-based classifier achieves a correct recognition rate of 61% in the ges-

ture scenario. This seems considerably lower than typically quoted rates achievable from

the face and voice. For the piano scenario their features did not show any clear patterns

and a classification was not successful. This goes to show that detecting emotions in these

kinds of scenarios is not easy. They hypothesise that the constraints inflicted by the char-

acteristics of the task limit the expressiveness of the subject, especially when compared to

scenarios which focus on emotional expressiveness like dance [Cas08, CLV03]. A further

limitation is the low-fidelity representation of body motion and configurations owing to

the single camera view of the subjects and only basic processing inside EyesWeb.

Another popular everyday motion context is human gait. Using force plates, Janssen et al .

recorded the gait patterns of a number of subjects in four emotional styles: neutral, joyful,

angry, sad [JSL+08]. They found that the differences between individuals far outweighed

the differences due to emotions. In fact, they note that they found inter-subject emo-

tion recognition impossible. However, they noticed very clear patterns within subjects.

They did not, however, attempt to normalise the data between subjects. Instead, they

trained Neural Networks on the patterns from individual subjects and found an average

recognition rate of 84%.

Progress on explicitly expressive movements has in the meantime been a bigger focus in

the community. Early results were reported by Camurri et al . who looked at recognising

emotions from expressive dance [CLV03]. They describe a processing stack based on the

EyesWeb infrastructure to extract dynamic cues from the dancers’ movements. They do

not report formal classification results, but show that there are statistically significant

effects between certain emotions and key qualities including time duration, contraction

index, quantity of motion and fluency.

More recently Kapur et al . reported recognition results based on archetypal body motions

[KKVB+05]. They instructed subjects to freely enact four emotional states and recorded

the motions using a 3D motion capture system (c.f . Section 2.4.3). They then trained

and tested a number of classifiers on the data. They found that Neural Networks and

Support Vector Machines were able to achieve a correct recognition rate of 84% while

humans were able to classify the clips correctly 93% of the time. This illustrates that

both humans and machines find recognising the emotional patterns in archetypal motions

much easier than in more subtle everyday scenarios. In similar experiments by Gunes and

Piccardi subjects were seated and recorded by a standard DV camera. Their expressive

motions were distinguishable by a Bayesian Network-based classifier at a rate of 90%

[GP05]. Further works by Gunes and Piccardi employ similar methodologies, together

with a focus on fusing body signals with other channels [GP06, GP07, GPP08, GP08].

Using the same data Shan et al . presented a vision-based system which analyses the
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spatio-temporal features extracted from interest points in videos. Their SVM classifiers

were able to distinguish between the 7 classes at an average rate of 0.75 using body

features alone.

Another class of systems are based on the explicit modelling and detection of affective

gestures such as hand clapping, arm raises or hands-on-face gestures. Three examples for

these kinds of systems come from Balomenos et al . [BRI+05], De Silva et al . [DSOMM06]

and Castellano et al . [CKC08]. These kinds of systems usually make the assumption

that certain gestures are indicative of certain emotions. The systems by Balomenos and

de Silva model upper body motions using Hidden Markov Models and formulate the

emotion recognition problem as a gesture recognition problem. De Silva et al . go one step

further and also try to predict the intensity of displayed emotions based on factors like the

detected mix of emotions and the environmental context, which in their case is the state

of a computer game which the subject is playing. In Castellano et al .’s system emotions

are not being modelled explicitly but are detected through a number of dynamic features

such as quantity of motion, fluidity etc. Using a Bayesian Network they were able to

distinguish between the gestures of eight emotion classes at an average rate of 67%.

Finally, Picard et al . and Kleinsmith et al . concentrated on posture cues in isolation.

Picard et al . were interested in predicting a learner’s interest level from his/her body pos-

ture [MP03, KBP07]. They recorded data using a pressure-sensitive chair in an authentic

scenario. In subsequent experiments they found that shifts in the pressure patterns could

predict the three states high interest, low interest and neutral with an accuracy of 76%.

While Picard et al . were collecting data in an everyday context, Kleinsmith et al . used

archetypal body expressions recorded in an artificial laboratory context and extracted the

apex of the emotional expression as a posture of 3D body joints [DSBB04]. In [KSBB05]

they find a mapping between a number of static posture features and the three emotion

dimensions of arousal, valence and action tendency. They report that while the arousal

dimension is very well represented in posture features, valence and especially action ten-

dency introduce a large error. They attribute these problems to the dynamic cues which

are missing in their static posture model.

2.4 The data used in this dissertation

We have seen that detecting emotions from explicitly expressive and archetypal body

motions has yielded relatively good results in the past. For the majority of this thesis

(Chapters 5 – 7) I will therefore focus on the largely unexplored and more challenging

category of everyday actions. In the rest of this section I will present the source and

nature of my data and describe why its use can facilitate some significant progress in the

field beyond the insights acquired elsewhere.

I also decided to include a study of some expressive and archetypal motions in Chapter 3.
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As my work on everyday actions covers largely new terrain, Chapter 3 serves as a refer-

ence to previously conducted work and gives a good overview over the general principles

involved in the feature extraction process. Chapter 3 is largely self-contained and I will

not cover the archetypal data here.

2.4.1 The question of ecological validity

In their recent article Beyond emotion archetypes: Databases for emotion modelling using

neural networks Cowie et al . raise the important question of ecological validity of emotion

databases used for the kinds of emotion recognition experiments described in this disser-

tation [CS05]. They remark that assembling databases for these kinds of experiments is

very challenging due to various reasons ranging from practical and ethical to intellectual.

Nevertheless, they criticise many of the traditional approaches because they do not focus

on emotion in action and interaction. Cowie et al . warn that

[. . . ] research should not slip into assuming that the empirical data needed to

understand a topic equate to a collection of cases that reflect the archetypal

images we associate with it.

They use the term archetypal to refer to instances such as Ekman’s facial images of basic

emotions or previously described affective gestures which we would expect to see very

rarely in actual human interactions. They therefore demand that modern affective com-

puting research should focus on emotion as it appears woven through everyday activities.

They note that in experiments

[. . . ] most of the variables which are affected by emotion are also affected, as

much or more, by commonplace activities such as moving, speaking, or even

thinking. As a result, their value as discriminators diminishes rapidly as one

moves towards free situations where people are likely to be moving, speaking,

or thinking. [. . . ]

In this dissertation I intend not to evade the complexity of real everyday situations. The

database I am using captures many of the intricate interactions between actions, emotions

and individuality. Dealing with this kind of data is clearly a challenge, but it is necessary

if we want to move beyond archetypal displays of emotion and towards more ecologically

valid situations.

Picard et al . published a useful list of heuristic dimensions [PVH01] along which the eco-

logical validity of recorded data can be assessed. The dimensions are outlined below. Note

that Picard et al . originally developed the dimensions in connection with the recording

of physiological signals and implicitly assumed that data would be recorded in a realistic

task environment.
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• Subject-elicited vs . event-elicited : Does the subject purposefully elicit emotion or is

it elicited by a stimulus or situation outside the subject’s efforts?

• Lab setting vs . real-world : Is the subject in a lab or in a special room that is not

their usual environment?

• Expression vs . feeling : Is the emphasis on external expression or on internal feeling?

• Open-recording vs . hidden-recording : Does the subject know that anything is being

recorded?

• Emotion-purpose vs . other-purpose: Does the subject know that the experiment is

about emotion?

While idealised realistic scenarios fall on one end of the spectrum (event-elicited, real-

world, feeling-oriented, hidden-recording, other-purpose), Picard et al . acknowledge that

these scenarios are virtually impossible to achieve in practice. A large number of motion

databases populate the opposite end of the spectrum. Some notable exceptions come

from the recent HUMAINE database [CCS+07] which attempts to represent emotion as it

appears in a variety of natural contexts. Although large parts of it score highly on many of

the dimensions above (e.g . event-elicited, real-world, other-purpose), it is a fundamentally

heterogeneous collection of video data which has not been annotated with emotion labels.

As such, it will undoubtedly play an important role in future research but was unsuitable

for this dissertation.

2.4.2 The Glasgow corpus

For the majority of the work described in this dissertation I used a corpus of body motions

recorded by Frank Pollick et al . at the Psychology Department, University of Glasgow

[MPP06]. The database was explicitly created to capture and represent the wide range of

personal properties, including identity, gender and emotion, that are encoded in a person’s

movement. The database has a number of distinct merits:

• captures complex interactions between emotion and individual differences

• covers four distinct emotion classes: neutral , happy , angry , sad

• all samples are labelled by emotion, providing a ground truth for learning and

evaluation

• covers four everyday action categories: Knocking , Throwing , Lifting , Walking

• actions recorded both in isolation and in natural sequences (see Figures 2.5 & 2.6):

duration varies between 2–4 seconds for isolated actions; 18 seconds on average for

action sequences
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• contains a large number of actors and repetitions: (15 male + 15 female) × 10

repetitions per action and emotion

• very high quality of recording (see Section 2.4.3)

• freely available for research use

• emotion recognition results by humans exist for parts of the database.

These advantages and the fact that the database has not been used for computational anal-

ysis in the past make it ideal for the purpose of this dissertation. Above all, the database

contains emotional movements as they arise from non-archetypal, everyday actions. This

raises its ecological validity over many of the previously recorded corpora. Despite this,

the data is of very high quality and was recorded under controlled laboratory conditions.

Compared to other laboratory-based databases the Glasgow corpus scores relatively high

on Picard’s criteria as it uses emotion induction to simulate event elicitation and targets

both feeling and expression. At the same time the data is immediately usable for ma-

chine analysis. This makes it significantly more useful than uncontrolled video recordings

which dominate the HUMAINE database. The ecological validity of the data is further

strengthened by the fact that actions were recorded in sequences as well as in isolation.

Very often experimental designs force subjects to display only isolated expressions, start-

ing from and returning to a common neutral pose. While this makes analysis tasks such

as segmentation easier, it also produces less natural emotion portrayals. The analysis of

action sequences forms an important part of this dissertation.

Recording procedure

Subjects were asked to act out the different actions in the various emotional styles. In

order to help elicit more natural displays, a scenario-based script was produced for each

emotion/action combination. For example, the angry scenario for the Throwing action

read as follows.

Today you slept in, so you had to rush to get ready. Then on the way to

work, a policeman flags you down and gives you a speeding ticket, although

you were just keeping up with traffic. You finally get to work where a note

is waiting for you denying your request for having Friday off; now you are

furious. Standing by your desk, you reach for a bit of rubbish and slam it into

the bin as your temper flares.

During the recording, the instructors were careful not to perform the actions themselves

in order to allow for fully personal interpretations. The effects of this are clearly visible

in the data. For example, while some subjects throw objects with large, sweeping arm
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Figure 2.7: Body representation in the Glasgow corpus.

movements, others only use small wrist flicks. At the beginning of each recording, subjects

were asked to stand in a T-pose, leading to an initial TDown action as the subjects lowered

their arms into a neutral position before performing the first action. Similarly, subjects

were asked to return to a T-pose at the end of the recording, leading to a TUp action.

Figure 2.6 shows a series of frames extracted from one of the action sequences, which

all follow the same protocol: TDown, Walking , Lifting , Walking , Knocking , Walking ,

Throwing , TUp. The creators of the corpus found it easy to supply the isolated actions

complete with segmentation points. The sequences, however, are unsegmented in the

corpus.

After the recording, emotional displays were not verified by independent judges. The

emotional ground truth is hence derived solely from each individual’s interpretation of

the emotional state together with the eliciting scenario. While this is a common way

to define the ground truth in the field, alternative or additional definitions have been

employed occasionally including self-judgements of recordings and judgements by trained

judges or peers [DCW+08].

2.4.3 Motion capture

The data recorded for the corpus is of very high quality. As opposed to some other

databases, the Glasgow corpus contains complete 3D position data for the 15 major body

joints as shown in Figure 2.7. While subjects performed the actions, their bodies were

tracked by multiple black-and-white 2D cameras of a commercially available Vicon motion

capture system. In post-processing steps those camera images were combined to compute

very accurate 3D joint positions at a data rate of 60Hz. The quality of this kind of
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data recording is clearly superior to the 2D recording of body shapes with a standard

DV camera at the typical rate of 25Hz. Furthermore, by using infrared markers the

motion-captured data is relatively noise-free (although significant manual post-processing

is usually necessary to account for occlusions). This compares well to simpler marker-less

techniques which can find it hard to track body parts such as the hands and head reliably

[Cas08].

Of course, using motion capture technology comes at a cost. Firstly, subjects need to

be fitted with infrared reflectors before recording. This can be both time-consuming

and intrusive. As a result the motions might appear less natural. Also, data of such a

high quality can currently only be obtained in a laboratory setting. With marker-less

technology maturing, however, comparable accuracies could be achievable with far less

intrusion in real-world settings in the future.

2.4.4 Mood or emotion?

The final point of this chapter returns to the issue of different affective phenomena. While

the Glasgow corpus was recorded to capture the influence of emotion on body movement,

the definition of emotion in the strict sense as presented in Table 2.1 only seems to be

reflected to some extent. We saw that emotions are generally defined as relatively brief

episodes of synchronised response to the evaluation of an external or internal event. In

particular when looking at the scenario description given earlier, we see that the influence

of the Throwing action notionally derives from events which far precede it, namely a sleep-

in, the traffic and a speeding ticket. It is normally assumed that emotional responses do

not last longer than a few seconds up to a minute. Furthermore, the emotional response

in this case is clearly not a synchronised response from multiple modalities — instead the

corpus reflects the subtle motion qualities which change because of the emotional state of

the subject.

One way in which to reconcile this apparent mismatch is to postulate that the corpus

captures a person’s mood, a distinct affective concept which acts over far longer periods

of time and at much less intense levels. A different view is communicated by Cowie

and Schröder who propose a differentiation between episodic emotions (emotions in the

traditional, narrow sense) and pervasive emotions (in a broader, more inclusive sense)

[CS05]. Whichever way we look at it, it is clear that the dynamic qualities of emotions and

the varying temporal scales at which affective processes impact on real-world situations

are currently not very well understood and therefore largely ignored by current emotion

recognition research. A resolution of this theoretical debate about the nature of emotions

is beyond the scope of this dissertation. Instead, I shall continue to use the term emotion

to refer to the concept of an affective process which may pervade large parts of a person’s

action in a broad sense.





Chapter 3

An experimental corpus of

expressive body motions

In Section 2.2.3 I discussed the fundamental difference between archetypal and everyday

body motions in relation to emotional expression. Although the ultimate goal of this work

has been the development of an approach for non-archetypal emotion expression, this

chapter will introduce a corpus of explicitly expressive body motions. As an important

component, the chapter will document the recording of the expressive motion corpus.

There are several motivations for treating these kinds of expressive body motions at this

point. It will lay the foundations and serve as an introduction to the data processing and

feature extraction techniques discussed in later chapters. The data will allow us to get a

feel for the way different emotions manifest themselves in statistical motion features, and

to what extent distinct individuals express emotions differently. I will also start to discuss

the problem of defining decision boundaries to classify between different emotions.

Although some prior work on expressive motions exists, my experiments make new re-

search contributions. While many studies dealing with expressive body gestures tend

to focus on short episodes or portrayals of expression, this chapter specifically discusses

sustained motions produced over many minutes. This chapter documents the use of a

mixture of techniques to elicit and sustain a variety of emotional expressions from the

subjects. Furthermore, the data has been recorded from untrained subjects, rather than

professional actors or dancers. Before discussing the data recording and analysis in detail,

I will give a brief overview over previously conducted studies using expressive motions and

emotion archetypes.

3.1 Emotion in expressive body gestures

Almost all automated emotion recognition experiments so far have made use of explicitly

expressive movements (in the sense defined in Chapter 2). By far the most common
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Figure 3.1: Examples of archetypal/expressive emotion corpora: (a) the FABO corpus [GP06]

(b) the GEMEP corpus [BS07] (c) De Silva et al .’s affective posture corpus [DSBB04].

form of expressive motions are acted emotion portrayals. For this class of emotion data,

actors (professional or otherwise) are instructed to act out certain emotions, usually with

very few restrictions placed on the body movements allowed. Two databases of this kind

which have been used in the past are the FABO and GEMEP databases (see Figure 3.1).

Both databases include video recordings of the subjects’ upper bodies and were recorded

using small scenarios in order to help elicit convincing emotional displays. Scenarios

might range from paragraphs of text describing an emotion-eliciting situation to one

line descriptions such as “It was just announced that you won the biggest prize in the

lottery”. An overview of both databases together with some other corpora discussed in
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Table 3.1: Corpora of expressive emotional body motions.

GEMEP

[BS07]

FABO

[GP06]

Kapur

et al .

[KKVB+05]

De Silva

et al .

[DSBB04]

Cam-

bridge

corpus

subjects 10 23 5 13 6

professional actors X

professional dancers X

untrained X X X X

basic emotions 5 6 4 4 3

other emotions 13 3 0 0 2

sustained emotions X

video cameras 2 1

3D motion capture X X X

reviewed during record-

ing

X

professional director X

expert ratings X X

novice ratings X X

self-ratings X X

publicly available X X

the literature is provided in Table 3.1. While both databases were in fact created to allow

multimodal analysis of face, body gestures and/or voice during emotional expressions,

they were also used for body-only analyses. For example, Gunes and Piccardi found that

90% of the body motions portraying six different emotions in FABO could be classified

correctly using a Bayesian Network classifier [GP05]. Other researchers have compiled

similar portrayal-based corpora using higher fidelity motion capture technologies (see

Table 3.1). Kapur et al . captured acted portrayals with a Vicon motion capture system

and showed that four basic emotions could be classified correctly with an accuracy of 92%

[KKVB+05]. Kleinsmith et al . investigate how the apex of emotional portrayals can be

analysed in terms of emotional postures in order to discriminate different emotion classes

[KSBB05, KBB07]. Many of these studies confirm that these kinds of emotion portrayals

tend to produce very stereotypical reactions (archetypes), which seem to be consistent

across different subjects. For example, Gunes and Piccardi find that uncertainty in their

dataset can always be detected as a combination of shoulder shrug with palms pointing

up [GP07]. Similarly, Balomenos et al . argue that there is a high correlation in their

data between the emotional displays of joy and the gesture of a high frequency hand clap

[BRI+05]. Similar observations apply to other studies.

The large interest in these kinds of scenario-based movements has been a fairly recent
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development. In the past, psychologists interested in the connection between emotion

and body motion have often turned to dance. Refer to Section 2.2.1 for an overview of

related studies. At this point it suffices to mention a recent study by Camurri et al .

which compares the recognition performances of human observers and automated tech-

niques for distinguishing emotions expressed by professional dancers [CLV03]. Although

no algorithms are trained to distinguish different emotions, many motion-based cues are

described which the authors argue to be correlated with emotion classes. Dance per-

formances offer several features which make them particularly interesting for my goal of

classifying everyday and naturally sequenced body motions. As opposed to archetypes,

dance sequences tend to be continuous, without the artificial restriction of having to start

and finish with a neutral pose. Secondly, as was done by Camurri et al ., archetypal por-

trayals can be explicitly inhibited by prescribing a sequence of motions which has to be

performed. This results in emotional variations of a fixed motion sequence. The motion

data of the Glasgow corpus is similar in this respect.

3.2 Collecting expressive body motions - a musical

environment

In the previous section I discussed a number of studies which presented automatic tech-

niques for analysing and, in part, distinguishing emotions in expressive body movements.

This section introduces my own effort which shall serve two broad goals:

1. To confirm the viability of detecting emotion in expressive body movement

2. To inform the development of a computational approach to detecting emotions in

the everyday body movements from the Glasgow corpus.

To this end, I am less interested in the stereotypical gestures elicited by scenario-based

setups. As in previous studies, the setup should give individuals the freedom to express

emotions according to their preference and without any significant physical constraints.

Furthermore, as the Glasgow corpus features longer sequences of body motions, I am

interested in recording sustained expressive motions rather than isolated portrayals. Fi-

nally, as in the Glasgow corpus, the data should be recorded from multiple subjects and

for multiple emotion classes.

Recording sustained expressive body motion without a powerful elicitation mechanism

can be very difficult. Most of the quoted studies tend to adopt a fairly simple procedure

of acting short emotional displays, usually based on a brief scenario description and the

desired emotion class to be exhibited. This method has several shortcomings. A frequently

stated issue is the ecological validity of the displays recorded in this way. It is a common
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debate as to whether subjects are displaying in some sense true emotional reactions or

simply acting the way they believe an according emotional reaction should look. Indeed,

this can lead to the already mentioned risk of collecting stereotypical reactions rather

than reactions as they would be observed outside the laboratory. It has been reported

that experimenters sometimes have to prompt specific gestures when the subjects feel

unfamiliar with a scenario [GP06] or may opt to prescribe the gestures altogether [CKC08].

Using a particular scenario to elicit expressive movement is therefore not an optimal

solution in my case.

To help inform my recording setup, I will give a brief survey of the methods used in

psychology to elicit certain emotional responses. Mood induction procedures (MIPs) com-

monly discussed in the psychology literature include:

• Velten MIP: subjects are confronted with self-referential statements (“I am really

disappointed by this test result.”)

• Imagination MIP: subjects are instructed to remember an emotional event in

their lives

• Story MIP: subjects are instructed to identify with the protagonist in a story/sce-

nario

• Film MIP: subjects are instructed to identify with the protagonist in a film clip

• Music MIP: subjects are exposed to emotionally evocative music

• Feedback/Social Interaction/Gift MIP: subjects are engaged in various kinds

of social scenarios to elicit certain emotions.

Recently conducted experiments within the affective computing community seem to favour

a small subset of these. The studies mentioned in Section 3.1 most commonly use a form

of Story MIP, which stimulates the subjects’ imagination to identify with a situation

and its protagonist. While the Film and Story MIPs have been argued to be the most

effective for certain mood induction scenarios [WSSH96], it is also well-known among

researchers in the field that music can have a very strong emotion-inducing effect [Gil08].

Importantly for my goals, and as opposed to the commonly used Story MIP, music can

provide a sustained source of stimulation. This is in contrast to more commonly employed

setups using a Story MIP, where subjects/actors would have to act an emotion without

assistance once they are familiar with the scenario.

One disadvantage of only using music stimuli by themselves is that their interpretations are

extremely subjective. While I would like to encourage individual expressions of emotion,

different emotional interpretations of the same music piece would significantly complicate

the construction of a useful dataset. In order to establish a ground truth, experimenters
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usually supply subjects with an explicit instruction about the intended emotional ex-

pression. This is a common technique and an independent review of MIPs found that

including this kind of instruction in the form of emotion labels with the Music MIP im-

proves its effectiveness [WSSH96]. I confirmed that without the instructions one pilot

subject felt unsure about the expected interpretation of the music and was hence not very

expressive. The level of expressiveness improved markedly when I included the emotion

labels alongside the music stimuli.

Including the emotion labels meant that choosing music pieces which “correctly” and

uniquely expressed the intended emotion was not as critical as without the labels. The

main requirements for the music were:

• engaging/immersive in order to stimulate sustained movement

• carrying as strong emotional connotations as possible.

I decided to use film music primarily as it largely fulfills the above criteria. I carried out

the music selection process together with an undergraduate student in order to ensure a

degree of objectivity. We started from a set of approximately 100 pieces, from which he

selected a number of excerpts with particularly strong expression. We went through an

iterative review process to filter out a number of pieces and according emotional classes

which were particularly strong. This is the list of emotion classes and corresponding music

pieces used in the final recording setup:

Neutral: Neutral : A recording of an orchestra tuning up before a concert

Happy: Happy 1 & 2 : Two excerpts from George Enescu: “Romanian Rhapsody”

Worry: Worried 1 : Excerpt from Howard Shore: “A journey in the dark” (film

music for “Lord of the Rings”)

Worried 2 : Excerpt from James Horner: “Falkirk” (film music for

“Braveheart”)

Sadness: Sad 1 : Excerpt from Niki Reiser: “Kai’s Death” (film music for “Beyond

Silence”)

Sad 2 : Excerpt from Edvard Grieg: “Ase’s Death” (from “Peer Gynt

Suite No 1”)

Fear: Afraid 1 : Excerpt from James Horner: “Revenge” (film music for “Brave-

heart”)

Afraid 2 : Excerpt from Howard Shore: “The passage of the marshes”

(film music for “Lord of the Rings”)

These pieces were confirmed to convey the intended emotions by five independent judges.

Details of the according two experiments can be found in Appendix A.
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In order to make experimental conditions equal for each subject, we developed an envi-

ronment to play these excerpts according to a pre-determined script. The environment

allowed pieces to be played for a certain amount of time and seamlessly fade between them

in order to create an uninterrupted and emotionally engaging experience. I also added the

ability to display the emotion class labels. In the final experiments, they were projected

onto a screen in an otherwise darkened room. The system also allowed the logging of

event times such as transitions between different emotional stimuli and the entering and

exiting of the subject in the recording area. These allowed for a post-hoc association of

body movements with the corresponding emotional labels.

3.3 Data recording

The recorded data was largely meant to be used in an exploratory fashion. For this

purpose the data would be more interesting if it exhibited a lot of variation in the way

emotions could be expressed. In the later sections we shall look at a quantitative and

statistical analysis of the data. For this, I required a reasonably large number of data

samples in order to make statistical measures robust and meaningful. In the traditional

portrayal-based setup, this usually means asking for a number of repetitions from each

subject or recruiting a very large number of subjects. One problem with asking for explicit

repetitions is that it biases the subjects towards copying the same kind of actions multiple

times, hence inhibiting more natural data variation. In order to encourage data variation

for each emotion class, I gave subjects between 30 and 50 seconds at a time to continuously

express an emotion. The periods for which different emotions were to be expressed were

then concatenated in a pseudo-random sequence. Transitioning and continuous expression

was supported by music and labels as described in Section 3.2. Once the long stretches of

emotional expression had been recorded, I could consider shorter subregions and extract

multiple samples from them.

In order to draw general conclusions from the Glasgow corpus, it is also important to

consider a reasonably large variety of subjects, preferably with a good spread across

genders and age. Another subject-specific aspect which may have a large impact on the

observed data is the issue of using trained versus untrained subjects. Several corpora of

expressive motions have in the past been collected of trained actors or dancers [BS07,

CLV03]. This usually has the advantage that subjects are used to their body motions

being recorded and analysed. It could be argued that, as a result, actors may be able

to produce more realistic and expressive renderings of emotional expressions. Several

reasons, however, favour using untrained subjects in my case:

1. There is an increasing interest in the affective computing community to move away

from purely acted data. Using trained dancers in my scenario would be a step in

the wrong direction.
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2. As far as I am aware, no corpus has so far been recorded of untrained subjects

expressing emotions through their body in connection with music. There have been

studies, however, of professional dancers expressing emotions.

3. My analysis of the recorded data will inform the analysis of the everyday actions

in the Glasgow corpus (see Section 2.4). This data was recorded from untrained

subjects which makes the use of untrained subjects in this instance desirable.

I recruited six subjects, three male and three female. They were all members of the

Department of Computer Science at the University of Cambridge and participated on a

fully voluntary basis. I screened participants informally beforehand to establish whether

they would feel comfortable with exhibiting expressive body motions. Each session lasted

roughly one hour with 20 minutes taken up by the actual recording of data. At the start

of the session, subjects were given an information sheet which outlined the procedure (see

Appendix B for details). The most important instructions for this study were that

• subjects should try and exhibit motions throughout the whole session (i.e. not just

when the stimuli changed)

• subjects were free to express the emotions in any way they wanted

• subjects were encouraged to be as expressive as possible.

To record the body movements, I used Vicon motion capture technology (see Section 2.4)

which required subjects to wear an upper-body tracking suit and a specially prepared

head cap. I only tracked the upper body and head in order to avoid the more significant

discomfort for the subjects resulting from wearing a full body tracking suit. I set up

the capture space to allow foot movement in an area of 2 × 2 metres which created a

total capture volume of 4× 4× 2.5 metres for unrestricted upper body and arm motions.

Whenever subjects were asked to perform, no-one else was present in the room. There

was very little illumination in the room in order to avoid distractions and allow for a

maximal emotional effect from the music.

After calibrating the skeleton model as part of a Vicon recording session, I gave subjects

five minutes to get familiar with the setup. During that time the environment was con-

trolled by a “warm-up” script which cycled through the following set of emotions: neutral ,

happy , worried , sad , afraid . Subjects were encouraged to become comfortable with mov-

ing in the space and to find expressions which they believed convincing for conveying the

according emotions. After the opportunity to ask any more questions, the main script

started and controlled the environment for the next 14 minutes. During that time all

body movements of the participant were recorded.

I recorded the 3D skeleton parameters at 100Hz using the Vicon software. This included

3D positions of the shoulders, elbows and wrists as well as the pelvis, neck joint and
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head. At the same time, the environment logged all changes in emotional stimuli (music

and displayed label). Once I had captured all subjects, this allowed me to associate each

frame in the movement recording with a certain emotion class (ignoring the regions where

stimuli from different emotions overlapped). In the next two sections I analyse this data

statistically with the goal of linking the observed joint movements to associated emotion

labels automatically.

3.4 Defining emotion-communicating features

This section will outline the basic processing techniques for turning time series of joint

positions into higher level motion descriptors. Within the machine learning and pattern

recognition communities, these kinds of descriptors are usually referred to as features.

In a conventional machine learning framework, the derived features will be supplied to

trained algorithms for classification into different emotion classes. The goal is hence to

derive a set of features which is maximally discriminative between the different emotion

classes, while being invariant to irrelevant transformations within a class. Expressed in

feature space, a selection of motion samples from two different emotion classes should

ideally exhibit a large between-class variability while maintaining a small within-class

variability. Choosing a set of discriminative features normally requires considerable human

intelligence including domain knowledge. In the field of affective computing, domain

knowledge can come in the form of qualitative or quantitative psychological studies. My

work makes extensive use of the results from psychological studies, as well as useful

insights from computer animation as discussed in detail in Chapter 2. First, however, we

shall turn to a number of transformations to achieve basic feature invariances.

3.4.1 Invariances

The major invariance that is required for analysing motion capture data is invariance

with respect to global skeleton position and orientation as the absolute world coordinate

system can be arbitrary. As a result I am assuming that an expressed emotion does

not influence the direction a subject is facing or where in the space he/she is located.

While this might not necessarily be the case in all real life situations, it is a necessary

assumption if no context information exists about the environment as in the two corpora

used in this dissertation. In order to achieve this invariance, I define a body-centred

coordinate system which moves and rotates with the subject (Figure 3.2). The body-

centred coordinate origin lies at the pelvis of the skeleton. In order to define the local

coordinate axes, I first define the coronal plane in terms of the shoulder-shoulder and

spine-pelvis vectors. The z-axis is then defined as pointing perpendicular to the coronal

plane. The y-axis is defined as the vector pointing from spine to pelvis, and together
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Figure 3.2: World and derived body-local coordinate systems. The body-local system’s origin

is located on the skeleton’s pelvis and local x, y and z-axes are shown in red, green and blue

respectively.

with the z-axis defines the sagittal plane. Finally, the x-axis is constructed perpendicular

to the sagittal plane (and will necessarily lie in the coronal plane). For all subsequent

processing, the joint data is mapped to this body-local coordinate system. I furthermore

normalise all joint translations by the total arm length of the subject. This ensures that

posture encodings are invariant with respect to absolute body size.

3.4.2 Posture descriptors

Joint position data is good for capturing a postural description of the body. In particular,

I am tracking the body-centred coordinates of all 9 captured body joints

ji = (x̂, ŷ, ẑ) for 1 6 i 6 9. (3.1)

For emotion recognition each joint is therefore modelled as having three independent

positional degrees of freedom. This representation clearly does not reflect all skeletal

constraints. However, I will later use various forms of feature selection to remove statistical

redundancies where necessary. Things such as raised arms versus lowered arms or a tilted

versus upright head are discernable using these posture features alone. Time series of

posture data are also an important component for recognising actions as I will discuss
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in Section 4.2. As far as emotion recognition is concerned, however, work from various

related fields suggests that emotional content is also contained in the dynamic aspects

of body motion (see Chapter 2). Cues such as the speed with which limbs are moving,

the energy exerted through or the smoothness of a movement have been associated with

emotional meaning by various authors. Kleinsmith et al . who have studied the automatic

classification of static posture features into emotion class have repeatedly remarked that

motion features such as direction and velocity are probably necessary to better recognise

certain emotions [KSBB05]. This seems in agreement with psychological findings which

state that humans have trouble distinguishing certain emotions without dynamical cues

[Cou04, DSBB04]. Kapur et al . found that humans presented with moving point-light

representations of human body joints can distinguish between the four emotions happy ,

sad , angry and afraid with an accuracy of 93% [KKVB+05]. In an independent study

using the same emotional classes and recording methods De Silva et al . found that only

presenting the most expressive static posture in the form of an avatar reduces the human

recognition ability to 69% [DSBB04]. They observed that significant information was

lost by reducing the dynamically expressed emotions to static postures and that as a

result postures of different emotion classes could look similar. The lack of dynamic cues

therefore probably played a major role for the significantly lower recognition performance

in De Silva et al .’s experiment over that of Kapur et al . This result is supported by

the numerous psychological studies I presented in Section 2.2. To capture the dynamic

qualities of body movements I therefore derive additional features — speed, acceleration

and jerk — which I describe next.

