Technical Report A

Number 78

Computer Laboratory

A complete proof system for
SCCS with model assertions

Glynn Winskel

September 1985

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1985 Glynn Winskel

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A Complete Proof System for SCCS with Modal Assertions
Ezxtended Abstract

by
Glynn Winskel
University of Cambridge,
Computer Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG.

Intro.duction.

This paper presents a proof system for Robin Milner’s Synchronous Calculus of Com-
municating Systems (SCCS) with modal assertions. The language of assertions is a frag-
ment of dynamic logic, sometimes called Hennessy—Milner logic after they brought it to
attention; while rather weak from a practical point of view, its assertions are expressive
enough to characterise observation equivalence, central to the work of Milner et al on CCS
and SCCS. The paper includes a completeness result and a proof of equivalence between
an operational and denotational semantics for SCCS. Its emphasis is on the theoretical
issues involved in the construction of proof systems for parallel programming languages.

The style of the proof system has been motivated by ideas from denotational semantics.
The idea is to model an SCCS process as the set of assertions it satisfies in the modal
language. The labelled transition systems of Milner still play a role in determining the
logical relationship that exists between the modal assertions. This done, one obfains
an information system and so a domain, in the sense of Dana Scott [S]. But more, the
constructs in SCCS induce operations on the information system making it into an algebra.
In the framework of information systems these operations are relations of entailment, and
presenting proof rules is seen as specifying how to generate these relations effectively. A
novelty of the proof system is the way it uses a syntax which mixes assertions from the
modal language in with the syntax for SCCS, a perfectly natural thing to do given the
way the domain is built~up from assertions. For example, it makes sense to take the
parallel composition of two assertions because assertions correspond to finite elements of
the domain on which an operation of parallel composition is defined. Recently there has
been a great deal of interest in the problem of how to compose modal assertions, in order
to deduce the truth of an assertion for a composition of processes from the truth of certain
assertions for its components e.g. [BKP], [St1,2] and this paper works out those ideas in
detail for SCCS with this brand of modal assertions.

~ 'This recasts the semantics of SCCS in the traditional framework of Scott—Strachey
denotational semantics where one sees, for example, the translation between different se-
mantics for Milner’s bisimulation equivalence and Hoare’s failure-set equivalence expressed
as an embedding—projection pair between domains.

1. The language SCCS.

Assume a set of process variables £ € Var. Assume a set of elementary actions
a € Act forming a finite Abelian monoid (Act, e, 1) with composition e, and identity 1.
Define a/f = {7 | B » 7 = a}, the set of f-divisors of a.

The language of SCCS consists of the following terms
pu=0 |z |ap|p+p|pep | p[A | reczp | rec"z.p | O
where z € Var, a € Act, A is a subset of Act containing 1 and n is a positive integer.

For convenience we have extended SCCS to include numbered terms of the form
rec”z.p and the completely undefined term {1. Intuitively the label on such a term bounds
the number of calls to the recursive definition. This will be useful later when we come to
give proofs involving induction on this number. As a useful convention we shall regard
rec’z.p as being 1, and sometimes use rec™z.p to mean recz.p.

We say a recursive definition recz.p is well-guarded when p has the form ag for some
term g and action o € Act. However we shall not assume that recursive definitions are

well-guarded in general.

Write P for the set of SCCS terms, and P¢ for the set closed of SCCS terms which
we shall call processes. We call a numbered term a SCCS term in which all occurrences
of rec are labelled by numbers, and write the set of numbered terms as Py and the set of
closed numbered terms as Poy.

We explain informally the behaviour of the constructs in the language SCCS. The
O term represents the nil process which has stopped and refuses to perform any action.
The behaviour of 1 will be the same as that of recz.z which is busily doing nothing of
interest. A guarded process ap first performs the action o to become the process p. A
sum p + q behaves like p or g. Which branch of a sum is followed will often be determined
by the context and what actions the process is restricted to; only in the case when both
component processes p and q are able to perform an identity action 1 can the process p+¢
always choose autonomously, no matter what the context, to behave like p or q. A product
process p ® q behaves like p and ¢ set in parallel but in such a way that they perform
their actions synchronously, in “lock-step”, together performing the e—product of their
respective actions. (To avoid confusion later, we have chosen a notation different from
- Milner’s, using ® instead of x.) The restriction p[A behaves like the process p but with
its actions restricted to lie in the set A. Restriction is a surprisingly powerful construction;
it determines what kind of communications are allowed befween processes, and without it
two processes in parallel would behave in a manner completely independent of eachother.
We present the formal definition of behaviour in the next section.

|

Write FV(p) for the set of free variables of a term p.

2

A substitution is a map o : Var — P assigning SCCS terms to variables. Given an
SCCS term p and a substitution o the term p[o] is the result of substituting oz} for each
free occurrence of = in p—we assume changes are made in the naming of bound variables to
avoid the binding of free variables in the substituted terms. We use [po/z1,- ,Pm/Zm,"]
as an abbreviation for the substitution which replaces free occurrences of the variables z,,
by the terms p,,, while leaving the other free variables the same,

Let p be a term. A valuation is a substitution ¢ : Var — P which assigns a closed
SCCS term to each variable. So, of course, p[¥] is a closed SCCS term.

