Technical Report TN e

Number 76

Computer Laboratory

Preserving abstraction in
concurrent programming

R.C.B. Cooper, K.G. Hamilton

August 1985

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1985 R.C.B. Cooper, K.G. Hamilton

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Pr-eserviﬁg Abstractionin
Concurrent Programming

R C B Cooper and K G Hamilton

University of Cambridge Computer Laboratory

index Terms: abstraction, concurrency, deadlock, interface, module, monitor,
operating system, process, synchronization

Abstract.

Recent programming languages have attempted to provide support for
concurrency and for modular programming based on abstract
interfaces. Building on our experience of adding monitors to CLU, a
language orientated towards data abstraction, we explain how these
two goals conflict. In particular we discuss the clash between
conventional views on interface abstraction and the programming style
required for avoiding monitor deadlock. ‘We argue that the best
compromise between these goals is a combination of a fine grain
locking mechanism together with a method for explicitly defining
concurrency properties for selected interfaces.

1. Introduction.

Modular programming has received much attention as a way to control the
complexities of large programs. A number of recent programming languages
have provided direct support for defining modules with type-checked external
interfaces which hide the underlying code and data implementions. Similarly the
complexities of concurrent programming have been addressed by a number of
different programming techniques and language features such as monitors,
message passing and Ada rendezvous.

The problem examined in this paper arises when these two themes are combined
‘when writing large concurrent systems. Simply stated, the problem is a serious
conflict between interface abstraction and certain requirements for concurrent
programming — particularly that of avoiding deadlock.

In a concurrent program, aspects of a module's implementation may compromise
the correct functioning of its clients. Traditionally these aspects are not expressed
in the interface which defines the external view of that module as used by its
clients. They include the use, or lack, of concurrency in the implementation, as
well as the inter-relationship of the implementation with other modules.

We encountered this problem in our work in the Mayflower group at Cambridge.
The group was founded in 1982 to build an environment for distributed
applications. One of our first needs was a suitable programming language to be
used both for implementating our system and as the language in which
applications would be programmed. Concurrency is arguably the major cause of
difficulty in distributed and systems programming, and it ought to benefit from
direct subport in a high-level language.

After considering a number of languages, we eventually selected CLU [6] as our
base language, and undertook to add concurrency to it ourselves, in the form of
monitors. CLU combines strict data typing with an extremely consistent view of
user-defined abstract data types, providing good support for a modular
programming style. Itis CLU's emphasis on data abstraction which has
highlighted the problem for us. But this problem is not unique to CLU —itwill
occur in any language which tries to hide implementations behind abstract
interfaces. The methodology we present for handling this problem is applicable
to other languages.

We chose monitors in preference to a message passing system because they fitted
in well with CLU's procedural orientation and could be implemented efficiently.

As a result of this decision, our discussion is orientated towards monitors,
although the problem we discuss also occurs in message passing systems.

2. The Problem in Detail.

In this section we review the requirements of concurrent programming and how
monitors are intended to support these. We show how effective use of monitors
requires knowledge of certain aspects of the implementations of the modules
they use, and how this conflicts with abstraction.

2.1 Requirements for Concurrent Programs.

There are at least three requirements for any concurrent program on top of those
of purely sequential programs:

1. There should be no interference between processes. Thatis, there should be
no concurrent use of data structures which do not have weil-defined behaviour
under sharing. There should be no violation of data structure invariants and
no viewing of data in an inconsistent state.

2. There should be no deadlock. The definition of what constitutes deadlock is
problematic. It does notonly involve processes waiting indefinitely on
semaphores or monitor locks for which there are no potential notifiers. Lack of
progress or livelock, in which procésses cycle indefinitely never making
progress on their tasks, is just as serious.

3. There are efficiency and effectiveness criteria which, although fess well defined
than the previous two requirements, are often crucial to a program'’s success. It
is particularly important in some applications to avoid unnecessary
serialization or exclusion. In real-time applications, such as the
implementation of network protocols, effective performance constitutes a

correctness criterion.

In the monitor of Brinch Hansen [1] and Hoare [4] the solution to requirement 1,
above, is to restrict process interactions to within monitors and to enforce mutual
exclusion on all the procedures of a monitor. This classical approach, as we term
it, is impractical in large systems since it tends to increase possibilities of deadlock
and reduce performance (violations of requirements 2 and 3). The likelihood of
deadlock is the more serious problem and warrants examination.

