
Technical Report
Number 783

Computer Laboratory

UCAM-CL-TR-783
ISSN 1476-2986

Distributed Complex Event Detection
for Pervasive Computing

Dan O’Keeffe

July 2010

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2010 Dan O’Keeffe

This technical report is based on a dissertation submitted
December 2009 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St. John’s
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Pervasive computing is a model of information processing that augments computers with sensing
capabilities and distributes them into the environment. Many pervasive computing applications
are reactive in nature, in that they perform actions in response to events (i.e. changes in state
of the environment). However, these applications are typically interested in high-level complex
events, in contrast to the low-level primitive events produced by sensors. The goal of this thesis
is to support the detection of complex events by filtering, aggregating, and combining primitive
events.

Supporting complex event detection in pervasive computing environments is a challenging
problem. Sensors may have limited processing, storage, and communication capabilities. In ad-
dition, battery powered sensing devices have limited energy resources. Since they are embedded
in the environment, recharging may be difficult or impossible. To prolong the lifetime of the
system, it is vital that these energy resources are used efficiently.

Further complications arise due to the distributed nature of pervasive computing systems.
The lack of a global clock can make it impossible to order events from different sources. Events
may be delayed or lost en route to their destination, making it difficult to perform timely and
accurate complex event detection. Finally, pervasive computing systems may be large, both
geographically and in terms of the number of sensors. Architectures to support pervasive com-
puting applications should therefore be highly scalable.

We make several contributions in this dissertation. Firstly, we present a flexible language for
specifying complex event patterns. The language provides developers with a variety of paramet-
ers to control the detection process, and is designed for use in an open distributed environment.
Secondly, we provide the ability for applications to specify a variety of detection policies. These
policies allow the system to determine the best way of handling lost and delayed events. Of
particular interest is our ‘no false-positive’ detection policy. This allows a reduction in detection
latency while ensuring that only correct events are generated for applications sensitive to false
positives. Finally, we show how complex event detector placement can be optimized over a
federated event-based middleware. In many cases, detector distribution can reduce unnecessary
communication with resource constrained sensors.

3

To my family

Acknowledgements

To begin with, I would like to thank Jean Bacon, my supervisor, for all her encour-
agement and advice during the course of my PhD. In reaching the finish line, her
knowledge and understanding (and patience!) have been invaluable. I am also in-
debted to Ken Moody, my PhD advisor, for the guidance he has given me throughout
the time of my PhD.

During my PhD I was fortunate enough to be a member of the Opera Group, and
my research owes a debt to the many interesting discussions, talks, and ideas I was
exposed to as a result. In particular, I would like to thank Salman Taherian, Peter
Pietzuch, Eiko Yoneki, Dave Eyers, Jat Singh, Lauri Pesonen, Sriram Srinivasan,
Pedro Brandao, Dave Evans, Dave Ingram, Luis Vargas, and Samuel Kounev for all
their help over the years. I would like to also thank Salman, Dave Eyers, Ram, Jat,
Pedro, and Eiko for proofreading chapters of my thesis.

I would like to thank the Cambridge European Trust, the Computer Laboratory,
and Marconi for funding my research. I am also grateful to my college tutor Helen
Watson and all the other staff at St John’s College for their support and assistance.

Finally, I would like to thank my family, and especially my parents, for their support
and encouragement. Without them it would not have been possible.

Contents

1 Introduction 13
1.1 Pervasive Computing . 13

1.1.1 Challenges . 13
1.1.2 Scope . 14

1.2 Distributed Complex Event Detection . 14
1.3 Research Statement . 15
1.4 Thesis Outline . 16

2 Background and Related Work 19
2.1 Pervasive Computing . 19

2.1.1 Wireless Sensor Networks . 21
2.2 Middleware . 23

2.2.1 Synchronous Request/Reply Middleware 24
2.2.2 Message Oriented Middleware . 25
2.2.3 Publish/Subscribe Systems . 26

2.2.3.1 Topic-Based Publish/Subscribe 27
2.2.3.2 Type-Based Publish/Subscribe 28
2.2.3.3 Content-Based Publish/Subscribe 28

2.2.4 Data Stream Management Systems . 33
2.2.5 Middleware for Context-Aware Applications 35
2.2.6 WSN Middleware . 38

2.2.6.1 Group Level . 38
2.2.6.2 Network Level . 40

2.3 Complex Events . 42
2.3.1 Complex Event Languages . 43
2.3.2 Continuous Query Languages . 47
2.3.3 Production Systems . 49

2.4 Conclusion . 51

6

CONTENTS CONTENTS

3 A Complex Event Language 53
3.1 Introduction . 53
3.2 Application Scenarios . 54

3.2.1 Transport Monitoring . 54
3.2.2 Remote Health Monitoring . 55

3.3 Language . 55
3.3.1 Overview . 55
3.3.2 Detection Partitions . 59
3.3.3 Detection Contexts . 61
3.3.4 Event Patterns . 64

3.3.4.1 Collection Phase . 66
3.3.4.2 Detection Phase . 67
3.3.4.3 Consumption Phase . 71

3.3.5 Complex Event Mapping . 72
3.4 Implementation . 74

3.4.1 Data Structures . 74
3.4.2 Detection Algorithm . 76

3.5 Related Work . 81
3.5.1 Composite Event Languages . 81
3.5.2 Continuous Query Languages . 83
3.5.3 Hybrid Languages . 84
3.5.4 Durative Event Languages . 84
3.5.5 Production System Languages . 85
3.5.6 State Detection Languages . 86

3.6 Summary . 87

4 Reliable Complex Event Detection 91
4.1 Introduction . 91
4.2 Background . 92

4.2.1 Communication Errors . 92
4.2.2 Time Synchronization Errors . 92
4.2.3 Motivating Example . 93

4.3 Service Model . 96
4.3.1 Basic Service Model . 96
4.3.2 Event Model . 97
4.3.3 Detecting Missing Events . 98
4.3.4 Extended Service Models . 99

4.4 Detection Policies . 100
4.4.1 Policies . 100
4.4.2 Language Integration . 101

4.5 NFP Policy . 101

7

CONTENTS CONTENTS

4.5.1 NFP Detection . 102
4.5.1.1 States of a Detector . 102
4.5.1.2 Output Convergence . 103

4.6 Implementation . 104
4.7 Evaluation . 106

4.7.1 Experiments . 107
4.7.1.1 Correctness . 107
4.7.1.2 Execution Time . 109

4.8 Related Work . 110
4.9 Summary . 112

5 Detector Placement 115
5.1 Introduction . 115
5.2 Motivation . 116

5.2.1 Multi-Domain . 116
5.2.2 Benefits of Distributed Detection . 117

5.3 Complex Events Over Hermes . 118
5.3.1 Decomposition . 119

5.3.1.1 Hierarchical Decomposition . 119
5.3.1.2 Partitioning . 119

5.4 Static Placement . 120
5.4.1 Rendezvous Broker Placement . 120
5.4.2 Subscriber Hosting Broker Placement . 122

5.5 Dynamic Placement . 122
5.5.1 Network Coordinates . 122
5.5.2 Query Graph Placement . 124
5.5.3 Placement with Reverse Path Routing . 125
5.5.4 Initial Placement Mechanisms . 126

5.5.4.1 Rendezvous Placement with Gradual Migration 126
5.5.4.2 Centralized Initial Placement Calculation 128

5.6 Other Issues . 129
5.6.1 Reliability . 129
5.6.2 Types . 130

5.6.2.1 Type Directories . 130
5.6.2.2 Type Checking . 130
5.6.2.3 Schema Evolution . 131

5.7 Evaluation . 131
5.7.1 Summary of Experiments . 138

5.8 Related Work . 140
5.9 Summary . 141

8

CONTENTS CONTENTS

6 Conclusions and Future Work 143
6.1 Summary . 143
6.2 Conclusions . 144
6.3 Future Work . 145

A Language Definitions 147

B Input Type Schemas for Examples 153

Bibliography 155

9

List of Figures

2.1 Event Mediator . 24
2.2 SIENA Routing Topologies . 30
2.3 A RETE Network . 50

3.1 WSNs connected via Gateways to a Publish/Subscribe System 56

4.1 Container Packing Application . 93
4.2 Publish/Subscribe Service . 96
4.3 NFP Detector State Transition Diagram . 103
4.4 [Precision (PRN) (%), Recall (REC) (%)] for Best Effort (BE) and No False

Positive (NFP) detection . 108
4.5 Cumulative processing times for Best Effort (BE), Correct, and No False Positive

(NFP) detection . 109

5.1 Hermes Type- and Attribute-Based Routing . 117
5.2 Rendezvous Broker (RV) Placement . 121
5.3 Subscriber Hosting Broker (SHB) Placement . 123
5.4 Spring Relaxation of a Complex Event Query Graph 125
5.5 Hermes Network Coordinate (HNC) Placement 127
5.6 Complex Event Query Graph 1 (CQG1) . 132
5.7 Complex Event Query Graph 2 (CQG 2) . 132
5.8 Experiment 1 . 134
5.9 Experiment 2 . 135
5.10 Experiment 3 . 136
5.11 Experiment 4 . 136
5.12 Experiment 5 . 137
5.13 Experiment 6 . 138

10

List of Tables

2.1 Sample Pervasive Computing Environments . 20
2.2 Characteristics of Pervasive Computing . 20
2.3 WSN Characteristics . 22
2.4 WSN Design Principles . 22
2.5 Sample Complex Event Operators . 47

3.1 Language Comparison: X = Good support, ∼ = Partial support, 7 = No support;
Feature acronyms given in Table 3.2 . 88

3.2 Feature Key . 89

4.1 Possible Detection Guarantees . 93
4.2 Events Received by PackageContainer Detector 95
4.3 Different Possible Outputs for PackageContainer(pkgId, contId), with TA =

True Assignment, BE = Best Effort, GD = Gap Detection 95

5.1 Global Experiment Parameter Values . 133
5.2 Individual Experiment Parameter Values . 134

11

12

Chapter 1

Introduction

1.1 Pervasive Computing

Advances in micro-electro-mechanical systems (MEMS) continue to reduce the size and cost of
sensor devices. Nevertheless, sensors capable of monitoring an ever-wider variety of real-world
phenomena are becoming available. Together with Moore’s law, these trends enable the de-
ployment of small, cheap, computational devices, augmented with sensing and communication
capabilities, into the environment.

The ability to embed such sensors in the environment has resulted in the vision of pervas-
ive computing, where software applications are aware of environmental conditions relevant to
their operation, and tailor the functionality they provide as these conditions change. Thus per-
vasive computing extends existing applications with the ability to infer, from data generated
by sensors, contextual information about users and the environment. Moreover, it promises a
plethora of novel applications previously thought impossible due to the difficulty of gathering
and disseminating accurate sensor data to interested parties.

1.1.1 Challenges

Many problems remain to be addressed before the vision of pervasive computing can become a
reality. We now highlight some of the main challenges.

Interpretation of Sensor Data Pervasive computing applications may involve vast numbers
of sensing devices. These devices can potentially produce an enormous volume of raw sensor
data. This sensor data has the potential to overwhelm both the resources available in large-scale
pervasive computing systems, and the ability of users to respond to it. In particular, raw sensor
data tends to be very low-level, and must be further processed, analysed, and transformed into
higher-level information in order for it to be meaningful to applications and users.

13

CHAPTER 1. INTRODUCTION 1.2 Distributed Complex Event Detection

Scalability Large numbers of users may be interested in the data produced by sensors, and
the task of scalably delivering relevant sensor information to users is a challenging one. Failures
of sensing devices may be common, and disseminating data to users is subject to the difficulties
inherent to all large scale distributed systems, such as node failures and network partitions. In
addition, sensors often communicate wirelessly, further increasing the potential for failure and
unreliable communications.

Heterogeneity Another challenge faced in building pervasive computing systems is hetero-
geneity. Typically, the devices that form a pervasive computing system vary widely in their
capabilities. Devices may be limited with respect to a number of criteria, including processing,
storage, bandwidth, reliability, and energy resources. In addition, pervasive computing applic-
ations can differ considerably with respect to the type of interpretation they need to perform
over raw sensor data.

1.1.2 Scope

This thesis is primarily concerned with sensor-driven pervasive computing applications operating
over an architecture consisting of relatively static wireless sensor networks (WSNs) connected via
a fixed backhaul infrastructure. Although this architecture can handle low to moderate levels
of mobility (e.g. of client devices), it is not designed for use in highly mobile environments.
Nevertheless, some of the contributions this thesis makes to complex event language design and
reliable detection may transfer to more mobile environments.

1.2 Distributed Complex Event Detection

Pervasive computing applications are typically data-driven, with consumers interested only in
the information produced by sensors, which we refer to as events, and not their identity. A
promising approach to supporting applications that wish to use sensor data is to build them on
top of an event-based middleware [Pie04]. This enables a loose-coupling between the producers
of events and the entities that consume them. This loose-coupling helps to improve scalability,
as producers and consumers do not have to be explicitly aware of each other. An event-based
middleware acts as an intermediary between the two, delivering the events generated by pro-
ducers to consumers. This style of communication is typically referred to as publish/subscribe,
since consumers subscribe to events published by producers.

However, in order to increase the value of sensor data, event-based middleware must convert
low-level data produced by primitive publishers into higher-level composite or complex events.
One way for middleware to achieve this is to provide a language for consumers to specify pat-
terns of events. The middleware can then detect these high-level patterns based on the low-level
data produced by sensors.

14

CHAPTER 1. INTRODUCTION 1.3 Research Statement

1.3 Research Statement

In this thesis we argue that detection of complex event patterns by an event-based middleware is
a useful tool for supporting pervasive computing applications, but that several problems remain
to be addressed in augmenting current middlewares with such a feature.

We argue that traditional approaches to performing complex event detection must be ad-
apted to take into account the characteristics of large-scale, distributed and possibly unreliable
pervasive computing systems. Existing languages are not flexible enough to cope with the wide
variety of detection semantics required for pervasive computing. In addition, many of the lan-
guages proposed for complex event detection are unrealistic in their assumptions of reliability
and totally ordered input event streams. A more sophisticated approach to detection is neces-
sary.

Furthermore, the placement of pattern detectors in the network is an important issue when
trying to distribute complex event detection in an efficient fashion. Placement must incorporate
requirements of producers, consumers and network administrators such as low-latency, efficient
use of limited bandwidth, processing, and storage resources, and constraints on the energy avail-
able to wireless sensors.

This thesis contains several contributions that aim to address these issues:

A Complex Event Language Our first contribution is a complex event detection language
designed for pervasive computing applications. The language relies on a time model based
on uncertainty intervals to cope with the lack of a global clock in distributed systems. It is
designed to be easily decomposable in order to enable distributed placement of detectors. This
is particularly useful when event sources are energy-constrained wireless sensors, as it reduces
unnecessary communication. It provides a selection of operators for composing events, and also
allows conditions to be specified globally (i.e. across operators) over the attributes of events. The
semantics of detection can be configured extensively through the use of a variety of detection
parameters. Although these parameters add complexity to the language, we believe they are
necessary due to the wide variety of detection semantics we found were required by different
pervasive computing applications.

Reliable Detection Our second contribution is an analysis of how complex event detec-
tion is affected by lost events, delayed events, and events with overlapping uncertainty interval
timestamps. In accordance with the results of this analysis, we extend our language so that
users can express, via a selection of detection policies, their preferred means of handling these
problems. Of particular interest is a detection policy for applications sensitive to false positives.
We present an implementation and evaluation of such a policy for our language. This policy
results in more accurate detection in comparison to a best-effort approach, and is more efficient
than a guaranteed detection policy.

15

CHAPTER 1. INTRODUCTION 1.4 Thesis Outline

Detector Placement Our last contribution is with respect to the efficient placement of com-
posite event detectors. We propose several detector placement strategies for an event-based
middleware called Hermes. Hermes forms the centerpiece of a multi-domain architecture for
pervasive computing. It leverages peer-to-peer techniques to provide scalable publish/subscribe
communication between a network of event brokers. However, optimizing detector placement
over Hermes is a challenge due to the nature of its routing algorithm.

Our placement strategies divide into two classes: static and dynamic. Static placement
is simple to implement but unlike dynamic placement, it does not migrate detectors between
brokers in order to optimize overall network usage. Our dynamic strategy augments event brokers
with network latency coordinates, so as to enable them to reason about where to place detectors.
We evaluate the performance of these strategies in comparison to a reference strategy from the
literature. The results show that the dynamic placement strategy performs well when reuse of
complex events is high. Furthermore, the dynamic strategy uses a similar amount of network
resources to the best of the static placement strategies. Dynamic placement is thus preferable
when flexible placement of detectors is required for other reasons, such as cross-domain complex
event detection. Cross-domain complex event detection is useful when other domains consist of
energy-constrained event sources such as wireless sensor networks.

1.4 Thesis Outline

In chapter two, we give a description of the background to the thesis, and place our contributions
in the context of related work. The discussion begins with an overview of pervasive computing
and wireless sensor networks, including a description of their main characteristics and design
principles. We then introduce the concept of middleware. This introduction summarizes sev-
eral classes of middleware relevant to pervasive computing, including publish/subscribe systems,
data stream management systems, middleware for context-aware applications, and middleware
for wireless sensor networks. The background chapter concludes with a discussion of complex
event languages. The discussion examines several representative complex event languages from
the literature, and contrasts complex event detection with related concepts such as continuous
queries and production systems.

In chapter three, we describe a new complex event language targeted towards pervasive
computing applications. The chapter begins with a description of some motivating application
scenarios. We then describe the main features of our language, including its time model, syntax,
processing model and data structures. The chapter concludes with a pseudo-code description of
our implementation.

In chapter four, we discuss how different reliability guarantees provided by the underlying
event-based middleware affect our ability to perform complex event detection. The discussion
examines several common errors that arise in distributed systems, and describes with the aid of
an example how they affect complex event detection. The discussion then shows how applica-
tions can use detection policies to cope with these errors. Finally, it looks in detail at a policy

16

CHAPTER 1. INTRODUCTION 1.4 Thesis Outline

that prevents false positive detections, and evaluates the performance of an implementation of
this policy.

In chapter five, we describe some of the issues involved in placing complex event detectors
over a large-scale event-based middleware called Hermes. The discussion begins by giving sev-
eral motivations for distributed detection of complex events. It then gives a brief overview of
Hermes before describing several detector placement strategies. It concludes with an evaluation
of these strategies in comparison to a reference strategy from the literature.

Finally, in chapter six, we summarize the contributions made, highlight remaining challenges
and suggest future work.

17

18

Chapter 2

Background and Related Work

This chapter describes background material relevant to the remainder of the thesis. It begins
with a brief overview of the origins of pervasive computing and the driving forces behind its
emergence. This is followed by an introduction to wireless sensor networks and a discussion of
their importance to pervasive computing.

We then give an introduction to middleware, and discuss its ability to support large-scale
pervasive computing applications. Our discussion includes a survey of several types of mid-
dleware relevant to pervasive computing, including middleware for context-aware computing,
stream processing, and wireless sensor networks.

Finally, we give an overview of research areas related to complex events. We compare com-
plex events to several related concepts, and examine how they can be used to simplify the
development of pervasive computing applications.

2.1 Pervasive Computing

The vision of pervasive computing promises applications capable of transparently adapting them-
selves to cope with changes in the user’s environment. In contrast to traditional desktop com-
puting, users need not be aware of any interaction with a pervasive computing system. Neither
should they have to learn custom protocols in order to engage with new computing services. In-
stead, pervasive computing attempts to automatically sense information about the environment
relevant to a user, sometimes referred to as context. It then delivers this context information
directly to the user, or automatically performs some action to help the user complete a task.

During the mainframe era of computing, one device was shared amongst many. The main-
frame era was supplanted by the PC era, with a device for every person. The pervasive computing
era entails a continuation of this trend, with vast numbers of computing devices, many of which
will be embedded in the environment. Originally proposed by Weiser under the moniker of
Ubiquitous Computing [Wei93], it is closely related to several other research areas, including
Sentient Computing [Hop00], Ambient Intelligence [DBS+01], and Context-Aware Computing
[SAW94]. All these concepts share a common vision of a computing environment with many
devices per user.

19

CHAPTER 2. BACKGROUND & RELATED WORK 2.1 Pervasive Computing

Several forces are driving the emergence of pervasive computing as an important field. At the
hardware level, Moore’s law has ensured that the cost of computation continues to fall, allowing
for small, low-cost processors that are nonetheless quite powerful. The advent of Micro-Electro-
Mechanical systems (MEMS) has made it possible to equip these devices with tiny sensors and
actuators. Additionally, wireless networking technology reduces the need to deploy expensive
communication infrastructure, further increasing device flexibility. At the software level, users
are starting to exploit these technologies by creating more autonomous applications capable of
detecting and responding to changes in the environment.

A taste of the diversity of pervasive computing applications can be gleaned from Table 2.1.
Here we list several popular application sectors for pervasive computing. Smart Home applica-
tions tend to be relatively small scale. Some examples include automated control of lighting and
heating, tracking and finding lost objects, and multimedia applications (e.g. music that follows
a user between rooms). Health care environments have also benefited from the emergence of
pervasive computing. In-hospital automated monitoring of patients helps to simplify the work
of doctors and nurses. Remote monitoring of elderly or other at risk patients can promises to
free up even further hospital resources. Pervasive computing has also been applied in emer-
gency response scenarios to aid rescue workers. Finally, pervasive computing applications for
the transport sector include the provision of context-aware route guidance to users, monitoring
of transport systems for congestion, and vehicle-to-vehicle communication systems that help
with accident avoidance.

Sector Applications

Smart Home [EG01; MR03] Smart Lighting and Heating, Lost Object Finder, Multimedia
Health Care [Bar04; KKH+08] Remote Patient Monitoring, Active Hospital, Emergency Response
Transportation [GK02; FM09] Real-Time Route Suggestion, Traffic Monitoring, Accident Avoidance

Table 2.1: Sample Pervasive Computing Environments

Some of the characteristics of pervasive computing systems are listed in Table 2.2.
A crucial aspect of pervasive computing is context-awareness. Changes in the user’s context,

Characteristic Description

Distributed Dynamic conglomerations of networked devices provide services to users.
Large-Scale Potentially vast numbers of users and machines.

Intelligent Environments Intelligence given to non-computational elements of environment.
Global, Ad-Hoc Interaction Users can access services anytime, anywhere.

Table 2.2: Characteristics of Pervasive Computing

such as the current location or activity, must be detected automatically by pervasive computing
applications, and used to tailor the service provided to the user. Context awareness is usually
aided by the deployment of sensor technology in the environment. Initial attempts to provide

20

CHAPTER 2. BACKGROUND & RELATED WORK 2.1 Pervasive Computing

such functionality relied primarily on location context (e.g. [WHFaG92]). Furthermore, the sens-
ing technology employed was targeted at small indoor domains, required expensive supporting
infrastructure, and did not concern itself with issues such as energy usage of devices. Since
then, the sophistication of sensing technologies, and the variety of contexts they are capable of
detecting, has increased considerably [BKZD04].

One particularly important class of sensing technology used to provide context awareness
is that of Wireless Sensor Networks (WSNs). WSNs have several unique characteristics that
impact the design of systems to support pervasive computing. We now give a more in depth
introduction to WSNs, including a discussion of their main characteristics, design principles,
and applications.

2.1.1 Wireless Sensor Networks

WSNs consist of potentially large quantities of sensor devices equipped with wireless radios and
limited computational, storage, and energy resources. They also tend to be small and inex-
pensive. Examples include Crossbows’ Mica Mote and Mica2Dot (an inch-wide version of the
Mica Mote) [CBo09], as well as the prototype Smart Dust node[WLLP01], 5 millimeters in size,
developed at Berkeley. However, many WSNs contain several more powerful devices, known
as base stations, scattered throughout the network or deployed at the edge. Base stations can
provide a gateway to other networks such as the internet, in addition to performing more heavy-
weight computations than motes.

Nodes in a WSN are usually unreliable due to power failures and other physical damage
caused by environmental factors. Thus data is often read from multiple sensors in order to
increase reliability, and also to improve accuracy by fusing correlated readings. As sensor nodes
are power constrained, overcoming the scarcity of energy is a crucial design requirement at all
levels. Nodes achieve this by sleeping when not in use, and by performing in-network processing
to reduce the amount of communication, since the energy cost of communication is much greater
than that of computation1.

WSNs have a wide variety of application areas including disaster response, pollution de-
tection, structural fault detection [KKP99], habitat monitoring [CEE+01; MPS+02], battlefield
scenarios, smart energy [RAF+02], and health monitoring [HMCP04]. Xu [Xu02], and Romer
and Mattern [RM04b], provide surveys of WSN applications. Some of the important character-
istics of sensor networks are given in Table 2.3. Given these characteristics, several design rules
have been proposed in the literature, some of which we list in Table 2.4. For a more in-depth
introduction to WSNs, the interested reader is directed to [ASSC02; KW03; ESS02], which give
a good overview of the area. Romer and Mattern give further analysis of the design space of
Sensor Networks [RM04b].

1To the order of roughly 1000 execution cycles per bit transmitted

21

CHAPTER 2. BACKGROUND & RELATED WORK 2.1 Pervasive Computing

Characteristic Description

Small devices Cubic millimeter Smart Dust motes in the near future
Limited Power Communication much more expensive than processing

Limited Resources Resource contention between applications
Heterogeneous Nodes Different sensing, processing, and storage capabilities

Frequent Failures Empty batteries, Environmental influences
Dynamic Systems Node mobility, Node failure, Environmental obstructions

Wireless Communication Lossy links, Broadcast typically used
Dense Deployment Typically many other nodes within range

Lack of access Standalone operation, Difficult to reconfigure manually
High Data Volumes In-network processing required

Environmental Interaction Sensing and Actuating

Table 2.3: WSN Characteristics

Principle Description

Data-centric communication
Provide information services to users as opposed to just connecting different parties

e.g. query a geographic location as opposed to a particular node

Localised algorithms
Group sensor nodes for scalability & reliability

Reduce long range communication
Lack of RAM to store global state (motes)

Adaptive Fidelity algorithms
Tradeoff between QoS & resource usage

May need to change routing algorithms & node configurations dynamically

Application knowledge in nodes
More efficient use of resources through increased data aggregation & fusion

Tradeoff with generality of system

Modular software
Can’t afford to have unused functionality
Enables easier reprogramming of nodes

Lightweight middleware Limited resources

Table 2.4: WSN Design Principles

22

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

2.2 Middleware

If the vision of pervasive computing is to become a reality, middleware technology will likely play
a vital role.The term middleware was originally coined to describe software that simplifies inter-
action between applications and legacy systems. However, the most common usage of the term
today is in reference to a layer of software, sitting between applications and the network layer on
several networked hosts, which helps to address programming issues related to distribution and
heterogeneity [Ber96]. In theory, interaction between distributed application components can be
programmed directly by developers using primitives provided by the network layer. However in
practice, application developers usually require a higher level programming model that shields
them from much of the complexity of the underlying system.

For the purpose of this thesis, we adopt the definition of middleware suggested by Pietzuch
[Pie04]:

Definition 2.2 (Middleware) A middleware is a software layer present on every node of
a distributed system that uses operating system functions to provide a homogeneous high-level
interface to applications for many aspects of a distributed computing environment, such as com-
munication, naming, concurrency, synchronisation, replication, persistence, and access control.

As might be expected from this definition, any assessment of a particular middleware tech-
nology must consider the nature of the distributed computing environment in which it is to
operate. Early middleware targeted applications distributed over local area networks (LAN).
Their programming model was usually based on the concept of synchronous remote procedure
calls (RPCs). In contrast to local procedure calls, RPCs send input parameters to a remote host.
The remote host then executes the required computation and returns the result. Meanwhile, the
requester blocks waiting for a response. The RPC programming model masks the distributed
nature of the system, since local and remote procedure calls appear identical to a programmer.

Unfortunately, the RPC programming model is not suitable for large scale distributed sys-
tems such as those prevalent in pervasive computing. Its main drawback is its reliance on
synchronous communication. Masking the distributed nature of an underlying system using
synchronous RPCs is possible so long as communication latency is low. And indeed this as-
sumption usually holds for LANs. However, upper bounds on response times are difficult to
ensure for wide area networks (WANs). Hence in WANs, synchronous remote calls can take
much longer than local ones. As a result, performance of the application degrades.

A more realistic approach to programming distributed applications over WANs is taken by
event-based middleware. In contrast to middleware that provide RPCs, event-based middleware
relies on asynchronous communication. An event-based programming model enables developers
to structure their applications so that no blocking occurs waiting for a response. This allows
other tasks to be performed in the intervening period, which can result in substantial perform-
ance improvements.

An event based programming model is also useful for applications that must react in a timely

23

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

fashion to changes in the state of a remote host. Under an RPC model, a local host must con-
tinuously poll the remote host to check for changes. In order to receive timely notifications, the
local host must increase the polling rate. Unfortunately this is an inefficient use of bandwidth.
A more timely and efficient solution is for the remote host to store a callback for the local host.
When a change in state occurs, the remote host notifies asynchronously all hosts for which it
stores a callback.

For some event-based middleware, clients must communicate with each other directly. How-
ever this solution does not scale well, since in many cases communication endpoints are relatively
lightweight (e.g. mobile phones), and do not have enough resources to store large amounts of
routing state. An alternative solution is to connect endpoints via an event mediator, as in Figure
2.1. Instead of clients storing routing information about each other, they offload it to the me-
diator, which acts as an intermediary and forwards events between them. Thus the scalability
of such a middleware depends on the scalability of its mediator. For this reason, large scale
systems usually implement the mediator in a distributed fashion.

Many event-based middleware, including some that allow clients to communicate indirectly
via a mediator, offer only point-to-point communication. However, support for one-to-many and
many-to-many communication is vital for pervasive computing applications. Event-based mid-
dleware that simulates such support using point-to-point communication tends to suffer from
scalability issues. In particular, they forego efficiencies that middleware with dedicated one-to-
many or many-to-many routing algorithms achieves by setting up shared routing paths between
endpoints with overlapping interests.

SMEDIATORS PP

EVENTS EVENTS

Figure 2.1: Event Mediator

In the following sections we review several examples of the above types of middleware in more
detail. We pay particular attention to their suitability for pervasive computing. We also examine
several middleware that have been designed specifically for pervasive computing, or for related
areas such as context-aware computing and WSNs.

2.2.1 Synchronous Request/Reply Middleware

Several early middleware employed a synchronous request/reply communication mechanism.
Two of the most popular synchronous request/reply middleware are CORBA and Java RMI.

24

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

CORBA The Common Object Request Broker Architecture (CORBA) is a synchronous re-
quest/reply middleware designed for heterogeneous distributed systems by the Object Man-
agement Group (OMG) [OMG08]. Objects in CORBA are hosted by object request brokers
(ORBS), and communication between a client and an object is relies on RPCs. CORBA defines
a standard interface definition language (IDL) for objects and an inter-orb communication pro-
tocol (IIOP) for communication between brokers. The IDL allows objects to be written in any
language so long as their interface can be mapped to it. This increases interoperability, since
clients and remote objects need not be written in the same language.

In addition to the basic architecture, CORBA also provides a suite of middleware services.
This includes services for naming, concurrency, transactions and events amongst others. Of
particular interest to us are the Event Service and the Notification Service. The event service
attempts to provide a publish/subscribe style of communication (see Section 2.2.3), but suffers
from a number of drawbacks. These include a lack of support for filtering of events based on
their content, a heavyweight implementation of events as CORBA objects, and an inefficient
implementation of asynchronous communication on top of CORBA’s synchronous method invoc-
ation. The Notification service remedies two of these problems by providing structured events
and the ability to specify filters over their content. However, it still performs asynchronous
communication of events using CORBAs synchronous RPCs.

Java RMI The Java RMI middleware is a synchronous request/reply middleware from Sun
based on the concept of remote method invocation (RMI) [Sun06]. RMI is an object oriented
version of remote procedure calls that allows an object in one Java Virtual Machine (JVM) to
communicate with an object in a remote JVM. In order to achieve this a local object invokes one
of the methods in the remote objects interface. Arguments to the method call are marshalled at
the client side by a stub for the remote object. A stub acts as a proxy for the remote object at
the client. Stubs are compiled by a programmer from the interface of a remote object, and allow
for type checking of the remote method invocation. A stub forwards marshalled arguments of an
invocation to the remote object’s server, where they are received by a skeleton. The skeleton is
responsible for unmarshalling invocations received from clients, passing them up to the remote
object, marshalling responses, and sending them back to the clients. Skeletons are created by
programmers at compile time and enable static type checking of object implementations.

Java RMI has several disadvantages from the perspective of pervasive computing. Firstly,
interoperability is a problem, since all clients have to be implemented in Java. This is not feasible
for large scale pervasive computing environments given their heterogeneous nature. Furthermore
the synchronous nature of RMI introduces a tight coupling between client and server, reducing
scalability.

2.2.2 Message Oriented Middleware

Message-oriented middleware are an alternative middleware paradigm to synchronous request/reply
[BCSS99]. They provide support for asynchronous communication through the use of message

25

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

queues. Two of the more popular message-oriented middleware are the Java Messaging Service
and IBM’s MessageQueue.

JMS The Java Messaging Service (JMS) is an asynchronous messaging API for the Java
platform [Sun02]. It allows clients to communicate with each other by sending asynchronous
messages. Clients communicate indirectly with each other via a JMS Server. One-to-one com-
munication is supported by Message Queues stored at the server. These receive a message from
a sender, and promise to deliver it to a receiver. Message Queues are usually capable of storing
messages persistently, allowing them to provide reliable delivery guarantees when required. Cli-
ents may also send messages to Topics, which provide a publish/subscribe interface and allow
for many-to-many communication. Subscribers submit subscriptions to JMS for a particular
topic. Publishers send events to the topic for their type at the server, which forwards them to
all its subscribers.

JMS messages consist of headers, properties and a body. The body may include Java objects.
Subscriptions can include filtering expressions over message properties, allowing for a form of
content based filtering. The disadvantages of JMS are that the service itself is not distributed,
since the specification only defines an interface to the broker network, and not its implementa-
tion. Furthermore, as with Java RMI, the requirement that clients of JMS must be written in
Java limits its interoperability.

IBM WebSphere MQ IBM Websphere MQ is a message oriented middleware similar in
many respects to JMS [IBM09]. The main abstraction is that of a message queues, which receives
messages from senders and forwards them to receivers. Unlike JMS, it is language independent,
and bindings of its API to several programming languages have been created. However, it does
not attempt to perform type checking. Furthermore, it does not provide support for scalable
many-to-many communication, as multi-hop routing and filtering of messages are not addressed.
IBM have attempted to address this problem as part of the Gryphon messaging middleware
discussed in Section 2.2.3.3.

2.2.3 Publish/Subscribe Systems

Publish/Subscribe systems provide an anonymous, many-to-many communication service that
allows for the creation of highly scalable applications [EFGK03]. Publish/subscribe commu-
nication involves delivery of asynchronous messages called events. Publishers are producers of
events and subscribers are consumers of events. Publishers and subscribers need not be aware
of each other. Instead, subscribers specify the nature of the events they are interested in to the
publish/subscribe system. It ensures that any event generated by publishers that match these
specifications are delivered to subscribers. This form of communication is sometimes labeled
data-centric, as opposed to node- or address-centric, since endpoints remain ignorant of each
others’ identity.

26

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

The scalability of publish/subscribe arises from the loosely-coupled communication it al-
lows. Eugster et al. characterize this decoupling along three dimensions: time, space, and flow
[EFGK03]. Time decoupling ensures publishers and subscribers do not have to be active at
the same time for messages to be sent between them. When an event is received by the pub-
lish/subscribe system from a publisher, it delivers it to all subscribers, even if the publisher
subsequently fails. Similarly, once a subscriber creates a subscription for an event, the pub-
lish/subscribe system can buffer any matching events while the subscriber recovers from a fail-
ure. Space decoupling refers to the fact that publishers and subscribers know neither the identity
nor the total number of clients with whom they are communicating. This anonymity reduces
the complexity of communication endpoints. Furthermore, it allows them to transparently join
and leave the system. Flow decoupling refers to the asynchronous interface publish/subscribe
systems provide to clients. In particular, subscribers do not have to block waiting for events to
be delivered, or continuously poll the publish/subscribe system. Instead publish/subscribe sys-
tems notify subscribers when an event has occurred via an asynchronous callback. This allows
subscribers to perform other tasks while waiting for events to be delivered, and reduces event
delivery latency without requiring a high polling rate.

Publish/subscribe systems are not a panacea however. For some applications, synchronous
communication may be more natural, or endpoints may need to know each others’ identity.
Nevertheless, publish/subscribe communication is a particularly good match for data-centric
pervasive computing applications. In the following sections, we survey several representative
publish/subscribe systems from the literature. We classify them into three different types:
topic-based, content-based, and type-based publish/subscribe.

2.2.3.1 Topic-Based Publish/Subscribe

Early publish/subscribe systems provided a topic-based communication service. Topic-based
publish/subscribe systems connect message producers to consumers via the indirection of a topic.
Each topic has an associate topic name. Events also have a topic name, and producers send
their events to the corresponding topic. Consumers create subscriptions for topics of interest to
them. A topic-based publish/subscribe system ensures that consumers receive all events sent to
topics matching their subscriptions.

Topic-based publish/subscribe bears many similarities to group communication [Pow96],
from which it emerged. In particular, a topic name may be viewed as a group name. One of
the first topic-based publish/subscribe systems is the Information Bus [OPSS93]. It requires
producers to broadcast event messages to all clients, who then determine locally whether they
are interested in the topic. However the Information Bus was designed for use in LANs, and its
reliance on broadcast communication is not feasible at larger scales.

The main problem with topic-based publish/subscribe is that it does not allow for more
complex filtering of events based on their content, which can be a major scalability problem as

27

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

event rates increase. However for smaller scale scenarios with lower event rates it provides a
useful communication service.

2.2.3.2 Type-Based Publish/Subscribe

Type-based publish/subscribe systems enforce a close integration of publish/subscribe commu-
nication with object-oriented programming language concepts. In particular, they attempt to
preserve encapsulation of event data, while still allowing for efficient distributed content-based
filtering. This encapsulation is achieved for example by providing accessor methods for each
attribute of an event. In contrast, other forms of publish/subscribe tend to expose the repres-
entation of events to clients, violating object-oriented programming principles.

One such system is that of Eugster et al. [EGD01], who extend the Java programming lan-
guage with in-built support for type-based publish/subscribe communication. The extensions
require use of a pre-compiler (similar to RMI), and consist of explicit constructs for publishing
and subscribing to types. Events, implemented as objects and referred to as obvents, contain
both data representing the content of an event and methods for accessing the data. Subscrip-
tions may also contain content-based filters over the attributes of an event. Integration of
publish/subscribe into the programming language allows for static type checking of events and
subscriptions, and preserves encapsulation of event attributes. In addition, it allows subscrip-
tions for an event type to implicitly match events whose type is a sub-type of that defined in the
subscription. However, the fact that obvents contain code as well as data makes interoperability
more difficult to achieve.

Eugster also suggests a library-based approach to the integration of publish/subscribe with
Java [Eug07]. It uses parametric polymorphism [Sun05] and behavioural reflection to perform
static type checking of events and subscriptions. This approach avoids explicit type casts, pre-
generated typed proxies à la RMI, and pre-compilation of language extensions. It also allows
for static compilation of filter code. This enables the matching process to access event attrib-
utes without using reflection. However this solution is still somewhat error-prone in Java, since
runtime information about events is lost due to type-erasure. This requires programmers to
redundantly specify type information in order to set up routing paths before events are gener-
ated. Eugster also discusses several other difficulties relating to the limitations of behavioural
reflection in Java [Eug07].

2.2.3.3 Content-Based Publish/Subscribe

For many applications, topic-based subscriptions are too coarse-grained. In addition to the
events they actually want, topic-based subscribers may receive many events that are irrelevant.
Content-based publish/subscribe systems allow clients to define additional filters over event con-
tent as part of their subscriptions (or advertisements). This greatly enhances the expressiveness
of publish/subscribe systems and, if implemented properly, increases scalability by reducing

28

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

unnecessary communication. However, storage and transmission of subscriptions and advert-
isements is more expensive for content-based systems. We now review several content-based
systems from the literature. For additional information concerning routing in content-based
publish/subscribe systems, we direct interested readers to the survey of Baldoni et al [BV06].

CEA The Cambridge Event Architecture (CEA) is an event-based middleware centered around
a publish-register-notify paradigm [BBHM95; BMB+00]. During the publish stage, event pub-
lishers advertise a definition for the events they produce at a name trading service. Subscribers
use this service to discover events of interest to them. Subscribers then register a subscription
with publishers of these events. Publishers expose an interface containing an asynchronous regis-
tration method to receive subscription requests. The publisher interface also allows for regular
synchronous communication. Finally, during the notification stage, publishers send their events
to subscribers with matching registrations. The subscriber exposes an interface containing an
asynchronous callback to receive these notifications. Event mediators with both publisher and
subscriber interfaces are also supported by the CEA. These decouple communication and allow
clients to offload the burden of storing routing information.

