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Abstract 

This thesis examines distributional and contextual aspects of linguistic processing in 

relation to traditional symbolic approaches. Distributional processing is more 

commonly associated with statistical methods, while an integrated representation of 

context spanning document and syntactic structure is lacking in current linguistic 

representations. This thesis addresses both issues through a novel symbolic text 

representation language. 

The text representation language encodes information from all levels of linguistic 

analysis in a semantically motivated form. Using object-oriented constructs in a 

recursive structure that can be derived from the syntactic parse, the language provides a 

common interface for symbolic and distributional processing. A key feature of the 

language is a recursive treatment of context at all levels of representation. The thesis 

gives a detailed account of the form and syntax of the language, as well as a treatment 

of several important constructions. Comparisons are made with other linguistic and 

semantic representations, and several of the distinguishing features are demonstrated 

through experiments. 

The treatment of context in the representation language is discussed at length. The 

recursive structure employed in the representation is explained and motivated by issues 

involving document structure. Applications of the contextual representation in symbolic 

processing are demonstrated through several experiments. 

Distributional processing is introduced using traditional statistical techniques to 

measure semantic similarity. Several extant similarity metrics are evaluated using a 

novel evaluation metric involving adjective antonyms. The results provide several 

insights into the nature of distributional processing, and this motivates a new approach 

based on characteristic adjectives. 

Characteristic adjectives are distributionally derived and semantically differentiated 

vectors associated with a node in a semantic taxonomy. They are significantly lower-

dimensioned then their undifferentiated source vectors, while retaining a strong 

correlation to their position in the semantic space. Their properties and derivation are 



   

described in detail and an experimental evaluation of their semantic content is 

presented. 

Finally, the distributional techniques to derive characteristic adjectives are extended 

to encompass symbolic processing. Rules involving several types of symbolic patterns 

are distributionally derived from a source corpus, and applied to the text representation 

language. Polysemy is addressed in the derivation by limiting distributional information 

to monosemous words. The derived rules show a significant improvement at 

disambiguating nouns in a test corpus. 
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1  

 

Introduction 

This thesis explores the integration of contextual and distributional information with 

symbolic information derived from linguistic analysis. I have three main objectives 

relating to this goal. First, to investigate representational issues in text processing by 

developing a text representation language which provides a novel framework for 

contextual and distributional processing and extends existing representational forms in 

several meaningful ways. Second, to develop a systematic treatment of structural and 

linguistic context in the representational language, based on the similarities between 

discourse segments and sentence phrasal structure. Third, to propose a method for 

integrating distributional information into the contextual representation and to explore 

novel methods of augmenting symbolic processing with distributional methods.  

As an experimental framework, I will first develop a text representation language 

which integrates the representation of linguistic context with an object-oriented 

representation of syntactic dependency structure. This representation extends existing 

graph-based dependency structures with several features that facilitate contextual and 

distributional processing, allows rudimentary semantic capability, and supports direct 

internal manipulation to produce surface variations. A deterministic recursive algorithm 

is presented to realise the internal representation as a well-formed surface expression. I 

will give a formal description of the representation language, and a comprehensive 

account of the range of constructions it supports. 

I will develop the notion of structural and linguistic context by examining discourse 

segments and phrase structure. I will propose a representational model of contexts that 

generalizes over both cases and integrates with the text representation. I will present 

several experiments that use symbolic processing and show that contextual information 
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(encoded in the representation) can be used to augment the symbolic processing and 

improve the results. 

Next, I will introduce distributional processing through a novel evaluation of several 

existing distributional measures using adjective antonyms. This will suggest a novel 

semantic classification task using the distributional data derived from the adjectives. I 

will explore this in depth and present an experiment designed to test the properties of 

the distributional data.  

Finally, I will consider the integration of distributional data with the symbolic 

representation language. By extending the previous distributional techniques I will 

present an experiment which derives symbolic rules for determining nominal sense 

information. The rules are applied to the representation language to decide broad 

semantic classification of nouns, which can be used to augment symbolic tasks. 

1.1 A Text Representation 

The integration of contextual and distributional information with other linguistic 

information is best achieved at the representational level. However, most text 

representation languages do not include document level structural information or 

corpus-based statistics because they operate at the level of sentences or words. (Phrasal 

context is also not typically encoded explicitly, although it can be recovered from the 

dependency structure in most cases). 

A treatment of contextual and distributional information in a text representation, 

similar to other symbolic information, would allow text processing to take advantage of 

this information without requiring significant adaptation. An experimental framework 

which includes a text representation that supports the contextual and distributional 

extensions proposed in this thesis, as well as other representational properties, is 

integral to the work presented. In this section I will discuss the requirements of a text 

representation having certain properties that fit with the direction of the thesis. I will 

propose specific desiderata and introduce a representation that satisfies these 

requirements. This representation will be examined in detail in the next chapter, and 

used in the experiments in the remainder of the thesis. 
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1.1.1 Desiderata 

All textual language processing begins with some type of analysis of the surface text. 

Even shallow approaches to statistical processing often employ morphological analysis 

and part-of-speech tagging. An important step in any textual analysis is transforming 

the surface text into a suitable representation because the raw surface text is not a very 

efficient form for computation. A computational representation encodes the text, using 

the results of the analysis, in a more tractable form. The actual syntax and structure of a 

representation will largely depend on the linguistic level of the task implementing the 

analysis. This can vary widely, depending on the type of task and technologies applied. 

At one end of the scale, shallow approaches utilize a minimum of linguistic analysis, 

and at the other end deep processing techniques rely on multiple levels of syntactic and 

semantic processing. The result is a corresponding range of representational forms, 

many of which are not necessarily compatible. 

It has recently been suggested (de Marneffe and Manning, 2008), that some of these 

representational forms used within the linguistics community prove to be daunting to 

non-linguistic researchers when attempting to apply them to specialised domains. 

Specifically, de Marneffe and Manning (2008) suggest that many deep syntactic and 

semantic constructs which are typically encoded in linguistic representations, have little 

practical value in non-linguistic applications that require text processing. For example, 

the distinction between an argument and adjunct in a dependency representation may 

have little significance when mining text for nominal compounds. This deeper linguistic 

information is seen as a liability by de Marneffe and Manning (2008), because it 

unnecessarily obfuscates the representation for the non-linguistic user community. They 

argue for a simplified linguistic encoding, such as the Stanford typed dependency 

representation, which is accessible to non-linguists while retaining the salient 

information for useful text processing. 

While a streamlined representation may be advantageous for many applications, it is 

also true that more sophisticated tasks require more linguistic information. For example, 

McConville and Dzikovska (2008) report on the linguistic information needed for a 

tutorial dialogue system. They evaluate five representational forms of labelled 

grammatical dependencies, focusing on four specific linguistic phenomena (passive, 



Chapter 1 - Introduction  13 

control and raising, noun modifiers, and prepositional significance). The representations 

are interpreted as input to a semantic processor, and judged by their facility to provide 

the necessary linguistic cues for deriving a semantic representation. McConville and 

Dzikovska (2008) conclude that no single representation is satisfactory for their needs, 

although they find all the desired features within the set of representations. 

The recent focus on representational issues demonstrates there is a need for 

investigating better representational approaches. On the one hand, deeper 

representations such as phrase structures can seem “much more foreign and forbidding” 

(de Marneffe and Manning, 2008) and limit their utility to the wider research 

community, while on the other hand, an information-poor representation will not be 

able to serve the needs of more sophisticated language processing tasks. One approach 

to addressing both of these levels is an intermediate representation with task-specific 

transformations. This is an active area of research and does not necessarily solve the 

fundamental question of the primary representational form, however part of the work 

presented in this thesis (CAMEO) addresses many aspects of linguistic constructions 

which must be covered by an intermediate representation. 

Representational forms are often developed as a complement to a particular language 

technology, e.g. a parsing system. It is only recently that these systems have matured to 

the point that wide scale evaluations of competing technologies have become feasible. 

This in turn has prompted a push to find a superset of representational features that can 

serve as a normalized reference representation of the disparate linguistic output. For 

example, Flickinger (2008) presents several desiderata for labelled dependency 

annotation. Although the CAMEO representation is intended for more than strict 

annotation, it encompasses most, if not all, of the desiderata proposed by the parser 

evaluation community. Globally unique identifiers, a means to identify the root 

predication, and properties of entities and events, are a few examples of the desiderata 

proposed in Flickinger (2008) which are incorporated into the CAMEO representation. 

However, the capability for interpretation and realisation places further demands on the 

CAMEO representation, and because of this an extended set of desiderata is warranted. 

When developing an experimental framework for text processing, certain properties 

of the internal representation are demanded by the particular task being undertaken. 

However, there are general properties of the representation to consider as well, such as 
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the elimination of redundant processing. The development of a representation of context 

addressed in this thesis requires an examination of the general form and functions 

inherent in a text representation language. The following desiderata will be used to 

guide the general design and evaluation of the text representation developed in the first 

part of the thesis. Each of these desiderata will be justified in turn below. 

General : support a wide range of derivative representations 

Rich : capture a maximum set of surface information 

Reversible : support systematic realisation of surface text 

Incremental/Robust : support all levels and stages of linguistic analyses 

Precise/Unambiguous : support efficient equivalency testing 

Flexible : allow easy manipulation of internal representation 

Primitive Semantics : support a minimal meaning capability 

 

1.1.1.1 General 

A common representation can prevent the need for redundant low-level analyses 

when working with multiple processors that use different technologies. For example, 

semantic information can sometimes be derived from a shallower syntactic 

representation (Johansson and Nugues, 2008). However, a semantic transformation 

based on a specific syntactic representation makes it non-trivial to substitute a different 

syntactic processor. Using a generalized intermediate representation can enable 

transformations from various syntactic processors to various semantic representations, 

via the intermediate representation. 

Another benefit of a generalized intermediate representation is the facilitation of 

evaluation between competing technologies. Output from different technologies can be 

normalized to the intermediate representation for comparison, making objective 

evaluations more feasible (Srinivas et al. 1996, Carroll et al. 1998, Flickinger 2008, 

Tateisi 2008). 

Once deeper linguistic and semantic processing takes place, representational forms 

tend to diverge further. Part of this is a natural result of the theory governing the 

processing, but this also results from independent development of redundant functions. 
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A similar challenge is faced by the annotation community. There exists several styles of 

annotation which denote similar linguistic items, for example TreeBank, BNC, and 

Brown use different variants of POS tags. Semantic annotation in the FrameNet, 

VerbNet, TimeBank, and NomBank corpora may denote different semantic concepts, 

but also have different formats and structures. 

The annotation community has proposed several solutions to this problem ranging 

from successive transformations (Hajičová and Kučerová, 2002), to a schematic 

syntactic representation that can be combined with idiosyncratic lexicons to derive 

theory, domain, or application specific representations (Pajas and Štĕpánek, 2008). In 

addition, work on standardizing many aspects of linguistic representation is currently 

underway. For example, the International Organization for Standardization (ISO) is 

developing standards for lexical (LAF), morphosyntactic (MAF), and lexical resource 

(LMF) annotation. These schemes are meta-level representations designed for 

annotation of a wide range of linguistic phenomena at various detail and levels. They 

generally have a much wider scope than representations used in text processing, since 

they often include meta-linguistic annotation. (Because the focus of this thesis is on 

techniques for representations used in processing and not general annotation issues, I 

will not review the various proposed annotation standards.)   

Many representations used in text processing are derived from a specific linguistic 

theory. Ideally a theory-neutral representation would have the widest utility; however 

this can be problematic for some levels of syntactic representation. For example, some 

syntactic theories encode long-distance dependencies and others do not. Unifying 

representations of deeper semantic representations may pose even more problems, 

although there are current efforts to pursue this approach (Pustejovsky et al., 2005). 

 

1.1.1.2 Reversible 

Certain text processing tasks produce natural language as output, for example QA 

and text summarization. A text representation should therefore be reversible, allowing 

for realisation of well-formed surface text from the internal representation. This allows 
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modules that do not require sophisticated language generation planning to operate 

directly on the representation and produce valid textual output. 

The representation should be linguistically rich enough that the surface realisation 

can be affected through a deterministic transformation which does not require a 

grammar. This decouples the representation from specific grammars and allows it to 

remain theory-agnostic.  

1.1.1.3 Incremental / Robust 

In order to support a wide range of linguistic processing, the representation must also 

be robust and compositional. The representation should serve as both the input and 

output stages to a wide range of processors so the greatest reuse is achieved. 

Additionally, the representation should have a strategy to support shallow processors 

that do incremental analysis, followed by deeper processing that takes advantage of the 

incremental analysis without requiring explicit compatibility. 

1.1.1.4 Precise / Unambiguous 

One common function of a representational language is testing equivalency. 

Linguistic tasks that rely on some measure of syntactic or semantic distance usually 

require some means to compare sentences or sections of text. Thus the representation 

must be precise, unambiguous, and allow comparison of representational forms. 

1.1.1.5 Flexible 

It is also important that the representation be flexible so that manipulating a 

representation programmatically (or by hand) is manageable. This is especially 

important in an experimental framework where it is sometimes necessary to hand-

correct the outputs of a given stage for the purpose of testing a hypothesis. For example, 

Levy and Andrew (2006) note there is often a need for tree manipulation in the 

development and use of annotated corpora. They describe a specialized system for 

manipulating representations that use syntactic tree structures. A general intermediate 

representation should not require special tools for manipulation. If a representation 



Chapter 1 - Introduction  17 

includes complex sentence structures which are unintuitive and difficult to edit, its 

utility is diminished.  

1.1.1.6 Primitive Semantics 

Although a general intermediate representation must be theory neutral, it should 

have some minimal semantic properties. Allowing for rudimentary meaning 

representations similar to those found in a knowledge base gives the representation a 

wider utility, especially for derivative semantic representations. Support for assertional 

statements that do not require complete syntactic dependencies and are distinguishable 

from syntactic analyses can provide primitive semantic capability for tasks that do not 

require deep semantic processing. 

 

1.1.2 Deficiencies in Existing Representations 

In Chapter 2 I will survey some of the existing representations which appear in the 

literature. However, to help make clear the motivation for developing a new text 

representation language, I will mention some of the deficiencies of existing 

representations here.  

Annotation schemes are not technically representation languages, but they share 

common representational forms. There are numerous XML-based annotation schemes 

and many approaches to generalize them. However, because they are intended as 

adjunct to surface text, they do not have an internal representation. This precludes them 

from being used to do shallow semantic processing or any form of internal 

manipulation. For example, it would not be possible to instantiate objects which 

represent semantic individuals yet have no determined surface realisation, as a 

rudimentary semantic capability supports. 

Syntactically-based representations, such as Grammatical Relations (GRs), are better 

suited for analysis and lack features to support generative operations such as surface 

realisation. The declarative grammars that produce these representations can usually be 

run in reverse to produce surface text, but this is not always possible from the 
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representational form. Deeper semantic representations, such as QLF (see Section 

2.2.5), will often include a generation component. However, this typically operates at a 

more abstract level and is usually non-deterministic, requiring a theory specific 

grammar. 

Internal manipulation of the representation, though theoretically possible in any 

representation, is not specifically addressed in many representations. Semantic 

representations such as QLF and RMRS, which link certain types of semantic objects, 

would be most amenable to this type of operation. However, manipulating the shallower 

syntactic representations would amount to simply rewriting surface text, which would 

require linguistic knowledge of syntax and grammar. 

1.1.3 The CAMEO Representation Language 

The experimental text representation language developed in this thesis to investigate 

the stated desiderata is called CAMEO. It defines a set of elements and attributes and 

the rules for transforming them to/from surface text. The fundamental elements of the 

language are events and objects, corresponding roughly to verbs and nouns. There is no 

semantic significance to either type except as pertains to its role in the representation. 

(The goal here is simply to produce an intermediate representation that can be 

manipulated and possibly transformed into other higher-level representations.)  

Another important feature of the CAMEO representation, which is necessary for the 

goals of this research, is the abstraction of contexts. A context is modelled as a scope or 

container and it is used to denote several types of textual segmentation including 

document level (e.g. chapter, paragraph, sentence) and phrase level (e.g. clause, 

quotes, citations). 

Besides events and objects there are several other primitive elements defined by the 

language as well as attributes which attach to them. These are detailed in a further 

chapter, but for illustrative purposes I will give a brief example. 

Consider the sentence shown in Figure 1.3.3, which appears, say, in a fictitious 

document in the twelfth paragraph. The representation of this example in the language 

is given below.  
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The notation is simplified for clarity and the entire document would of course 

contain many more contexts and objects. From this it is possible to see the general form 

of the representation. Containers (scopes) are delimited using [ ], and each container is 

assigned a unique id (in the examples throughout this thesis, some of these are omitted 

for readability). 

The opening context ( id(1) ) represents the entire document, in this case Living 

Abroad. Since there are no formal chapters in this document there are no contexts of 

type chapter. Each new paragraph can be represented as a new context of type par, 

which in turn contain contexts of type clause. 

Within the clause context, there is an object ( obj ) representing each noun of the 

clause. The objects participate in the event ( evt ), which represents the verb. This 

sentence also contains a prepositional phrase (see rel in Figure 1.1.3). 

Notice the three nominals in this sentence all have the same general representation, 

even though one is a pronoun and one is a proper noun. This is an example of the 

rudimentary nature of the semantics included in the representation. Further semantic 

analysis on these nouns would require a separate module be implemented that operates 

on the representation. However, even at this low level some shallow semantic 

processing tasks are possible. 

[ I have property in Manilla ] 
 

ctx [ ID = 1  TYPE = doc  TITLE = Living Abroad  AUTHOR = Jane Smith 

    ctx [ ID = 12 TYPE = par 

        ctx [ ID = 13 TYPE = clause 
 

            obj[ ID = 567  PRON = I  ] 

            obj[ ID = 568  CLASS = property  ] 

            obj[ ID = 569  name[ Manilla ]] 
 

            evt [ ID = 231  ACTION  = have 

   SUBJECT = obj(567) 

   OBJECT  = obj(568) 

   rel[ PREP = in  OBJECT = obj(569) ] 
            ] 

       ] 

    ] 

] 

 

Figure 1.1.3 – Example framework representation 
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It should also be noted that not all the attributes and possible contexts will 

necessarily be discovered, depending on the document and the initial processing. For 

instance, some documents may have structural mark-up indicating titles, by-lines, etc. 

These attributes are easily transferred into the representation using simple 

transformational rules. On the other hand, when this kind of information occurs as raw 

text, i.e. with no mark-up, special processing beyond the standard syntactic parsing 

becomes necessary to recover their special status. 

1.1.4 Objectives of the Thesis 

The main objectives of the thesis were explained at the beginning of this chapter. I 

will summarize these objectives below along with the expected outcomes and 

enumerate the evaluation criteria that will be used to determine the success or failure. 

 Develop a text representation language which satisfies the desiderata 

The evaluation criteria for this objective will be the desiderata proposed earlier in the 

chapter. Part of the success will be determined by successfully implementing and using 

the representation in subsequent experiments in the thesis. However, several specific 

evaluations of aspects of the representation will be performed: 

1. Deriving CAMEO representations from two separate syntactic processors 

(RASP and Link Grammar), allowing for hand-annotation of unsupported 

analyses (e.g. contexts). 

 

2. Transforming the CAMEO representations into application-specific 

representations and annotations. 

 

3. Recovering the surface text systematically from the internal CAMEO 

representation. 

 

4. Demonstrating surface manipulation through the internal representation 

 Develop a systematic treatment of structural and linguistic context. 

Success of this objective will be measured using several representative task-level 

evaluations. The contribution of context, and the contextual model of representation, 

will be evaluated on several aspects of anaphora resolution and judged successful if 

some level of improvement can be achieved. 
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 Explore distributional methods generally and develop a specific novel 

application to symbolic processing 

An evaluative experiment designed to measure the effect of distributional 

information integrated with the symbolic representation will be used to determine the 

success of this objective. 

1.1.5 Outline of Remaining Chapters 

 Chapter 2 –A critical review of the literature is presented. Relevant work on 

incorporating context is examined. Recent attempts at combining symbolic and 

distributional processing are noted. A comparison of several comparable text 

representations is given with the proposed CAMEO extensions contrasted. 

 Chapter 3 –The CAMEO representation language is described in detail. The 

fundamental elements of the representation are explained, followed by a detailed 

account of notable constructions. A formal definition of the language syntax is 

given, along with a description of the processing required to produce the 

representation from a specific syntactic analysis.  

 Chapter 4 – Two important operations on the representation are explored. In the 

first half of the chapter, a treatment of the surface transformation is presented 

including evaluative experiments which test the range of surface expressions 

supported by the transformation. The second half of the chapter explores 

applications of text manipulation, giving qualitative arguments as well as a 

quantitative experiment to evaluate the manipulative capabilities of the 

representation. 

 Chapter 5 –An analysis of context at the structural and syntactic level is presented. 

A general recursive representation of context is proposed and demonstrated. The 

application of contextual information to reference resolution is evaluated through 

several task-level experiments. 

 Chapter 6 – The integration of symbolic and distributional information in the text 

representation language is discussed. The internal support for distributional 

processing is explained, along with the methods used for annotating the symbolic 

representation with information derived from external sources.  
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 Chapter 7 – Distributional methods are introduced by examining statistical 

processing techniques for lexical semantic acquisition. Several semantic similarity 

measures and an experiment designed to evaluate these measures using adjectives 

are described.  

 Chapter 8 – Methods of combining distributional and symbolic processing are 

investigated. A novel approach to measuring the semantic similarity of nouns, based 

on the lexical properties of uniquely differentiated adjectives (referred to as 

characteristic adjectives), is developed using the distributional data from the 

previous chapter, combined with symbolic lexical information. Experiments meant 

to test the performance of this similarity measure are presented. 

 Chapter 9 – The distributional process of deriving characteristic adjectives is 

extended to encompass shallow symbolic dependency information for verbs and 

nouns. The result is a list of distributionally derived symbolic rules, which give a 

strong indication of a noun‟s semantic class. The rules are applied to the text 

representation and an evaluation of their performance is reported. 

 Chapter 10 -- The main points of the thesis are summarized, along with 

conclusions and some comments on future work. 



 

2  

 

Literature Review 

 

2.1 Context 

There are two aspects of context considered in this research: document structure, and 

syntactic context. Document structure has been used more prominently than syntactic 

context in the IR community. For example, Kazai et al. (2001) propose a hierarchical 

representation of structured documents for IR. This representation is used in a model of 

weighting by recursing through the document structure, aggregating the weights of 

child nodes with that of its parent. The structural representation of the document was 

also used to determine the best point of entry to the document (in the case of a web 

search referral). 

Documents that do not have explicitly marked structure can still benefit from these 

techniques if the structure can be induced. For instance, Nomoto and Matsumoto (1996) 

use automatically acquired text structure to improve topic identification. Using a 

measure of similarity between paragraphs and the article title, they remove irrelevant 

passages to induce paragraph structure, resulting in improved performance on automatic 

topic identification. 

In the NLP community it appears there has been less attention paid to document 

structure. Goecke and Witt (2006) posit that document structure provides an important 

context for anaphora resolution. Their corpus study reveals that there are anaphoric 

references that span distances that appear long when considered linearly, but reasonable 

when document structure and context is considered. For example, a discourse referent 

might be introduced followed by a list of items, or perhaps, a quotation. It is not 
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unreasonable to then have an anaphoric reference to this referent even though many 

sentences (the list) intervene. Taking into account the document structure and the fact 

that the text following the discourse referent was a list is hypothesized to help resolve 

some of these references. 

The consideration of the global document context (versus structure) has been 

successfully applied to several NLP tasks over the past several years. Mikheev (2000) 

considers the global document context when resolving sentence boundaries, 

capitalization, and abbreviations. Gale, Church and Yarowsky (1992) show that words 

tend to exhibit a single sense within a global document context, and Yarowsky (1995) 

shows an improvement on a word sense disambiguation task when global document 

context is considered. 

In addition to the document surface structure, the content of a document has been 

hypothesized to exhibit a discourse structure. Discourse structure has been an active 

area of research in the NLP community, and different theories of discourse coherence 

have been proposed including Hobbs (1985), Grosz and Sidner (1986), Mann and 

Thompson (1987), and McKeown (1985). Applications of discourse structure include 

topic and sentiment identification, summarization, generation, and simplification. 

Because discourse structure is arguably a semantic phenomenon and not necessarily 

syntactic, it is outside the scope of this thesis. 

2.2 Existing Representation Strategies 

Representations, whether linguistic or semantic, are often described in terms of a 

formal theory and are themselves sometimes incompletely formalized. Literature on 

representational languages highlights the aspects that differentiate the language, and 

may leave out the details on other constructions. A comprehensive comparison then 

becomes difficult. However, all representations ultimately derive from the surface string 

and thus can be expected to carry some amount of similar information. For example, 

word stems and morphological information, verb tense and mood, verbal argument 

structure, and nominal number are typical features that can be recovered from a 

representation. In this section I will survey several existing representations that I will 

use as a contrast to CAMEO, the representation developed in this thesis. All of the 
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representations examined here (including CAMEO) are ultimately dependency- and 

graph-based (at some level). The differences arise with how the representations extend 

the basic dependency information to enable deeper syntactic or semantic processing. 

2.2.1 Annotation Schemes 

The annotation community has produced several schemes which, though technically 

not representations, serve related purposes. As the demand for larger corpora with more 

sophisticated annotation grows, these schemes have been adapted to cover some of the 

same issues facing a surface representation (e.g. long-term dependencies). 

Annotation schemes initially were developed independently and in a task-dependent 

manner. This produced syntactic annotations such as TreeBank, BNC (2002), and the 

Brown Corpus, and very different semantic annotations, such as FrameNet 

(Ruppenhofer, 2005), VerbNet (Schuler, 2005), TimeBank (Setzer, 2001), and 

NomBank (Meyers et al., 2004). The current trend is to augment syntactic annotation 

with semantic information (Sgall et al., 2004) in schemes such as PropBank (Kingsbury 

and Palmer, 2002), LCS (Dorr, 2001), and PDT (Hajić , 1998).  

Like intermediate representations, the stated goal of the annotation community is a 

theory-neutral scheme which has wide utility, but this has proven difficult even for 

some levels of syntactic features (e.g. HPSG vs. Dependency Grammars, long-distance 

dependencies, etc.). Attempts at merging existing schemes toward this goal are 

currently on-going (Pustojevsky et al., 2005). 

The NITE Object Model (Carletta et al., 2003) is a language for developing 

multimodal annotation which uses a typed, object-based structure. Objects are nodes 

that participate in a graph structure, and can be specialized using attributes and features. 

Arbitrary annotation can be represented as long as it is derived and defined using the 

primitive object types defined in the system. Multiple sets of annotation are integrated 

via standoff notation that point to the data set or other annotation. This allows 

correlation of e.g. syntax, prosody, words, and gestures. The NITE system provides 

libraries for inspecting and manipulating the annotation sets.  
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2.2.2 Grammatical Relations 

Grammatical relations (GRs) are a linguistic representation that encodes local 

head/dependency relations. They are typically expressed as a list of tuples that consist 

of the name of the relation, the lexical head, and any lexical daughters. Using GRs in 

parser evaluation was proposed by Lin (1995). Carroll et al. (1998) further refine this 

idea by proposing an annotation scheme designed to be an independent common 

language for evaluation and comparison of different parsing technologies. After 

suggesting that such a language loosely based on the feature structures of Lexical 

Functional Grammar (LFG) could support a comprehensive and unambiguous 

representation, the authors settle for a simpler, more practical approach using tuples (as 

previously described). Figure 2.2.2 shows an example GR representation and its 

corresponding parse tree (taken from Briscoe, 2002). This representation serves as a 

sort of “lowest common denominator” among different GR annotations. Both Carroll et 

al. (1998) and Yeh (2000) discuss the issues that arise from disparate GR 

representations.  

 

GRs (as specified by Carroll et al., 1998) can be characterized as syntactic 

descriptions analogous to the functional descriptions of LFG. That is, they are a list of 

the syntactic dependencies encountered in the text, in the form of binary tuples which 

describe relationships in the dependency structure. It is not necessary to have a 

complete parse to produce GRs, and many partial parsing and alternative approaches 

(T/txt-sc1/-+- 

(S/whnp_s (NP/det_n What_DDQ 

     (N1/n debt+s_NN2)) 

  (S/sai/- do+ed_VDD 

   (S/np_vp 

    (NP/name_n1 

     (NP/name/- 

     (N1/n Qintex_NP1)) 

      (N1/n group_NN1)) 

    (V/0 leave_VV0)))) 

?_?) 

 

 

Figure 2.2.2 – Sample GR output (left) and corresponding parse tree (right) 

(ncsubj leave:6_VV0 group:5_NN1 _) 

(detmod _ debt+s:2_NN2 What:1_DDQ) 

(ncmod _ group:5_NN1 Qintex:4_NP1) 

(aux _ leave:6_VV0 do+ed:3_VDD) 

(dobj leave:6_VV0 debt+s:2_NN2 _) 
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have been applied towards extracting them (e.g. Argamon et al. 1999; Grefenstette, 

1999; Srinivas, 2000). GRs essentially comprise atomic relations that can be interpreted 

independently, and thus are suited for robust analysis that can support incremental 

composition (cf. RMRS), and they have been used increasingly in NLP research as an 

intermediate representation for applications beyond parser evaluation (e.g. Grefenstette, 

1997; Palmer et al., 1993; Yeh, 2000). 

However, there are some limitations to using GRs as an intermediate representation. 

Because GRs are a strictly lexical representation, they do not normally mark semantic 

interpretations. Also, depending on the annotation scheme and targeted application, 

some of the surface information relating to the phrase structure may be discarded by the 

representation. For some tasks it can be advantageous to have the surface syntactic 

features explicitly marked, so a more expressive representation is sometimes necessary. 

Also, because the primary structure is a relation, lexemes can appear in multiple 

relational structures. This can make annotating GRs with lexical distributional 

information and/or using GRs to compile distributional information cumbersome. 

Although it is not a typical application of GRs, direct manipulation using GRs would 

be less efficient than more structured representations because there is no explicit link to 

each relation a lexeme participates in, and vice versa. For example, changing the subject 

in a sentence would require searching each relation for an instance of the existing 

lexeme. 

The CAMEO representation developed in this thesis is similar in some respects to 

GRs, but includes a few innovations to address some of these deficiencies. It is 

structurally more akin to the AVM model briefly suggested in Carroll et al. (1998), than 

their more commonly-used tuple list notation. More importantly, from this common 

fundamental representation, CAMEO has been extended to include a treatment of 

context at various linguistic levels. 

It should be noted that like CAMEO, GRs are derived from a syntactic analysis of 

the surface text (usually a parse structure). Therefore, it is possible to use a GR 

representation as an alternative source of linguistic analysis for creating a CAMEO 

representation. As I will demonstrate, there is no requirement in the CAMEO 
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representation for a complete syntactic parse tree, so the possible fragmented nature of a 

GR list does not pose a problem. A more likely application however, would be to derive 

GRs from an existing CAMEO representation, which can be transformed easily into 

tuple-based GR annotation. 

2.2.3 Lexical Functional Grammar 

LFG is a theory and framework for representing both syntax and grammatical 

function (Kaplan and Bresnan, 1982). LFG includes two levels of syntactic 

representation: the c-structure, which is a standard tree representation of the constituent 

phrase structure, and the f-structure, which is an explicit description of the grammatical 

functions derived from the c-structure. The representation of f-structures takes the form 

of an AVM, i.e. attribute-value feature matrices in recursive structures. It is possible to 

reconstruct the c-structure from the f-structure, but to construct the f-structure from the 

c-structure requires a mapping function. Figure 2.2.3 shows an example sentence with 

the corresponding c-structure and f-structure (Dalyrmple 97).  

 

 

As a representational language, the LFG f-structure does well encoding surface 

features and syntactic relations. For example, in Figure 2.2.3, the direct object OBJ has 

encoded the DEF (definite) attribute, the person, and the number. However, because 

LFG is tied to a particular theory, it is less flexible in the syntactic interpretations it can 

represent. A less structured analysis, such as that produced by some dependency 

c - structure   f - structure   

TENSE   PAST   
PRED   ‘see˂(↑SUBJ), (↑OBJ)˃’ 

SUBJ   
PRED   ‘pro’   

PERS   1   

NUM   SG   

OBJ   

PRED   ‘girl’   

DEF   +   
PERS   3   

NUM   SG   

Det   N   

saw the girl I 

N NP V 

NP 

S 

VP   

Figure 2.2.3 – Sample LFG representation for ‘I saw the girl’ 
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grammars, might be problematic to represent in LFG since functional information may 

exist indirectly (Schneider, 1998). Also, LFG includes quasi-semantic information in 

certain functional control schema/structures which may not be present in the constituent 

structure. This limits its use as a neutral intermediate surface representation (which is 

not its intended purpose). 

In contrast, CAMEO is not a syntactic or functional theory and does not include 

unifying features that constrain the syntactic analysis. It supports both linear and 

hierarchical representation strategies, allowing it to remain theory neutral and agnostic 

to the syntactic structure, as well as robust in the case of failed analyses. 

Another problem which would arise from adopting LFG as an intermediate 

representation is its minimal support for local identifiers on certain recursive sub-

structures, which are produced through multiple applications of a single schema (i.e. 

mapping functions). This reduces the flexibility for searching and manipulating 

document level representations. CAMEO uses identifiers which are integrated at all 

levels of the representation, treating all constituents as objects which are globally 

uniquely identified and easily manipulated. 

In LFG, the representation of long distance dependencies evolved by allowing 

descriptive grammars (i.e. regular expressions) in the functional mappings from c-

structures to f-structures (Kaplan and Zaenen, 1989). This allowed a finite description 

(required by the functional mapping constraints) of the potentially infinite number of 

mapping rules needed to cover the possibilities introduced by long distance 

dependencies. Although this innovation admitted a treatment of gap binding into the f-

structure representation, it appears limited to intra-sentential linkage. CAMEO has the 

flexibility to model any gap binding in the surface syntactic analysis, regardless of 

distance, and also allows for direct linkage of any other binding information, e.g. from 

external analyzers. 

Finally, although LFG includes some functional constraints on word order 

(amounting to f-structure precedence), this does not extend to the attribute level. 

CAMEO includes much finer control over surface word order, through the use of 

explicit attributes which can indicate the position of certain function words. 
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2.2.4 First Order Predicate Calculus 

First Order Predicate Calculus (FOPC) is a semantic representation language that has 

been used widely in the research community. It is a flexible, relatively simple method 

for encoding meaning in logical forms. This makes it well-suited for assertional 

databases that represent model-theoretic knowledge. Thus, its use as a compositional 

semantic representation allows for a single representation in both cases. 

There are many different forms of FOPC, but it is essentially comprised of terms, 

which represent objects (or object collections), relations among the various terms (e.g. 

verb events), and logical connectives (e.g. conjunction , disjunction , and negation

  ). Beyond these basic components of FOPC, there are also two operators that are 

used to encode quantification: the existential quantifier , and the universal quantifier

.  

The basic FOPC framework has been used in developing strategies to represent 

natural language constructs by linguists such as Montague (1973), Davidson (1967), 

Parsons (1990), and others. Davidson proposed a reification of events that allows 

variable arity relations. For example, the sentences in (1) all have a different number of 

verbal arguments:  

(1) Lou shouted. 

Lou shouted at the kids. 

Lou shouted at the kids angrily.  

Rather than create three separate variations of the predicate shouted (each with 

different arity), an event variable is created which links the arguments. Thus (1) can be 

represented as in (2): 

(2)  e shouted(e, L) 

 e shouted(e, L)   at(e, K ) 

 e shouted(e, L)   at(e, K )   angrily(e ) 

There are several reasons why this approach makes sense. The most important being 

that constructs in natural language seem to suggest a reification of events. Consider the 

pronoun it in (3), which refers to the event of building a house. 
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(3) We built a house yesterday. It was hard work. 

Another reason why Davidson‟s event semantics makes sense is that it facilitates 

temporal logic, e.g. as described in Allen (1984). The reified event variable can be used 

to encode complex temporal constraints on the event. 

The intersective treatment of event arguments is also applicable to nominal 

modification. Modifiers such as adjective phrases and prepositional phrases can be 

expressed as conjunctions on a term. An example is given in (4). 

(4) the little fierce brown mouse 

little( M )   fierce( M )   brown( M ) 

FOPC is important because it forms the basis for many other meaning 

representations. One popular form of FOPC used in computational linguistics today is 

neo-Davidsonian predicate calculus, which includes among other extensions, Parson‟s 

addition of thematic roles to the Davidsonian representation of events. I will refer to this 

semantic representation as neo-Davidsonian predicate calculus (NDPC) throughout the 

rest of the thesis. It will serve as representative of FOPC based representations for 

purposes of comparison. 

2.2.5 Quasi-Logical Form 

The Core Language Engine (CLE) is a framework for semantic interpretation of 

natural language sentences, as presented in Alshawi (1992). The ultimate result of 

natural language processing in the CLE is a comprehensive logical form (LF) that is 

essentially a superset of PC. The LF representation is a fully specified semantic 

representation of the possible meanings of a sentence. 

More relevant to this discussion, however, is an intermediate representation used in 

the CLE called Quasi-Logical Form (QLF). The QLF is one in a number of stages in the 

CLE, and it is meant to be an underspecified semantic representation of the surface text. 

Certain language tasks have been found to be tractable using only the QLF form, versus 

the more fully specified LF (e.g. machine translation). 
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The QLF shares many properties with the model proposed in this thesis: it is derived 

from purely linguistic processing, it has undetermined scopal operators, and it has 

unresolved anaphoric references. It also includes grammatical information recovered 

from the syntactic analysis, such as gender and number. 

There are, however, some differences between QLF and the model proposed herein. 

QLF is a unification based framework. It is derived compositionally from a unification 

based grammar and uses unification based rules for resolution to LF (and other 

operations). QLF also includes PC constructs in the representation (although they may 

be left underspecified). Finally, QLF treats nominals as unary predicates. These 

differences will be further detailed as appropriate in Chapter 3. 

As an introduction to the QLF notation, which I will use in subsequent chapters, I 

will present the syntactic description and several examples from Alshawi and Crouch 

(1992a). 

A QLF term (cf. PC) must be one of the following: 

A variable:  X, Y, ... 

An index:  +i, +j 

A constant:  7, mary7 

An expression:  term(Idx, Cat, Restr, Quant, Reft) 

where: 

Idx: Uniquely identifies the term expression 

Cat: List of feature=value pairs, e.g. <type=pro, num=sing> 

Restr: First order, one place predicate 

Quant: A generalized quantifier, or a meta-variable if unresolved 

Reft: A constant or term index, or a meta-variable if unresolved 

A QLF formula must be one of the following: 
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A predicate: Predicate( Arg1, Arg2, …, Argn) 

An expression: form(Category, Restriction, Resolution) 

A scope: Scope:Formula 

where: 

Predicate: A first or higher order predicate, or logical operator (and, not, 

etc.) 

Arg: A term, a formula, or a lambda abstract (defined below) 

Restriction: A higher-order predicate 

Resolution: A formula, or a meta-variable if the form is unresolved 

Scope: A meta-variable if the scope is underspecified, or a list of term 

indices e.g. [ +i, +j ] where +i,+j are indices occurring 

within Formula, and +i outscopes +j. 

 

The following examples from Alshawi and Crouch (1992a) will help make the 

syntax more clear: 

Every boy met a tall girl 

 

_s:meet( term( +b, <type=q, lex=every>, boy, _q, _x), 

         term( +g, <type=q, lex=a>, Y^and(girl(Y), tall(Y)), _r, _y )) 

A resolved form corresponding to the reading  every boy met a different tall girl  can be 

obtained by instantiating the meta-variable quantifiers _q and _r with forall and 

exists, respectively, and setting the scoping meta-variable _s to [+b, +g]: 

[+b, +g]:meet( term( +b, <type=q, lex=every>, boy, forall, +b), 

term( +g, <type=q, lex=a>, Y^and(girl(Y), tall(Y)), 

exists, +g )) 

As another example, consider the unresolved anaphoric sentence: 

Every boy claimed he met her 
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_s1:claim( term( +b, <type=q, lex=every>,boy, _q1, _x ), 

_s2:meet( term(+h1,<type=pro, lex=he>, male, _q2,_y ), 

term( +h2, <type=pro,lex=her>,female,_q3,_z ))) 

A resolved form, which assumes the term Mary is salient: 

[+b]:claim( term( +b,<type=q,lex=every>,boy,forall,+b ), 

[+h1]:meet( term(+h1,<type=pro,lex=he>,male,exists,+b ), 

            term(+h2,<type=pro,lex=her>, 

                 female,exists,mary ))). 

From these examples it is clear that QLF, although it is closer to the surface syntactic 

form than the resolved LF, still is intrinsically designed to support frameworks derived 

from predicate calculus. The intrinsic semantic form means that testing for 

representational equivalency is complicated by nested lambda applications which can 

obscure reductions which are equivalent.  

Like LFG, the CLE uses the same basic approach of attribute-value pairs used as 

feature constraints on syntactic and semantic categories to allow for constructive 

unification. Unlike LFG however, QLF does not retain grammatical function 

information. Instead, constituents become arguments to semantic predicates, or 

semantic predicates themselves. For example, the lexical modifier most becomes the 

function ratio(x,y). This can have an impact on distributional and lexical processing 

since category information is not always retained in the representation. 

Other differences arise from the level of semantic representation employed in QLF. 

For example, collections are represented through the union functor, whereas in 

CAMEO collections are explicitly represented as objects and can be referenced and 

manipulated just like singular objects. The goal of QLF is to serve as an intermediate 

step to a deep semantic representation, which is a higher level of abstraction than the 

CAMEO representation and accounts for many of the differences which I have 

described.  

2.2.6 Robust Minimal Recursion Semantics 

Minimal Recursion Semantics (MRS), as presented in Copestake et al. (2005), is a 

flat semantic representation which uses compositional elementary predicates (EP) and 
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includes a novel treatment of quantifiers. It was developed using Type Feature 

Structures (TFS) (although it can use other formalisms) and integrates easily into 

Constraint Based Grammars (CBG) because of its support of a unification operation. 

The fundamental semantic units in MRS are the EPs, which encode the various 

lexical relations of the surface form. These EPs correspond with the semantic relations 

in some object language to which the MRS representation is being applied. EPs 

typically map to a single lexeme with arguments that encode their relational 

dependencies, facilitating compositional analysis. 

MRS is considered syntactically „flat‟ because there is no hierarchical structure. 

Instead, the EPs are related through variables or indices.  MRS combines this flat 

syntactic structure with a novel representation of scope for constructs such as modals 

and quantifiers. 

MRS produces a semantic form that explicitly constrains the possible scoping of 

quantifiers. This is accomplished by enumerating scopal possibilities of individual 

quantifiers, which allows combinatorial configurations to be later derived. Thus the 

resolution of scopal ambiguity can be deferred to later processing, or indefinitely in 

certain cases. On the other hand, when it is necessary to resolve the scope, the 

possibilities are constrained and easily recovered. 

MRS is really a strategy for underspecification of quantifier scoping. In fact, 

Copestake et al. describe it as a “meta-level language” operating over some object 

language. This has traditionally been predicate calculus, but there is no restriction that 

necessitates this. 

Copestake (2003) introduced a new approach to underspecified semantic 

representation, demonstrated using MRS, called Robust MRS (RMRS). The goal of 

RMRS is to have a single semantic representation support all levels of language 

processing, from shallow POS taggers through deep parsers. RMRS is an extreme form 

of flat semantics where all predicates are unary arity (since shallow processors will not 

have access to knowledge of arity), and arguments (and other operators) are expressed 

explicitly as binary relations. This representation allows for monotonic incremental 

processing that is modular. For instance, a shallow processor could construct the initial 
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representation, followed by a deep processor that focuses on a specific fragment of the 

representation. 

RMRS has similar goals to the representation described in this thesis. Both address 

the need for a fundamental semantic representation that can be transformed into higher 

level form. Both are intended to be theory-agnostic, and both aspire to be 

computationally efficient. However, as I will explain in Chapter 3, RMRS is more 

ambitious in that it can be constructed from the most rudimentary processing, at the 

same time facilitating the higher level representation of MRS. This adds a level of 

complexity to the representation that would normally be mitigated by some level of 

representational structure. For instance, the role of predicate arguments is abstracted 

through a relational operator. 

The strategy for robustness in RMRS results in a flat semantic description of the 

dependencies (analogous to the functional descriptions of LFG) composed of single 

argument predicate structures, argument linkage, and equivalence relations. 

Compositional hierarchies can then be built incrementally by manipulating the linkages. 

Like QLF, RMRS is not intended as a strictly surface representation and does not 

explicitly encode all surface features (e.g. grammatical function). But apart from the 

fact that it is semantically oriented, RMRS shares the same basic functionality as QLF 

and other syntactic representations (including CAMEO), with respect to the surface 

encoding.  

2.3 Distributional and Symbolic Integration 

There has now accumulated a fairly large body of work applying distributional 

techniques to language processing. Some examples include word sense disambiguation, 

measuring semantic similarity, lexical semantic acquisition, and probabilistic ranking. 

As the improvements on purely distributional techniques begin to level off, 

researchers are searching for effective ways to combine symbolic and distributional 

methodologies. The basic vector model based on collocations used in most 

distributional experiments is now being augmented with deeper symbolic information, 

in the form of deeper syntactic relationships. 
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But while deeper symbolic information is increasingly being integrated with 

distributional processing, applying distributional information to symbolic processing is 

receiving less attention. This may be partly due to the fact that it is not intuitively 

obvious how to do it. One recent proposal from Clark and Pullum (2007) suggests a 

tensor product model which amounts to multiplying the distributional vectors for words 

occupying the same constituent roles when comparing sentence similarities. Summing 

over all products would produce an activation vector which can be used as a similarity 

metric. 

Lin et al. (2003) suggest that one problem with the distribution hypothesis is that 

there can be distributionally similar words that have different meanings. They propose 

essentially refining the distributional information using symbolic templates. For 

example, they describe a method for filtering a list of distributionally similar words 

using a measure based on how often the words appear near each other in certain 

symbolic patterns (under the assumption that these patterns are likely indicator of 

semantic incompatibility, e.g. from X to Y). 

De Boni and Manandhar (2003) investigate how augmenting a semantic similarity 

measure with distributional information affects the performance of a QA system. They 

explore refining the semantic measure with a word frequency statistic, such that 

frequent words have less weight in the measure. They report improvements on a QA 

experiment when distributional information is included. In this case, the distributional 

information is used to refine the symbolic semantic measure. 

Pado and Lapata (2003) extend traditional word co-occurrence vector based 

distributional models to incorporate syntactic dependency information in distributional 

lexical semantic acquisition. They introduce a parameterized generalization of 

dependency-based distributional vectors and show a statistically significant measure of 

distinguishing semantically related words. 

A difficulty with this approach will always be computational complexity. Parsing 

large corpora for deep syntactic relations is expensive. Pado and Lapata use a scaled 

parser, but in principle this approach will always be more complex compared to using 

more shallow syntactic information. 



 

3  

 

A Text Representation 

Language  

In this chapter I will develop a text representation language called CAMEO, which 

will be used as an experimental framework for investigating and evaluating 

representational properties. The CAMEO representation language is similar in some 

respects to other surface representations (as noted). However, CAMEO includes several 

key innovations which distinguish it. 

The primary difference, and the initial motivation for developing CAMEO, is the 

extension of a sentence level representation to include the notion of recursive context, 

which captures structural information at the document and phrasal level. This allows 

text processing tasks that are normally processed at the local level to incorporate some 

notion of global context. Later chapters will explore possible applications of this 

feature. 

CAMEO is a semi-flat, intermediate representation, and attempts to balance the 

robustness of a flat representation with the rich structure of a hierarchical dependency 

graph. This approach allows the grammatical functions and syntactic relations to be 

normalised, encoding equivalent variations in a canonical form for processing and 

giving the representation greater utility. For example, tasks that require specific 

syntactic forms can use the canonical form of the representation to distinguish them 

without the need for complex pattern searches, while tasks that do not depend on a 

specific syntactic form will be insulated from superfluous syntactic variations in the 

surface form.  

Another unique approach of the CAMEO representation is object-orientation. 

Although CAMEO is a syntactic representation, it is semantically motivated and is 
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based on an explicit representation of events and objects. Whereas many syntactic (and 

semantic) representations use noun and/or noun phrases as a basis of representation for 

grammatical or semantic entries, CAMEO instantiates explicit objects which are then 

assigned properties based on the text analysis. These objects are semantic placeholders, 

as they represent an abstraction of a particular real-world entity. This distinction will be 

made clear later in the chapter, but this allows CAMEO to also be used as a 

rudimentary meaning representation. 

The object-orientation of CAMEO includes events, which have explicit 

representations also and can be used as objects in certain constructions, e.g. referring 

expressions. (A detailed treatment of events is given in Section 3.3.2.) This explicit 

representation of objects and events facilitates processing for certain applications. For 

example, coreference resolution typically requires evaluating objects, their grammatical 

function, and their properties within some window of context. In CAMEO this 

information is expclitly encoded and organized around an object-centric approach. Both 

saliency table-based algorithms (Lappin and Leass, 1994), and tree-walking algorithms 

(Hobbs, 1977) have been implemented directly using the representation (see Chapter 4). 

