
Technical Report
Number 757

Computer Laboratory

UCAM-CL-TR-757
ISSN 1476-2986

Improving cache performance
by runtime data movement

Mark Adcock

July 2009

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Mark Adcock

This technical report is based on a dissertation submitted
June 2009 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Christ’s College.

Some figures in this document are best viewed in colour. If
you received a black-and-white copy, please consult the
online version if necessary.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Improving cache performance by runtime data movement

Mark Adcock

Abstract

The performance of a recursive data structure (RDS) increasingly depends on good data
cache behaviour, which may be improved by software/hardware prefetching or by ensuring
that the RDS has a good data layout. The latter is harder but more effective, and requires
solving two separate problems: firstly ensuring that new RDS nodes are allocated in a
good location in memory, and secondly preventing a degradation in layout when the RDS
changes shape due to pointer updates.

The first problem has been studied in detail, but only two major classes of solutions to
the second exist. Layout degradation may be side-stepped by using a ‘cache-aware’ RDS,
one designed to have inherently good cache behaviour (e.g. using a B-Tree in place of a
binary search tree), but such structures are difficult to devise and implement. A more
automatic solution in some languages is to use a ‘layout-improving’ garbage collector,
which attempt to improve heap data layout during collection using online profiling of
data access patterns. This may carry large performance, memory and latency overheads.

In this thesis we investigate the insertion of code into a program which attempts to
move RDS nodes at runtime to prevent or reduce layout degradation. Such code affects
only the performance of a program not its semantics. The body of this thesis is a thor-
ough and systematic evaluation of three different forms of data movement. The first
method adapts existing work on static RDS data layout, performing ad-hoc single node
movements at a program’s pointer-update sites, which is simple to apply and effective in
practice, but the performance gain may be hard to predict. The second method performs
infrequent movement of larger groups of nodes, borrowing techniques from garbage col-
lection but also embedding data movement in existing traversals of the RDS; the benefit
of performing additional data movement to compact the heap is also demonstrated. The
third method restores a pre-chosen layout after each RDS pointer update, which is a com-
plex but effective technique, and may be viewed both as an optimisation and as a way of
synthesising new cache-aware RDSs.

Concentrating on both maximising performance while minimising latency and extra
memory usage, two fundamental RDSs are used for the investigation, representative of
two common data access patterns (linear and branching). The methods of this thesis
compare favourably to upper bounds on performance and to the canonical cache-aware
solutions. This thesis shows the value of runtime data movement, and as well as producing
optimisation useful in their own right may be used to guide the design of future cache-
aware RDSs and layout-improving garbage collectors.

3

Acknowledgements

I would like to thank my supervisor Martin Richards and advisor Alan Mycroft, and
others at the Computer Lab for their guidance and advice during the preparation of this
thesis. Many thanks are due also to my parents, my brother and Louise.

4

Contents

1 Introduction 10
1.1 Recursive data structures . 10
1.2 Data layout . 11
1.3 This thesis . 12

1.3.1 Aim of the thesis . 13
1.3.2 Achieving the aim . 13
1.3.3 Contributions . 14
1.3.4 Chapter plan . 15

2 Improving RDS cache performance 17
2.1 The memory hierarchy . 17

2.1.1 The Translation-Lookaside Buffer 18
2.1.2 The hardware prefetcher . 18
2.1.3 Improving memory hierarchy performance 18

2.2 Related work . 19
2.2.1 Prefetching . 19

2.2.1.1 Linear access patterns . 20
2.2.1.2 Branching access patterns 20
2.2.1.3 Other schemes . 21
2.2.1.4 Summary . 21

2.2.2 Layout . 21
2.2.2.1 Allocation . 22
2.2.2.2 Using garbage collection to maintain layout 22

2.2.3 Comparing prefetching and layout 24
2.2.4 Cache-aware RDSs . 25

2.2.4.1 Trees . 25
2.2.4.2 Lists . 25
2.2.4.3 Discussion . 26

2.2.5 Changing RDS node definitions . 26
2.3 This thesis . 27

2.3.1 Selecting optimisations . 27
2.3.2 Applying optimisations . 28

2.3.2.1 Updating parents on data movement 28
2.3.3 Tuning optimisations . 30
2.3.4 Choice of benchmarks . 30

2.3.4.1 Large benchmark suites - SPEC and Olden 30

CONTENTS CONTENTS

2.3.4.2 Graph benchmarks . 31
2.4 Summary . 33

3 Benchmarks and methodology 35
3.1 Test machine . 35
3.2 Benchmarks . 35

3.2.1 The Dict benchmark: The dictionary problem 36
3.2.2 The MList benchmark: Multiple linked-lists 37

3.3 Methodology . 38
3.3.1 Initial layout . 38
3.3.2 Length of experiment . 38
3.3.3 Measuring times . 39
3.3.4 Reporting improvement and latency 39
3.3.5 Reporting memory usage . 40
3.3.6 Random number generation . 40
3.3.7 Code transformation . 40

3.4 Cache behaviour of benchmarks . 40
3.4.1 Layout degradation . 42
3.4.2 RDS layouts in more detail . 42

3.4.2.1 Dict . 42
3.4.2.2 MList . 44

3.4.3 Upper bounds . 46
3.5 Cache-aware solutions . 46

3.5.1 Dict . 47
3.5.2 MList . 47

3.6 Summary . 49
3.6.1 Benchmarks . 50
3.6.2 Experiments . 50
3.6.3 Layout and degradation . 50
3.6.4 Upper bounds on runtime data movement 50
3.6.5 Cache-aware alternatives . 51

4 Reallocation 53
4.1 Introduction . 53

4.1.1 An example coallocator . 53
4.1.2 Runtime data movement . 54

4.2 Implementation . 55
4.2.1 The RDS heap . 56
4.2.2 Applying reallocation . 56
4.2.3 Coallocators . 58
4.2.4 The memory manager . 60

4.3 Sites and searches . 61
4.3.1 Dict . 61
4.3.2 MList . 63

4.4 Frequently-used coallocators . 64
4.4.1 Layout properties . 65

4.5 Patterns . 66

6

CONTENTS CONTENTS

4.6 Dynamic forms of ccmalloc . 67
4.7 Summary . 67

5 Bulk data movement 69
5.1 Introduction . 69

5.1.1 Simple bulk data movement . 69
5.1.2 Structure of this chapter . 70

5.2 Using two semi-spaces . 71
5.3 Using one space . 72
5.4 Incrementalisation . 75

5.4.1 Incrementalising periodic2space . 75
5.4.2 Incrementalising periodic1space . 77

5.5 Embedding . 77
5.5.1 Embedding periodic2space . 78
5.5.2 Embedding periodic1space . 78

5.6 Imposing a minimum quality on new layout 78
5.7 Summary . 80

6 Perfect data movement 83
6.1 Introduction . 83
6.2 Dict . 84

6.2.1 Choice of layout . 86
6.2.2 Pointer update operations . 86
6.2.3 Enforcing the BFS layout . 87

6.2.3.1 moveFields . 87
6.2.3.2 moveNode . 89

6.2.4 Enforcing the fixedHeight layout 89
6.2.5 Discussion . 90

6.2.5.1 Overhead . 90
6.2.5.2 Memory . 91

6.3 MList . 91
6.3.1 Minimisation . 92
6.3.2 Clustering . 93

6.3.2.1 Simple clustering . 94
6.3.2.2 Complex clustering . 94

6.3.3 Memory usage . 95
6.4 Discussion . 96

7 Evaluation 101
7.1 Reallocation . 101

7.1.1 Dict . 101
7.1.1.1 Choice of sites and hints 101
7.1.1.2 Interaction of sites . 103
7.1.1.3 Improving page layout . 104
7.1.1.4 Memory . 106

7.1.2 MList . 106
7.1.2.1 Line-focused reallocation 107

7

CONTENTS CONTENTS

7.1.2.2 Page-focused reallocation 108
7.1.2.3 ccmalloc and combined line+page reallocation 109
7.1.2.4 Memory . 111

7.1.3 Conclusions . 114
7.1.4 Summary for programmers . 115

7.2 Bulk data movement . 116
7.2.1 Dict . 116

7.2.1.1 Reducing memory . 116
7.2.1.2 Reducing latency and overhead 117
7.2.1.3 The role of threshold and compaction 119

7.2.2 MList . 120
7.2.2.1 Reducing memory . 121
7.2.2.2 Reducing latency and overhead 122
7.2.2.3 Regarding block size . 123

7.2.3 Conclusions . 123
7.2.4 Summary for programmers . 125

7.3 Perfect data movement . 125
7.3.1 Dict . 125
7.3.2 MList . 126

7.3.2.1 Overview . 127
7.3.2.2 Simple vs. complex clustering 128
7.3.2.3 Choosing the correct block size 128
7.3.2.4 Worst-case memory . 129

7.3.3 Conclusions . 130
7.3.4 Summary for programmers . 131

7.4 Comparison . 132
7.4.1 Easily applied optimisations: reallocation and bulk 133
7.4.2 Perfect data movement . 134
7.4.3 Stability . 134
7.4.4 Tuning . 135
7.4.5 Comparison to other solutions . 135

7.4.5.1 Cache-aware RDSs . 136
7.4.5.2 Locality-Improving GCs 137
7.4.5.3 Summary . 138

7.5 Further work . 138

8 Conclusion 161
8.1 Contributions . 161

8.1.1 Reallocation . 161
8.1.2 Bulk data movement . 162
8.1.3 Perfect data movement . 162
8.1.4 Discussion . 163

8.2 Summary . 163

8

CONTENTS CONTENTS

A Derivations for Dict perfect data movement 165
A.1 The cost of depth-zero reclustering . 165
A.2 Dict perfect data movement, worst-case memory 166

A.2.1 BFS . 166
A.2.2 fixedHeight . 167

Bibliography 168

List of terms 174

9

Chapter 1

Introduction

This chapter introduces the problem addressed by this thesis. Current approaches to the
problem are briefly discussed, and a gap in knowledge is identified. Finally, the content
of the thesis is outlined, its main contributions listed, and a chapter plan is given.

1.1 Recursive data structures

Computer memory consists of billions of same-sized cells into which data can be placed.
Each cell is referred to by number (its ‘address’), and the cells can be accessed in any
order. Structured data can be created using the address of each cell. For example, a
program may wish to store the letters a, c, d, e, f in order. This can be done by storing
the ith number in the x + ith cell (an ‘array’), as shown below for x = 100:

c d e fa
102101 103 104100address:

Inserting the letter b in the correct place requires moving c, d, e and f one cell to the
right; as the array grows, the amount of work required for insertion also grows. An
alternative approach is to use a ‘recursive data structure’ (or ‘RDS’), which is a method
of representing unbounded amounts of data using small ‘nodes’ that are linked together.
Each node contains a small, fixed amount of data and some number of ‘pointers’ to other
nodes:

ea c d f
The nodes are stored in memory in any order. The pointer is achieved by storing the
address of the next cell:

d a f ec
102100 104 108106

108 100 102 0 106

start of list

10

1.2. DATA LAYOUT

This is known as a ‘linked list’ , each node consisting of a single data field and a single
pointer field. Inserting b into the sequence now only requires creating a new node anywhere
in memory, setting its data field to b and its pointer field to point to c, and then setting
a’s pointer to point to the new node.

In the array, the position of the data in memory affects the meaning of the struc-
ture, but in the linked list the position of individual nodes in memory (the ‘layout’) is
unimportant. However, on most architectures the layout affects the time it takes for the
processor to fetch nodes from memory. If the layout is poor, scanning along the list will
be considerably slower than in the array, despite insertion being quicker. Thus in terms
of performance neither recursive data structures nor more rigidly shaped structures (such
as arrays) are superior. Furthermore, the linked list uses twice as much memory to store
the same data. In practice, RDSs are very widely used due to their flexibility and ease of
implementation.

1.2 Data layout

Transferring data from memory to the processor takes time, and to reduce the time
requires more expensive hardware. It is not feasible to build the memory out of the
fastest memory available, and a good compromise is to insert smaller ‘cache’ memories
between the main memory and the processor. Typically several caches are used, forming
a ‘memory hierarchy’ , with the smallest, fastest caches at the top, nearest the processor.

To reduce overhead, the hardware does not transfer memory cell-by-cell, but in small
groups. When the processor attempts to access a cell, the hardware looks for its group,
starting in the smallest, fastest cache at the top of the memory hierarchy, moving down
to the larger, slower caches until the main memory is reached1. When the group is found,
it is copied to the top of the hierarchy. Eventually, the space a group occupies in a cache
will be taken over by another group that has been accessed more recently – the original
group is ‘evicted’ . Performance can be improved by reducing the number of transfers,
which can be achieved by increasing the number of uses of groups of cells before their
eviction.

On most architectures the groups are identically- and fixed-sized ‘blocks’ of neighbour-
ing cells. An array structure has particularly good ‘cache performance’ , because all the
cells in a block are used before it can possibly be evicted: (the green lines encircle cells
in the same block)

a d e f g h i j k l m n o p qb c

Here only one block transfer is needed for every eight letters, and this remains true
whenever extra data is inserted into or deleted from the array.

The linked list’s cache performance depends on the layout. In the worst case, where
nodes are scattered throughout memory, each block is only used once before it is evicted.
In the best case, where nodes are close in memory, four nodes fit into a block, and so only
one block transfer is needed for every four letters:

1If ‘virtual memory’ is being used, the cell may not be found in the main memory, and is instead
located somewhere on disk.

11

1.3. THIS THESIS

a ihgfedcb102 104 106 108 110 112 114 116

address: 100 102 108 116

Block sizes are typically larger than in this example, and a poor layout for a linked list
is up to 40 times slower on normal desktop hardware2. Even if the linked list is created
with a good layout it may quickly degrade to a poor layout. This ‘layout degradation’ is
a potential problem for all recursive data structures.

This thesis presents techniques to prevent layout degradation of RDSs by adding
code to a program that moves nodes in memory as the RDS is updated (‘runtime data
movement’). The aim of the data movement code is to improve the performance of a
program, without otherwise altering its behaviour.

1.3 This thesis

There are two distinct past approaches to preventing the layout degradation of RDSs.
Firstly, instead of using a simple RDS, a more complex ‘cache-aware’ RDS may be

used. These RDSs are designed from the outset with good cache performance in mind, and
so (in principle) will yield better performance than any attempt to shore up an existing
RDS using runtime data movement. However, cache-aware RDSs are considerably more
complex to implement than traditional RDSs, and also require the programmer to consider
cache behaviour from the outset rather than optimising the program once it is written.
One aim of this thesis is to see how close to the performance of a cache-aware RDS one
can get using a combination of a simple RDS and runtime data movement.

Secondly, a ‘garbage collector’ (or ‘GC’) may be adapted to maintain a good layout.
In overview, some programming languages rely on the programmer inserting instructions
to free memory once the program is done with it, but others do not. In such languages
‘garbage’ , memory that the program can no longer reach because no pointer points to it,
is discovered and freed by the garbage collector – another program running at the same
time as the main program. The garbage collector works by exhaustively exploring all the
memory the main program can reach, and then freeing anything which isn’t reachable.
Often, objects are moved around in memory during this process, and this movement can
be co-opted to improve the data layout of an RDS. Such a collector is called a ‘layout-
improving garbage collector’ or ‘LIGC’ .

The most common approach to layout-improving garbage collection is to work out a
new layout for the program’s data by observing how the data is used as the program
runs, rather than requiring explicit instruction from the programmer. The advantage of
an LIGC is thus that it attempts to maintain a good data layout without extra effort from
the programmer. This automation comes at a cost – in general, garbage collection can
incur large time and memory overheads, reducing the effect of any improvement in layout,
and may pause the normal work of a program for long periods, which is is undesirable for
some applications.

Thus, there is a gap in knowledge. Cache-aware data structures are hard to implement,
and LIGCs, which perform runtime data movement, may have large time and memory
overheads and may pause normal program work. In this thesis we investigate other forms

2Pentium 4. See §3.1.

12

1.3. THIS THESIS

of runtime data movement, which may also be viewed as ways to synthesising new cache-
aware data structures.

1.3.1 Aim of the thesis

The aim of this thesis is to investigate the opposite end of the runtime data movement
spectrum to an LIGC. The runtime data movement of an LIGC is achieved within an
existing framework, and thus must require little or (more usually) no programmer in-
volvement. This thesis takes the opposite approach, focusing on discovering the best
forms of runtime data movement for a particular RDS, without providing tools to apply
these optimisations to a program automatically (although this thesis does discuss how
such tools may be created). Furthermore, the optimisations in this thesis attempt to im-
prove performance without using large amounts of extra memory and without significant
pausing of normal program work.

The body of this thesis is a clear and systematic development of three families of
optimisations, using as a starting point existing methods for improving the static (initial)
layout of an RDS. As well as producing optimisations useful in their own right, this thesis
is intended to guide the design of future cache-aware RDSs and fully-automatic solutions
such as LIGCs, and to explore the limits of runtime data movement.

