
Technical Report
Number 779

Computer Laboratory

UCAM-CL-TR-779
ISSN 1476-2986

A text representation language
for contextual and

distributional processing

Eric K. Henderson

April 2010

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2010 Eric K. Henderson

This technical report is based on a dissertation submitted
2009 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Fitzwilliam College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

This thesis examines distributional and contextual aspects of linguistic processing in

relation to traditional symbolic approaches. Distributional processing is more

commonly associated with statistical methods, while an integrated representation of

context spanning document and syntactic structure is lacking in current linguistic

representations. This thesis addresses both issues through a novel symbolic text

representation language.

The text representation language encodes information from all levels of linguistic

analysis in a semantically motivated form. Using object-oriented constructs in a

recursive structure that can be derived from the syntactic parse, the language provides a

common interface for symbolic and distributional processing. A key feature of the

language is a recursive treatment of context at all levels of representation. The thesis

gives a detailed account of the form and syntax of the language, as well as a treatment

of several important constructions. Comparisons are made with other linguistic and

semantic representations, and several of the distinguishing features are demonstrated

through experiments.

The treatment of context in the representation language is discussed at length. The

recursive structure employed in the representation is explained and motivated by issues

involving document structure. Applications of the contextual representation in symbolic

processing are demonstrated through several experiments.

Distributional processing is introduced using traditional statistical techniques to

measure semantic similarity. Several extant similarity metrics are evaluated using a

novel evaluation metric involving adjective antonyms. The results provide several

insights into the nature of distributional processing, and this motivates a new approach

based on characteristic adjectives.

Characteristic adjectives are distributionally derived and semantically differentiated

vectors associated with a node in a semantic taxonomy. They are significantly lower-

dimensioned then their undifferentiated source vectors, while retaining a strong

correlation to their position in the semantic space. Their properties and derivation are

described in detail and an experimental evaluation of their semantic content is

presented.

Finally, the distributional techniques to derive characteristic adjectives are extended

to encompass symbolic processing. Rules involving several types of symbolic patterns

are distributionally derived from a source corpus, and applied to the text representation

language. Polysemy is addressed in the derivation by limiting distributional information

to monosemous words. The derived rules show a significant improvement at

disambiguating nouns in a test corpus.

Contents

1 Introduction .. 10

1.1 A Text Representation.. 11

1.1.1 Desiderata ... 12

1.1.1.1 General... 14

1.1.1.2 Reversible .. 15

1.1.1.3 Incremental / Robust ... 16

1.1.1.4 Precise / Unambiguous .. 16

1.1.1.5 Flexible .. 16

1.1.1.6 Primitive Semantics .. 17

1.1.2 Deficiencies in Existing Representations .. 17

1.1.3 The CAMEO Representation Language ... 18

1.1.4 Objectives of the Thesis ... 20

1.1.5 Outline of Remaining Chapters ... 21

2 Literature Review ... 23

2.1 Context .. 23

2.2 Existing Representation Strategies .. 24

2.2.1 Annotation Schemes .. 25

2.2.2 Grammatical Relations .. 26

2.2.3 Lexical Functional Grammar ... 28

2.2.4 First Order Predicate Calculus ... 30

2.2.5 Quasi-Logical Form ... 31

2.2.6 Robust Minimal Recursion Semantics .. 34

2.3 Distributional and Symbolic Integration ... 36

3 A Text Representation Language ... 38

3.1 Properties of CAMEO .. 40

3.1.1 General ... 40

3.1.2 Rich... 40

3.1.3 Reversible ... 41

3.1.4 Incremental/Robust .. 42

3.1.5 Precise and Unambiguous .. 42

3.1.6 Flexible ... 43

3.1.7 Semantic-like .. 43

3.2 A Simplified Surface Representation .. 44

3.2.1 The FORM Attribute ... 47

3.2.2 Object Unification .. 49

3.3 Fundamentals of the Representation .. 49

3.3.1 Objects .. 50

3.3.1.1 Properties ... 51

3.3.1.2 Attributes ... 56

3.3.2 Events ... 57

3.3.2.1 Attributes ... 57

3.3.2.2 Properties ... 58

3.3.2.3 Examples ... 60

3.3.2.4 Comparison with Other Representations .. 61

3.3.2.5 Infinitives ... 62

3.3.3 Mods ... 65

3.3.4 Rels ... 67

3.4 Details of the Representation ... 68

3.4.1 Determiners .. 68

3.4.2 Conjunctions .. 71

3.4.3 Dependent, Coordinated, and Relative Clauses .. 75

3.4.4 Genitives and Possessive Pronouns ... 76

3.4.5 Copular Constructions ... 78

3.4.6 Passive Construction .. 79

3.4.7 Dative Constructions .. 81

3.4.8 Reflexives ... 82

3.4.9 Plural Nouns ... 82

3.4.10 Complements ... 83

3.5 Extensions ... 84

3.5.1 Motivation .. 84

3.5.2 CAMEO Extensions .. 85

3.5.2.1 Contexts ... 85

3.5.2.2 Lexis Context .. 89

3.5.2.3 Classes Context ... 90

3.5.2.4 Processing Context .. 91

3.6 Formal Syntax of the CAMEO Language ... 93

3.6.1 Formal Syntax .. 93

3.7 A Practical Implementation ... 94

3.7.1 RASP Syntactic Processing ... 95

3.7.2 Transformation ... 96

3.8 Conclusion .. 99

4 Operations: Realisation and Manipulation ... 100

4.1 Surface Realisation ... 100

4.1.1 Generating Object References ... 105

4.1.2 Generating Phrases and Sentences .. 105

4.1.3 Experiments .. 107

4.1.3.1 Results ... 109

4.1.3.2 Analysis ... 110

4.1.4 Discussion .. 111

4.2 Text Manipulation .. 112

4.2.1 Sentence Condensation .. 115

4.2.2 Active/Passive alternation .. 123

4.3 Conclusion .. 128

5 Context in Symbolic Processing ... 129

5.1 Document Structure ... 130

5.2 Sentence Structure .. 131

5.3 Context .. 132

5.4 Contexts in CAMEO .. 133

5.5 Reference Resolution ... 135

5.5.1 Algorithms for Pronominal Anaphora Resolution 135

5.5.2 Algorithms for Coreference Resolution .. 136

5.6 Reference Resolution in CAMEO ... 137

5.7 Contextual Issues with Reference Resolution ... 139

5.7.1 Demonstratives in Context .. 141

5.7.2 Contextual Issues with First and Second Person .. 142

5.7.3 Third Person Anaphora in Context .. 145

5.8 Evaluating Resolution .. 147

5.9 Experiments .. 150

5.9.1 Testing Embedded Contexts .. 151

5.9.2 Contextual Segmentation ... 152

5.10 Summary and Conclusions .. 155

6 Symbolic and Distributional Methods ... 157

6.1 Distributional Information in the CAMEO Representation 159

6.2 External Resources ... 162

6.3 Distributionally Derived Attributes ... 165

6.4 Discussion ... 167

7 Statistical Similarity Measures in Lexical Acquisition 169

7.1 Lexical Semantic Acquisition .. 170

7.2 Distributional Approaches to Semantic Similarity .. 171

7.2.1 Features of Events .. 172

7.2.2 Similarity Measures ... 173

7.2.2.1 Minimum Mutual Information .. 174

7.2.2.2 Tau Coefficient .. 175

7.2.2.3 Distributional Clustering ... 176

7.3 Obstacles ... 178

7.3.1 Data Sparseness .. 178

7.3.2 Polysemy .. 179

7.4 Evaluating Similarity ... 180

7.4.1 Adjectives and Antonyms .. 181

7.5 Experiments .. 183

7.5.1 Scoring .. 184

7.5.2 Configuration ... 184

7.5.3 Results .. 187

7.6 The antonym pair good/bad ... 190

7.7 Conclusion .. 191

8 Characteristic Adjectives .. 193

8.1 Characteristic Adjectives ... 193

8.2 A Bottom-Up Approach ... 196

8.2.1 Data Sparseness .. 197

8.2.2 Polymorphism .. 198

8.3 Characteristic Attributes as Differentiae ... 199

8.4 Experiments .. 200

8.4.1 Evaluation ... 202

8.5 Results .. 205

8.5.1 Quantitative Analysis ... 206

8.5.2 Qualitative Analysis ... 207

8.6 Conclusion .. 209

9 Distributionally Derived Symbolic Rules Using Unambiguous

Examples ... 212

9.1 Supersense Tagging ... 213

9.2 Symbolic Rules .. 215

9.3 Addressing Polysemy ... 218

9.4 Deriving Characteristic Rules .. 221

9.5 Experiments .. 224

9.5.1 Distributional Processing ... 224

9.5.2 Evaluation ... 227

9.6 Results .. 229

9.7 Conclusion .. 235

1 0 Conclusion ... 237

10.1 Further Work .. 241

Bibliography ... 244

Appendix A ... 256

1

Introduction

This thesis explores the integration of contextual and distributional information with

symbolic information derived from linguistic analysis. I have three main objectives

relating to this goal. First, to investigate representational issues in text processing by

developing a text representation language which provides a novel framework for

contextual and distributional processing and extends existing representational forms in

several meaningful ways. Second, to develop a systematic treatment of structural and

linguistic context in the representational language, based on the similarities between

discourse segments and sentence phrasal structure. Third, to propose a method for

integrating distributional information into the contextual representation and to explore

novel methods of augmenting symbolic processing with distributional methods.

As an experimental framework, I will first develop a text representation language

which integrates the representation of linguistic context with an object-oriented

representation of syntactic dependency structure. This representation extends existing

graph-based dependency structures with several features that facilitate contextual and

distributional processing, allows rudimentary semantic capability, and supports direct

internal manipulation to produce surface variations. A deterministic recursive algorithm

is presented to realise the internal representation as a well-formed surface expression. I

will give a formal description of the representation language, and a comprehensive

account of the range of constructions it supports.

I will develop the notion of structural and linguistic context by examining discourse

segments and phrase structure. I will propose a representational model of contexts that

generalizes over both cases and integrates with the text representation. I will present

several experiments that use symbolic processing and show that contextual information

Chapter 1 - Introduction 11

(encoded in the representation) can be used to augment the symbolic processing and

improve the results.

Next, I will introduce distributional processing through a novel evaluation of several

existing distributional measures using adjective antonyms. This will suggest a novel

semantic classification task using the distributional data derived from the adjectives. I

will explore this in depth and present an experiment designed to test the properties of

the distributional data.

Finally, I will consider the integration of distributional data with the symbolic

representation language. By extending the previous distributional techniques I will

present an experiment which derives symbolic rules for determining nominal sense

information. The rules are applied to the representation language to decide broad

semantic classification of nouns, which can be used to augment symbolic tasks.

1.1 A Text Representation

The integration of contextual and distributional information with other linguistic

information is best achieved at the representational level. However, most text

representation languages do not include document level structural information or

corpus-based statistics because they operate at the level of sentences or words. (Phrasal

context is also not typically encoded explicitly, although it can be recovered from the

dependency structure in most cases).

A treatment of contextual and distributional information in a text representation,

similar to other symbolic information, would allow text processing to take advantage of

this information without requiring significant adaptation. An experimental framework

which includes a text representation that supports the contextual and distributional

extensions proposed in this thesis, as well as other representational properties, is

integral to the work presented. In this section I will discuss the requirements of a text

representation having certain properties that fit with the direction of the thesis. I will

propose specific desiderata and introduce a representation that satisfies these

requirements. This representation will be examined in detail in the next chapter, and

used in the experiments in the remainder of the thesis.

Chapter 1 - Introduction 12

1.1.1 Desiderata

All textual language processing begins with some type of analysis of the surface text.

Even shallow approaches to statistical processing often employ morphological analysis

and part-of-speech tagging. An important step in any textual analysis is transforming

the surface text into a suitable representation because the raw surface text is not a very

efficient form for computation. A computational representation encodes the text, using

the results of the analysis, in a more tractable form. The actual syntax and structure of a

representation will largely depend on the linguistic level of the task implementing the

analysis. This can vary widely, depending on the type of task and technologies applied.

At one end of the scale, shallow approaches utilize a minimum of linguistic analysis,

and at the other end deep processing techniques rely on multiple levels of syntactic and

semantic processing. The result is a corresponding range of representational forms,

many of which are not necessarily compatible.

It has recently been suggested (de Marneffe and Manning, 2008), that some of these

representational forms used within the linguistics community prove to be daunting to

non-linguistic researchers when attempting to apply them to specialised domains.

Specifically, de Marneffe and Manning (2008) suggest that many deep syntactic and

semantic constructs which are typically encoded in linguistic representations, have little

practical value in non-linguistic applications that require text processing. For example,

the distinction between an argument and adjunct in a dependency representation may

have little significance when mining text for nominal compounds. This deeper linguistic

information is seen as a liability by de Marneffe and Manning (2008), because it

unnecessarily obfuscates the representation for the non-linguistic user community. They

argue for a simplified linguistic encoding, such as the Stanford typed dependency

representation, which is accessible to non-linguists while retaining the salient

information for useful text processing.

While a streamlined representation may be advantageous for many applications, it is

also true that more sophisticated tasks require more linguistic information. For example,

McConville and Dzikovska (2008) report on the linguistic information needed for a

tutorial dialogue system. They evaluate five representational forms of labelled

grammatical dependencies, focusing on four specific linguistic phenomena (passive,

Chapter 1 - Introduction 13

control and raising, noun modifiers, and prepositional significance). The representations

are interpreted as input to a semantic processor, and judged by their facility to provide

the necessary linguistic cues for deriving a semantic representation. McConville and

Dzikovska (2008) conclude that no single representation is satisfactory for their needs,

although they find all the desired features within the set of representations.

The recent focus on representational issues demonstrates there is a need for

investigating better representational approaches. On the one hand, deeper

representations such as phrase structures can seem “much more foreign and forbidding”

(de Marneffe and Manning, 2008) and limit their utility to the wider research

community, while on the other hand, an information-poor representation will not be

able to serve the needs of more sophisticated language processing tasks. One approach

to addressing both of these levels is an intermediate representation with task-specific

transformations. This is an active area of research and does not necessarily solve the

fundamental question of the primary representational form, however part of the work

presented in this thesis (CAMEO) addresses many aspects of linguistic constructions

which must be covered by an intermediate representation.

Representational forms are often developed as a complement to a particular language

technology, e.g. a parsing system. It is only recently that these systems have matured to

the point that wide scale evaluations of competing technologies have become feasible.

This in turn has prompted a push to find a superset of representational features that can

serve as a normalized reference representation of the disparate linguistic output. For

example, Flickinger (2008) presents several desiderata for labelled dependency

annotation. Although the CAMEO representation is intended for more than strict

annotation, it encompasses most, if not all, of the desiderata proposed by the parser

evaluation community. Globally unique identifiers, a means to identify the root

predication, and properties of entities and events, are a few examples of the desiderata

proposed in Flickinger (2008) which are incorporated into the CAMEO representation.

However, the capability for interpretation and realisation places further demands on the

CAMEO representation, and because of this an extended set of desiderata is warranted.

When developing an experimental framework for text processing, certain properties

of the internal representation are demanded by the particular task being undertaken.

However, there are general properties of the representation to consider as well, such as

Chapter 1 - Introduction 14

the elimination of redundant processing. The development of a representation of context

addressed in this thesis requires an examination of the general form and functions

inherent in a text representation language. The following desiderata will be used to

guide the general design and evaluation of the text representation developed in the first

part of the thesis. Each of these desiderata will be justified in turn below.

General : support a wide range of derivative representations

Rich : capture a maximum set of surface information

Reversible : support systematic realisation of surface text

Incremental/Robust : support all levels and stages of linguistic analyses

Precise/Unambiguous : support efficient equivalency testing

Flexible : allow easy manipulation of internal representation

Primitive Semantics : support a minimal meaning capability

1.1.1.1 General

A common representation can prevent the need for redundant low-level analyses

when working with multiple processors that use different technologies. For example,

semantic information can sometimes be derived from a shallower syntactic

representation (Johansson and Nugues, 2008). However, a semantic transformation

based on a specific syntactic representation makes it non-trivial to substitute a different

syntactic processor. Using a generalized intermediate representation can enable

transformations from various syntactic processors to various semantic representations,

via the intermediate representation.

Another benefit of a generalized intermediate representation is the facilitation of

evaluation between competing technologies. Output from different technologies can be

normalized to the intermediate representation for comparison, making objective

evaluations more feasible (Srinivas et al. 1996, Carroll et al. 1998, Flickinger 2008,

Tateisi 2008).

Once deeper linguistic and semantic processing takes place, representational forms

tend to diverge further. Part of this is a natural result of the theory governing the

processing, but this also results from independent development of redundant functions.

Chapter 1 - Introduction 15

A similar challenge is faced by the annotation community. There exists several styles of

annotation which denote similar linguistic items, for example TreeBank, BNC, and

Brown use different variants of POS tags. Semantic annotation in the FrameNet,

VerbNet, TimeBank, and NomBank corpora may denote different semantic concepts,

but also have different formats and structures.

The annotation community has proposed several solutions to this problem ranging

from successive transformations (Hajičová and Kučerová, 2002), to a schematic

syntactic representation that can be combined with idiosyncratic lexicons to derive

theory, domain, or application specific representations (Pajas and Štĕpánek, 2008). In

addition, work on standardizing many aspects of linguistic representation is currently

underway. For example, the International Organization for Standardization (ISO) is

developing standards for lexical (LAF), morphosyntactic (MAF), and lexical resource

(LMF) annotation. These schemes are meta-level representations designed for

annotation of a wide range of linguistic phenomena at various detail and levels. They

generally have a much wider scope than representations used in text processing, since

they often include meta-linguistic annotation. (Because the focus of this thesis is on

techniques for representations used in processing and not general annotation issues, I

will not review the various proposed annotation standards.)

Many representations used in text processing are derived from a specific linguistic

theory. Ideally a theory-neutral representation would have the widest utility; however

this can be problematic for some levels of syntactic representation. For example, some

syntactic theories encode long-distance dependencies and others do not. Unifying

representations of deeper semantic representations may pose even more problems,

although there are current efforts to pursue this approach (Pustejovsky et al., 2005).

1.1.1.2 Reversible

Certain text processing tasks produce natural language as output, for example QA

and text summarization. A text representation should therefore be reversible, allowing

for realisation of well-formed surface text from the internal representation. This allows

Chapter 1 - Introduction 16

modules that do not require sophisticated language generation planning to operate

directly on the representation and produce valid textual output.

The representation should be linguistically rich enough that the surface realisation

can be affected through a deterministic transformation which does not require a

grammar. This decouples the representation from specific grammars and allows it to

remain theory-agnostic.

1.1.1.3 Incremental / Robust

In order to support a wide range of linguistic processing, the representation must also

be robust and compositional. The representation should serve as both the input and

output stages to a wide range of processors so the greatest reuse is achieved.

Additionally, the representation should have a strategy to support shallow processors

that do incremental analysis, followed by deeper processing that takes advantage of the

incremental analysis without requiring explicit compatibility.

1.1.1.4 Precise / Unambiguous

One common function of a representational language is testing equivalency.

Linguistic tasks that rely on some measure of syntactic or semantic distance usually

require some means to compare sentences or sections of text. Thus the representation

must be precise, unambiguous, and allow comparison of representational forms.

1.1.1.5 Flexible

It is also important that the representation be flexible so that manipulating a

representation programmatically (or by hand) is manageable. This is especially

important in an experimental framework where it is sometimes necessary to hand-

correct the outputs of a given stage for the purpose of testing a hypothesis. For example,

Levy and Andrew (2006) note there is often a need for tree manipulation in the

development and use of annotated corpora. They describe a specialized system for

manipulating representations that use syntactic tree structures. A general intermediate

representation should not require special tools for manipulation. If a representation

Chapter 1 - Introduction 17

includes complex sentence structures which are unintuitive and difficult to edit, its

utility is diminished.

1.1.1.6 Primitive Semantics

Although a general intermediate representation must be theory neutral, it should

have some minimal semantic properties. Allowing for rudimentary meaning

representations similar to those found in a knowledge base gives the representation a

wider utility, especially for derivative semantic representations. Support for assertional

statements that do not require complete syntactic dependencies and are distinguishable

from syntactic analyses can provide primitive semantic capability for tasks that do not

require deep semantic processing.

1.1.2 Deficiencies in Existing Representations

In Chapter 2 I will survey some of the existing representations which appear in the

literature. However, to help make clear the motivation for developing a new text

representation language, I will mention some of the deficiencies of existing

representations here.

Annotation schemes are not technically representation languages, but they share

common representational forms. There are numerous XML-based annotation schemes

and many approaches to generalize them. However, because they are intended as

adjunct to surface text, they do not have an internal representation. This precludes them

from being used to do shallow semantic processing or any form of internal

manipulation. For example, it would not be possible to instantiate objects which

represent semantic individuals yet have no determined surface realisation, as a

rudimentary semantic capability supports.

Syntactically-based representations, such as Grammatical Relations (GRs), are better

suited for analysis and lack features to support generative operations such as surface

realisation. The declarative grammars that produce these representations can usually be

run in reverse to produce surface text, but this is not always possible from the

Chapter 1 - Introduction 18

representational form. Deeper semantic representations, such as QLF (see Section

2.2.5), will often include a generation component. However, this typically operates at a

more abstract level and is usually non-deterministic, requiring a theory specific

grammar.

Internal manipulation of the representation, though theoretically possible in any

representation, is not specifically addressed in many representations. Semantic

representations such as QLF and RMRS, which link certain types of semantic objects,

would be most amenable to this type of operation. However, manipulating the shallower

syntactic representations would amount to simply rewriting surface text, which would

require linguistic knowledge of syntax and grammar.

1.1.3 The CAMEO Representation Language

The experimental text representation language developed in this thesis to investigate

the stated desiderata is called CAMEO. It defines a set of elements and attributes and

the rules for transforming them to/from surface text. The fundamental elements of the

language are events and objects, corresponding roughly to verbs and nouns. There is no

semantic significance to either type except as pertains to its role in the representation.

(The goal here is simply to produce an intermediate representation that can be

manipulated and possibly transformed into other higher-level representations.)

Another important feature of the CAMEO representation, which is necessary for the

goals of this research, is the abstraction of contexts. A context is modelled as a scope or

container and it is used to denote several types of textual segmentation including

document level (e.g. chapter, paragraph, sentence) and phrase level (e.g. clause,

quotes, citations).

Besides events and objects there are several other primitive elements defined by the

language as well as attributes which attach to them. These are detailed in a further

chapter, but for illustrative purposes I will give a brief example.

Consider the sentence shown in Figure 1.3.3, which appears, say, in a fictitious

document in the twelfth paragraph. The representation of this example in the language

is given below.

Chapter 1 - Introduction 19

The notation is simplified for clarity and the entire document would of course

contain many more contexts and objects. From this it is possible to see the general form

of the representation. Containers (scopes) are delimited using [], and each container is

assigned a unique id (in the examples throughout this thesis, some of these are omitted

for readability).

The opening context (id(1)) represents the entire document, in this case Living

Abroad. Since there are no formal chapters in this document there are no contexts of

type chapter. Each new paragraph can be represented as a new context of type par,

which in turn contain contexts of type clause.

Within the clause context, there is an object (obj) representing each noun of the

clause. The objects participate in the event (evt), which represents the verb. This

sentence also contains a prepositional phrase (see rel in Figure 1.1.3).

Notice the three nominals in this sentence all have the same general representation,

even though one is a pronoun and one is a proper noun. This is an example of the

rudimentary nature of the semantics included in the representation. Further semantic

analysis on these nouns would require a separate module be implemented that operates

on the representation. However, even at this low level some shallow semantic

processing tasks are possible.

[I have property in Manilla]

ctx [ID = 1 TYPE = doc TITLE = Living Abroad AUTHOR = Jane Smith

 ctx [ID = 12 TYPE = par

 ctx [ID = 13 TYPE = clause

 obj[ID = 567 PRON = I]

 obj[ID = 568 CLASS = property]

 obj[ID = 569 name[Manilla]]

 evt [ID = 231 ACTION = have

 SUBJECT = obj(567)

 OBJECT = obj(568)

 rel[PREP = in OBJECT = obj(569)]
]

]

]

]

Figure 1.1.3 – Example framework representation

Chapter 1 - Introduction 20

It should also be noted that not all the attributes and possible contexts will

necessarily be discovered, depending on the document and the initial processing. For

instance, some documents may have structural mark-up indicating titles, by-lines, etc.

These attributes are easily transferred into the representation using simple

transformational rules. On the other hand, when this kind of information occurs as raw

text, i.e. with no mark-up, special processing beyond the standard syntactic parsing

becomes necessary to recover their special status.

1.1.4 Objectives of the Thesis

The main objectives of the thesis were explained at the beginning of this chapter. I

will summarize these objectives below along with the expected outcomes and

enumerate the evaluation criteria that will be used to determine the success or failure.

 Develop a text representation language which satisfies the desiderata

The evaluation criteria for this objective will be the desiderata proposed earlier in the

chapter. Part of the success will be determined by successfully implementing and using

the representation in subsequent experiments in the thesis. However, several specific

evaluations of aspects of the representation will be performed:

1. Deriving CAMEO representations from two separate syntactic processors

(RASP and Link Grammar), allowing for hand-annotation of unsupported

analyses (e.g. contexts).

2. Transforming the CAMEO representations into application-specific

representations and annotations.

3. Recovering the surface text systematically from the internal CAMEO

representation.

4. Demonstrating surface manipulation through the internal representation

 Develop a systematic treatment of structural and linguistic context.

Success of this objective will be measured using several representative task-level

evaluations. The contribution of context, and the contextual model of representation,

will be evaluated on several aspects of anaphora resolution and judged successful if

some level of improvement can be achieved.

Chapter 1 - Introduction 21

 Explore distributional methods generally and develop a specific novel

application to symbolic processing

An evaluative experiment designed to measure the effect of distributional

information integrated with the symbolic representation will be used to determine the

success of this objective.

1.1.5 Outline of Remaining Chapters

 Chapter 2 –A critical review of the literature is presented. Relevant work on

incorporating context is examined. Recent attempts at combining symbolic and

distributional processing are noted. A comparison of several comparable text

representations is given with the proposed CAMEO extensions contrasted.

 Chapter 3 –The CAMEO representation language is described in detail. The

fundamental elements of the representation are explained, followed by a detailed

account of notable constructions. A formal definition of the language syntax is

given, along with a description of the processing required to produce the

representation from a specific syntactic analysis.

 Chapter 4 – Two important operations on the representation are explored. In the

first half of the chapter, a treatment of the surface transformation is presented

including evaluative experiments which test the range of surface expressions

supported by the transformation. The second half of the chapter explores

applications of text manipulation, giving qualitative arguments as well as a

quantitative experiment to evaluate the manipulative capabilities of the

representation.

 Chapter 5 –An analysis of context at the structural and syntactic level is presented.

A general recursive representation of context is proposed and demonstrated. The

application of contextual information to reference resolution is evaluated through

several task-level experiments.

 Chapter 6 – The integration of symbolic and distributional information in the text

representation language is discussed. The internal support for distributional

processing is explained, along with the methods used for annotating the symbolic

representation with information derived from external sources.

Chapter 1 - Introduction 22

 Chapter 7 – Distributional methods are introduced by examining statistical

processing techniques for lexical semantic acquisition. Several semantic similarity

measures and an experiment designed to evaluate these measures using adjectives

are described.

 Chapter 8 – Methods of combining distributional and symbolic processing are

investigated. A novel approach to measuring the semantic similarity of nouns, based

on the lexical properties of uniquely differentiated adjectives (referred to as

characteristic adjectives), is developed using the distributional data from the

previous chapter, combined with symbolic lexical information. Experiments meant

to test the performance of this similarity measure are presented.

 Chapter 9 – The distributional process of deriving characteristic adjectives is

extended to encompass shallow symbolic dependency information for verbs and

nouns. The result is a list of distributionally derived symbolic rules, which give a

strong indication of a noun‟s semantic class. The rules are applied to the text

representation and an evaluation of their performance is reported.

 Chapter 10 -- The main points of the thesis are summarized, along with

conclusions and some comments on future work.

2

Literature Review

2.1 Context

There are two aspects of context considered in this research: document structure, and

syntactic context. Document structure has been used more prominently than syntactic

context in the IR community. For example, Kazai et al. (2001) propose a hierarchical

representation of structured documents for IR. This representation is used in a model of

weighting by recursing through the document structure, aggregating the weights of

child nodes with that of its parent. The structural representation of the document was

also used to determine the best point of entry to the document (in the case of a web

search referral).

Documents that do not have explicitly marked structure can still benefit from these

techniques if the structure can be induced. For instance, Nomoto and Matsumoto (1996)

use automatically acquired text structure to improve topic identification. Using a

measure of similarity between paragraphs and the article title, they remove irrelevant

passages to induce paragraph structure, resulting in improved performance on automatic

topic identification.

In the NLP community it appears there has been less attention paid to document

structure. Goecke and Witt (2006) posit that document structure provides an important

context for anaphora resolution. Their corpus study reveals that there are anaphoric

references that span distances that appear long when considered linearly, but reasonable

when document structure and context is considered. For example, a discourse referent

might be introduced followed by a list of items, or perhaps, a quotation. It is not

Chapter 2 – Literature Review 24

unreasonable to then have an anaphoric reference to this referent even though many

sentences (the list) intervene. Taking into account the document structure and the fact

that the text following the discourse referent was a list is hypothesized to help resolve

some of these references.

The consideration of the global document context (versus structure) has been

successfully applied to several NLP tasks over the past several years. Mikheev (2000)

considers the global document context when resolving sentence boundaries,

capitalization, and abbreviations. Gale, Church and Yarowsky (1992) show that words

tend to exhibit a single sense within a global document context, and Yarowsky (1995)

shows an improvement on a word sense disambiguation task when global document

context is considered.

In addition to the document surface structure, the content of a document has been

hypothesized to exhibit a discourse structure. Discourse structure has been an active

area of research in the NLP community, and different theories of discourse coherence

have been proposed including Hobbs (1985), Grosz and Sidner (1986), Mann and

Thompson (1987), and McKeown (1985). Applications of discourse structure include

topic and sentiment identification, summarization, generation, and simplification.

Because discourse structure is arguably a semantic phenomenon and not necessarily

syntactic, it is outside the scope of this thesis.

2.2 Existing Representation Strategies

Representations, whether linguistic or semantic, are often described in terms of a

formal theory and are themselves sometimes incompletely formalized. Literature on

representational languages highlights the aspects that differentiate the language, and

may leave out the details on other constructions. A comprehensive comparison then

becomes difficult. However, all representations ultimately derive from the surface string

and thus can be expected to carry some amount of similar information. For example,

word stems and morphological information, verb tense and mood, verbal argument

structure, and nominal number are typical features that can be recovered from a

representation. In this section I will survey several existing representations that I will

use as a contrast to CAMEO, the representation developed in this thesis. All of the

Chapter 2 – Literature Review 25

representations examined here (including CAMEO) are ultimately dependency- and

graph-based (at some level). The differences arise with how the representations extend

the basic dependency information to enable deeper syntactic or semantic processing.

2.2.1 Annotation Schemes

The annotation community has produced several schemes which, though technically

not representations, serve related purposes. As the demand for larger corpora with more

sophisticated annotation grows, these schemes have been adapted to cover some of the

same issues facing a surface representation (e.g. long-term dependencies).

Annotation schemes initially were developed independently and in a task-dependent

manner. This produced syntactic annotations such as TreeBank, BNC (2002), and the

Brown Corpus, and very different semantic annotations, such as FrameNet

(Ruppenhofer, 2005), VerbNet (Schuler, 2005), TimeBank (Setzer, 2001), and

NomBank (Meyers et al., 2004). The current trend is to augment syntactic annotation

with semantic information (Sgall et al., 2004) in schemes such as PropBank (Kingsbury

and Palmer, 2002), LCS (Dorr, 2001), and PDT (Hajić , 1998).

Like intermediate representations, the stated goal of the annotation community is a

theory-neutral scheme which has wide utility, but this has proven difficult even for

some levels of syntactic features (e.g. HPSG vs. Dependency Grammars, long-distance

dependencies, etc.). Attempts at merging existing schemes toward this goal are

currently on-going (Pustojevsky et al., 2005).

The NITE Object Model (Carletta et al., 2003) is a language for developing

multimodal annotation which uses a typed, object-based structure. Objects are nodes

that participate in a graph structure, and can be specialized using attributes and features.

Arbitrary annotation can be represented as long as it is derived and defined using the

primitive object types defined in the system. Multiple sets of annotation are integrated

via standoff notation that point to the data set or other annotation. This allows

correlation of e.g. syntax, prosody, words, and gestures. The NITE system provides

libraries for inspecting and manipulating the annotation sets.

Chapter 2 – Literature Review 26

2.2.2 Grammatical Relations

Grammatical relations (GRs) are a linguistic representation that encodes local

head/dependency relations. They are typically expressed as a list of tuples that consist

of the name of the relation, the lexical head, and any lexical daughters. Using GRs in

parser evaluation was proposed by Lin (1995). Carroll et al. (1998) further refine this

idea by proposing an annotation scheme designed to be an independent common

language for evaluation and comparison of different parsing technologies. After

suggesting that such a language loosely based on the feature structures of Lexical

Functional Grammar (LFG) could support a comprehensive and unambiguous

representation, the authors settle for a simpler, more practical approach using tuples (as

previously described). Figure 2.2.2 shows an example GR representation and its

corresponding parse tree (taken from Briscoe, 2002). This representation serves as a

sort of “lowest common denominator” among different GR annotations. Both Carroll et

al. (1998) and Yeh (2000) discuss the issues that arise from disparate GR

representations.

GRs (as specified by Carroll et al., 1998) can be characterized as syntactic

descriptions analogous to the functional descriptions of LFG. That is, they are a list of

the syntactic dependencies encountered in the text, in the form of binary tuples which

describe relationships in the dependency structure. It is not necessary to have a

complete parse to produce GRs, and many partial parsing and alternative approaches

(T/txt-sc1/-+-

(S/whnp_s (NP/det_n What_DDQ

 (N1/n debt+s_NN2))

 (S/sai/- do+ed_VDD

 (S/np_vp

 (NP/name_n1

 (NP/name/-

 (N1/n Qintex_NP1))

 (N1/n group_NN1))

 (V/0 leave_VV0))))

?_?)

Figure 2.2.2 – Sample GR output (left) and corresponding parse tree (right)

(ncsubj leave:6_VV0 group:5_NN1 _)

(detmod _ debt+s:2_NN2 What:1_DDQ)

(ncmod _ group:5_NN1 Qintex:4_NP1)

(aux _ leave:6_VV0 do+ed:3_VDD)

(dobj leave:6_VV0 debt+s:2_NN2 _)

Chapter 2 – Literature Review 27

have been applied towards extracting them (e.g. Argamon et al. 1999; Grefenstette,

1999; Srinivas, 2000). GRs essentially comprise atomic relations that can be interpreted

independently, and thus are suited for robust analysis that can support incremental

composition (cf. RMRS), and they have been used increasingly in NLP research as an

intermediate representation for applications beyond parser evaluation (e.g. Grefenstette,

1997; Palmer et al., 1993; Yeh, 2000).

However, there are some limitations to using GRs as an intermediate representation.

Because GRs are a strictly lexical representation, they do not normally mark semantic

interpretations. Also, depending on the annotation scheme and targeted application,

some of the surface information relating to the phrase structure may be discarded by the

representation. For some tasks it can be advantageous to have the surface syntactic

features explicitly marked, so a more expressive representation is sometimes necessary.

Also, because the primary structure is a relation, lexemes can appear in multiple

relational structures. This can make annotating GRs with lexical distributional

information and/or using GRs to compile distributional information cumbersome.

Although it is not a typical application of GRs, direct manipulation using GRs would

be less efficient than more structured representations because there is no explicit link to

each relation a lexeme participates in, and vice versa. For example, changing the subject

in a sentence would require searching each relation for an instance of the existing

lexeme.

The CAMEO representation developed in this thesis is similar in some respects to

GRs, but includes a few innovations to address some of these deficiencies. It is

structurally more akin to the AVM model briefly suggested in Carroll et al. (1998), than

their more commonly-used tuple list notation. More importantly, from this common

fundamental representation, CAMEO has been extended to include a treatment of

context at various linguistic levels.

It should be noted that like CAMEO, GRs are derived from a syntactic analysis of

the surface text (usually a parse structure). Therefore, it is possible to use a GR

representation as an alternative source of linguistic analysis for creating a CAMEO

representation. As I will demonstrate, there is no requirement in the CAMEO

Chapter 2 – Literature Review 28

representation for a complete syntactic parse tree, so the possible fragmented nature of a

GR list does not pose a problem. A more likely application however, would be to derive

GRs from an existing CAMEO representation, which can be transformed easily into

tuple-based GR annotation.

2.2.3 Lexical Functional Grammar

LFG is a theory and framework for representing both syntax and grammatical

function (Kaplan and Bresnan, 1982). LFG includes two levels of syntactic

representation: the c-structure, which is a standard tree representation of the constituent

phrase structure, and the f-structure, which is an explicit description of the grammatical

functions derived from the c-structure. The representation of f-structures takes the form

of an AVM, i.e. attribute-value feature matrices in recursive structures. It is possible to

reconstruct the c-structure from the f-structure, but to construct the f-structure from the

c-structure requires a mapping function. Figure 2.2.3 shows an example sentence with

the corresponding c-structure and f-structure (Dalyrmple 97).

As a representational language, the LFG f-structure does well encoding surface

features and syntactic relations. For example, in Figure 2.2.3, the direct object OBJ has

encoded the DEF (definite) attribute, the person, and the number. However, because

LFG is tied to a particular theory, it is less flexible in the syntactic interpretations it can

represent. A less structured analysis, such as that produced by some dependency

c - structure f - structure

TENSE PAST
PRED ‘see˂(↑SUBJ), (↑OBJ)˃’

SUBJ
PRED ‘pro’

PERS 1

NUM SG

OBJ

PRED ‘girl’

DEF +
PERS 3

NUM SG

Det N

saw the girl I

N NP V

NP

S

VP

Figure 2.2.3 – Sample LFG representation for ‘I saw the girl’

Chapter 2 – Literature Review 29

grammars, might be problematic to represent in LFG since functional information may

exist indirectly (Schneider, 1998). Also, LFG includes quasi-semantic information in

certain functional control schema/structures which may not be present in the constituent

structure. This limits its use as a neutral intermediate surface representation (which is

not its intended purpose).

In contrast, CAMEO is not a syntactic or functional theory and does not include

unifying features that constrain the syntactic analysis. It supports both linear and

hierarchical representation strategies, allowing it to remain theory neutral and agnostic

to the syntactic structure, as well as robust in the case of failed analyses.

Another problem which would arise from adopting LFG as an intermediate

representation is its minimal support for local identifiers on certain recursive sub-

structures, which are produced through multiple applications of a single schema (i.e.

mapping functions). This reduces the flexibility for searching and manipulating

document level representations. CAMEO uses identifiers which are integrated at all

levels of the representation, treating all constituents as objects which are globally

uniquely identified and easily manipulated.

In LFG, the representation of long distance dependencies evolved by allowing

descriptive grammars (i.e. regular expressions) in the functional mappings from c-

structures to f-structures (Kaplan and Zaenen, 1989). This allowed a finite description

(required by the functional mapping constraints) of the potentially infinite number of

mapping rules needed to cover the possibilities introduced by long distance

dependencies. Although this innovation admitted a treatment of gap binding into the f-

structure representation, it appears limited to intra-sentential linkage. CAMEO has the

flexibility to model any gap binding in the surface syntactic analysis, regardless of

distance, and also allows for direct linkage of any other binding information, e.g. from

external analyzers.

Finally, although LFG includes some functional constraints on word order

(amounting to f-structure precedence), this does not extend to the attribute level.

CAMEO includes much finer control over surface word order, through the use of

explicit attributes which can indicate the position of certain function words.

Chapter 2 – Literature Review 30

2.2.4 First Order Predicate Calculus

First Order Predicate Calculus (FOPC) is a semantic representation language that has

been used widely in the research community. It is a flexible, relatively simple method

for encoding meaning in logical forms. This makes it well-suited for assertional

databases that represent model-theoretic knowledge. Thus, its use as a compositional

semantic representation allows for a single representation in both cases.

There are many different forms of FOPC, but it is essentially comprised of terms,

which represent objects (or object collections), relations among the various terms (e.g.

verb events), and logical connectives (e.g. conjunction , disjunction , and negation

). Beyond these basic components of FOPC, there are also two operators that are

used to encode quantification: the existential quantifier , and the universal quantifier

.

The basic FOPC framework has been used in developing strategies to represent

natural language constructs by linguists such as Montague (1973), Davidson (1967),

Parsons (1990), and others. Davidson proposed a reification of events that allows

variable arity relations. For example, the sentences in (1) all have a different number of

verbal arguments:

(1) Lou shouted.

Lou shouted at the kids.

Lou shouted at the kids angrily.

Rather than create three separate variations of the predicate shouted (each with

different arity), an event variable is created which links the arguments. Thus (1) can be

represented as in (2):

(2) e shouted(e, L)

 e shouted(e, L) at(e, K)

 e shouted(e, L) at(e, K) angrily(e)

There are several reasons why this approach makes sense. The most important being

that constructs in natural language seem to suggest a reification of events. Consider the

pronoun it in (3), which refers to the event of building a house.

Chapter 2 – Literature Review 31

(3) We built a house yesterday. It was hard work.

Another reason why Davidson‟s event semantics makes sense is that it facilitates

temporal logic, e.g. as described in Allen (1984). The reified event variable can be used

to encode complex temporal constraints on the event.

The intersective treatment of event arguments is also applicable to nominal

modification. Modifiers such as adjective phrases and prepositional phrases can be

expressed as conjunctions on a term. An example is given in (4).

(4) the little fierce brown mouse

little(M) fierce(M) brown(M)

FOPC is important because it forms the basis for many other meaning

representations. One popular form of FOPC used in computational linguistics today is

neo-Davidsonian predicate calculus, which includes among other extensions, Parson‟s

addition of thematic roles to the Davidsonian representation of events. I will refer to this

semantic representation as neo-Davidsonian predicate calculus (NDPC) throughout the

rest of the thesis. It will serve as representative of FOPC based representations for

purposes of comparison.

2.2.5 Quasi-Logical Form

The Core Language Engine (CLE) is a framework for semantic interpretation of

natural language sentences, as presented in Alshawi (1992). The ultimate result of

natural language processing in the CLE is a comprehensive logical form (LF) that is

essentially a superset of PC. The LF representation is a fully specified semantic

representation of the possible meanings of a sentence.

More relevant to this discussion, however, is an intermediate representation used in

the CLE called Quasi-Logical Form (QLF). The QLF is one in a number of stages in the

CLE, and it is meant to be an underspecified semantic representation of the surface text.

Certain language tasks have been found to be tractable using only the QLF form, versus

the more fully specified LF (e.g. machine translation).

Chapter 2 – Literature Review 32

The QLF shares many properties with the model proposed in this thesis: it is derived

from purely linguistic processing, it has undetermined scopal operators, and it has

unresolved anaphoric references. It also includes grammatical information recovered

from the syntactic analysis, such as gender and number.

There are, however, some differences between QLF and the model proposed herein.

QLF is a unification based framework. It is derived compositionally from a unification

based grammar and uses unification based rules for resolution to LF (and other

operations). QLF also includes PC constructs in the representation (although they may

be left underspecified). Finally, QLF treats nominals as unary predicates. These

differences will be further detailed as appropriate in Chapter 3.

As an introduction to the QLF notation, which I will use in subsequent chapters, I

will present the syntactic description and several examples from Alshawi and Crouch

(1992a).

A QLF term (cf. PC) must be one of the following:

A variable: X, Y, ...

An index: +i, +j

A constant: 7, mary7

An expression: term(Idx, Cat, Restr, Quant, Reft)

where:

Idx: Uniquely identifies the term expression

Cat: List of feature=value pairs, e.g. <type=pro, num=sing>

Restr: First order, one place predicate

Quant: A generalized quantifier, or a meta-variable if unresolved

Reft: A constant or term index, or a meta-variable if unresolved

A QLF formula must be one of the following:

Chapter 2 – Literature Review 33

A predicate: Predicate(Arg1, Arg2, …, Argn)

An expression: form(Category, Restriction, Resolution)

A scope: Scope:Formula

where:

Predicate: A first or higher order predicate, or logical operator (and, not,

etc.)

Arg: A term, a formula, or a lambda abstract (defined below)

Restriction: A higher-order predicate

Resolution: A formula, or a meta-variable if the form is unresolved

Scope: A meta-variable if the scope is underspecified, or a list of term

indices e.g. [+i, +j] where +i,+j are indices occurring

within Formula, and +i outscopes +j.

The following examples from Alshawi and Crouch (1992a) will help make the

syntax more clear:

Every boy met a tall girl

_s:meet(term(+b, <type=q, lex=every>, boy, _q, _x),

 term(+g, <type=q, lex=a>, Y^and(girl(Y), tall(Y)), _r, _y))

A resolved form corresponding to the reading every boy met a different tall girl can be

obtained by instantiating the meta-variable quantifiers _q and _r with forall and

exists, respectively, and setting the scoping meta-variable _s to [+b, +g]:

[+b, +g]:meet(term(+b, <type=q, lex=every>, boy, forall, +b),

term(+g, <type=q, lex=a>, Y^and(girl(Y), tall(Y)),

exists, +g))

As another example, consider the unresolved anaphoric sentence:

Every boy claimed he met her

Chapter 2 – Literature Review 34

_s1:claim(term(+b, <type=q, lex=every>,boy, _q1, _x),

_s2:meet(term(+h1,<type=pro, lex=he>, male, _q2,_y),

term(+h2, <type=pro,lex=her>,female,_q3,_z)))

A resolved form, which assumes the term Mary is salient:

[+b]:claim(term(+b,<type=q,lex=every>,boy,forall,+b),

[+h1]:meet(term(+h1,<type=pro,lex=he>,male,exists,+b),

 term(+h2,<type=pro,lex=her>,

 female,exists,mary))).

From these examples it is clear that QLF, although it is closer to the surface syntactic

form than the resolved LF, still is intrinsically designed to support frameworks derived

from predicate calculus. The intrinsic semantic form means that testing for

representational equivalency is complicated by nested lambda applications which can

obscure reductions which are equivalent.

Like LFG, the CLE uses the same basic approach of attribute-value pairs used as

feature constraints on syntactic and semantic categories to allow for constructive

unification. Unlike LFG however, QLF does not retain grammatical function

information. Instead, constituents become arguments to semantic predicates, or

semantic predicates themselves. For example, the lexical modifier most becomes the

function ratio(x,y). This can have an impact on distributional and lexical processing

since category information is not always retained in the representation.

Other differences arise from the level of semantic representation employed in QLF.

For example, collections are represented through the union functor, whereas in

CAMEO collections are explicitly represented as objects and can be referenced and

manipulated just like singular objects. The goal of QLF is to serve as an intermediate

step to a deep semantic representation, which is a higher level of abstraction than the

CAMEO representation and accounts for many of the differences which I have

described.

2.2.6 Robust Minimal Recursion Semantics

Minimal Recursion Semantics (MRS), as presented in Copestake et al. (2005), is a

flat semantic representation which uses compositional elementary predicates (EP) and

Chapter 2 – Literature Review 35

includes a novel treatment of quantifiers. It was developed using Type Feature

Structures (TFS) (although it can use other formalisms) and integrates easily into

Constraint Based Grammars (CBG) because of its support of a unification operation.

The fundamental semantic units in MRS are the EPs, which encode the various

lexical relations of the surface form. These EPs correspond with the semantic relations

in some object language to which the MRS representation is being applied. EPs

typically map to a single lexeme with arguments that encode their relational

dependencies, facilitating compositional analysis.

MRS is considered syntactically „flat‟ because there is no hierarchical structure.

Instead, the EPs are related through variables or indices. MRS combines this flat

syntactic structure with a novel representation of scope for constructs such as modals

and quantifiers.

MRS produces a semantic form that explicitly constrains the possible scoping of

quantifiers. This is accomplished by enumerating scopal possibilities of individual

quantifiers, which allows combinatorial configurations to be later derived. Thus the

resolution of scopal ambiguity can be deferred to later processing, or indefinitely in

certain cases. On the other hand, when it is necessary to resolve the scope, the

possibilities are constrained and easily recovered.

MRS is really a strategy for underspecification of quantifier scoping. In fact,

Copestake et al. describe it as a “meta-level language” operating over some object

language. This has traditionally been predicate calculus, but there is no restriction that

necessitates this.

Copestake (2003) introduced a new approach to underspecified semantic

representation, demonstrated using MRS, called Robust MRS (RMRS). The goal of

RMRS is to have a single semantic representation support all levels of language

processing, from shallow POS taggers through deep parsers. RMRS is an extreme form

of flat semantics where all predicates are unary arity (since shallow processors will not

have access to knowledge of arity), and arguments (and other operators) are expressed

explicitly as binary relations. This representation allows for monotonic incremental

processing that is modular. For instance, a shallow processor could construct the initial

Chapter 2 – Literature Review 36

representation, followed by a deep processor that focuses on a specific fragment of the

representation.

RMRS has similar goals to the representation described in this thesis. Both address

the need for a fundamental semantic representation that can be transformed into higher

level form. Both are intended to be theory-agnostic, and both aspire to be

computationally efficient. However, as I will explain in Chapter 3, RMRS is more

ambitious in that it can be constructed from the most rudimentary processing, at the

same time facilitating the higher level representation of MRS. This adds a level of

complexity to the representation that would normally be mitigated by some level of

representational structure. For instance, the role of predicate arguments is abstracted

through a relational operator.

The strategy for robustness in RMRS results in a flat semantic description of the

dependencies (analogous to the functional descriptions of LFG) composed of single

argument predicate structures, argument linkage, and equivalence relations.

Compositional hierarchies can then be built incrementally by manipulating the linkages.

Like QLF, RMRS is not intended as a strictly surface representation and does not

explicitly encode all surface features (e.g. grammatical function). But apart from the

fact that it is semantically oriented, RMRS shares the same basic functionality as QLF

and other syntactic representations (including CAMEO), with respect to the surface

encoding.

2.3 Distributional and Symbolic Integration

There has now accumulated a fairly large body of work applying distributional

techniques to language processing. Some examples include word sense disambiguation,

measuring semantic similarity, lexical semantic acquisition, and probabilistic ranking.

As the improvements on purely distributional techniques begin to level off,

researchers are searching for effective ways to combine symbolic and distributional

methodologies. The basic vector model based on collocations used in most

distributional experiments is now being augmented with deeper symbolic information,

in the form of deeper syntactic relationships.

Chapter 2 – Literature Review 37

But while deeper symbolic information is increasingly being integrated with

distributional processing, applying distributional information to symbolic processing is

receiving less attention. This may be partly due to the fact that it is not intuitively

obvious how to do it. One recent proposal from Clark and Pullum (2007) suggests a

tensor product model which amounts to multiplying the distributional vectors for words

occupying the same constituent roles when comparing sentence similarities. Summing

over all products would produce an activation vector which can be used as a similarity

metric.

Lin et al. (2003) suggest that one problem with the distribution hypothesis is that

there can be distributionally similar words that have different meanings. They propose

essentially refining the distributional information using symbolic templates. For

example, they describe a method for filtering a list of distributionally similar words

using a measure based on how often the words appear near each other in certain

symbolic patterns (under the assumption that these patterns are likely indicator of

semantic incompatibility, e.g. from X to Y).

De Boni and Manandhar (2003) investigate how augmenting a semantic similarity

measure with distributional information affects the performance of a QA system. They

explore refining the semantic measure with a word frequency statistic, such that

frequent words have less weight in the measure. They report improvements on a QA

experiment when distributional information is included. In this case, the distributional

information is used to refine the symbolic semantic measure.

Pado and Lapata (2003) extend traditional word co-occurrence vector based

distributional models to incorporate syntactic dependency information in distributional

lexical semantic acquisition. They introduce a parameterized generalization of

dependency-based distributional vectors and show a statistically significant measure of

distinguishing semantically related words.

A difficulty with this approach will always be computational complexity. Parsing

large corpora for deep syntactic relations is expensive. Pado and Lapata use a scaled

parser, but in principle this approach will always be more complex compared to using

more shallow syntactic information.

3

A Text Representation

Language

In this chapter I will develop a text representation language called CAMEO, which

will be used as an experimental framework for investigating and evaluating

representational properties. The CAMEO representation language is similar in some

respects to other surface representations (as noted). However, CAMEO includes several

key innovations which distinguish it.

The primary difference, and the initial motivation for developing CAMEO, is the

extension of a sentence level representation to include the notion of recursive context,

which captures structural information at the document and phrasal level. This allows

text processing tasks that are normally processed at the local level to incorporate some

notion of global context. Later chapters will explore possible applications of this

feature.