More semantically oriented representations such as MRS and QLF cannot directly 

implement these algorithms because the grammatic functions are not directly retained.  

Another feature of CAMEO is the integrated class lexicon which is used for deriving 

distributional information over word classes. Lexemes are not used directly in the 

representation of sentence text, as with many other representations. Instead the 

representation employs global lexical identifiers which reference an object in the class 

lexicon. This added level of abstraction simplifies distributional and other class-based 

processing. 

Finally, CAMEO includes several other innovations which allow it to approximate a 

shallow semantic representation for linguistic tasks that do not need the complexity of a 

comprehensive semantic model. As explained in the sections below, these include a 

treatment of possessives, groups, and passives. 

In the introduction I proposed desiderata for a text representation that, besides 

having a strategy for representing structural context, would be of utility as a generalized 

intermediate representation. Before presenting the details of CAMEO, I will first 
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summarize its properties relative to these desiderata. I will then present an overview of 

the fundamentals of the representation, followed by details of certain notable 

constructions, and a formal description of the syntax. I will then describe a practical 

implementation of the CAMEO representation with respect to a specific syntactic 

analyzer, and explain the process of transforming the surface text into the 

representation.  

3.1 Properties of CAMEO 

In this section I will look at each desideratum proposed in the introduction and 

explain how CAMEO satisfies it, in comparison to other existing representations. 

3.1.1 General 

CAMEO is minimally theoretic and does not constrain the analysis so deeper 

semantic and other syntactic representations can be derived using a direct 

transformation. Only the basic structure of the event and object types is imposed, and 

these are flexible enough to admit even minimally structured analyses, making 

CAMEO a general representation of broad utility. 

Other representations implicitly encode theoretical bias. For example, LFG imposes 

constraints on its f-structures according to its syntactic theory, which would not admit 

ungrammatical analyses (and thus certain incremental constructions). Another example 

is QLF, which interprets certain semantic constructions (e.g. quantifiers) making it 

more difficult to transform directly into other semantic representations.  

3.1.2 Rich 

Since the CAMEO representation is used both to encode existing observed surface 

text forms, and realize novel representations, it attempts to have the widest coverage of 

surface forms possible, including support for some ungrammatical surface 

constructions. (However, these mainly occur at the higher-levels of representation, such 

as phrase and sentences, which are arguably easier to verify independently, e.g. it is 

relatively easy to verify that each sentence represented contains a main verb phrase). 
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 The CAMEO language defines a number of atomic elements and attributes which 

correspond closely to the surface syntactic categories, giving it a degree of 

expressiveness very similar to the surface form. In addition, CAMEO defines certain 

attributes which control the surface realization (e.g. pre- or post- modification), which 

further widens its expressive coverage. 

CAMEO also includes an explicit encoding of all surface features extracted from the 

analysis, including a recursive context type for systematic representation of extra-

sentential linguistic structure. Most syntactic and semantic representations do not 

include contextual information at this level, and some representations do not attempt a 

comprehensive encoding of surface features. For example, LFG does not explicitly 

encode word order.  

Also, because CAMEO explicitly represents all types as objects, distributional 

information can be attached to and derived from any linguistic head or relation, 

including contextual structures. This is more cumbersome in representations that don‟t 

have an integrated strategy for distributional information. 

3.1.3 Reversible 

Not all representations are designed to recover the original surface text through a 

deterministic transformation. However, this is a desirable feature for an intermediate 

representation because it allows some tasks to be accomplished using the representation 

directly, i.e. the internal result of the text processing can be converted into surface 

output. CAMEO is deterministic and unambiguous, resulting in a direct systematic 

surface realization transformation. This transformation is recursive and functions at any 

level in the representation, allowing surface realization of fragments and constituents at 

any level.  

Additionally, since the CAMEO representation language does not interpret certain 

semantically ambiguous constructs (e.g. generalized quantifiers), it supports a canonical 

surface form. Other ambiguous constructs, such as prepositional phrase attachment, do 

not have an underspecified form in the model but are implicitly canonical. For example, 

the ambiguous prepositional attachment in [ I saw the man with a telescope ] has two 

different representations that yield the same (canonical) surface realization 
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In comparison, deeper semantic representations (e.g. LFG, QLF, RMRS) may 

require a grammar to support surface realization. 

3.1.4 Incremental/Robust 

Incremental processing is an approach often used in conjunction with robust 

methods of linguistic analysis, which are becoming increasingly important in language 

processing systems. A critical feature of the CAMEO representation which allows it to 

support robust methods is the lack of relational constraints on the principle elements. 

That is, there is no requirement that obj elements be connected to evt elements, and vice 

versa. Elements can exist arbitrarily within a context. Thus a partial parser, or other 

robust methods, can still be used to represent partial linguistic analysis. 

Because dependencies (but not arguments) are abstracted in CAMEO, multiple 

levels of analysis can be combined independently into full representations. For example, 

the output of a noun-phrase chunker could be used first to transform all nouns into obj 

elements. This could be followed by a parser which leverages the existing 

representation of the obj elements to produce grammatical relations. 

This incremental approach can also be extended to use a parallel processing 

paradigm where dynamic changes to the representation signal individual processing 

modules, which examine the representational changes and process them accordingly. 

Robust incremental analysis may be problematic for other semantic representations 

if argument structure is required during composition (e.g. QLF). Syntactic 

representations may use robust processing, but integrating incremental representations 

from external processors may not be supported. 

3.1.5 Precise and Unambiguous 

Like GRs, CAMEO relations are represented directly so comparing instances of the 

representation is less ambiguous. Also, the original surface form is encoded, even when 

certain syntactic structures are normalized (e.g. passive mood). Some representations 

use a level of abstraction which allows multiple representations for variants of a 
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syntactic construction, obscuring the relationship and making comparisons more 

computationally complex. 

CAMEO also uses globally unique identifiers on all representational objects, making 

the representation unambiguous at the document level, as well as the local level. 

3.1.6  Flexible 

CAMEO is designed to take advantage of the document object model (DOM, 2004) 

using an object-oriented design. All types in the representation are treated as objects 

with globally unique identifiers. This allows referencing any entity (not just 

nouns/objects) in a consistent way for linguistic processing. Manipulation is 

accomplished by moving objects or changing attributes, which are native operations in 

the DOM. For example, passifying verb phrases would only require adding the 

PASSIVE attribute on event objects. Removing appositives can be done by moving the 

context object containing the appositive. (Section 4.2 gives examples of manipulating 

the representation.) 

With other representational approaches, it may be less effecient to dynamically 

manipulate certain properties. For example, in a predicate-based representation such as 

FOPC, removing an object (term) would involve searching for the term in the 

arguments of all predicates. To remove a constituent in a distributed representation such 

as GRs would require searching the dependency list for tuples that contain members of 

the constituent, as well as any child nodes governed by the constituent.  

3.1.7 Semantic-like 

CAMEO uses primitive semantic types (evt, obj, ctx, mod, rel), which allows it to 

serve as a rudimentary meaning representation for shallow semantic tasks. This extends 

to the integrated class lexicon which can function as a repository for class-based 

meaning representations extracted from a document. For example, after analysis of the 

sentence [Bears are dangerous ], the [ dangerous ] relation can be copied to the [ bear ] 

class. Accumulating information in this way can prove useful for shallow approaches to 

semantic tasks such as QA. Purely syntactic representations are not suited as meaning 
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representations because they are syntactically constrained and only encode 

dependencies. 

Shallow semantic information is sometimes supported by a syntactic representation, 

such as LFG, which includes minimal primitive semantic information, but this is 

primarily intended as patterns for interpretation by a semantic component. As such, 

representing meaning directly is not supported. 

3.2 A Simplified Surface Representation 

I will begin describing the CAMEO representation with a simple example, and give 

a brief overview of its general design. 

(5) The black dog chased the quick brown fox. 

The representation of (5) in the language is
1
: 

obj[ ID=o1 DET=the  mod[ LEX=black ]  class[ LEX=dog ] ] 

obj[ ID=o2 DET=the  mod[ LEX=quick ]  mod[ LEX=brown ]  class[ LEX=fox ] ] 

evt[ ID=e1 ACTION=chase TENSE=past S=o1 O=o2 ] 

The CAMEO representation closely resembles the element/attribute model of XML, 

which is used for its implementation. I use the terms elements and containers 

synonymously, and show them with lowercase bold letters and square brackets to 

denote their scope (e.g. obj[ ] ). Elements have attribute values, and these will be shown 

in the text as NAME=value, where NAME is an attribute name and value is an attribute 

value (e.g. TENSE=past). Attributes are optional and do not have default values, i.e. if an 

attribute does not appear it is unspecified. (Note for certain processing some linguistic 

features must take values (e.g. the number feature on objects when realizing verb 

                                                 

1 This is a slight simplification of the model for clarity. In fact the lex attributes (shown in the class and mod 

elements), actually use an identifier that references an entry in the lexis. The lexis is a lexical context that is part of 

the extensions to the framework and is described in Section 3.5.2.2. I will ignore this feature for the present 

discussion. 
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agreement), however these default values are deferred to subsequent processing 

modules). 

In the example above, the subject and direct object are represented using obj 

elements, and the verb is represented using an evt element. Attributes and elements are 

used within an element‟s scope to complete the representation. In the example the two 

nouns contain the DET attribute which records the determiner, mod elements for the 

adjectives, and class elements for the common nouns. The verb phrase has the ACTION 

attribute for the verb, the TENSE attribute, and the S and O attributes to link to the subject 

and direct object. Each of these will be discussed at length in the sections that follow. 

To further simplify the notation, I will sometimes omit the attribute names where 

they are obvious. For example, in the representation of mod[ LEX=black ], I will 

dispense with the LEX attribute name and write mod[ black ]. Italicized words in brackets, 

e.g. [ black ], represent a gloss of unprocessed text which would yield the correct 

representational element(s) when processed (in this case a lexeme). The representation 

of (5) above then becomes: 

obj[ ID=o1  DET=the   mod[ black ]  class[ dog ] ] 

obj[ ID=o2  DET=the   mod[ quick ]  mod[ brown ]  class[ fox ] ] 

evt[ ID=e1  ACTION=chase  TENSE=past  S=o1  O=o2 ] 

I will also sometimes omit attributes that are not pertinent to the discussion at hand. 

For instance, I will omit the attribute ID when discussing individual elements, where no 

reference to that element is necessary even though all elements have the ID attribute 

(except for mods and rels). The ID attribute value can be referenced from other elements 

as shown in (5) where the evt element references the objects o1 and o2. (In the 

remainder of the thesis when discussing a specific element I will use id(x), where x 

appears as the value of the element‟s ID attribute.) 

Elements may include other elements as shown in (5). I use the term property when 

referring to an element that occurs within the scope of another element. Thus in (8), the 

class [ fox ], is a property of  id(o2), and the adjective [ black  ] is a property of  id(o1). 
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The primary elements (obj and evt) can also function as properties but do not appear 

directly embedded in other elements. Instead they must be referenced indirectly through 

their identifiers. This restricts the primary elements to the first level of representation in 

a given context, which reduces the number of representational levels required for 

processing.  

The order of attributes appearing within the scope of an element is not significant 

because attributes only encode closed class lexemes or fixed syntactic properties. 

However, the order of elements appearing within the scope of another element is 

significant (in most cases). This order is directly related to the surface expression and is 

used in analysis and realisation. I will say more about this in section 3.2.1 below. 

The attributes defined by the representation are intended to capture the surface 

features of the text for later use in analysis and realisation (cf. category feature values in 

Alshawi, 1992). The distinction between a lexico-syntactic component implemented as 

an attribute vs. an element is functional. Attributes are used to represent static features 

or closed class lexemes which are not given a recursive treatment in the representation. 

Some examples are determiners and plurality for nouns, and tense and modals for 

verbs.  

By contrast, elements are containers and thus used to represent components that are 

recursive. For example, the mod element is used for adjectives and adverbs. The 

construction  [ extremely loud ] can then be represented using a mod within a mod as: 

 mod[ loud  mod[ extremely] ] 

The structure of elements within CAMEO was chosen to provide a trade-off between 

flat and highly structured representations. The principal constituents of a phrase all 

occupy the first level, including all objects and events. Modifiers are contained within 

the element they modify and so are accessible when required without complicating the 

basic structure. With this approach, it is clear to see the basic components of a syntactic 

analysis, simplifying processing and interpretation. For example, a clausal prepositional 

phrase would appear at the first level, making it easy to distinguish from adnominal or 

adverbial prepositional phrases (which would appear inside their respective elemental 

containers).  
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3.2.1 The FORM Attribute 

The FORM attribute is a special attribute which can appear on any element. It is used 

to encode or direct the positioning of a constituent in the surface form relative to an 

element‟s parent container. Explicitly encoding the position in this manner allows a 

deterministic representation of surface variation like that afforded by a constituent 

phrase structure, while maintaining a semi-flat representational structure. Thus the 

positional information is available for analysis and realisation (unlike most labelled 

dependency-based representations), but exists as an explicit property and not an integral 

part of the representational structure. This is advantageous for processing tasks that 

need to consider the position of a constituent in the surface form because the positional 

information can easily be extracted, while elements can still be accessed in a position-

independent manner. Additionally, this allows a simple means for manipulating surface 

variation during realisation, i.e. by simply changing the values of the FORM attribute on 

the various constituents, a wide range of surface forms can be realised. 

In general the FORM attribute takes the values of pre and post, which places the 

element before or after its parent element. (See Section 3.3.3 for additional usages). For 

example, the adjective [ weary ] in the noun phrase [ the weary traveller ], is in the pre 

position, relative to the head [ traveller ]. Alternatively, the adjective phrase [ weary 

from the trip ] is found in the post position in the phrase [ the traveller weary from the 

trip ]. When there are multiple elements within a parent element, the elements having 

the same FORM value are processed in order. For example, the CAMEO representation 

of the sentence [ She easily does the work of three men at the company ] is: 

obj[ ID=o1 PRON=she ] 

obj[ ID=o2 DET=the class[ work] ] 

obj[ ID=o3 QUANT=three class[ man] ] 

obj[ ID=o4 DET=the class[ company] ] 

evt[ S=o1 ACTION=do  TENSE=present 

   mod[ easily ] 

 rel[ PREP=of OBJ=o3 FORM=post]  

 rel[ PREP=at OBJ=o4 FORM=post] ] 
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Since both the rel elements in this example have the post value, the order of the 

elements defines which is expressed first.   

The variability in the expression of verb phrases necessitates a finer granularity on 

the positioning of adjuncts. Initially, the representation was not able to encode the 

positioning of some of the more complex verbal constructions with the simple pre and 

post values. Verb phrases are composite constructions and adverbial modifiers are 

licensed in multiple slots within the phrase. For example, the sentence [ She had been 

reluctantly feeding the stray cat ] requires the adverbial [ reluctantly ] to be positioned 

within the verb phrase. Using only pre and post values for the FORM attribute would 

limit the surface expression to [ She reluctantly had been feeding the stray cat ] (pre 

position) and [ She had been feeding the stray cat reluctantly ] (post position). 

To accommodate the range of adverbial positions in verb phrases, the FORM attribute 

was extended to include a wider range of values within the context of evt elements. 

These values correspond to the possible slots in a verb phrase and vary with the form of 

the verb. Some of the possible values are illustrated below. 

Simple 

Jim  eats  fish 
 

 pre   post   postpatient  

 

Past Perfect 

Jim  has  eaten  fish 
 

 pre   postaux  post   postpatient  

 

Future Progressive 

Jim  will  be  eating  fish 
 

 pre  preaux  postaux  post  postpatient 

 

Modal Past Perfect Progressive 

Jim  may  have  been  eating  fish 
 

 pre  premodal  preaux  postaux  post  postpatient 

 

Ditransitive Dative 

She  gave  the teenager  the keys 
 

 pre  post  postio  postpatient 
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3.2.2 Object Unification 

An important operation for certain processing tasks such as coreference resolution is 

unification. Unification is the process of merging multiple elements so they can be 

treated as one. This includes some means for determining which elements can be 

unified and which elements cannot. 

 Unification of objects is supported in CAMEO through the implicit constraints of 

attributes and properties. A set of objects are compatible if they do not violate the 

following restrictions: 

1. The plural attribute PL is either unspecified, or matches 

2. The quantifier QUANT attribute is either unspecified or compatible 

3. The EXT attribute is either unspecified or compatible 

4. The gender attribute G is either unspecified or matches 

5. The animacy attribute A is either unspecified or compatible 

These restrictions are guidelines for unification and may be augmented depending on 

the processing task. 

The unified objects are encoded inside a separate context using an equivalence class 

(see Section 3.5.2.4) which holds all references to the unified object. The representation 

does not take a strict interpretation of constraints on equivalence classes in order that it 

may remain theory-neutral. Therefore, it is possible for modules to include references to 

objects that do not unify in an equivalence class. This gives a corresponding 

representation to surface forms that violate certain restrictions, and a strategy to 

compensate for interpretive errors. 

3.3 Fundamentals of the Representation 

Elements (i.e. containers) in the CAMEO representation comprise the fundamental 

types of the textual representation. There are four major types used to construct the 

representation: objects (obj), events (evt), modifiers (mod), and relations (rel). The 
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primary components are the obj and evt elements. These only appear at the first level of 

a clausal representation and therefore do not embed in other elements directly. The obj 

and evt elements also carry globally unique identifiers via the ID attribute. The 

secondary elements mod and rel do not carry the ID attribute because they embed in a 

primary element and can always be identified through their parent. (Section 4.2.1 gives 

an example of locating a mod element for the purpose of removal.) 

The following sub-sections describe the fundamentals of each of the major types. 

Section 3.4 gives deatails of how the types are used in the representation of specific 

syntactic constructions. 

3.3.1 Objects 

The basic semantic concrete, roughly corresponding to a noun phrase, is represented 

using the obj element. An obj is simply a container for attributes and properties. It acts 

as a conceptual placeholder and may be empty, thus the simplest instance of an object 

contains only an ID attribute. 

When a lexical construction functions as a noun, an object is instantiated to represent 

it. The object is indeterminate at this point with respect to any specific semantic model, 

but it has a definite representation. Even if the surface noun is indefinitely determined, 

it is represented by a specific element not through a variable, as in predicate calculus, 

because there is limited semantic interpretation performed by the CAMEO 

representation to distinguish between these cases. Rather, the instantiated object 

represents the referent directly for the local syntactic context. For example, a typical 

representation of common nouns in FOPC based systems is shown in (6). 

(6) a book 

x book(x) 

some(x, book(x)) 

This form represents [ book ] as a predicate that may be applied to any individuals in 

the current set or situation. The idea is that an inferencing engine could use the logical 

form to filter books from the set, and determine some specific book within a context. 

The contextual individual (i.e. book) may or may not have been previously instantiated 
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within the model. In CAMEO, the representation of [ a book ] always results in an 

individual (i.e. object) being created that has the class (or property) book, as in (7).  

(7) obj[ class[ book ] ] 

Thus, the CAMEO representation uses a placeholder for the specific book that the 

semantic interpretation might produce. This may end up being a generic object as in (8), 

but the representation treats these cases the same. The interpretation is deferred to later 

processing. 

(8) A book is a glimpse into an author’s mind. 

The object element is a container for the information produced during the syntactic 

processing of a single noun phrase. In certain cases there may be no information 

available about the object, and the container is empty (e.g. the three entities referenced 

in the sentence [ All three arrived late ] ). Otherwise, the syntactic information connected 

with the object is extracted and attached to the instantiation in the form of attributes and 

properties. 

3.3.1.1 Properties 

Object elements may contain various other elements as properties. The term 

“property” is used in this case in the syntactic sense to denote syntactic relations, and 

the semantic implications of these properties are left unspecified. In this section I will 

discuss the various properties an object element may contain. 

Class 

The class element is used to represent a nominal property of an object. If there are 

any nominally classed lexemes (i.e. common nouns) syntactically connected to an 

object, they are ascribed as inherited classes using class elements. For example, the 

simple noun phrase tree would become obj[ class[ tree ] ]. 

The representation does not commit to an interpretation of compound nouns. The 

class lexemes are simply listed in order as properties of the object. For instance [ family 

man ] will appear as obj[ class[ family ] class[ man ] ]. If the source analysis instead 
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treats the nominal compound as a single classed lexeme, it will be treated as an object 

inheriting from a single class: obj[ class[ family man ] ]. (Note the class element is 

actually implemented as a reference to an entry in the classes context of the language 

processing system. I will discuss this further in the next chapter, but for now I will 

ignore this distinction.) 

This treatment of compound nouns is compatible with higher-level forms as in 

NDPC or QLF. For example, in QLF, compound nouns are represented using 

underspecified relations. The example given in Alshawi (1992, p. 38) for [ a computer 

message ] is: 

qterm(<t=quant, p=det, n=sing, l=a>, X, 

         a_form(<t=pred,p=nn>,R,[and, 

                 [message,X],[R,kind(Y,[computer_thing,Y]),X]])) 

The a_form() specifies a “kind” relation between [ computer ] and [ message ]. 

Conversion of compound nouns from the CAMEO model into QLF would consist of 

creating QLF a_form()s from the elements found in an obj element. 

Note however, that the CAMEO representation remains true to the surface form and 

makes no assumption about the semantic construction of compound nouns. Since class 

elements are the only representation of nominal types, the surface form of a compound 

noun can be reconstructed by listing all class elements in an object container. These 

elements retain their surface order, but there is nothing in the representation denoting 

the head. 

In contrast, the QLF representation interprets the head noun of a nominal compound 

to construct the semantic „kind‟ relation. This requires deciding whether a compound is 

e.g. right-headed (water fountain) or un-headed (coach-player), or deciding the correct 

bracketing (plastic water bottle). This information cannot be derived directly from the 

surface form, but instead must be listed in a lexical resource (see Section 3.5.2.2). 

Name 

The name element represents proper names that are syntactically connected to an 

object. There may be any number of these and they are represented in the order found in 
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the text. Again these are treated as separate properties unless the source analysis 

aggregates them (e.g. a named entity processor): 

 obj[ name[ John ] name[ J.] name[ Miller ] ] vs. obj[ name[ John J. Miller ] ]. 

In FOPC based representations, proper names are typically interpreted as terms (vs. 

predicates). For instance, [ Mary ] might be given the indexed term mary1. This 

approach can make it awkward to represent syntactic constructions such as those in (9). 

(9) the unsinkable Molly Brown 

the John I knew from school 

These examples require the semantic equivalent of “the person named John/Molly 

Brown”, rather than the normal treatment of proper names. It is not clear how these 

constructions are dealt with in a representation such as QLF. One possibility is to treat 

the proper names as normal predicates, approximating semantically the class of all 

persons named John/Molly Brown. 

The CAMEO representation avoids this complication because the object container 

represents a general semantic entity and serves as the repository for arbitrary properties, 

including proper names. The distinction of term individuals based on proper names can 

therefore be deferred to higher-level processing. 

Mod 

The mod element used in the scope of an obj element represents an adjectival phrase. 

They are instantiated in the order found in the text. For example, the noun phrase [ big 

ugly troll  ] would be 

obj[ mod[ big ] mod[ ugly ] class[ troll ] ]. 

Like adjectival predicates in NDPC representations, the mod elements generally 

imply conjunction (although the actual semantic interpretation is left unspecified). So 

the above example might be transformed into a typical NDPC representation as: 

big(x)   ugly(x)   troll(x) 
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The notable difference with this representation is that the predicates in NDPC appear as 

an unordered list, whereas in CAMEO the order of the mod elements that occur in a 

container element is significant.  

(The mod element can appear in the context of any element and is explained in more 

detail in Section 3.3.3). 

Rel 

The rel element used in the scope of an obj element represents a post-nominal 

prepositional phrase. For example, the noun phrase [ the book on the table  ] would be 

represented as 

obj[ DET=the class[ book ] rel[ PREP=on OBJ=o1 ] ] obj[ ID=o1 DET=the class[ table ] ]. 

(The rel element can appear in the context of any element and is explained in more 

detail in Section 3.3.4). 

Like the mod elements described above, the rel elements have an implicit 

conjunction, analogous to the treatment in NDPC. The CAMEO representation of the 

example shown above might be represented in NDPC as: 

book(B)   table(T)   on(T, B) 

The rel elements are also ordered according to the surface form, as for mod elements. 

Inf 

The inf element is used to connect non-finite verb phrases acting in the role of 

phrasal complement, with the heads they modify. The inf element only contains the EVT 

attribute which references the id of a non-finite verb phrase.  

For instance, the noun phrase [ a good book to read ] is modelled as: 

obj[ DET=a mod[ good ] class[ book ] inf[ EVT=e1 ] ] 

evt[ ID=e1 ACTION=read  INF ].  
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(Note the attribute INF contained in id(e1). This attribute is used to denote non-finite 

verbal constructions, which are used in a variety of surface representations. The evt 

element (including infinitive constructions) is described in more detail in Section 3.3.2). 

In this example, the obj is connected to the evt element id(e1) using an inf element 

(which indicates a complement construction). This strategy has the advantage of 

treating infinitival complements like any other property (e.g. mod, rel, etc.), which 

simplifies the processing. 

Obj 

An obj element may contain references to other obj elements. Within an object 

container, references to other objects are accomplished using a special form of the obj 

element which contains only an IDREF attribute having the value of the referenced 

object‟s id. For example, in (10) id(o1) is referenced in the container for id(o2). 

(10) obj[ ID=o1]  

obj[ ID=o2 obj[ IDREF=o1 ] ] 

The syntactic form modelled using this representation is that of collections. The term 

collection here refers to a heterogeneous group of objects. The representations of 

collections are constructed using a parent obj element containing references to the 

members of the collection. 

For example, in sentence (11) the subject noun phrase [ Dave, Bob and Andy ] is 

modelled in (12). The representation consists of a single collective object id(o4) 

containing references to three other objects id(o1), id(o2), id(o3) which are [ Dave ],        

[ Bob ], and [ Andy ], respectively.  

(11) Dave, Bob, and Andy found a new trail through the mountains 

(12) obj[ ID=o1 name[ Dave ] ] 

obj[ ID=o2 name[ Bob ] ] 

obj[ ID=o3 name[ Andy ] ] 

obj[ ID=o4 obj[ IDREF=o1 ] obj[ IDREF=o2 ] obj[ IDREF=o3 ] ]. 
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(For a discussion of the collective vs. distributive reading, see Section 3.4.2 on 

conjunctions. Homogenous collections will be covered later in Section 3.4.9 on plural 

nouns. See Section 3.4.2 for details on other conjunctive constructions.) 

3.3.1.2 Attributes 

Attributes in general are used to capture as much of the surface information as 

possible. They are derived from closed class categories that can be syntactically 

analyzed. By giving these lexical categories special treatment during the initial 

linguistic processing, they can be made available to subsequent modules. Often this 

type of information is helpful in operations such as reference resolution and word sense 

disambiguation, and since these attributes are deterministic, it is more efficient to 

process them once initially. 

There are several attributes defined for the obj element. Each appears only where 

discovered (i.e. there is no default value).  

DET 

 

Represents determiners, e.g. a, the, that, those. Also preceding nouns of style, 

e.g. Mr., Mrs., Dr., etc. 

QUANT Quantifiers, including cardinal numbers, e.g. some, much, more, many, most, 41, 

etc. 

 
PRON The pronoun used to reference the object, if any. For example, I, you, she, etc. 

 
PERS Person records the personal aspect of the textual reference to the object. Its value 

can be 1, 2, or 3, corresponding to first, second and third person. This value is 

relative to the nearest context element (see Section 3.5.2.1). 

 
EXT 

 
This attribute represents extension quantifiers, which are certain quantifiers that 

come before determiners. For example, all, both, half, etc. (See Section 3.4.1). 

In addition, there are also three attributes defined that require a deeper analysis. 

These attributes are also motivated by tasks such as reference resolution and word sense 

disambiguation, and are used to further distinguish an object. They are not ascribed to 

every object, since there may be cases where they cannot be determined. They are 

recorded whenever certain sure-fire syntactic and lexical rules are satisfied. For 

example, the pronoun her will generate a female gender attribute [ G=f ]. 
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G Gender records the gender (male/female/neuter) of the object 

 
A Animacy records whether the object is animate, inanimate, or human 

 
PL This attribute is used when it can be determined that an object is treated 

syntactically as a plural. Collections and plural common nouns are the most 

obvious examples. 

3.3.2 Events 

Events represent the primary relation among objects. The evt elements represent 

syntactic verb phrases and have optional attributes for the subject [ S ], object [ O ], and 

indirect object [ IO ] constituents. These attributes, if present, are references to existing 

objects in the representation. All verb phrases are treated in this manner including 

pleonastic „it‟ constructions [ it is raining ] and copulars [ the gate is shut ] (see Section 

3.4.5). 

Like surface syntactic verb phrases, evt elements in the representation have a wide 

variety of forms. I will first describe the attributes and properties used in the evt 

elements to express these forms, and then I will illustrate several of the more interesting 

examples before comparing this treatment to that of other representations. 

3.3.2.1 Attributes 

The attributes defined for evt elements are listed below. These attributes are intended 

to represent all information about the surface form of a verb phrase. Only the ACTION 

attribute is required – no other constraints are enforced by the representation. The 

grammatical and syntactic restrictions on the verb forms are expected to be enforced by 

the linguistic analysis (e.g. parser) or generation component. 

The four auxiliary attributes (MODAL, PERF, PROG, PASSIVE) support the sixteen possible 

combinations of auxiliary verbs given in Huddleston and Pullum (2002, p. 105). 

Together with the TENSE attribute for marking the present/preterite inflection, the NEG 

attribute for marking the negative, and the INF attribute for marking the infinitive form, 

all English tenses analyzed by Burton-Roberts (1999, pp. 126-152) can be represented. 

Some example sentences illustrating the use of these attributes are given in Section 

3.3.2.3. 
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Note, however, that there is no explicit information structure contained in the 

representation. Syntactic variations that have equivalent meanings (i.e. truth conditions) 

can be represented using the attributes, etc. described in this chapter, but there is no 

facility in the CAMEO language for indicating equivalent informational content. 

S The subject object reference 

O The direct object reference 

IO The indirect object reference 

C Complement 

ACTION Head verb uninflected form 

MODAL Modal auxiliary 

TENSE Verb tense 

PASSIVE Verb is in passive form 

PERF Verb is in perfect form 

PROG Verb is in progressive form 

PART Verb is in participle form 

NEG Verb is in negative form 

INF Verb is non-finite 

3.3.2.2 Properties 

The only properties allowed in evt elements are mod and rel elements. All other 

features and verb constructions are formed using the attributes described above. 

The mod element when used inside an evt functions as an adverb, and modifies the 

head verb. For example, in (13) the adverb [ hardly ] is contained inside the evt element. 

(The mod element is described in more detail in Section 3.3.3). 

(13) I hardly knew her 

obj[ ID=o1 PRON=I ] 

obj[ ID=o2 PRON=her ] 

evt[ S=o1 ACTION=know  TENSE=past  O=o2   mod[ hardly ] ] 
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The rel element, when used inside an evt element, represents a verbal prepositional 

phrase. The rel element is comprised of the PREP attribute, which specifies the lexeme of 

the preposition, and an attribute specifying the object of the preposition. This latter 

attribute is normally an object reference, but can also be another element acting in an 

object capacity. For example, some parsers may represent adverbial clauses like [ after 

the rain stopped ] using a prepositional sense of [ after ] with the  phrasal complement [ 

the rain stopped ]. This interpretation is dependent upon the implementation of the 

grammar but is supported by the CAMEO representation. 

Like the mod element, the rel element also supports the FORM attribute, which allows 

flexibility in the syntactic location of the prepositional phrase with respect to the verb 

phrase. The values for the FORM attribute in relation to the evt element are detailed in 

Section 3.2.1 and are designed to allow flexibility in the positioning of the rel element. 

In general, the attribute value pre denotes a prepositional phrase occurring before the 

main verb, and the attribute value post denotes a prepositional phrase occurring after 

the main verb. The default position (when no FORM attribute is used) is after the the 

direct object. Examples (14) and (15) show verbal prepositions in the post and default 

(no FORM attribute specified) slots of the verb group. 

(14) She wrote in the sand a mantra. 

obj[ ID=o1 PRON=She] 

obj[ ID=o2 DET=the  class[ sand ] ] 

obj[ ID=o3 DET=a  class[ mantra ] ] 

evt[ S=o1 ACTION=write  TENSE=past  O=o3 rel[ PREP=in  OBJ=o2 

FORM=post] ] 

(15) I ate strawberries with a fork. 

obj[ ID=o1 PRON=I] 

obj[ ID=o2 DET=a class[ fork ] ] 

obj[ ID=o3 PL class[ strawberry ] ] 

evt[ S=o1 ACTION=eat  TENSE=past O=o3 

  rel[ PREP=with OBJ=o2] ] 
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3.3.2.3 Examples 

In this section I will present several examples to illustrate the wide range of forms of 

verb phrases the model supports. To clarify the notation, I will gloss the objects 

referenced in the evt elements using obj[ x ] where x is the lexical expression of the 

object, and other properties in a similar manner. 

(16) Caged parrots sometimes won’t talk. 

evt[  S=obj[ caged parrots ]  ACTION=talk  MODAL=will  NEG  mod[ sometimes ] ] 

 

(17) Jack and Jill will be throwing Bob a party. 

evt[ S=obj[ Jack and Jill ] ACTION=throw  PROG  MODAL=will O=obj[ party ] IO=obj[ Bob ] ] 

 

(18) Lisa was frightened silly by Mark. 

evt[ S=obj[ Mark ] ACTION=frighten TENSE=past PASSIVE  O=obj[ Lisa ]  

 mod[ silly  FORM=post ] ] 

 

(19) The children may have been feeding the squirrels. 

evt[ S=obj[ the children ] ACTION=feed  MODAL=may PERF PROG TENSE=past O=obj[ the squirrels ] ] 

 

(16) is an example of a modal construction which includes a negative and an adverb. 

The adverb is in default position so it needs no form attribute. 

(17) is another example of a modal, but this time the verb is in progressive form and 

is ditransitive. Note the order of the attributes is not significant (unlike properties). 



Chapter 3 – A Text Representation Language  61 

(18) is an example of a passive construction. The subject [ Mark ] is recovered 

through syntactic analysis and the sentence is represented in standard form, with only 

the passive attribute to indicate the original construction. Removing the passive attribute 

would cause the same representation to generate [ Mark frightened Lisa silly ] 

(19) is a complex construction that includes a modal, a perfect and progressive 

aspect, and the past tense. Each of these attributes is independent and may combine to 

represent the various possible surface syntactic forms. 

3.3.2.4 Comparison with Other Representations 

As mentioned in the introduction to FOPC (see Section 2.2.4), most FOPC based 

representations adopt a Davidsonian approach, which reifies events to allow for variable 

arity. In the CAMEO representation, this is not a problem because it does not have the 

constraints of a logical form. CAMEO is designed to be as flexible as the surface form 

with respect to the parameters associated with a verbal event. For example, (20) gives 

representations of a verb phrase for NDPC, QLF, and CAMEO. 

(20) Sally ate lunch with Steve. 

NDPC:  lunch(y)  eating(e) eater(e, sally) eaten(e, y) with(e, steve) 

QLF: quant(exists, A, [lunch, A], 

      [past, quant(exists, B, [event,B], 

         [and, [eat, B, Sally, A], [with, B, Steve]] ) ]) 

CAMEO: evt[ S=obj[ Sally ]  ACTION=eat  TENSE=past  O=obj[ lunch ] 

  rel[ with  obj[ Steve ]  ]  ] 

 

Note the sample NDPC representations I use here and throughout the remainder of 

the thesis, are adapted from Jurafsky and Martin (2000, e.g. p. 527). This is something 

of a pseudo-representation because it glosses the verb‟s tense (e.g. eating ) and thematic 

roles. Currently there is no consensus on how to represent thematic roles, so using these 

high level approximations is warranted. For the purposes of exposition in this thesis, 

this approximation will suffice. 
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From the NDPC representation, it is easy to see how other forms of the verb [ eat ] 

with different arities can be accommodated. For example, the sentence [ Sally ate with 

Steve ] can be derived by removing the eaten(e, y) predicate (along with lunch(y)). Similar 

operations can be used to produce [ Sally ate lunch ] and [ Sally ate ]. 

The QLF representation does not include explicit roles for the predicate [ eat ], so 

deriving the intransitive form requires a corresponding intransitive version of the 

predicate [ eat ] (or some other mechanism). However, QLF does use a reified event 

variable, so prepositional variants can be accommodated. To represent [ Sally ate lunch ] 

for example would be equivalent to removing the inner [ and ] formula, along with its 

second argument , leaving only the [ eat ] predicate.  

In the CAMEO representation, verbal arguments are represented using attributes, 

and these attributes are optional. So transforming (20) into the intransitive [ Sally ate 

with Steve ] is accomplished by removing the verbal object attribute [ O ]. The verbal 

preposition is represented using a rel element, which can also be removed easily to 

produce [ Sally ate ]. 

It is clear that all three representations share a similar treatment of variable event 

arity. However, for the CAMEO representation this is accomplished by modelling the 

surface form, whereas QLF and NDPC rely on the reification of events inspired by 

Davidsonian semantics. 

3.3.2.5 Infinitives 

Infinitive verb phrases often appear as complements in various surface syntactic 

constructions. These phrases are represented in the model using evt elements with an 

extra attribute named INF. All other evt element attributes and forms apply to infinitive 

elements as well. 

Events do not normally function as objects. Standard evt elements represent a finite 

action, which implies a temporal property. In other words, finite events happen at some 

fixed time reference and this property is inherent to the event. Objects, by contrast, do 

not have an inherent finite temporal property. To posit an object in time requires that it 
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be associated with some action, usually via a verb. (If the noun encompasses an action, 

deterministic adjuncts can place it finitely in time, e.g. [ the meeting on Tuesday ]). 

For instance, the finite verb phrase [ Mark slept outside ] describes an event that takes 

place in the past (relative to some context). This phrase will not fit in syntactic slots that 

require an object: [ *[ Mark slept outside ] is fun ]. This is why finite evt elements may 

not be referenced by attributes which take objects. 

But the case is different for infinitives. An infinitive verb phrase behaves more like 

an object, i.e. it has no inherent temporal property. For example, [ to sleep outside ] 

describes the idea of the act of sleeping outside, and is therefore timeless. This infinitive 

verb phrase does fit syntactic slots that require an object: [ [ To sleep outside ] is fun ]. 

To model this behaviour in the CAMEO representation, infinitive evt elements are 

allowed to be referenced by attributes that normally require an object. 

(21) Isabella refused to eat. 

evt[ ID=e1 ACTION=eat  INF ] 

evt[ ID=e2 S=obj[ Isabella ] ACTION=refuse  TENSE=past  O=e1  ] 

In (21) the infinitive verb phrase [ to eat ] is used as the direct object of the finite 

verb [refused]. The id(e1) is marked as infinite with the INF attribute, and id(e2) is 

otherwise a normal construction. Compare this with (22) which uses a noun as the 

direct object. 

(22) Isabella refused the proposal. 

evt[ ID=e2 S=obj[ Isabella ] ACTION=refuse  TENSE=past  O=obj[ the proposal ] ] 

The notion of control can be represented in CAMEO using co-indexing of evt 

attributes. However, unless the syntactic analysis explicitly marks control, it is not 

encoded. For example, in (21) [Isabella] is the subject of id(e1) (the infinitive verb 

phrase [to eat]) but does not appear in a subject attribute as in id(e2). There are several 

reasons to leave the control underspecified in this manner. First, the controlling subject 

can easily be recovered when it coincides with a constituent of the dominating phrase 

simply by referencing the appropriate attribute. Second, explicitly annotating the 
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infinitive verb phrase with the controlling subject binds it to a specific object and 

complicates manipulations, whereas leaving the subject implicit allows the infinitive to 

be freely assigned to another element simply by referencing its ID attribute. Finally, 

determining the controlling subject requires a degree of lexical semantic knowledge that 

is more appropriate to subsequent processing stages. For example, selecting the 

dominant phrase‟s subject or object by default is one simple heuristic, but this will fail 

for certain contexts such as [ She begged the fugitive to leave / She promised the fugitive 

to leave ]. Leaving the controlling subject unspecified allows shallow processing to use 

a default where necessary without constraining deeper processors that may be capable 

of analyzing control more thoroughly.  

The CAMEO representation of infinitives is a more direct model of surface form 

than that given by NDPC representations, which may require the use of a higher order 

lambda operator. For example, the QLF representation of the infinitive construction [ It 

is nice [ to live in Paris ] ] is given in Alshawi (1992, p. 24): 

[pres, 

 quant(exists, A, [state, A], 

 [be, A, 

  [nice1_property, 

   B^quant(exists, C, [event, C], 

            [and, [live1,C,B], [in_location,C,paris1]] ) ] ] ) ] 

Here the predicate [ to live ] is realized using lambda abstraction resulting in a higher 

order construction.  

I have said events which do not have the infinitive attribute set do not behave as 

objects, and may not be referenced by attributes taking objects. However, a reference to 

a finite event can be made using a phrasal complement construction. Here the finite 

event participates in an independent clause, which acts as an object. In the model a 

clause is referenced using a context container (contexts are presented in Section 

3.5.2.1). For example, [ Jorge hoped [ the dirigible would fly ] ]. In this instance a new 

context would be created for [ the dirigible would fly ], and this would be the referred 

contextual complement of [ Jorge hoped ]. 



Chapter 3 – A Text Representation Language  65 

The distinction between evt elements that are referenced by other elements becomes 

significant during analysis and generation because it determines the formation of a 

sentence in the model. An evt element which is not referenced by another element 

becomes the main verb phrase in a context (e.g. a clause or sentence). Other evt 

elements which are referenced serve as verbal complements and do not originate a 

clause. (This will be discussed in Section 4.1 on Surface Realisation). 

3.3.3 Mods 

Syntactic modifiers produce mod elements in the representation. These are primarily 

adjectives and adverbs, but can also include style nouns like [ Mr. ] and [ Mrs. ], etc. 

(Determiners and quantifiers are analyzed directly and denoted using attributes on the 

objects they modify, so this does not apply to them). As mentioned in Section 3.3.1.1, 

mod elements existing at the same level in the representation hierarchy imply 

conjunction, akin to the treatment given by NDPC representations. 

A mod element is positioned inside the container element that it modifies. This 

provides a general and uniform representation of modifiers regardless of what 

constituent is being modified. Thus mod elements are recursive and can modify other 

mod elements. 

(23) the oblivious pedestrian 

 obj[ DET=the class[ pedestrian ]  mod[ oblivious ] ] 

(24) the totally oblivious pedestrian 

 obj[ DET=the  class[  pedestrian ]  mod[  mod[  totally  ]  oblivious  ] ] 

 

(25) the nearest oblivious pedestrian 

 obj[ DET=the  class[  pedestrian ]  mod[  nearest  ]  mod[  oblivious  ] ] 

Sentence (23) shows an example of a simple modifier contained in an obj element. In 

(24) the adverb [ totally  ] is represented using a mod element inside the adjective 
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element [ oblivious ]. The mod element is interpreted in the most local scope, so in this 

case [ totally  ] does not modify the obj element [ pedestrian  ]. Contrast this with (25) 

where both mod elements (ultimately) modify the obj element [ pedestrian  ]. In cases 

such as this where a sequence of adjectives produce mod elements, the order of the 

elements is significant and corresponds to the surface expression of the text. 

A mod element may only contain other mod and rel elements (rel elements are 

described in the next section). The only attributes supported by the mod element are the 

lexical id and the FORM attribute. The lexical id is a reference in the lexis context to the 

surface lexeme. The FORM attribute is used to record the position of the modifier in the 

surface text, relative to the container the mod element appears in (see Section 3.2.1). If 

the container is an obj element, the FORM attribute positions the mod (i.e. adjective) 

before or after the head noun. For a rel element, the FORM attribute determines the 

position of the mod (i.e. adverb) in the verb phrase. The FORM attribute defaults to the 

value pre, which places it before e.g. the verb. In (26), this attribute is set to post, 

which places it after the main verb. A similar approach is used to represent post-

nominal adjectives (e.g. the person responsible). 

(26) He spoke softly 

obj[ ID=o1 PRON=he ] 

evt[ s=o1 ACTION=spoke TENSE=past  mod[ softly  FORM=post ] ] 

A mod element can be contained in any other type of element. When mod elements 

are attached directly to context elements, they represent adverbs acting as phrasal 

modifiers. For example, in the sentence (27), the adverb [ actually ] modifies the phrase    

[ I enjoyed kindergarten ]. A context containing this phrase would also contain a mod 

element representing [ actually ]. This is illustrated in (27) below. 

 

(27) Actually, I enjoyed kindergarten. 

 ctx[  mod[  actually  ] 

   evt[  S=obj[ I ]  ACTION=enjoy  TENSE=past O=obj[ kindergarten ] ] ]. 
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3.3.4 Rels 

Prepositional relations are encoded in the representation using rel elements. Like 

mod elements, rel elements are recursive, imply conjunction, and can be contained by 

any other element. They record the prepositional information of the syntactic 

prepositional phrase, positioning the object they modify in time or space. 

A rel element usually has two attributes. The PREP attribute, which is an index to the 

prepositional lexeme, and the OBJ attribute, which is a reference to the object of the 

preposition. Sentence (28) shows an example of a rel element contained within an 

object element. The prepositional object may instead be a phrasal context functioning as 

a complement, as in (29). In that case the OBJ attribute is replaced by the COMP attribute. 

(28) the man under the stairs 

obj[ DET=the class[ man ]  rel[ PREP=under  OBJ=obj[ the stairs ] ] 

(29) Roger left before the police arrived. 

ctx[ ID=t1 evt[ S=obj[ the police ]  ACTION=arrive  TENSE=past ] ] 

evt[ S=obj[ Roger ]  ACTION=leave  TENSE=past rel[  PREP=before  COMP=t1 ] 

In some constructions, only the PREP attribute is used, such as prepositional phrases 

with an adjective complement, e.g. [ at first ], or prepositional chains, e.g. [ up to ]. In 

these cases the only attribute is the PREP attribute, and the complement is a mod or 

recursive rel element contained within the main prepositional rel element. Sentence (30) 

is an example of a prepositional chain. 

(30) The slug crawled right up to the door. 

evt[ S=obj[ the slug ]  ACTION=crawl  TENSE=present mod[ right ] 

  rel[  PREP=up  mod[ right ] rel[  PREP=to  obj[ the door ]  ] 
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Like the other elements mentioned already, when multiple rel elements occur within 

the same context, the order reflects the surface text expression. Sentence (31) gives an 

example of multiple prepositions modifying the same verb. 

(31) We met on a bus in the rain 

evt[ S=obj[ we ]  ACTION=meet  TENSE=past 

   rel[ PREP=on  OBJ=obj[ a bus ] ] 

  rel[ PREP=in  OBJ=obj[ the rain ] ] 

3.4 Details of the Representation 

In this section I give a treatment of notable lexical syntactic classes and 

constructions, and give details on how they are transformed into the CAMEO 

representation. 

3.4.1 Determiners 

Determiners and quantifiers (except possessive pronouns and genitives which are 

treated later) are recorded as attributes on their nominal complements. These attributes 

have no significance with respect to the representation, since there is no difference in 

the representation and treatment of a definite and indefinite object. The idea of 

definiteness only becomes an issue for deeper processing modules such as reference 

resolution. 

As an example, consider the indefinite reference, [ A man walks into a bar … ] In the 

mind of the listener a conceptual object representing the man has been created. It is 

indefinite in the sense that it does not represent any specific man in the listener‟s 

experience. However, the result is the same as if it was – a conceptual representation 

has still been created. If the sentence is followed later in the discourse by [ The man 

orders a drink ], another conceptual representation of a man is created. If a further stage 

of processing is to resolve these two objects, the determiners will play an important role 

and thus they are preserved in the representation. Sentences (32) and (33) illustrate how 

these two sentences would appear in CAMEO. A reference resolution module could 

later determine that id(o1) = id(o2). 
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(32) A man walks into a bar. 

obj[ ID=o1 DET=a  class[ man ] ] 

evt[ S=o1 ACTION=walk  rel[ into a bar ] ] 

(33) The man orders a drink. 

obj[ ID=o2 DET=the  class[ man ] ] 

evt[ S=o2  ACTION=order  obj[ a drink ] ] 

The situation is similar for certain quantifiers. Existential quantifiers are treated 

neutrally as standard determiners, because the same argument applies as for 

determiners. The scopes implied by these quantifiers do not need to be resolved until a 

logical analysis is attempted. A single conceptual object serves to represent all possible 

scopes. The lexical value of the quantifier is recorded in the determiner attribute as 

before. For example, the sentence in (34) has ambiguous scope for the quantifier 

[every], which is treated in the representation as a determiner. 