CEA type checks events statically in accordance with its goal of integrating publish/subscribe
with existing middleware technology. CEA initially only allowed for equality filters over the con-
tent of events, but was later extended to support predicate filters over key/value pairs. However,
it only type checks subscriptions dynamically at runtime. CEA also supports specification of
composite event patterns in order to detect combinations of events [Hay96].

COBEA [MB98] is an CEA-based extension of CORBA with support for asynchronous
events. COBEA clients use the CORBA IDL to specify typed events. These are transmitted
as parameters in method calls in order to avoid using heavyweight CORBA objects. COBEA
also allows for untyped events using the any datatype of IDL. The IDL compiler performs type
checking of typed clients. Static type checking ensures that no run-time overhead is incurred
from type checking, and allows for bugs to be caught early in the development cycle. However it
does introduce a tight coupling between publishers and subscribers. Importantly, the subscrip-
tion language of COBEA supports content based filtering of events.

The main disadvantage of CEA and its derivatives is the lack of support for distribution of
content filters across multi-hop event mediators. This is critical for improving the scalability of
a content-based publish/subscribe system.

Siena The Scalable Internet Event Notification Architecture (SIENA) is a large-scale content-
based publish/subscribe system designed for scalability by Carzaniga et al [CRW01]. Publishers
and subscribers communicate with each other in SIENA via an event mediator. The mediator
is implemented in a distributed fashion over a multi-hop overlay network. Each node or broker
in the overlay is responsible for hosting clients (i.e. publishers and subscribers), and for storing
routing state that enables the efficient delivery of notifications. Routing state may include both
advertisements from publishers indicating the events they intend to generate, and subscriptions
from subscribers indicating the events they are interested in.

29

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

The choice of topology for the overlay network has a major effect on the scalability of event
routing. Three different classes of topology are possible in SIENA (depicted in Figure 2.2), each
with their own routing algorithm. The first, and simplest, is a hierarchical topology. Under this
topology, a single broker is nominated as the root of a tree that connects all brokers. Brokers
forward subscriptions and events detected by their children to their parent in the tree. They
also forward events that a particular child detects to the rest of their children. This means that
the only messages parents send to their children are events. Note however that advertisements
are unnecessary with a hierarchical topology.

HIERARCHICAL

GENERAL P2P

ACYCLIC P2P

: Subscription Flow

Figure 2.2: SIENA Routing Topologies

The second possibility for the overlay topology is an acyclic peer-to-peer topology. This
topology connects all the brokers in the overlay via a minimum spanning tree. SIENA floods
advertisements to all brokers over the spanning tree, creating an advertisement tree rooted at
the publisher-hosting broker. Subscriptions follow the reverse path of matching advertisements
towards the publisher-hosting broker. Finally, events generated by publishers follow the reverse
path of subscriptions. This architecture assumes that events are more frequent than subscrip-
tions, and that subscriptions are in turn more frequent than advertisements.

The final topology, general peer-to-peer, allows for redundant links in the overlay. Redund-
ant links improve reliability with respect to broker failures. Furthermore they allow for more
flexibility in the configuration of brokers. However routing over a general overlay is more com-

30

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

plex, since the routing algorithm has to handle cycles in the topology. SIENA uses a simplified
distance vector routing protocol that extends each flooded message with the source’s identifier
and the distance traveled so far. At each hop, a broker examines its routing tables to see whether
the message has arrived on the shortest path from the source. If not, it is dropped.

An important part of the SIENA routing algorithms is their ability to cover and merge
advertisements and subscriptions so as to reduce network traffic and routing state storage re-
quirements. One subscription covers another if their filters are equal, if the former has no filter,
or if the former’s filter is more general than that of the latter. When a broker is deciding whether
to forward a subscription along a link, it first examines its routing tables to see whether it has
already forwarded a covering subscription. If it has, it drops the new subscription. When two
subscriptions overlap but neither of them covers the other, a broker may decide to merge them.
Merging converts subscriptions with overlapping filters into a single joint subscription. Instead
of forwarding both subscriptions to the next broker, a broker can forward a single merged sub-
scription, reducing network traffic and routing state requirements downstream, at the cost of
some extra computation. In a similar fashion, brokers may decide to cover and merge advert-
isements.

The scalability of SIENA arises from its combination of a distributed event mediator, content-
based filtering of events, and covering and merging of filtering state. However, the overlay
network topology must be configured statically by an administrator. This becomes unrealistic
at large scales, where changes in the topology are common. Furthermore, in the worst case,
SIENA floods advertisements to every broker in the network. With respect to the individual
routing topologies, several other scalability problems arise. For the hierarchical topology, the
root of the hierarchy is a single point of failure, and may prove to be a bottleneck. For the
acyclic peer-to-peer topology, failure of a single link or broker partitions the network. For the
general peer-to-peer, redundant links improve reliability, and allow for more flexibility in the
configuration of connections between brokers. However, the topology must still be configured
statically by an administrator at deployment time. In addition, as observed by Li et al [LMJ07],
cycles in the overlay result in either redundant advertisements, subscriptions or publications.
Finally, events in SIENA are unstructured lists of attribute value pairs. Without type checking,
the likelihood of programming errors increases, reducing usability.

Padres Padres is a content based publish/subscribe middleware from the University of Toronto
[LHJ05; LJ05]. Its original event dissemination algorithm is based on SIENA’s routing algorithm
for acyclic peer-to-peer topologies. Li et al. subsequently extended this algorithm to allow
for event dissemination over general peer-to-peer topologies [LMJ07]. To prevent cycles, the
algorithm assigns a unique tree ID to each advertisement predicate. This has the added benefit
of reducing the number of times matching must be performed for an event. Furthermore it
allows extra flexibility when forwarding events since a broker can sometimes choose a different
path if one is overloaded. This also increases the flexibility of complex event detection, since
alternate routing paths allow for a wider choice of detector placements. However, the algorithm
still requires flooding of advertisements. In addition, the increase in routing flexibility comes at

31

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

the cost of a reduced ability to perform covering and merging of advertisements generated by
different publishers, further increasing state requirements.

Gryphon Gryphon is a large-scale information flow architecture from IBM [BKS+99]. It
supports messaging using an information-flow graph (IFG) model. Sources in the information
flow graph produce events, and sinks receive them. Intermediate nodes transform events en route
and may be stateless (e.g. filtering) or stateful (e.g. aggregation). The system maps nodes in the
information flow graph to physical brokers in an overlay network. An administrator creates the
overlay network statically at deployment time. For reliability, Gryphon groups brokers together
to form virtual broker cells. It connects virtual broker cells to each other using link bundles,
where link bundles may consist of several redundant physical links. The redundancy afforded
by virtual brokers and link bundles allows Gryphon to cope with failures to a degree, although
reconfigurations of the overlay network beyond this are complex. Gryphon provides several other
important services, such as exactly-once delivery [BSB+02], durable subscriptions [BZA03], and
relational subscriptions [JS03a].

Hermes Hermes is a large scale publish/subscribe middleware from Pietzuch that employs
peer-to-peer technology to achieve scalability [Pie04]. It uses the Pastry distributed hash table
(DHT) [RD01] to implement an event mediator as an overlay network of event brokers. Events
in Hermes are typed, and are dynamically type checked by brokers at runtime. Before a client
can publish (or subscribe to) an event, it must create and add a type schema for it to the mid-
dleware. Hermes stores this type schema at the rendezvous broker for the type. The rendezvous
for an event type is found by hashing its name and searching for the broker whose Pastry ID is
closest to the hash value. This spreads the burden of acting as a rendezvous node evenly. Hermes
provides two event dissemination algorithms, type-based routing and type- and attribute-based
routing. The former is analogous to topic based publish/subscribe, while the latter allows for
content based filtering of events.

Routing of advertisements is the same for both algorithms. Having added the schema for an
event to the system, publishers send advertisements for an event towards the same rendezvous
broker. At each hop, intermediate brokers store routing state about the advertisements they
have received and forwarded. Advertisements are only forwarded if no covering advertisement
exists. Routing of advertisements stops at the rendezvous.

Type-based and type- and attribute-based routing differ in their handling of subscriptions
and event notifications. Under type-based routing, subscribers forward their subscriptions to-
wards the rendezvous. When an intermediate broker receives a subscription, it forwards it
towards the rendezvous so long as it is not covered by an existing subscription. In addition, if it
has received a matching advertisement from a broker other than the sender of the subscription,
it forwards a copy of the subscription along the reverse path of the advertisement. When a
subscription reaches the rendezvous, forwarding, including reverse-path forwarding, terminates.
Event notifications follow the advertisement of their publisher towards the rendezvous. They
also follow the reverse path of any subscriptions they encounter en route.

32

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

Type-based routing maintains relatively little routing state at brokers. This can be an ad-
vantage, but means brokers cannot filter events based on their content. In addition, every event
publication must go to the rendezvous, even if no subscriber is interested in it. This could easily
overload the rendezvous, particularly since no filtering of events is performed. Furthermore, if
publishers are energy-constrained sensors, as is common for pervasive computing applications,
it is a waste of their resources to publish events that no-one is interested in.

Type- and attribute-based routing takes an alternative approach to routing of subscriptions
and event notifications. Subscriptions may contain filters over the content of events. Similar
to type-based routing, they are sent by a subscriber towards the rendezvous broker. Each in-
termediate broker evaluates covering relationships between its existing routing state and every
subscription it receives. It forwards uncovered subscriptions to the rendezvous, and along the
reverse path of any matching advertisements. It may also choose to merge overlapping subscrip-
tions.

In contrast to type-based subscriptions, the rendezvous may continue to forward some of the
type- and attribute-based subscriptions it receives. Instead of always dropping a subscription,
the rendezvous looks to see whether there are any matching advertisements for it, and if so,
forwards it along their reverse path. In this way, subscriptions reach all brokers hosting publish-
ers with matching advertisements, so long as they are not covered by existing subscriptions. In
contrast to type-based routing, event notifications only follow the reverse path of subscriptions,
and do not always reach the rendezvous. Furthermore, the publisher hosting broker does not
need to forward events unnecessarily, since it always knows the current matching subscriptions
for its publishers.

Hermes, and in particular type- and attribute-based Hermes, is highly scalable. This is due
in large part to its use of the Pastry DHT to maintain an overlay network. In contrast to SIENA,
addition and removal of brokers to the Pastry DHT is simple, since it automatically reorganises
in response to changes in the underlying topology. Furthermore, it allows for fast and localized
recovery from link and broker failures. For example when a link between two brokers fails, the
source broker automatically reroutes any subscription or routing state traveling in the direction
of a rendezvous broker along that link towards the new nearest neighbour to the rendezvous.
Apart from its scalable routing algorithm, Hermes is a fully fledged event based middleware. It
uses open standards for messaging and expressing filters (XML and XQuery [W3C07]) to enable
interoperability. It also provides several higher level services, such as composite event detection
and security. On the downside, it is difficult to provide strong reliable delivery guarantees in
Hermes. We discuss Hermes further in Chapter 5 in relation to the distributed placement of
complex event detectors.

2.2.4 Data Stream Management Systems

A related area to publish/subscribe systems is that of data stream management systems (DSMSs).
DSMSs arose from work done in the continuous query community to improve the scalability of

33

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

centralized continuous query systems. Similar to publish/subscribe systems, DSMSs provide a
data-centric programming interface. Their modus operandi is to compile continuous queries into
a graph and then map this query graph efficiently to an overlay network. Operators in the query
graph may be stateless, such as simple filters, or stateful, such as aggregation or sliding window
join operators. This model is similar to the information flow graph model we discussed earlier
for Gryphon (Section 2.2.3.3).

Some of the work done by the DSMS community in terms of distribution includes finding
efficient placements for operators, dynamic load balancing, and coping with lost or delayed mes-
sages. Operators in a graph may have multiple inputs and outputs. However, in contrast to most
large-scale content based publish/subscribe systems, the routing algorithms of most DSMSs are
not designed to cope with large numbers of overlapping publishers and subscribers. We now
give an overview of some of the more prominent distributed DSMSs from the literature.

Aurora* and Medusa Aurora* and Medusa [CBB+03] are distributed implementations of
Aurora [CcC+02; ACc+03] (see Section 2.3.2). They attempt to provide support for large scale
streaming applications requiring communication and cooperation across multiple administrative
domains. Aurora* focuses on intra-domain communication, while Medusa handles inter-domain
communication and cooperation. Each domain consists of one or more event brokers. Within
a domain, Aurora* stores information about the locations of all producers, consumers, and
query graph operators in a catalog. The implementation of the catalog may be centralized
or distributed, but it must be accessible to all brokers in the domain. New queries can reuse
existing operators by looking up their location in the catalog.

In many cases, query graphs may involve entities from multiple administrative domains.
Medusa enables the creation and deployment of streams across domain boundaries. It also allows
for the negotiation of contracts that specify payment agreements between domains that wish
to trade resources. Information about the location of producers, consumers, and query graph
fragments is available in Medusa through a distributed catalog. In contrast to the intra-domain
catalog, whose implementation is left unspecified, the inter-domain catalog is implemented using
a distributed hash table. Each entity has a globally unique identifier, and the hash of this
identifier is used as a lookup index for information about the entity in the DHT.

Hourglass The Hourglass project at Harvard [SPL+04] attempts to deliver data from sensor
networks to interested parties using a stream abstraction. Hourglass manages multiple streams
and tries to find commonalities between them in order to reduce bandwidth consumption while
providing reasonable latency. A key component of Hourglass is the Relaxation stream operator
placement system of Pietzuch et al [PLS+06]. It attempts to place query graph operators
efficiently by modeling the physical overlay network as a latency space. This space assigns each
broker an approximate network coordinate, allowing it to estimate its distance to other brokers in
the network. A spring relaxation algorithm enables operators in the query graph to dynamically

34

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

modify their position in a decentralized fashion in response to changing network conditions.
Relaxation also suggests a multiplex operator for handling large numbers of subscribers to an
operator, but details of how this might work are not given.

2.2.5 Middleware for Context-Aware Applications

An important characteristic of pervasive computing applications is context-awareness. Context-
awareness allows applications to tailor the service they provide to users in response to changes
in the environment. Early pervasive computing systems required applications to incorporate
context information in an ad-hoc manner. Subsequently, several researchers recognised the need
for context-aware middleware to simplify application development. Key issues for context-aware
middleware include scalability, adaptivity to environmental changes, and the discovery, repres-
entation, and aggregation of contextual information. We now give an overview of several such
middleware from the literature.

The Context Toolkit Dey et al. [ADB+99] discuss several requirements for dealing with con-
text, and emphasize the need for context that supports and enhances a users ability to perform
tasks. They present a software infrastructure called the Context Toolkit to meet these require-
ments [DAS99]. The Context Toolkit architecture contains three main types of component:
context widgets, context servers, and context interpreters. Context widgets are used to abstract
over different context sources. This helps to increase reuse by decoupling context information
from the device that produces it. Context servers are responsible for aggregating all context re-
lating to a single object in one place. Finally, context interpreters convert low-level context into
high-level context. These components are executed independently from applications, but are
fixed at design time. The Context Toolkit does not support publish/subscribe communication,
and distribution of the various components is not discussed by the authors. The Context Toolkit
lacks scalability since widgets and servers must store information about all their subscribers.

Solar Chen et al. [CLK04; CK05] designed the Solar middleware for the collection, aggregation
and dissemination of context information. The middleware is built around the concept of a
Context Fusion Network (CFN). Applications specify operators (both system and user-defined)
over streams of context information. Solar merges this operator tree into a system-wide CFN in
order to reuse common operators and thus improve scalability. Users define operators explicitly,
in contrast to operators defined implicitly via a complex event language, and operators can
therefore presumably contain arbitrary code.

Similar to the Hermes middleware described in Section 2.2.3.3, Solar relies on an overlay
network implemented using the Pastry DHT. However in contrast to Hermes, subscribers send
subscriptions to publishers independently, and not based on their advertised type. Brokers
cooperate to forward events using SCRIBE [RKCD01], an application-level multicast algorithm.

35

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

This becomes less efficient than Hermes type- and attribute-based routing when there are many
publishers with the same type. It is also less data-centric, since subscribers need to know the
identity of individual publishers. Furthermore it does not take into account the needs of energy
constrained wireless sensor networks since all events generated by a publisher must go to the
root of the multicast tree, even if there are no active subscribers.

The same researchers suggest a policy-controlled data dissemination service called PACK
[CK05], which allows Solar to cope with conditions of high load. Overloaded event queues can
drop events and summarise them into digests. Users define policies for each of their subscriptions.
These policies control both the order in which events are dropped by queues and the aggregation
functions used to generate digests. In the worst case, overloaded brokers who cannot meet policy
requirements simply drop all events. However, they also create a summary of dropped events
using the aggregation functions defined in policies, or the COUNT aggregation function if none
are specified.

SCI The Strathclyde Context Infrastructure (SCI) of Glassey et al. [GSR+03] is a middleware
framework for managing context. The central abstraction is that of a range, which hosts the
entities that produce, manage, and consume contextual information in an area (physical or lo-
gical). Ranges are organized into an overlay network for scalability and robustness. Each range
contains a context server (CS) that stores information about entities in that range and enables
communication with other ranges. The CS can also use a set of specialist services called Context
Utilities to help manage its range (e.g. Location Service, Event Mediator Query Resolver). SCI
uses the idea of a dynamic composition graph similar to the Context Fusion Network of Chen
et al. [CLK04] to deliver information from sources to sinks. SCI does not attempt to optimize
operator placement however, and its context query language does not support complex event
expressions.

Nexus Lehmann et al. [LBBN04] address the problem of modeling context information, con-
centrating on the interoperability between different world models, and between applications and
resources. They outline a system for managing small to medium domains, and a global ar-
chitecture called Nexus for federating between several such systems. Nexus relies on a global
Augmented World Model ontology for this federation, a concept similar to the Pervasive Com-
puting Standard Ontology of Chen et al [CFJ03].

In addition, Nexus provides two complementary services that address the issue of event man-
agement for mobile users [Bau04]. A notification service is responsible for delivery of events to
users. An observation service supports the detection of several common state-based predicates,
similar to complex event expressions. These can be parametrised by users as desired. Users
may also stipulate a confidence level to control the number of false positives and negatives.
The observation service leverages the notification service for delivery of the events it detects.
Nexus uses the Pastry DHT to store information about the locations of event sources and sinks.
However Nexus routes events directly between communication endpoints. This raises scalability

36

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

issues for large numbers of subscribers. Furthermore, the observation service does not attempt
to optimize placement of detectors.

CIS The Contextual Information Service (CIS) of Jin et al. provides a distributed database
interface for accessing context information [JS03b]. It allows users to specify quality of service
requirements including accuracy and timeliness as part of a query. CIS uses this information
to quench the information produced by sensors when it is not needed by subscribers. This
helps to reduce unnecessary communication, and may also prolong the lifetime of sensors if they
are energy constrained. The CIS interface is conceptually similar to the database abstraction
proposed for WSNs (see Section 2.2.6.2), although the CIS implementation is targeted towards
more resourceful environments. CIS is not particularly concerned with scalability, and has only
limited support for event routing.

Abstract Events Katsiri et al. argue in [KBM04] that current event models are limited for
use in a variant of pervasive computing called Sentient Computing [Hop00]. These limitations
arise from the incomplete mapping from abstract top-level knowledge to low-level concrete data
produced by sensors. They propose the concept of abstract events to model notifications about
transparent changes in distributed state. They express abstract events using temporal first-order
logic (TFOL). An abstract event detection service takes in TFOL abstract event definitions and
creates detectors to notify the user on their occurrence. Thus, abstract events allow users to
specify high-level events that correspond closely to real world concepts. However their detection
algorithm is based on the Rete algorithm (see Section 2.3.3), which scales poorly in terms of
memory usage, and is unsuitable for deployment on resource-constrained devices. Furthermore,
the Turing-complete nature of TFOL makes it hard to reason about. A closed-world assumption,
as required to support negation and quantification, makes abstract event detection difficult in
open distributed environments.

Sentient Objects Biegel and Cahill [BC04] propose the Sentient Object programming ab-
straction to support event-based situation analysis in sentient environments. Each sentient
object interacts with sensors and actuators using an event-based communication infrastructure
to handle mobility. A Sentient Object provides components for fusing sensor data using Bayesian
networks, storage of context for efficient reasoning, and an inference engine for determining what
course of action to take on the occurrence of an event within a context. Application developers
can program Sentient Objects at a high level using graphical tools. A context acts as a dynamic
filter over input events streams, in that only events of interest in a particular context must be
delivered to the object. However Sentient Objects themselves are implemented in a centralised
fashion.

37

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

2.2.6 WSN Middleware

WSNs are an important component of many pervasive computing applications. The literature
contains a variety of middleware and programming models targeted towards WSNs. These
range from low-level platform-centric programming models that target individual WSN nodes,
to network-level macro-programming abstractions that treat a WSN as a single entity.

In this thesis, our interest in WSNs relates primarily to how they can be integrated into
larger-scale, possibly global, pervasive computing infrastructures. Applications that utilize such
an architecture may require the services of several distinct WSNs. These WSNs may be part
of separate administrative domains, and are likely to have different characteristics in terms of
sensor technology, routing topologies, and scale.

One of the key design principles of WSNs is that sensor data should be processed in-network
to reduce unnecessary communication. Therefore pervasive computing applications that utilise
WSNs may wish to perform some of their processing within the WSN domain. Ideally, developers
could define the processing necessary for such applications in a data-centric, domain-independent
programming model. However, for efficiency reasons, applications may require more fine-grained
control over WSN data processing than this would allow. As an example, collaborative object
tracking in WSNs usually requires low level control over communication between WSN nodes.

This control could be provided by a more sophisticated pervasive computing programming
model that incorporates support for WSN data processing. Alternatively, developers could
implement their applications using two separate programming models; the first programming
model would support in-network data processing for the WSN, and the second would support
further processing within the rest of the pervasive computing system as before. In between these
alternatives lies a spectrum of application development models, where varying amounts of WSN
data processing are defined using the pervasive computing system’s programming model and
then pushed into WSNs.

We now give an overview of several classes of popular WSN middleware and programming
models. For a more detailed discussion of middleware issues in sensor networks, several surveys
can be found in the literature (e.g. that of Yu et al. [YKP04] or that of Roemer et al [RKM02]).
A good survey of common programming models for sensor networks is that of Sugihara and
Gupta [SG08]. They divide sensor network programming models into node-level, group-level,
and network-level programming models. Readers are referred to their survey for more details
on node-level programming models. We concern ourselves mainly with the latter two, since
node-level programming is too low-level for developers of large-scale multi-domain pervasive
computing applications.

2.2.6.1 Group Level

Group level programming models take a more application centric view than that of platform-
centric node level programming models. As their name suggests, they provide primitives to sim-
plify creation and manipulation of groups of nodes in order to support collaborative in-network
processing. Sugihara and Gupta [SG08] divide groups into neighbourhood groups and logical

38

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

groups, and classify group-level programming models according to this distinction. Neighbour-
hood groups are defined based on proximity to a node or location. Logical groups are defined
based on some attribute of a sensor node or its data. Members of logical groups do not have to
be physically located near to each other. Groups can be further distinguished by whether their
membership criteria are data-centric or involve node or network-centric attributes such as topo-
logical information. One advantage of neighbourhood groups, and in particular one-hop groups,
is that WSNs that communicate using wireless broadcast can support them very efficiently.

Abstract Regions The Abstract Regions programming model of Welsh and Mainland
[WM04] provides support for constructing groups of sensor nodes, and for performing operations
on those groups. Groups come in a variety of forms, including k-hop neighbour groups, k-nearest
neighbour groups, groups within a spatial distance, and global spanning trees. Furthermore,
Abstract Regions provides several group operators, including operators for enumerating the
members of a group, sharing data between members, and aggregating member data values.
Groups also have a QoS interface that enables applications to trade-off quality of service with
resource usage. Abstract Regions provides a useful building block for the implementation of
higher level constructs and languages. However, it mainly focuses on providing primitives to
simplify the collection of sensor data from groups of nodes, and not on providing support for
interpretation of this sensor data. Thus it is still relatively low level in comparison to the
more data-centric programming abstractions we will discuss in Section 2.2.6.2, as it requires
programmers to think in detail about the nature of the underlying network topology.

Hood Simlar to Abstract Regions, Hood is a group-level programming model from White-
house et al. [WSBC04] based on the notion of a neighbourhood. Nodes in a neighbourhood
share data with each other according to a push policy. In contrast to Abstract Regions, Hood
only supports one-hop neighbourhoods. Extensions that support multi-hop neighbourhoods are
suggested by the authors as future work, but interestingly they also mention that none of the ap-
plications they surveyed required this. However this may be due to the difficulty of implementing
such groups without programming support.

EnviroTrack EnviroTrack [ABC+04] is a logical-group programming abstraction from Ab-
delzaher et al. targeted towards object-tracking applications. It forms groups based on physical
events that occur in the environment, and allows these groups to be named using context labels.
Groups can then migrate in an agent-like fashion as further events occur. Thus in contrast
to Abstract Regions and Hood, it provides management support for mobile groups. However,
in order to prevent redundant groups, they enforce a restriction on the relationship between a
nodes sensing radius and its communication radius.

39

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

PIECES The PIECES [LCL+03] group-level programming model for sensor networks of
Liu et al. provides a state-centric programming abstraction for collaborative and signal informa-
tion processing (CSIP) applications. This abstraction supports the definition of groups in terms
of both their structure and the roles which different members of the group should assume. They
show how their model can be used to implement a multi-target tracking application. In compar-
ison to EnviroTrack, their implementation is capable of handling cases where different objects
cross tracks.

2.2.6.2 Network Level

In contrast to node or group level programming models, network level programming models
allow programmers to define programs for the network as a whole. They attempt to abstract
over lower level communication concerns, and allow the programmer to concentrate on high level
tasks like data processing. They can be broadly classified into two types (as done by Sugihara
and Gupta or Gummadi et al. [SG08; GGG05]), those that take a data-centric view and those
that take a more network-centric view.

Distributed Database abstraction Some of the most popular research implementations
designed for programming and collecting data from sensor networks take a distributed database
view. Hellerstein et al. [HHM03] present an overview of the motivation for this abstraction and
some of the research challenges concerning WSNs being faced by the database community. The
main problem with taking a distributed database view is that important data may not always
be resident in a node, and custom collaboration may have to be performed in order to achieve
some tasks (such as object tracking).

Woo et al. [WMG04] give an interesting overview of system architecture directions for query
processing in sensor networks. They emphasize that the strictly defined layers of traditional
network stacks may have to be sacrificed in wireless sensor networks in order to save energy.
This portends architectures where lower layers suggest possible configurations to higher layers,
which in turn supply routing hints to lower layers in order to optimise the network for a partic-
ular application’s needs. This may result in a situation where the tightest (i.e. least complex)
API of all the layers in the stack is the interface presented to the user by the application layer.

TAG Madden et al. developed a generic aggregation service for ad hoc networks of TinyOS
motes called TAG [MFHH02]. It treats the network as a distributed database, and provides a
simple declarative interface based on a subset of standard database query languages for data
collection and aggregation. Aggregation queries are distributed and executed in the network
by TAG in order to reduce the total amount of communication, and hence save power. The
authors present a taxonomy of aggregates that distinguishes aggregation functions along different
dimensions, enabling them to make generic routing decisions based on a function’s classification.
Some common sensor tasks such as object tracking are inherently localized and node-centric

40

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Middleware

however, and difficult to express declaratively.
One drawback of TAG is that data acquisition is performed at a user specified sample

rate. Hence there is no way for data to be acquired asynchronously in response to external
events. Madden et al. subsequently [MFHH03] proposed the idea of an acquisitional query
processor (ACQP) for sensor networks. ACQP provides much of the functionality of TAG, but
in addition provides support for other forms of data acquisition such as asynchronous events.
It also addresses issues of query optimization, dissemination, and data quality. As with TAG,
power optimization is central to the design of ACQP. However, only primitive, locally generated
events are supported.

COUGAR COUGAR [YG02; BGS01] is a data collection service for WSNS from Gehrke
et al. that provides similar functionality to TAG. Queries are disseminated by COUGAR using
a query optimiser at the WSN gateway. However unlike TAG, it assumes the gateway has
complete knowledge of the network topology. Furthermore, adapting a distributed query to take
into account changing network conditions is not possible.

Bonfils and Bonnet [BB03] attempt to address this latter problem. They model their solution
on the task assignment problem, i.e. they try to find a mapping of query operators to sensor nodes
that minimizes the amount of data transferred over the network. Under their solution, operators
are initially mapped arbitrarily, but gradually improve their positions in a decentralized fashion
using a spring relaxation algorithm. To find better placements, each operator maintains a set
of tentative operators on neighbouring nodes. Tentative operators continuously compare the
efficiency of their placement to that of the active operator. Active operators migrate to a node
hosting a tentative operator if it will result in a more efficient placement. This algorithm is
similar to the Relaxation placement algorithm for wired networks proposed by Pietzuch et al.
as part of the Hourglass project (see Section 2.2.4) [PLS+06]. However, instead of tentative
operators, the Relaxation algorithm uses a latency space to find better placements.

DSWare The Data Service Middleware (DSWare) of Li et al. [LSS03] extends the sensor
database abstraction with a real time event detection service. DSWare also provides Data
Storage, Data Subscription, Group Management, Data Caching and Scheduling. Li et al. dis-
tinguish between primitive and compound events, and allow a confidence value to be associated
with events for improving the detection reliability. An SQL-like language is used for registering
and canceling events.

MiLan MiLan [HMCP04] is a middleware for sensor networks from Heinzelman et al. that
efficiently manages sensor network resources in order to meet application QoS requirements.
Applications submit QoS requirements as state-based variable graphs, and Milan proactively
adapts the network configuration to meet these requirements. A network abstraction layer
allows tight coupling with the underlying network using plug-ins. Network management and
adaptation is left to the plug-in. It supports concurrent applications by allowing policies to be

41

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

specified to deal with resource contention, but it does not allow for dynamic application updates.

Macro-Programming Similar to the distributed database abstraction, macroprogramming
systems allow programmers to treat the network as a whole. However, they typically provide
network-centric programming abstractions instead of the data-centric interface of distributed
database systems.

Regiment Regiment [NMW07] is a macroprogramming language from Newton et al. that
builds on abstractions from functional programming. It allows programmers to create and
manipulate streams and regions of sensor data. Regions may be defined based on a variety
of grouping mechanisms, including location based regions or k-hop neighbours. Programs in
Regiment compile to an intermediate Token Machine language (TML), since the gap between
Regiment and low-level sensor node programming languages is too high. Programs in Regiment
are succinct, but it is not a panacea, and the authors observe it is not best suited to applications
that require frequent dynamic reprogramming (in comparison to distributed database style query
interfaces).

Kairos Kairos [GGG05] is a language independent macroprogramming model from Gum-
madi et al. that allows users to specify global application behaviour in a centralized fashion.
Kairos provides primitives for addressing and manipulating nodes and lists of nodes, for re-
trieving the one-hop neighbours of a node, and for accessing local and remote variables. Kairos
is implemented as an extension to existing programming languages. Programs are first pre-
processed into annotated source code, and then compiled into a node specific binary. Kairos
provides a synchronous programming interface. However, the Kairos runtime uses asynchronous
request/reply to access remote variables, and returns cached values of a previously accessed
variable immediately. Overall, Kairos has a more restricted set of data types and operations
than Regiment, but its language-independent nature may be advantageous.

2.3 Complex Events

One of the key observations made by researchers regarding pervasive computing is that ap-
plications are not usually concerned with individual sensors. Rather, they are interested in
the information these sensors produce. Therefore, system support for context acquisition in
pervasive computing applications tends to rely on data-centric routing. Instead of explicitly
naming relevant data sources by their network address, application developers prefer to specify
the information they are interested in declaratively. This leaves it up to the system to find
relevant data sources and deliver their data to the application. Since applications are not aware
of which information sources they communicate with, and vice versa, data-centric routing allows
for loosely-coupled communication between information sources and users. As we described in
previous sections, loose-coupling makes it easier to create highly scalable systems. This is crucial

42

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

given the scalability requirements of pervasive computing.
Hence it is important that application developers have a mechanism for quickly and accur-

ately specifying sensor data of interest. For data modeled as primitive events, this will typically
take the form of a filter language. However, in many cases, the raw data produced by sensors re-
quires additional processing to be of practical use. Application developers thus require a means
to specify complex patterns of event occurrences.

Researchers have proposed a wide variety of techniques to help application developers specify
high-level complex events. In this thesis we investigate the use of a dedicated complex event
language designed for use in pervasive computing applications. Complex or composite event
languages arose as part of work done by the Active Database community. They allow users to
detect patterns of events through the specification of complex event operators. For the purposes
of communication, complex events can be treated in the much the same way as primitive events.
In terms of modeling of real world occurrences, they extend the expressiveness of the event
abstraction, and make it easier for users to detect high level patterns of interest.

Most complex event languages can be viewed as examples of domain-specific-languages
(DSLs). While typically not providing the functionality of a general purpose programming
language, the availability of a DSL for a particular domain has several advantages. Programs
written in DSLs are usually clearer since they are closer to the semantics of the domain. Fur-
thermore, they make it easier to write programs targeted towards their domain, and also make
it simpler to find mistakes in programs. In some cases domain specific languages can be under-
standable to non-programmers familiar with the domain. Together, these advantages can help
to greatly improve developer productivity.

The benefits of DSLs must be weighed against their costs. Creating a new programming
language is a difficult task. In addition, developers must take the time to learn a new language.
To ease the task of language design, and to help smooth the learning curve for developers,
building on concepts from existing languages is usually a good strategy. However, complex
event languages for active databases were primarily designed for use in centralized environ-
ments. Extending them to work for open distributed environments such as pervasive computing
architectures raises several challenging problems. In the following sections we review several
complex event languages from the literature, in addition to several other relevant approaches to
pattern specification and detection.

2.3.1 Complex Event Languages

Having discussed the role of middleware in pervasive computing systems, we now turn our at-
tention to complex events. Complex events can be used to represent combinations or patterns
of raw sensor data. Specifying and detecting such patterns is of particular importance to pro-
grammers of pervasive computing applications, since individual sensor readings are often hard
to interpret reliably.

Programmers usually express complex event patterns within a complex event language. Com-
plex events languages were first suggested by the Active Database Community. Their original

43

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

motivation was to enable database programmers to specify rules that trigger an action to take in
response to an event occurrence. Events of interest were primarily database related, such as the
update of a particular tuple or the commit of a transaction. The rules defined by programmers
to control active behaviour are known as Event-Condition-Action (ECA) rules. Complex event
languages allow the detection of complex events during the event part of the rule. When the
system detects an event, it checks to see whether the rule has an associated condition1. If so it
evaluates it with respect to the state of the database. Finally, if the condition holds, the rule
fires, triggering its associated action. An action usually generates a new event, although for
many languages it may contain arbitrary code.

Complex event languages provide a wide range of complex event operators for detecting event
patterns. Popular operators detect sequences (i.e. ordered occurrences of events), conjunctions
(i.e. unordered occurrences of events), and negation (i.e. the non-occurrence of an event). Com-
position of operators enables the output of one operator to be used as the input to another.
Languages usually differ in the precise operators provided. Complex event languages must also
cope with the fact that there may be several different ways to detect a composite event occur-
rence for a given set of input events. A language’s semantics must be clear on which events are
used, and what is done with them after detection. Several different formal models for complex
event detection have been suggested, including finite-state automata, petri nets, and detection
trees.

Although originally designed for centralized scenarios, several researchers subsequently pro-
posed complex event languages for use in distributed event-driven applications, such as network
monitoring [MSS97] or distributed debugging [Sch96]. However, accurate and efficient complex
event detection is more difficult to achieve in distributed systems. Unlike centralized active
databases, where events are usually timestamped with a local logical clock, the lack of a global
clock for distributed systems can make it impossible to determine the true ordering of a set of
events. Furthermore, messages may be lost, delayed, or arrive out of order. These characteristics
limit the timeliness and precision achievable by distributed complex event detection.

Distributed complex event detection for pervasive computing applications introduces even
further challenges. In particular, many of the event sources for pervasive computing applica-
tions are energy-constrained wireless sensors. A key characteristic of these sensors is that it takes
much more energy for them to communicate than to compute. Hence a popular design prin-
ciple is to push any computation that may reduce unnecessary computation onto sensor devices.
However, the heterogeneity of sensors makes this a difficult task, since detection of all or part
of an expression can only be performed on sensor devices with sufficient computational and
memory resources to handle it. Thus non-trivial system support is required for decomposition
and placement of complex event detectors. Furthermore, sensors may be deployed redundantly
for reliability reasons. Hence language constructs to filter and aggregate duplicate readings from
multiple sensors are necessary. Finally, applications may require detection of a complex event
expression at several different geographic locations. The language should allow for partitioning

1Rules without a condition are known as Event-Action (EA) rules.

44

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

of complex event detection so that it may be performed separately for each region.
We now give a brief introduction to several representative complex event languages. A more

comprehensive overview is postponed to the discussion of related work in Chapter 3, where we
give a detailed comparison of a variety of languages from the literature to a new language we
propose for pervasive computing applications.

Ode Ode [GJS92; GJ92] is a regular-expression like language from Gehani et al. where com-
posite events are detected using finite state automata. It supports a variety of composition
operators. Some of these are listed in Table 2.5. Ode supports parametrised detection, where
expressions may contain conditions that reference attributes of different input events. Conditions
can span operands of a single operator, as well as operands of different operators. This helps to
improve detection efficiency, since filtering can be performed earlier in the detection process. The
alternative is to ignore the condition initially, generate all possible matching instances for the
operator, and then post-filter instances whose attributes don’t satisfy the condition. However
this is much less efficient, and may also affect the correctness of event detection. An example of
an Ode expression involving an implicit condition across event attributes (from [GJ92]) is:

immediate rehire(X) = sequence(fire(X), hire(X,Y,Z))

Here fire(X) and hire(X,Y,Z) are primitive input events with schemas fire(name) and
hire(name, age, sex). The expression checks for a sequence of fire and hire events. Note
that the variable name X is used by both operands of the sequence operator. It acts as an
implicit constraint, and ensures the expression only matches sequences of fire and hire events
for the same person.

An advantage of Ode is its formal definition based on finite state automata, since they are
both familiar and efficient. However Ode does not allow for extensive control over how input
events are reused, and the time model, designed for centralized active databases, is unsuitable
for distributed systems.

Snoop Snoop [CM94; CKAK94] is an expressive complex event detection language from
Chakravarthy et al. with extensive temporal support. Snoop relies on a tree-based detection
model, where a tree is derived from the structure of event expressions. Nodes of the tree corres-
pond to Snoop’s composite event operators. Snoop provides a variety of operators, a selection
of which we list in Table 2.5. An example of a Snoop expression that detects a sequence of fire
and hire events is:

immediate rehire = fire;hire

45

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

Here the sequence operator is represented by a semicolon (;), and fire and hire are primitive
events whose schemas we defined as part of our description of Ode. Note that this expression
does not ensure fire and hire events refer to the same person.

Snoop introduces the notion of parameter contexts, (also known as consumption policies),
to control the constituent events of a complex event in the case of ambiguity. One popular
consumption policy in Snoop is the recent consumption policy. Under this policy, if several fire
events occur before a hire event, only the most recent fire event is retained, and thus only a
single instance of immediate rehire occurs. Consumption policies are an important innovation,
since different applications may require different detection semantics when ambiguous detection
is possible. Earlier languages implicitly defined a single semantics, limiting their scope. On
the other hand, allowing the configuration of detection using consumption policies increases the
complexity of the language.

Some disadvantages of Snoop are that it does not allow the specification of conditions tak-
ing into account the attributes of events, and was not designed with or distributed systems in
mind (although attempts to define a distributed detection semantics were made subsequently
[YC99]). In addition, consumption policies in Snoop can only be specified globally, instead of
for individual operands.

Amit The Amit language of Adi and Etzion allows the specification and detection of complex
events, which they refer to as situations [AE04; AE02]. A situation is defined in XML by a
single operator. Input events relevant to an operand of the operator, called candidates, are
stored by Amit in a candidate list for the operand. In addition to an operator, each situation
has an associated lifespan, which acts as a context for its detection.

Table 2.5 gives a selection of Amit operators. An example of a lifespan definition (taken
from [AE04]) is:

lifespan = "example 7"

initiator = event: "option-quote"

where: "symbol = IBM and stock exchange = NYSE"

correlate: "add"

initiator = event: "stock-quote"

where: "symbol = IBM and stock exchange = NYSE"

correlate: "ignore"

terminator = event: "detected situation"

where: "symbol = IBM and stock exchange = NYSE"

termination type: "discard"

quantifier: "each"

terminator = expiration interval: "60 minutes"

termination type: "discard"

46

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

A situation definition can reference this lifespan if it wishes to limit the input events its operator
receives. Instances of the lifespan are initiated by the occurrence of IBM option-quote and
stock-quote events from the New York Stock Exchange (NYSE). Lifespans are terminated by
an event of type detected situation or after a time interval of 60 minutes. Several parameters
(correlate, termination type, quantifier) allow for more fine-grained control over lifespan
initiation and termination.