3.4.3 Dynamic descriptors

Mathematically speaking speed, acceleration and jerk have straightforward definitions.

They are the first, second, and third derivatives of the joint position data with respect to

time. As we are dealing with discretised time series data, they can be approximated by

taking finite differences between neighbouring samples. In terms of physical significance

they can be seen as describing different qualities of a motion:

1. Joint positions capture the posture or static qualities of the body: ji(t).

2. Speed is related to the kinetic energy of a motion and hence describes how energetic

a movement looks:

speedi(t) = |vi(t)|2 = |ji(t)− ji(t− 1)|2. (3.2)

3. Acceleration is related to the force applied to move the body and can distinguish

sudden from sustained or smooth motions. As force is a direct result of the amount
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of muscle contraction, acceleration can also be seen as giving an indication for the

amount of muscle tension:

accelerationi(t) = |ai(t)|2 = |vi(t)− vi(t− 1)|2. (3.3)

4. Jerk captures the rate of change of acceleration. A large jerk indicates significant

changes in acceleration and hence changes in applied force while a small jerk is

indicative of motions such as circular motion at constant speed [FH85]:

jerki(t) = |ai(t)− ai(t− 1)|2. (3.4)

In order to capture the expressive elements of arm movements, I thus compute normalised

joint positions as well as speed, acceleration and jerk for the hand and elbow joints.

Because these different channels are physically related to each other by the operation of

differentiation, it might at first appear redundant to capture all of them. However, during

the feature extraction process there are a number of non-linear operations, most notably

the temporal aggregation described in Section 3.4.4. It is therefore absolutely necessary

to capture those as different features. We will see in Section 5.4 that speed features,

acceleration features etc. do indeed carry statistically independent information.

Another channel which I make use of is the head. In particular, head posture can be very

indicative of emotional state. For example, a lowered head might indicate sadness. A

common skeletal representation of the head (which is also found in the Glasgow corpus)

is a single head joint connected to the neck joint. From this representation I can derive

two angles which capture the head posture:

1. the rotation around the body-local x-axis (pitch).

2. the rotation around the body-local z-axis (roll).

Note that it is not possible to determine the third degree of freedom of head rotation

(yaw) from this representation. Also, due to the simplicity of the assumed head model, it

is only possible to register larger-scale head motions involving the cervical vertebrae. In

order to derive higher precision measurements from the head, I would need to model it

in more detail. Since other researchers have already studied the role of head motions in

emotional displays in detail [Kal05], I will only include the pitch and roll angles, as well

as the overall head speed, acceleration and jerk values in my analysis. The main focus,

however, will be directed towards the significance of the rest of the body.

Table 3.2 summarises the channels used to represent the posture and dynamic qualities of

joint movements. For each joint, I represent posture by the three normalised coordinates

(x̂, ŷ, ẑ). The dynamics are captured by the three scalar quantities of speed, acceleration

and jerk. Together with the channels for the head this adds up to 29 channels, excluding
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Figure 3.3: Feature extraction for the right wrist joint. (a) Joint positions in world coordi-

nates x, y, z. (b) Body-centred coordinates x̂, ŷ and ẑ. (c) Posture and additional dynamic

measures speed, acceleration and jerk. A grey time window of one second is highlighted. (d) 24-

dimensional feature vector computed as median, standard deviation, minimum and maximum

over the time window for each channel.

Table 3.2: Channels capturing posture and motion dynamics of the upper body.

Body joint Posture Dynamics # Channels

right elbow x̂,ŷ,ẑ speed, acceleration, jerk 6

right wrist x̂,ŷ,ẑ speed, acceleration, jerk 6

left elbow x̂,ŷ,ẑ speed, acceleration, jerk 6

left elbow x̂,ŷ,ẑ speed, acceleration, jerk 6

head pitch, roll speed, acceleration, jerk 5

29
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Table 3.3: Subset of statistical features used for the exploration of expressive body motions

from the Cambridge corpus.

Body joint Channels Statistical features computed # Features

right wrist x̂,ŷ,ẑ, speed median, deviation 8

left wrist x̂,ŷ,ẑ, speed median, deviation 8

head pitch, roll, speed median, deviation 6

22

the lower body. Figure 3.3(a)-(c) summarises the definition of posture and dynamic

descriptors. For clarity of presentation, the figure focuses on the motion of the right hand

only. Similar transformations are applied to the left hand and elbow joint positions. Also,

this scheme generalises in the obvious way to the additional knee and foot joints when

they are considered in future chapters.

3.4.4 Statistical feature definitions

The final step is turning the multiple continuous channels of motion descriptors into time-

discrete feature vectors. The method adopted in this work is to consider a segment of the

continuous signal at a time, say between time frames tmin and tmax. The simplest way of

determining tmin and tmax is to use a sliding window of fixed length and to produce new

feature vectors at a constant rate as the window moves along the signal. If it is possible

to build a better understanding of the underlying motion, I can also divide the signal into

more meaningful segments. For example, I may want to detect certain semantic elements

such as “hand raises” and compute features for those rather than using a sliding window.

This issue will become more interesting once we are dealing with more complex everyday

actions and will be the topic of Chapter 4. In the absence of any prior knowledge about

the structure of the expressive motion data, using a sliding window is sufficient. For

the analysis in this chapter, I will therefore use a sliding window of a fixed length of

one second (100 frames) to determine tmin and tmax. While I verified that using a bigger

window size can lead to a better classification performance, using too big a window will

decrease the number of samples that are available for training and evaluation. Also, the

real time response time of a classifier will be dependent on the window size, making a

longer window less desirable.

For a given tmin and tmax, the goal is to find a concise numeric description of the signal.

Throughout this dissertation I will use four statistical measures to describe the signal over

the interval [tmin,tmax]:

1. sample median

2. sample standard deviation
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3. sample minimum

4. sample maximum

Considering the features derived from all 29 channels as described above would give rise

to a 116-dimensional feature space (29 channels × 4 statistical measures). Clearly, many

of the resulting feature dimensions will be highly correlated, for example through factors

such as the correlation of median and maximum values of a signal. There are also bio-

logical constraints which mean that elbow motion is clearly not independent from hand

motion. It is therefore meaningful to consider certain subsets of this feature space for

initial exploration. For the rest of this chapter, I will define my feature vector as the

median and standard deviation derived from the posture and speed of both hands and

the head. This amounts to a 22-dimensional feature vector which is more manageable for

this initial exploration (see Table 3.3). In the final section of this chapter I will confirm

that these features do indeed capture important elements of emotional qualities. Selecting

good features from a large set in a more systematic fashion is an important problem and

I will return to it in Section 5.4.

3.5 Exploring the data

In this section I am going to analyse the feature space constructed for the Cambridge

corpus. The treatment will be largely exploratory in nature and is aimed at building an

understanding and intuition for the general structure of the data at hand. Some of the

questions that are relevant at this point are:

1. Is the feature set described in Section 3.4 suitable for capturing differences in emo-

tional expressions?

2. From a pattern classification standpoint, to what extent do the different emotional

classes appear to be separable?

3. Is there any interesting structure to the data which I can exploit later to build

effective classifiers?

The above questions are meant as a guidance for the data exploration and are not in-

tended as problem statements to be answered conclusively. However, insights gained in

this section will motivate the approaches adopted in later chapters. I will make use of two

common data exploration techniques which have distinct advantages: Multiple Discrimi-

nant Analysis (MDA) and Multivariate Density based Discriminant Functions (MD-DFs).

The first half of this section will focus exclusively on visualising the complex feature space

with the help of MDA. Visualisation is a crucial step in building an intuition around the
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structure of the data. The second half focuses on quantifying the separability between

the different emotion classes in the data with the help of MD-DFs.

In Section 3.4 I described in detail the construction of a 22-dimensional feature space

capturing motion qualities of the upper body. It is very hard to build an intuition around

and visualise the structure of such high-dimensional data. A commonly used technique to

familiarise oneself with a set of data is a 2D scatter plot. In order to produce this I need

to make use of a dimensionality reduction technique such as MDA. While MDA attempts

to preserve as much detail about the feature space as possible in the lower-dimensional

visualisation, such a radical projection is likely to suggest a worse separability than is

possible in the original higher-dimensional representation. In the second half of this

section I will therefore make use of all 22 dimensions to define MD-DFs. MD-DFs are

specifically aimed at computing boundaries between the emotion classes which minimise

classification errors, assuming a parametric distribution for each class. Note that in this

chapter I will only look at the feature space as a whole to decide if the features contain

enough information to separate the emotion classes. I will provide a detailed analysis of

individual features in Chapter 5.

3.5.1 Multiple Discriminant Analysis

In Section 3.4 I accumulated a number of features which previous studies suggested may

carry some information about emotion in body movements. I was not particularly careful

to pick a small set of features, however, which makes visualising the constructed feature

space virtually impossible. The most common way of dealing with this problem is to

linearly combine original features φ1 . . . φi to create new dimensions for visualisation,

φ̂n = wn1φ1 + wn2φ2 + . . .+ wni
φi. (3.5)

The problem is how to define weights w such that a maximal amount of information about

the data is preserved by this transformation. Two classical approaches exist to defining

the weights. Principal Component Analysis (PCA) computes weights such that the new

dimensions preserve the maximum amount of variation in the original data. Multiple

Discriminant Analysis (MDA) on the other hand finds weights such that defined classes

of data are maximally separated after the transformation. Although both techniques

amount to different visualisations of the same underlying data, MDA promises to give

more useful insights as I am ultimately interested in the separability of the emotion classes.

As visualisation requires a two-dimensional representation of the data, I jointly compute

weights for the two transformed dimensions φ̂1 and φ̂2.

The details of MDA are well understood and documented [DHS00]. For my purposes it

suffices to note that the solution for the weights w has an algebraically closed solution

and is unique up to linear transformation on the resulting space. This means that the
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visualisations I am deriving are for all practical purposes unique. MDA determines the

weights w such that the between-class-scatter
within-class-scatter

ratio is maximised in the resulting space and

thus ensures that the underlying classes are maximally separated in the transformed

representation. Formally, MDA maximises the objective function

J(W ) =
det(W ′SBW )

det(W ′SWW )
(3.6)

to find the optimal weight matrix W where SB and SW are the between and within-class

scatter matrices respectively for a set of emotion classes E and are defined as

SW =
∑

e∈E

∑

φi of class e

(φi − µe)(φi − µe)
′ (3.7)

SB =
∑

e∈E

ne(µe − µ)(µe − µ)′ (3.8)

Figures 3.4 & 3.5 show the features transformed using MDA and colour-coded by emotion

class. In particular, Figure 3.4 shows a plot of all six subjects’ data combined, while

Figure 3.5 visualises the data for each subject individually. Inspecting the figures leads

to several observations:

1. There is a clear pattern to the data in terms of distribution of emotion class. In

Figure 3.4, each class occupies a distinct region of the feature space. This means

that despite the lack of explicit instructions, subjects tend to express emotions in

similar ways. Also, the features defined in Section 3.4 are clearly able to capture

some of the emotional differences.

2. The emotional classes seem separable to some extent, but in two dimensions there

is a significant overlap. Happy seems to be the class which is most easily separated

from the others. Some emotions, such as worried and sad tend to occupy similar

regions in the plots and are hence probably harder to separate. Some of these

observations are subject-specific.

3. Despite the overall tendency of samples of the same emotion to cluster together

across different subjects, we see a number of subject-specific differences.

• The exact position and variation of individual emotion regions can vary be-

tween subjects (e.g . compare the happy samples for subjects 1 and 3).

• The overall variation of samples in the space can vary between subjects. This

might be interpreted as different levels of expressivity in different subjects (e.g .

subject 4 appears more expressive than subject 5).
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Figure 3.4: MDA-based projection of the features extracted from the Cambridge corpus.

Features from all six subjects are combined. (a) all emotion classes; (b)-(f) individual emotion

classes are highlighted and all other classes are combined.
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Figure 3.5: Features extracted for the six subjects recorded for the Cambridge corpus. The

features are projected using a global MDA transform computed on the set of features from all

subjects. The gray background represents samples from other subjects.
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• Which emotions are separable can vary between subjects (e.g . neutral is very

distinctive for subject 1, happy seems most easily separable for subject 3).

We should remember that we are looking at a 2D projection of the feature data. Some

of my observations are likely to be affected by that. In this case dimensionality reduction

was necessary for plotting the data in a 2D space. As a result emotion classes might

appear less separable than they are in higher dimensions. Most computational pattern

recognition techniques can deal with data of much higher dimensionality. In order to get

a more comprehensive and quantitative view of the separability of the data I will turn to

one such technique — multivariate density discriminant functions.

3.5.2 Multivariate density discriminant functions

MD-DFs are simple discriminant functions defined through multivariate normal densities.

In Figure 3.4 we saw that emotion classes occupy well-defined and connected regions in

feature space which makes this normal assumption suitable. Each emotion class e is mod-

elled by its own distribution Ne — in this case parameterised by a 22-dimensional mean

vector µe and covariance matrix Σe. The distributions are also called the discriminant

functions for their respective classes. They express the degree of belief that a certain

sample belongs to a certain class. Decision boundaries are then defined between classes

where the surfaces of the discriminant functions intersect. The distribution parameters

can be estimated by standard methods in order to minimise the error rate [DHS00]. De-

pending on the assumptions I make about the parameters, I obtain boundaries between

classes of various complexities. For example, if I assume that the covariance matrix of

each emotion class is the same (Σe = Σ) I obtain piecewise linear boundaries. Relax-

ing this assumption gives rise to piecewise-quadratic boundaries. The complexity of the

discriminant functions can also be controlled by enforcing a diagonal versus allowing a

full covariance matrix. Covariance matrices are usually restricted if there is not enough

training data to reliably estimate all degrees of freedom without overfitting to the data.

Having computed the parameters, I estimate the separability of the space in terms of the

correct classification rate. In this section I will count a sample s of class ê as classified

correctly if and only if Nê(s) > Ne(s) for all e ∈ E .

Table 3.4 gives the results for computing the classification rates on all subjects and the

combined space for the different covariance assumptions. In each case feature vector

samples were extracted using the sliding window, leading to around 800 samples per

subject (160 per emotion class). The results for the first six rows were hence obtained

by fitting five Gaussian discriminant functions based on 160 samples each. The last row

of results was obtained by combining the data samples of all subjects. In that case the

discriminant functions were hence estimated based on 160 × 6 = 960 samples each. In
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Table 3.4: Misclassification rates for the Cambridge corpus using discriminant functions derived

from normal density models with different covariance assumptions. Functions were constructed

for each subject individually (top rows) and for a combined space of all subjects’ features (last

row).

Subject Linear Linear Quadratic Quadratic

(full cov.) (diag. cov.) (full cov.) (diag. cov.)

subject 1 0.85 0.68 0.94 0.75

subject 2 0.75 0.68 0.89 0.60

subject 3 0.80 0.67 0.88 0.56

subject 4 0.81 0.74 0.92 0.76

subject 5 0.64 0.55 0.84 0.47

subject 6 0.90 0.81 0.95 0.73

combined 0.64 0.52 0.65 0.45

each case the classification rates were computed based on all samples (no explicit training

and test sets). We can see the following:

1. The feature set works relatively well in this modelling scenario. Even the most re-

strictive model (linear with diagonal covariance) achieves classification rates between

70% and 80%.

2. As expected the emotion classes seem more separable than the MDA plots suggested.

This is especially true when building models for each subject individually and using

quadratic boundaries with full covariances. In that case classification rates range

between 84% and 95%.

3. The complexity of the classifier can have a significant effect on the separability of

the space. In particular, the most complex classifier is able to separate the classes

best. This is only the case when considering the subjects individually.

4. Subject-specific differences are apparent in two ways:

• data from some subjects is harder to discriminate than from others (e.g . clas-

sification rates for subject 6 are significantly higher than those for subject 5)

• the very step of modelling individual subjects’ data separately improves the

separability significantly. This did not seem very apparent from the MDA

analysis and is consistent across all classifier complexities. This suggests that

there are subject-specific patterns of expression which I should take into con-

sideration when building a classifier.
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It is important to realise that these numbers are not necessarily good predictors for actual

performance of real classifiers on new data. I did not train and test the discriminant func-

tions on different data sets. Overfitting the discriminant functions is a potential problem,

especially with little data and complex classifiers. In particular, the good performance

of the quadratic classifier with full covariances is probably due to overfitting and would

not generalise to new data. The plots in Figures 3.4 & 3.5 suggest, however, that ideally

different covariances should be estimated for different emotion classes as the distribu-

tions show different amounts of variation and different orientations in feature space (e.g .

compare variations and orientation of classes neutral and happy in Figure 3.4).

3.5.3 Implications for future chapters

We can take away the following insights from this chapter:

1. The statistical features capturing body posture and movement dynamics (Table 3.3)

are appropriate for exposing emotional differences in expressive body motions. In

future chapters we will see that they work equally well for everyday body motions. I

will also take a more careful look at the contribution from different kinds of features

in Section 5.2.

2. The use of classifiers which can define boundaries of different degrees of complexity

may be important. This question could not be answered conclusively in this chapter

due to a relatively limited amount of data and the resulting problem of overfitting.

To investigate this issue further I will be using Support Vector Machines for my

experiments in Chapters 5 and 6. By using the kernel method, they are able to

construct decision boundaries of varying complexities.

3. Subject-specific differences are clearly observable in the recorded data. In the re-

maining part of this thesis I will develop methods to capture personal differences in

emotional body expression. Importantly, I will decouple the modelling of personal

differences from the emotion classification problem. This will allow me to treat

personal differences as a factor just as important as the influence of emotion on a

motion signal.

Before developing the idea of personal motion idiosyncrasies further, I will turn to mod-

elling and analysing complex everyday actions in the next chapter.



Chapter 4

Modelling complex human body

motion

This chapter is going to introduce and discuss complex everyday actions. In Chapter 2 I

mentioned that these are motions which are motivated by goals other than communicating

affect. It is the kind of motion which forms the core of this dissertation. Despite their

real-world relevance, everyday actions and activities have so far been largely ignored by

the affective computing community. In this chapter I will therefore present fundamental

processing methods, which will allow me to effectively analyse complex actions and body

movements. The focus of this dissertation will be on the everyday actions contained in

the Glasgow corpus: Knocking , Throwing , Lifting and Walking . I will discuss a common

generative approach to modelling these kinds of actions. Subsequently, I will present two

methods for analysing the structure of actions at a finer level of detail, the level of motion

primitives. While I will use examples from the Glasgow corpus throughout this chapter,

my aim is to develop methods which are as general as possible. This includes the ability

to generalise to new action categories and an ability to add new categories without any

significant user intervention.

4.1 Problem description

Complex everyday motions commonly arise from some practical, real-world need such

as the desire to reach and move an object. Indeed, the human body has evolved to

perform very sophisticated everyday tasks which require a large amount of coordination

of different parts of the body. As a result, many everyday actions exhibit quite distinct

spatio-temporal structures of movements. In addition, actions which involve different

body parts may be carried out in parallel, such as drinking a glass of water while walking.

Actions which are carried out concurrently may affect each other [WLH07]. However, the

modelling of these kinds of influences is beyond the scope of this dissertation. I will focus
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on the factors of action, individual movement idiosyncrasies and emotion with the goal

of detecting emotion.

The most common and most studied action type is probably human gait [Whi02, Whi96,

KSR+04, LG02]. It has evolved to provide the most energy-efficient form of locomotion.

At the same time, there are many factors which influence the exact timing of gait patterns.

Those factors range from constants such as gender [LG02] and long-term factors such as

height [Abd02] to mid-term factors such as age and body weight [TE01] and short-term

effects such as emotion [CG07, JSL+08]. In consequence, human gait has been studied by

many researchers to predict variables like gender, identity and more recently emotion.

Most previous work has focused on very specific action categories such as walking. In

those cases, the intricate knowledge about the action at hand and the orchestration of

component movements clearly helps to distinguish the effects of factors like identity or

emotion from action-specific factors. In the case of walking, for example, frequently used

features include very specific variables such as stride length and cadence [CG07, Abd02].

The same argument applies to my more general case of detecting emotions in different

types of everyday actions. For example, when trying to recognise an emotion from an arm

raise, it is useful to know whether the arm is carefully lifting a glass of water or whether

it is raised to knock on a door. For a knocking motion, hand speed is likely to give a

good idea about the emotional state of a person [PPS01], while other parameters such as

the height of lifting might be more constrained by the goal of knocking on the door. In

the former case of lifting a glass, both speed and height of lifting are likely to be heavily

constrained by the action. In conclusion, in order to recognise emotions from everyday

motions, it is necessary to know which action is being performed. I will present a suitable

action recognition framework in Section 4.2.

In addition to action-level patterns, I will investigate subaction-level patterns. This analy-

sis assumes that complex actions are composed of simpler movements, sometimes referred

to as motion primitives [HG04, FMJ02]. Rather than treating a whole action as supply-

ing one piece of evidence for recognising an emotion, I will investigate if it is possible to

obtain additional insights by considering the more detailed structure of actions. Using

the previous knocking example, the first approach derives features from a whole Knocking

action. By adding some knowledge about the common structure of Knocking actions, the

primitive-based approach derives features from its components individually: arm raise,

repeated knocking, arm lowering. I will describe two semi-supervised ways of defining

and extracting these primitives from isolated actions in Section 4.3. My approach also

accounts for the fact that many actions such as Walking and Knocking can have cyclic

elements (see Section 4.3.3). Finally, I am going to measure the benefits of analysing

emotions at the level of motion primitives in Chapters 5 and 6.
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4.2 Generative modelling of actions using HMMs

In the absence of any context information, actions have to be defined and identified by the

spatio-temporal trajectories of body joints. Formally, I represent an action category c as

a set of joints Jc and a description of its elements’ movements over time, λc. I will regard

two action categories c1 and c2 as temporally compatible if Jc1 ∩ Jc2 = ∅. If two actions

are temporally compatible, they can occur simultaneously as their joint movements are

independent. These kinds of simultaneous movements are observable in the sequential

actions of the Glasgow corpus.

The rest of this section will largely deal with the problem of describing the joint movements

λc in terms of Hidden Markov Models.

4.2.1 HMM formalism

The temporal evolution of joint parameters in an action can be captured by a Hidden

Markov Model (HMM). HMMs are a well-known stochastic method for modelling tempo-

rally evolving systems which produce observable outputs. At any one time, the system

can be in one of s hidden states ω1 . . . ωs. ω
T denotes the entire state sequence a system

goes through from time frame 1 to T . A system’s state ω(t) at time t is governed by a

Markov process, that is P (ω(t + 1) = ωi|ωt) = P (ω(t + 1) = ωi|ω(t)). The set of state

transition probabilities P (ω(t+ 1) = ωj|ω(t) = ωi) = ai,j define the transition matrix A.

At each time frame, the system emits an n-dimensional vector of visible observations v(t).

The probability of observing a particular output is conditioned only on the current state

P (v(t) = v|ω(t)). The elements of v can either be drawn from a discrete alphabet or a

continuous set of values. In general, joint movements will exhibit complex trajectories in

position and speed and I therefore model v as a vector of continuous variables. Hence,

P (v(t) = v|ω(t)) needs to be a continuous probability density function. I will use the

normal density as its successful use has been widely documented [Rab02]. The parameters

needed to specify the observation probabilities are therefore a d-dimensional mean vector

and covariance matrix P (v(t) = v|ωi) ∼ N(µi,Σi).

Every action category c is modelled by a separate HMM λc. A full HMM λc is defined by:

• the number of states s

• the transition matrix A

• the prior belief vector π about the initial state of the system, where πi = P (ω(1) =

ωi)

• the dimensionality d of the observation vector v(t)
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• the observation distribution parameters µi and Σi.

Because different actions may be defined in terms of different numbers of joints, I do not

assume that observation vectors for different categories are of the same dimensionality,

i.e. dc1 6= dc2 in general. This requires some care during classification as I will discuss in

the next section.

4.2.2 Action models

In this section I am going to describe the parameters for models used to represent the

actions in the Glasgow corpus. They are developed with the ultimate goal to be general

enough to apply to both isolated actions, where only one action happens at a time,

and action sequences where certain actions may happen concurrently. For example, in

the Glasgow corpus multiple actions can be interleaved such that a person is walking

while already starting to raise the arm for subsequent knocking. In order to model such

parallelism I divide the set of joints used to represent the body into two independent

regions, the upper body and the lower body. The upper body JU comprises the head,

left and right arm joints and the neck. The lower body JL comprises the pelvis as well

as the left and right leg joints. All actions in the Glasgow corpus are defined as either

upper body actions or lower body actions. To ensure that upper body actions c ∈ CU can

happen in parallel with lower body actions c ∈ CL, I require that upper body actions can

only be defined in terms of upper body joints and lower body actions can only use lower

body joints:

c ∈ CU ⇔ Jc ⊆ JU (4.1)

c ∈ CL ⇔ Jc ⊆ JL (4.2)

I am dividing action categories into upper and lower body actions as follows:

CU = {Knocking,Throwing,Lifting,TUp,TDown, other}
CL = {Walking, other}

Note that I am including the T-pose actions in this set as it is necessary to distinguish

them in the action sequences (c.f . Section 2.4.2). Furthermore, I am defining the Walking

model in terms of the lower body only. This allows me to model a Walking action

happening in parallel with parts of upper body actions as outlined above. In order to be

able to assume that the upper body is always performing some action, even if the subject

is only walking, I am adding an other action category. Similarly, if the subject is standing

still while performing a Throwing action, the lower body will register an other action.
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Observation variables

The essence of an action is its sequence of posture and movement changes. I am therefore

using the joint position and speed information as the observation variables (see Sec-

tion 3.4). In addition to those, I also define

• upper body twist: angle between the normals to the coronal planes (z-axes) defined

on the upper body (using the shoulder joints) and the lower body (using the hip

joints): twist(t) = arccos(zupper(t) · zlower(t)).

• global body speed: this is not captured by the other dimensions as they are all

encoded relative to the position of the pelvis joint. The global body speed is defined

as a scalar difference in position of the pelvis joint jpelvis over time. Because the

recording quality is so high, I managed use ∆t = 1: speedglob(t) = |jpelvis(t) −
jpelvis(t− 1)|2.

Because actions are defined in terms of a joint set Jc only a certain subset of these

variables can be used as observation variables for each action. For example, JWalk does

not contain any upper body joints. Therefore, λWalk does not output any variables derived

from the upper body, such as elbow position or hand speed. Furthermore, actions do not

have to make use of all variables derived from their assigned body part. For example, a

(right-handed) Knocking model only outputs variables derived from the right half of the

upper body and JKnock = {right hand, right elbow, right shoulder} ⊂ JU . Since there are

no explicit left and right upper body regions, this is not in order to support concurrent

left and right hand actions. Instead, this reduction in output feature space is useful to

avoid overfitting the model to aspects of training samples which should be irrelevant for

an action model. For example, consider the model for a right-handed knocking action.

It is important that the model is defined independently of whatever motions the left

arm exhibits during training. The T-pose motions on the other hand should be defined in

terms of both the left and right arms. Table 4.1 gives a summary of the variables included

in the observable output vectors for each action model.

It is important to note that these observation variables are hand-optimised to allow a good

differentiation between the actions in the Glasgow corpus. For example, the left hand

variables are only considered for the TUp and TDown actions. Left-handed Knocking ,

Throwing and Lifting actions are hence not supported by the current system. The full

set of possible observation variables (posture, speed, body twist etc. of all body joints)

would certainly be expressive enough to model a much bigger number of actions. However,

generalising the method described here to automatically choose the best variable subset

for each model in order to avoid overfitting would be an interesting challenge which is

beyond the scope of this dissertation.
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Table 4.1: HMM action model parameters. Each model uses a subset of the observation

variables from the right arm (RA), left arm (LA), right leg (RL), left leg (LL), global body twist

and global body speed. The table also indicates cyclic models as well as the number of states

used for each model.

Action RA LA twist RL LL speed cyclic #states

Upper body actions:

TUp X X X 5

TDown X X X 5

Knocking X X 9

Lifting X X 9

Throwing X X 9

other X X X X 5

Lower body actions:

Walking X X X X 5

other X X X X 5

HMM topology

We now turn to the definition of HMM state topologies. In many cases HMMs are an

attractive choice because the hidden states can represent familiar concepts. For example,

in speech modelling hidden states can capture the notion of phonemes. The structure of

body motions has been studied far less and attempts to define concepts akin to phonemes

for movements have not gone beyond early experimental stages. I therefore do not think

of the hidden states as capturing a particular real-world concept — with the exception

of determining the number of hidden states based on the subjective complexity of the

action (see below). As proposed by many authors, I am using a left-to-right structure

for the HMMs of acyclic actions. As Rabiner pointed out they are a natural choice for

modelling signals changing over time [Rab02]. In particular, all upper body actions in

the Glasgow corpus are modelled as acyclic (Table 4.1). In a left-to-right HMM the only

states accessible from state ωi are the states ωi and ωi+1. Hence the transition matrix A

is an upper bidiagonal matrix with ai,j = 0 for j 6∈ {i, i+ 1}. Furthermore, the system is

assumed to start in state ω1, i.e. π1 = 1. Table 4.2 shows a sample transition matrix for

a Knocking motion with 9 hidden states.

Intuitively, more complex and varied actions need to be modelled with more hidden states.

In order to determine the number of hidden states for each action model, I therefore split

my actions roughly into two groups: simple and complex. I am modelling simple actions

(Walking , TUp and TDown) with 5 hidden states while the more complex actions (Knock-

ing , Throwing and Lifting) are modelled with 9 hidden states. I empirically validated that

changing this number of states does not improve the ability of the models to discriminate

between different action categories. Table 4.1 shows the number of states used for each
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Table 4.2: Sample transition matrix for action Knocking . Non-zero entries are highlighted in

bold.

to state

1 2 3 4 5 6 7 8 9

fr
o
m

st
a
te

1 0.935 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.927 0.073 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.918 0.083 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.923 0.077 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.969 0.031 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 0.921 0.079 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.926 0.074 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.930 0.070

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

action model. It also shows that Walking is modelled by a cyclic HMM with five states.

The only difference between cyclic and acyclic models is that for a cyclic HMM with s

states, in general as,1 6= 0 and πi 6= 0. In other words, once a full cycle of the motion has

occurred, it may start again from the beginning and there is no unique starting state.

In order to complete the model definitions it is necessary to estimate the transition param-

eters A and the observation parameters µi and Σi from training data. After describing

the training and classification procedures in the next section, I will demonstrate that the

described parameters are suitable in Section 4.2.4.

4.2.3 Training and classification

Given an HMM topology I optimise the transition and observation parameters based on

a set of training data observations V. There is no known analytical method for finding

the globally best set of parameters in the sense of maximising P (V |λ). However, the

Baum-Welch procedure is an iterative method which can find a good locally maximised

set of parameters [DHS00]. It uses an Expectation-Maximisation approach which starts

with an initial guess of parameters. The procedure iteratively computes the expected

number of state transitions from and between all states based on the current set of pa-

rameters and training data observations. In the maximisation step it finds an improved

set of parameters based on those transition statistics. Baum proved that following this

procedure results in convergence towards a locally maximal set of parameters. Clearly, the

choice of initialisation parameters determines which local maxima in the often complex

optimisation landscape are reachable. In order to increase the chance of finding a globally

maximal solution, one can use multiple random initialisations. For left-to-right HMMs I

am using an initialisation technique known as Viterbi initialisation [YKO+00, NSHU+94].

It initially assumes a temporally uniform assignment of states to observations and recom-

putes the parameters a number of times based on statistics calculated from decoding the

observations using the Viterbi algorithm.
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Decoding via the Viterbi algorithm is one way of quantifying the likelihood of a certain

model producing a given observation sequence. In particular, it finds

ω∗ = argmax
ω

P (ω,V |λ). (4.3)

That is, it finds the most likely sequence of states to have produced the observation

sequence. Once the optimising state sequence is known ω∗, it is easy to also find the

probability associated with that state path. In fact, the Viterbi algorithm uses dynamic

programming in such a way that both the maximising state sequence and its likelihood

are always computed. Given a way of computing P (ω∗,V |λc) I can classify sequences

into action categories by computing

c∗ = argmax
c∈C

P (ω∗,V |λc). (4.4)

Another commonly used way of classifying a given observation sequence is to consider

the total likelihood of a certain model producing the sequence P (V |λ). This quantity

can be found using the dynamic programming-based Forward algorithm. Classification

then proceeds by finding argmaxc∈C P (V |λc). For my purposes I will be using the Viterbi

likelihood rather than the Forward likelihood. Above all, it gives rise to a more efficient

solution in Chapter 6 where I am using Level Building to connect my individually trained

HMMs to parse and classify sequences of actions. Using the Viterbi likelihood allows me to

solve the segmentation problem using an efficient dynamic programming algorithm (c.f .