(34) Every student passed a test  

obj[ ID=o1 DET=every class[ student ] ] 

obj[ ID=o2 DET=a class[ test ] ] 

evt[ ACTION=pass TENSE=past S=o1 O=o2 ] 

(35) The student passed every test  

obj[ ID=o1 DET=the class[ student ] ] 

obj[ ID=o2 DET=every class[ test ] ] 

evt[ ACTION=pass TENSE=past S=o1 O=o2 ] 

 

Notice that changing the values for the determiner attributes would not alter the 

representation as in example (35), which is not ambiguous. This is a similar approach to 

QLF, which utilizes the [ qterm ] construction to underspecify quantified terms. The 

QLF representation records lexical category information via features on the [ qterm ] 

and these can be analyzed by the resolution phase. In a similar fashion, the CAMEO 
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representation could be passed to a higher level processor for transformation into a 

higher semantic representation such as MRS, by analyzing the determiner attribute for 

the possible scopes of the quantifier. 

In contrast with the treatment of generalized quantifiers, the representation does 

attempt to interpret quantifiers that actually specify quantity, such as cardinal numbers. 

These definite values are assigned to a QUANT attribute and can be interpreted as 

quantifying a homogenous collection as in example (36). 

(36) the two countries 

obj[ DET=the  QUANT=two  class[ country ] ] 

This yields a much more syntactic approach compared with some logical forms, 

which interpret definite quantities using some formulaic representation. For example, 

the QLF representation of (36) in standard PC notation is: 

 x [ eq(x, 2) ] country(y) 

where the relation  x [ eq(x, 2) ] tests the cardinality of the set x and is true when it 

equals two (see Alshawi, 1992, pp. 16-18). 

Pre-determiners like [ both ],  [ all ],  [ some ] are noted in a special attribute, as 

shown in (37).  Interpretation of this attribute is left for post-processing modules. 

(37) all the horses 

obj[ DET=the EXT=all  class[ horse ]  PL  ] 

For the case where the pre-determiner is adverbially modified, the EXT attribute is 

embedded in a special mod element, which can include recursive modifiers, as shown in 

(38). 

 

(38) nearly all the horses 

obj[ DET=the class[ horse ]  PL  mod[ EXT=all  mod[ nearly ] ] ] 
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Post-determiners such as [ many ], [ few ], and [ second ], are also treated as special 

mod elements, having a determiner attribute. This helps to distinguish them from the 

true determiner. Sentence (39) shows an example for the post-determiner  [ second ]. 

(39) The second star on the right 

obj[ DET=the mod[ DET=second ] class[ star ] rel[ on the right ] ]. 

3.4.2 Conjunctions 

Conjunctions are represented explicitly, by expanding the constituents into the 

appropriate number of elements. For instance, a conjunction of adjectives or adjective 

phrases produces multiple mod elements and a conjunction of prepositional phrases 

produces multiple rel elements. The first element serves as a container for the others and 

is used to mark the conjunction. (The CONJ attribute defaults to the value [ and ] if not 

specified). Sentence (40) shows an example of conjoined adjectives, and (41) contrasts 

this with the more conventional intersective construction. 

(40) hot and tired but hungry worker 

 obj[  mod[  hot  mod[  tired  CONJ =and  ]  mod[  hungry  CONJ=but  ] ]  class[  worker ] ] 

(41) dangerous big green machine  

 obj[  mod[ dangerous ]  mod[  big ]  mod[  green  ]  class[  machine  ] ] 

This representation is able to model arbitrary bracketing because it is hierarchical, 

i.e. each container delimits a bracketing context. For example, an adjective phrase is 

given in (42) and (43) with two bracketed syntaxes. Each can be represented depending 

on the hierarchical arrangement of the mod elements as shown. 

(42) red and blue, or green 

mod[  mod[  red  mod[  blue  CONJ=and  ] ]  mod[  green  CONJ=or  ]  ] 

(43) red, and blue or green 

mod[  red  mod[  blue  mod[  green  CONJ=or  ]  CONJ=and  ]  ] 
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This approach prevents having to explicitly implement conjunctive operators. It is a 

more computationally efficient representation because the conjunctive form is a 

variation on the (implicitly conjunctive) intersective form, and retains the recursive 

nature while allowing for arbitrary bracketing. Note that keeping the CONJ attribute with 

the conjoined element simplifies manipulations such as condensation (e.g. see Section 

4.2), because adding or deleting conjoined elements can be done atomically, without 

affecting other parts of the representation. 

A conjunction of nouns forms a collection (collections were briefly mentioned in 

Section 3.3.1.1). A collection is treated as an object containing the members of the 

collection. A conjunction of three nouns will yield three separate obj elements 

representing the constituents, plus a fourth obj element acting as a group container. 

Only the group element will participate in an event. For example, in (44) the subject of 

the evt element is set to id(o4), which is an obj element containing the other three 

objects. Notice id(o4) has the plural attribute (PL) set. All collections are marked plural 

in the representation. 

The explicit representation of the group container, along with the plural attribute, can 

be advantageous for certain tasks such as anaphora resolution. The group container 

element can be processed like other objects, e.g. in a salience table, and the plural 

attribute will allow a coreference resolution algorithm to include any number 

constraints when considering the group object. Without an explicit representation of the 

group, resolving a referring pronoun such as they in this case would require an 

algorithm to consider possible groupings of the singular objects. 

(44) John, Paul, and George sang a song. 

obj[ ID=o4 PL   

  obj[  ID=o1  name[ John ] ] 

  obj[  ID=o2  name[ Paul ] ] 

  obj[  ID=o3  name[ George ] ] ] 

evt[  S=o4  ACTION=sing  TENSE=past  O=obj[  a song ] ] 

The ambiguity between a collective and distributive reading of (44) is retained in this 

representation, because the group object becomes the subject of the verb. Whether the 
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group  [ John, Paul, and George ] sang a particular song together, or whether each 

member sang a different song is deferred to later stages of processing. That is, the initial 

representation models the form of the surface text (via the syntactic parse), which most 

closely resembles a collective reading. Further processing can be used to transform this 

into an explicit representation of the distributive reading by removing the group object, 

and creating a conjunction of the verb phrase by duplicating the evt element for each 

member of the group. (Representation of conjunctions of verb phrases is explained 

below).  

A disjunction of nouns forms a disjunctive collection, which has a similar 

construction but uses the CONJ attribute and does not set the PL attribute. This allows a 

semantic processor to recover the disjunctive relationship of the members of the 

collection as shown in (45). Using both these forms it is possible to compose arbitrarily 

bracketed collections to support constructions such as [ John and Paul, or George sang a 

song ]. 

(45) John, Paul, or George sang a song. 

obj[ ID=o4  CONJ=or  

  obj[  ID=o1  name[ John ] ] 

  obj[  ID=o2  name[ Paul ] ] 

  obj[  ID=o3  name[ George ] ] ] 

evt[  S=o4  ACTION=sing  TENSE=past  O=obj[  a song ] ] 

For verb phrases, a conjunction is represented by separate evt elements, both of 

which are children of the same parent context element. The CONJ attribute is used as 

before to support arbitrary bracketing, with the parent context element serving as the 

container, and the default value of [ and ] assumed when no CONJ attribute is expressed. 

Usually a clausal context contains a single independent evt element (i.e. an evt that 

does not appear as a dependent of any other element), which serves as the main verb. In 

a conjunction of verb phrases, two or more independent evt elements are created, each 

having the same subject and other attributes and properties, depending on the 

construction. Sentence (46) shows an example of conjoined verbs sharing the same 



Chapter 3 – A Text Representation Language  74 

direct object. Sentence (47) shows an example of conjoined verbs sharing only the 

subject. 

(46) The audience applauded and cheered the dancing bear. 

obj[ ID=o1 the audience ] 

obj[ ID=o2 the dancing bear ] 

evt[  S=o1  ACTION=applaud TENSE=past  O=o2 ] 

evt[  S=o1  ACTION=cheer TENSE=past  O=o2 ] 

 

(47) The sailor raised the anchor and hoisted the sail. 

obj[ ID=o1 the sailor ] 

evt[ S=o1  ACTION=raise  TENSE=past  O=obj[ the anchor ]] 

evt[ S=o1  ACTION=hoist  TENSE=past  O=obj[ the sail ]] 

 

This strategy of representing verbal conjunctions is a simple extension of the non-

conjunctive case, and simplifies operations for manipulating the representation, since 

the evt elements can be operated on independently. For example, to change a conjoined 

verb phrase such as (47) into a non-conjoined verb phrase requires only deleting one of 

the evt elements. Because there is no explicit marking of the main verb phrase in a 

clause, either element can be removed and the remaining element is interpreted as the 

new main verb phrase. Simalarly, creating or extending a conjunction of verb phrases 

can be accomplished by adding new independent evt elements. Sentence (48) extends 

the conjunction in (47) by adding a third event element. 

(48) The sailor raised the anchor, hoisted the sail, and headed to sea. 

obj[ ID=o1 the sailor ] 

evt[ S=o1  ACTION=raise  TENSE=past  O=obj[ the anchor ]] 

evt[ S=o1  ACTION=hoist  TENSE=past  O=obj[ the sail ]] 

evt[ S=o1  ACTION=head  TENSE=past  O=obj[ sea ]] 
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3.4.3 Dependent, Coordinated, and Relative Clauses 

Clausal constructions are represented using the context (ctx) element. In Section 

3.5.2.1 I will explain how the context element is used within the global structure of the 

CAMEO representation, but here I will describe some of its uses at the local sentential 

level. 

Every sentence is represented within a ctx element. This extends to embedded 

sentences (clauses) as well. A ctx element is objectified like other elements, and has a 

globally unique identifier which can be referenced in various constructions. 

A subordinate clause is represented as any other sentence, but is contained within 

(actually referenced by) the dominant clause. In example (49), the dependent clause 

[dinner was ready] is placed inside the dominating event, in this case [ Beth said ]. The 

complementising conjunction is encoded as a CONJ attribute. 

(49) Beth said that dinner was ready. 

ctx[  evt[  S=obj[ Beth ] ACTION=say  TENSE=past 

 ctx[  CONJ=that evt[  S=obj[ dinner ] ACTION=be  mod[ ready ] ] ] ] ] 

Coordinated clauses are treated in a similar manner. Each clause produces a separate 

instance in the representation, and the conjoined clause appears within the context of the 

original. The conjunction is also recorded in this case as an attribute on the conjoined 

clause. This is done so the same processing and representation can accommodate both 

subordinate and conjoined phrases. An example is shown in (50). 

(50) Mark offered her money, but she wouldn’t take it. 

ctx[  evt[  S=obj[ Mark ] ACTION=offer  TENSE=past IO=obj[ her ] O=obj[ money ]] 

  ctx[  CONJ=but  

   evt[  S=obj[ she ] ACTION=take  MODAL=would  NEG  O=obj[ it ] ] ] ] 

A relative clause is consistent with the previous approach. The relative clause is 

contained within the object it modifies, with no conjoining attribute, as in example (51). 
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(51) The man who bought the ticket is gone. 

ctx[  evt[  S=obj[ the man  

 ctx[  evt[  S=obj[ who ] ACTION=buy  TENSE=past O=obj[ the ticket ] ] ]  

  ACTION=be  mod[ gone ] ] ] 

The CAMEO representation of clauses, like the approach taken for conjunctive mod 

elements, gives a uniform and computationally efficient representation. That is, 

conjunctive phrase constructions can be represented and processed in a similar manner 

to embedded phrases, and all recursive elements have a similar form. 

3.4.4 Genitives and Possessive Pronouns 

The possessive relationship is represented using the prop element, which references 

some possessed object. For example, (52) shows two (unspecified) objects in a 

possessive relationship, where id(o2) possesses  id(o1). 

(52) obj[ ID=o1]  

obj[ ID=o2 prop[ OBJ=o1 ] ] 

 Simple possessive syntactic forms such as [ Bill’s hat ] fit easily with this approach, 

where there is a possessive relation between two objects. But because the semantics of 

the relationship are underspecified, this representation also holds for more abstract 

meanings, such as the case where [ Bill ] is the maker and not the owner of the [ hat ]. 

Other examples include  [ summer’s heat ] or [ Julie’s friend ], where the possessive 

relationship is more ambiguous. A similar argument was made for the case of 

compound nouns (see Section 3.3.1.1 on Class above), where the relationship between 

compound class nouns is left unspecified. Notice that using the possessive object 

representation here distinguishes the surface form of [summer’s heat ] from the nominal 

compound [ summer heat ]. Semantically the difference may be unimportant, but that is 

left for higher-level processing to interpret. 

The representation is constructed as follows. When a genitive or possessive pronoun 

modifying a noun is encountered, two obj elements are created. The first is an element 

representing the head noun as described in Section 3.2.1. The other element is used to 
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represent the possessive noun. Even though the reference to this noun is oblique, the 

possessive noun must still be an object and thus merits a representation. The two obj 

elements are linked in a possessor/possessed relationship via a property element (prop) 

placed inside the possessor object which references the possessed object. A simple 

example is shown in (53). 

(53) Her house 

obj[ ID=o1  class[  house  ] ] 

obj[ PRON=her  prop[  OBJ=o1  ] ] 

By comparison, higher-level semantic representations which utilize lexical semantic 

resources, will attempt to do some interpretation on the lexical terms to distinguish 

cases like those shown in (54) and (55) 

(54) Luke’s father 

father_of(Luke, x)\ 

(55) the kitten’s paw 

kitten(y)   paw_of(y, x) 

Modifiers such as genitives are recursive and more complex constructions are thus 

possible. However, each genitive produces an object with a property to the next object 

in the syntactic chain. Example (56) shows a (somewhat contrived) example and the 

resulting representation. 

(56) His brother-in-law’s sister’s cousin’s podiatrist 

obj[ ID=o1 PRON=he  prop[ OBJ=o2 ] ] 

obj[ ID=o2 class[ brother-in-law ] prop[ OBJ=o3 ] ] 

obj[ ID=o3 class[ sister  ] prop[ OBJ=o4 ] ] 

obj[ ID=o4 class[ cousin  ] prop[ OBJ=o5 ] ] 

obj[ ID=o5 class[ podiatrist ] ] 
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Genitives can also be applied to collections to produce both possessor collections 

and possessed collections, in the same recursive structure. Example demonstrates a 

conjunctive collection functioning in both a possessor and posessee relationship. 

(57) His brother and sister’s dog 

obj[ ID=o1 PRON=he  prop[ OBJ=o2 ] ] 

obj[ ID=o2  CONJ=and  prop[ OBJ=o3 ] 

  obj[  ID=o1  class[ brother ] ] 

  obj[  ID=o2  class[ sister ] ] ] 

obj[ ID=o3 class[ dog ] ] 

 

This flat approach of representing the possessive relation through the prop element is 

dictated by the semantic orientation of the representation, i.e. genitives and possessives 

are no different than other objects and therefore must occupy the same level. The 

advantage of this arrangement is that it simplifies tasks such as anaphora resolution 

(since each object in the genitive chain is explicit and can be easily enumerated), while 

still marking the possessive/genitive relation.  Using a hierarchical representation would 

negatively impact processing, since nouns could then appear at all levels in the 

representation, not just the first. 

The property element allows a recursive approach to realising possessive 

constructions. During realisation, an object is checked to determine if it is possessed. If 

a possessor is found the possessor is realised first. Applying this recursively will realise 

the correct surface form of arbitrary possessive constructions from the representation.  

3.4.5 Copular Constructions 

Copular constructions including predicative adjectives are not interpreted and 

reduced to their semantic equivalent, as in some representations. Instead they are treated 

as events similar to other verbs. For example, in some representational approaches, 

sentences such as (58) and (59) are represented as predicates over a single instance 

variable.  



Chapter 3 – A Text Representation Language  79 

(58) Sylvia is a necromancer 

necromancer(Sylvia) 

(59) The river is wide 

river(R)   wide(R)  

(60) evt[ S=obj[ name[ Sylvia ]] ACTION=be O=obj[ DET=a  class[ necromancer ] ] ] 

(61) evt[ S=obj[ DET=the class[ river ] ]  ACTION=be  mod[ wide  ] ] 

Contrast this with the representations in (60) and (61) for the CAMEO 

representation. The CAMEO representation is closer to the QLF, which uses states to 

represent copular constructions. States under QLF function much the same as events, 

allowing for participation in arbitrary constructions through reification. Without this 

reification, verbal prepositions on copular constructions become problematic. For 

example, the sentence [ The river is wide by the sea ] would be difficult to represent using 

the approach in (59) because the preposition [ by the sea ] would most likely have to be 

linked with [ river ], which would not capture the entire meaning. Using the evt element 

as in (61) allows the preposition to modify the event rather than the object, essentially 

representing the meaning as “the event of the river being wide happens by the sea”. The 

same mechanism would allow other event semantics to apply to copular constructions, 

such as temporal logic.  

3.4.6 Passive Construction 

In contrast to copular constructions, passive verb constructions are interpreted and 

represented using a canonical form. An attribute (PASSIVE) is set on the evt element to 

record the passive voice so that the passive surface form can be recovered when 

necessary. Otherwise, there is no difference in the representation compared with other 

non-passive events. This strategy prevents having to support a specialized form for 

passive events in post-processing modules. 

Decoding the passive form in the model consists of setting the subject (if it exists) 

and object of the verb correctly. For example, the sentences (62) and (63) both share the 

representation in (64) (except for the PASSIVE attribute ): 
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(62) A good time was had by all. 

(63) All had a good time. 

(64) obj[ ID=o1 DET=all ] 

obj[ ID=o2 DET=a mod[ good ] class[ time ] ] 

evt[ ACTION=have TENSE=past S=o1 O=o2  PASSIVE ] 

Giving a literal interpretation of (62) would produce the representation shown in (65). 

Here the sentence is represented as a past participle (via the PART evt attribute), with a 

verbal preposition. 

(65) obj[ ID=o1 DET=all ] 

obj[ ID=o2 DET=a mod[ good ] class[ time ] ] 

evt[ ACTION=have TENSE=past  PART S=o2 

  rel[ PREP=by  OBJ=o1 ] ] 

The advantage of normalizing the passive form of the sentence, rather than 

representing the passive construction, is that it allows passive sentences to be processed 

in the same way as non-passive sentences. Without this normalization, shallow tasks 

may incorrectly process passive constituents. For example, distributional processing 

will include the subject of a passive verbal construction with non-passive verbal 

subjects. This could possibly degrade the distributional data because a passive subject 

actually receives the action of the verb, rather than initiates it as with a non-passive 

subject.  For instance, distributionally determining objects that can eat might 

erroneously include cake if the passive sentence [ The cake was eaten by the children ] 

is found in the corpus. If the representation does not intrinsically normalize passive 

sentences, each processing task will need to implement its own interpretation of passive 

construction, or risk incorrectly analysing passive constituents. 

There are several cases where it is difficult to correctly identify passive 

constructions, and this is one of the difficulties with a normalized representation. A 

general rule for adopting the verbal prepositional complement as the passive subject 

will incorrectly identify prepositions acting in other capacities such as locative or 

instrumental. For example, the sea will be incorrectly realized as the subject in the 

passive sentence [ The ceremony was held by the sea ]. Additionally, several 



Chapter 3 – A Text Representation Language  81 

prepositions can be chained together making it difficult to recover the passive subject 

correctly as in [ The victims were rescued by helicopter by the army ]. 

3.4.7 Dative Constructions 

Unlike the normalization of passive constructions, the alternate forms of ditransitive 

verbs are represented directly. The dative alternation is represented with the indirect 

object recovered explicitly, and the non-dative (prepositional) form is represented in the 

model using a standard rel element. Examples (66) and (67) show instances of the 

dative and non-dative representations (respectively) in the model. 

(66) Mark told Mary the news 

evt[ S=obj[ name[ Mark ] ]  ACTION=tell 

  IO=obj[ name[ Mary ] ] O=obj[ DET=the class[  news ] ] 

(67) Mark told the news to Mary 

evt[ S=obj[ name[ Mark ] ]  ACTION=tell  ] 

  O=obj[ DET=the class[  news ] rel[ PREP=to OBJ=obj[ name[ Mary ] ] 

This strategy simplifies the process of transformation into the representation 

because, like the interpretation of the passive construction, the preposition in a non-

dative ditransitive construction can be ambiguous. For example, in the sentence [ The 

owner took his dog to the vet. ], the preposition does not mark an indirect object. 

Replacing the verb took with gave changes the function of the preposition so that it does 

mark the indirect object. Distinguishing these cases would require lexical knowledge of 

verbs that license ditransitive constructions. 

Although normalizing the non-dative construction would be advantageous for the 

same reasons as normalizing the passive construction, the non-dative construction does 

not have the same disadvantages when represented directly. There is no shift in 

grammatical function for constituents in a dative construction, as appears with the 

passive form. For this reason, it is less important for the normalization of dative 

constructions to be incorporated in the representation, and the requirement for lexical 

resources makes the dative normalization prohibitive. 
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3.4.8 Reflexives 

The representation attempts to interpret reflexive constructions thereby instantiating 

a single obj element to represent both reflexive references. The reflexive pronoun is 

normalized and added as a PRON attribute on the object. This preserves the gender 

information of the reflexive pronoun for later use. Like the treatment of the passive verb 

alternation, encoding the reflexive construction alleviates some of the complexity for 

later processing stages. In this case, one less object is included in the representation, 

reducing the ambiguity for modules such as coreference resolution. 

Although reflexive pronouns are often explicitly tagged by the morphological 

analyser, the syntactic analyser may not indicate the reflexive relationship (beyond 

normal syntactic representation). However, the majority of reflexive constructions do 

not require a sophisticated interpretation to recover and can be accommodated in the 

rules of the representational transformation. Sentence (68) shows an example of the 

representation of a reflexive construction. 

(68) Zachary congratulated himself 

obj[ ID=o1  name[ Zachary ] PRON=he ] 

evt[ S=o1  ACTION=congratulate  TENSE=past o=o1 ]  

3.4.9 Plural Nouns 

The treatment of plural nouns has already been introduced in Section 3.3.1.1 on 

conjunctions (see example (11)). I explained how heterogeneous collections are treated 

using a single object as the group container, with the plural attribute set. Homogenous 

collections are also represented as object elements with the plural attribute (PL) set. 

However, these objects do not act as explicit containers for other objects. The plural 

attribute is the only indication that they are plural. 

Homogenous collections may either be plural class nouns [ dogs ], [ trepanners ], or 

unspecified collections [ The Board of Regents ]. There is no real difference among these 

representations -- each represents a collection of objects. In the case of class nouns the 

members are implied. In the case of unspecified collections the members are unknown. 
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Examples (69) and (70) show representations of a plural class noun, and an unspecified 

collection, respectively. 

(69) the dogs 

obj[ DET=the  class[ dog ] PL ] 

(70) The Board of Regents 

obj[  name[  The Board of Regents ] PL ] 

This approach is similar to QLF, where the category features of a qterm carry the 

singular/plural attribute.  

In the CAMEO representation, if a quantity is used to modify the collective noun, it 

is noted in the QUANT attribute. If present, the QUANT attribute gives the size of the 

collection. This may be a numeric value (three, 101), or something more vague (few, 

much). An example of a plural class noun with numeric modification is shown in (71). 

(71) 500 dingos 

obj[ QUANT=500 class[ dingo ] PL ]. 

(Definite quantification was previously discussed in detail in Section 3.4.1 on 

determiners.) 

3.4.10 Complements 

Some syntactic constituents allow for phrasal or verbal infinitive complements. 

Examples include adjectives ( sad [ to leave ] ) and certain nouns ( the hope [ Spring will 

arrive early ] ). Verbal infinitives were already discussed in Section 3.3.2.5. As I 

showed, the ID attribute on an infinitive event can be referenced as a constituent in finite 

verbal events. When infinitives complement a non-verbal constituent, the infinitive evt 

element is included within the scope of the container element through the use of 

indirection, by adding a placeholder evt element which references the infinitive evt 

element‟s ID. This allows infinitive evt elements to remain at the same level as other evt 

elements in the context, and still treat inifitive modifying complements similar to other 
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modifiers such as mod or rel elements. Example (72) shows a sentence with an 

adjective phrase (mod element) with an infinitive verbal complement. 

(72) Hal is happy to comply 

evt[ S=obj[ Hal ]  ACTION=be  mod[ happy evt[ ACTION=comply INF] ] ] 

Phrases acting as complements are referenced by the ID attribute of the local context 

element that contains them (context elements are detailed in the next chapter). Using the 

COMP attribute set to its context ID, a phrase can complement a constituent in the same 

manner as an infinitive verb phrase. Example (73) shows the representation for a noun 

with a phrasal complement. 

(73) the fact the defendant was guilty 

obj[ DET=the class[ fact ] comp[ the defendant was guilty ] ] 

 

3.5 Extensions 

The CAMEO language described in the previous sections is designed for the 

representation and processing of text at the sentence and phrase level. To extend the 

representation beyond this basic level of analysis requires a treatment of other aspects 

of textual documents, which I will briefly introduce before describing the specific 

features and extensions added to CAMEO to address these properties. These extensions 

are designed to tightly integrate the lexical, linguistic, and pragmatic components of text 

processing. 

3.5.1 Motivation 

One important aspect of semantic processing is lexical semantics. Beyond providing 

for the basic lexical representation of words, to be useful for semantic processing, a text 

representation should have some means of organizing and integrating extended lexical 

information, i.e. the LKB. Using a common representation for the LKB and other 
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representational components has the advantage of simplifying the sharing of 

information among processing modules, and reuse of supporting utilities. 

Additionally, the support of a lexical component should allow for the collection and 

integration of distributional information. For instance, information about word 

frequencies, collocations, and other distributional events should be easily accessible 

from within the representation. This facilitates the integration of distributional 

processing techniques concurrently with other symbolic processing. 

For the representation to allow for more advanced analysis beyond the sentence 

level, a strategy for representing contexts is also necessary. For logical semantic 

processing, disambiguation is often relative to some context. An explicit representation 

of contexts facilitates transformation into a contextual logic (e.g. Buvač, 1996). 

Additionally, text has organization apart from grammar and syntax and this is useful 

information that should be made available to processing modules. For instance, 

documents are sometimes organized with chapters, sections, etc. These may have titles 

or other marked text which can be given more weight during analysis if context is 

considered, rather than processing them simply in line as free text. In Chapter 4 I will 

develop the contextual representation of document structure in detail, and in Chapter 5 I 

will explore contextual issues in symbolic processing. 

 

3.5.2 CAMEO Extensions 

The following sections extend the basic CAMEO representation to include element 

containers for the lexis, classes, assert, and process contexts. These elements provide a 

uniform representation and structure for distributional and contextual processing. 

3.5.2.1 Contexts 

One of the most important novel features of the CAMEO representation is the 

inclusion of a generalized representation for contexts. A CAMEO context is a local 

space that defines the syntactic, pragmatic, and semantic reference point for a fragment 

of the representation. Contexts were briefly mentioned previously as container elements 
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for sentences and phrases. In the extended representation, contexts are expanded to 

include all document components and organizational structures. Every logical grouping 

of text, whether implicit or explicit, can be marked using the context element. 

There are several advantages to having this flexibility for representing contexts in the 

representation. Since a context is a container for other elements, it provides an anchor or 

reference for otherwise unconnected linguistic events. For example, in the case of 

sentence fragments or a failed or partial parse, there will often be orphaned NPs that are 

not lexically connected with other syntactic components. Some representations require 

all lexical components to be connected (directly or indirectly) (e.g. Trujillo, 1995, p. 

90). The CAMEO representation does not have this restriction as elements are 

independent and can appear anywhere inside a context. The context element provides a 

default relation between these otherwise unconnected linguistic objects in the 

representation. 

This lack of constraints on the relations among elements in the CAMEO 

representation means there are no special requirements on the initial processing. Robust 

and incremental methods can be used to translate free text into a CAMEO 

representation, including partial parsers, noun chunkers, and named entity recognizers. 

The use of contexts gives enough structure to the representation that processing using 

these types of models can be leveraged effectively. 

Using a contextual model also provides reference frames for coreference resolution 

and other processing tasks that can take advantage of contextual information. In the 

next section I describe the organization of the various contextual elements that make up 

the representation in the system. 

Contextual Hierarchy 

Figure 3.5.2.1 shows a diagram of the contextual hierarchy in the representation. The 

highest level context is the root context, which contains all components of a CAMEO 

representation. No other context may contain a root context. The root context contains a 

single instance of the lexical context, the classes context, the assert context, and the 

processing context. The lexical context is used to implement the lexical database. It 

contains the individual lexemes available in the representation. The classes context is 
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used to hold lexical class information. The processing context is used to store dynamic 

information from processing the assert context, such as coreference resolution. The 

lexical, classes, and processing contexts will be discussed in the following sections. 

The assert context is the container for representations of textual entities. It may contain 

any number and type of contexts except the root, lexical, and processing contexts. New 

text representations are placed in this context for further processing. 

 

A new context is created for each document or text entity that is to be processed in 

the system. The context specifies the type of text entity it was derived from (document, 

dialogue, book, news article, etc.). Other pragmatic information may be added 

depending on the sophistication of the input pre-processing and the source data. For 

instance, the source data may include mark-up for a reference URL, an author, the date 

of publication, etc. If these are not explicitly marked in the document, they might 

appear as part of the free text. In that case they could be processed after the initial 

representation and later moved back into the context header. (See Section 5.7 5.7.2for 

examples of representations using the contextual elements described in this section). 

Further contexts may be created depending on the document type and the source 

text. Contexts may be created for book chapters, scenes in a play, captions, footnotes, 

root 
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Figure 3.5.2.1 – Contextual hierarchy of CAMEO 
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turns in a dialogue, etc. These types of contexts are abstract containers and do not have 

an inherent treatment in the representation, other than providing the facility for marking 

the representation for reference and further processing.  

The next fundamental structure of context is the sentence. A sentential context is 

used to mark every formal segment of text that should be processed independently. For 

documents this is a full and complete sentence, or the closest approximation. For 

spoken corpora this could be an utterance. For other structured text it could be an 

element of a larger collection. The segmenting of the document into these units is a 

committed processing decision that must precede all others. If multiple sentence 

segmentation algorithms are used, separate copies of the entire document context must 

be included. 

The sentential context is the basic unit of reference in the representation. In order for 

multiple independent processing sources to operate on the data, some means must exist 

for a common reference to the source text. Each sentential context thus includes the 

original source text. Each word in the sentence can then be uniquely indexed relative to 

the context. This also provides a means for developing and testing independent stages 

of a system of processing modules. 

For instance, a text simplification module may split a sentence into two or more, and 

a named entity module may then be run on the original sentence. The original reference 

text can be used to correlate the named entities with the new text. Note that the text 

simplification module would create two new sentential contexts (with appropriate 

identifiers) in the original sentential context. 

The basic local linguistic processing occurs within the context of a sentence. Usually 

this includes morphological processing, part of speech tagging, and parsing. These 

functions might be processed independently using the representation to store state 

information, or they may be integrated in a single processing component. At some point 

the sentential text needs to be transformed into the CAMEO representation. 

The last type of context defined is the phrasal/clausal context. This context has the 

smallest scope and corresponds to a phrasal unit in a phrase structured grammar. It is 

larger than a noun or verb phrase, but not necessarily a complete sentence. Phrases are 
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used to represent the context of a complement, adjunct, parenthetical comment, etc. 

Phrasal contexts mirror the structure of natural language and are thus freely recursive, 

allowing a treatment of quotes within quotes, as well as prepositional chains and other 

recursive constructs. 

If a sentence includes another complete sentence, such as quotations, dialogue or 

sentential complements, the phrasal context is used rather than a new sentential context. 

This is to distinguish between a sentential context that references the source material, 

and a sentential context that has been decided during processing (which must use a 

phrasal context). Thus by iterating over sentential contexts, a processing module can 

traverse the original sentences in a document. 

As mentioned earlier, sentential contexts can be embedded in other sentential 

contexts, but only when a processing component has created new material (not simply 

transformed the existing text). In the example of text simplification, it is likely that the 

new sentences will include new textual content. In order to ensure it is referenced with 

the original text the new sentential contexts are embedded in the original sentential 

context. 

Multiple analyses of a sentence can be included in a sentential context as sister 

phrasal contexts. However, there is currently no inherent support for distinguishing 

these, so independent processing modules expecting multiple analyses would have to 

treat these as a task-specific representation. Standard processing uses the first phrasal 

context within a sentential context as the active analysis. 

3.5.2.2 Lexis Context 

The lexis context is a container for all lexical information used in the representation. 

Each entry in this context is a lex element representing a lexeme. The lex element is 

comprised of an ID and a graph of the unmorphed stem of the lexeme. 

The ID of the lex elements are referenced by the other elements in the representation 

(except for class elements as explained below). Using this level of indirection helps to 

facilitate collection of distributional information for statistical processing by providing a 
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globally unique numerical identifier which is used throughout the corpus in each 

instance of the lexeme.  

3.5.2.3 Classes Context 

Besides the graphs of the individual raw lexemes, the representation includes a 

context for lexical class information. Each entry in the classes context is a classdef 

element which potentially contains lexical semantic information about a nominal class. 

The classdef element has an ID attribute which is referenced by class elements residing 

inside an obj element. (The class element is used to represent a common noun as 

discussed in Section 3.3.1.1). 

 Figure 3.5.2.3 shows a representational fragment illustrating the relationship 

between a lexeme, a class definition, and an object of that class. Within the assert 

context of this example there is a single ctx element containing a single obj element. 

The obj element contains a class element referencing the classdef defined within the 

classes context. Note that there are two classes defined, each referencing the same 

lexeme [ bank ]. This is an example showing how multiple senses for a lexeme can be 

represented. The ID attribute of the class definition uniquely identifies the sense of a 

lexeme. In this example the object has been determined to be using the second sense 

(ID=c2) of the [ bank ] class. 



Chapter 3 – A Text Representation Language  91 

 

Using the classes context, lexical semantic information can be integrated into the 

framework. Each classdef element is a container which can potentially include lexical 

semantic information about a particular sense of a lexeme. For example, information on 

the qualia structure of a noun (Pustejovsky, 1991) could be represented using attribute 

value pairs within the classdef element. Note that other syntactic categories (besides 

common nouns) could be included in the classes context, however currently only 

common nouns are treated in this manner. 

Statistical information for individual classes can be extracted from the representation 

in the same way as for raw lexemes. The class ID attribute can be used to search the 

assertional context for instances of the class, and from this distributional information 

can be collected. Individual processing modules can then store arbitrary statistical 

information inside the class container using proprietary elements. (For a more detailed 

discussion see Chapter 6). 

3.5.2.4 Processing Context 

The CAMEO language is designed to be a dynamic, incremental representation. The 

processing context of the representation is used to maintain information about the state 

of a process. Running various processing modules on a text entity has a cumulative 

lexis 
[ 

  lex[  ID=l23 GRAPH=bank  ] 
] 

classes 
[ 

  classdef[  ID=c1 LEX=l23  ] 

 classdef[  ID=c2 LEX=l23  ] 
] 

assert 
[ 
  ctx 
   [ 

  obj[ class[ IDREF=c2 ] ]  ] 

  ] 
] 

 Figure 3.5.2.3 – Sample representation of class definitions 
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effect and the state of the system is preserved across processing instantiations. In this 

way the state evolves as more information is processed. 

The principle element in the processing context is the eq element, which contains an 

equivalence class for an obj element (i.e. individual) in the representation. An 

equivalence class contains links to all the references made to an individual in the 

assertional context. This requires a coreference resolution module to process the 

assertional information and create the equivalence class. Note, however, that this is not 

limited to a single document but can run over the entire assertional context. Equivalence 

classes link sentences about an individual throughout the assertional context, providing 

a means for semantic processing beyond the local syntactic compositional level. 

As coreferences are accumulated inside an equivalence class, the information about 

the corresponding individual evolves. Thus, the equivalence class becomes a container 

for the knowledge discovered about an individual in a text (or texts). Semantic 

processing could then be applied to interpret the information in an equivalence class and 

derive semantic properties of the individual. This would produce a function similar to 

the profiles described in Bergler (1995, pp. 111), which are collections “of all properties 

that a text asserts or implies about a particular discourse entity.” The advantage of using 

CAMEO over profiles, besides the integration with other aspects of processing, is that 

the equivalence classes collect syntactic and pragmatic information through the object 

references, as well as derived semantic properties.  

The processing context is also the container for general world knowledge (i.e. KB). 

The same representation as employed in the assert context can be used to represent this 

information, although higher level semantic derivations would probably be necessary. 

The reason this type of information belongs in the processing context, not the 

assertional context as might be expected, is because it is somewhat dynamic in nature. 

In fact, the intent is to allow the semantic processing of the assertional context to derive 

some of this general world knowledge. As such, it makes more sense to segregate this 

internally derived information from the more static, imported assertional information.  

However, it should be noted that dynamic information is not limited to the 

processing context, and one of the strengths of the representation is that it facilitates a 

black-board between processing modules. Results from intermediate processing tasks 
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can be stored using elements or attributes on the representation in the assertional 

component, for later use by other processing tasks. 

3.6 Formal Syntax of the CAMEO Language 

The CAMEO representation language is implemented using XML, and can therefore 

be shown to be a regular context-free language (Berstel and Boasson, 2000). The 

CAMEO syntax is based on elements and attributes, where elements are freely 

recursive and attributes are not. This section gives the formal syntax for the CAMEO 

representation language.  

3.6.1 Formal Syntax 

The syntax of the CAMEO representation is given in abstracted EBNF below, 

following the typographical conventions used throughout the thesis. Non-terminals are 

printed using capitalized italics, e.g. Relation. Terminals are printed using lowercase (or 

small-capitals) font, e.g. obj, QUANT, and several. The EBNF operators used in the 

notation are: exclusive OR ( | ), zero or more ( * ), zero or one ( ? ), and one or more    

( + ). 

Top ::= Root 

Root ::= root[ Lexis Classes Assert Process ]  

Lexis ::= lexis[ Lex* ]  

Classes ::= classes[ ClassDef* ] 

Assert ::= assert[ TopContext* ] 

Process ::= process[ EqClass* ]  

Lex ::= lex[ ID=Id GRAPH=Graph ] 

ClassDef ::= classdef[ ID=Id LEX=Graph ] 

TopContext ::= context[ ID=Id TopContextType ( OrgContext | 
SentenceCtx)* ] 

EqClass ::= eq[ID=Id ObjectRef* ] 

OrgContext ::= ctx[ ID=Id OrgCtxType (OrgContext | SentenceCtx)* ] 

SentenceCtx ::= ctx[ ID=Id TYPE=sentence (ClauseContext | Object | Event 
| Relation | Modifier)*] 

ClauseContext ::= ctx[ ID=Id TYPE=clause Conjunction? (ClauseContext | 
Object | Event | Relation | Modifier)* ] 

TopContextType::= TYPE=(doc | book | article | dialogue ...) 

OrgCtxType ::= TYPE=(chapter | section | scene ...) 

Conjunction ::= CONJ=( and | but | or ) 

Object ::= obj[ ID=Id ObjFeatures ObjectRef* ClassRef* Modifier*  

Relation* ]  

Modifier ::= mod[ LEX=<lex identifier> ModFeatures Modifier* InfinitiveRef* 

Relation* Complement* ] 
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Relation ::= rel[ Preposition ObjectRef ComplemenReft? Form? Modifier* 

InfinitiveRef* Relation* Complement*] 

Event ::= evt[ ID=Id Action Subject Object IndirectObject ComplementRef 

EventFeatures Relation* Modifier* InfinitiveRef* ] 
 

ObjFeatures ::= Quantifier? Plural? Determiner? Gender? Animacy? Pronoun? 

Question? Person? EqClassRef? 

ModFeatures ::= Quantifier? Plural? Determiner? Negative? Form? 

EventFeatures ::= Tense? Perfect? Participle? Progressive? Passive? Modal? 

Negative? Infinitive? Form? 

 

EqClassRef ::= EQ=<equivalence class identifier> 
 

ClassRef ::= class[ IDREF=<class identifier> ] 

ObjectRef ::= obj[ IDREF=<object identifier> ] 

InfinitiveRef ::= inf[ EVT=<evt identifier> ] 

ComplementRef ::= COMP=<context identifier> 

 

Id ::= <unique identifier> 

Quantifier ::= QUANT=(many | few | more | several | 1 | 2 | 3 ...) 

Plural ::= PL 

Determiner ::= DET=( a |the | this | that ... ) 

Gender ::= G=(f | m | n) 

Animacy ::= A 

Pronoun ::= PRON=(he | she | it |they ...) 

Question ::= QUEST=(who | what | where |why ...) 

Person ::= PERS=(1 | 2 | 3 ) 

Negative ::= NEG 

Preposition ::= PREP=(on | to | over | under ...) 

Tense ::= TENSE=(past | future | prog) 

Perfect ::= PERF 

Progressive ::= PROG 

Passive ::= PASSIVE 

Modal ::= MODAL= (could | will | would ...) 

Form ::= FORM= (pre | post | preaux | postaux | ...) 

Infinitive ::= INF 

The Id is a unique identifier generated by the framework. It is used to reference an 

element, and can appear as an attribute value on certain referring attributes. 

3.7 A Practical Implementation 

The CAMEO language is a relation defined between surface text and a 

computational representation. An initial stage of processing is required to transform the 

raw surface text into the internal form of the representation. In this section I will report 

on an implementation of the CAMEO language, and the corresponding processing that 

illustrates how text is transformed into the representation. 
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The CAMEO representation language is designed to support the encoding of 

multiple levels of linguistic analysis from a wide range of sources. Each source requires 

an independent processing module to transform its output into the CAMEO language 

(unless the source supports the CAMEO representation internally). For example, the 

initial implementation of CAMEO was developed using the Link Grammar Parser 

(Sleator and Temperly, 1993) by creating an independent processing module to 

transform the Link Grammar output into the CAMEO representation. The current 

implementation, which I will be discussing at length in this section, transforms the 

output of the probabilistic parser included in the RASP suite of text processing tools 

(Briscoe and Carroll, 2002). Although this transformation is an independent process, the 

RASP parser was a crucial part of the development of the CAMEO representation. 

Additionally, many constructions in the representation necessarily follow the analyses 

of the parser. For these reasons, in the next section I will first introduce the syntactic 

processing performed by the RASP suite. (I used several versions of the RASP tools 

over the course of this work, ranging from Version 2 with tsg12 through Version 3.1 

with tsg15; however the syntactic processing is similar across all versions). 

3.7.1 RASP Syntactic Processing 

The RASP toolkit processes text serially through a series of modules, ultimately 

producing a set of statistically ranked deep parses. For the purposes of developing the 

CAMEO representation, multiple parses were not considered and the highest ranked 

parse was selected in each case. The following steps describe the processing of the 

individual modules in the RASP toolkit (see Briscoe and Carroll, 2002 for full details): 

1 The first stage is tokenization of the raw text using a deterministic finite-state 

transducer. This includes deciding word and sentence boundaries in the context 

of white space and punctuation. The sentence boundaries determined by RASP 

are used as the sentential contexts in the CAMEO representation (see Section 

3.5.2.1 above). 

2 The next stage is a statistical tagger which assigns PoS and punctuation tags to 

individual words. The tagger is implemented using a HMM and assigns 

probabilities to each tag for ranking purposes. A configurable threshold is used 

to select tags to be included for processing in the following stage. 
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3 This stage performs a (deterministic) morphological analysis on each of the 

word+tag pairs, resulting in a lemma+morphological suffix based on the word 

and its PoS tag. 

4 This stage parses the multi-tag lattice using a manually-constructed grammar of 

PoS and punctuation tags. 

5 Finally, the individual parses are assigned a probabilistic ranking based on the 

syntactic analysis and available lexical information. 

The RASP toolkit is a flexible system that is capable of generating several output 

formats. Because the CAMEO representation attempts to represent as much of the 

linguistic information as possible, the transformation module was developed to use the 

detailed syntactic parse tree output of RASP. Figure 3.7.1 shows a sample of the parse 

tree format produced by RASP. Each phrase of the parse is represented by a node in the 

tree labelled with a phrasal category followed by information internal to the parser. 

Words of a sentence are shown as lemmas concatenated with their corresponding PoS. 

For example, the prepositional phrase in Figure 3.7.1 begins with the node labelled 

|PP/p1|, followed by the preposition [ in ] represented by |in_II|. 

The top level node is labeled with [ T ], and a successful parse of a sentence will be 

labeled with [ S ]. A partial parse will be returned where a complete parse cannot be 

found, consisting of a sequence of parses covering the input.  

 

3.7.2 Transformation 

The transformation from the RASP parse tree to the CAMEO representation is 

computed using an independent transformation module, customized for the specific 

(|T/txt-sc1/----| 

 (|S/np_vp| (|NP/n1_n1-name/-| 

  (|N1/n| |Oscar_NP1|)) 

  (|V1/modal_bse/-| |should_VM| 

   (|V1/be_pp/--| |be_VB0| 

   (|PP/p1| 

      (|P1/p_np| |in_II| 

      (|NP/det_n1| |the_AT| 

         (|N1/n_n1/-| |engine_NN1| 

         (|N1/n| |room_NN1|))))))))) 

Figure 3.7.1 – RASP syntactic parse tree output for [Oscar should be in the engine room] 
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syntactic output of the RASP system. Different parsers would require different 

transformation modules to be developed, however all transformations from equivalent 

syntactic parses should result in equivalent representations. 

The current transformation is implemented using an event-driven tree-walking 

approach. The parse tree is traversed in-order, and each node in the tree initiates an 

event. Each event generates some context, element, or attribute in the representation, 

depending on the syntactic constituent of the node. For example, when the transformer 

encounters an NP a new obj element is created, a VP initiates an evt element, and so on. 

Within a syntactic node, the PoS tags are used to further drive the process. The result is 

a deterministic transformation of the syntactic parse tree into the CAMEO 

representation. 

Although this approach would normally be considered equivalent to a compositional 

approach, there are several cases which require special processing. For example, when 

transforming compound noun phrases, the number of noun objs must be discovered 

beforehand so that constituent NP events create obj elements properly within the group 

obj container (see Section 2.2). The representation of possessive nouns requires similar 

treatment. The transformation of the VP into the evt element is another special case, 

which requires the entire structure of the VP to be known before certain attributes can 

be created (e.g. the passive construction). 

Contexts are created based on the parser‟s interpretation of a clause. Whenever the 

parser marks a syntactic node as a sentence or clause, a new ctx element is created. 

These contexts in turn become containers for the various elements transformed from the 

syntactic constituents of the clause. Thus, the various constituent elements (obj, evt, 

etc.) are relative to the clausal context they are found in. 

As I mentioned above, the PoS tags are used to derive certain element attributes in 

the CAMEO representation. Combined with the lexemes, these allow a limited amount 

of interpretation for extended linguistic features using sure-fire rules. Pronouns generate 

appropriate attributes for animacy, gender, number, and person. Certain style nouns 

(e.g. Mr. and Mrs.) generate gender and/or animacy attributes. Other attributes are 

computed using the syntactic context, such as the form attribute which encodes the 

position of e.g. adverbs relative to a phrase head. Note these attributes are a 
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computational convenience for subsequent processors and do not denote any semantic 

meaning, since the system is not capable of determining metaphoric and other meta-

linguistic usage. 

Figure 3.7.2 shows a graphical depiction of a syntactic parse tree and the resulting 

transformation into the CAMEO representation. The top level [ S ] generates the outer 

ctx element, which serves as the contextual container for all descendent constituents. 

The subject NP [ She ] produces an obj element with attributes indicating the pronoun 

lexeme, female gender [ G=f ], and animacy [ A ]. Next, the VP is traversed in order. 

The head verb [ kissed ] is discovered and stored. Then the direct object [ Jim ] produces 

another obj element containing a name element. The PP phrase is then visited 

generating a rel element container. Because the verb evt element has not yet been 

created, the prepositional rel element is left floating temporarily. The preposition [ on ] 

is recorded as an attribute and the prepositional object is processed resulting in a third 

obj element being created. Once the entire VP has been visited, the evt element is 

created. The appropriate object references are set for the subject [S] and direct object [o] 

attributes. The head verb and tense attributes are then filled in. Finally the prepositional 

rel element is inserted in the verb evt element. 

 

kissed Jim on the 

S 

NP 

N 

VP 

VP 

V N 

PP 

P NP 

N D 

She cheek 

ctx [ TYPE=clause 

   obj[ ID=o1 PRON=she G=f A=h] 

   obj[ name[ Jim ] ] 
   obj[ ID=o3 DET=the class[cheek]] 
   evt[ S=o1 ACTION=kiss 

     TENSE=past O=o2 

     rel[ PREP=on OBJ=o3 ]]] 

Figure 3.7.2 – Graphic depiction of a syntactic parse tree and corresponding 

CAMEO representation 
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3.8 Conclusion 

In this chapter I have described the CAMEO text representation language which 

forms the experimental framework used in the remainder of the thesis. The 

representation was designed to satisfy the desiderata proposed in the introduction, and 

extends equivalent extant text representation strategies to include a systematic treatment 

of the representation of context, as well as other innovations. Central to the organization 

of the representation is the concept of contexts, which are containers for the semantic 

and pragmatic information about the document. The contexts are used during 

processing to define semantic scope for modules that can take advantage of it. QA and 

coreference resolution were given as examples of tasks that can be enhanced with 

contextual information. 

The current implementation of the CAMEO language was developed using the 

RASP system. The output of the RASP syntactic parse is transformed through an 

independent process into the CAMEO representation. Alternate linguistic technologies 

will have different output representations that require corresponding transformation 

modules to be developed. 