2.2 Monitor-induced Deadlock.

Undoubtedly a significant number of deadlocks in concurrent programs are the
result of inadequate algorithm design, or of épplications in which unpredictable
contention for resources occurs. We make a terminological distinction here
between resources, which are shared objects of significance in the application
(often representing real-world objects), and the mechanisms used for low-level
synchronization. It is the possibility of deadlock arising from low- level
synchronization with monitor locks, that concerns us, since it would be
unfortunate if the language features intended to ease the programmmg of
concurrent systems were themselves the cause of program faults.

2.2.1 Module Recursion.

The simplest form of monitor-induced deadlock involves only a single process
which attempts to claim for a second time a monitor lock which it already holds.
This can occur when a procedure of a monitor calls some other procedure which
eventually calls back into the original monitor.

A deadlock involving more than one process can occur if two monitors, M and N,
are structured so that a procedure of M, holding its monitor lock, calls a
procedure of N and tries to claim N's lock, while a procedure of N calls a procedure
of M in the same way. Itis possible for two processes, by calling these procedures,
to each hold one of the monitor locks while trying to claim the other. Note that
the processes are not deadlocking over resources but merely over synchronization.
This case may arise even when there is no fundamental resource allocation
deadlock in the application.

Both these forms of deadlock could be avoided by forbidding mutually recursive
modules. Module recursion occurs when modules use each other in a cyclic way.

Module recursion can be avoided by organizing modules into a hierarchy, so that
procedure calls only flow down from higher level abstractions to lower levels. In
many situations this is not the natural structure. Small groups of modules may be
inter-dependent and would have to be combined into asingle monolithic module
to preserve the hierarchy. Also procedure variables provide a useful interaction
mechanism between different leveis of an application and would probably have
to be forbidden if a hierachical structure was to be enforced.

2.2.2 Nested Monitor Calls.

Anot‘her case of deadlock occurs even if module recursion is not present. This
arises when a process P calls into a monitor M, which then calls into a monitor N,
claiming both monitor locks in doing so. P now suspends inside the nested
monitor N waiting for some condition to become true. While it is waiting it
releases N's lock but not M's. If some other process Q, which will establish the
condition, has to execute a similar sequence of monitor calls, deadlock will result.
This is so because the waiting process P still holds the lock for M, which Q must
claim.

Even if the conditions for deadlock do not occur, a suspended process holding a
monitor lock will prevent other processes from executing in that monitor until the
suspension has finished. In some cases, such as suspension awaiting inputon a
network port, the delay may be arbitrarily long.

This problem has been discussed in the literature as the nested monitor call
problem [7], and some writers have proposed that all monitor locks held by a
process should be released when it suspends inside a monitor. Thisisnota
satisfactory solution as it would require monitor data to be maintained in a
consistent state prior to monitor calls, and indeed prior to every procedure cail
+ (since any procedure might call into a monitor).

Equally, banning calls into nested monitors is impractical, and would prevent
hierachical design.

2.3 Message Passing.

[tis interesting to consider if these problems with monitors could be avoided by
using the message passing model when structuring concurrent programs. In
particular modules could use a send no-wait message to request actions of other
modules, and then wait for any messages — both replies to outstanding requests
and further incoming request messages. This would avoid a module being unable
to service further clients while waiting for results from other modules.

Unfortunately this suffers from a problem similar to that encountered if all
monitor locks are released upon process suspension, namely that the module data
invariants must be restored prior to any potential message exchange so that other
client requests will not see the data in an inconsistent state.

2.4 Relaxing Mutual Exclusion in Monitors.

We have discussed problems with the classical monitor model. A more flexible
approach is taken with monitors in the Mesa language [5]. Here proceduresina
monitor module not requiring mutual exclusion throughout need not claim the
monitor lock when they are called. These procedures may call other, mutually
excluded, procedures in the monitor to perform activities that must be excluded in
time.

This kind of monitor was the model for our initial work on adding concurrency to
CLU. Relaxing the requirement of mutual exclusion on all monitor procedures
should reduce the possibilities of deadlock.

Based on the analysis of deadlocks above, there are two classes of procedures
whose use is to be avoided while holding a monitor lock. Firstly, there are
procedures which result in module recursion; and secondly procedures which
suspend themselves on semaphores, or otherwise delay for significant periods.