Section 6.2.2), while using the Forward likelihood would lead to an exponential growth in

complexity.

Likelihood normalisation

In order to find the best model during classification, Viterbi likelihood values need to

be compared. Care needs to be taken if those values were produced by HMMs with

output vectors of different dimensionality. It is important to note that for the compu-

tation of likelihoods P (ω∗,V |λc), the Viterbi algorithm uses the observation probability

densities in order to get a point measure for the likelihood of a certain (continuous and

vector-based) observation. In general, these density measures will get smaller with an

increasing number of observation dimensions. For classification this means that without

an appropriate normalisation, classifications would always be biased towards models with

lower-dimensional observations.

Assume that models λ1 . . . λn have observation vectors of dimensionality d1 . . . dn respec-

tively with di 6 di+1 such that dmax = dn. The Viterbi algorithm would calculate the

unnormalised likelihoods of the ith observation in a sequence as
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Lλm
= N(φi

λm
,µm,Σm). (4.5)

for models λm, where φλm
denotes the dm-dimensional representation of the ith symbol

in the feature space of model λm. Classifications based on these likelihoods would be

biased towards λ1 and against λn. In order to normalise the likelihoods, I am introducing

pseudo variables into each model during the calculation of the Viterbi likelihoods. The

number of variables introduced depends on the number of output dimensions originally

associated with the model. In particular, the number of variables introduced into model

λm is dmax−dm. When computing the normalised likelihoods, each of the virtual variables

is defined to have a marginal observation likelihood of

L̃λm
= L

1/dm
λm

, (4.6)

i.e. the same likelihood as one of the original observation variables assuming independence.

To compute the overall normalised observation likelihood L̂, the original likelihood is

combined with the likelihood of the virtual variables assuming independence:

L̂λm
= Lλm

× L̃
dmax−dm

dm

λm

= L
dmax
dm

λm
(4.7)

Note that this normalisation will not affect the computed Viterbi path itself but only

the Viterbi likelihood. I can now apply the training and classification techniques to the

isolated actions in the Glasgow corpus.

4.2.4 Action classification results

In order to verify the effectiveness of the HMM-based classification approach, I trained

and tested the 8 HMMs as summarised in Table 4.1 on the isolated Glasgow motion data.

I am aiming to answer three questions:

1. How well do trained models generalise to new action samples from the training

subjects?

2. How well do trained models generalise to actions from new subjects?

3. Are the features effective for modelling and distinguishing the actions?

I designed two experiments to answer the questions. In order to answer Question 1,

Experiment 1 uses 10% of the motion samples randomly selected from the 30 subjects to
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Table 4.3: HMM-based action recognition performance (mean and standard deviation) for

actions TUp (TU), TDown (TD), Knocking (Kn), Throwing (Th), Lifting (Li), Walking (Wa)

in Experiment 1 (testing on subject seen during training). Upper and lower body actions are

shown as separate sections which include the other (ot) action categories.

classified as

Truth TU TD Kn Th Li ot Wa ot

TU 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

TD 0.00 0.99 0.00 0.01 0.00 0.01 0.00 0.00
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

Kn 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00
±0.02 ±0.00 ±0.01 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00

Th 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

Li 0.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00
±0.00 ±0.00 ±0.00 ±0.02 ±0.00 ±0.02 ±0.00 ±0.00

ot 0.01 0.00 0.00 0.04 0.00 0.95 0.00 0.00
±0.02 ±0.02 ±0.01 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00

Wa 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

ot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

train the models. Experiment 2 is designed to answer Question 2 and uses 10% of the

motion samples, but selected from only three distinct subjects to train the models. Hence,

the number of training samples were the same for both experiments, but the coverage of

subjects was significantly different. Each experiment was run 10 times with different

training samples. For each iteration I classified the remaining 90% of the samples in

both setups. I used custom Matlab code and Murphy’s HMM toolbox [Mur] to run the

experiments.

Tables 4.3 and 4.4 give the recognition results in the form of confusion matrices for

Experiments 1 and 2 respectively. In both cases, the diagonals dominate. Most previously

unseen samples have been classified correctly. In answer to Question 3, this suggests that

the features I described in Section 4.2.2 are able to capture the fundamental differences

between the considered actions. If we inspect Tables 4.3 and 4.4 in more detail, we see

an interesting difference. The classification errors observed in Table 4.3 are minimal.

The models were able to discriminate between the actions almost perfectly. The picture

changes if we look at Table 4.4. When the models have to classify actions after being

trained on samples from a small population, performance drops significantly for some

action categories. In Experiment 2 the average recognition rates are lower and the variance

across iterations is larger than in Experiment 1. The effect is pronounced for Lifting

actions which are interpreted as Throwing actions 20% of the time. This is because the
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Table 4.4: HMM-based action recognition performance (mean and standard deviation) for

actions TUp (TU), TDown (TD), Knocking (Kn), Throwing (Th), Lifting (Li), Walking (Wa)

in Experiment 2 (generalisation to new subjects). Upper and lower body actions are shown as

separate sections which include the other (ot) action categories.

classified as

Truth TU TD Kn Th Li ot Wa ot

TU 0.99 0.01 0.00 0.00 0.00 0.00 0.00 0.00
±0.02 ±0.02 ±0.01 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00

TD 0.01 0.97 0.01 0.00 0.00 0.01 0.00 0.00
±0.01 ±0.02 ±0.02 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

Kn 0.00 0.00 0.94 0.06 0.00 0.00 0.00 0.00
±0.00 ±0.00 ±0.09 ±0.09 ±0.00 ±0.01 ±0.00 ±0.00

Th 0.00 0.00 0.01 0.93 0.00 0.06 0.00 0.00
±0.00 ±0.00 ±0.02 ±0.10 ±0.00 ±0.09 ±0.00 ±0.00

Li 0.00 0.00 0.02 0.07 0.80 0.13 0.00 0.00
±0.00 ±0.00 ±0.01 ±0.04 ±0.10 ±0.12 ±0.00 ±0.00

ot 0.00 0.00 0.00 0.01 0.00 0.99 0.00 0.00
±0.00 ±0.00 ±0.00 ±0.02 ±0.00 ±0.02 ±0.00 ±0.00

Wa 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

ot 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.71
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.17 ±0.17

Lifting model overfitted to the few subjects that it was trained on. This occurs because

Lifting actions are very simple. Throwing actions on the other hand are more complex

and the trained Throwing models therefore sometimes fit previously unseen Lifting data

better than the overfitted Lifting models. The same applies to the other lower body

actions which, in the Glasgow corpus, are significantly less complex than the Walking

actions.

Experiments 1 and 2 highlight that while HMMs are a perfectly suitable technique for

distinguishing different isolated actions from each other, there are some caveats which

must be kept in mind to make them most effective. One domain-specific constraint is

that I am likely to deal with actions and hence models of different complexity. My

results show that in those cases it is essential to ensure that the variation in the training

data is as representative as possible in order to avoid overfitting. In part, the confusion

problems are also due to the generative nature of my HMM training approach. The

Baum-Welch procedure focuses on modelling the generation of a particular category of

signal through Expectation Maximisation rather than building a model that distinguishes

it from different categories. Because the differences in appearance between the different

action categories are generally large, it is not necessary to resort to discriminative training

methods in this context. However, when we turn to distinguishing different emotion classes

in Chapters 5 and 6, I will make use of a discriminative approach which is concerned
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with modelling the differences between classes rather than the generation of data from a

particular class.

4.2.5 Related work

The classification of time series data into distinct categories is a very common pattern

recognition problem. In his seminal paper, Rabiner describes a way of representing speech

signals using HMMs with continuous observation vectors [Rab02]. This is now standard

practice among speech recognition researchers. When computer vision research became

popular, researchers quickly adopted HMMs in other fields such as body gesture recogni-

tion [WB99, WH99], automatic sign language interpretation [SP95] and activity analysis

[MSSS04, OHG02]. Earlier approaches made use of static pattern matching and dynamic

time warping [WH99], but the field has been dominated by the advantages of HMMs

and more general statistical frameworks such as Dynamic Bayesian networks (e.g . see

[DCXL06, KR05]).

The modelling of the human body as independent regions for the purpose of action analysis

has been proposed by several authors in the past. Lv and Nevatia present a framework

for modelling arm, head and torso-based actions independently [LN06]. They also label

actions by three additional categories: stationary (such as sitting), transitional (such as

getting up) and periodic (such as waving a hand). Finally, they use HMMs and boosting

to classify 3D joint trajectories into action categories. A structural body model is also

proposed by Vacek et al . [VKD05]. They define a tree-based description of multiple levels

ranging from “General Body” to “Hand”. Activities are described in terms of the nodes

of the tree depending on which body parts are involved. Interestingly, they also define

additional context groups like “Objects” and “Places”. From a recognition standpoint,

having knowledge about this kind of context would help enormously in distinguishing

different actions. In the case of the Glasgow corpus, however, there is no explicit context

information. The role of context in activity recognition has also been discussed by other

authors. In fact, Bobick uses the idea of context to draw clear distinctions between

movements, activities and actions [Bob97]. He defines activities in terms of sequences of

individual movements which can be recognised readily without context information. For

a higher level understanding of actions, on the other hand, one requires information about

the environment and larger temporal relationships. My work does not aim to recognise

actions in Bobick’s sense. For me it will be enough to have a basic understanding of the

motion from which emotions are to be deduced.

On top of independent body parts, my action models also account for actions defined in

terms of different feature sets. My approach has been inspired by Vogler and Metaxas’

work on parallel HMMs for sign language recognition [VM01, VM99]. They model the

left and right hands as two independent HMMs whose outputs are combined. Similarly to

actions defined by either one or two hands (TDown versus Knocking), they have to deal
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with two-handed vs . one-handed signs. In order to make HMM probabilities comparable,

they propose to assign the probability from the active hand to that of the inactive hand for

one-handed signs. My approach is a generalisation which allows a fully flexible definition of

feature vectors for each model. The output probabilities are then normalised in proportion

to the relative number of dimensions as defined in Equation 4.7.

Action recognition as tackled in this chapter has received a lot of attention from the

computer vision community. Building generative models for a set of predefined action

categories has been a well-studied problem [Gav99, Ced95]. More recently the community

has focused on problems with additional complexities. Probabilistic models related to

HMMs are still commonly used however. Peursum et al . [PVW07] use factored state

hierarchical HMMs to model both action phases and joint rotations as hidden states to

be inferred from multiple camera views. Clearly, the additional vision-related problems

such as occlusions and camera projection lead to a more complex model structure and

inference can hence only be carried out using expensive particle filtering. They also do not

model the internal body state by variables such as movement speed and twist. A similar

approach is followed by Weinland et al . [WBR07]. They also have a hierarchical HMM

structure where 3D body state is modelled as a second hidden layer. Their body model is,

however, based on a small set of exemplars per hidden action state rather than a factored

set of joint angles. Lv et al . also use the same idea and represent each action by a set of

3D key poses [LN07]. Modelling actions by a small number of discrete key poses rather

than temporally continuous distributions as my HMMs has the advantages of being less

computationally expensive during the recognition phase and being inherently robust to

certain kinds of stylistic differences. Of course, key poses need to be picked carefully and

the amount of detail retained in them is dependent on what and how many actions the

system needs to distinguish between.

Finally, Turaga et al . describe a solution to the slightly different problem of action mining

from video data [TVC07]. They model actions as cascades of smaller action elements, each

element modelled in turn by a linear dynamical system. They decide not to use Markov

Models for connecting their action elements because of the inflexibility of state duration

distributions – a problem I will come back to in Section 6.2.2. Their focus is explicitly

on discovering action patterns and the recognition ability is hence not as accurate. Their

framework is nevertheless very interesting for scenarios where it is impractical to train

models for each action in advance. Their notion of action elements is very similar to the

idea of motion primitives which I will discuss in the remainder of this chapter.

4.3 Sub-motion modelling

It has been my goal from the outset to make emotion recognition action-aware. The first

step has been achieved in the first part of this chapter. By recognising distinct actions
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Figure 4.1: Four phases of a Knocking motion exhibiting distinct peaks of motion energy.

The clustering-based algorithm detects each of the phases as a separate motion segment. Each

segment is labelled with one of four automatically derived motion primitives. The primitives co-

incide with the semantically meaningful basic actions “Raise arm”, “Knock”, “Retract”, “Lower

arm”.

I can train different emotion classifiers on each. I will be able to use knowledge such

as: Walking always exhibits leg movement whereas a stamping foot during a Throwing

action might actually indicate something about the underlying emotion. These are global

observations. But is it possible to do better? I am going to analyse movements not

only at the action level, but look deeper into their structure. This might allow me to

capture structural differences between emotional effects which would be obscured if I only

considered actions at a global level.

This section therefore presents two ways to segment actions into fundamental movements,

which I call primitives. The goal is to define and extract the motion primitives for complex

actions. The exact definition of a motion primitive will be part of the method description

in each case. Whatever the exact definition, however, I think of a primitive as a section

of movement which appears repeatedly throughout a number of complex actions, such as

an arm raise or a walking step. In Chapters 5 and 6 I will extract emotional features from

these primitives as well as from the action as a whole.

4.3.1 Clustering regions of high motion energy

The first approach to defining motion primitives is purely data-driven and works by

processing the motion signal in a bottom-up fashion. It assumes that motions can be

modelled as a composition of strokes - segments of approximately straight line motions.

Let us consider a couple of examples from the Glasgow corpus.

A Knocking action can be decomposed into a sequence of strokes as follows (see Fig-

ure 4.1): arm raise, hand forward, hand backward, hand forward, ..., arm lower. Similarly,

Lifting actions can be decomposed into: arm reach, lift object, replace object, arm lower.

The common property which marks the end of a stroke in these cases is a significant
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Figure 4.2: Objective function E(t) (top) with automatically calculated optimal segmentation

threshold τopt = 0.029 for part of a repeated knocking motion separated by periods of no motion.
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of no motion. Note that one potential primitive is missed around frame 380 because its peak

energy is below τopt.
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Figure 4.3: numsegE(τ) for a repeated knocking motion sampled for thresholds between 0.001

and 0.08. The diagram also shows τopt (dashed) and τ0 (dotted).

decrease in hand speed. For example, when the hand reaches the door during a knock it

stops or slows down significantly before it is retracted. Hence, I define motion primitives

as periods of high motion energy, separated by local energy minima.

In order to capture this notion mathematically, I define an objective function E(t) which

is a measure for the overall motion energy at time frame t. In many ways this concept

of energy is analogous to that employed for the segmentation of speech into phonemes or

words [WLZ03] and can also be found in work by Fod et al . [FMJ02]. Let θ̇t,g denote the

speed of the gth joint at time frame t. Then I can define the body’s total motion energy

as a weighted sum of squared joint speeds.

E(t) =
n
∑

k=1

wkθ̇
2
t,k (4.8)

The weights wk can be used to give different weightings to different body joints. In
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the work I used wk = 1 for all k. E will be large for periods of energetic motion and

will remain small during periods of low motion energy. Figure 4.2 shows E for repeated

Knocking actions. The figure shows two repetitions separated by a period of no motion.

As expected, the observed energy peaks coincide with primitive actions such as arm raises

or individual forward and backward movements during the knock. Furthermore, periods

of no activity are marked by distinctively low energy. Local minima in E can be observed

whenever the trajectory of the right arm changes direction. As the next step I find the

local minima in E as follows.

1. Compute E for the whole motion sequence.

2. Threshold the signal at a threshold τ . Mark all frames t for which E(t) > τ .

3. Find all connected regions of marked frames and regard them as individual motion

segments.

4. Extend the segments to the preceding and succeeding local minima of E.

Obviously, the choice of τ has a major impact on the number and nature of segments. I

could simply use an empirically derived threshold. If this method is to generalise to other

actions, however, it is necessary to devise an automatic way of finding an optimal τ . The

following algorithm finds a threshold which will exhibit all major motion segments (energy

peaks) while filtering out small-scale motions due to low-level signal noise. For every pair

(E, τn) I obtain a number of segments by thresholding E at τn. Let numsegE(τn) be the

function which computes the number of segments for any such pair. Figure 4.3 shows

numseg for the motion in Figure 4.2 and sampled at various thresholds. We see that

noise is mainly registered during periods of low energy (e.g. between frames 250–300

and 450–500 in Figure 4.2). Let τ0 be an empirical noise threshold. Then the optimal

threshold τopt is defined as the threshold which maximises the number of major motion

segments.

τopt = argmax
τ

{numsegE(τ)} subject to τopt > τ0. (4.9)

Ideally, I would like to group the extracted segments into semantically meaningful clus-

ters representing similar primitive motions. For example, all individual knocking segments

should be associated with each other. One approach to define such primitives would be

to use a comprehensive list as devised by Bull or Birdwhistell to transcribe their psycho-

logical or anthropological observations [Bul87, Bir70]. Due to their generality, however,

these sets are large. Many of the listed primitives are irrelevant for any particular context.

Indeed, context often governs the affective and social meaning of movements [Bir70]. I

therefore adopt a more context-dependent approach to the definition of motion primitives.

It is based on the clustering of a set of segments derived from example motions which are
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representative for a certain context. For individual actions the number of motion primi-

tives is therefore rather small. It would be possible, however, define primitives which span

more complex contexts such as “every-day activities” or “interpersonal conversations”.

Definition of cluster-based primitives

Having segmented all the knocking movements from the Glasgow database as described

above, I need to find a representation for the segments which allows me to compare

and cluster them. I therefore consider the time series of joint positions of the extracted

segments and time-normalise them. This is done by resampling each segment at 25 equally

spaced intervals. I also subtract the segments’ means in order to capture the relative

motion rather than the absolute body configurations. Next, I wish to group the segments

into semantically distinct categories. From the observations at the beginning of this

section I hypothesise that the Knocking actions can be divided into four basic phases: lift

arm, repeatedly knock and retract, lower arm. I can therefore use a k-means clustering

algorithm with k = 4. In a completely unsupervised scenario without any prior knowledge

of the number of motion primitives, one could choose a clustering technique which can

automatically determines an optimal number of clusters such as hierarchical [Joh67] or

Markov clustering [vD00]. A further exploration of this idea is an area for future work.

The following steps summarise the algorithm to compute a set of motion primitives from

a set of example motions:

1. Segment the set of motions based on the objective function E(t).

2. Time-normalise all segments by linear resampling. Subtract sample means.

3. Cluster the normalised segments using the k-means algorithm.

4. The clusters (or cluster centroids) represent the motion primitives.

The four derived motion primitives for the set of Knocking motions are visualised in

Figure 4.4. All primitives have been time-normalised to 25 frames and each plot shows

the four rotational degrees of freedom of the right arm (3 shoulder + 1 elbow). Having

defined the primitives, a new motion can now be parsed by following steps 1 and 2 as

outlined above and replacing steps 3 and 4 by an assignment to the closest cluster centroid

(most similar primitive) using the nearest-neighbour approach and a Euclidean distance

metric.

Evaluation

Figure 4.2 illustrates how a repeated Knocking motion (energy curve shown on top) has

been parsed into a sequence of primitives (bottom). The plot confirms that the parse is
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Figure 4.4: Four motion primitives derived by k-means clustering. Different degrees of freedom

of the right arm are represented as separate curves. In each case the segments’ means have been

subtracted to arrive at a relative encoding.
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Figure 4.5: Distribution of motion primitives after parsing 1200 Knocking motions. All parses

were time-normalised to 150 frames.

consistent with my initial expectations. In particular, Primitives 1 and 4 correspond to

the larger scale motions of raising and lowering the right arm while Primitives 2 and 3

tend to capture the smaller scale knocking motions.

In order to evaluate the approach at a larger scale I parsed all 1200 Knocking samples in

the Glasgow corpus. In order to visualise the parses I time-normalised them to 150 frames

by linear sampling and interpolation. Figure 4.5 shows the distributions of primitives at

each frame. We can clearly see that for the vast majority of samples, Primitives 1 and 4

were detected correctly at the beginning and end respectively. As expected, the smaller-

scale knocking primitives are occupying the central region of the graph. We can also see

the expected alternations between Primitives 2 and 3.
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For a more complete quantitative evaluation see Appendix C.

Shortcomings

In [BR07] I applied this technique very successfully to isolated Knocking motions and

went on to demonstrate how to recognise emotions on their basis. In a more general

context, however, the method has several shortcomings:

1. Most importantly, the method provides no mechanism to allow user-defined motion

primitives beyond specifying the number of cluster centroids. In many circumstances

prior knowledge may be available which could usefully guide the definition. In this

dissertation, I am primarily interested in the emotion-communicating qualities of

the extracted primitives. Human experts might have a good intuition about which

elements of an action communicate emotions particularly well. For example, it is

probably more robust to consider the knocking phase (consisting of repeated forward

and backward motions of the hand) as one primitive. The current method does not

allow for this kind of top-down knowledge to be incorporated.

2. The segmentation method heavily relies on the existence of distinct energy minima

in E(t), detectable using the global threshold τopt. In some cases the minimum-based

definitions may result in more primitives than I want, while in other cases it may miss

sections of movements which seem important but do not have distinctive enough

energy maxima. We already encountered an example of this problem for Knocking

actions in Figure 4.2. As another example, most Throwing motions exhibit a recoil

phase after the throw, which is not usually separated from the main throw by a

distinct energy minimum. This problem tends to be amplified when actions happen

in sequence (Figure 4.6).

3. The clustering approach to defining motion primitives does not make use of temporal

information. Primitive extraction may be more robust if the method exploits high-

level knowledge such as “arm raise” primitives always appear at the beginning of

Knocking and Throwing actions.

In the following section I will present a second algorithm which addresses these problems.

4.3.2 Manual definition based on multiple sequence alignment

Following the problem descriptions in Section 4.3.1 the motivations for the second ap-

proach are two-fold. Firstly, I would like to make it as easy as possible to exploit human

intelligence in defining motion primitives. Two usability-related requirements guided the

design of this algorithm:
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Figure 4.6: Problematic motion segments in Throwing and Knocking examples. The regions

highlighted in red are interesting candidates for motion primitives but are difficult to extract

using a global energy threshold. Graphs (b) and (d) are taken from action sequences for which

a threshold-based analysis is generally harder as they exhibit smoother energy profiles with less

distinct minima.

1. It should be easy for a human to define motion primitives without the need to

acquire any technical knowledge about the underlying algorithms.

2. The time needed by a human to define the primitives should be as small as possible.

Secondly, I am aiming to define primitives in the context of their structural significance

in an action. In the previous approach, primitives were computed in a solely bottom-up

fashion based on their appearance - first as periods of high motion energy and then by

clustering them. The new approach has to fulfill the following algorithmic requirements:

1. Primitives are no longer defined in terms of energy minima and maxima.

2. It should be possible to specify primitives as arbitrary motion segments.

3. The algorithm must be able to extract these segments from new motions automat-

ically.

The approach which I developed first aligns a number of example motions in time. It then

computes a combined representation of the motions as a single, combined time series.

This aligned representation of all example motions serves as the master description of

the action. The time series is visualised in a human-understandable form. I subsequently



4.3. SUB-MOTION MODELLING 89

define motion primitives by picking regions from the master description. The chosen

primitives can then be translated back to segments of the original signals. For extracting

primitives from a new sequence, I can then apply top-down reasoning by first aligning it

to the master description and then picking the regions which accord with the previously

defined primitives. Note that the alignment of motions is not immediately meaningful for

cyclic actions such as walking. I am therefore focusing on the three non-cyclic actions

Knocking , Lifting and Throwing . I will discuss the analysis of cyclic actions under this

scheme in Section 4.3.3.

Dynamic Time Warping

My approach relies on the ability to align two or more time series in time. I am bas-

ing my solution on Dynamic Time Warping (DTW) [SC78]. DTW and similar dynamic

programming-based warping algorithms have been used extensively in the past for aligning

time series like speech [MR81b, MR81a] and gestures [DP93] as well as other sequential

data such as DNA sequences [NW70]. In its original form DTW is used to find an align-

ment between two data series V T1
1 = {v1(1), . . . , v1(T1)} and V T2

2 = {v2(1), . . . , v2(T2)}.
As before, v(t) is a feature vector as observed at time frame t. For alignment, the feature

vectors consist of dimensions capturing joint positions and velocities. The goal of the

alignment of two sequences is to account for the non-linear timing variations in signals

V T1
1 and V T2

2 . This is expressed through a time warp function W (x) which associates

samples of sequence V T1
1 with samples of sequence V T2

2 , for example

W (1) = (v1(1), v2(1))

W (2) = (v1(1), v2(2))

. . .

W (x) = (v1(i), v2(j)) (4.10)

. . .

W (T̃ ) = (v1(T1), v2(T2))

Hence, W (x) defines the time-warped sequences Ṽ
T̃

1 and Ṽ
T̃

2 as

ṽ1(x) = W (x)[1] (4.11)

ṽ2(x) = W (x)[2] (4.12)

Note that Ṽ
T̃

1 and Ṽ
T̃

2 now have the same length T̃ . The quality of the alignment of

two time frames can be quantified through a distance function δ(v1, v2). I am using the

normalised Euclidean distance, or Mahalanobis distance
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δ(v1, v2) =

(

N
∑

i=1

(xi − yi)
2

σ2
i

)

1
2

. (4.13)

The total alignment distance ∆ attributed to a particular warp function W is calculated

as a sum of individual frame-wise distances.

∆(W ) =

T̃
∑

t=1

δ(W (t)). (4.14)

DTW uses an efficient dynamic programming solution to find the alignment W ∗ which

minimises the total alignment distance ∆(W ∗) and hence represents the best alignment.

The basic DTW algorithm to align two sequences has the following inputs and outputs:

• Inputs

– a distance function δ(v1, v2): calculates the distance between two frames of

observation v1 and v2

– two sequences V T1
1 , V T2

2 .

• Output

– W ∗: the best alignment of V T1
1 and V T2

2 .

Figure 4.7 shows the alignment results W ∗(x) of pairs of Knocking , Throwing and Lifting

sequences in red. Figure 4.7 (left) plots the coarsely sampled correspondences between

the two time series. Note that the plot only shows the aggregate motion energy while the

underlying DTW algorithm aligns the sequences based on the multi-dimensional represen-

tation V . Figure 4.7 (right) visualises W ∗(x) as a path through the dynamic programming

matrix. The examples highlight some of the strengths of DTW. In theKnocking sequences,

we see that although the knocks appear at different times in the sequence and with differ-

ent intensities, the individual forward and backward hand movements have been aligned

very accurately. The Throwing example highlights a particular strength of this approach.

In one of the two sequences, the throwing segment is very strong and powerful, resulting

in a major energy peak between frames 90 and 110. In the second sequence, the throwing

segment is almost unnoticeable. Inspecting the original recordings reveals that the subject

threw the object using a wrist-flick, resulting in a flat energy region. However, despite

this difference, the DTW algorithm has aligned the two throwing segments perfectly —

an association which would have been impossible using the previous method. These ex-

amples highlight how DTW can exploit global action structure to associate semantically

equivalent regions in action sequences which differ in appearance.
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Figure 4.7: Results of aligning two sequences produced by different subjects and with different

emotions. Left: frame-wise correspondences W ∗(t) sampled at regular time intervals. Right:

full visualisation of W ∗ as a trail through the alignment matrix.

Aligning multiple sequences

Trying to align more than two sequences through dynamic programming soon becomes

intractable. A common approximation is repeated pair-wise alignment [HS88]. For exam-

ple, if I am trying to align 4 sequences V 1 . . .V 4, I can first align V 1, V 2 and V 3, V 4

independently using DTW. This produces two compound sequences V 12 and V 34. I then

align V 12 and V 34 using an adapted version of the original pairwise DTW algorithm. In

my implementation I represent compound sequences such as V 12 as sets. I therefore gen-

eralise the DTW algorithm to work on sets of sequences rather than individual sequences

as follows:

• Inputs

– a distance function δS(v1, v2): calculates the distance between two sets of
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observation frames v1 and v2.

– two sets of sequences V1 and V2.

• Output

– W ∗: the best alignment of V1 and V2.

It is necessary for all sequences within a set V to have the same length. This allows

me to index V uniquely by frame as is required by the DTW algorithm. Note that

sequences derived through a number of pairwise DTW alignments will always be of the

same length and hence repeated alignment will always produce sets V1 and V2 which

satisfy the requirement. Of course, elements from set V1 do not need to have the same

length as elements from set V2 in order to be able to align them.

There are several options to define a δS which generalises the original distance function

δ. The most accurate solution to finding the distance between two sets of points might

be to calculate the average of all pairwise distances between the set of elements:

δS(v1, v2) =
1

|v1||v2|
∑

v′∈v1

∑

v′′∈v2

δ(v′, v′′) (4.15)

Computing this distance has complexity O(n2) and in practice becomes too slow for

aligning large numbers of sequences. I am therefore using the distance between the set

averages which can be computed in O(n) time:

δS(v1, v2) = δ(
1

|v1|
∑

v′∈v1

v′,
1

|v2|
∑

v′∈v2

v′) (4.16)

Although this distance definition effectively reduces every set of sequences to a single

average, we will see that this approach works very well in practice. This definition allowed

me to align all sequences in the Glasgow corpus and the result is very convincing (see

Figure 4.9). Given n sequences to align, I am using the generalised DTW algorithm as

follows:

1. Assign each sequence to its own set Vi.

2. Pick two sets Vi, Vj and align their sequences using the generalised DTW algorithm.

Assign the aligned sequences to their own new set Vij and remove Vi, Vj.

3. If more than 2 sets are left, goto 2.

4. The single remaining set contains all aligned sequences.
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Figure 4.8: Part of the guide tree used for aligning a large number of sequences. Nodes in the

tree represent aligned sets of sequences. Leaves are special sets containing only one sequence.

The tree is heuristically constructed to pairwise align sequence sets of maximal similarity at

every stage.

Alignment order

The algorithm outline above does not mention the order in which the sequences should be

aligned. It is usually regarded as most desirable to start with the most similar sequences.

For example when aligning DNA sequences, evolutionary scientists commonly construct a

guide tree first which describes the distance in relationship between the sequences [HS88].

If the tree is binary and rooted, it can be used to give a unique order for the alignments.

Starting from the individual sequences at the leaves, larger sets are created by pairwise

alignment of the child sets to produce their parent set. For aligning the Glasgow corpus

of actions, I am also constructing a guide tree based on the known origin of the data. The

tree defines a hierarchy of relationships depending on whether the motions originate from

1. the same take (recording)

2. the same emotion

3. the same person.

A part of the resulting tree is shown in Figure 4.8. Note that it is not binary but its unique

root represents the set of all aligned motion sequences. All sequences of the database are

represented in the leaves of the tree. Internal nodes represent sets of aligned sequences.

As the tree is not binary, there is some ambiguity to the alignment order at each level.

If a node has more than two children their combined alignment is produced by aligning

sequences at random, while trying to keep the intermediate sets as balanced as possible.

The root node represents the set V∗ of all aligned sequences. The pairwise alignments we

saw in Figure 4.7 were in fact taken from the set V∗. They show that even after aligning

over 1000 sequences, the result is meaningful for individual sequence pairs.
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Figure 4.9: Plot of the master descriptions for Knocking, Throwing and Lifting motions. Each

plot depicts the mean energy graph of approximately 1200 aligned motion sequences. The black

regions indicate the variance across the aligned signals at each time frame. The defined primitive

regions are indicated by arrows.

Defining motion primitives

Once all the actions have been aligned, I need to visualise the result in an appropriate

manner. The primary goal is to make it easy for a human to choose which portions of

the motion should be picked as motion primitives. While working with the energy-based

definitions in Section 4.3.1, we saw that energy graphs are a very useful way of visualising

dynamic data. The notion of a motion energy graph is very similar to the common use

of waveforms reflecting sound pressure levels and sound intensity in audio editors (see

Figure 4.10). I visualise the master description as the average energy graph based on all

the aligned motions. In order to capture some of the large variation in the data, I also

show the maximum and minimum values in the form of a variance region. Figure 4.9

shows the resulting master descriptions for Knocking , Throwing and Lifting .
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Figure 4.10: Sound intensity is a primary cue used in any standard music editor.