 

 

 

4  

 

Operations: Realisation and 

Manipulation 

In this chapter I will present two key operations which are enabled by the properties 

of the representation. The extent to which CAMEO enables these operations (and their 

implementations) is another differentiator of the CAMEO representation.  

In Section 4.1 I will discuss surface realisation and the process of transforming a 

CAMEO representation back into surface text. I will explain how the structure of the 

representation is used to realise objects, phrases, and sentences. I will then present an 

experiment designed to evaluate some of the surface realisation capabilities of the 

representation. 

 In Section 4.2 I will discuss how the representation can be programmatically 

manipulated to change the form and meaning. I will explain how CAMEO has 

advantages over other representational forms for this type of operation. I will then 

contrast manipulations using CAMEO with other representations on two experimental 

tasks. 

4.1 Surface Realisation 

Natural language generation is sometimes modelled having three components 

(Elhadad and Robin, 1996). At the highest level is macroplanning, which addresses the 

overall content and structure of the output. Macroplanners attempt to satisfy some 
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communicative goal, by selecting appropriate information and determining appropriate 

rhetorical structures. Macroplanners operate at much higher semantic levels than the 

CAMEO representation supports directly. Macroplanners typically manipulate meaning 

representations at the level of paragraphs or groups of sentences, and could use the 

structural context elements in CAMEO to direct the document level output. However, in 

this section I will focus on the sentence level realisation, and thus macroplanners are not 

applicable to the discussion at hand. 

The next level of generation occurs with microplanning. This level of planning 

addresses sentence-level meaning representations. Microplanners decide issues such as 

sentence form, referring expressions (including anaphora), lexical choice, and 

amalgamation (Hovy, 2000). The microplanner produces symbolic representations 

describing the sentence to be generated. At this level all of the strategic choices for the 

textual output have been made. 

The final stage of generation, realisation, involves the linguistic expression of the 

symbolic representations produced by the microplanner. The surface realisation 

component is tasked with interpreting the lexical content according to any syntactic 

parameters to produce syntactically and grammatically well-formed text. 

Implementations of surface realisers typically integrate a grammar component along 

with some means for specifying surface variations (e.g. Elhadad and Robin, 1996). 

The CAMEO language is an intermediate text representation that is suitable for 

integration with a surface realiser. The CAMEO representation abstracts a subset of 

lower-level grammatical functions without committing to a grammatical (or semantic) 

theory. This approach allows CAMEO to provide the same intermediate role to surface 

realisers as for semantic processing modules. That is, the fine-grained text 

representation and surface feature parameters of the CAMEO language can serve as a 

common interface to different surface realisation systems, allowing the lowest levels of 

linguistic expression to be abstracted. 

Because many text processing tasks (including some attempted in this thesis) require 

the realisation of the output as surface text, as part of the CAMEO framework, I have 

developed a transformation which deterministically maps the CAMEO representation to 

surface text. 
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The realisation of surface text from the internal representation is accomplished by 

essentially running the transformation described in Section 3.7.2 in reverse. Instead of 

traversing the syntactic parse tree, the surface realisation processes the representation 

using a similar event-driven approach. Like the syntactic nodes in the transformation of 

surface text, elements in the representation initiate events which generate the surface 

text expression.  

Figure 4.1 gives a high-level pseudocode for the general surface realization 

algorithm. The transformation into surface text is driven by the primary types defined in 

the model: ctx, obj, and evt elements. The algorithm processes elements recursively in 

order as shown in the pseudocode. This basic algorithm will successively build up 

constituents, phrases, sentences, paragraphs, and ultimately documents. It is a 

deterministic transformation that is essentially compositional, and it is currently 

implemented using the XSLT transformation language. (Wilcock (2001) discusses the 

advantages of using XML/XSLT in the context of a pipelined NLG system, however, 

the representations used at each stage are somewhat task-specific and do not attempt to 

provide a general text representation as developed here). 

The top level context (i.e. a ctx element of type document) begins the transformation 

process. Given a ctx element, the generator first attempts to transform all evt elements 

(not referenced by other elements) in the order they appear. Events will usually include 

references to objects and/or contexts that the generator processes recursively. After 

transforming all events contained within a context, or if no events occur, the generator 

will then attempt to transform any other elements (e.g. objs, rels, etc.), in the order they 

appear. 

Each element is transformed using its attributes to determine the lexical expression. 

For example, an evt element has an action attribute which encodes the head verb stem. 

The transformation algorithm looks up the verb stem (in the lexis context), and passes it 

to a morphological processor along with appropriate features (e.g. person and tense). 

The output is the fully realized surface form of the word. The representation language 

includes special attributes on ctx, obj, and other elements, which specify certain surface 

variations. Thus it is expressive enough to facilitate multiple surface forms of a 

representation through manipulation of these features.  
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begin 

   for each context of type document 

      for each context of type sentence 

         for each element not referenced by another element 

            generate element 

end 

 

begin generate ctx type clause 
   if conjunction then print conjunction 

   for each element not referenced by another element 

      generate element 

end 

 

begin generate evt 

   if passive generate object obj else generate subject obj 
   for each modal 

      generate modal 

   if perfect generate perfect 

   if participle generate participle 

   if neg print “not” 

   if progressive generate progressive 

   generate head verb 

   if passive generate subject else generate object 

   for each element of type mod rel inf ctx 
      generate element 

end 

 

begin generate obj 
   if determiner generate determiner 

   if quantifier generate quantifier 

   if this obj possessed generate possessor obj 

   if class generate class 
   if pronoun generate pronoun using proper case 

   if name generate name 

end 

 

begin generate mod 
   if quantifier generate quantifier 

   if negative print “not” 

   print lex 

   for each inf  

      generate inf 
end 

 

begin generate rel 
   print preposition 

   for each obj 

      generate obj 

end  

 

begin generate inf 

   with EVT reference generate evt  
end 

Figure 4.1 – Pseudocode for surface realization from CAMEO representation 
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As an example of generating from a semantic representation, consider the 

representation for the sentence [ The doctor examined a patient ], shown in (74). 

(74) ctx  

[  TYPE=sentence 

   obj[ ID=o1  DET=the   class[ doctor ] ] 

   obj[ ID=o2  DET=a   class[ patient ] ] 

   evt[ S=o1   ACTION=examine  SO=o2  TENSE=past  ] 

] 

The transformation would begin processing the ctx element, by recursing into the 

container. Within the container, the next element to process would be the evt element 

(because the obj elements are referenced by another element). According to the 

transformation algorithm, the evt element would be processed by first generating the 

subject id(o1), next the verb, and finally id(o2). 

To generate id(o1), the algorithm first processes the determiner, followed by the class 

elements in order. Because id(o1) has no plural attribute, and is not a group container, 

each word is transferred directly from the lexis, producing the surface text: [the doctor]. 

To generate the verb, the algorithm reads the tense attribute, determines the person 

of the subject id(o1), and passes these along with the head verb stem (from the ACTION 

attribute) to the morphological processor, producing the surface text: [ examined ]. The 

algorithm then processes id(o2) similarly to id(o2), producing the surface text: [a 

patient]. 

After fully processing the evt element, the transformation algorithm would then 

examine the remaining objects in the container (id(o1) and id(o2)). In this case, these 

are ignored because they were previously referenced by another element (i.e. the evt 

element). Because the type attribute of the ctx element container has a value of sentence, 

the resulting surface text is processed as a sentence (i.e. end-punctuation is added using 

deterministic rules). The final output becomes: [The doctor examined a patient.]. 
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4.1.1 Generating Object References 

The transformation algorithm will normally use all existing properties of an object to 

generate a reference. For example, the surface realization of the object in example (75) 

is [ the clothes drying on the line ]. 

(75) evt[ ID=e1  ACTION=dry  PROG INF  rel[ on the line ] ] 

obj[  ID=o2 DET=the  class[ clothes ] inf[ IDREF=e1 ] ] 

However, in natural language an object may be referred to in a variety of ways 

throughout a document. For instance, id(o2) may be referred to as [ the clothes drying on 

the line ], [ the clothes drying ], [ the clothes on the line ], [ the clothes ], or even [ they ]. 

Linguistic phenomena such as anaphora, determiners, deterministic adjectives and 

demonstratives are used extensively in natural language, complicating the task of 

generating referring expressions. Deciding and planning these references is deferred to 

other modules because the CAMEO representation is designed to be theory-neutral. 

However, a processing module is able to control the form of the referring expressions 

by manipulating the representation. 

The method for controlling the expression of object references is to create a new 

object with the desired attributes, making it equivalent with the object referred to. For 

example, if there is an object element obj[ ID=o1 name[ John ] ], and the text planning 

module decides to use a pronoun reference, then a new object obj[ ID=o2 PRON=he 

EQ=o1 ] can be created, and the old object moved out of the processing context. The 

surface transformation will process id(o2), generating the surface text he , but semantic 

processing will see the two objects as equivalent, due to the EQ attribute on id(o2). 

4.1.2 Generating Phrases and Sentences 

As explained in Section 3.5.2.1, a phrase is represented in the model using a ctx 

element. Contexts usually include more than a simple object, however they do not 

necessarily represent a complete sentence. Contexts can be referenced in event 

structures as phrasal or sentential complements, or they can be unreferenced, e.g. when 

participating in a conjunct. 
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A context is transformed into a surface text phrase using the algorithm described 

above. The type attribute on a ctx element determines whether a context is a phrase or a 

sentence. If the context is a phrase, no further processing is required. The containing or 

referring context generates the necessary punctuation. 

The transformation into complete sentences is an extension of generating phrases. 

The surface generator produces a complete sentence for every context that has a 

sentence attribute set. Normally, a discourse context is composed of a number of 

sequential sentence contexts (these may be grouped in higher level contexts such as 

paragraphs). By processing these in order, the generator produces the output document. 

If a sentence is to be formed using the conjunction of two or more phrases, the first 

phrasal context must contain the other contexts. The containing context will have a 

conjunction attribute set that the generator uses to determine the sentence form. For 

example, the representation in (76) generates the following surface text: [ Tom pulled the 

brake, but the train did not stop ]. 

(76) ctx [  TYPE=sentence CONJ=but 

   obj[ ID=o1 name[ Tom ] ] 

   obj[ ID=o2 DET=the  class[ brake ] ] 

   evt[ S=o1  ACTION=pull O=o2 TENSE=past  ] 

   ctx [    

      obj[ ID=o1 DET=the  class[ train ] ] 

      evt[ S=o1  ACTION=stop TENSE=past  NEG ] ] ] 

Contexts are processed recursively, and the containing context determines the form 

an individual phrase takes. In example (76) the containing context carries the CONJ 

attribute, which determines the form of the second phrase, i.e. conjunctive clause. 

Other sophisticated constructions are possible using this approach. For instance, 

subordinate clauses, appositives and quoted speech. The representation is designed to 

unambiguously represent all possible surface forms, giving a discourse planning 

module complete control over the generated output. 
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4.1.3 Experiments 

In this section I present the results of experiments designed to systematically test 

both the surface realisation transformation, and the expressiveness of the CAMEO 

language as a text representation. Examples of the wide range of surface forms 

available in English text are given in (77), which all yield practically identical semantic 

interpretations. 

(77) Nancy gave the book to Tom. 

Nancy gave Tom the book. 

Nancy to Tom gave the book. 

To Tom Nancy gave the book. 

Tom, Nancy gave the book to. 

The book was given Tom by Nancy. 

The book was given to Tom by Nancy. 

The book was given by Nancy to Tom. 

The book, Nancy gave Tom. 

The book, Nancy gave to Tom. 

The book, to Tom Nancy gave. 

Some of these variations are obviously less natural than others, but they help 

illustrate the point that there can be a wide variety of surface syntactic variations for a 

sentence, even if the semantic representation is unambiguous. 

Selecting among the surface variations is the job of microplanning modules as 

mentioned earlier. The CAMEO language provides a means to encode these selections 

by using special attributes on the elements of the representation. Some of these 

attributes have already been mentioned (e.g. PASSIVE in Section 3.4.6), others will be 

discussed below. These attributes give microplanning modules the flexibility to specify 

all forms of surface realisation, while being insulated from the mechanics of the 

transformation. 

In order to evaluate the CAMEO language for adequacy in expressing surface 

variation, a wide range of surface forms is needed. Since this experiment is not intended 

to test microplanning or other high-level text generation components, a systematic 

means of producing instances of the representation was used instead of external text 
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generation methods. Figure 4.1.3 shows a block diagram of the flow of processing in a 

typical text generation application, and the alternative flow used in these experiments.  

  

The experiment consists of a set of sentences encoded in the CAMEO representation 

as described in Section 3.7. This representation is then fed back through the surface 

realisation transformation described in Section 4.1 and the output is compared with the 

original source text. This effectively simulates processing under a real application, 

while providing an objective measure of evaluation. 

A completely comprehensive test of available surface forms is impractical. However 

the sentences used in the experiment include a wide sample of surface variation 

available in the English language. The test sentences are from the development platform 

of the RASP parser (Briscoe and Carroll, 2002), and thus have been used to evaluate 

various parser grammars. 

Input parsing 

Surface text 

Semantic representation Processing 

Transformation 

Surface text 

Macro/micro planning 

Semantic representation 

Figure 4.1.3 – Block diagram showing flow of typical text generation application. Dotted 

line shows alternate flow of experiments.  

CAMEO representation CAMEO representation 

Realisation 

Semantic processing 
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There are four sets of test sentences, each with a different general emphasis:  

Set 1 This set is comprised of mainly verb phrase variants including various 

prepositional phrasal constructions. It includes a sampling of tenses, e.g. [ Kim 

will have been abdicating ], as well as verb particles [ Kim made off with the 

butter ], and complements [ That he would apologize was clear to me ]. 

Set 2  This set contains mostly noun phrase variants, especially wh-gaps and 

dependent modifying clauses. It also includes quantifier variations [ All of the 

butter melted, All the abbots came ], and possessives [ The abbot’s many abbeys 

closed ]. 

Set 3 This set has less common syntactic constructions such as object and 

prepositional fronting [ At Sandy Kim acknowledges that Lee looked ]. It also 

includes relative clauses [ The abbot about whom Kim has some doubts is crazy ] 

and contractions [ Kim can’t not help Lee ]. 

Set 4  This set includes sentences testing more complex relative clauses [ Kim is 

abandoning Lee now when he is eager to be helped. ] including certain pronouns 

[ Those in the abbey who abdicated were crazy ] and quantifiers [ The half that 

Kim helped are crazy ]. 

4.1.3.1 Results 

A quantitative score is not very helpful in this case. However, Table 4.1.3.1 shows 

some statistics about the error rate of the system. These numbers are listed for each 

level of the evaluation. The number of sentences used in a particular test is recorded in 

the second column of the table. 
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The error rates were calculated by comparing the input text with the output of the 

text transformation from the representation. Parse errors (judged from the most 

probable parse returned by the parser) accounted for 45 sentences and were discarded. 

An error was recorded if the output text did not match the input text exactly, including 

punctuation but excluding whitespace. The type of error was manually classified 

according to syntax, constituent, or punctuation according to the following criteria: 

A syntax error occurs when the output sentence is not arranged in the same manner 

as the input, e.g. conjunctive clauses appearing in the incorrect order. 

A constituent error is recorded when a member of a noun or verb phrase is 

incorrectly realised. This could be, for example, the incorrect ordering of modifiers or 

prepositional phrases. It can also signify the omission of a constituent such as the 

indirect object of a verb. 

A punctuation error is recorded if incorrect punctuation is used or omitted, e.g.  

commas marking appositives, or the trailing punctuation on a sentence.  

4.1.3.2 Analysis 

The CAMEO representation and surface transformation was able to correctly 

regenerate a majority (93%) of the test sentences. There were no syntactic errors due to 

the surface transformation. All of the constituent errors reported in Table 4.1.3.1 were 

due to the conversion of the parse trees into the CAMEO representations. The majority 

of these errors were due to erroneous or missing gap analysis. For example, sentence 

(78) is from Test Set 3 and shows an example of a prepositional gap. Note that the 

derived CAMEO representation did not assign [ Kim ] as the object of the infinitival 

Table 4.1.3.1 

Error rates for surface transformation 

 Errors 

Test Sentences Constituent Punctuation Total Syntax 

1 209 0 0 0 0 

2 152 3 2 5 0 

3 191 13 1 14 0 

4 33 7 14 21 0 

Total 585 23 17 40 0 
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complement of [ desire ]. The RASP system used for these experiements does not 

explicitly indicate or coordinate gaps on the parse tree output, so gaps and control must 

be inferred by the transformation process which converts the parser output into the 

representation. In this and several similar cases, the fronted object was not interpreted 

correctly and instead left unconnected to the phrase. Although this coincidentally 

resulted in the correct surface expression (disregarding punctuation), it was recorded as 

a constituent error because the representation was incorrect. 

(78) Kim, Lee has a crazy desire to help. 

obj[ ID=o1  name[ Kim ] ] 

obj[ ID=o2  name[ Lee ] ] 

obj[ ID=o3  DET=a  mod[ crazy ] class[ desire ] evt[ ACTION=help INF  ] 

evt[ S=o2  ACTION=have  TENSE=present o=o3 ]  

As a further validation of the surface realisation, the erroneous representations for 

each of the constituent errors were hand-corrected and the subsequent surface 

realisations proved correct. 

Punctuation comprised the smallest percentage of the errors observed in the 

experiments. In fact, all the recorded punctuation errors were the result of spurious or 

missing commas related to clauses and preposed NPs. The surface realisation of 

commas is currently driven by phrasal context elements and in some cases this proved 

insufficient. Other types of errors such as end punctuation did not occur, however a 

systematic test of punctuation was not included in this experiment. 

4.1.4 Discussion 

One of the goals of this section has been to demonstrate the potential for surface text 

realisation using the CAMEO representation language. Using CAMEO as a surface 

description abstracts the mechanics of realisation from a text generation system, 

allowing it to generate and manipulate the CAMEO language instead of internal task-

specific forms. This approach would facilitate the integration of multiple text generation 

technologies, providing a common, computationally tractable form for comparison and 

test.  
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Because CAMEO is positioned near the surface syntactic level it does not impose a 

grammar on the representation, and can thus support microplanners with a range of 

grammatical approaches. This flexibility precludes the representation from abstracting 

lexical issues such as light verbs and verb particles, i.e. the representation enforces no 

restrictions on improper usage of these types of constructions. Thus a microplanner 

would likely need to incorporate some level of lexical information to construct CAMEO 

representations which realise well-formed surface expressions. 

Besides testing the surface realisation component of CAMEO the experiments 

exposed another possible application of surface realisation. All of the non-punctuation 

errors in the experiment (after discarding parser errors) were the result of errors in the 

conversion to the CAMEO representation, and not due to flaws in the surface 

realisation. Therefore, running text through a process similar to that demonstrated in 

these experiments can potentially serve as a test for successful conversion. That is, text 

that has been converted into the CAMEO representation and realised as surface text 

should exactly match the original source (disregarding parse and punctuation errors). If 

it doesn‟t, it most likely indicates an error in the conversion to the CAMEO 

representation. 

These experiments were further intended to serve as an informal evaluation of the 

expressiveness of the representation itself. While not comprehensive by any means, the 

tests did include a sample of the syntactic variation encountered in English. The 

representation achieved a 93% success rate on the test set, and all the errors resulted 

from either the transformation of the parse trees into the CAMEO representation, or 

minor punctuation errors. The internal properties and attributes built into the 

representation proved expressive enough to realise the wide range of syntactic 

formations used in the experiment, while still supporting a generally recursive and 

deterministic transformation. 

4.2 Text Manipulation 

The intrinsic object-orientation of the CAMEO representation is compatible with 

programming paradigms of technologies such as DHTML and XML. This simplifies 

manipulation of the internal representation, and when combined with the surface 
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realisation component, provides a tool for generating surface variation. Modifications to 

the internal representation are accomplished by changing the value of attributes, or 

adding/deleting/moving elements. For example, a program could convert all sentences 

in a document to the passive/active voice by changing the passive attribute on all finite 

event objects. Text can be condensed by deleting relative clauses, which only involves 

searching for and removing certain context elements.  Such operations require no 

linguistic knowledge, and are basic functions of DOM processing. 

In this section I will attempt to demonstrate the advantages of using the CAMEO 

representation for text manipulation over traditional transformation-based approaches. 

In Section 4.2.1 I will give a qualitative comparison of CAMEO with other approaches 

on several operations related to sentence condensation. In Section 4.2.2 I will present 

the results of experiments on sentence activsation and give a comparative analysis with 

an extant system to show that CAMEO can produce equivalent or better alternations 

with simpler manipulations and a more flexible framework. 

Text manipulation is typically implemented in the literature using rule-based 

transformations. A set of rules are applied to a representation and those rules that match 

are executed to produce the altered output. For example, Riezler et al. (2003) describe a 

system for sentence condensation using rules of the form 

+adjunct(X,Y),in-set(Z,Y) ?=> delete-node(Z,r1), rule-trace(r1,del(Z,X)) 

 

applied over LFG f-structures. The left side of the rule is used to match portions of the 

representation, and the right side of the rule specifies a transformation. 

Another example of a rule-based framework for manipulation is SYSTAR (Canning, 

2002). SYSTAR is an automated system intended for text simplification which 

manipulates several syntactic constructs. One construct which is addressed in detail is 

the activisation of passive verb phrases. For example, a rule which transforms a simple 

passive construction followed by a comma is 

((VPPAS(?b)PP("by" II)NP(?c)("," |,|)(?Y)))=>((?a)(?c)(?b)(?X)(?Y)) 

The rules are applied to the dependency information output from the RASP syntactic 

parser. 
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In many rule-based systems such as these, the rules are made to be as general as 

possible in order to achieve the widest application. However, it usually requires several 

variations to achieve adequate coverage. For example, SYSTAR contains 17 rules to 

cover the active/passive transformation. As the system is developed and new cases are 

discovered which fall outside the scope of the system, new rules must be added to 

address them. 

The CAMEO representation in effect inserts an intermediate step in the rule-based 

approach. The normalised text representation provided by CAMEO can be thought of as 

storing the results of much of the left side matching that a rule-based system would do, 

and the realisation component of CAMEO is functionally equivalent to the right side of 

a rule-based system. 

For example, passive verb phrases are recognised (i.e. „matched‟) when syntactic 

information is transformed into the CAMEO representation. The PASSIVE attribute is 

attached to verb phrases which are expressed in the passive form. This encodes the 

more complex part of a passive match rule in the simple attribute PASSIVE. 

Subsequently, a system which needs to find passive verb phrases need only search for 

the PASSIVE attribute, rather than a series of complex dependency patterns. 

The surface realisation, which resembles the right side operations of a rule-based 

system, is driven by the objectified attributes and elements in the CAMEO 

representation. Changes to these elements and attribute values direct the form the 

surface text will have. So again, rather than relying on a complex dependency pattern 

match to fire a rule‟s right hand transformation, the simplified encoding of attribute and 

elements serves to enable various functions in the surface realisation component. 

The conversion of linguistic information into the CAMEO representation language 

essentially decouples the rules, and is one advantage of the CAMEO model over rule-

based systems. In rule-based systems, the left hand matching expression is tied directly 

to the right hand transformation. If there are two or more rules which use the same 

match or transformation, parts of them must be duplicated. In contrast, CAMEO allows 

the rule matching, expressed as the encoding of the representation language, to be 

developed independently of the right hand transformations (surface realisation 

function).  
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For example, two different parsers were used during the course of this research. 

Transformations from the parser syntactic output into the CAMEO representation were 

developed for both parsers. This is analogous to using two different sets of „matching‟ 

rules with a common, normalised intermediate representation. Once encoded into the 

CAMEO representation, however, manipulations can be processed identically and the 

same set of „transforming‟ rules can be applied (i.e. the surface realisation function). 

Another advantage of the CAMEO model is the manipulations are reversible, i.e.  

manipulations which are driven from attribute values can simply be reverted. For 

example, removing the PASSIVE attribute will activise a verb phrase, while adding the 

PASSIVE attribute will make it passive again. Verb tense and aspect can also be 

manipulated in this way. In contrast, rule-based systems produce altered forms of their 

input which would require a separate set of rules to revert. For example, the SYSTAR 

rule shown above will produce an altered dependency list with an activised verb phrase. 

However, the rule will no longer apply to this new output, requiring a complementary 

rule to be created to revert to the original form. 

Finally, the CAMEO model allows multiple simultaneous manipulations. For 

instance, several properties of a verb phrase can be changed by changing various 

attribute values on the evt element. This could, say, change the tense, aspect, and 

activise the sentence all at once. The text only needs to be realised after the changes 

have been made. In a rule based system, several stages may be necessary to achieve the 

same result. For example, one rule may transform part of the dependency information 

another rule requires to match. The transformation must first be carried through before 

submitting to the next rule, which is less efficient and further complicates reverting to 

the original. 

4.2.1 Sentence Condensation 

Sentence condensation is an application of text manipulation that attempts to shorten 

sentences while keeping the essential meaning. Linguistic tasks such as text 

summarisation and simplification typically use techniques derived from sentence 

condensation (Knight and Marcu, 2000). 
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The CAMEO representation provides a simple framework for these types of 

manipulations. Because constituents are explicitly encoded and objectified as elements, 

removing them can be accomplished using very simple operations. For example, 

prepositional phrases can be removed by deleting rel elements, adjectives can be 

removed by deleting mod elements, and clauses can be removed by deleting ctx 

elements. 

Tasks that perform manipulations on a text representation must first have some 

means of locating specific constructions. Representations that include deep syntactic 

relations, such as CAMEO, are well suited for this stage of processing because the more 

complex relations have been pre-analysed and encoded in the representation. This 

contrasts with more shallow representations, where complex pattern-based rule 

transformations must be used because dependency information is not encoded in the 

representation. Requiring rules to include deep syntactic patterns complicates the 

process of locating the correct constituent to condense. Excising the constituent and 

reforming the sentence can be difficult as well for the same reason. 

For example, Chandrasekar et al. (1996) report on sentence simplification using a 

finite state grammar over tagged text. Their system used rules of the form  

X:NP, RelPron Y, Z -> X:NP Z. X:NP Y. 

As reported in their findings, the shallowness of the syntactic information limits the 

effectiveness of this approach. Without richer dependency information certain 

constructions such as long-distance dependencies and ambiguous attachments cannot be 

handled properly. 

Riezler et al. (2003) report on sentence condensation using LFG, which includes 

deep syntactic dependency information. Like CAMEO, LFG encodes adjuncts directly 

and is therefore able to remove certain constituents with simple rules. The example at 

the beginning of the chapter, also from Riezler et al., gives a simple rule for deleting 

adjuncts by searching f-structures for nodes belonging to the adjunct function. The 

rule‟s right side specifies the operation to perform on the f-structure. 
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Sentence simplification using LFG consists of applying a set of these reducing rules 

to the f-structures. Once the f-structures have been modified, a realisation stage is run 

over the f-structures to generate output. Because the rules are independent of the f-

structure grammar, they are not guaranteed to produce valid f-structures, so the 

grammar in the generation stage serves as a filter to test for well-formed f-structures. F-

structures that pass this filter are used to produce surface text (Riezler et al., 2003). 

Because the realisation of an f-structure is non-deterministic, a single f-structure may 

produce multiple surface strings, and multiple strings may correspond to a single f-

structure. This is a disadvantage when developing transformational rules because it 

becomes more difficult to measure a rule‟s effect on the output when it is non-

deterministic. A loose correlation between a rule and the system‟s performance will 

degrade automated approaches to rule learning, and will tend to result in redundant and 

larger sets of rules. 

While it is desirable to produce grammatical output, for tasks that require 

regeneration the use of bi-directional grammars like those used in LFG has some 

disadvantages. These grammars are often complex, hand-crafted resources developed 

over long periods of time, making them difficult to maintain or extend for new domains. 

For certain tasks, this level of sophistication may be overkill, and it may be more 

desirable to have a simple regeneration component that can realise surface text directly 

from the representation. 

The CAMEO representation is well-suited to the sentence 

simplification/condensation task. Like LFG, CAMEO includes explicit encoding of 

constituents and thus supports simplistic transfer rules. However, CAMEO uses a 

deterministic realisation component which produces a single surface expression for 

each representation. This avoids the ambiguity in rule evaluation and development. 

CAMEO is also not constrained by a grammar theory, and supports robust and 

partial processing methods. This allows condensation of individual constituents which 

are not necessarily part of a well-formed sentence. For example, objects in a list or table 

could be simplified using rules that operate on obj elements which are unconnected to 

evt elements. The deterministic surface realiser is able to generate individual elements 

or fragments in cases such as these. 
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Another advantage the CAMEO representation provides over extant sentence 

simplification approaches is the representation of context. The recursive contextual 

structure employed in the CAMEO representation language allows condensation 

operations beyond the sentence and phrasal levels. For example, larger structural 

constituents like sections and chapters can be removed using the same operations 

described above. Simple condensation techniques such as removing all but the first 

sentence in each paragraph can also be accomplished with similar transformational 

rules. Having a single representation which facilitates transformations at all levels 

allows integrated approaches that would otherwise not be possible using sentential-

based representations. 

To demonstrate some of the transformations possible using the CAMEO 

representation, I will compare rules in the CAMEO system with rules in other systems 

for several sentences reported in the literature.  I will report the CAMEO rules in 

pseudo-code and give examples of actual XSLT processing instructions which operate 

over the CAMEO XML implementation. 

Riezler et al. (2003) list a set of LFG condensation rules to transform sentence (79). 

The reported condensed sentence is shown in (80). 

(79) A prototype is ready for testing , and Leary hopes to set requirements for a 

full system by the end of the year 

(80) A prototype is ready 

The LFG transfer rules reported to produce this sentence are reproduced in Figure 

4.2.1-1 below. Each line represents an operation on the f-structure and the resulting 

transformation is used in subsequent rules. 

rtrace(r13,keep(var(98),of)), 

rtrace(r161,keep(system,var(85))), 

rtrace(r1,del(var(91),set,by)), 

rtrace(r1,del(var(53),be,for)), 

rtrace(r20,equal(var(1),and)), 

rtrace(r20,equal(var(2),and)), 

rtrace(r2,del(var(1),hope,and)), 

rtrace(r22,delb(var(0),and)). 

Figure 4.2.1-1 

Example of LFG transformations for sentence condensation 
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ctx [  ID=t1 TYPE=sentence  

 obj[ ID=o1 DET=a  class[ prototype ] ] 

 obj[ ID=o2 class[ testing ] ] 

 evt[ ID=e1 S=o1  ACTION=be TENSE=present  mod[ ready rel[ for testing ]]] 

 ctx [  ID=t2 CONJ=and 

  obj[ ID=o3 name[ Leary  ] ] 

  obj[ ID=o4 class[ requirements  ] 

   rel[ for obj[ DET=a mod[ full ] class[ system ]]] ] 

  evt[ S=o3  ACTION=hope TENSE=present ]  

  evt[ S=o3  ACTION=set INF  

   rel[ by obj[ DET=the  class[ end ] 

     rel[ of obj[ DET=the  class[ year] ]]]]]]]] 

Figure 4.2.1-2 

CAMEO representation for sentence (79) 

The CAMEO representation of the full sentence is given in Figure 4.2.1-2. The 

corresponding operations to produce the condensed sentence from the CAMEO 

representation are show in Figure 4.2.1-3. For each transformation, an abstract 

pseudocode is given, followed by the actual XPath expression that would be applied to 

the representation. The transformation is implemented in XSLT using an identity 

transform template (which copies elements unaltered), augmented with the specific 

rules to be applied. In the case of deletion, the null template is used which does not 

copy any node matched by the expression, including all descendent nodes. 

Pseudocode: delete mod[ ready ] in evt[ e1] 

delete ctx[ t2] 

 

XPath: 
 <xsl:template match=”evt[ @ID = ‟e1‟]/mod[ @lex = „ready‟ ]” /> 

 <xsl:template match=”ctx[ @ID = ‟t2‟]” /> 

Figure 4.2.1-3 

Transformational rules for condensing sentence (79) 

 

Jing (2000) describes a sentence condensation (reduction) algorithm which operates 

over the syntactic parse tree and uses multiple sources of information to decide which 

portions of a sentence to elide. Although the transformation rules to remove a 

subtree/phrase are not explained, sample sentence reductions are reported. One 



Chapter 4 – Operations: Realisation and Manipulation  120 

representative sentence (81) is shown below. Its corresponding reduction (82) (from 

human judges) is also shown.  

(81) When it arrives sometime next year in new TV sets, the V-chip will give 

parents a new and potentially revolutionary device to block out programs 

they don’t want their children to see. 

(82) The V-chip will give parents a device to block out programs they don’t want 

their children to see. 

ctx [  ID=t1 TYPE=sentence 

 rel[ when   

  ctx [  ID=t2 

   obj[ ID=o1 PRON=it ] 

   obj[ ID=o2  mod[ next ] class[ year ] ] 

   evt[ ID=e1 S=o1  ACTION=arrive O=o2  TENSE=present 

    mod[ sometime ] rel[ in new TV sets ]]]] 

 obj[ ID=o3 DET=the  name[ V-chip ] ] 

 obj[ ID=o4 class[ parents ] ] 

 obj[ ID=o5 DET=a  mod[ new and potentially revolutionary ] class[ device  ] 

  evt[ ID=e2 ACTION=block O=o6  mod[ out ]]] 

 obj[ ID=o6 class[ ptrograms ] ] 

  ctx [  ID=t3 

   obj[ ID=o7 PRON=they ] 

   obj[ ID=o8  class[ children ] ] 

   obj[ ID=o9 PRON=they prop[o8  ]] 

   evt[ ID=e3 S=o7  ACTION=want TENSE=present NEG 

    evt[ ID=e4 S=o8  ACTION=see ]]]]]] 

 evt[ ID=e5 S=o3  ACTION=give MODAL=will  O=o5  IO=o4  ]]] 

Figure 4.2.1-4 

CAMEO representation for sentence (81) 

Figure 4.2.1-4 lists the CAMEO representation and the operations to produce the 

condensed sentence are shown in Figure 4.2.1-5. 

 

Pseudocode: delete rel containing ctx[t2] 

delete mod contained in obj[o5] 

 

XPath: 
<xsl:template match=”rel[ ctx[ @ID=‟t2‟ ] ]” /> 

<xsl:template match=”obj[ @ID=‟o5‟ ]/mod” /> 

Figure 4.2.1-5 

Transformational rules for condensing sentence (81) 
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As a final example of the transformational possibilities using the CAMEO 

representation language, I will use a sample sentence from Knight and Marcu (2000), 

who propose a noisy-channel statistical model of sentence condensation. In their model, 

an exhaustive list of syntactic tree transformations are encoded in a packed forest. From 

this, the trees are iteratively transformed and used to generate a large number of 

potential surface expressions. The surface expressions are ranked using a stochastic 

measure based on word-bigrams and a learned probabilistic model of a “noisy channel” 

for text expansion. Knight and Marcu show the example sentence (83) listed with the 

highest scoring reductions, according to their statistical measures.  

The CAMEO representation for the sample sentence is given in Figure 4.2.1-6. 

Table 4.2.1-7 shows each of the sentence variations listed by Knight and Marcu, and the 

corresponding CAMEO operation which will produce it when applied to the 

representation. (The operations listed in the table are XPath expressions for use in 

template match attributes as shown previously). 

(83) Beyond that basic level, the operations of the three products vary widely. 

 

ctx [  ID=t1 TYPE=sentence 

 rel[ beyond  obj[ ID=o1 DET=that mod [ basic ] class[ level ]]] 

 obj[ ID=o2 DET=the  class[ operation ] 

  rel[ of  obj[ ID=o3 DET=the QUANT=three class[ products ]]]] 

 evt[ ID=e1 S=o2  ACTION=vary TENSE=present mod[ widely ]]] 

Figure 4.2.1-6 

CAMEO representation for sentence (83) 
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As the examples in this section demonstrate, CAMEO provides a simple and flexible 

interface for manipulation of the internal representation for tasks such as sentence 

condensation. Because syntactic relationships are explicitly encoded and objectified, 

patterns for matching constituents can be kept simple and precise. Transformational 

operations amount to deleting elements or attribute values, which can be accomplished 

by suppressing the item during an identity transformation. Once the representation has 

been transformed, the surface realiser generates the corresponding surface form in a 

deterministic operation. In the next section I will present this process in detail for a 

particular syntactic transformation, and compare the performance of CAMEO with an 

extant system. 

Table 4.2.1-7 
CAMEO transformations for variations of sentence (83) 

Surface Text CAMEO Transformation Rule 

Beyond that level, the operations of the three 
products vary widely. 

obj[@ID=‟o1‟]/mod[@lex=„basic‟] 

Beyond that basic level, the operations of the 
three products vary. 

evt[@ID=‟e1‟]/mod[@lex=„widely] 

Beyond that level, the operations of the three 
products vary 

obj[@ID=‟o1‟]/mod[@lex=„basic‟] 

evt[@ID=‟e1‟]/mod[@lex=„widely‟] 

Beyond that basic level, the operations of the 
products vary 

obj[@ID=‟o1‟]/@QUANT 

evt[@ID=‟e1‟]/mod[@lex=„widely‟] 

The operations of the three products vary widely ctx[@ID=‟t1‟]/rel 

The operations of the products vary widely ctx[@ID=‟t1‟]/rel 

obj[@ID=‟o3‟]/@QUANT 

The operations of the products vary ctx[@ID=‟t1‟]/rel 

obj[@ID=‟o3‟]/@QUANT 

evt[@ID=‟e1‟]/mod[@lex=„widely‟] 

The operations of products vary ctx[@ID=‟t1‟]/rel 

obj[@ID=‟o3‟]/@QUANT  

obj[@ID=‟o3‟]/@DET 

evt[@ID=‟e1‟]/mod[@lex=„widely‟] 

Operations of products vary ctx[@ID=‟t1‟]/rel 

obj[@ID=‟o2‟]/@DET 

obj[@ID=‟o3‟]/@QUANT  

obj[@ID=‟o3‟]/@DET 

evt[@ID=‟e1‟]/mod[@lex=„widely‟] 

The operations vary ctx[@ID=‟t1‟]/rel 

obj[@ID=‟o2‟]/rel  

evt[@ID=‟e1‟]/mod[@lex=„widely‟] 

Operations vary ctx[@ID=‟t1‟]/rel 

obj[@ID=‟o2‟]/@DET 

obj[@ID=‟o2‟]/rel  

evt[@ID=‟e1‟]/mod[@lex=„widely‟] 
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4.2.2 Active/Passive alternation 

Canning (2002) gives a treatment of the active/passive alternation of verb phrases in 

the SYSTAR text simplification system. She applies 14 rules to 33 instances of agentive 

passive verb phrases. The system achieves a 53% grammar and 57% meaning precision 

score based on the scores of four human judges. In this section I will present a 

comparative analysis of the output of the SYSTAR system and activisation using the 

CAMEO representation. 

The SYSTAR system uses the output of the RASP processing tools and Canning 

does not attempt to hand-correct errors in the parse output. This is unfortunate as it 

conflates parser performance with the SYSTAR rules, making it difficult to evaluate the 

performance of the system. In my experiments, I used the same test sentences as 

reported in Canning (2002), treating them as unseen data with respect to the 

experimental framework.  However, I corrected parse errors propagated to the CAMEO 

representation before attempting the manipulations. Therefore, comparison with the 

SYSTAR output is expository only, intended to aid analysis of the CAMEO output. 

Although Canning does not always note sentences with parse errors, where this 

apparently accounts for the discrepancy in output, I note in my analysis. 

The test sentences presented by Canning are sorted into 7 syntactic categories. Two 

of the 33 sentences were unused due to a reported software bug. The unused sentences 

were not available and thus not included in my experiment. In addition to the main 

passive verb phrases reported by Canning, three of the sentences contain a secondary 

passive verb. Because CAMEO allows changing each verb phrase independently, 

examples are given for both activisations. Several of the sentences also included non-

agentive passive forms (i.e. passive verb constructions with no expressed subject). 

These cannot be activised without deeper inferencing and are not addressed in the 

study.  

I used the 31 sentences listed in Appendix A of Canning (2002) to test the 

activisation of sentences in CAMEO. I converted each sentence into the CAMEO 

representation using the procedure described in Section 3.7. The sentences were 

reviewed for parsing errors and manually corrected. The PASSIVE attribute was then 
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removed from each passive verb and the sentences transformed to surface text using the 

CAMEO surface realiser. The results were compared to those reported by Canning 

(ignoring minor punctuation discrepancies), and the complete output is listed in 

Appendix A. Table 4.2.2 summarizes the differences between the two systems. 

The first row in Table 4.2.2 shows the number of sentences correctly activised by 

CAMEO that directly matched the SYSTAR system output for each syntactic category. 

The second row shows the number of sentences that differed only by constituent order. 

These sentences are correctly activised and judged grammatical. Without an 

independent judgment of the meaning of the sentence it is difficult to quantify the 

performance in this category, however, I will discuss several of the representative cases. 

The final row gives the number of sentences activised incorrectly by SYSTAR, due to 

system or parse errors. These sentences (with parsing errors corrected) were correctly 

activised by CAMEO. 

One of the challenges for activising more complex passive constructions is 

constituent ordering. The position of adverbs and prepositional phrases in a sentence 

that has been activised is variable. For example consider sentence (84): 

(84) Emma Rae , 15 , of Parkhurst Road , said her three-year-old brother , 

James,  suffered a broken leg when he was knocked down by a car on 

Sunday , not far from where the little girl died . 

The two final prepositional phrases (on Sunday, not far from … ) are adverbial but take 

a post-object position in the passive sentence (i.e. after a car). When activising this 

sentence the passive object (a car) becomes the active subject. The two adverbial 

phrases can either follow the passive object, in which case they assume a post-subject 

position in the new sentence, or remain in a post-object position behind the new object 

(he). SYSTAR produces the former (85) and CAMEO the latter (86), shown below. 

Table 4.2.2 
Comparison of CAMEO output to SYSTAR on test sentences 

 Past Present Modal Perfect Progressive Is to be Total 

Matches 10  1 3  1 15 

Constituent order 4   1 1 1 7 

SYSTAR Errors 7 2     9 
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(85) Emma Rae, 15, of Parkhurst Road said her three-year-old brother, James 

suffered a broken leg when a car on Sunday, not far from where the 

little girl died knocked him down. 

 

(86) Emma Rae , 15 , of Parkhurst road , said her three-year-old brother , James, 

suffered a broken leg when a car knocked him down on Sunday, not far 

from where the little girl died . 

(The SYSTAR output was affected by a parse error, which incorrectly analysed parts of 

the sentence. However, the resulting activisation is not ungrammatical and illustrates 

the variability of the possible transformations.) 

The prepositional phrases remain in the post-object position in CAMEO because the 

FORM attribute is set when the sentence is transformed into the CAMEO representation. 

The activisation only requires modifying the PASSIVE attribute, so the positions of the 

phrases do not move in relation to the expressed sentence structure. Of course, 

removing or modifying one or both of the FORM attributes is another option, which 

would allow producing the variation shown in (85), as well as many others. A rule-

based system does not have this freedom because the rules are statically linked to the 

transformations. Thus a certain match will always produce the same output. 

Another example where the constituent order significantly affects the readability of 

the sentence (87), is shown below with the SYSTAR (88) and CAMEO (89) outputs: 

(87) Last year the campaign was supported by 38 primary schools with a 

further five joining in this time . 

                          

(88) 38 primary schools with a further five joining in this time supported last 

year the campaign.   

                                                                                                                          

(89) Last year 38 primary schools supported the campaign with a further five 

joining in this time .   

Because the matching rules in SYSTAR are relatively shallow, the constituents 

before the passive verb phrase are ignored, or effectively taken as the entire subject. As 

this example shows this is not always advantageous, and may produce more awkward 
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activisations. Because CAMEO encodes the syntactic dependencies in the 

representation, and the representation is used to transform text, the precise subject is 

used in the transformation. The resulting text is a closer match syntactically to the 

original passive sentence. 

There was one tense discrepancy which I judged to be an error with the SYSTAR 

output. The sentence is reproduced below (90) with the output from SYSTAR (91) and 

CAMEO (92). 

(90) She is impressed by the changes in the city , particularly the proposed 

introduction of the Metro .                   

                                                                                                                                   

(91) The changes in the city impressed her particularly the proposed 

introduction of the Metro.             

                                                                                                                                                    

(92) The changes in the city impress her , particularly the proposed introduction 

of the Metro .                                                                                                                                                               

The tense of the verb phrase is clearly present (i.e. to be conjugated is), where 

SYSTAR produces a corresponding past tense. However it is difficult to determine 

whether this is intrinsic in the system, since the only other present tensed example 

resulted in another SYSTAR error. The tense of the verb is analyzed and encoded in the 

CAMEO representation, ensuring that during surface realisation the tense is preserved 

and properly generated. 

One of the difficulties in the activisation of sentences is the ambiguity that can 

sometimes appear in the passivised subject (see Section 3.4.6). Sentence (93) below, 

taken from the test set, is one example. The prepositional phrase [ by post ] is probably 

best interpreted as describing the means of the notification,  rather than having the 

subject function. However, both systems activised the sentence as [ Post informed Mr. 

Clifford, a single man who is now on police bail. ]. To prevent such generalizations, a 

method for detecting exceptions to the general passive construction would be required, 

either during the transformation into the representation from the syntactic structure, or 

in the syntactic analyser itself. 

(93) Mr Clifford , a single man who is now on police bail , was informed by post . 
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The remaining sentences which had errors in the SYSTAR output comprised 

constituent errors which changed the meaning of the sentence. For example, in sentence 

(94), the SYSTAR output incorrectly mixes the dependent clause with the passive verb 

phrase, resulting in an incorrect meaning (95). This may be due in part to a parser error, 

or it may be related to the shallow rule match expressions. The CAMEO output is 

shown in (96). 

(94) Alan , who is sponsored by Washington-based outdoor clothing and 

equipment manufacturer Berghaus , has now reached the summit of 

Makalu , the fifth highest peak in the world . 

  

(95)  Washington-based outdoor clothing and equipment manufacturer 

Berghaus has now reached the summit of Makalu, the fifth highest peak in 

the world sponsored Alan, who  

 

(96)  Alan , who washington-based outdoor clothing equipment manufacturer 

Berghaus sponsors , has now reached the summit of Makalu , the fifth 

highest peak in the world.  

Further instances of similar errors in the SYSTAR output are recorded in Appendix 

A. In each case, the corresponding CAMEO output is acceptable, and closely matches 

the constituent order of the original sentence. 

In several cases the CAMEO output had minor punctuation errors relating to missing 

or misplaced commas. As mentioned in Section 4.1.3.2, the placement of commas 

during realisation is driven by embedded contexts. When a phrasal ctx element is 

encountered within a sentence-level ctx element, the surface realiser will offset the 

phrase with commas. This is a simplistic approach which is generally sufficient, but is 

inadequate in some cases. For example, the CAMEO output of sentence (4) in 

Appendix A is shown in (97) below. The representation includes embedded contexts for 

the phrase [ who treated the dead girl ] and [ the consultant who treated the dead girl ], 

resulting in an extra comma. The surface realisation algorithm could be enhanced to 

include a more sophisticated treatment of cases such as these, but a more general 

approach would be to add attributes to the representation that would allow higher-level 
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processors to control the expression of punctuation directly, or override the default 

behaviour of the surface realiser. 

(97) When demonstrators returned this morning , the consultant , who treated 

the dead girl , joined them . 

4.3 Conclusion 

The structure and form of the CAMEO representation, along with the rich set of 

features for encoding surface information, has advantages over other representational 

forms for certain operations. In this chapter I examined two specific operations on the 

representation, surface realisation and sentence passivization, and compared CAMEO 

with other representational approaches on several examples from the literature. 

The CAMEO language includes a strategy for deterministic surface realisation of 

text from the internal representation. The transformation algorithm uses an event-driven 

approach to process the recursive structure of the representation. The surface form is 

generated using the elements in the representation and their attribute values. Special 

attributes are defined to allow variations in the surface form. 

The flexibility of the representation is reflected in its object-oriented design, which 

enables programmatic manipulation using existing DOM-based tools. Transformations 

of the internal representation were demonstrated for sentence condensation and 

sentence activisation tasks. The experiments showed that the representation has 

advantages over more linear and lexical approaches to these tasks, and has 

transformational simplicity on par with more deeply structural representations such as 

the f-structures of LFG. 



 

5  

 

Context in Symbolic Processing 

In this chapter I will discuss the different kinds of contextual information available 

for use in text processing, and explain the representational approach I have taken. 

Through experimental analysis I will evaluate how certain types of discourse processing 

can leverage contextual information. 

 

Research into the structure of discourse has shown that beyond the local level of 

adjacent sentences there emerges a wider scope of textual coherence, sometimes 

referred to as a discourse segment (Allen, 1995). In general, a discourse segment is a 

group of text which coheres to a certain topic. Each discourse segment produces a local 

context in which to interpret the text (in addition to other more global contexts). The 

local context contains the evolving state of the discourse segment and is critical to 

understanding the text. Without considering the local context, sentences would be 

interpreted in isolation and a discourse would not be possible. 