A restricted version of Amit called SENSID was subsequently used to investigate composite
event detection on resource constrained WSN nodes [Kra05]. This potentially allows for ex-
pressions defined in Amit to be transparently decomposed and analysed to determine whether
parts of them can be detected by SENSID. Distribution of these expressions can help prolong
the lifetime of a WSN by reducing unnecessary communication. Some disadvantages of Amit
are that it does not allow nested operators within a single complex event, and its time model
assumes a globally synchronised clock.

Operators

Sequence Conjunction Negation Counting

Ode sequence(A,B) A∧B A -
Snoop A;B A,B (A)[B,C] Any(m, E1,...,En)
Amit sequence(E1,...,En) conjunction(E1,...,En) not(E) nth(n, E1,...En)

Table 2.5: Sample Complex Event Operators

2.3.2 Continuous Query Languages

Continuous query languages arose to provide expressive and efficient support for queries over
streaming data tuples. They have much in common with composite event languages given that
events also arrive in streams. However, continuous query languages address several aspects of
data stream processing that complex event languages ignore. In particular, they usually provide
extensive support for the specification of windows over input data streams. Windows are usually
bounded temporally or by a maximum number of tuples. Tuples that fall outside a window are
discarded. However, unlike many complex event languages, continuous query languages do not
allow input tuples that cause the generation of an output tuple to be consumed.

Apart from language differences, much of the research into system support for continuous
query languages has had a different focus to complex event languages. Several systems provide
support for load-balancing, scheduling, and quality of service (QoS) guarantees. Many of these
issues are important for pervasive computing applications, but are not fully addressed by com-
plex event detection systems. Fortunately, many of the ideas are transferable.

Of particular interest is research related to the handling of distributed processing of con-
tinuous queries. There is a high likelihood of sensor failures and communication problems in
pervasive computing environments. Therefore knowledge about a particular query’s ability to

47

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

tolerate imperfect data streams is extremely useful to have. Several continuous query systems in
the literature allow users to stipulate how queries should handle lost, delayed, and out of order
inputs. Much of this work was originally proposed in order to enable continuous query systems
to shed tuples under conditions of high load while still respecting query semantics.

We now describe some representative continuous query systems from the literature. We
provide a more extensive survey in Chapters 3 and 4, where we draw comparisons with our own
work.

CQL Arasu, Babu, and Widom [ABW03] provide a precise semantics for continuous query
languages as well as an instantiation of the semantics called CQL. Their language provides three
classes of operator – stream to relation, relation to relation, and relation to stream. Stream
to stream operators can be built by composing these operators together. This enables their
semantics to exploit well understood relational semantics.

An example of a query in CQL (taken from [ABW03]) that detects congestion of highways
is:

Select segNo, dir, hwy

From SegSpeedStr [Range 5 Minutes]

Group By segNo, dir, hwy

Having Avg(speed) < 40

Here SegSpeedStr is an input stream with schema SegSpeedStr(vehicleId,speed,segNo,dir,hwy).
Each tuple in the stream captures the current speed, direction, and location (i.e. segment of
highway) of a particular vehicle. The GroupBy clause of the query splits the input stream into
separate partitions for each highway segment. Each partition stores a five minute sliding win-
dow of tuples (i.e. [Range 5 minutes]). At every time instant, the query evaluates the average
speed of all tuples in each partition, and outputs a congestion tuple for partitions with an aver-
age speed greater than forty (i.e. Having Avg(speed) < 40).

The Stream query processor [MWA+02] of Motwani et al. is a stream processing system that
uses CQL and attempts to perform both static and dynamic approximation of query results in
cases of high load or limited resources. This is achieved through intelligent load shedding (e.g.
by reducing window sizes or dropping tuples). CQL employs a heartbeat mechanism to deal
with delayed events in distributed systems. However, as with most continuous query languages,
it relies on a global clock for timestamping.

Aurora Aurora is a data stream management system for monitoring applications from Carney
et al [CcC+02; ACc+03]. Queries in Aurora are specified directly as an operator graph. Aurora
provides several operators that can be composed to form queries. An example of an expression
that applies its aggregation operator to a stream of stock updates (taken from [ACc+03]) is:

48

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

Aggregate [Avg (Price),

Assuming Order (On Time, GroupBy StockId),

Size 1 hour,

Advance 1 hour]

Here the input to the query is a stream of stock events with schema StockEvent(Time, StockId,

Price). The Assuming Order clause ensures tuples are ordered based on their Time attribute,
and grouped into separate partitions according to their StockId. The Size 1 hour and Advance

1 hour clauses define a hopping window of length one hour and step one hour over these par-
titions. Thus in contrast to the sliding window of our example CQL query, a hopping window
generates output once every hour, and not every time a new tuple arrives.

Aurora allows the specification of QoS graphs to control how events should be shed under
conditions of high load, and slack parameters to help deal with out of order input events. How-
ever, like CQL, it does not deal with issues related to distributed time.

2.3.3 Production Systems

Production systems are processing engines that support the specification and detection of
condition-action (CA) rules. CA rules result in a more declarative programming model than the
ECA rules provided by active databases. Production systems consist of two main parts, a set
of facts stored as elements of a working memory (WM) and a set of CA rules. The condition
part of a CA rule specifies a pattern over the elements of working memory, whose truth must
be monitored by the production system. When a change to WM causes a pattern to hold, the
rule associated with it fires, and the corresponding action executes.

In many cases, the conditions of multiple rules are simultaneously matched by a change to
working memory. Such a set of rules is termed a conflict set. A variety of strategies have been
employed to handle conflict sets. Some systems allow the user to assign a priority to rules.
Others try to fire the most specific rule, where a rule is deemed more specific than another rule
if the other’s condition is necessary but not sufficient for its own condition to match.

Production system languages vary in complexity. Some rule languages can have the ex-
pressiveness of first order logic; such languages thus allow for cyclic rules, where the action
of a triggered rule causes updates that affect working memory elements monitored by its own
condition. Programmers must therefore specify rules carefully in order to ensure they are con-
fluent, i.e. will terminate eventually. One disadvantage of production systems is that in their
general form they are computationally expensive, making it infeasible to employ them on re-
source constrained devices. Furthermore, determining termination properties of expressions in
a Turing-complete rule language is not always possible. Thus for many pervasive computing
architectures, acyclic rule sets make it easier and safer to perform distributed detection.

We now give a more detailed overview of two well known production system pattern-matching
algorithms from the literature. A broader survey of production system languages can be found

49

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Complex Events

in our discussion of related work in Chapter 3.

Rete The Rete algorithm, originally proposed by Forgy [For82], is a fast algorithm for match-
ing patterns to working memory elements. It was designed for use in the OPS5 production
system. The algorithm compiles rules into a rete network, also known as a discrimination or
token network. Figure 2.3 gives an example of such a network. A rete network consists of nodes
of two main types: α nodes and β nodes. Tokens, representing the existence or non-existence
of working memory elements, flow through the network. The α nodes contain conditions over a
single working memory element. In order to pass an α node, a token’s attributes must match
the node’s condition. β nodes implement joining operators over the tokens output by α nodes.
They may have an associated join condition. Whenever a new token is added to one of their
inputs, the β node evaluates it with respect to the join condition and any tokens on its other
input. If they match, then the β node outputs a new combined token. Top level nodes in the
network insert the tokens they generate into a conflict set, where a conflict resolution strategy
is employed to determine which rule to fire.

The Rete algorithm provides very fast matching for many rule sets. However, it does so at
the potential cost of large amounts of memory [WM03]. Rete is an eager matching algorithm
since it stores intermediate results in the nodes of its network. However in many cases this is a
wasted effort, since later changes to working memory may invalidate these results. Furthermore,
if many rules are matched simultaneously, and all added to the conflict set, the rule chosen by
the conflict resolution strategy may invalidate other potential rule firings in the conflict set. In
this case, eager matching of rules leads to further wasted effort and extra memory requirements
in order to store the conflict set.

α3

α2

α1

β1

β2

R2

R1

CS

WM

Figure 2.3: A RETE Network

50

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Conclusion

LEAPS Lazy Evaluation for Active Production Systems (LEAPS) [MB90; Bat94] is an altern-
ative production system pattern matching algorithm from Miranker et al. Unlike Rete, LEAPS
does not store intermediate matched join conditions for rules in β nodes. This reduces pattern
matching memory requirements. Moreover, LEAPS does not attempt to compute a complete
conflict set in response to each change in working memory. Instead, it triggers the first rule
it can match. This avoids wasting computation and memory resources matching conflict set
elements that never cause a rule to be fired. The authors claim that this enables LEAPS to
scale to much larger rule sets for many types of application.

The implementation of LEAPS is more complicated than that of the Rete algorithm. In-
stead of a discrimination network, the main data structure involved is a stack. The addition or
removal of an element from working memory pushes a handle to that element onto the stack.
Elements also acquire a timestamp indicating the time at which they were added or removed.
The matching algorithm examines each rule in turn to see whether the top element of the stack
matches part of the rule’s condition. If so, it tries to match the rest of the condition against
the relevant elements of working memory. If its condition can be matched, the rule fires, and
any changes it causes to working memory are added to the stack. If not, the algorithm picks
another rule and tries to match it with the top element of the stack and working memory. If
no rules are fired, the stack is popped and matching continues using the new top element of the
stack. Matching terminates when the stack is empty, indicating a fix point has been reached.

The disadvantage of the LEAPS approach is that the choice of conflict resolution strategy
is somewhat limited. In particular, applications that require a conflict resolution strategy that
must enumerate all matches in the conflict set are not possible.

2.4 Conclusion

This chapter has outlined several areas of research relevant to distributed complex event detec-
tion for pervasive computing. We began by introducing the concept of pervasive computing,
including the key characteristics of pervasive computing systems and applications. We also in-
troduced wireless sensor networks, and described how they might affect the design of pervasive
computing systems.

Having discussed pervasive computing, we introduced the concept of middleware, including
its origins and the current state of the art. We focused in particular on event-based middleware,
and how its scalability and data-centric nature make it suitable for pervasive computing applica-
tions. We then discussed publish/subscribe systems, a particular type of event-based middleware
that allows for highly scalable communication. We also discussed several other relevant classes
of middleware, such as data stream management systems, middleware for context-aware applic-
ations, and middleware for WSNs.

Following our overview of middleware, we discussed the importance of complex event de-
tection for pervasive computing. We examined how several complex event languages from the
literature can be used to specify high-level patterns of events. Finally, we discussed some al-
ternative ways to specify patterns, and how they compare to complex event languages.

51

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Conclusion

Having analysed a variety of middleware and complex event detection languages in the con-
text of pervasive computing, we highlight several issues with existing work. In particular:

� As event publishers may include energy-constrained wireless sensors, support for distri-
bution of complex event detection is vital. Complex event expressions should be easy to
decompose, and complex event services should automatically place detectors in suitable
locations.

� Since many sensor devices have low quality clocks, the detection model should include
support for errors arising from timing uncertainties.

� Language constructs should enable fine-grained control over the resource usage of complex
event expressions. This may entail support for the consumption policies of Snoop, the
selection paramters of Amit, and the windowing constructs found in continuous query
languages. However, any such constructs must interact in a sensible and composable way
with conditional expressions across the attributes of input events.

� Given the unreliable nature of many pervasive computing systems, failures that affect
complex event detection must be handled in such a way as to minimize their impact on
both detection efficiency and correctness. Where these goals conflict, it should be possible
for the application to influence any tradeoffs made.

52

Chapter 3

A Complex Event Language

3.1 Introduction

Pervasive computing is concerned with enhancing applications using information about their
environment. It is increasingly common for pervasive computing applications to rely on distrib-
uted systems known as Wireless Sensor Networks (WSNs). WSNs consist of large numbers of
sensing devices equipped with wireless radios. The key advantages of WSNs over wired solutions
are their low cost and ease of deployment.

Many WSN devices have limited computational and storage capabilities and are referred to
as motes. However, WSNs may also contain more powerful devices, known as base stations,
scattered throughout the network or deployed at the edge. Base stations can provide a gateway
to other networks such as the internet, in addition to performing more heavyweight computa-
tions than motes.

Many of the pervasive computing applications built using WSNs are inherently data centric.
Rather than prescribing the individual devices from which sensor data should be obtained, ap-
plication programmers wish to specify the data they are interested in, and have an underlying
system find and deliver it to them. In addition, programmers often wish to aggregate and com-
bine raw sensor data into more meaningful information. Supporting these requirements in the
context of WSNs is especially challenging given their distributed nature, their heterogeneity (in
terms of the resources available at different devices), and their limited energy reserves.

Several research projects have attempted to address this problem. One popular abstraction
is to treat the WSN as a distributed database, and provide an SQL-like interface to application
programmers, with continuous query execution semantics [MFHH03; YG02]. One of the main
observations from this work was that by distributing computation in the network significant
reductions in communications could be achieved, thus saving energy. These computations were
usually in the form of simple filters over readings, or summaries of several readings using SQL-
like aggregation functions.

Other researchers observed that many WSN applications are reactive or event-based in
nature. Instead of continuously sampling sensor data and sending readings, users may wish
to specify complex events of interest, and have sensors detect these events locally. Data is only

53

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.2 Application Scenarios

transmitted when an event occurs. Distributed complex event detection is thus another way to
save energy by pushing computation into the network.

These two approaches, complex event detection and continuous queries, have much in com-
mon. Indeed, two recent projects have attempted to combine them [JAC04; Riz05]. However,
neither of these projects was explicitly targeted towards WSNs. In particular, we believe the
constructs they provide for configuring the detection semantics of a complex event (e.g. con-
sumption policies) are not fine-grained enough, and it is not clear how they might interact with
conditional expressions across event content. Furthermore, both languages ignore difficulties
raised by the lack of a global clock in distributed systems.

In this chapter we attempt to address the shortcomings of previous approaches. Our main
contributions are:

� A complex event detection language for pervasive computing applications. Our language
is designed to allow easy decomposition and distribution of simple expressions to increase
detection efficiency, while still enabling the specification of more sophisticated expressions
when needed.

� A discussion of how problems inherent to open distributed systems such as the lack of a
global clock affect complex event detection. We use uncertainty intervals to bound the
timing imprecision of events, and argue that conflicts between events need to be handled
in an application-specific manner. Techniques for enabling applications to handle conflicts
are discussed further in Chapter 4.

� A variety of parameters to enable fine-grained control over the constituent events of a
complex event. We argue that these parameters are necessary due to the wide variety
of detection semantics found in different pervasive computing applications. Increased
control over the detection process allows programmers to create expressions deployable on
resource-constrained devices.

3.2 Application Scenarios

In this section we outline two motivating scenarios for our work.

3.2.1 Transport Monitoring

The first scenario is in the field of transport monitoring. Solutions here can be broadly divided
into those that use information from probe vehicles, and those that use statically deployed
sensors in the road. We are primarily interested in the latter, since they do not require indi-
vidual vehicles to be instrumented with sensor technology.

Many cities currently have deployed induction loop sensors for detecting vehicle presence.
However these can be very expensive to deploy, due to the cost of wiring them to power sources.
An alternative approach, outlined in [Kna00], is based on deploying battery powered wireless
sensors. These sensors can then communicate with a local base station for forwarding data.

54

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

The effectiveness of this approach relies on the battery lifetime of the sensors, as the cost of
roadworks to replace them is high. Since the biggest drain on power for these sensors is com-
munication, it is extremely important to eliminate unnecessary communication between sensors
and the base station. One common way to do this is to push application-specific computation
such as data filtering, aggregation, and correlation onto sensor nodes wherever possible.

Our work is motivated by the need to integrate such sensor networks into a large scale in-
frastructure to support transport information monitoring. For example, the goal of the TIME
project [BM07b; BBE+08], is to provide a middleware to enable new sensor technologies to
be easily deployed and the information they produce to be shared efficiently with interested
participants. As part of this project, we wish to examine how logic specified as part of a dis-
tributed complex event processing service (e.g. [PSB04]) provided by the transport monitoring
middleware can be safely distributed into resource-constrained wireless sensor networks where
appropriate.

3.2.2 Remote Health Monitoring

In a similar vein, one of the goals of the CareGrid project [BM07a] was to provide a secure and
privacy preserving infrastructure for remote patient monitoring. At risk patients can be given
sensors to wear that monitor a particular aspect of their physical condition. These sensors can
then communicate with the hospital when certain patterns of interest occur. Once again, it is
important to maximize the battery life of devices attached to patients so that they do not have
to recharge them frequently. In the future, sensor devices may even be surgically implanted into
patients, further motivating the need to prolong battery lifetimes.

As with transport monitoring, parties interested in the monitoring data may be numerous
and widely dispersed. In this paper we focus on applications that access this information using
a publish/subscribe communication paradigm. Figure 3.1 illustrates the basic architecture.

3.3 Language

Our language for specifying complex events draws on ideas from several research communities
(see Related Work in Section 3.5). Our main motivation was to adapt these languages to support
pervasive computing applications in open distributed environments. This section begins with an
overview of both our event model and the principal language constructs. We then describe the
main steps involved in event detection, and discuss in more detail how they can be controlled
by complex event expressions.

3.3.1 Overview

Information about the environment is communicated in our system using events. Each event
instance has an associated type, which specifies a schema for the data contained in that event.

55

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

G1

G2

WSN1

WSN2

EVENT
DISSEMINATION

TREE

Figure 3.1: WSNs connected via Gateways to a Publish/Subscribe System

Thus at any moment in time, a set of event types are defined in our system. An event type e

may be either a primitive event type (e ∈ PE) or a complex event type (e ∈ CE). Primitive
events are the lowest level input to the system. Complex events are defined by expressions in
our complex event detection language. A complex event takes as input primitive events or other
complex events. However, a complex event type cannot use itself as input, either directly or
indirectly1. The event type namespace thus forms a directed acyclic graph.

Each event instance, whether primitive or complex, has both a start and end timestamp.
A start and end timestamp that are the same denote an instantaneous event occurrence. A
start and end timestamp with a gap between them denote a durative event occurrence. To deal
with imprecision introduced by the lack of a global clock in distributed systems, the start and
end timestamps of both primitive and complex events are modeled as uncertainty intervals, in
the manner of [LCB99]. However, we extend uncertainty intervals timestamps with an optional
clock identifier parameter. If specified, a clock identifier should be globally unique. In our
system, two uncertainty intervals are concurrent if and only if they span the same time interval
and have the same clock identifier. Otherwise, treatment of conflicting uncertainty interval
timestamps is application dependent; we allow applications to define detection policies that
control the handling of uncertainty intervals that intersect but are not concurrent. Detection
policies may for example raise an exception, or perform best effort detection based on endpoints
or midpoints of intervals. Note however that we do still allow applications to access uncertainty
interval timestamps in expressions.

In our detection model, the input to a complex event detector is a totally-ordered sequence
1Enforcement of this constraint is discussed in Chapter 5.

56

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

of stages, where a stage is a set of events with concurrent end timestamps. In addition to
primitive and complex events, a stage may also consist of internal timer events. We define
the stabilization time of a complex event expression as the timestamp of the current stage. In
a distributed system, the stabilization time will generally lag behind the actual physical time
due to network delays. Our handling of distribution issues such as delayed event delivery and
uncertainty interval timestamps is discussed in more detail in Chapter 4.

The start timestamp of a complex event is determined by the earliest start timestamp of its
constituent events. The end timestamp of a complex event is determined by the stabilization
time at which it is detected. Thus the end timestamp equals the timestamp of the most recent
stage, which usually corresponds to the timestamp of the most recent constituent primitive or
complex events. However internal timer events can also trigger complex event detection (e.g.
due to event expiry). Thus the end timestamp may also be derived from an internal timer event.

Complex events are defined in our language using an SQL-based syntax, a high-level view of
which is given below1:

CreateCE <ce-name>

Select <select-expression>

[Init <context-initiators>]

Event <complex-event-pattern>

[Where <conditional-expression>]

[Term <context-terminators>]

[GKeys <global-keys>]

[LKeys <local-keys>]

Note that the following discussion is just a brief overview, and a detailed description of our
language begins in the next section. The CreateCE clause defines a unique type name for
the complex event expression. The Select clause is similar to that of SQL. It enables data
contained in the parameters of constituent events to be mapped to the parameters of newly
created complex event instances (Section 3.3.5). In addition, in cases where multiple events
are created by the detection process, it can be used to define aggregation functions over their
parameters. The Event clause is the core part of a complex event expression. In it, users can
define nested composite event expressions using various temporal, joining, negation and counting
operators (Section 3.3.4.2). It also allows fine-grained control over the detection process when
necessary using operand specific event selection and consumption parameters. This is necessary
to support efficiently the wide variety of event detection semantics found in pervasive computing
applications.

The remaining clauses, delimited by square brackets, are all optional. The Where clause
allows the definition of conditional expressions across the operators in the Event clause (Section
3.3.4.2). It is similar to the Where clause of SQL. A common requirement in complex event
applications is to define a temporal context or window during which a complex event expression

1A complete definition of the syntax can be found in Appendix A

57

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

should be detected. This is supported directly in our language using the Init and Term clauses
(Section 3.3.3). They define the events that initiate and terminate such a context. Finally, the
GKeys and LKeys clauses allow the definition of global and local keys across the input events to
a complex event expression (Section 3.3.2). Keys split detection into several different partitions,
where events in each partition have one attribute with the same value for each key. Global
keys specify an attribute of each event that is used by the complex event expression (including
initiators and terminators). Local keys must only specify an attribute for each event in the
event clause. Partitions can be detected independently, making them simple to decompose for
distributed detection. In pervasive computing applications, a common use of keys is to partition
the detection process based on location or identity attributes of constituent events.

We present an example of a complex event definition below. As we have not introduced
our language in detail, we do not expect the reader to understand all the features it uses just
yet. However the example does give an idea of the style of the language. This complex event
is based on a scenario described by Chakravarthy et al [JAC04]. A highway is divided up into
a number of segments, each with its own linkId. Cars, identified by their registration number
(regNumber), send periodic updates containing their current speed and the link on which they
are located. Between the times of 8 am and 6 pm the expression detects any speed limit violation
event that is one of the top ten violations observed so far. Separate top tens are maintained for
groups of link segments defined by HighwayRegion1, HighwayRegion2, and HighwayRegion3 of
a highway, and for any violations outside the these highway regions1. The expression could be
useful for police officers that wish to prioritize the deployment of a speed monitoring squad.
The schema of CarEvent can be found in Appendix B, together with the input event schemas
for all examples presented in the remainder of this chapter.

CreateCE Top10SpeedLimitViolations

Select CarEvent.speed as speed, RegionKey.labels as region

Init At8am

Event Unless(CarEvent<stages 1, "speed > 60">,

AtLeast(10, CarEvent as Others<"speed > 60">))

Where Others.speed > CarEvent.speed

Term At6pm

LKey *.linkId as RegionKey (In R1 as HighwayRegion1, R2 as HighwayRegion2,

R3 as HighwayRegion3, Rest as OtherHighwayRegions)

Newly stabilized events are processed in several phases by a detector for a complex event ex-
pression. In the next sections (i.e. Sections 3.3.2 to 3.3.5), we describe the language features
above in more detail, and how they control event detection. Our exposition of these language
features is structured according to the order in which they process input events.

A complex event expression with global and local keys divides input event streams into sep-
arate partitions, and may divert each partition to a separate detector. Hence we first discuss

1For simplicity, we use the notation Ri here as a placeholder for a region. In an actual expression, the link

identifiers in each region must be specified explicitly.

58

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

global and local keys and the detection partitions they cause (Section 3.3.2). Within each par-
tition, detectors examine events to see whether they terminate a detection context. A detection
context is essentially a temporal window within which the remainder of a complex event is
detected. We thus follow our discussion of detection partitions with a discussion of detection
contexts (Section 3.3.3). Note detectors examine events to determine whether they initiate a
new context only when they do not terminate an active context and are not otherwise used for
event detection. However since initiation and termination are both relevant to the concept of
detection contexts, we discuss them together.

The remainder of our discussion is concerned with what might be viewed as the “traditional”
part of the event processing model (Section 3.3.4). A detector adds events to the appropriate
operands of the tree of operators defined in the Event clause. Events output by an operator
bubble up the tree to become input events for operators higher in the tree. Events output by the
top level operator constitute detections of the complex event expression. However, before the
detector outputs them, it first evaluates the Select clause to determine what data contained in
the constituent events should be retained in the final output. Note that as we mentioned above,
during the final phase of event processing the detector checks whether any unused input events
initiate a new detection context (i.e. if they did not already terminate a context and were not
added to an operand of an operator). However for clarity of exposition we discuss initiation and
termination of detection contexts together.

3.3.2 Detection Partitions

As we described in the overview of our language, each complex event expression may have op-
tional lists of global and local keys associated with it. These keys effectively split the complex
event into several detection partitions. Partitions define disjoint subsets of the input events of
a complex event expression. We perform detection independently within each partition. This
simplifies distribution of complex event detectors. It also reduces the complexity of event spe-
cification, since interactions between events in different partitions do not need to be considered
in the Event or Where clauses.

A key definition key-def is a pair:

(key, ranges)

The key element of a definition is simply a list of attribute identifiers of the form event-name.attr-
name. All attribute identifiers specified in a key must have the same type.

Given a complex event, a local key specifies a single attribute from every leaf operand in
the Event clause of the expression. Global keys must in addition specify an attribute for each
initiator and terminator defined in the Init and Term clauses. The attributes specified for
initiator and terminator events by a global key must also have the same type as the attributes
of operands in the Event clause. If the Event clause contains nested operators, then both local
and global keys must contain an entry for every initiator and terminator of all inner operators.
Thus for an inner operator (i.e. any operator that is not the root of the operator tree) a local

59

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

key must contain a reference to the same events as a global key. Multiple local or global keys
may be defined over different attributes of the events in an expression. In many cases, several
events in a key may have the same attribute name. As a shorthand notation, we allow all events
with a particular attribute name in an expression to be referred to using *.attribute-name.

The set of global keys thus defines an m-tuple of attributes for each event in the expression.
Similarly, the local keys define an n-tuple for every event, excluding initiators and terminators.
At run-time, the m-tuple defined by the global keys results in a set of global partitions. Within
each global partition, the n-tuple defined by the local keys results in a set of local partitions.
If no global keys are defined, then there is a single, universal, global partition. Similarly, if no
local keys are defined then each global partition contains only a single local partition. Note the
m-tuples and n-tuples of different operands may refer to different attribute names.

To clarify the difference between global and local keys, consider the example expressions
GloballyPartitionedViolations and LocallyPartitionedViolations below:

CreateCE GloballyPartitionedViolations

Select CarEvent.speed, CarEvent.linkId

Init PoliceOnDuty

Event Unless(CarEvent<stages 1, "speed > 60">,

AtLeast(10, CarEvent as Others<"speed > 60">))

Where Others.speed > CarEvent.speed

Term PoliceOffDuty

GKey *.linkId

CreateCE LocallyPartitionedViolations

Select CarEvent.speed, CarEvent.linkId

Init PoliceOnDuty

Event Unless(CarEvent<stages 1, "speed > 60">,

AtLeast(10, CarEvent as Others<"speed > 60">))

Where Others.speed > CarEvent.speed

Term PoliceOffDuty

LKey *.linkId

These expressions are variations of the Top10SpeedLimitViolations event we defined in
Section 3.3.1. As with Top10SpeedLimitViolations, they both generate an event whenever
they receive a car event whose speed is within the top ten previously observed speeds. How-
ever, instead of monitoring speeds for several predefined regions, these expressions maintain a
separate top ten list for each distinct link. With respect to the difference between local and
global partitions, a more important distinction is that LocallyPartitionedViolations and
GloballyPartitionedViolations events may only occur within a detection context (see Sec-
tion 3.3.3) initiated by a PoliceOnDuty event and terminated by a PoliceOffDuty event. Since
GloballyPartitionedViolations has a global key, it only monitors a link for speeding events

60

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

when a police car is on duty and located at that link. In contrast, LocallyPartitionedViolations
has a local key, and thus will monitor a link for speeding events so long as there is a police car
on duty at any link.

Key definitions may contain an optional In sub-clause. When this is left unspecified, every
event instance within a partition will have the same values for its keyed attributes as the cor-
responding attributes of every other event in the key. For example consider the expression:

CreateCE Top10SpeedLimitViolations

Select CarEvent.speed as speed, CarEvent.linkId as linkId

Init At8am

Event Unless(CarEvent<stages 1, "speed > 60">,

AtLeast(10, CarEvent as Others<"speed > 60">))

Where Others.speed > CarEvent.speed

Term At6pm

LKey *.linkId

This example is similar to the introductory example we gave in Section 3.3.1. However, instead
of detecting the top ten speeding violations within each region, it detects the top ten speeding
violations separately for every highway segment.

In contrast, the In sub-clause of a key allows the user to specify explicitly a finite set of
partitions. This enables partitions to contains groups of event values, instead of a single value.
Each element of the In sub-clause must define a subset of the type-space of the attributes in its
associated key. If defined, these subsets are stored in the ranges parameter of the key definition.

A keyword Rest may also be specified as an element of the In sub-clause, which defines a
partition containing any portion of the attribute type-space not covered by the other elements.
Consider for example the In sub-clause definition In R1, R2, R3, Rest (similar to the one
we used in the introductory example of Section 3.3.1). Here, R1, R2, and R3 define geographic
regions. If we add this to the end of the global key expression in the previous example, four
global partitions will be created. Events in the same partition need no longer have equal values
for their linkId attribute. Instead they must simply fall within the region of the partition.
The Rest partition contains events that occur outside any of the other regions. Labels may be
attached to each of these regions using the keyword as. In addition, keys can be named locally
using as. This enables the name of the partition in which an event is detected to be referenced
within the scope of the complex event definition.

3.3.3 Detection Contexts

For every detection partition defined by its keys, a complex event is detected within a particular
detection context. A context defines a time interval during which a complex event should be
detected. Each context definition consists of a set of initiators and a set of terminators. Initiators
and terminators define when the context becomes active and inactive respectively. An initiator

61

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

can be an event or the keyword Start, indicating the time at which the complex event expression
is created. Terminators can be either events or a time duration after the occurrence of the
initiator. An event initiator definition is a tuple:

(type, as, threshold, icc)

Similarly, an event terminator definition is a tuple:

(type, as, threshold, cross-threshold, tcc)

Apart from the type-name of the event, there are several optional parameters that affect the
semantics of an initiator or terminator. A label as may be defined for the initiator (terminator)
in order to distinguish between initiators, terminators, and operands of the event pattern with
the same type. For example, the initiator clause Init HeartRateEvent as InitHR assigns the
label InitHR to an initiator event of type HeartRateEvent. A label is only visible within the
scope of a complex event expression. The threshold parameter allows a condition to be specified
to filter initiators and terminators based on the values of their attributes. An initiator threshold
may refer only to the attributes of the initiator. Similarly, the threshold of a terminator may refer
only to the attributes of the terminator. In addition, we allow users to specify a cross-threshold
for a terminator that may refer to the attributes of both the initiators and the terminator.
Allowing a terminator of a context to be parametrised by the initiator of the context is quite
useful for many applications.

If multiple initiators occur before the occurrence of a terminator, the default semantics is
to ignore them. However, this can be changed by setting the icc (initiator correlation code)
parameter of an initiator to add. This allows multiple detection context instances to be open in
parallel. Each context instance evaluates the enclosed composite event expression independently
of other open contexts instances. When multiple contexts exist, an additional tcc (terminator
correlation code) parameter determines which contexts are closed and consumed by a terminator.
It may have a value of new (terminate the most recent context that matches the terminator),
old (terminate the oldest context that matches the terminator), or each (terminate all contexts
if any matches the terminator).

Events may happen concurrently, and the same event may match more than one initiator,
terminator, or event-clause operand. We must define a clear evaluation order in these cases to
provide an unambiguous detection semantics. At each timestep, a set of event instances relevant
to a complex event expression may be stabilized. These event instances are firstly evaluated as
potential terminators for any open contexts. Next, open contexts collect any events that may
act as constituents of their composite event expressions. This process is described in more detail
in the next section (Section 3.3.4.1). Finally, events are evaluated to determine whether they
initiate any new contexts. A simple way to remember this evaluation order is that contexts are
closed intervals, and an event can act in only one role out of initiator, terminator or constituent
event with respect to a single context instance.

An event instance may match more than one initiator (terminator) during the evaluation

62

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

process. In this case, the event is evaluated against the initiators (terminators) of the Init

(Term) clause in left-to-right order. Finally if multiple events occur concurrently, they are all
evaluated against a single initiator (terminator) before being evaluated against the next initiator
(terminator). Thus in general, the initiator (terminator) that opens (closes) a new context
instance will be a set of events that matched the initiator (terminator).

An example of a detection context with an icc parameter of add is given below:

CreateCE MaxHeartRateChange

Select ((Max(InitHR.value Union Set(EventHR.value))

- Min(InitHR.value)) / Min(InitHR.value))

as max-pct-increase

Init HeartRateEvent as InitHR<add>

Event HeartRateEvent as EventHR

Term 24hrs <old 1>

Over a sliding twenty four hour period, this complex event continuously tracks, with respect to
each heartrate event, the maximum percentage increase in heartrate. Note that InitHR may be
a set of heart rate events. This kind of trend analysis is one of the main motivations for allowing
multiple detection contexts to be active at the same time.

An example of a detection context with a threshold condition across the initiator and ter-
minator is given below:

CreateCE CarAvgSpeedPerLink

Select ValidCarEvent.regNumber as regNumber,

ValidCarEvent.linkId as linkId,

Avg(LinkInit.speed Union ValidCarEvent.speed) as avgSpeed

Init ValidCarEvent as LinkInit

Event Or((ValidCarEvent)<deferred>, Not(ValidCarEvent))

Term ColocatedError, ValidCarEvent as

LinkTerm <Max(LinkInit.linkId) != Max(LinkTerm.linkId)>

GKey *.regNumber

This complex event is based on a similar scenario to that used in our introductory example in
Section 3.3.1. A highway is divided up into a number of segments, each with its own linkId.
Cars, identified by their registration number (regNumber), send periodic updates containing
their current speed and the link on which they are located. The expression computes the
average speed over each link for each car. A context is terminated when a car moves onto
a new link, as specified in the terminator cross-threshold condition (Max(LinkInit.linkId)
!= Max(LinkTerm.linkId)). Since the detection mode is deferred, the detector outputs the
average speed of a car over a link when the context is terminated by the car moving onto a new

63

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

link. The global key ensures that detection is performed separately for each car1.
ColocatedError and ValidCarEvent are defined as:

CreateCE ColocatedError

Select A.regNumber as regNumber

Event Concurrent(CarEvent as A<stages 1>,

CarEvent as B<stages 1>)

Where A.linkId != B.linkId

LKey *.regNumber

CreateCE ValidCarEvent

Select A.regNumber as regNumber,

A.speed as speed,

A.linkId as linkId

Event Unless(CarEvent as A <stages 1>,

CarEvent as B <stages 1>)

Where A.linkId != B.linkId AND end-ts(A) = end-ts(B)

LKey *.regNumber

These expressions are used to clean the input when a car gives position readings indicating it
is on two or more different links at the same time. This results in the termination of any open
context, with the conflicting readings being ignored. A ValidCarEvent is any position report
that does not give conflicting positions for the car. This could be extended easily to filter out
concurrent reports giving different speeds.

3.3.4 Event Patterns

The main part of a complex event expression is the composite event pattern described using the
Event and Where clauses. The event clause allows the specification of a set of operators that
may be composed to detect composite event patterns. The Where clause allows the specification
of a condition across the operands (i.e. constituent events) of these operators.

In contrast to the composition of whole complex event expressions, operator composition
within an event pattern enables the conditional detection of high-level events from primitive
events. Where no condition across operators is required, a choice between these two approaches
may exist. When possible, creating a single complex event expression with a tree of operators in
the Event clause is generally easier to code. However, it is usually easier to decompose and reuse
multiple complex event expressions than a single complex event with an internal operator tree.
In addition specifying an operator tree using multiple complex events allows more fine-grained
control over detection. This is because the collection, selection, and consumption parameters

1Note that since the top level event is Or, termination of the context will still result in its deferred sub-contexts

being evaluated.

64

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

we provide to enable this control may only be specified for the leaf operands of an operator tree
(as discussed in the following sections).

Our design couples support for conditions across multiple operators with expressive config-
uration parameters for individual operands (e.g. windows, consumption). Previous work either
does not allow conditions across multiple operators, or do not provide mechanisms that allow for
fine-grained control over the detection semantics. The former precludes expressions such as the
Top10SpeedLimitViolations complex event (Section 3.3.1). The latter hinders the creation
of many of the complex events we introduce in the following sections (e.g. BagContainerID in

Section 3.3.4.3).
Informally, the event pattern of a complex event is a tree of operators, where internal oper-

ators also have detection contexts. Thus an event pattern definition ep is a tuple:

(op-name, operand -defs, detect-mode, params)

The op-name specifies one of the operators in our language (discussed in the following sec-
tions) The operand -defs element is a list of definitions for the operands of the operator. The
detect-mode of an event pattern may be either immediate, delayed, or deferred (discussed in
the following sections). Finally, params contains various operator-specific parameters (e.g. the
value of n for counting operators).

An operand definition in operand -defs may be either a leaf operand definition or an internal
operator definition. A leaf operand definition leaf -def is a tuple:

(type, as, threshold , collect , quant , consume, cond)

The type element is the name of a primitive event or another complex event. A label as may
be defined to distinguish between operands with the same type. This is similar to the label for
event initiators and terminators. The threshold element is the threshold condition defined for
the operand. The collect , quant , and consume elements control event collection, detection, and
consumption respectively for the operand (as discussed in the following sections). Parts of the
Where clause that reference the operand are stored in cond .

An operand that is not a leaf must be an internal operator of the event pattern. An internal
operator definition internal -operator -def is a tuple:

(sub-ctxt , sub-ep, sub-gkeys, sub-lkeys)

Here, sub-ctxt defines the detection context within which the nested operator should be detected.
It is a pair consisting of a list of initiators and a list of terminators. A sub-context may only
become active if its parent context is active. The sub-ep element gives the definition of a nested
event pattern. It is of the same form as ep. Thus an event pattern definition can be a nested
data structure. The sub-gkeys and sub-lkeys elements represent any keys defined within internal
event patterns.

Detection of an event pattern is performed in three phases: the collection phase, the detection
phase, and the consumption phase. The collection phase is responsible for adding newly arriving

65

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

input events to operands, and for removing any events from leaf operands that are no longer
relevant due to the advancement of windows over that operand. The detection phase tries to
generate all events that match the event pattern using the input events stored in leaf operands.
Finally, if the expression requires it, the consumption phase removes from leaf operands the
constituent events of any events generated during the detection phase. We now describe the
purpose of each phase, and how users can control them, in more detail.

3.3.4.1 Collection Phase

Every time a new event arrives at the detector for a complex event, and the event does not
terminate a context, it must be passed to every leaf operand in the Event clause whose type
is the same as the event instance. Each leaf operand maintains an ordered list of the event
instances that may still contribute to a complex event detection. The task of the collection
phase is to determine whether a particular event should be added to each list, and if so, whether
any existing members of the list should be overwritten.

The collection of an event is done for each operand independently, and the same event may
be added to more than one operand. For each operand, a threshold condition (similar to the
threshold for context initiators) can be specified over its event attributes. Event instances that
match the threshold are added to the operand’s list.

To enable bounds to be put on the number of events that should be considered for pattern
detection, we allow the specification of several optional collection parameters. The syntax of
these parameters is summarized below:

[(rows | stages) n][range t]

The simplest of these is the rows n parameter. This defines an upper bound on the number of
tuples the list may contain. When the addition of new events causes this bound to be exceeded,
old events are removed until the size of the list equals the maximum number of rows. The
ability to specify such upper bounds is especially important when detection is to take place on
resource-constrained devices.

In the presence of concurrent events, the specification of a maximum list size using rows n

may lead to some events that match the threshold condition never being used for detection. This
can happen when a number of concurrent events exceeding the maximum list size are added. To
prevent this, while still allowing the user some control over the size of operand lists, we allow
the specification of a stage n parameter instead of rows. With respect to an operand list, a
stage is defined as any time instant for which there is an event in the list with the same end
timestamp. An operand list with a stage upper bound of n requires the number of different
stages at which events in the list occurred to be at most n. This is similar to the notion of stage
used in the Datalog1S-based composite event language of Motakis et al [MZ95a].

The two parameters above essentially enable the specification of row or stage based sliding
windows over each operand. In addition we provide the ability to specify temporal sliding win-
dows over event operands. This is achieved by allowing an optional range t parameter to be

66

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

specified for each operand. When an event is added to the operand’s list, a timer is started
based on the expiry time for that operand, as defined by the time interval t. When the timer
fires the event is removed from the list.