The characteristics of each action are clearly discernible. For example, the individual

knocks have been preserved in the master description of Knocking . This allows for a

straightforward definition of motion primitives as a range of frames in the master descrip-

tion graph. Note that each frame in the combined graph corresponds to unique frames

in all of the original sequences. Because the original sequences may be locally stretched,

however, it is not in general the case that every frame in an original sequence corresponds

to a unique frame in the combined graph. Instead, every frame in an original sequence

corresponds to a connected range of frames in the master description. For the purpose

of this dissertation, I am using the following motion primitive boundaries as depicted in

Figure 4.9:

• Knocking

– 50 - 178: raising the arm

– 178 - 390 : repeated knocking

– 390 - 575 : lowering the arm

• Throwing

– 169 - 414 : flexing the arm before throwing

– 414 - 521 : throwing motion

– 521 - 662 : recoil motion

• Lifting

– 151 - 350 : lifting the object

– 350 - 692 : putting it back

In order to extract these motion primitives from new motion examples, we can use the

following algorithm (see also Figure 4.11 for an illustration):
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Figure 4.11: Propagating the primitive boundaries to a new sequence V . The new sequence

is first aligned with the full sequence set V∗ to form V+.
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1. For each primitive boundary, uniquely identify the frames in the original sequences

which correspond to it (Figure 4.11 top).

2. Align the new motion V to the fully aligned set V∗. This gives rise to a new set V+.

3. Set n = 1.

4. For the nth primitive boundary, build a histogram of frames in V+ which correspond

to the primitive boundary (Figure 4.11 centre).

5. Pick the median frame as the primitive boundary in V+. Uniquely identify the frame

in V which corresponds to the primitive boundary (Figure 4.11 bottom).

6. If there are more boundaries, increase n and goto 3.

The expensive step of this algorithm is the alignment in step 2. In its simplest imple-

mentation the complexity of DTW is O(T 2) where T denotes the length of the sequence.

As this implementation performs multiple sequence alignment, a distance formulation as

given in Equation 4.16 is linear in the number of sequences V and hence leads to a com-

plexity of O(V T 2). If performance is important, two optimisations can be used. The first

optimisation concerns the number of sequences stored with the master description. It is

not necessary to store all V sequences which were used to compute the alignment. If only

a constant number of sequences are retained after the master description has been com-

puted, each evaluation of Equation 4.16 becomes constant time. A further optimisation

comes from approximating the calculation of the full DTW matrix in linear time (e.g .

see FastDTW by Stan et al . [SC07]). This leaves us with a time complexity of O(T ) for

step 2. The remaining steps can be carried out in constant time by precomputing and

storing the primitive boundaries at the root node of the master description tree. These

optimisations were not implemented for this work.

Evaluation

Examples for aligning new motions to previously defined master descriptions are shown

in Figure 4.12. Note that due to the multiple alignments the master descriptions are

generally significantly longer than individual motions. Aligning a new motion to the

master description computes a warping function which maps between the two sequences.

For these examples I am using the master descriptions as shown in Figure 4.9 and align

three random sequences and use the above algorithm to propagate the previously defined

primitive boundaries to the new sequences. The energy plots indicate that the alignments

are meaningful and the boundaries have been mapped correctly to the new motion.

Because all Glasgow motion sequences are available at training time, I can take the primi-

tives directly from the master descriptions. In detail, I computed a master description for
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Figure 4.12: Example alignments for new Knocking , Throwing and Lifting motions (bottom)

to the previously defined master descriptions (top). The red lines indicate where primitive

boundaries have been aligned.

each action category by aligning all samples in the Glasgow corpus. Defining the primi-

tives as shown in Figure 4.9 then yields primitives for each of these samples. Those are the

primitives I use in future chapters. Additional evaluation statistics for these primitives

are available in Appendix D.

4.3.3 Cyclic motions

Many real-world tasks can be thought of as cyclic in nature. Walking, reading, eating,

hovering, brushing teeth all have more or less repetitive elements. Clearly, sequence
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Figure 4.13: PCA-transformed Walking sequence. The walking cycles are clearly discernible

once the signal is projected onto the first principal component (red). A single cycle has been

indicated with an arrow.

alignment is not meaningful for cyclic motions if the motions to be aligned exhibit different

numbers of cycles. Instead, I first segment cyclic motions into individual cycles. If

necessary, I can then extract motion primitives from each cycle individually. I have

processed the Walking motions from the Glasgow corpus in this way.

Various methods exist to segment cyclic motions into cycles. I could, for example, use a

state-based method like cyclic left-to-right HMMs to model the actions (see Section 4.2.2).

As walking motions are not very complex in structure, I will use PCA — a simpler method

which has the added benefit of also allowing easy segmentation in real-time.

For this approach I am representing the motion as a time series of the lower body joint

position and speed information. I introduced this representation as observation variables

for the action HMMs at the beginning of this chapter (see Section 4.2.2 and Table 4.1).

PCA is a powerful statistical method to reduce the dimensionality of this high-dimensional

signal one frame at a time. At the same time the goal of the PCA transform is to preserve

as much variation in the data in as few dimensions as possible (see Section 3.5). The

main cycles of a cyclic motion such as Walking usually account for the largest amount of

signal variation. Computing the PCA transform of such a motion is hence likely to expose

those main cycles in the first dimension. In order to test this hypothesis I took a random

sample of 100 Walking motions and computed their PCA transform. I then applied this

transform to a new Walking sample. Figure 4.13 depicts the first three dimensions of this

transformed sample. The first dimension (highlighted in red) follows a clear sinusoid. In

this case the period is around 60 frames (1 second). This is the cycle period which the

subject took for two consecutive steps. I can robustly extract the cycle boundaries as the

local maxima of the sinusoid.
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After extracting the cycles I can treat each individual cycle like any non-cyclic action and

analyse it in terms of motion primitives. Several authors, for example, have analysed gait

in terms of half-cycles or half-steps [VSM00, KS05]. This analysis mainly benefits the

modelling and synthesis of human gait. Because walking is such a simple and symmetric

motion and in order to simplify the analysis, I treat every cycle as a motion primitive

without any further subdivisions.

4.3.4 Related work

This section has dealt with the definition and extraction of motion primitives in the

context of extracting emotional features from body movements. In her work on emotion

recognition from expressive body movements Castellano used dynamic features which

describe submotion characteristics like initial, final and main motion peaks [Cas08]. She

argues that emotional expression is reflected to a great extent in the timing of the motion

rather than in absolute or average measures. In the case of everyday actions, these kinds

of dynamic features are generalised by the notion of motion primitives which can capture

the dynamics in terms of any number of subelements of an action.

Motion primitives are a very common method of dealing with the complexity of human

movements. Indeed, facial movements are very often modeled as series and superpositions

of basic actions as in the Facial Action Coding System developed by Ekman and Friesen

[EF78] which is very popular with psychologists and has become the de-facto standard for

analysing facial expressions in affective computing. Another and slightly lower level facial

action parameterisation is provided by the Facial Animation Parameters (FAPs) defined

in the MPEG-4 standard to allow the animation of synthetic face models [Ost02].

Unsurprisingly, psychology and animation have been two very active areas for structur-

ing human movements into primitive elements. The psychologist Peter Bull developed a

system called the Body Movement Scoring System to transcribe his observations without

including social meaning [Bul87]. For a similar purpose the anthropologist Ray Birdwhis-

tell developed a transcription system which is only based on physical appearance and

anatomy rather than culture-specific interpretations [Bir70]. My work takes inspiration

from Birdwhistell’s observation that complex motions can be broken down into an or-

dered system of isolable elements which he called kinemes. He stressed the closeness to

the linguistic concept of phonemes. This conceptual closeness means that many compu-

tational approaches first developed for speech processing later found use in the analysis of

sign language (e.g . see [SNH98]) and I have demonstrated how they can be used for the

more general task of action understanding. In other computational systems motion prim-

itives have been used for tracking and recognising human skills, activities and gestures

[GG04, Vec02]. In these contexts motion primitives have been labeled in many different

ways. While Green called them dynemes, Del Vecchio et al . name them movemes. Most
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of the time, these kinds of primitives are short motion fragments which are combined

sequentially in the way that I have in this section.

Finally, motion primitives have been used for producing motions in computer animation

and robotics. Indeed, my initial cluster-based primitive definitions are based on robotics

work by Fod et al . [FMJ02]. They propose the use of perceptuo-motor primitives which

bias the perceptual system in terms of the set of motor behaviours which a robot can

execute. They also point out that there is a neuro-scientific basis for motion primitives and

that in fact vertebrate motor control seems to be achieved through the flexible combination

of primitive motions [HG04, TS00]. This notion has also been utilised by animators,

especially in the field of data-driven motion synthesis [LE06, KS05].

The animation community has also been interested in aligning motion sequences. This

idea has been fundamental to my second method of defining motion primitives. Using

an approach similar to mine, Heloir et al . use temporal alignment to represent gestures

in a style-independent way [HCGM06]. While their motion data representation is very

similar to mine, their approach is aiming for smooth alignments as needed for animations.

Also, few solutions have been developed for aligning more than two sequences at a time.

Turning to other fields, multiple sequence alignment without smoothness constraints can

be found in the field of computational genetics. In particular, the alignment of multiple

DNA sequences through the popular CLUSTAL family of algorithms [HS88, THG94] has

largely motivated my approach. Because DNA sequences are one-dimensional, I had to

generalise the commonly-used algorithms to multi-dimensional motion signals as outlined

in Section 4.3.2.





Chapter 5

Emotion recognition from isolated

motions

In this chapter I am going to introduce a framework for detecting emotions from isolated

everyday body motions. It is important to realise that many factors, including emotional

state, have an effect on the dynamics of body movements. I am describing a machine

learning framework which can account for some of them with the goal of separating

different emotion classes as far as possible to aid classification. A number of experiments

at the end of this chapter will evaluate, among other things, how the modelling of these

different factors can influence the recognition of emotions.

5.1 Framework

At the heart of my emotion recognition approach lies the observation that an observed

motion signal is the result of a number of factors which interact in complex ways. Factors

which have been studied in past research have been gender, height, age, weight and

Action

Emotion

Motion

signal

Personal

bias

Figure 5.1: Three factors are affecting the final observable motion signal. Boxed signals are

categorical, rounded signals are continuous.
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Figure 5.2: Data processing pipeline for emotion recognition from isolated motions. Grey

components represent algorithms described in this previous chapters. They produce the data

shown as white components.

emotion. At a more fundamental level, the motion signal will also be influenced by the

action performed. For the purpose of this dissertation, I distinguish between three factors

(see Figure 5.1 reproduced from Chapter 1):

1. action

2. personal motion idiosyncrasies

3. emotion.

I will regard these factors as largely independent of each other. This assumption is strongly

supported by Wallbott’s findings [Wal98]. The goal is to develop a good understanding

of these factors and how they influence the motion signal. This will allow me to build

effective models including a model for the emotional influences on the motion signal. In

the emotion recognition framework, I start from an unclassified motion signal. From that,

I will separate the influences of action and idiosyncrasies before attempting to detect the

emotion. Figure 5.2 summarises the recognition process. I first classify the signal into

one of n action classes. At this stage it is also possible to break down the signal into

primitives in order to model the emotional influences at a finer scale. I discussed this

topic extensively in Section 4.3. Next, I extract emotion-communicating features from

the signal. I introduced this concept for the Cambridge corpus in Section 3.4 and will

return to it in Section 5.2. The next step is normalisation and is aimed at removing

any biases introduced by the feature representation. I will talk more about this step

when discussing SVM-based classification in Section 5.5.1. After this stage, the features

are still confounded by person-dependent factors. Therefore, before feeding the features

to an emotion classifier, I remove the bias introduced into the signal by the personal

idiosyncrasies. I will discuss this process in detail in Section 5.3.

There have been several attempts, both by the animation and recognition communities, to

build models of body motion which are able to incorporate a number of different factors.

One of the most popular abstractions distinguishes between content (action) and style
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(e.g . gender, emotion etc.) [TF00]. Notably, Brand and Hertzmann presented an HMM-

based model they called Style Machines [BH00]. Being interested in animation and data

generation, their models are generative and designed to produce convincing animations

rather than distinguishing labelled styles from a corpus. Bobick andWilson describe Para-

metric HMMs which are able to incorporate simple distance parameters in gestures indi-

cating quantities [WB99]. Even though they suggest that the method may be applicable to

human motion data such as gait, the most popular approaches to identity recognition from

human gait have tended to use explicit feature extraction rather than HMM parameters to

model the style differences [Gri02, JB01, NCN+99, UF04]. Furthermore, many approaches

to discriminate emotion in the body, face and voice have been discriminative rather than

generative like HMMs [KKVB+05, CVC07, DSBB04, MK03, PR00, BLFM03, FT05]. My

recognition framework is also based on a discriminative emotion model rather than a gen-

erative one. In Section 5.5 I will make use of Support Vector Machines to classify feature

vectors into emotion classes.

5.2 Feature definitions

In both generative and discriminative approaches the choice of features is paramount

to achieving good recognition results. In Section 3.4 I described a set of dynamics-based

features which I showed to be appropriate for capturing emotional differences in the Cam-

bridge corpus of expressive body motions. Recent psychological studies have shown that

dynamics-based movement descriptions are also effective for explaining the perceived dif-

ference in everyday movement scenarios [ATD07, PPBS01]. In particular, the activation

dimension in a continuous emotion space has been shown to be strongly correlated with

movement speed in certain actions and activities [PPS01, Pat02]. These findings supple-

ment other studies based on more archetypal motions which also stress the importance

of dynamic cues [ADGY04, CVC07, CMV04]. I will therefore largely make use of the

features described in Section 3.4 to discriminate between emotions in everyday actions.

The features I presented before were calculated based on a sliding window and amounted

to statistics of

• joint positions (x, y, z)

• joint speed

• joint acceleration

• joint jerk.
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Table 5.1: Set of simple features defined per joint in the Glasgow corpus.

Channel Statistical features computed # Features

posture (x-position) median, min, max, std deviation 4

posture (y-position) median, min, max, std deviation 4

posture (z-position) median, min, max, std deviation 4

speed median, min, max, std deviation 4

acceleration median, min, max, std deviation 4

jerk median, min, max, std deviation 4

24

Table 5.2: Set of simple features defined for the head in the Glasgow corpus.

Channel Statistical features computed # Features

posture (pitch) median, min, max, std deviation 4

posture (roll) median, min, max, std deviation 4

8

5.2.1 Simple features

According to my models in Section 4.2.2, each action is defined in terms of a set of joints

Ji. Therefore, for each action class c I derive emotion features based on the set of joints Jc.

In detail, the feature vector derived for each joint individually consists of 24 dimensions

as shown in Table 5.1. As before, the head is treated somewhat separately and gives rise

to an 8-dimensional feature vector (Table 5.2).

For Knocking motions, for example, this means that the above statistical features are

derived from the right arm joints (elbow and hand) and the head giving rise to 56 dimen-

sions. Because these features are derived from the motion of single joints I refer to them

as simple features.

5.2.2 Derived features

In order to demonstrate to what extent feature extraction can benefit from detailed motion

modelling I also define a number of additional, more complex features. Three additional

features make use of my increased ability to model activities. Inspired by energy-based

features common in speech processing [Fur86, Rab02] I am combining the motion of multi-

ple joints to calculate the overall motion energy of a whole body region (see Equation 4.8).

As new derived features I then calculate

1. mean and median motion energy over a whole activity

2. the optimal segmentation threshold τopt as defined in Section 4.3.1.
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Furthermore, I define two features based on motion primitives. Those are

1. length of the primitive in frames

2. phase difference between joints.

I am including the latter quantity with a reference to work by Bruderlin et al . [ABC96]

which I discussed in Section 2.2.2. They suggested that phase differences may be indicative

of emotions, which was later confirmed by Pollick et al . and Paterson [PPBS01, Pat02].

The phase difference is calculated based on the occurrence of the maximum speed of one

joint compared to another one and can therefore be positive or negative. In practice, I

am calculating phase differences between the motion of elbow and wrist joints, as well as

between knee and foot joints.

5.2.3 Action-global vs. primitive-local features

In Chapter 3 the motion segments m over which the features are calculated were defined

through a sliding-window. I am now using the improved abilities to model complex actions

when deriving emotion features. In particular, features can be either derived from a whole

action or from individual primitives. In the remainder of this thesis I will refer to these

two different kinds of features as action-global and primitive-local respectively.

In either case, the goal is to account for and discard as much variation as possible in the

motion dynamics which comes from the sheer nature of the action. Clearly, the dynamics

of the arm motion during Lifting , Knocking and Throwing actions are different by the

inherent nature of the actions. Training emotion models depending on which action is

being performed enables me to account for this and hence improve over sliding window-

based classification. However, I need not stop at the action level. The flexing and throwing

segments of a Throwing action could impose different biases to the observed dynamics

due to the different functions and constraints by which they are governed. Assuming that

we can model a more complex action through two motion primitives m1 and m2, deriving

features from m1 and m2 independently may therefore enable me to remove even more

action-based influence from the dynamics-based features.

I will write an action-global feature vector as φKnock,p where p denotes the person. Feature

vectors derived from motion primitives m1 andm2 are written as φm1,p and φm2,p. φKnock,p

can also be understood as a feature vector where a single primitive is defined as a whole

Knocking action.

5.3 Personal motion bias

In Section 3.5 we saw that there are individual differences in the expression of emotions in

affective gestures. In particular, we saw that the parameters of the feature distributions
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for different emotions can vary between individuals. These differences are certainly not

unexpected. While humans themselves are very well adapted to distinguishing emotions

from others’ expressions, it can take a long time before we get attuned to the very subtle

differences between individual expressions of emotions. We find it easier to interpret the

emotional signs communicated by a good friend than those of a person who we have only

known for a brief period of time. Individual differences in the expression of emotions have

recently been investigated by several psychologists. Multiple studies conclude that facial

expressions of the same emotion can differ between people because of cultural influences

[Mat93, TM08, SWMK88] and individual style [SC01, WMH08]. Similar differences have

been reported for body expressions [Cou04, Mei89, Ste92, Wal98]. All these observations

lead to one conclusion: While emotional expression can be regarded as universal to some

extent [Ekm94], there are individual differences which are important for high-accuracy

inferences from emotional displays. Those seem especially pronounced if we consider

dynamic displays of emotion rather than static images. This section will explore how

individual differences occur in the dynamics of everyday actions, how they can be modelled

and to what extent they are consistent across different action categories.

5.3.1 Modelling individual differences

Despite my observations regarding the human individuality of emotional expressions,

many researchers dealing with the subject of emotion recognition treat those differences

as marginal. Indeed, some researchers have aimed to produce systems which can detect

emotions based on universal and person-independent features. I believe that ignoring

individuality of expression from a recognition framework could limit its applicability and

real-world success. Indeed, Picard stresses the fact that building universal affect-sensitive

systems should start from a focus on the individual [Pic97]. I am therefore modelling

personal movement style explicitly. Figure 5.2 showed the subtraction of motion bias as

a separate building block of the data processing pipeline.

Many machine learning approaches dealing with human-generated data use some kind

of normalisation procedure to account for the variation originating from the fact that

the data is generated by different individuals. Once more I turn to research in speech

recognition to find evidence for the importance of this kind of normalisation. Besides the

modelling of environmental factors, speaker normalisation is discussed by many authors as

one of the major factors for improving recognition accuracy [SAE07, GGB06, ZWFW97].

Numerous techniques for speaker normalisation have been developed, many of them fo-

cussing on physical differences between speakers such as vocal tract length or base fre-

quency. Indeed, speaker modelling is the basis for the recognition of individuals from

samples of their speech (e.g . see [Cam97, RQD00]). More recently, the same concept has

lead researchers to investigate the recognition of individuals from differences in their body

movements [LG02, KSR+04].
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Figure 5.3: Biased and unbiased feature distributions for sad knocks (black) and angry knocks

(white).

Recently, normalisation with respect to individual subjects has also been proposed in ap-

proaches to recognise emotions from various modalities, including speech [SAE07], physi-

ological signals [NALF04] and the body [Cas08]. In particular, Castellano et al . mention

that normalisation of features derived from body movements is important for achieving

good classification performance across subjects [Cas08, CVC07]. Caridakis et al . describe

a neural network-based approach to adapting their classifiers to user differences [CKK08].

I am building on these insights to model individual differences and hence improve the

accuracy of emotion recognition.

Individual movement bias in the Glasgow corpus

Within the scope of this dissertation, I am interested in how the set of feature vectors φ

are affected by individual differences. I obtain a quantitative view of the feature distribu-

tions by creating histograms of individual features and emotion classes. Figure 5.3 (top)

shows the feature values for hand speed and acceleration respectively as derived from

sad and angry Knocking motions. As in Section 3.5, the feature distributions are clearly

discernible. However, from a pattern classification standpoint, they show a relatively

low between-class-scatter
within-class-scatter

ratio. The distribution of sad samples overlaps heavily with that

of angry samples. This exemplifies the problem of individual movement bias. While the

angry knocks appear generally more energetic than sad ones, there is a large spread in the

absolute values observed from different individuals. This leads to the tails of the observa-

tions overlapping heavily, thus making a global classification on the basis of unnormalised

features sub-optimal.

In order to improve the scatter ratio, I am making the assumption that a person’s motion
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idiosyncrasies influence his/her movements in a consistent fashion — after all they are

expected to be governed by gender, physical build and other constant or semi-constant

factors. I therefore model individual motion bias as a vector φ̄m,p which I call motion

signature. For a person p and motion primitive m I am thinking of the motion signa-

ture as a prior probability distribution parameterised by a mean µ(φ̄m,p) and variance

var(φ̄m,p). The distribution captures the prior belief about the features observed for per-

son p displaying motion primitive m. As described before, the primitive index m captures

both the action category and particular primitive within that action category. Since I

am assuming motion bias and emotional influences to be independent, I can calculate an

unbiased feature vector φ̂m,p by normalising with respect to the bias parameters:

φ̂m,p =
φm,p − µ(φ̄m,p)

var(φ̄m,p)
(5.1)

In the remainder of this dissertation I will refer to φ̂m,p as unbiased feature vector

while φm,p denotes the original, biased feature vector. Note that the bias is a unique

signature computed per person and motion primitive. An important problem is how to

estimate φ̄m,p. If a person is not “known”, i.e. the system has no history of his/her

movements, it may be necessary to take an a priori guess, maybe conditioned on gender

or other cues. A brief exploration of the effects of gender and age on motion bias is given

in Section 5.3.2. However, if we have observed a number of movements from the person

in the past, it is possible to compute φ̄m,p from all the observed motions. I therefore

compute the motion bias φ̄m,p as the mean and standard deviation over all the motions

primitives of type m for person p in the database. This operation entirely ignores any

emotion-specific information in the database as different emotion classes are represented

at equal frequencies. Fig. 5.3 (bottom) illustrates how this normalisation improves the

between-class variability for the two previously considered emotion classes considerably.

In Section 5.5.2 I will give a quantitative account of the improvements in classification

accuracy achieved when taking movement bias into consideration. First, however, I am

going to explore in more detail how personal motion signatures φ̄m1,p and φ̄m2,p are related

for motion primitives extracted from different action categories.

5.3.2 Predicting motion bias — user adaptation

Adding the personal motion signature into the data processing pipeline clearly improves

the accuracy of the models (see Figure 5.3). However, from a practical standpoint, this

kind of person-dependent model clearly comes at a cost. φ̄m,p needs to be estimated

from data supplied by person p. In particular, because φ̄m,p is formulated in terms of a

particular motion primitive m, it is necessary to observe a range of motions from each

relevant action category. For certain scenarios this might not be a problem. It could,

however, make adding new motion categories difficult and would mean that a new person
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would need to train the system for a period of time before he or she could expect accurate

recognition results.

One intriguing possibility is to try and find a relationship between φ̂m1,p and φ̂m2,p which

is consistent across many subjects p and where m1 and m2 may come from different action

categories. In effect, I would like to define a functional mapping φ̂m2,p = B(φ̂m1,p). I call

B an adaptation function. The definition of such an adaptation function would allow the

generalisation of personal motion bias from one motion to another. If m1 comes from a

Walking sequence and m2 is a Knocking primitive, it would be possible to predict what a

certain person’s knocking looks like on average from having observed him or her walking.

This approach has the distinct advantage that some types of motions like Walking are

much more common than others, so gathering enough data for estimating φ̂Walk,p reliably

might be relatively easy.

Adaptation

Indeed, it may not be necessary to derive φ̂m1,p from naturally observed data. As it

potentially enables the derivation of motion signatures for many other action categories,

it may be practical to record a few baseline calibration motions explicitly from which

the motion signatures for all the other action categories of interest can be estimated.

This approach is very popular in speech recognition systems which often include speaker

adaptation steps to improve the recognition results. A common adaptation mechanism

includes a short number of sentences which the user needs to read. This allows the system

to build a speaker model which is generalisable to words and sentences beyond the ones

read during the initialisation.

Given the relatively limited vocabulary of actions in the Glasgow corpus, I conducted a

proof-of-concept experiment which is based on the notion of user adaptation based on

explicitly supplied calibration data. As in the speech example, I am going to work from

a dedicated calibration motion which a user would be instructed to repeat several times

during an initialisation phase. In the Glasgow corpus, the best fit for such a motion is the

initial TDown motion which the subjects are instructed to display before every motion

recording. As it is very simple, it is the kind of motion which would be practical to use as

a calibration motion. Yet, it contains enough dynamic elements to allow the estimation

of all the dynamic parameters which make up φ̂m,p. Indeed, research by Castellano et al .

has shown that a great range of dynamic subtleties can be expressed in simple movements

very similar to the TDown motion [CVC07].

Feature correlations

One way in which the speech community has achieved speaker adaptation is through the

exploitation of correlations between speech units [CD97]. In the following experiment I
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am investigating the correlations between feature biases as derived from TDown and the

upper body actions Knocking , Throwing and Lifting . I picked the following feature set

for this experiment to include a variety of measures for multiple joints, as well as static

and dynamic information:

• maximum vertical hand and elbow distance (2 dimensions)

• median hand and elbow speed (2 dimensions)

• median hand and elbow acceleration (2 dimensions)

• median hand and elbow jerk (2 dimensions)

• median head posture (2 dimensions).

First, I calculated the set of features φTDown,p for all samples in the Glasgow corpus. I

then computed φ̂TDown,p as the corresponding medians and standard deviations for each

of the 30 subjects. I am thinking of each of the elements of the 10-dimensional median

and standard deviation vectors as a variable which takes on a different value for different

subjects. I call these variables adaptation variables. Similarly, I calculated φ̂Knock,p,

φ̂Throw,p and φ̂Lift,p. I am also thinking of the feature vector elements as variables which I

call bias variables. As I am trying to infer the bias variables from the adaptation variables,

we can think of the adaptation variables as independent while the bias variables are the

set of dependent variables. In order to visualise the relationship between independent and

dependent variables, I plot some of the bias variables computed from Knocking actions

against the according adaptation variables in the form of a scatter plot in Figure 5.4.

These plots strongly suggest a linear relationship between the adaptation and signature

features.

In order to quantify this relationship, I carried out a correlation analysis. I calculate

the Pearson correlation coefficient ρφa,φb
for all feature pairs (φa, φb) from the adaptation

and bias data respectively. With gender and age I am adding an extra two independent

variables which could be used as a basis for adaptation. I am also computing corre-

lations based on the added age and gender variables. Figure 5.5 (top) shows a visual

representation of |ρφa,φb
| for the three different action categories.

My final goal is to establish which of the correlations are statistically significant. I form

the null-hypothesis that a feature pair is uncorrelated and use Student’s t-distribution

for a transformation of the previously derived correlation values. This gives me a p-

value, pφa,φb
, indicating how likely the null-hypothesis is for adaptation feature φa and

bias feature φb, given the data samples. Figure 5.5 (bottom) shows pφa,φb
thresholded at

different levels τp.
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Figure 5.4: Plots of features derived from the TDown adaptation motions versus the motion

bias calculated from all Knocking motions in the Glasgow corpus. Each data point is derived

from one of the 30 subjects in the corpus. Values were normalised to the interval [0, 1].
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Figure 5.5: Pairwise correlations between adaptation variables and motion bias variables.

Elements (i, i) in the visualised matrix correspond to the same features (e.g. hand speed). White

elements denote a significant correlation between the corresponding variables at the according

significance threshold τp. The two additional adaptation variables separated by a dashed line

are age and gender.

Discussion

We can see very clear correlations between the features of the calibration motion TDown

and other actions. Not surprisingly, the correlations are particularly pronounced along

the diagonal, suggesting that the same variables (such as median hand speed) in TDown

and other actions are correlated. However, we can also see other features off the diagonal

being highly correlated. Interestingly, age and gender do not seem to have as strong
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Figure 5.6: Data processing pipeline augmented to incorporate adaptation based on explicitly

collected adaptation data. The adaptation data to use is chosen according to the action category

and primitive.

an effect. This suggests that age and gender are not very good predictors as far as the

dynamics of human upper body motions are concerned. On the other hand, there are

many features which are significantly correlated at the p = 0.001 level which suggests

that adaptation on the basis of a calibration motion might be a practical possibility.

Given the strong correlations, a natural candidate to define an adaptation function B is

linear regression. This method has been very popular in the speech recognition community

[LW95]. Figure 5.6 shows how my data processing pipeline can be extended to allow for B

to predict the motion bias for a particular action category and primitive. In Section 5.5.2

I will make use of this technique to evaluate how effectively user models can be built

based on such an adaptation function. In particular, I will compare how well emotion

classification performs using B compared to a non-personalised baseline model and a fully

person-dependent model which makes use of the “true” motion bias. First, however, I

will take a closer look at the role of the different features in emotion recognition.

5.4 Feature analysis

In the previous sections and chapters I have made use of rather ad-hoc choices for the

subset of emotion features to use. It is, however, not obvious which features will be good

predictors for different emotion classes. A closer analysis of the importance of features

in this section serves two purposes. Firstly, it will give us important insights into which

qualities of body motions encode emotional meaning. Secondly, it will allow me to reduce

the feature set effectively by removing features which are irrelevant or noisy. In certain

scenarios, this has been argued to improve the performance of machine learning. I will

again focus on the set of upper body actions, but will give due consideration to a variety of

different factors. Firstly, I will investigate the usefulness of different features for different

action categories. Furthermore, I categorise every feature along a number of dimensions.
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Figure 5.7: Schematic representation of feature vectors derived from the three primitives

extracted from the same Knocking sample. Shaded elements represent feature values of different

dimensions.

For each of the dimensions below I can later determine which values (given in brackets)

provide particularly discriminative information.

• statistical measures used to derive features (median/standard deviation/min/max)

• originating joints of features (elbow/hand/head)

• primitive-based vs . action-global features (primitive-local/action-global)

• simple statistical vs . complex derived features (simple/derived).

I will base my analysis on a feature subset selection framework. In particular, I compute

the full set of features and collect them in a large feature vector φm,p. There is one

such vector per motion primitive m. In order to be able to evaluate the relative merit of

primitive-based vs . global features, each vector contains both the features derived from

the primitive and the features derived from the whole action globally (see Figure 5.7).

I will then perform a feature selection routine which chooses dimensions of the feature

vectors which are highly predictive of the associated emotion classes. I can then analyse

the selected subsets with regards to the different factors outlined above. For example, we

can see how important primitive-based features are compared to action-global features by

what proportion of each was picked by the selection algorithm. In the following analysis

I am using features which have been unbiased as described in Section 5.3.1.

5.4.1 Feature subset selection

Feature subset selection is a topic in its own right in the pattern recognition community.

The goal here is not to investigate the relative merit of the many algorithms available, but

to choose one which can be expected to supply useful information for the problem at hand.

In particular, I want to establish which features from the large and redundant feature

vectors φ carry the most information about the emotional classes. Within a machine

learning framework, the features are normally evaluated in terms of the performance

they yield when used in conjunction with a particular machine learning algorithm — an
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approach known as feature wrappers [KJ97]. Although I will ultimately use the features in

a machine leaning framework, the results from this section should give us insights going

beyond a particular machine learning application. In order to ensure the generality of

the results, I will therefore use a filter technique which evaluates features according to

heuristics based on general characteristics of the data itself [JKP94].

Although filters are a relatively old technique, they are the optimal choice here as many

of the more recently developed techniques such as boosting-based methods [Das01, TV04,

RL05] benefit from the considerable progress in the field of pattern classification and are

thus inherently bound to classifiers. Other popular techniques operate in the principal

or independent component space [LEAP05, GCP07] and thus achieve feature reduction

by combining multiple features. This makes it harder to draw conclusions about the

significance of observable properties such as hand speed. Finally, being a well-studied

technique, implementations for various filter methods are readily available for experimen-

tation in knowledge analysis packages such as WEKA [HFH+09].