CAMEO is a semi-flat, intermediate representation, and attempts to balance the

robustness of a flat representation with the rich structure of a hierarchical dependency

graph. This approach allows the grammatical functions and syntactic relations to be

normalised, encoding equivalent variations in a canonical form for processing and

giving the representation greater utility. For example, tasks that require specific

syntactic forms can use the canonical form of the representation to distinguish them

without the need for complex pattern searches, while tasks that do not depend on a

specific syntactic form will be insulated from superfluous syntactic variations in the

surface form.

Another unique approach of the CAMEO representation is object-orientation.

Although CAMEO is a syntactic representation, it is semantically motivated and is

Chapter 3 – A Text Representation Language 39

based on an explicit representation of events and objects. Whereas many syntactic (and

semantic) representations use noun and/or noun phrases as a basis of representation for

grammatical or semantic entries, CAMEO instantiates explicit objects which are then

assigned properties based on the text analysis. These objects are semantic placeholders,

as they represent an abstraction of a particular real-world entity. This distinction will be

made clear later in the chapter, but this allows CAMEO to also be used as a

rudimentary meaning representation.

The object-orientation of CAMEO includes events, which have explicit

representations also and can be used as objects in certain constructions, e.g. referring

expressions. (A detailed treatment of events is given in Section 3.3.2.) This explicit

representation of objects and events facilitates processing for certain applications. For

example, coreference resolution typically requires evaluating objects, their grammatical

function, and their properties within some window of context. In CAMEO this

information is expclitly encoded and organized around an object-centric approach. Both

saliency table-based algorithms (Lappin and Leass, 1994), and tree-walking algorithms

(Hobbs, 1977) have been implemented directly using the representation (see Chapter 4).

More semantically oriented representations such as MRS and QLF cannot directly

implement these algorithms because the grammatic functions are not directly retained.

Another feature of CAMEO is the integrated class lexicon which is used for deriving

distributional information over word classes. Lexemes are not used directly in the

representation of sentence text, as with many other representations. Instead the

representation employs global lexical identifiers which reference an object in the class

lexicon. This added level of abstraction simplifies distributional and other class-based

processing.

Finally, CAMEO includes several other innovations which allow it to approximate a

shallow semantic representation for linguistic tasks that do not need the complexity of a

comprehensive semantic model. As explained in the sections below, these include a

treatment of possessives, groups, and passives.

In the introduction I proposed desiderata for a text representation that, besides

having a strategy for representing structural context, would be of utility as a generalized

intermediate representation. Before presenting the details of CAMEO, I will first

Chapter 3 – A Text Representation Language 40

summarize its properties relative to these desiderata. I will then present an overview of

the fundamentals of the representation, followed by details of certain notable

constructions, and a formal description of the syntax. I will then describe a practical

implementation of the CAMEO representation with respect to a specific syntactic

analyzer, and explain the process of transforming the surface text into the

representation.

3.1 Properties of CAMEO

In this section I will look at each desideratum proposed in the introduction and

explain how CAMEO satisfies it, in comparison to other existing representations.

3.1.1 General

CAMEO is minimally theoretic and does not constrain the analysis so deeper

semantic and other syntactic representations can be derived using a direct

transformation. Only the basic structure of the event and object types is imposed, and

these are flexible enough to admit even minimally structured analyses, making

CAMEO a general representation of broad utility.

Other representations implicitly encode theoretical bias. For example, LFG imposes

constraints on its f-structures according to its syntactic theory, which would not admit

ungrammatical analyses (and thus certain incremental constructions). Another example

is QLF, which interprets certain semantic constructions (e.g. quantifiers) making it

more difficult to transform directly into other semantic representations.

3.1.2 Rich

Since the CAMEO representation is used both to encode existing observed surface

text forms, and realize novel representations, it attempts to have the widest coverage of

surface forms possible, including support for some ungrammatical surface

constructions. (However, these mainly occur at the higher-levels of representation, such

as phrase and sentences, which are arguably easier to verify independently, e.g. it is

relatively easy to verify that each sentence represented contains a main verb phrase).

Chapter 3 – A Text Representation Language 41

 The CAMEO language defines a number of atomic elements and attributes which

correspond closely to the surface syntactic categories, giving it a degree of

expressiveness very similar to the surface form. In addition, CAMEO defines certain

attributes which control the surface realization (e.g. pre- or post- modification), which

further widens its expressive coverage.

CAMEO also includes an explicit encoding of all surface features extracted from the

analysis, including a recursive context type for systematic representation of extra-

sentential linguistic structure. Most syntactic and semantic representations do not

include contextual information at this level, and some representations do not attempt a

comprehensive encoding of surface features. For example, LFG does not explicitly

encode word order.

Also, because CAMEO explicitly represents all types as objects, distributional

information can be attached to and derived from any linguistic head or relation,

including contextual structures. This is more cumbersome in representations that don‟t

have an integrated strategy for distributional information.

3.1.3 Reversible

Not all representations are designed to recover the original surface text through a

deterministic transformation. However, this is a desirable feature for an intermediate

representation because it allows some tasks to be accomplished using the representation

directly, i.e. the internal result of the text processing can be converted into surface

output. CAMEO is deterministic and unambiguous, resulting in a direct systematic

surface realization transformation. This transformation is recursive and functions at any

level in the representation, allowing surface realization of fragments and constituents at

any level.

Additionally, since the CAMEO representation language does not interpret certain

semantically ambiguous constructs (e.g. generalized quantifiers), it supports a canonical

surface form. Other ambiguous constructs, such as prepositional phrase attachment, do

not have an underspecified form in the model but are implicitly canonical. For example,

the ambiguous prepositional attachment in [I saw the man with a telescope] has two

different representations that yield the same (canonical) surface realization

Chapter 3 – A Text Representation Language 42

In comparison, deeper semantic representations (e.g. LFG, QLF, RMRS) may

require a grammar to support surface realization.

3.1.4 Incremental/Robust

Incremental processing is an approach often used in conjunction with robust

methods of linguistic analysis, which are becoming increasingly important in language

processing systems. A critical feature of the CAMEO representation which allows it to

support robust methods is the lack of relational constraints on the principle elements.

That is, there is no requirement that obj elements be connected to evt elements, and vice

versa. Elements can exist arbitrarily within a context. Thus a partial parser, or other

robust methods, can still be used to represent partial linguistic analysis.

Because dependencies (but not arguments) are abstracted in CAMEO, multiple

levels of analysis can be combined independently into full representations. For example,

the output of a noun-phrase chunker could be used first to transform all nouns into obj

elements. This could be followed by a parser which leverages the existing

representation of the obj elements to produce grammatical relations.

This incremental approach can also be extended to use a parallel processing

paradigm where dynamic changes to the representation signal individual processing

modules, which examine the representational changes and process them accordingly.

Robust incremental analysis may be problematic for other semantic representations

if argument structure is required during composition (e.g. QLF). Syntactic

representations may use robust processing, but integrating incremental representations

from external processors may not be supported.

3.1.5 Precise and Unambiguous

Like GRs, CAMEO relations are represented directly so comparing instances of the

representation is less ambiguous. Also, the original surface form is encoded, even when

certain syntactic structures are normalized (e.g. passive mood). Some representations

use a level of abstraction which allows multiple representations for variants of a

Chapter 3 – A Text Representation Language 43

syntactic construction, obscuring the relationship and making comparisons more

computationally complex.

CAMEO also uses globally unique identifiers on all representational objects, making

the representation unambiguous at the document level, as well as the local level.

3.1.6 Flexible

CAMEO is designed to take advantage of the document object model (DOM, 2004)

using an object-oriented design. All types in the representation are treated as objects

with globally unique identifiers. This allows referencing any entity (not just

nouns/objects) in a consistent way for linguistic processing. Manipulation is

accomplished by moving objects or changing attributes, which are native operations in

the DOM. For example, passifying verb phrases would only require adding the

PASSIVE attribute on event objects. Removing appositives can be done by moving the

context object containing the appositive. (Section 4.2 gives examples of manipulating

the representation.)

With other representational approaches, it may be less effecient to dynamically

manipulate certain properties. For example, in a predicate-based representation such as

FOPC, removing an object (term) would involve searching for the term in the

arguments of all predicates. To remove a constituent in a distributed representation such

as GRs would require searching the dependency list for tuples that contain members of

the constituent, as well as any child nodes governed by the constituent.

3.1.7 Semantic-like

CAMEO uses primitive semantic types (evt, obj, ctx, mod, rel), which allows it to

serve as a rudimentary meaning representation for shallow semantic tasks. This extends

to the integrated class lexicon which can function as a repository for class-based

meaning representations extracted from a document. For example, after analysis of the

sentence [Bears are dangerous], the [dangerous] relation can be copied to the [bear]

class. Accumulating information in this way can prove useful for shallow approaches to

semantic tasks such as QA. Purely syntactic representations are not suited as meaning

Chapter 3 – A Text Representation Language 44

representations because they are syntactically constrained and only encode

dependencies.

Shallow semantic information is sometimes supported by a syntactic representation,

such as LFG, which includes minimal primitive semantic information, but this is

primarily intended as patterns for interpretation by a semantic component. As such,

representing meaning directly is not supported.

3.2 A Simplified Surface Representation

I will begin describing the CAMEO representation with a simple example, and give

a brief overview of its general design.

(5) The black dog chased the quick brown fox.

The representation of (5) in the language is
1
:

obj[ID=o1 DET=the mod[LEX=black] class[LEX=dog]]

obj[ID=o2 DET=the mod[LEX=quick] mod[LEX=brown] class[LEX=fox]]

evt[ID=e1 ACTION=chase TENSE=past S=o1 O=o2]

The CAMEO representation closely resembles the element/attribute model of XML,

which is used for its implementation. I use the terms elements and containers

synonymously, and show them with lowercase bold letters and square brackets to

denote their scope (e.g. obj[]). Elements have attribute values, and these will be shown

in the text as NAME=value, where NAME is an attribute name and value is an attribute

value (e.g. TENSE=past). Attributes are optional and do not have default values, i.e. if an

attribute does not appear it is unspecified. (Note for certain processing some linguistic

features must take values (e.g. the number feature on objects when realizing verb

1 This is a slight simplification of the model for clarity. In fact the lex attributes (shown in the class and mod

elements), actually use an identifier that references an entry in the lexis. The lexis is a lexical context that is part of

the extensions to the framework and is described in Section 3.5.2.2. I will ignore this feature for the present

discussion.

Chapter 3 – A Text Representation Language 45

agreement), however these default values are deferred to subsequent processing

modules).

In the example above, the subject and direct object are represented using obj

elements, and the verb is represented using an evt element. Attributes and elements are

used within an element‟s scope to complete the representation. In the example the two

nouns contain the DET attribute which records the determiner, mod elements for the

adjectives, and class elements for the common nouns. The verb phrase has the ACTION

attribute for the verb, the TENSE attribute, and the S and O attributes to link to the subject

and direct object. Each of these will be discussed at length in the sections that follow.

To further simplify the notation, I will sometimes omit the attribute names where

they are obvious. For example, in the representation of mod[LEX=black], I will

dispense with the LEX attribute name and write mod[black]. Italicized words in brackets,

e.g. [black], represent a gloss of unprocessed text which would yield the correct

representational element(s) when processed (in this case a lexeme). The representation

of (5) above then becomes:

obj[ID=o1 DET=the mod[black] class[dog]]

obj[ID=o2 DET=the mod[quick] mod[brown] class[fox]]

evt[ID=e1 ACTION=chase TENSE=past S=o1 O=o2]

I will also sometimes omit attributes that are not pertinent to the discussion at hand.

For instance, I will omit the attribute ID when discussing individual elements, where no

reference to that element is necessary even though all elements have the ID attribute

(except for mods and rels). The ID attribute value can be referenced from other elements

as shown in (5) where the evt element references the objects o1 and o2. (In the

remainder of the thesis when discussing a specific element I will use id(x), where x

appears as the value of the element‟s ID attribute.)

Elements may include other elements as shown in (5). I use the term property when

referring to an element that occurs within the scope of another element. Thus in (8), the

class [fox], is a property of id(o2), and the adjective [black] is a property of id(o1).

Chapter 3 – A Text Representation Language 46

The primary elements (obj and evt) can also function as properties but do not appear

directly embedded in other elements. Instead they must be referenced indirectly through

their identifiers. This restricts the primary elements to the first level of representation in

a given context, which reduces the number of representational levels required for

processing.

The order of attributes appearing within the scope of an element is not significant

because attributes only encode closed class lexemes or fixed syntactic properties.

However, the order of elements appearing within the scope of another element is

significant (in most cases). This order is directly related to the surface expression and is

used in analysis and realisation. I will say more about this in section 3.2.1 below.

The attributes defined by the representation are intended to capture the surface

features of the text for later use in analysis and realisation (cf. category feature values in

Alshawi, 1992). The distinction between a lexico-syntactic component implemented as

an attribute vs. an element is functional. Attributes are used to represent static features

or closed class lexemes which are not given a recursive treatment in the representation.

Some examples are determiners and plurality for nouns, and tense and modals for

verbs.

By contrast, elements are containers and thus used to represent components that are

recursive. For example, the mod element is used for adjectives and adverbs. The

construction [extremely loud] can then be represented using a mod within a mod as:

 mod[loud mod[extremely]]

The structure of elements within CAMEO was chosen to provide a trade-off between

flat and highly structured representations. The principal constituents of a phrase all

occupy the first level, including all objects and events. Modifiers are contained within

the element they modify and so are accessible when required without complicating the

basic structure. With this approach, it is clear to see the basic components of a syntactic

analysis, simplifying processing and interpretation. For example, a clausal prepositional

phrase would appear at the first level, making it easy to distinguish from adnominal or

adverbial prepositional phrases (which would appear inside their respective elemental

containers).

Chapter 3 – A Text Representation Language 47

3.2.1 The FORM Attribute

The FORM attribute is a special attribute which can appear on any element. It is used

to encode or direct the positioning of a constituent in the surface form relative to an

element‟s parent container. Explicitly encoding the position in this manner allows a

deterministic representation of surface variation like that afforded by a constituent

phrase structure, while maintaining a semi-flat representational structure. Thus the

positional information is available for analysis and realisation (unlike most labelled

dependency-based representations), but exists as an explicit property and not an integral

part of the representational structure. This is advantageous for processing tasks that

need to consider the position of a constituent in the surface form because the positional

information can easily be extracted, while elements can still be accessed in a position-

independent manner. Additionally, this allows a simple means for manipulating surface

variation during realisation, i.e. by simply changing the values of the FORM attribute on

the various constituents, a wide range of surface forms can be realised.

In general the FORM attribute takes the values of pre and post, which places the

element before or after its parent element. (See Section 3.3.3 for additional usages). For

example, the adjective [weary] in the noun phrase [the weary traveller], is in the pre

position, relative to the head [traveller]. Alternatively, the adjective phrase [weary

from the trip] is found in the post position in the phrase [the traveller weary from the

trip]. When there are multiple elements within a parent element, the elements having

the same FORM value are processed in order. For example, the CAMEO representation

of the sentence [She easily does the work of three men at the company] is:

obj[ID=o1 PRON=she]

obj[ID=o2 DET=the class[work]]

obj[ID=o3 QUANT=three class[man]]

obj[ID=o4 DET=the class[company]]

evt[S=o1 ACTION=do TENSE=present

 mod[easily]

 rel[PREP=of OBJ=o3 FORM=post]

 rel[PREP=at OBJ=o4 FORM=post]]

Chapter 3 – A Text Representation Language 48

Since both the rel elements in this example have the post value, the order of the

elements defines which is expressed first.

The variability in the expression of verb phrases necessitates a finer granularity on

the positioning of adjuncts. Initially, the representation was not able to encode the

positioning of some of the more complex verbal constructions with the simple pre and

post values. Verb phrases are composite constructions and adverbial modifiers are

licensed in multiple slots within the phrase. For example, the sentence [She had been

reluctantly feeding the stray cat] requires the adverbial [reluctantly] to be positioned

within the verb phrase. Using only pre and post values for the FORM attribute would

limit the surface expression to [She reluctantly had been feeding the stray cat] (pre

position) and [She had been feeding the stray cat reluctantly] (post position).

To accommodate the range of adverbial positions in verb phrases, the FORM attribute

was extended to include a wider range of values within the context of evt elements.

These values correspond to the possible slots in a verb phrase and vary with the form of

the verb. Some of the possible values are illustrated below.

Simple

Jim eats fish

 pre post postpatient

Past Perfect

Jim has eaten fish

 pre postaux post postpatient

Future Progressive

Jim will be eating fish

 pre preaux postaux post postpatient

Modal Past Perfect Progressive

Jim may have been eating fish

 pre premodal preaux postaux post postpatient

Ditransitive Dative

She gave the teenager the keys

 pre post postio postpatient

Chapter 3 – A Text Representation Language 49

3.2.2 Object Unification

An important operation for certain processing tasks such as coreference resolution is

unification. Unification is the process of merging multiple elements so they can be

treated as one. This includes some means for determining which elements can be

unified and which elements cannot.

 Unification of objects is supported in CAMEO through the implicit constraints of

attributes and properties. A set of objects are compatible if they do not violate the

following restrictions:

1. The plural attribute PL is either unspecified, or matches

2. The quantifier QUANT attribute is either unspecified or compatible

3. The EXT attribute is either unspecified or compatible

4. The gender attribute G is either unspecified or matches

5. The animacy attribute A is either unspecified or compatible

These restrictions are guidelines for unification and may be augmented depending on

the processing task.

The unified objects are encoded inside a separate context using an equivalence class

(see Section 3.5.2.4) which holds all references to the unified object. The representation

does not take a strict interpretation of constraints on equivalence classes in order that it

may remain theory-neutral. Therefore, it is possible for modules to include references to

objects that do not unify in an equivalence class. This gives a corresponding

representation to surface forms that violate certain restrictions, and a strategy to

compensate for interpretive errors.

3.3 Fundamentals of the Representation

Elements (i.e. containers) in the CAMEO representation comprise the fundamental

types of the textual representation. There are four major types used to construct the

representation: objects (obj), events (evt), modifiers (mod), and relations (rel). The

Chapter 3 – A Text Representation Language 50

primary components are the obj and evt elements. These only appear at the first level of

a clausal representation and therefore do not embed in other elements directly. The obj

and evt elements also carry globally unique identifiers via the ID attribute. The

secondary elements mod and rel do not carry the ID attribute because they embed in a

primary element and can always be identified through their parent. (Section 4.2.1 gives

an example of locating a mod element for the purpose of removal.)

The following sub-sections describe the fundamentals of each of the major types.

Section 3.4 gives deatails of how the types are used in the representation of specific

syntactic constructions.

3.3.1 Objects

The basic semantic concrete, roughly corresponding to a noun phrase, is represented

using the obj element. An obj is simply a container for attributes and properties. It acts

as a conceptual placeholder and may be empty, thus the simplest instance of an object

contains only an ID attribute.

When a lexical construction functions as a noun, an object is instantiated to represent

it. The object is indeterminate at this point with respect to any specific semantic model,

but it has a definite representation. Even if the surface noun is indefinitely determined,

it is represented by a specific element not through a variable, as in predicate calculus,

because there is limited semantic interpretation performed by the CAMEO

representation to distinguish between these cases. Rather, the instantiated object

represents the referent directly for the local syntactic context. For example, a typical

representation of common nouns in FOPC based systems is shown in (6).

(6) a book

x book(x)

some(x, book(x))

This form represents [book] as a predicate that may be applied to any individuals in

the current set or situation. The idea is that an inferencing engine could use the logical

form to filter books from the set, and determine some specific book within a context.

The contextual individual (i.e. book) may or may not have been previously instantiated

Chapter 3 – A Text Representation Language 51

within the model. In CAMEO, the representation of [a book] always results in an

individual (i.e. object) being created that has the class (or property) book, as in (7).

(7) obj[class[book]]

Thus, the CAMEO representation uses a placeholder for the specific book that the

semantic interpretation might produce. This may end up being a generic object as in (8),

but the representation treats these cases the same. The interpretation is deferred to later

processing.

(8) A book is a glimpse into an author’s mind.

The object element is a container for the information produced during the syntactic

processing of a single noun phrase. In certain cases there may be no information

available about the object, and the container is empty (e.g. the three entities referenced

in the sentence [All three arrived late]). Otherwise, the syntactic information connected

with the object is extracted and attached to the instantiation in the form of attributes and

properties.

3.3.1.1 Properties

Object elements may contain various other elements as properties. The term

“property” is used in this case in the syntactic sense to denote syntactic relations, and

the semantic implications of these properties are left unspecified. In this section I will

discuss the various properties an object element may contain.

Class

The class element is used to represent a nominal property of an object. If there are

any nominally classed lexemes (i.e. common nouns) syntactically connected to an

object, they are ascribed as inherited classes using class elements. For example, the

simple noun phrase tree would become obj[class[tree]].

The representation does not commit to an interpretation of compound nouns. The

class lexemes are simply listed in order as properties of the object. For instance [family

man] will appear as obj[class[family] class[man]]. If the source analysis instead

Chapter 3 – A Text Representation Language 52

treats the nominal compound as a single classed lexeme, it will be treated as an object

inheriting from a single class: obj[class[family man]]. (Note the class element is

actually implemented as a reference to an entry in the classes context of the language

processing system. I will discuss this further in the next chapter, but for now I will

ignore this distinction.)

This treatment of compound nouns is compatible with higher-level forms as in

NDPC or QLF. For example, in QLF, compound nouns are represented using

underspecified relations. The example given in Alshawi (1992, p. 38) for [a computer

message] is:

qterm(<t=quant, p=det, n=sing, l=a>, X,

 a_form(<t=pred,p=nn>,R,[and,

 [message,X],[R,kind(Y,[computer_thing,Y]),X]]))

The a_form() specifies a “kind” relation between [computer] and [message].

Conversion of compound nouns from the CAMEO model into QLF would consist of

creating QLF a_form()s from the elements found in an obj element.

Note however, that the CAMEO representation remains true to the surface form and

makes no assumption about the semantic construction of compound nouns. Since class

elements are the only representation of nominal types, the surface form of a compound

noun can be reconstructed by listing all class elements in an object container. These

elements retain their surface order, but there is nothing in the representation denoting

the head.

In contrast, the QLF representation interprets the head noun of a nominal compound

to construct the semantic „kind‟ relation. This requires deciding whether a compound is

e.g. right-headed (water fountain) or un-headed (coach-player), or deciding the correct

bracketing (plastic water bottle). This information cannot be derived directly from the

surface form, but instead must be listed in a lexical resource (see Section 3.5.2.2).

Name

The name element represents proper names that are syntactically connected to an

object. There may be any number of these and they are represented in the order found in

Chapter 3 – A Text Representation Language 53

the text. Again these are treated as separate properties unless the source analysis

aggregates them (e.g. a named entity processor):

 obj[name[John] name[J.] name[Miller]] vs. obj[name[John J. Miller]].

In FOPC based representations, proper names are typically interpreted as terms (vs.

predicates). For instance, [Mary] might be given the indexed term mary1. This

approach can make it awkward to represent syntactic constructions such as those in (9).

(9) the unsinkable Molly Brown

the John I knew from school

These examples require the semantic equivalent of “the person named John/Molly

Brown”, rather than the normal treatment of proper names. It is not clear how these

constructions are dealt with in a representation such as QLF. One possibility is to treat

the proper names as normal predicates, approximating semantically the class of all

persons named John/Molly Brown.

The CAMEO representation avoids this complication because the object container

represents a general semantic entity and serves as the repository for arbitrary properties,

including proper names. The distinction of term individuals based on proper names can

therefore be deferred to higher-level processing.

Mod

The mod element used in the scope of an obj element represents an adjectival phrase.

They are instantiated in the order found in the text. For example, the noun phrase [big

ugly troll] would be

obj[mod[big] mod[ugly] class[troll]].

Like adjectival predicates in NDPC representations, the mod elements generally

imply conjunction (although the actual semantic interpretation is left unspecified). So

the above example might be transformed into a typical NDPC representation as:

big(x) ugly(x) troll(x)

Chapter 3 – A Text Representation Language 54

The notable difference with this representation is that the predicates in NDPC appear as

an unordered list, whereas in CAMEO the order of the mod elements that occur in a

container element is significant.

(The mod element can appear in the context of any element and is explained in more

detail in Section 3.3.3).

Rel

The rel element used in the scope of an obj element represents a post-nominal

prepositional phrase. For example, the noun phrase [the book on the table] would be

represented as

obj[DET=the class[book] rel[PREP=on OBJ=o1]] obj[ID=o1 DET=the class[table]].

(The rel element can appear in the context of any element and is explained in more

detail in Section 3.3.4).

Like the mod elements described above, the rel elements have an implicit

conjunction, analogous to the treatment in NDPC. The CAMEO representation of the

example shown above might be represented in NDPC as:

book(B) table(T) on(T, B)

The rel elements are also ordered according to the surface form, as for mod elements.

Inf

The inf element is used to connect non-finite verb phrases acting in the role of

phrasal complement, with the heads they modify. The inf element only contains the EVT

attribute which references the id of a non-finite verb phrase.

For instance, the noun phrase [a good book to read] is modelled as:

obj[DET=a mod[good] class[book] inf[EVT=e1]]

evt[ID=e1 ACTION=read INF].

Chapter 3 – A Text Representation Language 55

(Note the attribute INF contained in id(e1). This attribute is used to denote non-finite

verbal constructions, which are used in a variety of surface representations. The evt

element (including infinitive constructions) is described in more detail in Section 3.3.2).

In this example, the obj is connected to the evt element id(e1) using an inf element

(which indicates a complement construction). This strategy has the advantage of

treating infinitival complements like any other property (e.g. mod, rel, etc.), which

simplifies the processing.

Obj

An obj element may contain references to other obj elements. Within an object

container, references to other objects are accomplished using a special form of the obj

element which contains only an IDREF attribute having the value of the referenced

object‟s id. For example, in (10) id(o1) is referenced in the container for id(o2).

(10) obj[ID=o1]

obj[ID=o2 obj[IDREF=o1]]

The syntactic form modelled using this representation is that of collections. The term

collection here refers to a heterogeneous group of objects. The representations of

collections are constructed using a parent obj element containing references to the

members of the collection.

For example, in sentence (11) the subject noun phrase [Dave, Bob and Andy] is

modelled in (12). The representation consists of a single collective object id(o4)

containing references to three other objects id(o1), id(o2), id(o3) which are [Dave],

[Bob], and [Andy], respectively.

(11) Dave, Bob, and Andy found a new trail through the mountains

(12) obj[ID=o1 name[Dave]]

obj[ID=o2 name[Bob]]

obj[ID=o3 name[Andy]]

obj[ID=o4 obj[IDREF=o1] obj[IDREF=o2] obj[IDREF=o3]].

Chapter 3 – A Text Representation Language 56

(For a discussion of the collective vs. distributive reading, see Section 3.4.2 on

conjunctions. Homogenous collections will be covered later in Section 3.4.9 on plural

nouns. See Section 3.4.2 for details on other conjunctive constructions.)

3.3.1.2 Attributes

Attributes in general are used to capture as much of the surface information as

possible. They are derived from closed class categories that can be syntactically

analyzed. By giving these lexical categories special treatment during the initial

linguistic processing, they can be made available to subsequent modules. Often this

type of information is helpful in operations such as reference resolution and word sense

disambiguation, and since these attributes are deterministic, it is more efficient to

process them once initially.

There are several attributes defined for the obj element. Each appears only where

discovered (i.e. there is no default value).

DET

Represents determiners, e.g. a, the, that, those. Also preceding nouns of style,

e.g. Mr., Mrs., Dr., etc.

QUANT Quantifiers, including cardinal numbers, e.g. some, much, more, many, most, 41,

etc.

PRON The pronoun used to reference the object, if any. For example, I, you, she, etc.

PERS Person records the personal aspect of the textual reference to the object. Its value

can be 1, 2, or 3, corresponding to first, second and third person. This value is

relative to the nearest context element (see Section 3.5.2.1).

EXT

This attribute represents extension quantifiers, which are certain quantifiers that

come before determiners. For example, all, both, half, etc. (See Section 3.4.1).

In addition, there are also three attributes defined that require a deeper analysis.

These attributes are also motivated by tasks such as reference resolution and word sense

disambiguation, and are used to further distinguish an object. They are not ascribed to

every object, since there may be cases where they cannot be determined. They are

recorded whenever certain sure-fire syntactic and lexical rules are satisfied. For

example, the pronoun her will generate a female gender attribute [G=f].

Chapter 3 – A Text Representation Language 57

G Gender records the gender (male/female/neuter) of the object

A Animacy records whether the object is animate, inanimate, or human

PL This attribute is used when it can be determined that an object is treated

syntactically as a plural. Collections and plural common nouns are the most

obvious examples.

3.3.2 Events

Events represent the primary relation among objects. The evt elements represent

syntactic verb phrases and have optional attributes for the subject [S], object [O], and

indirect object [IO] constituents. These attributes, if present, are references to existing

objects in the representation. All verb phrases are treated in this manner including

pleonastic „it‟ constructions [it is raining] and copulars [the gate is shut] (see Section

3.4.5).

Like surface syntactic verb phrases, evt elements in the representation have a wide

variety of forms. I will first describe the attributes and properties used in the evt

elements to express these forms, and then I will illustrate several of the more interesting

examples before comparing this treatment to that of other representations.

3.3.2.1 Attributes

The attributes defined for evt elements are listed below. These attributes are intended

to represent all information about the surface form of a verb phrase. Only the ACTION

attribute is required – no other constraints are enforced by the representation. The

grammatical and syntactic restrictions on the verb forms are expected to be enforced by

the linguistic analysis (e.g. parser) or generation component.

The four auxiliary attributes (MODAL, PERF, PROG, PASSIVE) support the sixteen possible

combinations of auxiliary verbs given in Huddleston and Pullum (2002, p. 105).

Together with the TENSE attribute for marking the present/preterite inflection, the NEG

attribute for marking the negative, and the INF attribute for marking the infinitive form,

all English tenses analyzed by Burton-Roberts (1999, pp. 126-152) can be represented.

Some example sentences illustrating the use of these attributes are given in Section

3.3.2.3.

Chapter 3 – A Text Representation Language 58

Note, however, that there is no explicit information structure contained in the

representation. Syntactic variations that have equivalent meanings (i.e. truth conditions)

can be represented using the attributes, etc. described in this chapter, but there is no

facility in the CAMEO language for indicating equivalent informational content.

S The subject object reference

O The direct object reference

IO The indirect object reference

C Complement

ACTION Head verb uninflected form

MODAL Modal auxiliary

TENSE Verb tense

PASSIVE Verb is in passive form

PERF Verb is in perfect form

PROG Verb is in progressive form

PART Verb is in participle form

NEG Verb is in negative form

INF Verb is non-finite

3.3.2.2 Properties

The only properties allowed in evt elements are mod and rel elements. All other

features and verb constructions are formed using the attributes described above.

The mod element when used inside an evt functions as an adverb, and modifies the

head verb. For example, in (13) the adverb [hardly] is contained inside the evt element.

(The mod element is described in more detail in Section 3.3.3).

(13) I hardly knew her

obj[ID=o1 PRON=I]

obj[ID=o2 PRON=her]

evt[S=o1 ACTION=know TENSE=past O=o2 mod[hardly]]

Chapter 3 – A Text Representation Language 59

The rel element, when used inside an evt element, represents a verbal prepositional

phrase. The rel element is comprised of the PREP attribute, which specifies the lexeme of

the preposition, and an attribute specifying the object of the preposition. This latter

attribute is normally an object reference, but can also be another element acting in an

object capacity. For example, some parsers may represent adverbial clauses like [after

the rain stopped] using a prepositional sense of [after] with the phrasal complement [

the rain stopped]. This interpretation is dependent upon the implementation of the

grammar but is supported by the CAMEO representation.

Like the mod element, the rel element also supports the FORM attribute, which allows

flexibility in the syntactic location of the prepositional phrase with respect to the verb

phrase. The values for the FORM attribute in relation to the evt element are detailed in

Section 3.2.1 and are designed to allow flexibility in the positioning of the rel element.

In general, the attribute value pre denotes a prepositional phrase occurring before the

main verb, and the attribute value post denotes a prepositional phrase occurring after

the main verb. The default position (when no FORM attribute is used) is after the the

direct object. Examples (14) and (15) show verbal prepositions in the post and default

(no FORM attribute specified) slots of the verb group.

(14) She wrote in the sand a mantra.

obj[ID=o1 PRON=She]

obj[ID=o2 DET=the class[sand]]

obj[ID=o3 DET=a class[mantra]]

evt[S=o1 ACTION=write TENSE=past O=o3 rel[PREP=in OBJ=o2

FORM=post]]

(15) I ate strawberries with a fork.

obj[ID=o1 PRON=I]

obj[ID=o2 DET=a class[fork]]

obj[ID=o3 PL class[strawberry]]

evt[S=o1 ACTION=eat TENSE=past O=o3

 rel[PREP=with OBJ=o2]]

Chapter 3 – A Text Representation Language 60

3.3.2.3 Examples

In this section I will present several examples to illustrate the wide range of forms of

verb phrases the model supports. To clarify the notation, I will gloss the objects

referenced in the evt elements using obj[x] where x is the lexical expression of the

object, and other properties in a similar manner.

(16) Caged parrots sometimes won’t talk.

evt[S=obj[caged parrots] ACTION=talk MODAL=will NEG mod[sometimes]]

(17) Jack and Jill will be throwing Bob a party.

evt[S=obj[Jack and Jill] ACTION=throw PROG MODAL=will O=obj[party] IO=obj[Bob]]

(18) Lisa was frightened silly by Mark.

evt[S=obj[Mark] ACTION=frighten TENSE=past PASSIVE O=obj[Lisa]

 mod[silly FORM=post]]

(19) The children may have been feeding the squirrels.

evt[S=obj[the children] ACTION=feed MODAL=may PERF PROG TENSE=past O=obj[the squirrels]]

(16) is an example of a modal construction which includes a negative and an adverb.

The adverb is in default position so it needs no form attribute.

(17) is another example of a modal, but this time the verb is in progressive form and

is ditransitive. Note the order of the attributes is not significant (unlike properties).

Chapter 3 – A Text Representation Language 61

(18) is an example of a passive construction. The subject [Mark] is recovered

through syntactic analysis and the sentence is represented in standard form, with only

the passive attribute to indicate the original construction. Removing the passive attribute

would cause the same representation to generate [Mark frightened Lisa silly]

(19) is a complex construction that includes a modal, a perfect and progressive

aspect, and the past tense. Each of these attributes is independent and may combine to

represent the various possible surface syntactic forms.

3.3.2.4 Comparison with Other Representations

As mentioned in the introduction to FOPC (see Section 2.2.4), most FOPC based

representations adopt a Davidsonian approach, which reifies events to allow for variable

arity. In the CAMEO representation, this is not a problem because it does not have the

constraints of a logical form. CAMEO is designed to be as flexible as the surface form

with respect to the parameters associated with a verbal event. For example, (20) gives

representations of a verb phrase for NDPC, QLF, and CAMEO.

(20) Sally ate lunch with Steve.

NDPC: lunch(y) eating(e) eater(e, sally) eaten(e, y) with(e, steve)

QLF: quant(exists, A, [lunch, A],

 [past, quant(exists, B, [event,B],

 [and, [eat, B, Sally, A], [with, B, Steve]])])

CAMEO: evt[S=obj[Sally] ACTION=eat TENSE=past O=obj[lunch]

 rel[with obj[Steve]]]

Note the sample NDPC representations I use here and throughout the remainder of

the thesis, are adapted from Jurafsky and Martin (2000, e.g. p. 527). This is something

of a pseudo-representation because it glosses the verb‟s tense (e.g. eating) and thematic

roles. Currently there is no consensus on how to represent thematic roles, so using these

high level approximations is warranted. For the purposes of exposition in this thesis,

this approximation will suffice.

Chapter 3 – A Text Representation Language 62

From the NDPC representation, it is easy to see how other forms of the verb [eat]

with different arities can be accommodated. For example, the sentence [Sally ate with

Steve] can be derived by removing the eaten(e, y) predicate (along with lunch(y)). Similar

operations can be used to produce [Sally ate lunch] and [Sally ate].

The QLF representation does not include explicit roles for the predicate [eat], so

deriving the intransitive form requires a corresponding intransitive version of the

predicate [eat] (or some other mechanism). However, QLF does use a reified event

variable, so prepositional variants can be accommodated. To represent [Sally ate lunch]

for example would be equivalent to removing the inner [and] formula, along with its

second argument , leaving only the [eat] predicate.

In the CAMEO representation, verbal arguments are represented using attributes,

and these attributes are optional. So transforming (20) into the intransitive [Sally ate

with Steve] is accomplished by removing the verbal object attribute [O]. The verbal

preposition is represented using a rel element, which can also be removed easily to

produce [Sally ate].

It is clear that all three representations share a similar treatment of variable event

arity. However, for the CAMEO representation this is accomplished by modelling the

surface form, whereas QLF and NDPC rely on the reification of events inspired by

Davidsonian semantics.

3.3.2.5 Infinitives

Infinitive verb phrases often appear as complements in various surface syntactic

constructions. These phrases are represented in the model using evt elements with an

extra attribute named INF. All other evt element attributes and forms apply to infinitive

elements as well.

Events do not normally function as objects. Standard evt elements represent a finite

action, which implies a temporal property. In other words, finite events happen at some

fixed time reference and this property is inherent to the event. Objects, by contrast, do

not have an inherent finite temporal property. To posit an object in time requires that it

Chapter 3 – A Text Representation Language 63

be associated with some action, usually via a verb. (If the noun encompasses an action,

deterministic adjuncts can place it finitely in time, e.g. [the meeting on Tuesday]).

For instance, the finite verb phrase [Mark slept outside] describes an event that takes

place in the past (relative to some context). This phrase will not fit in syntactic slots that

require an object: [*[Mark slept outside] is fun]. This is why finite evt elements may

not be referenced by attributes which take objects.

But the case is different for infinitives. An infinitive verb phrase behaves more like

an object, i.e. it has no inherent temporal property. For example, [to sleep outside]

describes the idea of the act of sleeping outside, and is therefore timeless. This infinitive

verb phrase does fit syntactic slots that require an object: [[To sleep outside] is fun].

To model this behaviour in the CAMEO representation, infinitive evt elements are

allowed to be referenced by attributes that normally require an object.

(21) Isabella refused to eat.

evt[ID=e1 ACTION=eat INF]

evt[ID=e2 S=obj[Isabella] ACTION=refuse TENSE=past O=e1]

In (21) the infinitive verb phrase [to eat] is used as the direct object of the finite

verb [refused]. The id(e1) is marked as infinite with the INF attribute, and id(e2) is

otherwise a normal construction. Compare this with (22) which uses a noun as the

direct object.

(22) Isabella refused the proposal.

evt[ID=e2 S=obj[Isabella] ACTION=refuse TENSE=past O=obj[the proposal]]

The notion of control can be represented in CAMEO using co-indexing of evt

attributes. However, unless the syntactic analysis explicitly marks control, it is not

encoded. For example, in (21) [Isabella] is the subject of id(e1) (the infinitive verb

phrase [to eat]) but does not appear in a subject attribute as in id(e2). There are several

reasons to leave the control underspecified in this manner. First, the controlling subject

can easily be recovered when it coincides with a constituent of the dominating phrase

simply by referencing the appropriate attribute. Second, explicitly annotating the

Chapter 3 – A Text Representation Language 64

infinitive verb phrase with the controlling subject binds it to a specific object and

complicates manipulations, whereas leaving the subject implicit allows the infinitive to

be freely assigned to another element simply by referencing its ID attribute. Finally,

determining the controlling subject requires a degree of lexical semantic knowledge that

is more appropriate to subsequent processing stages. For example, selecting the

dominant phrase‟s subject or object by default is one simple heuristic, but this will fail

for certain contexts such as [She begged the fugitive to leave / She promised the fugitive

to leave]. Leaving the controlling subject unspecified allows shallow processing to use

a default where necessary without constraining deeper processors that may be capable

of analyzing control more thoroughly.

The CAMEO representation of infinitives is a more direct model of surface form

than that given by NDPC representations, which may require the use of a higher order

lambda operator. For example, the QLF representation of the infinitive construction [It

is nice [to live in Paris]] is given in Alshawi (1992, p. 24):

[pres,

 quant(exists, A, [state, A],

 [be, A,

 [nice1_property,

 B^quant(exists, C, [event, C],

 [and, [live1,C,B], [in_location,C,paris1]])]])]

Here the predicate [to live] is realized using lambda abstraction resulting in a higher

order construction.

I have said events which do not have the infinitive attribute set do not behave as

objects, and may not be referenced by attributes taking objects. However, a reference to

a finite event can be made using a phrasal complement construction. Here the finite

event participates in an independent clause, which acts as an object. In the model a

clause is referenced using a context container (contexts are presented in Section

3.5.2.1). For example, [Jorge hoped [the dirigible would fly]]. In this instance a new

context would be created for [the dirigible would fly], and this would be the referred

contextual complement of [Jorge hoped].

Chapter 3 – A Text Representation Language 65

The distinction between evt elements that are referenced by other elements becomes

significant during analysis and generation because it determines the formation of a

sentence in the model. An evt element which is not referenced by another element

becomes the main verb phrase in a context (e.g. a clause or sentence). Other evt

elements which are referenced serve as verbal complements and do not originate a

clause. (This will be discussed in Section 4.1 on Surface Realisation).

3.3.3 Mods

Syntactic modifiers produce mod elements in the representation. These are primarily

adjectives and adverbs, but can also include style nouns like [Mr.] and [Mrs.], etc.

(Determiners and quantifiers are analyzed directly and denoted using attributes on the

objects they modify, so this does not apply to them). As mentioned in Section 3.3.1.1,

mod elements existing at the same level in the representation hierarchy imply

conjunction, akin to the treatment given by NDPC representations.

A mod element is positioned inside the container element that it modifies. This

provides a general and uniform representation of modifiers regardless of what

constituent is being modified. Thus mod elements are recursive and can modify other

mod elements.

(23) the oblivious pedestrian

 obj[DET=the class[pedestrian] mod[oblivious]]

(24) the totally oblivious pedestrian

 obj[DET=the class[pedestrian] mod[mod[totally] oblivious]]

(25) the nearest oblivious pedestrian

 obj[DET=the class[pedestrian] mod[nearest] mod[oblivious]]

Sentence (23) shows an example of a simple modifier contained in an obj element. In

(24) the adverb [totally] is represented using a mod element inside the adjective

Chapter 3 – A Text Representation Language 66

element [oblivious]. The mod element is interpreted in the most local scope, so in this

case [totally] does not modify the obj element [pedestrian]. Contrast this with (25)

where both mod elements (ultimately) modify the obj element [pedestrian]. In cases

such as this where a sequence of adjectives produce mod elements, the order of the

elements is significant and corresponds to the surface expression of the text.

A mod element may only contain other mod and rel elements (rel elements are

described in the next section). The only attributes supported by the mod element are the

lexical id and the FORM attribute. The lexical id is a reference in the lexis context to the

surface lexeme. The FORM attribute is used to record the position of the modifier in the

surface text, relative to the container the mod element appears in (see Section 3.2.1). If

the container is an obj element, the FORM attribute positions the mod (i.e. adjective)

before or after the head noun. For a rel element, the FORM attribute determines the

position of the mod (i.e. adverb) in the verb phrase. The FORM attribute defaults to the

value pre, which places it before e.g. the verb. In (26), this attribute is set to post,

which places it after the main verb. A similar approach is used to represent post-

nominal adjectives (e.g. the person responsible).

(26) He spoke softly

obj[ID=o1 PRON=he]

evt[s=o1 ACTION=spoke TENSE=past mod[softly FORM=post]]

A mod element can be contained in any other type of element. When mod elements

are attached directly to context elements, they represent adverbs acting as phrasal

modifiers. For example, in the sentence (27), the adverb [actually] modifies the phrase

[I enjoyed kindergarten]. A context containing this phrase would also contain a mod

element representing [actually]. This is illustrated in (27) below.

(27) Actually, I enjoyed kindergarten.

 ctx[mod[actually]

 evt[S=obj[I] ACTION=enjoy TENSE=past O=obj[kindergarten]]].

Chapter 3 – A Text Representation Language 67

3.3.4 Rels

Prepositional relations are encoded in the representation using rel elements. Like

mod elements, rel elements are recursive, imply conjunction, and can be contained by

any other element. They record the prepositional information of the syntactic

prepositional phrase, positioning the object they modify in time or space.

A rel element usually has two attributes. The PREP attribute, which is an index to the

prepositional lexeme, and the OBJ attribute, which is a reference to the object of the

preposition. Sentence (28) shows an example of a rel element contained within an

object element. The prepositional object may instead be a phrasal context functioning as

a complement, as in (29). In that case the OBJ attribute is replaced by the COMP attribute.

(28) the man under the stairs

obj[DET=the class[man] rel[PREP=under OBJ=obj[the stairs]]

(29) Roger left before the police arrived.

ctx[ID=t1 evt[S=obj[the police] ACTION=arrive TENSE=past]]

evt[S=obj[Roger] ACTION=leave TENSE=past rel[PREP=before COMP=t1]

In some constructions, only the PREP attribute is used, such as prepositional phrases

with an adjective complement, e.g. [at first], or prepositional chains, e.g. [up to]. In

these cases the only attribute is the PREP attribute, and the complement is a mod or

recursive rel element contained within the main prepositional rel element. Sentence (30)

is an example of a prepositional chain.

(30) The slug crawled right up to the door.

evt[S=obj[the slug] ACTION=crawl TENSE=present mod[right]

 rel[PREP=up mod[right] rel[PREP=to obj[the door]]

Chapter 3 – A Text Representation Language 68

Like the other elements mentioned already, when multiple rel elements occur within

the same context, the order reflects the surface text expression. Sentence (31) gives an

example of multiple prepositions modifying the same verb.

(31) We met on a bus in the rain

evt[S=obj[we] ACTION=meet TENSE=past

 rel[PREP=on OBJ=obj[a bus]]

 rel[PREP=in OBJ=obj[the rain]]

3.4 Details of the Representation

In this section I give a treatment of notable lexical syntactic classes and

constructions, and give details on how they are transformed into the CAMEO

representation.

3.4.1 Determiners

Determiners and quantifiers (except possessive pronouns and genitives which are

treated later) are recorded as attributes on their nominal complements. These attributes

have no significance with respect to the representation, since there is no difference in

the representation and treatment of a definite and indefinite object. The idea of

definiteness only becomes an issue for deeper processing modules such as reference

resolution.

As an example, consider the indefinite reference, [A man walks into a bar …] In the

mind of the listener a conceptual object representing the man has been created. It is

indefinite in the sense that it does not represent any specific man in the listener‟s

experience. However, the result is the same as if it was – a conceptual representation

has still been created. If the sentence is followed later in the discourse by [The man

orders a drink], another conceptual representation of a man is created. If a further stage

of processing is to resolve these two objects, the determiners will play an important role

and thus they are preserved in the representation. Sentences (32) and (33) illustrate how

these two sentences would appear in CAMEO. A reference resolution module could

later determine that id(o1) = id(o2).

Chapter 3 – A Text Representation Language 69

(32) A man walks into a bar.

obj[ID=o1 DET=a class[man]]

evt[S=o1 ACTION=walk rel[into a bar]]

(33) The man orders a drink.

obj[ID=o2 DET=the class[man]]

evt[S=o2 ACTION=order obj[a drink]]

The situation is similar for certain quantifiers. Existential quantifiers are treated

neutrally as standard determiners, because the same argument applies as for

determiners. The scopes implied by these quantifiers do not need to be resolved until a

logical analysis is attempted. A single conceptual object serves to represent all possible

scopes. The lexical value of the quantifier is recorded in the determiner attribute as

before. For example, the sentence in (34) has ambiguous scope for the quantifier

[every], which is treated in the representation as a determiner.

(34) Every student passed a test

obj[ID=o1 DET=every class[student]]

obj[ID=o2 DET=a class[test]]

evt[ACTION=pass TENSE=past S=o1 O=o2]

(35) The student passed every test

obj[ID=o1 DET=the class[student]]

obj[ID=o2 DET=every class[test]]

evt[ACTION=pass TENSE=past S=o1 O=o2]

Notice that changing the values for the determiner attributes would not alter the

representation as in example (35), which is not ambiguous. This is a similar approach to

QLF, which utilizes the [qterm] construction to underspecify quantified terms. The

QLF representation records lexical category information via features on the [qterm]

and these can be analyzed by the resolution phase. In a similar fashion, the CAMEO

Chapter 3 – A Text Representation Language 70

representation could be passed to a higher level processor for transformation into a

higher semantic representation such as MRS, by analyzing the determiner attribute for

the possible scopes of the quantifier.

In contrast with the treatment of generalized quantifiers, the representation does

attempt to interpret quantifiers that actually specify quantity, such as cardinal numbers.

These definite values are assigned to a QUANT attribute and can be interpreted as

quantifying a homogenous collection as in example (36).

(36) the two countries

obj[DET=the QUANT=two class[country]]

This yields a much more syntactic approach compared with some logical forms,

which interpret definite quantities using some formulaic representation. For example,

the QLF representation of (36) in standard PC notation is:

 x [eq(x, 2)] country(y)

where the relation x [eq(x, 2)] tests the cardinality of the set x and is true when it

equals two (see Alshawi, 1992, pp. 16-18).

Pre-determiners like [both], [all], [some] are noted in a special attribute, as

shown in (37). Interpretation of this attribute is left for post-processing modules.

(37) all the horses

obj[DET=the EXT=all class[horse] PL]

For the case where the pre-determiner is adverbially modified, the EXT attribute is

embedded in a special mod element, which can include recursive modifiers, as shown in

(38).

(38) nearly all the horses

obj[DET=the class[horse] PL mod[EXT=all mod[nearly]]]

Chapter 3 – A Text Representation Language 71

Post-determiners such as [many], [few], and [second], are also treated as special

mod elements, having a determiner attribute. This helps to distinguish them from the

true determiner. Sentence (39) shows an example for the post-determiner [second].

(39) The second star on the right

obj[DET=the mod[DET=second] class[star] rel[on the right]].

3.4.2 Conjunctions

Conjunctions are represented explicitly, by expanding the constituents into the

appropriate number of elements. For instance, a conjunction of adjectives or adjective

phrases produces multiple mod elements and a conjunction of prepositional phrases

produces multiple rel elements. The first element serves as a container for the others and

is used to mark the conjunction. (The CONJ attribute defaults to the value [and] if not

specified). Sentence (40) shows an example of conjoined adjectives, and (41) contrasts

this with the more conventional intersective construction.

(40) hot and tired but hungry worker

 obj[mod[hot mod[tired CONJ =and] mod[hungry CONJ=but]] class[worker]]

(41) dangerous big green machine

 obj[mod[dangerous] mod[big] mod[green] class[machine]]

This representation is able to model arbitrary bracketing because it is hierarchical,

i.e. each container delimits a bracketing context. For example, an adjective phrase is

given in (42) and (43) with two bracketed syntaxes. Each can be represented depending

on the hierarchical arrangement of the mod elements as shown.

(42) red and blue, or green

mod[mod[red mod[blue CONJ=and]] mod[green CONJ=or]]

(43) red, and blue or green

mod[red mod[blue mod[green CONJ=or] CONJ=and]]

Chapter 3 – A Text Representation Language 72

This approach prevents having to explicitly implement conjunctive operators. It is a

more computationally efficient representation because the conjunctive form is a

variation on the (implicitly conjunctive) intersective form, and retains the recursive

nature while allowing for arbitrary bracketing. Note that keeping the CONJ attribute with

the conjoined element simplifies manipulations such as condensation (e.g. see Section

4.2), because adding or deleting conjoined elements can be done atomically, without

affecting other parts of the representation.

A conjunction of nouns forms a collection (collections were briefly mentioned in

Section 3.3.1.1). A collection is treated as an object containing the members of the

collection. A conjunction of three nouns will yield three separate obj elements

representing the constituents, plus a fourth obj element acting as a group container.

Only the group element will participate in an event. For example, in (44) the subject of

the evt element is set to id(o4), which is an obj element containing the other three

objects. Notice id(o4) has the plural attribute (PL) set. All collections are marked plural

in the representation.

The explicit representation of the group container, along with the plural attribute, can

be advantageous for certain tasks such as anaphora resolution. The group container

element can be processed like other objects, e.g. in a salience table, and the plural

attribute will allow a coreference resolution algorithm to include any number

constraints when considering the group object. Without an explicit representation of the

group, resolving a referring pronoun such as they in this case would require an

algorithm to consider possible groupings of the singular objects.