2. The behaviour of SCCS.

Following Milner [M1,2,3], the behaviour of a process is represented as a labelled
transition system. Its states are processes and so the transition system can be given in a
syntax—directed way by defining inductively those transitions which are possible from each

process term.

2.1 Definition. . , }
Define the labelled transition relations —%—, for a € Act, between closed SCCS terms

to be the least relation closed under the following rules:

ap S—p

p—*p g - q
ptqg-—==p pt+g-—-=g
p-2sp ¢ B > q' .

p®q Loy eq
A

P79 yaea

p[A 2 q[A

plrecz.p/z] > g plrecz.p/z] —*> ¢
recr.p % q rectlzp 2 ¢

Notice there are no rules for O or 2 because we do not wish there to be any fransitions
from such terms. Because the relations %, o € Act, are defined to be the least relations

given by the rules it follows that e.g.
p®q-2>redp,d,B,rPeyv=0 & r=pPeqd & pLop & ¢-1>5q and

rect.p —%— r & plrecz.p/z] 2 1.

A process diverges if it can be forever busy performing internal events. In the case of
SCCS this can only arise through a process unwinding its recursive definition continually.

3

A diverging process has an unsettled status. In the absence of communication with the
environment, it never settles down into a stable state, or settles on the full set of actions
it is prepared to do. Viewed behaviourally, from the outside so to speak, it continues to
“click and whir” and it never becomes clear whether an action refused now will necessarily
be refused later. Mathematically it is the complementary notion of convergence which has
the more basic definition, by induction.

2.2 Definition. Define the predicates | on P¢ to be the least predicate such that

0], apl,
rl & ql=>(r+4q)l,
rl & ql=(p®4q)l,
pl=(p[A)],
(plrecz.p/=]) |=>(recz.p) |,
(p|rec'z.p/z]) |=>(rec' 1 z.p) | .

where p and q are closed SCCS terms and [is an non-negative integer.
Say a closed SCCS term p is convergent iff p|.
Say a closed term p diverges, and write p{, when p does not converge.

Intuitively a divergent term is one whose transitions are not completely specified by
a finite stage in the recursion. If all recursions were assumed to be well-guarded then all
closed terms but N2 would be convergent., Note af) converges and so does recz.1z.

Thus an SCCS process p determines a labelled transition system, (S, p, {——‘3‘—>}mE Actr1
), with states S those processes reachable from the initial state p, and in which some states
are distinguished as being divergent. For example, the process

p = recz.afz + Q1)

describes the transition system:

LB~
initial state — p|—=— (Bp + 702) | 1> QT

In ‘fa,ct, it is not hard to see that any finite labelled transition system like this, with labels
from the set Act and some states distinguished as divergent, can be described by an SCCS
process. For example, the transition system

o
o epe m
initial state — x| yi
<
: ')

5} 6
21 e

is described by the process
recz. (arecy. [+ yz] + Precz. [drecy. [+ yz] + €2]),

obtained by successively eliminating variables in favour of the recursive definitions they
satisfy, making states divergent by summing them with €. (We have taken the liberty of
using state names as variables). More generally, along these lines one can show:

2.3 Lemma. Any finite transition system, (S,p, {~*—},c Acp» 1), can be described by
an SCCS process p.

The number attached to occurrences of rec specifies how many times the recursive
definition can be unwound when determining the transition system associated with a term.
Roughly, the larger the numbers the larger the transition system associated with the term.
There corresponds an approximation order between terms which we write as <.

24 Definition. Define < to be the least binary relation on P such that

0<p, p<p

p<qg=ap<ag

p<p & q<d =>p+gp+¢
p<p & q<d =>p09<r 0]
p<g=>p[A<qlA

p<q & m<n=>rec"zp < rec"z.q
p<q=>rec"z.p < recz.q.

The order < on terms P¢ respects the language of SCCS, as expressed in the following
lemma.

2.5 Lemma. Letd and ¢ be valuations in the relation ¥ < ¢ & 4.5 Vo € Var. ¢[z] <
#'[z]. Let p,q be terms in the relation p < q. Then p[d] < ¢[¥'].

Proof. By structural induction. |}

3. The assertion languége.

Hennessy and Milner defined an equivalence relation between processes called obser-
vational equivalence in [HM, M1]. For our language of SCCS, two processes are observa-
tionally equivalent iff whenever one can do an action to become a process then so can the
other do the same action to become an equivalent process. They found an alternative char-
acterisation so that processes were observationally equivalent iff they satisfied the sanie
assertions in a simple language of modal assertions [HM]. However there are inadequacies

5

in this treatment of processes because it does not take proper account of divergence. So
Milner, in [M2], generalised the definition of observational equivalence and the definition
of a process satisfying a modal assertion in order to cope with divergence. (See [HP] for a
closely related but different extension of observational equivalence to diverging processes.)
In this way Milner extended the result he had obtained with Hennessy, so that in SCCS, for
example, two processes are observationally equivalent iff they satisfy the same assertions
in the modal language of Hennessy and Milner. In future, in this paper, “observational
equivalence” shall refer to the more refined equivalence of [M2]|. Following [P, St1,2] we
have simplified the modal language of Hennessy and Milner a little.

3.1 Definition.
The assertion language consists of simple modal expressions built up according to:

A = true | false | /\A,- | \/A.- | (@)A | [a]A

iel iel

where I is a finite indexing set and o € Act.