There is currently no clear formal definition of what comprises a discourse segment 

or how they can be determined. This is an active area of research and includes the 

question of how sentences in a discourse segment internally relate to each other, and 

how discourse segments externally relate to other discourse segments.  Hovy (1990) 

surveys many of the coherence relations proposed in the literature as holding between 

sentences. Rhetorical Structure Theory (Mann and Thompson, 1987), among others, 

gives an account of segmental relations. Much of this type of analysis is beyond the 

scope of this research. Instead, I will focus on what information can be derived from the 

surface syntactic analysis, in relation to discourse segments. 
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Although it is not clear what formally constitutes a discourse segment, several 

properties are apparent: 

First, the sentences in a discourse segment necessarily share a common context and 

set of assumptions about the state of the discourse. This follows from the definition of a 

discourse segment, i.e. that the sentences in the segment cohere. In addition, a discourse 

segment should generally retain a single personal aspect throughout. For example, in a 

narrative the author sometimes assumes third person to relate the story. Within the story 

there may be segments from other sources, such as a speaker in a dialog. Each segment 

of dialog represents a new personal aspect, i.e. that of the speaker. Because they do not 

share a common reference with the global narrative, these dialogs should be considered 

as separate discourse segments. 

Next, a discourse segment boundary represents some shift in focus or topic. 

Sometimes this is simply a shift in reference, as described above for dialog segments. 

Other times the shift may be more subtle and difficult to detect. However, when the 

topic or reference shifts, it affects the coherence of the text, and a new discourse 

segment is warranted. 

Finally, discourse segments exhibit a recursive nature. By this I mean that discourse 

segments can be compositionally constructed of other discourse segments until an entire 

document is considered a single discourse segment. This is necessitated by the 

flexibility of natural language, which places few constraints on the structure of a 

discourse segment allowing them to exist inside other segments. Subsequently, 

discourse segments appear in many forms and configurations, (including parallel 

constructions in some cases). This flexibility becomes an important consideration in 

designing a representation. 

5.1 Document Structure 

Text that appears in documents usually is presented with a graphical structure. For 

example, chapters, sections and paragraphs are separated by whitespace, and quotations 

or references from other documents are often offset. Structural elements such as these 

are good candidates for discourse segment boundaries, as they usually entail some shift 

in topic or aspect. Like discourse segments, they can appear in recursive, compositional 
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structures. For example, chapters can be composed of sections containing sub-sections 

containing paragraphs. 

Increasingly, this structure is explicitly marked in online documents using languages 

like XML, HTML, and DocBook (an XML schema for document publishing), making 

it much easier to recover during processing. Although this does not necessarily help the 

discovery of finer-grained discourse segments, it provides some level of segmentation 

that is somewhat deterministic.  

5.2 Sentence Structure 

It has been noted by researchers in early work on discourse segmentation (Polanyi 

and Scha, 1984), that the syntactic structure of sentences bears a resemblance to the 

structure of discourse segments in a document. That is, sentence phrasal structure is 

hierarchical and compositional, much like discourse segments. In fact, the dependency 

relations produced by some theories of discourse segmentation look similar to phrasal 

parse trees, and some discourse parsing frameworks use a single parser at both the 

discourse and sentence level (e.g. Forbes et al., 2001). This is a helpful insight because 

it suggests a common representation for structure at all levels of text. 

For a discourse segment, the fundamental structure I am proposing is a container 

serving as a context for the sentences. Extending this paradigm to the sentence level 

seems plausible because the clausal construct can serve as the context for the individual 

component constituents of the clause. The different NP constituents share the same 

context (clause) and are related through a coherent topic (main verb). 

This perspective on clausal segmentation appears to fit with other syntactic theories 

as well. For example, Allen (1995) discusses the idea of a local constituent domain, 

defined as the set of constituents subsumed in the nearest S or NP node (in a phrasal 

parse). This correlates with the idea of a clausal segment, where the segment represents 

the local domain dominated by an S node. 
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5.3 Context 

A key function of the discourse segment is providing context for the elements it 

contains. Sometimes elements of this context are made explicit, as when a speaker is 

identified in a dialog statement. Other times the entire context must be inferred. When 

inducing the local context, the hierarchical structure of discourse segments can 

sometimes be of help. 

For instance, a document ultimately has some source or author. The outermost 

context of the document should begin with this source as the contextual reference. As 

new contexts are discovered during processing, such as chapters, sections and 

paragraphs, this source would be inherited so that all text in the document shares this 

reference. However, if a paragraph includes some embedded context, such as a 

quotation, a new context with a different source would need to be created, overriding 

the default inheritance of the parent context. 

The context for a discourse segment contains more than just the reference, of course. 

All of the discourse entities encountered in the text become part of the context, and the 

context progressively evolves based on the information contained in the text it includes. 

The context serves to record the state of all its member elements, and can be used in 

tasks such as information extraction, and reference resolution. 

There are several levels of information which can be derived from contexts, some of 

which are beyond the scope of this research. 

The semantic content of a context requires some level of semantic processing to 

discover. This has applications to tasks such as text understanding, where logical 

properties such as entailment are required. I will assume semantic processing to be 

handled by external processors and will not address it. 

Syntactic information provided by the context includes discourse entities (i.e. obj 

elements recovered from the dependency structure), grammatical relations, and tense 

and aspect. These are not strictly a contextual phenomenon as they are derived from 

individual sentences. However, this information will be leveraged at the contextual 

levels to varying degrees in the experiments that follow. 
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Another level of information that a context provides is segmentation. Segmentation 

helps constrain complexity by giving boundaries to the scope of discourse properties. 

For example, during reference resolution, it may be helpful to consider not crossing 

certain contextual boundaries. This can reduce the number of antecedents to consider. (I 

will explore this hypothesis later in Section 5.9.)  

5.4 Contexts in CAMEO 

Because context is arguably the distinguishing feature of discourse segments, and 

because a similar concept can be applied at varying levels of textual organization, from 

the document level to the clausal level, I will adopt contexts as a unit of organization. 

The CAMEO ctx element is a generalized abstraction of a contextual grouping. It is 

a representational element integrated with the other elements of the CAMEO 

representational language, giving CAMEO the capability to represent arbitrary 

recursive contexts. As with other aspects of the language, this allows for discourse 

segmentation to be represented in a theory-neutral manner. For example, discourse 

parsers which use discourse segments finer than those extracted from the graphical 

document structure can construct a hierarchy of ctx elements. 

I have earlier described briefly the form of the ctx element in the CAMEO 

representation (see Section 3.5.2.1). Here I will explain how it is used to explicitly mark 

the contextual segmentation of a document at all levels. At the document level the 

context is recovered from the document structural mark-up (when available) or inferred 

using a document grammar. At the clausal level the context is derived from the 

syntactic parse information. 

A clausal context is used wherever an S node (sentential phrase) is encountered in 

the parse tree. This includes conjunctive, dependent and relative clauses. The context 

becomes a container for the other elements dominated by the S node (obj, evt, etc.). In 

addition, the top level clausal context of a sentence is placed inside a sentential context. 

(This facilitates reference by sentence number in both processing and generation.) 

Document level contexts are used to represent structural mark-up during initial 

processing. Several specific mark-ups are supported directly in the framework (e.g. title, 
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paragraph, and author). Other types of mark-up are generalized using a contextual node 

with the original tag name as an attribute (TYPE). This allows various formats to be 

processed while still retaining the structural segmentation. 

The TYPE attribute identifies the type of context (i.e. chapter, paragraph, clause, etc.). 

Other attributes are optional and depend on the context type. For instance, document, 

chapter, and section contexts may have a TITLE attribute. Clausal contexts optionally 

have a CONJ attribute as described in Section 3.4.2. A REF attribute can be attached to 

any context and is used to determine the author or source. 

During processing, contexts are processed recursively. Each new context 

encountered becomes the new active context for the purposes of processing. The 

elements contained within the context constitute the local domain. For instance, a 

paragraph context will have sentence elements that constitute its local domain. A 

clausal context will have obj, evt, mod, and rel elements for its local domain. As 

processing completes on each context, the active context reverts to the parent and 

processing continues until all contexts have been processed. This approach effectively 

implements a contextual stack, which can properly handle the hierarchical nature of 

contexts. 

The recursive property of ctx elements gives a complete representation for the 

document structure through the clausal level. In addition to its utility in processing 

tasks, this representation can be used to extend the surface generation algorithm of 

Chapter 4 to include document structure (e.g. paragraph breaks, chapter titles, etc.). 

Having document structure integrated with syntactic structure in a single 

representational form makes it unnecessary to have multiple versions of the document 

for different applications.  

Before exploring some of the contextual issues relating to coreference that arise in 

text processing (which require a representation of context), I will first introduce the 

general problem of coreference resolution, survey some of the current approaches, and 

explain how the CAMEO representation helps facilitate this type of processing. 
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5.5 Reference Resolution 

One of the critical tasks in the processing of discourse text is the resolution of 

anaphora and coreferences. Applications that require any more than a shallow semantic 

analysis will benefit from reference resolution, due to the high frequency of this 

phenomenon in natural language. Without a means for resolving coreferences, objects 

in a representational model remain as separate individuals and text understanding 

beyond the phrasal level is not possible. 

Although anaphora is a general term describing references to entities in a discourse, 

it is sometimes taken to mean pronominal references in the reference resolution 

literature. The next few subsections will briefly survey the existing approaches to 

pronominal anaphora resolution and the more general problem of coreference 

resolution.  

5.5.1 Algorithms for Pronominal Anaphora Resolution 

Anaphora resolution is difficult because it is often ambiguous, and may need 

commonsense knowledge to resolve in some cases. For example, 

(98) John took his dog Fido to the vet. He drove very fast. 

A naïve resolution algorithm might pick Fido as the referent of he, based on recency 

or other textual features. To understand why this is a difficult problem, consider the 

following sentences which have an identical syntactic construction: 

(99) John took his friend Bill to the doctor. He was very sick. 

The contrast between these two cases suggests that an algorithm that does not take 

into account semantic context will not be able to resolve all anaphora correctly. 

In addition to semantics, another important factor in anaphora resolution is a 

discourse model. A discourse model accounts for the attentional focus of a document, 

providing a basis for selecting one referent over another. For example, centering theory 

proposed by Grosz, Joshi, and Weinstein (1995), includes a discourse model that can be 

used in anaphora resolution algorithms. The claim made in centering theory is that an 
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attentional “center” exists at any point in a discourse, and should receive preferential 

treatment during anaphora resolution. Centering theory has been extended and has 

formed the basis of several resolution algorithms in the literature (e.g. Walker, 1998).  

In contrast to the discourse model of centering theory, a purely syntactic approach 

was proposed by Hobbs (1977). Hobbs describes a “tree-walking” algorithm, which 

uses the structure of the syntactic parse tree to find antecedents. In this approach, a set 

of rules determines how the parse tree is traversed and ultimately settles on a referent. 

Although the tree searching of Hobbs is syntactically based, it does implicitly encode 

salience for grammatical roles in the rules of the algorithm (i.e. trees are traversed 

breadth-first, from left to right, giving preference to subject roles).  

Salience factors are the central aspect to the anaphora resolution algorithm proposed 

by Lappin and Leass (1994), whose use of weighted features lends itself naturally to a 

computational model. The algorithm tabulates a set of salience features for referents in 

the text, updating them as each sentence is processed. When an anaphoric reference is 

encountered, the table is consulted to determine the most likely referent, based on its 

score in the table. The salience features used in the Lappin and Leass algorithm include 

locally derived properties such as syntactic constituency, and a few global properties 

such as recency. Semantic properties were not considered in the original algorithm. 

The Lappin and Leass algorithm has received some attention in the research 

community partly because it fits well with computational techniques and has proven a 

fair approximation of anaphoric phenomena in natural language. However, one 

disadvantage of the model is the weights on the various salience features need to be 

determined experimentally. There is also some question about whether these weights 

are domain dependent. 

5.5.2 Algorithms for Coreference Resolution 

Coreference resolution expands the task of pronominal anaphora resolution to all 

referential phrases in the text. This includes not only all nominals (objects) but verbs 

(events) as well (although few studies of coreference resolution include verbs). 

Examples of work that acknowledge the more general problem of coreference are 

Alshawi and Crouch (1992), and Popescu-Belis and Robba (1997). Alshawi and Crouch 
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propose coreference resolution as a unification of nominal objects under QLF. Popescu-

Belis and Robba simply propose a framework for representing referring expressions 

(REs) that can be extended to support experimental algorithms. 

Recently there has been some effort at applying machine learning to reference 

resolution (and the more narrow problem of pronominal anaphora resolution) (Aone 

and Bennet, 1996; McCarthy and Lehnert, 1995; Ge et al., 1998; Soon et al., 2001). 

Machine learning algorithms cast the reference resolution task as essentially a 

classification problem, where a pair of references are labelled as coreferring (or not) 

based on a set of features extracted from the text (Ng and Cardie, 2001). Preiss (2002) 

compares the performance of a machine learning anaphora resolution algorithm to the 

shallow parse approach of Kennedy and Boguraev (1996) and finds no significant 

difference in performance. 

Algorithms for full reference resolution must arrange the nouns that appear in a 

corpus into a set of equivalence classes. Each instance of a noun, whether anaphoric or 

not, refers to some particular conceptual entity of the author. All references in a 

discourse referring to the same entity form an equivalence class for that entity. 

Determining these equivalence classes is the goal of coreference resolution algorithms 

(Hirschman, 1997). 

5.6 Reference Resolution in CAMEO  

Implementation of a coreference resolution algorithm using CAMEO is facilitated by 

the representation of objects in the CAMEO language. Because objects are represented 

explicitly, and attributes can easily be attached to them, a resolution algorithm is 

essentially a unification operation over existing objects. Section 3.2.2 gives the object 

unification function defined by the representation which is used to test basic 

compatibility between objects. Reference resolution algorithms can use this to filter 

reference candidates before applying algorithm specific decision processing. Further, 

the contexts included in the representation allow for extending existing algorithms to 

factor in contextual features as well. For example, a by-line may have location 

information that is more likely to corefer with demonstrative pronouns. 
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As an example of the kinds of operations that can be implemented for coreference 

resolution, consider the two sentences and their corresponding representations: 

John has a new car. He bought it yesterday. 
ctx  

[   TYPE=sentence 
 obj[ ID=o1 A=h  G=m name[ John ] ] 
  obj[ ID=o2 DET=a  A=i mod[ new ] class[ car ] ] 

  evt[ S=o1  ACTION=have o=o2 TENSE=present  ] 
]  
ctx  

[   TYPE=sentence 
  obj[ ID=o3 PRON=he  ] 
  obj[ ID=o4 PRON=it  ] 
  evt[ S=o3  ACTION=buy o=o4 TENSE=past  mod[ yesterday ] ] 
] 

In this case there are two pronominal references to resolve: id(o3) and id(o4). 

Assuming the attributes shown in this example (i.e. animacy A and gender G ) have been 

populated by some processing module, a simple resolution operation might proceed as 

follows. Once the pronoun id(o3) is encountered, the algorithm searches for the most 

recent object having an animacy attribute equal to h (human), and gender attribute equal 

to m (male). It can do this by explicitly recursing through all previous obj elements, or 

alternatively using a simple query of the form  

Find the most recent obj outside this context with A=[h] and  G=[m]. Return the object. 

Of course this example is trivial and a more sophisticated algorithm will require 

determining many other properties of an object. For example, to resolve the pronoun 

id(o4), an algorithm may need to determine if a candidate object (say id(o2)) 

participates in the same verb. A simple test of the form   

Find an evt with ( S=[o4] or  O=[o4] or IO=[o4] )  and  ( S=[o2] or O=[o2] or IO=[o2] ). 

This query returns an event if both id(o4) and id(o2) are arguments to the same verb 

(i.e. subject, object, or indirect object). The possibilities for creating queries in CAMEO 

are as flexible as the XPath language which is used for the implementation. An example 

of a real query in the XPath language used in the experiments described below is 
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id('o4') 

[ .//@idref='o2' or 

  .//@obj  ='o2' or 

  prop 

  [ @obj = 'o2' or 

    id(@obj)//@idref='o2' or 

    id(@obj)//@obj  ='o2' 

  ] 

]. 

This query tests if id(o2) is in the NP domain of  id(o4) by testing for any reference to 

id(o2) that can be reached through an element contained in id(o4), or contained in an 

object property of id(o4). 

As demonstrated here, complex queries regarding elements, attributes and their 

relations can be accommodated by the representation. Explicit programmatic processing 

of the elements in the DOM is also possible, as well as a combination of both. The 

results of the experiment that follows were obtained using both types of operations on 

the representation provided by CAMEO. No other task-specific transformations were 

required. 

5.7 Contextual Issues with Reference Resolution 

Much of the work on pronominal reference resolution over the last decade has 

focused on syntactic and morphological processing. Performance achieved using these 

methods generally fall below 80% (Mitkov, 2001; Tetreault, 2001). To achieve 

incremental gains in performance of these systems, researchers have been exploring the 

application of deeper informational content to existing algorithms, such as semantic and 

pragmatic analysis. One aspect of language processing which has recently received 

some attention is the consideration of structure for reference resolution. 

There are two types of structure to consider for reference resolution. One is the 

structure of the discourse, and one is the structure of the document. Discourse structure 

is a deep analysis of the semantic and pragmatic implications of sentences or utterances. 

For example, Tetreault and Allen (2004) experiment with several discourse 

segmentation strategies applied to dialog reference resolution.Their findings suggest 

that discourse structure does not provide a significant increase in performance, though a 

small incremental gain was reported. Other theoretical work, such as Ide and Cristea 

(2000) also suggests that leveraging discourse structure for reference resolution is 
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beneficial for a certain small percentage of constructions. This type of structural 

information is difficult to produce automatically, and is not generally available in 

annotated corpora. 

The second type of structural information that is relevant to reference resolution is 

the textual/logical structure of a document. As mentioned above this is much more 

accessible for computational processing. Goecke and Witt (2006) present a corpus study 

on integration of document structure with anaphora resolution. They suggest that the 

hierarchical arrangement of document structure might influence an algorithm‟s choice 

of antecedent in two ways: either through the location of the referent in the structure, or 

through the effect of the structure on the search window.  

In the first case, the authors suggest that an antecedent is more likely to occur in a 

structural element at the same level or higher in the hierarchy as the referent. For 

example, a referent in a document‟s section, say,  4.3 is more likely to have an 

antecedent in section 3.2, than sections 4.2.1, even though an antecedent in section 4.2.1 

is likely nearer to the referent. 

The second case suggested by Goecke and Witt (2006) is the effect the hierarchical 

structure of a document might have on a reference resolution algorithm‟s antecedent 

search window. For many implementations of reference resolution, a heuristic limit to 

the search space is employed. This may be 2 or 3 sentences, or it may be based on the 

number of candidate antecedents encountered. However, this does not take into account 

the hierarchical structure of the document. For example, a large list or quotation may 

intercede between an antecedent and a referent. Measuring the linear (i.e. non-

hierarchical) distance may show the antecedent out of the algorithm‟s search window. 

Using the hierarchial structure, the intervening list or quote context is „collapsed‟ and 

does not extend the size of the search window. 

A related application of the hierarchical document structure is the consideration of 

contextual segment boundaries. In their corpus study, Goecke and Witt (2006) find that 

referents occurring in the middle through the end of a paragraph tend to have 

antecedents within the same paragraph. Referents that occur at the beginning of a 

paragraph tend to have antecedents within a much larger scope outside of the referent‟s 

paragraph. 
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In the following sub-sections, I will explore several challenges to reference 

resolution for specific types of anaphora and specific genres of text, based on a small 

corpus study. These issues serve to illustrate some of the specialized contexts that have 

to be directly addressed in order to move reference resolution performance past the 

current plateau achieved through generalized algorithms. An integrated representation 

of document structural context enables existing reference resolution algorithms to be 

extended to encompass contextual information. In Section 5.8 I will present several 

experiments which integrate contextual information from the CAMEO representation 

with a reference resolution algoritm.  

5.7.1 Demonstratives in Context 

One challenge faced when analyzing certain textual documents for coreference 

resolution is demonstrative pronouns (i.e. this and that). Many times a reference will be 

made to a particular portion of a document, or the document itself. For example, [ This 

document describes how to install … ], or [ This section will explain … ]. 

An even more difficult construction is found when the demonstrative is alluding in 

some way to the section title. For example, the following structure appears in a Linux 

HOWTO document: 

2. Comparing Linux with other Operating Systems 

2.1. General ComparisonGC 

The best place to find out about thisGC is in such documents as 

the `Linux Info sheet' , `Linux Meta FAQ ' and `Linux FAQ ' (see 

"Linux Documentation") .  

Notice that the demonstrative [ thisGC ] is referring obliquely in some way to the act of 

performing a general comparison of Linux with other operating systems, although in 

most cases resolving this to the section title would be adequate. 

In each of these cases, some notion of context along with some concrete 

representation is needed to correctly resolve the reference. For the demonstrative [ this 

section ], simply resolving all like instances into an equivalency class would not be 

correct, as the reference is contextually dependent. Also, for tasks involving semantic 

processing, the root antecedent should link to the relevant portion of the document. 
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 The contextual representation proposed in this section addresses both of these 

issues. The demonstrative can be evaluated with respect to the context (section) it is 

found in, and every context can be used as an antecedent, just like obj and evt elements.  

5.7.2 Contextual Issues with First and Second Person 

There is little mention of first and second person resolution in anaphora resolution 

research. It is generally assumed that these pronouns are unambiguous and should 

therefore form an equivalence class. However, in many cases such as news text and 

literature, contextual issues arise which make this assumption incorrect. Consider the 

following text which appears in the corpus of Siddharthan (2003). (Note: co-referents 

are labelled using the primary antecedent for clarity). 

The WolfWOLF and the LambLAMB. 

 

Once upon a time a WolfWOLF was lapping at a spring on a hillside, when, 

looking up, what should heWOLF see but a LambLAMB just beginning to drink 

a little lower down.  "There's myWOLF supper," thought heWOLF, "if only 

IWOLF can find some excuse to seize it."  Then heWOLF called out to the 

LambLAMB, "How dare youLAMB muddle the water from which IWOLF am drinking?" 

 

"Nay, masterWOLF, nay," said LambikinLAMB; "if the water be muddy up 

there, ILAMB cannot be the cause of it, for it runs down from youWOLF to 

meLAMB." 

 

"Well, then," said the WolfWOLF, "why did youLAMB call meWOLF bad names 

this time last year?"  

 

"That cannot be," said the LambLAMB; "ILAMB am only six months old." 

 

"IWOLF don't care," snarled the WolfWOLF; "if it was not youLAMB it was 

yourLAMB father;" and with that heWOLF rushed upon the poor little LambLAMB 

and ate herLAMB all up.  But before sheLAMB died sheLAMB gasped out “Any 

excuse will serve a tyrant." 

In this short text, there are seven instances of a first person pronoun which refer to 

two different individuals – neither of which is the narrator. Likewise, there are five 

instances of a second person pronoun, alternating between referents. To correctly 

process the text requires a representation of the context of each clause. 
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The CAMEO representation of the contextual structure (omitting certain clausal 

contexts) for the first two sentences is approximated below. 

 

ctx  [  TYPE=doc   TITLE= The Wolf and the Lamb 

 ctx  [  TYPE=para  

  ctx  [  TYPE=clause [ Once upon a time ... ] 
  ctx  [  TYPE=clause  

   obj  [  ID=o11  [ he  ] ] 
   ctx  [  ID=t5 TYPE=clause REF=o11  [ “There’s my supper”  ] ] 
   ctx  [  TYPE=clause REF=o11  [ “if only I can find some excuse to seize it”  ] ] 
   evt  [  TYPE=clause S=o11  C=t5  [ thought he  ] ] 

 

The dialog produces context elements which are distinguished from the running text 

using the REF attribute. The REF attribute records the speaker and allows for the first (and 

possibly second) person pronouns to be correctly attributed. 

Note also that the pronoun [ he ] in the first sentence of the last paragraph can be 

resolved correctly because the dialog is out of the linear ordering of the text contexts. A 

syntactic, recency based reference resolution algorithm would choose [WOLF] as the 

antecedent because it is the most recent linear context. Without a contextual 

representation, the most recent linear context would instead incorrectly choose [FATHER]. 

Of course, not every discourse contains dialog, but there are other constructions 

where contexts are crucial to interpreting first and second person. These appear with 

varying degrees of frequency based on the genre of text and the intended purpose of the 

document. 

Figure 5.7.2 gives the percentage distribution of pronouns for a sample corpus. The 

corpus is from the University of Wolverhampton (Mitkov et al., 2000) and is comprised 

of seven technical documents. The corpus has coreferential nominal identity chains 

marked in accordance with the MUC-7 syntax. The documents consist of: 
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Winhelp README file for Windows Internet Explorer 

Urban DIY article about tools and tool safety 

Panason Instruction manual for a Panasonic television 

Hinari Instruction manual for a Hinari television 

Cdrom Linux CD-ROM HOWTO 

Aiwa Instruction manual for Aiwa stereo receiver 

Access Linux adaptive technology HOWTO 

 

Figure 5.7.2 – Percentage distributions of several pronouns on the Wolverhampton 

corpus 

 

The graph reveals that the most common pronoun in this corpus (on average) is          

[ you ], which comprises nearly 60%. Since the corpus is comprised of generally 

instructive documents this is to be expected. The next most common pronoun is [ it ], 

followed by  [ I ] and finally, all others combined (this includes he, she, they, one, 

everybody, etc.) 

Looking at the distribution of the pronoun [ I ], it is clear even within this specific 

genre of text, that there is high variance. Only three of the seven documents use first 

person, and the usage varies. The access and cdrom documents are both written in first 

person and aimed towards users of the Linux operating system. In addition, the cdrom 

document also employs a rhetorical first person in questions used as section titles (e.g. 

How can I tell what speed CD-ROM I have ? ). The winhelp document on the other hand, 

quotes questions from users in the first person. 
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The de facto algorithm for resolving first person references, based on number and 

person constraints, simply links to the most recent preceding instance. Using this 

algorithm on the access document results in a 90.9% precision for first person 

pronouns. (For these experiments precision was measured as membership in the correct 

equivalence class). 

An enhanced algorithm which takes into account contexts can be implemented using 

a back-off strategy: The contextual chain is searched for the nearest ancestral context 

which has a reference attribute. If no context is found, the system falls back to the 

default strategy of resolving to the nearest preceding instance of the pronoun. This 

strategy correctly resolves 100% of the first person pronouns in the access document 

when contextual information is included in the representation.  

The same strategy can be employed when resolving second person pronouns, 

although this can be much more difficult. If the pronoun occurs outside of any special 

context, it can be resolved to a single equivalence class (representing the reader). 

Otherwise, some means of determining the second person focus of the context is 

necessary. (In some cases this may also be the equivalent to the reader.) 

For certain classes of text, respecting context for first and second pronouns can 

improve the performance of reference resolution. The gain will vary widely depending 

on the distribution and syntactic constructions of the document. However, when text 

understanding is the goal, an analysis which includes context will be crucial. 

5.7.3 Third Person Anaphora in Context 

Although third person anaphora is generally considered a local phenomenon, it poses 

certain difficulties both with and without contextual considerations. In a previous 

section I described how a third person pronoun can bind to a first person pronoun in the 

context of dialog. However, in general, a dialog (or other embedded) context contains a 

separate table of salient referents, independent of the main context. For instance, in this 

passage from Lewis Carroll‟s Alice In Wonderland, the third person pronouns do not 

corefer inside and outside the dialog, although they intervene: 
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Presently sheALICE began again. "I wonder if I shall fall right THROUGH 

the earth! How funny it'll seem to come out among the people that walk 

with their heads downward! The Antipathies, I think-- " sheALICE was 

rather glad there WAS no one listening, this time, as itANTIPATHIES didn't 

sound at all the right word) "--but I shall have to ask them what the 

nameNAME of the country is, you know. Please, Ma'amMA’AM, is this New 

Zealand or Australia?" (and sheALICE tried to curtsey as sheALICE spoke--

fancy CURTSEYING as you're falling through the air! Do you think you 

could manage itCURTSEYING?) "And what an ignorant little girl sheMA’AM'll 

think me for asking! No, it'll never do to ask: perhaps I shall see 

itNAME written up somewhere." 

The parenthetical aside inserted into the dialog introduces a new third person 

referent interposed between the final [ she ] and the antecedent [ Ma’am ]. This 

construction can only be resolved by considering these segments as separate contexts. A 

similar construction exists for [ itNAME ], where a local anaphoric reference to [ itCURTSEYING ] 

intervenes between the final [ itNAME ] and its antecedent. 

Notice however, that the first anaphoric [ itANTIPATHIES ], which occurs in the narrative 

context, refers to an antecedent inside a dialog context. So even though an embedded 

context is generally associated with an independent table of referents (i.e. discourse 

entities), these are accessible to the parent context. 

Unfortunately, the opposite situation can also occur. The following is an example 

taken from the Siddharthan (2003) corpus of a reference [ itBONE ] that occurs inside a 

dialog context to an antecedent that exists in the narrative context. 

A Wolf had been gorging on an animal he had killed, when suddenly a 

small bone in the meat stuck in his throat and he could not swallow 

it. He soon felt terrible pain in his throat, and ran up and down 

groaning and groaning and seeking for something to relieve the pain. 

He tried to induce every one he met to remove the boneBONE. "I would 

give anything," said he, "if you would take itBONE out." 

These types of constructions further complicate resolution as antecedents can appear 

in both hierarchical proximity (ignoring intervening contexts) and linear proximity. 
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One other notable property of third person anaphora which must be considered is the 

ability to block potential antecedents. Consider the following sentence which is a 

continuation of the previous passage: 

Then the Crane put its long neck down the Wolf's throat, and with its 

beak loosened the bone, till at last itCRANE got itBONE out. 

The final [ itBONE ] is blocked from binding to the preceding [ itCRANE ] because of 

syntactic constraints (i.e. both pronouns are members of the same local domain). Most 

reference resolution algorithms will code for these constraints and would not have a 

problem resolving this type of construction. However it is easy to change the sentence 

so syntactic constraints on the two pronouns are not violated. 

Then the Crane put its long neck down the Wolf's throat, and with its 

beak loosened the bone, till at last itCRANE believed itBONE was out. 

The revised sentence circumvents the blocking effects and requires some other 

means to determine the binding of the second pronoun, in this case (and many others), 

either a semantic analysis is required, or some more sophisticated constraint processing 

must be used. 

5.8 Evaluating Resolution 

Evaluation metrics for reference resolution often utilize standard calculations for 

precision and recall. However, because a reference resolution system relies on many 

different processing components, it is sometimes difficult to measure the success of the 

algorithm, or the effects of different theories. Mitkov (2002) proposes several different 

metrics designed to give a more uniform and precise evaluation of different reference 

resolution systems. He argues that recall is not relevant to robust resolution systems 

because they typically give values for all anaphora in a text. Additionally, variance in 

how recall is calculated makes direct comparison difficult. For example, some 

researchers may use the total number of anaphora (from the annotation key), while 

others may use the total number identified by the system.  

Instead of the standard F-score based on precision and recall, Mitkov (2002) 

suggests success rate which is a simple ratio of the correctly resolved anaphora to all 
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anaphora in the text. Additionally, he proposes several other measures designed to 

evaluate specific classes of anaphora, which he refers to as critical and non-critical. 

Finally, he argues that to evaluate a reference resolution algorithm, versus a reference 

resolution system, the exact success rate can be found by hand-correcting the output of 

any pre-processing stages to ensure that the input to the algorithm is correct. 

The standard calculation of F-score, and the alternate scoring scheme proposed by 

Mitkov (2002), assume a single-stage system which produces a single antecedent that 

can be judged on a binary scale (i.e. right or wrong). This imposes an unnecessary 

limitation on the application of a reference resolution system because it does not 

consider the possibility for multi-stage processing. 

 In the preceding sections I discussed some of the challenges faced when attempting 

anaphora resolution. Performance of existing algorithms using syntactic and lexical 

constraints is generally reported to be in the 60-80% range. Further gains usually 

require analysis beyond the surface level, addressing lexical and semantic constraints. 

(See Section  6.3). Because of this, evaluating a pronoun resolution algorithm strictly on 

a binary precision metric does not measure its true potential. Basic algorithms can be 

employed to do initial filtering and pass the results to more refined methods. A simple 

binary metric ignores this possibility and only scores a single outcome. 

For example, many resolution algorithms begin with a list of possible antecedents 

and apply a series of scoring constraints before selecting the highest scoring antecedent. 

If there are many cases which require deep semantic interpretation, it may be that an 

algorithm performs poorly because it happens to select (usually through some heuristic) 

the wrong antecedent from a list of two or more having similar scores. However, if it 

could be shown that the algorithm returns the true antecedent in a small set of its highest 

ranking antecedents, the algorithm should improve the overall performance when 

combined with subsequent deeper processing stages (e.g. a semantic analyzer). 

In the experiments that follow, I propose using evaluation criteria that measures the 

precision and accuracy based on a ranked list of likely antecedents, rather than a single 

antecedent. The antecedents appear on the list ranked by salience, which for a naïve 

algorithm can simply be proximity to the referent. Using a ranked list in the evaluation 

metric calculations gives a better indication of how the algorithm would perform in a 
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system that includes a second stage processor. The goal of the first stage algorithm is to 

produce the smallest set of candidates which contains the correct antecedent. 

The new evaluation metric I am proposing is derived in the following manner. The 

standard definitions of precision P, recall R, and F-score are calculated normally except 

the ranked list of likely antecedents is used when determining correctness. That is, an 

anaphor is determined to be resolved correctly if any antecedent in a proposed set is 

correct. This produces exactly the score that would be achieved given a hypothetical, 

infallible second stage processor to select from the proposed set of antecedents. 

This revised F-score alone would be unhelpful, as a naïve algorithm which simply 

included all preceding nouns would score perfectly. Thus I propose a new measure 

called the antecedent focus. The antecedent focus 𝐴F of a resolved anaphor is 

calculated by determining the rank of the true antecedent in the proposed set of 

antecedents, together with the number of antecedents in the set. 

𝐴𝐹 =
1

𝑅 +  𝑆 
 

Where 𝑅 is the zero-relative rank of the true antecedent in the set 𝑆, and  𝑆  is the 

cardinality of 𝑆. When the true antecedent is found in a set containing exactly one 

antecedent, this reduces to 

𝐴𝐹 =
1

0 + 1
= 1 

When the true antecedent is not contained in 𝑆, 𝑅 is set to infinity yielding 𝐴𝐹 = 0. The 

antecedent focus balances the rank of the true antecedent with the size of the proposed 

set. Both the rank and set size need to be small to achieve a high antecedent focus. 

The average AF over all anaphora gives an indication of how well the algorithm 

performs without a second stage processor. As an example, an algorithm that always 

returned 2 antecedents, with the true antecedent first, would score 

𝐴𝐹 = 0.5. The same algorithm returning the true antecedent second would score 

𝐴𝐹 = 0.33. 
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The revised F-score and AF score together give a better indication of the true 

performance of the algorithm compared with an F-score based on a binary precision. In 

the experiments that follow, I will report the revised F-score along with the AF score in 

my analysis. 

5.9 Experiments 

For these experiments, I implemented the syntactic approach of Hobbs (1978) as 

summarized in Jurafsky and Martin (2000). The basic algorithm consists of retracing 

the parse tree from the anaphor in a constrained way to find the most recent plausible 

antecedent. If the sentence containing the anaphor does not yield an antecedent, 

preceding sentences are explored in order of most recent first. Each proposed 

antecedent is tested against the basic constraints of number, gender, and animacy. 

The Hobbs algorithm, though it uses a somewhat difference approach, achieves 

scores comparable with the Lappin and Leass (1994) salience table approach. Many of 

the salience weights which are explicitly encoded in the Lappin and Leass algorithm are 

implicitly accounted for by Hobbs. I chose to use the Hobbs algorithm because its 

recursive nature fits naturally with the contextual model at hand. (The implementation 

of the algorithm was written in a single XSLT transformation run over the CAMEO 

XML file.) Also, the fact that the clausal contexts in the CAMEO representation equate 

to syntactic local domains simplifies the processing of some steps in the Hobbs 

algorithm.  

There is no provision in either Hobbs or Lappin and Leass for determining a set of 

antecedents, as I proposed for the performance metric. Both algorithms produce the best 

candidate based on recency and other constraints. Presumably the second best candidate 

would then be the next ranked antecedent, or the next most recent. Because there is no 

way to determine the optimum set size, I ran several tests using different set limits. 

When contextual information is considered, the algorithm can be stopped when crossing 

certain contextual boundaries. This allows a comparison of the AF based on the 

segmentation provided by the contextual information, versus a longer list of 

antecedents. 
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For example, if the set size was limited to 6 antecedents, and the contextual 

segmentation produced an average set size of 3 antecedents with little change in 

precision or recall, the segmentation is improving the AF of the algorithm. 

5.9.1 Testing Embedded Contexts 

As I discussed earlier in the chapter, the genre and style of text will determine the 

extent that contextual processing can affect the performance of text processing. 

Documents that contain no dialog or other embedded textual constructs will show little 

if any improvement on tasks such as reference resolution when evaluated against a strict 

precision metric. Documents such as literature and certain types of news stories, will 

benefit from the application of contextual processing, to the extent that the text contains 

contextual structure. 

To test this hypothesis, I used a document (literature.txt) from the Siddharthan 

(2003) corpus which contains a fair amount of dialog. The document contains several 

short stories and several excerpts from longer works. 

Basic structural contexts were added to the document for section and paragraph 

breaks, and a custom tokenizer was used to automatically detect and insert contexts for 

dialog. Each dialog initiated a new context container and inside of this container 

sentences were processed normally. The document was then parsed using the RASP 

system, and the output was converted into the CAMEO representation as described in 

Chapter 3. 

The Hobbs reference resolution algorithm was run over the CAMEO representation 

for third person pronouns only, with and without contextual processing. With 

contextual processing, the algorithm did not treat sentences neighbouring a dialog 

context as adjacent to the sentences inside the dialog context. Without contextual 

processing, these sentences were treated as adjacent and processed normally.  

 

 

 

 

 

 

 

 

The results are shown in Table 5.9.1 for several different set sizes. The table gives 

the F-score, Precision (P), Recall (R), and Antecedent Focus (AF) for each size with 
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and without contexts. Note when the set size is set to 1, the AF metric produces the 

same result as standard (binary) precision. 

For this corpus, the contextual information improves the precision and the AF, 

especially for smaller set sizes. As the set size is relaxed, more antecedents are allowed 

and the precision for both algorithms improve and approach parity. Additionally, the AF 

degrades as more antecedents dilute the precision, until the two algorithms are at near 

parity. 

Table 5.9.1– F-score, Precision, Recall, and AF for third person 

resolution using several set sizes 

 𝑆  

Contexts No Contexts 

F P R AF F P R AF 

1 48.3 51.4 45.5 51.4 43.4 44.7 42.1 44.7 

2 70.3 74.9 66.3 45.3 66.3 68.4 64.4 40.8 

3 73.4 76.8 70.3 33.2 73.0 75.3 70.8 32.4 

4 78.1 81.6 74.8 27.7 77.5 80.0 75.2 26.8 

The contextual information is shown here to give an advantage for this text. When a 

unary antecedent set size is evaluated, precision, recall and AF were higher with the 

contextual information. In fact, precision and AF were higher for all set sizes tested, 

though the difference becomes diminished as the size increases. 

5.9.2 Contextual Segmentation 

Texts which do not include embedded contexts but do include some structure, may 

benefit to a lesser degree by using the explicit contextual segmentation found in the 

document structure to limit complexity during processing, much like the embedded 

contexts did in the previous section.  

To test this hypothesis I used the Hobbs coreference algorithm on an annotated 

corpus to propose a set of antecedents for third person pronouns. Because the algorithm 

does not include a determination of the optimal set size, I tested a range of set sizes, 
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from 1 to 10. Generally, resolution algorithms are run with a limit on sentence recency. 

For example, a common heuristic is to limit the algorithm to 2-4 sentence histories. 

However, the number of possible antecedents varies with the content of a sentence, so 

different groups of 2-4 sentences can potentially have a wide range of possible 

antecedents. In these experiments the antecedent set size is the limiting factor, 

regardless of the sentence distances. 

The corpus used in the experiments was comprised of seven technical documents 

from the University of Wolverhampton (Mitkov, 2000). The corpus has coreferential 

nominal identity chains marked in accordance with the MUC-7 syntax. Because the 

document structure was not explicitly annotated, I added basic structural information 

based on textual elements which included sections, paragraphs, titles, etc. The 

documents were then processed using the RASP system, and the output was converted 

to the CAMEO representation. The results are presented in Figure 5.9.2. 

 

 

The graph in Figure 5.9.2 shows the AF of the reference algorithm as it is allowed to 

include more antecedents in its set of candidates. The bars show the precision, which 
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measures the number of sets where the true antecedent appears (as described earlier). 

As the set size increases, the likelihood of the true antecedent appearing increases, 

improving the precision. However, this comes as a trade-off to AF, since the larger the 

set size, the lower the AF.  

The results show that contextual segmentation keeps the AF from degrading beyond 

a certain point, whereas the non-contextual algorithm continues to be diluted by further 

antecedents. Segmentation limits the set size by the contextual boundaries and as the set 

size increases more anaphora will hit this boundary, which determines the asymptotic 

AF curve on the graph. In the non-contextual case, there is no limit so the AF appears 

more linear. 

The effects of contextual segmentation are more pronounced in anaphora that appear 

in short contexts, or earlier in the text of longer contexts. These cases tend to comprise a 

smaller percentage of a document, and for this reason the effects are mitigated to some 

degree over the entire corpus. The 20% range for context AF shown on the graph 

quantifies this mitigation. A set size ranging from 1 to 5 antecedents shows the steepest 

decline in AF, which means that fewer of the cases benefited from segmentation. 

Candidate antecedent sets larger than 5 begin to be affected by the contextual 

segmentation, showing that the average distance to a contextual boundary is greater 

than 5 antecedents. 

The difference in the precisions scores for the two cases shown on the graph 

approximates the number of cases where the antecedent crosses a contextual segment 

boundary. Using contexts the antecedents are limited to just those within the context. 

The non-context version is limited only by the set size proscribed in the test. Although 

the difference is small between the precision scores there are several factors which may 

contribute to a higher score for the non-contextual algorithm. 

First, the algorithm does not account for cataphors, so cataphors, although appearing 

within a context, will not be found by the contextual algorithm. The same is true for the 

non-contextual algorithm, however it may eventually find a related earlier antecedent if 

the set size reaches far enough back. 
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Next, even without considering cataphora, if the base algorithm misses an antecedent 

due to an algorithmic or other implementation error, both precision scores will be 

penalized. However, the non-contextual version may, again, stumble upon an earlier 

related antecedent if the set size becomes large enough. Because the scoring method 

uses equivalence classes, these cases are not detected and instead counted as correct for 

the purpose of calculating precision. 

Finally, there is the case where the antecedent truly lies outside the contextual 

segment. An analysis of the corpus reveals that these cases are actually quite rare and 

should not significantly affect the precision score. Out of a total of 1376 instances of 

pronominal anaphora in the corpus, just 13 cases (~1%) were observed to refer to 

antecedents outside the pronoun‟s contextual segment. 

5.10 Summary and Conclusions 

In this chapter I have examined the contextual information which can be derived 

from document structure and syntactic parsing. I have proposed a general representation 

which applies recursively to both and demonstrated how this can be integrated in the 

CAMEO text representation. 

The chapter focused on one application of contexts in text processing, namely 

reference resolution. I discussed several issues that arise with contextual reference 

resolution, and I presented an analysis of first and second person pronouns in relation to 

embedded contexts, specifically dialog. I showed how processing and representing 

contextual information can produce a correct analysis of these constructions. 

The more difficult problem of third person anaphora requires a deeper analysis, 

including a consideration of lexical and compositional semantics, which is outside the 

scope of the current research. Instead, I focused on the application of contexts using 

shallow syntactic methods. I argued that a purely syntactic approach to reference 

resolution will always be limited by semantic ambiguity, and should therefore be 

viewed as a pre-processing stage for filtering likely antecedents. With this view, the 

notion of AF, which incorporates both the antecedent set size and the true antecedent 

rank, becomes relevant.  
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For certain genres and styles of text, contextual processing can show modest gains 

on third person anaphora. (Larger gains are achieved for first person anaphora, but the 

application is limited to an even smaller percentage of documents). Using a document 

comprised of short stories and literary excerpts containing dialog, I showed that using 

contexts improves the F-score and AF of a baseline reference resolution algorithm for 

all antecedent set sizes. The gain would likely become more pronounced if the 

contextual structure was considered by a following stage of semantic constraint 

processing. 

Finally, I demonstrated a further application of contexts to reference resolution using 

contextual segment boundaries to limit the number of antecedents suggested by the 

reference resolution algorithm. Comparing this to an arbitrary size showed that AF can 

be kept asymptotically within a higher range. Because only a small percentage of the 

text encounters the segment boundaries at smaller set sizes, the advantage increases 

with the size of the set. 

A higher set size was shown to increase precision but decrease AF. A lower AF 

translates into higher ambiguity and complexity for the antecedent set, which would 

lower the performance of a constraint processing module. Using segment boundaries 

helps keep the AF at a higher level without significantly impacting precision.



 

6  

 

Symbolic and Distributional 

Methods 

In this chapter, I will briefly discuss strategies for augmenting natural language 

processing with both symbolic and distributional information. I will show how these 

two different approaches can be combined and how the CAMEO representation 

facilitates both methods. Combining distributional information with symbolic 

processing techniques is a relatively novel approach in computational linguistics. The 

two methods are somewhat orthogonal and in some sense address separate problems, or 

at least separate models. Because of these differences an augmented approach is 

warranted, where distributional information is used to enhance symbolic techniques. 

In the introduction I explained how research into distributional methods has 

increasingly made use of symbolic information. Incorporating symbolic information 

into distributional studies is nothing new. Shallow syntactic information was 

incorporated into early distributional experiments, as for example Hindle (1990), who 

used syntactic verb-object dependencies to determine word similarities. However, 

research in the 1990‟s placed an emphasis on statistical similarity measures based solely 

on collocative information (e.g. Periera et al., 1993; Waterman, 1996; Schütze, 1998; Li 

and Abe, 1995). At the same time, distributional methods of semantic extraction were 

being developed as an alternative to manual methods (e.g. Hearst, 1992; Light, 1996). 

Recently, efforts to combine these two approaches have emerged. Statistics about the 

lexico-syntactic patterns and relationships a lexeme participates in have been used in 

conjunction with raw collocational statistics to refine traditional statistical methods. 

Lin, et al. (2003) acknowledge the limitations in deciding synonymy using strictly 

collocational evidence. They point out that lists of distributionally similar words often 
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contain antonyms or members of a multi-valued semantic category (e.g. color 

adjectives), rather than strictly synonymous words. The insight here is that semantic 

similarity is not the only property which causes distributional similarity. Other semantic 

properties such as antonymy may be at work, diluting statistically derived word clusters 

that rely solely on collocational information. (Chapter 6 gives a treatment of antonymy 

in distributional experiments). 

The solution proposed by Lin et al. is to refine a word cluster using heuristic lexical 

patterns that have been determined to correlate with a semantic property. The examples 

used by Lin et al. to filter antonyms are the patterns [from X to Y ] and [either X or Y ]. 

These patterns are conjectured to mark the lexemes X and Y as semantically 

incompatible. Lin et al. report a high precision and recall when deciding synonyms vs. 

antonyms using these patterns on distributionally similar words. 

Going beyond lexical patterns, efforts to utilize some syntactic information have also 

been applied to distributional semantic classification.  Hindle (1990) and Lee (1999) are 

examples of distributional approaches using a specific syntactic relation (verb / object 

pairs). Grefenstette (1992) and Lin (1998) incorporate more general dependency 

relations into a word‟s context vector, but only as a means of refining the collocational 

information associated with a word. 

Padó and Lapata (2003) go one step further and attempt to define a general 

distributional approach that considers both lexical and syntactic information in a 

parametric framework. They argue that the semantic space described by vectors of 

strictly lexical collocations conflates the important contextual information of word 

events. They suggest that linguistic information should be included in the vector space 

model, and formalize this idea by generalizing over dependency relations. Rather than 

creating unordered vectors of collocations (i.e. bags), they propose a weighted vector of 

dependency relations. In this scheme, the encoding of dependencies is done in such a 

way that dependencies beyond simple head-modifier relationship can be included in the 

distributional information. In addition, the inclusion of parametric weights allows 

linguistic information to be leveraged, since certain dependencies can be made to have a 

higher significance than others. 
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The results reported by Padó and Lapata and others confirm that dependency 

information can be a useful feature for distributional similarity measures. One of the 

challenges to this approach, which has made it difficult in the past, is obtaining the 

dependency information. It has only been relatively recently that large multi-million 

word corpora with syntactic dependency information have become feasible, and these 

resources can still be expensive to produce. Furthermore, extracting the dependency 

information from these types of resources for use in distributional experiments also 

involves some effort. 

My goal in this chapter is simply to point out the intrinsic support in CAMEO for 

these methods, and to provide some context for the following chapters which focus in 

depth on distributional processing. I will begin by looking at the kinds of distributional 

information that can be derived from the CAMEO representational forms. Next, I will 

explain the issues involved with integrating distributional information that has been 

derived externally. Finally, I will propose one application of distributional techniques 

for symbolic processing which forms the basis of the experiments in the final chapter.  