(44) John, Paul, and George sang a song.

obj[ID=o4 PL

 obj[ID=o1 name[John]]

 obj[ID=o2 name[Paul]]

 obj[ID=o3 name[George]]]

evt[S=o4 ACTION=sing TENSE=past O=obj[a song]]

The ambiguity between a collective and distributive reading of (44) is retained in this

representation, because the group object becomes the subject of the verb. Whether the

Chapter 3 – A Text Representation Language 73

group [John, Paul, and George] sang a particular song together, or whether each

member sang a different song is deferred to later stages of processing. That is, the initial

representation models the form of the surface text (via the syntactic parse), which most

closely resembles a collective reading. Further processing can be used to transform this

into an explicit representation of the distributive reading by removing the group object,

and creating a conjunction of the verb phrase by duplicating the evt element for each

member of the group. (Representation of conjunctions of verb phrases is explained

below).

A disjunction of nouns forms a disjunctive collection, which has a similar

construction but uses the CONJ attribute and does not set the PL attribute. This allows a

semantic processor to recover the disjunctive relationship of the members of the

collection as shown in (45). Using both these forms it is possible to compose arbitrarily

bracketed collections to support constructions such as [John and Paul, or George sang a

song].

(45) John, Paul, or George sang a song.

obj[ID=o4 CONJ=or

 obj[ID=o1 name[John]]

 obj[ID=o2 name[Paul]]

 obj[ID=o3 name[George]]]

evt[S=o4 ACTION=sing TENSE=past O=obj[a song]]

For verb phrases, a conjunction is represented by separate evt elements, both of

which are children of the same parent context element. The CONJ attribute is used as

before to support arbitrary bracketing, with the parent context element serving as the

container, and the default value of [and] assumed when no CONJ attribute is expressed.

Usually a clausal context contains a single independent evt element (i.e. an evt that

does not appear as a dependent of any other element), which serves as the main verb. In

a conjunction of verb phrases, two or more independent evt elements are created, each

having the same subject and other attributes and properties, depending on the

construction. Sentence (46) shows an example of conjoined verbs sharing the same

Chapter 3 – A Text Representation Language 74

direct object. Sentence (47) shows an example of conjoined verbs sharing only the

subject.

(46) The audience applauded and cheered the dancing bear.

obj[ID=o1 the audience]

obj[ID=o2 the dancing bear]

evt[S=o1 ACTION=applaud TENSE=past O=o2]

evt[S=o1 ACTION=cheer TENSE=past O=o2]

(47) The sailor raised the anchor and hoisted the sail.

obj[ID=o1 the sailor]

evt[S=o1 ACTION=raise TENSE=past O=obj[the anchor]]

evt[S=o1 ACTION=hoist TENSE=past O=obj[the sail]]

This strategy of representing verbal conjunctions is a simple extension of the non-

conjunctive case, and simplifies operations for manipulating the representation, since

the evt elements can be operated on independently. For example, to change a conjoined

verb phrase such as (47) into a non-conjoined verb phrase requires only deleting one of

the evt elements. Because there is no explicit marking of the main verb phrase in a

clause, either element can be removed and the remaining element is interpreted as the

new main verb phrase. Simalarly, creating or extending a conjunction of verb phrases

can be accomplished by adding new independent evt elements. Sentence (48) extends

the conjunction in (47) by adding a third event element.

(48) The sailor raised the anchor, hoisted the sail, and headed to sea.

obj[ID=o1 the sailor]

evt[S=o1 ACTION=raise TENSE=past O=obj[the anchor]]

evt[S=o1 ACTION=hoist TENSE=past O=obj[the sail]]

evt[S=o1 ACTION=head TENSE=past O=obj[sea]]

Chapter 3 – A Text Representation Language 75

3.4.3 Dependent, Coordinated, and Relative Clauses

Clausal constructions are represented using the context (ctx) element. In Section

3.5.2.1 I will explain how the context element is used within the global structure of the

CAMEO representation, but here I will describe some of its uses at the local sentential

level.

Every sentence is represented within a ctx element. This extends to embedded

sentences (clauses) as well. A ctx element is objectified like other elements, and has a

globally unique identifier which can be referenced in various constructions.

A subordinate clause is represented as any other sentence, but is contained within

(actually referenced by) the dominant clause. In example (49), the dependent clause

[dinner was ready] is placed inside the dominating event, in this case [Beth said]. The

complementising conjunction is encoded as a CONJ attribute.

(49) Beth said that dinner was ready.

ctx[evt[S=obj[Beth] ACTION=say TENSE=past

 ctx[CONJ=that evt[S=obj[dinner] ACTION=be mod[ready]]]]]

Coordinated clauses are treated in a similar manner. Each clause produces a separate

instance in the representation, and the conjoined clause appears within the context of the

original. The conjunction is also recorded in this case as an attribute on the conjoined

clause. This is done so the same processing and representation can accommodate both

subordinate and conjoined phrases. An example is shown in (50).

(50) Mark offered her money, but she wouldn’t take it.

ctx[evt[S=obj[Mark] ACTION=offer TENSE=past IO=obj[her] O=obj[money]]

 ctx[CONJ=but

 evt[S=obj[she] ACTION=take MODAL=would NEG O=obj[it]]]]

A relative clause is consistent with the previous approach. The relative clause is

contained within the object it modifies, with no conjoining attribute, as in example (51).

Chapter 3 – A Text Representation Language 76

(51) The man who bought the ticket is gone.

ctx[evt[S=obj[the man

 ctx[evt[S=obj[who] ACTION=buy TENSE=past O=obj[the ticket]]]

 ACTION=be mod[gone]]]

The CAMEO representation of clauses, like the approach taken for conjunctive mod

elements, gives a uniform and computationally efficient representation. That is,

conjunctive phrase constructions can be represented and processed in a similar manner

to embedded phrases, and all recursive elements have a similar form.

3.4.4 Genitives and Possessive Pronouns

The possessive relationship is represented using the prop element, which references

some possessed object. For example, (52) shows two (unspecified) objects in a

possessive relationship, where id(o2) possesses id(o1).

(52) obj[ID=o1]

obj[ID=o2 prop[OBJ=o1]]

 Simple possessive syntactic forms such as [Bill’s hat] fit easily with this approach,

where there is a possessive relation between two objects. But because the semantics of

the relationship are underspecified, this representation also holds for more abstract

meanings, such as the case where [Bill] is the maker and not the owner of the [hat].

Other examples include [summer’s heat] or [Julie’s friend], where the possessive

relationship is more ambiguous. A similar argument was made for the case of

compound nouns (see Section 3.3.1.1 on Class above), where the relationship between

compound class nouns is left unspecified. Notice that using the possessive object

representation here distinguishes the surface form of [summer’s heat] from the nominal

compound [summer heat]. Semantically the difference may be unimportant, but that is

left for higher-level processing to interpret.

The representation is constructed as follows. When a genitive or possessive pronoun

modifying a noun is encountered, two obj elements are created. The first is an element

representing the head noun as described in Section 3.2.1. The other element is used to

Chapter 3 – A Text Representation Language 77

represent the possessive noun. Even though the reference to this noun is oblique, the

possessive noun must still be an object and thus merits a representation. The two obj

elements are linked in a possessor/possessed relationship via a property element (prop)

placed inside the possessor object which references the possessed object. A simple

example is shown in (53).

(53) Her house

obj[ID=o1 class[house]]

obj[PRON=her prop[OBJ=o1]]

By comparison, higher-level semantic representations which utilize lexical semantic

resources, will attempt to do some interpretation on the lexical terms to distinguish

cases like those shown in (54) and (55)

(54) Luke’s father

father_of(Luke, x)\

(55) the kitten’s paw

kitten(y) paw_of(y, x)

Modifiers such as genitives are recursive and more complex constructions are thus

possible. However, each genitive produces an object with a property to the next object

in the syntactic chain. Example (56) shows a (somewhat contrived) example and the

resulting representation.

(56) His brother-in-law’s sister’s cousin’s podiatrist

obj[ID=o1 PRON=he prop[OBJ=o2]]

obj[ID=o2 class[brother-in-law] prop[OBJ=o3]]

obj[ID=o3 class[sister] prop[OBJ=o4]]

obj[ID=o4 class[cousin] prop[OBJ=o5]]

obj[ID=o5 class[podiatrist]]

Chapter 3 – A Text Representation Language 78

Genitives can also be applied to collections to produce both possessor collections

and possessed collections, in the same recursive structure. Example demonstrates a

conjunctive collection functioning in both a possessor and posessee relationship.

(57) His brother and sister’s dog

obj[ID=o1 PRON=he prop[OBJ=o2]]

obj[ID=o2 CONJ=and prop[OBJ=o3]

 obj[ID=o1 class[brother]]

 obj[ID=o2 class[sister]]]

obj[ID=o3 class[dog]]

This flat approach of representing the possessive relation through the prop element is

dictated by the semantic orientation of the representation, i.e. genitives and possessives

are no different than other objects and therefore must occupy the same level. The

advantage of this arrangement is that it simplifies tasks such as anaphora resolution

(since each object in the genitive chain is explicit and can be easily enumerated), while

still marking the possessive/genitive relation. Using a hierarchical representation would

negatively impact processing, since nouns could then appear at all levels in the

representation, not just the first.

The property element allows a recursive approach to realising possessive

constructions. During realisation, an object is checked to determine if it is possessed. If

a possessor is found the possessor is realised first. Applying this recursively will realise

the correct surface form of arbitrary possessive constructions from the representation.

3.4.5 Copular Constructions

Copular constructions including predicative adjectives are not interpreted and

reduced to their semantic equivalent, as in some representations. Instead they are treated

as events similar to other verbs. For example, in some representational approaches,

sentences such as (58) and (59) are represented as predicates over a single instance

variable.

Chapter 3 – A Text Representation Language 79

(58) Sylvia is a necromancer

necromancer(Sylvia)

(59) The river is wide

river(R) wide(R)

(60) evt[S=obj[name[Sylvia]] ACTION=be O=obj[DET=a class[necromancer]]]

(61) evt[S=obj[DET=the class[river]] ACTION=be mod[wide]]

Contrast this with the representations in (60) and (61) for the CAMEO

representation. The CAMEO representation is closer to the QLF, which uses states to

represent copular constructions. States under QLF function much the same as events,

allowing for participation in arbitrary constructions through reification. Without this

reification, verbal prepositions on copular constructions become problematic. For

example, the sentence [The river is wide by the sea] would be difficult to represent using

the approach in (59) because the preposition [by the sea] would most likely have to be

linked with [river], which would not capture the entire meaning. Using the evt element

as in (61) allows the preposition to modify the event rather than the object, essentially

representing the meaning as “the event of the river being wide happens by the sea”. The

same mechanism would allow other event semantics to apply to copular constructions,

such as temporal logic.

3.4.6 Passive Construction

In contrast to copular constructions, passive verb constructions are interpreted and

represented using a canonical form. An attribute (PASSIVE) is set on the evt element to

record the passive voice so that the passive surface form can be recovered when

necessary. Otherwise, there is no difference in the representation compared with other

non-passive events. This strategy prevents having to support a specialized form for

passive events in post-processing modules.

Decoding the passive form in the model consists of setting the subject (if it exists)

and object of the verb correctly. For example, the sentences (62) and (63) both share the

representation in (64) (except for the PASSIVE attribute):

Chapter 3 – A Text Representation Language 80

(62) A good time was had by all.

(63) All had a good time.

(64) obj[ID=o1 DET=all]

obj[ID=o2 DET=a mod[good] class[time]]

evt[ACTION=have TENSE=past S=o1 O=o2 PASSIVE]

Giving a literal interpretation of (62) would produce the representation shown in (65).

Here the sentence is represented as a past participle (via the PART evt attribute), with a

verbal preposition.

(65) obj[ID=o1 DET=all]

obj[ID=o2 DET=a mod[good] class[time]]

evt[ACTION=have TENSE=past PART S=o2

 rel[PREP=by OBJ=o1]]

The advantage of normalizing the passive form of the sentence, rather than

representing the passive construction, is that it allows passive sentences to be processed

in the same way as non-passive sentences. Without this normalization, shallow tasks

may incorrectly process passive constituents. For example, distributional processing

will include the subject of a passive verbal construction with non-passive verbal

subjects. This could possibly degrade the distributional data because a passive subject

actually receives the action of the verb, rather than initiates it as with a non-passive

subject. For instance, distributionally determining objects that can eat might

erroneously include cake if the passive sentence [The cake was eaten by the children]

is found in the corpus. If the representation does not intrinsically normalize passive

sentences, each processing task will need to implement its own interpretation of passive

construction, or risk incorrectly analysing passive constituents.

There are several cases where it is difficult to correctly identify passive

constructions, and this is one of the difficulties with a normalized representation. A

general rule for adopting the verbal prepositional complement as the passive subject

will incorrectly identify prepositions acting in other capacities such as locative or

instrumental. For example, the sea will be incorrectly realized as the subject in the

passive sentence [The ceremony was held by the sea]. Additionally, several

Chapter 3 – A Text Representation Language 81

prepositions can be chained together making it difficult to recover the passive subject

correctly as in [The victims were rescued by helicopter by the army].

3.4.7 Dative Constructions

Unlike the normalization of passive constructions, the alternate forms of ditransitive

verbs are represented directly. The dative alternation is represented with the indirect

object recovered explicitly, and the non-dative (prepositional) form is represented in the

model using a standard rel element. Examples (66) and (67) show instances of the

dative and non-dative representations (respectively) in the model.

(66) Mark told Mary the news

evt[S=obj[name[Mark]] ACTION=tell

 IO=obj[name[Mary]] O=obj[DET=the class[news]]

(67) Mark told the news to Mary

evt[S=obj[name[Mark]] ACTION=tell]

 O=obj[DET=the class[news] rel[PREP=to OBJ=obj[name[Mary]]

This strategy simplifies the process of transformation into the representation

because, like the interpretation of the passive construction, the preposition in a non-

dative ditransitive construction can be ambiguous. For example, in the sentence [The

owner took his dog to the vet.], the preposition does not mark an indirect object.

Replacing the verb took with gave changes the function of the preposition so that it does

mark the indirect object. Distinguishing these cases would require lexical knowledge of

verbs that license ditransitive constructions.

Although normalizing the non-dative construction would be advantageous for the

same reasons as normalizing the passive construction, the non-dative construction does

not have the same disadvantages when represented directly. There is no shift in

grammatical function for constituents in a dative construction, as appears with the

passive form. For this reason, it is less important for the normalization of dative

constructions to be incorporated in the representation, and the requirement for lexical

resources makes the dative normalization prohibitive.

Chapter 3 – A Text Representation Language 82

3.4.8 Reflexives

The representation attempts to interpret reflexive constructions thereby instantiating

a single obj element to represent both reflexive references. The reflexive pronoun is

normalized and added as a PRON attribute on the object. This preserves the gender

information of the reflexive pronoun for later use. Like the treatment of the passive verb

alternation, encoding the reflexive construction alleviates some of the complexity for

later processing stages. In this case, one less object is included in the representation,

reducing the ambiguity for modules such as coreference resolution.

Although reflexive pronouns are often explicitly tagged by the morphological

analyser, the syntactic analyser may not indicate the reflexive relationship (beyond

normal syntactic representation). However, the majority of reflexive constructions do

not require a sophisticated interpretation to recover and can be accommodated in the

rules of the representational transformation. Sentence (68) shows an example of the

representation of a reflexive construction.

(68) Zachary congratulated himself

obj[ID=o1 name[Zachary] PRON=he]

evt[S=o1 ACTION=congratulate TENSE=past o=o1]

3.4.9 Plural Nouns

The treatment of plural nouns has already been introduced in Section 3.3.1.1 on

conjunctions (see example (11)). I explained how heterogeneous collections are treated

using a single object as the group container, with the plural attribute set. Homogenous

collections are also represented as object elements with the plural attribute (PL) set.

However, these objects do not act as explicit containers for other objects. The plural

attribute is the only indication that they are plural.

Homogenous collections may either be plural class nouns [dogs], [trepanners], or

unspecified collections [The Board of Regents]. There is no real difference among these

representations -- each represents a collection of objects. In the case of class nouns the

members are implied. In the case of unspecified collections the members are unknown.

Chapter 3 – A Text Representation Language 83

Examples (69) and (70) show representations of a plural class noun, and an unspecified

collection, respectively.

(69) the dogs

obj[DET=the class[dog] PL]

(70) The Board of Regents

obj[name[The Board of Regents] PL]

This approach is similar to QLF, where the category features of a qterm carry the

singular/plural attribute.

In the CAMEO representation, if a quantity is used to modify the collective noun, it

is noted in the QUANT attribute. If present, the QUANT attribute gives the size of the

collection. This may be a numeric value (three, 101), or something more vague (few,

much). An example of a plural class noun with numeric modification is shown in (71).

(71) 500 dingos

obj[QUANT=500 class[dingo] PL].

(Definite quantification was previously discussed in detail in Section 3.4.1 on

determiners.)

3.4.10 Complements

Some syntactic constituents allow for phrasal or verbal infinitive complements.

Examples include adjectives (sad [to leave]) and certain nouns (the hope [Spring will

arrive early]). Verbal infinitives were already discussed in Section 3.3.2.5. As I

showed, the ID attribute on an infinitive event can be referenced as a constituent in finite

verbal events. When infinitives complement a non-verbal constituent, the infinitive evt

element is included within the scope of the container element through the use of

indirection, by adding a placeholder evt element which references the infinitive evt

element‟s ID. This allows infinitive evt elements to remain at the same level as other evt

elements in the context, and still treat inifitive modifying complements similar to other

Chapter 3 – A Text Representation Language 84

modifiers such as mod or rel elements. Example (72) shows a sentence with an

adjective phrase (mod element) with an infinitive verbal complement.

(72) Hal is happy to comply

evt[S=obj[Hal] ACTION=be mod[happy evt[ACTION=comply INF]]]

Phrases acting as complements are referenced by the ID attribute of the local context

element that contains them (context elements are detailed in the next chapter). Using the

COMP attribute set to its context ID, a phrase can complement a constituent in the same

manner as an infinitive verb phrase. Example (73) shows the representation for a noun

with a phrasal complement.

(73) the fact the defendant was guilty

obj[DET=the class[fact] comp[the defendant was guilty]]

3.5 Extensions

The CAMEO language described in the previous sections is designed for the

representation and processing of text at the sentence and phrase level. To extend the

representation beyond this basic level of analysis requires a treatment of other aspects

of textual documents, which I will briefly introduce before describing the specific

features and extensions added to CAMEO to address these properties. These extensions

are designed to tightly integrate the lexical, linguistic, and pragmatic components of text

processing.

3.5.1 Motivation

One important aspect of semantic processing is lexical semantics. Beyond providing

for the basic lexical representation of words, to be useful for semantic processing, a text

representation should have some means of organizing and integrating extended lexical

information, i.e. the LKB. Using a common representation for the LKB and other

Chapter 3 – A Text Representation Language 85

representational components has the advantage of simplifying the sharing of

information among processing modules, and reuse of supporting utilities.

Additionally, the support of a lexical component should allow for the collection and

integration of distributional information. For instance, information about word

frequencies, collocations, and other distributional events should be easily accessible

from within the representation. This facilitates the integration of distributional

processing techniques concurrently with other symbolic processing.

For the representation to allow for more advanced analysis beyond the sentence

level, a strategy for representing contexts is also necessary. For logical semantic

processing, disambiguation is often relative to some context. An explicit representation

of contexts facilitates transformation into a contextual logic (e.g. Buvač, 1996).

Additionally, text has organization apart from grammar and syntax and this is useful

information that should be made available to processing modules. For instance,

documents are sometimes organized with chapters, sections, etc. These may have titles

or other marked text which can be given more weight during analysis if context is

considered, rather than processing them simply in line as free text. In Chapter 4 I will

develop the contextual representation of document structure in detail, and in Chapter 5 I

will explore contextual issues in symbolic processing.

3.5.2 CAMEO Extensions

The following sections extend the basic CAMEO representation to include element

containers for the lexis, classes, assert, and process contexts. These elements provide a

uniform representation and structure for distributional and contextual processing.

3.5.2.1 Contexts

One of the most important novel features of the CAMEO representation is the

inclusion of a generalized representation for contexts. A CAMEO context is a local

space that defines the syntactic, pragmatic, and semantic reference point for a fragment

of the representation. Contexts were briefly mentioned previously as container elements

Chapter 3 – A Text Representation Language 86

for sentences and phrases. In the extended representation, contexts are expanded to

include all document components and organizational structures. Every logical grouping

of text, whether implicit or explicit, can be marked using the context element.

There are several advantages to having this flexibility for representing contexts in the

representation. Since a context is a container for other elements, it provides an anchor or

reference for otherwise unconnected linguistic events. For example, in the case of

sentence fragments or a failed or partial parse, there will often be orphaned NPs that are

not lexically connected with other syntactic components. Some representations require

all lexical components to be connected (directly or indirectly) (e.g. Trujillo, 1995, p.

90). The CAMEO representation does not have this restriction as elements are

independent and can appear anywhere inside a context. The context element provides a

default relation between these otherwise unconnected linguistic objects in the

representation.

This lack of constraints on the relations among elements in the CAMEO

representation means there are no special requirements on the initial processing. Robust

and incremental methods can be used to translate free text into a CAMEO

representation, including partial parsers, noun chunkers, and named entity recognizers.

The use of contexts gives enough structure to the representation that processing using

these types of models can be leveraged effectively.

Using a contextual model also provides reference frames for coreference resolution

and other processing tasks that can take advantage of contextual information. In the

next section I describe the organization of the various contextual elements that make up

the representation in the system.

Contextual Hierarchy

Figure 3.5.2.1 shows a diagram of the contextual hierarchy in the representation. The

highest level context is the root context, which contains all components of a CAMEO

representation. No other context may contain a root context. The root context contains a

single instance of the lexical context, the classes context, the assert context, and the

processing context. The lexical context is used to implement the lexical database. It

contains the individual lexemes available in the representation. The classes context is

Chapter 3 – A Text Representation Language 87

used to hold lexical class information. The processing context is used to store dynamic

information from processing the assert context, such as coreference resolution. The

lexical, classes, and processing contexts will be discussed in the following sections.

The assert context is the container for representations of textual entities. It may contain

any number and type of contexts except the root, lexical, and processing contexts. New

text representations are placed in this context for further processing.

A new context is created for each document or text entity that is to be processed in

the system. The context specifies the type of text entity it was derived from (document,

dialogue, book, news article, etc.). Other pragmatic information may be added

depending on the sophistication of the input pre-processing and the source data. For

instance, the source data may include mark-up for a reference URL, an author, the date

of publication, etc. If these are not explicitly marked in the document, they might

appear as part of the free text. In that case they could be processed after the initial

representation and later moved back into the context header. (See Section 5.7 5.7.2for

examples of representations using the contextual elements described in this section).

Further contexts may be created depending on the document type and the source

text. Contexts may be created for book chapters, scenes in a play, captions, footnotes,

root

lexis

classes

assert

process

lex

classdef

ctx < TYPE=doc >

ctx < TYPE=sentence >

ctx < TYPE=clause >

obj

evt

Figure 3.5.2.1 – Contextual hierarchy of CAMEO

Chapter 3 – A Text Representation Language 88

turns in a dialogue, etc. These types of contexts are abstract containers and do not have

an inherent treatment in the representation, other than providing the facility for marking

the representation for reference and further processing.

The next fundamental structure of context is the sentence. A sentential context is

used to mark every formal segment of text that should be processed independently. For

documents this is a full and complete sentence, or the closest approximation. For

spoken corpora this could be an utterance. For other structured text it could be an

element of a larger collection. The segmenting of the document into these units is a

committed processing decision that must precede all others. If multiple sentence

segmentation algorithms are used, separate copies of the entire document context must

be included.

The sentential context is the basic unit of reference in the representation. In order for

multiple independent processing sources to operate on the data, some means must exist

for a common reference to the source text. Each sentential context thus includes the

original source text. Each word in the sentence can then be uniquely indexed relative to

the context. This also provides a means for developing and testing independent stages

of a system of processing modules.

For instance, a text simplification module may split a sentence into two or more, and

a named entity module may then be run on the original sentence. The original reference

text can be used to correlate the named entities with the new text. Note that the text

simplification module would create two new sentential contexts (with appropriate

identifiers) in the original sentential context.

The basic local linguistic processing occurs within the context of a sentence. Usually

this includes morphological processing, part of speech tagging, and parsing. These

functions might be processed independently using the representation to store state

information, or they may be integrated in a single processing component. At some point

the sentential text needs to be transformed into the CAMEO representation.

The last type of context defined is the phrasal/clausal context. This context has the

smallest scope and corresponds to a phrasal unit in a phrase structured grammar. It is

larger than a noun or verb phrase, but not necessarily a complete sentence. Phrases are

Chapter 3 – A Text Representation Language 89

used to represent the context of a complement, adjunct, parenthetical comment, etc.

Phrasal contexts mirror the structure of natural language and are thus freely recursive,

allowing a treatment of quotes within quotes, as well as prepositional chains and other

recursive constructs.

If a sentence includes another complete sentence, such as quotations, dialogue or

sentential complements, the phrasal context is used rather than a new sentential context.

This is to distinguish between a sentential context that references the source material,

and a sentential context that has been decided during processing (which must use a

phrasal context). Thus by iterating over sentential contexts, a processing module can

traverse the original sentences in a document.

As mentioned earlier, sentential contexts can be embedded in other sentential

contexts, but only when a processing component has created new material (not simply

transformed the existing text). In the example of text simplification, it is likely that the

new sentences will include new textual content. In order to ensure it is referenced with

the original text the new sentential contexts are embedded in the original sentential

context.

Multiple analyses of a sentence can be included in a sentential context as sister

phrasal contexts. However, there is currently no inherent support for distinguishing

these, so independent processing modules expecting multiple analyses would have to

treat these as a task-specific representation. Standard processing uses the first phrasal

context within a sentential context as the active analysis.

3.5.2.2 Lexis Context

The lexis context is a container for all lexical information used in the representation.

Each entry in this context is a lex element representing a lexeme. The lex element is

comprised of an ID and a graph of the unmorphed stem of the lexeme.

The ID of the lex elements are referenced by the other elements in the representation

(except for class elements as explained below). Using this level of indirection helps to

facilitate collection of distributional information for statistical processing by providing a

Chapter 3 – A Text Representation Language 90

globally unique numerical identifier which is used throughout the corpus in each

instance of the lexeme.

3.5.2.3 Classes Context

Besides the graphs of the individual raw lexemes, the representation includes a

context for lexical class information. Each entry in the classes context is a classdef

element which potentially contains lexical semantic information about a nominal class.

The classdef element has an ID attribute which is referenced by class elements residing

inside an obj element. (The class element is used to represent a common noun as

discussed in Section 3.3.1.1).

 Figure 3.5.2.3 shows a representational fragment illustrating the relationship

between a lexeme, a class definition, and an object of that class. Within the assert

context of this example there is a single ctx element containing a single obj element.

The obj element contains a class element referencing the classdef defined within the

classes context. Note that there are two classes defined, each referencing the same

lexeme [bank]. This is an example showing how multiple senses for a lexeme can be

represented. The ID attribute of the class definition uniquely identifies the sense of a

lexeme. In this example the object has been determined to be using the second sense

(ID=c2) of the [bank] class.

Chapter 3 – A Text Representation Language 91

Using the classes context, lexical semantic information can be integrated into the

framework. Each classdef element is a container which can potentially include lexical

semantic information about a particular sense of a lexeme. For example, information on

the qualia structure of a noun (Pustejovsky, 1991) could be represented using attribute

value pairs within the classdef element. Note that other syntactic categories (besides

common nouns) could be included in the classes context, however currently only

common nouns are treated in this manner.

Statistical information for individual classes can be extracted from the representation

in the same way as for raw lexemes. The class ID attribute can be used to search the

assertional context for instances of the class, and from this distributional information

can be collected. Individual processing modules can then store arbitrary statistical

information inside the class container using proprietary elements. (For a more detailed

discussion see Chapter 6).

3.5.2.4 Processing Context

The CAMEO language is designed to be a dynamic, incremental representation. The

processing context of the representation is used to maintain information about the state

of a process. Running various processing modules on a text entity has a cumulative

lexis
[

 lex[ID=l23 GRAPH=bank]
]

classes
[

 classdef[ID=c1 LEX=l23]

 classdef[ID=c2 LEX=l23]
]

assert
[
 ctx
 [

 obj[class[IDREF=c2]]]

]
]

 Figure 3.5.2.3 – Sample representation of class definitions

Chapter 3 – A Text Representation Language 92

effect and the state of the system is preserved across processing instantiations. In this

way the state evolves as more information is processed.

The principle element in the processing context is the eq element, which contains an

equivalence class for an obj element (i.e. individual) in the representation. An

equivalence class contains links to all the references made to an individual in the

assertional context. This requires a coreference resolution module to process the

assertional information and create the equivalence class. Note, however, that this is not

limited to a single document but can run over the entire assertional context. Equivalence

classes link sentences about an individual throughout the assertional context, providing

a means for semantic processing beyond the local syntactic compositional level.

As coreferences are accumulated inside an equivalence class, the information about

the corresponding individual evolves. Thus, the equivalence class becomes a container

for the knowledge discovered about an individual in a text (or texts). Semantic

processing could then be applied to interpret the information in an equivalence class and

derive semantic properties of the individual. This would produce a function similar to

the profiles described in Bergler (1995, pp. 111), which are collections “of all properties

that a text asserts or implies about a particular discourse entity.” The advantage of using

CAMEO over profiles, besides the integration with other aspects of processing, is that

the equivalence classes collect syntactic and pragmatic information through the object

references, as well as derived semantic properties.

The processing context is also the container for general world knowledge (i.e. KB).

The same representation as employed in the assert context can be used to represent this

information, although higher level semantic derivations would probably be necessary.

The reason this type of information belongs in the processing context, not the

assertional context as might be expected, is because it is somewhat dynamic in nature.

In fact, the intent is to allow the semantic processing of the assertional context to derive

some of this general world knowledge. As such, it makes more sense to segregate this

internally derived information from the more static, imported assertional information.

However, it should be noted that dynamic information is not limited to the

processing context, and one of the strengths of the representation is that it facilitates a

black-board between processing modules. Results from intermediate processing tasks

Chapter 3 – A Text Representation Language 93

can be stored using elements or attributes on the representation in the assertional

component, for later use by other processing tasks.

3.6 Formal Syntax of the CAMEO Language

The CAMEO representation language is implemented using XML, and can therefore

be shown to be a regular context-free language (Berstel and Boasson, 2000). The

CAMEO syntax is based on elements and attributes, where elements are freely

recursive and attributes are not. This section gives the formal syntax for the CAMEO

representation language.

3.6.1 Formal Syntax

The syntax of the CAMEO representation is given in abstracted EBNF below,

following the typographical conventions used throughout the thesis. Non-terminals are

printed using capitalized italics, e.g. Relation. Terminals are printed using lowercase (or

small-capitals) font, e.g. obj, QUANT, and several. The EBNF operators used in the

notation are: exclusive OR (|), zero or more (*), zero or one (?), and one or more

(+).

Top ::= Root

Root ::= root[Lexis Classes Assert Process]

Lexis ::= lexis[Lex*]

Classes ::= classes[ClassDef*]

Assert ::= assert[TopContext*]

Process ::= process[EqClass*]

Lex ::= lex[ID=Id GRAPH=Graph]

ClassDef ::= classdef[ID=Id LEX=Graph]

TopContext ::= context[ID=Id TopContextType (OrgContext |
SentenceCtx)*]

EqClass ::= eq[ID=Id ObjectRef*]

OrgContext ::= ctx[ID=Id OrgCtxType (OrgContext | SentenceCtx)*]

SentenceCtx ::= ctx[ID=Id TYPE=sentence (ClauseContext | Object | Event
| Relation | Modifier)*]

ClauseContext ::= ctx[ID=Id TYPE=clause Conjunction? (ClauseContext |
Object | Event | Relation | Modifier)*]

TopContextType::= TYPE=(doc | book | article | dialogue ...)

OrgCtxType ::= TYPE=(chapter | section | scene ...)

Conjunction ::= CONJ=(and | but | or)

Object ::= obj[ID=Id ObjFeatures ObjectRef* ClassRef* Modifier*

Relation*]

Modifier ::= mod[LEX=<lex identifier> ModFeatures Modifier* InfinitiveRef*

Relation* Complement*]

Chapter 3 – A Text Representation Language 94

Relation ::= rel[Preposition ObjectRef ComplemenReft? Form? Modifier*

InfinitiveRef* Relation* Complement*]

Event ::= evt[ID=Id Action Subject Object IndirectObject ComplementRef

EventFeatures Relation* Modifier* InfinitiveRef*]

ObjFeatures ::= Quantifier? Plural? Determiner? Gender? Animacy? Pronoun?

Question? Person? EqClassRef?

ModFeatures ::= Quantifier? Plural? Determiner? Negative? Form?

EventFeatures ::= Tense? Perfect? Participle? Progressive? Passive? Modal?

Negative? Infinitive? Form?

EqClassRef ::= EQ=<equivalence class identifier>

ClassRef ::= class[IDREF=<class identifier>]

ObjectRef ::= obj[IDREF=<object identifier>]

InfinitiveRef ::= inf[EVT=<evt identifier>]

ComplementRef ::= COMP=<context identifier>

Id ::= <unique identifier>

Quantifier ::= QUANT=(many | few | more | several | 1 | 2 | 3 ...)

Plural ::= PL

Determiner ::= DET=(a |the | this | that ...)

Gender ::= G=(f | m | n)

Animacy ::= A

Pronoun ::= PRON=(he | she | it |they ...)

Question ::= QUEST=(who | what | where |why ...)

Person ::= PERS=(1 | 2 | 3)

Negative ::= NEG

Preposition ::= PREP=(on | to | over | under ...)

Tense ::= TENSE=(past | future | prog)

Perfect ::= PERF

Progressive ::= PROG

Passive ::= PASSIVE

Modal ::= MODAL= (could | will | would ...)

Form ::= FORM= (pre | post | preaux | postaux | ...)

Infinitive ::= INF

The Id is a unique identifier generated by the framework. It is used to reference an

element, and can appear as an attribute value on certain referring attributes.

3.7 A Practical Implementation

The CAMEO language is a relation defined between surface text and a

computational representation. An initial stage of processing is required to transform the

raw surface text into the internal form of the representation. In this section I will report

on an implementation of the CAMEO language, and the corresponding processing that

illustrates how text is transformed into the representation.

Chapter 3 – A Text Representation Language 95

The CAMEO representation language is designed to support the encoding of

multiple levels of linguistic analysis from a wide range of sources. Each source requires

an independent processing module to transform its output into the CAMEO language

(unless the source supports the CAMEO representation internally). For example, the

initial implementation of CAMEO was developed using the Link Grammar Parser

(Sleator and Temperly, 1993) by creating an independent processing module to

transform the Link Grammar output into the CAMEO representation. The current

implementation, which I will be discussing at length in this section, transforms the

output of the probabilistic parser included in the RASP suite of text processing tools

(Briscoe and Carroll, 2002). Although this transformation is an independent process, the

RASP parser was a crucial part of the development of the CAMEO representation.

Additionally, many constructions in the representation necessarily follow the analyses

of the parser. For these reasons, in the next section I will first introduce the syntactic

processing performed by the RASP suite. (I used several versions of the RASP tools

over the course of this work, ranging from Version 2 with tsg12 through Version 3.1

with tsg15; however the syntactic processing is similar across all versions).

3.7.1 RASP Syntactic Processing

The RASP toolkit processes text serially through a series of modules, ultimately

producing a set of statistically ranked deep parses. For the purposes of developing the

CAMEO representation, multiple parses were not considered and the highest ranked

parse was selected in each case. The following steps describe the processing of the

individual modules in the RASP toolkit (see Briscoe and Carroll, 2002 for full details):

1 The first stage is tokenization of the raw text using a deterministic finite-state

transducer. This includes deciding word and sentence boundaries in the context

of white space and punctuation. The sentence boundaries determined by RASP

are used as the sentential contexts in the CAMEO representation (see Section

3.5.2.1 above).

2 The next stage is a statistical tagger which assigns PoS and punctuation tags to

individual words. The tagger is implemented using a HMM and assigns

probabilities to each tag for ranking purposes. A configurable threshold is used

to select tags to be included for processing in the following stage.

Chapter 3 – A Text Representation Language 96

3 This stage performs a (deterministic) morphological analysis on each of the

word+tag pairs, resulting in a lemma+morphological suffix based on the word

and its PoS tag.

4 This stage parses the multi-tag lattice using a manually-constructed grammar of

PoS and punctuation tags.

5 Finally, the individual parses are assigned a probabilistic ranking based on the

syntactic analysis and available lexical information.

The RASP toolkit is a flexible system that is capable of generating several output

formats. Because the CAMEO representation attempts to represent as much of the

linguistic information as possible, the transformation module was developed to use the

detailed syntactic parse tree output of RASP. Figure 3.7.1 shows a sample of the parse

tree format produced by RASP. Each phrase of the parse is represented by a node in the

tree labelled with a phrasal category followed by information internal to the parser.

Words of a sentence are shown as lemmas concatenated with their corresponding PoS.

For example, the prepositional phrase in Figure 3.7.1 begins with the node labelled

|PP/p1|, followed by the preposition [in] represented by |in_II|.

The top level node is labeled with [T], and a successful parse of a sentence will be

labeled with [S]. A partial parse will be returned where a complete parse cannot be

found, consisting of a sequence of parses covering the input.

3.7.2 Transformation

The transformation from the RASP parse tree to the CAMEO representation is

computed using an independent transformation module, customized for the specific

(|T/txt-sc1/----|

 (|S/np_vp| (|NP/n1_n1-name/-|

 (|N1/n| |Oscar_NP1|))

 (|V1/modal_bse/-| |should_VM|

 (|V1/be_pp/--| |be_VB0|

 (|PP/p1|

 (|P1/p_np| |in_II|

 (|NP/det_n1| |the_AT|

 (|N1/n_n1/-| |engine_NN1|

 (|N1/n| |room_NN1|)))))))))

Figure 3.7.1 – RASP syntactic parse tree output for [Oscar should be in the engine room]

Chapter 3 – A Text Representation Language 97

syntactic output of the RASP system. Different parsers would require different

transformation modules to be developed, however all transformations from equivalent

syntactic parses should result in equivalent representations.

The current transformation is implemented using an event-driven tree-walking

approach. The parse tree is traversed in-order, and each node in the tree initiates an

event. Each event generates some context, element, or attribute in the representation,

depending on the syntactic constituent of the node. For example, when the transformer

encounters an NP a new obj element is created, a VP initiates an evt element, and so on.

Within a syntactic node, the PoS tags are used to further drive the process. The result is

a deterministic transformation of the syntactic parse tree into the CAMEO

representation.

Although this approach would normally be considered equivalent to a compositional

approach, there are several cases which require special processing. For example, when

transforming compound noun phrases, the number of noun objs must be discovered

beforehand so that constituent NP events create obj elements properly within the group

obj container (see Section 2.2). The representation of possessive nouns requires similar

treatment. The transformation of the VP into the evt element is another special case,

which requires the entire structure of the VP to be known before certain attributes can

be created (e.g. the passive construction).

Contexts are created based on the parser‟s interpretation of a clause. Whenever the

parser marks a syntactic node as a sentence or clause, a new ctx element is created.

These contexts in turn become containers for the various elements transformed from the

syntactic constituents of the clause. Thus, the various constituent elements (obj, evt,

etc.) are relative to the clausal context they are found in.

As I mentioned above, the PoS tags are used to derive certain element attributes in

the CAMEO representation. Combined with the lexemes, these allow a limited amount

of interpretation for extended linguistic features using sure-fire rules. Pronouns generate

appropriate attributes for animacy, gender, number, and person. Certain style nouns

(e.g. Mr. and Mrs.) generate gender and/or animacy attributes. Other attributes are

computed using the syntactic context, such as the form attribute which encodes the

position of e.g. adverbs relative to a phrase head. Note these attributes are a

Chapter 3 – A Text Representation Language 98

computational convenience for subsequent processors and do not denote any semantic

meaning, since the system is not capable of determining metaphoric and other meta-

linguistic usage.

Figure 3.7.2 shows a graphical depiction of a syntactic parse tree and the resulting

transformation into the CAMEO representation. The top level [S] generates the outer

ctx element, which serves as the contextual container for all descendent constituents.

The subject NP [She] produces an obj element with attributes indicating the pronoun

lexeme, female gender [G=f], and animacy [A]. Next, the VP is traversed in order.

The head verb [kissed] is discovered and stored. Then the direct object [Jim] produces

another obj element containing a name element. The PP phrase is then visited

generating a rel element container. Because the verb evt element has not yet been

created, the prepositional rel element is left floating temporarily. The preposition [on]

is recorded as an attribute and the prepositional object is processed resulting in a third

obj element being created. Once the entire VP has been visited, the evt element is

created. The appropriate object references are set for the subject [S] and direct object [o]

attributes. The head verb and tense attributes are then filled in. Finally the prepositional

rel element is inserted in the verb evt element.

kissed Jim on the

S

NP

N

VP

VP

V N

PP

P NP

N D

She cheek

ctx [TYPE=clause

 obj[ID=o1 PRON=she G=f A=h]

 obj[name[Jim]]
 obj[ID=o3 DET=the class[cheek]]
 evt[S=o1 ACTION=kiss

 TENSE=past O=o2

 rel[PREP=on OBJ=o3]]]

Figure 3.7.2 – Graphic depiction of a syntactic parse tree and corresponding

CAMEO representation

Chapter 3 – A Text Representation Language 99

3.8 Conclusion

In this chapter I have described the CAMEO text representation language which

forms the experimental framework used in the remainder of the thesis. The

representation was designed to satisfy the desiderata proposed in the introduction, and

extends equivalent extant text representation strategies to include a systematic treatment

of the representation of context, as well as other innovations. Central to the organization

of the representation is the concept of contexts, which are containers for the semantic

and pragmatic information about the document. The contexts are used during

processing to define semantic scope for modules that can take advantage of it. QA and

coreference resolution were given as examples of tasks that can be enhanced with

contextual information.

The current implementation of the CAMEO language was developed using the

RASP system. The output of the RASP syntactic parse is transformed through an

independent process into the CAMEO representation. Alternate linguistic technologies

will have different output representations that require corresponding transformation

modules to be developed.

4

Operations: Realisation and

Manipulation

In this chapter I will present two key operations which are enabled by the properties

of the representation. The extent to which CAMEO enables these operations (and their

implementations) is another differentiator of the CAMEO representation.

In Section 4.1 I will discuss surface realisation and the process of transforming a

CAMEO representation back into surface text. I will explain how the structure of the

representation is used to realise objects, phrases, and sentences. I will then present an

experiment designed to evaluate some of the surface realisation capabilities of the

representation.

 In Section 4.2 I will discuss how the representation can be programmatically

manipulated to change the form and meaning. I will explain how CAMEO has

advantages over other representational forms for this type of operation. I will then

contrast manipulations using CAMEO with other representations on two experimental

tasks.

4.1 Surface Realisation

Natural language generation is sometimes modelled having three components

(Elhadad and Robin, 1996). At the highest level is macroplanning, which addresses the

overall content and structure of the output. Macroplanners attempt to satisfy some

Chapter 4 – Operations: Realisation and Manipulation 101

communicative goal, by selecting appropriate information and determining appropriate

rhetorical structures. Macroplanners operate at much higher semantic levels than the

CAMEO representation supports directly. Macroplanners typically manipulate meaning

representations at the level of paragraphs or groups of sentences, and could use the

structural context elements in CAMEO to direct the document level output. However, in

this section I will focus on the sentence level realisation, and thus macroplanners are not

applicable to the discussion at hand.

The next level of generation occurs with microplanning. This level of planning

addresses sentence-level meaning representations. Microplanners decide issues such as

sentence form, referring expressions (including anaphora), lexical choice, and

amalgamation (Hovy, 2000). The microplanner produces symbolic representations

describing the sentence to be generated. At this level all of the strategic choices for the

textual output have been made.

The final stage of generation, realisation, involves the linguistic expression of the

symbolic representations produced by the microplanner. The surface realisation

component is tasked with interpreting the lexical content according to any syntactic

parameters to produce syntactically and grammatically well-formed text.

Implementations of surface realisers typically integrate a grammar component along

with some means for specifying surface variations (e.g. Elhadad and Robin, 1996).

The CAMEO language is an intermediate text representation that is suitable for

integration with a surface realiser. The CAMEO representation abstracts a subset of

lower-level grammatical functions without committing to a grammatical (or semantic)

theory. This approach allows CAMEO to provide the same intermediate role to surface

realisers as for semantic processing modules. That is, the fine-grained text

representation and surface feature parameters of the CAMEO language can serve as a

common interface to different surface realisation systems, allowing the lowest levels of

linguistic expression to be abstracted.

Because many text processing tasks (including some attempted in this thesis) require

the realisation of the output as surface text, as part of the CAMEO framework, I have

developed a transformation which deterministically maps the CAMEO representation to

surface text.

Chapter 4 – Operations: Realisation and Manipulation 102

The realisation of surface text from the internal representation is accomplished by

essentially running the transformation described in Section 3.7.2 in reverse. Instead of

traversing the syntactic parse tree, the surface realisation processes the representation

using a similar event-driven approach. Like the syntactic nodes in the transformation of

surface text, elements in the representation initiate events which generate the surface

text expression.

Figure 4.1 gives a high-level pseudocode for the general surface realization

algorithm. The transformation into surface text is driven by the primary types defined in

the model: ctx, obj, and evt elements. The algorithm processes elements recursively in

order as shown in the pseudocode. This basic algorithm will successively build up

constituents, phrases, sentences, paragraphs, and ultimately documents. It is a

deterministic transformation that is essentially compositional, and it is currently

implemented using the XSLT transformation language. (Wilcock (2001) discusses the

advantages of using XML/XSLT in the context of a pipelined NLG system, however,

the representations used at each stage are somewhat task-specific and do not attempt to

provide a general text representation as developed here).

The top level context (i.e. a ctx element of type document) begins the transformation

process. Given a ctx element, the generator first attempts to transform all evt elements

(not referenced by other elements) in the order they appear. Events will usually include

references to objects and/or contexts that the generator processes recursively. After

transforming all events contained within a context, or if no events occur, the generator

will then attempt to transform any other elements (e.g. objs, rels, etc.), in the order they

appear.

Each element is transformed using its attributes to determine the lexical expression.

For example, an evt element has an action attribute which encodes the head verb stem.

The transformation algorithm looks up the verb stem (in the lexis context), and passes it

to a morphological processor along with appropriate features (e.g. person and tense).

The output is the fully realized surface form of the word. The representation language

includes special attributes on ctx, obj, and other elements, which specify certain surface

variations. Thus it is expressive enough to facilitate multiple surface forms of a

representation through manipulation of these features.

Chapter 4 – Operations: Realisation and Manipulation 103

begin

 for each context of type document

 for each context of type sentence

 for each element not referenced by another element

 generate element

end

begin generate ctx type clause
 if conjunction then print conjunction

 for each element not referenced by another element

 generate element

end

begin generate evt

 if passive generate object obj else generate subject obj
 for each modal

 generate modal

 if perfect generate perfect

 if participle generate participle

 if neg print “not”

 if progressive generate progressive

 generate head verb

 if passive generate subject else generate object

 for each element of type mod rel inf ctx
 generate element

end

begin generate obj
 if determiner generate determiner

 if quantifier generate quantifier

 if this obj possessed generate possessor obj

 if class generate class
 if pronoun generate pronoun using proper case

 if name generate name

end

begin generate mod
 if quantifier generate quantifier

 if negative print “not”

 print lex

 for each inf

 generate inf
end

begin generate rel
 print preposition

 for each obj

 generate obj

end

begin generate inf

 with EVT reference generate evt
end

Figure 4.1 – Pseudocode for surface realization from CAMEO representation

Chapter 4 – Operations: Realisation and Manipulation 104

As an example of generating from a semantic representation, consider the

representation for the sentence [The doctor examined a patient], shown in (74).

(74) ctx

[TYPE=sentence

 obj[ID=o1 DET=the class[doctor]]

 obj[ID=o2 DET=a class[patient]]

 evt[S=o1 ACTION=examine SO=o2 TENSE=past]

]

The transformation would begin processing the ctx element, by recursing into the

container. Within the container, the next element to process would be the evt element

(because the obj elements are referenced by another element). According to the

transformation algorithm, the evt element would be processed by first generating the

subject id(o1), next the verb, and finally id(o2).

To generate id(o1), the algorithm first processes the determiner, followed by the class

elements in order. Because id(o1) has no plural attribute, and is not a group container,

each word is transferred directly from the lexis, producing the surface text: [the doctor].

To generate the verb, the algorithm reads the tense attribute, determines the person

of the subject id(o1), and passes these along with the head verb stem (from the ACTION

attribute) to the morphological processor, producing the surface text: [examined]. The

algorithm then processes id(o2) similarly to id(o2), producing the surface text: [a

patient].

After fully processing the evt element, the transformation algorithm would then

examine the remaining objects in the container (id(o1) and id(o2)). In this case, these

are ignored because they were previously referenced by another element (i.e. the evt

element). Because the type attribute of the ctx element container has a value of sentence,

the resulting surface text is processed as a sentence (i.e. end-punctuation is added using

deterministic rules). The final output becomes: [The doctor examined a patient.].

Chapter 4 – Operations: Realisation and Manipulation 105

4.1.1 Generating Object References

The transformation algorithm will normally use all existing properties of an object to

generate a reference. For example, the surface realization of the object in example (75)

is [the clothes drying on the line].

(75) evt[ID=e1 ACTION=dry PROG INF rel[on the line]]

obj[ID=o2 DET=the class[clothes] inf[IDREF=e1]]

However, in natural language an object may be referred to in a variety of ways

throughout a document. For instance, id(o2) may be referred to as [the clothes drying on

the line], [the clothes drying], [the clothes on the line], [the clothes], or even [they].

Linguistic phenomena such as anaphora, determiners, deterministic adjectives and

demonstratives are used extensively in natural language, complicating the task of

generating referring expressions. Deciding and planning these references is deferred to

other modules because the CAMEO representation is designed to be theory-neutral.

However, a processing module is able to control the form of the referring expressions

by manipulating the representation.

The method for controlling the expression of object references is to create a new

object with the desired attributes, making it equivalent with the object referred to. For

example, if there is an object element obj[ID=o1 name[John]], and the text planning

module decides to use a pronoun reference, then a new object obj[ID=o2 PRON=he

EQ=o1] can be created, and the old object moved out of the processing context. The

surface transformation will process id(o2), generating the surface text he , but semantic

processing will see the two objects as equivalent, due to the EQ attribute on id(o2).

4.1.2 Generating Phrases and Sentences

As explained in Section 3.5.2.1, a phrase is represented in the model using a ctx

element. Contexts usually include more than a simple object, however they do not

necessarily represent a complete sentence. Contexts can be referenced in event

structures as phrasal or sentential complements, or they can be unreferenced, e.g. when

participating in a conjunct.

Chapter 4 – Operations: Realisation and Manipulation 106

A context is transformed into a surface text phrase using the algorithm described

above. The type attribute on a ctx element determines whether a context is a phrase or a

sentence. If the context is a phrase, no further processing is required. The containing or

referring context generates the necessary punctuation.

The transformation into complete sentences is an extension of generating phrases.

The surface generator produces a complete sentence for every context that has a

sentence attribute set. Normally, a discourse context is composed of a number of

sequential sentence contexts (these may be grouped in higher level contexts such as

paragraphs). By processing these in order, the generator produces the output document.

If a sentence is to be formed using the conjunction of two or more phrases, the first

phrasal context must contain the other contexts. The containing context will have a

conjunction attribute set that the generator uses to determine the sentence form. For

example, the representation in (76) generates the following surface text: [Tom pulled the

brake, but the train did not stop].

(76) ctx [TYPE=sentence CONJ=but

 obj[ID=o1 name[Tom]]

 obj[ID=o2 DET=the class[brake]]

 evt[S=o1 ACTION=pull O=o2 TENSE=past]

 ctx [

 obj[ID=o1 DET=the class[train]]

 evt[S=o1 ACTION=stop TENSE=past NEG]]]

Contexts are processed recursively, and the containing context determines the form

an individual phrase takes. In example (76) the containing context carries the CONJ

attribute, which determines the form of the second phrase, i.e. conjunctive clause.

Other sophisticated constructions are possible using this approach. For instance,

subordinate clauses, appositives and quoted speech. The representation is designed to

unambiguously represent all possible surface forms, giving a discourse planning

module complete control over the generated output.