We shall call elements of this language assertions, and write the set of assertions as
Assn.

By convention we understand /\,-E 1 Ai to be true and V'-e ; Ai to be false when the
indexing set I is null. When the indexing set is I = {0, 1} we can write A\;; A; as Ao A Ay,
and VieI A; as Ay VvV A,

The meaning of an assertions is given by specifying the subset II[A] of SCCS processes
P¢ which satisfy A:

3.2 Definition. Define

M[true} = P¢
I[false] = 0
A Ad =\ 1[4]
il il
nf\/ 4 = |4
tel icl

M[(c)A] = {p € Pc | 3g.p %= q & g €II[A]}
N[{ejd] = {p€ Pc | pl & Vg.p 2— g => q € I[[4]}

Write p = A € 4es p € I[A], where p is a SCCS process and A is an assertion, and say p
satisfies A.

Remark. Let T = (S,p, {~*=},c Actr1) be a transition system as described in section 1.
It is obvious how to define a satisfaction relation T' |= A, between transition system T and
modal assertions A, in such a way that a process satisfies an assertion iff its associated
transition system does.

Clearly p = (o)A means the process p can do an a—action to become a process
satisfying A, and p |= |offalse means the process p refuses to do an a-action. The latter
kind of properties are important for detecting deadlock. Notice that 2 }~ [a]true and
Q) [~ |offalse because we insist diverging processes, like {1, cannot satisfy any assertion of

the form [o]A.
3.3 Proposition. Let p € Pg. Then pl< p |= |oftrue, for any action a.

Because we insist that a process satisfying a modal assertion [¢]4 must converge,
satisfaction will be effective; if a process p in P satisfies an assertion A then it can be
approximated by a numbered version p’ which also satisfies the assertion. To show this we
must first see how the transition system associated with a term p’ < p approximates, and
simulates, the transition system associated with p.

3.4 Lemma. For SCCS processes
(i) For p,p',q¢' € Pg
P —2q & p<p=>39.¢<q & p 24

(ii) For p,q € Pc,q0 € Pon
p2+q & ¢<q=>I,dc€Pon.P'<p & p 2+¢ & g0 <.

(ifi) For p,p' € Pg
Pl& pP<p=>pl& (Vg.p 2>g=>3¢ <qp %)

(iv) Forp € Pg,Y C Pey
pl& (Vg.p %2 g=>3g9 €Y. ¢ < g
=3p'ePen.v'<p & ‘
p'l& (Vg.p' *>g=3g €Y. q < q).

Proof. The proofs follow by induction on the inductive definitions of {-*—} . 4.+ and |.
i
Note that part (iv) above specialises to the result
pl=> 3 €Pon.p'<p & p'|

when we take Y = {Q}. Using parts (i) and (ii) for the modalities () and (iii) and (iv)
for the modality |[a]one can prove:

3.5 Theorem. Letp € Pe. Then
rEAe I ePon.p'<p & P A

7

We can see the results above in topological terms. There is a natural topology on
processes which is the Scott—topology.

3.6 Proposition. The family of sets of the form {p € Pc | ¢ < p} for q a closed
numbered term are the basis of a topology on P. So the open sets have the form

U={pePc|3p€X. po <p}

for a subset X of closed numbered terms.
The open sets of P¢ are those subsets U C P¢ which are
(i) VYrgp>g9eU=pel,
(ii) V¥ directed S CPq. | |S€U=3peS.peU.

Then theorem 3.5 says each assertion determines an open set of P¢ t.e. I[[A] is open
for each assertion A. In fact 3.5 can be generalised, important were we to extend our
present language of assertions.

3.7 Theorem. Let o € Act. If U is an open set in the topology on processes then so are
the sets
(@)U =4e5 {p€Pc | g€ U. ¢ 2 p} and

[0V =4ey {rE€Pc | pl & Vg.p 2> g=>qeU}.

This topological view is in line with Dana Scott’s development of the theory of do-
mains from neighbourhood systems [S1] and with the ideas of Mike Smyth in [Sm], where
it is proposed that computational properties of a topological space be identified with effec-
tive open sets. In the approach to domains using neighbourhood systems, to know more
information about a process is to know a smaller neighbourhood in which it is contained.
These topological ideas have been applied by Gordon Plotkin in [P] to extend the language
of assertions and its interpretation to cover intuitionistic negation and implication; their
interpretation are those standard for topological models of intuitionistic logic, so in this
extension of Assn one takes II[A D B} = ((P¢ \ II[A]) U II[B})° where X° is the topo-
logical interior of the set X (Plotkin’s topology is not that here however). One advantage
of intuitionistic logic over classical logic is that satisfaction is still effective even for this
extended set of assertions. We shall say more on denotational semantics in section 5.

4. The decomposition of assertions.

We are interested in how the goal of proving an assertion holds of a process reduces
to the subgoals of proving assertions about its subprocesses, and in the converse problem,
of how assertions about subprocesses combine to yield assertions about the compound
process. It is clear for example that an assertion (o)A holds of a process ap iff A holds
of p. Similarly [a]4 holds of a process p + q iff [¢]4 holds of both components p and gq.
However p+ q |= (@)A iff p |= (o)A or g |= {a)A4; there is not a unique subgoal. Similarly

8

there are many possible ways in which p ® q |= {a)true; this holds whenever p = (B)irue
and q = (7)true with fe v = a.