6.1 Distributional Information in the CAMEO 

Representation 

One of the stated goals of the CAMEO representation was to facilitate the collection 

of distributional information using the intrinsic representation. Several properties of the 

representation aid in this respect. The use of globally unique identifiers on classes and 

lexemes simplifies distributional queries. In Chapter 3, I briefly noted that class 

information is accumulated during processing. Every common noun encountered during 

text processing is represented as a class and given a unique identifier, which is 

referenced in the representation language. This allows a simple means for distributional 

analysis to be performed by processing instances where the class id appears. 

Although only common nouns are given explicit class identifiers, any lexeme 

processed in the system can be used to collect distributional information. All word 

tokens from open-class categories are indexed by lexeme, and closed-class words 

(determiners, verbal auxiliaries, and certain quantifiers) can be queried directly as 
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attribute values. For example, to find all co-occurrences with the determiner the, a 

query could be run for all elements having an attribute   [ DET = the ]. 

 

A further feature of the representation that aids distributional processing is the 

explicit representation of objects. Just as distributional information can be collected for 

a class lexeme, an object identifier can be used in distributional queries to find 

collocational and dependency information. This has advantages over other 

representations, such as PC, where the notion of an entity is less explicit and would 

require further processing beyond a simple query to recover distributional information. 

For example, in CAMEO the identifier of an object which has been resolved to an 

equivalency class can be used in a simple global query to collect distributional 

information for the entire equivalency class. Figure 6.1 gives pseudocode and an actual 

XPath expression which would filter all objects that are members of an equivalence 

class containing id(x). 

Pseudocode: 

 for all obj remember id(this) then do 

  if there exists eq containing both id(this) and id(x) do … 

XPath: 

<xsl:template match=”//obj[//eq[ obj[ @IDREF=‟x‟ ]/obj/@IDREF=@ID ]”/> 

Figure 6.1 

Example distributional query for all objects related to id(x) through some equivalence class 

eq 

Note that distributional information which was collected before the equivalence class 

was created is logically aggregated by a coreference resolution operation. Each new 

referent which becomes a member of the equivalence class contributes any 

distributional information it might have, and at the same time inherits the distributional 

information of the group. Enforcing coherence of the distributional information could 

possibly provide another dimension of constraint processing for the coreference task. 
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The encoding of syntactic structure in the representation means distributional 

information beyond simple collocations can be recovered directly. For example, it is 

possible to determine the number of times the noun gun appears as the object of a 

preposition by forming a query on all rel elements where the OBJ attribute has the class 

identifier gun. This same technique can also be used to find other direct distributional 

information, such as modifiers, verb forms, etc. Information collected in this fashion 

can be made available to other modules by annotating the class element of the given 

noun.  

As more syntactic and symbolic information is incorporated into distributional 

processing, more sophisticated search patterns must be supported by the representation. 

For example, Levy and Andrew (2006) report on a query language created for syntactic 

tree structures which allows detailed co-occurrence patterns to be applied to a corpus. In 

CAMEO, these types of patterns, and more indirect and variable distributional patterns, 

can be applied through the flexible query language (XSLT) which operates on the 

representation. 

For example, it may be advantageous to collect distributional information for a 

compositional phrase, such as [ x be y fault ], where x and y represent any type of 

syntactic construction, from simple clauses [ The failure was the engineer’s fault ], to 

more complex phrases [The judge did not believe the crime to be the fault of the victim]. 

To allow complex distributional queries such as this a representation needs to allow a 

simple means to encode the core information. In CAMEO the representation would 

appear as:  

ctx[ 

 obj[ ID=n  class[ fault ] ] 

 evt[ ACTION=be O=n ] ] 

The ctx element serves to denote the group of elements included in the phrase under 

study and as a suitable container for annotation. Each element in the distributional 

query contains only the minimum information required to describe the construction 

being investigated. This concise representation of the relevant constraints will match a 

wide range of constructions containing the desired phrase. A distributional query built 

from these constraints and applied to the representation will be able to return more than 
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just direct instances of the query. Many different syntactic variations can indirectly 

match the core constraints and satisfy the distributional query. Additonally, a 

dependency query (like that illustrated here) can also serve as a dependency rule when 

it is cast to designate some property to matching contexts. Chapter 9 uses this type of 

dependency query in rules that designate the semantic classes of nouns. 

 

Although distributional processing is certainly possible with any representation 

(whether through ad-hoc approaches or transformations into database formats), the 

global indexing of lexemes and the explicit representation of objects in CAMEO, 

together with the flexible query language provided by the implementation, allows the 

integration of distributional methods directly. This includes the possibility for including 

deep syntactic features in conjunction with more shallow collocational information. 

Additionally, because the representation is implemented using XML, many existing 

XML processing tools and utilities can be applied directly to the representation (e.g. 

Apache Xindice, Berkely DB XML, IB Search Engine, eXist-db, Tamino XML Server, 

etc.).  

6.2 External Resources  

The processing model of CAMEO, which adopts the XML DOM, allows a general 

means for adding attributes or other elements to an entity in the representation. 

Information appended in this manner is adjunct to the representation and becomes 

accessible to all modules operating in the system, providing a form of annotation that 

extends the representation to accommodate augmentative symbolic and distributional 

methods. Although representing external information this way is not strictly necessary 

(since a processing module may have its own interface to the external source), it serves 

to merge the two sets of information conveniently. By incorporating the external 

information directly into the representation, processing can be more efficient. Attributes 

and information which are expensive to extract using external resources can be 

processed once and reused by subsequent modules. 

This scheme of annotating the representation is flexible and accommodates both 

symbolic and distributional information because the form is not constrained. Some 
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examples of external symbolic resources that might be used to augment linguistic 

processing include lexical and semantic resources such as Machine Readable 

Dictionaries (MRDs), Lexical Knowledge Bases (LKBs), or general world knowledge. 

For example, the WordNet semantic taxonomy (Fellbaum, 1998) could be used to 

annotate the representation with semantic attributes or sense information (as described 

in the next section). By transferring this information into the representation, linguistic 

tasks that run in the system can access this information directly from an element in the 

representation, rather than having to extract it for each element themselves. 

Like external symbolic information, representation of external distributional 

information is flexible and can take several forms. In each case the representation 

provides a framework for the external information, leaving the interpretation for 

independent processing modules. Each element in the representation can be expanded to 

take distributional information in the form of word vectors or discrete statistical 

information. The lexical entries of the lexis context can be expanded to take lexeme-

based distributional information, and entries in the classes context can be annotated 

with distributional information for differentiated lexical senses.  

For example, one approach to adding distributional information to a class entry is   

classes [ 

 classdef[  ID=c1 LEX=l23   

  collocate[  LEX=l403 COUNT=812  ] 

  collocate[  LEX=l507 COUNT=12456  ] 

  …  ] ] 

where the collocation information is comprised of simple context pairs from a specific 

dependency relation (e.g. adjective / noun), and may have been culled from an external 

corpus implemented in a different representation. 

Distributional information which includes dependency relations can be represented 

using the standard CAMEO elements as child elements to the distributional anchor. For 

example, dependency information from an external corpus implemented in a GR 

representation can be added to the classes context by translating the GR dependencies 

to CAMEO elements and adding them as child elements of the classdef element used to 
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anchor the distributional query. Assuming the distributional processing included a 

means of aggregating the information, this would produce a representation similar to 

classes [ 

  classdef [  ID=c2 LEX=l49   

rel[  PREP=l37 COUNT=53  OBJ ] 

evt[  ACTION=l84 COUNT=39 S ] 

evt[  ACTION=l22 COUNT=53 O ] 

mod[  LEX=l88 COUNT=312  ] 

  … ] ] 

where attributes in the distributional elements that are unspecified are unconstrained. 

The role of the anchor in each distributional element is indicated using a defined but 

empty attribute. In this example, the class is annotated with several distributional 

relations. The first rel element represents 53 instances where the class appears as the 

object of the preposition id(l37). The next evt element represents 39 instances where 

the class id(c2) appears in the subject position of a verb phrase incorporating id(l84) as 

the head verb. Note that for this evt entry the form of the verb phrase is unconstrained in 

the representation, and thus aggregates passive, modal, and tense variations in the 

distributional data. 

 

External distributional information can be leveraged at various stages of processing 

for a range of applications. For example, during QA processing the framework might 

return multiple answer candidates for a given query. Distributional information could be 

used to score semantic similarity for words in the answer candidates against words in 

the question, providing a means of ranking the answer candidates. Alternatively, if a 

query results in no answer candidates, the distributional information could be used in 

expanding the query. 

For text generation, distributional information might be used in discourse planning. 

Statistical information about the frequency of words or co-occurrence would serve to 

help select surface syntactic forms that conform better to natural speech patterns. 

Distributional information could also be integrated with the surface text generator itself, 
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by boosting or penalizing certain syntactic forms based on statistical evidence (e.g. 

fronted direct objects). 

As a final example, consider the coreference resolution task. Here the distributional 

information can be used to augment the measure of a coreferent‟s compatibility. This 

could take the form of disambiguating word senses, boosting based on high statistical 

collocative evidence, or measuring semantic similarity, as the following section will 

show. 

6.3 Distributionally Derived Attributes 

To give an example of how symbolic and distributional techniques can be combined 

to augment a language processing application, in this section I will propose a technique 

designed to enhance the coreference resolution task presented in Chapter 5.  Recall the 

coreference task from Chapter 5 consisted of determining the set of antecedents for use 

in a ranking algorithm to determine coreference. The experiments demonstrated an 

implementation of a basic reference resolution algorithm, based on Hobbs (1978). Like 

the Hobbs algorithm, most coreference resolution algorithms include as a basic step the 

elimination of incompatible antecedents, where incompatibility is usually determined 

from a simple match over a small number of attributes. 

For example, in section 2.2.1.2 I listed several attributes which can be attached to 

objects: gender, animacy, and plurality. When these attributes appear with an object 

instance, the coreference resolution algorithm is better able to filter incompatible 

candidates for referring expressions, improving precision and (indirectly) recall. 

A good source of attribute information of this kind is a lexical resource such as 

WordNet. The WordNet semantic hierarchy of nouns allows coarse grained attributes 

(like those listed above) to be determined for most common nouns. One method of 

determining this would be to trace the hypernymy relation of a noun back to an ancestor 

node which is considered the source of a particular attribute. For example, the noun 

thought, can be traced back to the cognition root node, and therefore deemed to have the 

inanimate attribute. 
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As with most lexical techniques, using WordNet to determine nominal attributes 

suffers from polysemy. A noun appearing in the WordNet database will very often 

contain multiple senses, each with a potentially different semantic ancestor. Using the 

wrong sense can potentially lead to assigning an incorrect attribute to a noun, degrading 

the accuracy of the coreference resolution algorithm. However, this effect is mitigated 

slightly by two factors. First, the coarseness of the attributes in question results in many 

senses mapping to the same attribute. For example, the noun plane has five senses in 

WordNet, but each maps to the inanimate attribute. Second, the senses in WordNet are 

generally listed in order of frequency, such that the first sense is the most common. 

Using the first listed sense of a word will result in the correct attribute on average, 

although this is highly dependent on the corpus being analyzed. 

One of the limitations of this type of symbolic technique is lack of complete 

coverage. Nouns that are not listed in the lexical resource cannot be processed in the 

same manner. For instance, the noun F-14, which refers to a type of military aircraft, is 

not listed in the WordNet database, although it occurs many times in the MUC-7 

corpora. In order to assign attributes to unknown nouns, a method for determining their 

semantic properties is needed, i.e. lexical acquisition. 

In Chapters 7 and 8, I will investigate statistical approaches to semantic similarity 

using large-scale distributional information. These techniques are well-suited to lexical 

acquisition in large corpora containing multiple documents, where a high number of 

instances (i.e. many thousands) can be observed to smooth statistical aberrations. In 

smaller corpora such as single documents, these techniques must be adapted for the 

much smaller number of occurrences (i.e. on the order of tens or less). As I discussed 

earlier, integrating more symbolic features into a distributional approach can be used to 

adapt these techniques to a smaller corpus. (Chapter 9 explores this idea.) 

For example, a common approach to collecting large-scale distributional information 

is to use an n-word window of collocations centered on the word under study. In a small 

corpus, where the word under study might appear only a few times, this can produce a 

very small feature vector with mostly unique tokens that is ill-suited for statistical 

manipulation. One alternative is to use more symbolic information for distributional 

features, which can be more reliably aggregated, such as an object‟s role in a verb or 

prepositional phrase. This type of information is salient in a topical discourse because 
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unknown nouns are often anaphoric with known nouns and exhibit parallel syntactic 

construction. Returning to the example unknown noun F-14, the second MUC-7 

document contains two parallel syntactic constructions with one of its coreferents 

(fighter): both appear as the object of the verb crash, and both appear as objects of the 

preposition for. Using these data for semantic similarity in a large-scale corpus would 

most likely be specious, yet for a topical small-scale corpus this type of information can 

prove significant. A simple similarity measure based on the distribution of common 

symbolic events can then be used to associate an unknown noun with a known noun, 

and the attributes of the known noun can be adopted for the unknown noun. 

6.4 Discussion 

The goal of this chapter has been to suggest how symbolic and distributional 

information can be integrated to enhance traditional approaches to language processing. 

I have tried to show how the CAMEO representation supports the collection and 

annotation of distributional information intrinsically, as well as simple methods for 

annotating the representation with externally derived distributional information. The 

noun class context is a repository for this information and supports external task-

specific information, as well as data collected and processed from the representation 

itself. In addition, distributional information can be attached to discrete entities (i.e. obj 

elements) using attributes. Using the internal properties of the representation simplifies 

the implementation of both symbolic and distributional processing, operating in a 

complementary arrangement, to augment tasks such as coreference resolution. As new 

methods of applying distributional processing to complement symbolic tasks are 

developed, this will become an increasingly critical property of a general framework. 

As I discussed in the introduction, distributional processing is most often employed 

in resolving ambiguity using probabilities computed from statistical frequencies derived 

from large-scale corpora. This approach has been successfully applied to syntactic tasks 

like tagging and parsing, and to a lesser extent to lexical tasks such as word sense 

disambiguation. Where there exists distinctly ambiguous choices that can be labelled 

and counted in some way, these techniques can model probabilities adequately. For 

example, the frequency information which is used to order the word senses in WordNet 

approximates the probabilities of the individual senses. On the other hand, applying this 
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approach directly to problems not having clearly ambiguous choices is less intuitive. 

For instance, coreference resolution is a type of disambiguation but applying 

distributional approaches directly to the problem is not necessarily helpful. However, 

there are many possibilities for integrating distributional information with symbolic 

processing which may be applied indirectly to a task.  

In this chapter I have suggested one such possibility using a distributional measure 

of lexical similarity to derive semantic attributes for unknown class nouns, which are 

then used indirectly by the coreference algorithm to qualify candidate referents. Other 

indirect applications of distributional processing to these kinds of tasks may address 

different aspects of lexical ambiguity. 

 In the next two chapters I will address the general properties of statistically based 

similarity measures employed in distributional processing, and develop an adaptation 

that can improve their applicability as adjuncts to language tasks in smaller corpora. I 

will refine these techniques in Chapter 9 to extend the ideas proposed in this chapter, by 

deriving symbolic rules for determining semantic attributes. I will also address several 

of the limitations with the approaches presented in this discussion. 



 

7  

 

Statistical Similarity Measures 

in Lexical Acquisition 

In Chapter 6 I showed how distributional methods which use internally derived 

distributional information can be implemented using the CAMEO representation. I also 

explained how distributional information from external large-corpus processing could 

be used to annotate the representation for use in conjunction with other language 

processing tasks. As I pointed out earlier, augmenting the representation with this 

statistical information facilitates probabilistic methods that complement the symbolic 

processing in the representation, e.g. disambiguation strategies. In this chapter I will 

look closely at the kinds of external distributional methods that can produce this 

information, by evaluating several typical approaches. (I refer to these methods as 

“external” with respect to a language processing application because they use a separate 

(and typically much larger) corpus to obtain their results.) As mentioned earlier, large-

corpus distributional processing is best-suited for lexical tasks and this discussion will 

only address lexically scoped processing, in particular lexical semantic acquisition 

which is a useful characterization of the application of distributional processing. 

Because this chapter is mainly concerned with evaluating several existing well-

known distributional techniques which are based on collocative features, I will not 

consider the relatively recent application of syntactic dependency features or other 

symbolic adjuncts, as discussed in Chapter 6. In addition, I will gloss the details of the 

experimental framework, since it is not relevant to the discussion. The focus here is not 

the representation and implementation of these methods, but rather the properties of the 

results and the qualities of the algorithms used to achieve them. 
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I will begin by introducing lexical semantic acquisition and statistical similarity 

measures, which can be used for lexical semantic acquisition. Next, I will review the 

obstacles faced when implementing large-corpus distributional algorithms. I will then 

discuss the difficulties that arise when attempting to objectively evaluate statistical 

similarity measures (namely, the lack of a gold standard). To address this problem, I 

will look at some lexical properties of adjectives which make adjective antonyms 

uniquely suited to be used in evaluating the performance of statistical similarity 

measures. Finally, I will present the results of experiments using three distributional 

approaches to semantic acquisition of adjectives, using the proposed antonyms for 

evaluation. 

7.1 Lexical Semantic Acquisition 

Semantic acquisition refers to automated methods that can discover useful semantic 

features of linguistic objects, versus manual methods that require human intervention. 

Manual methods are expensive to implement and difficult to validate and are thus less 

desirable, although it is sometimes necessary to use them. For instance, symbolic 

methods that deeply analyze linguistic data have proven to be difficult to automate, 

requiring large-scale symbolic databases to be built using hand-coded methods instead 

(e.g. Cyc (Lenat, 1995), WordNet (Fellbaum, 1998)). 

Some effort has been made at augmenting these manual methods with semi-

automated techniques. Hearst (1992) describes a method for automatically discovering 

hyponym relations using surface cues in unrestricted text. Using high-confidence 

lexico-syntactic constructions, Hearst demonstrated how hyponyms can be mined from 

large corpora. Although the hyponyms are extracted automatically, this is considered a 

semi-automated method because the lexico-syntactic patterns must be determined 

manually. 

The method employed by Hearst is related to the work of extracting lexical relations 

automatically from MRDs by searching for specific syntactic surface patterns and cues 

in word definitions. This has been actively studied in the literature (e.g. Richardson et 

al., 1998) and generally produces fine-grained results, but is sensitive to the limitations 

of the word definitions (e.g. omissions, polysemy, circularity, etc.). 
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Light (1996) applied a similar approach to morphology. Using hand-coded 

morphological rules he was able to acquire fine-grained semantic features of various 

parts of speech. He argues that surface cues such as morphology are generally accurate, 

abundant and reliable. However, these types of methods, in addition to requiring 

manual coding and analysis of the rules and surface patterns, only provide a partial 

solution to lexical acquisition. 

In contrast to these pattern-matching, semi-automatic approaches to acquisition, 

distributional methods can be implemented using fully automated statistical techniques, 

processing large amounts of data to uncover statistical features and probabilities. For 

instance, the probability that a verb selects for a certain noun might be estimated by 

counting the number of co-occurrences of the noun and verb in proportion to all 

occurrences of each. 

The hypothesis underlying these statistical approaches is that words that have similar 

semantics (or syntax or properties), will have similar distributions. By measuring the 

similarity of the distributions, the similarity of the words can be induced, and semantic 

properties can then be automatically acquired. 

One semantic property commonly derived from distributional approaches is 

synonmy, or class membership. Knowing the degree of similarity among groups of 

words and/or lexical classes enables the classification of unknown words (i.e. lexical 

acquisition), or construction of new lexical classes. A word‟s distributional profile then 

becomes a measure for association with groups of words forming a semantic class. 

Thus, comparing the distributions of words becomes a way of measuring semantic 

similarity. 

7.2 Distributional Approaches to Semantic Similarity 

There are two major aspects to consider when implementing distributional 

approaches to semantic similarity: 1) the types of distributional features that are to be 

used (e.g. collocations, syntactic relations, etc.), and 2) the algorithm for computing the 

similarity metric. The success of an application will largely depend on these two design 

decisions. 
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7.2.1 Features of Events 

An event in a distributional experiment is an observed occurrence of a certain lexical 

pattern. The features of an event are other bits of information about the occurrence. 

There are many different kinds of features that can be extracted from an event including 

syntactic, contextual, and morphological forms. Features ideally are symptoms of 

linguistic principles, but many turn out to be spurious. 

Syntactic Features 

Syntactic features are taken from the syntactic construction of the text. These 

normally require some sort of parsing to recover and include dependencies such as 

head-complement relations. Other examples of syntactic features include information 

on constituency (the syntactic constituent a given word participates in), whether the 

event occurs in a clausal component, or whether the event is part of a conjunction. 

Contextual Features 

Contextual features are what is usually thought of when designing distributional 

experiments. Specifically, word n-grams record the distributional context of a word, 

without regard to more complex processing such as parsing. But contextual features do 

not need to be limited to the immediate context of a word. Features can sometimes 

include sentence level, and even document level contextual information. For instance, 

the most frequent noun or verb for a given document might be recorded along with each 

event. 

Semantic Features 

Semantic features are the most difficult to obtain and utilize, as they require 

symbolic processing and existing lexical resources. A typical use of semantic features is 

hierarchical class smoothing, where individual words are smoothed into larger classes 

to alleviate data sparseness. Other possibilities include semantic properties such as the 

level of polysemy, or the existence of antonymy. Note an existing semantic resource 

would be necessary to implement any of these examples. 
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Surface Features 

Surface features are any other bits of information about the event that might be 

gleaned. Some examples are morphology, punctuation, and alternations. In some cases 

these turn out to carry significant information. For instance, a preceding comma may 

turn out to be a good predictor of the sense of a polysemous word. 

7.2.2 Similarity Measures 

Similarity measures are a core component of unsupervised statistical approaches to 

NLP. For example, clustering techniques use similarity measures by calculating the 

“distance” between objects (or classes). Clustering has been applied to NLP for tasks 

such as word sense disambiguation (Brown et al., 1991; Chen and Chang, 1998; Dagan 

et al., 1995; Dolan, 1994; Pederson and Bruce, 1997; Schütze, 1998), inducing semantic 

classes (Lapata and Brew, 2004; Hindle, 1990; Hatzivassiloglou and McKeown, 1993; 

Merlo and Stevenson, 2001; Periera et al., 1993;  Waterman, 1996; Li and Abe, 1995), 

and learning syntactic properties (Brill et al., 1990; Finch, 1993; Schütze, 1995). 

Similarity measures rely heavily on information theory and other well developed 

techniques from machine learning. In this section I will examine three similarity 

measures that have been proposed in the literature. For convenience, I will label these 

as: Minimum Mutual Information (MMI) (Hindle, 1990), Tau Coefficient (TAU) 

(Kendall, 1938; Hatzivassiloglou and McKeown, 1993) and Distributional Clustering 

(DC) (Periera et al., 1993). Each of these measures uses a very different approach to 

determining the similarity of distributional data. I will first present each similarity 

measure in some detail, and then discuss evaluation strategies. 

The original experiments presented in the literature to demonstrate these similarity 

measures used various forms of lexical relationships for the distributional data (e.g. 

noun-verb, adjective-noun, etc.). In order to compare the similarity measures, it is 

helpful to generalize the form of the distributional data. For a given word w we define a 

vector vw of events representing selected collocations of w observed in the corpus. An 

event describes a word token and the corresponding count of observed collocations (i.e. 
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frequency) with w. The elements of the word vector vw comprise the list of all events 

involving the word w observed in the corpus. The following discussion uses this 

terminology to explain the mechanisms of the three similarity measures under study. 

7.2.2.1 Minimum Mutual Information 

Minimum Mutual Information (MMI) was proposed by Hindle (1990) and is based 

on a variation of mutual information from information theory. Mutual Information (MI) 

provides a measure of the information of a joint event, using the joint and independent 

probabilities of those events.  

In brief, Hindle (1990) defines the similarity of two nouns by comparing the 

(estimated) MI of verb events that appear in common. Because MI is calculated using a 

logarithm, very small ratios (representing less information) will be negative, and larger 

ratios (representing more information) will be positive. When the sign of the MI for a 

verb event agrees between two nouns, the two nouns are hypothesized to have a similar 

semantic relationship with the verb. In these cases, Hindle selects the minimum 

absolute value. The sum over all such cases is taken as the measure of similarity 

between the two nouns. 

The algorithm, in more detail, begins by calculating an estimate of MI for each 

element in a vector‟s distribution using frequency information. Hindle calls this a co-

occurrence score and it is given by 
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where v is a vector containing element e, f(v, e) is the frequency of event e in vector v, 

and N is the total number of events in all vectors. 

For two vectors being compared, if a given element has a concurring sign in both 

vectors, the minimum magnitude of the two values is added to the similarity score. The 

co-occurrence score C is produced by summing in this manner over all elements. 
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Formally, we define the similarity score of two vectors v1 and v2 as the Minimum 

Mutual Information (MMI) shared between the two vectors, given as 
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From this we see that two word vectors that have no events in common will have a 

MMI similarity score of 0. Also two word vectors whose co-occurrence scores always 

differ in sign will score 0. 

The intuition behind this approach is that two word vectors that are semantically 

related will have significant co-occurrence scores on the same elements, since they 

should produce similar distributions. If there is no semantic correlation, the co-

occurrence scores will instead be mismatched. The correlations reinforce the similarity 

score, and the mismatches are ignored. 

7.2.2.2 Tau Coefficient 

The Tau Coefficient (TAU) was proposed by Kendall (1938) and employed by 

Hatzivassiloglou and McKeown (1993) in their work on automatically identifying 

adjective scales. The Tau coefficient uses the differentials of events as a means of 

comparison. It measures the similarity between two vectors by counting the number of 

event differentials whose sign concurs across the two vectors (concordances), 

subtracting the number that do not (discordances). For differentials that are equal there 

is no effect. 

To calculate the Tau coefficient, the elements of a vector are exhaustively 

enumerated as unique pairs. The differential of each pair is calculated by subtracting the 

element frequencies, and the sign is noted. The results are used to compare with another 

vector. The differential sign of every corresponding pair in the two vectors is compared. 
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If the signs agree, the pairs are said to be concordant. Signs that differ are said to be 

discordant. 

The Tau Coefficient is defined as 

dc pp   

where pc and pd are the probabilities of a concordance and a discordance, respectively. 

Tau can be estimated using 
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where n is the number of elements in the vector, and C and Q are the numbers of 

observed concordances and discordances, respectively. From this we see the range of 

the Tau coefficient to be -1 to +1, where +1 indicates strong similarity, -1 indicates 

strong dissimilarity, and 0 indicates no correlation. 

The Tau coefficient is intended to capture the proportional “shape” of the 

distribution and disregard the absolute quantities. This is important for corpus based 

work because the frequency information is only approximate. Only the relative 

likelihood of an event compared to another event is significant in this approach. If two 

word vectors have the same event more likely in relation to another event, it is possible 

that this is due to the same semantic property. The Tau coefficient attempts to capture 

this in its similarity score. 

It should be noted that because this metric must calculate the differential for every 

pair of elements in every vector, it is too computationally expensive for large vectors. 

For class based probabilities with modest numbers of elements, such as those used in 

these experiments, it becomes feasible. 

7.2.2.3 Distributional Clustering 

MMI and TAU are both direct similarity measures between two discrete vectors. In 

contrast, Distributional Clustering (DC) is a soft-clustering technique that measures 

similarity between clusters of vectors. DC, as presented by Pereira et al. (1993), 
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incorporates the Kullback-Leibler distance between clusters in a divisive clustering 

scheme derived from simulated annealing techniques. The Kullback-Leibler distance 

between two distributions (i.e. vectors) is given as 
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Pereira et al. used the Kullback-Leibler distance in conjunction with a divisive 

clustering procedure that essentially creates a set of semantic sense classes (represented 

by clusters). The centroid of a cluster is a derived vector that gives a hypothetical 

“prototypical” distribution for the sense over all events. A word vector (which may 

conflate multiple semantic senses) is interpreted as a probabilistic distribution over 

these senses (i.e. clusters) 

In the DC algorithm, the Kullback-Leibler distance is used in the re-estimation of the 

cluster centroids to find the distance between an actual word vector (observed in the 

corpus) and the estimate given by a cluster centroid. A cluster centroid is calculated as 

the average of all word vectors, weighted by the simulated annealing “temperature”. 

(Since the cluster centroids are derived from an average of the actual word vectors, 

there is no issue with elements having a value of zero in the KL denominator, a problem 

often encountered when applying this distance function.) A high temperature gives 

more weight to local word vectors, producing a more localized centroid.  

Once the centroid has been determined, the distortion of a cluster can be measured 

by calculating the (KL) distance from the centroid to each word vector (subject to the 

temperature weighting). The distortion gives a measure of the semantic focus of the 

cluster. When the distortion is low, the word vectors belonging to the cluster are 

relatively close (where “belonging” means having the most weight).  

Since neither the word vectors nor the centroids can actually “move” (the 

distributional statistics are static), the centroids are adjusted by selecting which word 

vectors are associated with the cluster (using the temperature). By changing the member 

vectors, the average of the vectors will change and this determines the location of the 

centroid. The goal is to find centroids which truly represent semantic senses, and this 

amounts to selecting the best groupings of the observed word vectors.The re-estimation 

of the cluster centroids is achieved by minimizing the individual cluster distortions 
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(measured against the observed word vectors in the corpus), while simultaneously 

maximizing the overall entropy of the system. This is accomplished by minimizing a 

“free energy” function, which incorporates both objectives. The free energy includes a 

parameter analogous to temperature in deterministic annealing. Increasing this 

temperature parameter gives more influence to vectors close to a cluster‟s centroid. A 

high temperature in the limit would produce a cluster for every vector, with the centroid 

equal to the vector. 

The algorithm begins with a single cluster and very low temperature, which gives all 

vectors equal representation and produces one centroid equal to the average of all 

vectors. The algorithm then iteratively splits each cluster centroid in two, using small 

random perturbations, and increases the temperature until the re-estimation function 

causes the two centroids to diverge. The algorithm can be stopped when the desired 

number of clusters is found. 

7.3 Obstacles 

There are several obstacles to overcome when designing distributional methods of 

acquisition. One difficulty is data sparseness. Although data sparseness affects many 

methods of language processing, it is particularly acute for distributional techniques 

which depend on reliable frequency and probability information. Another obstacle is 

polysemy, which also afflicts many methods of language processing. Before moving on 

to evaluation strategies, I will briefly discuss these two issues and how I addressed them 

in my experiments. 

7.3.1 Data Sparseness 

Distributional similarity measures especially suffer from data sparseness issues. It is 

very probable that two word vectors, each comprised of hundreds of events, may have 

only a handful in common. This makes comparisons based on shared events less 

accurate and robust, since only a small percentage of events can be used for 

comparison. One solution to this problem is to use smoothing to collapse groups of 

events into classes based on some significant property. The most obvious property to 

use when reducing a word vector is the semantics of the events. If a set of words are 
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synonyms, near-synonyms, or semantically related in some way, they can be replaced 

by a single class which is more likely to be shared among other word vectors. In this 

manner a vector of hundreds of event elements with smaller frequency counts may be 

reduced in size, resulting in fewer event elements with larger aggregate frequency 

counts.  

In the experiments that follow, I use this strategy with a pre-existing taxonomy of 

word classes to reduce the large distributional vectors to smaller class-based vectors. I 

utilized the WordNet 1.7 taxonomy to achieve this by tracing the hypernym relations 

for each word event (i.e. noun) in the vector back to its root ancestor, referred to in 

WordNet as a “unique beginner” (Miller, 1995). I also experimented with an alternate 

configuration using the second level of classes, i.e. tracing the hypernym relations for 

each event back to its penultimate semantic class. This is explained in more detail 

further on. 

7.3.2 Polysemy 

One of the more difficult problems when attempting to do automatic processing of 

natural language is polysemy. The distributional data available for these kinds of 

techniques do not usually include labelled sense distinctions for polysemous words. 

This affects not only the distributional profile for word vectors, but also other 

processing used to facilitate the operation, such as using the class information described 

above. 

The disambiguation of word senses is itself an area of active research and a very 

difficult problem. Thus it is not feasible to disambiguate distributional information like 

that used in these experiments. The simplest and most common technique to work 

around this problem is to default to the most probable sense, if available. For the 

WordNet taxonomy used in these experiments, the first listed sense of a word is usually 

supposed to be the most common sense. This strategy was implemented in the first 

stage of the experiments and is detailed below. 

Another approach proposed by Resnik (1993) is to characterize each event as an 

equal probability distribution over all senses of the word token. For instance, instead of 

a single class representing the primary sense of an event, an event would be represented 
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by a distribution over the classes related to all its senses. Each single word event is thus 

interpreted as a collection of equivalent fractional events over all senses.  

Both of these approaches have been incorporated in the experiments that follow. 

7.4 Evaluating Similarity 

In order to compare the performance of similarity measures and judge their relative 

merits, an objective evaluation strategy is needed. However, finding such a strategy has 

proved difficult. In some experiments only a qualitative analysis of the end results is 

offered. Although a qualitative analysis is sometimes helpful to get an intuitive grasp of 

the characteristics of a similarity measure, it is difficult to make quantitative predictions 

about the performance based solely on this type of evaluation. 

Intrinsic measures can sometimes be useful to evaluate the coherence of clusters, 

groups, or ranks built using similarity measures. These intrinsic metrics may also help 

in refining the parameters of an algorithm, but it is often difficult to draw conclusions 

about the extrinsic quality of the results. There is rarely an understood relationship 

between the types of intrinsic measures available and genuine linguistic properties. 

Thus, like qualitative analysis, intrinsic measures only provide a general intuition about 

the performance. 

A more desirable approach is to devise a task-based evaluation, which allows a 

similarity measure to be evaluated indirectly through its effects on a real-world natural 

language application or task. This method requires much more effort but gives a better 

measure of the linguistic properties being affected by the algorithm. The difficulty lies 

in finding or creating an appropriate task. Even when a task is appropriate, it may not 

always be feasible to obtain labelled data, which is required for evaluation. Some 

researchers have turned to artificial tasks which use automatically generated labelled 

data derived from manufactured cases. In the next section, I propose using adjective 

antonyms as an evaluation standard for similarity based measures and argue that they 

are a suitable compromise between task-based and manual methods. 
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7.4.1 Adjectives and Antonyms 

Semantic acquisition is a task that can be suitably represented by measuring or 

ranking word similarity. Thus an evaluation of similarity measures can be implemented 

using an objective list of similar words. A related approach was argued by Greffenstette 

(1993), who used available hand-coded resources such as thesauri and dictionaries to 

compare two different similarity measures. Greffenstette counted as correct pairs of 

nouns judged similar if they appeared in the same semantic category of a thesaurus (or 

in the case of dictionary definitions, had some degree of definition overlap). This 

strategy results in a coarse-grained approach at evaluation since the semantic categories 

are quite broad in the case of thesauri (averaging 60 words per category) and dictionary 

definitions (which often contain hypernymic relations making them increasingly 

general). 

A more exacting standard can be obtained by using tighter lexical relations for 

comparison. Synonymy is an obvious choice but synonyms rarely appear in one-to-one 

relationships. For instance, WordNet (Miller, 1995) is organized around the concept of 

“synsets” which comprise sets of synonymous words, with no implied semantic 

similarity ranking within the sets. 

The practical definition of similarity being measured in these experiments is the 

notion of “words that can appear in the same contexts”, since the raw distributional 

information only contains contextual information. As I discussed in the previous 

chapter, distributional similarity can result from semantic relations besides synonymy. 

With this in mind, there is a strong case to be made for antonyms as a more precise 

distributional similarity standard. Antonymous adjectives are a unique class of lexical 

semantic relation. In contrast to most other relations, which form some type of inclusive 

semantic similarity (e.g. hyponymy, synonymy, meronymy), antonyms are semantically 

related exclusively. In addition, there appears to be a lexical component to the 

antonymic relation, manifest by the observation that close synonyms of antonym pairs 

do not yield the same strong associations (e.g. big/little vs. large/little). This makes 

antonymy an interesting case for the study of lexical semantic acquisition. 

Justeson and Katz (1991) give a comprehensive and thorough treatment to the 

antonymic lexical semantic phenomenon. Their work is motivated by the assertion by 
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Charles and Miller (1989) that substitutability is not a suitable explanation for the 

strong antonymic associations reported in psycholinguistic testing. Charles and Miller 

argue that most adjectives occur in sentential contexts where an antonymic substitution 

would be improbable. Instead they suggest that antonymic associations are formed 

simply through frequent sentential co-occurrence. The main objective of Justeson and 

Katz is to provide empirical support for frequent antonymic co-occurrence, and to 

analyze the syntactic forms of these co-occurrences observed in the language. 

In their experiments, Justeson and Katz collected frequency counts of antonymic co-

occurrences for a set of antonym pairs compiled by Deese in 1964, which exhibited 

high correlations in word association tests, as well as a set of high-frequency antonyms 

and antonym pairs morphologically derived from negative affixes (e.g. a-, ab-, an-, dis-, 

il-, etc.). Using the 1,000,000 word Brown Corpus, they calculated the expected co-

occurrence of an antonym pair using the mean of the hypergeometric distribution (i.e. 

the product of each antonym‟s individual frequency, divided by the total number of 

sentences). The number of antonymic co-occurrences actually observed in the corpus 

turned out to be significantly higher than the calculated expectation for a majority of the 

antonym pairs. Justeson and Katz conclude that this linguistic phenomenon might be a 

more plausible hypothesis than substitutability to explain the strong antonymic 

associations reported in psycholinguistic experiments. 

Regardless of the psycholinguistic implications, the empirical evidence collected by 

Justeson and Katz suggests that antonyms possess properties that make them suitable as 

a standard for measuring distributional similarity. The higher-than-expected frequencies 

of co-occurrence reported by Justeson and Katz show antonyms will share many 

instances of the exact same context, which improves their distributional similarity 

making them more effective for evaluations of distributional similarity measures. 

Although Charles and Miller dispute the substitutability of antonyms, Justeson and Katz 

suggest that the co-occurrence of antonyms in the exact same context is something like 

substitutability, and therefore does not preclude antonyms from also appearing in 

independent similar contexts. 

The arguments for similar distributions, together with the strong associations with 

their complements, help make antonym pairs less ambiguous than other lexical relations 

and a suitable choice for an objective measure of similarity. Although this approach still 
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employs a manual component in determining the antonym pairs, it is a simpler process 

than manually labelling data in a task-based evaluation. Furthermore, accepted lists of 

adjectives already exist like those employed by Justeson and Katz. Based on the 

evidence presented in this section, I will adopt adjective antonyms as a reference for 

evaluating the effectiveness of distributional similarity measures. 

7.5 Experiments 

In this section I present the results of implementing the three similarity measures 

described above and applying them to the task of ranking adjective antonyms. The 

distributional information was taken from the entire 100 million-word British National 

Corpus (2002) (BNC). Noun collocations for adjectives appearing in attributive form 

(e.g. interesting film) were collected and arranged into word frequency vectors. 

Collocations were determined using the part-of-speech tags supplied with the corpus, 

i.e. adjacent adjective and noun tags. This resulted in approximately five million events 

distributed over 90,000 adjectives. 

Ten antonym pairs were chosen from the list compiled by Deese and referenced by 

Justeson and Katz (1991) in their work on antonym co-occurrence. Each adjective in the 

pair was required to appear with 25 or more unique noun collocations in the BNC. The 

selected antonym relationships used in evaluating the experiments are listed in Table 

7.5. 

Table 7.5 

Antonym Pairs 

light dark big little 

active passive black white 

alive dead top bottom 

back front clean dirty 

bad good cold hot 

 

Using the data in the BNC, distributional information was collected for each of the 

20 adjectives listed in Table 7.5, resulting in word vectors comprised of noun event 
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frequencies. These raw vectors were then used in the various similarity experiments 

described below. 

7.5.1 Scoring 

A relative ranking of the adjective similarity was devised to score the similarity 

measures. For each adjective, the similarity measure under study was used to form a 

ranking of the other 19 adjective (vectors). The position of the true antonym in this 

ordered list was then used to calculate a reciprocal rank score. The reciprocal rank 

calculation was repeated for the other 19 adjectives and then averaged to obtain the 

Mean Reciprocal Rank (MRR) (cf. Voorhees and Tice, 2000). The MRR score ranges 

from 1/19 (true antonym always ranked last) to 1/1 (true antonym always ranked first). 

To achieve a baseline for comparison, a random function was used to assign 

similarity scores for calculating a MRR. Twenty separate runs were averaged giving a 

random baseline (RB) score of 0.206. This score is not dependent on the configuration 

of the experiment since the random function did not use any of the distributional 

information. 

The DC algorithm does not produce an absolute similarity score between word 

vectors as the other algorithms do. Instead, the DC algorithm produces distance scores 

between a word vector and the prototypical centroids of the derived clusters. This 

necessitated a heuristic for determining an absolute ranking given the derived clusters. 

Since every word vector is a member of every sense cluster, two word vectors can be 

approximately compared in relation to their distance to a cluster centroid. (This 

approximation becomes more accurate the closer the reference word vector is to the 

cluster centroid.) The heuristic involved finding the cluster whose centroid was closest 

to the reference word vector, and then using the absolute distances from the reference 

word to all other vectors in the cluster as the ranking metric. 

7.5.2 Configuration 

I measured the performance of the similarity measures for several different 

configurations created using three experimental variables. First, I used two sets of 

distributional data. A small sample comprising only the 25 most frequent events (i.e. 
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noun collocations) versus the complete data comprised of all events observed in the 

corpus. Second, I tried using the root level classes versus the second level classes of the 

WordNet taxonomy. Recall the WordNet classes are used to smooth the distribution of 

observed nouns into a practical number of classes. Each noun is replaced with its root or 

second level (depending on the experimental configuration) ancestor in the taxonomy. 

(See Section 7.3.1). Third, I used two configurations to deal with the polysemy of the 

events. In the first case only the primary sense information was included. This will be 

referred to as the single sense configuration. In the second case all sense information 

was included using the procedure described in Resnik (1993) (see Section 7.3.2 above). 

This will be referred to as the multi sense configuration. 

The three configuration variables gave rise to eight distinct experimental 

configurations. For each of the three similarity measures under study, I ran all eight 

experimental configurations and recorded the MRR. The results are given in Table 

7.5.2. The random baseline is also shown for comparison. 

Table 7.5.2 

 Mean Reciprocal Rank (MRR) scores for three similarity measures and the Random 

Baseline (RB) on eight experimental configurations  

Sample Small Sample Complete Data 

Class Root Level Second Level Root Level Second Level 

Sense Single Multi Single Multi Single Multi Single Multi 

MMI 0.316 0.334 0.389 0.555 0.373 0.471 0.437 0.549 

TAU 0.292 0.366 0.327 0.272 0.272 0.364 0.374 0.484 

DC 0.233 0.333 0.299 0.309 0.346 0.411 0.309 0.342 

RB 0.206 
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Figure 7.5.3-2 - Small Sample vs. Complete Data 
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7.5.3 Results 

All of the experimental measures performed better than the baseline, giving strong 

support to the hypothesis that antonyms produce similar distributions. The best 

performance was obtained using MMI, with the small sample, second level classes, and 

multi sense information. 

The graphs in Figures 7.5.3-1, 7.5.3-2, and 7.5.3-3, show comparisons of 

performance with respect to each of the three configuration variables in the 

experiments: single sense vs. multi sense, small sample vs. complete data, and root level 

vs. second level classes. For each similarity measure in each graph two bars are shown. 

The first bar represents the results using the first configuration in the graph title (e.g. 

single sense) and the second bar represents the results using the second configuration 

(e.g. multi sense). The dotted line on each graph represents the random baseline score 

(which is invariant to the different configurations). In all cases the similarity measures 

performed well above the baseline, but these graphs reveal several other interesting 

trends. 

1. Multi sense is better than single sense 

As shown in Figure 7.5.3-1, using the nine root level concept classes, the MRR 

could be improved by including multi sense information. This was true regardless of the 

data sample size (i.e.  small sample or complete data ). 

The same effect was observed using the 142 classes of the second level (see Figure 

7.5.3-1), except in a single case. The TAU algorithm performs worse when multi sense 

information is included on the small sample data. The TAU algorithm is more sensitive 

to small fluctuations because it includes no magnitude information in its similarity 

calculation and disregards elements that are zero. With sparse class information over a 

large number of classes, this causes degradation in performance. To test this theory, I 

used a filter to remove very low magnitude elements from the vector (a value of 11 was 

experimentally determined). The results confirmed that after removing these noisy low-

magnitude vectors, the multi sense configuration performed as well as the single sense 

data.  
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2. Using the complete data is better than using the small sample data 

Figure 7.5.3-2 shows how the performance differs when using the small sample data 

versus the complete data. This also generally resulted in a performance improvement 

(or parity), with the exception of the TAU algorithm. A similar explanation as that used 

in (1) above can describe this decrease in performance. Using a filter as before to 

remove the (relatively) low magnitude elements improves the performance to .337. In 

this case the filter was determined to have a value of 330, which is small with respect to 

the magnitudes of the frequency information. 

It should be noted that the best overall score was achieved using the small sample 

data with the MMI algorithm, although this is only marginally better (1%) than using 

the complete data. 

3. Second level classes are better than root level classes for MMI and TAU 

Figure 7.5.3-3 shows the performance delta when using the root level classes versus 

the second level classes. For the MMI algorithm this always resulted in better 

performance. This was true also for the TAU algorithm, except again in a single case: 

using small sample with multi sense distributions. 

Examining the rank lists for this case reveals an anomaly. Most of the performance 

degradation can be attributed to the fact that for the adjective cold, the true antonym hot 

moves from being ranked first to fifteenth (i.e. a rank improvement of -14). This is 

atypical of the data when moving from the root level to the second level classes, as 

shown in Table 7.5.3-4. Although there are several other adjectives whose true 

antonyms slip in rank, none have the magnitude of cold. 

 

Table 7.5.3-4 

Rank Improvement for true antonyms using TAU when moving 

from root level to second level classes on small sample. 

cold -14 alive -3 top -1 big 3 

clean -6 dirty -3 bad 0 black 3 

hot -6 light -3 passive 2 dead 5 

bottom -5 front -2 back 2 active 7 

dark -5 good -1 white 2 little 10 
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Table 7.5.3-5 

Statistics for the similarity scores produced by the TAU 

algorithm for the adjective cold with respect to all other 
adjectives 

 Root Level Classes Second Level Classes 

Maximum 0.778 0.153 

Average 0.424 0.105 

Median 0.444 0.110 

Standard 
Deviation 

0.176 0.036 

 

Comparing the similarity scores produced by the TAU algorithm for cold in both 

cases, we see very different statistics listed in Table 7.5.3-5.  The maximum similarity 

score is quite high for the root level (0.7778), which corresponds to the true antonym 

hot. For the second level, the maximum similarity score is 0.153, and corresponds to the 

(wrong) adjective clean. Although this appears to be a very low score, this is only 

moderately low in comparison to other scores on the second level. However, the 

average, median, and standard deviation show that the similarity scores produced by the 

TAU algorithm for cold in this case occupy a very narrow range. There are no strong 

similarities for cold when using the second level classes with only the small sample 

data. The distribution for the adjective cold in this case does not give a distinct profile 

when dispersed over the 142 second level classes. The distinctiveness (and similarity to 

the true antonym) re-emerges when using the complete data, improving the rank 

considerably. 

4. DC performs worse using second level versus root level classes. 

For DC, moving from the root level to the second level classes degrades performance 

in three out of four cases. The DC algorithm measures similarity using all available 

dimensions. The larger dimensional space of the second level classes gives much more 

freedom for the cluster centroids of the algorithm to associate with the adjectives. This 

introduces more opportunities for spurious similarities which can eclipse more genuine 
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relationships. In fact, at the second level, DC performed worse than the other algorithms 

in all cases but one (small sample, multi sense). 

5. MMI  is the best algorithm to use 

Overall the MMI algorithm performed the best, and was the most robust to the 

various configurations. The MMI algorithm also followed the intuitive expectation that 

similarity measures should improve with polysemy information (multi sense), more 

distributional data (complete data), and finer grained classes (second level). The basis 

for the MMI algorithm is the mutual information measure of two linguistic entities, in 

this case two adjective word vectors. There is strong evidence that the hypothesis of 

similar contexts for antonymic adjectives is correct, or at least helpful, since using this 

algorithm results in a similarity measure which performs much better than chance. 

Another further advantage of the MMI algorithm is the computational complexity. 

Among the three similarity measures investigated, the MMI algorithm requires the least 

amount of computation. DC is a highly computationally intensive algorithm involving 

simulated annealing, which requires constant perturbation and re-estimation of the 

cluster centroids. The TAU algorithm requires calculating the differential of every pair 

of vector elements, which increases non-linearly in the number of elements. The MMI 

algorithm only requires a linear processing of each vector to produce the elemental 

probabilities. 

One disadvantage of the MMI algorithm is the requirement to have complete data for 

all vectors before the similarities can be computed. Each elemental probability 

calculation requires the total number of all events, and the total number of the elemental 

events. The TAU algorithm does not have this constraint, since it only uses elemental 

differentials. After calculating a similarity measure using the TAU algorithm, 

subsequent unrelated events would not affect the differentials already calculated. For 

the MMI algorithm, however, this would require a complete recalculation of all scores. 