Chapter 4 – Operations: Realisation and Manipulation 107

4.1.3 Experiments

In this section I present the results of experiments designed to systematically test

both the surface realisation transformation, and the expressiveness of the CAMEO

language as a text representation. Examples of the wide range of surface forms

available in English text are given in (77), which all yield practically identical semantic

interpretations.

(77) Nancy gave the book to Tom.

Nancy gave Tom the book.

Nancy to Tom gave the book.

To Tom Nancy gave the book.

Tom, Nancy gave the book to.

The book was given Tom by Nancy.

The book was given to Tom by Nancy.

The book was given by Nancy to Tom.

The book, Nancy gave Tom.

The book, Nancy gave to Tom.

The book, to Tom Nancy gave.

Some of these variations are obviously less natural than others, but they help

illustrate the point that there can be a wide variety of surface syntactic variations for a

sentence, even if the semantic representation is unambiguous.

Selecting among the surface variations is the job of microplanning modules as

mentioned earlier. The CAMEO language provides a means to encode these selections

by using special attributes on the elements of the representation. Some of these

attributes have already been mentioned (e.g. PASSIVE in Section 3.4.6), others will be

discussed below. These attributes give microplanning modules the flexibility to specify

all forms of surface realisation, while being insulated from the mechanics of the

transformation.

In order to evaluate the CAMEO language for adequacy in expressing surface

variation, a wide range of surface forms is needed. Since this experiment is not intended

to test microplanning or other high-level text generation components, a systematic

means of producing instances of the representation was used instead of external text

Chapter 4 – Operations: Realisation and Manipulation 108

generation methods. Figure 4.1.3 shows a block diagram of the flow of processing in a

typical text generation application, and the alternative flow used in these experiments.

The experiment consists of a set of sentences encoded in the CAMEO representation

as described in Section 3.7. This representation is then fed back through the surface

realisation transformation described in Section 4.1 and the output is compared with the

original source text. This effectively simulates processing under a real application,

while providing an objective measure of evaluation.

A completely comprehensive test of available surface forms is impractical. However

the sentences used in the experiment include a wide sample of surface variation

available in the English language. The test sentences are from the development platform

of the RASP parser (Briscoe and Carroll, 2002), and thus have been used to evaluate

various parser grammars.

Input parsing

Surface text

Semantic representation Processing

Transformation

Surface text

Macro/micro planning

Semantic representation

Figure 4.1.3 – Block diagram showing flow of typical text generation application. Dotted

line shows alternate flow of experiments.

CAMEO representation CAMEO representation

Realisation

Semantic processing

Chapter 4 – Operations: Realisation and Manipulation 109

There are four sets of test sentences, each with a different general emphasis:

Set 1 This set is comprised of mainly verb phrase variants including various

prepositional phrasal constructions. It includes a sampling of tenses, e.g. [Kim

will have been abdicating], as well as verb particles [Kim made off with the

butter], and complements [That he would apologize was clear to me].

Set 2 This set contains mostly noun phrase variants, especially wh-gaps and

dependent modifying clauses. It also includes quantifier variations [All of the

butter melted, All the abbots came], and possessives [The abbot’s many abbeys

closed].

Set 3 This set has less common syntactic constructions such as object and

prepositional fronting [At Sandy Kim acknowledges that Lee looked]. It also

includes relative clauses [The abbot about whom Kim has some doubts is crazy]

and contractions [Kim can’t not help Lee].

Set 4 This set includes sentences testing more complex relative clauses [Kim is

abandoning Lee now when he is eager to be helped.] including certain pronouns

[Those in the abbey who abdicated were crazy] and quantifiers [The half that

Kim helped are crazy].

4.1.3.1 Results

A quantitative score is not very helpful in this case. However, Table 4.1.3.1 shows

some statistics about the error rate of the system. These numbers are listed for each

level of the evaluation. The number of sentences used in a particular test is recorded in

the second column of the table.

Chapter 4 – Operations: Realisation and Manipulation 110

The error rates were calculated by comparing the input text with the output of the

text transformation from the representation. Parse errors (judged from the most

probable parse returned by the parser) accounted for 45 sentences and were discarded.

An error was recorded if the output text did not match the input text exactly, including

punctuation but excluding whitespace. The type of error was manually classified

according to syntax, constituent, or punctuation according to the following criteria:

A syntax error occurs when the output sentence is not arranged in the same manner

as the input, e.g. conjunctive clauses appearing in the incorrect order.

A constituent error is recorded when a member of a noun or verb phrase is

incorrectly realised. This could be, for example, the incorrect ordering of modifiers or

prepositional phrases. It can also signify the omission of a constituent such as the

indirect object of a verb.

A punctuation error is recorded if incorrect punctuation is used or omitted, e.g.

commas marking appositives, or the trailing punctuation on a sentence.

4.1.3.2 Analysis

The CAMEO representation and surface transformation was able to correctly

regenerate a majority (93%) of the test sentences. There were no syntactic errors due to

the surface transformation. All of the constituent errors reported in Table 4.1.3.1 were

due to the conversion of the parse trees into the CAMEO representations. The majority

of these errors were due to erroneous or missing gap analysis. For example, sentence

(78) is from Test Set 3 and shows an example of a prepositional gap. Note that the

derived CAMEO representation did not assign [Kim] as the object of the infinitival

Table 4.1.3.1

Error rates for surface transformation

 Errors

Test Sentences Constituent Punctuation Total Syntax

1 209 0 0 0 0

2 152 3 2 5 0

3 191 13 1 14 0

4 33 7 14 21 0

Total 585 23 17 40 0

Chapter 4 – Operations: Realisation and Manipulation 111

complement of [desire]. The RASP system used for these experiements does not

explicitly indicate or coordinate gaps on the parse tree output, so gaps and control must

be inferred by the transformation process which converts the parser output into the

representation. In this and several similar cases, the fronted object was not interpreted

correctly and instead left unconnected to the phrase. Although this coincidentally

resulted in the correct surface expression (disregarding punctuation), it was recorded as

a constituent error because the representation was incorrect.

(78) Kim, Lee has a crazy desire to help.

obj[ID=o1 name[Kim]]

obj[ID=o2 name[Lee]]

obj[ID=o3 DET=a mod[crazy] class[desire] evt[ACTION=help INF]

evt[S=o2 ACTION=have TENSE=present o=o3]

As a further validation of the surface realisation, the erroneous representations for

each of the constituent errors were hand-corrected and the subsequent surface

realisations proved correct.

Punctuation comprised the smallest percentage of the errors observed in the

experiments. In fact, all the recorded punctuation errors were the result of spurious or

missing commas related to clauses and preposed NPs. The surface realisation of

commas is currently driven by phrasal context elements and in some cases this proved

insufficient. Other types of errors such as end punctuation did not occur, however a

systematic test of punctuation was not included in this experiment.

4.1.4 Discussion

One of the goals of this section has been to demonstrate the potential for surface text

realisation using the CAMEO representation language. Using CAMEO as a surface

description abstracts the mechanics of realisation from a text generation system,

allowing it to generate and manipulate the CAMEO language instead of internal task-

specific forms. This approach would facilitate the integration of multiple text generation

technologies, providing a common, computationally tractable form for comparison and

test.

Chapter 4 – Operations: Realisation and Manipulation 112

Because CAMEO is positioned near the surface syntactic level it does not impose a

grammar on the representation, and can thus support microplanners with a range of

grammatical approaches. This flexibility precludes the representation from abstracting

lexical issues such as light verbs and verb particles, i.e. the representation enforces no

restrictions on improper usage of these types of constructions. Thus a microplanner

would likely need to incorporate some level of lexical information to construct CAMEO

representations which realise well-formed surface expressions.

Besides testing the surface realisation component of CAMEO the experiments

exposed another possible application of surface realisation. All of the non-punctuation

errors in the experiment (after discarding parser errors) were the result of errors in the

conversion to the CAMEO representation, and not due to flaws in the surface

realisation. Therefore, running text through a process similar to that demonstrated in

these experiments can potentially serve as a test for successful conversion. That is, text

that has been converted into the CAMEO representation and realised as surface text

should exactly match the original source (disregarding parse and punctuation errors). If

it doesn‟t, it most likely indicates an error in the conversion to the CAMEO

representation.

These experiments were further intended to serve as an informal evaluation of the

expressiveness of the representation itself. While not comprehensive by any means, the

tests did include a sample of the syntactic variation encountered in English. The

representation achieved a 93% success rate on the test set, and all the errors resulted

from either the transformation of the parse trees into the CAMEO representation, or

minor punctuation errors. The internal properties and attributes built into the

representation proved expressive enough to realise the wide range of syntactic

formations used in the experiment, while still supporting a generally recursive and

deterministic transformation.

4.2 Text Manipulation

The intrinsic object-orientation of the CAMEO representation is compatible with

programming paradigms of technologies such as DHTML and XML. This simplifies

manipulation of the internal representation, and when combined with the surface

Chapter 4 – Operations: Realisation and Manipulation 113

realisation component, provides a tool for generating surface variation. Modifications to

the internal representation are accomplished by changing the value of attributes, or

adding/deleting/moving elements. For example, a program could convert all sentences

in a document to the passive/active voice by changing the passive attribute on all finite

event objects. Text can be condensed by deleting relative clauses, which only involves

searching for and removing certain context elements. Such operations require no

linguistic knowledge, and are basic functions of DOM processing.

In this section I will attempt to demonstrate the advantages of using the CAMEO

representation for text manipulation over traditional transformation-based approaches.

In Section 4.2.1 I will give a qualitative comparison of CAMEO with other approaches

on several operations related to sentence condensation. In Section 4.2.2 I will present

the results of experiments on sentence activsation and give a comparative analysis with

an extant system to show that CAMEO can produce equivalent or better alternations

with simpler manipulations and a more flexible framework.

Text manipulation is typically implemented in the literature using rule-based

transformations. A set of rules are applied to a representation and those rules that match

are executed to produce the altered output. For example, Riezler et al. (2003) describe a

system for sentence condensation using rules of the form

+adjunct(X,Y),in-set(Z,Y) ?=> delete-node(Z,r1), rule-trace(r1,del(Z,X))

applied over LFG f-structures. The left side of the rule is used to match portions of the

representation, and the right side of the rule specifies a transformation.

Another example of a rule-based framework for manipulation is SYSTAR (Canning,

2002). SYSTAR is an automated system intended for text simplification which

manipulates several syntactic constructs. One construct which is addressed in detail is

the activisation of passive verb phrases. For example, a rule which transforms a simple

passive construction followed by a comma is

((VPPAS(?b)PP("by" II)NP(?c)("," |,|)(?Y)))=>((?a)(?c)(?b)(?X)(?Y))

The rules are applied to the dependency information output from the RASP syntactic

parser.

Chapter 4 – Operations: Realisation and Manipulation 114

In many rule-based systems such as these, the rules are made to be as general as

possible in order to achieve the widest application. However, it usually requires several

variations to achieve adequate coverage. For example, SYSTAR contains 17 rules to

cover the active/passive transformation. As the system is developed and new cases are

discovered which fall outside the scope of the system, new rules must be added to

address them.

The CAMEO representation in effect inserts an intermediate step in the rule-based

approach. The normalised text representation provided by CAMEO can be thought of as

storing the results of much of the left side matching that a rule-based system would do,

and the realisation component of CAMEO is functionally equivalent to the right side of

a rule-based system.

For example, passive verb phrases are recognised (i.e. „matched‟) when syntactic

information is transformed into the CAMEO representation. The PASSIVE attribute is

attached to verb phrases which are expressed in the passive form. This encodes the

more complex part of a passive match rule in the simple attribute PASSIVE.

Subsequently, a system which needs to find passive verb phrases need only search for

the PASSIVE attribute, rather than a series of complex dependency patterns.

The surface realisation, which resembles the right side operations of a rule-based

system, is driven by the objectified attributes and elements in the CAMEO

representation. Changes to these elements and attribute values direct the form the

surface text will have. So again, rather than relying on a complex dependency pattern

match to fire a rule‟s right hand transformation, the simplified encoding of attribute and

elements serves to enable various functions in the surface realisation component.

The conversion of linguistic information into the CAMEO representation language

essentially decouples the rules, and is one advantage of the CAMEO model over rule-

based systems. In rule-based systems, the left hand matching expression is tied directly

to the right hand transformation. If there are two or more rules which use the same

match or transformation, parts of them must be duplicated. In contrast, CAMEO allows

the rule matching, expressed as the encoding of the representation language, to be

developed independently of the right hand transformations (surface realisation

function).

Chapter 4 – Operations: Realisation and Manipulation 115

For example, two different parsers were used during the course of this research.

Transformations from the parser syntactic output into the CAMEO representation were

developed for both parsers. This is analogous to using two different sets of „matching‟

rules with a common, normalised intermediate representation. Once encoded into the

CAMEO representation, however, manipulations can be processed identically and the

same set of „transforming‟ rules can be applied (i.e. the surface realisation function).

Another advantage of the CAMEO model is the manipulations are reversible, i.e.

manipulations which are driven from attribute values can simply be reverted. For

example, removing the PASSIVE attribute will activise a verb phrase, while adding the

PASSIVE attribute will make it passive again. Verb tense and aspect can also be

manipulated in this way. In contrast, rule-based systems produce altered forms of their

input which would require a separate set of rules to revert. For example, the SYSTAR

rule shown above will produce an altered dependency list with an activised verb phrase.

However, the rule will no longer apply to this new output, requiring a complementary

rule to be created to revert to the original form.

Finally, the CAMEO model allows multiple simultaneous manipulations. For

instance, several properties of a verb phrase can be changed by changing various

attribute values on the evt element. This could, say, change the tense, aspect, and

activise the sentence all at once. The text only needs to be realised after the changes

have been made. In a rule based system, several stages may be necessary to achieve the

same result. For example, one rule may transform part of the dependency information

another rule requires to match. The transformation must first be carried through before

submitting to the next rule, which is less efficient and further complicates reverting to

the original.

4.2.1 Sentence Condensation

Sentence condensation is an application of text manipulation that attempts to shorten

sentences while keeping the essential meaning. Linguistic tasks such as text

summarisation and simplification typically use techniques derived from sentence

condensation (Knight and Marcu, 2000).

Chapter 4 – Operations: Realisation and Manipulation 116

The CAMEO representation provides a simple framework for these types of

manipulations. Because constituents are explicitly encoded and objectified as elements,

removing them can be accomplished using very simple operations. For example,

prepositional phrases can be removed by deleting rel elements, adjectives can be

removed by deleting mod elements, and clauses can be removed by deleting ctx

elements.

Tasks that perform manipulations on a text representation must first have some

means of locating specific constructions. Representations that include deep syntactic

relations, such as CAMEO, are well suited for this stage of processing because the more

complex relations have been pre-analysed and encoded in the representation. This

contrasts with more shallow representations, where complex pattern-based rule

transformations must be used because dependency information is not encoded in the

representation. Requiring rules to include deep syntactic patterns complicates the

process of locating the correct constituent to condense. Excising the constituent and

reforming the sentence can be difficult as well for the same reason.

For example, Chandrasekar et al. (1996) report on sentence simplification using a

finite state grammar over tagged text. Their system used rules of the form

X:NP, RelPron Y, Z -> X:NP Z. X:NP Y.

As reported in their findings, the shallowness of the syntactic information limits the

effectiveness of this approach. Without richer dependency information certain

constructions such as long-distance dependencies and ambiguous attachments cannot be

handled properly.

Riezler et al. (2003) report on sentence condensation using LFG, which includes

deep syntactic dependency information. Like CAMEO, LFG encodes adjuncts directly

and is therefore able to remove certain constituents with simple rules. The example at

the beginning of the chapter, also from Riezler et al., gives a simple rule for deleting

adjuncts by searching f-structures for nodes belonging to the adjunct function. The

rule‟s right side specifies the operation to perform on the f-structure.

Chapter 4 – Operations: Realisation and Manipulation 117

Sentence simplification using LFG consists of applying a set of these reducing rules

to the f-structures. Once the f-structures have been modified, a realisation stage is run

over the f-structures to generate output. Because the rules are independent of the f-

structure grammar, they are not guaranteed to produce valid f-structures, so the

grammar in the generation stage serves as a filter to test for well-formed f-structures. F-

structures that pass this filter are used to produce surface text (Riezler et al., 2003).

Because the realisation of an f-structure is non-deterministic, a single f-structure may

produce multiple surface strings, and multiple strings may correspond to a single f-

structure. This is a disadvantage when developing transformational rules because it

becomes more difficult to measure a rule‟s effect on the output when it is non-

deterministic. A loose correlation between a rule and the system‟s performance will

degrade automated approaches to rule learning, and will tend to result in redundant and

larger sets of rules.

While it is desirable to produce grammatical output, for tasks that require

regeneration the use of bi-directional grammars like those used in LFG has some

disadvantages. These grammars are often complex, hand-crafted resources developed

over long periods of time, making them difficult to maintain or extend for new domains.

For certain tasks, this level of sophistication may be overkill, and it may be more

desirable to have a simple regeneration component that can realise surface text directly

from the representation.

The CAMEO representation is well-suited to the sentence

simplification/condensation task. Like LFG, CAMEO includes explicit encoding of

constituents and thus supports simplistic transfer rules. However, CAMEO uses a

deterministic realisation component which produces a single surface expression for

each representation. This avoids the ambiguity in rule evaluation and development.

CAMEO is also not constrained by a grammar theory, and supports robust and

partial processing methods. This allows condensation of individual constituents which

are not necessarily part of a well-formed sentence. For example, objects in a list or table

could be simplified using rules that operate on obj elements which are unconnected to

evt elements. The deterministic surface realiser is able to generate individual elements

or fragments in cases such as these.

Chapter 4 – Operations: Realisation and Manipulation 118

Another advantage the CAMEO representation provides over extant sentence

simplification approaches is the representation of context. The recursive contextual

structure employed in the CAMEO representation language allows condensation

operations beyond the sentence and phrasal levels. For example, larger structural

constituents like sections and chapters can be removed using the same operations

described above. Simple condensation techniques such as removing all but the first

sentence in each paragraph can also be accomplished with similar transformational

rules. Having a single representation which facilitates transformations at all levels

allows integrated approaches that would otherwise not be possible using sentential-

based representations.

To demonstrate some of the transformations possible using the CAMEO

representation, I will compare rules in the CAMEO system with rules in other systems

for several sentences reported in the literature. I will report the CAMEO rules in

pseudo-code and give examples of actual XSLT processing instructions which operate

over the CAMEO XML implementation.

Riezler et al. (2003) list a set of LFG condensation rules to transform sentence (79).

The reported condensed sentence is shown in (80).

(79) A prototype is ready for testing , and Leary hopes to set requirements for a

full system by the end of the year

(80) A prototype is ready

The LFG transfer rules reported to produce this sentence are reproduced in Figure

4.2.1-1 below. Each line represents an operation on the f-structure and the resulting

transformation is used in subsequent rules.

rtrace(r13,keep(var(98),of)),

rtrace(r161,keep(system,var(85))),

rtrace(r1,del(var(91),set,by)),

rtrace(r1,del(var(53),be,for)),

rtrace(r20,equal(var(1),and)),

rtrace(r20,equal(var(2),and)),

rtrace(r2,del(var(1),hope,and)),

rtrace(r22,delb(var(0),and)).

Figure 4.2.1-1

Example of LFG transformations for sentence condensation

Chapter 4 – Operations: Realisation and Manipulation 119

ctx [ID=t1 TYPE=sentence

 obj[ID=o1 DET=a class[prototype]]

 obj[ID=o2 class[testing]]

 evt[ID=e1 S=o1 ACTION=be TENSE=present mod[ready rel[for testing]]]

 ctx [ID=t2 CONJ=and

 obj[ID=o3 name[Leary]]

 obj[ID=o4 class[requirements]

 rel[for obj[DET=a mod[full] class[system]]]]

 evt[S=o3 ACTION=hope TENSE=present]

 evt[S=o3 ACTION=set INF

 rel[by obj[DET=the class[end]

 rel[of obj[DET=the class[year]]]]]]]]]

Figure 4.2.1-2

CAMEO representation for sentence (79)

The CAMEO representation of the full sentence is given in Figure 4.2.1-2. The

corresponding operations to produce the condensed sentence from the CAMEO

representation are show in Figure 4.2.1-3. For each transformation, an abstract

pseudocode is given, followed by the actual XPath expression that would be applied to

the representation. The transformation is implemented in XSLT using an identity

transform template (which copies elements unaltered), augmented with the specific

rules to be applied. In the case of deletion, the null template is used which does not

copy any node matched by the expression, including all descendent nodes.

Pseudocode: delete mod[ready] in evt[e1]

delete ctx[t2]

XPath:
 <xsl:template match=”evt[@ID = ‟e1‟]/mod[@lex = „ready‟]” />

 <xsl:template match=”ctx[@ID = ‟t2‟]” />

Figure 4.2.1-3

Transformational rules for condensing sentence (79)

Jing (2000) describes a sentence condensation (reduction) algorithm which operates

over the syntactic parse tree and uses multiple sources of information to decide which

portions of a sentence to elide. Although the transformation rules to remove a

subtree/phrase are not explained, sample sentence reductions are reported. One

Chapter 4 – Operations: Realisation and Manipulation 120

representative sentence (81) is shown below. Its corresponding reduction (82) (from

human judges) is also shown.

(81) When it arrives sometime next year in new TV sets, the V-chip will give

parents a new and potentially revolutionary device to block out programs

they don’t want their children to see.

(82) The V-chip will give parents a device to block out programs they don’t want

their children to see.

ctx [ID=t1 TYPE=sentence

 rel[when

 ctx [ID=t2

 obj[ID=o1 PRON=it]

 obj[ID=o2 mod[next] class[year]]

 evt[ID=e1 S=o1 ACTION=arrive O=o2 TENSE=present

 mod[sometime] rel[in new TV sets]]]]

 obj[ID=o3 DET=the name[V-chip]]

 obj[ID=o4 class[parents]]

 obj[ID=o5 DET=a mod[new and potentially revolutionary] class[device]

 evt[ID=e2 ACTION=block O=o6 mod[out]]]

 obj[ID=o6 class[ptrograms]]

 ctx [ID=t3

 obj[ID=o7 PRON=they]

 obj[ID=o8 class[children]]

 obj[ID=o9 PRON=they prop[o8]]

 evt[ID=e3 S=o7 ACTION=want TENSE=present NEG

 evt[ID=e4 S=o8 ACTION=see]]]]]]

 evt[ID=e5 S=o3 ACTION=give MODAL=will O=o5 IO=o4]]]

Figure 4.2.1-4

CAMEO representation for sentence (81)

Figure 4.2.1-4 lists the CAMEO representation and the operations to produce the

condensed sentence are shown in Figure 4.2.1-5.

Pseudocode: delete rel containing ctx[t2]

delete mod contained in obj[o5]

XPath:
<xsl:template match=”rel[ctx[@ID=‟t2‟]]” />

<xsl:template match=”obj[@ID=‟o5‟]/mod” />

Figure 4.2.1-5

Transformational rules for condensing sentence (81)

Chapter 4 – Operations: Realisation and Manipulation 121

As a final example of the transformational possibilities using the CAMEO

representation language, I will use a sample sentence from Knight and Marcu (2000),

who propose a noisy-channel statistical model of sentence condensation. In their model,

an exhaustive list of syntactic tree transformations are encoded in a packed forest. From

this, the trees are iteratively transformed and used to generate a large number of

potential surface expressions. The surface expressions are ranked using a stochastic

measure based on word-bigrams and a learned probabilistic model of a “noisy channel”

for text expansion. Knight and Marcu show the example sentence (83) listed with the

highest scoring reductions, according to their statistical measures.

The CAMEO representation for the sample sentence is given in Figure 4.2.1-6.

Table 4.2.1-7 shows each of the sentence variations listed by Knight and Marcu, and the

corresponding CAMEO operation which will produce it when applied to the

representation. (The operations listed in the table are XPath expressions for use in

template match attributes as shown previously).

(83) Beyond that basic level, the operations of the three products vary widely.

ctx [ID=t1 TYPE=sentence

 rel[beyond obj[ID=o1 DET=that mod [basic] class[level]]]

 obj[ID=o2 DET=the class[operation]

 rel[of obj[ID=o3 DET=the QUANT=three class[products]]]]

 evt[ID=e1 S=o2 ACTION=vary TENSE=present mod[widely]]]

Figure 4.2.1-6

CAMEO representation for sentence (83)

Chapter 4 – Operations: Realisation and Manipulation 122

As the examples in this section demonstrate, CAMEO provides a simple and flexible

interface for manipulation of the internal representation for tasks such as sentence

condensation. Because syntactic relationships are explicitly encoded and objectified,

patterns for matching constituents can be kept simple and precise. Transformational

operations amount to deleting elements or attribute values, which can be accomplished

by suppressing the item during an identity transformation. Once the representation has

been transformed, the surface realiser generates the corresponding surface form in a

deterministic operation. In the next section I will present this process in detail for a

particular syntactic transformation, and compare the performance of CAMEO with an

extant system.

Table 4.2.1-7
CAMEO transformations for variations of sentence (83)

Surface Text CAMEO Transformation Rule

Beyond that level, the operations of the three
products vary widely.

obj[@ID=‟o1‟]/mod[@lex=„basic‟]

Beyond that basic level, the operations of the
three products vary.

evt[@ID=‟e1‟]/mod[@lex=„widely]

Beyond that level, the operations of the three
products vary

obj[@ID=‟o1‟]/mod[@lex=„basic‟]

evt[@ID=‟e1‟]/mod[@lex=„widely‟]

Beyond that basic level, the operations of the
products vary

obj[@ID=‟o1‟]/@QUANT

evt[@ID=‟e1‟]/mod[@lex=„widely‟]

The operations of the three products vary widely ctx[@ID=‟t1‟]/rel

The operations of the products vary widely ctx[@ID=‟t1‟]/rel

obj[@ID=‟o3‟]/@QUANT

The operations of the products vary ctx[@ID=‟t1‟]/rel

obj[@ID=‟o3‟]/@QUANT

evt[@ID=‟e1‟]/mod[@lex=„widely‟]

The operations of products vary ctx[@ID=‟t1‟]/rel

obj[@ID=‟o3‟]/@QUANT

obj[@ID=‟o3‟]/@DET

evt[@ID=‟e1‟]/mod[@lex=„widely‟]

Operations of products vary ctx[@ID=‟t1‟]/rel

obj[@ID=‟o2‟]/@DET

obj[@ID=‟o3‟]/@QUANT

obj[@ID=‟o3‟]/@DET

evt[@ID=‟e1‟]/mod[@lex=„widely‟]

The operations vary ctx[@ID=‟t1‟]/rel

obj[@ID=‟o2‟]/rel

evt[@ID=‟e1‟]/mod[@lex=„widely‟]

Operations vary ctx[@ID=‟t1‟]/rel

obj[@ID=‟o2‟]/@DET

obj[@ID=‟o2‟]/rel

evt[@ID=‟e1‟]/mod[@lex=„widely‟]

Chapter 4 – Operations: Realisation and Manipulation 123

4.2.2 Active/Passive alternation

Canning (2002) gives a treatment of the active/passive alternation of verb phrases in

the SYSTAR text simplification system. She applies 14 rules to 33 instances of agentive

passive verb phrases. The system achieves a 53% grammar and 57% meaning precision

score based on the scores of four human judges. In this section I will present a

comparative analysis of the output of the SYSTAR system and activisation using the

CAMEO representation.

The SYSTAR system uses the output of the RASP processing tools and Canning

does not attempt to hand-correct errors in the parse output. This is unfortunate as it

conflates parser performance with the SYSTAR rules, making it difficult to evaluate the

performance of the system. In my experiments, I used the same test sentences as

reported in Canning (2002), treating them as unseen data with respect to the

experimental framework. However, I corrected parse errors propagated to the CAMEO

representation before attempting the manipulations. Therefore, comparison with the

SYSTAR output is expository only, intended to aid analysis of the CAMEO output.

Although Canning does not always note sentences with parse errors, where this

apparently accounts for the discrepancy in output, I note in my analysis.

The test sentences presented by Canning are sorted into 7 syntactic categories. Two

of the 33 sentences were unused due to a reported software bug. The unused sentences

were not available and thus not included in my experiment. In addition to the main

passive verb phrases reported by Canning, three of the sentences contain a secondary

passive verb. Because CAMEO allows changing each verb phrase independently,

examples are given for both activisations. Several of the sentences also included non-

agentive passive forms (i.e. passive verb constructions with no expressed subject).

These cannot be activised without deeper inferencing and are not addressed in the

study.

I used the 31 sentences listed in Appendix A of Canning (2002) to test the

activisation of sentences in CAMEO. I converted each sentence into the CAMEO

representation using the procedure described in Section 3.7. The sentences were

reviewed for parsing errors and manually corrected. The PASSIVE attribute was then

Chapter 4 – Operations: Realisation and Manipulation 124

removed from each passive verb and the sentences transformed to surface text using the

CAMEO surface realiser. The results were compared to those reported by Canning

(ignoring minor punctuation discrepancies), and the complete output is listed in

Appendix A. Table 4.2.2 summarizes the differences between the two systems.

The first row in Table 4.2.2 shows the number of sentences correctly activised by

CAMEO that directly matched the SYSTAR system output for each syntactic category.

The second row shows the number of sentences that differed only by constituent order.

These sentences are correctly activised and judged grammatical. Without an

independent judgment of the meaning of the sentence it is difficult to quantify the

performance in this category, however, I will discuss several of the representative cases.

The final row gives the number of sentences activised incorrectly by SYSTAR, due to

system or parse errors. These sentences (with parsing errors corrected) were correctly

activised by CAMEO.

One of the challenges for activising more complex passive constructions is

constituent ordering. The position of adverbs and prepositional phrases in a sentence

that has been activised is variable. For example consider sentence (84):

(84) Emma Rae , 15 , of Parkhurst Road , said her three-year-old brother ,

James, suffered a broken leg when he was knocked down by a car on

Sunday , not far from where the little girl died .

The two final prepositional phrases (on Sunday, not far from …) are adverbial but take

a post-object position in the passive sentence (i.e. after a car). When activising this

sentence the passive object (a car) becomes the active subject. The two adverbial

phrases can either follow the passive object, in which case they assume a post-subject

position in the new sentence, or remain in a post-object position behind the new object

(he). SYSTAR produces the former (85) and CAMEO the latter (86), shown below.

Table 4.2.2
Comparison of CAMEO output to SYSTAR on test sentences

 Past Present Modal Perfect Progressive Is to be Total

Matches 10 1 3 1 15

Constituent order 4 1 1 1 7

SYSTAR Errors 7 2 9

Chapter 4 – Operations: Realisation and Manipulation 125

(85) Emma Rae, 15, of Parkhurst Road said her three-year-old brother, James

suffered a broken leg when a car on Sunday, not far from where the

little girl died knocked him down.

(86) Emma Rae , 15 , of Parkhurst road , said her three-year-old brother , James,

suffered a broken leg when a car knocked him down on Sunday, not far

from where the little girl died .

(The SYSTAR output was affected by a parse error, which incorrectly analysed parts of

the sentence. However, the resulting activisation is not ungrammatical and illustrates

the variability of the possible transformations.)

The prepositional phrases remain in the post-object position in CAMEO because the

FORM attribute is set when the sentence is transformed into the CAMEO representation.

The activisation only requires modifying the PASSIVE attribute, so the positions of the

phrases do not move in relation to the expressed sentence structure. Of course,

removing or modifying one or both of the FORM attributes is another option, which

would allow producing the variation shown in (85), as well as many others. A rule-

based system does not have this freedom because the rules are statically linked to the

transformations. Thus a certain match will always produce the same output.

Another example where the constituent order significantly affects the readability of

the sentence (87), is shown below with the SYSTAR (88) and CAMEO (89) outputs:

(87) Last year the campaign was supported by 38 primary schools with a

further five joining in this time .

(88) 38 primary schools with a further five joining in this time supported last

year the campaign.

(89) Last year 38 primary schools supported the campaign with a further five

joining in this time .

Because the matching rules in SYSTAR are relatively shallow, the constituents

before the passive verb phrase are ignored, or effectively taken as the entire subject. As

this example shows this is not always advantageous, and may produce more awkward

Chapter 4 – Operations: Realisation and Manipulation 126

activisations. Because CAMEO encodes the syntactic dependencies in the

representation, and the representation is used to transform text, the precise subject is

used in the transformation. The resulting text is a closer match syntactically to the

original passive sentence.

There was one tense discrepancy which I judged to be an error with the SYSTAR

output. The sentence is reproduced below (90) with the output from SYSTAR (91) and

CAMEO (92).

(90) She is impressed by the changes in the city , particularly the proposed

introduction of the Metro .

(91) The changes in the city impressed her particularly the proposed

introduction of the Metro.

(92) The changes in the city impress her , particularly the proposed introduction

of the Metro .

The tense of the verb phrase is clearly present (i.e. to be conjugated is), where

SYSTAR produces a corresponding past tense. However it is difficult to determine

whether this is intrinsic in the system, since the only other present tensed example

resulted in another SYSTAR error. The tense of the verb is analyzed and encoded in the

CAMEO representation, ensuring that during surface realisation the tense is preserved

and properly generated.

One of the difficulties in the activisation of sentences is the ambiguity that can

sometimes appear in the passivised subject (see Section 3.4.6). Sentence (93) below,

taken from the test set, is one example. The prepositional phrase [by post] is probably

best interpreted as describing the means of the notification, rather than having the

subject function. However, both systems activised the sentence as [Post informed Mr.

Clifford, a single man who is now on police bail.]. To prevent such generalizations, a

method for detecting exceptions to the general passive construction would be required,

either during the transformation into the representation from the syntactic structure, or

in the syntactic analyser itself.

(93) Mr Clifford , a single man who is now on police bail , was informed by post .

Chapter 4 – Operations: Realisation and Manipulation 127

The remaining sentences which had errors in the SYSTAR output comprised

constituent errors which changed the meaning of the sentence. For example, in sentence

(94), the SYSTAR output incorrectly mixes the dependent clause with the passive verb

phrase, resulting in an incorrect meaning (95). This may be due in part to a parser error,

or it may be related to the shallow rule match expressions. The CAMEO output is

shown in (96).

(94) Alan , who is sponsored by Washington-based outdoor clothing and

equipment manufacturer Berghaus , has now reached the summit of

Makalu , the fifth highest peak in the world .

(95) Washington-based outdoor clothing and equipment manufacturer

Berghaus has now reached the summit of Makalu, the fifth highest peak in

the world sponsored Alan, who

(96) Alan , who washington-based outdoor clothing equipment manufacturer

Berghaus sponsors , has now reached the summit of Makalu , the fifth

highest peak in the world.

Further instances of similar errors in the SYSTAR output are recorded in Appendix

A. In each case, the corresponding CAMEO output is acceptable, and closely matches

the constituent order of the original sentence.

In several cases the CAMEO output had minor punctuation errors relating to missing

or misplaced commas. As mentioned in Section 4.1.3.2, the placement of commas

during realisation is driven by embedded contexts. When a phrasal ctx element is

encountered within a sentence-level ctx element, the surface realiser will offset the

phrase with commas. This is a simplistic approach which is generally sufficient, but is

inadequate in some cases. For example, the CAMEO output of sentence (4) in

Appendix A is shown in (97) below. The representation includes embedded contexts for

the phrase [who treated the dead girl] and [the consultant who treated the dead girl],

resulting in an extra comma. The surface realisation algorithm could be enhanced to

include a more sophisticated treatment of cases such as these, but a more general

approach would be to add attributes to the representation that would allow higher-level

Chapter 4 – Operations: Realisation and Manipulation 128

processors to control the expression of punctuation directly, or override the default

behaviour of the surface realiser.

(97) When demonstrators returned this morning , the consultant , who treated

the dead girl , joined them .

4.3 Conclusion

The structure and form of the CAMEO representation, along with the rich set of

features for encoding surface information, has advantages over other representational

forms for certain operations. In this chapter I examined two specific operations on the

representation, surface realisation and sentence passivization, and compared CAMEO

with other representational approaches on several examples from the literature.

The CAMEO language includes a strategy for deterministic surface realisation of

text from the internal representation. The transformation algorithm uses an event-driven

approach to process the recursive structure of the representation. The surface form is

generated using the elements in the representation and their attribute values. Special

attributes are defined to allow variations in the surface form.

The flexibility of the representation is reflected in its object-oriented design, which

enables programmatic manipulation using existing DOM-based tools. Transformations

of the internal representation were demonstrated for sentence condensation and

sentence activisation tasks. The experiments showed that the representation has

advantages over more linear and lexical approaches to these tasks, and has

transformational simplicity on par with more deeply structural representations such as

the f-structures of LFG.

5

Context in Symbolic Processing

In this chapter I will discuss the different kinds of contextual information available

for use in text processing, and explain the representational approach I have taken.

Through experimental analysis I will evaluate how certain types of discourse processing

can leverage contextual information.

Research into the structure of discourse has shown that beyond the local level of

adjacent sentences there emerges a wider scope of textual coherence, sometimes

referred to as a discourse segment (Allen, 1995). In general, a discourse segment is a

group of text which coheres to a certain topic. Each discourse segment produces a local

context in which to interpret the text (in addition to other more global contexts). The

local context contains the evolving state of the discourse segment and is critical to

understanding the text. Without considering the local context, sentences would be

interpreted in isolation and a discourse would not be possible.

There is currently no clear formal definition of what comprises a discourse segment

or how they can be determined. This is an active area of research and includes the

question of how sentences in a discourse segment internally relate to each other, and

how discourse segments externally relate to other discourse segments. Hovy (1990)

surveys many of the coherence relations proposed in the literature as holding between

sentences. Rhetorical Structure Theory (Mann and Thompson, 1987), among others,

gives an account of segmental relations. Much of this type of analysis is beyond the

scope of this research. Instead, I will focus on what information can be derived from the

surface syntactic analysis, in relation to discourse segments.

Chapter 5 - Context in Symbolic Processing 130

Although it is not clear what formally constitutes a discourse segment, several

properties are apparent:

First, the sentences in a discourse segment necessarily share a common context and

set of assumptions about the state of the discourse. This follows from the definition of a

discourse segment, i.e. that the sentences in the segment cohere. In addition, a discourse

segment should generally retain a single personal aspect throughout. For example, in a

narrative the author sometimes assumes third person to relate the story. Within the story

there may be segments from other sources, such as a speaker in a dialog. Each segment

of dialog represents a new personal aspect, i.e. that of the speaker. Because they do not

share a common reference with the global narrative, these dialogs should be considered

as separate discourse segments.

Next, a discourse segment boundary represents some shift in focus or topic.

Sometimes this is simply a shift in reference, as described above for dialog segments.

Other times the shift may be more subtle and difficult to detect. However, when the

topic or reference shifts, it affects the coherence of the text, and a new discourse

segment is warranted.

Finally, discourse segments exhibit a recursive nature. By this I mean that discourse

segments can be compositionally constructed of other discourse segments until an entire

document is considered a single discourse segment. This is necessitated by the

flexibility of natural language, which places few constraints on the structure of a

discourse segment allowing them to exist inside other segments. Subsequently,

discourse segments appear in many forms and configurations, (including parallel

constructions in some cases). This flexibility becomes an important consideration in

designing a representation.

5.1 Document Structure

Text that appears in documents usually is presented with a graphical structure. For

example, chapters, sections and paragraphs are separated by whitespace, and quotations

or references from other documents are often offset. Structural elements such as these

are good candidates for discourse segment boundaries, as they usually entail some shift

in topic or aspect. Like discourse segments, they can appear in recursive, compositional

Chapter 5 - Context in Symbolic Processing 131

structures. For example, chapters can be composed of sections containing sub-sections

containing paragraphs.

Increasingly, this structure is explicitly marked in online documents using languages

like XML, HTML, and DocBook (an XML schema for document publishing), making

it much easier to recover during processing. Although this does not necessarily help the

discovery of finer-grained discourse segments, it provides some level of segmentation

that is somewhat deterministic.

5.2 Sentence Structure

It has been noted by researchers in early work on discourse segmentation (Polanyi

and Scha, 1984), that the syntactic structure of sentences bears a resemblance to the

structure of discourse segments in a document. That is, sentence phrasal structure is

hierarchical and compositional, much like discourse segments. In fact, the dependency

relations produced by some theories of discourse segmentation look similar to phrasal

parse trees, and some discourse parsing frameworks use a single parser at both the

discourse and sentence level (e.g. Forbes et al., 2001). This is a helpful insight because

it suggests a common representation for structure at all levels of text.

For a discourse segment, the fundamental structure I am proposing is a container

serving as a context for the sentences. Extending this paradigm to the sentence level

seems plausible because the clausal construct can serve as the context for the individual

component constituents of the clause. The different NP constituents share the same

context (clause) and are related through a coherent topic (main verb).

This perspective on clausal segmentation appears to fit with other syntactic theories

as well. For example, Allen (1995) discusses the idea of a local constituent domain,

defined as the set of constituents subsumed in the nearest S or NP node (in a phrasal

parse). This correlates with the idea of a clausal segment, where the segment represents

the local domain dominated by an S node.

Chapter 5 - Context in Symbolic Processing 132

5.3 Context

A key function of the discourse segment is providing context for the elements it

contains. Sometimes elements of this context are made explicit, as when a speaker is

identified in a dialog statement. Other times the entire context must be inferred. When

inducing the local context, the hierarchical structure of discourse segments can

sometimes be of help.

For instance, a document ultimately has some source or author. The outermost

context of the document should begin with this source as the contextual reference. As

new contexts are discovered during processing, such as chapters, sections and

paragraphs, this source would be inherited so that all text in the document shares this

reference. However, if a paragraph includes some embedded context, such as a

quotation, a new context with a different source would need to be created, overriding

the default inheritance of the parent context.

The context for a discourse segment contains more than just the reference, of course.

All of the discourse entities encountered in the text become part of the context, and the

context progressively evolves based on the information contained in the text it includes.

The context serves to record the state of all its member elements, and can be used in

tasks such as information extraction, and reference resolution.

There are several levels of information which can be derived from contexts, some of

which are beyond the scope of this research.

The semantic content of a context requires some level of semantic processing to

discover. This has applications to tasks such as text understanding, where logical

properties such as entailment are required. I will assume semantic processing to be

handled by external processors and will not address it.

Syntactic information provided by the context includes discourse entities (i.e. obj

elements recovered from the dependency structure), grammatical relations, and tense

and aspect. These are not strictly a contextual phenomenon as they are derived from

individual sentences. However, this information will be leveraged at the contextual

levels to varying degrees in the experiments that follow.

Chapter 5 - Context in Symbolic Processing 133

Another level of information that a context provides is segmentation. Segmentation

helps constrain complexity by giving boundaries to the scope of discourse properties.

For example, during reference resolution, it may be helpful to consider not crossing

certain contextual boundaries. This can reduce the number of antecedents to consider. (I

will explore this hypothesis later in Section 5.9.)

5.4 Contexts in CAMEO

Because context is arguably the distinguishing feature of discourse segments, and

because a similar concept can be applied at varying levels of textual organization, from

the document level to the clausal level, I will adopt contexts as a unit of organization.

The CAMEO ctx element is a generalized abstraction of a contextual grouping. It is

a representational element integrated with the other elements of the CAMEO

representational language, giving CAMEO the capability to represent arbitrary

recursive contexts. As with other aspects of the language, this allows for discourse

segmentation to be represented in a theory-neutral manner. For example, discourse

parsers which use discourse segments finer than those extracted from the graphical

document structure can construct a hierarchy of ctx elements.

I have earlier described briefly the form of the ctx element in the CAMEO

representation (see Section 3.5.2.1). Here I will explain how it is used to explicitly mark

the contextual segmentation of a document at all levels. At the document level the

context is recovered from the document structural mark-up (when available) or inferred

using a document grammar. At the clausal level the context is derived from the

syntactic parse information.

A clausal context is used wherever an S node (sentential phrase) is encountered in

the parse tree. This includes conjunctive, dependent and relative clauses. The context

becomes a container for the other elements dominated by the S node (obj, evt, etc.). In

addition, the top level clausal context of a sentence is placed inside a sentential context.

(This facilitates reference by sentence number in both processing and generation.)

Document level contexts are used to represent structural mark-up during initial

processing. Several specific mark-ups are supported directly in the framework (e.g. title,

Chapter 5 - Context in Symbolic Processing 134

paragraph, and author). Other types of mark-up are generalized using a contextual node

with the original tag name as an attribute (TYPE). This allows various formats to be

processed while still retaining the structural segmentation.

The TYPE attribute identifies the type of context (i.e. chapter, paragraph, clause, etc.).

Other attributes are optional and depend on the context type. For instance, document,

chapter, and section contexts may have a TITLE attribute. Clausal contexts optionally

have a CONJ attribute as described in Section 3.4.2. A REF attribute can be attached to

any context and is used to determine the author or source.

During processing, contexts are processed recursively. Each new context

encountered becomes the new active context for the purposes of processing. The

elements contained within the context constitute the local domain. For instance, a

paragraph context will have sentence elements that constitute its local domain. A

clausal context will have obj, evt, mod, and rel elements for its local domain. As

processing completes on each context, the active context reverts to the parent and

processing continues until all contexts have been processed. This approach effectively

implements a contextual stack, which can properly handle the hierarchical nature of

contexts.

The recursive property of ctx elements gives a complete representation for the

document structure through the clausal level. In addition to its utility in processing

tasks, this representation can be used to extend the surface generation algorithm of

Chapter 4 to include document structure (e.g. paragraph breaks, chapter titles, etc.).

Having document structure integrated with syntactic structure in a single

representational form makes it unnecessary to have multiple versions of the document

for different applications.

Before exploring some of the contextual issues relating to coreference that arise in

text processing (which require a representation of context), I will first introduce the

general problem of coreference resolution, survey some of the current approaches, and

explain how the CAMEO representation helps facilitate this type of processing.

Chapter 5 - Context in Symbolic Processing 135

5.5 Reference Resolution

One of the critical tasks in the processing of discourse text is the resolution of

anaphora and coreferences. Applications that require any more than a shallow semantic

analysis will benefit from reference resolution, due to the high frequency of this

phenomenon in natural language. Without a means for resolving coreferences, objects

in a representational model remain as separate individuals and text understanding

beyond the phrasal level is not possible.

Although anaphora is a general term describing references to entities in a discourse,

it is sometimes taken to mean pronominal references in the reference resolution

literature. The next few subsections will briefly survey the existing approaches to

pronominal anaphora resolution and the more general problem of coreference

resolution.

5.5.1 Algorithms for Pronominal Anaphora Resolution

Anaphora resolution is difficult because it is often ambiguous, and may need

commonsense knowledge to resolve in some cases. For example,

(98) John took his dog Fido to the vet. He drove very fast.

A naïve resolution algorithm might pick Fido as the referent of he, based on recency

or other textual features. To understand why this is a difficult problem, consider the

following sentences which have an identical syntactic construction:

(99) John took his friend Bill to the doctor. He was very sick.

The contrast between these two cases suggests that an algorithm that does not take

into account semantic context will not be able to resolve all anaphora correctly.

In addition to semantics, another important factor in anaphora resolution is a

discourse model. A discourse model accounts for the attentional focus of a document,

providing a basis for selecting one referent over another. For example, centering theory

proposed by Grosz, Joshi, and Weinstein (1995), includes a discourse model that can be

used in anaphora resolution algorithms. The claim made in centering theory is that an

Chapter 5 - Context in Symbolic Processing 136

attentional “center” exists at any point in a discourse, and should receive preferential

treatment during anaphora resolution. Centering theory has been extended and has

formed the basis of several resolution algorithms in the literature (e.g. Walker, 1998).

In contrast to the discourse model of centering theory, a purely syntactic approach

was proposed by Hobbs (1977). Hobbs describes a “tree-walking” algorithm, which

uses the structure of the syntactic parse tree to find antecedents. In this approach, a set

of rules determines how the parse tree is traversed and ultimately settles on a referent.

Although the tree searching of Hobbs is syntactically based, it does implicitly encode

salience for grammatical roles in the rules of the algorithm (i.e. trees are traversed

breadth-first, from left to right, giving preference to subject roles).

Salience factors are the central aspect to the anaphora resolution algorithm proposed

by Lappin and Leass (1994), whose use of weighted features lends itself naturally to a

computational model. The algorithm tabulates a set of salience features for referents in

the text, updating them as each sentence is processed. When an anaphoric reference is

encountered, the table is consulted to determine the most likely referent, based on its

score in the table. The salience features used in the Lappin and Leass algorithm include

locally derived properties such as syntactic constituency, and a few global properties

such as recency. Semantic properties were not considered in the original algorithm.

The Lappin and Leass algorithm has received some attention in the research

community partly because it fits well with computational techniques and has proven a

fair approximation of anaphoric phenomena in natural language. However, one

disadvantage of the model is the weights on the various salience features need to be

determined experimentally. There is also some question about whether these weights

are domain dependent.

5.5.2 Algorithms for Coreference Resolution

Coreference resolution expands the task of pronominal anaphora resolution to all

referential phrases in the text. This includes not only all nominals (objects) but verbs

(events) as well (although few studies of coreference resolution include verbs).

Examples of work that acknowledge the more general problem of coreference are

Alshawi and Crouch (1992), and Popescu-Belis and Robba (1997). Alshawi and Crouch

Chapter 5 - Context in Symbolic Processing 137

propose coreference resolution as a unification of nominal objects under QLF. Popescu-

Belis and Robba simply propose a framework for representing referring expressions

(REs) that can be extended to support experimental algorithms.

Recently there has been some effort at applying machine learning to reference

resolution (and the more narrow problem of pronominal anaphora resolution) (Aone

and Bennet, 1996; McCarthy and Lehnert, 1995; Ge et al., 1998; Soon et al., 2001).

Machine learning algorithms cast the reference resolution task as essentially a

classification problem, where a pair of references are labelled as coreferring (or not)

based on a set of features extracted from the text (Ng and Cardie, 2001). Preiss (2002)

compares the performance of a machine learning anaphora resolution algorithm to the

shallow parse approach of Kennedy and Boguraev (1996) and finds no significant

difference in performance.

Algorithms for full reference resolution must arrange the nouns that appear in a

corpus into a set of equivalence classes. Each instance of a noun, whether anaphoric or

not, refers to some particular conceptual entity of the author. All references in a

discourse referring to the same entity form an equivalence class for that entity.

Determining these equivalence classes is the goal of coreference resolution algorithms

(Hirschman, 1997).

5.6 Reference Resolution in CAMEO

Implementation of a coreference resolution algorithm using CAMEO is facilitated by

the representation of objects in the CAMEO language. Because objects are represented

explicitly, and attributes can easily be attached to them, a resolution algorithm is

essentially a unification operation over existing objects. Section 3.2.2 gives the object

unification function defined by the representation which is used to test basic

compatibility between objects. Reference resolution algorithms can use this to filter

reference candidates before applying algorithm specific decision processing. Further,

the contexts included in the representation allow for extending existing algorithms to

factor in contextual features as well. For example, a by-line may have location

information that is more likely to corefer with demonstrative pronouns.

Chapter 5 - Context in Symbolic Processing 138

As an example of the kinds of operations that can be implemented for coreference

resolution, consider the two sentences and their corresponding representations:

John has a new car. He bought it yesterday.
ctx

[TYPE=sentence
 obj[ID=o1 A=h G=m name[John]]
 obj[ID=o2 DET=a A=i mod[new] class[car]]

 evt[S=o1 ACTION=have o=o2 TENSE=present]
]
ctx

[TYPE=sentence
 obj[ID=o3 PRON=he]
 obj[ID=o4 PRON=it]
 evt[S=o3 ACTION=buy o=o4 TENSE=past mod[yesterday]]
]

In this case there are two pronominal references to resolve: id(o3) and id(o4).

Assuming the attributes shown in this example (i.e. animacy A and gender G) have been

populated by some processing module, a simple resolution operation might proceed as

follows. Once the pronoun id(o3) is encountered, the algorithm searches for the most

recent object having an animacy attribute equal to h (human), and gender attribute equal

to m (male). It can do this by explicitly recursing through all previous obj elements, or

alternatively using a simple query of the form

Find the most recent obj outside this context with A=[h] and G=[m]. Return the object.

Of course this example is trivial and a more sophisticated algorithm will require

determining many other properties of an object. For example, to resolve the pronoun

id(o4), an algorithm may need to determine if a candidate object (say id(o2))

participates in the same verb. A simple test of the form

Find an evt with (S=[o4] or O=[o4] or IO=[o4]) and (S=[o2] or O=[o2] or IO=[o2]).

This query returns an event if both id(o4) and id(o2) are arguments to the same verb

(i.e. subject, object, or indirect object). The possibilities for creating queries in CAMEO

are as flexible as the XPath language which is used for the implementation. An example

of a real query in the XPath language used in the experiments described below is

Chapter 5 - Context in Symbolic Processing 139

id('o4')

[.//@idref='o2' or

 .//@obj ='o2' or

 prop

 [@obj = 'o2' or

 id(@obj)//@idref='o2' or

 id(@obj)//@obj ='o2'

]

].