For each unary operation op of SCCS we show how for an assertion A there is an
assertion D,,[A] so that

op(p) = A& pl= DoplA]

For each binary operation op of SCCS we show how for an assertion A there is a finite set
of pairs of assértions J,,[A] so that

popgE A ff 3(B,C)eDyplAl.p=B & qEC.

Thus we see how, with respect to each operation op in SCCS, every assertion has a decom-
_ position which reduces the problem of proving the assertion holds of a compound process
built—up using op to proving assertions about its components. These results provide the
foundations of our proof system for SCCS with assertions Assn. All the proofs of this
section are by structural induction.

The guarded-decomposition of assertions:

4.1 Definition. Let a € Act. Define the assertion D,[A], for an assertion A, by the
structural induction:
Dy [true] = true

Dy[false] = false
Dul \ Al = \\ DalAidl

icl fel
.1\ Ail =/ DalAi]
tel icl
1A ff=a
Dal(p)A] = {false ff#a

_JA ff=a
Do[IPIA] = { truz i B # a.

4.2 Theorem. Leta € Act. Let A be an assertion.

VpePc.ap = A e pl DuJA].

The sum—-decomposition of assertions:

4.3 Definition. Define D, [IA] by structural induction on the assertion A:

Dy [true] = {(true, true)}
D [false] = {(true, false), (false, true)}

DI A = {(\\ Ao, \\ 4ix) | Vi € L(Aio, Ais) € D [AD))

el el el
21V Al = D414
icl il

Di[{)A] = {({«)A, true), (true, (2)A)}
Dy [loA) = {(lod4, [o]4)}.

4.4 Theorem. Forall p and q in P¢

p+qE A 3(B,C) DAl pEB & q=C.

The parallel-decomposition of assertions:
The problem of decomposition for ® is a little more difficult.

4.5 Definition. Define Dg[A] by structural induction on the assertion A:

Dg [true] = {(true, true)}
Dg[false] = {(true, false), (false, true)}

Dal/\ Ad = {(/\ 4w, \ Air) | Vi € L(Aio, Air) € Do A])}

el icrl el
Dol\/ Ail = | PelAil
el 1234

Dol{e)A] = {({B)B, (1)C) | Bev=a & (B,C) € Dg[A]} .
DgllaJd] = the set of pairs

(ABY A ANBZ AWV A A

pecAct fi€lsgyEa/piET, veAct JEJ, Peafyi€ls
such that
feq=a= (B,ClT) € Dl A].

4,6 Theorem. Forall p and q in P¢
r®qE A& I(B,C)eDg[Al. rE B & qE=C.

10

The restriction—decomposition of assertions:

We can associate with any assertion A an assertion Djs[A] so that A is satisfied by
p[A iff Dra[A] is satisfied by p. g

4.7 Definition. Let A be a subset of Act containing 1. Define Dy, [A], for an assertion
A, by the structural induction:

Dralltrue] = true
Dra[false} = false

Dl Ad = N\ PralAd

icl ‘el
Pl Ad =\ Dl
i€l ier

Draf{e)4] = {}Z[ﬁm 4l ;§ g ; ﬁ
rallogd] = { [2ratl Hach

One clause of the above definition may be puzzling. Why do we take Dpp[[e]4] =
[ajtrue if o ¢ A rather than taking it to be simply the assertion true? The answer: because
of divergence. For example, because {2 diverges, [A }~ [a]4 while {1 |= true.

4.8 Theorem. Let p € P and A be an assertion. Then

p[A = A& p = DalAl

5. From a denotational point of view.

So far our presentation has been based on the operational semantics of SCCS processes.
To summarise, we have modelled each SCCS process as a labelled transition system in
which some nodes are distinguished as being convergent. Treating the transition system
as a Kripke model we defined the satisfaction relation between processes in P¢ and modal
assertions Assn.

If the language of modal assertions captures all the nature of a process that is of
interest to us then it is natural to regard two processes as equivalent iff they satisfy exactly
the same assertions. We write

prq if VAcAssn.pEAoqEA

11

for closed SCCS terms p and q. Because we assume the set of actions Act is finite, it follows
from Milner’s result in [M2] that a coincides with his extended notion of observational
equivalence and that of bisimulation equivalence due to Park [M3, Pa], again extended to
cope with divergence. In fact for the language SCCS this equivalence is a congruence too.

We can go further and take the more radical view that a process can be identified
with the set of assertions it satisfies, so a process p is identified with the set

Alpl = {A € Assn | p | A}.

This step takes us into the realm of denotational semantics, with its own approach and
techniques.

To see this first notice the obvious relation of entailment between (open) sets of pro-
cesses, thought of as properties. One property U C P entails another V C P iff UCV.
Spelt out, U C V simply says that every process which satisfies U also satisfies V. This
induces an entailment relation between assertions.

5.1 Definition. Let > be the binary relation between assertions given by:

A > B ¢4, TI[A] C T[B].