However identifying those procedures requires information about other modules
which traditionally appears nowhere in their interface specifications. To see why
this is important we will look at what modular programming entails.

2.5 Modular Programming.

Modular programming is a style in which sets of procedures along with the data
they operate on are encapsulated in modules. Viewed from the outside each
module is defined in terms of its external interface — the procedures (and in some
models the data) which other modules may use. How each of the procedures is
implemented and what private data structures exist should be of no concern to
clients of the module. Modular programming is given varying levels of supportin
such languages as Mesa [8] and Ada [9].

Modular programming practices allow implementors the freedom to consider
different techniques in the implementation of their modules — and to perhaps
change these decisions later. Clients of these modules are made immune from
these implementation considerations and spared unnecessary detail about the
internals of a module. It should be possible to read and understand modules
without needing information about other modules apart from that which appears
in their abstract interfaces.

Using a modular programming style requires much discipline on the part of the
programmer, even in a fanguage like CLU which directly supports modularity.
While clients of an abstraction are prevented from actually accessing the
representation of an abstract type, there is nothing preventing the use of
knowledge about the implementation and how it is coded. Thisis a particular
problem when one person is both implementor and client of the same abstraction.
Personal experience has demonstrated that “bugs” in the specification of
interfaces often do not manifest themselves until abstractions are modified or re-
used by different programmers.

2.6 Discussion.

The concept of modular programming is too important to lose. Itisaboutthe only
way we know to build and maintain large software systems, especially those
programmed by more than one person. Determining whether the procedures of a
module perform semaphore waits, checking what other modules they use, etc.,
violates modular programming. Is there a viable compromise between the two?

3. Towards a Modular and Concurrent Programming Style.

We have described a fundamental contradiction between two desirable
programming goals: avoiding deadlocks and hiding details of modules'
implementations. To cope with this conflict we present a methodology in which
some information, chiefly about concurrency aspects of module implementations,
isincluded in interfaces, but in a way which preserves a large measure of
abstraction. This is combined with guidelines for coding client modules, intended
to limitthe number of modules whose concurrency properties must be known.

3.1 Fine Grain Mutual Exclusion.

The first aim of this style is to minimize the amount of processing that is
performed while holding the monitor lock, so as to reduce the scope for deadlock.
Code inside a monitor is structured so that any lengthy processing which does not
require mutual exclusion throughoutis performed in unlocked procedures, which
call shortinternal procedures to perform those actions that must be excluded.

This approach is useful because much of the code in a monitor may only require
occasional access to shared data structures and may principally deal with objects
that are owned by a single process. For example a procedure may not require
mutual exclusion while processing its argument objects or while processing

objects which have been removed from shared data structures. Additionally,
some operations on the monitor's data, particularly simple read operations, may
not require mutual exclusion. Minimizing excluded code in this way can greatly
reduce the number of procedures whose concurrency properties affect a monitor's
behaviour, because most procedures are called while no monitor lock is held.

3.2 Assigning Concurrency Properties to Interfaces.

All operations in CLU have the semantics of procedure calls, including those of
built-in types such as integer addition and array element access. To perform any
action, mutually excluded code must therefore include procedure calls on abstract
interfaces. To avoid deadlock the monitor's implementor must ensure that these
interfaces have reliable concurrency behaviour. Equally, the implementor must
ensure the safety of any operations performed on shared data without mutual
excusion.

In our experience, the information required to ensure this can be expressed by
two concurrency related properties associated with interfaces. One or both of the
following properties must be attached to a subset of the operations of CLU's built-
in and user defined abstract types.

1. Internally synchronous. This property applies to procedures which can be
called safely by concurrent processes without any external synchronization,
e.g. because they use mutual exclusion internally.

CLU defines a set of immutable types whose values, once created, cannot be
changed. Thus even though their operations are not mutually excluded, all the
operations on these types are internally synchronous. More subtly, among
mutable types some operations are known to be internally synchronous while
others are not.

2. Restricted. A procedure isdeemed restricted if its implementation refrains
from suspending itself, from calling a procedure with the potential to cause
module recursion, or from calling any non-restricted procedure.