This query tests if id(o2) is in the NP domain of id(o4) by testing for any reference to

id(o2) that can be reached through an element contained in id(o4), or contained in an

object property of id(o4).

As demonstrated here, complex queries regarding elements, attributes and their

relations can be accommodated by the representation. Explicit programmatic processing

of the elements in the DOM is also possible, as well as a combination of both. The

results of the experiment that follows were obtained using both types of operations on

the representation provided by CAMEO. No other task-specific transformations were

required.

5.7 Contextual Issues with Reference Resolution

Much of the work on pronominal reference resolution over the last decade has

focused on syntactic and morphological processing. Performance achieved using these

methods generally fall below 80% (Mitkov, 2001; Tetreault, 2001). To achieve

incremental gains in performance of these systems, researchers have been exploring the

application of deeper informational content to existing algorithms, such as semantic and

pragmatic analysis. One aspect of language processing which has recently received

some attention is the consideration of structure for reference resolution.

There are two types of structure to consider for reference resolution. One is the

structure of the discourse, and one is the structure of the document. Discourse structure

is a deep analysis of the semantic and pragmatic implications of sentences or utterances.

For example, Tetreault and Allen (2004) experiment with several discourse

segmentation strategies applied to dialog reference resolution.Their findings suggest

that discourse structure does not provide a significant increase in performance, though a

small incremental gain was reported. Other theoretical work, such as Ide and Cristea

(2000) also suggests that leveraging discourse structure for reference resolution is

Chapter 5 - Context in Symbolic Processing 140

beneficial for a certain small percentage of constructions. This type of structural

information is difficult to produce automatically, and is not generally available in

annotated corpora.

The second type of structural information that is relevant to reference resolution is

the textual/logical structure of a document. As mentioned above this is much more

accessible for computational processing. Goecke and Witt (2006) present a corpus study

on integration of document structure with anaphora resolution. They suggest that the

hierarchical arrangement of document structure might influence an algorithm‟s choice

of antecedent in two ways: either through the location of the referent in the structure, or

through the effect of the structure on the search window.

In the first case, the authors suggest that an antecedent is more likely to occur in a

structural element at the same level or higher in the hierarchy as the referent. For

example, a referent in a document‟s section, say, 4.3 is more likely to have an

antecedent in section 3.2, than sections 4.2.1, even though an antecedent in section 4.2.1

is likely nearer to the referent.

The second case suggested by Goecke and Witt (2006) is the effect the hierarchical

structure of a document might have on a reference resolution algorithm‟s antecedent

search window. For many implementations of reference resolution, a heuristic limit to

the search space is employed. This may be 2 or 3 sentences, or it may be based on the

number of candidate antecedents encountered. However, this does not take into account

the hierarchical structure of the document. For example, a large list or quotation may

intercede between an antecedent and a referent. Measuring the linear (i.e. non-

hierarchical) distance may show the antecedent out of the algorithm‟s search window.

Using the hierarchial structure, the intervening list or quote context is „collapsed‟ and

does not extend the size of the search window.

A related application of the hierarchical document structure is the consideration of

contextual segment boundaries. In their corpus study, Goecke and Witt (2006) find that

referents occurring in the middle through the end of a paragraph tend to have

antecedents within the same paragraph. Referents that occur at the beginning of a

paragraph tend to have antecedents within a much larger scope outside of the referent‟s

paragraph.

Chapter 5 - Context in Symbolic Processing 141

In the following sub-sections, I will explore several challenges to reference

resolution for specific types of anaphora and specific genres of text, based on a small

corpus study. These issues serve to illustrate some of the specialized contexts that have

to be directly addressed in order to move reference resolution performance past the

current plateau achieved through generalized algorithms. An integrated representation

of document structural context enables existing reference resolution algorithms to be

extended to encompass contextual information. In Section 5.8 I will present several

experiments which integrate contextual information from the CAMEO representation

with a reference resolution algoritm.

5.7.1 Demonstratives in Context

One challenge faced when analyzing certain textual documents for coreference

resolution is demonstrative pronouns (i.e. this and that). Many times a reference will be

made to a particular portion of a document, or the document itself. For example, [This

document describes how to install …], or [This section will explain …].

An even more difficult construction is found when the demonstrative is alluding in

some way to the section title. For example, the following structure appears in a Linux

HOWTO document:

2. Comparing Linux with other Operating Systems

2.1. General ComparisonGC

The best place to find out about thisGC is in such documents as

the `Linux Info sheet' , `Linux Meta FAQ ' and `Linux FAQ ' (see

"Linux Documentation") .

Notice that the demonstrative [thisGC] is referring obliquely in some way to the act of

performing a general comparison of Linux with other operating systems, although in

most cases resolving this to the section title would be adequate.

In each of these cases, some notion of context along with some concrete

representation is needed to correctly resolve the reference. For the demonstrative [this

section], simply resolving all like instances into an equivalency class would not be

correct, as the reference is contextually dependent. Also, for tasks involving semantic

processing, the root antecedent should link to the relevant portion of the document.

Chapter 5 - Context in Symbolic Processing 142

 The contextual representation proposed in this section addresses both of these

issues. The demonstrative can be evaluated with respect to the context (section) it is

found in, and every context can be used as an antecedent, just like obj and evt elements.

5.7.2 Contextual Issues with First and Second Person

There is little mention of first and second person resolution in anaphora resolution

research. It is generally assumed that these pronouns are unambiguous and should

therefore form an equivalence class. However, in many cases such as news text and

literature, contextual issues arise which make this assumption incorrect. Consider the

following text which appears in the corpus of Siddharthan (2003). (Note: co-referents

are labelled using the primary antecedent for clarity).

The WolfWOLF and the LambLAMB.

Once upon a time a WolfWOLF was lapping at a spring on a hillside, when,

looking up, what should heWOLF see but a LambLAMB just beginning to drink

a little lower down. "There's myWOLF supper," thought heWOLF, "if only

IWOLF can find some excuse to seize it." Then heWOLF called out to the

LambLAMB, "How dare youLAMB muddle the water from which IWOLF am drinking?"

"Nay, masterWOLF, nay," said LambikinLAMB; "if the water be muddy up

there, ILAMB cannot be the cause of it, for it runs down from youWOLF to

meLAMB."

"Well, then," said the WolfWOLF, "why did youLAMB call meWOLF bad names

this time last year?"

"That cannot be," said the LambLAMB; "ILAMB am only six months old."

"IWOLF don't care," snarled the WolfWOLF; "if it was not youLAMB it was

yourLAMB father;" and with that heWOLF rushed upon the poor little LambLAMB

and ate herLAMB all up. But before sheLAMB died sheLAMB gasped out “Any

excuse will serve a tyrant."

In this short text, there are seven instances of a first person pronoun which refer to

two different individuals – neither of which is the narrator. Likewise, there are five

instances of a second person pronoun, alternating between referents. To correctly

process the text requires a representation of the context of each clause.

Chapter 5 - Context in Symbolic Processing 143

The CAMEO representation of the contextual structure (omitting certain clausal

contexts) for the first two sentences is approximated below.

ctx [TYPE=doc TITLE= The Wolf and the Lamb

 ctx [TYPE=para

 ctx [TYPE=clause [Once upon a time ...]
 ctx [TYPE=clause

 obj [ID=o11 [he]]
 ctx [ID=t5 TYPE=clause REF=o11 [“There’s my supper”]]
 ctx [TYPE=clause REF=o11 [“if only I can find some excuse to seize it”]]
 evt [TYPE=clause S=o11 C=t5 [thought he]]

The dialog produces context elements which are distinguished from the running text

using the REF attribute. The REF attribute records the speaker and allows for the first (and

possibly second) person pronouns to be correctly attributed.

Note also that the pronoun [he] in the first sentence of the last paragraph can be

resolved correctly because the dialog is out of the linear ordering of the text contexts. A

syntactic, recency based reference resolution algorithm would choose [WOLF] as the

antecedent because it is the most recent linear context. Without a contextual

representation, the most recent linear context would instead incorrectly choose [FATHER].

Of course, not every discourse contains dialog, but there are other constructions

where contexts are crucial to interpreting first and second person. These appear with

varying degrees of frequency based on the genre of text and the intended purpose of the

document.

Figure 5.7.2 gives the percentage distribution of pronouns for a sample corpus. The

corpus is from the University of Wolverhampton (Mitkov et al., 2000) and is comprised

of seven technical documents. The corpus has coreferential nominal identity chains

marked in accordance with the MUC-7 syntax. The documents consist of:

Chapter 5 - Context in Symbolic Processing 144

Winhelp README file for Windows Internet Explorer

Urban DIY article about tools and tool safety

Panason Instruction manual for a Panasonic television

Hinari Instruction manual for a Hinari television

Cdrom Linux CD-ROM HOWTO

Aiwa Instruction manual for Aiwa stereo receiver

Access Linux adaptive technology HOWTO

Figure 5.7.2 – Percentage distributions of several pronouns on the Wolverhampton

corpus

The graph reveals that the most common pronoun in this corpus (on average) is

[you], which comprises nearly 60%. Since the corpus is comprised of generally

instructive documents this is to be expected. The next most common pronoun is [it],

followed by [I] and finally, all others combined (this includes he, she, they, one,

everybody, etc.)

Looking at the distribution of the pronoun [I], it is clear even within this specific

genre of text, that there is high variance. Only three of the seven documents use first

person, and the usage varies. The access and cdrom documents are both written in first

person and aimed towards users of the Linux operating system. In addition, the cdrom

document also employs a rhetorical first person in questions used as section titles (e.g.

How can I tell what speed CD-ROM I have ?). The winhelp document on the other hand,

quotes questions from users in the first person.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Total

access

aiwa

cdrom

hinari

panason

urban

winhelp

i you it other

Chapter 5 - Context in Symbolic Processing 145

The de facto algorithm for resolving first person references, based on number and

person constraints, simply links to the most recent preceding instance. Using this

algorithm on the access document results in a 90.9% precision for first person

pronouns. (For these experiments precision was measured as membership in the correct

equivalence class).

An enhanced algorithm which takes into account contexts can be implemented using

a back-off strategy: The contextual chain is searched for the nearest ancestral context

which has a reference attribute. If no context is found, the system falls back to the

default strategy of resolving to the nearest preceding instance of the pronoun. This

strategy correctly resolves 100% of the first person pronouns in the access document

when contextual information is included in the representation.

The same strategy can be employed when resolving second person pronouns,

although this can be much more difficult. If the pronoun occurs outside of any special

context, it can be resolved to a single equivalence class (representing the reader).

Otherwise, some means of determining the second person focus of the context is

necessary. (In some cases this may also be the equivalent to the reader.)

For certain classes of text, respecting context for first and second pronouns can

improve the performance of reference resolution. The gain will vary widely depending

on the distribution and syntactic constructions of the document. However, when text

understanding is the goal, an analysis which includes context will be crucial.

5.7.3 Third Person Anaphora in Context

Although third person anaphora is generally considered a local phenomenon, it poses

certain difficulties both with and without contextual considerations. In a previous

section I described how a third person pronoun can bind to a first person pronoun in the

context of dialog. However, in general, a dialog (or other embedded) context contains a

separate table of salient referents, independent of the main context. For instance, in this

passage from Lewis Carroll‟s Alice In Wonderland, the third person pronouns do not

corefer inside and outside the dialog, although they intervene:

Chapter 5 - Context in Symbolic Processing 146

Presently sheALICE began again. "I wonder if I shall fall right THROUGH

the earth! How funny it'll seem to come out among the people that walk

with their heads downward! The Antipathies, I think-- " sheALICE was

rather glad there WAS no one listening, this time, as itANTIPATHIES didn't

sound at all the right word) "--but I shall have to ask them what the

nameNAME of the country is, you know. Please, Ma'amMA’AM, is this New

Zealand or Australia?" (and sheALICE tried to curtsey as sheALICE spoke--

fancy CURTSEYING as you're falling through the air! Do you think you

could manage itCURTSEYING?) "And what an ignorant little girl sheMA’AM'll

think me for asking! No, it'll never do to ask: perhaps I shall see

itNAME written up somewhere."

The parenthetical aside inserted into the dialog introduces a new third person

referent interposed between the final [she] and the antecedent [Ma’am]. This

construction can only be resolved by considering these segments as separate contexts. A

similar construction exists for [itNAME], where a local anaphoric reference to [itCURTSEYING]

intervenes between the final [itNAME] and its antecedent.

Notice however, that the first anaphoric [itANTIPATHIES], which occurs in the narrative

context, refers to an antecedent inside a dialog context. So even though an embedded

context is generally associated with an independent table of referents (i.e. discourse

entities), these are accessible to the parent context.

Unfortunately, the opposite situation can also occur. The following is an example

taken from the Siddharthan (2003) corpus of a reference [itBONE] that occurs inside a

dialog context to an antecedent that exists in the narrative context.

A Wolf had been gorging on an animal he had killed, when suddenly a

small bone in the meat stuck in his throat and he could not swallow

it. He soon felt terrible pain in his throat, and ran up and down

groaning and groaning and seeking for something to relieve the pain.

He tried to induce every one he met to remove the boneBONE. "I would

give anything," said he, "if you would take itBONE out."

These types of constructions further complicate resolution as antecedents can appear

in both hierarchical proximity (ignoring intervening contexts) and linear proximity.

Chapter 5 - Context in Symbolic Processing 147

One other notable property of third person anaphora which must be considered is the

ability to block potential antecedents. Consider the following sentence which is a

continuation of the previous passage:

Then the Crane put its long neck down the Wolf's throat, and with its

beak loosened the bone, till at last itCRANE got itBONE out.

The final [itBONE] is blocked from binding to the preceding [itCRANE] because of

syntactic constraints (i.e. both pronouns are members of the same local domain). Most

reference resolution algorithms will code for these constraints and would not have a

problem resolving this type of construction. However it is easy to change the sentence

so syntactic constraints on the two pronouns are not violated.

Then the Crane put its long neck down the Wolf's throat, and with its

beak loosened the bone, till at last itCRANE believed itBONE was out.

The revised sentence circumvents the blocking effects and requires some other

means to determine the binding of the second pronoun, in this case (and many others),

either a semantic analysis is required, or some more sophisticated constraint processing

must be used.

5.8 Evaluating Resolution

Evaluation metrics for reference resolution often utilize standard calculations for

precision and recall. However, because a reference resolution system relies on many

different processing components, it is sometimes difficult to measure the success of the

algorithm, or the effects of different theories. Mitkov (2002) proposes several different

metrics designed to give a more uniform and precise evaluation of different reference

resolution systems. He argues that recall is not relevant to robust resolution systems

because they typically give values for all anaphora in a text. Additionally, variance in

how recall is calculated makes direct comparison difficult. For example, some

researchers may use the total number of anaphora (from the annotation key), while

others may use the total number identified by the system.

Instead of the standard F-score based on precision and recall, Mitkov (2002)

suggests success rate which is a simple ratio of the correctly resolved anaphora to all

Chapter 5 - Context in Symbolic Processing 148

anaphora in the text. Additionally, he proposes several other measures designed to

evaluate specific classes of anaphora, which he refers to as critical and non-critical.

Finally, he argues that to evaluate a reference resolution algorithm, versus a reference

resolution system, the exact success rate can be found by hand-correcting the output of

any pre-processing stages to ensure that the input to the algorithm is correct.

The standard calculation of F-score, and the alternate scoring scheme proposed by

Mitkov (2002), assume a single-stage system which produces a single antecedent that

can be judged on a binary scale (i.e. right or wrong). This imposes an unnecessary

limitation on the application of a reference resolution system because it does not

consider the possibility for multi-stage processing.

 In the preceding sections I discussed some of the challenges faced when attempting

anaphora resolution. Performance of existing algorithms using syntactic and lexical

constraints is generally reported to be in the 60-80% range. Further gains usually

require analysis beyond the surface level, addressing lexical and semantic constraints.

(See Section 6.3). Because of this, evaluating a pronoun resolution algorithm strictly on

a binary precision metric does not measure its true potential. Basic algorithms can be

employed to do initial filtering and pass the results to more refined methods. A simple

binary metric ignores this possibility and only scores a single outcome.

For example, many resolution algorithms begin with a list of possible antecedents

and apply a series of scoring constraints before selecting the highest scoring antecedent.

If there are many cases which require deep semantic interpretation, it may be that an

algorithm performs poorly because it happens to select (usually through some heuristic)

the wrong antecedent from a list of two or more having similar scores. However, if it

could be shown that the algorithm returns the true antecedent in a small set of its highest

ranking antecedents, the algorithm should improve the overall performance when

combined with subsequent deeper processing stages (e.g. a semantic analyzer).

In the experiments that follow, I propose using evaluation criteria that measures the

precision and accuracy based on a ranked list of likely antecedents, rather than a single

antecedent. The antecedents appear on the list ranked by salience, which for a naïve

algorithm can simply be proximity to the referent. Using a ranked list in the evaluation

metric calculations gives a better indication of how the algorithm would perform in a

Chapter 5 - Context in Symbolic Processing 149

system that includes a second stage processor. The goal of the first stage algorithm is to

produce the smallest set of candidates which contains the correct antecedent.

The new evaluation metric I am proposing is derived in the following manner. The

standard definitions of precision P, recall R, and F-score are calculated normally except

the ranked list of likely antecedents is used when determining correctness. That is, an

anaphor is determined to be resolved correctly if any antecedent in a proposed set is

correct. This produces exactly the score that would be achieved given a hypothetical,

infallible second stage processor to select from the proposed set of antecedents.

This revised F-score alone would be unhelpful, as a naïve algorithm which simply

included all preceding nouns would score perfectly. Thus I propose a new measure

called the antecedent focus. The antecedent focus 𝐴F of a resolved anaphor is

calculated by determining the rank of the true antecedent in the proposed set of

antecedents, together with the number of antecedents in the set.

𝐴𝐹 =
1

𝑅 + 𝑆

Where 𝑅 is the zero-relative rank of the true antecedent in the set 𝑆, and 𝑆 is the

cardinality of 𝑆. When the true antecedent is found in a set containing exactly one

antecedent, this reduces to

𝐴𝐹 =
1

0 + 1
= 1

When the true antecedent is not contained in 𝑆, 𝑅 is set to infinity yielding 𝐴𝐹 = 0. The

antecedent focus balances the rank of the true antecedent with the size of the proposed

set. Both the rank and set size need to be small to achieve a high antecedent focus.

The average AF over all anaphora gives an indication of how well the algorithm

performs without a second stage processor. As an example, an algorithm that always

returned 2 antecedents, with the true antecedent first, would score

𝐴𝐹 = 0.5. The same algorithm returning the true antecedent second would score

𝐴𝐹 = 0.33.

Chapter 5 - Context in Symbolic Processing 150

The revised F-score and AF score together give a better indication of the true

performance of the algorithm compared with an F-score based on a binary precision. In

the experiments that follow, I will report the revised F-score along with the AF score in

my analysis.

5.9 Experiments

For these experiments, I implemented the syntactic approach of Hobbs (1978) as

summarized in Jurafsky and Martin (2000). The basic algorithm consists of retracing

the parse tree from the anaphor in a constrained way to find the most recent plausible

antecedent. If the sentence containing the anaphor does not yield an antecedent,

preceding sentences are explored in order of most recent first. Each proposed

antecedent is tested against the basic constraints of number, gender, and animacy.

The Hobbs algorithm, though it uses a somewhat difference approach, achieves

scores comparable with the Lappin and Leass (1994) salience table approach. Many of

the salience weights which are explicitly encoded in the Lappin and Leass algorithm are

implicitly accounted for by Hobbs. I chose to use the Hobbs algorithm because its

recursive nature fits naturally with the contextual model at hand. (The implementation

of the algorithm was written in a single XSLT transformation run over the CAMEO

XML file.) Also, the fact that the clausal contexts in the CAMEO representation equate

to syntactic local domains simplifies the processing of some steps in the Hobbs

algorithm.

There is no provision in either Hobbs or Lappin and Leass for determining a set of

antecedents, as I proposed for the performance metric. Both algorithms produce the best

candidate based on recency and other constraints. Presumably the second best candidate

would then be the next ranked antecedent, or the next most recent. Because there is no

way to determine the optimum set size, I ran several tests using different set limits.

When contextual information is considered, the algorithm can be stopped when crossing

certain contextual boundaries. This allows a comparison of the AF based on the

segmentation provided by the contextual information, versus a longer list of

antecedents.

Chapter 5 - Context in Symbolic Processing 151

For example, if the set size was limited to 6 antecedents, and the contextual

segmentation produced an average set size of 3 antecedents with little change in

precision or recall, the segmentation is improving the AF of the algorithm.

5.9.1 Testing Embedded Contexts

As I discussed earlier in the chapter, the genre and style of text will determine the

extent that contextual processing can affect the performance of text processing.

Documents that contain no dialog or other embedded textual constructs will show little

if any improvement on tasks such as reference resolution when evaluated against a strict

precision metric. Documents such as literature and certain types of news stories, will

benefit from the application of contextual processing, to the extent that the text contains

contextual structure.

To test this hypothesis, I used a document (literature.txt) from the Siddharthan

(2003) corpus which contains a fair amount of dialog. The document contains several

short stories and several excerpts from longer works.

Basic structural contexts were added to the document for section and paragraph

breaks, and a custom tokenizer was used to automatically detect and insert contexts for

dialog. Each dialog initiated a new context container and inside of this container

sentences were processed normally. The document was then parsed using the RASP

system, and the output was converted into the CAMEO representation as described in

Chapter 3.

The Hobbs reference resolution algorithm was run over the CAMEO representation

for third person pronouns only, with and without contextual processing. With

contextual processing, the algorithm did not treat sentences neighbouring a dialog

context as adjacent to the sentences inside the dialog context. Without contextual

processing, these sentences were treated as adjacent and processed normally.

The results are shown in Table 5.9.1 for several different set sizes. The table gives

the F-score, Precision (P), Recall (R), and Antecedent Focus (AF) for each size with

Chapter 5 - Context in Symbolic Processing 152

and without contexts. Note when the set size is set to 1, the AF metric produces the

same result as standard (binary) precision.

For this corpus, the contextual information improves the precision and the AF,

especially for smaller set sizes. As the set size is relaxed, more antecedents are allowed

and the precision for both algorithms improve and approach parity. Additionally, the AF

degrades as more antecedents dilute the precision, until the two algorithms are at near

parity.

Table 5.9.1– F-score, Precision, Recall, and AF for third person

resolution using several set sizes

 𝑆

Contexts No Contexts

F P R AF F P R AF

1 48.3 51.4 45.5 51.4 43.4 44.7 42.1 44.7

2 70.3 74.9 66.3 45.3 66.3 68.4 64.4 40.8

3 73.4 76.8 70.3 33.2 73.0 75.3 70.8 32.4

4 78.1 81.6 74.8 27.7 77.5 80.0 75.2 26.8

The contextual information is shown here to give an advantage for this text. When a

unary antecedent set size is evaluated, precision, recall and AF were higher with the

contextual information. In fact, precision and AF were higher for all set sizes tested,

though the difference becomes diminished as the size increases.

5.9.2 Contextual Segmentation

Texts which do not include embedded contexts but do include some structure, may

benefit to a lesser degree by using the explicit contextual segmentation found in the

document structure to limit complexity during processing, much like the embedded

contexts did in the previous section.

To test this hypothesis I used the Hobbs coreference algorithm on an annotated

corpus to propose a set of antecedents for third person pronouns. Because the algorithm

does not include a determination of the optimal set size, I tested a range of set sizes,

Chapter 5 - Context in Symbolic Processing 153

from 1 to 10. Generally, resolution algorithms are run with a limit on sentence recency.

For example, a common heuristic is to limit the algorithm to 2-4 sentence histories.

However, the number of possible antecedents varies with the content of a sentence, so

different groups of 2-4 sentences can potentially have a wide range of possible

antecedents. In these experiments the antecedent set size is the limiting factor,

regardless of the sentence distances.

The corpus used in the experiments was comprised of seven technical documents

from the University of Wolverhampton (Mitkov, 2000). The corpus has coreferential

nominal identity chains marked in accordance with the MUC-7 syntax. Because the

document structure was not explicitly annotated, I added basic structural information

based on textual elements which included sections, paragraphs, titles, etc. The

documents were then processed using the RASP system, and the output was converted

to the CAMEO representation. The results are presented in Figure 5.9.2.

The graph in Figure 5.9.2 shows the AF of the reference algorithm as it is allowed to

include more antecedents in its set of candidates. The bars show the precision, which

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12

Antecedent Set Size

Context Precision

Non-Context Precision

Context AF

Non-Context AF

Figure 5.9.2– Contextual vs. Non-contextual resolution for various set sizes on the

Wolverhampton corpus

Chapter 5 - Context in Symbolic Processing 154

measures the number of sets where the true antecedent appears (as described earlier).

As the set size increases, the likelihood of the true antecedent appearing increases,

improving the precision. However, this comes as a trade-off to AF, since the larger the

set size, the lower the AF.

The results show that contextual segmentation keeps the AF from degrading beyond

a certain point, whereas the non-contextual algorithm continues to be diluted by further

antecedents. Segmentation limits the set size by the contextual boundaries and as the set

size increases more anaphora will hit this boundary, which determines the asymptotic

AF curve on the graph. In the non-contextual case, there is no limit so the AF appears

more linear.

The effects of contextual segmentation are more pronounced in anaphora that appear

in short contexts, or earlier in the text of longer contexts. These cases tend to comprise a

smaller percentage of a document, and for this reason the effects are mitigated to some

degree over the entire corpus. The 20% range for context AF shown on the graph

quantifies this mitigation. A set size ranging from 1 to 5 antecedents shows the steepest

decline in AF, which means that fewer of the cases benefited from segmentation.

Candidate antecedent sets larger than 5 begin to be affected by the contextual

segmentation, showing that the average distance to a contextual boundary is greater

than 5 antecedents.

The difference in the precisions scores for the two cases shown on the graph

approximates the number of cases where the antecedent crosses a contextual segment

boundary. Using contexts the antecedents are limited to just those within the context.

The non-context version is limited only by the set size proscribed in the test. Although

the difference is small between the precision scores there are several factors which may

contribute to a higher score for the non-contextual algorithm.

First, the algorithm does not account for cataphors, so cataphors, although appearing

within a context, will not be found by the contextual algorithm. The same is true for the

non-contextual algorithm, however it may eventually find a related earlier antecedent if

the set size reaches far enough back.

Chapter 5 - Context in Symbolic Processing 155

Next, even without considering cataphora, if the base algorithm misses an antecedent

due to an algorithmic or other implementation error, both precision scores will be

penalized. However, the non-contextual version may, again, stumble upon an earlier

related antecedent if the set size becomes large enough. Because the scoring method

uses equivalence classes, these cases are not detected and instead counted as correct for

the purpose of calculating precision.

Finally, there is the case where the antecedent truly lies outside the contextual

segment. An analysis of the corpus reveals that these cases are actually quite rare and

should not significantly affect the precision score. Out of a total of 1376 instances of

pronominal anaphora in the corpus, just 13 cases (~1%) were observed to refer to

antecedents outside the pronoun‟s contextual segment.

5.10 Summary and Conclusions

In this chapter I have examined the contextual information which can be derived

from document structure and syntactic parsing. I have proposed a general representation

which applies recursively to both and demonstrated how this can be integrated in the

CAMEO text representation.

The chapter focused on one application of contexts in text processing, namely

reference resolution. I discussed several issues that arise with contextual reference

resolution, and I presented an analysis of first and second person pronouns in relation to

embedded contexts, specifically dialog. I showed how processing and representing

contextual information can produce a correct analysis of these constructions.

The more difficult problem of third person anaphora requires a deeper analysis,

including a consideration of lexical and compositional semantics, which is outside the

scope of the current research. Instead, I focused on the application of contexts using

shallow syntactic methods. I argued that a purely syntactic approach to reference

resolution will always be limited by semantic ambiguity, and should therefore be

viewed as a pre-processing stage for filtering likely antecedents. With this view, the

notion of AF, which incorporates both the antecedent set size and the true antecedent

rank, becomes relevant.

Chapter 5 - Context in Symbolic Processing 156

For certain genres and styles of text, contextual processing can show modest gains

on third person anaphora. (Larger gains are achieved for first person anaphora, but the

application is limited to an even smaller percentage of documents). Using a document

comprised of short stories and literary excerpts containing dialog, I showed that using

contexts improves the F-score and AF of a baseline reference resolution algorithm for

all antecedent set sizes. The gain would likely become more pronounced if the

contextual structure was considered by a following stage of semantic constraint

processing.

Finally, I demonstrated a further application of contexts to reference resolution using

contextual segment boundaries to limit the number of antecedents suggested by the

reference resolution algorithm. Comparing this to an arbitrary size showed that AF can

be kept asymptotically within a higher range. Because only a small percentage of the

text encounters the segment boundaries at smaller set sizes, the advantage increases

with the size of the set.

A higher set size was shown to increase precision but decrease AF. A lower AF

translates into higher ambiguity and complexity for the antecedent set, which would

lower the performance of a constraint processing module. Using segment boundaries

helps keep the AF at a higher level without significantly impacting precision.

6

Symbolic and Distributional

Methods

In this chapter, I will briefly discuss strategies for augmenting natural language

processing with both symbolic and distributional information. I will show how these

two different approaches can be combined and how the CAMEO representation

facilitates both methods. Combining distributional information with symbolic

processing techniques is a relatively novel approach in computational linguistics. The

two methods are somewhat orthogonal and in some sense address separate problems, or

at least separate models. Because of these differences an augmented approach is

warranted, where distributional information is used to enhance symbolic techniques.

In the introduction I explained how research into distributional methods has

increasingly made use of symbolic information. Incorporating symbolic information

into distributional studies is nothing new. Shallow syntactic information was

incorporated into early distributional experiments, as for example Hindle (1990), who

used syntactic verb-object dependencies to determine word similarities. However,

research in the 1990‟s placed an emphasis on statistical similarity measures based solely

on collocative information (e.g. Periera et al., 1993; Waterman, 1996; Schütze, 1998; Li

and Abe, 1995). At the same time, distributional methods of semantic extraction were

being developed as an alternative to manual methods (e.g. Hearst, 1992; Light, 1996).

Recently, efforts to combine these two approaches have emerged. Statistics about the

lexico-syntactic patterns and relationships a lexeme participates in have been used in

conjunction with raw collocational statistics to refine traditional statistical methods.

Lin, et al. (2003) acknowledge the limitations in deciding synonymy using strictly

collocational evidence. They point out that lists of distributionally similar words often

Chapter 6 - Symbolic and Distributional Methods 158

contain antonyms or members of a multi-valued semantic category (e.g. color

adjectives), rather than strictly synonymous words. The insight here is that semantic

similarity is not the only property which causes distributional similarity. Other semantic

properties such as antonymy may be at work, diluting statistically derived word clusters

that rely solely on collocational information. (Chapter 6 gives a treatment of antonymy

in distributional experiments).

The solution proposed by Lin et al. is to refine a word cluster using heuristic lexical

patterns that have been determined to correlate with a semantic property. The examples

used by Lin et al. to filter antonyms are the patterns [from X to Y] and [either X or Y].

These patterns are conjectured to mark the lexemes X and Y as semantically

incompatible. Lin et al. report a high precision and recall when deciding synonyms vs.

antonyms using these patterns on distributionally similar words.

Going beyond lexical patterns, efforts to utilize some syntactic information have also

been applied to distributional semantic classification. Hindle (1990) and Lee (1999) are

examples of distributional approaches using a specific syntactic relation (verb / object

pairs). Grefenstette (1992) and Lin (1998) incorporate more general dependency

relations into a word‟s context vector, but only as a means of refining the collocational

information associated with a word.

Padó and Lapata (2003) go one step further and attempt to define a general

distributional approach that considers both lexical and syntactic information in a

parametric framework. They argue that the semantic space described by vectors of

strictly lexical collocations conflates the important contextual information of word

events. They suggest that linguistic information should be included in the vector space

model, and formalize this idea by generalizing over dependency relations. Rather than

creating unordered vectors of collocations (i.e. bags), they propose a weighted vector of

dependency relations. In this scheme, the encoding of dependencies is done in such a

way that dependencies beyond simple head-modifier relationship can be included in the

distributional information. In addition, the inclusion of parametric weights allows

linguistic information to be leveraged, since certain dependencies can be made to have a

higher significance than others.

Chapter 6 - Symbolic and Distributional Methods 159

The results reported by Padó and Lapata and others confirm that dependency

information can be a useful feature for distributional similarity measures. One of the

challenges to this approach, which has made it difficult in the past, is obtaining the

dependency information. It has only been relatively recently that large multi-million

word corpora with syntactic dependency information have become feasible, and these

resources can still be expensive to produce. Furthermore, extracting the dependency

information from these types of resources for use in distributional experiments also

involves some effort.

My goal in this chapter is simply to point out the intrinsic support in CAMEO for

these methods, and to provide some context for the following chapters which focus in

depth on distributional processing. I will begin by looking at the kinds of distributional

information that can be derived from the CAMEO representational forms. Next, I will

explain the issues involved with integrating distributional information that has been

derived externally. Finally, I will propose one application of distributional techniques

for symbolic processing which forms the basis of the experiments in the final chapter.

6.1 Distributional Information in the CAMEO

Representation

One of the stated goals of the CAMEO representation was to facilitate the collection

of distributional information using the intrinsic representation. Several properties of the

representation aid in this respect. The use of globally unique identifiers on classes and

lexemes simplifies distributional queries. In Chapter 3, I briefly noted that class

information is accumulated during processing. Every common noun encountered during

text processing is represented as a class and given a unique identifier, which is

referenced in the representation language. This allows a simple means for distributional

analysis to be performed by processing instances where the class id appears.

Although only common nouns are given explicit class identifiers, any lexeme

processed in the system can be used to collect distributional information. All word

tokens from open-class categories are indexed by lexeme, and closed-class words

(determiners, verbal auxiliaries, and certain quantifiers) can be queried directly as

Chapter 6 - Symbolic and Distributional Methods 160

attribute values. For example, to find all co-occurrences with the determiner the, a

query could be run for all elements having an attribute [DET = the].

A further feature of the representation that aids distributional processing is the

explicit representation of objects. Just as distributional information can be collected for

a class lexeme, an object identifier can be used in distributional queries to find

collocational and dependency information. This has advantages over other

representations, such as PC, where the notion of an entity is less explicit and would

require further processing beyond a simple query to recover distributional information.

For example, in CAMEO the identifier of an object which has been resolved to an

equivalency class can be used in a simple global query to collect distributional

information for the entire equivalency class. Figure 6.1 gives pseudocode and an actual

XPath expression which would filter all objects that are members of an equivalence

class containing id(x).

Pseudocode:

 for all obj remember id(this) then do

 if there exists eq containing both id(this) and id(x) do …

XPath:

<xsl:template match=”//obj[//eq[obj[@IDREF=‟x‟]/obj/@IDREF=@ID]”/>

Figure 6.1

Example distributional query for all objects related to id(x) through some equivalence class

eq

Note that distributional information which was collected before the equivalence class

was created is logically aggregated by a coreference resolution operation. Each new

referent which becomes a member of the equivalence class contributes any

distributional information it might have, and at the same time inherits the distributional

information of the group. Enforcing coherence of the distributional information could

possibly provide another dimension of constraint processing for the coreference task.

Chapter 6 - Symbolic and Distributional Methods 161

The encoding of syntactic structure in the representation means distributional

information beyond simple collocations can be recovered directly. For example, it is

possible to determine the number of times the noun gun appears as the object of a

preposition by forming a query on all rel elements where the OBJ attribute has the class

identifier gun. This same technique can also be used to find other direct distributional

information, such as modifiers, verb forms, etc. Information collected in this fashion

can be made available to other modules by annotating the class element of the given

noun.

As more syntactic and symbolic information is incorporated into distributional

processing, more sophisticated search patterns must be supported by the representation.

For example, Levy and Andrew (2006) report on a query language created for syntactic

tree structures which allows detailed co-occurrence patterns to be applied to a corpus. In

CAMEO, these types of patterns, and more indirect and variable distributional patterns,

can be applied through the flexible query language (XSLT) which operates on the

representation.

For example, it may be advantageous to collect distributional information for a

compositional phrase, such as [x be y fault], where x and y represent any type of

syntactic construction, from simple clauses [The failure was the engineer’s fault], to

more complex phrases [The judge did not believe the crime to be the fault of the victim].

To allow complex distributional queries such as this a representation needs to allow a

simple means to encode the core information. In CAMEO the representation would

appear as:

ctx[

 obj[ID=n class[fault]]

 evt[ACTION=be O=n]]

The ctx element serves to denote the group of elements included in the phrase under

study and as a suitable container for annotation. Each element in the distributional

query contains only the minimum information required to describe the construction

being investigated. This concise representation of the relevant constraints will match a

wide range of constructions containing the desired phrase. A distributional query built

from these constraints and applied to the representation will be able to return more than

Chapter 6 - Symbolic and Distributional Methods 162

just direct instances of the query. Many different syntactic variations can indirectly

match the core constraints and satisfy the distributional query. Additonally, a

dependency query (like that illustrated here) can also serve as a dependency rule when

it is cast to designate some property to matching contexts. Chapter 9 uses this type of

dependency query in rules that designate the semantic classes of nouns.

Although distributional processing is certainly possible with any representation

(whether through ad-hoc approaches or transformations into database formats), the

global indexing of lexemes and the explicit representation of objects in CAMEO,

together with the flexible query language provided by the implementation, allows the

integration of distributional methods directly. This includes the possibility for including

deep syntactic features in conjunction with more shallow collocational information.

Additionally, because the representation is implemented using XML, many existing

XML processing tools and utilities can be applied directly to the representation (e.g.

Apache Xindice, Berkely DB XML, IB Search Engine, eXist-db, Tamino XML Server,

etc.).

6.2 External Resources

The processing model of CAMEO, which adopts the XML DOM, allows a general

means for adding attributes or other elements to an entity in the representation.

Information appended in this manner is adjunct to the representation and becomes

accessible to all modules operating in the system, providing a form of annotation that

extends the representation to accommodate augmentative symbolic and distributional

methods. Although representing external information this way is not strictly necessary

(since a processing module may have its own interface to the external source), it serves

to merge the two sets of information conveniently. By incorporating the external

information directly into the representation, processing can be more efficient. Attributes

and information which are expensive to extract using external resources can be

processed once and reused by subsequent modules.

This scheme of annotating the representation is flexible and accommodates both

symbolic and distributional information because the form is not constrained. Some

Chapter 6 - Symbolic and Distributional Methods 163

examples of external symbolic resources that might be used to augment linguistic

processing include lexical and semantic resources such as Machine Readable

Dictionaries (MRDs), Lexical Knowledge Bases (LKBs), or general world knowledge.

For example, the WordNet semantic taxonomy (Fellbaum, 1998) could be used to

annotate the representation with semantic attributes or sense information (as described

in the next section). By transferring this information into the representation, linguistic

tasks that run in the system can access this information directly from an element in the

representation, rather than having to extract it for each element themselves.

Like external symbolic information, representation of external distributional

information is flexible and can take several forms. In each case the representation

provides a framework for the external information, leaving the interpretation for

independent processing modules. Each element in the representation can be expanded to

take distributional information in the form of word vectors or discrete statistical

information. The lexical entries of the lexis context can be expanded to take lexeme-

based distributional information, and entries in the classes context can be annotated

with distributional information for differentiated lexical senses.

For example, one approach to adding distributional information to a class entry is

classes [

 classdef[ID=c1 LEX=l23

 collocate[LEX=l403 COUNT=812]

 collocate[LEX=l507 COUNT=12456]

 …]]

where the collocation information is comprised of simple context pairs from a specific

dependency relation (e.g. adjective / noun), and may have been culled from an external

corpus implemented in a different representation.

Distributional information which includes dependency relations can be represented

using the standard CAMEO elements as child elements to the distributional anchor. For

example, dependency information from an external corpus implemented in a GR

representation can be added to the classes context by translating the GR dependencies

to CAMEO elements and adding them as child elements of the classdef element used to

Chapter 6 - Symbolic and Distributional Methods 164

anchor the distributional query. Assuming the distributional processing included a

means of aggregating the information, this would produce a representation similar to

classes [

 classdef [ID=c2 LEX=l49

rel[PREP=l37 COUNT=53 OBJ]

evt[ACTION=l84 COUNT=39 S]

evt[ACTION=l22 COUNT=53 O]

mod[LEX=l88 COUNT=312]

 …]]

where attributes in the distributional elements that are unspecified are unconstrained.

The role of the anchor in each distributional element is indicated using a defined but

empty attribute. In this example, the class is annotated with several distributional

relations. The first rel element represents 53 instances where the class appears as the

object of the preposition id(l37). The next evt element represents 39 instances where

the class id(c2) appears in the subject position of a verb phrase incorporating id(l84) as

the head verb. Note that for this evt entry the form of the verb phrase is unconstrained in

the representation, and thus aggregates passive, modal, and tense variations in the

distributional data.

External distributional information can be leveraged at various stages of processing

for a range of applications. For example, during QA processing the framework might

return multiple answer candidates for a given query. Distributional information could be

used to score semantic similarity for words in the answer candidates against words in

the question, providing a means of ranking the answer candidates. Alternatively, if a

query results in no answer candidates, the distributional information could be used in

expanding the query.

For text generation, distributional information might be used in discourse planning.

Statistical information about the frequency of words or co-occurrence would serve to

help select surface syntactic forms that conform better to natural speech patterns.

Distributional information could also be integrated with the surface text generator itself,

Chapter 6 - Symbolic and Distributional Methods 165

by boosting or penalizing certain syntactic forms based on statistical evidence (e.g.

fronted direct objects).

As a final example, consider the coreference resolution task. Here the distributional

information can be used to augment the measure of a coreferent‟s compatibility. This

could take the form of disambiguating word senses, boosting based on high statistical

collocative evidence, or measuring semantic similarity, as the following section will

show.

6.3 Distributionally Derived Attributes

To give an example of how symbolic and distributional techniques can be combined

to augment a language processing application, in this section I will propose a technique

designed to enhance the coreference resolution task presented in Chapter 5. Recall the

coreference task from Chapter 5 consisted of determining the set of antecedents for use

in a ranking algorithm to determine coreference. The experiments demonstrated an

implementation of a basic reference resolution algorithm, based on Hobbs (1978). Like

the Hobbs algorithm, most coreference resolution algorithms include as a basic step the

elimination of incompatible antecedents, where incompatibility is usually determined

from a simple match over a small number of attributes.

For example, in section 2.2.1.2 I listed several attributes which can be attached to

objects: gender, animacy, and plurality. When these attributes appear with an object

instance, the coreference resolution algorithm is better able to filter incompatible

candidates for referring expressions, improving precision and (indirectly) recall.

A good source of attribute information of this kind is a lexical resource such as

WordNet. The WordNet semantic hierarchy of nouns allows coarse grained attributes

(like those listed above) to be determined for most common nouns. One method of

determining this would be to trace the hypernymy relation of a noun back to an ancestor

node which is considered the source of a particular attribute. For example, the noun

thought, can be traced back to the cognition root node, and therefore deemed to have the

inanimate attribute.

Chapter 6 - Symbolic and Distributional Methods 166

As with most lexical techniques, using WordNet to determine nominal attributes

suffers from polysemy. A noun appearing in the WordNet database will very often

contain multiple senses, each with a potentially different semantic ancestor. Using the

wrong sense can potentially lead to assigning an incorrect attribute to a noun, degrading

the accuracy of the coreference resolution algorithm. However, this effect is mitigated

slightly by two factors. First, the coarseness of the attributes in question results in many

senses mapping to the same attribute. For example, the noun plane has five senses in

WordNet, but each maps to the inanimate attribute. Second, the senses in WordNet are

generally listed in order of frequency, such that the first sense is the most common.

Using the first listed sense of a word will result in the correct attribute on average,

although this is highly dependent on the corpus being analyzed.

One of the limitations of this type of symbolic technique is lack of complete

coverage. Nouns that are not listed in the lexical resource cannot be processed in the

same manner. For instance, the noun F-14, which refers to a type of military aircraft, is

not listed in the WordNet database, although it occurs many times in the MUC-7

corpora. In order to assign attributes to unknown nouns, a method for determining their

semantic properties is needed, i.e. lexical acquisition.

In Chapters 7 and 8, I will investigate statistical approaches to semantic similarity

using large-scale distributional information. These techniques are well-suited to lexical

acquisition in large corpora containing multiple documents, where a high number of

instances (i.e. many thousands) can be observed to smooth statistical aberrations. In

smaller corpora such as single documents, these techniques must be adapted for the

much smaller number of occurrences (i.e. on the order of tens or less). As I discussed

earlier, integrating more symbolic features into a distributional approach can be used to

adapt these techniques to a smaller corpus. (Chapter 9 explores this idea.)

For example, a common approach to collecting large-scale distributional information

is to use an n-word window of collocations centered on the word under study. In a small

corpus, where the word under study might appear only a few times, this can produce a

very small feature vector with mostly unique tokens that is ill-suited for statistical

manipulation. One alternative is to use more symbolic information for distributional

features, which can be more reliably aggregated, such as an object‟s role in a verb or

prepositional phrase. This type of information is salient in a topical discourse because

Chapter 6 - Symbolic and Distributional Methods 167

unknown nouns are often anaphoric with known nouns and exhibit parallel syntactic

construction. Returning to the example unknown noun F-14, the second MUC-7

document contains two parallel syntactic constructions with one of its coreferents

(fighter): both appear as the object of the verb crash, and both appear as objects of the

preposition for. Using these data for semantic similarity in a large-scale corpus would

most likely be specious, yet for a topical small-scale corpus this type of information can

prove significant. A simple similarity measure based on the distribution of common

symbolic events can then be used to associate an unknown noun with a known noun,

and the attributes of the known noun can be adopted for the unknown noun.

6.4 Discussion

The goal of this chapter has been to suggest how symbolic and distributional

information can be integrated to enhance traditional approaches to language processing.

I have tried to show how the CAMEO representation supports the collection and

annotation of distributional information intrinsically, as well as simple methods for

annotating the representation with externally derived distributional information. The

noun class context is a repository for this information and supports external task-

specific information, as well as data collected and processed from the representation

itself. In addition, distributional information can be attached to discrete entities (i.e. obj

elements) using attributes. Using the internal properties of the representation simplifies

the implementation of both symbolic and distributional processing, operating in a

complementary arrangement, to augment tasks such as coreference resolution. As new

methods of applying distributional processing to complement symbolic tasks are

developed, this will become an increasingly critical property of a general framework.

As I discussed in the introduction, distributional processing is most often employed

in resolving ambiguity using probabilities computed from statistical frequencies derived

from large-scale corpora. This approach has been successfully applied to syntactic tasks

like tagging and parsing, and to a lesser extent to lexical tasks such as word sense

disambiguation. Where there exists distinctly ambiguous choices that can be labelled

and counted in some way, these techniques can model probabilities adequately. For

example, the frequency information which is used to order the word senses in WordNet

approximates the probabilities of the individual senses. On the other hand, applying this

Chapter 6 - Symbolic and Distributional Methods 168

approach directly to problems not having clearly ambiguous choices is less intuitive.

For instance, coreference resolution is a type of disambiguation but applying

distributional approaches directly to the problem is not necessarily helpful. However,

there are many possibilities for integrating distributional information with symbolic

processing which may be applied indirectly to a task.

In this chapter I have suggested one such possibility using a distributional measure

of lexical similarity to derive semantic attributes for unknown class nouns, which are

then used indirectly by the coreference algorithm to qualify candidate referents. Other

indirect applications of distributional processing to these kinds of tasks may address

different aspects of lexical ambiguity.

 In the next two chapters I will address the general properties of statistically based

similarity measures employed in distributional processing, and develop an adaptation

that can improve their applicability as adjuncts to language tasks in smaller corpora. I

will refine these techniques in Chapter 9 to extend the ideas proposed in this chapter, by

deriving symbolic rules for determining semantic attributes. I will also address several

of the limitations with the approaches presented in this discussion.

7

Statistical Similarity Measures

in Lexical Acquisition

In Chapter 6 I showed how distributional methods which use internally derived

distributional information can be implemented using the CAMEO representation. I also

explained how distributional information from external large-corpus processing could

be used to annotate the representation for use in conjunction with other language

processing tasks. As I pointed out earlier, augmenting the representation with this

statistical information facilitates probabilistic methods that complement the symbolic

processing in the representation, e.g. disambiguation strategies. In this chapter I will

look closely at the kinds of external distributional methods that can produce this

information, by evaluating several typical approaches. (I refer to these methods as

“external” with respect to a language processing application because they use a separate

(and typically much larger) corpus to obtain their results.) As mentioned earlier, large-

corpus distributional processing is best-suited for lexical tasks and this discussion will

only address lexically scoped processing, in particular lexical semantic acquisition

which is a useful characterization of the application of distributional processing.

Because this chapter is mainly concerned with evaluating several existing well-

known distributional techniques which are based on collocative features, I will not

consider the relatively recent application of syntactic dependency features or other

symbolic adjuncts, as discussed in Chapter 6. In addition, I will gloss the details of the

experimental framework, since it is not relevant to the discussion. The focus here is not

the representation and implementation of these methods, but rather the properties of the

results and the qualities of the algorithms used to achieve them.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 170

I will begin by introducing lexical semantic acquisition and statistical similarity

measures, which can be used for lexical semantic acquisition. Next, I will review the

obstacles faced when implementing large-corpus distributional algorithms. I will then

discuss the difficulties that arise when attempting to objectively evaluate statistical

similarity measures (namely, the lack of a gold standard). To address this problem, I

will look at some lexical properties of adjectives which make adjective antonyms

uniquely suited to be used in evaluating the performance of statistical similarity

measures. Finally, I will present the results of experiments using three distributional

approaches to semantic acquisition of adjectives, using the proposed antonyms for

evaluation.

7.1 Lexical Semantic Acquisition

Semantic acquisition refers to automated methods that can discover useful semantic

features of linguistic objects, versus manual methods that require human intervention.

Manual methods are expensive to implement and difficult to validate and are thus less

desirable, although it is sometimes necessary to use them. For instance, symbolic

methods that deeply analyze linguistic data have proven to be difficult to automate,

requiring large-scale symbolic databases to be built using hand-coded methods instead

(e.g. Cyc (Lenat, 1995), WordNet (Fellbaum, 1998)).

Some effort has been made at augmenting these manual methods with semi-

automated techniques. Hearst (1992) describes a method for automatically discovering

hyponym relations using surface cues in unrestricted text. Using high-confidence

lexico-syntactic constructions, Hearst demonstrated how hyponyms can be mined from

large corpora. Although the hyponyms are extracted automatically, this is considered a

semi-automated method because the lexico-syntactic patterns must be determined

manually.

The method employed by Hearst is related to the work of extracting lexical relations

automatically from MRDs by searching for specific syntactic surface patterns and cues

in word definitions. This has been actively studied in the literature (e.g. Richardson et

al., 1998) and generally produces fine-grained results, but is sensitive to the limitations

of the word definitions (e.g. omissions, polysemy, circularity, etc.).

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 171

Light (1996) applied a similar approach to morphology. Using hand-coded

morphological rules he was able to acquire fine-grained semantic features of various

parts of speech. He argues that surface cues such as morphology are generally accurate,

abundant and reliable. However, these types of methods, in addition to requiring

manual coding and analysis of the rules and surface patterns, only provide a partial

solution to lexical acquisition.

In contrast to these pattern-matching, semi-automatic approaches to acquisition,

distributional methods can be implemented using fully automated statistical techniques,

processing large amounts of data to uncover statistical features and probabilities. For

instance, the probability that a verb selects for a certain noun might be estimated by

counting the number of co-occurrences of the noun and verb in proportion to all

occurrences of each.

The hypothesis underlying these statistical approaches is that words that have similar

semantics (or syntax or properties), will have similar distributions. By measuring the

similarity of the distributions, the similarity of the words can be induced, and semantic

properties can then be automatically acquired.

One semantic property commonly derived from distributional approaches is

synonmy, or class membership. Knowing the degree of similarity among groups of

words and/or lexical classes enables the classification of unknown words (i.e. lexical

acquisition), or construction of new lexical classes. A word‟s distributional profile then

becomes a measure for association with groups of words forming a semantic class.

Thus, comparing the distributions of words becomes a way of measuring semantic

similarity.

7.2 Distributional Approaches to Semantic Similarity

There are two major aspects to consider when implementing distributional

approaches to semantic similarity: 1) the types of distributional features that are to be

used (e.g. collocations, syntactic relations, etc.), and 2) the algorithm for computing the

similarity metric. The success of an application will largely depend on these two design

decisions.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 172

7.2.1 Features of Events

An event in a distributional experiment is an observed occurrence of a certain lexical

pattern. The features of an event are other bits of information about the occurrence.