Now as is well known from e.g. the work on information systems [S, LW], and the
specific applications in e.g. [Gol|, there is a domain associated with this entailment on
modal assertions. Its elements, like 4 [[p], are sets of assertions which are consistent and
closed under entailment. Ordered by inclusion these form a Scott domain of information
in which more information corresponds to more assertions being true. For our purposes it
is more natural to allow sets of assertions inconsistent assertions which entail false.

5.2 Definition. Define the partial order D to consist of the following elements ordered
by inclusion. The elements of D are those subsets a C Assn which are >—closed:

VBYX Ca. AX> B= Bea.

5.3 Proposition. The set D ordered by inclusion forms an w-algebraic complete lattice.

Its finite elements are precisely those elements of the form A =4.; {B € Assn | A > B}

for some assertion A. The least element L is true and the greatest element is T = false.
Let p be an SCCS process. The set {A | p |= A} is an element of D.

Of course the method by which we have obtained the denotation
Alp] = {A € Assn | p |= A} of a process p is rather roundabout, in contrast to the
usual direct way of giving denotational semantics. Generally in denotational semantics

12

one reflects the constructs in the language as operations on a complete partial order and
uses least fixed points to give a meaning to recursive definitions. To follow this more
traditional route we must first define operations on the elements D to correspond to
the syntactic operations of guarding, sum, product and restriction. The operations are
determined by further relations of entailment between properties which we define first.

5.4 Definition. For U and V' be open sets in the topology on processes, and o« € Act
and A C Act with 1 € A, define

alU = {ap | p€ U} .
U+V ={p+q|lpelU & qeV}
UV ={p®q|pel & qeV}
UlA={p[A| pe U}.

From the definition of < and the topology on processes we see the above are indeed
well-defined operations on open sets. In section 5 we have seen how the truth of an
assertion in a compound process reduces to certain assertions holding of the component
processes. For example p® ¢ = A iff p = B and ¢ |= C for some (B, C) € Dg[A]. Thus
in particular if B is true of process p and C is true of process g then A is true of p ® q.
Clearly this relation can be expressed as II[B] ® II[C] C HN[A], which we can write as
B® C > A. Following this style we define relations between assertions. (They correspond
to approximable mappings on the information system of assertions. And then these induce
continuous operations on the domain of elements D, making it into a continuous algebra.)

5.5 Definition. Let A, B, C range over Assn. Let o € Act and let A C Act be such that
1eA ,
(i)Define a unary relation on assertions by O > 4 4.5 O = A.
(ii)Define a binary relation on assertions by aB > A 4.5 oII[B] C II[4].
(iii)Define a ternary relation on assertions by B+ C > A 4.7 II[B] + II[C] C N[A4].
(iv)Define a ternary relation on assertions by B C > A < 4.7 H[B] @ II[C] C TI[A].
(v)Define a binary relation on assertions by B[A > A < 4.5 II[B}[A C II[4].

The domain D consists of sets of assertions. Once we extend the relations to con-
tinuous operations on D, we can give a denotation to each term of P with respect to an
environment in the standard way. However note that we have an added freedom. Not
only do processes sit naturally in D, so too of course do assertions; any assertion A can be
identified with the element A =4.; {B | A > B}. Consequently we can make sense in D of
syntax like A ® B where A and B are assertions, or even more free mixes of the assertion
language and the programming language like, for example, recz. (z ® (a)|fltrue + ytrue).
Note in the latter example assertions only occur at the roots of the syntax tree. Here
we shall not take the more liberal step of having a complete mix of program syntax and
assertion language syntax. But this should not be taken to indicate any deep prejudice
against such things, or as far as I can see any real difficulties—it’s easy to extend the

13

modal operators to elements of D, e.g. take [ofa = {B | 34 € a. |0]4 > B}. The work of
the next section only requires the following enrichment of SCCS by assertions Assn.

5.6 Definition. Define the language of SCCS with assertions by
pu=A| O |z |oap|p+tp|p®p| p[A]| reczp | rec"zp | O

where A € Assn, and z € Var, a € Act, A is a subset of Act containing 1 and n is a
positive integer.
Write AP for the language of SCCS with assertions.

5.7 Definition. Denotational semantics of SCCS with assertions:

Define an environment to be a function p : Var — D. Write pla/z], where p is an
environment, z € Var and a € D, for the environment which results by replacing p’s value
on z by a.

Define A[p]p for a term p € AP and any environment p by the structural induction:

AlAlp={B| A> B} where A€ Assn

AIO]s = {4] O > 4}

Alzle = pl=]

Aloplp={A|3B € Alplp. aB > A} where a € Act .
Alp+qlp={A|3B € Alplp,C € Alqlp. B+ C > A}
Alr®glp={A4 | 3B € Alplp, C € Alglp- B® C > A}
Alp[Alp = {A| 3B € Alp)o. B[A > A} where1c A C Act
Alp=1L

Alrec*z.plp = T™(L)

Alrecz.plp = fix T

where L = {A | true > A} and T' : D — D is given by I'(a) = A[p]pla/z] and fix is the
least fixed point operator fix I' = { J;¢,, Té(L).

Note how the numbered term rec™z.p is the syntactic counterpart of the nth iteration
of the functional in the construction of the least fixed point of a — A[p)pla/z]. Of course
the above denotational semantics specialises to one for pure SCCS by just ignoring the
clause for assertions.

5.8 Proposition. (The denotational semantics is well-defined)

We have A[p]p € D for all p € P and any environment p.