1.3.2 Achieving the aim

To allow the evaluation a large number of different techniques, this thesis makes several
compromises:

1. Benchmarks: Two simple microbenchmarks are used, based on linked lists and binary
trees. These are fundamental structures in their own right, but should also be thought
of as representative of two major classes of data access pattern (linear and branching).
Past work on automatic runtime data movement has focused on benchmark suites
of far larger programs. By concentrating on these common and easily-understood
structures, the thesis provides greater insight than if larger benchmarks were used.
Indeed, applying the techniques of this thesis produces rich behaviour.

2. Hand-application: The aim of this thesis is to identify useful forms of runtime data
movement, rather than to investigate how to apply them automatically. Thus, all data
movement code is applied to a program by hand. Together with the use of smaller
benchmarks, permitting hand-application of optimisation code allows many different
techniques to be investigated.

3. Tuning: All parameters of an optimisation are tuned by re-running the benchmark
many times, rather than requiring the optimisation to select its own parameters as
the program runs. This ensures that the efficacy of an optimisation is maximised, and
makes optimisation code simpler, allowing more techniques to be evaluated.

4. Updating parent pointers: All the techniques in this thesis assume the existence of a
mechanism to move nodes quickly and safely – in other words, at some selected program
points where a node may be moved, the applier of the optimisation has arranged for
all pointers to a node (the node’s ‘parent pointers’) to be updated if it is moved.

13

1.3. THIS THESIS

The benchmarks in this thesis avoid this issue by using structures where nodes have
a single parent within the RDS, and by moving nodes at program points where any
other pointers to nodes are known. In general, updating all pointers to a node may be
achieved in many ways, including an exhaustive search as performed by a GC, at the
cost of higher overhead and memory usage.

1.3.3 Contributions

This thesis makes the following contributions:

1. The scale of the problem: The severity and speed of layout degradation of funda-
mental RDSs is demonstrated.

2. Exploration of runtime data movement: This thesis addresses a number of dif-
ferent decisions that must be made when implementing a runtime data movement
optimisation:

1. The form of data movement: Several forms of data movement are compared. Firstly,
data movement may be performed to correct the degradation caused by each in-
dividual pointer update, or it may be performed less frequently and en-masse.
Secondly, data movement may be performed with the aim of producing an exact,
well-defined layout, or to produce only an approximate layout whose quality is
not easy to predict. It is demonstrated that all four combination of these binary
choices are useful in different situations. It is also demonstrated that the correct
level of the memory hierarchy to focus an optimisation at depends on both the
RDS and the optimisation.

2. Compaction: This thesis investigates techniques that perform data movement
aimed not directly at improving layout but at creating empty contiguous regions
of memory that can be used to improve layout in the future, and finds this ‘com-
paction’ essential in some situations when an optimisation is not allowed a large
amount of extra memory to work with.

3. Complexity: Some techniques in this thesis involve a large number of changes to
a program (e.g. perfect data movement – see below), but others do not (e.g. bulk
data movement). In general, the more complex an optimisation, the harder it
will be to apply automatically. This thesis investigates how complexity affects the
efficacy of an optimisation.

4. Memory usage and latency: This thesis investigates how both constraining mem-
ory and reducing the latency of small units of normal program work affect the
design and performance of runtime data movement optimisations.

3. Three families of techniques: Three families of techniques are explored. The first
and second produce simple and effective optimisations, while the third produces rather
complex and often more effective optimisations aimed primarily at demonstrating some
of the limits of runtime data movement. These optimisations compare favourably with,
and sometimes outperform, the canonical cache-aware RDSs.

14

1.3. THIS THESIS

1. Reallocation: Memory allocators designed to improve the static layout of an RDS
are adapted for dynamic use, producing simple ad-hoc optimisations that perform
well and have naturally low memory usage and do not cause significant latency.
In particular it is shown that an allocator must be chosen more carefully when
intended for dynamic use.

2. Bulk data movement: From the starting point of the simplest data movement
optimisation – periodically re-laying out the entire RDS – the latency of normal
program work, memory usage and overhead are reduced systematically, using a
mixture of novel techniques and techniques borrowed from garbage collection. It is
shown that using compaction and embedding data movement in existing traversals
of the RDS sometimes greatly improves performance.

3. Perfect data movement: Code is inserted into each pointer update site to perfectly
restore a pre-chosen layout, producing complex but effective and stable optimisa-
tions which often out-perform the previous two techniques. The trade-off between
layout quality and overhead is investigated. For binary trees use of this technique
synthesises a new cache-aware RDS that outperforms (in practice) the canonical
cache-aware structure.

1.3.4 Chapter plan

The chapters of this thesis are as follows:

1. Introduction

2. Improving RDS cache performance: Related work, and the approach taken by
this thesis.

3. Benchmarks, and methodology: The benchmarks used in this thesis, and their
unoptimised static and dynamic cache behaviour, and their cache-aware equivalents.
Also, experimental methodology.

4. Reallocation: Ad-hoc pointer-update-time data movement, based on pre-existing
memory allocators for static RDS layout.

5. Bulk data movement: En-masse re-laying out of parts of the RDS, borrowing tech-
niques from GCs and novel techniques, including embedding data movement code in
existing program loops and compaction to produce emptier blocks.

6. Perfect data movement: Restoring a chosen layout after each pointer update opera-
tion; a source of optimisation and of new cache-aware structures, and a demonstration
of the limitations of runtime data movement.

7. Evaluation: An evaluation of each technique in isolation, together, and in comparison
with the canonical cache-aware structures. Also, future work.

8. Conclusion

Some derivations from chapter 6 can be found in an appendix, followed by the bibliography
and a list of terms.

15

Chapter 2

Improving RDS cache performance

In this chapter, we discuss the behaviour of the memory hierarchy of a modern desktop
PC, and how in general to improve its performance. We then discuss various techniques
from the literature which may be used to improve RDS memory hierarchy performance.
Finally, we discuss the approach taken in this thesis.

2.1 The memory hierarchy

The memory hierarchy of a typical desktop PC has several levels. The top of the hierarchy,
the processor, has only a few hundred bytes of local storage. The main memory (RAM)
is typically ∼1GB. Between the processor and the main memory lie several smaller cache
memories, usually at least two: an L1 cache of a few tens of kB in size (closest to the
processor), and an L2 cache of size ∼1MB. As the hierarchy is descended, the memories
get larger and slower – if RAM is exhausted, the disk (∼1TB) can be used for extra
storage, but is significantly slower and is not considered further in this thesis.

There are many different considerations when designing a cache, but the most impor-
tant are captured by the ‘ABC’ model: Associativity, Block size and Capacity. Capacity
C is the total size of the cache as given above, in bytes. The block size B, measured in
bytes, is the unit of transfer between the cache and the level below in the hierarchy. For
the L1 and L2 caches, the blocks are known as ‘lines’ , around 32–256 bytes.

The cache is organised into C/BA distinct ‘cache sets’ . The number of blocks of size B
within each set is given by the associativity A. Every possible block that may be fetched
from lower in the hierarchy can only be placed in one of the sets – the mapping is based on
a simple transformation of the block’s address (its location in the RAM). When the level
above requests a particular block, the cache inspects the relevant set, returning the block
if it is found (a ‘hit’), and fetches the block from the level below if it is not (a ‘miss’).
The time taken for a miss, the ‘miss penalty’ , is larger for lower levels of the hierarchy.

When a miss occurs some other block is likely to be evicted from the new block’s cache
set. The ‘replacement policy’ governs how this choice is made. The most commonly used
replacement policy is to evict (some approximation to) the ‘least recently used’ block.

17

2.1. THE MEMORY HIERARCHY

2.1.1 The Translation-Lookaside Buffer

Most architectures employ two distinct methods of referring to a particular cell in the
RAM. The actual location of the cell – the address supplied to the hardware that makes
up the RAM – is the ‘physical address’ . The processor works instead in terms of ‘virtual
addresses’ . This allows data to be moved to disk when the RAM becomes full, and
reduces fragmentation1. The bottom k bits of a physical address are the same as the
virtual address, and so one may consider virtual addressing as a rearrangement of physical
addressing using blocks of size 2k, known as ‘pages’ . The translation of virtual to physical
addresses is contained in a ‘page table’ , itself stored in RAM. To reduce the number of
times translation entries must be fetched from RAM, a small number are stored in a cache
memory known as the ‘translation lookaside buffer’ , or ‘TLB’ . The TLB does not store the
content of a page (this will be stored on a line-by-line basis in the L1/L2 caches), merely
a small amount of information used to locate the page in the RAM. With this distinction
made clear, we may observe that in terms of performance the memory hierarchy behaves
as if it has a cache with block size 2k. Typically TLBs have just one set (C = BA), and
the block size is 4096 (k = 12), much larger than the line size (32-256 bytes).

2.1.2 The hardware prefetcher

Some desktop PCs, including the one we use for experiments in this thesis, contain a
‘hardware prefetcher’ . This is a small component which observes the data that is being
accessed by the processor, and attempts to identify linear sequences (a, a + b, a + 2b, a +
3b, . . .). With this information, it speculatively starts to bring data from the RAM into
the L2 cache before the processor asks for it, which means that misses in the L2 cache
may be avoided. Thus, if a program can arrange its data in order, it can avoid many L2
misses. The hardware prefetcher works only within a page – it will not attempt to fetch
data across a page boundary because of the cost of virtual to physical address translation.

2.1.3 Improving memory hierarchy performance

Let miss(C) denote the number of cache misses a program experiences in a cache C. The
misses may be characterised by reference to two other caches [5, 32, 70]. C∞ is an infinite
cache, one that retains every block that has been accessed. CFA is the optimal cache of
the same size as C: a fully-associative cache that uses an ‘omniscient’ replacement policy.
When a block must be evicted from a set, it evicts a block that will not be accessed again
by the program, or failing that, it evicts the block whose next access is the furthest in the
future. Note that both C∞ and CFA are simply analytical devices constructed to model
the best-case behaviour of a real cache.

Misses are split into three categories, as follows:

1. Conflict, given by miss(C)−miss(CFA). Misses caused by the division of the cache
into sets and the replacement policy within sets, rather than using the optimal finite
cache.
1Fragmentation occurs when a program requires a large contiguous chunk of memory, but no such

contiguous amount of space exists in RAM, even though the total amount of free space in the RAM
is larger than size of the chunk. The problem is not that the RAM is too small, but that it has been
mismanaged.

18

2.2. RELATED WORK

2. Capacity, given by miss(CFA)−miss(C∞). Misses caused caused by the finite size of
the cache.

3. Compulsory, given by miss(C∞). Misses caused because data has never been accessed
before.

Compulsory misses are irrelevant for any program that runs long enough to experience
layout degradation, at least when the space created by freed nodes is reused for new ones
(to do otherwise is pathological).

Conflict misses are less severe on desktop hardware than in the past because L1/L2
cache associativities are now higher2, and recursive data structures tend not to exhibit
access patterns that cause conflict misses (contrast this with interleaved array accesses,
which can suffer from severe conflict misses). Although past work on heap data layout has
considered conflict misses (e.g. Calder et al. [11] in 1998, see §2.2.2.1), the trend in more
recent work is to focus on capacity misses only (e.g. the garbage collectors in §2.2.2.2).

Thus in this thesis, as with most recent work, we focus entirely on capacity misses.
Capacity misses may be split [70] into ‘fundamental misses’ (ones that are unavoidable
even with an optimal data layout), and ‘layout misses’ (ones that are caused by the layout
actually in use). We aim to reduce layout misses by changing the layout to maximise the
usage of each block before it is evicted – in practice, this is achieved by storing within
a block nodes that are accessed close in time. Note that changing the layout may also
affect conflict misses, but we expect capacity misses to dominate.

2.2 Related work

In this section, we summarise past approaches to improving the cache performance of
heap data, including prefetching, correct allocation, and runtime data movement using
garbage collectors. Finally we discuss cache-aware RDSs.

2.2.1 Prefetching

Modern desktop processors have a prefetch instruction. Like a load instruction, a prefetch
instruction specifies an address, and when executed causes the memory hierarchy to move
data from lower down the hierarchy to the top. Unlike a load instruction, the data
that is moved is not available to the program; the purpose of the instruction is purely
to start the movement of data up the memory hierarchy so when the program tries to
use it (using a load instruction), the miss penalty is reduced or avoided. The insertion
of explicit prefetch instructions into a program by a programmer or compiler is known
as ‘software prefetching’ , distinct from ‘hardware prefetching’ , as performed for example
by the memory hierarchy’s hardware prefetcher. The prefetch instruction affects not
the output of a program, only its performance. Prefetching can be used for any data
structure, and has been useful in the past for RDSs. Achieving performance improvement
using prefetching is a matter of ensuring that exactly the right addresses are prefetched
and that they are prefetched early enough to completely remove the miss.

2See the next chapter for the dimensions of the caches on the test machine.

19

2.2. RELATED WORK

Deciding which addresses to prefetch can be done in many different ways, such as
greedily prefetching all pointer fields of an object when it is encountered [10, 45], imposing
particular layouts on the RDS which allow address arithmetic to be used [45], adding
explicit prefetch pointer field(s) to objects [10, 40, 45, 59], and software or hardware
runtime methods to detect patterns in addresses and perform prefetching (including the
linear address prefetch units in modern desktop processors) [3, 16, 36, 47, 53, 58, 67, 75,
76]. In all these schemes, the emphasis is on prefetching what is needed and no more,
because unnecessary prefetches will significantly increase the required memory bandwidth,
evict useful data from the cache, incur an instruction overhead, and increase node size
unnecessarily when prefetch field(s) are in use.

2.2.1.1 Linear access patterns

Prefetching is most successful for linear sequences of accesses – that is, ones where the
same pattern of addresses occur in sequence over and over (mutating slightly as pointers
are updated in the RDS, perhaps), instead of branching traversals such as binary tree
lookup. In 1996 during the first work on RDS prefetching, Luk and Mowry [45] observed
that trying to impose a linear layout on linear data structures such as linked lists would
allow software prefetching by address arithmetic (on today’s hardware, this would be
achieved by the processor’s hardware prefetcher). Another approach taken by Luk and
Mowry, and later by others [10, 59], was to add an extra ‘prefetch pointer’ field to each
node, referring to another node some distance ahead in the traversal. During traversal
the node referred to by the prefetch pointer is prefetched. Provided the destination of
the prefetch pointer is far enough away in the traversal, the cache miss penalty may be
completely avoided.

A different approach to the software prefetching of linear structures is ‘stride’ prefetch-
ing, and various other methods which attempt to detect access patterns dynamically.
Stride prefetching is the insertion of code near a particular load instruction that de-
tects linear sequences of addresses (a, a + b, a + 2b, a + 3b, . . ., where b is the stride) and
prefetches ahead of the current access. Stoutchinin et al. [67] modified a compiler to
identify pointer-chasing loops and conservatively determine whether there is available
bandwidth to perform prefetching. Wu et al. and others [47, 75, 76] use profiling to
guide the insertion of code into suitable loops, which allows less conservatism, and report
that their scheme outperforms the Itanium’s hardware prefetch unit by about a third.
Inagaki et al. [36] inserted stride prefetch instructions using a just-in-time compiler, de-
tecting strides by partially executing the method that is being compiled, using its actual
arguments. Similar to the scheme of Inagaki et al. is the scheme of Chilimbi et al. [16],
which partially executes the method looking for repeated sequences of addresses (instead
a repeated address difference), and then inserts prefetch instructions.

2.2.1.2 Branching access patterns

Branching traversals are significantly harder to tackle with prefetching. There is a fun-
damental bandwidth issue involved – the traversal may simply be too unpredictable (e.g.
high branch factor in a tree) to know what to prefetch. One ad-hoc method for all
traversal types is ‘greedy’ prefetching, which is to prefetch all pointers of a node when

20

2.2. RELATED WORK

it is encountered [10, 45], which is sometimes effective, but often does not issue prefetch
instructions early enough, or imposes excessive bandwidth demands on the machine.

Karlsson et al. [40] tackled the prefetching of k-ary trees by adding an array of kD

prefetch pointers to each node, where D is the prefetch distance (how much further down
the tree the prefetching is compared to the main program). In principle, the prefetch
distance is proportional to the miss penalty divided by the time the program spends
working on each node. For example, a prefetch distance of three in a binary tree requires
the addition of eight (23) prefetch pointers to each node. Karlsson et al. found some
improvement for binary trees, but as the branching factor of the tree or the value of miss
penalty divided by work per node increases the bandwidth demands and the increased
size of the nodes prevent prefetching from being effective.