Note that the windows above are defined on the level of an operand, are of fixed size, and
can only slide. In contrast, the temporal windows defined by detection contexts may be event
bounded, and are defined over all the operators they contain.

3.3.4.2 Detection Phase

In the second phase of composite event processing, detection of the event pattern is performed.
The event pattern consists of a tree of event operators, selection parameters for each leaf operand
of these operators, and an optional condition across the operands of the tree (as specified by
the Where clause). Nested operators may have their own detection context. However a nested
context may only be active when all its parent contexts are active. The Where clause may not
reference initiator or terminator events of a context at any level.

A list of operators we currently support together with a brief description of their semantics
is given below. Some of the operators are similar to those proposed by Amit [AE04]. Unless
otherwise specified, each operand E can be a leaf operand or an internal operator.

� Sequence(E1, .., Ek) - Detects a sequence of events E1. . .Ek such that ∀i, 1 ≤ i < k,
end-ts(Ei) < end-ts(Ei+1).

� And(E1,..,Ek) - Detects a conjunction of events E1. . .Ek in any order.

� Or(E1,..,Ek) - Detects a disjunction of events E1. . .Ek.

� Concurrent(E1,..,Ek) - Detects the occurrence of events E1. . .Ek such that ∀i,1 ≤ i < k,
end-ts(Ei) = end-ts(Ei+1).

� Not(E) - Detects the non-occurrence of the event E during the detection context enclosing
the operator.

� Unless(E1,E2) - Detects the occurrence of E1 so long as no E2 has occurred, i.e. it can
be read as E1 unless E2.

� At(timePattern) - Triggers an event at any time matching timePattern. A time pattern
is a string of the form yyyy/mm/dd/hh : mm : ss.mmm, indicating a point in time. Time
patterns may contain wildcards (e.g. ∗∗∗∗/∗∗/∗∗/12 : 00 : 00.000) triggers an At event at
midday every day).

� Every(timeInterval) - Periodically triggers the occurrence of an event using a period
specified by timeInterval. The periodic timer starts at the time when the enclosing
detection context is opened.

67

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

� After(E[size, acc],timeInterval) - Detects the occurrence of an event at a time interval
timeInterval after the occurrence of the event E. The optional [size,acc] parameter
specifies how multiple events occurring within the timeInterval should be handled. The
syntax of the size element is (rows | stages) n, and the syntax of acc (after correlation
code) is add | ignore. The size parameter limits the number of events that can be
retained whose timeInterval has yet to expire. If a newly arriving event exceeds this
limit, and acc is add, it replaces the oldest event whose timeInterval has not expired. If
acc is ignore and the limit is exceeded, the event is discarded. Note that E must always
be a leaf operand.

� Nth(n,E1,...,Ek) - Counts the number of events E1. . .Ek that have occurred, and triggers
an event when the total equals n. An optional weight parameter may be specified for each
operand such that the number of instances of an operand is multiplied by its weight when
counting.

� AtLeast(n,E1,...,Ek) - This operator is similar to Nth, except it detects an event when
the total is greater than or equal to n.

� AtMost(n,E1,...,Ek) - This operator is similar to Nth and AtLeast, except it counts the
number of events E1. . .Ek that have occurred within a detection context, and triggers an
event when the total is less than n.

Two parameters provide additional control over the detection semantics of these operators. The
first of these parameters, the detection mode, may have a value of immediate, deferred, or
delayed. An immediate detection mode ensures event detection is performed when events are
added to an operator’s operands. In contrast, a deferred detection mode waits until the end
of the detection context before executing the detection algorithm. Finally, a delayed detection
mode is similar to the immediate detection mode in that event detection is performed as soon
as events are added. However, detected events are stored until the end of the detection context
before being delivered. This is useful in some cases where the events detected during a context
are to be viewed together (e.g. as part of a summary of the events that occurred during the
context).

There are a few restrictions over which detection modes can be defined for some operators. In
particular, a Not operator may only be detected using a deferred detection mode, and temporal
operators (i.e. At, Every, and After) may only be detected in immediate mode. Apart from Not,
the default detection mode for all operators is immediate. Finally, there are some limitations
to the detection modes that can be specified for nested operators. A deferred operator cannot
be nested within another deferred or delayed operator, and a delayed operator cannot be
nested at all (i.e. it must be at the top level of any operator tree of which it is a part). These
restrictions on nesting of detection modes are a limitation of our current implementation.

The second parameter that affects event detection, the selection quantifier, is specified at
the operand level. The quantifier tells the detection algorithm which events should take part

68

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

in the detection of a complex event, and can be used to detect a wide range of event patterns.
Allowing quantifiers to be specified at the operand level enables fine-grained control over the
event detection process. This is in contrast for example to the global consumption policies of
Snoop [CM94; CKAK94]. The syntax of a quantifier is:

all | ([strict] (new | old) (max n | +) [staged])

A quantifier of all requires that all events in an operand’s event list match every event to which
they are compared from other operands event lists. Thus when an event from one operand’s
list is being matched against an operand with a quantifier of all, and it fails to match one
of the events in that operand’s list, detection backtracks. The alternative part of a quantifier
contains several flags. The (new | old) part of a quantifier determines whether events are
selected from newest to oldest or vice versa. The (max n | +) part of a quantifier specifies that
up to n events, where n ≥ 1, may be selected from this operand in the case of max n, or that as
many events as possible should be selected in the case of +. A strict flag indicates that any
events selected must occur consecutively from the start (in the case of new) or end (in the case
of old) of the list. This is useful in placing hard bounds on the amount of processing required
when conditions across operators are defined in the Where clause. Finally, the staged option
allows n to refer to a number of stages (as discussed for the collection phase) instead of event
instances. Examples of some valid quantifiers are new max 5 or strict old +. The default
selection quantifier is new +. In addition, we note that quantifiers may only be specified for leaf
operands of the operator tree. Internal operands are always detected as if they used the default
quantifier.

Having discussed the operators and optional control parameters of the Event clause, we now
describe how the Where clause of a complex event expression may be used to specify conditional
composite event patterns. The conditional expression in a Where clause may refer to the at-
tributes of any of the operands of a composite event pattern, subject to some scope restrictions
which we discuss at the end of this section. Conditions consist of the standard relational (=, !=,
<, >, <=, >=) and logical (AND, OR, NOT) operators. Note however that the NOT operator used in
conditions is a logical operator, and differs from the Not operator for an interval defined earlier.

There are some restrictions on the events that can be referred to in the Where clause. Firstly,
the Where clause may not refer to the initiators and terminators of detection contexts. Secondly,
we impose some scoping constraints on the use of conditions across some operators. These con-
straints only affect the negation operators (i.e. Not and Unless) and the counting operators (i.e.
Nth, AtMost, and AtLeast). For the Not operator, no condition can be defined that contains
a relational comparison between an operand internal to the Not operator and an operand that
follows it in the composite event pattern. Intuitively, one operand follows another if it is evalu-
ated after it by the detection algorithm. We define this concept more formally in Section 3.4. A
similar restriction is enforced for the Unless operator, except that it only applies to the second
operand (i.e. the negated operand). Finally, the same following restriction is enforced for each
of the counting operators.

69

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

We provide several built-in functions that extend the expressive power of the Where condi-
tion. For example, the start and end timestamps of constituent events may be accessed using
the functions start-ts(E) and end-ts(E) respectively. The ability to restrict event detection
based on start timestamps raises the possibility of supporting the detection of composite events
using a durative detection semantics [AC03; YB05]. For example, consider the case where we
wish to detect an elderly patient who is bleeding after having taken a fall:

CreateCE PatientBleeding

Select Fall.patientId

Event Sequence(Fall<rows 1, range 5 mins, consume>,

And(HeartRateIncrease as HRInc <max 1>,

BloodPressureDecrease as BPDec <max 1>) as

Bleeding)

Where start-ts(Bleeding) > end-ts(Fall) AND

NOT(end-ts(HRInc) < start-ts(BPInc)

OR end-ts(BPInc) < start-ts(HRInc))

Bleeding is indicated by a decrease in blood pressure (BPDec) and an increase in heart rate
(HRInc) overlapping in time, but only if they both occur strictly after a Fall is detected (e.g.
by an accelerometer). The Where clause contains appropriate restrictions over the timestamps
of the different operands.

For complex event expressions involving durative events and the Unless operator, some
additional issues may arise. Consider for example the detection (in immediate mode) of the
event:

CreateCE BloodPressureProblem

Select BP.level

Event Unless(BloodPressure<level = high> as BP,

SignificantHeartRateIncrease as SHRI)

Where start-ts(SHRI) <= end-ts(BP) AND

end-ts(SHRI) >= start-ts(BP)

This expression signals a possible problem with a patient’s blood pressure whenever a high blood
pressure event occurs that was not caused by an increase in the patient’s heart rate. However,
the SignificantHeartRateIncrease (SHRI) event is durative. In some cases, an SHRI event
may overlap with a BloodPressure(BP) event, but not occur until after it (i.e. end-ts(SHRI)
> end-ts(BP)). This may result in a BloodPressureProblem event being signalled erroneously.
In general, we do not even guarantee the start timestamps of events will increase monotonically.
This is because if an operand contains several events, and the operator is detected conditionally,
different constituent events may be selected every time the detection algorithm is executed.

To prevent these problems from arising, we must know the earliest possible start timestamp
of any SHRI event that may be received in the future. We can obtain this information using the

70

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

function sst(E) (start stable-time). This enables us to extend the earlier condition to Where

... AND sst(SHRI) > end-ts(BP). Note that the start stable-time is a property of the oper-
and SHRI, and not of a particular event-instance. Ideally, detection should be performed using
an active detection semantics (similar to the active expiration semantics suggested by Bai et
al [BTW+06]), where lower level detectors can notify subscribers of the advancement of their
start stable-time independently of any event occurrence. Currently however, our language only
provides an inactive detection semantics. This means that a BloodPressureProblem event is
only triggered in response to a later BP or SHRI event that advances sst(SHRI).

One additional use of the Where clause is to allow the specification of incremental output.
Consider the case where we wish to generate the event And(A,B), where there are no restrictions
on the size of either operand list (i.e. they both have a row parameter set to unbounded). Every
time a new event is added to either operand, a cross-product is performed. In many cases, we
would like to ensure that only events not detected during previous stages are generated. Re-
peated events can be prevented by specifying a condition Where end-ts(A) = stable-time OR

end-ts(B) = stable-time. In this condition, stable-time is a built-in function that returns
the current stable-time for the whole complex-event expression.

3.3.4.3 Consumption Phase

In the third phase, the consumption phase, events may be removed from operand lists in response
to a complex event being triggered. This can be controlled through a consumption flag for each
leaf operand of the Event clause. If an event is to be consumed, a value of consume is specified.
Otherwise, a value of !consume should be specified. The default value is !consume1.

Below, we give an example of a complex event expression in which events are consumed:

CreateCE BagContainerID

Select BagEvent.id as bagId,

ContainerEvent.id as containerId

Event And(BagEvent<old rows max 4, consume>,

ContainerEvent<old rows max 1, consume>)

LKey BagEvent.carouselId, ContainerEvent.trackId

In an airport, each gate has a baggage carousel and a container track. Bags move along the
carousel until they meet automated baggage containers. Up to four bags are loaded into each
container, which then moves along a track towards the appropriate gate. The identities of bags
and containers are scanned in order before loading as they move along the carousel and track
respectively. The complex event generates a record of the container of each bag. The old

rows max 4 selection quantifier over BagEvent and the old rows max 1 selection quantifier
over ContainerEvent indicate that bags are packed into containers in FIFO order, and that
at most four bags may be loaded into a container. Containers that arrive when there are no

1This example is similar to the PackageContainer example in the next chapter

71

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

bags wait until at least one bag arrives before moving along the track. Finally, the local key
partitions the detection by gate. This indicates that the carouselId attribute of BagEvent and
the trackId attribute of ContainerEvent are equivalent for each gate.

It is important to note that a detector only consumes an input event when it contributes to
the occurrence of an output complex event (assuming the consumption flag of the corresponding
input operand is set to consume). Thus in the example above, the detector only consumes a
BagEvent or ContainerEvent when they contribute to a new BagContainerID event. We em-
phasize however that consumption is not the only mechanism by which a detector may delete
input events. In particular, detectors may delete events to windowed operands as their window
advances. Similarly, a detector may delete events when a detection context terminates. In con-
trast to consumption driven event deletion, window and detection context driven event deletion
may occur independently of whether any new output complex events are generated. As might be
expected, the manner in which a particular detector deletes input events has direct implications
for its resource usage. As we will discuss in Chapter 4, this is especially true when input event
streams are unreliable.

3.3.5 Complex Event Mapping

The Select clause of a complex event controls how the information contained in events generated
by the detection phase is mapped to newly created instances of the complex event. This includes
the ability to specify aggregation functions over sets of events. It is similar to the Select clause
of an SQL statement, and we thus refer to this stage as the projection phase. We refer to
the expression defined in the Select clause as a mapping expression. There are two types of
mapping expression, a tuple mapping expression and a group mapping expression. The former
maps each instance of the event pattern to separate instances of the complex event. The latter
maps all instances of the event pattern that are detected at a stage to a single complex event.

Formally, a mapping expression consists of a list of attribute definitions, where an attribute
definition is a tuple:

(attr-name, attr-expr)

Each attr -name defines the name of an attribute of the complex event1. An attr -expr specifies
how the attribute value is computed from the parameters of constituent events.

In a tuple mapping expression, all attr-expr are tuple-attr-expr. A tuple-attr-expr can refer
to an attribute of a constituent event using its attribute identifier (i.e. event-name.attr-name).
It may also refer to these attribute identifiers within aggregation functions. We support the
standard SQL functions of Max, Min, Sum, Avg, and Count, as well as a median aggregation
function Median. In many cases, there will be a single constituent event instance per attribute
identifier, making the aggregation functions redundant. However, if the attribute identifier refers
to an operand of a counting operator, an event initiator, or an event terminator2, there may be
multiple constituent event instances. Thus a tuple-attr-expr may only refer to such an attribute

1Attribute names must be unique within a map-expr .
2Obviously, terminator events are not available to an event detected in immediate mode.

72

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.3 Language

identifier within an aggregation function.
When the mapping expression is a grouped mapping expression, then all its attr-expr must

be group-attr-expr. Since there may be multiple events within a group, a group-attr-expr may
only refer to an attribute identifier within an aggregation function. A group-attr-expr must
refer to each attribute identifier or event name using either the Set or Bag function, where
Set removes any duplicate values. The aggregation function will be performed over the set (or
bag) of attribute values extracted from all event instances within the group. Similarly, an event
name may be referred to using Set or Bag, but must be aggregated using the Count aggregation
function. If the user does not specify which function to use, the Set function is applied by
default. Note that in the case where the attribute identifier refers to a counting operand, an
event initiator or an event terminator, nested aggregation functions must be specified. The inner
aggregation function aggregates the set of constituent event instance attribute values within each
tuple. The outer aggregation function then aggregates this group of values. An example of a
grouped mapping expression is given in the Select clause of the complex event expression below:

CreateCE SmoothedSpeeds

Select Avg(Set(CarEvent.speed)) as car-avg-speed,

Median(Bag(BusEvent.speed)) as bus-med-speed

Event And(CarEvent<range 10 mins>, BusEvent<range 10 mins>)

Where end-ts(CarEvent) = stable-time OR

end-ts(BusEvent) = stable-time

At most one SmoothedSpeeds event is produced per stage, and only distinct CarEvent.speed

values are used to calculate car-avg-speed1. In contrast, multiple identical BusEvent.speed
values may be used to calculate the bus-med-speed.

In contrast to the Where clause, the Select clause may refer to the initiators and terminators
of detection contexts. In cases where a different event is responsible for initiating or terminating
the context than the one referenced, a Null value is returned as the value for the corresponding
attribute of the newly detected event2. A Null value may have an undesirable effect on the value
returned by aggregation functions. By default, we ignore Null values in aggregation functions.
We also allow the replacement of Null with a suitable value using the Is-Null(E.attr, value)

function when necessary. This is similar to the Is-Null function of standard SQL. Thus the
expression Is-Null(CarEvent.speed, 20) would replace any Null car speed values with 20.

The detection phase can have a significant effect on the efficiency of a complex event’s pro-
jection. For example, if we wish to maintain a running average over a window of events, then
incrementally computing the average is generally more efficient. By analysing expressions dur-
ing creation of a detector it is possible to determine when such optimizations are worthwhile.
Currently we only perform this optimization for relatively simple cases (e.g. when no condition
exists, all operands have unbounded windows, and events are not consumed). Although it is

1Note the choice of Set over Bag is irrelevant here since the aggregation function is Avg
2A Null value may also be returned if an operand of the Or operator is referenced.

73

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.4 Implementation

transparent to the user, state is maintained as part of the projection’s aggregation function and
only new events are transferred to the projection phase.

Finally, we note that the Select clause is evaluated separately for each active detection con-
text. Thus aggregation functions may only be applied to the output of a single context instance.
If keys are defined, then the Select clause is applied separately to every context instance con-
tained within each partition.

3.4 Implementation

Having introduced the various features of our language in the previous section, we now describe
the algorithms and data structures used by our implementation. The pseudo-code description of
our detection algorithm also serves as an operational semantics for the language. We use several
conventions in our pseudo-code. Firstly, indentation is used to denote the beginning and end of
block scopes. Secondly, all function calls are italicized. Thirdly, all function names that end in a
question mark return a boolean value. Finally, loop constructs based on the universal quantifier
(∀) indicate that evaluation is order insensitive. Procedural loop constructs (i.e. foreach and
while) indicate that iteration order is important.

3.4.1 Data Structures

We introduce firstly the data structures used by our implementation. A complex event data
structure ce-data ∈ CE -DATA holds information about the schema of a complex event, in
addition to the dynamic information used to perform detection. A ce-data is a tuple:

(name, ctxt , ep,map-expr , gkeys, lkeys, gps) (3.1)

The first element of a ce-data tuple, name, is the type name of the complex event, as spe-
cified in the CreateCE clause of its definition. Thus for all complex event data structures
ce-data ∈ CE -DATA there exists a unique complex event type type ∈ CE | type.name =
ce-data.name. Conversely, for all complex event types type ∈ CE , there exists a unique com-
plex event data structure ce-data ∈ CE -DATA | ce-data.name = type.name.

The schema for the detection context of ce-data is contained in ctxt . A ctxt is a tuple
(inits, terms), where inits is a sequence of initiator definitions and terms is a sequence of ter-
minator definitions. The position of each initiator (terminator) definition in the sequence cor-
responds to its position in the Init (Term) clause of the complex event definition. Initiators and
terminators correspond to the definitions given earlier in Section 3.3.3.

The ep element of a ce-data is the event pattern specified by the Event and Where clauses.
The formal description of an event pattern definition was given in Section 3.3.4. The map-expr
element of a ce-data data structure defines its mapping expression, as we discussed in Section

74

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.4 Implementation

3.3.5. The gkeys and lkeys elements of a ce-data contain the lists of global and local keys defined
for it, as we discussed in Section 3.3.2.

All elements of ce-data we have described so far relate to the definition or schema of a
complex event. In contrast, the final element of a ce-data tuple, gps, maintains the run-time
information used to perform event detection. The element gps is a list of global partitions. Each
global partition gp is a tuple:

(values, lps)

The values that match this global partition are stored in values, with one value range per global
key. If a global key definition has an empty ranges element, then its corresponding value element
in values will always contain a single value. Only event instances with the same values for their
keyed attributes match the partition. The set of local partitions contained in the global partition
is stored in lps. Each local partition lp is a tuple:

(values, ctxts)

The values element of a local partition is similar to the values element of a global partition. The
ctxts element is a list of context instances. A context instance is an important data structure in
our detection algorithm. A local partition may contain multiple context instances if one of its
initiators has an icc parameter of add. A context instance ctxt-inst is a tuple:

(init-events, term-events, buf -events, ep-inst)

The init-events element of a context instance contains the set of events that started the context
by matching one of the initiators defined in ce-data.ctxt . Obviously, if this set contains multiple
events they must all have a concurrent end timestamp.

The term-events element of ctxt-inst contains the set of (concurrent) events that terminate
the context. Obviously, this set is only useful when the detection mode of ctxt-inst is deferred
or delayed. In immediate mode, the set is empty. The element buf -events of ctxt-inst is only
used when detection mode is delayed. It stores all the events that are detected during the life-
time of a context instance. These are then output by the detection algorithm when the context
instance is terminated.

The final element of a ctxt-inst is ep-inst . An ep-inst is the event pattern instance of a con-
text instance. An event pattern instance essentially mirrors the structure of the event pattern
definition for ce-data. It stores a set of operand instances. An operand instance operand -inst
may be a leaf operand instance leaf -inst or an internal operator instance internal -operator -inst .
A leaf -inst is a list of event instances. Each event in leaf -inst has an event type equal
to leaf -def .type and a set of attributes that match leaf -def .threshold , where leaf -def is the
corresponding leaf operand definition stored in ce-data.ep. The events are ordered by their
end timestamps. Events with concurrent end timestamps are ordered based on their start
timestamps. Events with concurrent start and end timestamps are ordered deterministically
but arbitrarily.

75

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.4 Implementation

An internal operator instance also mirrors its definition. It consists of a sequence of internal
global partitions sub-gps, where each sub-gp in sub-gps is a tuple of the form:

(values, sub-lps)

Note that in contrast to gps, sub-gps is a sequence, since the order in which internal partitions
are evaluated may affect the output of complex event detection. All internal partitions are
ordered deterministically based on the time at which they were created. The values attribute of
a sub-gp has the same form as for a top level global partition gp. Each internal local partition
sub-lp in the sequence of internal local partitions sub-lps is a tuple of the form:

(values, sub-ctxts)

Finally, each sub-ctxt-inst in the sequence sub-ctxts is a tuple of the form:

(init-events, term-events, ep-inst)

A sub-ctxt-inst is thus almost identical to a ctxt-inst . However, since sub-contexts can not have
a delayed detection mode, there is no need for a sub-ctxt-inst to have a buf -events element.

3.4.2 Detection Algorithm

The locations of detectors for each complex event are transparent to users. To simplify the
description of our detection algorithm, we assume that detectors are hosted on a single node.
At a logical level, extending the algorithm to cope with detectors distributed across multiple
nodes does not affect the algorithm. In practice, distribution introduces several difficulties. We
discuss these further in later chapters.

At any moment in time, a set of complex event data structures CE -DATA exist in our
system. From these, a function get-ce-graph ∈ P CE -DATA 7→ (E , E X E) generates a direc-
ted acyclic graph ce-graph of the currently defined event types. The graph ce-graph is a tuple
(types, edges), such that ce-graph.types ⊆ E , and ce-graph.edges ⊂ E X E . An edge edge exists
in ce-graph.edges if its source vertex is a direct input type of its sink vertex. The function
get-direct-input-events ∈ (E , E X E) 7→ P E returns the direct input event types of an event
type according to a set of edges.

Our detection algorithm divides the event types in ce-graph.types into several strata. The
stratum of an event type is a non-negative integer determined by the strata of its input event
types. A primitive event type pe such that pe ∈ PE ⊂ E, where PE is the set of all primitive
event types, has stratum zero. The stratum of a complex event type is one greater than the
maximum stratum of all its input event types. Thus all input event types to a complex event
type must come from lower strata, and at least one input event type must come from the stratum
directly below it. More formally the function stratum ∈ (E 7→ N0) is defined as:

76

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.4 Implementation

∀e ∈ ce-graph.types

stratum(e) =

{
0 iff e ∈ PE

(max-stratum(get-direct-input-events(e, ce-graph.edges)) + 1) otherwise.

Here the function max -stratum ∈ (P E 7→ N0) returns the maximum stratum of a set of event
types.

The detection algorithm is invoked when new events become stable. We refer to a time
instant t at which new events become stable as a stage. At each stage t, the detection al-
gorithm processes the the strata in ce-graph in a bottom-up fashion. The events detected by
lower level strata become part of the input event sets for higher level strata. Thus complex
events at stratum 1 are detected at t based on the events of stratum 0 (i.e. the primitive events).
Complex events at stratum 2 are detected at t using the primitive events occurring at t and the
events generated by stratum 1. Detection for t completes when there are no more complex event
strata to process. Event processing for each stage t is handled by a function process-stage

∈ ((P CE -DATA, P PE -INST) 7→ (P CE -DATA, P E -INST)). Pseudo-code for this function is
given below:

1 process-stage (ce-datas, primitive-events)

2 stage-events := primitive-events

3 updated-ce-datas := ∅
4

5 s := get-stratum-ce-datas (1, ce-datas) /* s ⊆ ce-datas */

6

7 while (s 6= ∅)
8 /* stratum-result = (updated-s, stratum-stage-events) |
9 updated-s ∈ P CE-DATA ∧
10 stratum-stage-events ∈ P CE-INST */

11

12 stratum-result := process-stratum (s, stage-events)

13 stage-events := stage-events ∪ stratum-result.stratum-stage-events

14 updated-ce-datas := updated-ce-datas ∪ stratum-result.updated-s

15

16 s := get-stratum-ce-datas (stratum (s) + 1, ce-datas)

17

18 return (updated-ce-datas, stage-events)

The process-stage algorithm takes as input the set of complex event data structures ce-datas
whose elements’ associated types are part of ce-graph, and the set of primitive event instances
primitive-events that occurred at stage t. It initializes the set of events detected for t using
primitive-events (line 2), and creates an initially empty set updated-ce-datas to store up-
dated versions of each element of ce-datas (line 3). It then extracts the set of complex event

77

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.4 Implementation

data structures in the first stratum from ce-datas (line 5). The algorithm then iterates through
the strata (lines 7–16). It calls the process-stratum function (see below) to perform event pro-
cessing for each stratum (line 12), and stores the result in a tuple stratum-result. The first
element of stratum-result contains updated versions of each complex event data structure in
the stratum, and the second element contains the set of complex event instances generated for
the stratum. It adds the event instances detected for complex event types in the stratum to the
events detected for lower strata (line 13), and also stores the updated versions of each complex
event data structure in the stratum (line 14). It uses the accumulated event instances to perform
detection for the next stratum. When there are no more strata to process, detection for stage
t terminates, and a tuple containing the updated complex event data structures and the set of
events generated for the stage is returned (line 18).

The detection algorithm performs event processing for a stratum using the process-stratum
function, where process-stratum ∈ ((P CE -DATA, P E -INST) 7→ (P CE -DATA, P CE -INST)).
We present a pseudo-code description of process-stratum below:

1 process-stratum (s, in-events)

2 new-events := ∅
3

4 /* GPE ⊆ in-events, LPE ⊆ GPE (see text) */

5 ∀ ce-data ∈ s, ∀ GPE ∈ partition (ce-data.gkeys, in-events)

6 if (∃ gp ∈ ce-data.gps | matching-partition? (gp, GPE))

7 ∀ LPE ∈ partition (ce-data.lkeys, GPE)

8 if (∃ lp ∈ gp.lps | matching-partition? (lp, LPE))

9

10 foreach (term : ce-data.ctxt.terms)

11 terminate (LPE, term, lp.ctxts)

12

13 ∀ ctxt-inst ∈ lp.ctxts | terminated? (ctxt-inst)
14 if (ce-data.ep.detect-mode = delayed)

15 new-events := new-events ∪ ctxt-inst.buf-events)

16 else if (ce-data.ep.detect-mode = deferred)

17 terminate-sub-ctxts (ctxt-inst, LPE, ce-data.ep)

18 new-events := new-events ∪
19 detect-consume-project (ctxt-inst, ce-data.ep)

20 delete (ctxt-inst)

21

22 ∀ ctxt-inst ∈ lp.ctxts

23 terminate-sub-ctxts (ctxt-inst, LPE, ce-data.ep)

24 collect (ctxt-inst, LPE, ce-data.ep)

25 if (new-stage? (ctxt-inst))

26 new-events := new-events ∪

78

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.4 Implementation

27 detect-consume-project (ctxt-inst, ce-data.ep)

28

29 foreach (init : ce-data.ctxt.inits)

30 lp.ctxts := lp.ctxts ∪ initiate (LPE, init, lp.ctxts)

31 ∀ ctxt-inst ∈ lp.ctxts

32 initiate-sub-ctxts (ctxt-inst, LPE, ce-data.ep)

33

34 else

35 lp := create-local-partition (ce-data.lkeys, LPE)

36 foreach (init : ce-data.ctxt.inits)

37 lp.ctxts := lp.ctxts ∪ initiate (LPE, init, lp.ctxts)

38 ∀ ctxt-inst ∈ lp.ctxts

39 initiate-sub-ctxts (ctxt-inst, LPE, ce-data.ep)

40

41 else

42 gp := create-global-partition (ce-data.gkeys, GPE)

43 ∀ LPE ∈ partition (ce-data.lkeys, GPE)

44 lp := create-local-partition (ce-data.lkeys, LPE)

45 foreach (init : ce-data.ctxt.inits)

46 lp.ctxts := lp.ctxts ∪ initiate (LPE, init, lp.ctxts)

47 ∀ ctxt-inst ∈ lp.ctxts

48 initiate-sub-ctxts (ctxt-inst, LPE, ce-data.ep)

49

50 return new-events

The algorithm processes each ce-data in s independently, as indicated by our use of the uni-
versal quantifier (line 5). The algorithm partitions the input events based on the global keys of
ce-data (line 5). If no global keys exist, events are detected within a single universal partition.
The resulting sets of globally partitioned event instances (GPEs) each match a different global
partition. Thus each set of event instances GPE ∈ P E-INST. It firstly handles the case where a
partition matching the GPE already exists (lines 6–39). For all global partitions, it uses the local
keys of ce-data to further partition the GPE into sets of locally partitioned event instances
(LPEs) (line 7). Thus each LPE ∈ P E-INST is a subset of exactly one GPE.

The next part of our algorithm handles the case where a local partition already exists for an
LPE (lines 8–32). Within each local partition, there may be one or more existing ctxt-inst.
The detection algorithm firstly attempts to terminate these ctxt-inst using the LPE (lines
10–23). Terminators specified in the Term clause of the complex event expression are evaluated
from left to right (line 10). Note we use the foreach keyword instead of ∀ to indicate that
iteration order is important. Every event of the LPE is evaluated with respect to a terminator.
A ctxt-inst may be terminated by multiple events, but by only a single terminator.

The next step of our algorithm handles all ctxt-inst that have been marked as terminated

79

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.4 Implementation

by the terminate function (lines 13–20). A terminated ctxt-inst with an immediate detec-
tion mode is simply deleted (line 20). For other detection modes, our algorithm must perform
some additional work before deleting the ctxt-inst. If its detection mode is delayed, then a
ctxt-inst may contain events that were detected during the period it was active. We store any
such events in a buffer attribute buf-events of the ctxt-inst. We timestamp the buf-events

with the current stage time before adding them to the set of detected events (line 15).
A ctxt-inst with a deferred detection mode requires us to perform event detection when it

is terminated (lines 18–19). Any events generated are added to the set of detected events. Note
that before the detection algorithm is invoked, contexts of internal operators, (i.e. sub-contexts),
must be checked for termination (line 17). As we mentioned in Section 3.3.4.2, a deferred con-
text may not be nested within a context that is deferred or delayed. In addition, a delayed

context may not be nested within any other context. Thus all sub-contexts of a deferred con-
text must have an immediate detection mode. Terminated immediate sub-contexts are deleted
by the terminate-sub-ctxts function, and do not contribute to event detection. Termination
of the set of ctxt-inst continues until there are no more terminators left.

At this point (line 22), the termination phase is almost complete. However, before pro-
ceeding to the event detection phase we must check whether any sub-contexts of the remaining
ctxt-inst need to be terminated (line 23). If there are no sub-contexts with a deferred de-
tection mode, then all terminated sub-contexts can simply be deleted. Terminated deferred

subcontexts (and all their child contexts), must be retained until the end of the stage, since they
may generate new events (in lines 26–27).

Having completed the termination phase, the algorithm must now check whether event de-
tection needs to be performed for all remaining ctxt-inst. The first step in this process is the
collection phase (line 24). In this phase the algorithm adds events to all operands with matching
event type and threshold conditions. If any events are added, then a new stage occurs for the
ctxt-inst. A new stage also occurs if a deferred sub-context is terminated (in line 23).

If a new stage occurs, we use the detect-consume-project function to perform complex
event detection (lines 26–27). If specified by the consume flag of their operands, this function
also performs consumption of the constituent events of any detected events. In addition it deletes
any terminated deferred subcontexts (from line 23). The projection phase maps any events
generated to new complex events. We then add these complex events to the events accumulated
for the stratum.

The last major task we need to perform is initiation. Similarly to termination, initiators
specified in the Init clause of the complex event expression are evaluated sequentially from left
to right (line 29). Each initiator that is matched may result in the creation of a new ctxt-inst

(depending on the icc parameter of the initiator and whether a ctxt-inst already exists). If
multiple events match an initiator, at most one new ctxt-inst is created. A newly created
ctxt-inst is thus initiated by a set of concurrent events. However, if multiple initiators are
matched, more than one ctxt-inst may be created (if the icc parameter of one of them is add).
A single event that matches more than one initiator may thus initiate multiple ctxt-inst.

80

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.5 Related Work

For all ctxt-inst (whether newly initiated or not), we must determine if any of their sub-
contexts are initiated by the events in LPE. Initiation of sub-contexts is performed recursively
by the initiate-sub-ctxts function (line 32).

When no local partition exists for an LPE, a new one must be created (lines 34–39). Since
it does not contain any ctxt-inst yet, we only have to perform initiation within this partition.
Similarly, if no global partition exists for a GPE, a new one must be created (line 42). Within
this new global partition, new local partitions must be created for all LPEs (lines 43–44). Once
again, within newly created partitions we only need to perform initiation (lines 44–48).

Finally, when detection has been performed for all complex events in a stratum, the al-
gorithm returns the newly generated events (line 50).

3.5 Related Work

There are a variety of languages related to our complex event detection language in the literature.
The reader can find a summary of their distinguishing features in Table 3.1. We give an overview
here of the main categories.

3.5.1 Composite Event Languages

Composite or Complex event languages arose from work done by the Active Database [PD99]
community. They were originally designed to support centralized systems, although subsequent
work has attempted to address distribution issues such as the lack of a global clock [Sch96;
YC99; PSB04]. We now describe several examples of these languages from the literature.

Ode [GJS92; GJ92] is a regular-expression like language from Gehani et al. where composite
events are detected using finite state automata. It supports a variety of composition operators,
and also allows correlation across operators using the information contained in event attributes.
However it does not allow for extensive control of consumption parameters, and the time model
is unsuitable for distributed systems.

The Samos language of Gatziu and Dittrich [GD93; GD94] uses Petri Nets to perform com-
posite event detection. Petri Nets are more powerful than Finite State Automata as they allow
for concurrent processing and management of complex data such as event parameters during
detection. However the time model of SAMOS does not allow for simultaneous events and is not
suitable for distributed systems. In addition SAMOS does not allow fine-grained control over
event selection and consumption.

Snoop [CM94; CKAK94] is an expressive CE detection language from Chakravarthy et al.
with extensive temporal support. Detection is based on a tree corresponding to the structure of
the event expression. Snoop introduced the notion of parameter contexts, also known as con-
sumption policies, to control the constituent events of a composite event in the case of ambiguity.
However, consumption policies can only be specified globally, instead of for individual operands.
Snoop does not allow the specification of conditions taking into account the attributes of events,

81

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.5 Related Work

and was not designed with concurrency or distributed systems in mind.
The Event Pattern Language (EPL) of Motakis and Zaniolo [MZ95b; MZ97a] is a composite

event language with a formal semantics defined using Datalog1S . Expressions are scoped by
modules, and conditions over event attributes, concurrent processing, and simultaneous events
are also supported (although the time model does not allow duplicate events). The parameter
contexts of Snoop are also defined formally, but sophisticated control over windowing, selection
and consumption is not provided. The language is extended in [MZ97b] with extensive support
for aggregation operations.

An excellent overview of the commonalities and differences between composite event lan-
guages for Active Database systems is given by Zimmer et al [ZMU97; ZU99]. They divide the
semantics of composite events into three independent dimensions, broadly corresponding to our
detection stages of collection, selection, and consumption. They define a formal meta model
for composite event algebras based on their analysis. However, they do not discuss how event
attributes can be used in conditions during detection. Their work is focused on centralized
systems with a global clock, and is not directly applicable to distributed systems.

A rule based event monitoring language is specified by Mansouri-Samani et al. as part of the
GEM system [MSS97]. It uses a tree based approach for selecting events, and allows conditions
to be specified over the attributes of events. Detection is performed using the chronicle con-
sumption policy of Snoop, but more sophisticated control is not provided. The language allows
rules to be annotated with discard timeouts in order to deal with delayed events in distributed
systems. This may not be feasible in an environment with unpredictable delays. In addition the
time model assumes a synchronized global clock.

The Amit language was designed by Adi and Etzion for the specification and detection of
complex events, which they refer to as situations [AE04; AE02]. A situation is defined by a single
operator, with input events being stored in a candidate list for each operand of the operator.
In addition, each situation has an associated lifespan, which acts as a context for its detection.
Our language bears many similarities to Amit, especially with respect to its processing model
and operators. However, Amit does not allow nested operators within a single complex event. It
also provides different control parameters for operands, and does not support the specification
of ranges in keys. Their time model also assumes a globally synchronised clock.

Cayuga is an automata-based event processing language from Cornell [DGP+07]. It provides
operators for sequencing different event streams, and aggregating events of the same type. It
uses the concept of epochs, which are similar to our idea of stages, to handle concurrent events.
In terms of distribution, it relies on a system-wide time delay to handle out of order events, but
does not address issues arising from the lack of a globally synchronised clock.

Sase is an event language [WDR06] from Wu et al. targeted towards RFID applications. It
uses a query-plan based approach to detection. Sase natively implements operators for efficiency,
and presents several query plan optimizations that can help to further improve performance.
However, the language does not provide extensive control over collection and selection and does
not support static partitions. Furthermore, it assumes a totally ordered event stream, and does
not address distributed system issues. Sase+ is an extension of Sase with support for a Kleene

82

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.5 Related Work

closure operator, which enables a variety of aggregation operations over a single event stream
(some of which we do not currently support) [ADGI08].

3.5.2 Continuous Query Languages

Continuous Query and Stream processing languages are another area of research that has influ-
enced our work. In contrast to composite event languages, most continuous query and stream
processing languages only delete events using windows (either temporal or tuple based), and do
not consume events (see Section 3.3.4.3). In addition, all of the following languages rely on a
globally synchronised clock.

Arasu, Babu, and Widom [ABW03] provide a precise semantics for continuous query lan-
guages as well as an instantiation of the semantics called CQL. Their language provides three
classes of operator—stream to relation, relation to relation, and relation to stream. Stream
to stream operators can be built by composing these operators together. This enables their
semantics to exploit well understood relational semantics. They suggest the use of a heartbeat
mechanism to deal with delayed events in distributed systems, but rely on a global clock for
timestamping.

Aurora is data stream management system for monitoring applications [CcC+02; ACc+03]
from Carney et al. Queries in Aurora are specified directly as an operator graph. Aurora also
allows the specification of QoS graphs to control how events should be shed under conditions of
high load, and slack parameters to help deal with out of order input events.

The TelegraphCQ language of Chandrasekaran [CCD+03] allows flexible specification of win-
dows using a procedural for-loop construct. This enables the definition of landmark, sliding,
tumbling, and hopping windows. Windows can also move backwards. However event bounded
windows like those provided by our detection contexts are not supported.

ESL [BTW+06] is an event stream language from Bai et al. that emphasizes the importance
of compatibility with SQL syntax and semantics for applications that span both DB tables and
data streams. It also provides extensive support for and optimization of user defined aggregates
over various types of window.

Finally, punctuations [TMSF03] were introduced by Tucker et al. to enable windows over
streams to be defined more flexibly. In addition to stream tuples, publishers can generate ex-
plicit punctuations with regard to input streams, indicating that a certain condition will hold
for the remaining elements of the stream. This allows query operators that must block until the
whole stream is seen to be supported. Punctuations can be modeled in our language as explicit
punctuation events.

Some other relevant continuous query and stream processing languages include Gigascope,
Tapestry, Chronicle, and Stream [CJSS03; TGNO92; JMS95; MWA+02]. However, we refer
the reader to the original papers for further details, since they do not provide any additional
language features of particular interest to us.

83

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.5 Related Work

3.5.3 Hybrid Languages

Several researchers have attempted to synthesize ideas from composite event and continuous
query languages to create more powerful hybrid languages.

The EStreams language of Jiang, Adaikkalavan and Chakravarthy is one such effort [JAC04].
They introduce the concept of stream modifiers in order to generate events from streams. These
events are then combined using operators based on those of Snoop. In addition, they propose a
novel windowing mechanism for streams called a semantic window. Termination of a semantic
window is controlled by a condition over newly arriving stream tuples and tuples already con-
tained in the window. Our override parameters could potentially be extended to support a
semantic window condition. However, most of the functionality provided by such a condition
can be achieved using detection contexts, which in addition to incremental output allows event
detection to be deferred until the end of the window.