It is useful to relax this definition slightly. Forinstance, some procedures may
wish to call adebugging procedure if an internal consistency check fails. If the
debugging procedure suspends itself (e.g. to perform I/0) then its client ought
to be non-restricted, but it may be more sensible to categorize it as restricted.

Unfortunately, determining the class of a module requires determining the classes
of the transitive closure of all the modules used in its implementation. Even
worse, changes in the interface of a low-level abstraction logically require
re-examination of every module which uses it, including indirect use through
several other abstractions. These concurrency facets, unlike any other facets of
interfaces, can have effects across multiple abstraction boundaries.

It has only been necessary to define concurrency properties for a subset of CLU'S
built-in types and for a small number of user defined abstract types. In many of
these cases the concurrency properties were already quite obvious. For example,
the integer addition operation could reasonably be expected not to have
undesirable concurrency properties. Contrariwise, it is unsurprising that the
stream clusters's input and output operations are non-restricted, since they may
have to wait for I/O completion. However, due to their implementations, some
interfaces did have undesirable concurrency properties which were not
self-evident.

Note that the classification is strictly on the operations of a module, not on the
whole module. So some modules may have operations which fall into different
classes, although this is not common.

3.4 Discussion.

To some degree, this style represents a defeat for modularity. But at least those
aspects of the implementation on which clients depend have become explicit in
the contract which the abstract interface represents between client and
implementor. In our programming in the past, assumptions about the
concurrency aspects of modules have always been made. Occasionally these
assumptions were wrong. In other cases we simply read the code of the
appropriate implementations to find information not present in the interface.
We are sure most programmers have done this. The main contribution of the
style we are proposing is to recognize this kind of implementation dependency
and control it.

4. Support from the Lanquage.

Earlier we expressed our belief that direct support for concurrency should be
provided in the programming language. We do not believe 3 language can, nor
should enforce a fixed style of concurrent programming. Rather it should provide
tools which encourage the construction of safe and effective programs. This

section describes how we have tried to achieve this in our work with Concurrent
CLU.

4.1 Concurrent CLU with monitors.

CLU's principle data abstraction facility is the c/uster, which provides a structuring
facility somewhat like the Simula class. Each cluster defines an abstract type
consisting of a set of operations (essentially procedures) which may be performed
on a concrete representation type. The representation is never visible outside its
defining cluster.

Our initial version of Concurrent CLU incorporated monitors as a special kind of
cluster. Procedures of these monitor clusters which wanted to execute under
mutual exclusion, could identify in their procedure headings which monitor lock
they wished to claim. This explicit monitor lock naming was most useful for per-
object locking, in which one lock is associated with each object of the monitor's
type. This permitted procedures of the monitor to execute concurrently, where
appropriate, when they were operating on different objects.

We also included semaphores for synchronization between different processes in
a monitor, and provided processes which could be created dynamically.

We used Concurrent CLU, in this original form, to implement an operating system
supervisor, including a number of communication protocol drivers and an
interface to aremote file system; a remote procedure call system; and a source
level remote debugger. Concurrent CLU has been used by others to develop a
network resource management service [2]; a controller for an integrated
voice/data project; and a parallel processing worm system. Itis also being used in
the development of a distributed compilation system.

As we used Concurrent CLU our ideas on concurrent programming changed,
culminating in the programming style presented in this paper. Our programming
practice had outgrown the initial set of concurrency features we had added to
CLU. We considered how best to change Concurrent CLU to support our needs,
and decided to replace monitors by a finer-grained mutual exclusion mechanism,
gates. We have considered, but not implemented, language features for
specifying concurrency properties of procedure interfaces.

10

4.2 Revising Concurrent CLU.

Monitors do not encourage the programmer to minimize the use of mutual
exclusion. Frequently sections of code requiring exclusion consist of only a few
lines, performing some simple update on the monitor's state. Unfortunately these
few lines of code often do not constitute any abvious logical operation. This leads
either to monitors containing a series of obscurely named, fragmentary
procedures, or to the use of monitored procedures which hold the lock over more
operations than is strictly necessary, so that they may constitute a clear logical sub-
unit of the module. In order to improve program clarity we tended to do the
latter, even though it increased the scope for deadlock.

On reflection the classical monitor, and to a lesser degree the Mesa monitor, were
wrong in the way they combined procedural abstraction and mutual exclusion in
the one feature: monitor procedures. For our programming style, a return to a
syntax more akin to Hoare's critical regions [3] was desirable.