The function I' : D — D in the above definition is continuous, so fix I’ is the least
fixed point of T'. - ‘

It becomes vital to check that the denotational semantics agrees with the operational
semantics we have given earlier. The decomposition results of section 4 play a key role, as

14

does theorem 3.5 saying a process satisfies an assertion iff there is some numbered term
approximating it which satisfies it too.

5.9 Theorem. Let ¢ be a valuation. Let ¢ be the associated environment
dz] = {4] ¢z] E A}.

Then for p € P, X
Alpld = {A | p[9] = A}.

In particular if p is a closed term then
Alplp = {A | p = A}

for an arbitrary environment p.

Proof. By structural induction on p, with an inner induction on n in the case where p has
the form rec™z.q, and by invoking 3.5 when p has the form recz.q. 1§

The decomposition results of section 4 play a vital role in the above proof. They can be
seen as ensuring the language of assertions meets an expressiveness criterion; that there are
enough assertions so that any differences in those assertions satisfied by the composition
of processes is detected as differences in the assertions satisfied by the components (a
property whose failure for CCS led Stirling to introduce another modality which he wrote

as O [St2]).

Thus the denotational semantics is in perfect agreement with the work of the previous
sections. Of course the entailment relation and operations on the information system
of assertions have been derived from the satisfaction relation between processes and one
would like an independent construction of them. But this is the job of a proof theory and
is tackled in the next section.

We can generalise the satisfaction relation to elements of AP , assured it is consistent
with our previous use.

5.10 Definition. Let p € AP. Let A € Assn. Define

rEAe V environments p- A € Afplp.

Of course one can take issue with the view that the assertions Assn capture all those
basic properties of importance that can be noted about a process. The work of Milner
et al, e.g. [M1,3], shows how much can be done with the observational and bisimulation
equivalence induced by the assertions. This argues that the assertions are sufficiently rich
to capture a great many of the properties of interest. This should not seem so surprising.

15

Remember a process denotes the set of assertions it satisfies so is essentially modelled as an
(infinite) conjunction of these assertions; only for a finite process could a single assertion
in Assn capture its full behaviour.

Although the assertions may make it possible to distinguish all the processes one could
wish, this is not to say the logic is as expressive as one would like from all points of view.
Clearly it is rather primitive. For example one would like the ability to specify infinite
behaviours by finite assertions.

Quite possibly there are other properties of interest to which the language of assertions
is blind. However it is interesting that two other well-known notions of equivalence can be
induced by taking fragments of the assertion language Assn. They are trace equivalence
and failure-set equivalence. Strictly speaking the failure—set equivalence has not been
defined on SCCS but the definition that follows has been based on the work of [HBR]
modified to take proper account of divergence. The use of traces and their associated
equivalence is widespread, see e.g. [H] and [HdeN]. As far as these two equivalences are
concerned Assn is certainly expressive enough. It is a pleasing fact that the domains of
assertions for these two equivalences are related to the domain D and to each other by the
classical notion of embedding-projection pairs. This is because the embedding—projection
pairs between domains are associated with restriction in their representation as information
systems (see [LW]). We define the corresponding fragments of Assn. Define Assnr; the
trace assertions, to consist of all those assertions of the form

(oo) -+ {aj—1)true.

Define Assnpg, the failure-set assertions, to consist of all those assertions of the form

(oot) -~ (as—1)([\ [BYalse).

per

6. A proof system for SCCS with modal assertions.

In this section we take advantage of the observation we made in the last section that
we can make perfectly good sense of terms which mix the syntax of assertions in with the
syntax of the programming language. We use terms in AP to define a proof system.

First we define a proof system for the entailment relation > between assertions. I am
grateful to Colin Stirling for sending [St3] which showed me how to do the completeness
proof for the assertion language, without SCCS operators.

6.1 Definition. In the following let A, B, stand for assertions, and X,Y,.-- for a
finite subset of assertions. Let +4C Fin (Assn) X Assn be the least relation between
finite sets of assertions and assertions closed under the following rules:

16

Structural rules:

refl. rule

tran. rule

Logical rules:

true r. rule

false 1. rule

Ar. rule
ALl rule

\/r. rule

V1. rule

Modal rules:

Convergence rules

XFq A fAeX

XFaA\Y Y a4
X Fu A

b4 true
false 4 A

{4 |iel} ba N A

i€l

N 4Ai Fa A
icl

Ai ba V4
il
(X, A; Fa B |i€ T}
X,Vicr Ai Fa B

A4 B
(a)A 4 (a)B

() \/ Ai Fa \/ (@4

icr icl
Atus B
4 F4 [o]B

/\ [a]A; Fa [a]/\ A; where I #0

1134 iel

{a)false b4 false
[@]A A {a)B k4 (a)(AA B)
[ajtrue F4 [Bltrue

[a)true b4 (B)true v [Blfalse.

17

The first convergence rule simply expresses the fact that a process converges iff it
satisfies any assertion of the form [a]true. The second convergence rule says that a conver-
gent process either can perform an action o or refuses to perform an action a. The other
rules are fairly intuitive. Note we must insist the indexing set I is nonempty in the rule
expressing how conjunctions interact with [a] because [a]true is not always satisfied.