2.2.1.3 Other schemes

Software prefetch instructions do not have to be inserted directly into a program. For
a statically scheduled VLIW processor, Rabbah et al. [53] identify high-miss-rate loads,
and then use a compiler to schedule code that performs speculative execution of load
dependence chains. This code typically runs far ahead of the main program’s access
stream and therefore has a prefetching effect. The authors propose the addition of an
‘informing load instruction’ to the processor, which would allow such speculation code
some degree of feedback from the memory hierarchy, in particular to abort itself if it
begins to cause too many misses (i.e. begins to consume too much bandwidth). Thus
the statically scheduled prefetching code can respond to unpredictable dynamic memory
events.

Roth et al. [58] and Annavaram et al. [3] have previously proposed similar, but entirely
hardware-based, methods to perform such prefetching.

2.2.1.4 Summary

Prefetching is a useful technique when the access sequence is predictable (either linear
or repeating), but may run into bandwidth problems in other situations, particularly
for branching traversals. Furthermore, it has been observed that the performance hit of
incorrect prefetching can be as large as the performance gain from correct prefetching. We
note that the high bandwidth needed by prefetching can be reduced by placing related
nodes in the same cache line, and it is past work on improving RDS layout that we
summarise next.

2.2.2 Layout

In this section we examine two previous approaches to improving RDS layout. The first
approach is to ensure that an object is allocated in a good location, which may also
prevent layout degradation if it is caused by allocating new objects rather than changing
the linkage of old ones. The second approach is to use a layout-improving garbage collector
to perform runtime data movement, preventing layout degradation.

Most of the solutions described below attempt to solve the problem of heap object
layout in general, rather than specific recursive data structures as we tackle in this thesis.
We observe that improving data layout in general requires the use of heuristics, as observed

21

2.2. RELATED WORK

by Petrank et al.: ‘Suppose one is given a sequence of memory accesses and one has to
place the data in the memory so as to minimize the number of cache misses for this
sequence. [We] show that if P 6= NP , then one cannot efficiently approximate the optimal
solution even up to a very liberal approximation ratio.’ [52]

2.2.2.1 Allocation

Attempts to achieve a good layout at allocation time vary a great deal in complexity.
Feng et al. [22] show that a general memory allocator can improve layout with some
simple changes, without using any information about the object being allocated other
than its size. Their allocator improves layout simply by using fine-grained size classes,
removing headers of small objects to increase cache line utilisation, and through the use
of regions (see below). Seidl and Zorn in a series of papers [62, 63, 64, 65] develop low-
overhead methods for identifying heap objects at runtime, which allows them to guide
their allocation into four classes based on object lifetime and usage frequency. Frequently
used objects are packed together, reducing working set size, and the division of long-
lived objects from short-lived objects helps to reduce fragmentation. The identification of
objects can be done quite effectively by calculating a hash by XORing the last few stack
return addresses.

A region (a.k.a. pool) is a contiguous part of the heap that stores objects of only
one type (or perhaps of only one size). Allocation and deallocation are quick and frag-
mentation is reduced. Regions can be used to pack objects from the same RDS instance
together in memory, improving cache performance. The definition of regions appears to
be inconsistent – some authors allow region creation, node creation, node deletion and
region deletion, while others disallow (individual) node deletion. We will use the first
definition. The transformation to use regions can be performed by hand [27, 26], or by
static analysis [44, 68]. Berger et al. [8] have demonstrated that, of the many custom
memory management strategies used by programmers, regions are one of the few that
outperform a state-of-the-art general-purpose allocator (the Lea allocator).

The schemes above attempt to categorise objects, either based on their size, the RDS
they belong to, or their lifetime and usage frequency. The greater the resolution used in
the categorisation of objects, the larger the potential improvements. Truong et al. [70]
showed by simulation that if each object instance is dealt with individually, even quite
simple heuristics can significantly improve data layout. Calder et al. [11] used profile
information to guide the allocation of heap objects by identifying them in a similar way
to Seidl and Zorn, but used finer-grained allocation classes than the four they considered.

Finally, Chilimbi et al. [15] investigated an allocator called ccmalloc which takes as
argument the address of another ‘hint’ object in the heap. The allocator attempts to
allocate the new object in the same line or page as the hint, thus improving layout
if a suitable hint can be identified (in their work, by hand). Their results indicate that
choosing a hint is usually simple, and greatly improves the layout of an RDS. In Chapter 4,
we discuss the use of similar allocators to maintain RDS data layout.

2.2.2.2 Using garbage collection to maintain layout

As with the body of work concerned with allocation, attempts to use garbage collectors
to maintain good RDS layout vary in complexity. The simplest method is to vary the

22

2.2. RELATED WORK

order in which the heap is traversed, and hence the layout of nodes produced by a copying
collector. The traditional order to traverse the heap in is ‘breadth-first search’ (or ‘BFS’)
order, which can be done without using extra storage to store the queue, as noted by
Cheney et al. [13]. White et al. [72] first suggested that a GC could be used to improve
the mutator’s data layout, observing that a ‘depth-first search’ (or ‘DFS’) traversal order
would have better layout than BFS – placing parents and children close in memory – but
that BFS is easier to achieve without increasing memory usage. Moon et al. [50] modified
the traversal order of Cheney et al. to be closer to a depth-first traversal, and Wilson
et al. [74] provided further improvements by hierarchically decomposing the traversal –
filling pages by BFS traversal, then traversing pages in BFS order. Shortly thereafter,
Lam et al. [43] observed that the optimal grouping depends heavily on the structure –
there is no one grouping that performs well universally.

Next we consider schemes that take a more detailed approach to RDS layout, usually
using some form of profiling to discover how the program uses heap data (i.e. without any
programmer involvement).

Per-object-instance profiling: Here we consider schemes that attempt to discover how
individual object instances are accessed. The first work of this type was the incremental
GC of Courts et al. [21], which used custom hardware that had the property of moving
objects to to-space in their access order, thus often improving layout (1988). The first
software-based scheme was not seen for ten years, the stop-the-world collector of Chilimbi
et al. for the language Cecil [17]. Online profiling detects hot objects (frequently accessed
objects) and constructs an ‘object affinity’ graph which is used to impose a good data
layout while garbage collection occurs. The authors note that although some improvement
is seen, there is much room for improvement in reducing the overhead of profiling and
improving the layout produced.

Chen et al. [12] take a more aggressive approach to maintaining data layout, trigger-
ing object movement using their collector when global miss rates begin to rise, rather
than just when collection for garbage is needed. Their profiling and method of choosing
a data layout is like Chilimbi’s in that individual object instances are considered. They
found that bursty profiling was necessary to reduce overhead, incurring a 60% increase
in execution time for between 2 and 20ms, with shorter bursts producing poorer profile
information and hence poorer layout. Latency is tackled at a finer scales in this thesis, as
discussed in §3.3.4.

Per-object-type profiling: The collectors of Chen et al. and Chilimbi et al. perform profil-
ing per-object-instance, but other collectors perform it per-object-type. The first layout-
improving collector for Java was the collector of Shuf et al. [66], who combined two
approaches. Firstly, they identify which object types are ‘prolific’ (those with a large
number of instances) and then using a graph with nodes as object types and edges as ref-
erences, identify clusters of prolific types. For a prolific type α, denote the other prolific
types in its cluster as α’s ‘co-prolific’ types. During allocation of an object a of type α,
an attempt is made to colocate a with some instance of one of α’s co-prolific types that
a has a pointer to. During traversal the collector attempts to keep pages of from-space
together in to-space, the effect being that as garbage is removed, layout quality is either
preserved or increased. Performance is improved for Java SPEC [30] and Olden [57] suites

23

2.2. RELATED WORK

by up to 14% (6% on average) in the Jikes RVM with a copying two-space collector. The
collector of Huang et al. [35] is similar to the collector of Shuf et al.

Semi-automatic solutions: Novark et al. [51] suggested that a programmer could provide
the collector with a function that is invoked when a particular RDS is collected, which
traverses the RDS in the correct order to impose a good layout. This is likely to impose a
better layout than profiling methods, and may be a good compromise between program-
mer effort and program performance.

The cost of garbage collection: Historically, garbage collection is seen as rather expensive.
We refer to a 2005 study by Hertz et al. [31], who use profiling to work out when an
object in a garbage-collected program becomes garbage. The program is then run by
simulation with added explicit free operations. The authors note that this approach is
more favourable to garbage collection than the opposite approach (removing frees from a
non-garbage collected language and then applying a GC). They find that with five times
as much memory, GC is often better than explicit freeing, but with three times as much
memory, a GC is 17% slower, and with twice as much memory, it is 70% slower. They
use a stop-the-world collector, which will have lower overhead than an incremental GC.

A layout-improving GC may be viewed (e.g. by Huang et al. [35]) as an improve-
ment over explicit deallocation because it can prevent layout degradation by runtime
data movement. However, such schemes may use large amounts of memory – increasing
the heap size increases the time between collections, reducing overhead to manageable
levels. Huang et al. do not give results for heaps smaller than 1.8 times the amount of
storage required by the program, whereas the techniques of this thesis often perform well
using a heap of relative size 1.25.

Summary: Heap data layout can be improved using a garbage collector with the help of
profiling to discover how either particular object instances, or particular object types,
are used by the program. A less common approach is allow the programmer to specify
traversal orders for identified data structures. In both situations the traditional time and
memory overheads of garbage collection must be considered.

The aim of this thesis is to demonstrate where the upper limits of well-tuned runtime
data movement optimisation are, using simple benchmarks, not addressing in detail how
to apply such optimisation automatically. This allows these overheads to be reduced in
several ways.

2.2.3 Comparing prefetching and layout

There have been very few studies comparing prefetching to layout optimisations. Hall-
berg et al. [28] compare Luk and Mowry’s greedy prefetching [45] and Chilimbi et al.’s
ccmalloc [15] using the Olden suite [57]. They conclude that unless line sizes are very
small, ccmalloc is much more effective than prefetching. Badaway et al. [4] draw similar
conclusions for Luk and Mowry’s prefetch pointer scheme for linear data structures [45]
using the Olden Health benchmark.

The consensus appears to be that for RDSs that do not change shape as the program
runs, it is more effective to try to impose a good initial layout than use prefetching. Indeed,

24

2.2. RELATED WORK

statically, prefetching has a number of implementation difficulties: It is hard to cope with
high branching factors or obtain sufficient prefetch distance, it incurs significant runtime
overhead and the cost of incorrect prefetches is high. Dynamically, prefetching still suffers
from these problems, but becomes more attractive because maintaining prefetch pointers
may be far simpler than moving objects at runtime to preserve data layout.

Prefetching may be combined with layout optimisation, and arguably this makes more
sense than using either alone: layout optimisation minimises the number of block accesses
(the required memory bandwidth), then prefetching minimises the miss rate. Realising
this is another matter; neither Hallberg et al. nor Badaway et al. found any benefit in
combining the two.

2.2.4 Cache-aware RDSs

Algorithms and RDSs are usually evaluated within the the ‘RAM model’ , which assumes
that all data accesses have the same cost. This conclusion does not hold in the presence
of data caches. A cache-aware RDS is one that is optimal in the ‘Input-Output model’ (or
‘I/O-model’) [2]. The I/O-model assumes two levels of memory – a fast memory of finite
size M , and a slow memory of infinite size, with data transfered in blocks of known size
B. Computation is performed only on data in the fast memory. The complexity of an
algorithm is measured in block transfers. All block transfers are explicit – in this sense
the model more accurately models virtual memory (explicit transfer of pages between
main memory and disk), rather than the memory hierarchy (multiple levels of cache, and
automatic transfer of blocks, affected by the geometry and replacement strategy). Never-
theless, it has been found that the I/O model ‘adequately models the situation where the
memory transfers between two levels of the memory hierarchy dominate the running time,
which is often the case when the size of the data exceeds the size of main memory’ [49].

We now discuss cache-aware equivalents of the two RDSs we consider in this thesis –
linked lists and binary trees.

2.2.4.1 Trees

The principle behind a cache-aware search tree is to use nodes as wide as a cache line,
which both maximises line utilisation and reduces tree depth. The canonical solution is
to use a B-tree, which supports optimal insertion, delete and lookup in the I/O model
when nodes of size Θ(B) are used, and is also considered very good in practice [18, 56].
Furthermore, it is observed [18, 55] that using a node size larger than the cache line size
can improve performance, due to reduced tree depth, at the cost of extra memory (because
B-trees in general contain some empty space in nodes).

2.2.4.2 Lists

As with trees, the principle behind cache-aware lists is to store more than one key per
node, and make nodes the same size as cache lines. By allowing the number of keys in a
node to vary between some minimum value b and some maximum B, keys can be kept in
order, improving cache behaviour, without significant update costs. On an insertion, if a
node x overflows, k ≥ 0 empty nodes are allocated, and the key from x and some set Y of
neighbouring nodes are redistributed amongst the 1+k + |Y | nodes, with k and Y chosen

25

2.2. RELATED WORK

so that no node overflows. Similarly, on delete, node(s) may be freed. The simplest
algorithm [6] based on this method is to set B = 2b. If overflow occurs on insertion
(B + 1 keys within a node), the extra key is either moved to the next node, or the node
is split into two nodes of B/2 = b and B/2 + 1 = b + 1 keys. Deletion likewise involves
either the movement of a key or the merging of two adjacent nodes. In the I/O model,
this provides traversals in an optimal O(TraversalLength/B) block transfers, and update
cost of O(1) block transfers. The amount of memory used is no worse than a linked list
implementation – the minimum memory density has been halved, but this is cancelled
out by the removal of internal pointers. Updates are more expensive if b is increased,
but cache line utilization increases, potentially increasing layout quality, and thus the
implementation may be tuned. Experimental results from structures with b ∈ [1, B − 1]
are given by Rubin et al. [60], and results from a C++ STL-compatible structure by Frias
et al. [25].

2.2.4.3 Discussion

Cache-aware structures are designed from the outset with cache performance in mind, and
thus by construction will outperform any other approach. However, they have a number
of disadvantages. As demonstrated above, they are harder to implement than vanilla
structures. Indeed, the cache-aware equivalent of a particular ‘hand-rolled’ data structure
required by a program may not exist. Furthermore, the precise requirements of a data
structure may not be fully known until the program has been written, and so attempting to
write the program using a cache-aware structure from the outset may be too restrictive (a
case of ‘premature optimisation’). Thus, the approach of this thesis (augmenting vanilla
data structures with data movement code) may be preferred in practice because the
programmer does not have to expend significant effort until it is certain that optimisation
is required, and the final form of the RDS is known.

2.2.5 Changing RDS node definitions

Several researchers have presented optimisations that focus on the arrangement and shape
of individual nodes of a vanilla RDS, without changing the fields that are stored within
each node. The focus of these optimisations is either to reorder fields (i.e. change the
object definition) so related nodes are more likely to be in the same cache block, which can
be done by hand [14, 69, 71] or by online profiling and dynamically recompiling methods
when object definitions change [41]. Nodes may also be split into a hot (frequently-used)
part and one or more cold parts, either by keeping the cold part(s) at a large constant
offset, which has the effect of interleaving nodes [24, 69, 71], or by linking the cold part
to the hot part with a pointer [14].

The effect of these optimisations is to magnify the effects of prefetching and methods
of improved RDS layout for situations where RDS nodes have cold fields (for example,
object headers, or large value fields). The benchmarks we use in this thesis do not have
cold fields in nodes, so we do not use any of these techniques, but such techniques are vital
when the aim of an optimisation is to pack as many nodes into a cache line as possible.
Thus these methods may be useful to increase the performance of the techniques in this
thesis when applied to real programs.

26

2.3. THIS THESIS

2.3 This thesis

In this thesis we use runtime data movement to improve the cache behaviour of RDSs.
The focus is on maximising performance, while at the same time using only modest
amounts of extra memory and not significantly increasing the latency of small units of
normal program work. The conditions on latency and memory make optimisation difficult
(exactly how difficult will be made apparent in §7), and thus we are concerned only with
investigating what sort of optimisations are useful, rather than working out the details of
how to apply them easily. This is in contrast to past work on runtime data movement,
for example Garbage Collection [12, 17, 35, 66], where the concern is (typically) how
much layout degradation can be prevented without any programmer involvement within
an existing framework. Although the aim of our work is to investigate what forms of
runtime data movement are effective, and where the limits of these technique lie, we will
briefly discuss later how such techniques could be applied more easily using, for example,
feedback-directed optimisation.

To apply an optimisation from this thesis, the applier (programmer, compiler or some
combination) must:

1. Select: Identify suitable optimisations based on the traversal type and update opera-
tions, and the memory allowance and whether large latencies of small units of normal
program working are allowed.

2. Apply: Insert code, and enable safe data movement by providing some mechanism to
update all pointers to a node at a few program points

3. Tune: Explore the parameter space of the chosen optimisation, to maximise perfor-
mance given constraints on memory and latency, etc.