7.6 The antonym pair good/bad 

Among the antonym pairs used in the experiments, good/bad were consistently 

ranked most similar to each other by all the algorithms. Table 7.6 shows the average 
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similarity rank (over all algorithms and all configurations) of an adjective by its true 

antonym versus the average similarity rank by all other adjectives. For the pair 

good/bad we see that on average each ranks the other as highly similar (1.67/1.38). In 

contrast, all other adjectives tend to have good and bad very low in their similarity 

rankings on average (13.98/13.39). So it is not the case that good/bad simply have 

distributions that cause them to be ranked highly similar to any word by default, as for 

example clean/dirty which have very similar average rankings by both themselves and 

the other adjectives (6.71 vs. 8.39, 8.17 vs. 9.48). 

The performance of good/bad suggests their distributional profiles are distinctive 

enough, compared with the distributions of other adjectives used in the study, that the 

similarity measures are able to discriminate them more easily. One possible explanation 

is that the antonyms good/bad have a much wider distribution over all semantic 

categories of nouns than the other antonyms, owing to their generality. This would 

produce a much “flatter” distributional pattern that is a poor match for the more 

specialized distributional patterns of the other adjectives. 

Table 7.6 

Average Similarity Rank of an Adjective by its Antonym and Other 

Adjectives over all configurations 

 Antonym Others  Antonym Others 

good 1.67 13.39 black 2.92 9.04 

bad 1.38 13.98 white 3.67 8.48 

alive 7.08 12.72 top 7.17 8.78 

dead 13.04 8.90 bottom 6.17 9.96 

back 6.33 10.92 clean 8.17 8.39 

front 8.17 9.56 dirty 6.71 9.48 

active 4.92 12.28 cold 4.25 10.31 

passive 5.33 12.25 hot 6.21 9.10 

big 7.21 10.13 dark 10.5 7.08 

little 5.75 10.35 light 7.92 8.93 

7.7 Conclusion 

In this section, I have attempted to show that similarity measures based on 

distributional information can be successfully applied to tasks having objective 

evaluations (e.g. semantic acquisition). Using adjective antonyms as the evaluation 

metric I was able to objectively characterize the performance of three different 

similarity measures. Regardless of the algorithm or the experimental configuration, 
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using the distributional information to measure adjective similarity successfully ranked 

the true antonym higher than others, with greater frequency than by chance. 

Although antonyms are not normally considered to be similar, they confer similar 

properties on the head nouns they modify through attribution. As a result, antonyms 

have very similar distributions making them uniquely suited for a task-based evaluation 

of distributional similarity measures. 

The experimental results show that of the three similarity measures tested, MMI 

gives the best performance on the widest range of configurations. It is less 

computationally complex, and has a strong theoretical motivation. MMI achieved the 

highest score when polysemy was considered in the distributional information of the 

events and a larger number (i.e. finer distinction) of the conceptual classes was used for 

the elements of the adjective word vector. However, MMI requires complete data for all 

vectors before calculating similarity (see Section 7.5.3) which may make it unsuitable 

for some applications. In this respect, the TAU similarity measure may be an acceptable 

compromise between performance and feasibility. 



 

8  

 

Characteristic Adjectives 

In the previous chapter I examined the properties of statistically based similarity 

measures by evaluating several distributional approaches to semantic class acquisition 

of adjectives. In this chapter I will continue exploring statistical methods of language 

processing, using adjectives to discriminate nouns. To address the issues encountered 

when applying the vectors derived from large corpus processing, I will develop the idea 

of characteristic adjectives as a filtered set of adjectives that highly correlate with a 

(nominal) node in a semantic taxonomy (e.g. WordNet), and discuss various approaches 

to determining these characteristic adjectives, and their limitations. I will then propose 

one approach that can be used to derive them successfully. Finally, I will present the 

results of experiments designed to test the hypothesis that characteristic adjectives can 

accurately predict a semantic node.  

8.1 Characteristic Adjectives 

One drawback to using the three semantic similarity measures evaluated in the 

previous chapter is the computational cost. Sophisticated statistical measures such as 

DC are expensive in terms of time and complexity. Measures such as MMI require 

matrices of all vectors and features discovered in a corpus to compute similarity, which 

can sometimes be impractical. It would be preferable to find a simpler and more 

efficient measure of similarity that is comparably effective. 

Another disadvantage to using the previous measures is they rely solely on statistical 

information which limits their use to certain types of corpora. Statistical approaches are 

appropriate for finding the similarities between words that appear in a large corpus, 

where each word has a large number of occurrences. However, if the similarity is to be 

calculated for words that only occur a relatively small number of times in a corpus, 
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statistical approaches may be less effective, i.e. the smaller the number of events the 

larger the potential statistical error. 

For example, the vectors derived from a large corpus could be used to annotate the 

class information in the CAMEO representation to augment a language task as 

described in Chapter 6. When the task processes a document (comprising a different 

corpus), it may encounter unknown words and attempt to measure distributional 

similarity against the annotated class vectors. To do this, the task would need to derive a 

distributional vector for the unknown word in the context of the document. However, 

the distributional vectors that can be derived from the document will be a fraction of the 

size of the vectors annotated from the large corpus. Consider the vectors of adjectives 

derived from the BNC that were used in the experiments in Chapter 7. The size of these 

vectors ranged from several hundreds of unique tokens to a thousand or more. The same 

procedure used on a single document will normally produce vectors having on the order 

of tens of unique tokens. Statistical similarity measures like those described in Chapter 

7 use correlations between vector elements to calculate distance, and the large number 

of elements in the BNC vectors makes it likely that they will all have spurious 

correlations with the much smaller vectors in the document. Thus the similarity 

measures will be less effective at distinguishing which BNC vector is most semantically 

related to a word in the document. 

One possible solution to this problem is to try to determine which elements of a 

distributionally derived vector are the most salient. In other words, find which elements 

carry the most semantic information about the vector at large. For instance, using the 

same methods as described in Chapter 7, vectors of adjective collocations can be 

derived for nouns. For these vectors the goal would be to determine which of those 

adjectives carry the most semantic information about the noun. Retaining only the most 

informative adjectives would result in smaller vectors that could then be used to 

measure semantic similarity of nouns in the context of a smaller corpus (e.g. a small set 

of documents). Further, these smaller vectors should only require a very simple 

similarity calculation because they have already been determined to be semantically 

significant. 

A small set of adjectives like this which are semantically significant for a given noun 

can be said to be characteristic of that noun, because they attribute characteristic 
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properties. Characteristic adjectives then, are a small set of adjectives that indicate a 

high semantic correlation with a noun when observed in the corpus. I will test this 

hypothesis in the experiments that follow, but first I will investigate ways to discover 

sets of characteristic adjectives. 

There are several existing techniques that can be applied to reduce the 

dimensionality of a vector. I used class-based smoothing in the experiments in Chapter 

7  to conflate multiple individual word tokens into fewer, more general semantic 

classes. However, class-based smoothing requires broad semantic categories, which are 

less understood for adjectives. Other common approaches to vector reduction are 

Principle Component Analysis (PCA) and Singular Value Decomposition (SVD), 

which are statistical data-driven approaches to finding a smaller set of salient vector 

elements, typically used in IR algorithms such as Latent Semantic Analysis (LSA). 

Data-driven approaches like PCA and SVD are general dimensionality reduction 

techniques not directly based on the intrinsic properties of the vector components 

(although their application to natural language is motivated by the distributional 

hypothesis of similar words). By contrast, the approach I will develop leverages the 

inherent properties of adjectives, and the related semantic hierarchy of the nouns they 

modify, to find semantically salient components irrespective of the statistical data. 

 

In order to determine the best approach to deriving characteristic adjectives, it is 

helpful to look at the lexical properties of the nouns they describe. A lexical taxonomy, 

such as WordNet, organizes nouns in a conceptual hierarchy (e.g. 

hypernymy/hyponymy). The hyponymy relationship is a specialization function (e.g. 

dog is a specialized form of the more general animal), and hyponyms share all 

properties of their ancestors. Therefore, adjectives that can modify a certain noun can 

also appear with all of that noun‟s descendent nodes
2
. For instance, hungry can modify 

animal and any of its hyponyms (hungry dog). 

                                                 

2 Note that the WordNet taxonomy includes information relating adjectives to nouns. For descriptive adjectives, 

which specify the value of a nominal attribute, WordNet points to the synset representing the attribute. For 

example, the adjective dry contains a pointer to the noun (synset) wetness. Relational adjectives, which are derived 

primarily from nouns, have pointers to the related noun (synset), e.g. the adjective idyllic contains a pointer to the 
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A characteristic adjective should represent a unique property of a noun. For this 

reason, we cannot simply take the most frequently occurring adjectives as a noun‟s 

characteristic adjectives. An adjective may actually be more characteristic of an 

ancestor node much higher in the semantic hierarchy. Instead, it is necessary to 

distinguish when an adjective is characteristic of a given node, and when it is simply 

inherited. 

 

8.2 A Bottom-Up Approach 

One approach to deriving characteristic adjectives is to use a bottom-up strategy. 

This strategy has limitations (as I will show), but it is a useful first approximation of an 

algorithm that can later be refined. In the next few sections I will explore the bottom-up 

approach and its limitations, and use it as basis for comparison to develop an alternative 

approach. 

In the bottom-up approach, distributional information is used to populate a 

conceptual taxonomy with collocative adjectives, which are then post-processed by 

recursively „percolating‟ them up the hierarchy. Adjectives and their corresponding 

attributes are ultimately based on physical properties of the objects they modify (e.g. 

long and short imply an object with some measure of length). These properties will be 

implicit in the semantic organization of the conceptual hierarchy, and the adjective 

distributions should reveal this. 

 As I previously noted, an adjective observed at a given node in the tree is not 

necessarily characteristic at that node. The properties of a parent node exist in all 

                                                                                                                                            

 

 

noun (synset) idyll. For the experiments in this chapter, the distributional properties of adjectives are considered, 

which implicitly derive from these relations. Although it may be possible to use this information explicitly to 

smooth adjective events into attribute or relational classes, this aspect was not explored in the current work. 
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descendant nodes, but they are only characteristic in the context of the parent. For 

instance, the adjective living may help distinguish an organism from an artifact, but it is 

useless when distinguishing between two organisms (cat vs. dog). For the bottom up 

approach to work, some decision algorithm must exist to decide when an adjective 

needs to be “pushed back” up the semantic chain. That is, there must be a means of 

deciding when an adjective is characteristic and when it simply indicates an inherited 

property. If we observe the same adjective for all (or most) children of a parent node in 

the semantic hierarchy, we might assume it indicates a property inherited through the 

parent node. By processing the semantic tree from most specific to most general (i.e. 

bottom up), observed adjectives can be pushed recursively up the tree to the highest 

node that does not share the adjective with its siblings. This then becomes a 

characteristic adjective, distinguishing the node in the context of its siblings. 

As an example, consider the deverbal adjective married. We might expect, using the 

algorithm described above, for this adjective to eventually be assigned as characteristic 

of person. The adjective married depends upon, and subsequently attributes, the 

properties of being a person. We may observe instances of the sibling nodes married 

man and married woman and determine that we are justified in assigning this adjective 

to the parent node person.
3
 

The bottom up approach suffers from serious limitations, which I explain in the 

following sub-sections. In section 8.3 and 8.4 I will describe how to avoid these 

limitations by using a slightly different approach. 

8.2.1 Data Sparseness 

There is a data sparseness issue that arises when using the bottom up approach. The 

problem, however, is not that there are not enough adjectives observed for a given noun, 

but rather the distribution of these adjectives is sometimes insufficient for a semantic 

node. 

                                                 

3 It may be argued that person is too broad a category for which to assign married, since e.g. baby and pope are both 

children of the person node. The taxonomy may not include a node representing the precise set of characteristics, 

e.g. marriable person. However, because characteristic adjectives are not used in a generative capacity, having a 

wider scope is not an issue.  
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Recall that the decision to promote an adjective to a parent node depends on the 

adjective being observed with all its children. In practice this rule does not work 

because not all children can be expected to co-occur with an adjective. There may be 

some children of a node that are quite rare and do not even occur in the corpus. This is 

often true in WordNet, which strives to be so comprehensive as to include esoteric 

terms, euphemisms and slang among its entries. However, even for more common 

terms which do appear in the corpus, an adjective describing a legitimate property may 

be unlikely to co-occur. Returning to the married person example, WordNet has over 

300 hyponyms for the synset headed by the concept person. For most of these it would 

be uncommon to find them modified by the adjective married. For example, married 

waker, married captor, and married nonworker, although semantically acceptable, are 

somewhat unexpected. Contexts where these might appear would be unusual and most 

likely involve some distinguishing discourse level context. 

This data sparseness skews the distribution of married over the children of the 

person node, making it difficult to derive a general rule for promoting an adjective. It 

may be possible to adjust the algorithm heuristically to use some soft threshold based 

on, say, a weighted percentage of the observed instances over all the child nodes, but 

ultimately any empirically determined parameter will be incapable of correctly handling 

all possible configurations of nodes. 

8.2.2 Polymorphism 

The other major obstacle to using a bottom up approach for deriving characteristic 

adjectives is polymorphism. In natural language, it is allowable for a more general 

concept to be substituted for a more specific concept. This is known as polymorphism 

because the general term is able to change and assume the properties of the more 

specific term. For example, it is semantically acceptable to substitute poor thing for 

poor person. In this case thing is standing temporarily for the person class and can no 

longer be said to be a member of the thing class. 

This behaviour is problematic for distributional techniques because the events 

observed with the polymorphic object do not necessarily belong to it. In the above 

example, the observed adjective poor should definitely not be associated with thing, 
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since that would ascribe the implied attributes of poor to all descendants of the node 

thing (e.g. molecule, ocean, etc.). 

 There is no simple way to determine when an object is functioning in a polymorphic 

manner. Without a means to determine this, adjectives can appear almost anywhere on 

the conceptual tree making the derivation of characteristic adjectives very difficult. 

8.3 Characteristic Attributes as Differentiae 

Polymorphism and data sparseness expose the weakness in the bottom up approach 

to deriving characteristic adjectives. The bottom up method relies on aggregating 

information recursively from the bottom of the tree and so is vulnerable to incomplete 

information. A better approach is to use the differential of a node‟s observed adjectives 

compared with those of other proximate (i.e. child) nodes. So rather than aggregating 

and promoting the adjectives that appear in a majority of child nodes, this approach 

would eliminate adjectives appearing in child nodes, and retain only those adjectives 

that appear as unique. 

This approach is suggested by the organization of the semantic taxonomy, which 

parallels to some degree the organization of plant and animal taxonomies found in the 

biological sciences. A parent node in the semantic hierarchy can be thought of as the 

biological genus, and child nodes to species. A genus is defined as a group where each 

member has a significant number of shared characteristics. A species is a member of 

this group that can be distinguished from other members by one or a small number of 

characteristics. Thus in the differential approach, we are explicitly deriving the 

distinguishing characteristics of a species node. One way to find this set of 

characteristic adjectives would be to simply compare a node‟s vector with all other 

vectors. Any adjectives that only appear with a single node could be taken as 

characteristic. Of course, in practice it would not be feasible to compare a node‟s 

adjectives with that of all other nodes. In fact this would not necessarily be desirable 

since homonymy and polysemy will produce legitimate multiple occurrences of the 

same adjective on nodes that do not coincide semantically (e.g. a large (striped) bass, a 

large (string) bass). 
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Instead, it should only be necessary to look at a local portion of the tree when 

computing the differential for a node. This local area will have a tighter semantic 

correlation and adjectives that occur multiply within this context will likely be implying 

the same attributes (and can thus be ruled out as characteristic). 

Note that a characteristic adjective does not necessarily occur with the node it 

belongs to. Polymorphism and inherited properties make it possible for the adjective to 

occur anywhere in the node‟s set of descendents. In fact the bottom up approach was 

based on the idea that it would be necessary to “push” these adjectives up to their 

proper nodes. Therefore, when using differentials to determine characteristic adjectives, 

it may be necessary to aggregate the vectors of descendent nodes with the vector of the 

parent node under investigation. 

Theoretically, it would be possible to include the entire tree of a node‟s descendents 

when determining characteristic adjectives, but in practice this approach would be 

unfeasible for nodes anywhere near the root. The set of adjectives would become too 

large, and the effects of polysemy and homonymy could appear because of the semantic 

scope included in such a large portion of the tree. Using a much smaller sample should 

not hinder the results significantly, although it is possible that some characteristic 

adjectives would be missed in this case (namely characteristic adjectives that only 

appear with descendent nodes beyond the restricted portion of the tree). As I 

demonstrate in my experimental results however, this did not appear to be a significant 

issue. 

8.4 Experiments 

The experiments presented in this section are designed to test the hypothesis that 

characteristic adjectives can be used as a measure of semantic similarity. For a semantic 

node in a taxonomy (e.g. a synset in WordNet), a vector of characteristic adjectives is 

hypothesized to have less statistical noise than the complete vector of adjective co-

occurrences (with respect to a particular corpus). In other words, reducing the vector 

representing a node to its most salient adjectives gives it sharper semantic focus. Thus a 

vector of characteristic adjectives should possess a better capacity for discriminating 

vectors of similar semantic terms. 
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There are two major parts of the experiments to consider described in turn below; the 

method for determining the vectors of characteristic adjectives, and the method for 

testing the measure of similarity. The data for the experiments was taken from the BNC. 

Using methods similar to those described in Chapter 7, vectors of adjective collocations 

were derived for nouns in the corpus. The semantic taxonomy used in the experiments 

was WordNet 2.0. WordNet contains nine “unique beginner” nodes which serve 

effectively as root nodes for separate taxonomies. Within each of these taxonomies, all 

nodes on the first two levels were tested. 

 

Figure 8.4 gives pseudocode for the derivation of the characteristic adjective vectors 

used in the experiments, according to the approach described in Section 8.3. Each noun 

is represented by a vector of adjective events observed in the corpus. The vectors are 

manipulated (either through aggregation of several vectors or removing adjective 

elements from individual vectors) to derive vectors of characteristic adjectives. For 

example, a node in the taxonomy represents a synset having one or more noun 

synonyms. To derive the vector for a node requires combining the vectors of all 

individual nouns in the synset, as shown in Figure 8.4. 

Start  
 For each unique beginner node nu 
   Call procedure Determine characteristic adjectives with nu 
End 
 
Procedure Determine characteristic adjectives uses node n 
 For each child c of node n 
  Call procedure sum vectors with c 
  Remember vector of c 
 For each child c of node n 
  For each sibling s of c 
   For each adjective a in vector of s also appearing in vector of c 
   Remove a from vector of c 
  Save vector of c 
End 
 
Procedure sum vectors uses node n 
 For each noun w in synset of node n 
  Sum vector of w with vector of n 
 For each child c of node n 
  Sum vectors of all nouns in synset of c with vector of n 
 Return vector 

End 

Figure 8.4 –Pseudocode for deriving characteristic adjectives 
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For each node to be tested, I combined the adjective vectors of all nouns in its 

synset, along with all nouns in all synsets of its immediate children. The same 

procedure was performed on all of the test node‟s siblings. Using this set of vectors, the 

differentials were computed by comparing  the test node‟s vector to its siblings‟ vectors 

and removing any adjectives that appeared in common. This resulted in a vector 

composed of all the (locally) unique adjectives which were observed in the corpus 

appearing with one of the nouns in the test node‟s synset (or immediate descendent 

synsets). 

The derived characteristic adjective vectors were then used to select nouns from the 

BNC corpus by determining a vector-based similarity score. Because the characteristic 

adjective vectors are hypothesized to be composed of unique differentiators, a 

sophisticated similarity measure should not be necessary. Additionally, using a 

sophisticated similarity measure would conflate the performance of the characteristic 

adjectives with the performance of the similarity measure itself. Instead, a direct 

matching similarity metric should give a better indication of the associative strength of 

the characteristic adjectives. For these reasons a simple similarity score was used 

consisting of the the number of matching adjectives as a percentage of the total number 

of adjectives in a noun‟s vector. 

 For each node under test, I scanned all nouns in the BNC corpus, matching a noun‟s 

vector of adjectives against the test node‟s derived characteristic adjective vector. The 

similarity score was computed as the number of matching adjectives as a percentage of 

the total number of adjectives in a noun‟s vector. The highest similarity scores select the 

most similar nouns to the node under test. (A 25% similarity score threshold was 

determined empirically and simply gives a static level on which to base comparison). I 

used both the derived characteristic adjective vector and the complete adjective vectors 

to perform the experiments and compare the results. 

8.4.1 Evaluation 

Characteristic adjectives can be seen as a filter, selecting for the semantic node 

(synset) from which they were derived. To judge their effectiveness we can measure 

how many nouns (i.e. synonyms) are selected belonging to the synset, in proportion to 
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the total number of nouns that are selected. This gives us a basis for calculating 

precision P and recall R. 

P = synonyms selected / all nouns selected 

R = synonyms selected / total synonyms possible 

Another measure of the effectiveness of characteristic adjectives is looking at the 

quality of the nouns that are selected. We expect the nouns selected, if they are not 

members of the synset, to at least be close semantic relatives of the node. More 

precisely, we would expect them to be descendents because the set of characteristic 

adjectives define distinguishing characteristics of the original semantic node. All nouns 

found having these characteristics should inherit them from this node and therefore be 

descendents.  

We can measure the quality of the selected nouns by computing their distance to the 

semantic node. Call this distance the span. The span is computed by counting the 

distance (edges) between the node of a selected noun and the semantic node under test. 

If the selected noun is not a direct descendent of the node, the nearest common ancestor 

is used. Figure 8.4.1 shows an example of measuring the span between a selected noun 

nib and a test node tip. The selected noun nib is related to the test node tip only through 

the common ancestor end. 

 

nib 

point 

end 

tip 

Figure 8.4.1 –Example of measuring the span between nib and tip 
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Note that nodes closer to the root of the tree are increasingly general and will include 

larger portions of the tree. Thus the likelihood of two nodes being related increases for 

nodes closer to the root. To adjust the span score for this root proximity effect, a factor 

is included relative to the distance from the root of the common ancestor node. This 

gives less weight to the score when the nearest common ancestor is close to the root of 

the tree, which usually indicates the selected noun is only distantly related. 

The formula for the span s is calculated as 

froto

root
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ds
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1
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where rootd  is the number of edges between the common ancestor node and the root 

node, tod  is the number of edges from the selected node to the common ancestor, and 

fromd is the number of edges from the common ancestor to the test node.  

The span metric presented here is similar to other path-based measures (e.g. Leacock 

and Chodorow, 1998), especially Wu and Palmer (1998). Wu and Palmer also 

incorporate the distance to the root from the nearest common ancestor of two nodes 

being measured in their similarity score. However, they scale this distance by a factor of 

2, giving it much more weight than the distances tod  and fromd , compared with the span 

calculation proposed for these experiments. Wu and Palmer also use a form that is 

normalized between 0 and 1, which I chose not to do since the absolute values give 

information about a test node‟s placement in the semantic hierarchy. The span in this 

case is only used as a relative comparison between specific levels in the hierarchy and 

not as an absolute measure (which would require normalization). 

For the example given in Figure 8.4.1 above, the distance from the common ancestor 

end to the root node entity is 4 edges (end →extremity→region,part→location→entity). 

The distance from the selected node nib to the ancestor end is 3 edges, and the distance 

from end to the test node tip is 1, giving a span score of 

75.5
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Note the calculated span has a minimum value based on the distance of the test node 

to the root. In the best case, if a selected noun is a synonym of the test node, both tod

and fromd  will be 0 and the nearest common ancestor will be the test node itself, giving 

3max  rootds . Also, because the span score is not normalized, span scores are only 

useful for comparing the quality of nouns selected by vectors from sibling nodes (which 

reside at the same level of the tree). 

Each selected noun has the possibility of being polysemous, which poses a difficulty 

for the evaluation. But since a noun is being selected using the vector of characteristic 

adjectives (which are semantically related to a single sense of the test node), it is fair to 

assume the most appropriate sense for the selected noun. Thus, for the purposes of the 

evaluation, the distance to the test node was computed for each sense of a selected 

noun, and the sense in closest proximity to the test node (i.e. the best match) was used 

to calculate the span score. 

The baseline used in the experiments consisted of the complete (undifferentiated) 

vectors of adjectives. That is, the vectors before removing adjectives found in common 

with sibling nodes. Using these undifferentiated adjectives provides a baseline measure 

for the precision, recall, and span scores of a test node. We would expect the vectors 

used in the baseline to be less discerning and select a wider semantic scope of nouns 

because the vector of adjectives would be more general. We can predict that the 

baseline will have a greater recall with a lower precision. We would also expect the 

baseline to have higher (worse) span scores because of the wider semantic breadth the 

undifferentiated vector would cover. 

8.5 Results 

I calculated characteristic adjective vectors for the first three levels of the WordNet 

taxonomy, comprising 720 nodes. Using these differentiated characteristic adjective 

vectors, along with the undifferentiated baseline vectors, I scanned all nouns in the 

BNC corpus. Each vector selected a set of nouns matching the threshold percentage of 

the vector‟s adjectives (described above). 
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For each vector I calculated the average precision P, recall R, and span s over all 

selected nouns. I then averaged these scores over sibling nodes and assigned the scores 

recursively up to the nine unique beginner nodes. The statistics for the nine unique 

beginners are shown in Table 8.5. 

For each root node, values are given for the averages derived from the characteristic 

vectors, the baseline vectors, and the differences between the two (Delta). Averages are 

reported as the number of true synonyms selected by the vector (Synonyms), the total 

number of nouns selected (Total Selected), the average span of all selected nouns (Avg 

Span), and the calculated Precision and Recall. 

Table 8.5 

Results for selecting nouns using the nine unique beginners 

 Characteristic Vectors Baseline Vectors Delta 
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Entity 16 951 127.85 .017 .727 20 25112 178.93 .001 .909 -4 -24161 -51.080 .016 -.182 

Act 43 55745 213.79 .007 .417 54 47866 199.10 .001 .621 -21 -42121 14.690 .006 -.204 

Abstraction 6 587 62.74 .010 .316 8 14836 86.72 .001 .421 -2 -14249 -23.980 .010 -.105 

Event 10 500 39.10 .020 .556 13 14551 22.32 .001 .722 -3 -14051 16.780 .019 -.167 

Psych 12 198 72.03 .061 .414 12 16725 86.78 .001 .414 0 -16527 -14.750 .060 .000 

Phenomenon 7 1415 35.35 .005 .412 10 12282 18.09 .001 .588 -3 -10867 17.260 .004 -.176 

Group 22 2103 127.48 .010 .423 23 35720 98.90 .001 .442 -1 -33617 28.580 .010 -.019 

Possession 4 520 24.02 .008 .444 4 9214 8.74 .000 .444 0 -8694 15.280 .007 .000 

State 49 12624 206.28 .004 .333 60 75548 174.79 .001 .408 -11 -62924 31.490 .003 -.075 

Total 169 24643 908.64 .007 .406 214 251854 874.37 .001 .514 -45 -227211 34.270 .006 -.108 

 

8.5.1 Quantitative Analysis 

The aggregate statistics show that for each of the nine unique beginners, using 

characteristic adjectives improved precision while worsening recall in a much smaller 

proportion. For instance, the characteristic adjective vector for the root node entity 

selected four fewer synonyms than the baseline vector, but the total number of nouns 

selected was 24,161 less. Thus the recall worsened by 20.1%, but the precision 

improved by 1,700% (.017 / .001). The same pattern is observed when viewing the 
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aggregate of the first level nodes under a unique beginner, and continues to the 

individual nodes themselves.  

Out of 720 individual nodes under study, there were 149 cases where using 

characteristic adjectives improved the precision over the baseline. The average 

improvement in precision over all individual nodes was 10%, but there are many 

examples of improvements of 90% or more. There were 35 cases where the precision 

worsened, but the average degradation was so small as to be almost undetectable. These 

cases are typified by instances where the baseline finds a single synonym but has a huge 

number of false positives giving it a very small precision. The characteristic set restricts 

the false positives but if it loses the synonym in the process the precision goes to zero. 

The experiment shows there is a significant reduction in ambiguity using the much 

more restrictive characteristic adjectives. In most cases the number of nouns selected 

dropped by 90-95% of the numbers using the baseline. The fact that the recall only 

worsened in 40 cases seems to indicate the characteristic set is describing real features 

of the noun class.  

Although using true synonyms in scoring provides a clear measure of precision and 

recall, there are also legitimate hyponyms that could be considered as properly selected. 

The average span (described in Section 8.4.1) is used to measure this. There were 249 

cases where the average span improved and 442 cases where it worsened. Of the 442 

worse cases, 380 of these were due to null membership for the characteristic adjectives. 

That is, cases where the characteristic adjectives did not select for any nouns in the 

corpus. This happens when the adjective set is so small to begin with, that 

differentiating leaves too few, if any, characteristic adjectives. 

8.5.2 Qualitative Analysis 

It is informative to look at the kinds of adjectives that comprise a characteristic set 

after the differentiation process. Table 8.5.2-1 lists the top 20 characteristic adjectives 

(based on frequency) for person, which is the first child of the cause node under the 

entity root. Table 8.5.2-2 lists the top 20 adjectives in the original baseline vector 

(before differentiation). Adjectives in bold appear in both sets.  
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There were 1,367 adjectives in the baseline vector, and 794 characteristic adjectives 

after differentiation, giving a ratio of roughly over half the adjectives retained as 

characteristic. 

Comparing the two tables it is clear that many of the adjectives in the baseline vector 

do not imply attributes that are unique to a person. Adjectives such as old, only, other, 

ordinary, and peculiar, which appear in the baseline vector and not in the characteristic 

vector, either imply attributes that are universal (old, only) or are deterministic (other, 

ordinary, peculiar). Contrast these adjectives with those found in the characteristic set 

such as bereaved, unemployed, insured, and immortal, which all imply distinctly human 

attributes (within the local semantic context of the person node). 

Table 8.5.2-1 

Top 20 characteristic adjectives of person 

 Table 8.5.2-2 

Top 20 baseline adjectives of person 

Word Count Word Count 
 

Word Count Word Count 

bereaved 31 unemployed  24  young 262 dead  71 

vulnerable 22 deaf  52  different 68 disabled  107 

deceased 24 elderly  189  elderly 189 human  53 

accused 17 healthy 26  important 55 insured 57 

ill 16 infected  27  old 189 older  80 

insured 57 lay  17  only 428 ordinary  65 

living 41 missing  15  other 743 particular  129 

named 32 qualified  28  poor 70 private 79 

assisted 14 sensible  22  real 66 right  77 

sick 25 immortal  22  authorised 59 single  245 

There are some characteristic adjectives that do appear not to imply uniquely human 

attributes such as missing, healthy, sick and living. However, these adjectives are 

characteristic in the context of the parent (genus) node, and serve to distinguish the 

child (species) node from its siblings. In this context there needs only to be a 

differentiation from other children of the cause node. Other children of the cause node 

include: 

agent:: a substance that exerts some force or effect 

supernatural, occult:: supernatural forces and events and beings collectively 
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destiny, fate: the ultimate agency that predetermines the course of events 

engine: something used to achieve a purpose 

The full baseline vector for the person node contains 1,367 adjectives and selects 23 

nouns from the BNC corpus. The characteristic adjective vector contains 794 adjectives 

and selects only 5 nouns. These two lists are shown in Table 8.5.2-3. Although there are 

several nouns that should be selected by the characteristic set (such as child and 

women), most of the nouns in the baseline list are spurious (part, place, state, thing) and 

the characteristic set successfully filters these out, while retaining those nouns that are 

semantically close to person. 

8.6 Conclusion 

In this chapter I have attempted to show that a distributionally derived vector of 

differentiated adjectives can be used to represent a semantic node in a taxonomy. These 

characteristic adjectives are motivated by the attributive lexical function of adjectives, 

and are another example of the types of statistical processing techniques that can be 

applied to language processing. Characteristic adjectives give an alternative similarity 

measure for class based semantic acquisition, compared with those examined in the 

previous chapter. Rather than using a more complex similarity calculation over 

Table 8.5.2-3 

Nouns selected by vectors of node person 

characteristic set baseline set 

man 

men 

people 

person 

woman 

body 

business 

character 

child 

family 

form 

group 

life 

man 

men 

nature 

part 

people 

person 

place 

sense 

state 

thing 

way 

woman 

women 

work 

world 
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comprehensive distributional data, this method attempts to find a smaller number of 

distinguishing data, which can then be used with a simpler similarity calculation. 

I looked at several approaches to deriving characteristic adjectives, motivated by 

insights into the properties of adjectives. Of these approaches, the most successful was 

using differentials of neighbouring semantic nodes. By removing those adjectives that 

appear in the vectors of nearby semantic nodes, the distributional data is reduced to the 

most distinguishing features. 

The experiments appear to confirm the semantic properties of the characteristic 

adjectives and their ability to determine semantic similarity. Qualitatively, the types of 

adjectives that are derived as characteristic appear plausible as representing 

distinguishing attributes, which is one motivation for their development. Quantitatively, 

the characteristic adjective vectors improve the correlation to the correct semantic node, 

in comparison to the complete distributional vectors. 

The derivation of characteristic adjectives presented in this section can be affected 

by polysemy, as with most distributional methods. However, because in this case the 

highest level semantic nodes are used, the nouns under study are very general and 

mitigate these effects to some degree. Polysemy is likely to be more pronounced for 

nodes lower in the taxonomy and may degrade the performance of differential metrics 

such as characteristic adjectives. One possible way to address this would be to use the 

distributions in the vicinity of homonymous nouns to filter adjectives in the polysemous 

distribution, but this would complicate the algorithm and warrants further investigation. 

Another goal of this chapter has been to explore some of the possible approaches 

enabled by corpus based distributional methods. Results from these types of 

experiments have the potential of aiding symbolic language tasks by integration with a 

framework such as the CAMEO representation. For example, the distributionally 

derived characteristic adjectives could be used to augment the symbolic representation 

of a document (or set of documents) processed in the system using the annotation 

strategies explained in Chapter 5. A symbolic task could then utilize the vectors to 

classify unknown nouns into one of the top level WordNet classes used in these 

experiments. 
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While this may be helpful, it does not necessarily provide a statisfactory solution for 

application to smaller corpora (i.e. single documents). Characteristic adjectives are not 

guaranteed to appear with an unknown noun in a particular document, and the chances 

decrease with document size. So although the characteristic adjective vectors are 

moderately inclusive and have a fair number of adjectives, there is still a data 

sparseness issue related to the frequency of adjectives, especially in smaller corpora. 

The next chapter will look at ways to extend the idea of differentiation to include not 

only other parts of speech, but dependency relations as well.  



 

9  

 

Distributionally Derived 

Symbolic Rules Using 

Unambiguous Examples 

The characteristic adjectives developed in the previous chapter resulted in vectors 

with much lower dimensionality than typical vector-based similaritiy metrics. Although 

this makes them more effective than high-dimension vectors on smaller corpora, they 

can still be hindered by sparse data, especially since they rely exclusively on adjectives. 

In addition, polysemy in the training corpus dilutes the information content (as with any 

vector-based approach). 

In this chapter I will address these deficiencies by extending the technique used to 

derive characteristic adjectives to discover symbolic rules for deciding semantic 

categories. These rules will be based on lexico-syntactic patterns, and like characteristic 

adjectives, are hypothesized to be highly correlative with a semantic class. I will derive 

the rules distributionally (as before) and use them to determine the semantic classes 

represented by the WordNet lexicographer files, or supersenses (Ciaramita and 

Johnson, 2003), extending coverage to words not found in the lexical resource 

(WordNet).  

The work in this chapter will be an integration of distributional and symbolic 

methods applied to the representation as discussed in Chapter 6. The experiments are 

based on the approach given in Section 6.3, which suggests incorporating symbolic 

distributional information into a similarity measure to assign semantic attributes to 

unknown nouns. In the first stage of the experiments distributional events will be 

collected from a large external corpus to derive symbolic rules. In the second stage the 

resulting rules will be applied to the text representation framework to semantically 
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classify nouns in a test corpus. Although the focus of the chapter is the novel approach 

of the differentiated rules, I will also touch upon relevant representational properties 

that effect the implementation. 

9.1 Supersense Tagging 

The distributional processing used to derive the characteristic adjectives in the 

previous chapter utilized the semantic classes at the first two levels of the WordNet 

taxonomy. In this chapter, the semantic classes represented by the WordNet 

lexicographer files will be used instead. The lexicographer files are used by the 

WordNet developers when determining semantic properties. Although the 

lexicographer files are not included in the WordNet distribution, the file identifiers are 

given for each sense of a word. Each file contains a collection of semantically related 

synsets organized by concept (e.g. act, animal, food, process, state), so words having 

the same file identifier are members of the same conceptual grouping. The files of 

interest in these experiments (nouns) represent 25 semantic classes which correspond 

roughly to 7 of the 9 top level nominal nodes in the WordNet taxonomy, combined with 

a finer classification for the remaining two top-level nodes (entity and abstraction).  

Ciaramita and Johnson (2003) refer to these classes as supersenses because they 

represent broad categories of finer senses. They argue that aggregating the synset 

information in WordNet into supersense classes not only provides a much richer set of 

semantic properties (since individual synset properties logically apply to the 

supersense), but also presents a small corpus of annotated supersense data via the 

example sentences contained in the synset glosses.  

Although the advantages suggested by Ciaramita and Johnson (2003) apply equally 

well to the top-level nodes of the WordNet taxonomy proper, there are several other 

reasons for adopting the lexicographer file classification for these experiments. The 

most important is that the classes represent a more balanced grouping of the taxonomy. 

For instance, although entity and state are both top-level nodes, entity contains many 

more child nodes and is thus much more general. Using the lexicographer files, entity is 

represented by finer semantic groupings closer in scope to state. 



Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples  214 

Another advantage of using the lexicographer files is that the fine-grained sense 

information available in WordNet is smoothed when considering the 25 classes that 

make up the lexicographer files. Even though a word may have many different senses, 

each sense is mapped to one of the 25 files and may end up being in the same file as 

several of the other senses. This effectively reduces the number of senses for a word, 

depending on the distribution of senses across the lexicographer files, and in some cases 

makes a polysemous word monosemous with respect to the lexicographer file classes. 

Finally, using the lexicographer files also reduces computational complexity. Every 

sense in WordNet is annotated with its corresponding lexicographer file index, which is 

much easier to determine than tracing a node‟s hierarchy to find the root node. 

 

There have been several recent investigations into supersense tagging. Ciaramita and 

Johnson (2003) demonstrate a multiclass perceptron classifier (Crammer and Singer, 

2001) trained on monosemous WordNet 1.6 nouns found in the context of a 40 million-

word corpus along with the WordNet 1.6 definitions and glosses. The novel test set they 

propose is comprised of new words appearing in WordNet 1.7. They report a significant 

improvement over the baseline heuristic of choosing the most frequent sense (person), 

however the highest accuracy achieved is 52.9%. 

Curran (2005) is able to improve this accuracy to 63% using a weighted voting 

scheme of automatically extracted synonyms. Using a composite 2 billion-word corpus, 

a vector of shallow grammatical relations was extracted for unknown nouns. This 

vector was measured for similarity against vectors of known nouns, and a weighted 

sense score derived from a subset of the most similar nouns was used to determine the 

supersense of the unknown noun. A hand-coded backoff algorithm was employed for 

unknown nouns which did not appear in the derivational corpus. 

In both experiments, the goal was to assign the correct supersense to a noun which 

did not occur in the training data. The unknown nouns used in the test set comprised the 

unambiguous additions to WordNet 1.6 appearing in WordNet 1.7, amounting to 744 

unknown noun types. A second test set was derived by withholding 755 noun types 

from the WordNet 1.6 training data. 
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The experiments presented in this chapter are also distributionally based and use 

similar features to those in typical vector-based similarity measures, such as Curran 

(2005). However, the aim in my experiments is the derivation of symbolic rules for 

supersense disambiguation of all nouns appearing in a corpus. This encompasses a 

much larger range of test noun types, since every noun in the test corpus can potentially 

match a rule context.  

The primary application of unknown supersense tagging suggested by Curran (2005) 

is the automatic extension of lexical resources, such as WordNet. Automatically 

deciding the supersense categories can aid the automatic or semi-automatic 

determination of a word‟s position in the taxonomy. 

Knowing a word‟s supersense can be beneficial for other applications as well. In 

Chapter 6 I explained how a reliable semantic classification can aid tasks such as co-

reference resolution, where attributes inherited from the class can be used to rule out 

incompatible referents. As demonstrated in Chapter 5, reducing the size of the set of 

candidate antecedents in this manner can significantly reduce the complexity of co-

reference resolution.  

For small numbers of high-level classes, such as supersenses, the attribute values 

associated with each class can be determined manually. For example, the 

human/animate/inanimate attributes correspond to the WordNet person/animal/object 

classes. A finer level of attribute granularity is possible depending on the class 

granularity. This chapter will focus on the semantic classification task using 25 

semantic (WordNet) classes, which can be used as a basis for assigning nominal 

attributes. 

9.2 Symbolic Rules 

The characteristic adjective vectors derived in the previous chapter consisted solely 

of attributive adjectives, i.e. instances of collocated adjective-noun pairs. Although this 

usually represents the majority of adjective constructions, there are still many more 

possibilities for distributionally processing adjectives. Additionally, when considering 

semantic classification, it may be helpful to extend distributional information to include 
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other parts of speech. For example, Hindle (1990) used verb-noun distributional 

information to classify nouns. 

Earlier in the thesis I discussed how symbolic information is increasingly leveraged 

in distributional experiments. One of the difficulties encountered with this approach is 

the expense of obtaining accurate symbolic information in large corpora. PoS tags and 

dependency information are costly to produce by hand and current taggers and parsers 

cannot achieve complete accuracy, although taggers are generally more accurate than 

parsers. Additionally, deep syntactic parsers can have high computational complexity, 

making it infeasible to process larger corpora. 

Curran and Moen (2002) evaluate the performance of a distributional task (thesaurus 

extraction) using context information from shallow syntactic dependency extractors 

versus a full syntactic parser. They conclude that using shallow processing with reduced 

computational complexity can be advantageous if it enables a much larger corpus 

sample than would otherwise be feasible with deeper syntactic processing. This result 

suggests a trade-off between deep syntactic processing which can recover more 

relational dependencies but has a higher computational cost, and shallow processing 

which has limited syntactic coverage but can be applied more easily to larger amounts 

of data. Although either approach can be applied to deriving symbolic rules, the 

experiments in this chapter are not meant to be exhaustive and therefore adopt shallow 

processing techniques which adequately serve to demonstrate the hypothesis. 

Because tags are more widely available for large corpora, when attempting shallow 

distributional processing of symbolic information, it is advantageous to use 

constructions that can be lexically determined. For example, as the previous chapter 

demonstrates, simple collocations such as attributive adjectives can generally be 

determined without dependency parsing. More complex constructions can also be 

recovered using lexical techniques; e.g. nominal compounds and simple verb phrases 

are constructions which can usually be recognized without a deep syntactic parse. 

Although these lexically determined constructions comprise shallow symbolic 

dependency information, they still represent a syntactic relationship. In contrast, strictly 

lexical distributional processing typically uses an unordered context window of 

collocates which treats instances equally, regardless of their type or position. The 
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experiments in this chapter are based on the following shallow syntactic constructions 

which extend the attributive adjective vectors from the previous chapter: 

1. Attributive adjectives – this includes adjectives immediately preceding the 

nominal string under study, adjectives in simple conjunctive phrases, and 

adjectives in a penultimate attributive position. Examples: distinguished opera 

singer, free and confidential service,  adequate historical data 

2. Pre-nominal compound modifier – nouns immediately preceding (modifying) the 

nominal string under study. Example: volunteer programme 

3. Simple verbal subject – verbs immediately following the nominal string under 

study, disregarding intervening auxiliaries and adverbs, including simple 

conjunctive verb phrases. Example: the airflow will have increased 

4. Simple verbal object - verbs immediately preceding the nominal string under 

study, disregarding any intervening adverbs or adjectives, including simple 

conjunctive verb phrases. Example: to produce a fluffy Risotto 

Each of these patterns can be used with PoS tags and a regular expression to extract 

distributional events which can be used to derive symbolic rules, making deep parse 

dependency information unnecessary. This significantly reduces the complexity of the 

distributional processing and makes it more feasible to run on large corpora. The trade-

off is that more complex constructions will either not be discovered in the distributional 

data, or will produce spurious events. 

After the distributional events are extracted and processed (see Section 9.5.1), the 

result is a set of symbolic rules that are hypothesized to be strong indicators of a 

supersense. These rules can be encoded in the representation and applied to text in order 

to assign supersense information. Encoding the rules for application to the 

representation takes the same form as distributional dependency queries (see Chapter 

6), where constraints are explicitly encoded using the standard representational 

elements and unconstrained properties are unspecified. 

For example, a hypothetical rule derived from the first pattern (1) listed above (i.e. 

attributive adjectives) would be encoded in CAMEO as 

 



Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples  218 

ctx[ 

 obj[ mod[ adequate ] class[] ] ] 

where the specific mod element and the unspecified class element are used to constrain 

the form of the obj element. This rule representation matches the adjective adequate 

followed by a common noun, as well as various syntactic variations of this construction 

including a conjunctive adjectival phrase, adverbial modifiers, and compound nouns. 

Another hypothetical example, is a rule derived from the last pattern (4) above. The 

representation of the rule in CAMEO is 

ctx[  

 obj[ ID=n  ] 

 evt[ ACTION=increase O=n ] ] 

This rule will match any verb phrase with a head verb of increase and a noun serving as 

a direct object. It does not constrain any other properties of the verb phrase so that it 

may appear in constructions such as passive, future progressive, etc. The direct object is 

similarly unconstrained so it may appear as a proper noun, a group, or any other 

nominal construction. 

The encoding of the rules in the representation is flexible and allows for a range of 

constraints when applying the rules. The more attributes and elements appearing in the 

rule representation, the more tightly the constraints imposed on the text matching the 

rule. The rule derivation processing is responsible for determining which constraints are 

relevant and encoding the rules with these constraints. Section 9.4 gives the details of 

the distributional processing used to derive the symbolic rules for these experiments. 

 

9.3 Addressing Polysemy 

As I noted previously, polysemy plagues all levels of NLP. This is especially true of 

distributional processing, where polysemy has the effect of diffusing a word‟s 

distributional pattern over possibly unrelated and incompatible contexts. A sense-tagged 
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corpus would solve this problem, but as with deep symbolic information, a sense-tagged 

corpus is rare and expensive to produce. 

To address polysemy in the distributional experiments presented in this chapter, I 

will restrict the distributional contexts to non-polysemous nouns. Polysemy can be 

determined for nouns listed in the WordNet taxonomy and it is trivial to filter these out 

for a class or group to create a list of non-polysemous words. Using such a list would 

effectively guarantee that the distributional information extracted from the corpus 

would not be diluted by polysemy, without requiring word sense tagging. 

This approach has been employed in previous research as an alternative to hand-

tagged data. Leacock et al. (1998) compare performance of a word sense disambiguator 

when trained on data automatically derived from monosemous relatives of a 

polysemous noun versus manually tagged data. Their results are mixed, but much of the 

performance degradation is due to the assumption that the contexts are interchangeable 

(which is not the case for polysemous nouns such as line and some monosemous 

relatives such as picket line).  

Ciaramita and Johnson (2003) use monosemous nouns in the training data of a 

supersense classifier. After extracting all occurrences of WordNet 1.6 nouns in a 40 

million word corpus, they removed all nouns having more than one supersense. They 

mention that this approach produced better accuracy than including all nouns and 

assigning distributional information over all senses of a multi-sense noun. 

Another common technique involving monosemous words is bootstrapping, i.e. 

iteratively marking sense information beginning with unambiguous monosemous 

words. For example, Mihalcea and Moldovan (2000) attempt to annotate an IR system 

with semantic information. They use a multi-stage processor to disambiguate lexical 

strings, tagging monosemous tokens at an early stage for incorporation into processing 

of compositional strings. 

An important question to answer before restricting a training corpus to monosemous 

nouns is whether it will produce enough data. It is reasonable to assume that non-

polysemous words are less common than their polysemous counterparts, and therefore 

will produce fewer instances for distributional processing.  
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Table 9.3– WordNet 2.1 Noun Database Statistics 

unique strings 117,097 

Synsets 81,426 

word-sense pairs 145,104 

  

monosemous words and senses 101,321 

polysemous words 15,776 

polysemous senses 43,783 

  

average polysemy including monosemous words 1.23 

average polysemy excluding monosemous words 2.77 

 

The WordNet 2.1 statistics for noun polysemy are shown in Table 9.3. Although 

there is clearly a much larger number of monosemous words, these tend to be more 

obscure and fall on the tail of a Zipfian-like distribution. Polysemous words are more 

likely to occur not only because they participate in multiple senses, but also because 

they are often less specialized. An informal survey reveals that a large majority of the 

monosemous nouns turn out to be compound or hyphenated nouns. Those that are not 

are often precise and unambiguous, such as genuflexion. Contrast this with typical 

polysemous nouns such as man (11 senses), hand (14 senses), and bank (10 senses). 