6.2 Theorem. (Soundness and completeness)

XFpaAde AX> A

Proof. The proof of soundness is routine. The proof of completeness follows the following
scheme: If A Jf4 B then a labelled transition system H = (S, so, {"g”’}aeAct’T) is built
from the proof system, such that H = A and H [£ B. The construction of this Henkin
model is closely based on that of Stirling [St3]. Then the technique of filtration, using
the set of subformulae of A and B together with [a]true (for the convergence structure),
reduces this model to a finite transition system which satisfies A but does not satisfy B.
By lemma 2.3 this can be described by an SCCS process p. Hence p |= A and p |~ B so
Al B. Thus A | B = A | B, so completeness follows directly. I

Now we define the proof rules to generate a relation p F4p A, meaning p = A, ie.
A € Alplp for p a term in AP—and so a mix of SCCS and Assn—and A an assertion,
and p an arbitrary environment.

6.3 Definition. In the following let A, B, C, - - - stand for assertions, X for a finite subset
of assertions and p,q terms in AP. Define F4p to be the least relation between elements
of AP and assertions Assn given by the rules:

Structural rules:

Ala B
Abtap B

D }_AP A,C{A] l—AP B
Clp] Fap B

where C|] is any context in AP .

{p FAPAKAGX},X Fa B
plFap B

{C[A] Fap B l AGX}

CIV X] Far B where C[| is any proper context in AP .
AP

(Note because \/ @ = false, this includes the rule op (false) -4p A where op is any derived
unary operator.)

18

Correctness rules:

O-[a] rule
a—{a) rule

a—{a] rule
a—[f] rule

+—{a) rule
o] rule
®—(a) rule
®—[o] rule
(A=(\) rule
[A=[A] rule
[A-{p] rule

rec. rule

O '—Ap [a]A

ad FAP (a)A

ad FAP [a]A
OlA '—Ap [ﬂ].B

f#a«

()A+ B Fap (0)A and B+ (a)d Fap (a)4

[2]4 + [a]d Fap [old

B®C lsp A

(B)B® (7)C Fap (B o)A
{Bs®Cy Fap A[feq=0}

(Ag181Bg) ® (A, []Cy) Fap [old

A[A bap B

ifAeA

((MNA)[A Fap (A)B

A[A bap B

ifAeA

([MA)A Fap [AB
([oftrue)[A Fap [p]B fp e A

plrecz.p/s] Fap A

rece.p Fap A

plrec*z.p/z] Fap A

forn cw

rectlzp Fap A

Remark. The requirement above that C[] is a proper context (f.e. a context with a
real “hole”) is made for one of the structural rules above so that C[false] |= false. This is
clearly not the case for a non—proper context like C[| = ¢rue. For the latter context, with

X empty, the rule is clearly invalid.

The proof of completeness depends on the following lemma which shows how the
decomposition rules of section 4 are captured in the proof system.

19

6.4 Lemma. For assertions A,B,C
(i} aDL]A] Fap 4,
(i) B+ C Fap Aif(B,C) € Di[4],
(iii) B®C Fup A if (B,C) € Dgl4],
(iV) D[AIIAMA i"AP A.

Proof. By structural induction on the assertion which is decomposed. 3§

Using this lemma we can show that the entailment relations A > B, A® B > C etc.
on the domain D are all provable.

6.5 Lemma. For assertions A, B,C
(i) «A>B=ad l,p B,
(i) B+C>A=B+C bup 4,

(i) BOC>A=B®C Fup A,
(iV) A[A > B=> ArA }‘AP_B-

Proof. All the proofs follow a similar line. We show (iii).. Suppose E® F > A. Let
p € NI[E] and ¢ € II[F]. Then there is (By q,Cp,q) € Dg[A] such that p = By, and
g |= Cp,q- Thus p |= A jenijry Bpg 20d ¢ = Apenypy Cp.q) Where both are conjunctions of
finite sets as Dg[A] is finite. Hence E |= Vpen[[E] /{qeﬂﬂl"] B,,q, where the disjunction is
of a finite set. Thus

E I“A VPEHuEl /\qEH[IF'l Bp,q; and similarly F l‘A VGEHIIFI /\PEnﬂEl Cp,q-

By lemma 6.4 each By, ® Cp q Fap A, so by the structural rules we obtain EQ F' F4p A.
i

6.6 Theorem. Letpec AP and A€ Assn. Thenp = A iffp b4p A.

Proof. The proof of soundness is routine. To show completeness use structural induction
on p and induction on iterates in the case of a recursive definition to show

VA.p‘=A=>p Fap A.

The cases of the structural induction use the above lemma. I

7. Related work.

Colin Stirling has produced a related proof system for SCCS but without restriction
and in the case where recursive definitions are well-guarded. His proof system captures the
concept of relative satisfaction, so he has proof rules which generate the relation =t p4
with this interpretation: if a process ¢ satisfies B then p ® g satisfies A; so relative sat-
isfaction takes account of the environment. Clearly we can translate relative satisfaction
_into our notation by noting that p=°t, A iff p® B |= A.

20

There is some overlap in the work of this paper and that in {[W] which presented the
decomposition results of section 4 though in the more restricted case where the monoid of
actions is a group. The proof system in [W] was unsatisfactory in several respects: it did
not achieve strong completeness and relied on process variables in a somewhat ad hoc way.