We discuss these three tasks in more detail below. Recall that within this thesis we focus
on microbenchmarks, based on fundamental RDSs, rather than using standard benchmark
suites such as SPEC [30] or Olden [57]. Below we will explain why we believe this is a
useful approach.

2.3.1 Selecting optimisations

The selection of an optimisation is guided firstly by the shape and usage of the structure,
secondly by the way the structure changes shape as the program runs, and thirdly by how
much extra memory can be used and whether large latencies are allowed.

Firstly, although data layouts based purely upon the connectivity/linkage of RDS
nodes will yield good performance (refer to the past work on GCs in §2.2.2) more effective
data layouts can be achieved by identifying how the structure is used – the shape and
frequency of each traversal loop. This could be achieved in various ways, from exploiting
the programmer’s knowledge of the program through online or offline profiling and possibly
even static analysis. Different optimisations require different levels of knowledge of the
usage of the RDS. For example, some of the ‘bulk data movement’ optimisations of
Chapter 5 require only knowledge of a good layout for the structure, whereas others in
the same chapter require the applier to embed data movement code in an existing traversal
loop, which requires the applier to know the behaviour of the loop.

27

2.3. THIS THESIS

Secondly, understanding how the structure changes shape may be necessary to apply
an optimisation. For example, the optimisations of Chapters 4 and 6 (reallocation and
perfect data movement) attempt to correct layout degradation when a pointer update
occurs. For reallocation this can be made more effective if the applier can decode several
pointer updates into a higher-level operation such as substituting one node for another
within the RDS. For perfect data movement, much more precise knowledge of how the
structure changes shape is needed.

Finally, the amount of latency allowed and extra memory usage an optimisation can
incur will guide the choice of optimisations. For example, in Chapter 5 the simplest
optimisation we discuss simply periodically moves the entire RDS to a different block of
memory, restoring layout to some known quality – this requires twice as much memory
and causes large latency, but is very effective.

2.3.2 Applying optimisations

The most significant task for the applier of the optimisation is to, for a small set of
program points, allow a node to be moved in memory by explicitly identifying all its
parents, or providing some mechanism to update them, which could involve some form of
exhaustive search and use of forwarding entries as in a GC, but most efficiently will not.
This will be discussed further in §2.3.2.1.

There are two other tasks the applier must carry out to apply the optimisation. All
optimisation in this thesis use a specially managed ‘RDS heap’ , which supports certain
operations not found in a general purpose memory manager, and is very efficient because
all nodes are the same size. The program must be transformed so all nodes of the RDS
being optimised are allocated and freed through the memory manager of the RDS heap.
Past work suggests that this may be done automatically [44].

The applier must also actually insert the data movement code into the program. This
may take the form of applying code to sites in the program where pointers in the RDS
are updated (closely coupled to the program), or simply ensuring that the optimisation’s
code is invoked regularly (loosely coupled to the program). In between these extremes,
the applier may embed data movement code within one or more of a program’s existing
traversal loops.

2.3.2.1 Updating parents on data movement

Vital to the approach we take in this thesis is the ability to move objects very often to
maintain a good data layout. For example, for the linked list benchmark we discuss in
the next chapter, best performance is obtained when ten percent of the time the RDS
is being traversed, nodes are being moved (or expressed another way, every tenth time a
node is visited, it is moved).

To move a node requires updating all the pointers that point to it (its parent pointers),
which can be done in general in a number of different ways:

1. Update pointers immediately: The advantage of moving a node immediately, is
that, in the absence of any other effects, its space is freed up and can be reused (which
means not only that less memory is required, but also that the optimisation may be
able to achieve a better layout). In this thesis, we rely on applier knowledge to update

28

2.3. THIS THESIS

all pointers to a node immediately when it is moved. In general this will not be
possible. There are a variety of ways to make this automatic – static analysis may be
performed, but is difficult and expensive, or the semantics of the RDS or programming
language may be changed to make the locating of parents easier, but programmers are
likely to be unwilling to have such restrictions. Dynamic solutions are a possibility
too: using the observation that the number of pointers to heap objects is small3, a
dynamically-sized parent array (e.g. linked list) may be added to each node. Although
the time and memory overhead of maintaining such a structure is large, the benefits of
easier parent updating on node movement may outweigh them. Furthermore, because
the optimisations in this thesis move nodes only at well-defined program points, the
structure does not have to be kept up-to-date at all times.

2. Update pointers eventually: This is the strategy used by garbage collectors – a
node is replaced with a forwarding entry, and a flag set to indicate that the node is
a forwarding entry4. Pointers are updated by write or read barrier and exhaustive
heap walk, after which all forwarding entries can be removed. This method is sensible
if garbage collection is already being performed, but as stated above increases the
memory overhead and may make it harder to achieve a good layout.

Forwarding entries are a safe but rather heavyweight solution. Many objects have only
a single parent3, and so space that could be reclaimed immediately after an object’s
movement is being unnecessarily occupied by a forwarding entry until the next heap
walk (recall that when moving nodes for the purpose of improving data layout it is
necessary to understand how nodes are linked by pointers - thus it is expected that
when a node is moved at least one parent is known).

Furthermore, the overhead of removing forwarding entries gets worse if the heap is
large compared to the RDS: the RDS must be re-laid out frequently, but this cannot
be done without large overhead due to the cost of walking the entire heap. To cause
significant loss in performance due to poor data layout an RDS need only be few times
larger than the L2 cache (∼ 1MB), whereas the program’s heap could be hundreds of
MB.

3. Separate inter- and intra-RDS pointers: Pointers to RDS nodes from other nodes
in the same RDS are potentially simpler to keep track of than those from the rest of
the heap. Thus, a scheme where all accesses to nodes from outside the RDS heap go
through a forwarding table may allow the applier to exploit their knowledge of how the
RDS functions, while not assuming anything about what pointers the program retains
to RDS nodes. Lattner et al. demonstrate a static analysis able to transform a program
in this way [44]. In the extreme case the RDS may be fully segregated from the rest of
the program and accessed through a small number of identified root nodes.

There are thus many possible methods to update parents when a node moves, and best
performance will be obtained (in terms of time, and probably also memory and latency)

3For a set of Java benchmarks, including the SPECjvm98 suite, the Java-Olden suite, and a number
of other applications including a web server, Hirzel and Hind state that fewer than 40% of heap objects
have more than one parent [34].

4This can be done by using, for example, the unused low bits of pointers (which are often necessarily
aligned to 4 bytes), or by special bits in hardware such as in Luk and Mowry’s scheme [46].

29

2.3. THIS THESIS

when this can be achieved with the minimum of effort – which involves both the instruction
and data costs to locate the parents and then the cost of actually updating them. The
latter is often cheap, based upon the measured number of references to objects [34], and
the properties of fundamental RDSs.

For the optimisations in this thesis, identifying parents need not be done in full gener-
ality. Nodes are moved at only a few program points, either embedded within the original
program’s traversals of the RDS, or within the optimisation’s code. In both cases, the
applier may exploit the fact that a well-defined traversal has been used to reach the node
(rather than, say, walking the heap in address order, which would visit nodes out of con-
text). If the applier has a choice of where to allow node movement, they may reduce
overhead and implementation difficulty by, for example, moving nodes during read-only
operations of the RDS.

In this thesis we avoid the issue of updating multiple parents by using RDSs with only
one parent per node from within the RDS, and by keeping track of any stack references.

2.3.3 Tuning optimisations

Most of the optimisations of this thesis have parameters that can be ‘tuned’ to give the
best performance. These parameters may be numerical, binary, or chosen from a small
set of distinct choices. The aim of this thesis to demonstrate the best performance that
can be obtained from the optimisations, and thus we tune all parameters optimally, by
hand. In general, tuning may be achieved automatically, either statically or dynamically.

‘Static tuning’ is any method that sets the parameters of the optimisation before
execution time. This could be done by feedback-directed compilation (i.e. repeatedly
compile and run and measure execution time): in some areas, such as compilation for
embedded devices, where the hardware is precisely understood and small improvements
in efficiency have large consequences for unit cost, expending a lot of effort optimising
a program is commonplace. Moreover, methods exist to reduce the search space (e.g.
Chow et al. demonstrate a method for multiple binary parameters [19], and Bodin et al.
a method for multiple numerical parameters [9]).

‘Dynamic tuning’ is any attempt to adjust parameters online, to adapt to changes
in architecture of the machine and changes in how the RDS behaves. Online profiling
methods have been combined successfully with data layout optimisations on several oc-
casions [12, 17, 41], but clearly carry some overhead.

2.3.4 Choice of benchmarks

In this section, we discuss why we do not use the traditional large benchmark suites,
and discuss how the techniques in the thesis may generalise to programs that use graphs
instead of trees and lists.

2.3.4.1 Large benchmark suites - SPEC and Olden

Past work on RDS layout and prefetching has used either SPEC2000 [30] or Olden [57]
and thus we need to justify this thesis’s use of microbenchmarks instead of these larger
suites.

30

2.3. THIS THESIS

Firstly, using smaller benchmarks makes sense practically. This thesis is not restricted
by the necessity to apply optimisations automatically. To hand-apply optimisations to
SPEC/Olden would take a lot of time, limiting the number of optimisations that could
be evaluated.

Secondly, there is some doubt that SPEC2000 and Olden contain RDSs whose layouts
degrade, or whose layout degradation causes a loss in performance. The study of Sair
et al. [61] concludes that ‘only a few applications [of SPEC2000] place more than modest
demands on the memory system’. More seriously, the work of Raman et al. [54] demon-
strates that most RDSs in Olden and SPEC2000 are stable, that is, are used in a read-only
manner and therefore do not suffer from degrading data layout5. Clearly, data structures
are not just used for read-only accesses in real programs. Furthermore, as noted by the
study of Agaram et al. [1], it appears that many recursive data structures (or irregular
pointer-bases structures) within SPEC2000 are emulated using arrays, which may make
data movement difficult.

The Olden suite consists of fairly small programs, and is commonly used to investigate
static data layout for recursive data structures. The SPEC2000 suite is also often used, but
consists of far larger programs and so hand-applying optimisations is not feasible without
significant knowledge of the data structures involved. Given a general program, working
out the data structures in use is a difficult problem, and still the subject of ongoing
research6. The previous paragraph highlighted the deficiencies of both suites for the
investigation and optimisation of RDS dynamic data layout. A suite of suitable programs
of similar size to the benchmarks in Olden (‘dynamic Olden’) could be constructed, using
the simple linked list and binary search tree benchmarks of this thesis as a starting point.

Finally, and most importantly, we believe there is an inherent benefit to studying fun-
damental RDSs instead of more complicated benchmarks: they are well understood, in-
deed sufficiently simple that their cache behaviour can be obtained analytically [23, 42, 77],
and cache-aware versions exists, giving us some performance upper bounds to compare
optimisations against. Trees and lists lie at the heart of more complicated data struc-
tures and algorithms, and furthermore model two fundamental traversal types (linear and
branching). Despite the simple behaviour of lists and trees, rich behaviour arises when
they are optimised using even simple techniques, as the rest of this thesis demonstrates,
but because the benchmarks are simple we have a better chance of explaining why an
optimisation does or does not work. This thesis aims to demonstrate what forms of
optimisation are suitable, rather than providing automatic ways of applying them; we
therefore believe that simpler benchmarks are far more instructive than using the tradi-
tional suites.

2.3.4.2 Graph benchmarks

In this thesis we use benchmarks based around lists and trees. In this section we discuss
graph benchmarks.

5Their aim was precisely opposite to ours – to find stable structures so they could impose a better
initial layout, especially to rearrange linked lists linearly in memory.

6For example, the conclusion of a 2007 paper on shape analysis states: ‘In general, real-world systems
programs contain much more complex data structures than those usually found in papers on shape analysis,
and handling the full range of these structures efficiently and precisely presents a significant challenge.’ [7]

31

2.3. THIS THESIS

It is important to distinguish between physical graphs (the objects in the program
and how they are connected by pointers) and logical graphs (what the objects and their
pointer-linkage represent). For example, a logical graph can be represented by a single
boolean matrix object. Another representation of a logical graph, allowing unlimited
fanout per logical node, is to represent nodes in the graph by an object of type A which
has a pointer to some auxiliary structure composed of objects of type B. Each B object
contains the graph node’s pointer(s) to other graph nodes (physically, pointers to other
objects of type A). Most simply, the B structure is a linked list, but tree representations
are also possible, and in general we would expect the B structures not to be a physical
graph. If the number of children is large, the layout of the B structures will dominate,
and thus the problem of layout/runtime data movement is actually the problem of lay-
out/runtime data movement for the many B structures, which are not physical graphs
(cf. MList, the multiple linked list benchmark, see §3.2.2). Only when the B structures
are small does it become relevant to consider the layout/runtime data movement of the
physical pointer graph composed of A and B objects.

Thus, noting that effective data layout/runtime data movement in a program with a
logical graph does not necessarily involve dealing with physical graphs, we now discuss
data layout/runtime data movement for physical graphs. There are several important
issues:

1. Object size: Object size determines how many objects may be located in the same
line or page; the larger the objects, the less important layout quality is.

2. Number of parents per object: The number of parents an object has determines
in part how much overhead is incurred by moving a node (because all parents must be
updated). As discussed previously, if the number of parents is usually one, and objects
with more than one parent are kept track of, the old location of an object can usually
be freed immediately, allowing the space to be reused, which may improve the data
layout achieved by an optimisation.

3. Number of child pointers per object, and the distribution of their use: The
number of child pointers per object7, and the distribution, determines the nature of
the traversal and the layout that should be aimed for. If only a small subset of children
are usually visited (a small ‘effective fanout’), then the traversal is quite similar to a
branching traversal in a tree of low fanout or a linear traversal in a list (with the excep-
tion that loops may exist, since the structure is a physical graph8), and a good layout is
therefore to colocate a node with its small number of frequently visited children. Thus,
much of the techniques in this thesis are applicable, given some mechanism to update
parents. As the effective fanout rises, it becomes harder to colocate an object with all
its children - data layout optimisation is not possible, and so runtime data movement
is not possible either.

In conclusion, for physical graphs where data layout makes a large contribution to perfor-
mance, the techniques of this thesis are applicable, provided some mechanism to update

7In general we would expect the average number of child pointers per object and the average number
of parents per object to be the same.

8We do not expect loops to have a significant impact on data layout. If a loop is short, the revisited
nodes are likely to still be in the cache, and so the loop is irrelevant from the point of view of data layout.
If the loop is long, a node is only revisited infrequently, and so the loop is again irrelevant.

32

2.4. SUMMARY

multiple parents exists. We have been unable to find for real-world programs any statis-
tics on the number of parents per object, number of children and distribution of their use.
However, the significant amount of work on static data layout optimisations for general
heap data (see §2.2.2.1) suggests that such physical graphs are common.

2.4 Summary

In this chapter we described in more detail the memory hierarchy of a modern desktop
PC, and how its performance may be improved in general. We then discussed different
specific approaches from the literature, including software prefetching, use of garbage
collectors to improve layout, and cache-aware RDSs. We noted that software prefetching
is often less effective than the two layout-based methods.

The first of these methods is to use a layout-improving garbage collector. This typically
requires no programmer involvement, but may not produce a very effective layout, and
may have high latency and memory overheads.

The second method is to use a cache-aware RDS, or some other structure designed
from the outset for good cache performance. In principle this will be the most effective
solution, but the implementation effort of such a structure is considerable, and indeed
a cache-aware equivalent of a particular structure required by a program may not exist.
Furthermore, developing a program using data structures with good cache performance
may be too restrictive if the requirements of the structure are not known from the outset.

In this thesis we investigate the movement of data at runtime (as in a GC), but
prioritise performance, low memory and low latency, rather than the ease of applying the
optimisation. The aim is to investigate the the limitations of runtime data movement,
guiding the design of future layout-improving GCs and cache-aware RDSs, in addition to
producing optimisations useful in their own right.

To apply an optimisation from this thesis, three tasks must be carried out. Firstly, the
correct optimisation must be selected based on the shape and usage of an RDS, and how
much latency and extra memory is allowed. Secondly, the optimisation must be applied
to the program, the most difficult aspect of this task being identifying all pointers to a
node at the few program points where nodes are moved. This task is not difficult for
the benchmarks used in this thesis, and we outline a number of ways it may be achieved
in general, the important point being that some efficient method must exist if runtime
data movement is to be used to prevent layout degradation. Finally, the parameters of
an optimisation must be tuned.

Two simple microbenchmarks based on linked lists and binary trees are used, repre-
sentative of two major classes of data access pattern. This allows the thesis to generate
greater insight than if larger benchmark suites (SPEC, Olden, etc.) were used. Further-
more, since optimisations are applied by hand within this thesis, the small size of the
benchmark allows a larger number of optimisations to be evaluated.