The complex event language of Rizvi [Riz05] is another attempt to combine continuous quer-
ies with composite events. The continuous query language used is TelegraphCQ, whereas the
event language is again based on Snoop. The language uses a different notion of semantic win-
dow whereby events are used to define window boundaries. This enables, for example, windows
that extend back in time based on a newly arriving event.

The ESL stream processing language was extended with event handling capabilities by Bai
et al, resulting in the hybrid ESL-Events language [BWL+07]. Although designed for central-
ized scenarios where integration with static relations is required, their event language contains
several novel features. Firstly, they provide a starred sequence (seq*) operator that enables the
specification of conditions between events in the same operand. Our language can express the
example use cases given for this operator, although in a less direct fashion. Similarly, the excep-
tion sequence (exception-seq) operator can be expressed, but in a much less succinct fashion.
Finally, they mention their support for active expiration semantics, and give several examples
to emphasize its importance. As mentioned in Section 3.3.4.2, we intend to extend our language
to support this as future work. In terms of selection and consumption, their language relies on
tuple pairing modes, which are similar to the consumption policies of Snoop.

The Esper event stream processing language combines ideas from continuous query languages
with support for detection of event patterns [ESP09]. Esper provides a selection of operators
for defining event patterns similar to those of the RAPIDE composite event language [RAP09].
Roughly speaking, expressions containing event patterns consume events, whereas expressions
based on continuous query joins tend to employ sliding windows. Esper requires multiple ex-
pressions to capture the functionality provided by our static detection partitions, and does not
provide as much control over collection, selection and consumption. Moreover, Esper does not
address distributed systems issues arising from the lack of a global clock.

3.5.4 Durative Event Languages

Durative event languages are concerned with the events that occur over a period of time, instead
of instantaneously. For example, complex events generated by the expressions of our language

84

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.5 Related Work

can be viewed as occurring over a time bounded by the earliest start time of any constituent
event and the time at which they were detected.

The SnoopIB [AC03] language of Adaikkalavan and Chakravarthy is an extension of the
Snoop composite event language detects events using an interval based semantics. They form-
alize the detection semantics for each Snoop operator using event histories. Apart from the
drawbacks discussed with respect to Snoop, expressions are detected in general using only a
partial event history. We provide an sst function to give more information about the state of
input events. However, care must be taken to prevent detection failures in case of expressions
where the sst value never advances.

Yoneki and Bacon have defined a formal semantics and language for the detection of com-
posite events in distributed WSNs [YB05]. In contrast to our operand level parameters for
controlling selection and consumption, they advocate the use of a subset restriction policy, that
acts over a whole operator. A similar policy was proposed by Carlson and Lisper [CL04]). How-
ever the policy assumes that at most one event should be produced at each time instant. As is
the case with SnoopIB, detection of durative events is performed online without the help of an
sst function.

3.5.5 Production System Languages

Production system languages are also relevant to our work. Most of these are based on first
order logic, and thus are more expressive than our language, since it is possible to have recursive
rules. In addition they typically require a closed world assumption, and operate over a single
centralized database. In contrast the graph representing all complex events in our language is
required to be acyclic, and expressions can be decomposed and distributed.

The seminal work in the area is the Rete algorithm of Forgy [For82]. Rete is a fast matching
algorithm that was created to detect patterns defined by rules in the OPS5 production system
language [BFKM85]. Rule processing is performed over a working memory, which contains facts
representing knowledge about the current state of the world. Rules are compiled into a Rete
network, composed of α and β nodes. These nodes store tokens representing partially matched
rules in order to speed up evaluation. Changes in the knowledge stored in working memory
cause updates to the tokens stored in these nodes. If multiple updates are generated as a result
of a change to working memory, they are stored in a conflict set. A conflict resolution strategy
defines the order in which these updates should be applied.

Treat [Mir87; ML91] is an alternative matching algorithm for production systems proposed
by Miranker. Treat is similar to Rete in functionality, except that it uses less state at the cost
of increased execution times in some cases. It does not cache intermediate results, instead only
storing the working memory and the conflict set.

The Rete* algorithm of Wright and Marshall [WM03] is a more flexible matching algorithm
than either Rete or Treat. It allows applications to parametrise matching with the maximum
amount of memory to be used for caching intermediate results.

Leaps is yet another matching algorithm suggested by Miranker et al [MB90; Bat94]. Leaps

85

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.5 Related Work

is an extension of Treat that does not enumerate the whole conflict set, but instead fires the first
activated rule. This enables it to handle large databases, as its lazy evaluation model means
many potentially fireable rules never need to be triggered.

The Gator [HH93] algorithm of Hanson and Hasan is targeted towards condition processing
for higher data rate active databases. It uses discrimination networks that are essentially gen-
eralized trees, in contrast to the binary trees of Rete.

Finally, Argus is a stream monitoring system from Jin et al. that focuses on applications
where highly selective rules are the norm (stream anomalies) [JCH05]. Detection is performed
using a restricted class of Rete network that limits the complexity of the queries that can be
posed (in comparison to production systems). Argus employs a sliding window style event
discard policy, similar to that used by continuous query languages. The fact that application
queries are very selective means that the amount of memory required to store intermediate
results remains low, one of the main problems for large scale production systems.

3.5.6 State Detection Languages

State detection languages are another class of language relevant to our work. These allow the
association of two or more complex events in order to enable the efficient detection of the current
state of some entity. In theory, a complex event language could be seen as complementary to
a (sufficiently flexible) state detection language, since a complex event could be mimicked by a
state whose deactivation fires immediately after its activation.

Roemer and Mattern argue for the use of states instead of composite events, since they
allow more natural problem modeling for some applications [RM04a]. They present a language
that provides constructors for specifying binary states. Temporal and spatial operators allow
the detection of more complex combinations of states. Consumption of events is controlled
by procedural code specified as part of the action of the rule in which a state specification is
defined. An extensive discussion of issues pertaining to distributed detection in wireless sensor
networks is also provided. In contrast, we attempt to provide more declarative control over
event selection and consumption, and our operators and support for detection contexts are more
suited to applications interested only in events.

Another state detection language is that of Taherian and Bacon [TB07]. Similarly to Roemer,
it allows the specification of binary states and conditions over entrance and exit events. In
contrast to our language, event consumption is not supported. Instead, events can only be
discarded using windows (similar to continuous query languages). However, this restriction does
enable an interesting shared state model between query expressions.

Finally, Rizvi [Riz05] motivates an extended complex event detection model where events
are used as inputs to a state transition diagram. Events can occur probabilistically, and the
state transition diagram gives a probability distribution over the possible current states. This
model essentially generalizes the binary states of Romer and Taherian. A description of Rizvi’s
complex event detection language was given earlier in our discussion of hybrid languages.

86

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.6 Summary

3.6 Summary

We have defined a language for describing complex events. The language was designed with the
open distributed environment of pervasive computing applications in mind.

In general, due to the lack of a global clock in distributed systems, events cannot be totally
ordered. We assume an uncertainty interval representation for event timestamps. Events with
disjoint timestamps can be detected normally. Events whose uncertainty interval timestamps
conflict are grouped into a stage. Detection of a stage with multiple conflicting events is
application-specific.

Our language also simplifies distributed detector placement by enabling the specification of
easily decomposable and partitionable expressions directly. Events requiring more sophisticated
composition (such as conditions across multiple operators) are also supported. These are typic-
ally more difficult to distribute, due to the dependencies between operands of different operators.

Finally, many of our language constructs can be configured extensively. This is important
as it increases the generality of our language. Pervasive computing applications may exhibit a
wide variety of detection semantics, as shown by the variety of examples used throughout the
chapter.

87

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.6 Summary

C XOC UC TIW TUW EW CE P RP DE AG SEL CONS DT DBI ST NO CY

O’Keeffe X X ∼ X X X X X X X ∼ X X X 7 7 X 7

CELs

Ode X X X 7 7 7 7 7 7 7 7 7 X 7 7 7 7 7

Samos ∼ ∼ ∼ X 7 ∼ 7 7 7 7 7 ∼ 7 7 7 7 7 7

Snoop 7 7 7 X 7 X 7 7 7 7 ∼ ∼ ∼ 7 ∼ 7 X 7

EPL X X X 7 7 7 X 7 7 7 X ∼ ∼ 7 X 7 X ∼

Zimmer 7 7 7 7 7 X X 7 7 7 7 X X 7 ∼ 7 X 7

GEM X X X X 7 X 7 7 7 7 7 7 ∼ 7 7 7 7 7

Amit X 7 7 X 7 X 7 X 7 7 ∼ X X 7 7 7 X 7

Cayuga X X X X X ∼ X 7 7 ∼ X 7 X 7 7 7 7 7

Sase X X X X 7 X 7 X 7 7 X 7 ∼ 7 7 7 X 7

CQLs

CQL X X 7 X X 7 X X 7 7 X ∼ 7 7 X 7 X 7

Aurora X X 7 X X 7 X X 7 7 X ∼ 7 7 X 7 X 7

TeleCQ X X 7 X X 7 X X 7 7 X ∼ 7 7 X 7 X 7

ESL X X 7 X X 7 X X 7 7 X ∼ 7 7 X 7 7 7

HLs

EStreams X 7 X X X ∼ 7 X 7 7 ∼ ∼ ∼ 7 7 7 ∼ 7

Rizvi X X X X ∼ ∼ 7 X 7 7 ∼ ∼ ∼ 7 ∼ ∼ 7 7

ESL-EV X X X X X X 7 X 7 7 X X ∼ 7 X 7 X 7

Esper X X X X X X ∼ ∼ 7 7 X X X 7 X 7 ∼ X

DELs

SnoopIB 7 7 7 X 7 X 7 7 7 X 7 ∼ ∼ ∼ 7 7 X 7

Yoneki 7 7 7 X ∼ X X 7 7 X X ∼ ∼ X 7 7 7 7

SDLs

Roemer X X X ∼ 7 X ∼ X ∼ 7 7 ∼ ∼ X 7 X X ∼

Taherian X X X X X X X X ∼ 7 X X 7 7 7 X X ∼

PSLs

Typical X X 7 7 7 7 7 7 7 7 7 7 7 7 X X X X

Table 3.1: Language Comparison: X = Good support, ∼ = Partial support, 7 = No support;
Feature acronyms given in Table 3.2

88

CHAPTER 3. A COMPLEX EVENT LANGUAGE 3.6 Summary

C Conditions
XOC Cross-Operator Conditions
UC Unary Conditions
TIW Time Windows
TUW Tuple Windows
EW Event Windows
CE Concurrent Events
P Partitions

RP Region Partitions
DE Durative Events
AG Aggregation
SEL Selection

CONS Consumption
DT Distributed Time
DBI Database Integration
ST States
NO N-Ary Operators
CY Cycles

Table 3.2: Feature Key

89

90

Chapter 4

Reliable Complex Event Detection

4.1 Introduction

Complex event detection is an inherently failure prone endeavour for pervasive computing ap-
plications. Detection failures can occur for a variety of reasons, including imprecise time syn-
chronization, lossy communication, and out of order event delivery. Many of these errors must
be handled in an application specific manner. Providing applications with a simple way to
control how errors affect complex event detection is therefore vital if we are to make pervasive
computing practical.

Most existing work on distributed complex event detection takes a relatively simplified view
of these problems; they either ignore errors and perform best effort detection, wait indefinitely
for errors to resolve themselves, or fail. More sophisticated solutions have been suggested, such
as approximate continuous query processing [MWA+02; CcC+02] and probabilistic event pre-
dicates [Bau04]. However these approaches either rely on an overly simplified time model, miss
some opportunities to improve event detection accuracy, or do not discuss complications that
arise for expressions that consume events.

In this chapter, we focus on improving complex event detector handling of several types of
communication error, as well as timing errors caused by the lack of a global clock in distributed
systems. Our contributions are threefold.

� We define several levels of correctness for complex event detection, and discuss how differ-
ent types of error can affect the correctness of a detector’s output event stream (Section
4.2).

� We propose the use of detection policies to enable applications to control the handling of
errors (Section 4.4). We discuss several such policies, and under what conditions each is
useful. We then show how the complex event detection language introduced in Chapter 3
can be extended to enable the specification of our detection policies.

� Finally, we describe in detail the implementation of a detection policy to support no false
positives complex event detection (Sections 4.5 and 4.6). Performance evaluations of our

91

CHAPTER 4. RELIABLE CE DETECTION 4.2 Background

implementation show significant improvements in detection accuracy in the presence of
various system failures. In addition, our evaluations show the extension imposes only a
small overhead under failure free operating conditions.

4.2 Background

4.2.1 Communication Errors

Most current attempts to guarantee the correctness of complex event detection require input
events to be delivered in a totally ordered fashion, based on the time at which they occurred.
However, if event delivery between publishers and detectors is not reliable, this may be impossible
to ensure. For example, if publishers are simple devices that do not have much memory (e.g.
sensors), it may be unreasonable to require them to store persistently all the events they detect
in order to ensure reliable delivery [HGM01]. For expressions with timeliness constraints, even
eventually reliable delivery is not enough to guarantee correctness.

We define a correctly detected output stream as the output stream a detector generates when
there are no event losses, and communication and detection delays with publishers do not result
in an output event being detected after some subscriber-defined timeliness constraints have
passed. In addition, we define a correctly delivered output stream as a correctly detected output
stream with zero or more events removed, such that every event in the correctly delivered output
stream is delivered within some time bound of its occurrence, as defined by the subscriber.

Perfect complex event detection occurs for a subscriber when the output stream it receives is
correctly delivered, and exactly equal to the correctly detected output stream. Ordered perfect
complex event detection occurs when the delivered output stream is perfect, and events are
delivered in the same order as they were detected.

The effects of unreliable delivery and timeliness requirements on our ability to perform
correct complex event detection are summarized in Table 4.1. The table shows that when event
delivery is guaranteed and there are no timeliness requirements defined by the subscriber we
can ensure ordered perfect complex event detection. When delivery is still reliable but there
are timeliness requirements, only a correctly delivered output stream can be guaranteed. When
delivery is unreliable, and in the absence of a mechanism for detecting lost events, or delayed
events when there are timeliness requirements, only best effort detection is possible1. As we
will show, augmenting complex event detection with such a mechanism enables more reliable
detection.

4.2.2 Time Synchronization Errors

The lack of a global clock in distributed systems introduces another class of errors. This absence
can make it impossible to precisely define the exact time at which an event occurred. In order

1Ignoring the trivial case of a detector that intentionally produces no output

92

CHAPTER 4. RELIABLE CE DETECTION 4.2 Background

Unreliable Delivery Reliable Delivery

Bounded Delay Best Effort Correctly Delivered
Unbounded Delay Best Effort Ordered Perfect

Table 4.1: Possible Detection Guarantees

to cope with this problem, we assume event timestamps use an uncertainty interval to bound
their imprecision [LCB99]. Events whose uncertainty intervals overlap can cause problems for
current complex event detection languages, since it is not clear how they should be ordered. To
model the effect of conflicting uncertainty intervals on complex event detection, we can extend
our earlier definition of a correctly detected output stream to require that the output generated
be equal to the output that would be generated if the ordering of events was known. As we will
show, in the presence of conflicting uncertainty intervals, our ability to perform correct detection
depends on the type of complex event expression being detected.

4.2.3 Motivating Example

As a motivating example for our work, consider a container packing application (e.g in a factory,
airport or shipping yard). Small packages with RFID tags attached travel along a conveyor belt
past an RFID reader (R1). Larger containers with their own RFID tags travel along a different
conveyor belt past another RFID reader (R2). The two conveyor belts meet at a loading point
(LOADING). A container waits at the loading point until at least one and at most 3 small
packages have been stored inside. The container then proceeds along the conveyor belt to a
holding area where it waits to be transported. The next container on the belt takes its place
and the process repeats. The layout of the conveyor belts is depicted in Figure 4.1.

LOADING

Packages

Containers

R1

R2

Figure 4.1: Container Packing Application

For tracking purposes, a record of which small packages are in which container must be main-
tained. To this end, RFID reader R1 generates a sequence of events with the schema Package(readerId,

93

CHAPTER 4. RELIABLE CE DETECTION 4.2 Background

pkgId). Similarly, R2 generates a sequence of events Container(readerId, contId)1. These
events are sent over a wireless link to an event broker that hosts a complex event detector respons-
ible for matching packages to containers. The detector generates a stream of PackageContainer
events, computed using the expression:

CreateCE PackageContainer

Select Package.pkgId, Container.contId

Event And(Package<old max 3, consume>,

Container<old max 1, consume>)

A tracking database subscribes to the detector output, and stores the various assignments
as they are received. Note that although for our packing example there is only a single source
of events for each type, in general there may be multiple sources.

This setup will function correctly if event delivery is totally ordered and timely. However,
RFID readings are transmitted wirelessly and may be lost en route to the detector. In addi-
tion, the readers may be memory constrained, and persistent storage of events to ensure reliable
delivery may impose an unwanted overhead. Such a scenario can result in gaps in the input
streams received by the PackageContainer detector.

If the events in these gaps are lost forever, then a detector with a guaranteed detection policy
will fail. Unfortunately, using a best effort detection policy instead is not a viable alternative,
since it will result in lost package assignments. In addition, blindly assigning packages to con-
tainers without taking into account gaps can cause cascades of bad assignments.

The only alternative for dealing with containers holding unknown packages due to lost read-
ings is to have a supervisor scan them in manually. To reduce the workload of the supervisor,
we would like to minimize the occasions on which this is necessary. A simple option would be
to halt the conveyor belts and restart detection after the unknown packages have been scanned.
However, this can significantly slow down the processing of packages. Ideally we could isolate the
container holding the unknown packages, and let scanning of the remaining packages continue
as normal. A policy such as this would help to prevent the cascade problem described above,
while allowing packing to continue after an event is lost.

As an example, consider the sample input received by a PackageContainer detector in Table
4.2. The leftmost column gives the time at which events were detected by the RFID readers.
The center column gives the Package readings received by the detector, and the rightmost gives
the Container readings received. Note especially that a Package event (R1, 3) with (ts =

t4) has been lost en route, and is therefore missing from the Package column.
In Table 4.3 we compare the actual assignments of packages to containers with some pos-

sible outputs generated by the PackageContainer detector. The leftmost column gives the
timestamps of each output event. The actual packages that were assigned to each container is
given in the TA (true assignment) column. If no input events had been lost, this is the output
that the PackageContainer detector would have generated. The output generated by a detector

1Events in both of these streams also have an implicit timestamp field.

94

CHAPTER 4. RELIABLE CE DETECTION 4.2 Background

using a best effort (BE) detection policy is given in the next column. It can be seen that in
addition to having no record with pkgId = 3, packages 6 and 9 are also assigned to the wrong
container. This is an example of a lost event causing cascading errors.

Finally, the gap detection (GD) column contains the output that could have been generated
if the detector was gap aware. Although there is still no record of the container in which the
lost package event was stored, all output events generated are correct. In contrast to best effort
detection, the cascade problem does not arise.

ts Package Container

1 (R1, 1) –
2 (R1, 2) –
3 – (R2, 1)

4 -lost- –
5 (R1, 4) –
6 (R1, 5) –
7 (R1, 6) –
8 – (R2, 2)

9 (R1, 7) –
10 (R1, 8) –
11 (R1, 9) –
12 – (R2, 3)

Table 4.2: Events Received by PackageContainer Detector

ts TA BE GD

3 (1, 1) (1, 1) (1, 1)

3 (2, 1) (2, 1) (2, 1)

– – – –
8 (3, 2) (4, 2) –
8 (4, 2) (5, 2) (4, 2)

8 (5, 2) (6, 2) (5, 2)

– – – –
12 (6, 3) (7, 3) (6, 3)

12 (7, 3) (8, 3) (7, 3)

12 (8, 3) (9, 3) (8, 3)

Table 4.3: Different Possible Outputs for PackageContainer(pkgId, contId), with TA =
True Assignment, BE = Best Effort, GD = Gap Detection

In addition to errors caused by message loss and delay, detection should also handle errors
that arise due to conflicting uncertainty interval timestamps. In our packaging application, two
package events with overlapping uncertainty intervals might mean it is not possible to determine

95

CHAPTER 4. RELIABLE CE DETECTION 4.3 Service Model

which bag is stored in which container. A suitable detection algorithm would attempt to prevent
errors arising from conflicting uncertainty intervals as well as from gaps in the input event stream.

4.3 Service Model

Since events may be lost or arrive out of order at a detector, they must be reordered if possible
before being delivered. We refer to this process as stabilization. In this section, we discuss how
errors in event streams are detected during stabilization.

4.3.1 Basic Service Model

We assume a model where sensors are connected to consumers via a publish/subscribe service.
The publish/subscribe service acts as a mediator between sensors who publish primitive events
and consumers who subscribe to events of interest (Figure 4.2). Subscriptions may contain filters
over the events produced by publishers. These are typically stored in the mediator, although
later on (Section 4.3.4) we discuss the implications of storing them at publishers. Of particu-
lar interest to us is that consumers can also create complex subscriptions to detect patterns of
primitive events. These result in the creation of complex event detectors, which are hosted by
the mediator.

Our service model assumes that the complex event detection service is integrated into the

SMEDIATORS PP

EVENTS EVENTS

Figure 4.2: Publish/Subscribe Service

publish/subscribe service. This differentiates a detector from a normal subscriber, since it must
know about the publishers that contribute to its expression. A spatial coupling is thus intro-
duced between detectors and publishers [EFGK03]. This does not necessarily invalidate the use
of a publish/subscribe paradigm, since the subscribers to the output of the detector are still
decoupled from publishers. However, it does mean that the complex event detection layer is
more tightly integrated with the publish/subscribe layer, as in the approach of Padres [LJ05].
For some detection policies (see Section 4.4) this may not be required, and a cleaner separation
as in [PSB04] may be more desirable, since the implementation of the complex event detection
service is simplified.

The mediator itself may be implemented in a centralized or distributed fashion. We assume
for simplicity that once the mediator receives an event from a publisher, it can store the event
persistently until it has been delivered to all interested subscribers (if necessary). However,
we do not require reliable delivery, as publishers may be lightweight and without the resources

96

CHAPTER 4. RELIABLE CE DETECTION 4.3 Service Model

to store events until they have been delivered to all interested parties. Since publishers may
be connected to the mediator via lossy links (e.g. a wireless connection), events may be lost
irretrievably at some point between the publisher and the mediator.

Finally, if the event generation rate of a publisher is low, periodic heartbeat messages may
be sent in addition to event messages. Heartbeat messages contain a timestamp indicating the
time at which they were sent, and enable the mediator to determine when the publisher is still
alive, but has not yet detected any events.

4.3.2 Event Model

In a similar fashion to the type-and-attribute based filtering employed in Hermes [Pie04], we
model an event as having a type and a set of attributes. Every primitive event also has a
detection timestamp, which we assume for now is an uncertain point in time bounded by an un-
certainty interval timestamp [tl, th]. Each publisher advertises the type of the events it publishes.
As with subscriptions, advertisements may contain filters over some or all of the attributes of
the type. For example, a movement sensor may advertise the movement events it publishes as
MovementEvent(loc = FEO2). Here the location attribute of any movement event generated
by the publisher must be equal to the room FEO2. Advertisement filters thus indicate that the
publisher will only generate events with a restricted set of attribute values.

Each type t defines a type-space TSt of possible events. The advertisement of a publisher
p thus defines a subset of this space which we refer to as the local advertisement-space LAS p

t

of the publisher for the type. We define the set Pt as the set consisting of all publishers whose
local advertisement-space LASp

t intersects TSt (i.e. LASp
t ∩ TSt 6= ∅). The combination of

the advertisements of all publishers of a particular type at any one time defines the global
advertisement-space GASt . We can thus define the relationship, in terms of the events they con-
tain, between a local advertisement-space, the global advertisement-space, and the type-space,
as LASp

t ⊆
⋃

i∈Pt
LAS i

t = GASt ⊆ TSt .
Consumer subscriptions (for primitive events) specify an event type, and optionally a filter

over the attributes of that event type. Each such subscription s ∈ St defines a local subscription-
space LSS s

t . We define the match-space MSp,s
t of a publisher p and a subscriber s as the inter-

section of LASp
t with LSS s

t (i.e. MSp,s
t = LASp

t ∩ LSS s
t). A subscription without a filter covers

all of the type-space, all of the global advertisement-space, and for each publisher of the type,
all of the local advertisement-space. In contrast, subscriptions with a filter cover a subset of
the type-space. In addition they may cover all, some or none of the global advertisement space.
Finally, each subscription with a filter may cover all, some or none of the local advertisement-
space of each publisher.

For each of the three different spaces, we can define a notion of subscription equivalence.
Two subscriptions are type-space equivalent (TS -equivalent) when they both match all events
contained in the same subset of a type-space. Two subscriptions are equivalent with respect
to a global advertisement space (GAS -equivalent) when they both match all events contained

97

CHAPTER 4. RELIABLE CE DETECTION 4.3 Service Model

in the same subset of the global advertisement space. Finally, two subscriptions are equivalent
with respect to a local advertisement space (LAS -equivalent) when they both match all events
contained in the same subset of the local advertisement space.

Given a particular publisher, we can divide the local subscription spaces that intersect with
its local advertisement space into two sets; subscription spaces that fully cover the local ad-
vertisement space constitute the full coverage set FCSp

t , and subscription spaces that partially
cover the local advertisement space constitute the partial coverage set PCSp

t . More formally,
FCSp

t = {LSS s
t | s ∈ St ∧ MSp,s

t = LASp
t }, and PCSp

t = {LSS s
t | s ∈ St ∧ MSp,s

t ⊂ LASp
t ∧

MSp,s
t 6= ∅}. Subscription spaces in the full coverage set are always LAS-equivalent (i.e. ∀ x , y

∈ FCSp
t , LAS -equivalent(x , y)). Subscription spaces in the partial coverage set may or may not

be LAS-equivalent. Finally, the non-equivalent coverage set NECSp
t of a local advertisement

space LASp
t with respect to a set of subscriptions St consists of the set of all non-empty match

spaces of LASp
t with respect to the subscriptions in St . Thus NECSp

t = {MSp,s
t | s ∈ St ∧

MSp,s
t 6= ∅}. Note that since NECSp

t is a set, none of its elements are LAS-equivalent.

4.3.3 Detecting Missing Events

Having described the basic service and event models, we discuss how to detect when events
sent from the publisher to the mediator are lost in transit1. A simple mechanism for achieving
this is for publishers to attach sequence numbers to each event that they send. By examining
the sequence numbers of events received, the mediator can determine when events sent by a
publisher have been lost.

From the perspective of a consumer however, loss detection capabilities can be divided into
two different classes, depending on the covering relationship between the consumer’s subscrip-
tion and the local advertisement-space of the publisher. If the subscription completely covers the
local advertisement-space (i.e. LSS s

t ∈ FCSp
t), then the precise number of lost events that would

have been of interest to the subscriber can be determined. We call this level of loss detection
exact-count loss detection.

In contrast, if the subscription only covers a portion of the local advertisement-space (i.e.
LSS s

t ∈ PCSp
t), then some of the events lost in transit may not have been of interest (i.e. they

would not have matched the subscription). In this case, we can only determine an upper bound
on the number of lost events that would have been delivered to the subscriber. Therefore, we
refer to this level of loss detection as max-count loss detection. Exact-count loss detection is
more useful when trying to perform reliable complex event detection.

In the discussion above, we have concentrated on how a subscriber might detect losses in
the event stream generated by a single publisher. In general, a subscription may intersect with
the local advertisement space of multiple publishers, each of whom will have their own sequence
numbers. Obviously, loss detection in these situations must take into account losses in every

1We do not attempt to deal with errors arising from publisher failures.

98

CHAPTER 4. RELIABLE CE DETECTION 4.3 Service Model

publisher’s event stream.

4.3.4 Extended Service Models

In this section we describe some simple variations on the basic service model, and discuss how
they affect our ability to detect missing events.

� Publisher Hosted Filtering:
In some situations, publishers may not have enough memory to ensure guaranteed storage
of all detected events. For example if events are published at a high rate, and there is a
temporary network partition, then the memory capacity of the publisher may be exceeded.
In such a scenario, we may be able to push some of the subscriptions for whom only max-
count loss detection is possible from the mediator to the publisher. If events generated
by the publisher are first filtered locally, and only then sequenced, then exact-count loss
detection becomes possible for these subscriptions. The fact that any subscriptions pushed
use a constant amount of memory, independent of the rate at which events are generated,
means that the complexity of publishers can remain low. However, the publisher must
either send a separate event for each matching subscription space in NECSp

t , or batch
sequencing information for each matching subscription space in NECSp

t in a single copy
of the event.

� Reliable Publishers:
For expressions with latency requirements, delayed events, as opposed to lost events, can
result in gaps in input streams. Indeed for an alternative reliable service model, where
publishers are capable of storing events (and possibly subscription filters), gaps in input
streams only arise for expressions with latency requirements. In both cases, gaps can be
detected using the same sequence number mechanisms as for lost events.

� Unreliable Mediator:
In the service models so far, we imposed the constraint that event delivery within the
mediator is reliable. If the mediator is also unreliable (i.e. nodes don’t have persistent
storage), then care must be taken when pushing subscription filters to the publisher. In
particular, filters of subscriptions for whom only max-count loss detection is possible at
the detector must be pushed all the way to the publisher if exact-count loss detection
is desired. Storing the filter at an intermediate node might help to reduce unnecessary
communications, but will not enable exact-count loss detection. This is because the inter-
mediate node could fail, losing any sequencing information it holds about the publisher’s
event stream.

99

CHAPTER 4. RELIABLE CE DETECTION 4.4 Detection Policies

4.4 Detection Policies

Having introduced our event and service models, we now discuss how a complex event service
can cope with various kinds of system error.

4.4.1 Policies

In our system, a user can specify how to handle different types of failure using a variety of
detection policies. Some useful detection policies might include:

� Guaranteed: Under a guaranteed detection policy, detectors block until they are sure they
have received all input events from every publisher. In a distributed system, this may
delay event detection indefinitely.

� Best Effort: Under a best effort detection policy, events are delivered to a detector in the
order they arrive. Events that arrive out of order with respect to previously delivered
events from all sources are discarded.

� Max-Delay: With a max-delay policy, a subscriber can specify a maximum time to wait
for delayed events before assuming they are lost. Events arriving after the timeout are
discarded under a best-effort semantics, or cause the failure of detection if a guaranteed
semantics is required.

� Probabilistic: This is a similar policy to the max delay policy, except the subscriber
specifies a confidence level instead of a max delay. The detector can then attempt to
model the expected latency between it and any relevant publishers, and detection can
proceed when the probability there is no message in transit exceeds the required level.
The subscriber does not need to know about the expected latencies between publishers
and the detector. Similarly to a Max-Delay policy, late arriving events are discarded under
a best effort semantics, or cause detection to fail under a guaranteed semantics.

� No-False-Positives(NFP): An NFP policy ensures that every event a detector generates
actually occurred. For example, in the packaging application described earlier, a no false
positive detection policy would ensure that no erroneous information is added to the data-
base regarding which packages are stored in which container. In contrast, a best effort
policy may generate erroneous events, and a guaranteed detection policy may fail unnec-
cessarily when events are lost, delayed, or have conflicting timestamps.

� No-False-Negatives(NFN): In contrast to an NFP policy, an NFN policy ensures that a
subscriber is notified whenever there is any possibility of an event having occurred. An
effective implementation of an NFN policy should minimize the number of false positive
notifications.

More specific policies can also be designed that attempt to handle one particular type of error,
while ignoring another. For example, in many cases a user may wish to use the midpoint of an
uncertainty interval timestamp to approximate an event’s occurrence time.

100

CHAPTER 4. RELIABLE CE DETECTION 4.5 NFP Policy

4.4.2 Language Integration

Since a detection policy affects the semantics of a complex event, it should be specified as part of
the complex event expression. We have extended the language described in the previous chapter
with an optional DETECT clause for specifying policies. The syntax of the clause is given below:

[DETECT (BEST-EFFORT | [MP-]NFP | [MP-]GUARANTEED)

[(TIMEOUT ...)|(C-LEVEL ...)]]

Currently, we support all the policies suggested in the previous section except for the NFN
policy. Our BEST-EFFORT detection policy ignores gaps, and maps each uncertainty interval
timestamp to the midpoint of the interval. A plain no-false-positive (NFP) detection policy
handles both gaps and uncertainty intervals. However if the MP- (mid-point) prefix is specified,
uncertainty intervals are mapped to their midpoints by the detector and only gaps can cause
errors. Guaranteed detection fails on the occurrence of gaps or a set of conflicting events.
Alternatively, an MP- prefix allows uncertainty intervals to be ignored.

Policies can be parametrised with either a stabilization timeout or a confidence level. A
stabilization timeout allows the specification of a max-delay policy in combination with any of
the other policies. Note that for an NFP policy with a timeout, late arriving events are discarded.
The confidence level parameter requires the system to compute a suitable delay in order to ensure
that all input events have arrived at the detector with a certain probability.

Detectors with different policies may be composed together. However, the policy specified for
a detector is only enforced over the events and error information generated by its direct inputs.
This means that the semantics of detection policies are local to a detector. As an example,
consider a complex event with a guaranteed detection policy that has an input generated by a
best-effort complex event detector. Any errors in the input streams of the best effort detector
will be cleaned by that detector, and therefore will not cause a failure of the guaranteed detector.

One final issue that arises when composing detectors is how detection timeouts at different
levels should be handled, since each detector may have its own max-delay bounds for detection.
The latency bounds on higher level detectors should be greater than or equal to the latency
bounds of all input complex event detectors. From the perspective of policy specification, this
could be enforced by having latency bounds at each level be in addition to any maximum
latency bounds specified for lower level detectors. Alternatively, we could require that the
latency bound for a detector indicate the total maximum latency, and that this be greater than
the total maximum latency of any input detector.

4.5 NFP Policy

In the remainder of this chapter we focus on the implementation of an NFP detection policy.

101

CHAPTER 4. RELIABLE CE DETECTION 4.5 NFP Policy

4.5.1 NFP Detection

In the presence of gaps or events with conflicting uncertainty interval timestamps, the output
of stabilization is an ordered sequence of valid and invalid stages. A valid stage consists of a set
of concurrent events with no gaps or events with conflicting timestamps. A valid stage occurs
at a single point in time, and thus corresponds to the stage concept introduced in the previous
chapter.

In contrast, an invalid detection stage contains a gap and/or a set of events that cannot be
ordered due to conflicting uncertainty interval timestamps. An invalid detection stage may thus
occur over a time period, and can represent one or more valid detection stages. However, due
to the incomplete nature of the information contained in the invalid stage, it may be impossible
to say exactly how many.

4.5.1.1 States of a Detector

Immediately after start-up, a detector is in a correct state, since no invalid input has been re-
ceived. As long as it receives an ordered stream of valid stages it remains in a correct state.
When an invalid stage occurs, the detector transitions into one of several different error states.
The possible states of a detector can be summarized as:

CORRECT | ((FULL | PARTIAL) (PERMANENT | TEMPORARY)) ERROR

Error states can be classified along two main dimensions, severity and duration. A full severity
error state indicates a detector that is not capable of producing any correct output. In contrast,
a partial severity error state can produce some correct output events, but may be missing some,
due to the invalid stages.

A detector in an error state of permanent duration will never have the severity of its state’s
error reduced. Conversely, an error state with temporary duration indicates that it is possible
the detector will return to a reduced severity error state at some point.

A detector in a full permanent error state can never determine any useful information about
the correctness of its output. Thus a detector in this state should typically fail. An example of
a partial permanent error state is a detector for the expression:

CreateCE PartialPermanentErrorExample

Event And(A, B)

If this detector receives an invalid stage, it will never be deleted. Thus although it may continue
to generate output, it will never be perfectly correct. Figure 4.3 shows the transitions possible
between detector states.

102

CHAPTER 4. RELIABLE CE DETECTION 4.5 NFP Policy

FULL
PERMANENTPARTIAL

PERMANENT

CORRECT

PARTIAL
TEMPORARY

FULL
TEMPORARY

SEVERITY

D
U

R
A

TI
O

N

HIGHLOW

LOW

Figure 4.3: NFP Detector State Transition Diagram

4.5.1.2 Output Convergence

When a detector is in an error state with temporary duration, a return to a correct state (or an
error state of lower severity) results in the convergence of its output stream towards a perfectly
correct output stream. Since output is generated based on the state of operands’ event histories,
convergence occurs when the information contained in invalid stages is no longer relevant. Dur-
ing normal operation, events can become irrelevant in four ways: expiry, override, consumption,
and context termination.

Event expiration occurs when detection is performed over a temporal sliding window, and
the window slides over the event. We use the term override to describe situations where an
event is discarded due to the arrival of new events, independently of whether any output is
generated by either the new or old events. A typical example of this is an operand with a tuple
based sliding window, where the arrival of new events causes older events to be discarded. Next,
consumption is the removal of an event from an event history in response to the detection of
some output event of which it may have been a constituent. Note that in our classification, the
recent ‘consumption’ policy of Snoop [CKAK94] causes events to be overridden, not consumed.
The chronicle consumption policy of Snoop is closer to our definition of consumption. Finally,
the termination of a context instance results in all the information contained in its operands
being discarded.

Determining the state of a detector is a two stage process, namely the static and dynamic
analysis phases. Static analysis of a detector’s expression occurs at compile time. It firstly
determines the loss detection capabilities of the underlying delivery service. Secondly, it looks
at whether and how events delivered to the detector can be deleted. From this information it
determines the possible states of the detector, and also the possible transitions between states

103

CHAPTER 4. RELIABLE CE DETECTION 4.6 Implementation

that can occur. As an example, the static analysis may determine that all invalid stages cause
the detector for an expression to enter an error state from which it will never exit. Thus at
run-time the detector should fail immediately whenever it receives an invalid stage.

At run-time the occurrence of an invalid stage triggers further dynamic analysis. The in-
formation needed to perform this dynamic analysis includes the current state of the detector, the
invalid stage, and all future stages (both valid and invalid) up until convergence has occurred.
Obviously, the dynamic analysis will be simpler for some expressions than others. For example,
if events can only be discarded through expiry (e.g. in a temporal sliding window), then all that
needs to be analysed is the time since the occurrence of the invalid stage.

Currently, we do not allow users to limit the amount of time taken for an erroneous detector
to reconverge to a correct state. Instead, the decision is taken statically. It should be possible
to extend the language quite easily with parameters to control the maximum allowable time for
convergence.

4.6 Implementation

In this section we discuss our implementation of an NFP detection policy for the complex event
detection language described in the previous chapter.

Our current implementation handles most, but not all, of the cases where convergence is
possible. In particular, it does not attempt to perform detection for expressions with a con-
dition specified in the WHERE clause. A more sophisticated implementation could improve on
this, especially if the WHERE clause refers only to the temporal attributes of events. Conditions
that refer to non-temporal attributes will typically be more difficult to handle. However, in
some cases information about the content of a missing event can be gleaned from its publisher’s
advertisement. This may help in determining whether the missing event would have matched
the condition.

The first task for our extended detection algorithm to perform is stabilization of incoming
events. The outputs of stabilization are valid stages and invalid stages. As described earlier, a
valid stage contains either a single event or a set of truly concurrent events. An invalid stage
may contain a gap in the input stream, or a set of events with conflicting uncertainty interval
timestamps, or both. Note that a globally invalid stage may become a sequence of valid stages
with respect to a single complex event expression when only some of the events represented by
the invalid stage are relevant to that expression. For example if only a non-conflicting subset of
a set of conflicting events are relevant to a detector, the irrelevant events can be filtered, leaving
a sequence of valid stages.

As long as no invalid stages are received by a detector, detection can be performed using the
algorithm described in the previous chapter. However, as soon as an invalid stage is received, a
detector with an NFP policy must perform collection and detection using our extended detection
algorithm. Until the detector returns to a correct state, both valid and invalid stages must be
processed using this extended algorithm. Detection for a complex event using an NFP detection

104

CHAPTER 4. RELIABLE CE DETECTION 4.6 Implementation

policy is performed by the process-ce pseudo-code given below:

1 process-ce (ce, stage)

2 if (correct? (ce) ∧ valid? (stage))

3 normal-process (ce, stage)

4 else

5 nfp-process (ce, stage)

If the detector is in a correct state, and a valid stage is received, then normal detection can
be performed using normal-process (line 2). However, if an invalid stage is received or the de-
tector is in an error state, we perform NFP detection (line 5). We give a pseudo-code description
of the nfp-process function below:

1 nfp-process (ce, stage)

2 ce := nfp-collect (ce, stage)

3

4 if (!failed? (ce))

5 if (should-branch? (ce))

6 if (single? (ce))

7 ce := single->multi (ce)

8 else

9 ce := single->multi (multi->single (ce))

10

11 if (valid? (stage))

12 if (consumable? (ce))

13 nfp-consume (nfp-detect (ce))

14 else

15 nfp-detect (ce)

We firstly perform collection of the new stage (line 2), in accordance with the processing model
defined for our language in Chapter 3. If the state of the complex event ce is unaffected by
consumption, collection is straightforward. For a valid stage, collection simply adds the stage
events to matching operands, and applies any windows that are defined. For an invalid stage,
information about missing and conflicting events must also be added.