The use of mixed assertions, mixing program syntax with assertions, makes the proof
system and proofs about it much smoother. This realisation seems to have occurred
independently to a number of people, though it was present some time ago in the paper
[OH] by Olderog and Hoare. It is central in the work Graf and Sifakis [GS], which does not
treat parallel composition however, and in the work of Brookes [B] which uses assertions
built from synchronisation trees to survey a range of proof systems.

Acknowledgements

I have been strongly influenced by the work of Colin Stirling. I owe the proof system
F4 and a large part of its proof of completeness to Colin’s work.

References

[Ac] Aczel, P., An introduction to inductive definitions. In the handbook of Mathe-
matical Logic, Ed. Barwise, J., North-Holland (1983).

[B] Brookes, S. D., On the axiomatic treatment of concurrency. In the proceedings
of the joint US-UK seminar on the semantics of concurrency, July 1984, Carnegie—Mellon
University, Pittsburgh, Springer-Verlag Lecture Notes in Comp. Sc. 197 (1984).

[BKP] Barringer H., Kuiper R. and Pnueli A., Now you may compose temporal logic
specifications. In the proceedings of STOC 84 (1984).

[deNH] de Nicola, R. and Hennessy, M.C.B., Testing Equivalences for Processes, Lec-
ture Notes in Comp. Sc. vol. 154 (1983) and in Theoretical Computer Science (1984).

[Gol] Golson, W. G., Denotational models based on synchronously communicating pro-
cesses: refusal, acceptance, safety. In the proceedings of the joint US-UK seminar on the
semantics of concurrency, July 1984, Carnegie-Mellon University, Pittsburgh, Springer—
Verlag Lecture Notes in Comp. Sc. 197 (1984).

[GS] Graf, S., and Sifakis, J., A logic for the specification and proof of controllable
processes of CCS. Advanced Seminar on logics and models for verification and specification
of concurrent systems, La Colle-sur-Loup, France, to appear in Springer-Verlag Lecture
Notes in Comp. Sc. (1984).

[H] Hoare, C.A.R., A model for communicating sequential processes. Monograph of
the Programming Research Group, Oxford University (1981).

21

[HBR] Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W., A Theory of Communicating
Processes, Technical Report PRG-16, Programming Research Group, University of Oxford
(1981); appears also in JACM (1984).

[HM] Hennessy, M.C.B. and Milner, R., On observing nondeterminism and concur-
rency, Springer LNCS Vol. 85. (1979).

[HP][HM] Hennessy,- M.C.B. and Plotkin, G.D., A term model for CCS. Springer
Lecture Notes in Comp. Sc., vol. 88 (1980).

[LW] Larsen, K. and Winskel, G., Using Information Systems to solve Recursive Do-
main Equations Effectively. Springer Lecture Notes in Comp. Sc., vol. 173 (1984). A full
version appears as report No 51 of the Computer Laboratory, University of Cambridge.

[Ml] Milner, R., A Calculus of Communicating Systems. Springer Lecture Notes in
Comp. Sc. vol. 92 (1980).

[M2] Milner, R., A modal characterisation of observable machine-behaviour. Springer
Lecture Notes in Comp. Sc. vol. 112 (1981).

[M3] Milner, R., Calculi for synchrony and asynchrony, Theoretical Computer Science,
pp.267-310 (1983).

[OH] Olderog, E., and Hoare, C.A.R., Specification—oriented semantics for communi-
cating processes. ICALP 83, Springer Lecture Notes in Comp. Sc. vol. 154 (1983).

[P] Plotkin, G. D., Some comments on Robin’s “A modal characterisation of observable
machine-behaviour”. Handwritten notes, Comp. Sc. Dept., University of Edinburgh
(1983).

[Pa] Park, D., Concurrency and automata on infinite sequences. Springer Lecture
Notes in Comp. Sc. vol. 104 (1981).

[S] Scott, D. S., Domains for Denotational Semantics. ICALP 1982.

_[S1] Scott, D. S., Lectures on a mathematical theory of computation. Oxford Univer-
sity Computing Laboratory Technical Monograph PRG-19 (1981).

[Sm] Smyth, M.B., Power domains and predicate transformers: a topological view.
Proc. of ICALP 83, Springer Lecture Notes in Comp. Sc. vol. 154 (1983).

[St1] Stirling, C., A complete modal proof system for a subset of SCCS. Research
report, Dept. of Comp. Sci., Edinburgh University (1984).

[St2] Stirling, C., A proof theoretic characterisation of observational equivalence. Re-
search report, Dept. of Comp. Sci., Edinburgh University, CSR~132-83 (1983). A version

22

also appears in the proceedings of the Bangalore conference, India (1983) and is to appear
in Theoretical Computer Science.

[St3] Stirling, C., A Complete Intuitionistic Hennessy-Milner Logic. Handwritten
note, Comp. Sc. Dept, University of Edinburgh (Sep. 84).

(W] Winskel, G., On the composition and decomposition of assertions. In the proceed-
ings of the joint US-UK seminar on the semantics of concurrency, July 1984, Carnegie—
Mellon University, Pittsburgh, Springer-Verlag Lecture Notes in Comp. Sc. 197, and
appears as a report of the Computer Laboratory, University of Cambridge (1984).

23