In the benchmarks of this thesis, performance is determined solely by a single data
structure, which undergoes uniformly-distributed insertions and deletions. All objects are
the same size, allowing the memory manager to be more efficient, and nodes have only a
single parent pointer, which allows immediate and low-overhead node movement. Thus,
as with all program optimisation techniques demonstrated using microbenchmarks, the
results in thesis will provide an upper bound on performance, rather than the typical case.

33

2.4. SUMMARY

However, noting firstly the size of the performance loss caused by layout degradation in
the microbenchmarks, and secondly that the techniques of this thesis often rectify a large
proportion of this loss, it is clear that both the problem and the solutions presented in
this thesis are of significant relevance to real-world programs.

34

Chapter 3

Benchmarks and methodology

This chapter details the test machine and the benchmarks used, discusses experimental
methodology and evaluates the static and dynamic cache behaviour of the unoptimised
benchmarks. These results guide the design of the optimisations described in the next
three chapters. The performance of some relevant cache-aware RDSs are also investigated.

3.1 Test machine

The test machine is a 3.2GHz Intel Pentium 4 with the following memory hierarchy1:

cache size associativity block size miss penalty
L1 16 kB 8-way 128 Bytes2 20 cycles
L2 1 MB ” ” 300 cycles
TLB 64 entries full 4 kB pages 60 cycles

The machine has 1GB of RAM, and a hardware prefetch unit, which is able to detect
concurrent independent linear sequences of addresses, and attempts to stay 256 bytes
ahead of the currently accessed location [33]. It does not fetch across page boundaries [38].

The L1 cache is virtually-addressed, but the L2 cache is physically-addressed. Thus, if
a miss occurs in the L2 cache, a virtual to physical address translation is required to fetch
the line from RAM, which may cause a further miss in the TLB. Typically, the effect of
the L1 cache is unimportant or sufficiently similar to the L2 cache that performance can
be thought of in terms of a single ‘line’ cache (L2), and a single ‘page’ cache (TLB).

3.2 Benchmarks

In this thesis we consider C benchmarks based on two different problems: The dictionary
problem (storing key-value pairs, and supporting insert, delete and lookup, implemented
using a binary search tree), and insertions and deletions in a set of linked lists. Both of
these are fundamental data structures, and we may also think of them as representative
of two common classes of access pattern – branching and linear traversals.

1Obtained by the cpuid(2) instruction [37], and Manegold’s Cache Calibrator tool [48].
2The L1/L2 cache actually has a 64 Byte line size, but with two sectors. In other words, the unit of

transfer is a 64 Byte block, but the adjacent 64 Byte block is immediately prefetched [33]. In practice
the machine behaves as if the line size were 128 Bytes.

35

3.2. BENCHMARKS

3.2.1 The Dict benchmark: The dictionary problem

Given an initially empty set S, the dictionary problem is to ‘execute on-line any sequence
of operations of the form S.membership(s), S.insert(s) and S.delete(s), where each s is
an object...[This can be implemented using] arrays, linked lists, hash tables, binary search
trees, AVL-trees, B-trees, 2-3 trees, weighted balanced trees or balanced binary search trees
(i.e. 2-3-4 trees, symmetric B-trees, half-balanced trees or red-black trees)’ [49]. We will
use the binary search tree solution to this problem as the benchmark, and the B-tree
implementation as the benchmark’s cache-aware equivalent.

In the Dict benchmark, the tree is built out of nodes containing four 32-bit fields:
two child pointers, and a key and a value. The tree is built by inserting n random keys
from the range [0, 229−1], allowing duplicates. This phase of the benchmark is not timed.
During the timed part of the benchmark, repeated random key lookups are performed,
using keys that are known to be in the tree. For each lookup, with probability s ∈ [0, 1],
the node is deleted and a new randomly chosen key inserted. This combination of lookup
and optional delete/insert is termed an ‘operation’ . The output of the program is the
time taken for operations [1, k], [k + 1, 2k], [2k + 1, 3k], and so on. We discuss why we do
not time single operations in §3.3.3.

Key lookup is only performed for keys that are in the tree, which is achieved by
maintaining an array duplicating the keys currently in the tree. To select a random key,
a random element of the array is read. When a key is deleted from the tree and a new
one inserted, the array is updated by overwriting the old key with the new key. Notice
that because we time groups of operations, rather than a single operation, the accessing
and updating of this array is necessarily included in the timing figures. Note also that
accessing the array will pollute the data cache. Both of these factors increase the time
measured for the group of k operations, but the effect is unlikely to be significant, and
appears likely to cause the performance of an optimisation to be underestimated, not
overestimated3.

The Delete function is performed in the standard way [20]. If the deletee x has zero
or one children, it is simply cut from the tree. If x has two children then it is replaced with
(choosing randomly), either the rightmost node of the left subtree of x, or the leftmost
node of the right subtree of x. The replacement of node x by another node y can be done
in two ways, depending on whether the reusing of the memory previously occupied by
node x (x’s cell) is allowed or not:

• moveFields: We assume that the code that implements the RDS, and any optimi-
sation subsequently applied to it, can reuse x’s cell. In that situation, to cause the
minimum amount of layout degradation, it is most efficient to copy the key and value
of node y into node x. Node y is cut from the tree and the address of its cell returned
by the delete function.

• moveNode: We assume that the delete function must return node x, and therefore
the RDS code or an optimisation cannot reuse its cell. In this situation, node y is

3When the tree layout is poor (optimisations not in use), each operation fetches a line per node, and
so the array access accounts for a small proportion of the time (1 access in about 26 in practice). When
tree layout is good (optimisations in use), fewer lines are fetched, and so the array accesses account for
a larger proportion of the time (1 access in 10 if layout is optimal). Thus optimisation performance is
slightly underestimated.

36

3.2. BENCHMARKS

substituted for node x – node x is removed from the tree, and pointers are updated so
node y takes its place. The address of node x’s cell is returned by the delete function.

The Insert function is performed by attaching a new leaf node to the tree, and unless an
optimisation is applied always reuses the cell returned by the deletion.

We consider both moveNode and moveFields variants because they are both plausi-
ble approaches, and have different layout degradation behaviour, as will be demonstrated
in §3.4.1. This serves to illustrate that seemingly insignificant low-level changes in a
program can have serious implications when it comes to layout degradation and hence
unoptimised performance. Secondly, we aim to demonstrate that runtime data movement
works well irrespective of which implementation is used; this is important if the optimi-
sations are applied after the program has been written. Finally, we also want to be able
to give advice to the programmer about which of the implementations might yield the
best performance if they are writing the program with the application of runtime data
movement in mind.

Our ‘core’ set of parameters for the benchmark will be n = 1e6, s = 1: the tree
contains 1e6 nodes and a delete/insert is performed with probability 1 after every lookup.
The RDS occupies 16MB, which is sixteen times larger than the L2 cache.

3.2.2 The MList benchmark: Multiple linked-lists

The second benchmark used in this thesis performs random node insertions and deletions
in a set of singly-linked lists. Linearly-traversed RDSs, of which the linked list is the
simplest, are even more common than branching traversals such as the Dict benchmark.

List nodes occupy eight bytes, consisting of a 32-bit pointer to the next node and a
32-bit data field. The data field is not used for the benchmark but is maintained properly
when a node is moved in memory. List nodes from different lists share the same heap.
The head and number of nodes in each list are stored in arrays, allowing random access
to any list. These arrays can exceed the size of the cache, depending on the number of
lists, but combined always total less than 1/8th of the space used by the list nodes, so will
not have a significant affect on execution time.

When the benchmark starts, v empty lists are created, and each of the n list nodes are
inserted to a randomly chosen list. During the timed period of the benchmark alternating
deletions and insertions are performed. Each insertion is performed to a uniformly ran-
domly chosen node in a uniformly randomly chosen list. Deletions are performed likewise.
Choosing a uniformly random node from a list is possible because the length of each list is
stored in the list header. The inserted node reuses the previous deleted node’s cell (unless
the cell is freed by a runtime data movement optimisation).

We assume that every node before the place in the list where the insertion or deletion
takes place must be accessed. In other words, however the benchmark is optimised, pointer
chasing must be used to reach the correct place in the list. This is especially relevant
when using a cache-aware RDSs (§3.5.2) or perfect data movement (Chapter 6).

We will use a constant number of nodes n = 222, occupying 32MB, and use v in
{27, 211, 215, 219}, giving average list lengths of {32768, 2048, 128, 8} nodes. This is equiv-
alent to 64 pages, 4 pages, 8 lines (0.25 pages), and 0.5 lines. This covers four distinct
situations: (i) lists are very large compared to the page size, (ii) lists occupy only a few
pages, (iii) lists fit within a page, and (iv) lists fit within a line. It is arguable that the

37

3.3. METHODOLOGY

longer linked lists are unlikely to arise in well-written programs, but we consider list of this
length firstly because we expect them to exhibit different behaviour to the shorter lists,
and secondly because it is harder to argue that long near-linear or even linear traversals
will not arise in more complex data structures.

3.3 Methodology

Here we discuss several points of methodology.

3.3.1 Initial layout

Our aim is to demonstrate how useful a runtime data movement optimisation is at main-
taining a good layout. Therefore, the ‘unoptimised’ version of a benchmark will use a
very good initial layout.

3.3.2 Length of experiment

We expect both benchmarks to have a degrading data layout, and hope that they will
eventually reach some terminal layout quality much worse than the initial layout, making
the overhead of trying to prevent layout degradation worthwhile. The wall-clock time to
reach this equilibrium will depend on the rate at which updates to the structure occur,
and the sort of updates. For example, for Dict, we will show later that the moveNode
variant has far higher rate of layout degradation than the moveFields variant. For
MList, we observe that although the number of insertions and deletions needed to reach
the terminal layout may well be the same irrespective of list length, the two orders of
magnitude difference between the shortest and longest list length would require a similar
difference in wall clock time to reach terminal layout.

We will give graphs of layout degradation in §3.4.1, which will demonstrate the im-
practicality of running all experiments to terminal layout. Thus for most experiments we
will use a length corresponding to around ten minutes for the unoptimised benchmarks.
When the long term behaviour is of interest, we will run experiments until terminal layout
is reached (note that the time for the optimised benchmark to reach equilibrium is not
the same as the unoptimised benchmark).

Stopping some benchmarks short of terminal layout may be considered unrealistic
(because some benchmarks have reached terminal layout, and others have not), but the
same is true of the alternative (running some benchmarks for over a hundred times longer).
We choose the first option because it increases the practicality of performing experiments
while actually making the problem of runtime data movement harder (specifically, there is
less scope to improve program performance because less layout degradation has occurred).

The experiment lengths used are as follows: For Dict, 1e8 operations. For MList,
since the time for an operation is proportional to the length of the list, we use between
1e6 and 50e6 operations depending on the average list length (determined by v).

38

3.3. METHODOLOGY

3.3.3 Measuring times

Unlike some work on measuring native execution times, our benchmarks are self-timing.
They build the structure, then perform a sequence of N operations. The time for each
subsequence of k operations is measured using the C gettimeofday function (which mea-
sures ‘wall clock’ time to a resolution of ≤ 2 microseconds on the target machine4), and
the list of N/k times is outputted. If k is too small, systematic timing errors occurs.

Linux was used on all test computers. Because we measure wall clock time, not process
time, measurements are susceptible to additive noise from other processes on the system
(i.e. the benchmark process gets significantly less than 100% of CPU usage, increasing
the time to perform k operations).

For most experiments, we use a large k. It has been our experience that provided a
system is otherwise unloaded, the time for large k is repeatable, moreover two identical
machines usually perform very similarly. Most experiments are run more than once with
slightly different parameters or on different machines, so in the event of, say, another pro-
cess starting on the machine and taking up large amounts of CPU usage, any measurement
errors would be very obvious, and the result checked by rerunning the program.

To measure latency, we must use a lower k. This may cause ‘spikes’ to appear on
otherwise smooth timing graphs. If a benchmark is run twice (seeding random number
generators identically, etc), these spikes occur in different places. Thus, the spikes corre-
spond to another process running at high priority for a short period of time, and these
can be dealt with by averaging several runs.

3.3.4 Reporting improvement and latency

To report the performance of an optimisation, we compare the time for the last 10%
(N/10) operations in the optimised and unoptimised programs. For Dict we will report
as percentage reduction in execution time compared to the unoptimised benchmark, or
just ‘reduction’, indicated with %. For MList, because the improvements are far larger,
it is more sensible to use the value of unoptimised time / optimised time, or ‘speedup’,
indicated by ×.

Latency is measured by splitting this sequence of N/10 operations into smaller equally-
sized subsequences, with the size chosen so the time in the unoptimised program is around
1ms. We do this for the unoptimised and optimised program, and observe the improve-
ment for each subsequence. We treat latency in a binary fashion (either high or low): If
the improvement is significantly negative for any subsequence, we consider the optimisa-
tion to have high latency. If the improvement is positive or only slightly negative for all
sequences, the optimisation has low latency.

This seems rather simplistic and subjective, but in this thesis most optimisations fall
unambiguously into one category or the other. More quantitative definitions of latency
are certainly possible. We now turn to memory usage, which we consider in more detail,
and quantitatively.

4Measured by finding the smallest nonzero difference between the results of two calls to gettimeofday.

39

3.4. CACHE BEHAVIOUR OF BENCHMARKS

3.3.5 Reporting memory usage

In terms of memory usage, the optimisations of this thesis fall into two groups. The first
have bounded memory usage, chosen by the applier. The bound is given by the figure
m ≥ 1, which is the number of cells allocated to the optimisation divided by the number
of nodes in the RDS. Note that optimisations often need more cells than nodes if they
wish to find contiguous blocks of empty space in which to colocate related nodes.

The second group of optimisations do not have bounded memory usage, and we report
the memory usage by the figure m ≥ 1, calculated in the same way. This is technically
a function of time, m(t), but for the benchmarks in this thesis is often a constant after
an initial ‘warm-up’ period. For these optimisations, we derive a constant mworst, which
is the largest value that m(t) could take ∀t and for all possible sequences of outputs of
rand() – the ‘worst-case’ memory usage.

Managing the memory that the RDS inhabits incurs a space overhead. In the worst
case, a header of size 16 bytes is stored within each 128 byte line, an overhead of 128/112 ≈
1.14. We therefore use a figure M , given by 128/112×m in this example, to express the
total memory in use. Mworst is defined in a similar way.

From the applier’s point of view, M is more relevant than m, but we will usually talk
in terms of m because it expresses more clearly how much extra space an optimisation is
allowed or is using. We consider a range of different values of m. We consider m = 1.1
to be ‘low’ memory usage, and m = 2.0 to be ‘high’ memory usage, translating to M ∈
[1.13, 1.25] and M ∈ [2.06, 2.28], respectively (depending on memory manager overhead).

3.3.6 Random number generation

Random numbers are generated using the C rand() function, reseeded with the same
constant each time a benchmark runs. This makes all experiments repeatable, and makes
it possible to verify the correctness of the optimised form of a benchmark (by calculating
checksums, etc). Experiments suggest that the calls to rand() do not account for a sig-
nificant amount of execution time, nor are more uniformly distributed numbers required,
so using the standard rand() is a sensible choice.

3.3.7 Code transformation

Applying data movement to a program may require transforming parts of it so the parent
of a node is kept track of, so it can be updated when the node is moved. This may require
rewriting parts of the program to work in terms of node** rather than node*, which
incurs an overhead.

3.4 Cache behaviour of benchmarks

In this section we will show how quickly layout degrades if no effort is made to maintain
it, and then we will evaluate in more detail different layouts, and hence obtain upper
bounds on the performance improvement a runtime data movement optimisation could
give.

40

3.4. CACHE BEHAVIOUR OF BENCHMARKS

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100000 1e+06 1e+07 1e+08

de
gr

ad
at

io
n

operations

moveNode
moveFields

Figure 3.1: Degradation in performance of the unoptimised Dict benchmark. Degradation after
operation k = time for the k’th operation / time for the 1st operation.

 1

 2

 4

 8

 16

 32

 64

 10000 100000 1e+06 1e+07 1e+08

de
gr

ad
at

io
n

operations

 normal stopping
 point

 v=2^7

 v=2^11

 normal stopping
 point

 v=2^15

 v=2^19

Figure 3.2: Degradation in performance of the unoptimised MList benchmark. Degradation
after operation k = time for the k’th operation / time for the 1st operation. For v = 27 and
v = 211, extended data is given, showing degradation after the normal stopping point of the
experiment.

41

3.4. CACHE BEHAVIOUR OF BENCHMARKS

3.4.1 Layout degradation

The RDSs are created using the best available layout, and then the benchmarks are run
for the normal number of operations – 1e8 for Dict, and for MList the number of
operations depends on v, chosen to keep the experiments to around 10 minutes. Results
are in Figs. 3.1 and 3.2.

For MList, v = 27 does not reach equilibrium, even when run for ten times longer
than the experiment length we will use in this thesis. v = 211, v = 215 and v = 219 do
reach an equilibrium, a layout about a factor of 1.2 faster than arranging nodes randomly
in memory.