What was required was a locking mechanism for blocks of code smaller than
procedures. However, to generalize the locking mechanism, we also wished to
allow implementors to define new locking disciplines for their own abstract types.
This would permit the definition both of new locking abstractions for general use,
* such as a distributed lock manager for use in multi-machine applications, and also
application specificlocking disciplines for individual abstract types. For example,
some abstract types might choose to implement a form of read locking, so that
several processes can perform read operations simultaneously, while excluding
any update operations. If application specific locking operations are permitted
locking can cease to be just a low-level synchronization operation and can involve
long term scheduling decisions. Such a generalization of the locking mechanism
appears in keeping with the spirit of abstraction languages such as CLU.

We therefore developed a new form of control abstraction for Concurrent CLU,
the gate. This executes in two halves, one to establish the lock condition and one
to clearit. A gate definition is very similar to a CLU procedure definition with the
keywords key and keys used in place of return and returns. (Gates are in fact
more closely related to another of CLU's control abstractions, iterators, than to
conventional procedures.) A much simplified example of a gate definition appears
in figure 1. A gate definition would typically be part of a cluster implementing an
abstract type. To present a more representative example, however, would require
explanation of CLU's syntax for abstract type definition.

11

claim = gate (sem: semaphore, timeout: int) signals (timed_out)
% Use a semaphore to establish mutiual exclusion. If the semaphore
% cannot be claimed within the specified time raise an exception.
semaphore$wait (sem, timeout) resignal timed_out
% Allow our client's using block to execute.
key
% Now our client is finished, release mutual exclusion.
semaphore$notify (sem)

end claim

Figure 1. A gate definition.

mutex: semaphore: = semaphore$create(1) :
% Create and initialize a semaphore to use as a mutual exclusion lock.

% Claim the lock, timing out after 5 seconds if it is in use.

using claim (mutex, 5) do
% Statements here execute under mutual exclusion from other uses of
% this lock.

end

Figure 2. Use of a gate.

A gate isinvoked by a using statement which contains a block of code (see

figure 2.). When the using statement is executed the gateis entered. Execution
continues until a key statement is encountered, at which point control
temporarily returns to the calling procedure and the code block of the using
statement is executed. When this code block is terminated for any reason (e.g. by
raising an exception, executing a procedure return statement, or simply reaching
the end of the using block) the gate is resumed from just after the key statement.
When the gate terminates, execution continues after the using statement. Thusa
gate is executed in two parts: a prelude which may claim a lock and a sequel which
may free it. A key statement may return a set of results to be used by the gated
block.

The main point of gates is that they provide synchronization on small units of
code. We have chosen to make them more general than simple critical regions in
keeping with CLU's existing facilities for user-defined types. However, itis the
overall aim of gates thatisimportant, rather than the details of their integration
into a particular language. The provision of a synchronization mechanism which

12

allows fine-grain locking encourages programming in a manner which reduces
unnecessary mutual exclusion, reducing the opportunity for creating deadlocks.
In some cases it may also improve performance by permitting extra concurrency.

4.3 Putting Concurrency Properties into Interface Types.

While we have defined concurrency properties for a number of CLU interfaces,
this has been an infoermal process which has received no language support. The
concurrency attributes of an interface only have the status of comments.
Concurrency properties are sufficiently important to merit formal inclusion in
interface definitions. We have not made these extensions to CLU, partly because
we did not wish to change CLU's type system and partly because they did not fit
cleanly into CLU's existing module structure.

The first step is clear. Procedure interface definitions should have the option of
specifying whether they are synchronous or restricted as part of their types.
Interfaces which fail to specify either must be assumed to be both
non-synchronous and non-restricted. Procedure variables must also be typed with
these concurrency properties, and non-synchronous or non-restricted procedures
must not be assigned to synchronous and restricted variables, though the reverse
would be permitted.

This solves one half of the problem, specifying the concurrency contract in the
definition of the interface. Specifying the contract at uses of the abstraction is
harder. Having to specify concurrency properties on individual procedure calls
would be irksome, particularly as this would interfere with several pieces of
syntactic sugar that CLU provides for accessing record and array structured objects.
fnstead, it seems desirable to centralize this interface information as part of an
explicit contract between a module and the outside world. CLU lacks the explicit
import lists of languages such as Mesa [8] and Modula-2 [10]. Such import lists are
an appropriate way of defining a module's external dependencies, including such
things as concurrency properties. Thus an interface might be imported with the
attributes synchronous or restricted.