There are many different kinds of features that can be extracted from an event including

syntactic, contextual, and morphological forms. Features ideally are symptoms of

linguistic principles, but many turn out to be spurious.

Syntactic Features

Syntactic features are taken from the syntactic construction of the text. These

normally require some sort of parsing to recover and include dependencies such as

head-complement relations. Other examples of syntactic features include information

on constituency (the syntactic constituent a given word participates in), whether the

event occurs in a clausal component, or whether the event is part of a conjunction.

Contextual Features

Contextual features are what is usually thought of when designing distributional

experiments. Specifically, word n-grams record the distributional context of a word,

without regard to more complex processing such as parsing. But contextual features do

not need to be limited to the immediate context of a word. Features can sometimes

include sentence level, and even document level contextual information. For instance,

the most frequent noun or verb for a given document might be recorded along with each

event.

Semantic Features

Semantic features are the most difficult to obtain and utilize, as they require

symbolic processing and existing lexical resources. A typical use of semantic features is

hierarchical class smoothing, where individual words are smoothed into larger classes

to alleviate data sparseness. Other possibilities include semantic properties such as the

level of polysemy, or the existence of antonymy. Note an existing semantic resource

would be necessary to implement any of these examples.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 173

Surface Features

Surface features are any other bits of information about the event that might be

gleaned. Some examples are morphology, punctuation, and alternations. In some cases

these turn out to carry significant information. For instance, a preceding comma may

turn out to be a good predictor of the sense of a polysemous word.

7.2.2 Similarity Measures

Similarity measures are a core component of unsupervised statistical approaches to

NLP. For example, clustering techniques use similarity measures by calculating the

“distance” between objects (or classes). Clustering has been applied to NLP for tasks

such as word sense disambiguation (Brown et al., 1991; Chen and Chang, 1998; Dagan

et al., 1995; Dolan, 1994; Pederson and Bruce, 1997; Schütze, 1998), inducing semantic

classes (Lapata and Brew, 2004; Hindle, 1990; Hatzivassiloglou and McKeown, 1993;

Merlo and Stevenson, 2001; Periera et al., 1993; Waterman, 1996; Li and Abe, 1995),

and learning syntactic properties (Brill et al., 1990; Finch, 1993; Schütze, 1995).

Similarity measures rely heavily on information theory and other well developed

techniques from machine learning. In this section I will examine three similarity

measures that have been proposed in the literature. For convenience, I will label these

as: Minimum Mutual Information (MMI) (Hindle, 1990), Tau Coefficient (TAU)

(Kendall, 1938; Hatzivassiloglou and McKeown, 1993) and Distributional Clustering

(DC) (Periera et al., 1993). Each of these measures uses a very different approach to

determining the similarity of distributional data. I will first present each similarity

measure in some detail, and then discuss evaluation strategies.

The original experiments presented in the literature to demonstrate these similarity

measures used various forms of lexical relationships for the distributional data (e.g.

noun-verb, adjective-noun, etc.). In order to compare the similarity measures, it is

helpful to generalize the form of the distributional data. For a given word w we define a

vector vw of events representing selected collocations of w observed in the corpus. An

event describes a word token and the corresponding count of observed collocations (i.e.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 174

frequency) with w. The elements of the word vector vw comprise the list of all events

involving the word w observed in the corpus. The following discussion uses this

terminology to explain the mechanisms of the three similarity measures under study.

7.2.2.1 Minimum Mutual Information

Minimum Mutual Information (MMI) was proposed by Hindle (1990) and is based

on a variation of mutual information from information theory. Mutual Information (MI)

provides a measure of the information of a joint event, using the joint and independent

probabilities of those events.

In brief, Hindle (1990) defines the similarity of two nouns by comparing the

(estimated) MI of verb events that appear in common. Because MI is calculated using a

logarithm, very small ratios (representing less information) will be negative, and larger

ratios (representing more information) will be positive. When the sign of the MI for a

verb event agrees between two nouns, the two nouns are hypothesized to have a similar

semantic relationship with the verb. In these cases, Hindle selects the minimum

absolute value. The sum over all such cases is taken as the measure of similarity

between the two nouns.

The algorithm, in more detail, begins by calculating an estimate of MI for each

element in a vector‟s distribution using frequency information. Hindle calls this a co-

occurrence score and it is given by

N

vf

N

ef
N

evf

evC
)()(

),(

log),(2

where v is a vector containing element e, f(v, e) is the frequency of event e in vector v,

and N is the total number of events in all vectors.

For two vectors being compared, if a given element has a concurring sign in both

vectors, the minimum magnitude of the two values is added to the similarity score. The

co-occurrence score C is produced by summing in this manner over all elements.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 175

Formally, we define the similarity score of two vectors v1 and v2 as the Minimum

Mutual Information (MMI) shared between the two vectors, given as

N

i

i vveCvvMMI
1

2,1min21 ,),(

where ei is a shared element of vectors v1 and v2 and Cmin gives the minimum co-

occurrence score of the element as

otherwise

evCevCevCevC
vveC

iiii

i
,0

0,,,,,,min
,,

2121

21min

From this we see that two word vectors that have no events in common will have a

MMI similarity score of 0. Also two word vectors whose co-occurrence scores always

differ in sign will score 0.

The intuition behind this approach is that two word vectors that are semantically

related will have significant co-occurrence scores on the same elements, since they

should produce similar distributions. If there is no semantic correlation, the co-

occurrence scores will instead be mismatched. The correlations reinforce the similarity

score, and the mismatches are ignored.

7.2.2.2 Tau Coefficient

The Tau Coefficient (TAU) was proposed by Kendall (1938) and employed by

Hatzivassiloglou and McKeown (1993) in their work on automatically identifying

adjective scales. The Tau coefficient uses the differentials of events as a means of

comparison. It measures the similarity between two vectors by counting the number of

event differentials whose sign concurs across the two vectors (concordances),

subtracting the number that do not (discordances). For differentials that are equal there

is no effect.

To calculate the Tau coefficient, the elements of a vector are exhaustively

enumerated as unique pairs. The differential of each pair is calculated by subtracting the

element frequencies, and the sign is noted. The results are used to compare with another

vector. The differential sign of every corresponding pair in the two vectors is compared.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 176

If the signs agree, the pairs are said to be concordant. Signs that differ are said to be

discordant.

The Tau Coefficient is defined as

dc pp

where pc and pd are the probabilities of a concordance and a discordance, respectively.

Tau can be estimated using

2

n

QC
T

where n is the number of elements in the vector, and C and Q are the numbers of

observed concordances and discordances, respectively. From this we see the range of

the Tau coefficient to be -1 to +1, where +1 indicates strong similarity, -1 indicates

strong dissimilarity, and 0 indicates no correlation.

The Tau coefficient is intended to capture the proportional “shape” of the

distribution and disregard the absolute quantities. This is important for corpus based

work because the frequency information is only approximate. Only the relative

likelihood of an event compared to another event is significant in this approach. If two

word vectors have the same event more likely in relation to another event, it is possible

that this is due to the same semantic property. The Tau coefficient attempts to capture

this in its similarity score.

It should be noted that because this metric must calculate the differential for every

pair of elements in every vector, it is too computationally expensive for large vectors.

For class based probabilities with modest numbers of elements, such as those used in

these experiments, it becomes feasible.

7.2.2.3 Distributional Clustering

MMI and TAU are both direct similarity measures between two discrete vectors. In

contrast, Distributional Clustering (DC) is a soft-clustering technique that measures

similarity between clusters of vectors. DC, as presented by Pereira et al. (1993),

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 177

incorporates the Kullback-Leibler distance between clusters in a divisive clustering

scheme derived from simulated annealing techniques. The Kullback-Leibler distance

between two distributions (i.e. vectors) is given as

x xq

xp
xpqpD log .

Pereira et al. used the Kullback-Leibler distance in conjunction with a divisive

clustering procedure that essentially creates a set of semantic sense classes (represented

by clusters). The centroid of a cluster is a derived vector that gives a hypothetical

“prototypical” distribution for the sense over all events. A word vector (which may

conflate multiple semantic senses) is interpreted as a probabilistic distribution over

these senses (i.e. clusters)

In the DC algorithm, the Kullback-Leibler distance is used in the re-estimation of the

cluster centroids to find the distance between an actual word vector (observed in the

corpus) and the estimate given by a cluster centroid. A cluster centroid is calculated as

the average of all word vectors, weighted by the simulated annealing “temperature”.

(Since the cluster centroids are derived from an average of the actual word vectors,

there is no issue with elements having a value of zero in the KL denominator, a problem

often encountered when applying this distance function.) A high temperature gives

more weight to local word vectors, producing a more localized centroid.

Once the centroid has been determined, the distortion of a cluster can be measured

by calculating the (KL) distance from the centroid to each word vector (subject to the

temperature weighting). The distortion gives a measure of the semantic focus of the

cluster. When the distortion is low, the word vectors belonging to the cluster are

relatively close (where “belonging” means having the most weight).

Since neither the word vectors nor the centroids can actually “move” (the

distributional statistics are static), the centroids are adjusted by selecting which word

vectors are associated with the cluster (using the temperature). By changing the member

vectors, the average of the vectors will change and this determines the location of the

centroid. The goal is to find centroids which truly represent semantic senses, and this

amounts to selecting the best groupings of the observed word vectors.The re-estimation

of the cluster centroids is achieved by minimizing the individual cluster distortions

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 178

(measured against the observed word vectors in the corpus), while simultaneously

maximizing the overall entropy of the system. This is accomplished by minimizing a

“free energy” function, which incorporates both objectives. The free energy includes a

parameter analogous to temperature in deterministic annealing. Increasing this

temperature parameter gives more influence to vectors close to a cluster‟s centroid. A

high temperature in the limit would produce a cluster for every vector, with the centroid

equal to the vector.

The algorithm begins with a single cluster and very low temperature, which gives all

vectors equal representation and produces one centroid equal to the average of all

vectors. The algorithm then iteratively splits each cluster centroid in two, using small

random perturbations, and increases the temperature until the re-estimation function

causes the two centroids to diverge. The algorithm can be stopped when the desired

number of clusters is found.

7.3 Obstacles

There are several obstacles to overcome when designing distributional methods of

acquisition. One difficulty is data sparseness. Although data sparseness affects many

methods of language processing, it is particularly acute for distributional techniques

which depend on reliable frequency and probability information. Another obstacle is

polysemy, which also afflicts many methods of language processing. Before moving on

to evaluation strategies, I will briefly discuss these two issues and how I addressed them

in my experiments.

7.3.1 Data Sparseness

Distributional similarity measures especially suffer from data sparseness issues. It is

very probable that two word vectors, each comprised of hundreds of events, may have

only a handful in common. This makes comparisons based on shared events less

accurate and robust, since only a small percentage of events can be used for

comparison. One solution to this problem is to use smoothing to collapse groups of

events into classes based on some significant property. The most obvious property to

use when reducing a word vector is the semantics of the events. If a set of words are

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 179

synonyms, near-synonyms, or semantically related in some way, they can be replaced

by a single class which is more likely to be shared among other word vectors. In this

manner a vector of hundreds of event elements with smaller frequency counts may be

reduced in size, resulting in fewer event elements with larger aggregate frequency

counts.

In the experiments that follow, I use this strategy with a pre-existing taxonomy of

word classes to reduce the large distributional vectors to smaller class-based vectors. I

utilized the WordNet 1.7 taxonomy to achieve this by tracing the hypernym relations

for each word event (i.e. noun) in the vector back to its root ancestor, referred to in

WordNet as a “unique beginner” (Miller, 1995). I also experimented with an alternate

configuration using the second level of classes, i.e. tracing the hypernym relations for

each event back to its penultimate semantic class. This is explained in more detail

further on.

7.3.2 Polysemy

One of the more difficult problems when attempting to do automatic processing of

natural language is polysemy. The distributional data available for these kinds of

techniques do not usually include labelled sense distinctions for polysemous words.

This affects not only the distributional profile for word vectors, but also other

processing used to facilitate the operation, such as using the class information described

above.

The disambiguation of word senses is itself an area of active research and a very

difficult problem. Thus it is not feasible to disambiguate distributional information like

that used in these experiments. The simplest and most common technique to work

around this problem is to default to the most probable sense, if available. For the

WordNet taxonomy used in these experiments, the first listed sense of a word is usually

supposed to be the most common sense. This strategy was implemented in the first

stage of the experiments and is detailed below.

Another approach proposed by Resnik (1993) is to characterize each event as an

equal probability distribution over all senses of the word token. For instance, instead of

a single class representing the primary sense of an event, an event would be represented

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 180

by a distribution over the classes related to all its senses. Each single word event is thus

interpreted as a collection of equivalent fractional events over all senses.

Both of these approaches have been incorporated in the experiments that follow.

7.4 Evaluating Similarity

In order to compare the performance of similarity measures and judge their relative

merits, an objective evaluation strategy is needed. However, finding such a strategy has

proved difficult. In some experiments only a qualitative analysis of the end results is

offered. Although a qualitative analysis is sometimes helpful to get an intuitive grasp of

the characteristics of a similarity measure, it is difficult to make quantitative predictions

about the performance based solely on this type of evaluation.

Intrinsic measures can sometimes be useful to evaluate the coherence of clusters,

groups, or ranks built using similarity measures. These intrinsic metrics may also help

in refining the parameters of an algorithm, but it is often difficult to draw conclusions

about the extrinsic quality of the results. There is rarely an understood relationship

between the types of intrinsic measures available and genuine linguistic properties.

Thus, like qualitative analysis, intrinsic measures only provide a general intuition about

the performance.

A more desirable approach is to devise a task-based evaluation, which allows a

similarity measure to be evaluated indirectly through its effects on a real-world natural

language application or task. This method requires much more effort but gives a better

measure of the linguistic properties being affected by the algorithm. The difficulty lies

in finding or creating an appropriate task. Even when a task is appropriate, it may not

always be feasible to obtain labelled data, which is required for evaluation. Some

researchers have turned to artificial tasks which use automatically generated labelled

data derived from manufactured cases. In the next section, I propose using adjective

antonyms as an evaluation standard for similarity based measures and argue that they

are a suitable compromise between task-based and manual methods.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 181

7.4.1 Adjectives and Antonyms

Semantic acquisition is a task that can be suitably represented by measuring or

ranking word similarity. Thus an evaluation of similarity measures can be implemented

using an objective list of similar words. A related approach was argued by Greffenstette

(1993), who used available hand-coded resources such as thesauri and dictionaries to

compare two different similarity measures. Greffenstette counted as correct pairs of

nouns judged similar if they appeared in the same semantic category of a thesaurus (or

in the case of dictionary definitions, had some degree of definition overlap). This

strategy results in a coarse-grained approach at evaluation since the semantic categories

are quite broad in the case of thesauri (averaging 60 words per category) and dictionary

definitions (which often contain hypernymic relations making them increasingly

general).

A more exacting standard can be obtained by using tighter lexical relations for

comparison. Synonymy is an obvious choice but synonyms rarely appear in one-to-one

relationships. For instance, WordNet (Miller, 1995) is organized around the concept of

“synsets” which comprise sets of synonymous words, with no implied semantic

similarity ranking within the sets.

The practical definition of similarity being measured in these experiments is the

notion of “words that can appear in the same contexts”, since the raw distributional

information only contains contextual information. As I discussed in the previous

chapter, distributional similarity can result from semantic relations besides synonymy.

With this in mind, there is a strong case to be made for antonyms as a more precise

distributional similarity standard. Antonymous adjectives are a unique class of lexical

semantic relation. In contrast to most other relations, which form some type of inclusive

semantic similarity (e.g. hyponymy, synonymy, meronymy), antonyms are semantically

related exclusively. In addition, there appears to be a lexical component to the

antonymic relation, manifest by the observation that close synonyms of antonym pairs

do not yield the same strong associations (e.g. big/little vs. large/little). This makes

antonymy an interesting case for the study of lexical semantic acquisition.

Justeson and Katz (1991) give a comprehensive and thorough treatment to the

antonymic lexical semantic phenomenon. Their work is motivated by the assertion by

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 182

Charles and Miller (1989) that substitutability is not a suitable explanation for the

strong antonymic associations reported in psycholinguistic testing. Charles and Miller

argue that most adjectives occur in sentential contexts where an antonymic substitution

would be improbable. Instead they suggest that antonymic associations are formed

simply through frequent sentential co-occurrence. The main objective of Justeson and

Katz is to provide empirical support for frequent antonymic co-occurrence, and to

analyze the syntactic forms of these co-occurrences observed in the language.

In their experiments, Justeson and Katz collected frequency counts of antonymic co-

occurrences for a set of antonym pairs compiled by Deese in 1964, which exhibited

high correlations in word association tests, as well as a set of high-frequency antonyms

and antonym pairs morphologically derived from negative affixes (e.g. a-, ab-, an-, dis-,

il-, etc.). Using the 1,000,000 word Brown Corpus, they calculated the expected co-

occurrence of an antonym pair using the mean of the hypergeometric distribution (i.e.

the product of each antonym‟s individual frequency, divided by the total number of

sentences). The number of antonymic co-occurrences actually observed in the corpus

turned out to be significantly higher than the calculated expectation for a majority of the

antonym pairs. Justeson and Katz conclude that this linguistic phenomenon might be a

more plausible hypothesis than substitutability to explain the strong antonymic

associations reported in psycholinguistic experiments.

Regardless of the psycholinguistic implications, the empirical evidence collected by

Justeson and Katz suggests that antonyms possess properties that make them suitable as

a standard for measuring distributional similarity. The higher-than-expected frequencies

of co-occurrence reported by Justeson and Katz show antonyms will share many

instances of the exact same context, which improves their distributional similarity

making them more effective for evaluations of distributional similarity measures.

Although Charles and Miller dispute the substitutability of antonyms, Justeson and Katz

suggest that the co-occurrence of antonyms in the exact same context is something like

substitutability, and therefore does not preclude antonyms from also appearing in

independent similar contexts.

The arguments for similar distributions, together with the strong associations with

their complements, help make antonym pairs less ambiguous than other lexical relations

and a suitable choice for an objective measure of similarity. Although this approach still

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 183

employs a manual component in determining the antonym pairs, it is a simpler process

than manually labelling data in a task-based evaluation. Furthermore, accepted lists of

adjectives already exist like those employed by Justeson and Katz. Based on the

evidence presented in this section, I will adopt adjective antonyms as a reference for

evaluating the effectiveness of distributional similarity measures.

7.5 Experiments

In this section I present the results of implementing the three similarity measures

described above and applying them to the task of ranking adjective antonyms. The

distributional information was taken from the entire 100 million-word British National

Corpus (2002) (BNC). Noun collocations for adjectives appearing in attributive form

(e.g. interesting film) were collected and arranged into word frequency vectors.

Collocations were determined using the part-of-speech tags supplied with the corpus,

i.e. adjacent adjective and noun tags. This resulted in approximately five million events

distributed over 90,000 adjectives.

Ten antonym pairs were chosen from the list compiled by Deese and referenced by

Justeson and Katz (1991) in their work on antonym co-occurrence. Each adjective in the

pair was required to appear with 25 or more unique noun collocations in the BNC. The

selected antonym relationships used in evaluating the experiments are listed in Table

7.5.

Table 7.5

Antonym Pairs

light dark big little

active passive black white

alive dead top bottom

back front clean dirty

bad good cold hot

Using the data in the BNC, distributional information was collected for each of the

20 adjectives listed in Table 7.5, resulting in word vectors comprised of noun event

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 184

frequencies. These raw vectors were then used in the various similarity experiments

described below.

7.5.1 Scoring

A relative ranking of the adjective similarity was devised to score the similarity

measures. For each adjective, the similarity measure under study was used to form a

ranking of the other 19 adjective (vectors). The position of the true antonym in this

ordered list was then used to calculate a reciprocal rank score. The reciprocal rank

calculation was repeated for the other 19 adjectives and then averaged to obtain the

Mean Reciprocal Rank (MRR) (cf. Voorhees and Tice, 2000). The MRR score ranges

from 1/19 (true antonym always ranked last) to 1/1 (true antonym always ranked first).

To achieve a baseline for comparison, a random function was used to assign

similarity scores for calculating a MRR. Twenty separate runs were averaged giving a

random baseline (RB) score of 0.206. This score is not dependent on the configuration

of the experiment since the random function did not use any of the distributional

information.

The DC algorithm does not produce an absolute similarity score between word

vectors as the other algorithms do. Instead, the DC algorithm produces distance scores

between a word vector and the prototypical centroids of the derived clusters. This

necessitated a heuristic for determining an absolute ranking given the derived clusters.

Since every word vector is a member of every sense cluster, two word vectors can be

approximately compared in relation to their distance to a cluster centroid. (This

approximation becomes more accurate the closer the reference word vector is to the

cluster centroid.) The heuristic involved finding the cluster whose centroid was closest

to the reference word vector, and then using the absolute distances from the reference

word to all other vectors in the cluster as the ranking metric.

7.5.2 Configuration

I measured the performance of the similarity measures for several different

configurations created using three experimental variables. First, I used two sets of

distributional data. A small sample comprising only the 25 most frequent events (i.e.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 185

noun collocations) versus the complete data comprised of all events observed in the

corpus. Second, I tried using the root level classes versus the second level classes of the

WordNet taxonomy. Recall the WordNet classes are used to smooth the distribution of

observed nouns into a practical number of classes. Each noun is replaced with its root or

second level (depending on the experimental configuration) ancestor in the taxonomy.

(See Section 7.3.1). Third, I used two configurations to deal with the polysemy of the

events. In the first case only the primary sense information was included. This will be

referred to as the single sense configuration. In the second case all sense information

was included using the procedure described in Resnik (1993) (see Section 7.3.2 above).

This will be referred to as the multi sense configuration.

The three configuration variables gave rise to eight distinct experimental

configurations. For each of the three similarity measures under study, I ran all eight

experimental configurations and recorded the MRR. The results are given in Table

7.5.2. The random baseline is also shown for comparison.

Table 7.5.2

 Mean Reciprocal Rank (MRR) scores for three similarity measures and the Random

Baseline (RB) on eight experimental configurations

Sample Small Sample Complete Data

Class Root Level Second Level Root Level Second Level

Sense Single Multi Single Multi Single Multi Single Multi

MMI 0.316 0.334 0.389 0.555 0.373 0.471 0.437 0.549

TAU 0.292 0.366 0.327 0.272 0.272 0.364 0.374 0.484

DC 0.233 0.333 0.299 0.309 0.346 0.411 0.309 0.342

RB 0.206

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 186

Root Level, Small Sample

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Root Level, Complete Data

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Second Level, Small Sample

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Second Level, Complete Data

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Root Level, Single Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Root Level, Multiple Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Second Level, Single Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Second Level,Multiple Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Figure 7.5.3-2 - Small Sample vs. Complete Data

Small Sample, Single Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Complete Data, Single Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Small Sample, Multi Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Complete Data, Multi Sense

0.05
0.15
0.25
0.35
0.45
0.55

MMI TAU DC

Figure 7.5.3-3 - Root Level vs. Second Level

Classes

Figure 7.5.3-1 - Single Sense vs. Multiple Sense

MRR

MRR

MRR

MRR

MRR

MRR

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 187

7.5.3 Results

All of the experimental measures performed better than the baseline, giving strong

support to the hypothesis that antonyms produce similar distributions. The best

performance was obtained using MMI, with the small sample, second level classes, and

multi sense information.

The graphs in Figures 7.5.3-1, 7.5.3-2, and 7.5.3-3, show comparisons of

performance with respect to each of the three configuration variables in the

experiments: single sense vs. multi sense, small sample vs. complete data, and root level

vs. second level classes. For each similarity measure in each graph two bars are shown.

The first bar represents the results using the first configuration in the graph title (e.g.

single sense) and the second bar represents the results using the second configuration

(e.g. multi sense). The dotted line on each graph represents the random baseline score

(which is invariant to the different configurations). In all cases the similarity measures

performed well above the baseline, but these graphs reveal several other interesting

trends.

1. Multi sense is better than single sense

As shown in Figure 7.5.3-1, using the nine root level concept classes, the MRR

could be improved by including multi sense information. This was true regardless of the

data sample size (i.e. small sample or complete data).

The same effect was observed using the 142 classes of the second level (see Figure

7.5.3-1), except in a single case. The TAU algorithm performs worse when multi sense

information is included on the small sample data. The TAU algorithm is more sensitive

to small fluctuations because it includes no magnitude information in its similarity

calculation and disregards elements that are zero. With sparse class information over a

large number of classes, this causes degradation in performance. To test this theory, I

used a filter to remove very low magnitude elements from the vector (a value of 11 was

experimentally determined). The results confirmed that after removing these noisy low-

magnitude vectors, the multi sense configuration performed as well as the single sense

data.

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 188

2. Using the complete data is better than using the small sample data

Figure 7.5.3-2 shows how the performance differs when using the small sample data

versus the complete data. This also generally resulted in a performance improvement

(or parity), with the exception of the TAU algorithm. A similar explanation as that used

in (1) above can describe this decrease in performance. Using a filter as before to

remove the (relatively) low magnitude elements improves the performance to .337. In

this case the filter was determined to have a value of 330, which is small with respect to

the magnitudes of the frequency information.

It should be noted that the best overall score was achieved using the small sample

data with the MMI algorithm, although this is only marginally better (1%) than using

the complete data.

3. Second level classes are better than root level classes for MMI and TAU

Figure 7.5.3-3 shows the performance delta when using the root level classes versus

the second level classes. For the MMI algorithm this always resulted in better

performance. This was true also for the TAU algorithm, except again in a single case:

using small sample with multi sense distributions.

Examining the rank lists for this case reveals an anomaly. Most of the performance

degradation can be attributed to the fact that for the adjective cold, the true antonym hot

moves from being ranked first to fifteenth (i.e. a rank improvement of -14). This is

atypical of the data when moving from the root level to the second level classes, as

shown in Table 7.5.3-4. Although there are several other adjectives whose true

antonyms slip in rank, none have the magnitude of cold.

Table 7.5.3-4

Rank Improvement for true antonyms using TAU when moving

from root level to second level classes on small sample.

cold -14 alive -3 top -1 big 3

clean -6 dirty -3 bad 0 black 3

hot -6 light -3 passive 2 dead 5

bottom -5 front -2 back 2 active 7

dark -5 good -1 white 2 little 10

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 189

Table 7.5.3-5

Statistics for the similarity scores produced by the TAU

algorithm for the adjective cold with respect to all other
adjectives

 Root Level Classes Second Level Classes

Maximum 0.778 0.153

Average 0.424 0.105

Median 0.444 0.110

Standard
Deviation

0.176 0.036

Comparing the similarity scores produced by the TAU algorithm for cold in both

cases, we see very different statistics listed in Table 7.5.3-5. The maximum similarity

score is quite high for the root level (0.7778), which corresponds to the true antonym

hot. For the second level, the maximum similarity score is 0.153, and corresponds to the

(wrong) adjective clean. Although this appears to be a very low score, this is only

moderately low in comparison to other scores on the second level. However, the

average, median, and standard deviation show that the similarity scores produced by the

TAU algorithm for cold in this case occupy a very narrow range. There are no strong

similarities for cold when using the second level classes with only the small sample

data. The distribution for the adjective cold in this case does not give a distinct profile

when dispersed over the 142 second level classes. The distinctiveness (and similarity to

the true antonym) re-emerges when using the complete data, improving the rank

considerably.

4. DC performs worse using second level versus root level classes.

For DC, moving from the root level to the second level classes degrades performance

in three out of four cases. The DC algorithm measures similarity using all available

dimensions. The larger dimensional space of the second level classes gives much more

freedom for the cluster centroids of the algorithm to associate with the adjectives. This

introduces more opportunities for spurious similarities which can eclipse more genuine

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 190

relationships. In fact, at the second level, DC performed worse than the other algorithms

in all cases but one (small sample, multi sense).

5. MMI is the best algorithm to use

Overall the MMI algorithm performed the best, and was the most robust to the

various configurations. The MMI algorithm also followed the intuitive expectation that

similarity measures should improve with polysemy information (multi sense), more

distributional data (complete data), and finer grained classes (second level). The basis

for the MMI algorithm is the mutual information measure of two linguistic entities, in

this case two adjective word vectors. There is strong evidence that the hypothesis of

similar contexts for antonymic adjectives is correct, or at least helpful, since using this

algorithm results in a similarity measure which performs much better than chance.

Another further advantage of the MMI algorithm is the computational complexity.

Among the three similarity measures investigated, the MMI algorithm requires the least

amount of computation. DC is a highly computationally intensive algorithm involving

simulated annealing, which requires constant perturbation and re-estimation of the

cluster centroids. The TAU algorithm requires calculating the differential of every pair

of vector elements, which increases non-linearly in the number of elements. The MMI

algorithm only requires a linear processing of each vector to produce the elemental

probabilities.

One disadvantage of the MMI algorithm is the requirement to have complete data for

all vectors before the similarities can be computed. Each elemental probability

calculation requires the total number of all events, and the total number of the elemental

events. The TAU algorithm does not have this constraint, since it only uses elemental

differentials. After calculating a similarity measure using the TAU algorithm,

subsequent unrelated events would not affect the differentials already calculated. For

the MMI algorithm, however, this would require a complete recalculation of all scores.

7.6 The antonym pair good/bad

Among the antonym pairs used in the experiments, good/bad were consistently

ranked most similar to each other by all the algorithms. Table 7.6 shows the average

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 191

similarity rank (over all algorithms and all configurations) of an adjective by its true

antonym versus the average similarity rank by all other adjectives. For the pair

good/bad we see that on average each ranks the other as highly similar (1.67/1.38). In

contrast, all other adjectives tend to have good and bad very low in their similarity

rankings on average (13.98/13.39). So it is not the case that good/bad simply have

distributions that cause them to be ranked highly similar to any word by default, as for

example clean/dirty which have very similar average rankings by both themselves and

the other adjectives (6.71 vs. 8.39, 8.17 vs. 9.48).

The performance of good/bad suggests their distributional profiles are distinctive

enough, compared with the distributions of other adjectives used in the study, that the

similarity measures are able to discriminate them more easily. One possible explanation

is that the antonyms good/bad have a much wider distribution over all semantic

categories of nouns than the other antonyms, owing to their generality. This would

produce a much “flatter” distributional pattern that is a poor match for the more

specialized distributional patterns of the other adjectives.

Table 7.6

Average Similarity Rank of an Adjective by its Antonym and Other

Adjectives over all configurations

 Antonym Others Antonym Others

good 1.67 13.39 black 2.92 9.04

bad 1.38 13.98 white 3.67 8.48

alive 7.08 12.72 top 7.17 8.78

dead 13.04 8.90 bottom 6.17 9.96

back 6.33 10.92 clean 8.17 8.39

front 8.17 9.56 dirty 6.71 9.48

active 4.92 12.28 cold 4.25 10.31

passive 5.33 12.25 hot 6.21 9.10

big 7.21 10.13 dark 10.5 7.08

little 5.75 10.35 light 7.92 8.93

7.7 Conclusion

In this section, I have attempted to show that similarity measures based on

distributional information can be successfully applied to tasks having objective

evaluations (e.g. semantic acquisition). Using adjective antonyms as the evaluation

metric I was able to objectively characterize the performance of three different

similarity measures. Regardless of the algorithm or the experimental configuration,

Chapter 7 - Statistical Similarity Measures in Lexical Acquisition 192

using the distributional information to measure adjective similarity successfully ranked

the true antonym higher than others, with greater frequency than by chance.

Although antonyms are not normally considered to be similar, they confer similar

properties on the head nouns they modify through attribution. As a result, antonyms

have very similar distributions making them uniquely suited for a task-based evaluation

of distributional similarity measures.

The experimental results show that of the three similarity measures tested, MMI

gives the best performance on the widest range of configurations. It is less

computationally complex, and has a strong theoretical motivation. MMI achieved the

highest score when polysemy was considered in the distributional information of the

events and a larger number (i.e. finer distinction) of the conceptual classes was used for

the elements of the adjective word vector. However, MMI requires complete data for all

vectors before calculating similarity (see Section 7.5.3) which may make it unsuitable

for some applications. In this respect, the TAU similarity measure may be an acceptable

compromise between performance and feasibility.

8

Characteristic Adjectives

In the previous chapter I examined the properties of statistically based similarity

measures by evaluating several distributional approaches to semantic class acquisition

of adjectives. In this chapter I will continue exploring statistical methods of language

processing, using adjectives to discriminate nouns. To address the issues encountered

when applying the vectors derived from large corpus processing, I will develop the idea

of characteristic adjectives as a filtered set of adjectives that highly correlate with a

(nominal) node in a semantic taxonomy (e.g. WordNet), and discuss various approaches

to determining these characteristic adjectives, and their limitations. I will then propose

one approach that can be used to derive them successfully. Finally, I will present the

results of experiments designed to test the hypothesis that characteristic adjectives can

accurately predict a semantic node.

8.1 Characteristic Adjectives

One drawback to using the three semantic similarity measures evaluated in the

previous chapter is the computational cost. Sophisticated statistical measures such as

DC are expensive in terms of time and complexity. Measures such as MMI require

matrices of all vectors and features discovered in a corpus to compute similarity, which

can sometimes be impractical. It would be preferable to find a simpler and more

efficient measure of similarity that is comparably effective.

Another disadvantage to using the previous measures is they rely solely on statistical

information which limits their use to certain types of corpora. Statistical approaches are

appropriate for finding the similarities between words that appear in a large corpus,

where each word has a large number of occurrences. However, if the similarity is to be

calculated for words that only occur a relatively small number of times in a corpus,

Chapter 8 – Characteristic Adjectives 194

statistical approaches may be less effective, i.e. the smaller the number of events the

larger the potential statistical error.

For example, the vectors derived from a large corpus could be used to annotate the

class information in the CAMEO representation to augment a language task as

described in Chapter 6. When the task processes a document (comprising a different

corpus), it may encounter unknown words and attempt to measure distributional

similarity against the annotated class vectors. To do this, the task would need to derive a

distributional vector for the unknown word in the context of the document. However,

the distributional vectors that can be derived from the document will be a fraction of the

size of the vectors annotated from the large corpus. Consider the vectors of adjectives

derived from the BNC that were used in the experiments in Chapter 7. The size of these

vectors ranged from several hundreds of unique tokens to a thousand or more. The same

procedure used on a single document will normally produce vectors having on the order

of tens of unique tokens. Statistical similarity measures like those described in Chapter

7 use correlations between vector elements to calculate distance, and the large number

of elements in the BNC vectors makes it likely that they will all have spurious

correlations with the much smaller vectors in the document. Thus the similarity

measures will be less effective at distinguishing which BNC vector is most semantically

related to a word in the document.

One possible solution to this problem is to try to determine which elements of a

distributionally derived vector are the most salient. In other words, find which elements

carry the most semantic information about the vector at large. For instance, using the

same methods as described in Chapter 7, vectors of adjective collocations can be

derived for nouns. For these vectors the goal would be to determine which of those

adjectives carry the most semantic information about the noun. Retaining only the most

informative adjectives would result in smaller vectors that could then be used to

measure semantic similarity of nouns in the context of a smaller corpus (e.g. a small set

of documents). Further, these smaller vectors should only require a very simple

similarity calculation because they have already been determined to be semantically

significant.

A small set of adjectives like this which are semantically significant for a given noun

can be said to be characteristic of that noun, because they attribute characteristic

Chapter 8 – Characteristic Adjectives 195

properties. Characteristic adjectives then, are a small set of adjectives that indicate a

high semantic correlation with a noun when observed in the corpus. I will test this

hypothesis in the experiments that follow, but first I will investigate ways to discover

sets of characteristic adjectives.

There are several existing techniques that can be applied to reduce the

dimensionality of a vector. I used class-based smoothing in the experiments in Chapter

7 to conflate multiple individual word tokens into fewer, more general semantic

classes. However, class-based smoothing requires broad semantic categories, which are

less understood for adjectives. Other common approaches to vector reduction are

Principle Component Analysis (PCA) and Singular Value Decomposition (SVD),

which are statistical data-driven approaches to finding a smaller set of salient vector

elements, typically used in IR algorithms such as Latent Semantic Analysis (LSA).

Data-driven approaches like PCA and SVD are general dimensionality reduction

techniques not directly based on the intrinsic properties of the vector components

(although their application to natural language is motivated by the distributional

hypothesis of similar words). By contrast, the approach I will develop leverages the

inherent properties of adjectives, and the related semantic hierarchy of the nouns they

modify, to find semantically salient components irrespective of the statistical data.

In order to determine the best approach to deriving characteristic adjectives, it is

helpful to look at the lexical properties of the nouns they describe. A lexical taxonomy,

such as WordNet, organizes nouns in a conceptual hierarchy (e.g.

hypernymy/hyponymy). The hyponymy relationship is a specialization function (e.g.

dog is a specialized form of the more general animal), and hyponyms share all

properties of their ancestors. Therefore, adjectives that can modify a certain noun can

also appear with all of that noun‟s descendent nodes
2
. For instance, hungry can modify

animal and any of its hyponyms (hungry dog).

2 Note that the WordNet taxonomy includes information relating adjectives to nouns. For descriptive adjectives,

which specify the value of a nominal attribute, WordNet points to the synset representing the attribute. For

example, the adjective dry contains a pointer to the noun (synset) wetness. Relational adjectives, which are derived

primarily from nouns, have pointers to the related noun (synset), e.g. the adjective idyllic contains a pointer to the

Chapter 8 – Characteristic Adjectives 196

A characteristic adjective should represent a unique property of a noun. For this

reason, we cannot simply take the most frequently occurring adjectives as a noun‟s

characteristic adjectives. An adjective may actually be more characteristic of an

ancestor node much higher in the semantic hierarchy. Instead, it is necessary to

distinguish when an adjective is characteristic of a given node, and when it is simply

inherited.

8.2 A Bottom-Up Approach

One approach to deriving characteristic adjectives is to use a bottom-up strategy.

This strategy has limitations (as I will show), but it is a useful first approximation of an

algorithm that can later be refined. In the next few sections I will explore the bottom-up

approach and its limitations, and use it as basis for comparison to develop an alternative

approach.

In the bottom-up approach, distributional information is used to populate a

conceptual taxonomy with collocative adjectives, which are then post-processed by

recursively „percolating‟ them up the hierarchy. Adjectives and their corresponding

attributes are ultimately based on physical properties of the objects they modify (e.g.

long and short imply an object with some measure of length). These properties will be

implicit in the semantic organization of the conceptual hierarchy, and the adjective

distributions should reveal this.

 As I previously noted, an adjective observed at a given node in the tree is not

necessarily characteristic at that node. The properties of a parent node exist in all

noun (synset) idyll. For the experiments in this chapter, the distributional properties of adjectives are considered,

which implicitly derive from these relations. Although it may be possible to use this information explicitly to

smooth adjective events into attribute or relational classes, this aspect was not explored in the current work.

Chapter 8 – Characteristic Adjectives 197

descendant nodes, but they are only characteristic in the context of the parent. For

instance, the adjective living may help distinguish an organism from an artifact, but it is

useless when distinguishing between two organisms (cat vs. dog). For the bottom up

approach to work, some decision algorithm must exist to decide when an adjective

needs to be “pushed back” up the semantic chain. That is, there must be a means of

deciding when an adjective is characteristic and when it simply indicates an inherited

property. If we observe the same adjective for all (or most) children of a parent node in

the semantic hierarchy, we might assume it indicates a property inherited through the

parent node. By processing the semantic tree from most specific to most general (i.e.

bottom up), observed adjectives can be pushed recursively up the tree to the highest

node that does not share the adjective with its siblings. This then becomes a

characteristic adjective, distinguishing the node in the context of its siblings.

As an example, consider the deverbal adjective married. We might expect, using the

algorithm described above, for this adjective to eventually be assigned as characteristic

of person. The adjective married depends upon, and subsequently attributes, the

properties of being a person. We may observe instances of the sibling nodes married

man and married woman and determine that we are justified in assigning this adjective

to the parent node person.
3

The bottom up approach suffers from serious limitations, which I explain in the

following sub-sections. In section 8.3 and 8.4 I will describe how to avoid these

limitations by using a slightly different approach.

8.2.1 Data Sparseness

There is a data sparseness issue that arises when using the bottom up approach. The

problem, however, is not that there are not enough adjectives observed for a given noun,

but rather the distribution of these adjectives is sometimes insufficient for a semantic

node.

3 It may be argued that person is too broad a category for which to assign married, since e.g. baby and pope are both

children of the person node. The taxonomy may not include a node representing the precise set of characteristics,

e.g. marriable person. However, because characteristic adjectives are not used in a generative capacity, having a

wider scope is not an issue.

Chapter 8 – Characteristic Adjectives 198

Recall that the decision to promote an adjective to a parent node depends on the

adjective being observed with all its children. In practice this rule does not work

because not all children can be expected to co-occur with an adjective. There may be

some children of a node that are quite rare and do not even occur in the corpus. This is

often true in WordNet, which strives to be so comprehensive as to include esoteric

terms, euphemisms and slang among its entries. However, even for more common

terms which do appear in the corpus, an adjective describing a legitimate property may

be unlikely to co-occur. Returning to the married person example, WordNet has over

300 hyponyms for the synset headed by the concept person. For most of these it would

be uncommon to find them modified by the adjective married. For example, married

waker, married captor, and married nonworker, although semantically acceptable, are

somewhat unexpected. Contexts where these might appear would be unusual and most

likely involve some distinguishing discourse level context.

This data sparseness skews the distribution of married over the children of the

person node, making it difficult to derive a general rule for promoting an adjective. It

may be possible to adjust the algorithm heuristically to use some soft threshold based

on, say, a weighted percentage of the observed instances over all the child nodes, but

ultimately any empirically determined parameter will be incapable of correctly handling

all possible configurations of nodes.

8.2.2 Polymorphism

The other major obstacle to using a bottom up approach for deriving characteristic

adjectives is polymorphism. In natural language, it is allowable for a more general

concept to be substituted for a more specific concept. This is known as polymorphism

because the general term is able to change and assume the properties of the more

specific term. For example, it is semantically acceptable to substitute poor thing for

poor person. In this case thing is standing temporarily for the person class and can no

longer be said to be a member of the thing class.

This behaviour is problematic for distributional techniques because the events

observed with the polymorphic object do not necessarily belong to it. In the above

example, the observed adjective poor should definitely not be associated with thing,

Chapter 8 – Characteristic Adjectives 199

since that would ascribe the implied attributes of poor to all descendants of the node

thing (e.g. molecule, ocean, etc.).

 There is no simple way to determine when an object is functioning in a polymorphic

manner. Without a means to determine this, adjectives can appear almost anywhere on

the conceptual tree making the derivation of characteristic adjectives very difficult.

8.3 Characteristic Attributes as Differentiae

Polymorphism and data sparseness expose the weakness in the bottom up approach

to deriving characteristic adjectives. The bottom up method relies on aggregating

information recursively from the bottom of the tree and so is vulnerable to incomplete

information. A better approach is to use the differential of a node‟s observed adjectives

compared with those of other proximate (i.e. child) nodes. So rather than aggregating

and promoting the adjectives that appear in a majority of child nodes, this approach

would eliminate adjectives appearing in child nodes, and retain only those adjectives

that appear as unique.

This approach is suggested by the organization of the semantic taxonomy, which

parallels to some degree the organization of plant and animal taxonomies found in the

biological sciences. A parent node in the semantic hierarchy can be thought of as the

biological genus, and child nodes to species. A genus is defined as a group where each

member has a significant number of shared characteristics. A species is a member of

this group that can be distinguished from other members by one or a small number of

characteristics. Thus in the differential approach, we are explicitly deriving the

distinguishing characteristics of a species node. One way to find this set of

characteristic adjectives would be to simply compare a node‟s vector with all other

vectors. Any adjectives that only appear with a single node could be taken as

characteristic. Of course, in practice it would not be feasible to compare a node‟s

adjectives with that of all other nodes. In fact this would not necessarily be desirable

since homonymy and polysemy will produce legitimate multiple occurrences of the

same adjective on nodes that do not coincide semantically (e.g. a large (striped) bass, a

large (string) bass).

Chapter 8 – Characteristic Adjectives 200

Instead, it should only be necessary to look at a local portion of the tree when

computing the differential for a node. This local area will have a tighter semantic

correlation and adjectives that occur multiply within this context will likely be implying

the same attributes (and can thus be ruled out as characteristic).

Note that a characteristic adjective does not necessarily occur with the node it

belongs to. Polymorphism and inherited properties make it possible for the adjective to

occur anywhere in the node‟s set of descendents. In fact the bottom up approach was

based on the idea that it would be necessary to “push” these adjectives up to their

proper nodes. Therefore, when using differentials to determine characteristic adjectives,

it may be necessary to aggregate the vectors of descendent nodes with the vector of the

parent node under investigation.

Theoretically, it would be possible to include the entire tree of a node‟s descendents

when determining characteristic adjectives, but in practice this approach would be

unfeasible for nodes anywhere near the root. The set of adjectives would become too

large, and the effects of polysemy and homonymy could appear because of the semantic

scope included in such a large portion of the tree. Using a much smaller sample should

not hinder the results significantly, although it is possible that some characteristic

adjectives would be missed in this case (namely characteristic adjectives that only

appear with descendent nodes beyond the restricted portion of the tree). As I

demonstrate in my experimental results however, this did not appear to be a significant

issue.

8.4 Experiments

The experiments presented in this section are designed to test the hypothesis that

characteristic adjectives can be used as a measure of semantic similarity. For a semantic

node in a taxonomy (e.g. a synset in WordNet), a vector of characteristic adjectives is

hypothesized to have less statistical noise than the complete vector of adjective co-

occurrences (with respect to a particular corpus). In other words, reducing the vector

representing a node to its most salient adjectives gives it sharper semantic focus. Thus a

vector of characteristic adjectives should possess a better capacity for discriminating

vectors of similar semantic terms.

Chapter 8 – Characteristic Adjectives 201

There are two major parts of the experiments to consider described in turn below; the

method for determining the vectors of characteristic adjectives, and the method for

testing the measure of similarity. The data for the experiments was taken from the BNC.

Using methods similar to those described in Chapter 7, vectors of adjective collocations

were derived for nouns in the corpus. The semantic taxonomy used in the experiments

was WordNet 2.0. WordNet contains nine “unique beginner” nodes which serve

effectively as root nodes for separate taxonomies. Within each of these taxonomies, all

nodes on the first two levels were tested.

Figure 8.4 gives pseudocode for the derivation of the characteristic adjective vectors

used in the experiments, according to the approach described in Section 8.3. Each noun

is represented by a vector of adjective events observed in the corpus. The vectors are

manipulated (either through aggregation of several vectors or removing adjective

elements from individual vectors) to derive vectors of characteristic adjectives. For

example, a node in the taxonomy represents a synset having one or more noun

synonyms. To derive the vector for a node requires combining the vectors of all

individual nouns in the synset, as shown in Figure 8.4.

Start
 For each unique beginner node nu
 Call procedure Determine characteristic adjectives with nu
End

Procedure Determine characteristic adjectives uses node n
 For each child c of node n
 Call procedure sum vectors with c
 Remember vector of c
 For each child c of node n
 For each sibling s of c
 For each adjective a in vector of s also appearing in vector of c
 Remove a from vector of c
 Save vector of c
End

Procedure sum vectors uses node n
 For each noun w in synset of node n
 Sum vector of w with vector of n
 For each child c of node n
 Sum vectors of all nouns in synset of c with vector of n
 Return vector

End

Figure 8.4 –Pseudocode for deriving characteristic adjectives

Chapter 8 – Characteristic Adjectives 202

For each node to be tested, I combined the adjective vectors of all nouns in its

synset, along with all nouns in all synsets of its immediate children. The same

procedure was performed on all of the test node‟s siblings. Using this set of vectors, the

differentials were computed by comparing the test node‟s vector to its siblings‟ vectors

and removing any adjectives that appeared in common. This resulted in a vector

composed of all the (locally) unique adjectives which were observed in the corpus

appearing with one of the nouns in the test node‟s synset (or immediate descendent

synsets).

The derived characteristic adjective vectors were then used to select nouns from the

BNC corpus by determining a vector-based similarity score. Because the characteristic

adjective vectors are hypothesized to be composed of unique differentiators, a

sophisticated similarity measure should not be necessary. Additionally, using a

sophisticated similarity measure would conflate the performance of the characteristic

adjectives with the performance of the similarity measure itself. Instead, a direct

matching similarity metric should give a better indication of the associative strength of

the characteristic adjectives. For these reasons a simple similarity score was used

consisting of the the number of matching adjectives as a percentage of the total number

of adjectives in a noun‟s vector.

 For each node under test, I scanned all nouns in the BNC corpus, matching a noun‟s

vector of adjectives against the test node‟s derived characteristic adjective vector. The

similarity score was computed as the number of matching adjectives as a percentage of

the total number of adjectives in a noun‟s vector. The highest similarity scores select the

most similar nouns to the node under test. (A 25% similarity score threshold was

determined empirically and simply gives a static level on which to base comparison). I

used both the derived characteristic adjective vector and the complete adjective vectors

to perform the experiments and compare the results.

8.4.1 Evaluation

Characteristic adjectives can be seen as a filter, selecting for the semantic node

(synset) from which they were derived. To judge their effectiveness we can measure

how many nouns (i.e. synonyms) are selected belonging to the synset, in proportion to

Chapter 8 – Characteristic Adjectives 203

the total number of nouns that are selected. This gives us a basis for calculating

precision P and recall R.

P = synonyms selected / all nouns selected

R = synonyms selected / total synonyms possible

Another measure of the effectiveness of characteristic adjectives is looking at the

quality of the nouns that are selected. We expect the nouns selected, if they are not

members of the synset, to at least be close semantic relatives of the node. More

precisely, we would expect them to be descendents because the set of characteristic

adjectives define distinguishing characteristics of the original semantic node. All nouns

found having these characteristics should inherit them from this node and therefore be

descendents.

We can measure the quality of the selected nouns by computing their distance to the

semantic node. Call this distance the span. The span is computed by counting the

distance (edges) between the node of a selected noun and the semantic node under test.

If the selected noun is not a direct descendent of the node, the nearest common ancestor

is used. Figure 8.4.1 shows an example of measuring the span between a selected noun

nib and a test node tip. The selected noun nib is related to the test node tip only through

the common ancestor end.

nib

point

end

tip

Figure 8.4.1 –Example of measuring the span between nib and tip

Chapter 8 – Characteristic Adjectives 204

Note that nodes closer to the root of the tree are increasingly general and will include

larger portions of the tree. Thus the likelihood of two nodes being related increases for

nodes closer to the root. To adjust the span score for this root proximity effect, a factor

is included relative to the distance from the root of the common ancestor node. This

gives less weight to the score when the nearest common ancestor is close to the root of

the tree, which usually indicates the selected noun is only distantly related.

The formula for the span s is calculated as

froto

root
dd

ds

1

1

1

1
)1(

where rootd is the number of edges between the common ancestor node and the root

node, tod is the number of edges from the selected node to the common ancestor, and

fromd is the number of edges from the common ancestor to the test node.

The span metric presented here is similar to other path-based measures (e.g. Leacock

and Chodorow, 1998), especially Wu and Palmer (1998). Wu and Palmer also

incorporate the distance to the root from the nearest common ancestor of two nodes

being measured in their similarity score. However, they scale this distance by a factor of

2, giving it much more weight than the distances tod and fromd , compared with the span

calculation proposed for these experiments. Wu and Palmer also use a form that is

normalized between 0 and 1, which I chose not to do since the absolute values give

information about a test node‟s placement in the semantic hierarchy. The span in this

case is only used as a relative comparison between specific levels in the hierarchy and

not as an absolute measure (which would require normalization).

For the example given in Figure 8.4.1 above, the distance from the common ancestor

end to the root node entity is 4 edges (end →extremity→region,part→location→entity).

The distance from the selected node nib to the ancestor end is 3 edges, and the distance

from end to the test node tip is 1, giving a span score of

75.5
11

1

31

1
)14(

s

Chapter 8 – Characteristic Adjectives 205

Note the calculated span has a minimum value based on the distance of the test node

to the root. In the best case, if a selected noun is a synonym of the test node, both tod

and fromd will be 0 and the nearest common ancestor will be the test node itself, giving

3max rootds . Also, because the span score is not normalized, span scores are only

useful for comparing the quality of nouns selected by vectors from sibling nodes (which

reside at the same level of the tree).

Each selected noun has the possibility of being polysemous, which poses a difficulty

for the evaluation. But since a noun is being selected using the vector of characteristic

adjectives (which are semantically related to a single sense of the test node), it is fair to

assume the most appropriate sense for the selected noun. Thus, for the purposes of the

evaluation, the distance to the test node was computed for each sense of a selected

noun, and the sense in closest proximity to the test node (i.e. the best match) was used

to calculate the span score.