For Dict, moveNode reaches a terminal layout quality. Inspection of the cache
statistics confirms that the peak of the execution time graph corresponds to the worst
possible layout (one miss per node). Beyond this point, layout remains as bad as possible
and the decrease in execution times is caused because the average number of nodes visited
per lookup decreases. In other words, the balance of the tree increases slightly as the
benchmark runs, as shown in Fig. 3.3.

moveFields does not reach a terminal value after 1e8 operations, and as can be seen
in Fig. 3.4, it is unfeasible to run this benchmark until a terminal value is reached.

3.4.2 RDS layouts in more detail

Here we investigate in more detail the performance of different layouts, which will be
useful when designing runtime data movement optimisations. We will not just restrict
our investigation to optimal layouts, because a data movement optimisation must always
balance the overhead of maintaining a given layout with the benefit it gives – an optimi-
sation that maintains a reasonable layout with low overhead may perform better than one
that maintains an optimal layout with high overhead. We will pay particular attention to
whether it is worthwhile concentrating on L1/L2 (i.e. line) or TLB (i.e. page) miss rates.

Benchmarks are run for their normal time (e.g. 1e8 operations for Dict), then laid
out using the desired layout. The average time for an operation under the desired layout
is then measured.

3.4.2.1 Dict

We consider four different layouts. worst has an L1/L2 miss and a TLB miss for almost
every node accessed, and is obtained by randomly arranging nodes in the heap. goodPage
has low TLB misses, and almost the highest number of L1/L2 misses possible given the
TLB constraint. This layout is achieved by filling pages with nodes using breadth-first
search, and then recursively dealing with any subtrees. Within each page, nodes are
arranged randomly (maximising L1/L2 misses, discounting any pathological layouts that
may exist). goodLine is the L1/L2 analogue – lines are filled by BFS, and then the lines
are randomly arranged in the heap – producing low L1/L2 misses and almost the highest
TLB misses possible given given the L1/L2 constraint (again discounting pathological
layouts). goodBoth has low L1/L2 and TLB misses, and is achieved by filling lines
with nodes using BFS, and then filling pages with lines. This ‘hierarchical’ method of
constructing layouts has been used before, e.g. by Wilson et al. within a GC [74].

42

3.4. CACHE BEHAVIOUR OF BENCHMARKS

 18

 19

 20

 21

 22

 23

 24

 25

 26

 1e-04 0.01 1 100 10000 1e+06 1e+08 1e+10 1e+12

av
er

ag
e

nu
m

be
r o

f n
od

es
 v

isi
te

d
pe

r l
oo

ku
p

hours

perfect balance

Figure 3.3: How the tree balance of the Dict benchmark improves as random insertions and
deletions are performed, including the extrapolated time to reach perfect balance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-04 0.01 1 100 10000 1e+06

nu
m

be
r o

f c
ac

he
 lin

es
 fe

tc
he

d
pe

r n
od

e
pe

r l
oo

ku
p

hours

Figure 3.4: Extrapolated number of hours required to run Dict-moveFields to terminal layout.
The y axis shows layout quality, measured in the number of cache lines fetched per node per
lookup, with 1 corresponding to the worst possible layout, and 1/3 to the best possible layout.

43

3.4. CACHE BEHAVIOUR OF BENCHMARKS

new blocks seen
per node

layout lines pages red’n
worst 1.00 1.00 0%
goodPage 0.92 0.16 30
goodLine 0.33 0.33 56
optimal 0.33 0.16 60

Figure 3.5: How data layout determines the time to perform an operation, for Dict-moveNode
(Dict-moveFields is similar). The number of new blocks (lines or pages) accessed per node
fetch, on average, is given in columns two and three: 0.33 lines is optimal, and for page, 0.16 is
optimal. See §3.4.2.1 for description of the layouts.

Results are given in Fig. 3.5, expressed as percentage reduction compared to the
time obtained using worst. Notice that the goodPage layout has near-worst L1/L2
performance. This means that an optimisation that focuses only on TLB performance
may in the worst case have a high number of L1/L2 misses. Doing so produces only a
30% reduction in execution time. By contrast, an optimisation that focussed on producing
good L1/L2 performance will achieve quite good TLB performance, essentially for free,
and achieve a reduction of 56% (goodLine). An optimsation that focusses on optimal
TLB as well as optimal L1/L2, will only see an additional 4% reduction (goodBoth).

Thus, when designing runtime data movement optimisations for Dict, the most sen-
sible approach is to focus on improving line layout alone, rather than considering pages
as well. It is likely that the extra overhead involved in moving around a whole page’s
worth of nodes would prevent the extra 4% from being realised. A purely page-focused
approach is only appropriate when improving L1/L2 performance is hard – for example
when nodes are larger, line sizes are smaller or there are fragmentation problems with
packing nodes into lines.

3.4.2.2 MList

For MList, we express layouts using a number of constraints on the line and page layout of
the lists. Nodes are uniformly randomly placed in the heap in a way that does not violate
the constraints. Each constraint is either a page constraint (Px) or a line constraint (Lx),
where x is one of the following:

1. Minimisation (m): Within each list, the minimal number of blocks are used; if there
are n nodes in the list, then only dn/nodesPerBlocke distinct blocks are seen when
traversing it end to end (nodesPerBlock is the maximum number of nodes that fit into
a block).

2. Clustering (c): Numbering nodes by their position in the list, nodes 1 . . . nodesPerBlock
occupy the same block, and nodesPerBlock + 1 . . . 2× nodesPerBlock occupy the same
block, etc. Note that no nodes from other lists share any blocks.

44

3.4. CACHE BEHAVIOUR OF BENCHMARKS

 1

 11

 21

 31

 41

PcLco
PcLc

PcLm
PmLc

Lc PmLm
Lm

sp
ee

du
p

(a) v = 27

 1

 11

 21

PcLco
PmLc

PcLc
Lc PcLm

PmLm
Lm

sp
ee

du
p

(b) v = 215

Figure 3.6: The performance of MList for different layouts, for two different list lengths,
expressed as speedup compared to the unconstrained layout, -.

3. Clustering + Ordering (co): We only use Lco. Nodes are clustered as above, and then
lines are clustered within pages so that lines 1 . . . linesPerPage occupy the same page
and are in order within it, and linesPerPage + 1 . . . 2× linesPerPage occupy the same
page and are in order within it, etc. Note that no nodes from other lists share any
pages.

Notice that Lco⇒ Lc⇒ Lm, and Pc⇒ Pm, and so at most one of the constraints on
a block can be used at once. Note also that Pm ⇒ Lm (but not vice-versa), and that
Lco⇒ Pc. This gives eight valid combinations of constraints (writing, e.g. Pc ∧ Lm as
PcLm, and - for the unconstrained layout):

PcLco, PcLc, PcLm, PmLc, PmLm, Lc, Lm and -

The motivation for each constraint is as follows. If we ignore the effects of the hardware
prefetcher, use of c will minimise the miss rate for the block. Using co linearises the line
address stream within each page, which will hopefully allow the hardware prefetcher to
lower miss rates even further. We do not consider the linear ordering of the page address
stream (‘Pco’), because the hardware prefetcher does not prefetch across page boundaries,
so within a L1+L2+TLB+Hardware Prefetcher intuition of the memory hierarchy, using
Pco should not make a difference. Inevitably, in reality, it does, sometimes improving and
sometimes degrading layout, but it is not clear exactly why, and the reasons are probably
fairly architecture specific.

The action of the m constraint is harder to predict; depending on the list length and
the geometry of the cache, it may produce as good a layout as c or as poor a layout as
-. We consider it because it is a far less strict constraint than c, and so may be easier to
maintain at runtime.

Fig. 3.6 (a) shows the behaviour of the different layouts when v = 27 (an average
of 215 nodes or 64 pages per list), expressed as speedup compared to the unconstrained
layout. We may obtain an extremely large speedup of 41× when PcLco is used. At
least half of this is due to the hardware prefetcher, because PcLc only obtains 21×, and
PcLm obtains 20×. Thus we see that when clustering nodes into pages, there is no point
hierarchically clustering nodes into lines as well, unless the lines are in order (PcLco�

45

3.5. CACHE-AWARE SOLUTIONS

PcLc ' PcLm). Clustering nodes into lines (Lc) yields about half the speedup (11×),
and a bit more if the number of pages used can be minimised (PmLc – 13×). Even page
minimisation (Pm) and line minimisation (Lm) provide some improvement (6.3× and
3.2×, respectively).

When v = 215, each list is smaller than a page, and the distinction between layouts
is less severe, as shown in Fig. 3.6(b). Simple line clustering (Lc) yields a speedup of
9.5×, and up to 11.3× if page clustering or minimisation is used (PcLc, PmLc). Simple
line minimisation (Lm) yields 6.4×, and 8.1× if page clustering or minimisation is used
(PcLm, PmLm). Clustering nodes into lines and ordering them within pages yields
19.3×, but wastes a lot of memory (PcLco), because lists cannot share pages. If lists are
forced to share pages, a layout that cannot be described using the constraints, memory
is much more reasonable but a speedup of only 13.8× is obtained. The discrepancy is
possibly because the hardware prefetcher does not prefetch across page boundaries.

In conclusion, for MList there is a range of layouts, of varying efficacy and difficulty to
achieve. The smaller the average list length, the smaller the distinction between different
layouts. Greatest speedup is obtained by clustering lines in order within pages (thus
exploiting the hardware prefetcher), followed by other forms of page clustering, followed
by line clustering. Minimisation can also be useful by itself or combined with clustering.

3.4.3 Upper bounds

If we knew the optimal layout for each benchmark, we could use it to produce a quite
convincing upper bound on the performance improvement a data movement optimisation
could yield. The benchmark would be run for its normal length (e.g. 1e8 operations for
Dict), then the structure would be re-laid out using the optimal layout, then the time
for a small number of operations would be measured. Layout degradation is sufficiently
slow that the layout stays close enough to optimal while the operations are being timed.
This gives an upper bound because no optimisation can produce a superoptimal layout,
nor could it run with lower overhead.

The optimal layout for these benchmarks isn’t known, but it seems unlikely that a
runtime data movement optimisation would achieve a better layout than the static ones
we have used here. Using the best layouts from this chapter, we obtain the bounds given
in Fig. 3.7.

The MList figures needs a little explanation, because we would not expect the in-
termediate values of v have the highest upper bound. If all benchmarks were run until
they reached terminal layout, the upper bounds would indeed increase monotonically as
v decreased. v = 219, v = 215 and v = 211 reach equilibrium, but v = 27 doesn’t (be-
cause operations take longer due to increased list length), and so the figure of v = 27 is
artificially low because not enough degradation has taken place.

3.5 Cache-aware solutions

As well as comparing the optimisations in this thesis against the rough upper bounds we
produced in the previous section, we will compare with cache-aware RDSs.

46

3.5. CACHE-AWARE SOLUTIONS

Dict-moveNode s = 1 55%
Dict-moveNode s = 0.1 57
Dict-moveNode s = 0.01 48
Dict-moveFields s = 1 36
Dict-moveFields s = 0.1 23
Dict-moveFields s = 0.01 8
MList v = 27 11.7×
MList v = 211 36.1
MList v = 215 11.3
MList v = 219 2.14

Figure 3.7: Rough upper bounds on the improvement a runtime data movement optimisation
could give. See §3.4.3 for a description of how the bounds were produced.

3.5.1 Dict

We will compare against a B-Tree, the canonical cache-aware tree structure for the dictio-
nary problem. Our implementation is as described in Cormen, Leiserson and Rivest [20].
Each node stores the number of keys k (≤ max), k keys, k values, k+1 pointers and a field
indicating if the node is a leaf or not. Note the key-value pairs are stored within the tree,
not just at leaves. In the spirit of the optimisations in this thesis, we try several different
orders of fields within nodes and the maximum degree max to find the best solution for
the test hardware. We also optionally ‘pad’ nodes until their size is a multiple of the
cache line size. The internal layout of the keys, values and child pointers are important
when nodes are larger than the line size.

An important part of the insert, delete and lookup operations is finding which subtree
to descend next (or checking to see if a key is within a node). This can be done either by
linear scan (linear) or binary chop (logarithmic). In practice the former is faster for the
node sizes that we use.

The typical effect of varying node size is shown in Fig. 3.8. The traditional approach
of using nodes the same size as lines works well, but it is slightly better to use nodes two
lines wide. The best times obtained are given in Fig. 3.9. Also shown in this figure are
times expressed as percentage reductions from the unoptimised Dict-moveNode and
Dict-moveFields variants (the reduction that is obtained if these benchmarks were
changed to use a B-Tree implementation), and the maximum reduction figures of Fig. 3.7,
as calculated in §3.4.3. The figures are for worst-case memory (when all nodes in the
B-Tree have the minimum number of keys), Mworst = 1.7. Mworst can be decreased to
around 1.5, but this will half the reduction obtained for moveNode and make the the
moveFields reduction negative.

We observe that sufficiently low-overhead data movement may be able to equal or even
beat the cache-aware solution, particularly for moveFields.

3.5.2 MList

Recall from §2.2.4.2 that cache-aware linked list structures store several keys in one block,
allowing the number of keys to vary between min and max. We evaluate the simplest

47

3.5. CACHE-AWARE SOLUTIONS

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.5 1 2 4 8 16

tim
e

pe
r d

el
et

e+
in

se
rt

(m
icr

os
ec

on
ds

)

node size / cache line size

unpadded
padded

Figure 3.8: How node size determines B-Tree performance. Data obtained by varying the order
of keys, values and pointers within nodes, and either padding nodes to a whole number of cache
lines or not.

s
time moveNode moveFields

(µs/op) red’n max red’n red’n max red’n
0.01 0.93 42% 48% 0% 8%
0.1 1.02 53 57 16 23

1 2.39 39 55 9 36

Figure 3.9: The performance of the best B-Tree (cache-aware) implementation of the Dict
benchmark, compared against the rough upper bound on a runtime data movement optimisa-
tion’s performance. The “red’n” columns are the performance of the cache-aware implemen-
tation, expressed as reduction in execution time from the unoptimised benchmark, the “max
red’n” is the upper bound as given in Fig. 3.7. See §3.5.1.

method, which uses min = max/2 (the ‘half-full’ structure of [6]), and a more complicated
method allowing any min < max as described by Rubin et al. [60], the ‘VCL’ structure
(which is similar in spirit to the reimplementation of C++ STL Lists of Frias et al. [25]).

We investigate the performance of the VCL structure and the half-full structure by al-
tering the benchmark to use them and then running the benchmark for the usual time. We
vary the block size (i.e. the value of max) and for VCL we also vary min. The values of min
used are {max/4, max/2, 3max/4, <three evenly-spaced intermediate values>,max−1}.
We use min = max − 1 because it has the minimal worst-case memory requirement
possible for the choice of max.

Results are given in Fig. 3.10, only the best of the two structures is shown. We express
results as speedups compared to the unoptimised form of the benchmark, plotting against
worst-case memory Mworst ≤ 3, calculated as described in §6.3.3. Also shown is the
maximum speedup possible by runtime data movement, as shown in Fig. 3.7.

Almost all the time the VCL structure is better than the half-full structure, which is
expected because the former allows better balancing of node density (memory usage) and

48

3.6. SUMMARY

 1

 4

 7

 10

 13

 16

 3 2 1.5 1.2 1

v=2^7

 1

 11

 21

 31

 41

 3 2 1.5 1.2 1

v=2^11

 1

 3

 5

 7

 9

 11

 3 2 1.5 1.2 1

v=2^15

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 3 2 1.5 1.2 1

v=2^19

Figure 3.10: The performance of the best cache-aware solutions for the MList benchmark (see
§3.5.2). Figures are given as speedups compared to the unoptimised form of the benchmarks,
plotted against worst-case memory usage Mworst. For values of Mworst where no data is given,
there is no cache-aware solution. The green horizontal line is the maximum possible speedup
achievable by runtime data movement, as given in Fig. 3.7.

overhead. The results show that for longer lists less memory is required to obtain rea-
sonable performance, and increasing Mworst results in steadily better performance. The
cache-aware structures exceed the performance of the best possible runtime data move-
ment optimisations when v = 27, but for other values of v we conclude that sufficiently
clever data movement could be more efficient than the cache-aware solutions. Even where
the cache-aware solutions exceed the runtime data movement upper bound, they do so by
at most a factor of 1.4, so runtime data movement may still be useful.

3.6 Summary

In this chapter we have described the test machine, the benchmarks, the latter’s layout and
layout degradation properties on the former, produced upper bounds on the performance
of runtime data movement, and related this to the performance of the cache-aware RDS

49

3.6. SUMMARY

equivalents of the benchmarks.