Turning to the structure of the data at hand, one of the problems is that many of the

features are likely to be correlated with each other. For my analysis, however, it would

be beneficial to derive the most parsimonious set of features which shows a small amount

of inter-correlation. This way we can be sure that each selected feature actually captures

some significant and unique information about the expression of emotions. In other words,

I am looking for a set of features which are highly correlated with the emotional class,

but uncorrelated with each other.

One algorithm which solves this problem and whose implementation has been discussed

in the literature is a correlation-based approach by Hall et al . [HS97]. In order to evaluate

the correlation between features and the emotion classes the approach makes use of the

information-theoretic concept of information gain. The merit of a certain subset Φ of k

features can be quantified as the quotient of the mean class-feature correlations ρc,φ and

the mean feature-feature intercorrelation ρφ,φ:

Merit(Φ) =
kρc,φ

√

k + k(k − 1)ρφ,φ
(5.2)

I use the Merit function as a heuristic to direct a Hillclimbing algorithm to find a good

feature subset Φ̂. This is a common approach used to cut the search complexity in feature

subset selection [HS97, RK90]. Starting with no features, new features are iteratively

added and their Merit scores stored in a priority queue. The queue enables backtracking

in a best-first fashion in case the new sets do not amount to any improvements in Merit.

At every iteration the feature set with the biggest Merit is chosen from the head of the

queue and expanded into new sets by adding new potential features. The algorithm stops

after not having improved Merit for five iterations, yielding the subset with the largest

Merit seen up to this point, Φ̂.
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Knocking

features

Primitive 1
Primitive 2
Primitive 3

Throwing

features

Primitive 1
Primitive 2
Primitive 3

Lifting

features

Primitive 1
Primitive 2

Figure 5.8: Results of the feature subset selection procedure for Knocking , Throwing and

Lifting actions. Each matrix element (i, j) represents feature φj derived from the primitive

φi. White elements represent features which were selected by the algorithm as informative.

Primitive-local features (left) and action-global features (right) are separated by a grey dashed

line.

5.4.2 Results

Figure 5.8 visualises the subset selection results. White squares symbolise features which

have been selected, black squares denote unselected features. See Appendix E for a

detailed list of every feature. Remember that the feature vectors contain both primitive-

local and action-global features. These portions are visualised in the left and right part of

the figure respectively. Appendix E also lists the results of a variation of the experiment

where only action-global features were considered during the selection process.

Overall, the routine selected 24% of the features as predictive. In the remainder of the

section I will present the distributions of selected features in more detail. In particular,

I will analyse the selected features along the dimensions listed on page 116. For each

dimension I will visualise the results in the form of bar charts. As features can be of one

of a number of categories making up each dimension, the plotted quantities represent the

fraction of features picked from a certain category. That is, for a feature category κ, the

plotted quantities represent

number of features of category κ picked by the algorithm

total number of features of category κ
(5.3)

Note that the results given here were derived by considering all emotions simultaneously.

Appendix E also gives results for a variation of the experiment where features were selected

which are particularly informative for distinguishing one particular emotion from all the

others. The features selected there are hence informative for distinguishing one particular

emotion.
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Figure 5.9: Proportion of selected features: primitive-local versus action-global.

Primitive-local versus action-global features

Figure 5.9 confirms the impression we get when looking at Figure 5.8: the algorithm

strongly favours global features over features derived from the motion primitives. While

roughly 1/3 of the global features were picked, only 15% of the primitive-based features

are deemed informative.

This is an important result. It gives us information to evaluate my earlier claim that

detailed motion understanding at the primitive level will in fact help the recognition of

emotions. Much of the emotional information seems to be readily available at the action

level. Action-level features might also be preferred because they are likely to be less noisy

as they are computed over a longer time span. However, the importance of primitive-

based features should not be totally dismissed. Roughly 1/3 of all selected features are

primitive-local and therefore add some significant information to emotion recognition.

Indeed, in the final section of this chapter I will show that emotion recognition results can

be improved significantly by adding primitive-based features to a machine learning-based

framework.

Statistical measures

The vast majority of features is defined in terms of simple statistical quantities over either

a motion primitive or the whole action. Figure 5.10(a) illustrates that by far the least

informative of the statistical measure is the sample minimum. Minimum-based features

were only picked 10% of the time while the most informative, median-based features were

picked in over 35% of the cases. The variation of the signal seems to be informative as

well as standard deviation-based features were picked in nearly 25% of the cases while

maximum-based features were selected in one out of five cases.

This result confirms the common view that median and standard deviation are robust

and informative measures to describe a time series of measurements. They are clearly

favoured by the feature selection. Minimum and maximum values capture the extrema of
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Figure 5.10: Proportion of selected features: results grouped according to four different di-

mensions.

a time series. These measures are more likely to be subject to noise which may inhibit a

strong correlation with the emotional labels.

Joints

Three joints were used to derive the statistical features. In particular the vectors contain

position, speed, acceleration and jerk information for the right hand and elbow, as well as

posture information for the head. Figure 5.10(b) shows that by far the most informative

of the three joints is the hand, with 37% of the features selected as informative. Much

less additional information seems to come from the elbow (11%) and head (16%).

One reason for the low significance of the elbow might be its naturally large correlation

with the hand motions. It is also natural for the end-effector to exhibit the largest

amount of movement, which further favours the hand-based statistics over the elbow-based

values. The fact that head posture holds important information in everyday scenarios is

encouraging. The importance of head posture and head gestures for emotion recognition

has recently been reported by El Kaliouby and Robinson [KR04].
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Posture and dynamics

The features capture a range of static and dynamic information. Posture features, as

captured in terms of the joints’ position data are selected 18% of the time (see Fig-

ure 5.10(c)). More informative than the static information seem speed and acceleration

which are selected with a frequency of 31%. Importantly, speed and acceleration supply

features which are both highly informative in their own right. Both therefore seem to

supply complementing information for emotion recognition. A 14% selection rate means

that jerk-related information is nearly as important as static information.

Simple versus derived features

Figure 5.10(d) shows that a large proportion of 48% from the derived features (such as

joint phase difference and energy statistics) has been selected. This is in contrast to the

smaller fraction of 23% of simple dynamics-based features which the algorithm selected

as informative.

These numbers have to be interpreted with some care. First of all, there are significantly

less derived features to choose from. Secondly, while the simple features can be expected

to be highly inter-correlated from the way that they are defined, the derived features are

more diverse in nature. Both of these factors can explain why the derived features seem to

be favoured so significantly. Nevertheless, this graph clearly illustrates that deriving more

complex features from a number of simple measurements can add significant information

relevant to emotion recognition.

Activity

The above graphs and analyses give us useful insights of a general nature and grouped by

various factors of interest. What they do not capture, however, is how individual motion

structures influence which features are selected as informative. From Figure 5.8 we can

see that not the same features are informative for all action categories. Also, the total

number of features selected can vary between action categories.

One of the most striking action-specific observations is that in the second Knocking prim-

itive (“repeated knocking”), primitive-local features seem to carry a lot of information

relevant to emotion. As the only primitive, the second Knocking primitive draws more

emotion-specific information from primitive-local than from action-global features.

5.5 Emotion Recognition

We are now ready to look at the emotion recognition framework developed for this re-

search. The developed classifiers are feature vector-based and use the statistical and



122 CHAPTER 5. EMOTION RECOGNITION FROM ISOLATED MOTIONS

(a) (b)

Figure 5.11: SVMs define a maximum margin for (a) separated training data; (b) unseparated

training data. Support vectors are highlighted through an extra circle.

derived features φ discussed in the previous section. The high-dimensional feature vec-

tors supplied to the classifiers capture the motion dynamics for a whole action and for a

certain primitive. Based on these measurements, the classifier is expected to supply an

inferred emotion label for a whole action. It therefore needs to be able to integrate in-

formation from multiple primitives. Features will generally be unbiased before supplying

them to the learning and classification algorithms. However, in order to illustrate the ben-

efit of modelling individual differences I will also evaluate the classification performance

for biased feature vectors.

In the remainder of this section I am going to present in detail Support Vector Machines

as the classification technique used for this research. I will also present a detailed eval-

uation of the classification performance. The focus of the evaluation is the ability of

emotion classifiers to generalise beyond previously unseen subjects. I will also evaluate

how influential different aspects such as action category, choice of features, use of motion

bias and classifier complexity are with respect to emotion classification.

5.5.1 Discriminative classification using SVMs

I am using Support Vector Machines (SVMs) to classify motion features into emotional

classes. As opposed to other classification techniques such as Neural Networks, SVMs are

inherently linear classifiers. They define decision boundaries which take the form of lines

in 2D and hyperplanes in higher-dimensional feature spaces. In their primitive form SVMs

are binary classifiers defining a single decision boundary between two classes. Samples

on one side of the boundary are classified as class A, while samples on the other side are

associated with class B. I will describe how I generalise SVMs to more than two emotion

classes after covering the basic SVM principles below.

SVMs are trained on a number of labelled training samples. The training formalism is
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based on statistical learning theory and in contrast to previously seen generative methods

aims to be as discriminative as possible. The derived decision boundary is therefore

defined as the one which maximises the margin (separation) between the samples from

both classes [Vap00]. For a well-separated set of samples the margin is defined as the sum

of the distances between the decision boundary and the points closest to it from either class

(Figure 5.11(a)). These closest points, or support vectors, play an important role as they

provide all the evidence for defining the decision boundary. In most real-world datasets,

however, classes are not perfectly separated (Figure 5.11(b)). In this case samples on the

“wrong” side of the boundary also become support vectors, but their ability to influence

the decision surface is limited by a regularisation constant (normally denoted as C).

There is overwhelming evidence that the maximum-margin property of SVMs leads to an

excellent generalisation ability beyond the training examples [Bur98], even if the data is

not well-separated. As mentioned before, generalisation between subjects is one of my

main requirements for the developed classifier. As other popular classification techniques

tend to suffer from overfitting, especially when the dimensionality of the feature space is

high, SVMs provide a good solution for the classification problem at hand.

SVM kernels

SVMs seem very limited in their discriminatory power by the restriction to define linear

boundaries. Indeed, in Section 3.5 we saw that increasing the boundary complexity beyond

linear can improve the discriminatory power of a classifier considerably. In order to relax

the restriction of linearity, SVMs make use of a more general technique known as the

kernel method. While a set of points from different classes may not be linearly separable

in their original feature space, they might be linearly separable after projecting them to

some higher-dimensional space using a mapping function H . Formally, given two feature

vectors φ1 and φ2 in the original space, a kernel K is an expression for the dot product

of φ1 and φ2 in some higher-dimensional space, defined by H :

K(φ1,φ2) = H(φ1) ·H(φ1) (5.4)

SVM training and classification can be expressed solely in terms of dot-products between

data points. For example, finding the maximum margin decision boundary can be shown

to be equivalent to maximising the following function with sample vectors φ, class labels

e and optimisation parameters α [Bur98]:

LD ≡
∑

i

αi −
1

2

∑

i,j

αiαjeiejφi · φj (5.5)

In order to find a non-linear boundary, the dot-product in Equation 5.5 can be replaced

by the corresponding kernel function.
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LD ≡
∑

i

αi −
1

2

∑

i,j

αiαjeiejH(φi) ·H(φj) (5.6)

≡
∑

i

αi −
1

2

∑

i,j

αiαjeiejK(φi,φj) (5.7)

Note how the use of a kernel function K allows me to work in a higher-dimensional feature

space without needing to supply a concrete definition ofH . If SVMs use the kernel method

when finding a linear boundary, the derived boundaries will usually be non-linear when

projected back into the original feature space. In fact, the derived boundaries can be

almost arbitrarily complex. In this dissertation I am using two families of kernel functions

which give rise to well-studied boundaries:

K(φ1,φ2) = (φ1 · φ2 + 1)p (5.8)

K(φ1,φ2) = e−||φ1−φ2||2/2σ2

(5.9)

Equation 5.9 gives rise to a polynomial decision boundary of degree p. I will use boundaries

of various complexities with p varying between 1 and 4. Equation 5.9 results in complex

decision boundaries equivalent to a Gaussian Radial Basis Function (RBF)-based classifier

[Vap00, Bur98]. The resulting decision boundaries can be visualised as the isosurfaces of

Gaussian mixtures in the original feature space. While the SVM finds an optimal linear

decision boundary in the projected space, the parameters of the resulting boundaries in

feature space are affected in complex ways. Most notably, the number and centres of the

Gaussian RBFs, as well as a number of other parameters are determined automatically

through SVM learning, making the kernel method very powerful. Additionally, the derived

solutions are guaranteed to be globally optimal. Using the kernel method allows me to

evaluate the relative merits of decision boundaries of varying complexities in Section 5.5.2.

Feature normalisation

It is usually regarded as good practice to normalise features which would otherwise have

very different orders of magnitude. This is especially important because I am dealing with

position, speed, acceleration and jerk data. Differences between position and derivative

data can easily reach five orders of magnitude. Before subjecting data to SVMs, I therefore

first normalise each feature by subtracting the sample mean and dividing by the standard

deviation as computed over all samples from all subjects. Note that this normalisation

happens before subtracting any motion bias. I included this normalisation step explicitly

in the recognition pipeline pictured in Figures 5.2 & 5.6.
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Combined classification

Two levels of combination need to be achieved on top of the primitive binary SVMs:

1. emotion level: combine multiple binary SVMs to create a 4-emotion classifier

2. action level: combine classifications based on multiple primitives to obtain a classi-

fication for the whole action.

Multiple ways of generalising primitive binary SVMs to multi-class SVMs have been sug-

gested in the past [HL02]. While a generalisation of the SVM formalism to multiple classes

exist, these are more computationally complex and have not been as widely studied and

evaluated. Also, in most cases using simpler voting schemes performs as well or even

better in practice [HL02, CS02]. I therefore use a voting scheme based on binary SVMs,

each trained on two emotion classes at a time. In the combined classification task, each

binary SVM contributes a single vote for one class. The class with the most votes is

returned as the final classification result. This combination scheme also generalises well

to the second problem of combining multiple primitives.

More formally, I am training a family of SVMs Mm
e1,e2

. The classifier Mm
e1,e2

aims to find

the maximum margin between emotion classes e1 and e2 for motion primitives of type m.

e1 and e2 are drawn from a set of emotions E . Once these binary classifiers have been

trained, I classify a sequence of motion primitives m1 . . .mn into one of |E| emotions as

follows:

1. Set primitive index i = 1 and set the |E| elements of the vote vector votes to 0.

2. Apply all pairwise SVMs Mmi
e1,e2

. Add the votes for each emotion class e to votes(e).

3. If i < n then i = i+ 1, goto 2.

4. Classify the whole motion by the majority vote in votes, i.e. return emotion class

argmaxe votes(e). Resolve ties by choosing a class with maximum vote count at

random.

5.5.2 Experimental evaluation

In this section I will examine the performance of my emotion recognition framework in

detail. In Section 3.5 we noticed that emotional body expressions can be rather person-

specific. In order to produce meaningful quantitative results which can predict the per-

formance on new subjects, it is important to construct the experiments carefully. The

classification performance will be evaluated as recognition rates on a test set after the

classifiers have been trained on a separate training set. It is very common to obtain good
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results when data samples from the same subject are included in both training and test

sets. This allows the classifier to adjust to the individual expression of the subject which

improves recognition rates. I am, however, interested in estimating the performance of the

technique for a wider population, and beyond the 30 subjects contained in the Glasgow

corpus. It is therefore important only to test on subjects whose data has not been included

in the training set. In order to maximise the amount of evaluation data while minimising

the amount of bias, I am using 10-fold cross validation (10F-CV) for all experiments. At

any one time classifiers will be trained on data from 27 subjects and tested on the data

from the remaining 3 subjects. Results from 10 of these folds are combined to give the

final recognition rates. Folds are created such that each subject is included in the test set

exactly once.

Within each fold, SVM kernel parameters (regularisation parameter and RBF kernel

width) are optimised through a logarithmic grid search. In order to minimise the chance

for overfitting and sacrificing generalisation performance [Sch05b], the parameters are es-

timated through 3-fold cross validation using data from the 27 training subjects. That

is, for each of the evaluated parameter combinations, an SVM is trained on (3 groups

of) 18 subjects’ samples and evaluated on the remaining 9 subjects. The best performing

parameter combination is picked for the outer 10F-CV. All experiments were carried out

with custom Matlab code and an integration of Joachim’s SVMlight implementation of

binary SVMs [Joa99].

In order to enable a post-hoc statistical analysis of the results I am recording results in 2

ways:

1. Average recognition performance in the form of confusion matrices.

2. Recognition rates for each individual.

It is important to realise that this procedure only tests for the generalisation ability of the

SVM-based emotion classifiers. We saw in Figure 5.6 that motion bias is a factor which

is estimated in a separate adaptation step. In experiments 1 and 3 I am assuming that

the motion signature of a person was accurately estimated before attempting emotion

recognition and hence perform 10F-CV using unbiased features.

Experiment 1: Action categories and feature sets

Experiment 1 considers the recognition accuracy for the four different action categories in

the Glasgow corpus: Knocking , Throwing , Lifting , Walking . The goal is to find evidence

for potential differences in emotion recognition performance between different action cat-

egories. The feature vectors are extracted based on the motion primitives defined in

Section 4.3.2. I am also examining four different feature sets:
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1. action-global: a feature vector derived from the whole action

2. primitive-local: a number of feature vectors, each derived from a single primitives

only

3. global and local: a number of feature vectors derived from the motion primitives,

each concatenated with the global features for the whole action as shown in Fig-

ure 5.7.

4. subset-selected: a feature vector as defined through the optimal subsets found in

Section 5.4.2.

Note that for the latter two feature vector definitions, the global features are included

repeatedly in the combined feature vectors for different motion primitives of the same

action category. I am performing 10F-CV for all 4 × 4 motion category and feature

definition combinations. All features are unbiased before supplying them to SVM training

and classification.

Experiment 2: Classifier complexity

Experiment 2 considers the effect of classifier complexity on the recognition performance.

Our observations in Section 3.5 suggested that the complex feature spaces arising from

emotional body motions can benefit from classifiers that are able to define more complex

decision boundaries. SVMs allow me to experiment with different complexities easily

by changing the kernel function K. I am running 10F-CV on all upper-body motions

(Knocking , Throwing , Lifting) with the following kernel functions:

1. K(φ1,φ2) = φ1 · φ2 + 1 (linear)

2. K(φ1,φ2) = (φ1 · φ2 + 1)2 (quadratic polynomial)

3. K(φ1,φ2) = (φ1 · φ2 + 1)3 (cubic polynomial)

4. K(φ1,φ2) = (φ1 · φ2 + 1)4 (quartic polynomial)

5. K(φ1,φ2) = e−||φ1−φ2||2/2σ2
(RBF)

In the latter condition I need to set the RBF width parameter σ. As is common practice,

I am using a logarithmic grid search to find the value of σ̂ which maximises recognition

performance on a representative subset of the data. For my data σ̂ = 2.0. As the feature

vector I am using the set of unbiased action-global features.
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Experiment 3: Motion bias modelling

Experiment 3 looks in detail at the effect of motion bias modelling on emotion recognition.

In Section 5.3.1 we saw how the feature distributions are affected by the inclusion of motion

bias in the feature derivations. I will examine the influence of this factor on all actions in

the corpus in detail. I am performing 10F-CV in the following conditions:

1. biased features: no motion bias is subtracted from the features

2. predicted bias: motion bias as estimated from TDown motions is subtracted

3. unbiased features: motion bias as computed on all Knocking motions of a subject

is subtracted

The latter condition tests for the significance of the correlation effects found in Sec-

tion 5.3.2. In particular, we saw strong correlations between corresponding features (fea-

tures on the diagonal) between the TDown and Knocking motions. I therefore train a

linear regression model for each of the Knocking features based on the corresponding

TDown feature. During the 10F-CV the regression coefficients are estimated based on

the 27 subjects used for SVM training. The TDown features of the test subjects are then

used to predict their Knocking bias. During the classification the normalised features φ̂

are then computed using this estimated bias. Because the plots suggest that there might

be some non-Gaussian outliers, I am using iteratively reweighted least squares to robustly

estimate model coefficients [HW77]. I am only using the action-global features for this

experiment.

In addition, Appendix F gives a stand-alone evaluation of this regression-based bias pre-

diction approach in terms of root mean squared error between true and predicted bias.

It shows that prediction accuracy varies between different action categories. While it is

best for Knocking actions, prediction for Walking is particularly poor.

5.5.3 Results

In this section I am presenting the results for Experiments 1 – 3. All experiments give rise

to confusion matrices which are presented where appropriate. In particular, Tables 5.3, 5.3

and 5.6 report a confusion matrix for each experimental condition. Each confusion matrix

reports the classification performance for all emotions in the order neutral , happy , angry

and sad . Correct recognition rates are found on the diagonals while the remaining entries

represent the rates of incorrect classifications. I will also give detailed results arising from

the statistical significance analysis in Experiments 1 and 3. A detailed discussion and

analysis of the results is given in Section 5.6.
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Table 5.4: Significance levels for difference of mean recognition rates using action-global fea-

tures, primitive-local features, local and global features and an optimal feature subset. Statisti-

cally significant differences are highlighted in bold.

Knocking Throwing Lifting Walking

global vs. local 0.0020 0.5270 0.0001 -

global vs. global-local 0.0050 0.0020 0.9690 -

global vs. subset 0.0970 0.0001 0.0010 0.0001

local vs. global-local 0.0001 0.0320 0.0001 -

local vs. subset 0.0001 0.0030 0.0001 -

global-local vs. subset 0.4070 0.2330 0.0010 -

Experiment 1: Emotion recognition from different action categories

Table 5.3 shows the confusion matrices for all four action categories and four feature sets.

Note that the Walking cycles are not broken down further into primitives. There are

therefore no primitive-based results for Walking . We can observe a fairly large spread

of recognition rates between 66% for Throwing motions using global features to 86% for

Knocking motions using a full set of action-global and primitive-local features. The overall

recognition performance for Knocking and Walking samples is better than for Lifting and

Throwing samples.

It is also clear that the different feature sets give rise to different recognition rates. For

example for Throwing actions, we have an average recognition rate of 66% from primitive-

local features while a selected subset of features boosts the rate to 73%. In order to judge

which of the effects are statistically significant I am using the fact that the experiments

produced repeated measurements of recognition performance for the same subject under

different conditions.

A sound answer can be obtained from a repeated-measures analysis of variance. In fact,

this shows a highly significant effect of the feature subsets on the mean recognition perfor-

mance (p < 0.0001). To investigate the difference between individual conditions further,

I conducted a post-hoc analysis using repeated-measures t-tests testing for the difference

in sample means. Table 5.4 shows the pairwise significance values from the t-tests. Bold

entries highlight significant differences between conditions. The significance threshold was

adjusted to 0.05/19 = 0.0026 to account for multiple comparisons. After correction many

of the conditions are significantly different. In particular, I find that using local-only fea-

tures results in significantly worse recognition than using action-global features for both

Knocking and Lifting motions with a decrease in average recognition rates of 4% and

6% respectively. For all action categories combining action-global with primitive-local

features improves or at least preserves recognition accuracy. For Throwing actions the

improvement is significant although it is also consistent for Knocking actions. Further
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Table 5.5: Emotion recognition results by action and Kernel function K. Individual confusion

matrices list emotions in the order neutral, happy, angry, sad.

K Knocking Throwing Lifting

li
n
ea
r

0.78 0.15 0.00 0.07

0.17 0.75 0.07 0.01

0.01 0.10 0.89 0.00

0.08 0.01 0.00 0.91

average rate: 0.83

0.49 0.20 0.00 0.31

0.32 0.58 0.02 0.08

0.01 0.01 0.97 0.01

0.36 0.05 0.00 0.59

average rate: 0.66

0.75 0.13 0.01 0.11

0.16 0.70 0.13 0.01

0.01 0.16 0.83 0.00

0.20 0.01 0.00 0.79

average rate: 0.77

q
u
a
d
ra
ti
c

0.85 0.11 0.00 0.04

0.25 0.68 0.06 0.01

0.01 0.13 0.86 0.00

0.10 0.02 0.00 0.88

average rate: 0.82

0.59 0.18 0.00 0.23

0.36 0.55 0.03 0.06

0.01 0.03 0.95 0.01

0.36 0.09 0.00 0.55

average rate: 0.66

0.73 0.12 0.01 0.14

0.19 0.66 0.13 0.01

0.01 0.20 0.79 0.00

0.19 0.03 0.00 0.78

average rate: 0.74

c
u
b
ic

0.86 0.10 0.00 0.04

0.25 0.66 0.08 0.01

0.01 0.13 0.86 0.00

0.08 0.02 0.00 0.90

average rate: 0.82

0.63 0.16 0.00 0.20

0.42 0.48 0.03 0.07

0.02 0.03 0.95 0.00

0.41 0.06 0.00 0.53

average rate: 0.65

0.77 0.10 0.01 0.12

0.26 0.61 0.12 0.01

0.03 0.23 0.74 0.00

0.23 0.01 0.00 0.76

average rate: 0.72

q
u
a
rt
ic

0.85 0.11 0.00 0.04

0.28 0.64 0.07 0.01

0.01 0.13 0.85 0.01

0.07 0.03 0.00 0.90

average rate: 0.81

0.64 0.18 0.00 0.18

0.39 0.49 0.03 0.09

0.02 0.03 0.94 0.01

0.35 0.10 0.01 0.54

average rate: 0.65

0.78 0.11 0.01 0.11

0.28 0.58 0.13 0.02

0.02 0.23 0.75 0.00

0.23 0.02 0.01 0.74

average rate: 0.71

R
B
F

0.80 0.14 0.00 0.06

0.18 0.75 0.06 0.01

0.01 0.10 0.89 0.00

0.06 0.01 0.00 0.93

average rate: 0.84

0.62 0.16 0.00 0.22

0.26 0.64 0.04 0.07

0.00 0.04 0.95 0.01

0.36 0.05 0.00 0.58

average rate: 0.70

0.74 0.12 0.00 0.14

0.17 0.70 0.11 0.01

0.00 0.15 0.84 0.00

0.20 0.01 0.00 0.79

average rate: 0.77

selecting strongly correlated features from the global-local vectors improves mean recog-

nition rate in most cases. The improvement is significant for both Walking and Lifting

actions.

Experiment 2: Classifier complexity

The recognition rates for all motion categories and kernel types are given in Table 5.5.

In general we observe that the linear and RBF kernels perform the best. With increasing

polynomial complexity, the recognition rates do not improve across all motion categories.

Experiment 3: Motion bias modelling

Table 5.6 shows the confusion matrices for all four action categories and three treatments

of motion bias. It is immediately clear that not modelling individual motion bias (first
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Table 5.6: Emotion recognition results by action and treatment of motion bias. Individual

confusion matrices list emotions in the order neutral, happy, angry, sad.

biased bias-adapted unbiased

K
n
o
c
k
in
g

0.40 0.20 0.12 0.28

0.29 0.34 0.24 0.13

0.16 0.27 0.55 0.02

0.23 0.11 0.02 0.64

average rate: 0.48

0.59 0.21 0.04 0.16

0.36 0.36 0.23 0.05

0.04 0.26 0.70 0.00

0.12 0.05 0.00 0.83

average rate: 0.62

0.78 0.15 0.00 0.07

0.21 0.71 0.07 0.02

0.01 0.14 0.85 0.00

0.08 0.03 0.00 0.89

average rate: 0.81

T
h
ro
w
in
g

0.38 0.10 0.07 0.45

0.34 0.21 0.18 0.26

0.04 0.14 0.79 0.03

0.28 0.04 0.05 0.63

average rate: 0.51

0.51 0.19 0.02 0.28

0.30 0.37 0.16 0.17

0.04 0.13 0.80 0.03

0.32 0.12 0.03 0.53

average rate: 0.55

0.63 0.16 0.00 0.21

0.32 0.58 0.03 0.07

0.00 0.04 0.95 0.01

0.38 0.07 0.00 0.55

average rate: 0.68

L
if
ti
n
g

0.53 0.21 0.04 0.22

0.34 0.33 0.26 0.08

0.09 0.31 0.60 0.00

0.22 0.04 0.01 0.73

average rate: 0.54

0.56 0.17 0.04 0.22

0.27 0.40 0.27 0.06

0.06 0.32 0.60 0.01

0.19 0.02 0.00 0.79

average rate: 0.59

0.70 0.16 0.00 0.14

0.17 0.59 0.24 0.00

0.03 0.26 0.71 0.00

0.18 0.00 0.00 0.82

average rate: 0.70

W
a
lk
in
g

0.41 0.29 0.12 0.18

0.12 0.47 0.29 0.12

0.07 0.17 0.69 0.06

0.21 0.08 0.03 0.68

average rate: 0.56

0.37 0.33 0.12 0.18

0.11 0.48 0.29 0.12

0.07 0.17 0.70 0.06

0.24 0.06 0.03 0.67

average rate: 0.55

0.69 0.19 0.00 0.12

0.15 0.70 0.13 0.02

0.02 0.11 0.86 0.01

0.14 0.02 0.00 0.84

average rate: 0.77

Table 5.7: Significance levels for difference of mean recognition rates using biased features and

linear regression-based adapted features. The differences for the action Knocking are statistically

significant at p = 0.01.

Action p-value

Knocking 0.0001

Throwing 0.143

Lifting 0.079

Walking 0.168

column of results) is significantly worse than removing the motion bias completely (last

column). The interesting question is, however, to what extent predicting the motion bias

using regression can account for not computing the motion bias explicitly. This question

is answered with the results in the middle column. For Knocking motions, bias prediction

works particularly well, with mean recognition rate improved by 14%. Improvements for

Throwing and Lifting are still notable, but much smaller at 5% and 4% respectively. For

Walking the prediction of motion bias is not possible. This is expected, as the prediction

is based on the upper body action TDown whereas Walking is a lower-body action.
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In order to see whether the improvements are statistically significant, I am again using

the subject-wise recognition rates to perform a repeated-measures t-test between the

biased and adapted conditions. Table 5.7 shows the resulting significance values. We see

that for Knocking the difference is statistically significant. For Throwing and Lifting the

improvements are just outside the region of statistical significance.

5.6 Discussion

At a large scale, we notice that emotion recognition performance can vary between differ-

ent action categories. In Experiment 1 we see the best results for Knocking and Walking

motions. The worse recognition rates are observed for Throwing actions. A closer in-

spection of the confusion matrices reveals that the recognition rate for sad Throwing is

surprisingly low when compared to the other action categories. I believe that this mani-

fests the large complexity of interactions between the emotion and activity factors. Sad

motions usually appear slow and slack, which makes them easy to recognise in other ac-

tion contexts. In order to throw an object, however, the arm has to move fast enough

in order to physically throw an object. It is therefore very likely that the usually slack

motions are more constrained for sad Throwing , making them very similar to neutral

Throwing motions. The difference between the recognisability of different emotion classes

is a general pattern which emerges from Experiment 1. While angry and sad movements

tend to be recognised relatively well, there often is a higher confusion rate between neutral

and happy motions.

The recognition results for Knocking motions allow me to compare between human and

machine performance for recognising emotions from isolated everyday actions. In an

experiment Pollick et al . found that humans can distinguish between five emotions with

an accuracy of 59% for point-light and 71% for full video stimuli of human Knocking

motions [PPBS01]. These figures illustrate that even humans are far from perfect at

classifying emotion in everyday actions. My algorithm achieves a rate of between 83%

and 85% depending on exact feature definitions. In order to compare these numbers,

the figures need to be normalised to account for different correct recognition rates due to

chance. These normalised recognition rates are also known as efficiencies η [HS01] and

can be defined as

η =
achieved recognition rate

recognition rate expected by chance
(5.10)

Expressed in terms of recognition efficiency, humans achieve η̂pl = 2.95 and η̂v = 3.55 for

point-light and video stimuli respectively whereas my SVM-based approach can achieve

efficiencies 3.32 6 ηub 6 3.40. For biased and predicted-bias features the efficiencies are

ηb = 1.92 and ηpb = 2.48. For the best configuration my approach therefore approaches
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human capabilities from video data. This is significant as there is arguably much more

information in the video data than in the joint position data my algorithms have to work

with. It is also worth pointing out that all of the recognition rates are significantly above

the chance level of 25%. In particular, even ηb is much larger than 1, indicating that the

features I extract contain significant emotion information, even if the individual motion

bias is not removed before classification.

Modelling individual motion bias is, however, a significant contributor to accurate emotion

recognition. This stresses once more the importance of taking subject or user-specific

differences into consideration. My definition of a motion signature captures the differences

effectively and Experiment 3 confirms that the achieved recognition improvements are

significant. Given the relatively large improvement of average recognition performance

from 48% to 81% actively modelling user biases will almost certainly make a notable

difference in practice. As getting an accurate action-specific bias estimate can be difficult

in a real-world setup, I also investigated the prediction of action-specific bias from a set of

subject-specific calibration motions. Experiment 3 confirms that using linear regression

to predict the bias can bring a significant improvement. It can therefore be used in

practical settings to boost recognition performance during early-stage usage of a system.