Ciaramita and Johnson (2003) report nouns having multiple supersenses accounted 

for 72% of the tokens and 28.9% of the types in their corpus. The corpus used for the 

experiments in this chapter has a measured distribution of 35.2% polysemous noun 

tokens and 13.0% monosemous noun tokens, nearly a 3 to 1 ratio. The remaining 

objects (i.e. noun phrases) do not have an explicit class (e.g. pronouns and proper 

nouns).  

What effect the distribution of non-polysemous nouns will have on the experiments 

will depend largely on the size of the classes. If the experiment uses large enough 

classes the effect of the smaller instances of non-polysemous nouns can likely be 

mitigated. The following section describes the classes used for these experiments. 
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Even with this strategy employed to address polysemy, there are other related issues 

which can affect the results. Metonymy and polymorphism complicate semantic 

classification. For example, the metonymic usage of groups (corporations, 

organizations, etc.) as individuals is common in the press. Sentences such as [ The Navy 

said the accident happened yesterday ] are a simple illustration. The object [ Navy ] 

would appear in WordNet as a group semantically, however the verb said is technically 

related to the semantic class [ person ]. This case is common enough that it warrants 

conflating the two classes in certain instances. Other cases of metonymy and 

polymorphism are more difficult to detect. Section 9.5.2 explains how this problem was 

accommodated in the experimental evaluation. 

9.4 Deriving Characteristic Rules 

The same principle used to derive characteristic adjectives in Chapter 8 can be 

employed to discover characteristic rules. Using distributional processing, a set of rules 

can be extracted for each class, and by determining the differentiae for the rules, a set of 

unique characteristic rules can be derived. Recall that for characteristic adjectives, the 

differentiae were calculated relative to siblings sharing a parent node in the taxonomy. 

This localized approach was necessary because it was not feasible to differentiate 

globally against all other words, and in addition, the effects of polysemy could result in 

spurious global matches. For this application, the lexicographer file classes are used 

instead, which means all the classes are not necessarily at the same level in the 

taxonomy. However, since there are a smaller number of classes (25 lexicographer 

files), and the distributional data is non-polysemous, it is feasible to differentiate the 

derived rules globally (i.e. against all other classes). If a rule matches more than one 

class, it cannot be considered a characteristic indicator of a single class. 

 The procedure used for deriving the characteristic rules is summarized as follows. 

For each class (i.e. lexicographer file), all polysemous words were discarded. The 

remaining words were used to seed the patterns described in Section 9.2 and collect 

matching events from the corpus. For example, the lexicographer file representing the 

class possession contains 1,078 entries after removing all polysemous words. Consider 

one of these, say, subsidy. Distributional events for the noun subsidy appearing in the 
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context of one of the patterns described in Section 9.2 would be collected from the 

corpus. Here are some examples: 

1. Attributive adjectives – agricultural subsidy 

2. Pre-nominal compound modifier – cash subsidy 

3. Simple verbal object - … she relented and negotiated subsidies to her ex-

husband … 

Matching events were collected for each entry in the filtered class list in this manner. 

These specific matches were then generalized to form a set of rules, by replacing the 

seed words with the class and aggregating the rules (removing duplicates). 

Once rules for all classes had been distributionally extracted, the differentiae were 

computed for each rule set by removing all rules occurring in more than one class, 

resulting in a set of unique symbolic rules for testing membership in each class. 

Figure 9.4 illustrates the process using three of the supersense categories. In step 1, 

distributional events are collected using the list of monosemous nouns for each 

supersense. Each italicised word in the figure is a monosemous noun which belongs to 

Figure 9.4 – Example rule derivations for three supersense classes 

 artefact body time 

1 the photo appears … 

his seal ring appears on … 

the general’s cuirass appears as … 

the synagogue now exhibits … 

the skull appears broad … 

bruised  knuckle can be 
bandaged 

bacterial chromosomes occur … 

bacterial genes … 

celebrates the tercentenary … 

celebrates major anniversaries … 

the jubilee is celebrated by … 

2 <obj class=artefact><verb=appear> 

<obj class=artefact><verb=exhibit> 

<obj class=body><verb=appear> 

<obj class=body> 
<verb=bandage> 

<mod=bacterial><obj class=body> 

<obj class=time><verb=celebrate> 

3 <obj class=artefact> <verb=exhibit> <obj class=body> 
<verb=bandage> 

<mod=bacterial> 
<obj class=body> 

<obj class=time><verb=celebrate> 
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the supersense indicated by the heading of the column. The words in bold represent the 

discovered keywords to use in the rule derivation. In step 2, the lists of distributional 

events are aggregated and generalized to form supersense rules. Finally, in step 3 the 

differentiae are computed to produce characteristic rules by removing rules which 

appear in more than one category. In this example, the verb appear is found in rules for 

both the artefact and body supersense categories so all rules using appear are 

discarded. 

 

Although the rules are derived using shallow lexico-syntactic pattern matching, the 

application of the rules in the text representation allows for them to be used with rich 

syntactic dependency constructions. As an illustrative example, consider the following 

characteristic rule produced for the object class: 

<verb=shield><obj class=artifact> 

This rule states the syntactic object of the head verb shield is of the semantic class 

artifact. The following sentence in the Wolverhampton corpus matches the rule: 

Handles should be shielded with rubber. 

The CAMEO representation is given by: 

 ctx  [  TYPE=clause  

  obj  [  ID=o11  class [ handles  ] ] 
  evt [   O=o11  ACTION=shield  MODAL=should PASSIVE ] rel [with rubber]] 
 

The rule classifies the object [ handles ] correctly as a member of the artifact group. 

Note that although the verb phrase is expressed in passive form, it is normalized in the 

symbolic CAMEO representation allowing the rule to match correctly. A strictly lexical 

application of the rule would either miss this instance, or incorrectly interpret handles as 

the subject. 
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9.5 Experiments 

As with the experiments in the previous chapter, there are two major parts to the 

experiments described here. First, deriving the set of characteristic rules according to 

the procedure described in Section 9.4. Second, using this derived set of rules to decide 

the semantic classification of nouns. The next two sections will discuss each of these 

parts in more detail. 

9.5.1 Distributional Processing 

In order to ensure the rules derived through distributional processing are unique (i.e. 

characteristic), a large, tagged derivation corpus is needed, such as the BNC used in the 

previous chapter. Due to time and resource constraints, rather than using the entire BNC 

a sub-corpus comprised of all files in the BNC A section was used for these 

experiments. The BNC A section is comprised of 674 written documents and contains 

14,232,256 (orthographic) words, which represents approximately 15% of the BNC 

corpus. 

The derivational corpus is processed using distributional seeds from the WordNet 

2.1 lexicographer files. Each WordNet 2.1 lexicographer file contains a list of “words” 

which can include multi-word expressions and hyphenates. Hereafter I will refer to 

these as “strings”, following the WordNet nomenclature. After removing all 

polysemous (multi-class) strings, each lexicographer file yielded a set of monosemous 

(single-class) strings. Table 9.5.1 lists information about each lexicographer file used in 

the experiment. The first column gives the WordNet lexicographer file index, the 

second column gives the file name, and the third column gives the number of 

(monosemous) strings after removing polysemous strings. The table is sorted by the 

number of strings from highest to lowest. 

The distribution of (monosemous) strings over the semantic classes exhibits a very 

clear Zipfian form. The first four classes comprise nearly half of the distribution, with 

the remaining strings distributed in a roughly logarithmic curve. This is due to the 

nature of the first four semantic classes, which are all tangible and comprise the 

majority of the nouns in WordNet: plant, person, artifact, animal. Although other 
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tangibles appear further down in the table, they are more specific, such as body and 

food, resulting in smaller classes. 

Table 9.5.1 

Distributional statistics for derivation corpus by class/lexicographer file 

File Name Strings Events Rules Pre Adj-1 Adj-2 Obj Subj 

20 plant         16,865 5393 556 66 140 28 31 48 

18 person        16,322 132,925 4,489 914 1,717 549 382 58 

6 artifact      13,375 80,936 4,834 1,123 1,758 347 350 272 

5 animal        13,351 11,419 598 106 226 27 46 21 

4 act 6,193 44,658 1,350 264 557 112 102 43 

10 communication 5,638 56,243 1,544 342 734 126 113 41 

26 state         4,105 17,871 479 58 189 46 35 91 

27 substance     3,968 13,734 1,049 193 338 61 72 5 

15 location      3,936 67,871 407 69 140 44 27 8 

8 body          3,035 6,807 315 60 106 26 35 28 

7 attribute     3,007 22,479 444 47 199 39 41 81 

14 group         2,961 39,006 886 195 305 94 69 34 

9 cognition     2,863 22,163 690 129 369 72 53 0 

13 food          2,468 9,929 594 147 194 51 57 27 

17 object        1,682 14,986 1,132 150 224 29 63 528 

23 quantity      1,483 7,608 123 26 18 4 6 9 

28 time          1,355 29,594 313 42 64 12 16 26 

21 possession    1,078 15,605 447 87 145 28 34 22 

11 event         785 6,504 203 54 64 22 11 2 

22 process       749 2,467 51 10 19 4 3 3 

19 phenomenon    684 7,553 88 14 35 7 6 0 

24 relation      448 969 26 6 12 0 3 2 

12 feeling       340 4,556 127 12 75 9 10 18 

25 shape         255 825 81 4 12 4 3 54 

16 motive        50 127 21 0 2 0 0 19 

 
Total 106,996 622,228 20,847 4,118 7,642 1,741 1,568 1,440 

The strings in each file were used to filter sentences from the derivation corpus. Any 

sentence which matched one of the strings in the file was extracted, yielding a set of 

distributional events for each filtered lexicographer file. The Events column of Table 

9.5.1 records the number of events produced by each file. 

Note the distribution of events does not follow the distribution of strings in the 

lexicographer files. The largest number of events occurs for the second largest class 
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(person). The largest ratio of events to strings occurs with the much smaller time class 

which yields 29,594 events from only 1,355 strings. 

Each set of events was processed for patterns matching those described in section 

9.2, where the nominal string under study was taken to be a string from the 

corresponding filtered lexicographer file. This yielded a set of (possibly overlapping) 

symbolic rules for testing membership in each class (lexicographer file grouping). 

Within each class, the rules were generalized by abstracting the nominal string used in 

the match and removing duplicates (see Section 9.4). 

The final step in the distributional processing was to calculate the differentials in the 

symbolic rule sets by removing all duplicate rules globally across all classes, leaving a 

set of unique rules hypothesized to be characteristic for a given class. The Rules column 

in Table 9.5.1 gives the total number of characteristic rules produced for each class. The 

subsequent columns list the number of rules by category, where: 

Pre – pre-nominal modifier 

Adj-1 – attributive adjective (first position) 

Adj-2 – attributive adjective (second position) 

Obj – verb phrase object 

Subj – verb phrase subject 

Most of the classes retained less than 10% of their events as rules after 

differentiation, except motive (16.5%) and plant (10.3%). The smallest percentage of 

rules retained was location (0.6%), and the average percentage of rules retained was 

3%. 

The last line in Table 9.5.1 gives the totals across all files. After differentiating the 

rules there remained 20,847 rules, with the largest share of these derived from 

attributive adjectives (7,642). Compound nouns also accounted for a large number of 

these, and verb-based rules were the least common. (See Section 9.6 for a discussion of 

the distribution of verbs). 
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9.5.2 Evaluation 

Unlike the characteristic adjectives derived in the previous chapter, the symbolic 

rules being tested here are not vector based and subsequently have a more narrow 

scope, resulting in fewer instances where each rule will apply. On the other hand, the 

semantic classes being decided are broader and more comprehensive (since they 

represent a flattened portion of the WordNet hierarchy), which means that there are 

many more class members which form the distribution. 

I tested the derived rules on several corpora: The MUC7 corpus, the Wolverhampton 

corpus, and the Siddharthan corpus. Each corpus was processed using the RASP toolkit 

and transformed into the CAMEO text representation language. The test set of nouns 

was selected as follows. All nouns in the corpus found in one of the syntactic 

constructions described in Section 9.2 were collected. From this set, all first and second 

pronouns were removed, along with all monosemous nouns. The resulting set of test 

nouns represented the majority of all ambiguous nouns (with respect to supersenses) in 

the corpus. 

 The derived rules were transformed into queries which were applied to the set of test 

nouns from each corpus, resulting in a set of noun phrases and their classification. For 

evaluation, the correct classification was manually determined from the set of senses 

listed in the WordNet database for the head noun. This included a consideration for the 

context of the noun, and whether its usage involved metonymy or polymorphism.  

For example, the Siddharthan corpus includes a series of fables which include 

characters such as talking animals. In this case, the animal will exhibit both human and 

animal behaviour and could be classified as person or animal depending on the context. 

That is, when the character is exhibiting human behaviour it should be classified as 

person, and in all other cases it should be classified as animal. A further example is 

from a newspaper article about the terrorist group Al-Qaida. Normally this noun phrase 

would be assigned the group class, however the sentence [ Al-Qaida will feed ] invokes 

a metaphoric reference and warrants an animal class in this context. A similar argument 

can be made when determining the classification of metonymic usages of group for 

person. 
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These types of usage accounted for a relatively small percentage of the overall test 

cases matched by the rules. The Siddharthan corpus contained the greatest number 

(4.9%), while fewer instances were found in the MUC7 (3.7%) and WLV (0.4%) 

corpora. The percentage across all corpora combined amounted to just 2.6% of the test 

cases matched by the rules. 

 

The baseline algorithm used for comparison consisted of selecting the first listed 

WordNet (super) sense of an object‟s head noun. The WordNet documentation states 

that the first listed sense is the most frequent with respect to the WordNet development 

corpus. Using the most frequent sense of a word is a typical approach for dealing with 

polysemy in distributional experiments. For objects that do not include a common noun, 

such as proper nouns and pronouns, this approach does not apply, and these types of 

objects were not included in the calculation of the baseline precision. 

The following definitions are used to describe the baseline scoring metrics: 

𝑁  is the set of noun phrases under test (as described above) 

𝑁𝐵 is the subset of noun phrases in 𝑁 having a common noun (i.e. classifiable by the 

baseline algorithm). 

𝑁𝐶  is the number of correctly classified noun phrases 

The precision P and recall R are given by: 

𝑃 =
𝑁𝐶

𝑁𝐵
  

𝑅 =
𝑁𝐵

𝑁  

The F-measure is calculated in the standard way: 

𝐹 =
2𝑃𝑅

𝑃 + 𝑅
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Extending the baseline approach of first-listed sense, the characteristic rules provide 

an alternate means to decide the supersense of nouns, increasing the coverage to include 

nouns not contained in 𝑁𝐵. The algorithm applies the rules to all noun phrases in the set 

N defined above. For noun phrases matching a characteristic rule, the rule is used to 

select the target classification. For cases where the set of senses listed in Wordnet for 

the noun phrase does not include the rule‟s target classification, or there are multiple 

rule matches ascribing conflicting supersense classes, the algorithm reverts to the 

baseline (i.e. most frequent sense). The characteristic rules are also applied to noun 

phrases that do not contain common nouns (and cannot be classified by the baseline). 

The following definitions are used to define the scoring metrics for the characteristic 

rules: 

𝑁𝑅  is the subset of noun phrases in 𝑁 classifiable by a characteristic rule. 

𝑁𝐶  is the number of correctly classified noun phrases 

F is defined as before. The precision P and recall R are given by: 

𝑃 =
𝑁𝐶

𝑁𝑅
  

𝑅 =
𝑁𝑅

𝑁  

9.6 Results 

An important goal of these experiments is the evaluation of the representation itself 

and the properties which facilitate deriving and applying the symbolic rules. Although a 

quantative measure would be difficult to devise, a few conclusive results can be made 

through analysis. First, the normalisation of the syntactic structure afforded by the 

representation is conducive for applying symbolic rules of this type, allowing a single 

rule form to apply to a wide range of syntactic constructions such as passive verb 

phrases, subject-auxilliary inversion, complex verb phrases, verbal and nominal 

conjunctions, and infinitival complements. 



Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples  230 

Next, the structure of the representation and its contextual organization aid in certain 

corpus processing tasks conducted during the course of the experiments, such as the 

alignment of several corpora. For example, during the development of the experimental 

framework, several iterations of the representation were produced from the corpus due 

to issues in the early stages of processing that needed to be resolved. Transferring the 

annotation key to the successive iterations of the representation was achieved through a 

simple transform which aligned sentential and phrasal contexts before attempting to 

align individual objects. Information from the key corpus was then copied into the 

object containers for those objects that aligned with the new representation. (Any 

remaining objects were subsequently re-annotated.) 

Finally, the object-centric nature of the representation is advantageous for generating 

reports and analysis. The representation of noun phrases as first-class objects in a 

phrasal context makes them more accessible during processing than strictly hierarchical 

representations. Also, because the representation of objects is uniform, regardless of the 

underlying grammatical relations, transformational processing can be applied globally 

to objects as a class. Generating global lists of objects with specific properties or 

relations can be helpful for analysis, as for example the evaluation of ruleset classes in 

the experiments of this section based on an object‟s syntactic position (Figure 9.6-2). 

Table 9.6-1 
Precision, Recall and F-measure for semantic classification on three corpora 

 

 Characteristic Rules Baseline 

 P R F P R F 

MUC7 
60.4% 

(808/1337) 
88.8% 

(1337/1505) 
71.9% 61.7% 

(641/1039) 
69.0% 

(1039/1505) 
65.2% 

Siddharthan 
60.7% 

(1740/2867) 
86.9% 

(2867/3298) 
71.5% 62.5% 

(1549/2480) 
75.2% 

(2480/3298) 
68.2% 

WLV 
50.8% 

(1911/3759) 
87.7% 

(3759/4284) 
64.4% 50.8% 

(1860/3664) 
85.5% 

(3664/4284) 
63.7% 

Total 
56.0% 

(4459/7963) 
87.6% 

(7963/9087) 
68.3% 56.38% 

(4050/7183) 
79.1% 

(7183/9087) 
65.8% 

 

Table 9.6-1 shows the qualitative results of applying the baseline and derived 

symbolic rules to three sets of corpora. Using characteristic rules improved the F-score 

over the baseline for each corpus, with the largest improvement recorded for the MUC7 
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corpus.  The characteristic rules improve the recall by increasing the coverage of the 

baseline system to include nouns which do not occur in WordNet (the majority of these 

being proper nouns and certain pronouns). The recall improved by 10% for two of the 

corpora (MUC7 and Siddharthan), with an average improvement over all three corpora 

of 8%. The WLV corpus had much higher recall for the baseline than the other corpora 

(86%) and this resulted in a smaller improvement when the characteristic rules were 

applied. The WLV corpus is comprised of mainly instructional documents which 

contain a smaller ratio of non-common nouns. This contrasts with the MUC7 corpus 

which is newspaper text and has a much higher ratio of proper nouns and pronouns 

resulting in a lower baseline recall (69%). 

The precision of the characteristic rules was similar to or slightly worse than the 

baseline. One factor that affected the performance was processing errors. Parsing errors 

(which were often the result of tagging errors) accounted for roughly 3-5% of the 

incorrect classifications (based on a sample analysis). For example, sentence (100) 

shown below is from the WLV corpus. 

(100) Do not use hammers to bash wooden or plastic handled tools such as 

chisels or screwdrivers. 

In this case, the syntactic processing mistagged/misparsed plastic handled tools 

resulting in the misapplication of the characteristic rule <verb=handle><obj class=act> 

and the erroneous supersense act assigned to tools.  

Another factor affecting the precision is the variation in the supersense categories. 

Certain objects are given a classification in WordNet which does not always reflect the 

more common usage. For example, the WLV corpus contains several documents which 

discuss software programs and operating systems. In WordNet, these types of objects 

are classified as communications, whereas a large number of the characteristic rule 

applications resulted in the supersense artefact. In many cases, the collocates associated 

with the communications supersense, such as broadcast, receive, etc., do not apply to 

software programs, but those of the artefact supersense often do (e.g. install, use). This 

ambiguity accounted for a large percentage of the errors in the WLV corpus. For 

example, 38% of the errors in the Linux HOWTO document, and 67% of the errors in 

the CDROM HOWTO document were due to this ambiguity.  
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Figure 9.6-1 shows the distribution of matching events and the rule accuracy for 

each class in the test corpora (classes with less than 1% of the matches have been 

omitted). As expected, based on the distribution of derived rules, the largest class was 

person followed by artefact. These two classes combined accounted for over 50% of 

the events in the three test corpora. Although person had the second largest number of 

monosemous strings in WordNet (behind plant), it still made up the largest percentage 

(21.3%) of the distribution of events in the derivation corpus. This frequency of the 

person class in the derivation corpus appears to correlate with the test corpus, 

accounting for the high number of events matching the person class rules. The artefact 

class, which had 20% fewer monosemous strings than person, accounted for 13% of the 

events in the derivation corpus, and exhibits a proportional distribution in the test 

corpus. Note that artefact produced a larger number of rules than person, and still had 

fewer events in the test corpus. 

The rule accuracy was better for person (65.9%) than artefact (58.4%), with the less 

frequent class accuracies varying widely.  Only body had better accuracy (75%) than 

person/artefact and body appeared in significantly fewer events.  
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Figure 9.6-2 shows the event distribution over the test corpus of matching rules by 

syntactic form. The verbal subject rule form clearly dominates the distribution. This is a 

surprising result because the verbal subject form accounts for just 7.5% of the total 

number of derived rules. In fact, the largest percentage of derived rules (36.7%) takes 

the adjective-1 form, and this produces a relatively small number of matches in the test 

corpus.  

One possible explanation for the larger number of matching verbal rule events is the 

underlying distribution of verbs in the derivation corpus. According to statistics 

compiled by Leech et al. (2001), the ratio of noun to verb tokens per million words in 

the BNC is roughly 1:1 (181,985 / 174,272), while the ratio of noun to verb types is 

roughly 3:1 (3,031 / 1,103). This suggests that far fewer unique verbs than nouns will 

appear in a given corpus. Thus any derived verbal rules would most likely represent a 

larger number of matched verbal events in the derivation corpus, and subsequently 

generate a proportional number of matches in the test corpus.  

Conversely, the distribution of matching adjective events (11.9%) appears relatively 

equal with nouns (13.9%) in the test corpus distribution.  Even though adjectives have a 

WordNet ratio to nouns of roughly 5:1, they have a much lower distribution in running 

text. Leech et al. (2001) report BNC adjective statistics per million words at 55,328 

tokens and 1,036 types, equating to a roughly 3:1 noun-to-adjective type ratio (the same 
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as noun-to-verbs) and a 3:1 noun-to-adjective token ratio (much higher than noun-to-

verbs). However, only a small percentage of nouns will appear in the compound form 

and this produces a similar percentage of rules (adjectives 45%, nouns 40.1%), resulting 

in a similar distribution of matching events observed in the test corpus. 

 

Unlike statistically based approaches, using unambiguous monosemous words to 

seed the rule derivation avoids the affects of polysemy and allows the algorithm to work 

with a relatively small number of distributional samples. The average number of events 

observed in the derivation corpus for a particular monosemous word in a given rule 

pattern was 1.2, which is extremely small in comparison with the numbers of events 

used in the experiments on adjectives from the last chapter. Even when the events are 

smoothed to create a rule, the aggregate numbers remain relatively small. This is a 

direct result of using “pure” monosemous instances, which do not appear as frequently 

as polysemous words. Of course this does not guarantee that the derived rule will not 

appear in a polysemous context within the corpus. But the experiments show that some 

rules can be derived which possess a close semantic correlation with the class of the 

monosemous words used to derive them. 

Table 9.6-2 
Examples of derived rules 

 

Class Pre-nominal Adjective-1 Verb Subject Verb Object 

act bombing pre-emptive  accomplish 

artefact cockpit high-speed sink board 

cognition retrieval hegelian preclude solve 

communication cancellation conversational pre-date answer 

food caramel piquant thicken simmer 

location plateau hilly landlock stretch 

person predecessor itinerate understand oblige 

Table 9.6-2 lists examples of the derived rules for several classes. In most cases the 

rules are highly suggestive of the appropriate class. However, it is clear that counter 

examples can be constructed where the rule could fail (as is true for all distributional 

processing). But because the rules are only applied to matching contexts where the 

rule‟s supersense is listed in WordNet as one of the noun‟s supersenses, only certain 
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nouns appearing in these constructions will match the rule. This raises the rule‟s 

precision at the expense of lowering the recall. 

 

9.7 Conclusion 

Distributional processing is often used to derive statistical measures, as for example 

in Chapter 7. However, in this chapter I have demonstrated a distributional approach to 

deriving symbolic rules. The rules represent an aggregate of distributional instances in a 

derivation corpus but do not include an explicit statistical weighting. Instead, the same 

process of differentiation, introduced in the last chapter, is applied to filter ambiguous 

rules, leaving only those which correlate with a single class in the derivation corpus.  

In order to derive single-class rules, the effects of polysemy must be addressed. In 

this chapter I used known monosemous words to avoid the need for sense-tagged data. 

This ensures that the events observed in the derivation corpus have the desired class. 

However, this does limit the data used in the rule derivation to events occurring with the 

monosemous words. 

The results demonstrate that this technique is able to extend the baseline approach 

(of defaulting to the first-listed WordNet sense) to words that do not occur in WordNet. 

The experiments derived many rules for disambiguating noun phrases using the process 

of differentiation to select rules which are indicators of a single semantic class. Because 

the rules are syntactic in nature, each applies to a specific syntactic context. The 

coverage of the ruleset is directly related to the number of rules derived, and their 

lexical contexts. The experiments demonstrated a nearly 10% gain in recall when the 

baseline was extended with the characteristic rules applied to unknown nouns. 

The precision of the rules remained at, or slightly lower than, the level of the 

baseline. Part of this was due to errors in processing, but semantic factors also came 

into play. Metonymy, analogy, and other creative uses of language need to be accounted 

for when applying symbolic rules of this type. The characteristic rules derived in the 

experiments often were highly predictive, but sometimes the rule matched a lexical 

context quite different than those used to derive the rule. In many of these cases the 
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correct supersense was a closely related class and smoothing these classes might be an 

alternative approach, depending on the task. Other possibilities for refining the rules 

include considering a wider context (e.g. both verbal subject and object), and using 

distributional information about polysemous contexts where the rule appears (in the 

derivation corpus). 

As with any distributional approach, the derivation corpus determines the quality of 

the distributional output. The experiments reported in this chapter made use of a sub-

corpus taken from the BNC which is large enough to provide an adequate sample of 

text. Using a larger corpus could possibly result in more events, which in turn could 

generate more rules, but these would likely be increasingly rarer usages having little 

effect on the overall results. 



 

10  

 

Conclusion 

In this thesis I have investigated the integration of contextual and distributional 

processing with a sematically-motivated linguistic representation. The objectives of the 

thesis were set out in the introduction and the thesis has addressed each of these in turn: 

1) I have defined and implemented a text representation language called CAMEO, 

which satisfies the proposed desiderata and provides the framework for a general 

treatment of contextual and distributional processing at all levels of discourse; 2) I have 

developed a systematic treatment of structural and linguistic context within the 

representation and applied it to a text processing task; 3) I have investigated 

distributional and statistical methods of text processing and developed a novel 

distributional application to symbolic processing. 

The main contributions of the thesis are a novel representation of context, a 

distributional approach to deriving symbolic rules, and several innovations which 

distinguish the text representation language. In addition, using semantic properties of 

adjectives, I have developed a novel distributional semantic similarity measure, and 

proposed a new approach to deriving a gold standard for evaluating statistical lexical 

acquisition strategies. 

The CAMEO representation language developed in Chapter 3 provided the 

framework for exploring issues of context and distributional processing in the thesis. To 

guide the design of the representation language I have explored several aspects of 

representing linguistic analysis which affects a wide range of language and discourse 

processing tasks. The different linguistic information required by these various tasks 

and the wide range of existing representational forms, spanning linguistic and semantic 

analysis, suggests the need for a flexible representational strategy which is capable of 

encoding multiple levels of linguistic analysis while supporting deterministic 
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transformations into other linguistic and semantic forms. To this end, I have proposed 

desiderata in Section 1.1.1 for a generalized intermediate representation for text 

processing, and used these desiderata to define the CAMEO text representation 

language. 

CAMEO is a comprehensive approach to an intermediate representation, developed 

for the research objectives of this thesis. However, it embodies representational 

principles which can be adapted to other representations, or help when designing new 

languages. Text representations in the literature often take the form of ad-hoc task-

specific approaches, or general languages designed to support a particular aspect of 

language processing. In both cases it is rare to find representational issues addressed 

directly and a comprehensive treatement of lexical and syntactic variations in the 

representation. Recently, as discussed in Section 1.1.1, representational issues have 

gained more interest due in part to the work of the parser community‟s attempt at 

deriving a common ground for evaluating different parsing systems. Other 

representational concerns have surfaced such as the complexity posed by some 

representations to non-linguistic users. Many of these concerns are encompassed in the 

desiderata proposed in this thesis and implemented in the CAMEO language. Chapter 3 

explores the properties and form of the representation, and gives a comprehensive 

account of syntactic variations. In Chapter 4, examples of operations on the 

representation demonstrate its usability and support the claim that it provides a form 

that is amenable to manual manipulation and analysis. 

CAMEO is a linguistic encoding with rudimentary semantic types, and includes 

several features and properties not found in extant representations. Besides the 

integration of contextual and distributional information (discussed below), CAMEO 

includes a strategy for the representation of heterogenous groups (Sections 3.3.1.1and 

3.4.9), possessives/genitives (Section 3.4.4), and reflexives (Section 3.4.8). It also 

includes a general representation for arbitrary bracketing in conjunctive constructions 

for constituents such as adjectives, nouns, and phrases (Section 3.4.2), and supports a 

primitive meaning representation suitable for shallow semantic tasks (Section 3.1.7). 

CAMEO is positioned at the intermediate linguistic level and captures a wide range 

of linguistic information from the surface text and analysis. Chapter 4 explores surface 

realisation from the internal representation as a means of testing the richness of the 
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encoded information. Rather than relying on a grammar, surface realisation in CAMEO 

is achieved through a direct, deterministic transformation. This gives shallow tasks that 

produce surface variations the ability to manipulate the representation directly without 

extensive linguistic knowledge, as demonstrated in Section 4.2. The surface realisation 

transformation is recursively able to realise all levels of the representation, from 

individual constituents to document level structure. 

Operating at the intermediate level allows CAMEO to encode some linguistic 

functions for reuse across a range of tasks. In Section 4.2, applications to sentence 

condensation and activisation demonstrated how syntactic variations are normalised and 

encoded in the representation. The passive/active verb alternation described in the 

experiments is one example of a linguistic function encoded in CAMEO which presents 

a canonical representation and alleviates tasks from supporting both forms. 

Most textual representations of linguistic analysis function at the sentence level, and 

do not encompass analysis of larger linguistic units. To extend the CAMEO language 

for use beyond sentence and phrasal analysis, in Section 3.5 I examined representational 

issues with respect to discourse- and document-level processing, and quantified these in 

terms of requirements on a language processing system. I defined data structures in 

CAMEO to address these requirements, including elements for class-based and 

assertional processing. Central to the design of these structures is a general and 

recursive representation of contexts to encode document structure that extends to the 

sentence and phrasal levels. 

In Chapter 5 I looked at some contextual issues affecting one application of symbolic 

NLP (coreference resolution) where the representation of context can be of benefit. 

Using the strictly linguistic contextual information extracted from the discourse and 

syntactic structure, I showed that the representation provides a means for addressing 

certain aspects of the task which suffer under non-contextual processing. The influence 

of context on analysis varies with the genre and composition of a corpus, and I 

presented several experiments to measure and test contextual processing on different 

styles of corpora. 

The representation of distributional information often takes the form of vectors of 

event counters, requiring little beyond a task-specific implementation. However, as 
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distributional methods increasingly make use of symbolic information and are 

incorporated into symbolic processing, representational issues warrant consideration. In 

Chapter 6 I described how the CAMEO representation language supports augmenting 

language tasks with both symbolic and distributional information. I explained how 

distributional information beyond typical collocations, including symbolic 

dependencies, can be derived from the intrinsic representation using structured queries 

having explicit constraints, and explored applications of this type of data on symbolic 

tasks. I also described the support in the representation for distributional data derived 

from external sources, such as large derivational corpora with shallow representations, 

and gave examples of how this could be applied. 

One of the more common distributional applications of large derivational corpora is 

lexical acquisition. In Chapter 7 I explored the general properties of statistical similarity 

measures, which are a critical component in lexical acquisition. I presented a study of 

statistical methods and several experiments using adjectives, which comprise a lexical 

category less commonly employed with lexical acquisition and thus of further 

theoretical interest. As part of the study, I investigated some of the issues with 

evaluating existing measures of semantic similarity used in acquisition, and proposed a 

novel objective solution using adjective antonyms as a gold standard. Using antonyms 

avoids the expense of manually annotated reference corpora, since lists of antonyms are 

available, without resorting to artificial terms. The experiments in Chapter 7 employed 

a sample of accepted antonyms to evaluate three extant statistical similarity measures, 

providing qualitative information about their performance. 

In Chapter 8, I suggested several difficulties with using external distributional 

information from lexical acquisition to augment language tasks. To address these issues, 

I investigated the use of adjective distributions in the semantic classification of nouns. I 

have proposed linking adjectives to conceptual attributes and developed the idea of 

characteristic adjectives as differentiating a nominal node in a semantic taxonomy. I 

have shown experimentally that distributionally derived vectors of characteristic 

adjectives correlate more closely with a semantic node than a corresponding vector of 

undiscriminated adjectives. These vectors are much smaller and semantically focused, 

making them more suitable for augmenting language processing tasks. 
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Finally, in Chapter 9 I showed how differential distributional techniques used to 

develop the statistical vectors of characteristic adjectives could be extended to derive 

symbolic rules. Using differential distributional processing of shallow syntactic 

information I extracted a set of highly-correlative rules for classifying nouns into coarse 

semantic classes, called supersenses. The assigned classes can be used to map attributes 

onto the nouns for use in processing tasks such as coreference resolution. In the 

experiments, the derived symbolic rules were shown to improve the recall of a baseline 

system by extending coverage to nouns not encompassed by a lexical resource. A 

notable feature of this approach was the use of monosemous words to avoid the 

problems of polysemy. Only words having a single class for all senses (which can be 

determined from the lexical resource) were used in the distributional processing, 

avoiding the need for a sense-tagged corpus. 

10.1 Further Work 

There are several areas covered in the thesis which suggest further lines of research. 

First of all, the text representation language currently does not include an account of 

underspecification like that found in some semantic representations. As I explained 

earlier, the treatment of universal quantifiers by the representation makes this 

unnecessary, since they retain their surface representation. However, a more relevant 

issue of ambiguity, with respect to a linguistic analysis, is attachment ambiguity of 

constituents such as prepositional phrases. Extending the text representation to allow for 

underspecifying ambiguous syntactic attachments (cf. with packed parse tree structures) 

would simplify the job of the parser, while deferring the resolution to deeper processing 

that may have accesses to more linguistic resources. 

Another area of interest is extending the language processing system to other parsing 

technologies. The current system has been implemented on two parsing systems, 

focusing on the RASP system. By implementing transformation modules for outputs of 

other different parse technologies, certain deficiencies in the representation would likely 

become manifest. Addressing these might improve the application of the system as a 

general intermediate representation. A similar argument can be made for implementing 

new tasks using the language processing system. Tasks which provide useful annotation 
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for deeper processing, such as named entity recognition, would provide a further useful 

benefit.  

In addition to extending the application of the representation, further work could be 

done to enhance its usability. Although the internal form of the representation makes it 

practical to manipulate by hand, providing automated tools could simplify the process. 

For example, it would not be difficult to develop a “drag and drop” interface to create 

and edit representations, using off-the-shelf components. 

One possible enhancement to the existing methodology which might yield 

improvements in the internal representation is further testing of surface realisation. The 

surface realisation task in Chapter 4 was used to test the expressiveness of the 

representation by encoding sentences in the representation and processing them through 

the surface realiser. Although this included a range of syntactic constructions, it was not 

a systematic test. Further work on developing a more systematic approach may prove 

beneficial. 

The evaluation of statistical similarity measures using adjective antonyms also 

warrants further research. Experiments involving larger lists of antonyms, possibly 

including unrelated adjectives might yield more insights into the operation of the 

various similarity measures. Other types of similarity measures could also be tested in 

this manner, for example machine learning approaches. 

An interesting possibility for refining the set of characteristic adjectives would be to 

use a weighting based on the frequency of adjectives. Currently only the percentage of 

matches is used when selecting for membership. It may be possible to improve the 

performance by allowing weighted matches based on the relative frequencies of 

observed occurrences of adjectives in the characteristic set. 

Though it may not provide any new insight to the representation language, further 

improvement of the coreference resolution algorithm would be useful. Coreference is a 

fundamental requirement of deeper processing such as semantic tasks, therefore 

extending the research on coreference resolution could be leveraged for other research. 

In particular, other resolution algorithms (e.g. Lappin and Leass, 1994) could be applied 
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independently or in parallel. Also, further experimentation of supplemental symbolic 

and distributional methods could be explored. 

Perhaps the most important area to be explored is the potential for integrating 

multiple analyses at various levels of processing, which is afforded by the 

representation. Probabilistic components can usually be configured to return multiple 

ranked analyses and incorporating analyses from competing components are both 

possibilities using a unified intermediate representation and warrant investigation. 

The wide range of research suggested by the representation and its applications to 

contextual and distributional processing helps to underscore the integral role aspects of 

a representational language can play in natural language processing. 
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Appendix A 

The following table lists the output of the CAMEO framework on the sentences 

reported in Canning (2003). For each sentence the table gives the original passive 

sentence (numbered), the output from SYSTAR (S) as reported in Canning, and the 

output of CAMEO (C). (Note the syntactic parses used in SYSTAR were not available. 

Parse errors were hand-corrected for the CAMEO representation. See Section 4.2.2) 

Sentences which were judged incorrect grammatically or semantically (in relation to the 

original sentence) are shown with a (*).  

In a few cases a second passive phrase was observed that was not activised in the 

SYSTAR output. The activisation of both phrases is shown for the CAMEO output 

(C2). 
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1. She is impressed by the changes in the city , particularly the proposed introduction of the Metro . 

S * The changes in the city impressed her particularly the proposed introduction of the Metro. 

C The changes in the city impress her , particularly the proposed introduction of the Metro . 

  

2. Alan , who is sponsored by Washington-based outdoor clothing and equipment manufacturer Berghaus , 

has now reached the summit of Makalu , the fifth highest peak in the world . 

S * Washington-based outdoor clothing and equipment manufacturer Berghaus has now reached the summit 

of Makalu, the fifth highest peak in the world sponsored Alan, who. 

C Alan , who washington-based outdoor clothing equipment manufacturer Berghaus sponsors , has now 

reached the summit of Makalu , the fifth highest peak in the world . 

  

3. Emma Rae , 15 , of Parkhurst Road , said her three-year-old brother , James , suffered a broken leg when 

he was knocked down by a car on Sunday , not far from where the little girl died . 

S Emma Rae, 15, of Parkhurst Road said her three-year-old brother, James suffered a broken leg when a 

car on Sunday, not far from where the little girl died knocked him down. 

C Emma Rae , 15 , of Parkhurst road , said her three-year-old brother , James , suffered a broken leg when a 

car on Sunday knocked him down , not far from where the little girl died . 

  

4. When demonstrators returned this morning they were joined by the consultant who treated the dead girl . 

S When demonstrators returned this morning the consultant joined them who treated the dead girl. 

C When demonstrators returned this morning , the consultant , who treated the dead girl , joined them . 

  

5. She says she was told by her doctor that it related to the batch of vaccine with which her son was injected . 

S She says her doctor told her that it related to the batch of vaccine with which her son was injected. 

C She says her doctor told her that it related to the batch of vaccine , with which her son was injected . 

  

6. Today the report prompted local parents who suspect their children were harmed by MMR - including one 

couple who won $30,000 in Government damages - to speak out . 

S * MMR harmed today, the report prompted local parents who suspect their children including one couple 

who won £30,000 in Government damages - to speak out. 

C Today the report prompted local parents , who suspect MMR harmed their children including one couple , 

who won $30,000 in government damages , to speak out . 

  

7. Joan Gray lost her husband John , who was among nine crew killed when the 25,000 tonne tanker burst 

into flames after it was hit by the Panamanian-registered Western Winner in fog off the Belgian Port of 

Ostend . 

S * The Panamanian-registered Western Winner in fog off the Belgian Port of Ostend hit Joan Gray lost her 

husband John, who was among nine crew killed when the 25,000-tonne tanker burst into flames after it. 

C Joan Gray lost her husband John who was among nine crew killed when the 25,000 tonne tanker burst into 

flames after the panamanian-registered western winner hit it in fog off the belgian port of Ostend . 

  

8. He was struck down by the brain disease last October . 

S The brain disease last October struck him down. 

C The brain disease struck him down last october . 
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9. The injured animals were discovered by Paul Barrow when he went to feed them at his father 's small 

holding between Melrose Crescent and Ambleside Avenue . 

S Paul Barrow when he went to feed them at his father's small holding between Melrose Crescent and 

Ambleside discovered the injured animals. 

C Paul Barrow discovered the injured animals when he went to feed them at his father's small holding 

between Melrose and crescent Ambleside Avenue . 

  

10. Last year the campaign was supported by 38 primary schools with a further five joining in this time . 

S 38 primary schools with a further five joining in this time supported last year the campaign. 

C Last year 38 primary schools supported the campaign with a further five joining in this time . 

  

11. The tenants were angered by a letter from Vaux giving details of price rises which will take effect after the 

brewery closure . 

S A letter from Vaux giving details of price rises which will take effect after the brewery closure angered the 

tenants. 

C A letter from Vaux giving details of price rises , which will take effect after the brewery closure angered the 

tenants . 

  

12. Frank Nicholson , managing director of Vaux Breweries , fought hard to save the brewery but bids from his 

management buy-out team were rejected by the Swallow Group . 

S * The Swallow Group rejected Frank Nicholson, managing director of Vaux Breweries fought hard to save 

the brewery but bids from his management buy-out team. 

C Frank Nicholson managing director of Vaux Breweries fought hard to save the brewery , but the Swallow 

Group rejected bids from his management buy-out team . 

  

13. They were disturbed by a neighbour . 

C A neighbour disturbed them . 

S A neighbour disturbed them. 

  

14. Mr Clifford , a single man who is now on police bail , was informed by post . 

S Post informed Mr Clifford, a single man who is now on police bail. 

C Post informed Mr Clifford a single man , who is now on police bail , . 

  

15. The campaign was kicked off by Sunderland AFC mascots Samson and Delilah at St Godric 's RC Primary 

School , Durham City . 

S* Sunderland AFC mascots Samson and Delilah at St Godric's RC Primary School kicked  the campaign 

Durham City off. 

C Sunderland AFC mascots Samson and Delilah at St Godric's RC Primary School , Durham City kicked off 

the campaign . 

  

16. Two years later the premises in High Street West were destroyed by fire and a building was constructed on 

the John Street site , opening in May 1956 . 

S * Fire and a building was constructed on the John Street site, opening in May 1956 destroyed two years later 

the premises in High Street West. 

C Two years later fire destroyed the premises in High Street West and a building was constructed on the 

John Street site opening in may 1956 . 
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17. Tourist chiefs in the North East were disappointed by the results which they believe could have been 

affected by bad weather . 

S The results which they believe could have been affected by bad weather disappointed tourist chiefs in the 

North East. 

C The results , which they believe could have been affected by bad weather disappointed tourist chiefs in the 

north east . 

C2 The results , which they believe bad weather could have affected disappointed tourist chiefs in the north 

east . 

  

18. The city was cited by the Joseph Rowntree Foundation as an example of what can be achieved in areas 

that suffer job losses after the collapse of traditional heavy industries . 

S* The Joseph Rowntree Foundation as an example of what can be achieved in areas that suffer job losses 

after the collapse of traditional heavy industries cited the city. 

C The Joseph Rowntree foundation cited the city as an example of can achieve what in areas , that suffer job 

losses after the collapse of traditional heavy industries . 

C2 The Joseph Rowntree foundation cited the city as an example of what can be achieved in areas , that 

suffer job losses after the collapse of traditional heavy industries . 

  

19. Mafeking Street , on Ford Estate , takes its name from the town in northern South Africa which was 

defended by the British against the Boers at the outbreak of the Boer War in 1899 . 

S* Mafeking Street, on Ford Estate takes its name from the town in northern South Africa the British against 

the Boers as the outbreak of the Boer war in 1899 defended which. 

C Mafeking Street , on Ford estate , takes its name from the town in northern South Africa , which the British 

defended against the Boers at the outbreak of the Boer war in 1899 . 

  

20. A 34-year-old Bristol man suffered a broken leg and pelvic injuries after he too was trapped by the bus . 

C A 34-year-old Bristol man suffered a broken leg and pelvic injuries , after the bus trapped him too . 

S A 34-year-old Bristol man suffered a broken leg and pelvic injuries after the bus trapped him too. 

  

21. Those inquiries were launched by Transport Minister John Reid , at the request of Sunderland 's two MPs , 

after an Echo investigation uncovered concerns that automatic buses may have been affected by 

uncontrollable power surges since the 1980s . 

S Transport Minister John Reid launched those inquiries at the request of Sunderland's two MPs, after an 

Echo investigation uncovered concerns that automatic buses may have been affected by uncontrollable 

power surges since the 1980s. 

C Transport Minister John Reid launched those inquiries at the request of Sunderland's two MPs after an 

echo investigation uncovered concerns that uncontrollable power surges since the 1980s may have 

affected automatic busses . 

C2 Transport Minister John Reid launched those inquiries at the request of Sunderland's two MPs after an 

echo investigation uncovered concerns that automatic busses may have been affected by uncontrollable 

power surges since the 1980s . 

  

22. But the council feels some motorists would ignore the slower speed unless this was backed up by traffic 

calming measures . 

S But the council feels some motorists would ignore the slower speed unless traffic calming measures 

backed this up. 

C But the council feels some motorists would ignore the slower speed unless traffic calming measures 

backed this up . 
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23. Stephanie Cook , three , of Pennycross Road , Pennywell died when she was knocked down by a car on 

Hylton Road last week . 

S Stephanie Cook, three, of Pennycross Road, Pennywell died when a car on Hylton Road last week 

knocked her down. 

C Stephanie Cook three of Pennycross road Pennywell died when a car knocked her down on Hylton road 

last week . 

  

24. Glass in the two remaining stands has been replaced by wire mesh . 

C Wire mesh has replaced glass in the two remaining stands . 

S Wire mesh has replaced glass in the two remaining stands. 

  

25. The fact that the jobless total of about 82,600 has not risen has been welcomed by business chiefs . 

C Business chiefs have welcomed the fact , that the jobless total of about 82,600 has not risen , . 

S Business chiefs have welcomed the fact that the jobless total of about 82,600 has not risen. 

  

26. In the last year , £66.4 million has been saved by anti-fraud officers working on investigations across the 

North East , said fraud manager Chris Mason . 

C In the last year , anti-fraud officers working on investigations across the north east have saved £66.4 

million said fraud manager Chris Mason . 

S Anti-fraud officers working on investigations across the North East, said fraud manager Chris Mason have 

saved in the last year, £66.4 million. 

  

27. Mr Donkin 's anger has been fuelled by a letter written by Mr Walls to the council 's Conservative leader 

Coun Margaret Forbes . 

S A letter written by Mr Walls to the council's Conservative leader Coun Margaret Forbes has fuelled Mr 

Donkin's anger. 

C A letter Mr Walls wrote to the council's conservative leader Coun Margaret Forbes has fuelled Mr Donkin's 

anger . 

C2 A letter written by Mr Walls to the council's conservative leader Coun Margaret Forbes has fuelled Mr 

Donkin's anger . 

  

28. A giant $ 25million leisure plan for Sunderland city centre is being considered by councillors tonight . 

S Councillors tonight are considering a giant £25million leisure plan for Sunderland city centre. 

C Councillors are considering a giant £ 25million leisure plan for Sunderland city centre tonight . 

  

29. Sunderland 's critical shortage of doctors could be eased by a pioneering new pilot scheme expected to be 

given the go-ahead by health chiefs tomorrow . 

S A pioneering new pilot scheme expected to be given the go-ahead by health chiefs tomorrow could ease 

Sunderland's critical shortage of doctors. 

C A pioneering new pilot scheme expected to be given the go-ahead by health chiefs tomorrow could ease 

Sunderland's critical shortage of doctors . 

C2 A pioneering new pilot scheme expected health chiefs to give the go-ahead tomorrow could ease 

Sunderland's critical shortage of doctors . 

  

30. A signed safc shirt and ball are to be auctioned by the James Herriot visitor centre . 
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S The James Herriot visitor centre is to auction a signed safc shirt and ball. 

C The James Herriot visitor centre is to auction a signed safc shirt and ball . 

  

31. A cramped Sunderland school is to be replaced by a new $ 1million development after winning 

Government cash . 

S A new £1million development after winning Government cash is to replace a cramped Sunderland school. 

C A new £ 1million development is to replace a cramped Sunderland school after wining government cash . 