3.6.1 Benchmarks

We use two benchmarks, lookup/insertion/deletion in binary search tree (Dict) and inser-
tion/deletion in multiple linked lists (MList). We may consider these as representative of
two important classes of traversal pattern – branching and linear. This thesis differs from
previous work on static RDS layout and automated runtime data movement schemes like
GCs in that the benchmarks are simpler than traditional suites like SPEC or Olden, but as
discussed in §2.3.4 this makes it possible to investigate a greater number of optimisations
and understand their performance.

3.6.2 Experiments

The test machine is relatively modern desktop hardware, with an effective line size of
128 Bytes (8–16 RDS nodes) and a standard 4k page size. A very good (near optimal)
data layout is used for the initial layout of the RDS for both benchmarks. For most
experiments, the benchmark is run for a fixed number of operations (chosen so that the
unoptimised form takes around ten minutes), rather than waiting for layout to reach a
terminal quality. When the terminal behaviour of an experiment is of interest, experiments
will be run until terminal layout is reached. The result reported is the time for a small
group of operations at the end of the execution of the benchmark.

3.6.3 Layout and degradation

We investigated the layout and layout degradation of both benchmarks. Good perfor-
mance for the binary search tree in the Dict benchmark requires only a good line layout,
but the linked lists of the MList benchmark require good page and good line layout, with
the relative importance depending on the average list length. For MList we investigated
the performance of approximations to the optimal layout PcLco, which we described hi-
erarchically as PxLx, where x is c (clustered), co (clustered ordered) or m (minimised).
We demonstrate that layout degradation causes significant reduction in performance after
only a few minutes of execution, and for some benchmarks performance will continue to
degrade beyond this time.

3.6.4 Upper bounds on runtime data movement

Upper bounds on the performance of runtime data movement were produced by running
the benchmarks for their normal length, then re-laying out the RDS using a very good
(effectively optimal) layout, and reporting the difference between the good layout and the
unoptimised layout. This simulates the performance of a data movement optimisation
that achieves optimal layout with zero overhead; no runtime data movement optimisation
can exceed this.

50

3.6. SUMMARY

3.6.5 Cache-aware alternatives

The behaviour of the canonical cache-aware structures for both benchmarks were inves-
tigated – B-Trees for Dict (we varied the node size to find the best solution), and two
solutions based upon relaxing node density for MList, where allowing higher values of
worst-case memory increases performance (we varied block size and minimum node den-
sity where appropriate). The cache-aware structures are sometimes beaten by the data
movement upper bound, which suggests that it may be possible to produce optimisation
that are more effective than the traditional cache-aware structures.

51

Chapter 4

Reallocation

In this chapter we review the use of coallocators to obtain a good initial layout for an
RDS. We then enumerate a much larger class of coallocators and demonstrate how they
can be adapted to maintain layout by runtime data movement.

4.1 Introduction

A ‘coallocator’ is a memory allocation function that attempts to allocate a new object
(the ‘allocatee’) in the same memory block as some other object specified by the caller
(the ‘hint’). Any call to malloc (at an ‘allocation site’) can be replaced with a call to a
coallocator without changing the semantics of the program. However, the intended use of
a coallocator is to allocate objects so those objects that are accessed close in time share
a line or page, reducing cache miss rates. The job of the applier is to identify a suitable
hint object at the time when the allocatee is being allocated, and pass a pointer to it to
the coallocator.

In practice, a good choice of hint is usually one of the objects that takes a pointer
to the allocatee in the immediate vicinity of the allocation site. Failing that, another
choice of hint is an object that the allocatee points to. A simple example can be seen in
Fig. 4.1. The applier has made the assumption that b is likely to be accessed through a,
and thus attempting to locate these objects in the same block may remove a cache miss.
If the applier’s assumption is wrong and some other object takes a pointer to b and b is
always accessed through this new pointer, then memory hierarchy performance is unlikely
to improve.

4.1.1 An example coallocator

Chilimbi et al. [15] present a coallocator called ccmalloc which comes in three variants.
All three variants try to allocate in the same line as the hint. If that fails, because the
hint’s line is full, then the three variants proceed as follows:

1. ccmalloc-closest: in the hint’s page, use the closest line to the hint with enough space

2. ccmalloc-firstFit: in the hint’s page, use a line with enough space using a first-fit
policy

53

4.1. INTRODUCTION

struct B {...};
struct A {... struct B *b; ...};
...
struct A *a;
a=(struct A*) malloc(sizeof(struct A));
...
a->b = (struct B*) malloc(sizeof(struct B));

struct B {...};
struct A {... struct B *b; ...};
...
struct A *a;
a=(struct A*) malloc(sizeof(struct A));
...
a->b = (struct B*) coalloc((void*)a,

sizeof(struct B));

Figure 4.1: Typical use of a coallocator at allocation time, before and after application. The
function coalloc takes two parameters, the first is the hint object, the second is the size of the
new object being allocated.

3. ccmalloc-newBlock: in the hint’s page, use an empty line

These ‘second stages’ can all fail: the first two if there is no single line with enough space,
the third if there is no empty line. The action taken when the second stage fails (the
‘third stage’) was not specified by Chilimbi et al. and we will later show that the choice
of the third stage is very important when coallocators are used dynamically.

It was found that closest and firstFit performed similarly, and newBlock usually per-
formed much better, and only rarely a little worse. The intuition behind this is that
allocating a node x in an empty line if the hint’s line is full will enable future calls to
ccmalloc to succeed when x becomes the hint. In a typical RDS, a large proportion of
nodes have some descendants, and thus any node is quite likely to be used as a hint at
some point in the future.

Chilimbi et al.’s ‘experience with ccmalloc indicates that a programmer unfamiliar
with an application can select a suitable [hint] by local examination of code surrounding
the allocation statement and obtain good results’, and so it appears that often the obvious
choice of hint is the correct one. Later in this chapter we will consider the use of multiple
hints.

4.1.2 Runtime data movement

Maintaining a good data layout for a structure is not just a matter of correct allocation,
because layout degradation may be caused by the movement of existing nodes within the
structure. To prevent degradation in these situations, a node must be moved in memory.
This can be easily done by allocating a new object, copying the fields into it, then freeing
the old object. Some mechanism must exist for updating all pointers to the object, as
discussed in Chapter 2. We call this procedure ‘reallocation’ . To use this technique,
the applier must inspect the program for promising ‘reallocation sites’ – program points
where it is possible and useful to move an object in memory to improve data layout.
These points are distinct from allocation sites, where a call to malloc already exists.
Under this definition, a node may be reallocated at any program point. In this thesis, we
restrict ourselves to those reallocation sites that are the result of pointer updates. More
specifically, when a pointer in an object a is updated to point to an object b, a reallocation
of either object a or b is attempted, using suitable hint object(s) – the most natural choice
being the other object. A simple example is given in Fig. 4.2. Note that in this example,

54

4.2. IMPLEMENTATION

struct B {...};
struct A {... struct B *b; ...};
...
struct A *a; struct B *b;
a=(struct A*)malloc(sizeof(struct A));
b=(struct B*)malloc(sizeof(struct B));
...
a->b = b;

struct B {...};
struct A {... struct B *b; ...};
...
struct A *a; struct B *b;
a=(struct A*)malloc(sizeof(struct A));
b=(struct B*)malloc(sizeof(struct B));
...
struct B * temp = (struct B *)

coalloc((void*)a,sizeof(struct B));
memcpy(temp,b,sizeof(struct B));
<update all other pointers to b>
free(b);
a->b = temp;

Figure 4.2: Typical use of a coallocator to perform runtime data movement, before and after
application. The function coalloc takes two parameters, the first is the hint object, the second
is the size of the new object being allocated.

the coallocator takes a parameter giving the size of the allocatee, but in the rest of this
thesis, since all objects are same size, this parameter is omitted.

We cannot say easily which end of a pointer should be reallocated when a pointer
update occurs, nor which hints to use. The job of the applier is to use their higher-level
understanding (i.e. a compiler’s static analysis or a programmer’s understanding of the
program) to resolve a sequence of pointer updates into sensible choices of reallocatees and
hint objects. For example, in the Dict-moveNode benchmark, during deletion, when
the deletee x is substituted by some other node node y, the applier might resolve the
three pointer updates necessary to perform the substitution (parent+two children) into a
single reallocation site involving node y, with its new parent and new children as sensible
choices for hints.

4.2 Implementation

All the nodes of the RDS live in a separate area of memory, called the ‘RDS heap’ . The
RDS heap is created when the first node of the RDS is created and destroyed when the
last node is freed, and supports node allocation and freeing during its lifetime (it is a
region a.k.a. pool [26, 27, 44, 68]). The heap is controlled by a memory manager, which
provides various functions to the program, such as allocation and freeing, and to inspect
the space in blocks, etc. The size of the RDS heap is chosen by the programmer, expressed
as a factor m larger than the number of nodes in the RDS (recall the definition of m from
§3.3.5).

Reallocation (movement of an object when a pointer update occurs at a reallocation
site) is achieved by inserting code into the program, which typically invokes various mem-
ory manager functions, and may eventually result in the allocation of a new node. If
allocation is successful, the code copies the fields of the node and updates pointers, then
frees the old node by invoking a memory manager function.

Furthermore, when reallocation is applied, all allocation sites (allocation of RDS nodes
using malloc) must be altered to allocate in the RDS heap using the memory manager’s
functions.

55

4.2. IMPLEMENTATION

We refer to the optimisation of a program by inserting data movement code into real-
location sites and replacing calls to malloc at allocation sites simply as ‘reallocation’. We
do this with the understanding that in a small subset of programs all layout degradation
may be caused by allocation not pointer update and so no reallocation sites exist.

Note that the behaviour at the two types of sites is very different. At an allocation
site, a node is simply allocated. At a reallocation site, an attempt is made to allocate a
new node x, and if successful, the fields of the reallocatee are moved into it, and then
all parents of the reallocatee must be updated (See §2.3.2.1). With some mechanism to
update parents in place, we can mostly ignore the difference between the two types of
sites, apart from for ensuring that allocation always succeeds at allocation sites.

In the benchmarks of this thesis, there are no allocation sites within the main loop of
the program because the node deleted from the structures is reused during insertions, but
in general allocation sites will be common.

4.2.1 The RDS heap

Because the heap stores only homogeneous nodes, it can be decomposed into nested blocks,
which contain an optional header and several smaller blocks. The smallest block is cell
which either holds a node or not. A line contains several cells and an optional header, by
default corresponding to a L2 cache line – 128 bytes on the test machine. A page contains
several lines and an optional header, and by default corresponds to the 4096 byte machine
page. The RDS heap itself is composed of thousands of pages, and an optional header.

More flexible heap arrangements are possible, but the advantage of this arrangement
is that the memory manager is far simpler and efficient. Also, information relevant to a
block is found within it, which will reduce cache misses. For RDSs built out of nodes of
several different sizes, recall that node size may be altered by padding or splitting into
hot and cold parts using one of the methods of §2.2.5.

4.2.2 Applying reallocation

This section discuss the application of reallocation with reference to the symbols in the
grammar in Fig. 4.3.

site, strategy, siteStrategy, siteStrategies: Applying reallocation to some part of the pro-
gram is achieved by applying a ‘strategy’ to a site. A site is a labelled place in the
program, and is either an allocation site or a reallocation site. Each site has an associ-
ated node, an ‘allocatee’ or ‘reallocatee’ . For example for Dict there is a site labelled
insert, which is a reallocation site (because the node from the previous deletion is reused),
and the associated node is the one being inserted. The aim of the strategy is always to
(re)allocate the (re)allocatee.

stage: A strategy is a list of one or more ‘stages’ . Some types of stage will always allo-
cate, but others will sometimes fail (for example, a stage may attempt to allocate in a
particular block, which will fail if the block is full). The stages are thus tried in turn until
the (re)allocatee has been successfully (re)allocated.

coalloc, coallocHint, coallocGlobal: Each stage is split into two halves, the coallocator
and its input. The coallocator describes how to (re)allocate the (re)allocatee, and may
either take the address of a single hint object, or a boolean. For example, allocation in the

56

4.2. IMPLEMENTATION

Terminal symbols are in san-serif, non-terminals in normal font. (A|B) is used for
either A or B. (C)* is used to mean zero or more repetitions of the symbols C.

siteStrategies → siteStrategy (‘∧’ siteStrategy)*
siteStrategy → site ‘:=’ strategy
strategy → ‘(’ stage (‘,’ stage)* ‘)’
stage → (coallocHint ‘:’ search | coallocGlobal ‘:’ bool)
coalloc → (null | coallocHint | coallocGlobal)
coallocGlobal → findCL findLP findPH

→ findCP findPH

→ findCL findLH

coallocHint → findCL findLP page
→ findCP page
→ findCL line

coallocPattern → ‘〈’ (coalloc ((‘,’|‘;’) coalloc)* ‘〉’
searchPattern → ‘〈’ (search ((‘,’|‘;’) search)* ‘〉’
bool → (true | false)
findXY → (lowestXY | cyclicXY | firstXY | newblockXY | emptiestXY)
Dict: site → (insert | deleteCut | deleteMove)

search → (parentk | childk) (k ≥ 0)
MList: site → (insert | delete)

search → (first | lastk | nextk) (k ≥ 0)

Figure 4.3: The grammar used in this chapter.

same line as the hint may be attempted, or allocation in an empty line (with and without
a hint address, respectively). The form of the coallocators is discussed in the next section.

search: For coallocators that take a hint address, the second half of the stage is the ‘search
type’ . This describes where the stage searches for a hint object. For example, a simple
search type for Dict’s insert site is just to use the parent of the inserted node as the hint.
The form of the searches depends on the benchmark, and is discussed in a later section.

bool: For coallocators that take a boolean, the second half of the stage is a boolean,
enabling or disabling the coallocator.

Note that in general a stage cannot be decomposed into some code that performs the
search, then some code that performs the coallocation – for example in the MList bench-
mark when the search type is ‘continue along the list’ and the coallocator is ‘allocate in
same line’, the code that is inserted is a loop (the search) which traverses the list, the
body of which inspects the cache line of each node to see if there is space to allocate (the
coallocator). Moreover, it may often be more efficient to not code each stage separately:
for example, the first stage might be to continue along the list for some distance looking
for a non-full line, and the second stage the same but for a non-full page, which can be
implemented more efficiently as one search, rather than two.

In summary, applying reallocation requires selecting a ‘strategy’ for each ‘site’ . Each
strategy is composed of a number of ‘stages’ . There are two types of stages. The first
type of stage is composed of a coallocator and a ‘search type’ , expressing coallocation in

57

4.2. IMPLEMENTATION

the same block as some hint object. The search type defines where to look for the hint,
and the coallocator defines both what sort of hint to look for (e.g. one occupying a line
with some space in it), and what to do once the hint is found (e.g. allocate in the line).
The other type of stage is composed of a coallocator and a boolean, expressing allocation
without use of a hint, where the boolean enables or disables the allocation. Code is
inserted into the program to execute the stages in order until allocation or reallocation
succeeds.

4.2.3 Coallocators

In this thesis, a coallocator is a function that takes either one cell address (the hint) or a
boolean, and yields one cell address, which it has allocated1. Coallocators are a sequence
of ‘memory manager operations’ , each of which take either an input address (either a line
or page address) or a boolean, and yield one address (either a cell, line or page address).
If the result is a cell address, the operation has allocated it. We write the sequence of
operations right to left as if function application – i.e. AB means B is applied first.

There are two ‘block-mapping operations’ line and page, which both take a cell address
as an input and output the cell’s line or page address. The other operations are of the
form findXY , where X is either C(ell), L(ine) or P (age), and Y is either L, P or H(eap).
If Y is Heap, the input to the operation must be a boolean, otherwise the input must be
the address of a Y (i.e. a line or page address). If any find operation fails, the coallocator
fails. In the grammar, the right hand side of the coallocHint and coallocGlobal rules gives
all possible combinations of memory manager operations.

Example: For Dict-moveFields there are two sites insert and deleteCut, and
the reallocation applied might be of the form:

insert := (findCL line : search, findCL findLH : true)
∧ deleteCut := (findCL findLH : true)

The terminals in the grammar are shown in san-serif, non-terminals are in normal
font. The statement above says that the reallocation at the insert site attempts
to allocate in some manner in the same line as a hint object found by some
search, failing that some line in the heap is found and allocation occurs within
it. deleteCut is similar.

We use five different simple findXY operations, based around extending ccmalloc for dy-
namic use (in the grammar, the right hand side of the findXY rules). These five operations
satisfy two basic requirements. Firstly, the need to obtain any non-full X within a Y ,
as quickly as possible, without caring about which X is obtained. Secondly, the need
to obtain a new (a.k.a. empty) X within a Y (as in ccmalloc-newBlock’s finding of an
empty line in the hint’s page). We will extend this to consider what happens if we use
the emptiest block instead of an empty block (more properly, a block of maximal space).
This is appropriate because we wish to strictly bound memory usage. We will find that
coallocators made of even such simple operations will yield both good improvements to
execution times and interesting behaviour.