During compilation the client's desired concurrency properties can be checked
against those of the implementing module and any discrepancy reported. In
particular, if a procedure's interface properties change, this will be detectable at
compile or link time via the normal interface consistency checking.

Thus programmers may be confident that interfaces they are using have declared
the concurrency properties they desire. However there is no guarantee that the

13

body of a procedure actually conforms to its defined concurrency properties. This
is considerably more difficult to establish than, say, checking the type of a result
object. For example, in the case of the synchronous property, the correctness of
this property for one operation on an abstract object may depend upon the
behaviour of other operations that may be called concurrently. Also, the
restricted property may be relaxed occasionally, as in the example in section 3.2 of
a non-restricted debugging routine which is almost never called. (it might,
however, be useful for the compiler to issue a warning message in cases where a
restricted procedure calls a procedure which has not been imported as restricted.)
It appears that the correctness of concurrency properties must be left to
implementors. While far from ideal, this is not unreasonable, given that many
existing interfaces have well known semantic properties that cannot be checked
by the type system. For instance if an abstract type supports add and equal
operations, practical compilers are unable to ensure these operations exhibit the
expected commutative and side-effect free semantics.

On the client side it might appear desirable to enforce some restriction such as
forbidding non-restricted calls within gated regions. However, there may be
legitimate reasons for such calls, particularly as user defined gates may define
more complex locking properties than simple mutual exclusion. Once again, a
compiler warning message seems appropriate.

5. Conclusions.

We have described how the goal of interface abstraction clashes with the
requirements of concurrent programming. We have taken two measures in
dealing with this conflict. Firstly fine grain locking minimizes the amount of code
affected by the conflict; and secondly concurrency information is specified as part
of the interface of certain modules. Large monitor based systems can be
developed without these techniques, but their use makes implementation easier
and leads to a sytem which can be more easily modified.

Making concurrency properties part of interfaces' types can be regarded as a
logical extension of normal type-checking. Ideally we would like to describe all of
a module’s externally visible behaviour in its interface types, but much of this
behaviour may be very hard to define. The concurrency properties we have
defined are particularly good candidates for inclusion in interfaces because of
their relative simplicity, combined with their importance for program correctness.

14

Acknowledgements.

We thank the other members of the Mayflower Group who have contributed to
the experience on which this work is based. Particular thanks are due to Andrew
Seaborne for implementing the gate concept. We are indebted to Dan Craft,
Roger Needham, and Julian Pardoe who carefully read and commented upon
earlier drafts of this paper.

15

[2]

[3]

(5]

[6]

(7]

[8]

[9]

References.

P. Brinch Hansen, Operating System Principles. Prentice-Hall, Englewood
Cliffs, N.J., 1973,

D. H. Craft, "Resource Management in a Decentralized System”, Proc. 9th
ACM Symposium on Operating Systems Principles (Operating Systems
Review, 17, 5), pp 11-19, Oct 1983.

C. A.R. Hoare, "Towards a theory of parallel programming” In C. A. R. Hoare
and R. H. Perrott (Eds.), Operating Systems Techniques, pp 61-71. Academic
Press, New York, 1972.

C. A.R.Hoare, "Monitors: An Operating System Structuring Concept”,
Communications of the ACM, 17, 10, pp 549-557, Oct 1974.

B. W. Lampson, D. D. Redell, “Experience with Processes and Monitors in
Mesa”, Communications of the ACM, 23, 2, pp 105-117, Feb 1980.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler,
A. Snyder, CLU Reference Manual, Vol. 114, Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1981.

A. M. Lister, "The Problem of Nested Monitor Cvalls", Operating Systems
Review, 11,3, pp 5-7, luly 1977.

J. G. Mitchell, W. Maybury, R. Sweet, Mesa Language Manual.
Xerox PARC, Palo Alto, Calif., April 1979.

U.S. Department of Defence, ADA Programming Language,
ANSI/MIL-STD-1815A. Washington D.C., 1983.

[10] N.Wirth, "Modula-2", Technical Report 36. ETH Zurich, March 1980.

16