If a real-world system is used for longer time periods by the same person, a more accurate

action-specific bias can be calculated based on actually observed occurrences of the action

by the user.

In Experiment 1 we saw that the choice of features has a significant impact on the emo-

tion recognition accuracy. Generally, it has been suggested that using uncorrelated sets

of features which are highly predictive of the emotion class will yield the best recognition

performance. This view was largely confirmed with the feature subsets selected to reflect

this heuristic outperforming other feature sets. Experiment 1 also showed, however, that

features selected in this way do not necessarily have to yield a statistically significant im-

provement over more redundant feature sets. This is due to the SVMs’ maximum margin

property which tends to counteract overfitting which is often seen in other classifiers —

a phenomenon known as the curse of dimensionality. We also found that although incor-

porating primitive-based features into the recognition framework can improve recognition

rates significantly, the average improvements seen are rather small. Whether this amount

of improvement is worth the extra computational effort of extracting motion primitives is

application-dependent. It is certainly worth bearing in mind that nearly as good results

can be achieved by simply looking at actions globally.

Interestingly, Experiment 2 found that one of the best kernels to use for this classification

problem are those of the simplest kind — linear. This suggests the following conclusions.

Similarly to the emotionally expressive motions I examined in Section 3.5 the feature

space has a rather simple structure which can be captured well by linear class boundaries.

In addition to the polynomial family of kernels I also investigated the use of RBF kernels

which in all cases performed as well or better than the polynomial kernels. However,
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a careful optimisation of kernel parameters was necessary in order to avoid overfitting

and optimise generalisation beyond the seen training examples. This procedure can be

time-consuming, especially since for RBF kernels two parameters need to be optimised

simultaneously. However, for Throwing motions the RBF kernels outperformed the poly-

nomial kernels by 4%.

Finally, the set of experiments has shown that even in highly controlled environments

where actions occur in isolation and subject to strict instructions, emotion recognition

cannot be expected to be 100% accurate. This has been confirmed by psychological

experiments analysing human ability to recognise emotions from body cues [PPBS01,

DTLM96, DSBB04]. We have seen that the display of emotions is a very fuzzy and

noisy process, further complicated by issues of personal differences and action context. I

have shown, however, that significant progress can be made by modelling these factors

explicitly. In the next chapter I will discuss another complicating factor and consider

actions occurring in natural sequences rather than perfectly isolated samples.





Chapter 6

Emotion recognition from sequential

motions

In the previous chapter I made one crucial assumption: we are dealing with isolated

actions. In this chapter I am going to present an approach for recognising emotions from

body motions which occur in connected sequences. In real-world environments people

perform actions in fluid succession, sometimes interleaving parts of actions such as getting

up and walking while drinking a cup of coffee. Any of these actions may individually reveal

some information about a person’s emotional state. In order to make maximum use of

the information contained in every single action, an emotion recognition system needs to

understand this sequential and parallel nature of actions.

I will build on the frameworks for action and emotion recognition as developed in Chap-

ters 4 and 5. At the heart of the chapter lies the development of a method for segmenting

parallel streams of action sequences into isolated actions. It is important to remember at

this point that the sequences in the Glasgow corpus all follow the same order of eight ac-

tions. I will nevertheless develop a method which could in principle analyse and segment

sequences of any number and order of actions. The developed method will, however,

support the notion of an action grammar such that prior knowledge of the transition

probabilities between actions can be taken into account during segmentation. Evaluation

of the segmentation quality on sequences other than complete or segments of the original

Glasgow sequences is beyond the scope of this dissertation.

Instead, the bulk of the evaluation will focus on emotion recognition. In a final experiment

I therefore evaluate how my emotion recognition technique copes with the sequential data.

As the final result of this work I combine recognition results from multiple actions to arrive

at a classification for a whole action sequence.
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6.1 The difference between isolated and sequential

data

Sequential actions are not merely isolated actions concatenated together. When humans

start executing actions in natural sequences they produce motions which are very different

from when they are instructed to perform motions in isolation. Algorithms for analysing

natural motions need to be able to cope with this difference. In many practical scenarios

requiring sequential pattern recognition it is relatively easy to obtain isolated examples

of the patterns to be distinguished. For example, in a speech recognition scenario with

limited vocabulary these might be isolated words [MR81a, MR81b, RL85], in a sign lan-

guage recognition task, these might be isolated signs [AG98, VM97]. In my case, they

are isolated samples of the actions to be recognised as presented in Chapter 4. Previous

work in the speech and gesture recognition communities shows, however, that training

data obtained from isolated samples can be significantly different from real-world sequen-

tial data [WH99, HH99]. I am going to discuss two kinds of problem encountered when

moving from isolated to sequential motions: coarticulation and more general change of

appearance.

6.1.1 Coarticulation

One of the first things one notices when looking at sequential actions is how fuzzy the

boundaries between actions become. The end of one action blends fluently into another.

Remember that in the Glasgow corpus subjects were asked to perform upper body actions

Knocking , Lifting and Throwing separated by Walking between different locations in the

capture area. In many cases upper body actions are started while the subject is still

walking. It is virtually impossible to observe a sequence of motions in a natural setting

where the person first fully stops at the location of action with arms by the side, then

performs the action, lowers the arms, and starts walking again. By splitting the body

into independent upper and lower body regions (see Section 4.2.2) my action models are

able to represent upper and lower body actions happening in parallel. It is insufficient,

however, to assume that sequential actions simply correspond to isolated actions occurring

in parallel. Action characteristics become different due to the preceding and following

actions — an effect known as coarticulation [HH99].

Coarticulation has been studied extensively for the case of human speech. A particular

issue investigated is the noticeable change that occurs when going from slow or temporally

isolated speech to fast and connected speech more commonly found in conversations. In

faster speech the pronunciation of speech segments is frequently altered based on surround-

ing speech segments [Gie92]. Sometimes whole segments are not pronounced altogether.

These processes are called assimilation and elision. They are among the major factors
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which make connected speech recognition difficult and they are also posing a challenge to

connected action recognition.

One of the classic explanations for these phenomena has been the “principle of least

effort”. The principle states that these effects are observed because the vocal apparatus

tends to do as little work as possible while still producing recognisable utterances. Many

patterns relating to human activity have been analysed in the light of the principle of least

effort [Zip49]. Coarticulation effects are clearly observable when comparing the isolated

and sequential motions in the Glasgow corpus. All of the Glasgow sequences contain a

Knocking action, followed by Walking to a table behind the subject and a subsequent

Throwing action of an object on the table. What tends to happen is that while the

subject is finishing the Knocking action he or she turns the body to start the Walking

towards the table. This means that the Knocking action is interleaved with a turn of the

body. While isolated Knocking actions always end with a complete lowering of the arms,

this does not occur in the sequential motions — the example of an elision. Before the

subject reaches the table, he or she will start extending the right hand to pick up the

object. This anticipatory movement is usually significantly longer than the arm lifting

segment during the isolated Throwing actions — an assimilation. I will account for these

effects by adjusting action model parameters according to observations from the action

sequences (Section 6.2.3)

6.1.2 Change of appearance

The coarticulation effects are clearly a source for change of appearance of actions. How-

ever, coarticulation may not be the only reason why the appearances of actions change.

Subjects were instructed very carefully in the isolated action recordings. For example,

this included instructions for the body orientation towards objects with which to interact.

This naturally suggests that there should be far less variation in isolated action samples.

Another source for variation in the appearance might come from the factor of direct repe-

tition. While many of the isolated samples were recorded as immediate repetitions of each

other, the sequential actions are interspersed with other actions. This, again, suggests

that isolated actions may appear more uniform than the sequential ones.

Before discussing the significance of this kind of change in appearance, I will present some

quantitative evidence. Here I focus on the amount of variation observed across different

subjects and repetitions of the same action. A very good set of descriptors capturing the

dynamics of the actions is the set of features used for emotion recognition (Section 5.2).

It comprises position, speed, acceleration and jerk as calculated from the trajectories of

different body joints. Based on those I compute the sample standard deviations σI,φ and

σC,φ over all isolated and connected action samples respectively. For every feature φ, σI,φ

and σC,φ denote how much φ varies across different instances of the same action. Finally,

I partition the set of features Φ into ΦC and ΦI such that
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Figure 6.1: Difference in variation between isolated and connected actions.

φ ∈ ΦC ⇔ σC,φ > σI,φ (6.1)

φ ∈ ΦI ⇔ σC,φ 6 σI,φ (6.2)

Figure 6.1 shows |ΦC | and |ΦI | for every action category. If the appearance of isolated and

connected cases was similar, each pair of bars would be of roughly equal height. We see,

however, that for both Knocking and especially Throwing actions, the variation is a much

larger in the sequential case. This confirms my informal observations which predicted less

uniform motions in the sequential case. The variation of Lifting motions, on the other

hand, appears similar in both conditions. Interestingly, Walking motions show a reverse

trend. Here samples show less variability in the sequential case. This can be explained

by the setup of the recordings. While isolated Walking was recorded as long stretches of

walking, including turns, examples of sequential Walking were very short, straight line

walks between two well-defined points. This clearly limited the amount of observable

variation.

Differences in appearance are relevant for two reasons. Firstly, my action models have

only been trained on isolated data and significant deviation from the observed variations

could lead to poorer action recognition performance. In Section 6.2.4 we will see that
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there is evidence for this and I am proposing to use bootstrapping in order to adjust

model parameters accordingly. Secondly, a change of appearance is likely to entail a

difference in the appearance of different emotions as well. In Section 6.3.2 we will see that

reusing the emotion models trained on isolated actions is still able to distinguish emotions

in sequential actions to some extent. However, adjusting for the change in appearance

can improve emotion recognition markedly.

6.2 Segmentation framework

In this section I describe in detail the methods I have used for segmenting sequences

of connected actions into isolated actions. The major requirement for a segmentation

framework is its reuse of individual action models as trained on isolated actions. This is

important for three reasons:

• Within the scope of this dissertation I would like to exploit the fact that I have

already developed a set of action models in Chapter 3. The segmentation method

should make use of this information as much as possible.

• Starting out with isolated models allows me to evaluate their performance for con-

nected actions directly. I will discuss how isolated models can be adapted to perform

better on connected actions. The gained insights are very illuminating for under-

standing the differences between emotions expressed through isolated and connected

actions.

• Being able to build a connected action recogniser from isolated action models would

make the construction of a real-world system easier. In particular, if a new action

category needs to be supported, it suffices to collect training data and train an

according model in isolation.

6.2.1 Problem statement

In Chapter 3 I developed a set of action models λc. I will call this full set of individual

models Λ = {λc}. The goal of segmentation can be formulated as follows. Given a se-

quence of observations v(1) . . .v(T ), find the most likely sequence of actions λ(1) . . . λ(L)

which best explains the observations. Here L denotes the total number of actions in the

sequence which is unknown in general. I furthermore need to record the action bound-

aries b(0) . . . b(L) such that λ(i) explains frames b(i − 1) . . . b(i). Typically b(0) = 1 and

b(L) = T .

At this point it is important to remember that the human body is modelled as two distinct

regions and that actions from the sets CU and CL can happen in parallel (see Section 4.2.2).
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I will therefore derive two independent sequences of actions λU(l) and λL(l) as well as

their respective boundaries.

6.2.2 Solution using Level Building

The segmentation problem can be solved efficiently using Level Building (LB) [MR81c].

It treats a sequence of L actions as a succession of L levels l = 1 . . . L. At each individual

level l the LB algorithm performs a Viterbi decoding in much the same way I used it to

find the most likely isolated action in Section 4.2.3. The Viterbi parse is calculated for

each model λc. Crucially, however, the Viterbi parse at level l + 1 can make use of the

probabilities calculated at level l in order to start λ(l) at the most likely frame. It also

stores the maximising Viterbi probability for every time frame t. In particular, there are

three outputs computed at every level l:

1. λ̂(l, t): the model which is most probable to have given rise to the observation v(t)

2. P̂ (l, t): the Viterbi probability with which λ̂(l, t) produced v(t)

3. B̂(l, t): the time frame at which λ̂(l, t) picked up from level l − 1.

B̂(l, t) represents the crux of the LB algorithm. It allows me to connect the independent

Viterbi parses at each level. Once λ̂(L, t) and B̂(L, t) have been computed, the most likely

sequence of actions can be found recursively as

b(l) =



















T for l = L

B̂(l + 1, b(l + 1))− 1 for 1 6 l < L

1 for l = 0

(6.3)

λ(l) = λ̂(l, b(l)) (6.4)

In order to allow the connection from level l − 1 to level l a simple change is necessary

to the standard Viterbi algorithm. In its normal form the Viterbi algorithm computes a

Dynamic Programming matrix V one time frame at a time by making use of results from

the previous time frame as shown in Figure 6.2 (a). In particular, matrix element V (i, t)

denotes

V (i, t) = max
ω(1)...ω(t−1)

P (v(1) . . . v(t− 1), ω(1) . . . ω(t− 1), v(t), ω(t) = ωi) (6.5)

That is, V (i, t) stores the probability of the most likely sequence of states up to time frame

t and ending in state ω(t) = ωi. Note that in order to account for models which have
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Figure 6.2: Dynamic programming computations for (a) standard Viterbi algorithm (b) Level

Building.

outputs of different dimensionality, my implementation makes use of normalised Viterbi

likelihoods as described in Section 4.2.3. The matrix is usually calculated recursively

through dynamic programming as

V (i, t+ 1) = max
j

aj,i × P (v(t)|i)× V (j, t) (6.6)

This calculation assumes that transitions can only occur between the hidden states of

a single HMM and not between multiple models themselves. However, the probabilities

P̂ (l, t) can be used in the standard Viterbi optimisation in order to include transitions

from the previous level. I accomplish this by taking P̂ (l, t) into consideration in the

recursive update of V (i, t). In particular, for levels l > 1 I calculate V (i, t) as

V (i, t+ 1) = max







maxj aj,i × P (v(t)|i)× V (j, t)

t(λ̂(l − 1, t), c, l)× P̂ (l − 1, t))
(6.7)

The crucial recursive steps are illustrated in Figure 6.2. We see that in the latter case

the algorithm can decide to maximise the Viterbi probability by either transitioning from

one of the internal states of the model or by transitioning from the most likely end state

of the previous level.

The computation makes use of an additional transition function t(i, j, l) which captures

the probability of transitioning from λi to λj at level l. t can be used to enforce the notion

of an action grammar. More importantly for us, the function can be used in order to only

allow a certain action sequence. Assume that, as in the case of the Glasgow corpus,

we have a weak labeling λ(1) . . . λ(L) for each sequence where each λ(i) ∈ Λ. Then a

transition function t̂ can be defined to enforce this order as follows:
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t̂(i, j, l) =







1 if λ(l − 1) = λi and λ(l) = λj

0 otherwise
(6.8)

I will use this method to compute the best possible segmentation achievable with LB.

Without any prior information, however, these probabilities will be uniform and indepen-

dent of l: t(i, j, l) = 1
|E|
. This will be the definition of t for the majority of conditions

during my evaluation.

Determining the optimal number of levels

Given the above formalism it is possible to find the optimal segmentation given a set of

candidate models Λ, an observation sequence v and the number of actions in the sequence

L. In order to segment the action sequences in the Glasgow corpus all this information

is available as I know which actions can appear in each sequence and that each sequence

has a length of L = 8. However, in a more general scenario, the number of levels is not

known and needs to be determined automatically. The simplest approach to solve this

problem is to pick the segmentation which has the largest likelihood. That is, I pick l̂

such that

l̂ = argmax
l

P̂ (l, T ) (6.9)

There is, however, a problem with this approach. HMMs are notoriously bad at modelling

the duration of actions [Rab02]. In particular, as the number of levels is increased, shorter

and shorter action snippets are inserted into the segmentation. Those snippets might only

be a few frames long and therefore far shorter than any of the observed training examples.

Because HMMs do not explicitly model duration, the Viterbi likelihood can still increase

if these short snippets are inserted, making it very difficult to pick the correct l̂.

In order to prevent this, I am introducing a regularisation term into the Viterbi opti-

misation which explicitly captures the duration of actions [RL85]. I am modelling the

duration of an action category c as a normally distributed random variable. The mean µc

and standard deviation σc are estimated from the isolated cases. When calculating P̂ (l, t)

and λ̂(l, t) I take the length of the action into consideration. It enters the calculation as

a multiplicative term Pc(dt)
γ where dt denotes the length of the action in frames and γ is

a constant weight which controls the importance assigned to the regularisation term. Pc

is defined as the normal density

Pc(dt) =
1√
2πσc

e
−

(dt−µc)
2

2σ2
c (6.10)

Figure 6.3 illustrates the effect of picking different values of γ on the values of P̂ (l, T )

for the Glasgow sequences. Remember that each sequence consists l = 8 component
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Figure 6.3: Distributions of l̂ after introducing a duration-based regularisation term. γ controls

the importance assigned to the duration constraint.



146 CHAPTER 6. EMOTION RECOGNITION FROM SEQUENTIAL MOTIONS

actions. For this experiment I chose 50 sequences from the corpus at random and ran

the LB algorithm for levels 1 6 l 6 12. In particular, the figure shows a distribution of

l̂ calculated from all of the sequences. We see that for very small γ, adding new levels

simply increases the overall P̂ (l, T ) and l̂ = 12. As γ is increased, the distribution slowly

moves away from the maximum. For γ = 100, 42 out of the 50 were judged correctly to

have l̂ = 8. As I increase γ further the weight given to the duration heuristic dominates

the calculations and in the limit any evidence arising from the observations themselves is

ignored. For large γ the distribution diverges and favours segmentations which best agree

with the action durations observed for the isolated cases. For the given scenario a value

of γ ≈ 100 strikes an optimal balance for taking into consideration the appearance and

duration constraints.

In order to illustrate the effectiveness of the approach for sequences containing different

numbers of actions I hand-segmented one of the sequences into its eight component ac-

tions. I then created eight new sequences where the ith sequence contains actions 1 to

i. On each I ran the LB algorithm with γ = 100 and L = 12. The resulting curves for

P̂ (l, T ) are shown in Figure 6.4. In all cases l̂ coincides with the correct number of actions

in the sequence.

6.2.3 Retargeting HMMs using bootstrapping

Reusing action models trained on isolated samples brings many advantages in practice.

I have shown how to build a connected action recogniser from the isolated models using

Level Building. However, models trained on isolated samples are not guaranteed to rep-

resent the same action in a sequential setting well. In Section 6.1 I discussed changes

in appearance between isolated and sequential motions. Another issue is the tendency

of HMMs to overfit to insufficiently varied training data. I demonstrated this effect in

Section 4.2.4. As I will show in my evaluation in Section 6.2.4 using the resulting models

in a Level Building algorithm can give suboptimal results.

In this section I describe and demonstrate an approach to training optimal models for

connected action recognition. It works by iteratively refining the models constructed from

isolated examples. One of the major observations is that actions are relatively long in

duration, on the order of hundreds of frames. Only a small fraction of those tend to be

affected by the surrounding actions and show coarticulation effects. For example, only

the initial arm lift during a Throwing action is prolonged by an anticipatory effect when

comparing the isolated to sequential cases. This leads me to the assumption that large

parts of the isolated models are in fact still representative of the actions as they appear

in a sequence. The models trained on isolated actions can therefore be seen as the first

in a series of approximations to the optimal sequential models.
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Figure 6.4: P̂ (l, T ) as computed for a number of sequences composed of 1 6 i 6 8 actions. In

each case the LB algorithm was run up to a maximum level of L = 12.



148 CHAPTER 6. EMOTION RECOGNITION FROM SEQUENTIAL MOTIONS

Figure 6.5: Bootstrapping loop used to improve action models.

Bootstrapping

My algorithm uses a bootstrapping approach to iteratively refine models. Bootstrapping

algorithms can be applied to an optimisation problem which aims to find an optimal

model Λ̂ based on a collection of data V. Ultimately, the goal is to apply Λ̂ to V in order

to extract some higher level information B̂. In order to apply bootstrapping one usually

supplies some initial information B0 believed to be extractable from V. Bootstrapping

then proceeds by searching V for evidence of B0. Based on the found patterns of evidence,

a bootstrapping algorithm then builds a first approximation model Λ1 which is capable of

extracting B0. In an iterative procedure Λ1 is then applied to V to find new information

B1. Figure 6.5 illustrates the iterative process of finding new models Λi+1 based on the

information Bi which then give rise to new information Bi+1.

In my case, I start with an initial model approximation Λ0 which is the set of HMMs

derived from isolated action samples. I also make use of some initial information which

states that all sequences respect a certain order of actions which was prescribed during

data recording. I call these sequences weakly labelled as the boundaries for the actions

are unknown. Instead, the exact segmentation boundaries comprise the information B̂ I

am seeking. In this case, the set of data V is simply the set of action sequences to be

segmented. I can find a first approximation B0 by applying Λ0 using Level Building to

find a first segmentation B0. I then need to update the action models accordingly. I do

this by retraining the HMMs based on the sequential actions which were segmented into

the correct order of actions (see Figure 6.5). This data is picked as training data to retrain

the HMMs in Λ0 to yield a new set of models Λ1. The procedure can be repeated to yield

new iterations of segmentations Bi based on the action models Λi.

6.2.4 Segmentation results

Upper and lower body actions

For the first part of the evaluation of my segmentation approach I will focus on the

ability of my framework to model actions of the upper and lower body happening in
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Figure 6.6: Segmentation result of an action sequence from the Glasgow corpus. Upper body

actions are shown in the line plot. For lower body actions the grey areas denote Walking actions

while white areas denote other .

parallel. This is facilitated by defining actions to be either an upper or lower body action

(see Section 4.2.2) and parsing a sequence of observations into two independent action

sequences. This is especially important when analysing connected actions as anticipatory

movements and other coarticulation effects mean that subjects start a new action while

still carrying out parts of the previous action.

Figure 6.6 shows the parse of a representative sequence picked from the Glasgow corpus.

The segmentation results for the upper and lower body were taken after two bootstrapping

iterations. The primary line shows the parse of the sequence into a number of upper body

actions. We see that the sequence has been parsed into the correct order. The background

of the figure represents the lower body actions. In particular, the grey areas denote frames

where a Walking action was detected. As expected, they largely correspond to the other

action of the upper body. However, in the transition phases we can see clear overlaps

between Walking and upper body actions such as Knocking , Lifting and Throwing . The

HMM-based segmentations therefore reflect my informal observations that subjects start

many upper body actions before having stopped walking. The framework is able to

successfully deal with upper and lower body actions appearing in parallel.

Segmentation quality

Even though the segmentation in Figure 6.6 reflects our expectations, it does not allow me

to evaluate the accuracy of the segmentations rigorously. A good segmentation accuracy

is, however, important for my emotion recognition framework. In order to evaluate the

segmentation quality achievable through Level Building, I first segmented the sequences



150 CHAPTER 6. EMOTION RECOGNITION FROM SEQUENTIAL MOTIONS

Table 6.1: Segmentation quality achieved at several iterations of bootstrapping for (a) unbiased

initialisation (30 subjects) (b) biased initialisation (3 subjects).

(a) Experiment 1 (b) Experiment 2

iteration ζ ᾱ σα

B0
1 0.65 0.90 0.11

B1
1 0.86 0.92 0.07

B2
1 0.85 0.91 0.07

B3
1 0.85 0.90 0.07

B4
1 0.78 0.89 0.08

B5
1 0.72 0.88 0.08

B∗

1 1.00 0.92 0.07

iteration ζ ᾱ σα

B0
2 0.45 0.87 0.09

B1
2 0.84 0.91 0.08

B2
2 0.87 0.91 0.07

B3
2 0.83 0.91 0.08

B∗

2 1.00 0.92 0.07

in the Glasgow corpus by hand. Figure 6.6 illustrates that defining unique segmentation

points in an action sequence by hand is difficult — especially because upper and lower

body actions can overlap. In order to make manual segmentation tractable, I decided not

to segment upper and lower body actions separately. I therefore only defined one sequence

of 7 action boundaries and used them for both the upper and lower body actions. This

inevitably leads to some inaccuracies. However, one of the main objectives of this sec-

tion is to evaluate the relative improvements in segmentation quality that are achievable

by iteratively updating HMM models through bootstrapping. Therefore, while absolute

segmentation quality is difficult to evaluate, relative improvements can be judged more

easily in this way.

To evaluate the quality of segmentation which can be achieved through bootstrapping I

conducted two series of experiments. Because the upper body actions play the predom-

inant role in the Glasgow corpus, the segmentation results quoted in this section were

obtained solely from the upper body action models. The actions under consideration are

hence CU = {Knocking , Throwing , Lifting , TUp, TDown, other}. The two experiments

differ in how Λ0 is initialised. In the first experiment I am training motion models using

all available isolated actions from all 30 subjects. This forms the initial model Λ0
1 for the

bootstrapping framework. In Section 4.2.4 we saw that a limited amount of training data

can lead to action models which do not generalise as well to samples from new subjects.

In order to test how the bootstrapping approach copes with this situation, experiment 2

trains Λ0
2 with data from only three of the subjects. A real-world scenario would probably

lie somewhere in between these extremes with a moderate amount of initial training data

and sequential data which could stem from previously unseen subjects.

Starting with the according Λ0 in each case I perform a number of bootstrapping iterations.

All results have been obtained with a fixed number of L = 8 levels and therefore without

the necessity to estimate the optimal number of levels l̂. Note, however, that I am making

no assumptions about the order in which actions occur in the sequence. The algorithm

therefore knows that there are eight actions in every sequence, but it does not know which
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actions they are and where the boundaries lie. Table 6.1 gives a number of segmentation

quality metrics computed after each iteration. In particular, I calculate ζ , the fraction of

sequences which are segmented into the correct sequence of actions:

ζ =
# samples segmented into the correct sequence of actions

# samples in the corpus
(6.11)

A more detailed metric looks at the frame-wise agreement between a bootstrapped seg-

mentation and the manual segmentation of the same sequence. The frame-wise agreement

α achieved for a sequences is calculated as

α =
# frames in agreement between manual and bootstrapped segmentation

# frames in the sample
(6.12)

Table 6.1 lists mean and standard deviation for α as calculated from all sequences.

We can see that the initial segmentation quality in experiment 2 is slightly worse than in

Experiment 1. This is especially apparent when we consider ζ . That is to be expected

as Λ0
2 is biased towards the few subjects which were used for training. The subsequent

bootstrapping iterations improve the segmentation quality. A peak is reached for Λ1
1

and Λ2
2 in Experiments 1 and 2 respectively. At that point the segmentation quality is

virtually the same in both experiments. Therefore bootstrapping is able to correct for a

biased initial training after only two iterations.

Experiment 1 also shows that the iterations do not converge to a maximum. They in-

crease at first and then decrease. This is because noisy samples are picked up during

the bootstrapping iterations in Bi which subsequently biases the HMM training. The

bootstrapping process therefore does not converge towards Λ̂, the optimal model which

gives rise to the optimal segmentation B̂. It is, however, clear that a local maximum is

reached within a few iterations of bootstrapping. These local maxima B1
1 and B2

2 are the

optimal segmentations obtained from experiments 1 and 2 respectively.

A natural question to ask at this point is: How close are these local maxima to the global

maximum B̂? In this sense I regard Bi as the optimal segmentation achievable through

LB. We notice that ζ tends to increase as α increases. In other words, as the number

of samples segmented into the correct sequence of actions increases, the total frame-

wise agreement also improves. An approximation for the best possible segmentation B̂
might therefore be thought of as the one segments the sequence into the correct order

of component actions. This would give rise to ζ = 1. With LB this can be achieved

by enforcing a known order of actions as defined through the transition function t̂(i, j, l)

(see Equation 6.8). The algorithm’s optimisation then reduces to finding the optimal

frames for segmentation. Using the models optimised through bootstrapping, I ran this

restricted version of Level Building to obtain segmentations B̂1 and B̂2 in experiments



152 CHAPTER 6. EMOTION RECOGNITION FROM SEQUENTIAL MOTIONS

1 and 2 respectively. Table 6.1 includes these results. We see that the segmentation

quality reaches an average frame-wise error rate of ᾱ = 0.08 at a standard deviation of

σα = 0.07. These figures are virtually the same for Experiments 1 and 2, confirming

the earlier observation that bootstrapping is relatively stable with respect to different

initial models Λ0. More importantly, the frame-wise segmentation quality achieved for B̂1

and B̂2 is also not much higher than those of the optimal segmentations I found without

enforcing a particular sequence of actions. This boosts my confidence that the locally

maximal segmentations are not very different from and hence good approximations for

the optimal segmentation B̂.

After discussing related work in the next section I will demonstrate how important good

action segmentation is for successful emotion recognition.

6.2.5 Related work

Segmenting and recognising connected actions faces many problems encountered in speech

recognition. For example, the speech community has developed a host of techniques to

deal with the problem of coarticulation. One of the most common techniques is to train

models on connected units of speech, called n-grams [MS99]. Those allow the models to

capture the interaction between neighbouring speech units. It is believed that training

models that take these coarticulation effects into account is key to producing good speech

recognition results [Rab02]. The complexity resulting from an explosion in the number of

models that need to be trained is often reduced by tying the majority of model parameters

together [MS99]. I decided to take a different approach and to adapt single action models.

The main intuition was that, as opposed to speech units, actions tend to be much longer

in duration and only small temporal portions of the motion signal tend to be affected

by coarticulation effects. Other authors previously found that coarticulation effects in

the gestural domain are better tackled using adaptation rather than training context-

dependent models [VM97].

Segmentation

The models are used in a Level Building algorithm to segment the samples into individual

actions. The idea of Level Building was first proposed by Rabiner and Levinson as a

solution to connected speech recognition [MR81c]. At the time they used it in connection

with Dynamic Time Warping (DTW), a concept I introduced in Section 4.3.2. The LB

algorithm had been designed to support language grammars. I used this ability to enforce

a known action sequence when computing the optimal segmentation B̂. Rabiner and

Levinson also extended the algorithm to HMMs and introduced the idea of modelling

word durations [RL85]. I used their ideas in order to find the optimal number of levels l̂.
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Level Building is not the only method which has been used in the past to segment continu-

ous signals such as speech into component units. One of the most popular methods today

is Token Passing [YRT89]. It was originally proposed by S.J. Young et al . as a conceptual

abstraction of some more specialised algorithms, including Level Building. Token Passing

can be implemented very efficiently and a very popular implementation exists in the HTK

Toolkit developed and maintained by the Cambridge University Engineering Department

[You93]. For my purposes Level Building proved sufficient and a use of Token Passing

would have lead to very similar results. For a real-world implementation, however, a To-

ken Passing algorithm would probably outperform a Level Building approach in terms of

computation time.

Action recognition and segmentation has also received attention from the computer vision

community. Gilbert et al . use corner-based spatio-temporal features and a sliding window

to localise actions both in space and time [GIB09, GIB09]. Their approach is less suitable

for segmenting complex actions of varying duration as the sliding window is fixed and

needs to roughly agree with the action duration. Oikonomopoulos et al . employ a similar

methodology based on a sliding window. They, however, use sliding windows of various

durations and pick the one which results in the strongest correlation between the observed

and learnt spatio-temporal features [OPP09]. This allows them to locate the beginning

and end frames of actions more accurately.

Other approaches to segmenting connected symbols can be found in the sketch and hand-

writing recognition communities. Hierarchical HMMs (HHMMs) were proposed by Fine

et al . [FST98]. They model complex multi-scale structures which often appear in natural

time series such as cursive handwriting, language or speech. HHMMs were demonstrated

to be especially effective at capturing large distance relationships between hidden states,

such as grammatical constraints between words in a sentence [FST98]. Two-level HHMMs

were also used for sketch interpretation [SD04]. Akin to a scene grammar, Simhon and

Dudek model the temporal and spatial relationships between scene objects such as water,

grass and clouds as a high level state graph. At the second level, each scene element is

in turn modeled by an HMM which produces visible outputs. This idea can be developed

into a more general graphical model. Sezgin et al . enhance the HHMMs to also model the

interactions between neighbouring objects [Sez06], not unlike the effects of coarticulation.

Model refinement

In order to optimise model parameters for connected actions from isolated models I used a

bootstrapping-based approach. Bootstrapping has been used as an optimisation technique

in many diverse domains. Recently, it has been very popular for data mining on large

collections of text [AG00, Bri99, LYG03]. The most relevant recent work is by Oats

et al . who use bootstrapping to detect different statistical sources for a set of time series

[OFC01]. They are assuming that the nature and number of sources are unknown, and
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Figure 6.7: Emotion recognition process for a sequence of actions. For every primitive a

number of votes are accumulated from binary SVMs (see Section 5.5.1).

therefore propose an unsupervised clustering solution. In contrast, I know which actions to

expect in the sequences. They noted that in order to achieve good clustering performance

it is important to start with good initial models Λ0 or structure information B0. They

obtain a good B0 by applying DTW to the sequences whereas I used the isolated action

models to get a good initial estimate for Λ0. Although Oats et al . used simple synthetic

data, they found that the clustering is not perfect and that a number of misclassifications

occur. Because they do not reclassify all samples at every iteration their algorithms still

converged but they were largely facing the same stability problems which I report.