A complex event ce is consumable when at least one of its operands is consumable (i.e. has
its consumption flag set to consume). If ce is consumable, a previous invalid stage may have
required us to branch (i.e. create multiple copies of) the detector’s state. In this situation, col-
lection adds the new stage to each branch independently. Note that a detector maintains these
branches internally, and they are not visible to external entities such as subscribers. Given an
invalid stage, a detector must determine all the possible orders in which the events and gaps
it contains may have actually occurred. It then creates and speculatively executes a separate

105

CHAPTER 4. RELIABLE CE DETECTION 4.7 Evaluation

branch for each order. By inspecting the input operands of different branches, a detector can
subsequently determine whether they are equivalent and can be merged into a single branch. A
detector converges back to a correct state when only a single branch remains.

Having finished collection, the next step of our algorithm checks whether ce is in a perman-
ent error state (line 4). If it has then detection fails. If not, then before performing detection,
the algorithm checks whether branching is required (line 5). Branching is only necessary if ce

is consumable, and can be avoided in many cases. One such case is when ce could not possibly
be fired by stage, meaning its next state will not be affected by detection. Note that if ce

has previously branched, we collapse it back to a single worst case state before re-branching it
(line 9). Although this delays convergence, it prevents a combinatorial explosion of branched
detectors.

Finally, if stage is a valid stage, we attempt to perform detection using the information
stored at each operand (lines 11 - 15). This information typically includes an upper and lower
bound on the number of events, deduced from the events, gaps, and conflicting events added to
each operand during collection. If ce is consumable, then we must also update its state after
detection (lines 12 - 13).

Note that no output is generated by nfp-process in response to the occurrence of an invalid
stage. This is because it is not clear what the timestamp of any output should be. In contrast,
the occurrence of a valid stage for a detector in an erroneous state may result in some output
being generated by nfp-process .

4.7 Evaluation

In this section we give the results of some experiments we performed using our implementation
of an NFP detection policy. Our evaluation uses a simple simulator that takes in a test input trace
containing errors, the corresponding error-free input trace, and a complex event expression. For
these experiments, we used the example described earlier in Section 4.2.3 (and repeated below)
as a test query.

CreateCE PackageContainer

Select Package.pkgId, Container.contId

Event And(Package<old max 3, consume>,

Container<old max 1, consume>)

Since its operands are consumable, the query allows us to examine the operation of our nfp-process
algorithm for a relatively complex class of expressions.

For queries without consumable operands, the handling of errors introduces negligible over-
head to the detection algorithm. For queries with consumable operands, the algorithm may have
to maintain multiple copies of each consumable operand in order to determine convergence. In
the worst case, O(2nco) copies of each consumable operand are maintained by our algorithm,
where nco is the number of consumable leaf operands in the query. In addition, worst case pro-
cessing times increase by a factor of 2nco . However, for many queries optimizations that enable

106

CHAPTER 4. RELIABLE CE DETECTION 4.7 Evaluation

us to avoid this worst case are possible.
We examine three main aspects of our system as part of our evaluation. First, given an in-

put trace containing some errors, we investigate which factors affect the accuracy of the output
stream generated by the detector. Second, we analyse how varying the error rate affected the
accuracy. Third, we determine the processing cost incurred during recovery from errors in input
streams. All our experiments involved feeding pre-generated input traces into our detection
engine and observing the resulting behaviour, such as the correctness of the resulting output
and the total execution time.

4.7.1 Experiments

We generated an input trace of Package and Container events containing 5000 stages. The
type of event generated at each stage was determined probabilistically using a random variable
T, where Pr{T = Package} = ppkg and Pr{T = Container} = pcont = 1− ppkg. The expected
ratio R of Package to Container events is therefore given by R = ppkg/pcont. We refer to this
input trace as the correct input trace. We also created a second input trace by introducing
errors in the form of gaps into the Package event stream of the correct input trace. These were
created randomly with a probability pgap.

We generated three output traces based on the input traces described above. The first output
trace was generated by a best-effort detector, the second using an NFP detector. Both of these
were generated based on the input trace containing errors. We also generated a correct output
trace based on the correct input trace for comparison. The correct output trace thus models
the output stream that would have been generated if no gaps occurred in the input stream.

4.7.1.1 Correctness

In this experiment, we evaluated the accuracy of the output generated by the NFP detector
in comparison to the best-effort detector. Since the output traces were finite, we used the
information retrieval notions of precision and recall to compare performance. Precision (PRN)
measures the fraction (percentage of events) of a test output trace (i.e. the best-effort or the
NFP) contained in the correct output trace. Conversely, recall (REC) gives the fraction of the
correct output trace contained in the test trace.

We varied two parameters for each run of the experiment. These were the error rate (E =
pgap) of the package event input stream, and the ratio (R = ppkg/pcont) of package events to
container events. In total, we tested nine different combinations of these parameters. For each
combination, we repeated the experiment three times and averaged the results. The results are
summarized in Figure 4.4.
Two main trends are evident from these results. Firstly, the higher the error rate, the worse
the performance of BE detection relative to NFP detection. Secondly, the higher the ratio of
package events to container events, the worse the performance of BE detection relative to NFP

107

CHAPTER 4. RELIABLE CE DETECTION 4.7 Evaluation

0

20

40

60

80

100

PRN REC PRN REC

0

20

40

60

80

100

PRN REC PRN REC

40

60

80

100

0

20

40

60

80

100

PRN REC PRN REC

0

20

40

60

80

100

PRN REC PRN REC

40

60

80

100

0

20

40

60

80

100

PRN REC PRN REC

0

20

40

60

80

100

PRN REC PRN REC

40

60

80

100

BE = NFP =

0

20

PRN REC PRN REC

0

20

PRN REC PRN REC

0

20

PRN REC PRN REC

Figure 4.4: [Precision (PRN) (%), Recall (REC) (%)] for Best Effort (BE) and No False
Positive (NFP) detection

108

CHAPTER 4. RELIABLE CE DETECTION 4.7 Evaluation

detection. This is because cascading errors become more likely as the ratio increases. Note that
in all cases, the precision of NFP detection is 100%.

4.7.1.2 Execution Time

We also measured the run times for each experiment. To do this, we fed each stage in the
test input traces into the detector, and measured the time taken for processing of each stage to
complete. We then summed the processing time for all stages to get a total processing time for
each trace. The results are shown in Figure 4.5. All times are given in seconds.
The measurements show that the run time of both NFP and correct detection increase with

0

1

2

3

4

BE Correct NFP

0

1

2

3

4

BE Correct NFP

0

1

2

3

4

0

2

4

6

8

BE Correct NFP

0

5

10

15

BE Correct NFP

0

5

10

15

20

25

0

50

100

150

200

250

300

BE Correct NFP

0

50

100

150

200

250

300

BE Correct NFP

0

100

200

300

400

0

BE Correct NFP

0

BE Correct NFP

0

BE Correct NFP

Figure 4.5: Cumulative processing times for Best Effort (BE), Correct, and No False Positive
(NFP) detection

both increasing error rates and an increasing ratio of package to container events. The run time
of best effort detection also increases when the ratio of package events is increased. However,
the run time actually decreases when the error rate is increased. This is because the error events
in our experiment are missing events, and are ignored by best effort detection.

The run time of NFP detection is generally higher than that of BE detection. However, this

109

CHAPTER 4. RELIABLE CE DETECTION 4.8 Related Work

is somewhat misleading, since the BE detection ignores missed events. A better comparison is
with correct detection, which measures the run time that would have occurred if errors were
replaced with correct events instead of being dropped. For high package to container event ratios
and high error rates, the relative performance cost is still significant. For example, an error rate
of 0.3 and a ratio of 4 causes NFP detection to take 4.19 times as long as correct detection.
However, this extra run time occurs only when the detector is in an error state.

4.8 Related Work

Issues related to the modeling of time in distributed systems have been addressed by several
designers of complex event detection languages.

Some early work on distributed systems issues relating to composite event detection is that
of Hayton [Hay96]. He defines an event language that allows the specification of minimum and
maximum probabilities for timestamps to deal with unsynchronized clocks. However he does
not discuss how the semantics can be implemented. In many cases meaningful probability dis-
tributions may not be available. He suggests two mechanisms for dealing with delayed events,
tunable heartbeats and maximum delay annotations. A delay mechanism requires the user to
have knowledge of likely delays. In addition if quality of service is not binary (e.g. there is an
advantage to performing detection when you are 95 per cent sure no further events will arrive),
a confidence parameter is more useful.

Schwiderski [Sch96] proposed the use of a global clock granularity for ordering events during
distributed composite event detection. This requires a granularity coarse enough to handle the
most inaccurate clock in the system. In an open distributed environment, knowledge of the worst
case granularity may not even be available. Her detection engine implementation supports two
evaluation modes, asynchronous and synchronous, equivalent to our best effort and guaranteed
detection policies. Similarly to Schwiderski, Yang and Chakravarthy propose a formal semantics
for distributed composite event detection based on a global clock granularity [YC99]. However
they do not address issues related to delayed or lost input events. Both Schwiderski and Chakrav-
arthy represent composite event timestamps as a set of conflicting primitive event timestamps,
and define joining procedures for merging two timestamps. This enables a style of detection sim-
ilar to one that might be provided by a No False Negatives detection policy. However neither
Schwiderski or Chakravarthy address the implications of conflicting event timestamps for event
consumption in a manner consistent with our definition of correct detection.

Liebig et al. [LCB99] argue for the use of uncertainty intervals in event timestamps. Uncer-
tainty intervals may be provided for example by a global time service such as NTP. They are
more suited to open distributed systems than defining a global clock granularity. In addition
they allow for more accurate event composition, since timestamps no longer need to be set to
accommodate the worst case clock. We have adopted this timestamping approach in our com-
posite event detection semantics. However, Liebig et al. simply raise an exception whenever a
set of conflicting events occurs, they do not provide NFP detection, and they do not attempt to

110

CHAPTER 4. RELIABLE CE DETECTION 4.8 Related Work

deal with gaps in event streams.
DistCED is a distributed composite event detection service for event based middlewares

[PSB04]. Similarly to us, it employs uncertainty interval timestamps to bound clock inaccur-
acy. It also provides operators (weak sequence, parallel) to detect patterns over primitive events
whose ordering is unknown. However there is no way to control event consumption, and the
interaction of consumption and conflicting uncertainty intervals is not addressed. DistCED does
allow the specification of best effort, guaranteed, and probabilistic detection policies to deal with
transmission delays and lost events. However there is no support for NFP detection.

Yoneki and Bacon [YB05] mention the difficulty of timing in Wireless Sensor Networks
where no GPS is available. They propose lightweight local clock propagation for these situ-
ations. They also emphasize the distinction between durative event timestamps and uncertainty
interval timestamps. However they do not discuss the interaction of uncertainty intervals and
consumption, or attempt to provide detection policies.

GEM is an event monitoring language for distributed systems designed by Mansouri-Samani
and Sloman [MSS97]. It allows rules to be annotated with tolerable delays in order to cope
with late events. Instead of using a stabilization phase, events are delivered in arrival order, but
detection is delayed according to explicit user annotations. This is similar to our Max Delay de-
tection policy. In GEM however, detection is performed eagerly, with partially detected results
materialized, and only invalidated when a late event arrives. The effectiveness of this approach
in reducing detection latency depends very much on the composite event operator and consump-
tion policy, since materialized events may be invalidated by new events even when there are no
delays in event delivery. In addition, the GEM detection algorithm assumes a synchronized
global clock.

Bauer [Bau04] discusses the design of an event notification service in the context of Nexus, a
platform for mobile context-aware applications. Applications indicate their interest in a partic-
ular state of the environment using a predicate template (e.g. onEnterArea(〈Person〉,〈Area〉)).
The service then notifies applications about activations and deactivations of this state. To deal
with noisy sensor data, applications associate a threshold probability with each predicate. A
high probability reduces the number of false positives at the expense of false negatives, and vice
versa. Uncertainty interval timestamps for which a probability distribution is available can also
be incorporated into their model. Although their language is quite different in style to ours, we
believe much of our work is complementary. They do not address issues related to gap detection,
and do not discuss cascading errors as the result of interactions between event consumption and
no false positive detection.

Brito et al. suggest using a software transactional memory (STM) to speculatively process
out of order events [BFSF08]. The STM ensures that this does not result in erroneous output.
This approach can take advantage of the parallelism provided by multi-core CPUs to improve
performance. However, it does not handle lost events or deal with issues relating to conflicting
uncertainty intervals.

In addition to distributed complex event detection languages, several research efforts in the
stream processing community on approximate query handling are related to our work. However,

111

CHAPTER 4. RELIABLE CE DETECTION 4.9 Summary

they typically assume a simplified timing model where timing uncertainty is ignored. In ad-
dition, most stream processing languages do not support event consumption, simplifying error
handling. We now give a brief overview of some representative work in the area.

The Stream query processor [MWA+02] of Motwani et al. is a stream processing system that
attempts to perform both static and dynamic approximation of query results in cases of high
load or limited resources. This is achieved through intelligent load shedding (e.g. by reducing
window sizes or dropping tuples). Similarly to us, they model the precision of a stream of query
results by measuring the number of false positives and negatives produced. They mention the
usefulness of exploiting constraints over streams, expressed as adherence parameters. Our loss
detection constraints (e.g. max count) could be viewed as an example of such a parameter.

Aurora is another stream processing system that attempts to provide approximate answers
to queries under conditions of high load [CcC+02; ACc+03]. They enable users to specify quality
of service requirements for queries using QoS graphs. Three types of QoS graph are supported.
Delay based graphs are mandatory and similar to (although more expressive than) our Max
Delay policy. Optionally, Drop based and Value based QoS graphs may also be defined. These
specify a rough estimate of the percentage of tuples needed and the importance of tuples with
different values respectively. Although many of their techniques used in Aurora are complement-
ary to our work, they are more concerned with providing QoS in conditions of high load than
with coping with errors introduced by conflicting event timestamps or lost primitive events.

The Borealis stream processing system [AAB+05; RMCZ06] extends Aurora in several dir-
ections including support for revisions. Tuples may be of three types: Insertion, Deletion and
Replacement. Instead of discarding tuples that arrive late or are dumped during load shedding,
Borealis can send revision messages to downstream operators (and to applications) to enable
them to correct their state. Borealis also extends the QoS model of Aurora to enable the spe-
cification of QoS requirements for each box, instead of just query endpoints.

CEDR is an event streaming system that attempts to handle out of order events [BGAH07].
It can perform event processing at a variety of consistency levels. Strong consistency is sim-
ilar to our notion of guaranteed detection. Middle consistency may produce erroneous output
initially, but uses retractions and insertions to correct these errors when input events finally
arrive. Weak consistency does not have to try and fix errors in output streams. We view CEDR
as being complementary to our work, and may be useful in supporting a No False Negatives
detection policy. However it is not clear whether CEDR can handle lost as opposed to delayed
events, and the time model assumes a globally synchronised clock.

4.9 Summary

Complex event processing for pervasive computing must deal with various sources of error.
We have focused in this chapter on handling errors caused by lost input events and timing
uncertainty. We proposed the use of detection policies for specifying how to deal with these
errors. We discussed several such policies, and under what conditions each policy might be

112

CHAPTER 4. RELIABLE CE DETECTION 4.9 Summary

useful. We then showed how the language introduced in the previous chapter could be extended
with a clause for specifying a detection policy. Finally, we described the implementation of a
No False Positives (NFP) detection policy for our language. Our experiments show that such
a policy can improve both the precision and recall of complex event detection in the presence
of the aforementioned errors. Furthermore, the processing overhead required is negligible in the
absence of errors.

113

114

Chapter 5

Detector Placement

5.1 Introduction

Event based middleware is a useful distributed programming platform for many pervasive com-
puting applications. Its loose coupling enables the creation of highly scalable applications.
Distributed complex event detection is a common service to provide as part of an event based
middleware. In addition to enabling the specification of high-level events, a distributed complex
event detection service is advantageous for a number of reasons, such as its ability to reduce the
load on resource-constrained clients.

A key problem when distributing complex event detection is the efficient placement of de-
tectors. Several factors may need to be considered, including latency, bandwidth, processing,
storage, and reliability. For many placement policies, the optimal placement depends on the rout-
ing algorithm. Current approaches have been based on event based middlewares with optimal
routing paths for events [LJ05]. In contrast, rendezvous based publish/subscribe middlewares
sacrifice route optimality in order to improve scalability by reducing routing state. It is not clear
how placement over a rendezvous based middleware should be performed for several common
policies, or whether such a middleware is even suitable.

In this chapter, we investigate this problem using a rendezvous based P2P middleware called
Hermes. We describe several placement strategies for efficient complex event detection over Her-
mes. The best choice of strategy depends on the likely reuse of sub-expressions within a complex
event tree. We discuss some reuse patterns that are likely to be common for pervasive comput-
ing applications, and how our placement strategies perform with respect to these patterns. The
main contributions of this chapter are:

� A discussion of the main benefits of distributing complex event detection, with an emphasis
on the desirability of cross-domain complex event detection for pervasive computing ap-
plications.

� An analysis of two static placement strategies for complex event detectors over a rendezvous
based middleware. Although these strategies are simple to implement, they have several
disadvantages, including a lack of support for cross-domain complex event detection.

115

CHAPTER 5. DETECTOR PLACEMENT 5.2 Motivation

� A dynamic placement strategy for complex event detectors over a rendezvous based mid-
dleware. This strategy maximizes cross-domain complex event detection, but can still
detect events efficiently in the central domain.

� An evaluation of the network usage of each of our strategies. Using complex event ex-
pressions exhibiting a variety of reuse patterns, we compare these strategies to a reference
strategy from the literature. Our experiments indicate that the dynamic strategy per-
forms well when reuse is high, having roughly the same network usage as one of the static
strategies, while also allowing for cross-domain detection.

5.2 Motivation

5.2.1 Multi-Domain

As motivation for our work, we envision an Active City scenario where an event-based mid-
dleware supports intelligent transport applications. Sensors are deployed throughout the city
to detect phenomena of interest, such as congestion, accidents or dangerous road conditions.
Sensors send the information they generate via our middleware to users. We envision the mid-
dleware being deployed over an open shared infrastructure to reduce costs. This allows sensor
data to be reused for different purposes by different parties (subject to security and privacy
constraints). An open infrastructure such as this helps to maximize the benefits of deploying
sensor networks, since they are typically expensive to create.

The middleware uses a publish/subscribe communication paradigm, where sensors act as
publishers, and users as subscribers. This data-centric communication 1 is particularly suited to
pervasive computing applications, since users are typically more interested in sensor data than
in the sensor nodes themselves. As in Chapter 3, we anticipate the separation of the middleware
into several distinct domains [Hom02]. Sensors will typically be lightweight and energy con-
strained. They connect to the infrastructure via a base station, which will typically have more
resources and be connected to a power supply. A central domain is responsible for connecting
the different sensor domains together.

Our architecture relies on an event based middleware called Hermes [Pie04] in the central
domain. Hermes uses peer-to-peer techniques to provide a scalable and robust publish/subscribe
communication service. Hermes disseminates events using a type- and attribute-based routing
algorithm, whose basic operation we depict in Figure 5.1. The algorithm assigns to each event
type a rendezvous node (R) based on the hash of the type name. Event publishers connect
to brokers (PHB1 and PHB2), and route advertisements for the events they wish to publish
towards the appropriate rendezvous. Subscribers also connect to brokers (e.g. SHB), through
whom they route subscriptions. Subscriptions to an event type are forwarded to the rendezvous,
while also following the reverse path of any advertisements they encounter en route. Finally,
publications are generated by publishers and follow the reverse path of matching subscriptions.

1As opposed to node-centric.

116

CHAPTER 5. DETECTOR PLACEMENT 5.2 Motivation

A more detailed description of the Hermes type- and attribute-based routing algorithm is given
by Pietzuch [Pie04].

PHB1

SHB PHB2

P1

P2
S

RPHB1

PHB2

P1

P2

R

PHB1

SHB PHB2

P1

P2
S

R

Figure 5.1: Hermes Type- and Attribute-Based Routing

5.2.2 Benefits of Distributed Detection

In [PSB04], a framework is described for providing distributed complex event detection as an
extra service for event based middlewares. Instead of consumers performing complex event
detection locally, a complex subscription is sent to the service. It then performs detection of the
complex event within the broker network. There are several beneficiaries when a complex event
service is provided in a distributed fashion by the middleware.

Subscribers Without a distributed complex event detection service, subscribers must accu-
mulate events and detect patterns themselves. In contrast, complex event detectors hosted
by event brokers can act as filters over event streams, reducing unnecessary communications
between a subscriber and its host broker. This is particularly important when the link between
subscribers and subscriber hosting brokers is bandwidth constrained (e.g. for wireless devices).

As an additional benefit, a complex event detection service reduces processing and storage
requirements at the subscriber. This is advantageous when the subscribing device is lightweight
and resource constrained. If many subscribers are interested in the same complex event, the

117

CHAPTER 5. DETECTOR PLACEMENT 5.3 Complex Events Over Hermes

total amount of processing and storage needed for detection may also be reduced, depending on
where detectors are placed, since the same detector can be shared by subscribers. Decomposition
of complex events by the complex event detection service further increases the opportunities for
reuse by enabling the sharing of common subexpressions.

Finally, a complex event service can sometimes detect patterns that a subscriber cannot
detect itself due to privacy constraints. This happens when privacy-sensitive attributes of input
events are needed to detect a complex event, but are not used to generate its output attributes.
So long as the values of the sensitive attributes are not mapped to the attributes of the complex
event, a subscriber can delegate detection of the pattern to the complex event service and still
respect privacy constraints (assuming the service is trusted).

Event Brokers Distributed complex event detection can also help to improve the performance
of the event broker network itself. Pushing detection of complex events close to publishers allows
irrelevant events to be filtered nearer to their source. This helps reduce the bandwidth needed
by a complex subscription. However, detector placement may need to take other metrics into
account, including detector reuse and event delivery latency.

Publishers Apart from reducing communications over subscriber links and within the broker
network, in certain cases it may be possible to reduce communication with event publishers
using distributed complex event detection. We envision such an optimization being especially
useful when event publishers are acting as gateways to other domains (such as a wireless sensor
network), and Hermes connects these domains to subscribers. Such cross-domain complex event
detection has been suggested in [Hom02]. Pushing complex event detectors to an event pub-
lisher acting as a gateway to a WSN gives the gateway the option of further distributing the
detector into the WSN. This can help reduce unnecessary communications in WSNs, which is
very important in conserving the energy of power constrained sensors.

5.3 Complex Events Over Hermes

An expression describing an event pattern is created by a subscriber based on the event types
known to be available in the system. We will assume that each expression gets parsed into a
tree of detectors. The expressions defined by all subscribers together form a directed acyclic
detector graph. We refer to this graph as the query graph. If the language allows the outputs
of an operator to be renamed, then checks must be made to ensure that no cycles occur in the
query graph, (e.g. due to an output event name clashing with a pre-existing primitive or complex
event name). How this checking is achieved is discussed further in Section 5.6.2.2.

Once the complex event expression has been parsed, the task is to merge the resulting
detector tree into the existing query graph, placing any new detectors on appropriate nodes in
the network. This placement can be done in various ways, depending on the routing algorithm
of the publish/subscribe middleware, and which aspects of the distribution are to be optimized.

118

CHAPTER 5. DETECTOR PLACEMENT 5.3 Complex Events Over Hermes

However before discussing placement strategies, we will firstly describe the ways in which the
query graph can be decomposed.

5.3.1 Decomposition

Decomposition of the complex query graph can be divided into two classes, hierarchical and
partitioned.

5.3.1.1 Hierarchical Decomposition

The first type of decomposition we discuss is hierarchical. Given a complex event expression
that has been converted into a tree of detectors, hierarchical decomposition splits off the internal
nodes representing subexpressions of the top level complex event. Subexpressions whose total
input data rate is greater than their output data rate are good candidates for distribution.
Hierarchical decomposition also increases reuse, since detectors for common subexpressions of
complex events created by different subscribers can be shared.

5.3.1.2 Partitioning

Another type of decomposition is partitioning of complex event expressions. This is slightly
different from hierarchical decomposition, in that it divides, based on their attribute values, the
possible output event instances for a complex event type, and the input event instances used to
generate them, into several disjoint partitions. Multiple detectors are created for the type, each
responsible for generating a different subset of the events. For pervasive computing applications,
complex events partitioned by geographic location are particularly common.

Take for example the complex event SlowingVehicle:

CreateCE SlowingVehicle

Select Before.loc as loc

Event Sequence(AverageSpeed as Before <"speed > 60">,

AverageSpeed as After <"speed < 10">)

GKey *.loc as GeoKey (In "Madingley Road" as Madingley,

"Bridge Street" as Bridge,

Rest as Other)

This expression detects speed reductions by vehicles at a location. The global key GeoKey divides
detection of SlowingVehicle into three partitions, one for each of its regions (i.e. Madingley,
Bridge, and Other), such that a separate detector is responsible for each partition. The
first two detectors are responsible for detecting SlowingVehicle(loc = "Madingley Road")

and SlowingVehicle(loc = "Bridge Street") respectively. The third detector is responsible
for detecting the rest of the type’s attribute space, i.e. SlowingVehicle(loc != "Madingley

Road" AND loc != "Bri-dge Street"). Each AverageSpeed input event is routed to one of
the detectors based on the value of its loc attribute.

119

CHAPTER 5. DETECTOR PLACEMENT 5.4 Static Placement

The detector for each region has an associated set of query graph neighbours, containing
publishers of its input events and subscribers to its output events. If the neighbours of any two
detectors are not equal, then their optimal placement in the network may also differ. In such a
scenario, separate detectors enable more efficient distributed detection by the middleware.

5.4 Static Placement

Having discussed our motivations for distributing detection, and the types of query decomposi-
tion we expect to perform, we now describe several strategies for placing detectors in the overlay
network. We begin by introducing two static placement strategies. These strategies are relat-
ively simple to implement, but do not attempt to relocate detectors in response to changing
network conditions.

5.4.1 Rendezvous Broker Placement

Our first static detector distribution strategy over Hermes is rendezvous (RV) placement. This
strategy places the detector for a particular complex event type at the rendezvous broker whose
address matches the hash of the type name. It achieves this by routing new complex subscriptions
towards their rendezvous broker. If no detector exists, the rendezvous broker creates a new one.
The broker then sends subscriptions to the rendezvous brokers of sub-detectors and primitive
input events.

Once detectors have been set up, events flow from primitive publishers to the rendezvous of
their parent detectors in the query graph, and in turn to the rendezvous of their grandparents’
detectors, and so on until the top level rendezvous is reached. This results in reduced traffic on
the link between the subscriber and the broker hosting it, in addition to moving computation
into the broker network.

Although simple to implement, the problem with rendezvous placement is that at each
level of the query graph, a different rendezvous broker must be used as the destination for
routing. Since rendezvous brokers are effectively distributed randomly, this could result in
an unacceptable latency penalty when detecting complex events with multiple levels. Figure
5.2 gives an example of rendezvous detector placement for the complex event F = f (G, C),
where G is in turn a complex event such that G = g (A, B). The detector for F is hosted by its
rendezvous broker (RF). Similarly, the detector for G is hosted by its rendezvous broker (RG).
Boxes represent publishers (PA, PB, and PC) and subscribers (SF1 and SF2). Labeled arrows
give the paths followed by event notifications, both primitive and complex, through the overlay
network. Note that the only publishers for types A and B (i.e. PA and PB), are connected to the
same broker. However their publications must travel to the detector for G at the other side of
the network. A better placement strategy might push the detector for G closer to its inputs in
order to reduce network traffic.

120

CHAPTER 5. DETECTOR PLACEMENT 5.4 Static Placement

A,B

C

A,B,F

C,G

G

A,B,F

A,B,F

F

F

G

RA

RF

RC

RG

RB

PA

PB

PC

SF1

SF2

C

G

A
B

F

G

Figure 5.2: Rendezvous Broker (RV) Placement

121

CHAPTER 5. DETECTOR PLACEMENT 5.5 Dynamic Placement

5.4.2 Subscriber Hosting Broker Placement

An alternative static detector placement strategy is to place all detectors at the broker to which
the subscriber is connected. All detectors for the complex subscription remain at the subscriber
hosting broker. Subscriptions to the primitive events needed by detectors are made using Her-
mes. We refer to this strategy as subscriber hosting broker (SHB) placement.

This solution is distributed only insofar as clients offload detection to the broker network.
However, cross-domain detection (see Section 5.2.2) is not possible unless the subscriber hap-
pens to connect to the gateway broker for a domain. Furthermore, sharing of detectors for
common subexpressions is only possible for subscribers at the same broker. Finally, there is
no opportunity to reduce network usage by placing detectors nearer to publishers. However,
in situations where the network is saturated with subscribers for all primitive event types, it is
possible that distributing detectors into the network may not result in worthwhile reductions in
network usage anyway.

As an example, Figure 5.3 shows how detectors for the types F and G (as used to explain
RV placement in Figure 5.2), are distributed by an SHB placement strategy. Since there are
two subscribers to F at separate brokers, two detectors for F (and for G) are created, one at
each subscriber hosting broker. Only primitive event notifications travel through the overlay
network, with detectors performing complex event detection locally.

5.5 Dynamic Placement

In contrast to static placement strategies, dynamic detector placement allows us to exploit
opportunities for cross-domain complex event detection anywhere in the overlay. We now propose
such a strategy for Hermes. We begin by discussing how a broker network can be modeled as an
approximate latency space, with each broker having its own network coordinate. We then describe
briefly how other researchers have used network coordinates to optimize, within a latency space,
the relative position of detectors in a query graph. Finally, we discuss our dynamic placement
strategy for Hermes, called Hermes Network Coordinate (HNC) placement, which relies on event
brokers extended with network coordinates.

5.5.1 Network Coordinates

Virtual network coordinates are a mechanism for approximating the latency between different
nodes in a network [DCKM04; PCW+03; TC03; GSG02]. They allow us to think of each node
as residing at some position in a latency space. The best type of coordinate space to use depends
on the structure of the underlying network. For the Internet, several types of coordinate have
been suggested (e.g. Euclidean, Spherical, Hyperbolic). Although none of these model the In-
ternet’s topology precisely, several studies have shown that good estimates are achievable using
coordinates with few dimensions [LPS06].

We generate virtual coordinates for the brokers in our overlay network using the Vivaldi
algorithm [DCKM04]. Vivaldi is a scalable distributed algorithm based on the concept of spring

122

CHAPTER 5. DETECTOR PLACEMENT 5.5 Dynamic Placement

A,B

C

A,B,C
A,B

A,B,C

A,B,C

A,B,C

RC

RA

RB

PB

PA

PC

SF1

SF2

C
B
A

F

C
B
A

F

G

G

Figure 5.3: Subscriber Hosting Broker (SHB) Placement

123

CHAPTER 5. DETECTOR PLACEMENT 5.5 Dynamic Placement

relaxation. Vivaldi models the broker network as a system of springs, where tension in a spring
connecting two brokers corresponds to a difference in the true latency between them and that
predicted by the latency space. Each broker periodically measures the distance to a neighbour-
ing broker (e.g. using ping), or to one of a small number of randomly selected faraway brokers.
Brokers then refine their coordinate to minimize the difference between measurements and the
distance predicted by coordinates. By iteratively refining broker coordinates in a decentralized
fashion, Vivaldi attempts to find a minimum energy state for the springs, minimizing the pre-
diction error of coordinates in the process.

Thus in addition to their Pastry identifier, each broker in our overlay network is equipped
with a virtual coordinate generated using Vivaldi. This enables a broker to compute an estim-
ate of the latency between it and any other point in the latency space (e.g. another broker).
Note however that latency measurements (and thus coordinates) reflect the time taken to send
a message directly between brokers (i.e. using IP addresses), and not the time taken to send a
message via the overlay network.

5.5.2 Query Graph Placement

As described in Section 5.3, we convert the complex event expressions created by subscribers
into a query graph. The source leaf nodes of this directed acyclic graph are the publishers of
primitive events, the internal nodes are detectors of complex events, and the sink leaf nodes are
external subscribers to complex events. Primitive publishers and external subscribers have a
fixed location in the network, where by fixed we mean that we cannot exert control over their
location. The task of our dynamic placement strategy is to map the internal nodes of the query
graph (i.e. detectors) to nodes in the broker network. In this section we describe how detectors
already existing in the network can use a latency space to optimize their location relative to
each other. Mechanisms for performing the initial mapping of new detectors are discussed later
in Section 5.5.4.

To optimize the placement of detectors, we adopt a solution based on spring relaxation (e.g.
as done in [BB03] and [PLS+06]). We assume each detector knows the coordinate of its local
broker and the coordinates of brokers hosting its parents and children in the query graph. This
information can be attached to event publications for example, or to subscription refreshes in
the case of parents informing their children. The latter may also include information about
observed data rates.

Detectors are pulled in various directions by their query graph neighbours. The force exerted
by each neighbour is proportional to the difference between the measured network distance and
the distance predicted by the latency space, weighted to take into account other factors such
as expected data rates. However, instead of spring relaxation resulting from changes to the
coordinates of brokers (as with the Vivaldi algorithm for generating broker coordinates), springs
are relaxed by the migration of detectors to other brokers in order to minimize the force being
exerted by their query graph neighbours (Figure 5.4).

Thus each detector periodically calculates the net force being exerted on it by its neighbours.

124

CHAPTER 5. DETECTOR PLACEMENT 5.5 Dynamic Placement

It then adds this force to the coordinate of its host broker to get its optimal location. If a broker
with a coordinate closer to the optimal location can be found1, the detector migrates to that
broker. Otherwise it stays where it is.

D1

P

D2
P

P

S

S

D2

D1

P
D2

P

P

S

S

Figure 5.4: Spring Relaxation of a Complex Event Query Graph

5.5.3 Placement with Reverse Path Routing

Unlike some previous dynamic solutions for query graph placement, we do not route events
between detectors directly over the underlying physical network. Instead we forward events
using the type- and attribute-based routing algorithm of Hermes. This makes it easy to set up
efficient event dissemination trees when there are large numbers of subscribers to a detector,
and reduces the chances of the output bandwidth of a detector’s broker becoming saturated due
to high fan-out. However, type- and attribute-based routing forwards events through the Pastry
distributed hash table along the reverse path of subscriptions. Does a placement that minimizes
the distance between detectors in the physical network correspond to a good placement when
reverse path forwarding through an overlay network is used? We claim that it does due to the
locality properties of Pastry [CDHR03]. We now describe the intuition behind our claim.

The Pastry DHT has the property that routes to the same destination from nearby sources
converge quickly on average, a property we refer to as local route convergence. This is because at
each consecutive routing step, messages travel exponentially larger distances towards an expo-
nentially shrinking set of nodes. Thus the probability of routes converging increases after every
step, even in the case where earlier hops caused messages on each route to move further away.
Early hops tend to move a small distance in the underlying network’s proximity space, but large
distances in the Pastry node ID space.

The type- and attribute-based routing algorithm of Hermes takes advantage of this prop-
erty by forwarding subscriptions along the reverse path of any matching advertisements. The
algorithm routes subscriptions and advertisements to the same destination (i.e. the rendezvous
node). Therefore their paths will converge quickly if the senders (i.e. publishers and subscribers)
are near to each other in the physical network. Since an event produced by a publisher follows
the reverse path of subscriptions, the notification delay experienced by a subscriber is in turn

1Mechanisms for finding such a broker are discussed in Section 5.5.4.2.

125

CHAPTER 5. DETECTOR PLACEMENT 5.5 Dynamic Placement

likely to be small if it is located close to the publisher.
For a complex event expression, reverse path forwarding is performed repeatedly at each

level of the query graph. At the bottom level, primitive publishers reverse path forward their
events to subscribers, some of whom may be detectors. These detectors in turn publish events
that they reverse path forward towards their own subscribers, some of whom may again be
detectors. This process is repeated until the top level of the graph is reached. The efficiency
of event dissemination increases at a particular level when publishers are located close to sub-
scribers in the network latency space. Our dynamic placement strategy uses spring relaxation
to minimize the distance between detectors at all levels of the query graph. Therefore due to
the locality properties of Pastry spring relaxation should give a good placement when type- and
attribute-based forwarding is used.

Figure 5.5 illustrates HNC placement for the complex events F and G we used earlier to
describe RV and SHB placement. HNC placement locates the detector for G at the publisher
hosting broker of PA and PB. It then places the detector for F at a nearby broker that happens to
be the rendezvous of type A, roughly halfway between the detector for G and the only publisher
for C, i.e. PC . Assuming that the output rate of each detector is lower than its input rates, this
should be an efficient placement. If the locations of publishers or subscribers change, HNC can
adapt by moving the detectors to a better location. Note that in this example, cross domain
complex event detection may be possible for detector G, since both of its input publishers are
on the same broker, and no other subscribers have overlapping subscriptions.

5.5.4 Initial Placement Mechanisms

We have described how detectors that already exist in the network can use network coordinates
to optimize their placement. However, we have not discussed how to create and place them
initially. In this section we give two mechanisms for initially placing detectors over Hermes as
part of our dynamic placement strategy. The first approach instantiates detectors at rendezvous
nodes. Detectors then gradually migrate to better locations as described earlier. The second
approach gathers information about primitive publishers and existing detectors centrally. It
then calculates locally a good starting position for each new detector. This approach avoids
having to perform long distance migrations to correct a bad initial placement.

5.5.4.1 Rendezvous Placement with Gradual Migration

A simple way to map a query graph onto the broker network is to place detectors initially at
the rendezvous broker for their type, in a similar fashion to the static rendezvous placement
strategy. Once setup is complete, events start to flow through the detectors. Each detector can
now determine a better placement locally using the coordinates of its query graph neighbours
and the data rates it observes, as described in previous sections.

Initial placement at rendezvous nodes requires little extra effort to route a complex sub-
scription in comparison to a primitive subscription, and is the approach we implemented for our
experiments in Section 5.7. However, since rendezvous nodes are distributed randomly, detector

126

CHAPTER 5. DETECTOR PLACEMENT 5.5 Dynamic Placement

C

G

G
F

F

F

F

RB

RG

RA

RC

RF

PA

PB

PC

SF2

SF1

C

G F

A
B G

Figure 5.5: Hermes Network Coordinate (HNC) Placement

127

CHAPTER 5. DETECTOR PLACEMENT 5.5 Dynamic Placement

migration may take a non-negligible amount of time to converge to a good placement if no ex-
isting detectors can be reused. In addition, long distance detector migrations to overcome bad
initial placements can be expensive.

5.5.4.2 Centralized Initial Placement Calculation

As an alternative approach to initial placement of detectors, we can firstly gather coordin-
ates of primitive publishers and existing detectors at a single broker. We can then calculate
centrally a good initial placement for each new detector, and create them at the computed loc-
ations. Only then does we set up advertisements and subscriptions between detectors, allowing
us to avoid long-distance migrations. This approach is similar to that taken by previous work
[BB03; PLS+06]. However, it involves several stages, as we describe next.

As a first step, the subscriber hosting broker determines whether each detector in the com-
plex event expression already exists in the network. It does this by routing a lookup message
towards the rendezvous broker for the top level detector’s type in the complex event query
graph. When a detector already exists, the lookup encounters an advertisement for it en route
to the rendezvous. The lookup message then follows the reverse path of this advertisement to
the detector. In response, the detector sends a reply message containing its network coordinate.
Since the detector already exists, there is no need to look up the location of its sub-detectors
or primitive type inputs. If the look up does not encounter an advertisement, the rendezvous
broker informs the subscriber hosting broker. The subscriber hosting broker then sends further
lookup messages to the rendezvous brokers of the complex event’s sub-events. If there are mul-
tiple publishers matching a lookup (as will typically be the case for a primitive event input of a
detector), then either each publisher responds with its coordinate, or the rendezvous responds
with its own coordinate as an approximation.

Once the relevant coordinates have been gathered, we use a centralized version of the dis-
tributed spring relaxation algorithm described earlier to calculate placements for any detectors
that don’t already exist. We then place these detectors in the network at the broker closest to
the placement calculated for them. This requires a mechanism for finding the nearest broker to
a particular coordinate (e.g. the space filling curves used by Relaxation [PLS+06], or scaled-θ
routing [HP01; LPMS07]).

Once they have been placed, detectors send advertisements to their own rendezvous broker,
and subscriptions to their input type rendezvous brokers. Events then flow through the query
graph to subscribers. Finally, detectors monitor the locations of their query graph neighbours
as before, and migrate when a better placement can be found.