The baseline used in the experiments consisted of the complete (undifferentiated)

vectors of adjectives. That is, the vectors before removing adjectives found in common

with sibling nodes. Using these undifferentiated adjectives provides a baseline measure

for the precision, recall, and span scores of a test node. We would expect the vectors

used in the baseline to be less discerning and select a wider semantic scope of nouns

because the vector of adjectives would be more general. We can predict that the

baseline will have a greater recall with a lower precision. We would also expect the

baseline to have higher (worse) span scores because of the wider semantic breadth the

undifferentiated vector would cover.

8.5 Results

I calculated characteristic adjective vectors for the first three levels of the WordNet

taxonomy, comprising 720 nodes. Using these differentiated characteristic adjective

vectors, along with the undifferentiated baseline vectors, I scanned all nouns in the

BNC corpus. Each vector selected a set of nouns matching the threshold percentage of

the vector‟s adjectives (described above).

Chapter 8 – Characteristic Adjectives 206

For each vector I calculated the average precision P, recall R, and span s over all

selected nouns. I then averaged these scores over sibling nodes and assigned the scores

recursively up to the nine unique beginner nodes. The statistics for the nine unique

beginners are shown in Table 8.5.

For each root node, values are given for the averages derived from the characteristic

vectors, the baseline vectors, and the differences between the two (Delta). Averages are

reported as the number of true synonyms selected by the vector (Synonyms), the total

number of nouns selected (Total Selected), the average span of all selected nouns (Avg

Span), and the calculated Precision and Recall.

Table 8.5

Results for selecting nouns using the nine unique beginners

 Characteristic Vectors Baseline Vectors Delta

Root
Node

S
y
n

o
n

y
m

s

T
o

ta
l

S
e
le

c
te

d

A
v
g

 S
p

a
n

P
re

c
is

io
n

R
e
c
a
ll

S
y
n

o
n

y
m

s

T
o

ta
l

S
e
le

c
te

d

A
v
g

 S
p

a
n

P
re

c
is

io
n

R
e
c
a
ll

S
y
n

o
n

y
m

s

T
o

ta
l

S
e
le

c
te

d

A
v
g

 S
p

a
n

P
re

c
is

io
n

R
e
c
a
ll

Entity 16 951 127.85 .017 .727 20 25112 178.93 .001 .909 -4 -24161 -51.080 .016 -.182

Act 43 55745 213.79 .007 .417 54 47866 199.10 .001 .621 -21 -42121 14.690 .006 -.204

Abstraction 6 587 62.74 .010 .316 8 14836 86.72 .001 .421 -2 -14249 -23.980 .010 -.105

Event 10 500 39.10 .020 .556 13 14551 22.32 .001 .722 -3 -14051 16.780 .019 -.167

Psych 12 198 72.03 .061 .414 12 16725 86.78 .001 .414 0 -16527 -14.750 .060 .000

Phenomenon 7 1415 35.35 .005 .412 10 12282 18.09 .001 .588 -3 -10867 17.260 .004 -.176

Group 22 2103 127.48 .010 .423 23 35720 98.90 .001 .442 -1 -33617 28.580 .010 -.019

Possession 4 520 24.02 .008 .444 4 9214 8.74 .000 .444 0 -8694 15.280 .007 .000

State 49 12624 206.28 .004 .333 60 75548 174.79 .001 .408 -11 -62924 31.490 .003 -.075

Total 169 24643 908.64 .007 .406 214 251854 874.37 .001 .514 -45 -227211 34.270 .006 -.108

8.5.1 Quantitative Analysis

The aggregate statistics show that for each of the nine unique beginners, using

characteristic adjectives improved precision while worsening recall in a much smaller

proportion. For instance, the characteristic adjective vector for the root node entity

selected four fewer synonyms than the baseline vector, but the total number of nouns

selected was 24,161 less. Thus the recall worsened by 20.1%, but the precision

improved by 1,700% (.017 / .001). The same pattern is observed when viewing the

Chapter 8 – Characteristic Adjectives 207

aggregate of the first level nodes under a unique beginner, and continues to the

individual nodes themselves.

Out of 720 individual nodes under study, there were 149 cases where using

characteristic adjectives improved the precision over the baseline. The average

improvement in precision over all individual nodes was 10%, but there are many

examples of improvements of 90% or more. There were 35 cases where the precision

worsened, but the average degradation was so small as to be almost undetectable. These

cases are typified by instances where the baseline finds a single synonym but has a huge

number of false positives giving it a very small precision. The characteristic set restricts

the false positives but if it loses the synonym in the process the precision goes to zero.

The experiment shows there is a significant reduction in ambiguity using the much

more restrictive characteristic adjectives. In most cases the number of nouns selected

dropped by 90-95% of the numbers using the baseline. The fact that the recall only

worsened in 40 cases seems to indicate the characteristic set is describing real features

of the noun class.

Although using true synonyms in scoring provides a clear measure of precision and

recall, there are also legitimate hyponyms that could be considered as properly selected.

The average span (described in Section 8.4.1) is used to measure this. There were 249

cases where the average span improved and 442 cases where it worsened. Of the 442

worse cases, 380 of these were due to null membership for the characteristic adjectives.

That is, cases where the characteristic adjectives did not select for any nouns in the

corpus. This happens when the adjective set is so small to begin with, that

differentiating leaves too few, if any, characteristic adjectives.

8.5.2 Qualitative Analysis

It is informative to look at the kinds of adjectives that comprise a characteristic set

after the differentiation process. Table 8.5.2-1 lists the top 20 characteristic adjectives

(based on frequency) for person, which is the first child of the cause node under the

entity root. Table 8.5.2-2 lists the top 20 adjectives in the original baseline vector

(before differentiation). Adjectives in bold appear in both sets.

Chapter 8 – Characteristic Adjectives 208

There were 1,367 adjectives in the baseline vector, and 794 characteristic adjectives

after differentiation, giving a ratio of roughly over half the adjectives retained as

characteristic.

Comparing the two tables it is clear that many of the adjectives in the baseline vector

do not imply attributes that are unique to a person. Adjectives such as old, only, other,

ordinary, and peculiar, which appear in the baseline vector and not in the characteristic

vector, either imply attributes that are universal (old, only) or are deterministic (other,

ordinary, peculiar). Contrast these adjectives with those found in the characteristic set

such as bereaved, unemployed, insured, and immortal, which all imply distinctly human

attributes (within the local semantic context of the person node).

Table 8.5.2-1

Top 20 characteristic adjectives of person

 Table 8.5.2-2

Top 20 baseline adjectives of person

Word Count Word Count

Word Count Word Count

bereaved 31 unemployed 24 young 262 dead 71

vulnerable 22 deaf 52 different 68 disabled 107

deceased 24 elderly 189 elderly 189 human 53

accused 17 healthy 26 important 55 insured 57

ill 16 infected 27 old 189 older 80

insured 57 lay 17 only 428 ordinary 65

living 41 missing 15 other 743 particular 129

named 32 qualified 28 poor 70 private 79

assisted 14 sensible 22 real 66 right 77

sick 25 immortal 22 authorised 59 single 245

There are some characteristic adjectives that do appear not to imply uniquely human

attributes such as missing, healthy, sick and living. However, these adjectives are

characteristic in the context of the parent (genus) node, and serve to distinguish the

child (species) node from its siblings. In this context there needs only to be a

differentiation from other children of the cause node. Other children of the cause node

include:

agent:: a substance that exerts some force or effect

supernatural, occult:: supernatural forces and events and beings collectively

Chapter 8 – Characteristic Adjectives 209

destiny, fate: the ultimate agency that predetermines the course of events

engine: something used to achieve a purpose

The full baseline vector for the person node contains 1,367 adjectives and selects 23

nouns from the BNC corpus. The characteristic adjective vector contains 794 adjectives

and selects only 5 nouns. These two lists are shown in Table 8.5.2-3. Although there are

several nouns that should be selected by the characteristic set (such as child and

women), most of the nouns in the baseline list are spurious (part, place, state, thing) and

the characteristic set successfully filters these out, while retaining those nouns that are

semantically close to person.

8.6 Conclusion

In this chapter I have attempted to show that a distributionally derived vector of

differentiated adjectives can be used to represent a semantic node in a taxonomy. These

characteristic adjectives are motivated by the attributive lexical function of adjectives,

and are another example of the types of statistical processing techniques that can be

applied to language processing. Characteristic adjectives give an alternative similarity

measure for class based semantic acquisition, compared with those examined in the

previous chapter. Rather than using a more complex similarity calculation over

Table 8.5.2-3

Nouns selected by vectors of node person

characteristic set baseline set

man

men

people

person

woman

body

business

character

child

family

form

group

life

man

men

nature

part

people

person

place

sense

state

thing

way

woman

women

work

world

Chapter 8 – Characteristic Adjectives 210

comprehensive distributional data, this method attempts to find a smaller number of

distinguishing data, which can then be used with a simpler similarity calculation.

I looked at several approaches to deriving characteristic adjectives, motivated by

insights into the properties of adjectives. Of these approaches, the most successful was

using differentials of neighbouring semantic nodes. By removing those adjectives that

appear in the vectors of nearby semantic nodes, the distributional data is reduced to the

most distinguishing features.

The experiments appear to confirm the semantic properties of the characteristic

adjectives and their ability to determine semantic similarity. Qualitatively, the types of

adjectives that are derived as characteristic appear plausible as representing

distinguishing attributes, which is one motivation for their development. Quantitatively,

the characteristic adjective vectors improve the correlation to the correct semantic node,

in comparison to the complete distributional vectors.

The derivation of characteristic adjectives presented in this section can be affected

by polysemy, as with most distributional methods. However, because in this case the

highest level semantic nodes are used, the nouns under study are very general and

mitigate these effects to some degree. Polysemy is likely to be more pronounced for

nodes lower in the taxonomy and may degrade the performance of differential metrics

such as characteristic adjectives. One possible way to address this would be to use the

distributions in the vicinity of homonymous nouns to filter adjectives in the polysemous

distribution, but this would complicate the algorithm and warrants further investigation.

Another goal of this chapter has been to explore some of the possible approaches

enabled by corpus based distributional methods. Results from these types of

experiments have the potential of aiding symbolic language tasks by integration with a

framework such as the CAMEO representation. For example, the distributionally

derived characteristic adjectives could be used to augment the symbolic representation

of a document (or set of documents) processed in the system using the annotation

strategies explained in Chapter 5. A symbolic task could then utilize the vectors to

classify unknown nouns into one of the top level WordNet classes used in these

experiments.

Chapter 8 – Characteristic Adjectives 211

While this may be helpful, it does not necessarily provide a statisfactory solution for

application to smaller corpora (i.e. single documents). Characteristic adjectives are not

guaranteed to appear with an unknown noun in a particular document, and the chances

decrease with document size. So although the characteristic adjective vectors are

moderately inclusive and have a fair number of adjectives, there is still a data

sparseness issue related to the frequency of adjectives, especially in smaller corpora.

The next chapter will look at ways to extend the idea of differentiation to include not

only other parts of speech, but dependency relations as well.

9

Distributionally Derived

Symbolic Rules Using

Unambiguous Examples

The characteristic adjectives developed in the previous chapter resulted in vectors

with much lower dimensionality than typical vector-based similaritiy metrics. Although

this makes them more effective than high-dimension vectors on smaller corpora, they

can still be hindered by sparse data, especially since they rely exclusively on adjectives.

In addition, polysemy in the training corpus dilutes the information content (as with any

vector-based approach).

In this chapter I will address these deficiencies by extending the technique used to

derive characteristic adjectives to discover symbolic rules for deciding semantic

categories. These rules will be based on lexico-syntactic patterns, and like characteristic

adjectives, are hypothesized to be highly correlative with a semantic class. I will derive

the rules distributionally (as before) and use them to determine the semantic classes

represented by the WordNet lexicographer files, or supersenses (Ciaramita and

Johnson, 2003), extending coverage to words not found in the lexical resource

(WordNet).

The work in this chapter will be an integration of distributional and symbolic

methods applied to the representation as discussed in Chapter 6. The experiments are

based on the approach given in Section 6.3, which suggests incorporating symbolic

distributional information into a similarity measure to assign semantic attributes to

unknown nouns. In the first stage of the experiments distributional events will be

collected from a large external corpus to derive symbolic rules. In the second stage the

resulting rules will be applied to the text representation framework to semantically

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 213

classify nouns in a test corpus. Although the focus of the chapter is the novel approach

of the differentiated rules, I will also touch upon relevant representational properties

that effect the implementation.

9.1 Supersense Tagging

The distributional processing used to derive the characteristic adjectives in the

previous chapter utilized the semantic classes at the first two levels of the WordNet

taxonomy. In this chapter, the semantic classes represented by the WordNet

lexicographer files will be used instead. The lexicographer files are used by the

WordNet developers when determining semantic properties. Although the

lexicographer files are not included in the WordNet distribution, the file identifiers are

given for each sense of a word. Each file contains a collection of semantically related

synsets organized by concept (e.g. act, animal, food, process, state), so words having

the same file identifier are members of the same conceptual grouping. The files of

interest in these experiments (nouns) represent 25 semantic classes which correspond

roughly to 7 of the 9 top level nominal nodes in the WordNet taxonomy, combined with

a finer classification for the remaining two top-level nodes (entity and abstraction).

Ciaramita and Johnson (2003) refer to these classes as supersenses because they

represent broad categories of finer senses. They argue that aggregating the synset

information in WordNet into supersense classes not only provides a much richer set of

semantic properties (since individual synset properties logically apply to the

supersense), but also presents a small corpus of annotated supersense data via the

example sentences contained in the synset glosses.

Although the advantages suggested by Ciaramita and Johnson (2003) apply equally

well to the top-level nodes of the WordNet taxonomy proper, there are several other

reasons for adopting the lexicographer file classification for these experiments. The

most important is that the classes represent a more balanced grouping of the taxonomy.

For instance, although entity and state are both top-level nodes, entity contains many

more child nodes and is thus much more general. Using the lexicographer files, entity is

represented by finer semantic groupings closer in scope to state.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 214

Another advantage of using the lexicographer files is that the fine-grained sense

information available in WordNet is smoothed when considering the 25 classes that

make up the lexicographer files. Even though a word may have many different senses,

each sense is mapped to one of the 25 files and may end up being in the same file as

several of the other senses. This effectively reduces the number of senses for a word,

depending on the distribution of senses across the lexicographer files, and in some cases

makes a polysemous word monosemous with respect to the lexicographer file classes.

Finally, using the lexicographer files also reduces computational complexity. Every

sense in WordNet is annotated with its corresponding lexicographer file index, which is

much easier to determine than tracing a node‟s hierarchy to find the root node.

There have been several recent investigations into supersense tagging. Ciaramita and

Johnson (2003) demonstrate a multiclass perceptron classifier (Crammer and Singer,

2001) trained on monosemous WordNet 1.6 nouns found in the context of a 40 million-

word corpus along with the WordNet 1.6 definitions and glosses. The novel test set they

propose is comprised of new words appearing in WordNet 1.7. They report a significant

improvement over the baseline heuristic of choosing the most frequent sense (person),

however the highest accuracy achieved is 52.9%.

Curran (2005) is able to improve this accuracy to 63% using a weighted voting

scheme of automatically extracted synonyms. Using a composite 2 billion-word corpus,

a vector of shallow grammatical relations was extracted for unknown nouns. This

vector was measured for similarity against vectors of known nouns, and a weighted

sense score derived from a subset of the most similar nouns was used to determine the

supersense of the unknown noun. A hand-coded backoff algorithm was employed for

unknown nouns which did not appear in the derivational corpus.

In both experiments, the goal was to assign the correct supersense to a noun which

did not occur in the training data. The unknown nouns used in the test set comprised the

unambiguous additions to WordNet 1.6 appearing in WordNet 1.7, amounting to 744

unknown noun types. A second test set was derived by withholding 755 noun types

from the WordNet 1.6 training data.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 215

The experiments presented in this chapter are also distributionally based and use

similar features to those in typical vector-based similarity measures, such as Curran

(2005). However, the aim in my experiments is the derivation of symbolic rules for

supersense disambiguation of all nouns appearing in a corpus. This encompasses a

much larger range of test noun types, since every noun in the test corpus can potentially

match a rule context.

The primary application of unknown supersense tagging suggested by Curran (2005)

is the automatic extension of lexical resources, such as WordNet. Automatically

deciding the supersense categories can aid the automatic or semi-automatic

determination of a word‟s position in the taxonomy.

Knowing a word‟s supersense can be beneficial for other applications as well. In

Chapter 6 I explained how a reliable semantic classification can aid tasks such as co-

reference resolution, where attributes inherited from the class can be used to rule out

incompatible referents. As demonstrated in Chapter 5, reducing the size of the set of

candidate antecedents in this manner can significantly reduce the complexity of co-

reference resolution.

For small numbers of high-level classes, such as supersenses, the attribute values

associated with each class can be determined manually. For example, the

human/animate/inanimate attributes correspond to the WordNet person/animal/object

classes. A finer level of attribute granularity is possible depending on the class

granularity. This chapter will focus on the semantic classification task using 25

semantic (WordNet) classes, which can be used as a basis for assigning nominal

attributes.

9.2 Symbolic Rules

The characteristic adjective vectors derived in the previous chapter consisted solely

of attributive adjectives, i.e. instances of collocated adjective-noun pairs. Although this

usually represents the majority of adjective constructions, there are still many more

possibilities for distributionally processing adjectives. Additionally, when considering

semantic classification, it may be helpful to extend distributional information to include

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 216

other parts of speech. For example, Hindle (1990) used verb-noun distributional

information to classify nouns.

Earlier in the thesis I discussed how symbolic information is increasingly leveraged

in distributional experiments. One of the difficulties encountered with this approach is

the expense of obtaining accurate symbolic information in large corpora. PoS tags and

dependency information are costly to produce by hand and current taggers and parsers

cannot achieve complete accuracy, although taggers are generally more accurate than

parsers. Additionally, deep syntactic parsers can have high computational complexity,

making it infeasible to process larger corpora.

Curran and Moen (2002) evaluate the performance of a distributional task (thesaurus

extraction) using context information from shallow syntactic dependency extractors

versus a full syntactic parser. They conclude that using shallow processing with reduced

computational complexity can be advantageous if it enables a much larger corpus

sample than would otherwise be feasible with deeper syntactic processing. This result

suggests a trade-off between deep syntactic processing which can recover more

relational dependencies but has a higher computational cost, and shallow processing

which has limited syntactic coverage but can be applied more easily to larger amounts

of data. Although either approach can be applied to deriving symbolic rules, the

experiments in this chapter are not meant to be exhaustive and therefore adopt shallow

processing techniques which adequately serve to demonstrate the hypothesis.

Because tags are more widely available for large corpora, when attempting shallow

distributional processing of symbolic information, it is advantageous to use

constructions that can be lexically determined. For example, as the previous chapter

demonstrates, simple collocations such as attributive adjectives can generally be

determined without dependency parsing. More complex constructions can also be

recovered using lexical techniques; e.g. nominal compounds and simple verb phrases

are constructions which can usually be recognized without a deep syntactic parse.

Although these lexically determined constructions comprise shallow symbolic

dependency information, they still represent a syntactic relationship. In contrast, strictly

lexical distributional processing typically uses an unordered context window of

collocates which treats instances equally, regardless of their type or position. The

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 217

experiments in this chapter are based on the following shallow syntactic constructions

which extend the attributive adjective vectors from the previous chapter:

1. Attributive adjectives – this includes adjectives immediately preceding the

nominal string under study, adjectives in simple conjunctive phrases, and

adjectives in a penultimate attributive position. Examples: distinguished opera

singer, free and confidential service, adequate historical data

2. Pre-nominal compound modifier – nouns immediately preceding (modifying) the

nominal string under study. Example: volunteer programme

3. Simple verbal subject – verbs immediately following the nominal string under

study, disregarding intervening auxiliaries and adverbs, including simple

conjunctive verb phrases. Example: the airflow will have increased

4. Simple verbal object - verbs immediately preceding the nominal string under

study, disregarding any intervening adverbs or adjectives, including simple

conjunctive verb phrases. Example: to produce a fluffy Risotto

Each of these patterns can be used with PoS tags and a regular expression to extract

distributional events which can be used to derive symbolic rules, making deep parse

dependency information unnecessary. This significantly reduces the complexity of the

distributional processing and makes it more feasible to run on large corpora. The trade-

off is that more complex constructions will either not be discovered in the distributional

data, or will produce spurious events.

After the distributional events are extracted and processed (see Section 9.5.1), the

result is a set of symbolic rules that are hypothesized to be strong indicators of a

supersense. These rules can be encoded in the representation and applied to text in order

to assign supersense information. Encoding the rules for application to the

representation takes the same form as distributional dependency queries (see Chapter

6), where constraints are explicitly encoded using the standard representational

elements and unconstrained properties are unspecified.

For example, a hypothetical rule derived from the first pattern (1) listed above (i.e.

attributive adjectives) would be encoded in CAMEO as

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 218

ctx[

 obj[mod[adequate] class[]]]

where the specific mod element and the unspecified class element are used to constrain

the form of the obj element. This rule representation matches the adjective adequate

followed by a common noun, as well as various syntactic variations of this construction

including a conjunctive adjectival phrase, adverbial modifiers, and compound nouns.

Another hypothetical example, is a rule derived from the last pattern (4) above. The

representation of the rule in CAMEO is

ctx[

 obj[ID=n]

 evt[ACTION=increase O=n]]

This rule will match any verb phrase with a head verb of increase and a noun serving as

a direct object. It does not constrain any other properties of the verb phrase so that it

may appear in constructions such as passive, future progressive, etc. The direct object is

similarly unconstrained so it may appear as a proper noun, a group, or any other

nominal construction.

The encoding of the rules in the representation is flexible and allows for a range of

constraints when applying the rules. The more attributes and elements appearing in the

rule representation, the more tightly the constraints imposed on the text matching the

rule. The rule derivation processing is responsible for determining which constraints are

relevant and encoding the rules with these constraints. Section 9.4 gives the details of

the distributional processing used to derive the symbolic rules for these experiments.

9.3 Addressing Polysemy

As I noted previously, polysemy plagues all levels of NLP. This is especially true of

distributional processing, where polysemy has the effect of diffusing a word‟s

distributional pattern over possibly unrelated and incompatible contexts. A sense-tagged

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 219

corpus would solve this problem, but as with deep symbolic information, a sense-tagged

corpus is rare and expensive to produce.

To address polysemy in the distributional experiments presented in this chapter, I

will restrict the distributional contexts to non-polysemous nouns. Polysemy can be

determined for nouns listed in the WordNet taxonomy and it is trivial to filter these out

for a class or group to create a list of non-polysemous words. Using such a list would

effectively guarantee that the distributional information extracted from the corpus

would not be diluted by polysemy, without requiring word sense tagging.

This approach has been employed in previous research as an alternative to hand-

tagged data. Leacock et al. (1998) compare performance of a word sense disambiguator

when trained on data automatically derived from monosemous relatives of a

polysemous noun versus manually tagged data. Their results are mixed, but much of the

performance degradation is due to the assumption that the contexts are interchangeable

(which is not the case for polysemous nouns such as line and some monosemous

relatives such as picket line).

Ciaramita and Johnson (2003) use monosemous nouns in the training data of a

supersense classifier. After extracting all occurrences of WordNet 1.6 nouns in a 40

million word corpus, they removed all nouns having more than one supersense. They

mention that this approach produced better accuracy than including all nouns and

assigning distributional information over all senses of a multi-sense noun.

Another common technique involving monosemous words is bootstrapping, i.e.

iteratively marking sense information beginning with unambiguous monosemous

words. For example, Mihalcea and Moldovan (2000) attempt to annotate an IR system

with semantic information. They use a multi-stage processor to disambiguate lexical

strings, tagging monosemous tokens at an early stage for incorporation into processing

of compositional strings.

An important question to answer before restricting a training corpus to monosemous

nouns is whether it will produce enough data. It is reasonable to assume that non-

polysemous words are less common than their polysemous counterparts, and therefore

will produce fewer instances for distributional processing.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 220

Table 9.3– WordNet 2.1 Noun Database Statistics

unique strings 117,097

Synsets 81,426

word-sense pairs 145,104

monosemous words and senses 101,321

polysemous words 15,776

polysemous senses 43,783

average polysemy including monosemous words 1.23

average polysemy excluding monosemous words 2.77

The WordNet 2.1 statistics for noun polysemy are shown in Table 9.3. Although

there is clearly a much larger number of monosemous words, these tend to be more

obscure and fall on the tail of a Zipfian-like distribution. Polysemous words are more

likely to occur not only because they participate in multiple senses, but also because

they are often less specialized. An informal survey reveals that a large majority of the

monosemous nouns turn out to be compound or hyphenated nouns. Those that are not

are often precise and unambiguous, such as genuflexion. Contrast this with typical

polysemous nouns such as man (11 senses), hand (14 senses), and bank (10 senses).

Ciaramita and Johnson (2003) report nouns having multiple supersenses accounted

for 72% of the tokens and 28.9% of the types in their corpus. The corpus used for the

experiments in this chapter has a measured distribution of 35.2% polysemous noun

tokens and 13.0% monosemous noun tokens, nearly a 3 to 1 ratio. The remaining

objects (i.e. noun phrases) do not have an explicit class (e.g. pronouns and proper

nouns).

What effect the distribution of non-polysemous nouns will have on the experiments

will depend largely on the size of the classes. If the experiment uses large enough

classes the effect of the smaller instances of non-polysemous nouns can likely be

mitigated. The following section describes the classes used for these experiments.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 221

Even with this strategy employed to address polysemy, there are other related issues

which can affect the results. Metonymy and polymorphism complicate semantic

classification. For example, the metonymic usage of groups (corporations,

organizations, etc.) as individuals is common in the press. Sentences such as [The Navy

said the accident happened yesterday] are a simple illustration. The object [Navy]

would appear in WordNet as a group semantically, however the verb said is technically

related to the semantic class [person]. This case is common enough that it warrants

conflating the two classes in certain instances. Other cases of metonymy and

polymorphism are more difficult to detect. Section 9.5.2 explains how this problem was

accommodated in the experimental evaluation.

9.4 Deriving Characteristic Rules

The same principle used to derive characteristic adjectives in Chapter 8 can be

employed to discover characteristic rules. Using distributional processing, a set of rules

can be extracted for each class, and by determining the differentiae for the rules, a set of

unique characteristic rules can be derived. Recall that for characteristic adjectives, the

differentiae were calculated relative to siblings sharing a parent node in the taxonomy.

This localized approach was necessary because it was not feasible to differentiate

globally against all other words, and in addition, the effects of polysemy could result in

spurious global matches. For this application, the lexicographer file classes are used

instead, which means all the classes are not necessarily at the same level in the

taxonomy. However, since there are a smaller number of classes (25 lexicographer

files), and the distributional data is non-polysemous, it is feasible to differentiate the

derived rules globally (i.e. against all other classes). If a rule matches more than one

class, it cannot be considered a characteristic indicator of a single class.

 The procedure used for deriving the characteristic rules is summarized as follows.

For each class (i.e. lexicographer file), all polysemous words were discarded. The

remaining words were used to seed the patterns described in Section 9.2 and collect

matching events from the corpus. For example, the lexicographer file representing the

class possession contains 1,078 entries after removing all polysemous words. Consider

one of these, say, subsidy. Distributional events for the noun subsidy appearing in the

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 222

context of one of the patterns described in Section 9.2 would be collected from the

corpus. Here are some examples:

1. Attributive adjectives – agricultural subsidy

2. Pre-nominal compound modifier – cash subsidy

3. Simple verbal object - … she relented and negotiated subsidies to her ex-

husband …

Matching events were collected for each entry in the filtered class list in this manner.

These specific matches were then generalized to form a set of rules, by replacing the

seed words with the class and aggregating the rules (removing duplicates).

Once rules for all classes had been distributionally extracted, the differentiae were

computed for each rule set by removing all rules occurring in more than one class,

resulting in a set of unique symbolic rules for testing membership in each class.

Figure 9.4 illustrates the process using three of the supersense categories. In step 1,

distributional events are collected using the list of monosemous nouns for each

supersense. Each italicised word in the figure is a monosemous noun which belongs to

Figure 9.4 – Example rule derivations for three supersense classes

 artefact body time

1 the photo appears …

his seal ring appears on …

the general’s cuirass appears as …

the synagogue now exhibits …

the skull appears broad …

bruised knuckle can be
bandaged

bacterial chromosomes occur …

bacterial genes …

celebrates the tercentenary …

celebrates major anniversaries …

the jubilee is celebrated by …

2 <obj class=artefact><verb=appear>

<obj class=artefact><verb=exhibit>

<obj class=body><verb=appear>

<obj class=body>
<verb=bandage>

<mod=bacterial><obj class=body>

<obj class=time><verb=celebrate>

3 <obj class=artefact> <verb=exhibit> <obj class=body>
<verb=bandage>

<mod=bacterial>
<obj class=body>

<obj class=time><verb=celebrate>

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 223

the supersense indicated by the heading of the column. The words in bold represent the

discovered keywords to use in the rule derivation. In step 2, the lists of distributional

events are aggregated and generalized to form supersense rules. Finally, in step 3 the

differentiae are computed to produce characteristic rules by removing rules which

appear in more than one category. In this example, the verb appear is found in rules for

both the artefact and body supersense categories so all rules using appear are

discarded.

Although the rules are derived using shallow lexico-syntactic pattern matching, the

application of the rules in the text representation allows for them to be used with rich

syntactic dependency constructions. As an illustrative example, consider the following

characteristic rule produced for the object class:

<verb=shield><obj class=artifact>

This rule states the syntactic object of the head verb shield is of the semantic class

artifact. The following sentence in the Wolverhampton corpus matches the rule:

Handles should be shielded with rubber.

The CAMEO representation is given by:

 ctx [TYPE=clause

 obj [ID=o11 class [handles]]
 evt [O=o11 ACTION=shield MODAL=should PASSIVE] rel [with rubber]]

The rule classifies the object [handles] correctly as a member of the artifact group.

Note that although the verb phrase is expressed in passive form, it is normalized in the

symbolic CAMEO representation allowing the rule to match correctly. A strictly lexical

application of the rule would either miss this instance, or incorrectly interpret handles as

the subject.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 224

9.5 Experiments

As with the experiments in the previous chapter, there are two major parts to the

experiments described here. First, deriving the set of characteristic rules according to

the procedure described in Section 9.4. Second, using this derived set of rules to decide

the semantic classification of nouns. The next two sections will discuss each of these

parts in more detail.

9.5.1 Distributional Processing

In order to ensure the rules derived through distributional processing are unique (i.e.

characteristic), a large, tagged derivation corpus is needed, such as the BNC used in the

previous chapter. Due to time and resource constraints, rather than using the entire BNC

a sub-corpus comprised of all files in the BNC A section was used for these

experiments. The BNC A section is comprised of 674 written documents and contains

14,232,256 (orthographic) words, which represents approximately 15% of the BNC

corpus.

The derivational corpus is processed using distributional seeds from the WordNet

2.1 lexicographer files. Each WordNet 2.1 lexicographer file contains a list of “words”

which can include multi-word expressions and hyphenates. Hereafter I will refer to

these as “strings”, following the WordNet nomenclature. After removing all

polysemous (multi-class) strings, each lexicographer file yielded a set of monosemous

(single-class) strings. Table 9.5.1 lists information about each lexicographer file used in

the experiment. The first column gives the WordNet lexicographer file index, the

second column gives the file name, and the third column gives the number of

(monosemous) strings after removing polysemous strings. The table is sorted by the

number of strings from highest to lowest.

The distribution of (monosemous) strings over the semantic classes exhibits a very

clear Zipfian form. The first four classes comprise nearly half of the distribution, with

the remaining strings distributed in a roughly logarithmic curve. This is due to the

nature of the first four semantic classes, which are all tangible and comprise the

majority of the nouns in WordNet: plant, person, artifact, animal. Although other

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 225

tangibles appear further down in the table, they are more specific, such as body and

food, resulting in smaller classes.

Table 9.5.1

Distributional statistics for derivation corpus by class/lexicographer file

File Name Strings Events Rules Pre Adj-1 Adj-2 Obj Subj

20 plant 16,865 5393 556 66 140 28 31 48

18 person 16,322 132,925 4,489 914 1,717 549 382 58

6 artifact 13,375 80,936 4,834 1,123 1,758 347 350 272

5 animal 13,351 11,419 598 106 226 27 46 21

4 act 6,193 44,658 1,350 264 557 112 102 43

10 communication 5,638 56,243 1,544 342 734 126 113 41

26 state 4,105 17,871 479 58 189 46 35 91

27 substance 3,968 13,734 1,049 193 338 61 72 5

15 location 3,936 67,871 407 69 140 44 27 8

8 body 3,035 6,807 315 60 106 26 35 28

7 attribute 3,007 22,479 444 47 199 39 41 81

14 group 2,961 39,006 886 195 305 94 69 34

9 cognition 2,863 22,163 690 129 369 72 53 0

13 food 2,468 9,929 594 147 194 51 57 27

17 object 1,682 14,986 1,132 150 224 29 63 528

23 quantity 1,483 7,608 123 26 18 4 6 9

28 time 1,355 29,594 313 42 64 12 16 26

21 possession 1,078 15,605 447 87 145 28 34 22

11 event 785 6,504 203 54 64 22 11 2

22 process 749 2,467 51 10 19 4 3 3

19 phenomenon 684 7,553 88 14 35 7 6 0

24 relation 448 969 26 6 12 0 3 2

12 feeling 340 4,556 127 12 75 9 10 18

25 shape 255 825 81 4 12 4 3 54

16 motive 50 127 21 0 2 0 0 19

Total 106,996 622,228 20,847 4,118 7,642 1,741 1,568 1,440

The strings in each file were used to filter sentences from the derivation corpus. Any

sentence which matched one of the strings in the file was extracted, yielding a set of

distributional events for each filtered lexicographer file. The Events column of Table

9.5.1 records the number of events produced by each file.

Note the distribution of events does not follow the distribution of strings in the

lexicographer files. The largest number of events occurs for the second largest class

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 226

(person). The largest ratio of events to strings occurs with the much smaller time class

which yields 29,594 events from only 1,355 strings.

Each set of events was processed for patterns matching those described in section

9.2, where the nominal string under study was taken to be a string from the

corresponding filtered lexicographer file. This yielded a set of (possibly overlapping)

symbolic rules for testing membership in each class (lexicographer file grouping).

Within each class, the rules were generalized by abstracting the nominal string used in

the match and removing duplicates (see Section 9.4).

The final step in the distributional processing was to calculate the differentials in the

symbolic rule sets by removing all duplicate rules globally across all classes, leaving a

set of unique rules hypothesized to be characteristic for a given class. The Rules column

in Table 9.5.1 gives the total number of characteristic rules produced for each class. The

subsequent columns list the number of rules by category, where:

Pre – pre-nominal modifier

Adj-1 – attributive adjective (first position)

Adj-2 – attributive adjective (second position)

Obj – verb phrase object

Subj – verb phrase subject

Most of the classes retained less than 10% of their events as rules after

differentiation, except motive (16.5%) and plant (10.3%). The smallest percentage of

rules retained was location (0.6%), and the average percentage of rules retained was

3%.

The last line in Table 9.5.1 gives the totals across all files. After differentiating the

rules there remained 20,847 rules, with the largest share of these derived from

attributive adjectives (7,642). Compound nouns also accounted for a large number of

these, and verb-based rules were the least common. (See Section 9.6 for a discussion of

the distribution of verbs).

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 227

9.5.2 Evaluation

Unlike the characteristic adjectives derived in the previous chapter, the symbolic

rules being tested here are not vector based and subsequently have a more narrow

scope, resulting in fewer instances where each rule will apply. On the other hand, the

semantic classes being decided are broader and more comprehensive (since they

represent a flattened portion of the WordNet hierarchy), which means that there are

many more class members which form the distribution.

I tested the derived rules on several corpora: The MUC7 corpus, the Wolverhampton

corpus, and the Siddharthan corpus. Each corpus was processed using the RASP toolkit

and transformed into the CAMEO text representation language. The test set of nouns

was selected as follows. All nouns in the corpus found in one of the syntactic

constructions described in Section 9.2 were collected. From this set, all first and second

pronouns were removed, along with all monosemous nouns. The resulting set of test

nouns represented the majority of all ambiguous nouns (with respect to supersenses) in

the corpus.

 The derived rules were transformed into queries which were applied to the set of test

nouns from each corpus, resulting in a set of noun phrases and their classification. For

evaluation, the correct classification was manually determined from the set of senses

listed in the WordNet database for the head noun. This included a consideration for the

context of the noun, and whether its usage involved metonymy or polymorphism.

For example, the Siddharthan corpus includes a series of fables which include

characters such as talking animals. In this case, the animal will exhibit both human and

animal behaviour and could be classified as person or animal depending on the context.

That is, when the character is exhibiting human behaviour it should be classified as

person, and in all other cases it should be classified as animal. A further example is

from a newspaper article about the terrorist group Al-Qaida. Normally this noun phrase

would be assigned the group class, however the sentence [Al-Qaida will feed] invokes

a metaphoric reference and warrants an animal class in this context. A similar argument

can be made when determining the classification of metonymic usages of group for

person.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 228

These types of usage accounted for a relatively small percentage of the overall test

cases matched by the rules. The Siddharthan corpus contained the greatest number

(4.9%), while fewer instances were found in the MUC7 (3.7%) and WLV (0.4%)

corpora. The percentage across all corpora combined amounted to just 2.6% of the test

cases matched by the rules.

The baseline algorithm used for comparison consisted of selecting the first listed

WordNet (super) sense of an object‟s head noun. The WordNet documentation states

that the first listed sense is the most frequent with respect to the WordNet development

corpus. Using the most frequent sense of a word is a typical approach for dealing with

polysemy in distributional experiments. For objects that do not include a common noun,

such as proper nouns and pronouns, this approach does not apply, and these types of

objects were not included in the calculation of the baseline precision.

The following definitions are used to describe the baseline scoring metrics:

𝑁 is the set of noun phrases under test (as described above)

𝑁𝐵 is the subset of noun phrases in 𝑁 having a common noun (i.e. classifiable by the

baseline algorithm).

𝑁𝐶 is the number of correctly classified noun phrases

The precision P and recall R are given by:

𝑃 =
𝑁𝐶

𝑁𝐵

𝑅 =
𝑁𝐵

𝑁

The F-measure is calculated in the standard way:

𝐹 =
2𝑃𝑅

𝑃 + 𝑅

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 229

Extending the baseline approach of first-listed sense, the characteristic rules provide

an alternate means to decide the supersense of nouns, increasing the coverage to include

nouns not contained in 𝑁𝐵. The algorithm applies the rules to all noun phrases in the set

N defined above. For noun phrases matching a characteristic rule, the rule is used to

select the target classification. For cases where the set of senses listed in Wordnet for

the noun phrase does not include the rule‟s target classification, or there are multiple

rule matches ascribing conflicting supersense classes, the algorithm reverts to the

baseline (i.e. most frequent sense). The characteristic rules are also applied to noun

phrases that do not contain common nouns (and cannot be classified by the baseline).

The following definitions are used to define the scoring metrics for the characteristic

rules:

𝑁𝑅 is the subset of noun phrases in 𝑁 classifiable by a characteristic rule.

𝑁𝐶 is the number of correctly classified noun phrases

F is defined as before. The precision P and recall R are given by:

𝑃 =
𝑁𝐶

𝑁𝑅

𝑅 =
𝑁𝑅

𝑁

9.6 Results

An important goal of these experiments is the evaluation of the representation itself

and the properties which facilitate deriving and applying the symbolic rules. Although a

quantative measure would be difficult to devise, a few conclusive results can be made

through analysis. First, the normalisation of the syntactic structure afforded by the

representation is conducive for applying symbolic rules of this type, allowing a single

rule form to apply to a wide range of syntactic constructions such as passive verb

phrases, subject-auxilliary inversion, complex verb phrases, verbal and nominal

conjunctions, and infinitival complements.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 230

Next, the structure of the representation and its contextual organization aid in certain

corpus processing tasks conducted during the course of the experiments, such as the

alignment of several corpora. For example, during the development of the experimental

framework, several iterations of the representation were produced from the corpus due

to issues in the early stages of processing that needed to be resolved. Transferring the

annotation key to the successive iterations of the representation was achieved through a

simple transform which aligned sentential and phrasal contexts before attempting to

align individual objects. Information from the key corpus was then copied into the

object containers for those objects that aligned with the new representation. (Any

remaining objects were subsequently re-annotated.)

Finally, the object-centric nature of the representation is advantageous for generating

reports and analysis. The representation of noun phrases as first-class objects in a

phrasal context makes them more accessible during processing than strictly hierarchical

representations. Also, because the representation of objects is uniform, regardless of the

underlying grammatical relations, transformational processing can be applied globally

to objects as a class. Generating global lists of objects with specific properties or

relations can be helpful for analysis, as for example the evaluation of ruleset classes in

the experiments of this section based on an object‟s syntactic position (Figure 9.6-2).

Table 9.6-1
Precision, Recall and F-measure for semantic classification on three corpora

 Characteristic Rules Baseline

 P R F P R F

MUC7
60.4%

(808/1337)
88.8%

(1337/1505)
71.9% 61.7%

(641/1039)
69.0%

(1039/1505)
65.2%

Siddharthan
60.7%

(1740/2867)
86.9%

(2867/3298)
71.5% 62.5%

(1549/2480)
75.2%

(2480/3298)
68.2%

WLV
50.8%

(1911/3759)
87.7%

(3759/4284)
64.4% 50.8%

(1860/3664)
85.5%

(3664/4284)
63.7%

Total
56.0%

(4459/7963)
87.6%

(7963/9087)
68.3% 56.38%

(4050/7183)
79.1%

(7183/9087)
65.8%

Table 9.6-1 shows the qualitative results of applying the baseline and derived

symbolic rules to three sets of corpora. Using characteristic rules improved the F-score

over the baseline for each corpus, with the largest improvement recorded for the MUC7

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 231

corpus. The characteristic rules improve the recall by increasing the coverage of the

baseline system to include nouns which do not occur in WordNet (the majority of these

being proper nouns and certain pronouns). The recall improved by 10% for two of the

corpora (MUC7 and Siddharthan), with an average improvement over all three corpora

of 8%. The WLV corpus had much higher recall for the baseline than the other corpora

(86%) and this resulted in a smaller improvement when the characteristic rules were

applied. The WLV corpus is comprised of mainly instructional documents which

contain a smaller ratio of non-common nouns. This contrasts with the MUC7 corpus

which is newspaper text and has a much higher ratio of proper nouns and pronouns

resulting in a lower baseline recall (69%).

The precision of the characteristic rules was similar to or slightly worse than the

baseline. One factor that affected the performance was processing errors. Parsing errors

(which were often the result of tagging errors) accounted for roughly 3-5% of the

incorrect classifications (based on a sample analysis). For example, sentence (100)

shown below is from the WLV corpus.

(100) Do not use hammers to bash wooden or plastic handled tools such as

chisels or screwdrivers.

In this case, the syntactic processing mistagged/misparsed plastic handled tools

resulting in the misapplication of the characteristic rule <verb=handle><obj class=act>

and the erroneous supersense act assigned to tools.

Another factor affecting the precision is the variation in the supersense categories.

Certain objects are given a classification in WordNet which does not always reflect the

more common usage. For example, the WLV corpus contains several documents which

discuss software programs and operating systems. In WordNet, these types of objects

are classified as communications, whereas a large number of the characteristic rule

applications resulted in the supersense artefact. In many cases, the collocates associated

with the communications supersense, such as broadcast, receive, etc., do not apply to

software programs, but those of the artefact supersense often do (e.g. install, use). This

ambiguity accounted for a large percentage of the errors in the WLV corpus. For

example, 38% of the errors in the Linux HOWTO document, and 67% of the errors in

the CDROM HOWTO document were due to this ambiguity.

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 232

Figure 9.6-1 shows the distribution of matching events and the rule accuracy for

each class in the test corpora (classes with less than 1% of the matches have been

omitted). As expected, based on the distribution of derived rules, the largest class was

person followed by artefact. These two classes combined accounted for over 50% of

the events in the three test corpora. Although person had the second largest number of

monosemous strings in WordNet (behind plant), it still made up the largest percentage

(21.3%) of the distribution of events in the derivation corpus. This frequency of the

person class in the derivation corpus appears to correlate with the test corpus,

accounting for the high number of events matching the person class rules. The artefact

class, which had 20% fewer monosemous strings than person, accounted for 13% of the

events in the derivation corpus, and exhibits a proportional distribution in the test

corpus. Note that artefact produced a larger number of rules than person, and still had

fewer events in the test corpus.

The rule accuracy was better for person (65.9%) than artefact (58.4%), with the less

frequent class accuracies varying widely. Only body had better accuracy (75%) than

person/artefact and body appeared in significantly fewer events.

0

100

200

300

400

500

600

700

800

Figure 9.6-1
Event distribution and rule accuracy by class

Events

Right

Wrong

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 233

Figure 9.6-2 shows the event distribution over the test corpus of matching rules by

syntactic form. The verbal subject rule form clearly dominates the distribution. This is a

surprising result because the verbal subject form accounts for just 7.5% of the total

number of derived rules. In fact, the largest percentage of derived rules (36.7%) takes

the adjective-1 form, and this produces a relatively small number of matches in the test

corpus.

One possible explanation for the larger number of matching verbal rule events is the

underlying distribution of verbs in the derivation corpus. According to statistics

compiled by Leech et al. (2001), the ratio of noun to verb tokens per million words in

the BNC is roughly 1:1 (181,985 / 174,272), while the ratio of noun to verb types is

roughly 3:1 (3,031 / 1,103). This suggests that far fewer unique verbs than nouns will

appear in a given corpus. Thus any derived verbal rules would most likely represent a

larger number of matched verbal events in the derivation corpus, and subsequently

generate a proportional number of matches in the test corpus.

Conversely, the distribution of matching adjective events (11.9%) appears relatively

equal with nouns (13.9%) in the test corpus distribution. Even though adjectives have a

WordNet ratio to nouns of roughly 5:1, they have a much lower distribution in running

text. Leech et al. (2001) report BNC adjective statistics per million words at 55,328

tokens and 1,036 types, equating to a roughly 3:1 noun-to-adjective type ratio (the same

0

100

200

300

400

500

600

700

800

900

1000

Verb Subject Verb Object Pre-Nominal Adjective 1 Adjective 2

Figure 9.6-2
Event distribution and rule accuracy by syntactic form

Total

Right

Wrong

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 234

as noun-to-verbs) and a 3:1 noun-to-adjective token ratio (much higher than noun-to-

verbs). However, only a small percentage of nouns will appear in the compound form

and this produces a similar percentage of rules (adjectives 45%, nouns 40.1%), resulting

in a similar distribution of matching events observed in the test corpus.

Unlike statistically based approaches, using unambiguous monosemous words to

seed the rule derivation avoids the affects of polysemy and allows the algorithm to work

with a relatively small number of distributional samples. The average number of events

observed in the derivation corpus for a particular monosemous word in a given rule

pattern was 1.2, which is extremely small in comparison with the numbers of events

used in the experiments on adjectives from the last chapter. Even when the events are

smoothed to create a rule, the aggregate numbers remain relatively small. This is a

direct result of using “pure” monosemous instances, which do not appear as frequently

as polysemous words. Of course this does not guarantee that the derived rule will not

appear in a polysemous context within the corpus. But the experiments show that some

rules can be derived which possess a close semantic correlation with the class of the

monosemous words used to derive them.

Table 9.6-2
Examples of derived rules

Class Pre-nominal Adjective-1 Verb Subject Verb Object

act bombing pre-emptive accomplish

artefact cockpit high-speed sink board

cognition retrieval hegelian preclude solve

communication cancellation conversational pre-date answer

food caramel piquant thicken simmer

location plateau hilly landlock stretch

person predecessor itinerate understand oblige

Table 9.6-2 lists examples of the derived rules for several classes. In most cases the

rules are highly suggestive of the appropriate class. However, it is clear that counter

examples can be constructed where the rule could fail (as is true for all distributional

processing). But because the rules are only applied to matching contexts where the

rule‟s supersense is listed in WordNet as one of the noun‟s supersenses, only certain

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 235

nouns appearing in these constructions will match the rule. This raises the rule‟s

precision at the expense of lowering the recall.

9.7 Conclusion

Distributional processing is often used to derive statistical measures, as for example

in Chapter 7. However, in this chapter I have demonstrated a distributional approach to

deriving symbolic rules. The rules represent an aggregate of distributional instances in a

derivation corpus but do not include an explicit statistical weighting. Instead, the same

process of differentiation, introduced in the last chapter, is applied to filter ambiguous

rules, leaving only those which correlate with a single class in the derivation corpus.

In order to derive single-class rules, the effects of polysemy must be addressed. In

this chapter I used known monosemous words to avoid the need for sense-tagged data.

This ensures that the events observed in the derivation corpus have the desired class.

However, this does limit the data used in the rule derivation to events occurring with the

monosemous words.

The results demonstrate that this technique is able to extend the baseline approach

(of defaulting to the first-listed WordNet sense) to words that do not occur in WordNet.

The experiments derived many rules for disambiguating noun phrases using the process

of differentiation to select rules which are indicators of a single semantic class. Because

the rules are syntactic in nature, each applies to a specific syntactic context. The

coverage of the ruleset is directly related to the number of rules derived, and their

lexical contexts. The experiments demonstrated a nearly 10% gain in recall when the

baseline was extended with the characteristic rules applied to unknown nouns.

The precision of the rules remained at, or slightly lower than, the level of the

baseline. Part of this was due to errors in processing, but semantic factors also came

into play. Metonymy, analogy, and other creative uses of language need to be accounted

for when applying symbolic rules of this type. The characteristic rules derived in the

experiments often were highly predictive, but sometimes the rule matched a lexical

context quite different than those used to derive the rule. In many of these cases the

Chapter 9 – Distributionally Derived Symbolic Rules Using Unambiguous Examples 236

correct supersense was a closely related class and smoothing these classes might be an

alternative approach, depending on the task. Other possibilities for refining the rules

include considering a wider context (e.g. both verbal subject and object), and using

distributional information about polysemous contexts where the rule appears (in the

derivation corpus).

As with any distributional approach, the derivation corpus determines the quality of

the distributional output. The experiments reported in this chapter made use of a sub-

corpus taken from the BNC which is large enough to provide an adequate sample of

text. Using a larger corpus could possibly result in more events, which in turn could

generate more rules, but these would likely be increasingly rarer usages having little

effect on the overall results.

10

Conclusion

In this thesis I have investigated the integration of contextual and distributional

processing with a sematically-motivated linguistic representation. The objectives of the

thesis were set out in the introduction and the thesis has addressed each of these in turn:

1) I have defined and implemented a text representation language called CAMEO,

which satisfies the proposed desiderata and provides the framework for a general

treatment of contextual and distributional processing at all levels of discourse; 2) I have

developed a systematic treatment of structural and linguistic context within the

representation and applied it to a text processing task; 3) I have investigated

distributional and statistical methods of text processing and developed a novel

distributional application to symbolic processing.

The main contributions of the thesis are a novel representation of context, a

distributional approach to deriving symbolic rules, and several innovations which

distinguish the text representation language. In addition, using semantic properties of

adjectives, I have developed a novel distributional semantic similarity measure, and

proposed a new approach to deriving a gold standard for evaluating statistical lexical

acquisition strategies.

The CAMEO representation language developed in Chapter 3 provided the

framework for exploring issues of context and distributional processing in the thesis. To

guide the design of the representation language I have explored several aspects of

representing linguistic analysis which affects a wide range of language and discourse

processing tasks. The different linguistic information required by these various tasks

and the wide range of existing representational forms, spanning linguistic and semantic

analysis, suggests the need for a flexible representational strategy which is capable of

encoding multiple levels of linguistic analysis while supporting deterministic

Chapter 10 –Conclusion 238

transformations into other linguistic and semantic forms. To this end, I have proposed

desiderata in Section 1.1.1 for a generalized intermediate representation for text

processing, and used these desiderata to define the CAMEO text representation

language.

CAMEO is a comprehensive approach to an intermediate representation, developed

for the research objectives of this thesis. However, it embodies representational

principles which can be adapted to other representations, or help when designing new

languages. Text representations in the literature often take the form of ad-hoc task-

specific approaches, or general languages designed to support a particular aspect of

language processing. In both cases it is rare to find representational issues addressed

directly and a comprehensive treatement of lexical and syntactic variations in the

representation. Recently, as discussed in Section 1.1.1, representational issues have

gained more interest due in part to the work of the parser community‟s attempt at

deriving a common ground for evaluating different parsing systems. Other

representational concerns have surfaced such as the complexity posed by some

representations to non-linguistic users. Many of these concerns are encompassed in the

desiderata proposed in this thesis and implemented in the CAMEO language. Chapter 3

explores the properties and form of the representation, and gives a comprehensive

account of syntactic variations. In Chapter 4, examples of operations on the

representation demonstrate its usability and support the claim that it provides a form

that is amenable to manual manipulation and analysis.