Bootstrapping algorithms are usually susceptible to these kinds of instability if noisy

classifications enter the loop. In the field of information extraction, these problems are

sometimes overcome with a semi-supervised approaches where information is regularly

checked for spurious samples [Bri99]. Another promising approach comes from Lin et al .

who propose to use negative as well as positive examples in the model training step during

the bootstrap iterations [LYG03]. This creates competition between multiple categories

which tends to constrain divergence [TR02]. The divergence problem arises in my case

because the Baum-Welch optimisation trains HMMs purely generatively in the sense that

parameters are learned such that they best match the observations. In the past authors

have however proposed discriminative training methods for HMMs which could take into

consideration negative training examples [Col02] as well. This might enable a more stable

bootstrapping procedure as proposed by Lin et al .

6.3 Emotion recognition

Having found segmentations of various quality levels I now turn to the problem of recognis-

ing emotions from the segmented sequences. Much of the emotion classification approach
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will follow the procedure described for isolated actions in Section 5.5. In particular, I

will reuse the recognition pipeline as depicted in Figure 5.2 for each individual segmented

action. This will allow me to directly compare the results obtained for isolated and se-

quential actions.

One of the main goals of this section is to establish the extent to which emotion classifiers

developed for isolated motions can be applied to sequential actions. In the simplest form,

I could apply the classifiers as trained in Section 5.5 to the segmented actions directly. I

pointed out previously, however, that the appearance of actions changes from isolated to

sequential cases. This strongly suggests that emotion classifiers trained on the appearance

of isolated actions will give suboptimal results when applied to sequential actions. I will

therefore discuss and evaluate various methods for adapting the emotion classifiers to

sequential actions. Those adaptation methods have different levels of complexity and

cost associated with them. This kind of adaptation is analogous to adapting the isolated

action models to action sequences through bootstrapping which I have already showed to

lead to higher quality action segmentations.

As with the isolated cases, emotion classification is based on SVMs. I already described

how a simple voting scheme can use binary SVMs to distinguish between multiple emo-

tion classes in cases where exactly one feature vector per action is derived (action-global

features). I also showed how the scheme generalises to cases where I compute multiple

primitives for a single action (segment-local features). In this section I extend the voting

scheme once more and combine votes from multiple actions to arrive at a single emotion

label for a whole action sequence. As before, ties are resolved by assigning one of the

candidate classes randomly. Figure 6.7 illustrates the entire voting procedure in more

detail.

6.3.1 Experimental procedure

The primary goal of my evaluation is to establish how well the emotion recognition frame-

work developed for isolated motions performs on sequential motions. As opposed to my

evaluation in Chapter 5 my focus will therefore not be on the generalisation to new sub-

jects and cross-validation. Instead, I will regard the Glasgow corpus as split into two large

partitions: isolated training data and sequential testing data.

As for the isolated cases, my experimental evaluation focuses on a number of different

factors which can affect emotion recognition from action sequences. In order to get the

most comprehensive picture possible, I decided to adopt a factorial design. By investigat-

ing the factors in all possible combinations I get a rich set of classification results which

provide the basis for a thorough discussion at the end of this chapter. Below I am giving

a detailed description of the factors and according conditions analysed.

All experiments were carried out with custom Matlab implementations of LB and DTW
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Table 6.2: Segmentations and their associated quality metrics used for the evaluation of my

emotion recognition framework for actions sequences.

iteration ζ ᾱ σα

B−2 0.00 0.13 0.11

B−1 1.00 0.33 0.14

B0
2 0.45 0.87 0.09

B1
2 0.84 0.91 0.08

B2
2 0.87 0.91 0.07

B3
2 0.83 0.91 0.08

B̂2 1.00 0.92 0.07

B∗ 1.00 1.00 0.00

for primitive extraction, as well as Joachim’s SVMlight implementation of binary SVMs

[Joa99]. Feature subsets were selected using the implementation in the WEKA package

[HFH+09, Wek].

Factor 1: Action categories

In Section 5.5.3 we saw that SVM-based emotion recognition performance can vary be-

tween different action categories. As the action sequences all contain examples of Knock-

ing , Lifting , Throwing and Walking motions, I can perform a similar post-hoc analysis

to see which action categories provide the best grounds for distinguishing emotions in a

sequential setup. In particular, I can choose to combine individual SVM votes for a whole

sequence, but for each individual vote I will also record which action category it came

from. This allows me to draw up results similar to those for isolated actions.

Factor 2: Quality level of segmentation

One of the major problems I have focused on in this chapter is how to improve the

segmentation of connected actions. Good action recognition and segmentation clearly have

important applications in themselves. Within the scope of this dissertation, however, the

main interest lies in the effect that segmentation quality has on emotion classification.

I will use six segmentations produced in Section 6.2.3. Those are B0
2, B1

2, B2
2 and B3

1

computed through bootstrapping where B0
2 comes from the biased isolated motion models.

This allows me to study a dense sample of quality levels 0.87 6 ᾱ 6 0.91 achievable

through bootstrapping.

At the top end of segmentation quality, I also use B̂2 as obtained through Level Building

when I enforce the correct action order. Finally, the arguably best segmentation is the

segmentation obtained by hand, B∗.

In order to compare these results to more degenerate segmentations, I also introduce two

segmentations worse than B0
2. B−1 is a segmentation obtained by splitting each sequence
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into 8 regions of equal duration and assigning to them the emotion labels in the correct

order as they appear in the corpus. This produces a frame-wise segmentation quality of

ᾱ = 0.33 (see Table 6.2). Finally, as a worst-case I define B−2 similarly by splitting each

sequence into 8 regions and assigning each an action category at random. This produces

ᾱ = 0.13. Table 6.2 summarises all segmentations used in this experiment.

Factor 3: Level of adaptation to sequential actions

There are multiple ways in which the SVM-based classification pipeline can be adapted

from the isolated models. As a baseline, I can use the classifiers as trained on the isolated

actions. In particular, this classifier assumes that the global normalisation constants

and the person-specific bias are the same in both the isolated and sequential cases. It

furthermore uses the SVMs as trained on the isolated data. As argued before, this model

is not very likely to perform well because of the observed differences in appearance. I

would expect these models to still perform better than random guessing, however, as

appearances in sequences should still not change so extremely as to render the isolated

models entirely useless.

As a next step, I could hypothesise that the observed differences are due to a global shift

which changes the appearance of all actions equally when they appear in sequences. In

other words, I could recompute the global normalisation constants (mean and standard

deviation of features) based on the sequential data. This would mean replacing the global

constant inputs to the recognition pipeline introduced back in Figure 5.2. This condition

then assumes that all personal deviations are not affected and hence the personal bias

and emotion classifiers remain unchanged.

The third hypothesis postulates that in fact personal biases change as well when moving

from isolated to sequential motions. In other words, I propose that not only do ac-

tions appear differently for isolated and sequential cases, but for different individuals this

change happens independently. This means that I need to recompute global constants

and personal bias from the sequential actions in the recognition pipeline.

The final hypothesis postulates that isolated and sequential motions are entirely different.

In order to get good recognition performance I need to fully retrain the emotion classifier

SVMs on sequential training data. This level therefore re-estimates all the inputs to the

recognition pipeline and totally ignores the classifiers trained for isolated actions. In order

to estimate the recognition performance for this condition I use 10-fold cross validation

(10F-CV) as introduced for the classification of isolated motions. Otherwise I would test

on exactly the same samples that I trained the classifiers on which would positively bias

the results (see Section 5.5.2).

I am calling the derived classifiers M0, M1, M2 and M3 according to how many inputs

to the recognition pipeline have to be recomputed. Note that each recomputation of
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Figure 6.8: Emotion recognition rates for various levels of segmentation quality and levels of

adaptation. The results were obtained using (a) the action-global feature set; (b) the primitive-

local feature set.

pipeline inputs inflicts an increased cost as I require data labeled with increasingly rich

information from component actions to individuals and emotions.

Factor 4: Level of action modelling

In Section 4.3 I discussed the possibility of modelling actions at a finer scale of primitives

in order to capture subtleties of emotional expressions which might otherwise be missed.

We then saw evidence that using these primitive-local features can indeed improve the

recognition performance for isolated actions. I will return to this question in this section

and perform recognition using both action-global and primitive-local features. For the

latter case, I use the master descriptions as introduced in Section 4.3.2 to first align each

of the segmented actions and then propagate the previously defined primitive boundaries

to the new action sample.

6.3.2 Results

The experiment provided a wealth of data which I will present in various forms in this

section. Figure 6.8 provides a broad overview of the obtained recognition results. It

plots the combined recognition rates for whole sequences. Each line represents the change

in recognition rate as I improve the segmentation quality and keep the level of emotion

classifier adaptation constant. Because the classification algorithm resolves tied votes by

making a random choice I am also indicating the spread as obtained by multiple runs of

the experiment with error bars. A general trend we are already observing at this point
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Table 6.3: Emotion recognition results by action and for different experimental conditions.

Individual confusion matrices list emotions in the order neutral, happy, angry, sad.

(B0
2 ,M

0) (B2
2 ,M

2) (B∗,M3)

K
n
o
c
k
in
g

0.41 0.20 0.02 0.37

0.23 0.46 0.20 0.11

0.00 0.12 0.85 0.03

0.15 0.07 0.00 0.78

average rate: 0.62

0.68 0.18 0.02 0.12

0.20 0.69 0.09 0.02

0.00 0.12 0.88 0.00

0.27 0.02 0.00 0.71

average rate: 0.74

0.71 0.09 0.02 0.18

0.14 0.75 0.07 0.04

0.00 0.09 0.91 0.00

0.14 0.06 0.00 0.80

average rate: 0.79

T
h
ro
w
in
g

0.32 0.25 0.18 0.25

0.18 0.40 0.40 0.02

0.00 0.02 0.98 0.00

0.35 0.16 0.05 0.44

average rate: 0.54

0.61 0.09 0.04 0.26

0.32 0.59 0.02 0.06

0.00 0.09 0.91 0.00

0.32 0.05 0.02 0.61

average rate: 0.68

0.66 0.13 0.02 0.19

0.22 0.67 0.04 0.07

0.04 0.05 0.91 0.00

0.30 0.06 0.00 0.64

average rate: 0.72

L
if
ti
n
g

0.30 0.04 0.04 0.62

0.11 0.47 0.15 0.27

0.06 0.30 0.59 0.06

0.02 0.00 0.02 0.96

average rate: 0.58

0.73 0.11 0.04 0.12

0.08 0.66 0.20 0.06

0.00 0.09 0.91 0.00

0.28 0.00 0.02 0.70

average rate: 0.75

0.68 0.09 0.02 0.21

0.16 0.72 0.05 0.07

0.00 0.11 0.89 0.00

0.22 0.04 0.00 0.74

average rate: 0.76

W
a
lk
in
g

0.02 0.09 0.00 0.89

0.13 0.35 0.00 0.52

0.11 0.61 0.00 0.28

0.02 0.04 0.00 0.94

average rate: 0.33

0.84 0.09 0.05 0.02

0.29 0.51 0.20 0.00

0.02 0.38 0.60 0.00

0.36 0.00 0.00 0.64

average rate: 0.65

0.91 0.04 0.00 0.05

0.23 0.56 0.21 0.00

0.11 0.22 0.67 0.00

0.19 0.00 0.00 0.81

average rate: 0.74

C
o
m
b
in
ed

0.16 0.06 0.00 0.78

0.07 0.47 0.06 0.40

0.00 0.40 0.47 0.13

0.00 0.00 0.02 0.98

average rate: 0.51

0.88 0.03 0.03 0.06

0.12 0.74 0.11 0.03

0.00 0.14 0.86 0.00

0.23 0.01 0.00 0.76

average rate: 0.81

0.93 0.02 0.02 0.03

0.13 0.82 0.05 0.00

0.00 0.07 0.93 0.00

0.08 0.02 0.00 0.90

average rate: 0.89

is that with increasing adaptation and segmentation quality better recognition rates are

achieved. I will now consider the results with respect to the four factors outlined above.

Factor 1: Action categories

Table 6.3 gives the detailed recognition rates as achieved on the connected actions after

segmentation and split by action category. I also show the confusion matrices for combined

recognition of a whole sequence. In order to make the results comparable to the isolated

cases from Section 5.5.3 I give results for three conditions:

1. Largely unadapted models: segmentation B0
2 and M0

2. Well-adapted models: segmentation B2
2 and M2

3. Best possible models: segmentation B∗ and M3
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In all cases results are based on action-global features. Across the different conditions

none of the actions stands out as particularly easy or hard to analyse. One exception

is Walking in the first condition. With a recognition rate of 33% the isolated emotion

models for Walking are clearly unsuitable for analysing the connected cases. In fact, the

combined classifier for the whole sequence would be better off not to include the Walking

classifications as the combined result is considerably lower than the results for the other

three action categories. In the other two conditions, however, the combined classification

performance is consistently higher than the recognition rates for individual actions.

Factor 2: Quality level of segmentation

Figure 6.9 visualises the connection between the quality of segmentation ᾱ and resulting

emotion recognition rate. I am showing the results for both action-global and primitive-

local features. The four adaptation levels are plotted as separate graphs. In order to

evaluate the significance of the correlation I form the null-hypothesis that there is no

correlation between the variable ᾱ and the recognition rate. For each condition I am then

transforming the values using a Student’s t-distribution and calculate the probability p

that the null-hypothesis is true. The corresponding p-values are given in the plots. In

all cases there is a significant correlation between the recognition rates and ᾱ. The plots

confirm that the best recognition results are achieved with accurate action models which

allow me to segment the sequences well. Studying the p-values in more detail, we see that

the correlations tend to be more significant if using primitive-local features rather than

only using features derived from the actions globally.

Factor 3: Level of adaptation to sequential actions

The influence of increasing levels of adaptation on the recognition rate can be best seen

by looking back at Figure 6.8. Here different levels of adaptation are plotted as sepa-

rate lines. We see that with increasing levels of adaptation the recognition rates tend

to increase. Improvements can be very substantial. For example, the average gain in

recognition rate obtained over all segmentation levels by going from M0 to M2 is 26%

for action-global features and 18% if we work with primitive-local features. Note that I

managed to achieve this improvement without retraining the actual emotion classifiers.

The adaptation stemmed solely from appropriate preprocessing of the feature vectors.

This means that the models were only adapted to the changed appearance of actions,

disregarding any changes that might occur for individual emotions. If I am also will-

ing to retrain the emotion classifiers on connected actions labeled with emotions, I can

achieve improvements of 33% and 26% for action-global and primitive-local feature sets

respectively.
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Figure 6.9: Emotion recognition rates plotted against ᾱ. The results were obtained using (a)

the action-global feature set; (b) the primitive-local feature set.
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Figure 6.10: Comparison of emotion recognition rates using action-global and primitive-local

features.

Factor 4: Level of action modelling

Figure 6.10 shows a direct comparison of the recognition rates achieved for action-global

and segment-local feature sets. In Section 5.5.3 we saw that there is a small but significant

advantage in using segment-local features when analysing isolated motions. Figure 6.10

suggests that there is a notable difference between the two conditions only if the action

models are not adapted at all. In this case segment-local features afford an improvement

in recognition rate of 13%. In the other conditions, the segment-local features tend to

perform slightly better than the action-global features. The improvements, however, are

comparable to the margin of error introduced by the voting scheme.
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6.4 Discussion

The experiments give many insights into the problem at hand. In this section I am going

to highlight and discuss some of the more significant results. I will also relate the results

from this chapter back to the recognition results achieved on isolated actions (Chapter 5)

where appropriate.

The first thing to note is that at the low end of the scale the recognition rates can

approach chance level of 25%. In my experiment this is the case if I use the classifiers

without adaptation and use bad or random segmentations (B−1 and B−2). At the top

end of the scale recognition rate of 92% using 10F-CV are achievable if sequences are

segmented manually (B∗) and the emotion classifiers are trained on connected data.

One interesting condition to pick out at the lower end of the scale is what is achieved with

B−2 andM3. For action-global features this condition yields an average recognition rate of

47%. In fact, this number gives a good idea of how well emotion recognition would perform

if I assumed no knowledge about the influence of action patterns on the data. By splitting

the sequences into a number of sections and assigning an action category at random, I

am approximating a sliding window approach which ignores any knowledge about actions.

Looking back at Chapter 3, this was the approach that seemed to work well for continuous

expressive motions and for everyday activities it performs better than chance. However,

by adding more knowledge about the structure of actions I can nearly double this rate.

It is still important to take away from this experiment, however, that there seem to be

fundamental patterns to the expression of emotions in action-driven body movements.

These are strong enough to enable the detection of emotions significantly above chance

level without any knowledge about the underlying action patterns.

At the other extreme, we see that building an understanding of action patterns down

to a primitive level brings only marginal benefits to emotion recognition from connected

actions. A real benefit for motion primitives arises, however, when there is no data to

adapt the emotion classifiers (M0). In that condition the recognition rates are consider-

ably higher for primitive-local features. A further benefit of using primitive-local features

is that the resulting recognition results show less variation. In fact, for each of the con-

ditions the error bars indicating the variation across multiple iterations are smaller if we

primitive-local features are used. This is not surprising as more primitives result in more

votes to combine into a final classification. With more votes it is less likely to encounter

a tie between two or more emotion classes. Another tendency is that for primitive-local

features the correlation between segmentation quality and recognition rate is stronger as

exhibited by smaller p-values in Figure 6.9. Therefore, although the average recognition

rates for both cases are very similar, primitive-local features tend to produce more con-

sistent results with less associated uncertainty. Of course, this marginal benefit comes at

a relatively large cost of having to extract the primitives first.
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We can furthermore compare the results obtained in this section with the results from

the isolated cases (Section 5.5.3). In particular, the last column in Table 6.3 and the

first column in Table 5.3 give results for exactly the same experiment carried out on

isolated and hand-segmented connected actions respectively. In Section 5.5.3 we found

that emotional patterns were particularly pronounced and hence easier to discriminate for

isolated Knocking and Walking actions. When looking at the connected cases for these

actions, however, we find that their recognition rates decrease by around 5%. This does

not mean, however, that emotional patterns are generally less pronounced in connected

actions. Some action categories actually become easier to analyse. Throwing and Lifting

actions both show slight improvements in recognition rates as we move from isolated

to connected cases. Overall the performance across different actions tends to be more

uniform for connected actions.

Of course, what makes emotion recognition harder for connected actions is the fact that

we need a good segmentation and well-adapted emotion classifiers. In particular, this is

necessary to achieve the kinds of recognition rates considered for the comparison with

isolated actions above. There I assumed that I have perfectly segmented action sequences

labeled with emotions to train the emotion classifiers. In real-world situations this kind of

data may be hard to come by. Therefore large parts of this chapter have focused on ways to

improve action models and emotion classifiers obtained from training on isolated samples.

The experiments demonstrated that action models derived through bootstrapping on

weakly labeled sequences are able to improve segmentation quality which in turn leads to

better emotion recognition.

Starting from action and emotion models trained on isolated data the arguably larger

benefit, however, comes from adapting the emotion classifier to connected data. In par-

ticular, by far the single most significant improvement was achieved by recomputing the

individual motion bias in M2. While recomputing the global normalisation constants

(M1) can improve the results somewhat for global features, I really need to reconsider

the difference between individuals in order to see a real benefit. This suggests that the

change in appearance that we observe between isolated and connected actions cannot be

explained through a global adjustment alone. Instead the results suggest that individu-

als’ motion patterns change largely independently of each other. Once I have recomputed

the personal bias, retraining the classifiers (M3) provides a noticeable but much smaller

improvement.

In conclusion, it is interesting to remember that, unsurprisingly, the best results are

achieved by fully retraining the emotion classifiers using connected actions with the corre-

sponding emotion labels. However, it is possible to achieve a large part of the improvement

without the need for explicit emotion labels and by focussing on the individual differences

of expression between subjects. Together with the previous results in Section 5.5.3 this

confirms once more the importance of paying attention to differences between individuals

for emotion recognition from human body motions.
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Conclusions

Within the scope of the research described in this dissertation I implemented and evalu-

ated a number of approaches to analyse body movements and extract from them emotional

cues. In this chapter I will summarise the principle contributions I made. I will also sug-

gest how the results outlined in previous chapters can be applied and developed in future

work.

7.1 Contributions

There are a number of core contributions arising from this work. Most importantly,

this work has been the first thorough analysis of everyday actions for automatic emotion

recognition. I have developed a framework for analysing complex actions and subsequently

extract and classify emotion-communicating features. Secondly, I have focused on and

discussed in detail the role of personal differences in the expression of emotions through the

body. Equally importantly, I have developed methods for analysing naturally occurring

connected action sequences and analysed the difference to more commonly studied isolated

data. Finally, my framework makes use of algorithms which are in principle able to

classify action sequences into emotions in real time, thus making it suitable for real-time

applications.

I am going to discuss each of these contributions in more detail below.

7.1.1 Emotion recognition from everyday body motions

In this dissertation I have described the development and evaluation of an end-to-end sys-

tem for the analysis and emotion classification of everyday actions. Despite the increased

interest from psychologists there had not been any previous treatment of this problem

by the computing community. Within the scope of affective computing many researchers

had turned to the less ecologically valid archetypal emotion displays.
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By creating the Cambridge corpus of expressive motions, I could show that features

capturing the posture and motion dynamics of body joints are effective discriminators for

emotion recognition in both archetypal and more realistic non-archetypal scenarios. In

fact, many of the features I used were inspired by those used for the analysis of archetypal

emotion portrayals.

In contrast to many previous attempts to recognise emotions from expressive body mo-

tions, I advocated a more holistic approach to emotion recognition from the human body.

I described three factors which influence the appearance of human body motions in a

systematic way: action, personal motion bias and emotion. The effect of each of these

factors on the appearance of body movements had been studied in isolation in the past.

My work represents an attempt to reconcile their effects. I showed that there are complex

interactions between these factors and subsequently demonstrated the benefit of modelling

each of them explicitly in an emotion recognition pipeline. Based on the data I concluded

that a good understanding of each of the factors leads to significantly better emotion

recognition. For example, we saw that having a model for different action categories is

what makes emotion recognition from everyday motions possible. An even more detailed

model for actions at the level of primitives lead to more robust and for isolated actions

significantly better emotion recognition results.

I evaluated and validated my framework using the extensive Glasgow corpus of everyday

actions. This work has been the first to report extensive findings from the computational

analysis of this database. A subject count of 30 meant that the data showed significant

amounts of variation representative of a large population. I conducted comprehensive

experiments which allowed me to evaluate how well my algorithms would generalise to

motions from unseen subjects. I found that the performance of my framework approaches

the recognition rates of humans when confronted with videos of emotional knocking mo-

tions from the database.

7.1.2 Significance of personal differences

Guided by a holistic motion analysis framework I investigated the influence of individual

motion idiosyncrasies on the appearance of emotional body movements. Building on ideas

such as personality detection from gait patterns I demonstrated that in fact individual

motion bias is present in all of the four action categories recorded for the Glasgow corpus.

I described how to model this bias using a motion signature computed for each person

and action. Removing this motion bias before attempting to learn and classify motion

patterns into emotion classes makes a very significant difference — for all action categories

and for both isolated and connected actions.

From a practical standpoint, I described how this concept can be developed into a scheme

akin to speaker adaptation in connected speech recognition. I showed that the personal
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motion signatures for different action categories are in fact strongly correlated. I described

a regression-based adaptation scheme which exploits this correlation to predict the motion

bias for various actions from a single type of calibration motion. This scheme achieves

results significantly better than when not using any adaptation at all.

7.1.3 Sequential vs. isolated data

Many emotion recognition results from the body and other modalities have in the past

been reported on data samples recorded in isolation. In this dissertation I have shown,

however, that the appearance of actions changes as we move from isolated to connected

action sequences. This has been the first study to investigate these differences in appear-

ance between isolated and connected actions at a large scale. I found that the differences

in appearance are large enough to cause a significant degradation in the system’s ability to

discriminate between different emotions. These findings suggest that data collected under

very constrained laboratory conditions is not necessarily representative of data occurring

in more natural scenarios. I showed that systems trained on isolated data are therefore

unlikely to perform well on real-world connected action data without further adaptation.

My experiments also revealed, however, that the observed changes in appearance do not

mean that emotions in sequential actions are necessarily harder to detect — they only

look different. Retraining the emotion classifiers on connected data resulted in recognition

results comparable to isolated cases. I also demonstrated the benefit of combining classifi-

cation results from multiple actions in a sequence. Because training emotion classifiers on

labelled sequential data may be hard in practice, I also presented a number of adaptation

strategies which do not rely on fully retraining the emotion classifiers. I found that most

of the changes in appearance we see between isolated and connected actions are in fact

independent of emotions and only affect the statistics of different actions and individu-

als. Those changes can hence be accounted for by statistical analysis across actions and

individuals and without the need to consider emotions. This lead to the important result

that emotion classification can be adapted very well from isolated to connected samples

without a need for emotion-labelled sequence data.

As action sequences are one of the most common form of body motions in everyday

scenarios my results bring the community one step closer to achieving emotion recognition

in real-world scenarios.

7.1.4 Real-time applications

The emotion recognition pipeline as pictured in Figure 5.2 relies on five major processing

steps:

1. Action recognition (HMM-based Level Building)
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2. Primitive extraction (Dynamic Time Warping)

3. Feature extraction (vector arithmetic, differences, sums and square roots)

4. Global and bias normalisation (subtraction and division)

5. Emotion classification (SVMs)

The most computation-intensive steps are steps 1, 2 and 5. All of these steps rely on

well-established and understood algorithms whose performance has been optimised by a

generation of scientists. In particular, Level Building and Dynamic Time Warping were

used successfully in the past for the real-time analysis of time series including speech

[GR88, IN90, Vuc01], gesture and action recognition [CKKR08, DP93, ZRXL00]. In a

real-time scenario the LB and DTW algorithms as well as feature extraction need to

analyse the data at a rate of up to 100Hz whereas the final two steps can work on features

at a much lower data rate. Steps 1 and 2 would be the most likely bottlenecks of the

system. However, having been applied successfully in numerous real-time systems makes

them an ideal candidate for handling the high volumes of body motion data.

It would seem that emotion classification might be a complex and expensive operation as

I am trying to classify high-dimensional feature vectors using decision boundaries of po-

tentially high complexity. However, SVMs are extremely efficient in solving these kinds of

pattern classification problems. This is because complex boundaries are defined through

the kernel functions K(φ1,φ2) and classifications depend on the data only through the

computation of the kernel. In many cases this computation is very fast, including the

polynomial and RBF kernels used in this dissertation. Furthermore, the kernel function

only needs to be evaluated for the sample to be classified together with the support vectors.

A typical SVM can have as few as 30 support vectors (binary Knocking SVM distinguish-

ing angry and sad). This sparseness in representation leads to very few evaluations and

fast classification.

For a moderate number of emotion classes I would only require a small number of SVM

classifications per second. SVM-based emotion classification is therefore well-suited for

the real-time classification of my emotion feature vectors. SVMs have been used for real-

time application with good success in the past including for problems such as phoneme

classification [KKK02], facial expression recognition [MK03, KP05] and the detection of

cognitive distraction based on eye movements and other performance data [LRL07]. I

also presented a prototype for a system based on the real-time evaluation of the emotion

recognition pipeline described in this dissertation at the 26th CHI Conference in Florence

[BR08].
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Figure 7.1: Graphical model visualising the statistical dependencies as arrows between action

type (A), motion bias (B), emotion (E) and the observation vector (v); (a) models observations

as feature vectors in a static Bayesian Network, (b) introduces a calibration variable (C) and

models observations arising from a Dynamic Bayesian Network.

7.2 Future Work

7.2.1 Alternative models

This work has shown that the three factors of personal motion bias, action and emotion

have a significant impact on an observed motion signal. Although these factors are no-

tionally independent of each other, I decided to design my pipeline with the ultimate goal

of detecting emotions and trained discriminative classifiers to distinguish patterns aris-

ing from different emotion classes. One compelling alternative is to model the problem

generatively, as a Bayesian Network [Jen01]. In such a graphical model the independence

between the three factors would be made explicit (see Figure 7.1(a)). The three factors are

modeled as three independent random variables A (action), B (bias) and E (emotion).

This Bayesian view would emphasise the holistic nature of my approach as emotion is

simply one of a number of random variables affecting the state of the observation variable

v. Among other things, this would enable the recognition of emotions given knowledge

about the person (B and v are known) or, conversely, to the identification of individuals

if we know the emotion (E and v are known). Standard training algorithms developed

for these graph representations would enable the estimation of the underlying probabil-

ity distributions according to observed data, in much the same way I trained the action

models and emotion SVMs.

One of the powers of graphical models is that they can be extended easily to incorporate

additional dependencies. For example, user adaptation as presented in Section 5.3 could

be achieved by adding a new variable C representing a person’s calibration statistics

with the appropriate dependencies. Figure 7.1(b) shows such a model based on all the
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dependencies modelled in my pipeline. Figure 7.1(b) is also a Dynamic Bayesian Network

which allows action and emotion variables to change over time. A dynamic action variable

would allow the construction of state-based dynamical action models, just as I did with

the HMM action models described in Section 4.2. A dynamic emotion variable would

allow a more sophisticated model of emotions developing over time. This relaxes the

current implicit assumption that there is a single emotion giving rise to an observation

sequence. In fact, the dotted lines in the figure indicate that I would be able to model

even more complex relationships between actions and emotions over time. Eventually,

this could enable knowledge such as “Going for a walk usually makes people happier”

to be modeled explicitly. This power comes from a holistic view of peoples’ movements

and may be particularly well represented using a Bayesian Network. Pantic et al . also

suggested that an affect recognition framework built on Graphical Models would enable

a more systematic modelling of complicating factors such as personality, context and

cultural biases [PSCH05].

Even if the pipeline as pictured in Figure 5.6 is retained, a number of different modelling

techniques could be explored in the future. Particularly interesting candidates are briefly

discussed below.

User adaptation based on calibration motions

User adaptation as formulated in Section 5.3.2 is very similar to, and has indeed been

inspired by, the problem of speaker adaptation in speech recognition. The speech com-

munity has developed a wealth of techniques to adapt speaker models ranging from max-

imum likelihood linear regression [LW95] to speaker space methods such as eigenvoices

[KJNN00]. My regression-based scheme is relatively simple considering that this problem

has sparked several PhD theses [Leg95, Ngu02]. For an emotion recognition system based

on my approach to be usable in practice user adaptation is clearly crucial. In Section 5.5.3

we saw that calculating the true motion bias still results in a significantly better recog-

nition performance than using the regression-based adaptation scheme. Improving user

adaptation for human actions could therefore be a very fruitful goal for the future. The

related research in speech recognition means that there is no shortage of inspiration.

Parsing action sequences

In Section 6.2.3 I presented a bootstrapping-based technique for retraining isolated ac-

tion models on connected samples. We saw that the retrained models afforded a better

emotion recognition performance. The best performance was still achieved, however, for

hand-segmented sequences. Revisiting the problem of adapting the action models to the

appearance of connected actions could lead to even better sequence parses. As we have

seen, this is likely to give rise to better emotion recognition.
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Thinking about a real-world implementation of the technology presented in this disserta-

tion, it would also be interesting to adapt HTK’s token passing algorithm to the problem

of connected action recognition. I would be able to make use of a robustly developed

and maintained toolkit used and tested by a large number of the speech recognition re-

searchers.

7.2.2 Naturalistic data

Based on my experimental results I concluded that data collected under very constrained

laboratory conditions is not necessarily representative of data occurring in more natural

scenarios. Of course, while I argued that the connected action data used for my experi-

ments is more ecologically valid than data used in many others studies to date, it was only

recorded under laboratory conditions as well. Returning to Picard’s criteria introduced

back in Section 2.4.1, the recording procedure could be made more ecologically valid in

several ways, including

• acquiring spontaneous rather than posed data: Although the scenario approach helps

to elicit an emotion naturally, the subjects still explicitly act the emotion they are

asked to portray.

• the use of hidden recording equipment: Optical motion capture technology currently

requires subjects to wear light tracking devices and possibly special clothing. This

may have an effect on the expressiveness and appearance of actions. Marker-less

motion capture is promising to enable hidden recordings of body motions in the

near future (see below).

• presenting the recording motivation as other-purpose: In order to produce natural

displays, subjects would not know that the focus of the experiment is their emotional

body expressions.