The mechanisms used by our centralized initial placement algorithm are more complex than
those for simply starting detectors at rendezvous brokers. However, they make sense if it is likely
that a significant portion of the detectors in a complex event expression do not already exist in
the network. Migrating a detector between two brokers is effectively the same as performing a
handover of a publisher and multiple subscribers between two brokers, so it is better to reduce
the number of long distance migrations required if possible.

128

CHAPTER 5. DETECTOR PLACEMENT 5.6 Other Issues

5.6 Other Issues

Having described the basic operation of our placement strategies, we now discuss several further
issues that must be addressed by our distributed complex event detection service.

5.6.1 Reliability

For scalability reasons, Hermes relies on a soft-state reliability model. Under this model, brokers
send advertisement and subscription refreshes between themselves periodically. When a failure
is detected by a broker, it routes advertisements and subscriptions around it. This model allows
for fast, localized recovery from overlay failures. However it also means that these failures may
cause gaps in event streams. As discussed in Chapter 4, some complex event expressions are
more tolerant to lost input events than others. The strategies for detector placement over Her-
mes described in this chapter are therefore best suited to applications for which such expressions
are common.

Complex event detection must also deal with detector failure due to broker crashes. We can
handle this kind of detector failure in various ways, depending on the placement strategy being
used, whether brokers can recover from failure, and the reliability requirements of subscribers.
For SHB placement, detectors are hosted on the subscriber hosting broker. A simple mechan-
ism for handling detector failure with this strategy is for the subscriber to connect to multiple
brokers. However detectors will still have to tolerate lost input events. In addition, if detectors
receive different input streams (e.g. an event is delivered to one but not to another), the events
they publish may differ.

Similar problems arise for RV and HNC placement. However for our experiments, we are
primarily interested in the performance of each strategy in the absence of failures. We therefore
adopt a best effort approach whereby one or more failure monitors for each detector are created
on another broker. When a detector failure is observed, one of the monitors restarts it on a new
broker.

For RV placement, failure of a detector implies failure of the rendezvous node for its type.
Therefore, we place failure monitors on rendezvous replicas, with the monitor on the new ren-
dezvous broker responsible for restarting the detector. For HNC placement, failure monitors
are located on neighbours of the detector’s broker. When the detector’s broker fails, a failure
monitor restarts it on a neighbouring broker as before. For both strategies, all state of the old
detector is lost using this mechanism, meaning it is only suitable when applications are satisfied
with best effort detection or broker failure is rare.

Replication of detectors is also possible for RV and HNC placement, although we have not
evaluated its effect on network usage in our experiments. Replication can help to reduce event
loss as a result of detector failure. However, as with SHB placement, replicas must deal with
lost input events. These can result in subscribers receiving duplicate or conflicting events when
a replica takes over from a failed detector. For RV placement, we place passive detector replicas
at the replicas of the rendezvous broker. They subscribe to the output events of the primary

129

CHAPTER 5. DETECTOR PLACEMENT 5.6 Other Issues

detector as well as the same input events. Backup replicas do not create any advertisements
or begin to publish until failure of the primary detector occurs. At this point, one of them
advertises and starts publishing, continuing at the last event received from the failed primary
detector.

A similar replication strategy may be used for HNC placement, with replicas located at a
neighbour of the detector’s broker. However, replicas must also coordinate with the primary
broker if cross-domain complex event detection is required. Otherwise, opportunities to perform
cross-domain detection may be ignored as the domain gateway cannot distinguish between a rep-
lica and a normal subscriber on another broker. This coordination is relatively straightforward
and we do not discuss it further here.

5.6.2 Types

Distributed complex event detection raises several issues with regard to type handling.

5.6.2.1 Type Directories

In an open environment, types may be created by different clients. They simplify application
development; clients may wish to reuse the types created by each other. To address this problem,
we assume that a directory is available listing the currently active types in the system. Such
a directory also increases reuse of detectors when renaming of complex events is possible. Our
directory keeps weakly consistent with the middleware by subscribing to a special event topic
that notifies it when a new type is defined, modified, or removed. Several such directories may
be required at larger scales.

5.6.2.2 Type Checking

When a new complex event subscription is created by a subscriber, its validity must be checked
by the subscriber hosting broker before being forwarded. For many complex event languages,
the name of the complex event is given by the expression used to define it. If this is the case,
the rendezvous broker of the complex event type is given by the hash of the complex event
expression. Type checking of the complex event involves type checking each of its constituent
primitive events.

Some languages, such as the complex event detection language described in Chapter 3, allow
complex event definitions to be explicitly named. This simplifies programming somewhat by
enabling a programmer to refer to existing complex events by name. Explicit naming makes
most sense when a language allows a variety of different options to be specified in a complex
event definition, such as consumption policies or override conditions (e.g. as for the language in
Chapter 3, or the AMIT situation detection language [AE04]), as definitions can become quite
verbose.

However, languages with explicit naming of complex events do have some implications for
type checking. In particular, they require brokers to type check constituent complex events in

130

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

addition to primitive events. To do this, a broker must have knowledge of all sub-events of a
complex event (e.g. to detect cycles in the event graph). These may be retrieved as usual from
the broker’s cache, or from the relevant rendezvous broker. In some cases the input events to
the complex event being defined by a subscriber may themselves be complex events. We store
the whole definition of a complex event (including all sub-events) in caches and at rendezvous
brokers. This prevents having to recursively look up all sub-event definitions.

5.6.2.3 Schema Evolution

An interesting question is what should happen if the definition of a primitive event type that is
a component event of a complex event is modified? In some cases the complex event may not be
affected, but in others it may become inconsistent. For example, if the complex event definition
contains a filter over an event attribute that is removed, the complex event type will no longer
make sense. Each detector must therefore be notified of changes to the definitions of any of its
component types (e.g. via its rendezvous using the meta-events proposed for notifying brokers
of type definition changes in Hermes [Pie04]). If a change makes its complex event inconsistent
(or if the creator of the complex event specifies that any change to sub-event definitions should
cause a failure), then a detector should terminate, perhaps sending a failure message.

For languages with explicit naming of complex events, evolution of internal complex events
can occur in addition to evolution of primitive event definitions. However, the mechanisms
required to support this are the same as for languages without explicit naming.

5.7 Evaluation

In order to evaluate our placement strategies, we compare their performance to a dynamic
strategy from the literature called Relaxation Placement (RELAX) [PLS+06]. Like our dy-
namic strategy, RELAX optimizes detector placements based on information provided by a
network coordinate layer. However, all event routing is done directly between detectors without
the use of a publish/subscribe layer. RELAX thus serves as a reference placement strategy. It
allows us in particular to determine the overhead of our strategies when there is little reuse of
events between subscribers.

The metric we use to compare the performance of each strategy is network usage [PLS+06].
This enables us to understand the relative cost of each strategy in terms of both event delivery
latency and the bandwidth used for event dissemination. For pervasive computing applications,
we would like to maximize our ability to perform cross-domain complex event detection. Since
this is usually impossible for our static placement strategies, our experiments let us estimate the
burden imposed on the central domain by dynamic placement, if any, in order to exploit such
opportunities.

We run six sets of experiments in total. Our first two sets of experiments are based on a com-
plex event query graph where types are only decomposed, and not partitioned or split (CQG1
in Figure 5.6). The next two sets of experiments use a complex event query graph containing

131

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

T

NL

K

M

A HFEDCB G J

Figure 5.6: Complex Event Query Graph 1 (CQG1)

expressions that are both decomposable and partitionable (CQG2 in Figure 5.7). Our final two
sets of experiments also use a query graph that is both decomposable and partitionable (i.e.
CQG2). However, we firstly divide the network itself into several regions. We then cluster the
publishers and subscribers of a query partition into the same region of the network. Note that
from experiment 3 on, we reduced the maximum number of subscribers to a detector from 20
to 10 (see 5.2). This was forced on us for reasons of simulation scalability, as CQG2 contains
many more detectors than CQG1. However, we don’t believe it would change the conclusions
we draw from our experiments.

The number of subscribers interested in each of the primitive and complex events in a com-

PARTITION 1

T

NL

K

M

PARTITION 10

A HFEDCB G J

T

NL

K

M

A HFEDCB G J

Figure 5.7: Complex Event Query Graph 2 (CQG 2)

plex event query graph can have a major impact on the performance of a particular strategy.
Therefore for each set of experiments, we evaluate network usage for several reuse patterns of

132

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

the query. An example of a reuse pattern is a complex event where multiple subscribers are in-
terested in the high level complex event itself, but very few are interested in the primitive events
used to detect it. Some reuse patterns can reduce our ability to perform cross-domain complex
event detection. A good dynamic placement strategy for these patterns should avoid imposing
a large network usage penalty since the chances of cross-domain detection counterbalancing it
are low.

In the following discussion of our experiments, RV refers to the strategy of placing detectors
statically at rendezvous brokers, SHB refers to static placement at subscriber hosting brokers,
and HNC to dynamic placement of detectors over Hermes with network coordinates. All our
experiments were performed via simulations on top of Pietzuch’s Distributed Systems SIMulator
(DSSIM) [Pie04]. We implemented SHB, RV, and HNC placement as a complex event service
over an existing implementation of Hermes [Pie04]. Each experiment took place over a transit
stub topology generated using BRITE [MLMB01]. The topology contained 1000 physical nodes
in total, divided into 10 autonomous systems (AS) containing 100 nodes each. We created a
broker overlay network containing 500 brokers on top of this topology.

Finally, we note that our experiments measure only the network usage of event publications.
We assume that in comparison other sources of network traffic, such as the overhead of main-
taining a latency space, or differences in the cost of setting up advertisements and subscriptions,
result in negligible differences in network usage between strategies.

Parameter Description Value

NN number of network nodes 1000
NAS number of ASs 10
Nas number of nodes per AS 100
k max hops for existing detector search in RELAX 3

bPAN base for PAN nodeIDs 4
lPAN leaf set size in PAN 4

ε median relative error of network coords 20.5...23.1
nE number of event brokers 500
nP number of primitive event publishers per type partition 0...20
np

S number of primitive event subscribers per type partition 0...20
ni

S number of internal complex event subscribers per type partition 0...20
ntl

S number of top level complex event subscribers per type partition 1...20
c number of clusters 1...8
s selectivity of detectors 0.5
i number of experiment runs 3
q query name CQG1, CQG2

Table 5.1: Global Experiment Parameter Values

Experiment 1 Our first experiments compare the performance of each strategy for CQG1
(Figure 5.6) when there are multiple external (i.e. not detectors) subscribers to every primitive
type. The first variation of this experiment (Exp = 1.i) assumes very little reuse of complex

133

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

Exp nP nSP nSI nSTL c q

1
.i 20 20 0 1 1 CQG1
.ii 20 20 20 20 1 CQG1

2
.i 20 0 0 1 1 CQG1
.ii 20 0 20 20 1 CQG1
.iii 20 0 0 20 1 CQG1

3
.i 10 10 0 1 1 CQG2
.ii 10 10 10 10 1 CQG2

4
.i 10 0 0 1 1 CQG2
.ii 10 0 10 10 1 CQG2
.iii 10 0 0 10 1 CQG2

5
.i 10 10 0 1 8 CQG2
.ii 10 10 10 10 8 CQG2

6
.i 10 0 0 1 8 CQG2
.ii 10 0 10 10 8 CQG2
.iii 10 0 0 10 8 CQG2

Table 5.2: Individual Experiment Parameter Values

event types (in fact there is just a single subscriber to CQG1). This scenario could arise for
example when most primitive events are directly meaningful to subscribers, with complex event
expressions tending to be of specialized interest. The second variation (Exp = 1.ii) assumes
multiple external subscribers to CQG1, as well as to internal types of CQG1. This scenario arises
when all events, both primitive and complex, are of interest to a large number of subscribers.

R
E

LA
T

IV
E

 N
E

T
W

O
R

K
 U

S
A

G
E

 (
X

 R
E

LA
X

)

1.6
1.46 1.51

1

0.0

0.5

1.0

1.5

2.0

RV SHB HNC RELAX

1.23

1.8

1.23

1

0.0

0.5

1.0

1.5

2.0

RV SHB HNC RELAX

Exp = 1.i Exp = 1.ii

Figure 5.8: Experiment 1

The graphs in Figure 5.8 give network usage for each strategy as a multiplier of the network
usage for RELAX placement. For both experiments, RELAX has the lowest network usage.
When there is little reuse of complex events (Exp = 1.i), SHB placement has slightly better
performance than RV and HNC placement. When there are multiple subscribers to complex
events, RV and HNC placement perform better than SHB placement. In both situations, RV

134

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

and HNC placement have roughly the same network usage.

Experiment 2 Our second set of experiments compare the performance of each strategy for
CQG1 when there are no external subscribers to primitive types. This scenario can be common
in pervasive computing when primitive types represent raw data that requires further processing
to be of interest to users.

We examined three variations of this experiment. In the first variation (Exp = 2.i), there
is a single external subscriber to the complex event CQG1. In this scenario, both primitive
and complex events are of specialized interest. Our second variation (Exp = 2.ii), has multiple
external subscribers to CQG1, and also to the internal types of CQG1. This models a situation
where once primitive events have been interpreted to a higher semantic level, a large number
of users find them of interest. Our third and final variation of this experiment has multiple
external subscribers to CQG1, but none to its internal types. This models a situation where a
complex event is of interest to multiple users, but its internal types are only useful insofar as
they generate the top level type.

R
E

LA
T

IV
E

 N
E

T
W

O
R

K
 U

S
A

G
E

 (
X

 R
E

LA
X

)

6.87

4.25

6.0

1

0

2

4

6

8

RV SHB HNC RELAX

1.18

2.40

1.16
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RV SHB HNC RELAX

1.51

3.91

1.36
1

0

1

2

3

4

5

RV SHB HNC RELAX

Exp = 2.i Exp = 2.ii Exp = 2.iii

Figure 5.9: Experiment 2

For all three experiments, RELAX has the lowest network usage. When there is little reuse
of complex events (Exp = 2.i), SHB placement has better performance than RV and HNC
placement. When there are multiple subscribers to all complex events (Exp = 2.ii), RV and
HNC placement perform better than SHB placement. The performance penalty of SHB relative
to RV and HNC is worse when only the top level complex type is reused (Exp = 2.iii). In all
situations, RV and HNC placement have roughly the same network usage.

Experiment 3 Our third set of experiments are a mirror of those performed in the first set,
except that they are performed with respect to the partitionable complex event CQG2 (Figure
5.7). Thus CQG2 consists of several different complex event queries (CQG2.1,...,CQG2.n). The
primitive events used by each partition are disjoint. Partitioned complex events can be quite
common in pervasive computing (e.g. partitioning by geographic location or object identity).

As shown by Figure 5.10, RELAX again has the lowest network usage for both experiments.
SHB placement performs better than RV and HNC placement in the first variation where there

135

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

R
E

LA
T

IV
E

 N
E

T
W

O
R

K
 U

S
A

G
E

 (
X

 R
E

LA
X

)

2.04

1.84

2.12

1

0.0

0.5

1.0

1.5

2.0

2.5

RV SHB HNC RELAX

1.57

2.01

1.57

1

0.0

0.5

1.0

1.5

2.0

2.5

RV SHB HNC RELAX

Exp = 3.i Exp = 3.ii

Figure 5.10: Experiment 3

is little reuse of complex events (Exp = 3.i). Conversely, RV and HNC placement perform better
than SHB placement for the second variation where there is reuse of complex events (Exp =
3.ii). RV and HNC placement again have approximately the same network usage. The results
thus follow the same pattern as Experiment 1.

Experiment 4 In the same way that Experiment 3 corresponds to a partitioned version of
Experiment 1, our fourth set of experiments are a partitioned version of Experiment 2.

R
E

LA
T

IV
E

 N
E

T
W

O
R

K
 U

S
A

G
E

 (
X

 R
E

LA
X

)

6.71

4.6

6.5

1

0

2

4

6

8

RV SHB HNC RELAX

1.42

2.73

1.42
1

0

1

2

3

4

RV SHB HNC RELAX

2.19

4.4

2.20

1

0

1

2

3

4

5

RV SHB HNC RELAX

Exp = 4.i Exp = 4.ii Exp = 4.iii

Figure 5.11: Experiment 4

Once again, RELAX has the lowest network usage across the board. SHB placement performs
poorly for all three variations. When reuse of complex events is low (Exp = 4.i), SHB placement
performs better than RV and HNC placement, but they all perform poorly in comparison to
RELAX. However, when there is reuse of every complex event type (Exp = 4.ii), or even just of
the top level complex type (Exp = 4.iii), RV and HNC placement perform better than SHB, and
the performance gap with RELAX is lower. RV and HNC placement again have approximately
the same network usage for all three variations.

136

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

Experiment 5 For our fifth set of experiments, we divide the network into 8 clusters based
on network latency. We assign each partition of complex query CQG2 to one of these clusters.
This models a scenario where publishers and subscribers to the same query partition are located
close to each other. We believe such a distribution may be common for geographic partitions.
Apart from clustering, the experiment setup is similar to that of Experiment 1 and Experiment
3, in that there are multiple subscribers to each primitive type. Our first variation (Exp = 5.i)
models a scenario where there is no reuse of complex events, whereas our second variation (Exp
= 5.ii) examines the case where there are multiple subscribers to each complex event partition.

R
E

LA
T

IV
E

 N
E

T
W

O
R

K
 U

S
A

G
E

 (
X

 R
E

LA
X

)

3.22

2.90

3.25

1

0

1

2

3

4

RV SHB HNC RELAX

2.09

2.32

2.11

1

0.0

0.5

1.0

1.5

2.0

2.5

RV SHB HNC RELAX

Exp = 5.i Exp = 5.ii

Figure 5.12: Experiment 5

Similarly to all our previous experiments, RELAX placement has the lowest network usage for
both variations of Experiment 5. In the first variation of this experiment (Exp = 5.i), there is
no reuse of complex events, and SHB placement performs better than RV and HNC placement.
However for the second variation (Exp = 5.ii), SHB placement is outperformed by RV and HNC
placement. For both variations, RV and HNC placement have approximately the same network
usage as each other. The performance of RV, HNC, and SHB placement improves with respect
to RELAX when there are multiple subscribers to complex types (Exp = 5.ii).

Experiment 6 Our sixth and final set of experiments is also over a pre-clustered network.
Similarly to Experiment 5, we assign each partition of CQG2 to one of these clusters. However,
the reuse patterns in this experiment correspond to those used for Experiment 4, in that there
is no reuse of primitive event types. The first variation tests the query with no complex event
reuse, the second with reuse of every complex event, and the third with reuse of the top level
complex event only.
Once again RELAX placement is the best performing strategy. RV and HNC placement again
have approximately the same network usage as each other. They perform best when there is
reuse of complex events (Exp = 6.ii and Exp = 6.iii). However they perform poorly when there
is no complex event reuse (Exp = 6.i). Once again, RV and HNC placement perform better

137

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

R
E

LA
T

IV
E

 N
E

T
W

O
R

K
 U

S
A

G
E

 (
X

 R
E

LA
X

)

6.85

4.60

6.72

1

0

2

4

6

8

RV SHB HNC RELAX

2.28

4.3

2.25

1

0

1

2

3

4

5

RV SHB HNC RELAX

1.62

2.7

1.59

1

0

1

2

3

4

RV SHB HNC RELAX

Exp = 6.i Exp = 6.ii Exp = 6.iii

Figure 5.13: Experiment 6

than SHB placement when complex events are reused, and SHB performs better when they are
not.

5.7.1 Summary of Experiments

Several trends are apparent from our experiments.

RELAX vs RV and HNC Firstly, Relaxation placement has the lowest network usage out
of all the strategies. For RV and HNC, the biggest performance penalties occur for experiments
2.i (6.87 and 6.0), 4.i (6.71 and 6.5), and 6.i (6.85 and 6.72). This is to be expected, since these
are the queries with minimal reuse of both primitive and complex event routing paths. Sending
events directly between producers and consumers is therefore the most efficient option for these
queries.

The performance penalty is generally much less for queries with reuse of primitive event
routing paths (1.i, 3.i and 5.i), reuse of complex event routing paths (2.ii, 4.ii, and 6.ii), and
reuse for both primitive and complex routing paths (1.ii, 3.ii, and 5.ii). Cross-domain complex
event detection is usually only possible for the second category.

For the first category, the (RV, HNC) penalty is (1.6, 1.51) for 1.i, (2.04, 2.12) for 3.i, and
(3.22, 3.25) for 5.i. We expect the increase in performance penalty for 5.i is due to the clustering
of publishers and subscribers. This reduces the benefits of path sharing, since paths are typically
shorter. We expect the reason 3.i performs worse than 1.i is that we used less publishers and
subscribers for the latter due to simulation scalability constraints (nP = nSP = 10 for 3.i against
20 for 1.i, see Table 5.2).

For the second category, the (RV, HNC) penalty is (1.18, 1.16) for 2.ii, (1.42, 1.42) for 4.ii,
and (1.62, 1.59) for 6.ii. Again, RV and HNC placement perform slightly worse over the clustered
network (6.ii) than the unclustered network (4.ii).

For the third category, the (RV, HNC) penalty is (1.23, 1.23) for 1.ii, (1.57, 1.57) for 3.ii, and
(2.09, 2.11) for 5.ii. Similarly to the first category, clustering affects network usage adversely.
Thus when there is reuse of primitive type routing paths, the benefits of path sharing are reduced
by clustering.

138

CHAPTER 5. DETECTOR PLACEMENT 5.7 Evaluation

A fourth category we tested (2.iii, 4.iii, and 6.iii) models a situation where the only reuse is
of the top level complex type. Cross-domain detection of these queries may be possible in many
cases. The (RV, HNC) penalties were (1.51, 1.36) for 2.iii, (2.19, 2.20) for 4.iii, and (2.28, 2.25)
for 6.iii. As we expected, the lack of reuse of primitive or internal type routing paths results in
slightly worse performance relative to RELAX than the previous three categories.

SHB vs RELAX SHB placement performs worse than RELAX placement for all experi-
ments. Its performance follows a similar pattern across the variations of experiments 2, 4, and
6. Performance is worst when there is no reuse of primitive or complex events (2.i, 4.i, and
6.i). Performance is slightly better when there is reuse of top level complex events only (2.iii,
4.iii, and 6.iii). Performance is at its best when there is reuse of internal and top level complex
events (2.ii, 4.ii, and 6.ii). This pattern was as we expected, since the opportunities for reusing
primitive event dissemination paths increases as the number of subscribers increases.

Experiments 1, 3, and 5, model a situation in which there are lots of subscribers to primitive
events, together with varying numbers of subscribers to complex events. For experiment 5, the
performance of SHB relative to RELAX is better when there is reuse of primitive and complex
events (5.ii) than when there is reuse of primitive events only (5.i). This is in keeping with the
trend apparent from experiments 2, 4, and 6. However, for experiments 1 and 3, the perform-
ance of SHB relative to RELAX deteriorates slightly as reuse of complex events increases (1.i vs
1.ii and 3.i vs 3.ii). We believe performance deteriorates for experiments 1 and 3 because early
filtering of complex events by RELAX becomes more beneficial as the number of complex event
subscribers increases. However, in experiment 5, any such improvement is masked by clustering
of publishers and subscribers for the same partition, as nodes in a cluster are more likely to have
received a primitive event anyway (e.g. due to leaf set overlap) than in an unclustered network.

Finally, we note that the contrast between the deterioration in performance of SHB placement
as complex event reuse increases in experiments 1 and 3 and the improvement in performance
for experiments 2, 4, 6. We expect the reason for this disparity is less to do with clustering
effects and more to do with the lack of primitive event subscribers whose routing paths SHB
placement can reuse (in experiments 2, 4, and 6). Overall, SHB placement is a good option
when there is a lot of primitive event reuse, little complex event reuse, and no clustering.

SHB vs RV and HNC In comparison to RV and HNC placement, SHB placement performs
better when there is no reuse of complex events (1.i, 2.i, 3.i, 4.i, 5.i, and 6.i). When there is
reuse of internal or top level complex events, RV and HNC outperform SHB. SHB performs
worst relative to RV and HNC when there is reuse of top level complex events only (2.iii, 4.iii,
and 6.iii).

These results were as expected, since the benefit of performing complex event detection
to filter events earlier should increase as the number of users of a complex event increases.
Furthermore, this benefit should be maximised when there is reuse of top level complex events
only. This is because the number of subscribers interested in lower level events primitive or

139

CHAPTER 5. DETECTOR PLACEMENT 5.8 Related Work

complex events is smaller, and there is less opportunity for SHB placement to piggy back on
their event routing paths.

RV vs HNC Unexpectedly, the network usage of RV placement was virtually identical to that
of HNC for all of our test queries (excluding the cost of maintaining network coordinates). The
best performing scenario for RV with respect to HNC was experiment 3.i, where RV had 96%
of the net usage of HNC (2.04 vs 2.12). The best performing scenario for HNC over RV was for
experiment 2.i, where HNC had 88% of the net usage of RV (6.0 vs 6.87). Except for perhaps
experiment 2.iii, all other experiments had virtually the same network usage.

Given that HNC placement requires us to maintain a network coordinate layer, overall net-
work usage is likely to be slightly higher. This implies that, for our current implementation and
with respect to our original motivations, HNC placement should only be used instead of RV
placement if the amount of energy saved through cross domain detector placement outweighs
the cost of maintaining the network coordinate layer. This result was surprising to us, especially
as rendezvous brokers are distributed randomly within the network. HNC placement may have
other advantages over RV placement however, especially in situations where the rendezvous node
for a type does not have the resources to support a detector. The likelihood of the rendezvous
node becoming a bottleneck is especially acute for partitioned complex expressions, since the
detector for every partition would be located at the rendezvous.

5.8 Related Work

We have described a complex event detection service for the Hermes type- and attribute-based
routing algorithm. There are of course other content based routing algorithms over which
event pattern detection could be performed. An example of these is the complex subscription
language proposed by Li and Jacobsen as part of the PADRES publish/subscribe middleware
[LJ05; LMJ07]. In [LJ05], they show how to integrate the routing and placement of complex
event expressions into the PADRES middleware, whose routing algorithm is based on the advert-
isement routing algorithm of SIENA [CRW01] over an acyclic peer-to-peer topology. Apart from
needing to flood advertisements, and the lack of robustness of the acyclic peer-to-peer topology
(in comparison to a general peer-to-peer overlay), placement of expressions is determined by the
topology of the overlay network, and does not take into account differing publication rates of
event producers.

However, this work is extended in [LMJ07] to perform distributed complex event detection
over a general peer-to-peer topology. In addition, the ability to place detectors is decoupled
from the topology of the broker network. However, the routing algorithm still requires flooding
of advertisements. In addition, to prevent cycles in the network, each advertisement predicate
is appended with a unique tree ID. This can reduce the number of times matching must be
performed for an event. However, it further increases state requirements, since it reduces the

140

CHAPTER 5. DETECTOR PLACEMENT 5.9 Summary

algorithms ability to exploit covering relationships between advertisements generated by differ-
ent publishers. On the other hand, operators in a complex expression tree are placed optimally
in the broker network, independently of their height in the tree, since there is no need to route
towards a rendezvous node as in Hermes. Thus the reduction in state from using Hermes comes
at the cost of a potential increase in detection latency for complex event trees, depending on
the height of the tree.

Chen et al. [CRL09] suggest an algorithm for placing aggregation operators in distributed
publish/subscribe systems. The algorithm attempts to find the graph center of publishers and
subscribers to a single type in a decentralized fashion. However they do not support placement
of generalized complex event query graphs, and the placement of aggregation operators does not
enable migration in response to changing subscriptions or networks conditions.

In [PLS+06], a decentralized, iterative, spring relaxation algorithm called Relaxation is used
to generate a solution to the problem of placing stream operators in a network aware fashion.
Our proposed solutions uses latency coordinates and a spring relaxation algorithm in a similar
way. However, their solution is designed to support the placement of operator graphs where
routing between operators is done directly at the network layer, and does not investigate how
this placement can be done over publish/subscribe, or how the placement might be affected if
routing is done using a DHT.

Synergy is another stream operator placement solution that attempts to maximize reuse of
existing operators when placing a new query plan [RGK06]. Synergy uses a distributed hash
table to store the locations of existing streams and operators, and attempts to minimize QoS
conflicts between users when sharing query operators. Again however, it does not investigate
placement over publish/subscribe.

5.9 Summary

We describe in this chapter the problem of performing efficient complex detection for pervas-
ive computing applications over a large-scale multi-domain publish/subscribe middleware. We
highlight the potential of cross-domain complex event detection to help prolong the lifetime of
sensor networks by reducing unnecessary communications. We argue for the use of a type- and
attribute-based publish/subscribe middleware (Hermes) in the central domain of our architec-
ture, and define static and dynamic detector placement strategies to complement its routing
algorithm. We compare the network usage of our strategies to that of a stream operator place-
ment algorithm from the literature called Relaxation placement [PLS+06]. Our results indicate
that when reuse of complex event types is high, our dynamic strategy results in network us-
age of between roughly 1.25 and 2.5 times that of Relaxation. However, our strategy makes
it easier to avoid saturating the bandwidth of outgoing links and maximizes reuse of complex
event detectors.

141

142

Chapter 6

Conclusions and Future Work

Pervasive computing is characterized by omnipresent distributed applications that adapt trans-
parently to changes in the environment. An important facet of pervasive computing applications
is their ability to respond to information received from sensors. However, raw sensor data is often
uninformative and impersonal. Bridging the semantic gap between sensor data and application-
level knowledge is a challenging task for developers.

6.1 Summary

In this dissertation we argue that middleware support for complex event detection can help
ameliorate this problem. A complex event detection service enables application developers to
specify and detect patterns over incoming sensor data. We define a complex event language for
pattern specification that is targeted specifically towards pervasive computing applications. A
domain-specific language such as this eases application development by providing abstractions
that more closely match developers’ model of the domain.

However, the design of a complex event detection service entails more than just deciding
what features the expression definition language should provide. In particular, matters are com-
plicated by the distributed nature of pervasive computing applications. We examine how a range
of distributed systems issues affect complex event detection. These include the lack of a globally
synchronised clock, and the need to cope with message loss and delays in an appropriate fashion.
Our language provides a variety of detection policies to enable application-specific control over
how these problems are handled by the service.

A distributed complex event detection service also provides a degree of flexibility. In par-
ticular, it allows detection of patterns to be performed anywhere in the network. This has
several potential benefits, such as offloading computation from lightweight clients to more cap-
able devices and reducing unnecessary communication with energy-constrained sensors. We
thus investigate the performance of a variety of detector placement strategies for a distributed
complex event detection service in the context of a scalable event-based middleware.

143

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 6.2 Conclusions

6.2 Conclusions

We began by introducing our complex event detection language for pervasive computing applic-
ations. In order to cope with the lack of a global clock in distributed systems, our language
bounds the precision of event timestamps using uncertainty intervals. We found uncertainty
intervals fairly straightforward to integrate into our detection model, especially for applications
that wish to either ignore them or fail immediately on the occurrence of conflicting timestamps.
Providing more sophisticated handling of conflicting timestamps can be beneficial too, as our
no false positives detection policy shows.

Our language permits composition of complex event expressions, so long as they together
form a directed acyclic graph. Hierarchical decomposition of this graph allows for distributed
detection. From an implementation perspective, we found this decomposition relatively straight-
forward, due primarily to the graph’s acyclicity and the lack of conditional dependencies between
complex event types. Our language also provides constructs to facilitate partitioning of a single
complex event expression, such that partitions may be detected separately in a distributed fash-
ion. We found geographic partitions to be particularly useful for pervasive computing given the
common need to detect a complex event at each of a number of different locations.

Our language provides a selection of complex event operators, and a variety of parameters
for configuring detection. We believe these configuration parameters are necessary given the
breadth of pervasive computing applications we consider. Furthermore, through the judicious
use of default parameters, much of the complexity they introduce is hidden from programmers
for the most common types of expression. We found that combining conditions across operators
with operand-granularity control over windowing, selection, and consumption results in a highly
expressive complex event language.

Having described our complex event language, we then discussed how a variety of distributed
systems issues can impinge on our ability to perform correct and efficient complex event detec-
tion. We focused in particular on difficulties arising from events with conflicting uncertainty
interval timestamps, and gaps in input event streams due to lost or delayed messages. To deal
with these issues, we extended our complex event detection language with an additional clause
that allows programmers to specify a variety of detection policies.

Although not a panacea, these detection policies enable complex event detectors to tolerate
a variety of errors such that the output they produce is sensible with respect to the semantics
required by individual applications. For the policies we have implemented, we found our exten-
sion straightforward to use at both the syntactic and semantic level. However, we believe a no
false negatives detection policy will likely be more problematic to both implement and use. This
is due primarily to the extensions it would require to the event model (e.g. tentative or possibly
erroneous events).

Of particular interest is our detection policy that ensures no false positives are received by
an application. We analysed the amenability of various types of complex event expression to no
false positives detection. As a result of this analysis, we conclude that expressions with windows
are typically easier to handle than those where input events are consumed in response to the

144

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 6.3 Future Work

detection of a complex event. We evaluated an implementation of such a policy for our complex
event detection language, and showed how performance is unaffected during normal operation,
but that overhead increases with the number of errors that must be tolerated.

Our final chapter addresses the question of where detection of a complex event expression
should be performed. We suggest several motivations for performing distributed detection. In
particular we emphasized the need for detector placements that reduce unnecessary communic-
ation with energy-constrained sensor devices. We addressed the problem of detector placement
in the context of large-scale multi-domain pervasive computing architectures, and examined in
particular how distributed detection might be performed over a scalable event-based middleware
called Hermes [Pie04].

We described several detector placement strategies and divide them into two classes, static
and dynamic. Dynamic solutions allow detectors to migrate in response to changing network
conditions, but are more complex to implement than static solutions. We evaluated our detector
placement strategies with respect to each other and to a reference strategy from the literature.

Our results show that the inefficiency of detector placement over Hermes in comparison to the
reference strategy depends on the level of reuse of complex event expressions. In addition, they
indicate that our dynamic placement strategy allows us to exploit cross-domain detector place-
ments using a similar amount of network resources as the best of our static placement strategies.
The ability to push detectors into adjoining domains is important when those domains contain
energy-constrained sensor networks, since it can reduce unnecessary communication and hence
prolong their effective lifetime. However, we found that the decision to use publish/subscribe
instead of direct routing for communication between detectors generally only pays off when there
are enough subscribers to share the dissemination overhead. In cases where it is known a priori
that the output of each detector will only be of interest to a very small number of clients, direct
routing may be more advisable. In either case, we found the flexibility a dynamic placement
strategy affords to be extremely useful.

6.3 Future Work

We have highlighted and addressed a variety of problems that arise when attempting to interpret
and convey sensor information to pervasive computing applications. However, several open
questions and research challenges remain.

Privacy-Aware Complex Event Detection As mentioned in Chapter 5, one of the ad-
vantages of a complex event detection service is its ability to provide high-level information
to applications but still withhold privacy sensitive raw data. Expressions written in a dedic-
ated complex event language are usually more amenable to analysis than arbitrary code. This
may allow a complex event service to automatically determine whether a complex event ex-
pression with sensitive input events obeys privacy constraints. Although in theory this might
seem straightforward, in practice it may be possible to correlate high-level information with
other events or external data in order to guess the obscured data. A comprehensive framework

145

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 6.3 Future Work

to assist decision making in terms of which sensitive data to make available for complex event
processing is a challenging goal.

Learning and Evolution of Complex Event Expressions We have assumed that users’
initial complex event subscriptions reflect the required mapping from raw sensor data to application-
level knowledge. However, some parts of a complex event expression may need to change at
runtime. In particular, support for a feedback mechanism that enables subscribers to fine-tune
certain aspects of an expression may be useful (e.g. the confidence level associated with the
occurrence of an event). Currently, all learning must be performed prior to deployment. Thus
an interesting research question is what kind of support for learning and evolution of complex
events should be provided.

Placement in Heterogeneous Broker Networks In our discussion of placement strategies
for complex event detectors, we optimized network usage for an overlay where brokers in the
central domain were assumed to be essentially homogeneous in terms of resources. Network usage
optimization becomes more difficult when broker resources, such as bandwidth, processing, and
storage, vary considerably. Furthermore, if brokers are owned by different parties, a mechanism
for rewarding resource contributions may be necessary. When brokers can set their own prices for
resources, variations in pricing may further complicate placement decisions. Whether a better
mechanism can be found than local search for a broker with spare capacity is an interesting
research question.

Sensor Coverage We have suggested detection policies to handle a variety of errors that
affect distributed complex event detection. However, the guarantees we provide are only with
respect to publishers active in the system. Some applications may require meta-information
about what portion of their subscriptions are covered by publishers in order to ensure sufficient
sensor coverage. In addition, redundant coverage may be required in some cases for increased
reliability. Furthermore, when several publishers produce redundant information, they may
wish to coordinate in order to save resources. Providing scalable middleware support for sensor
coverage guarantees and publisher coordination is challenging.

146

Appendix A

Language Definitions

Below, we give a full definition of the ce-data data structure into which a complex event expres-
sion is parsed.