CAMEO is a linguistic encoding with rudimentary semantic types, and includes

several features and properties not found in extant representations. Besides the

integration of contextual and distributional information (discussed below), CAMEO

includes a strategy for the representation of heterogenous groups (Sections 3.3.1.1and

3.4.9), possessives/genitives (Section 3.4.4), and reflexives (Section 3.4.8). It also

includes a general representation for arbitrary bracketing in conjunctive constructions

for constituents such as adjectives, nouns, and phrases (Section 3.4.2), and supports a

primitive meaning representation suitable for shallow semantic tasks (Section 3.1.7).

CAMEO is positioned at the intermediate linguistic level and captures a wide range

of linguistic information from the surface text and analysis. Chapter 4 explores surface

realisation from the internal representation as a means of testing the richness of the

Chapter 10 –Conclusion 239

encoded information. Rather than relying on a grammar, surface realisation in CAMEO

is achieved through a direct, deterministic transformation. This gives shallow tasks that

produce surface variations the ability to manipulate the representation directly without

extensive linguistic knowledge, as demonstrated in Section 4.2. The surface realisation

transformation is recursively able to realise all levels of the representation, from

individual constituents to document level structure.

Operating at the intermediate level allows CAMEO to encode some linguistic

functions for reuse across a range of tasks. In Section 4.2, applications to sentence

condensation and activisation demonstrated how syntactic variations are normalised and

encoded in the representation. The passive/active verb alternation described in the

experiments is one example of a linguistic function encoded in CAMEO which presents

a canonical representation and alleviates tasks from supporting both forms.

Most textual representations of linguistic analysis function at the sentence level, and

do not encompass analysis of larger linguistic units. To extend the CAMEO language

for use beyond sentence and phrasal analysis, in Section 3.5 I examined representational

issues with respect to discourse- and document-level processing, and quantified these in

terms of requirements on a language processing system. I defined data structures in

CAMEO to address these requirements, including elements for class-based and

assertional processing. Central to the design of these structures is a general and

recursive representation of contexts to encode document structure that extends to the

sentence and phrasal levels.

In Chapter 5 I looked at some contextual issues affecting one application of symbolic

NLP (coreference resolution) where the representation of context can be of benefit.

Using the strictly linguistic contextual information extracted from the discourse and

syntactic structure, I showed that the representation provides a means for addressing

certain aspects of the task which suffer under non-contextual processing. The influence

of context on analysis varies with the genre and composition of a corpus, and I

presented several experiments to measure and test contextual processing on different

styles of corpora.

The representation of distributional information often takes the form of vectors of

event counters, requiring little beyond a task-specific implementation. However, as

Chapter 10 –Conclusion 240

distributional methods increasingly make use of symbolic information and are

incorporated into symbolic processing, representational issues warrant consideration. In

Chapter 6 I described how the CAMEO representation language supports augmenting

language tasks with both symbolic and distributional information. I explained how

distributional information beyond typical collocations, including symbolic

dependencies, can be derived from the intrinsic representation using structured queries

having explicit constraints, and explored applications of this type of data on symbolic

tasks. I also described the support in the representation for distributional data derived

from external sources, such as large derivational corpora with shallow representations,

and gave examples of how this could be applied.

One of the more common distributional applications of large derivational corpora is

lexical acquisition. In Chapter 7 I explored the general properties of statistical similarity

measures, which are a critical component in lexical acquisition. I presented a study of

statistical methods and several experiments using adjectives, which comprise a lexical

category less commonly employed with lexical acquisition and thus of further

theoretical interest. As part of the study, I investigated some of the issues with

evaluating existing measures of semantic similarity used in acquisition, and proposed a

novel objective solution using adjective antonyms as a gold standard. Using antonyms

avoids the expense of manually annotated reference corpora, since lists of antonyms are

available, without resorting to artificial terms. The experiments in Chapter 7 employed

a sample of accepted antonyms to evaluate three extant statistical similarity measures,

providing qualitative information about their performance.

In Chapter 8, I suggested several difficulties with using external distributional

information from lexical acquisition to augment language tasks. To address these issues,

I investigated the use of adjective distributions in the semantic classification of nouns. I

have proposed linking adjectives to conceptual attributes and developed the idea of

characteristic adjectives as differentiating a nominal node in a semantic taxonomy. I

have shown experimentally that distributionally derived vectors of characteristic

adjectives correlate more closely with a semantic node than a corresponding vector of

undiscriminated adjectives. These vectors are much smaller and semantically focused,

making them more suitable for augmenting language processing tasks.

Chapter 10 –Conclusion 241

Finally, in Chapter 9 I showed how differential distributional techniques used to

develop the statistical vectors of characteristic adjectives could be extended to derive

symbolic rules. Using differential distributional processing of shallow syntactic

information I extracted a set of highly-correlative rules for classifying nouns into coarse

semantic classes, called supersenses. The assigned classes can be used to map attributes

onto the nouns for use in processing tasks such as coreference resolution. In the

experiments, the derived symbolic rules were shown to improve the recall of a baseline

system by extending coverage to nouns not encompassed by a lexical resource. A

notable feature of this approach was the use of monosemous words to avoid the

problems of polysemy. Only words having a single class for all senses (which can be

determined from the lexical resource) were used in the distributional processing,

avoiding the need for a sense-tagged corpus.

10.1 Further Work

There are several areas covered in the thesis which suggest further lines of research.

First of all, the text representation language currently does not include an account of

underspecification like that found in some semantic representations. As I explained

earlier, the treatment of universal quantifiers by the representation makes this

unnecessary, since they retain their surface representation. However, a more relevant

issue of ambiguity, with respect to a linguistic analysis, is attachment ambiguity of

constituents such as prepositional phrases. Extending the text representation to allow for

underspecifying ambiguous syntactic attachments (cf. with packed parse tree structures)

would simplify the job of the parser, while deferring the resolution to deeper processing

that may have accesses to more linguistic resources.

Another area of interest is extending the language processing system to other parsing

technologies. The current system has been implemented on two parsing systems,

focusing on the RASP system. By implementing transformation modules for outputs of

other different parse technologies, certain deficiencies in the representation would likely

become manifest. Addressing these might improve the application of the system as a

general intermediate representation. A similar argument can be made for implementing

new tasks using the language processing system. Tasks which provide useful annotation

Chapter 10 –Conclusion 242

for deeper processing, such as named entity recognition, would provide a further useful

benefit.

In addition to extending the application of the representation, further work could be

done to enhance its usability. Although the internal form of the representation makes it

practical to manipulate by hand, providing automated tools could simplify the process.

For example, it would not be difficult to develop a “drag and drop” interface to create

and edit representations, using off-the-shelf components.

One possible enhancement to the existing methodology which might yield

improvements in the internal representation is further testing of surface realisation. The

surface realisation task in Chapter 4 was used to test the expressiveness of the

representation by encoding sentences in the representation and processing them through

the surface realiser. Although this included a range of syntactic constructions, it was not

a systematic test. Further work on developing a more systematic approach may prove

beneficial.

The evaluation of statistical similarity measures using adjective antonyms also

warrants further research. Experiments involving larger lists of antonyms, possibly

including unrelated adjectives might yield more insights into the operation of the

various similarity measures. Other types of similarity measures could also be tested in

this manner, for example machine learning approaches.

An interesting possibility for refining the set of characteristic adjectives would be to

use a weighting based on the frequency of adjectives. Currently only the percentage of

matches is used when selecting for membership. It may be possible to improve the

performance by allowing weighted matches based on the relative frequencies of

observed occurrences of adjectives in the characteristic set.

Though it may not provide any new insight to the representation language, further

improvement of the coreference resolution algorithm would be useful. Coreference is a

fundamental requirement of deeper processing such as semantic tasks, therefore

extending the research on coreference resolution could be leveraged for other research.

In particular, other resolution algorithms (e.g. Lappin and Leass, 1994) could be applied

Chapter 10 –Conclusion 243

independently or in parallel. Also, further experimentation of supplemental symbolic

and distributional methods could be explored.

Perhaps the most important area to be explored is the potential for integrating

multiple analyses at various levels of processing, which is afforded by the

representation. Probabilistic components can usually be configured to return multiple

ranked analyses and incorporating analyses from competing components are both

possibilities using a unified intermediate representation and warrant investigation.

The wide range of research suggested by the representation and its applications to

contextual and distributional processing helps to underscore the integral role aspects of

a representational language can play in natural language processing.

Bibliography

Abney, Steven. (1996). Statistical Methods and Linguistics. In The Balancing Act, Judith

Klavens and Philip Resnik, editors, MIT Press, Cambridge, MA.

Allen, James. (1984). Towards a general theory of action and time. Artificial Intelligence,

23(2), pp. 123-154.

Allen, James. (1995). Natural Language Understanding. The Benjamin/Cummings Publishing

Company, Inc., Redwood City, CA.

Alshawi, Hiyan, ed. (1992). The Core Language Engine. MIT Press, Cambridge, MA.

Alshawi, Hiyan and Richard S. Crouch. (1992). Monotonic semantic interpretation, In

Meeting of the Association for Computational Linguistics, pp. 32-39.

Alshawi, Hiyan. (1996). Head Automata and Bilingual Tiling: Translation with Minimal

Representations, Proceedings of the 34
th
 Annual Meeting of the Association for

Computational Linguistics (ACL-94), Santa Cruz, CA, pp. 167-176.

Aone, Chinatsu and Scott Bennett. (1996). Applying machine learning to anaphora

resolution, In Stefan Wermter, Ellen Riloff, and Gabriele Scheler, editors, Connectionist,

statistical and symbolic approaches to learning for Natural Language Processing,

Springer, Berlin, pp. 302-314.

Argamon, Shlomo, Ido Dagan, and Yuval Krymolowski. (1999). A Memory-based Approach

to Learning Shallow Natural Language Patterns, Journal of Experimental and

Theoretical AI, Vol. 11, pp. 369-390.

Bergler, Sabine. (1995). From lexical semantics to text analysis. In Saint-Dizier (1995), Ch. 5,

pp. 98 – 124.

Berstel, Jean and Luc Boasson. (2000). XML Grammars. In Lecture Notes in Computers

Science, Volume 1893, Jan 2000. Springer, Berlin., pp. 182 - 191

BNC (2002). The British National Corpus. Oxford University Computing Services, Oxford.

http://www.hcu.ox.ac.uk/BNC/

Bos, Johan , Björn Gambäck, Christian Lieske, Yoshiki Mori, Manfred Pinkal, and Karsten

Worm. (1996). Compositional semantics in Verbmobil, Proceedings of the 16th

International Conference on Computational Linguistics (COLING '96), pp.131-136.

Bos, Johan. (1996). Predicate logic unplugged, Proceedings of the 10th Amsterdam

Colloquium, pp. 133-142.

Bibliography 245

Brill, Eric., David Magerman, Mitch Marcus, and Beatrice Santorini (1990). Deducing

linguistic structure from the statistics of large corpora. Proceedings of the DARPA

Speech and Natural Language Workshop, San Mateo, CA. Morgan Kaufmann, pp. 275-

282.

Briscoe, Ted and John Carroll. (2002). Robust Accurate Statistical Annotation of General

Text. In Proceedings of the 3
rd

 International Conference on Language Resources and

Evaluation, Las Palmas, Gran Canaria, pp. 1499-1504.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. (1991).

Word-sense disambiguation using statistical methods. Proceedings of the 29
th
 Meeting

of the Association for Computational Linguistics (ACL ’91), pp. 264-270.

Bunt, Harry. (2003). Underspecification in semantic representations: Which technique for

what purpose?. In Proceedings of the 5th Workshop on Computational Semantics (IWCS-

5), pp. 37-54.

Burton-Roberts, Noel. (1999). Analysing Sentences. Longman, London.

Buvač, Sasa. (1996). Resolving lexical ambiguity using a formal theory of context. In Kees

van Deemter and Stanley Peters, editors, Semantic Ambiguity and Underspecification,

CSLI Publications, pp. 101-124.

Canning, Yvonne Margaret. (2002). Syntactic Simplification of Text. Phd Thesis. University

of Sunderland.

Carletta, Jean, Jonathan Kilgour, Tim O‟Donnell, Stefan Evert, and Holger Voormann. (2003).

The NITE Object Model Library for Handling Structured Linguistic Annotation on

Multimodal Data Sets. Proceedings of the EACL Workshop on Language Technology and

the Semantic Web (3rd Workshop on NLP and XML, NLPXML-2003).

Carroll, John, Ted Briscoe, and Antonin Sanfillipo. (1998). Parser Evaluation: A Survey and

a New Proposal. Proceedings of the 1
st
 International Conference on Language Resources

and Evaluation, pp. 447-454.

Chandrasekar, Raman, Christine Doran, and B. Srinivas. (1996). Motivations and Methods for

Text Simplification. In Proceedings of the Sixteenth International Conference on

Computational Linguistics (COLING '96), pp. 1041-1044

Charles, Walter G. and George A. Miller (1989). Contexts of antonymous adjectives. Applied

Psycholinguistics 10, pp. 357-375.

Chen, Jen Nan and Jason S. Chang (1998). Topical clustering of MRD senses based on

information retrieval techniques. Computational Linguistics 24, pp. 61-95.

Ciarmita, Massimiliano, and Mark Johnson. (2003). Supersense tagging of unknown nouns in

WordNet. Proceedings of the 2003 conference on Empirical methods in natural language

processing, pp.168-175.

Clark, Stephen, and Stephen Pulman. (2007), Combining Symbolic and Distributional

Models of Meaning. In Proceedings of the AAAI Spring Symposium on Quantum

Interaction, pp.52-55, Stanford.

http://www.clg.ox.ac.uk/pulman/pdfpapers/aaai07.pdf
http://www.clg.ox.ac.uk/pulman/pdfpapers/aaai07.pdf
http://www.clg.ox.ac.uk/pulman/pdfpapers/aaai07.pdf

Bibliography 246

Cooper, Robin, Dick Crouch, Jan van Eijck, Chris Fox, Josef van Genabith, Jan Jaspars, Hans

Kamp, Manfred Pinkal, Massimo Poesio, Steve Pulman, and Espen Vestre. (1994).

Describing the approaches: FraCaS LRE 62-051. Deliverable 8, University of

Edinburgh.

Cooper, Robin, Dick Crouch, Jan van Eijck, Chris Fox, Josef van Genabith, Jan Jaspars, Hans

Kamp, David Milward, Manfred Pinkal, Massimo Poesio, and Steve Pulman. (1996).

Building the framework: FraCaS LRE 62-051. Deliverable 15, University of Edinburgh.

Copestake, Ann. (1995). Semantic transfer in Verbmobil. Verbmobil-report 93, University of

Stuttgart and CSLI, Stanford.

Copestake, Ann. (2003). Report on the design of RMRS. DeepThought Project Report,

http://www.eurice.de/deepthought/downloads_public/D1.1.RMRS.Report.pdf.

Copestake, Ann, Dan Flickinger, Ivan A. Sag, Carl Pollard. (2005). Minimal Recursion

Semantics: an introduction. Journal of Research on Language and Computation, 3(2--3),

pp. 281-332.

Crammer, Koby, and Yoram Singer. (2001). Ultraconservative online algorithms for

multiclass problems. In Proceedings of the 14th annual Conference on Computational

Learning Theory and 5th European Conference on Computational Learning Theory, pp.

99–115, Amsterdam, The Netherlands.

Cunningham, Hamish. (2000). Software Architecture for Language Engineering. Ph.D.

Thesis, University of Sheffield. http://gate.ac.uk/sale/thesis.

Curran, James R. (2005). Supersense tagging of unknown nouns using semantic similarity.

Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,

p.26-33.

Curran, James R. and Marc Moens. (2002). Scaling context space. In Proceedings of the 40th

annual meeting of the Association for Computational Linguistics, pp. 231–238,

Philadelphia, PA, USA.

Dagan, Ido, Shaul Marcus, and Shaul Markovitch. (1995). Contextual Word Similarity and

Estimation from Sparse Data. Computer, Speech and Language, Vol. 9, pp. 123-152.

Dalrymple, Mary, John Lamping, Fernando Pereira, and Vijay Saraswat. (1995). Linear logic

for meaning assembly. In Proceedings of CLNLP.

Davidson, Donald (1967). The logical form of action sentences. In Nicholas Rescher, editor,

The Logic of Decision and Action, University of Pittsburgh Press.

De Boni, Marco, and Suresh Manandhar. (2003). The Use of Sentence Similarity as a

Semantic Relevance Metric for Question Answering. New Directions in Question

Answering 2003, pp. 138-144.

de Marneffe, Marie Catherine, and Christopher D. Manning. (2008). The Stanford typed

dependencies representation. In COLING Workshop on Cross-framework and Cross-

domain Parser Evaluation, pp. 1-8.

http://portal.acm.org/citation.cfm?id=1219844&dl=GUIDE&coll=GUIDE&CFID=1968692&CFTOKEN=88982136
http://portal.acm.org/citation.cfm?id=1219844&dl=GUIDE&coll=GUIDE&CFID=1968692&CFTOKEN=88982136
http://portal.acm.org/citation.cfm?id=1219844&dl=GUIDE&coll=GUIDE&CFID=1968692&CFTOKEN=88982136
http://www.informatik.uni-trier.de/~ley/db/conf/ndqa/ndqa2003.html#BoniM03
http://www.informatik.uni-trier.de/~ley/db/conf/ndqa/ndqa2003.html#BoniM03
http://www.informatik.uni-trier.de/~ley/db/conf/ndqa/ndqa2003.html#BoniM03

Bibliography 247

Deese, James E. (1965). The Structure of Associations in Language and Thought. Johns

Hopkins Press, Baltimore.

Dolan, William B. (1994). Word Sense Ambiguation: Clustering Related Senses,

Proceedings of the 15
th
 International Conference on Computational Linguistics, ACL,

Morristown, NJ, pp. 712-716.

DOM. (2004). Document Object Model Level 3 Core Specification. A. Le Hors, et al.,

Editors. World Wide Web Consortium, 13 November 2000.

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core.

Dorna, Michael and Martin C. Emele. (1996). Semantic-based transfer. In Proceedings of the

16
th
 International Conference on Computational Linguistics (COLING '96), pp. 316-321.

Dorr, Bonnie. (2001). The LCS Database. http://www.umiacs.umd.edu/

˜bonnie/LCS Database Documentation.html.

Dörre, Jochen. (1997). Efficient construction of underspecified semantics under massive

ambiguity. In Proceedings of ACL/EACL'97, pp. 386-393.

Elhadad, Michael and Jacques Robin. (1996). An Overview of SURGE: a Reusable

Comprehensive Syntactic Realization Component. Technical Report Technical Report

96-03, Department of Mathematics and Computer Science, Ben Gurion University, Beer

Sheva, Israel.

Ervin, Susan. (1961). Changes with age in the verbal determinants of word-association.

American Journal of Psychology 74, pp. 361-372.

Ervin, Susan. (1963). Correlates of associative frequency. Journal of Verbal Learning and

Verbal Behavior, 1(6), pp. 422-431.

Fellbaum, Christiane, editor. (1998). WordNet: An Electronic Lexical Database. Bradford

Books.

Finch, Steven Paul. (1993). Finding Structure in Language. PhD Thesis, University of

Edinburgh.

Flickinger, Dan. (2008). Toward a Cross-Framework Parser Annotation Standard. In

COLING Workshop on Cross-framework and Cross-domain Parser Evaluation, pp. 24-28.

Forbes, Katherine, Eleni Miltsakaki, Rashmi Prasad, Anoop Sarkar, Aravind Joshi, and Bonnie

Webber. (2001). D-LTAG System – Discourse Parsing with a Lexicalized Tree

Adjoining Grammar. Journal of Logic, Language, and Information, 12, pp. 261-279.

Gale, William A., Kenneth W. Church, and David Yarowsky. (1992). A Method for

Disambiguating Word Senses in a Large Corpus. Computers and the Humanities, 26,

pp. 415-439.

Ge, Niyu, John Hale, and Eugene Charniak. (1998). A statistical approach to anaphora

resolution. Proceedings of the Sixth Workshop on Very Large Corpora, pp. 161-171.

Goecke, Daniella and Andreas Witt. (2006). Exploiting logical document structure for

anaphora resolution. In Proceedings of LREC 2006 Conference.

Bibliography 248

Grefenstette, Gregory. (1992) SEXTANT: Exploring unexplored contexts for semantic

extraction from syntactic analysis. Proceedings of the 30
th
 annual meeting of the ACL,

pp. 324-326.

Grefenstette, Gregory. (1993) Evaluation Techniques for Automatic Semantic Extraction:

Comparing Syntactic and Window Based Approaches. Workshop on Acquisition of

Lexical Knowledge from Text, SIGLEX/ACL, Columbus, OH.

Grefenstette, Gregory. (1997). SQLET: Short Query Linguistic Expansion Techniques,

Palliating One-Word Queries by Providing Intermediate Structure to Text. In Proceedings

of the RIAO’97, Montreal, Canada, pp. 500-509.

Grefenstette, Gregory. (1999). Light Parsing as Finite-state Filtering. In András Kornai, editor,

Extended Finite State Models of Language. Cambridge University Press, pp. 86-94.

Grosz, Barbara J. and Candace L. Sidner. (1986). Attention, intentions, and the structure of

discourse. Computational Linguistics, 12(3), pp. 175-204.

Grosz, Barbara J., Aravind K. Joshi, and Scout Weinstein. (1995). Centering: A Framework

for Modeling the Local Coherence of Discourse. Computational Linguistics, 2(21), pp.

203-225.Hajič, Jan. (1998). Building a syntactically annotated corpus: The Prague

Dependency Treebank. In Eva Hajičová, editor, Issues of valency and Meaning. Studies

in Honor of Jarmila Panevová. Karolinum, Prague.

Hajičová, Eva and Ivona Kučerová. (2002). Argument/valency structure in PropBank, LCS

database and Prague Dependency Treebank: A comparative study. In Proceedings of

LREC.

Hatzivassiloglou, Vasileios, and Kathleen R. McKeown. (1993). Towards the automatic

identification of adjectival scales: Clustering adjectives according to meaning.

Proceedings of the 31
st
 Meeting of the Association for Computational Linguistics (ACL

’93), pp. 172-182.

Hatzivassiloglou, Vasileios, and Kathleen R. McKeown, (1997). Predicting the semantic

orientation of adjectives. Proceedings of the 35
th
 Meeting of the Association for

Computational Linguistics (ACL ’97), pp. 174-181.

Hearst, Marti A. (1992). Automatic acquisition of hyponyms from large text corpora.

Proceedings of the 14
th
 International Conference on Computational Linguistics, pp. 539-

545.

Hindle, Donald. (1990). Noun classification from predicate-argument structures.

Proceedings of the 28
th
 Meeting of the Association for Computational Linguistics (ACL

’90), pp. 268-275.

Hirschman, Lynette, and Nancy Chinchor. (1997). MUC-7 Coreference Task Definition.

Proceedings of the 7
th
 Message Understanding Conference.

Hobbs, Jerry R. (1977). Resolving pronoun references. Lingua, Volume 44, pp. 311-338.

Hobbs, Jerry R. (1985). On the Coherence and Structure of Discourse. Technical Report

CSLI-85-37, Stanford University.

Bibliography 249

Hovy, Eduard H. (1990). Parsimonious and profligate approaches to the queston of

discourse structure relations. In Proceedings of the Fifth International Workshop on

Natural Language Generation, Dawson, PA, pp. 128-136.

Hovy, Eduard. (2000). Language Generation. In Encyclopedia of Cognitive Science,

McMillan, London.

Huddleston, Rodney and Geoffrey K. Pullum. (2002). The Cambridge Grammar of the English

Language. Cambridge University Press, Cambridge.

Johansson, Richard and Pierre Nugues. (2008). The Effect of Syntactic Representation on

Semantic Role Labeling. In Proceedings of 22
nd

 International Conference on

Computational Linguistic (COLING 22), pp. 393-400.

Jurafsky, Daniel and James H. Martin. (2000). Speech and Language Processing. Prentice Hall,

NJ.

Justeson, John S. and Slava M. Katz. (1991). Co-occurrences of antonymous adjectives and

their contexts. Computational Linguistics, 17 (1).Kaplan, Ronald M., and Joan Bresnan.

(1982). Lexical-Functional Grammar: A Formal System for Grammatical

Representation. In The Mental Representation of Grammatical Relations, ed. Joan

Bresnan. 173-281. Cambridge, MA: The MIT Press.

Kaplan, Ronald M. and Annie Zaenen. (1989). Long-distance Dependencies, Constituent

Structure, and Functional Uncertainty. In Alternative Conceptions of Phrase Structure,

ed. Mark Baltin and Anthony Kroch. Chicago University Press.

Kazai, Gabriella, Mounia Lalmas, Thomas Rölleke. A model for the representation and

focussed retrieval of structured documents based on fuzzy aggregation. SPIRE 2001:

123-135.

Kendall, Maurice G. (1938). A new measure of rank correlation. Biometrika, 30, pp. 81-93.

Kennedy, Christopher, and Branimir Boguraev. (1996). Anaphora for Everyone: Pronominal

Anaphora Resolution without a Parser. Proceedings of 16
th
 International Conference on

Computational Linguistic (COLING 96) , pp. 113-118.

 Kingsbury, Paul and Martha Palmer. (2002). From TreeBank to PropBank. In Proceedings

of the 3rd International Conference on Language Resources and Evaluation (LREC-2002),

Las Palmas, Canary Islands, Spain.

Lapata, Mirella, and Chris Brew. (2004). Verb Class Disambiguation using Informative

Priors. Computational Linguistics, 30(1), pp. 45-73

Lappin, Shalom and Herbert J. Leass. (1994). An Algorithm for Pronominal Anaphora

Resolution. Computational Linguistics, 20(4) pp. 535-561.

Leacock, Claudia and Martin Chodorow. (1998). Combining local context and WordNet

similarity for word sense identification. In C. Fellbaum, editor, WordNet: An electronic

lexical database, pp. 265-283. MIT Press.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/R=ouml=lleke:Thomas.html
http://www.informatik.uni-trier.de/~ley/db/conf/spire/spire2001.html#KazaiLR01

Bibliography 250

Leacock, Claudia, Martin Chodorow and George A. Miller. (1998) Using Corpus Statistics

and WordNet Relations for Sense Identication. Computational Linguistics, 24(1):147-

166.

Lee, Lillian. (1999). Measures of distributional similarity. In Proceedings of ACL ’99, pp.

25–32.

Leech, Geoffrey, Paul Rayson, and Andrew Wilson. (2001). Word Frequencies in Written and

Spoken English: based on the British National Corpus. Longman, London.

Lenat, Doug B. (1995). Cyc: A Large-Scale Investment in Knowledge Infrastructure.

Communications of the ACM, 38(11), pp. 32-38.

Levy, Roger, and Galen Andrew. (2006). Tregex and Tsurgeon: tools for querying and

manipulating tree data structures. In Proceedings of LREC 2006 Conference.

Li, Hang and Naoki Abe. (1995). Clustering Words with the MDL Principle. Proceedings of

the 15
th
 International Conference on Computational Linguistics, Volume 1, pp. 4-10.

Light, Marc. (1996) Morphological cues for lexical semantics. Proceedings of the 34
th
 Annual

Meeting of the Association for Computational Linguistics, pp. 25-31.

Lin, Dekang. (1995). A dependency-based method for evaluating broad-coverage parsers.

Proceedings of IJCAI-95, pp. 1420-1425. Montreal, Canada.

Lin, Dekang. (1998). Automatic retrieval and clustering of similar words. In Proceedings

of COLING-ACL 1998. Montréal, Canada, pp. 768–511.

Lin, Dekang, Shaojun Zhao, Lijuan Qin and Ming Zhou. (2003). Identifying Synonyms

among Distributionally Similar Words. Proceedings of IJCAI-03, pp.1492-1493.

Mann, William C. and Sandra A. Thompson. (1987). Rhetorical structure theory: A theory of

text organization. Technical Repoort RS-87-190, Information Sciences Institute.

Manning, Christopher D. and Hinrich Schütze. (1999). Foundations of Statistical Natural

Language Processing. The MIT Press, Cambridge, MA.

McCarthy, Joseph F. and Wendy G. Lehnert. (1995). Using decision trees for coreference

resolution. Proceedings of the 14
th
 International Conference on Artificial Intelligence, pp.

1050-1055.

McConville, and Dzikovska. (2008). „Deep‟ Grammatical Relations for Semantic Interpretation.

In COLING Workshop on Cross-framework and Cross-domain Parser Evaluation, pp. 51-

58.

McKeown, Kathleen R. (1986). Text Generation. Cambridge University Press.

Merlo, Paola and Suzanne Stevenson. (2001). Automatic verb classification based on

statistical distributions of argument structure. Computational Linguistics 27, pp. 373 –

408.

Bibliography 251

Meyers, Adam, Ruth Reeves, and Catherine Macleod. (2004). NP-External Arguments: A

Study of Argument Sharing in English. In The ACL 2004 Workshop on Multiword

Expressions: Integrating Processing.

Mihalcea, Rada and Dan Moldovan. (2000). Semantic indexing using WordNet senses. In

Proceedings of ACL Workshop on IR & NLP, Hong Kong.

Miller, George A. and Walter G. Charles. (1991). Contextual correlates of semantic

similarity. Language and Cognitive Processes 6, pp. 1-28.

Mikheev, Andrei. (2000). Document Centered Approach to Text Normalization.

Proceedings of the 23rd annual international ACM SIGIR conference on Research and

development in information retrieval, pp. 136 -143.

Mitkov, R., R. Evans, C. Orasan, C. Barbu, L. Jones, and V. Sotirova. (2000) Coreference and

Anaphora: Developing annotating tools, annotated resources and annotation

strategies. In: Baker, P., Hardie, A., McEnery, T. & Siewierska., A. (eds.) Proceedings of

the Discourse Anaphora and Reference Resolution Conference (DAARC2000). Lancaster,

UK, pp. 49-58.

Miller, George A. (1995). WordNet: A lexical database. Communications of the ACM, 38(11),

pp. 39-41.

Montague, Richard. (1973). The proper treatment of quantification in ordinary English. In

J. Hintikka, J. Moravcsik, & P. Suppes, editors, Approaches to Natural Language:

Proceedings of the 1970 Stanford Workshop on Grammar and Semantics, Dordrecht, D.

Reidel, pp. 221-242.

Muskens, Reinhard. (1999). Underspecified semantics. In Urs Egli and Klaus von Heusinger,

editors, Reference and Anaphoric Relations, Volume 72 of Studies in Linguistics and

Philosophy, Kluwer, pp. 311-338.

Ng, Vincent and Claire Cardie. (2001). Improving machine learning approaches to

coreference resolution. In Proceedings of the 40
th
 Annual Meeting on Association For

Computational Linguistics, pp. 104-111.

Niehren, Joachim, Manfed Pinkal, and Peter Ruhrberg. (1997). A uniform approach to

underspecification and parallelism. In Philip R. Cohen and Wolfgang Wahlster, editors,

Proceedings of the 35
th
 Annual Meeting of the Association for Computational Linguistics

and Eighth Conference of the European Chapter of the Association for Computational

Linguistics, Somerset, New Jersey, pp. 410-417.

Nomoto, Tadashi and Yuji Matsumoto. (1996). Exploiting Text Structure For Topic

Identification. In Workshop On Very Large Corpora, 1996.

Padó, Sebastian, and Mirella Lapata. (2003). Constructing Semantic Space Models from

Parsed Coorpora. In Proceedings of the 41
st
 Meeting of the Association of Computational

Linguistics, pp. 128-135.

Pajas, Petr and Jan Štĕpánek. (2008). Recent Advances in a Feature-Rich Framework for

Treebank Annotation. In Proceedings of 22
nd

 International Conference on

Computational Linguistic (COLING 22), pp. 673-680.

Bibliography 252

Palmer, Martha, Rebecca Passonneau, Carl Weir, and Tim Finin. (1993). The KERNEL text

understanding system. Artificial Intelligence, Vol. 63, pp. 17-68.

Parsons, Terence. (1990). Events in the Semantics of English: A Study in Subatomic Semantics.

MIT Press, Cambridge, MA.

Pedersen, Ted, and Rebecca Bruce. (1997). A new supervised learning algorithm for word

sense disambiguation. Proceedings of the 14
th
 National Conference on Artificial

Intelligence, pp. 604--609.

Pereira, Fernando, Naftali Tishby, and Lillian Lee. (1993). Distributional clustering of

English words. Proceedings of the 31
st
 Meeting of the Association for Computational

Linguistics (ACL ’93), pp. 183-190.

Pinkal, Manfred. (1996). Radical underspecification. In Proceedings of the 10th Amsterdam

Colloquium, pp. 587-606.

Pinkal, Manfred. (1999). On semantic underspecification. Computing Meaning. Kluwer,

Dordrecht, pp. 33-55.

Poesio, Massimo. (1996). Semantic ambiguity and perceived ambiguity. In Kees van

Deemter and Stanley Peters, editors, Semantic Ambiguity and Underspecification, CSLI

Publications, pp. 159-198.

Polanyi, Livia and Remko Scha. (1984). A syntactic approach to discourse semantics,

Proceedings of the 10
th
 International Conference on Computational Linguistics, Stanford,

California, pp. 413-419.

Popescu-Belis, Andrei and Isabelle Robba. (1997). Cooperation between Pronoun and

Reference Resolution for Unrestricted Texts, ACL'97 Workshop on Operational Factors

in Practical, Robust Anaphora Resolution for Unrestricted Texts, Madrid, Spain, pp. 94-

99.

Priess, Judita. (2002). Anaphora resolution with memory based learning. Proceedings of the

5
th
 UK Special Interest Group for Computational Linguistics (CLUK5), pp. 1–8.

Pustejovsky, James. (1991). The generative lexicon. Computational Linguistics 17(3), pp. 409-

441.

Pustejovsky, James, Adam Meyers, Martha Palmer, and Massimo Poesio. (1995). Merging

PropBank, NomBank, TimeBank, Penn Discourse Treebank and Coreference.

Proceedings of the Workshop on Frontiers in Corpus Annotation II: Pie in the Sky, pp. 5–

12, Ann Arbor.

Resnik, Philip S. (1993). Selection and Information: A Class-Based Approach to Lexical

Relationships. Ph.D. dissertation, IRCS Report 93-42, University of Pennsylvania,

Philadelphia.

Reyle, Uwe. (1993). Dealing with ambiguities by underspecification: Construction,

representation and deduction. Journal of Semantics 10, pp. 123-179.

Bibliography 253

Richardson, Stephen D., William B. Dolan, and Lucy Vanderwende. (1998). MindNet:

acquiring and structuring semantic information from text. Proceedings of the 17
th

international Conference on Computational Linguistics, Volume 2, pp. 1098-1102.

Richter, Frank and Manfred Sailer. (1997). Underspecified Semantics in HPSG. In Harry

Bunt, Leen Kievit, Reinhard Muskens and Margriet Verlinden, editors, Proceedings of the

2
nd

 International Workshop on Computational Semantics, pp. 234-246.

Riezler, Stefan, Tracy H. King, Richard Crouch, and Annie Zaenen. (2003). Statistical

Sentence Condensation using Ambiguity Packing and Stochastic Disambiguation

Methods for Lexical-Functional Grammar. Proceedings of HLT-NAACL 2003 Main

Papers, pp. 118-125, Edmonton.

Ruppenhofer, Josef, Michael Ellsworth, Miriam R. L. Petruck, and Christopher R. Johnson.

(2005). FrameNet II: Extended Theory and Practice. ICSI Technical Report.

Sag, Ivan A., Timothy Baldwin, Francis Bond, Ann Copestake and Dan Flickinger. (2002).

Multiword Expressions: A Pain in the Neck for NLP. In Alexander Gelbukh, editor,

Proceedings of CICLING-2002, Springer.

Saint-Dizier, Patrick and Evelyne Viegas, editors. (1995). Computational Lexical Semantics.

Cambridge University Press.

Schiehlen, Michael. (1996). Semantic construction from parse forests. Proceedings of the

16
th
 International Conference on Computational Linguistics (COLING '96).

Schiehlen, Michael. (1997). Disambiguation of Underspecified Discourse Representation

Structures under Anaphoric Constraints. Proceedings of the 2
nd

 International

Workshop on Computational Semantics.

Schnieder, Gerold (1998). A Linguistic Comparison of Constituency, Dependency and Link

Grammar. ExtrAns Research Report: Dependency vs. Constituency. Diploma Paper,

Universität Zürich.

Schuler, Karin K. (2005). Verbnet: a broad-coverage, comprehensive verb lexicon. Doctoral

Thesis. UMI Order Number: AAI3179808, University of Pennsylvania.Schütze, Hinrich.

(1995). Distributional part-of-speech tagging. Proceedings of the 7
th
 Meeting of the

European Chapter of the Association for Computational Linguistics (EACL 7), pp. 141-

148.

Schütze, Hinrich. (1998). Automatic word sense discrimination. Computational Linguistics

24, pp. 97-124.

Setzer, Andrea. (2001). Temporal Information in Newswire Articles: an Annotation

Scheme and Corpus Study, Unpublished PhD thesis, University of Sheffield.

Sgall, Petr, Jarmila Panevova, and Eva Hajičová. (2004). Deep Syntactic Annotation:

Tectogrammatical Representation and Beyond. HLT-NAACL 2004 Workshop:

Frontiers in Corpus Annotation.

Siddharthan, Advaith. (2003). Resolving Pronouns Robustly: Plumbing the Depths of

Shallowness. In Proceedings of the Workshop on Computational Treatments of Anaphora,

Bibliography 254

11th Conference of the European Chapter of the Association for Computational Linguistics

(EACL'03), Budapest, pp. 7-14.

Sleator, Daniel, and Davy Temperley. (1993). Parsing English with a Link Grammar. Third

International Workshop on Parsing Technologies.

Soon, Wee Meng, Hwee Tou Ng, and Daniel Chung Yong Lim. (2001). A machine learning

approach to coreference resolution of noun phrases. Computational Linguistics 27(4),

pp. 521–544.

Srinivas, Bangalore, Christine Doran, Beth Ann Hockey, and Aravind Joshi. (1996). An

approach to robust partial parsing and evaluation metrics. In Proceedings of the

Workshop on Robust Parsing at European Summer School in Logic, Language and

Information, Prague.

Srinivas, Bangalore. (2000). A lightweight dependency analyzer for partial parsing. Natural

Language Engineering, 6(2), pp. 113-138.

Tateisi, Yuka. (2008). Toward an Underspecifiable Corpus Annotation Scheme. In COLING

Workshop on Cross-framework and Cross-domain Parser Evaluation, pp. 17-23.

Torrent, Gemma, and Laura Alemany. (2003). Clustering Adjectives for Class Acquisition.

Proceedings of the 10
th
 Conference on European Chapter of the Association for

Computational Linguistics, Vol 2, Student Research Workshop Session, pp. 9-16.

Trujillo, Arturo. (1995). Lexicalist Machine Translation of Spatial Prepositions. Ph.D.

Thesis, Cambridge University.

van Deemter, Kees. (1996). Towards a logic of ambiguous expressions. In Kees van Deemter

and Stanley Peters, editors, Semantic Ambiguity and Underspecification, CSLI

Publications, pages 203-235.

van Deemter, Kees and Stanley Peters, editors. (1996). Semantic Ambiguity and

Underspecification. CSLI Publications.

Vilain, Marc, John Burger, John Aberdeen, Dennis Connolly, and Lynette Hirschman. (1995).

A Model-theoretic Coreference Scoring Scheme. Proceedings of the 6
th
 Message

Understanding Conference (MUC6), Morgan Kaufmann, San Mateo, CA, pp. 45-52.

Voorhees, Ellen M. and Dawn M. Tice. (2000). The TREC-8 question answering track

evaluation. In Ellen M. Voorhees and Dawn M. Tice, editors, Proceedings of the 8
th
 Text

Retrieval Conference (TREC-8), NIST Special Publication 500-246, pp. 83-105.

Walker, Marilyn A. (1998). Centering, Anaphora Resolution, and Discourse Structure. In

Marilyn A. Walker, Aravind K. Joshi, and Ellen F. Prince, editors, Centering in Discourse.

Oxford University Press.

Waterman, Scott. (1996). Distinguished Usage. In Branimir Boguraev and James Pustejovsky,

editors, Corpus Processing for Domain Acquisition, MIT Press, Cambridge, MA, pp. 143-

172.

Wilcock, Graham. (2001). Pipelines, Templates, and Transformations: XML for Natural

Language Generation, Proceedings of the 1
st
 NLP and XML Workshop, pp.1-8.

Bibliography 255

Woods, William A. (1975). What's in a Link: Foundations for Semantic Networks, in D.G.

Bobrow & A. Collins, editors, Representation and Understanding, Academic Press, New

York, pp.35-82.

Yarowsky, David. (1995). Unsupervised word sense disambiguation rivalling supervised

methods. In Proceedings of the 33
rd

 Annual Meeting of the Association for Computational

Linguistics, pp. 189-196.

Yeh, Alexander. (2000). Using existing systems to supplement small amounts of annotated

grammatical relations training data, Proceedings of the 38
th
 Annual Meeting of the

Association for Computational Linguistics, Hong Kong, pp.126-132.

Appendix A

The following table lists the output of the CAMEO framework on the sentences

reported in Canning (2003). For each sentence the table gives the original passive

sentence (numbered), the output from SYSTAR (S) as reported in Canning, and the

output of CAMEO (C). (Note the syntactic parses used in SYSTAR were not available.

Parse errors were hand-corrected for the CAMEO representation. See Section 4.2.2)

Sentences which were judged incorrect grammatically or semantically (in relation to the

original sentence) are shown with a (*).

In a few cases a second passive phrase was observed that was not activised in the

SYSTAR output. The activisation of both phrases is shown for the CAMEO output

(C2).

Appendix A 257

1. She is impressed by the changes in the city , particularly the proposed introduction of the Metro .

S * The changes in the city impressed her particularly the proposed introduction of the Metro.

C The changes in the city impress her , particularly the proposed introduction of the Metro .

2. Alan , who is sponsored by Washington-based outdoor clothing and equipment manufacturer Berghaus ,

has now reached the summit of Makalu , the fifth highest peak in the world .

S * Washington-based outdoor clothing and equipment manufacturer Berghaus has now reached the summit

of Makalu, the fifth highest peak in the world sponsored Alan, who.

C Alan , who washington-based outdoor clothing equipment manufacturer Berghaus sponsors , has now

reached the summit of Makalu , the fifth highest peak in the world .

3. Emma Rae , 15 , of Parkhurst Road , said her three-year-old brother , James , suffered a broken leg when

he was knocked down by a car on Sunday , not far from where the little girl died .

S Emma Rae, 15, of Parkhurst Road said her three-year-old brother, James suffered a broken leg when a

car on Sunday, not far from where the little girl died knocked him down.

C Emma Rae , 15 , of Parkhurst road , said her three-year-old brother , James , suffered a broken leg when a

car on Sunday knocked him down , not far from where the little girl died .

4. When demonstrators returned this morning they were joined by the consultant who treated the dead girl .

S When demonstrators returned this morning the consultant joined them who treated the dead girl.

C When demonstrators returned this morning , the consultant , who treated the dead girl , joined them .

5. She says she was told by her doctor that it related to the batch of vaccine with which her son was injected .

S She says her doctor told her that it related to the batch of vaccine with which her son was injected.

C She says her doctor told her that it related to the batch of vaccine , with which her son was injected .

6. Today the report prompted local parents who suspect their children were harmed by MMR - including one

couple who won $30,000 in Government damages - to speak out .

S * MMR harmed today, the report prompted local parents who suspect their children including one couple

who won £30,000 in Government damages - to speak out.

C Today the report prompted local parents , who suspect MMR harmed their children including one couple ,

who won $30,000 in government damages , to speak out .

7. Joan Gray lost her husband John , who was among nine crew killed when the 25,000 tonne tanker burst

into flames after it was hit by the Panamanian-registered Western Winner in fog off the Belgian Port of

Ostend .

S * The Panamanian-registered Western Winner in fog off the Belgian Port of Ostend hit Joan Gray lost her

husband John, who was among nine crew killed when the 25,000-tonne tanker burst into flames after it.

C Joan Gray lost her husband John who was among nine crew killed when the 25,000 tonne tanker burst into

flames after the panamanian-registered western winner hit it in fog off the belgian port of Ostend .

8. He was struck down by the brain disease last October .

S The brain disease last October struck him down.

C The brain disease struck him down last october .

Appendix A 258

9. The injured animals were discovered by Paul Barrow when he went to feed them at his father 's small

holding between Melrose Crescent and Ambleside Avenue .

S Paul Barrow when he went to feed them at his father's small holding between Melrose Crescent and

Ambleside discovered the injured animals.

C Paul Barrow discovered the injured animals when he went to feed them at his father's small holding

between Melrose and crescent Ambleside Avenue .

10. Last year the campaign was supported by 38 primary schools with a further five joining in this time .

S 38 primary schools with a further five joining in this time supported last year the campaign.

C Last year 38 primary schools supported the campaign with a further five joining in this time .

11. The tenants were angered by a letter from Vaux giving details of price rises which will take effect after the

brewery closure .

S A letter from Vaux giving details of price rises which will take effect after the brewery closure angered the

tenants.

C A letter from Vaux giving details of price rises , which will take effect after the brewery closure angered the

tenants .

12. Frank Nicholson , managing director of Vaux Breweries , fought hard to save the brewery but bids from his

management buy-out team were rejected by the Swallow Group .

S * The Swallow Group rejected Frank Nicholson, managing director of Vaux Breweries fought hard to save

the brewery but bids from his management buy-out team.

C Frank Nicholson managing director of Vaux Breweries fought hard to save the brewery , but the Swallow

Group rejected bids from his management buy-out team .

13. They were disturbed by a neighbour .

C A neighbour disturbed them .

S A neighbour disturbed them.

14. Mr Clifford , a single man who is now on police bail , was informed by post .

S Post informed Mr Clifford, a single man who is now on police bail.

C Post informed Mr Clifford a single man , who is now on police bail , .

15. The campaign was kicked off by Sunderland AFC mascots Samson and Delilah at St Godric 's RC Primary

School , Durham City .

S* Sunderland AFC mascots Samson and Delilah at St Godric's RC Primary School kicked the campaign

Durham City off.

C Sunderland AFC mascots Samson and Delilah at St Godric's RC Primary School , Durham City kicked off

the campaign .

16. Two years later the premises in High Street West were destroyed by fire and a building was constructed on

the John Street site , opening in May 1956 .

S * Fire and a building was constructed on the John Street site, opening in May 1956 destroyed two years later

the premises in High Street West.

C Two years later fire destroyed the premises in High Street West and a building was constructed on the

John Street site opening in may 1956 .

Appendix A 259

17. Tourist chiefs in the North East were disappointed by the results which they believe could have been

affected by bad weather .

S The results which they believe could have been affected by bad weather disappointed tourist chiefs in the

North East.

C The results , which they believe could have been affected by bad weather disappointed tourist chiefs in the

north east .

C2 The results , which they believe bad weather could have affected disappointed tourist chiefs in the north

east .

18. The city was cited by the Joseph Rowntree Foundation as an example of what can be achieved in areas

that suffer job losses after the collapse of traditional heavy industries .

S* The Joseph Rowntree Foundation as an example of what can be achieved in areas that suffer job losses

after the collapse of traditional heavy industries cited the city.

C The Joseph Rowntree foundation cited the city as an example of can achieve what in areas , that suffer job

losses after the collapse of traditional heavy industries .

C2 The Joseph Rowntree foundation cited the city as an example of what can be achieved in areas , that

suffer job losses after the collapse of traditional heavy industries .

19. Mafeking Street , on Ford Estate , takes its name from the town in northern South Africa which was

defended by the British against the Boers at the outbreak of the Boer War in 1899 .

S* Mafeking Street, on Ford Estate takes its name from the town in northern South Africa the British against

the Boers as the outbreak of the Boer war in 1899 defended which.

C Mafeking Street , on Ford estate , takes its name from the town in northern South Africa , which the British

defended against the Boers at the outbreak of the Boer war in 1899 .

20. A 34-year-old Bristol man suffered a broken leg and pelvic injuries after he too was trapped by the bus .

C A 34-year-old Bristol man suffered a broken leg and pelvic injuries , after the bus trapped him too .

S A 34-year-old Bristol man suffered a broken leg and pelvic injuries after the bus trapped him too.

21. Those inquiries were launched by Transport Minister John Reid , at the request of Sunderland 's two MPs ,

after an Echo investigation uncovered concerns that automatic buses may have been affected by

uncontrollable power surges since the 1980s .

S Transport Minister John Reid launched those inquiries at the request of Sunderland's two MPs, after an

Echo investigation uncovered concerns that automatic buses may have been affected by uncontrollable

power surges since the 1980s.

C Transport Minister John Reid launched those inquiries at the request of Sunderland's two MPs after an

echo investigation uncovered concerns that uncontrollable power surges since the 1980s may have

affected automatic busses .

C2 Transport Minister John Reid launched those inquiries at the request of Sunderland's two MPs after an

echo investigation uncovered concerns that automatic busses may have been affected by uncontrollable

power surges since the 1980s .

22. But the council feels some motorists would ignore the slower speed unless this was backed up by traffic

calming measures .

S But the council feels some motorists would ignore the slower speed unless traffic calming measures

backed this up.

C But the council feels some motorists would ignore the slower speed unless traffic calming measures

backed this up .

Appendix A 260

23. Stephanie Cook , three , of Pennycross Road , Pennywell died when she was knocked down by a car on

Hylton Road last week .

S Stephanie Cook, three, of Pennycross Road, Pennywell died when a car on Hylton Road last week

knocked her down.

C Stephanie Cook three of Pennycross road Pennywell died when a car knocked her down on Hylton road

last week .

24. Glass in the two remaining stands has been replaced by wire mesh .

C Wire mesh has replaced glass in the two remaining stands .

S Wire mesh has replaced glass in the two remaining stands.

25. The fact that the jobless total of about 82,600 has not risen has been welcomed by business chiefs .

C Business chiefs have welcomed the fact , that the jobless total of about 82,600 has not risen , .

S Business chiefs have welcomed the fact that the jobless total of about 82,600 has not risen.

26. In the last year , £66.4 million has been saved by anti-fraud officers working on investigations across the

North East , said fraud manager Chris Mason .

C In the last year , anti-fraud officers working on investigations across the north east have saved £66.4

million said fraud manager Chris Mason .

S Anti-fraud officers working on investigations across the North East, said fraud manager Chris Mason have

saved in the last year, £66.4 million.

27. Mr Donkin 's anger has been fuelled by a letter written by Mr Walls to the council 's Conservative leader

Coun Margaret Forbes .

S A letter written by Mr Walls to the council's Conservative leader Coun Margaret Forbes has fuelled Mr

Donkin's anger.

C A letter Mr Walls wrote to the council's conservative leader Coun Margaret Forbes has fuelled Mr Donkin's

anger .

C2 A letter written by Mr Walls to the council's conservative leader Coun Margaret Forbes has fuelled Mr

Donkin's anger .

28. A giant $ 25million leisure plan for Sunderland city centre is being considered by councillors tonight .

S Councillors tonight are considering a giant £25million leisure plan for Sunderland city centre.

C Councillors are considering a giant £ 25million leisure plan for Sunderland city centre tonight .

29. Sunderland 's critical shortage of doctors could be eased by a pioneering new pilot scheme expected to be

given the go-ahead by health chiefs tomorrow .

S A pioneering new pilot scheme expected to be given the go-ahead by health chiefs tomorrow could ease

Sunderland's critical shortage of doctors.

C A pioneering new pilot scheme expected to be given the go-ahead by health chiefs tomorrow could ease

Sunderland's critical shortage of doctors .

C2 A pioneering new pilot scheme expected health chiefs to give the go-ahead tomorrow could ease

Sunderland's critical shortage of doctors .

30. A signed safc shirt and ball are to be auctioned by the James Herriot visitor centre .

Appendix A 261

S The James Herriot visitor centre is to auction a signed safc shirt and ball.

C The James Herriot visitor centre is to auction a signed safc shirt and ball .

31. A cramped Sunderland school is to be replaced by a new $ 1million development after winning

Government cash .

S A new £1million development after winning Government cash is to replace a cramped Sunderland school.

C A new £ 1million development is to replace a cramped Sunderland school after wining government cash .