Many researchers have in the past examined the differences between posed and sponta-

neous emotional expressions in the face. There is strong evidence that posed expressions

have a different appearance from spontaneous ones [SML86, SKA+06, VPAC06]. A num-

ber of studies report similar results for vocal expressions [ZLH+79, SKB06]. Although

no reports exist to date, it is very likely that similar results will arise for bodily expres-

sions of emotions. It is furthermore likely that subjects’ expressiveness will reduce if the

recording setup is hidden and other-purpose. A significant reduction in the expressiveness

of subjects would not just alter the patterns of emotional expressions, but possibly make

them less distinct and therefore more challenging to distinguish using statistical pattern

recognition techniques. All of these are interesting challenges for future work.
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Many emotion researchers ultimately aim for detecting emotions in fully naturalistic set-

tings in which the subject is unaware of the machine’s analysis. An alternative view which

is beginning to be discussed by the community is that of intentional affect [AMR09]. The

idea is to make the user explicitly aware that a machine is analysing his or her body

cues and hence create a kind of dialogue between the user’s emotional behaviour and the

machine’s appropriate responses. This kind of situation is much more similar to person-

person communication. The kinds of emotional signals that get sent during these kinds

of interactions may be more intentional, very different and potentially easier to analyse

by statistical algorithms. The concept of Levels of Intentionality may be useful in this

context [Lew90]: Is the subject or user trying to actively communicate an emotion or

not? While the more traditional view might argue for detecting first level intentionality

(“I feel sad”) with reflex-like motor actions, this view would make use of higher level

intentionality (“I want you to believe that I feel sad”) which is necessarily interactive in

nature.

7.2.3 Marker-less data acquisition

One of the reasons why the analysis of body motions has seen a surge in the recent past

is the increasing availability of recording equipment which allows accurate and straight-

forward tracking of 3D body joints. While this technology makes data acquisition at

the scale of the Glasgow corpus feasible, the recording procedures are still relatively

disruptive for subjects. In most cases subjects need to wear special markers or light

emitters. Sometimes additional, heavier modules need to be worn which control active

emitters. In other cases subjects need to wear special clothing to facilitate the placement

of sensors such as accelerometers and gyroscopes. An additional constraint is that many

setups only allow tracking bodies in relatively small spaces. All of these constraints mean

that ecologically valid recordings of body motions are very hard to come by. At the same

time, there is much active research trying to relax these constraints. Incorporating these

new tracking technologies will be an interesting challenge.

In particular, there has been an increasing interest around the challenge of marker-less

body tracking. The first commercial systems which facilitate the tracking of 3D body data

solely based on a number of standard DV cameras are now becoming available. Recent

progress in computer vision research suggests that real-time body pose estimation is be-

coming a real possibility [MOB06, BSB+07]. Of course, marker-based systems will always

be likely to give more accurate tracking results. However, early results on the recogni-

tion of emotions from relatively impoverished 2D body silhouettes have been encouraging

[CVC07, CBCV07]. It will therefore be interesting to see in the future to what extent

emotion recognition from more natural body motions will suffer from the inaccuracies

introduced by marker-less tracking technologies.
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7.2.4 Multimodal analysis

Human behaviour is extremely complex and body motions are only one way in which

people communicate emotions and interpersonal stance. Indeed, for a long time the

body was considered an inferior source of information for human emotions. This lead

to early work on detecting emotions from facial movements, speech and physiological

signals. Many approaches to analyse these channels independently now exist. Fusing

the different sources of information is one of the most interesting challenges the field of

affective computing faces [PR03, SCGH05]. Multimodal systems will need to deal with

noisy, inconsistent and missing information from various channels. At the same time, in

many situations cues from the body will be the easiest, most reliable and least intrusive to

capture. This means that accurate emotion inference from human body motion is likely

to play an important role in real-world emotion-aware systems in the future.





Appendix A

Rating results for emotional music

pieces

In order to confirm that the 9 music pieces selected for the recording of expressive body

motions convey the intended emotions I carried out two experiments. Each experiment

was completed by with five independent subjects.

Experiment 1

In the first experiment, I played each music piece once in randomised order and asked

subjects to pick the one emotion which they most strongly associated with the piece. The

choice was forced out of the following five emotions: neutral , happy , sad , afraid , worried .

Some subjects were unsure about the difference between afraid and worried . I illustrated

the difference with eliciting situations. A person is more likely to feel afraid of a physical

threat, the response is likely to be relatively short-lived but more intense. A worried

response is often elicited by a more abstract problem such as a troubling situation of a

family member. The emotion can be longer-lasting.

Table A.1 shows the results for this experiment. For most pieces the judges agree with the

label. The most problematic piece from this experiment is (Afraid 1). In this experiment

it was predominantly classified as worried . According to the judges it conveys a predom-

inantly worried emotion. It would therefore probably have been a better choice for the

class worried . It is important to note, however, that the two emotions which contributed

most confusion in this experiment were afraid and worried . These two emotions are very

similar to each other. Confusions are hence expected for two reasons:

1. Subjects’ personal interpretations and associations are more likely to affect the

agreement for emotions which are very similar.
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Table A.1: 5-way forced choice rating results of the 9 emotional music pieces. Ratings were

done by 5 subjects. The second column lists the rates at which subjects agreed with the pieces’

labels. The remaining columns give detailed rating results. Disagreements are highlighted in

bold.

piece agreement neutral happy sad afraid worried

Afraid 1 0.20 0.00 0.00 0.20 0.20 0.60

Happy 1 0.80 0.00 0.80 0.20 0.00 0.00

Sad 2 0.80 0.00 0.00 0.80 0.00 0.20

Afraid 2 1.00 0.00 0.00 0.00 1.00 0.00

Worried 2 0.60 0.20 0.00 0.00 0.20 0.60

Neutral 1.00 1.00 0.00 0.00 0.00 0.00

Happy 2 1.00 0.00 1.00 0.00 0.00 0.00

Worried 1 0.80 0.00 0.00 0.20 0.00 0.80

Sad 1 1.00 0.00 0.00 1.00 0.00 0.00

2. Music pieces are very likely to evoke mixtures of emotions. If the emotions in

question are very similar, music pieces which evoke one are likely to carry elements

which also evoke the other, similar emotion.

With this in mind the rates of agreement for Afraid 2 and Worried 1 are very good

indeed.

Experiment 2

During my data collection the music was always used in connection with a suggested

emotion label. Experiment 1 is therefore arguably not as representative for the use of the

music. In a second experiment I chose a set up which is much closer to the actual use of

the music.

In this experiment I emulated the use of explicit emotion labels. The music is used to elicit

emotional body motions and it is therefore most important that the suggested emotion

label is in agreement with the music. In particular, music pieces might express a mix of

emotions such as afraid and worried at the same time. For every piece I therefore asked

subjects explicitly whether they thought it evoked the intended emotion. For example,

for piece Afraid 1 I asked I gave them a yes-no choice of whether they thought the piece

evoked afraid . In order to avoid a bias towards marking yes for every sample, I also

included 9 random entries, for example asking whether they thought that Sad 1 evoked

afraid .

The results are presented in Table A.2. As expected, the agreement is a lot higher than for

Experiment 1. The only disagreements occur for Worried 2 and Afraid 1. Both disagree-
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Table A.2: 2-way forced choice rating results of the 9 emotional music pieces. 5 subjects were

asked whether they agreed with the labels given to each music piece.

piece agreement

Happy 1 1.00

Sad 1 1.00

Happy 2 1.00

Worried 2 0.80

Worried 1 1.00

Afraid 1 0.80

Neutral 1.00

Sad 2 1.00

Afraid 2 1.00

ments come from the same subject and the same subject exhibited a lot of disagreements

in Experiment 1 (5/9). I did not follow up on the reasons for this, but it might be justified

to treat this subject as an outlier.

In conclusion, all music pieces showed a high degree of agreement in Experiment 2, which

is the most representative for the use of the music. As the only exception, it might be

worth reconsidering the label or use of Afraid 1 in future work as it drew by far the most

disagreement among the raters.
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Appendix B

Subject instructions

The following instructions were given to all subjects for the recording of the Cambridge

corpus of expressive body movements.

This experiment is aimed at recording emotional body motions. During the

session you are going to wear a motion capture jacket and a hat, so we can

track your body as you are moving in the capture area. Before the capture

starts, please ensure that you feel comfortable wearing the special clothing.

Once you have been calibrated to the system, please do not move the hat or

markers on the jacket as this will severely impair the data recorded. While

moving during the capture session, please try to stay inside the capture area

outlined on the floor.

The session protocol

The goal of the session is to invoke as strongly emotional body motions from

you as possible. In order to help you feel comfortable expressing emotions

during the session, we are providing the following environment:

• Clear labels will be given on the screen as to which emotion you should

express at any one time.

• You will hear music with the corresponding emotional qualities. This will

assist you to put yourself into the particular mood.

• The room will not be accessed by other people (including the experi-

menter) during the session.

Please try to exhibit body motions throughout the whole session, as your

motions will be recorded throughout, not just when the emotional stimuli

change. You are free to express the emotion in any way you want. It might
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help if you try and put yourself into an emotional situation in accordance to

the music (for example a situation in your life in which you felt very sad or

worried). Try and be as expressive as possible.

The recording session will last approximately 20 minutes. The sequence of

emotions will be as follows:

Neutral (30s) Neutral (50s) Neutral (40s) Neutral (40s)

Happiness (30s) Worry (50s) Fear (40s) Sadness (40s)

Worry (30s) Happiness (50s) Happiness (40s) Worry (40s)

Sadness (30s) Fear (50s) Worry (40s) Fear (40s)

Fear (30s) Sadness (50s) Sadness (40s) Happiness (40s)

Neutral (30s)

You will be asked to fill in a short questionnaire at the end of the session.

Thank you for participating.



Appendix C

Evaluation of clustering-based

primitives

In addition to the evaluation carried out in Section 4.3.1, I carried out the following

statistical evaluation based on the parses of all 1200 Knocking motions. I recorded all

transitions between primitives, the durations of primitives and the number of occurrences

of each primitive type per action sample. In order to capture transitions to and from the

start and end states, I added Primitive 0 (start) and 5 (end).

Given this set of six primitives, and their assumed semantic meanings I am considering

the following 8 transitions as potentially correct:

0-1, 1-2, 1-3, 2-3, 2-4, 3-2, 3-4, 4-5.

All other transitions are unexpected and problematic. Table C.1 shows the transition

counts between primitives. Problematic transitions are highlighted in bold. The fraction

of problematic transitions is 611/8700 = 0.07 . The biggest problem seems to come from

the fact that Primitive 3 gets inserted just before the end (large transition count 3-5),

most probably after Primitive 4 (large transition count 4-3). These kinds of errors can

be avoided with the alignment-based method. This problem is also an indication for the

existence of another kind of primitive which sometimes exists at the end of a Knocking

action. This smaller-scale movement could be distinguished from the current Primitive 3

with the cluster-based method if primitives were defined in terms of absolute as well as

relative joint trajectories.

Figures C.1 (left) visualises the distributions of primitive duration relative to the duration

of the whole action. In this figure I am also including the durations of periods which were

not assigned to any primitive. We can see that the vast majority of these unassigned

periods are very short. This indicates that for Knocking motions the threshold-based

segmentation method is relatively effective. Nevertheless, the long tail of the distribution

is one motivation for a more top-down approach such as my alignment-based method.
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Figure C.1: Evaluation statistics for clustering-based primitives: Left: distributions of prim-

itive duration relative to action duration; Right: distributions of the number of occurrences of

each primitive type per action sample. The figure includes unassigned regions as a special kind

of primitive present in the parses. Each histogram also lists the distribution’s average (median)

and spread (interquartile range).
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Table C.1: Primitive transition statistics, including two artificial primitives 0 (start) and 5

(end). Problematic transitions with counts other than zero are highlighted in bold.

to Primitive

0 1 2 3 4 5

fr
o
m

P
ri
m
it
iv
e 0 0 1120 5 87 0 0

1 0 0 507 701 2 0

2 0 4 0 1792 618 99

3 0 86 1968 0 455 185

4 0 0 33 114 0 928

5 0 0 0 0 0 0

Figure C.1 (right) shows the distributions of the number of occurrences of each primitive

type per action sample. Again, I am including unassigned periods in the figure. As

expected, Primitives 1 and 4 usually occur once, while Primitives 3 and 4 occur multiple

times – on average twice but often also three times. The spread in Primitives 2 and 3

can be partly attributed to the fact that they are difficult to isolate using energy minima

only. There is an average of two unassigned regions per sample. This is not unexpected

as the way my extraction algorithm works tends to leave the first and last frames of each

sequence unassigned (see Figure 4.5).
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Appendix D

Evaluation of alignment-based

primitives

The top-down approach followed for the alignment-based definition of motion primitives

means that the transitions between primitives necessarily follow the expected order. One

way in which I can statistically analyse whether the primitive extraction is robust is

by considering the durations of the extracted segments. Because each primitive should

represent one well-defined part of the action, each primitive’s duration distribution should

have a very clear average with a reasonably low spread. Furthermore, a large number of

outliers would indicate that the extraction algorithm is not very robust.

Figure D.1 visualises the distributions of primitive duration relative to the duration of

the whole action. All distributions are well-defined with small spread. Some primitives

such as Knocking- Primitive 2 and Throwing- Primitive 2 have a relatively long tail which

could indicate some problems. However, because the number of affected samples is very

small and this dissertation is primarily concerned with the detection of emotions, a further

analysis is left as future work.
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Figure D.1: Duration distributions for alignment-based primitives relative to action durations.

Each histogram also lists the distribution’s average (median) and spread (interquartile range).
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Detailed feature analysis results

E.1 Feature lists

Below is the list of features selected as informative in Section 5.4.2, Figure 5.8. These fea-

tures were picked from vectors containing both primitive-local and action-global features.

Knocking

Primitive 1 :

median wrist height (primitive-local) minimum elbow accel (action-global)

maximum elbow speed (primitive-local) std dev of wrist accel (action-global)

median wrist accel (primitive-local) median wrist jerk (action-global)

std dev of wrist jerk (action-global)

std dev of wrist height (action-global)

median elbow speed (action-global) median head roll (action-global)

median wrist speed (action-global) median head pitch (action-global)

minimum elbow speed (action-global) std dev of head pitch (action-global)

std dev of wrist speed (action-global) objective function median

median elbow accel (action-global) objective function mean

median wrist accel (action-global) optimal segmentation threshold

Primitive 2 :

median wrist speed (primitive-local) segment length

maximum wrist speed (primitive-local) std dev of wrist height (action-global)

minimum elbow speed (primitive-local) median elbow speed (action-global)

elbow-wrist phase shift median wrist speed (action-global)

median wrist accel (primitive-local) maximum wrist speed (action-global)
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maximum wrist accel (primitive-local) std dev of elbow speed (action-global)

minimum elbow accel (primitive-local) std dev of wrist speed (action-global)

minimum wrist accel (primitive-local) median wrist accel (action-global)

median elbow jerk (primitive-local) std dev of wrist accel (action-global)

maximum wrist jerk (primitive-local) median head roll (action-global)

minimum elbow jerk (primitive-local) median head pitch (action-global)

minimum wrist jerk (primitive-local) objective function mean

std dev of elbow jerk (primitive-local) optimal segmentation threshold

std dev of wrist jerk (primitive-local)

std dev of head pitch (primitive-local)

Primitive 3 :

median wrist height (primitive-local) minimum elbow accel (action-global)

std dev of wrist accel (action-global)

std dev of wrist height (action-global) median wrist jerk (action-global)

median elbow speed (action-global) median head roll (action-global)

median wrist speed (action-global) median head pitch (action-global)

maximum wrist speed (action-global) std dev of head pitch (action-global)

minimum elbow speed (action-global) objective function median

std dev of elbow speed (action-global) objective function mean

median elbow accel (action-global) optimal segmentation threshold

median wrist accel (action-global)

Throwing

Primitive 1 :

minimum elbow height (primitive-local) maximum wrist speed (action-global)

maximum wrist speed (primitive-local) std dev of wrist speed (action-global)

minimum elbow speed (primitive-local) median wrist accel (action-global)

median wrist accel (primitive-local) maximum wrist accel (action-global)

maximum wrist accel (primitive-local) std dev of wrist accel (action-global)

maximum head pitch (primitive-local) median wrist jerk (action-global)

maximum wrist jerk (action-global)

median wrist height (action-global) median head roll (action-global)

maximum wrist height (action-global) objective function mean

Primitive 2 :

minimum wrist height (primitive-local) maximum wrist speed (action-global)



APPENDIX E. DETAILED FEATURE ANALYSIS RESULTS 189

std dev of wrist height (primitive-local) std dev of wrist speed (action-global)

median wrist speed (primitive-local) median wrist accel (action-global)

maximum wrist speed (primitive-local) std dev of wrist accel (action-global)

median wrist accel (primitive-local) median wrist jerk (action-global)

maximum wrist jerk (primitive-local) median head roll (action-global)

median head pitch (action-global)

median wrist height (action-global) objective function mean

maximum wrist height (action-global) optimal segmentation threshold

minimum elbow height (action-global)

Primitive 3 :

median elbow height (primitive-local) maximum wrist speed (action-global)

maximum wrist height (primitive-local) std dev of wrist speed (action-global)

std dev of wrist height (primitive-local) median wrist accel (action-global)

elbow-wrist phase shift maximum wrist accel (action-global)

maximum head roll (primitive-local) std dev of wrist accel (action-global)

median wrist jerk (action-global)

median wrist height (action-global) maximum wrist jerk (action-global)

maximum wrist height (action-global) median head pitch (action-global)

median wrist speed (action-global) objective function mean

Lifting

Primitive 1 :

median wrist height (primitive-local) minimum elbow speed (action-global)

median wrist speed (primitive-local) std dev of wrist speed (action-global)

maximum wrist speed (primitive-local) elbow-wrist phase shift

std dev of elbow accel (primitive-local) median elbow accel (action-global)

std dev of wrist accel (primitive-local) median wrist accel (action-global)

median head pitch (primitive-local) maximum wrist accel (action-global)

std dev of head roll (primitive-local) std dev of elbow accel (action-global)

segment length std dev of wrist accel (action-global)

median wrist jerk (action-global)

median wrist height (action-global) std dev of wrist jerk (action-global)

minimum wrist height (action-global) std dev of head pitch (action-global)

std dev of wrist height (action-global) objective function mean

median wrist speed (action-global) optimal segmentation threshold

maximum wrist speed (action-global)
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Primitive 2 :

minimum wrist height (primitive-local) std dev of wrist speed (action-global)

std dev of wrist height (primitive-local) elbow-wrist phase shift

median wrist speed (primitive-local) median elbow accel (action-global)

median wrist accel (primitive-local) median wrist accel (action-global)

maximum head pitch (primitive-local) maximum elbow accel (action-global)

segment length maximum wrist accel (action-global)

std dev of elbow accel (action-global)

median wrist height (action-global) std dev of wrist accel (action-global)

maximum wrist height (action-global) std dev of wrist jerk (action-global)

median wrist speed (action-global) std dev of head pitch (action-global)

maximum wrist speed (action-global) objective function mean

minimum elbow speed (action-global) optimal segmentation threshold

E.2 Global-only features

The same feature selection as in Section 5.4 was run on the action-global feature vectors

to isolate the single-most informative features for each action without confounding the

list by the influence of motion primitives. The results are listed below.

Knocking :

median wrist height minimum elbow accel

std dev of wrist height std dev of wrist accel

median elbow speed median wrist jerk

median wrist speed median head roll

maximum wrist speed median head pitch

minimum elbow speed std dev of head pitch

std dev of elbow speed objective function median

median elbow accel objective function mean

median wrist accel optimal segmentation threshold

Throwing :

median wrist height maximum wrist accel

maximum wrist height std dev of wrist accel

minimum elbow height median wrist jerk

median wrist speed maximum wrist jerk

maximum wrist speed median head roll

std dev of wrist speed median head pitch

median wrist accel objective function mean
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Lifting :

median wrist height median wrist accel

minimum wrist height maximum elbow accel

std dev of wrist height maximum wrist accel

median wrist speed std dev of wrist accel

maximum wrist speed median wrist jerk

minimum elbow speed maximum head pitch

std dev of wrist speed std dev of head roll

elbow-wrist phase shift objective function mean

median elbow accel optimal segmentation threshold

E.3 Informative features by emotion

In order to find out which features are particularly informative for individual emotions,

I employed a slightly different methodology. The earlier results were all derived by con-

sidering all four emotions simultaneously. The previously listed features are therefore

informative for distinguishing between any of the four emotions. Below are the results

obtained for rerunning the feature selection procedure after singling out a particular emo-

tion to investigate.

All samples of the particular emotion in question were re-labelled with a new emotion

label 1 while all other samples were re-labelled with emotion label 2. The latter set of

samples was sub-sampled to ensure an even distribution of samples for emotions 1 vs . 2

during the feature selection procedure. The features listed for a particular emotion below

are thus informative for distinguishing between the particular emotion in question and the

remaining three emotions in the set. As expected, the number of features needed to sep-

arate one single emotion is in every case smaller than the number of features informative

for distinguishing between four emotions as found in the previous section.

Knocking

Neutral vs. all :

std dev of wrist height minimum wrist accel

median elbow speed median head pitch

median wrist speed std dev of head pitch

maximum wrist speed objective function mean

median wrist accel optimal segmentation threshold

maximum wrist accel
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Happy vs. all :

median elbow speed median wrist jerk

maximum wrist speed maximum head roll

std dev of wrist speed std dev of head pitch

median wrist accel objective function mean

std dev of wrist accel

Angry vs. all :

maximum wrist height median wrist jerk

minimum wrist height std dev of wrist jerk

median elbow speed std dev of head roll

minimum elbow speed std dev of head pitch

minimum wrist speed objective function median

elbow-wrist phase shift objective function mean

median wrist accel optimal segmentation threshold

std dev of wrist accel

Sad vs. all :

maximum elbow height elbow-wrist phase shift

std dev of wrist height median wrist accel

median elbow speed minimum elbow accel

median wrist speed median head roll

maximum elbow speed median head pitch

maximum wrist speed maximum head pitch

minimum elbow speed objective function mean

std dev of wrist speed optimal segmentation threshold

Throwing

Neutral vs. all :

median elbow height median elbow accel

median wrist height median wrist accel

maximum elbow height maximum wrist accel

median wrist speed median wrist jerk

maximum wrist speed median head pitch

minimum elbow speed std dev of head roll

std dev of wrist speed objective function mean
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Happy vs. all :

median wrist height maximum wrist speed

minimum elbow height median wrist accel

std dev of elbow height std dev of wrist accel

Angry vs. all :

median wrist height maximum wrist accel

maximum wrist height std dev of wrist accel

minimum wrist speed minimum head roll

elbow-wrist phase shift objective function median

median wrist accel

Sad vs. all :

median wrist height minimum elbow accel

maximum wrist height minimum wrist accel

minimum elbow height median wrist jerk

std dev of wrist height minimum wrist jerk

std dev of elbow speed median head pitch

median elbow accel objective function mean

median wrist accel optimal segmentation threshold

Lifting

Neutral vs. all :

median elbow height std dev of wrist speed

median wrist height median wrist accel

minimum elbow height maximum wrist accel

minimum wrist height std dev of elbow accel

median wrist speed std dev of wrist accel

maximum wrist speed median head pitch

std dev of elbow speed objective function mean

Happy vs. all :

median wrist height maximum wrist accel

std dev of elbow height std dev of wrist accel

median wrist speed maximum head pitch

maximum wrist speed std dev of head roll
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std dev of wrist speed std dev of head pitch

median wrist accel

Angry vs. all :

minimum wrist height std dev of elbow accel

std dev of wrist speed std dev of wrist accel

median wrist accel median wrist jerk

maximum elbow accel minimum wrist jerk

maximum wrist accel std dev of elbow jerk

minimum wrist accel objective function mean

Sad vs. all :

median wrist height median wrist accel

maximum wrist height minimum wrist accel

std dev of elbow height std dev of elbow accel

std dev of wrist height median head pitch

median wrist speed std dev of head pitch

maximum wrist speed objective function median

std dev of wrist speed objective function mean

elbow-wrist phase shift optimal segmentation threshold

median elbow accel
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Error analysis for bias prediction

My primary means of evaluating the accuracy of motion bias prediction has been in

terms of the resulting emotion recognition performance. Only in this way it is possible

to really judge how accurate the bias prediction really has to be in order to build a more

elaborate recognition system on top of it. In this appendix I am giving additional results

for evaluating the bias prediction framework independently.

As ground truth I am using every person’s motion bias (φ̂Knock,p, φ̂Throw,p, φ̂Lift,p, φ̂Walk,p)

as computed from the action samples. In order to evaluate the accuracy of the regression-

based prediction, I am using a 10-fold cross validation approach. For each fold n, a

regression function BA,n is estimated during the training phase based on the 27 training

subjects’ TDown adaptation variables (φ̂TDown,p) and bias variables (φ̂A,p). During the

evaluation phase, the remaining 3 subjects’ bias variables are estimated based on their

observed TDown variables as φ̂A,p = BA,n(φ̂TDown,p). I then compute the root mean

squared error (RMSE) between the true bias as computed from the action itself and the

predicted bias. Because each dimension is normalised prior to this step, I do not need to

use a more complex error measure like the Mahalanobis distance in this case.

Table F.1 lists the RMSE for each subject and action combination as well as aggregates

over all subject. We can see that the estimates for the Knocking motion bias are most

accurate. The accuracy of bias estimation as computed in this experiment also correlates

well with the resulting emotion recognition accuracies (see Section 5.5.3). Finally, the

significantly worse bias prediction performance for Walking is not unexpected, as bias

variables for a lower body action have to be estimated from variables derived from the

upper body action TDown. In Section 5.5.3 we saw that trying to estimate the motion

bias for Walking actions leads to no improvements in emotion recognition over fully biased

signals.
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Table F.1: Root mean squared errors for bias estimation using linear regression.

Subject Knocking Throwing Lifting Walking

subject 1 1.88 2.41 0.82 0.92

subject 2 1.21 1.92 2.74 1.76

subject 3 1.69 1.53 1.98 2.64

subject 4 2.96 1.81 1.22 2.57

subject 5 0.68 1.47 0.77 2.43

subject 6 1.38 1.96 2.66 12.99

subject 7 1.85 2.65 1.97 5.08

subject 8 0.49 1.55 1.05 1.03

subject 9 0.85 1.96 1.15 1.23

subject 10 0.97 2.05 1.32 1.80

subject 11 1.81 0.52 1.40 1.32

subject 12 0.83 0.65 0.84 1.47

subject 13 0.62 1.71 1.35 2.84

subject 14 0.88 0.95 1.13 0.82

subject 15 2.22 0.68 2.11 2.50

subject 16 0.54 1.30 1.83 1.82

subject 17 1.91 1.39 1.24 3.60

subject 18 0.79 1.51 1.52 1.99

subject 19 0.78 1.13 1.38 1.65

subject 20 2.45 1.48 1.22 2.25

subject 21 0.46 1.58 1.73 3.70

subject 22 0.49 1.77 1.61 1.17

subject 23 1.05 0.95 1.20 1.85

subject 24 0.24 1.26 1.92 1.01

subject 25 1.11 1.13 1.38 1.20

subject 26 2.81 1.32 1.88 1.56

subject 27 0.78 1.74 0.84 2.55

subject 28 0.56 2.10 1.15 1.05

subject 29 1.12 2.01 1.67 3.49

subject 30 1.14 1.23 1.24 3.46

mean 1.22 1.52 1.48 2.46

std deviation 0.72 0.50 0.50 2.23
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Symbols

v(t) Observation vector at time frame t

V T Sequence of observations

V Set of observation sequences

W (x) Dynamic Time Warp function

Ṽ
T̃

Time-warped observation sequence

δ(v1, v2) Distance function for two observations

δs(v1, v2) Distance function for two sets of observations

∆(W ) Distance function for two warped sequences

θ̇ Joint speed

E(t) Motion energy at time frame t

c Action category

C Set of actions

Jc Body joints used by action c

λc Hidden Markov Model (HMM) for action c

dc Dimensionality of the observation vectors of λc

s Number of distinct HMM states

ωi HMM state

ωT HMM state sequence

ω(t) HMM state at time frame t

A HMM transition matrix

π HMM state prior

N(µ,Σ) Normal density parameterised by mean and covariance

Λ Set of action HMMs

λ(l) Action at level l in an action sequence

b(0) . . . b(L) Action boundaries in an action sequence

B Segmentations of a set of action sequences

V Dynamic programming matrix

t(i, j, l) Transition function between levels in an action sequence
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Pc(dt) Regularisation term for segments of duration dt

γ Regularisation weight

φ Feature used for emotion recognition

Φ Set of features

φm,p Feature vector for motion primitive m and person p

φ̄m,p Motion bias

φ̂m,p Unbiased feature vector

B(φ) Bias adaptation function

e Emotion class

E Set of emotions

Mm
e1,e2 Binary SVM for motion primitive m and emotion classes e1 and e2

K(φ1,φ2) SVM kernel function

ρφ1,φ2 Correlation coefficient between two features

τ Energy/correlation threshold

numsegE(τ) Function computing the number of segments by thresholding the

motion energy signal

Merit(Φ) Quality measure of a feature subset for predicting emotion

ζ Fraction of correctly segmented action sequences

α Fraction of correctly labeled frames in an action sequence

η Emotion recognition efficiency
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Glossary

Action-global features Features derived from the statistics of a whole

action rather than individual motion primitives.

Adaptation Process of adjusting a number of predefined pa-

rameters in a machine recognition engine to bet-

ter fit a particular user’s idiosyncrasies.

Biased features Original motion features before subtracting the

person-specific motion signature.

Bias-adapted features Person-normalised motion features generated

by subtracting an approximated motion signa-

ture from the original, biased features.

Bootstrapping Machine learning technique which improves a

classifier by iteratively training and evaluat-

ing it on a set of data with partially known

structure.

Cambridge Corpus Database of motion-captured expressive body

motions collected for this research.

Coarticulation Effects of neighbouring units of speech or mo-

tion on each others’ appearance.

Cross Validation Evaluation technique which estimates the gen-

eralisation performance of a classifier. Data

is repeatedly split into training and validation

sets, each of which are disjoint and come from

different subjects.
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Discriminant function In pattern classification, a scalar function de-

fined over a feature space and representing a

particular class. A classifier evaluates all dis-

criminant functions at a certain point in feature

space to assign it to the class with the highest

discriminant function output.

Discriminative classifier In machine learning, a model which has been

trained to best separate samples belonging to a

number of distinct classes.

Dynamic Time Warping Method of aligning two time series allowing for

non-linear variations in correspondences.

Emotional response triad Three major components involved in an emo-

tional response: physiological arousal, motor

expression, subjective feeling.

Feature subset selection Process of identifying statistical features which

are maximally correlated with a certain class

but minimally correlated with each other.

Feature vector Multidimensional representation of motion

statistics indicative of emotional state.

Generalisation Measure of a classifier’s ability to classify sam-

ples from previously unseen subjects.

Generative classifier In machine learning, a model which has been

trained to best represent the data associated

with a certain class independent of other classes.

Glasgow Corpus Database of motion-captured actions performed

in different emotional styles collected at the

Psychology Department, University of Glasgow.

Guide tree Rooted acyclic graph determining the order

of individual alignments for multiple sequence

alignment.

Hidden Markov Model Model for a temporally evolving system pro-

ducing multi-dimensional observations. Obser-

vations are conditioned only on hidden states

governed over time by a Markov Process.
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Level Building Approach for segmenting connected gestures by

combining individual HMMs through Dynamic

Programming.

Mood induction procedure In experimental psychology, way of sys-

tematically manipulating a subject’s felt

mood/emotion.

Motion bias Posture and dynamic idiosyncrasies exhibited

by a person while carrying out an action, see

also biased and unbiased features.

Motion capture Process of recording body movement at high

spatial and temporal resolution using special

hardware.

Motion descriptor Channel capturing an aspect of continuously

varying body posture or motion dynamics.

Motion primitive Basic section of movement, several of which are

combined to produce complex actions.

Motion quality Parameters of body motion such as smoothness

and speed.

Multiple Discriminant Analysis Statistical method to find the linear combina-

tions of features which best separate two or

more classes of samples.

Multiple sequence alignment The problem of temporally aligning multiple se-

quences of symbols or time series.

Posture Static configuration of body parts, including

head pose, arm, leg and trunk configuration.

Primitive-local features Features derived from the statistics of individ-

ual motion primitives used to model a more

complex action.

Support Vector Machine Feature-based linear classifier aimed at max-

imising the margin between samples of two

classes during statistical training. Feature

vectors are commonly represented in high-

dimensional spaces using kernels

Unbiased features Person-normalised motion features generated

by subtracting the person-specific motion sig-

nature from the original, biased features.
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