Complex Event Data Structure

ce-data = (name, ctxt , ep, map-expr , gkeys, lkeys, gps) ∈ CE -DATA
name ∈ STRING

Detection Contexts

ctxt = (inits, terms)
inits =< init+ >

init = start | event-init -- Default = start
start ∈ TIME -STAMP
event-init = (type, as, threshold , icc)
type ∈ STRING
as ∈ STRING
threshold = predicate
icc ∈ “add”, “ignore”} -- Default = ignore
terms =< term∗ >

term = expiry | event-term
expiry ∈ TIME -INTERVAL
event-term = (type, as, threshold , cross-threshold , tcc)
cross-threshold = agg-predicate
tcc ∈ {“new”, “old”, “each”} -- Default = each

147

CHAPTER A. LANGUAGE DEFINITIONS

Event Patterns

ep = (op-name, operand -defs, detect-mode, params)
op-name ∈ {“Sequence”, “And”, “Or”, “Concurrent”, “Not”, “Unless”, “At”, “Every”,

“After”, “Nth”, “AtLeast”, “AtMost”}
operand -defs =< operand -def + >

operand -def = leaf -def | internal -operator -def
detect-mode ∈ {“immediate”, “delayed”, “deferred”} -- Default = immediate | deferred
params = (counting-n, at-ts, timing-interval , after -size, after -acc)
counting-n ∈ NUMBER
at-tp ∈ TIME -PATTERN
timing-interval ∈ TIME -INTERVAL
after -size = (after -rows, after -n)
after -rows ∈ BOOLEAN
after -n ∈ NUMBER | {“unbounded”}
after -acc ∈ {“add”, “ignore”}
leaf -def = (type, as, threshold , collect , quant , consume, cond)
collect = (size, range)
size = (rows, size-val)
rows ∈ BOOLEAN -- Default = TRUE
size-val ∈ NUMBER | {“unbounded”} -- Default = “unbounded”
range ∈ TIME -INTERVAL | {“unbounded”} -- Default = “unbounded”
quant = “all” | (strict , age, max , staged) -- Default = “all”
strict ∈ BOOLEAN -- Default = FALSE
age ∈ {“new”, “old”} -- Default = “new”
max ∈ NUMBER | {“ + ”} -- Default = “ + ”
staged ∈ BOOLEAN -- Default = FALSE
consume ∈ BOOLEAN -- Default = FALSE
cond = predicate

Internal Event Patterns

internal -operator -def = (sub-ctxt , sub-ep, sub-gkeys, sub-lkeys)
sub-ctxt = (inits, terms)
sub-ep = (op-name, operands, internal -detect-mode, params)
sub-gkeys = {(key , ranges)} | {∅}
sub-lkeys = {(key , ranges)} | {∅}
internal -detect-mode ∈ {“immediate”, “deferred”} -- Default = “immediate” | “deferred”

148

CHAPTER A. LANGUAGE DEFINITIONS

Mapping Expression

map-expr = {attr -def } | {∅} -- Default = ∅
attr -def = (attr -name, attr -expr)
attr -expr = tuple-attr -expr | group-attr -expr
event-name ∈ STRING
tuple-attr -expr = (event-name, attr -name) |

(event-name, attr -name, attr -agg-fn) |
(event-name, event-agg-fn, set) |

attr -agg-fn ∈ {“MAX ”, “MIN ”, “SUM ”, “AVG”, “MEDIAN ”}
event-agg-fn ∈ {“COUNT”}
group-attr -expr = (event-name, attr -name, attr -agg-fn) |

(event-name, event-agg-fn, set) |
(attr -agg-fn, set , tuple-attr -expr)

set ∈ BOOLEAN

Keys

gkeys = {(key , ranges)} | {∅}
lkeys = {(key , ranges)} | {∅}
key = {(event-name, attr -name)}
ranges = (key-name, range-defs) | unnamed -range-defs | {∅}
range-defs = named -range-defs | unnamed -range-defs
named -range-defs = {named -range-def }
unnamed -range-defs = {range-descr}
named -range-def = (range-descr , as)
range-descr ∈ STRING-RANGE |NUM -RANGE | {“Rest”}

Conditions

predicate = {and -clause} | {∅}
and -clause = {or -clause} | {∅}
or -clause = (negated ∈ BOOLEAN , rel -expr)
rel -expr = (math-expr , math-comparator , math-expr) |

(string-expr , string-comparator , string-expr) |
(boolean-expr , string-comparator , boolean-expr) |
(timestamp-expr , timestamp-comparator , timestamp-expr) |
b ∈ BOOLEAN

math-comparator ∈ {“ < ”, “ > ”, “ <= ”, “ >= ”, “ = ”, “! = ”}
string-comparator ∈ {“ = ”, “! = ”}
timestamp-comparator = math-comparator

149

CHAPTER A. LANGUAGE DEFINITIONS

math-expr = (math-expr , binary-math-op, math-expr) |
(unary-math-op, math-expr) |
(event-name, attr -name) | n ∈ NUMBER | number -is-null

string-expr = (event-name, attr -name) | s ∈ STRING | string-is-null
boolean-expr = (event-name, attr -name) | b ∈ BOOLEAN | boolean-is-null
timestamp-expr = fn | ts ∈ TIME -STAMP | ts-is-null
binary-math-op ∈ {“ + ”, “− ”, “ ∗ ”, “/”}
fn = (start-ts, event-name) | (end -ts, event-name) | (sst , event-name) | stable-time
start-ts ∈ (STRING 7→ TIME -STAMP)
end -ts ∈ (STRING 7→ TIME -STAMP)
sst ∈ (STRING 7→ TIME -STAMP)
stable-time ∈ ({∅} 7→ TIME -STAMP)
number -is-null = (event-name, attr -name, n ∈ NUMBER)
boolean-is-null = (event-name, attr -name, b ∈ BOOLEAN)
string-is-null = (event-name, attr -name, s ∈ STRING)
ts-is-null = (event-name, attr -name, ts ∈ TIME -STAMP)

Conditions with Aggregates

agg-predicate = {agg-and -clause} | {∅}
agg-and -clause = {agg-or -clause} | {∅}
agg-or -clause = (agg-negated ∈ BOOLEAN , rel -expr)
agg-rel -expr = (agg-math-expr , math-comparator , agg-math-expr) |

(agg-string-expr , string-comparator , agg-string-expr) |
(agg-boolean-expr , string-comparator , agg-boolean-expr) |
(agg-timestamp-expr , timestamp-comparator , agg-timestamp-expr)

math-comparator ∈ {“ < ”, “ > ”, “ <= ”, “ >= ”, “ = ”, “! = ”}
string-comparator ∈ {“ = ”, “! = ”}
timestamp-comparator = math-comparator
agg-math-expr = (agg-math-expr , binary-math-op, agg-math-expr) |

(unary-math-op, agg-math-expr) |
(attr -agg-fn, event-name, attr -name) |
(event-agg-fn, event-name) |
n ∈ NUMBER | number -is-null

agg-string-expr = (attr -agg-fn, event-name, attr -name) |
(event-agg-fn, event-name) |
s ∈ STRING | string-is-null

agg-boolean-expr = (attr -agg-fn, event-name, attr -name) |
(event-agg-fn, event-name) |
b ∈ BOOLEAN | boolean-is-null

agg-timestamp-expr = fn | ts ∈ TIME -STAMP | ts-is-null

150

CHAPTER A. LANGUAGE DEFINITIONS

Dynamic Data Structures

gps = {(values, lps)}
lps = {(values, ctxts)}
ctxts = {ctxt-inst}
ctxt-inst = (init-events, term-events, buf -events, ep-inst)
init-events ∈ P E -INST
term-events ∈ P E -INST
buf -events ∈ P CE -INST
ep-inst =< operand -inst+ >

operand -inst = leaf -inst | internal -operator -inst
leaf -inst =< leaf -event∗ >

leaf -event ∈ E -INST
internal -operator -inst = sub-gps
sub-gps =< (values, sub-lps)∗ >

sub-lps =< (values, sub-ctxts)∗ >

sub-ctxts =< sub-ctxt-inst∗ >

sub-ctxt-inst = (init-events, term-events, ep-inst)
values ∈ STRING-RANGE |NUM -RANGE

151

152

Appendix B

Input Type Schemas for Examples

In this appendix, we list the type schemas of the input events used in the examples of Chapter
3. The timestamp attribute of an event is implicit, and thus is not included in its schema.

TempEvent(value:NUMBER, loc:NUMBER)

HeartRateEvent(value:NUMBER, patientId:NUMBER)

24Hrs()

At8am()

At6pm()

CarEvent(regNo:NUMBER, linkId:NUMBER, speed:NUMBER)

Fall(patientId:NUMBER)

HeartRateIncrease(patientId:NUMBER, amount:NUMBER)

BloodPressureDecrease(patientId:NUMBER, amount:NUMBER)

BloodPressure(patientId:NUMBER, level:STRING)

SignificantHeartRateIncrease(patientId:NUMBER, amount:NUMBER)

BagEvent(id:NUMBER, carouselId:NUMBER)

ContainerEvent(id:NUMBER, trackId:NUMBER)

BusEvent(regNo:NUMBER, linkId:NUMBER, speed:NUMBER)

153

154

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,
Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The Design of
the Borealis Stream Processing Engine. In Proceedings of the Biennial Conference
on Innovative Data Systems Research (CIDR), pages 277–289, 2005. 112

[ABC+04] Tarek F. Abdelzaher, Brian M. Blum, Qing Cao, Yong Chen, David Evans, Joshua
George, Selvin George, Lin Gu, Tian He, Sudha Krishnamurthy, Liqian Luo,
Sang Hyuk Son, Jack Stankovic, Radu Stoleru, and Anthony D. Wood. Enviro-
track: Towards an environmental computing paradigm for distributed sensor net-
works. In Proceedings of the International Conference on Distributed Computing
Systems (ICDCS), pages 582–589. IEEE Computer Society, 2004. 39

[ABW03] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query
language: Semantic foundations and query execution. Technical Report 2003-67,
Stanford University, 2003. 48, 83

[AC03] Raman Adaikkalavan and Sharma Chakravarthy. SnoopIB: Interval-Based Event
Specification and Detection for Active Databases. In Proceedings of the East
European Conference on Advances in Databases and Information Systems (AD-
BIS), pages 190–204, 2003. 70, 85

[ACc+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik.
Aurora: a new model and architecture for data stream management. The VLDB
Journal, 12(2):120–139, 2003. 34, 48, 83, 112

[ADB+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a Better Understanding of Context and Context-Awareness.
In Proceedings of the 1st international symposium on Handheld and Ubiquitous
Computing (HUC), pages 304–307. Springer-Verlag, 1999. 35

[ADGI08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient
pattern matching over event streams. In Proceedings of the 2008 ACM SIGMOD

155

BIBLIOGRAPHY BIBLIOGRAPHY

international conference on Management of data (SIGMOD), pages 147–160, New
York, NY, USA, 2008. ACM. 83

[AE02] Asaf Adi and Opher Etzion. The situation manager rule language. In Michael
Schroeder and Gerd Wagner, editors, RuleML, volume 60 of CEUR Workshop
Proceedings, pages 36–57. CEUR-WS.org, 2002. 46, 82

[AE04] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB Journal,
13(2):177–203, 2004. 46, 67, 82, 130

[ASSC02] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A
Survey on Sensor Networks. IEEE Communications Magazine, 40(8):102–114, Au-
gust 2002. 21

[Bar04] Jakob E. Bardram. Applications of context-aware computing in hospital work:
examples and design principles. In Proceedings of the ACM Symposium on Applied
Computing (SAC), pages 1574–1579, New York, NY, USA, 2004. ACM Press. 20

[Bat94] Don Batory. The LEAPS Algorithm. Technical report, University of Texas at
Austin, Austin, TX, USA, 1994. 51, 85

[Bau04] Martin Bauer. Event Management for Mobile Users. Technical Report 2, Uni-
versitat Stuttgart, 2004. 36, 91, 111

[BB03] Boris Jan Bonfils and Philippe Bonnet. Adaptive and Decentralized Operator
Placement for In-Network Query Processing. In Proceedings of the Second Inter-
national Workshop on Information Processing in Sensor Networks (IPSN), volume
2634 of Lecture Notes in Computer Science, pages 47–62. Springer–Verlag Berlin
Heidelberg, 2003. 41, 124, 128

[BBE+08] Jean Bacon, Alastair Beresford, David Evans, David Ingram, Niki Trigoni, Alex-
andre Guitton, and Antonios Skordylis. TIME: An open platform for capturing,
processing and delivering transport-related data. In Proceedings of the IEEE Con-
sumer Communications and Networking Conference (CCNC), pages 687–691, Las
Vegas, NV, USA, January 2008. Session on Sensor Networks in Intelligent Trans-
portation Systems. 55

[BBHM95] Jean Bacon, John Bates, Richard Hayton, and Ken Moody. Using Events to Build
Distributed Applications. In Proceedings of the 2nd International Workshop on
Services in Distributed and Networked Environments (SDNE), page 148, Washing-
ton, DC, USA, 1995. IEEE Computer Society. 29

[BC04] Gregory Biegel and Vinny Cahill. A Framework for Developing Mobile Context-
aware Applications. In Proceedings of the Annual IEEE International Conference
on Pervasive Computing and Communications (PERCOM), Orlando, FA., USA,
March 2004. IEEE. 37

156

BIBLIOGRAPHY BIBLIOGRAPHY

[BCSS99] Guruduth Banavar, Tushar Deepak Chandra, Robert E. Strom, and Daniel C.
Sturman. A Case for Message Oriented Middleware. In Proceedings of the 13th
International Symposium on Distributed Computing (DISC), pages 1–18, London,
UK, 1999. Springer-Verlag. 25

[Ber96] Philip A. Bernstein. Middleware: a model for distributed system services. Commun.
ACM, 39(2):86–98, 1996. 23

[BFKM85] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming
expert systems in OPS5: an introduction to rule-based programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1985. 85

[BFSF08] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. Speculative
out-of-order event processing with software transaction memory. In Proceedings
of the second international conference on Distributed event-based systems (DEBS),
pages 265–275, New York, NY, USA, 2008. ACM. 111

[BGAH07] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng Hong. Con-
sistent Streaming Through Time: A Vision for Event Stream Processing. In Pro-
ceedings of the Biennial Conference on Innovative Data Systems Research (CIDR)
[DBL07], pages 363–374. 112

[BGS01] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards Sensor Data-
base Systems. In Proceedings of the International Conference on Mobile Data Man-
agement (MDM), pages 3–14. Springer-Verlag, 2001. 41

[BKS+99] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert E. Strom, Daniel C. Stur-
man, and Wei Tao. Information flow based event distribution middleware. In
Proceedings of the International Conference on Distributed Computing Systems
(ICDCS), pages 114–121. IEEE Computer Society Press, 1999. 32

[BKZD04] Michael Beigl, Albert Krohn, Tobias Zimmer, and Christian Decker. Typical
Sensors needed in Ubiquitous and Pervasive Computing. In Proceedings of the
International Conference on Networked Sensing Systems (INSS), pages 153–158,
2004. 21

[BM07a] Jean Bacon and Ken Moody. CareGrid: Autonom-
ous Trust Domains for Healthcare Applications.
http://www.cl.cam.ac.uk/research/srg/opera/projects/CareGrid/case.html,
2007. Last accessed on 20/11/2009. 55

[BM07b] Jean Bacon and Ken Moody. TIME-EACM: A Transport Information
Monitoring Environment - Event Architecture and Context Management.
http://www.cl.cam.ac.uk/∼jmb25/TIME-EACM.htm, 2007. Last accessed on
20/11/2009. 55

157

BIBLIOGRAPHY BIBLIOGRAPHY

[BMB+00] Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew
McNeil, Oliver Seidel, and Mark Spiteri. Generic Support for Distributed Applic-
ations. Computer, 33(3):68–76, 2000. 29

[BSB+02] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi, Yuanyuan Zhao, and Joshua S.
Auerbach. Exactly-once delivery in a content-based publish-subscribe system. In
Proceedings of the International Conference on Dependable Systems and Networks
(DSN), pages 7–16, Washington, DC, USA, 2002. IEEE Computer Society. 32

[BTW+06] Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zaniolo. A data
stream language and system designed for power and extensibility. In Proceedings of
the 15th ACM international conference on Information and knowledge management
(CIKM), pages 337–346, New York, NY, USA, 2006. ACM. 71, 83

[BV06] Roberto Baldoni and Antonino Virgillito. Distributed event routing in publish/
subscribe communication systems: a survey. Technical Report MIDLAB 1/2006,
Dipartimento di Informatica e Sistemistica, University di Roma la Sapienza, 2006.
29

[BWL+07] Yijian Bai, Fusheng Wang, Peiya Liu, Carlo Zaniolo, and Shaorong Liu. RFID Data
Processing with a Data Stream Query Language. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 1184–1193. IEEE, 2007. 84

[BZA03] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach. Scalably Supporting Dur-
able Subscriptions in a Publish/Subscribe System. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN), volume 0, page 57,
Los Alamitos, CA, USA, 2003. IEEE Computer Society. 32

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur
Çetintemel, Ying Xing, and Stan Zdonik. Scalable Distributed Stream Processing.
In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR), 2003. 34

[CBo09] Crossbow’s Homepage. http://www.xbow.com, 2009. Last accessed on 20/11/2009.
21

[CcC+02] Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring
Streams - A New Class of Data Management Applications. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages 215–226, Hong
Kong, China, August 2002. 34, 48, 83, 91, 112

[CCD+03] Srirash Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Sam Madden, Vijay-
shanker Raman, Fred Reiss, and Mehul Shah. TelegraphCQ: Continuous Dataflow

158

BIBLIOGRAPHY BIBLIOGRAPHY

Processing for an Uncertain World. In Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2003. 83

[CDHR03] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron. Exploiting
network proximity in peer-to-peer overlay networks. Technical Report MSR-TR-
2003-82, Microsoft, 2003. 125

[CEE+01] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton, and
Jerry Zhao. Habitat monitoring: Application driver for wireless communications
technology. In Proceedings of the ACM SIGCOMM Workshop on Data Commu-
nications in Latin America and the Caribbean, 2001. 21

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. Semantic Web in a Pervasive Context-
Aware Architecture. Artificial Intelligence in Mobile System, pages 33–40, October
2003. 36

[CJSS03] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
Gigascope: a stream database for network applications. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data (SIGMOD), pages
647–651, New York, NY, USA, 2003. ACM Press. 83

[CK05] Guanling Chen and David Kotz. Policy-Driven Data Dissemination for Context-
Aware Applications. In Proceedings of the Annual IEEE International Conference
on Pervasive Computing and Communications (PERCOM), pages 283–289, Wash-
ington, DC, USA, 2005. IEEE Computer Society. 35, 36

[CKAK94] Sharma Chakravarthy, Vidhya Krishnaprasad, Eman Anwar, and Seung-Kyum
Kim. Composite Events for Active Databases: Semantics, Contexts and Detection.
In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 606–617, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.
45, 69, 81, 103

[CL04] Jan Carlson and Björn Lisper. An event detection algebra for reactive systems. In
Proceedings of the 4th ACM international conference on Embedded software (EM-
SOFT), pages 147–154, New York, NY, USA, 2004. ACM. 85

[CLK04] Guanling Chen, Ming Li, and David Kotz. Design and implementation of a large-
scale context fusion network. In Proceedings of the 1st Annual International Con-
ference on Mobile and Ubiquitous Systems (MobiQuitous), pages 246–255. IEEE
Computer Society, 2004. 35, 36

[CM94] Sharma Chakravarthy and Deepak Mishra. Snoop: an expressive event specification
language for active databases. Data Knowl. Eng., 14(1):1–26, 1994. 45, 69, 81

159

BIBLIOGRAPHY BIBLIOGRAPHY

[CRL09] Jianxia Chen, Lakshmish Ramaswamy, and David Lowenthal. Towards efficient
event aggregation in a decentralized publish-subscribe system. In Proceedings of the
Third ACM International Conference on Distributed Event-Based Systems (DEBS),
pages 1–11, New York, NY, USA, 2009. ACM. 141

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and Eval-
uation of a Wide-Area Event Notification Service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001. 29, 140

[DAS99] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A Context-Based Infra-
structure for Smart Environments. In Paddy Nixon, Gerard Lacey, and Simon
Dobson, editors, 1st International Workshop on Managing Interactions in Smart
Environments (MANSE), pages 114–128, Dublin, Ireland, December 1999. 35

[DBL07] CIDR 2007, Third Biennial Conference on Innovative Data Systems Research, As-
ilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.crdrdb.org, 2007.
157, 160

[DBS+01] Ken Ducatel, Marc Bogdanowicz, Fabiana Scapolo, Jos Leijten, and Jean-Claude
Burgelman. Scenarios for ambient intelligence in 2010. Technical report, IST
Advisory Group, February 2001. 19

[DCKM04] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a decentral-
ized network coordinate system. SIGCOMM Comput. Commun. Rev., 34(4):15–26,
2004. 122

[DGP+07] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker M. White. Cayuga: A General Purpose Event Monitoring
System. In Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR) [DBL07], pages 412–422. 82

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131,
2003. 26, 27, 96

[EG01] W. Keith Edwards and Rebecca E. Grinter. At Home with Ubiquitous Computing:
Seven Challenges. In Proceedings of the 3rd international conference on Ubiquitous
Computing (UbiComp), pages 256–272, London, UK, 2001. Springer-Verlag. 20

[EGD01] Patrick Th. Eugster, Rachid Guerraoui, and Christian Heide Damm. On objects
and events. In Proceedings of the 16th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (OOPSLA), pages
254–269, New York, NY, USA, 2001. ACM. 28

160

BIBLIOGRAPHY BIBLIOGRAPHY

[ESP09] Esper’s Homepage. http://esper.codehaus.org, 2009. Last accessed on
20/11/2009. 84

[ESS02] Deborah Estrin, Mani Srivistava, and Akbar Sayeed. Tutorial on Wireless Sensor
Networks. ACM MobiComm, September 2002. 21

[Eug07] Patrick Eugster. Type-based publish/subscribe: Concepts and experiences. ACM
Trans. Program. Lang. Syst., 29(1):6, 2007. 28

[FM09] Derek Fagan and René Meier. Using context and behavioral patterns for intelligent
traffic management. In Proceedings of the 1st International Workshop on Context-
Aware Middleware and Services (CAMS), pages 61–66, New York, NY, USA, 2009.
ACM. 20

[For82] Charles Forgy. Rete: A Fast Algorithm for the Many Patterns/Many Objects
Match Problem. Artif. Intell., 19(1):17–37, 1982. 50, 85

[GD93] Stella Gatziu and Klaus R. Dittrich. Events in an Active Object-Oriented Database
System. Technical report, University of Zurich, 1993. 81

[GD94] Stella Gatziu and Klaus R. Dittrich. Detecting Composite Events in Active Data-
base Systems Using Petri Nets. In Proceedings of the International Workshop on
Research Issues in Data Engineering (RIDE-ADS), pages 2–9, 1994. 81

[GGG05] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-
programming Wireless Sensor Networks Using Kairos. In Proceedings of the Inter-
national Conference on Distributed Computing in Sensor Systems (DCOSS), pages
126–140, 2005. 40, 42

[GJ92] Narain H. Gehani and Hosagrahar V. Jagadish. Composite event specification in
active databases: Model and implementation. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 327–338, 1992. 45, 81

[GJS92] Narain H. Gehani, Hosagrahar V. Jagadish, and Oded Shmueli. Event specification
in an active object-oriented database. In Proceedings of the 1992 ACM SIGMOD
international conference on Management of data (SIGMOD), pages 81–90. ACM
Press, 1992. 45, 81

[GK02] Koichi Goto and Yahiko Kambayashi. A new passenger support system for public
transport using mobile database access. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 908–919. VLDB Endowment,
2002. 20

[GSG02] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: estimating
latency between arbitrary internet end hosts. SIGCOMM Comput. Commun. Rev.,
32(3):11–11, 2002. 122

161

BIBLIOGRAPHY BIBLIOGRAPHY

[GSR+03] Richard Glassey, Graeme Stevenson, Matthew Richmond, Paddy Nixon, Sotirios
Terzis, Feng Wang, and Ian Ferguson. Towards a middleware for generalised context
management. In M. Endler and D. Schmidt, editors, Proceedings of the Interna-
tional Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC),
pages 45–52, June 2003. 36

[Hay96] Richard Hayton. An Open Architecture for Secure Interworking Services. PhD
thesis, Fitzwilliam College, University of Cambridge, March 1996. 29, 110

[HGM01] Yongqiang Huang and Hector Garcia-Molina. Replicated condition monitoring.
In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 229–237, New York, NY, USA, 2001. ACM. 92

[HH93] Eric Hanson and Mohammed S. Hasan. Gator: An Optimized Discrimination
Network for Active Database Rule Condition Testing. Technical report, University
of Florida, 1993. 86

[HHM03] Joseph M. Hellerstein, Wei Hong, and Samuel R. Madden. The sensor spectrum:
technology, trends, and requirements. SIGMOD Rec., 32(4):22–27, 2003. 40

[HMCP04] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and Mark A. Per-
illo. Middleware to support sensor network applications. IEEE Network, 18:6–14,
Jan/Feb 2004. 21, 41

[Hom02] A. Hombrecher. Reconciling Event Taxonomies across Administrative Domains.
PhD thesis, Jesus College, University of Cambridge, June 2002. 116, 118

[Hop00] Andy Hopper. The Clifford Paterson Lecture, 1999. Sentient computing. Philosoph-
ical Transactions of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 358(1773):2349–2358, August 2000. 19, 37

[HP01] Yehuda Hassin and David Peleg. Sparse communication networks and efficient
routing in the plane. Distrib. Comput., 14(4):205–215, 2001. 128

[IBM09] IBM Corporation. IBM WebSphere MQ. http://www.ibm/com/software/integration/wmq/,
October 2009. Last accessed on 20/11/2009. 26

[JAC04] Qingchun Jiang, Raman Adaikkalavan, and Sharma Chakravarthy. Estreams: To-
wards an Integrated Model for Event and Stream Processing. Technical Report
CSE-2004-3, The University of Texas at Arlington, 2004. 54, 58, 84

[JCH05] Chun Jin, Jaime G. Carbonell, and Philip J. Hayes. Argus: Rete + dbms = efficient
persistent profile matching on large-volume data streams. In Mohand-Said Hacid,
Neil V. Murray, Zbigniew W. Ras, and Shusaku Tsumoto, editors, ISMIS, volume
3488 of Lecture Notes in Computer Science, pages 142–151. Springer, 2005. 86

162

BIBLIOGRAPHY BIBLIOGRAPHY

[JMS95] Hosagrahar V. Jagadish, Inderpal Singh Mumick, and Abraham Silberschatz. View
maintenance issues for the chronicle data model. In Proceedings of the fourteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems
(PODS), pages 113–124, New York, NY, USA, 1995. ACM Press. 83

[JS03a] Yuhui Jin and Rob Strom. Relational subscription middleware for Internet-scale
publish-subscribe. In Proceedings of the International Workshop on Distributed
Event-based Systems (DEBS), pages 1–8, New York, NY, USA, 2003. ACM. 32

[JS03b] Glenn Judd and Peter Steenkiste. Providing Contextual Information to Pervas-
ive Computing Applications. In Proceedings of the Annual IEEE International
Conference on Pervasive Computing and Communications (PERCOM), page 133,
Washington, DC, USA, 2003. IEEE Computer Society. 37

[KBM04] Eli Katsiri, Jean Bacon, and Alan Mycroft. An Extended Publish/Subscribe Pro-
tocol for Transparent Subscriptions to Distributed Abstract State in Sensor Driven
Systems using Abstract Events. In Proceedings of the International Workshop on
Distributed Event-based Systems (DEBS), pages 68–73, Edinburgh, Scotland, May
2004. 37

[KKH+08] Sunil Kumar, Kashyap Kambhatla, Fei Hu, Mark Lifson, and Yang Xiao. Ubiquit-
ous computing for remote cardiac patient monitoring: a survey. Int. J. Telemedicine
Appl., 2008:1–19, 2008. 20

[KKP99] Joseph M. Kahn, Randy H. Katz, and Kristofer S. J. Pister. Next Century Chal-
lenges: Mobile Networking for ”Smart Dust”. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom), pages
271–278, 1999. 21

[Kna00] Ara Knaian. A Wireless Sensor Network for Smart Roadbeds and Intelligent Trans-
portation Systems. Master’s thesis, MIT Department of Electrical Engineering and
Computer Science and the MIT Media Laboratory, April 2000. 54

[Kra05] Mark Kranz. SENSID: a Situation Detector for Sensor Networks. Honours Thesis,
School of Computer Science and Software Engineering, University of Western Aus-
tralia., June 2005. 47

[KW03] Holger Karl and Andreas Willig. A short survey of wireless sensor networks. Tech-
nical Report TKN-03-018, Telecommunication Networks Group, Technische Uni-
versität Berlin, October 2003. This technical report also appeared as a contribution
to the report of the Working Group 2 “Ad hoc networks” of the Arbeitsgruppe Mo-
bilkommunikation, DLR/BMBF. 21

163

BIBLIOGRAPHY BIBLIOGRAPHY

[LBBN04] Othmar Lehmann, Martin Bauer, Christian Becker, and Daniela Nicklas. From
home to world - supporting context-aware applications through world models. In
Proceedings of the Annual IEEE International Conference on Pervasive Computing
and Communications (PERCOM), page 297. IEEE Computer Society, March 2004.
36

[LCB99] Christoph Liebig, Mariano Cilia, and Alejandro Buchmann. Event Composition
in Time-Dependent Distributed Systems. In Proceedings of the IECIS Interna-
tional Conference on Cooperative Information Systems (CoopIS), page 70. IEEE
Computer Society, 1999. 56, 93, 110

[LCL+03] Jie Liu, Maurice Chu, Juan Liu, James Reich, and Feng Zhao. State-centric
programming for sensor-actuator network systems. IEEE Pervasive Computing,
2(4):50–62, 2003. 40

[LHJ05] Guoli Li, Shuang Hou, and Hans-Arno Jacobsen. A Unified Approach to Routing,
Covering and Merging in Publish/Subscribe Systems Based on Modified Binary
Decision Diagrams. In Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), pages 447–457, Washington, DC, USA, 2005. IEEE
Computer Society. 31

[LJ05] Guoli Li and Hans-Arno Jacobsen. Composite Subscriptions in Content-Based
Publish/Subscribe Systems. In Gustavo Alonso, editor, Proceedings of the
ACM/IFIP/USENIX International Middleware Conference (Middleware), volume
3790 of Lecture Notes in Computer Science, pages 249–269. Springer, 2005. 31, 96,
115, 140

[LMJ07] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. Adaptive Content-based
Routing in General Overlay Topologies. Technical report, University of Toronto,
Middleware Systems Research Group, 2007. 31, 140

[LPMS07] Jonathan Ledlie, Peter Pietzuch, Michael Mitzenmacher, and Margo Seltzer. Wired
Geometric Routing. In Proceedings of the 6th International Workshop on Peer-to-
Peer Systems (IPTPS), 2007. 128

[LPS06] Jonathan Ledlie, Peter Pietzuch, and Margo Seltzer. Stable and Accurate Network
Coordinates. In Proceedings of the International Conference on Distributed Com-
puting Systems (ICDCS), page 74, Washington, DC, USA, 2006. IEEE Computer
Society. 122

[LSS03] Shuoqi Li, Sang H. Son, and John A. Stankovic. Event Detection Services Us-
ing Data Service Middleware in Distributed Sensor Networks. In F. Zhao and
L. Guibas, editors, Proceedings of the Second International Workshop on Informa-
tion Processing in Sensor Networks (IPSN), volume 2634 of LNCS, pages 502–517,
Palo Alto, CA, USA, April 2003. Springer-Verlag. 41

164

BIBLIOGRAPHY BIBLIOGRAPHY

[MB90] Daniel P. Miranker and David A. Brant. On the Performance of Lazy Matching in
Production Systems. In Proceedings of the 8th National Conference on Artificial
Intelligence (AAAI), pages 685–692. AAAI Press/The MIT Press, 1990. 51, 85

[MB98] Chaoying Ma and Jean Bacon. COBEA: a CORBA-based event architecture. In
Proceedings of the 4th conference on USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS), page 9, Berkeley, CA, USA, 1998. USENIX Asso-
ciation. 29

[MFHH02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG:
a Tiny AGgregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002. 40

[MFHH03] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. The
design of an acquisitional query processor for sensor networks. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data (SIGMOD),
pages 491–502. ACM Press, 2003. 41, 53

[Mir87] Daniel P. Miranker. TREAT: a new and efficient match algorithm for AI production
systems. PhD thesis, Columbia University, New York, NY, USA, 1987. 85

[ML91] Daniel P. Miranker and Bernie J. Lofaso. The Organization and Performance of
a TREAT-Based Production System Compiler. IEEE Transactions on Knowledge
and Data Engineering, 3(1):3–10, 1991. 85

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: an
approach to universal topology generation. In 9th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 346–353, August 2001. 133

[MPS+02] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John An-
derson. Wireless sensor networks for habitat monitoring. In Proceedings of the
1st ACM international workshop on Wireless Sensor Networks and Applications
(WSNA), pages 88–97. ACM Press, 2002. 21

[MR03] Sven Meyer and Andry Rakotonirainy. A survey of research on context-aware
homes. In Proceedings of the Australasian information security workshop confer-
ence (ACSW Frontiers), pages 159–168, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc. 20

[MSS97] Masoud Mansouri-Samani and Morris Sloman. Gem: a generalized event monitor-
ing language for distributed systems. Distributed Systems Engineering, 4(2):96–108,
1997. 44, 82, 111

165

BIBLIOGRAPHY BIBLIOGRAPHY

[MWA+02] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.
Query Processing, Resource Management, and Approximation ina Data Stream
Management System. Technical Report 2002-41, Stanford InfoLab, 2002. 48, 83,
91, 112

[MZ95a] Iakovos Motakis and Carlo Zaniolo. Composite temporal events in active database
rules: A logic-oriented approach. In Proceedings of the International Workshop
on Temporal Databases: Recent Advances in Temporal Databases, pages 332–351.
Springer Verlag, 1995. 66

[MZ95b] Iakovos Motakis and Carlo Zaniolo. Composite Temporal Events in Active Data-
base Rules: A Logic-Oriented Approach. In Proceedings of the International Con-
ference on Deductive and Object-Oriented Databases (DOOD), pages 19–37, 1995.
82

[MZ97a] Iakovos Motakis and Carlo Zaniolo. Formal Semantics for Composite Temporal
Events in Active Database Rules. Journal of Systems Integration, 7(3/4):291–325,
1997. 82

[MZ97b] Iakovos Motakis and Carlo Zaniolo. Temporal aggregation in active database rules.
SIGMOD Rec., 26(2):440–451, 1997. 82

[NMW07] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macroprogramming
system. In Proceedings of the 6th international conference on Information Pro-
cessing in Sensor Networks (IPSN), pages 489–498, New York, NY, USA, 2007.
ACM. 42

[OMG08] OMG. The Common Object Request Broker Architecture: Core Specification,
Revision 3.1, Object Management Group (OMG), January 2008. 25

[OPSS93] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus - An
Architecture for Extensible Distributed Systems. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP’93), pages 58–68, Asheville,
NC, USA, December 1993. 27

[PCW+03] Marcelo Pias, Jon Crowcroft, Steve R. Wilbur, Tim Harris, and Saleem N. Bhatti.
Lighthouses for Scalable Distributed Location. In M. Frans Kaashoek and Ion
Stoica, editors, Proceedings of the 6th International Workshop on Peer-to-Peer
Systems (IPTPS), volume 2735 of Lecture Notes in Computer Science, pages 278–
291. Springer, 2003. 122

[PD99] Norman W. Paton and Oscar Dı́az. Active database systems. ACM Comput. Surv.,
31(1):63–103, 1999. 81

166

BIBLIOGRAPHY BIBLIOGRAPHY

[Pie04] Peter Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD thesis, Queens’
College, University of Cambridge, February 2004. 14, 23, 32, 97, 116, 117, 131, 133,
145

[PLS+06] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt
Welsh, and Margo Seltzer. Network-Aware Operator Placement for Stream-
Processing Systems. In Proceedings of the International Conference on Data En-
gineering (ICDE), page 49, Washington, DC, USA, 2006. IEEE Computer Society.
34, 41, 124, 128, 131, 141

[Pow96] David Powell. Group communication. Commun. ACM, 39(4):50–53, 1996. 27

[PSB04] Peter Pietzuch, Brian Shand, and Jean Bacon. Composite Event Detection as
a Generic Middleware Extension. IEEE Network Magazine, Special Issue on
Middleware Technologies for Future Communication Networks, 18(1):44–55, Janu-
ary/February 2004. 55, 81, 96, 111, 117

[RAF+02] Jan Rabaey, Edward Arens, Clifford Federspiel, Ashok Gadgil, William Nazaroff
David Messerschmitt, Kristofer Pister, Shmuel Oren, and Pravin Varaiya. Smart
Energy Distribution and Consumption: Information Technology as an Enabling
Force. Technical report, University of California at Berkeley, 2002. 21

[RAP09] The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide, 2009.
Last accessed on 20/11/2009. 84

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the
ACM/IFIP/USENIX International Middleware Conference (Middleware), pages
329–350, London, UK, 2001. Springer-Verlag. 32

[RGK06] Thomas Repantis, Xiaohui Gu, and Vana Kalogeraki. Synergy: Sharing-Aware
Component Composition for Distributed Stream Processing Systems. In Maarten
van Steen and Michi Henning, editors, Proceedings of the ACM/IFIP/USENIX
International Middleware Conference (Middleware), volume 4290 of Lecture Notes
in Computer Science, pages 322–341. Springer, 2006. 141

[Riz05] Shariq Rizvi. Complex Event Processing Beyond Active Databases: Streams and
Uncertainties. Technical Report UCB/EECS-2005-26, Electrical Engineering and
Computer Sciences Department, University of California at Berkeley, 2005. 54, 84,
86

[RKCD01] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.
SCRIBE: The Design of a Large-Scale Event Notification Infrastructure. In
Jon Crowcroft and Markus Hofmann, editors, Networked Group Communication,

167

BIBLIOGRAPHY BIBLIOGRAPHY

volume 2233 of Lecture Notes in Computer Science, pages 30–43. Springer, 2001.
35

[RKM02] Kay Romer, Oliver Kasten, and Friedemann Mattern. Middleware challenges for
wireless sensor networks. SIGMOBILE Mob. Comput. Commun. Rev., 6(4):59–61,
2002. 38

[RM04a] Kay Römer and Friedemann Mattern. Event-Based Systems for Detecting Real-
World States with Sensor Networks: A Critical Analysis. In DEST Workshop
on Signal Processing in Sensor Networks at ISSNIP, pages 389–395, Melbourne,
Australia, December 2004. 86

[RM04b] Kay Römer and Friedemann Mattern. The Design Space of Wireless Sensor Net-
works. IEEE Wireless Communications, 11(6):54–61, December 2004. 21

[RMCZ06] Esther Ryvkina, Anurag S. Maskey, Mitch Cherniack, and Stan Zdonik. Revision
Processing in a Stream Processing Engine: A High-Level Design. In Proceedings of
the International Conference on Data Engineering (ICDE), page 141, Washington,
DC, USA, 2006. IEEE Computer Society. 112

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing Applica-
tions. In Proceedings of the Workshop on Mobile Computing Systems and Applic-
ations, pages 85–90. IEEE Computer Society, 1994. 19

[Sch96] Scarlet Schwiderski. Monitoring the Behaviour of Distributed Systems. PhD thesis,
Selwyn College, University of Cambridge, April 1996. 44, 81, 110

[SG08] Ryo Sugihara and Rajesh K. Gupta. Programming models for sensor networks: A
survey. ACM Trans. Sen. Netw., 4(2):1–29, 2008. 38, 40

[SPL+04] Jeffrey Shneidman, Peter Pietzuch, Jonathan Ledlie, Mema Roussopoulos, Margo
Seltzer, and Matt Welsh. Hourglass: An infrastructure for connecting sensor net-
works and applications. Technical report, Harvard, 2004. 34

[Sun02] Sun Microsystems, Inc. Java Message Service (JMS) Specification.
http://java.sun.com/products/jms, 2002. Last accessed on 20/11/2009.
26

[Sun05] Sun Microsystems, Inc. Core Java J2SE 5.0. http://java.sun.com/j2se/1.5.0,
2005. Last accessed on 20/11/2009. 28

[Sun06] Sun Microsystems, Inc. Java Remote Method Invocation (RMI) Specification.
http://java.sun.com/javase/6/docs/platform/rmi/spec/rmiTOC.html, 2006.
Last accessed on 20/11/2009. 25

168

BIBLIOGRAPHY BIBLIOGRAPHY

[TB07] Salman Taherian and Jean Bacon. SPS: a middleware for multi-user sensor systems.
In Proceedings of the International Workshop on Middleware for Pervasive and Ad-
Hoc Computing (MPAC), pages 19–24, New York, NY, USA, 2007. ACM. 86

[TC03] Liying Tang and Mark Crovella. Virtual landmarks for the internet. In Proceedings
of the 3rd ACM SIGCOMM conference on Internet measurement (IMC), pages
143–152, New York, NY, USA, 2003. ACM. 122

[TGNO92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous queries
over append-only databases. In Proceedings of the 1992 ACM SIGMOD interna-
tional conference on Management of data (SIGMOD), pages 321–330, New York,
NY, USA, 1992. ACM Press. 83

[TMSF03] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting
Punctuation Semantics in Continuous Data Streams. IEEE Trans. on Knowl. and
Data Eng., 15(3):555–568, 2003. 83

[W3C07] W3C. XQuery 1.0: An XML Query Language. W3C Recommendation, World
Wide Web Consortium, January 2007. Last accessed on 20/11/2009. 33

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event pro-
cessing over streams. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data (SIGMOD), pages 407–418, New York, NY,
USA, 2006. ACM. 82

[Wei93] Mark Weiser. Some computer science issues in ubiquitous computing. Commun.
ACM, 36(7):75–84, 1993. 19

[WHFaG92] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active
badge location system. ACM Trans. Inf. Syst., 10(1):91–102, 1992. 21

[WLLP01] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S. J. Pister. Smart Dust:
Communicating with a Cubic-Millimeter Computer. Computer, 34(1):44–51, 2001.
21

[WM03] Ian Wright and James Marshall. The execution kernel of RC++: RETE*, a faster
RETE with TREAT as a special case. International Journal of Intelligent Games
and Simulation, 2(1):36–48, February 2003. 50, 85

[WM04] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract
regions. In Proceedings of the 1st conference on Symposium on Networked Systems
Design and Implementation (NSDI), pages 3–3, Berkeley, CA, USA, 2004. USENIX
Association. 39

[WMG04] Alec Woo, Sam Madden, and Ramesh Govindan. Networking support for query
processing in sensor networks. Commun. ACM, 47(6):47–52, 2004. 40

169

BIBLIOGRAPHY BIBLIOGRAPHY

[WSBC04] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a neigh-
borhood abstraction for sensor networks. In Proceedings of the The International
Conference on Mobile Systems, Applications, and Services (MobiSys), pages 99–
110, New York, NY, USA, 2004. ACM. 39

[Xu02] Ning Xu. A Survey of Sensor Network Applications. Technical report, Computer
Science Department, University of Southern California, 2002. 21

[YB05] Eiko Yoneki and Jean Bacon. Unified Semantics for Event Correlation over Time
and Space in Hybrid Network Environments. In OTM Conferences (1), pages 366–
384, 2005. 70, 85, 111

[YC99] Shuang Yang and Sharma Chakravarthy. Formal Semantics of Composite Events
for Distributed Environments. In Proceedings of the International Conference on
Data Engineering (ICDE), page 400, Washington, DC, USA, 1999. IEEE Computer
Society. 46, 81, 110

[YG02] Yong Yao and Johannes Gehrke. The Cougar approach to in-network query pro-
cessing in sensor networks. SIGMOD Rec., 31(3):9–18, 2002. 41, 53

[YKP04] Yang Yu, Bhaskar Krishnamachari, and Viktor K. Prasanna. Issues in designing
middleware for wireless sensor networks. IEEE Network, 18:15–21, Jan/Feb 2004.
38

[ZMU97] Detlef Zimmer, Axel Meckenstock, and Rainer Unland. A General Model for Event
Specification in Active Database Management Systems. In Proceedings of the Inter-
national Conference on Deductive and Object-Oriented Databases (DOOD), pages
419–420, 1997. 82

[ZU99] Detlef Zimmer and Rainer Unland. On the Semantics of Complex Events in Active
Database Management Systems. In Proceedings of the 15th International Confer-
ence on Data Engineering (ICDE), pages 392–399. IEEE Computer Society Press,
1999. 82

170