1Note that in Figs. 4.1 and 4.2, coallocators took an additional parameter giving the size of the
allocatee, but this is not required for Dict and MList since all nodes are the same size.

58

4.2. IMPLEMENTATION

Finding any X in a Y :

1. lowestXY : returns the lowest (in memory) nonfull X in the Y . Since fullness is a binary
property, this may be done quickly using operations on bitfields.

2. cyclicXY : as above, but for each Y in the RDS heap the last position looked is remem-
bered, and the next search is started from that point, cycling around to the bottom
of the Y when the top is reached. Sometimes this offers an improvement over low-
est, because less scanning work is done overall – this is a heuristic that depends on a
favourable distribution of allocation and frees.

3. firstXY : Every Y has doubly-linked list implementation of a stack associated with it,
storing all its nonfull X. When an X becomes full it is cut from the list, likewise when
an X becomes nonfull it is pushed onto the stack.

These operations behave differently depending on the choice of Y . For example, lowestCL,
cyclicCL and firstCL will produce equally good layout, because the memory hierarchy
doesn’t deal with scales smaller than a cache line. When considering lowestCP etc, a
different layout will be produced because the cells found by the three methods may be
in different lines. Note also that the three have very different overheads depending on
the choice of Y – For example within a line first, lowest and cyclic are all constant-time
procedures (lowest and cyclic are done by table lookup). Within a heap, however, lowest
and cyclic are linear in the size of the heap (but given a non-pathological distribution of
allocation and frees one expects the latter to be quicker), but first is still constant-time.

Finding an empty or emptiest X in a Y :

1. newblockXY : Every Y has a stack, as with firstXY , which stores all empty blocks (instead
of all nonfull blocks).

2. emptiestXY : Every Y has an X-listset associated with it. An X-listset is a set of list
whose elements are Xs. The purpose of the listset is to partition all the X within the
Y into sets based upon the number of cells in the X. The simplest partition is to locate
all the X with i occupied cells in them on the ith list. Each set is implemented as a
doubly linked list. To find the emptiest X within a Y , the lists of the Y are searched
in increasing numerical order until a nonempty list is found. Each allocation or free in
an X requires moving the X from one listset to another (respectively, to a higher- or
lower-numbered list).

An alternative is to partition so that, for example, blocks with [0, k − 1] full cells go
in the first list, blocks with [k, 2k − 1] go in the second list, etc, with a special list
reserved for blocks that are full. The advantage of this partitioning is that the update
and search cost of the listset is reduced by a factor of k, with a corresponding loss
of resolution. For pages, experiments show that it is most efficient to use the second
scheme, and it appears that the value of k does not need to be tuned very precisely.
For lines, the first partitioning is necessary, otherwise too much resolution is lost and
the ability of an optimisation to find the best quality lines is reduced. Unless otherwise
stated, for the rest of this thesis we use the most efficient listset partitioning.

59

4.2. IMPLEMENTATION

Note that by scanning lists in the reverse order (ignoring the list of full blocks), we
may find an X of minimal nonzero space, denoted fullestXY , which we use in the next
chapter (but not this one).

Example revisited: Again for Dict-moveFields, the reallocation applied
might be of the form:

insert := (lowestCL line: search, lowestCL emptiestLH : true)
∧ deleteCut := (lowestCL emptiestLH : true)

The statement above says that the reallocation at the insert site attempts to
allocate in the hint’s line using the lowest operation, and failing that attempts to
allocate in the same way in a line of maximal space in the heap.

4.2.4 The memory manager

Coallocators are composed of distinct operations, each of which must be performed by
the memory manager in some manner. At the very simplest level, the memory manager
could do this simply by knowing which cells were in use in the heap, and by maintain-
ing whichever lists are required (if first, newblock, emptiest or fullest are used). However
to increase performance the memory manager can optionally maintain other data struc-
tures which may (or may not) speed up certain operations. Overall improvement only
occurs if the cost of maintaining the structures is not too high. For example, to evaluate
emptiestPH , we must maintain a set of lists. When an allocation or free occurs, it may
be necessary to move a page from one list to another. This requires knowing how many
cells are in the page. This can be calculated by counting how many cells in the page
are in use, but this is inefficient – it is more efficient to maintain a counter of full cells
for each page. Formally, evaluating emptiestPH requires maintaining a set of lists, which
requires evaluating the value of numCP . This can be done from scratch (by counting)
or by memoization (by explicitly storing a count of occupied cells in every page). Sim-
ilarly, evaluating cyclicXY and lowestXY requires evaluating fullX . This could be done
from scratch by counting the number of occupied cells in the X, or by memoizing this
information by maintaining a bitfield containing values of fullX .

The data structures maintained by the memory manager (‘components’) are as follows.

1. Bitfields: It is natural to memoize fullX as one large bitfield – ie the ith bit in the bitfield
is 1 if the ith X in the heap is full – but for reasons of locality, we may split the bitfield
into chunks. For example, it may be better for each line to have a bitfield stored within
it saying which of its cells are full, rather than having one large bitfield stored in the
heap header. Enabling the component bitfieldXY adds a bitfield to each Y ’s header,
where the ith bit of bitfieldXY (y) is set if the ith X of Y y is full. Note bitfieldXY

stores identical information to bitfieldXZ , just split up into different-sized chunks.

2. Counts: Enabling the bitcountXY component adds a 32-bit word to each Y containing
a count of the number of full X in the Y . It can be thought of as a memoization of
numXY , and is also a count of the total number of set bits in bitfieldXY , if it is
enabled.

60

4.3. SITES AND SEARCHES

parentk (0 ≤ k < ∞) During each descent of the tree, a circular buffer
of size k is used. Each time there is a block transition, the block
address is pushed to the buffer. When the stage executes, each
block in the buffer is inspected (starting with the most recent),
until a non-full block is found (or all blocks are full). The descent
is either due to the insert operation, or due to the lookup operation
followed by any further traversing within the delete operation.

childk (0 ≤ k <∞) The children, then grandchildren, up to a depth of k,
are searched. Within a generation, nodes are tried in random order.
Note that this search type is for deleteCut and deleteMove only,
because the (re)allocatee in insert does not have any descendants.

Figure 4.4: Search types used for Dict.

3. listsets: Enabling the listsetXY,type component adds a listset of type type to each
Y . The listset type expresses how all the X within each Y are to be partitioned into
lists, encompassing free lists (storing only non-full blocks on a single list, used for first),
empty block lists (storing only empty blocks on a single list, used for newblock) and
partitioning the X into finer size classes (used for emptiest and fullest). Listsets are
implemented by adding one or more list root objects to each Y ’s header, and then
adding a list node object to each X. List node objects and root objects occupy 8 Bytes
and contain forward and backward pointers. The list must be doubly linked so an X
can be cut out of its list in O(1). Adding list node objects is done differently depending
on the X. If X is a line or page, then the node object is put in the X’s header. If X
is cell, then the node object lives within the cell. Since only free listsets are relevant
when X is cell, the cell is always empty and so this is possible. Note that this places
a restriction on the the number of listsetC∗,∗ components that can be enabled, since
a cell may not have enough space to store all the list node objects.

To implement a particular coallocator, each operation must be ‘bound’ to the component
that implements it. For example lowestCL could be bound to any three of bitfieldC∗.
Once this has been done, the C code that implements the memory manager – i.e. methods
to carry out each operation and to update components after allocation or freeing – is
generated automatically and then compiled with gcc -O3. It was found that this process
generated code as efficient as an early handwritten memory manager.

4.3 Sites and searches

This section explains the (re)allocation sites and search types used for each benchmark.

4.3.1 Dict

When a node is inserted there is a reallocation site. This is site insert.
Recall that to delete a node x we inspect the number of children it has. If it has one,

the delete algorithm just cuts the node out of the tree. In this situation, we may move

61

4.3. SITES AND SEARCHES

either the node above the new edge, or the node below it, or both. We consider this as
two separate sites deleteOneCutAbove, deleteOneCutBelow.

In the two child case, the delete algorithm (randomly) either, replaces x with the
rightmost node of the left subtree of x, or replaces x with the leftmost node of the right
subtree of x. Let y be the node that replaces x. The replacement can be done either by
moving the fields of y into x and then cutting y from the tree (moveFields), or by cutting
y out of the tree and then moving node y to x’s position in the tree (substituting node y
for node x, moveNode). In both situations, we can deal with the cutting of y as above
(yielding two more sites, deleteTwoCutAbove, deleteTwoCutBelow). For moveNode, when
the substitution of y for x occurs, we can reallocate the node y, which is site deleteMove.

To make a more thorough exploration of reallocation possible, we will perform reallo-
cation at the deleteOneCutBelow and deleteTwoCutBelow, but not deleteOneCutAbove or
deleteTwoCutAbove. In other words when a cut occurs (x→ y → z becomes x→ z), the
node z is reallocated, rather than x. This is slightly easy from an implementation and
efficiency point of view because the parent of z is known, whereas the parent of x would
have to be kept track of explicitly, incurring an overhead.

Furthermore, we will use the same strategy at deleteOneCutBelow and deleteTwoCut-
Below, denoting the merged site deleteCut. Thus, when applying reallocation to Dict,
three strategies must be chosen:

1. insert=strategy : reallocating an inserted node

2. deleteCut=strategy : reallocating the node below a cut, during delete

3. deleteMove=strategy : reallocating the moved node, during delete (for moveNode
only)

The search types used for the insert, deleteCut and deleteMove sites are summarised in
Fig. 4.4. Observe that parentk stores the address of the last k blocks that caused a block
transition, and then inspects until an empty block is found, moving further up the tree
away from the (re)allocatee. There are several reasons why we have adopted this simple
heuristic. The best solution from the point of view of layout would be to inspect every
block during traversal, and use the last nonfull one. This incurs too much overhead, due
to inspecting block headers. Thus we store a buffer of k block address and inspect them
for nonfullness only if the parentk search is invoked. Ideally, one would like to use the
last k distinct blocks, but this cannot be done efficiently. For pathological sequences of
blocks, the heuristic will be quite ineffective, however, the tendency of the reallocation
methods we try in this chapter is to produce clusters of nodes within blocks, and so if
reallocation is working well, this block transition heuristic will be quite close to using the
last k distinct blocks.

parentk does not access any additional nodes apart from those used in the traversal. In
particular, if the search is to find a line, no cache misses will occur because determining
if the line has space only requires reading the line header, which is in stored within the
line. Similarly if the search is to find an empty page, no TLB misses will occur (although
L1/L2 misses may occur). Use of child≥1 will involve additional node accesses and further
misses because it searches in the tree below the (re)allocatee.

62

4.3. SITES AND SEARCHES

lastNonFull During the traversal to the place to perform the insertion/deletion,
the block of each node seen is inspected to see if there is space. The
last such block is used.

firstNonFull As above, except the first such block is used.
lastk (0 ≤ k < ∞) During traversal, a circular buffer of size k is used.

Each time there is a block transition, the block address is pushed
to the buffer. When the stage executes, each block in the buffer is
inspected (starting with the most recent), until a non-full block is
found (or all blocks are full).

nextk (0 ≤ k <∞) The list is traversed until a non-full block is found, or
k nodes are seen.

next∞ The list is traversed until a non-full block is found, or the list ends.

Figure 4.5: Search types used for MList.

Finally, note that to reduce the number of possible different strategies, these search
types do not allow us to interleave searching below and above the reallocatee. Further-
more, in this thesis we will always use parent before child. This decision was based on
experiment and can be justified intuitively: moving X to its parent P ’s block removes a
miss whenever X is accessed (say with some probability q), whereas moving X to one of
its children’s blocks removes a miss with probability between ∼ q/2 (if the two children
are in different blocks and are equally likely to be accessed), and ∼ q (if the two children
are in the same block – recall that the traversal may terminate at X).

4.3.2 MList

When a node is inserted there is a opportunity to reallocate the node. This is site insert.
As with Dict, when a node y is cut out of the structure during the delete operation
(x→ y → z becomes x→ z), we will reallocate its child z. This is site delete.

The search methods used for the insert and delete sites are summarised in Fig. 4.5.
Note that lastNonFull finds the block closest to the (re)allocatee, whereas firstNonFull finds
a block that may be much further away. For long lists, the second strategy will produce a
better layout because the block is unlikely to be evicted before the (re)allocatee is reached.
However, whereas lastNonFull must inspect the header of every block seen, firstNonFull only
inspects until a nonfull block is found and thus incurs lower overhead. As with Dict’s
parent search strategy, this has different implications for miss rates depending on whether
the blocks are lines or pages.

Note also that the lastk method uses a block transition heuristic like Dict’s parentk
search.

At first sight, the next∞ method may seem very inefficient. In the worst case, the rest
of the list must be traversed, which would potentially double execution times. The actual
overhead of this searching method depends on the distribution of nodes in blocks, and we
will later assess its overhead experimentally.

Finally, note that we will perform all ‘before’ searches (lastNonFull, firstNonFull, lastk)
before the ‘after’ searches (nextk, next∞). This is done to reduce the number of different

63

4.4. FREQUENTLY-USED COALLOCATORS

strategies. Unlike for Dict, interleaving before and after would actually be sensible: At
least in terms of layout, blocks before and blocks after the (re)allocatee are of approxi-
mately equal worth because the traversal does not branch.

4.4 Frequently-used coallocators

Here we will assign labels to frequently used coallocators. For example, we use L as a
shorthand for lowestCL line, the coallocator that attempts to allocate in the same line as
the hint object using the lowestCL operation. The other methods of allocation in the same
line (using firstCL and cyclicCL) are slower, and have identical layout properties, because
the location of nodes within lines is irrelevant to the memory hierarchy2.

N.B. In this section alone, we use regular expression-style notation (..|..|..) and [..|..|..]
to combine fragments of labels to express sets of labels. Thus A(M|N)[Z] is shorthand for
the set of labels {AM, AN, AMZ, ANZ}.

The second stage of ccmalloc-newBlock is to use a new block in the hint’s page (NLIP –
new line in page). We will also consider using the emptiest block in the hint’s page (ELIP).
The second stage of ccmalloc-firstFit is to use a first-fit allocator to find a line with enough
space and then allocate in it (FLIP – first line in page). Since our allocators are based
around only one node size, we can actually allocate more efficiently than this, either by
using a free list of cells per page, or by using lowest(c,p) or cyclic(c,p). It appears that
the last of these is quickest, and we will denote it P.

The second stage of ccmalloc-closest is to use the closest line to the hint with enough
space, which is not relevant when all nodes are same size: from the point of view of
layout, two nodes are either in the same line, or different line but same page, or in a
different page. Thus we will not consider dynamic analogues of ccmalloc-closest, because
its behaviour for same-sized nodes has been covered by the other two ccmalloc variants.

The action of ccmalloc when coallocation in the same page fails was not discussed. We
will consider a number of third stages. We will use a first-fit cell allocator (F), two line
allocators – first-fit (FL), and emptiest line (EL) – and their page equivalents (FP, EP).
We do not use newblock line or page (‘NL’, ‘NP’) because our aim is to bound memory
usage, and these coallocators may fail, which would require a fourth strategy.

We also consider third stages that hierarchically find a page, then a line, then a cell.
Finding a cell within a line is always done by lowest(c,l) because it is most efficient and the
choice of cell has no effect on layout. This gives nine options – first/newblock/emptiest line
in first/newblock/emptiest page ((F|N|E)LI(F|N|E)P). Of these, (F|N|E)LINP, NLIEP and
NLIFP, can all fail if there is no empty page. Thus there are four hierarchic coallocators,
and five single block ones.

Some of these choices may seem a little inefficient in isolation, for example, there is no
apparent value in terms of layout in using FLIFP, but it may be more efficient to allocate
using memory manager components that are already enabled instead of enabling extra
components. One final point is that each block pair can have only one listset associated
with it – for example, we do not allow the memory manager to simultaneously support
emptiest(p,h) and first(p,h), and so one cannot combine EP with (E|F)LIFP. Of the 100

2This is true using an L1 + L2 + TLB + hardware prefetcher model of the memory hierarchy’s
behaviour, but probably not in practice.

64

4.4. FREQUENTLY-USED COALLOCATORS

SL
{

L lowestCL line

SP

SPL̄

{
P cyclicCP page
FLIP lowestCL firstLP page

SPL

{
ELIP lowestCL emptiestLP page
NLIP lowestCL newblockLP page

G

GL̄P̄

F firstCH

FL lowestCL firstLH

FP cyclicCP firstPH

FLIFP lowestCL firstLP firstPH

GLP̄

{
EL lowestCL emptiestLH

ELIFP lowestCL emptiestLP firstPH

GL̄P

{
FLIEP lowestCL firstLP emptiestPH

EP cyclicCP emptiestPH

GLP

{
ELIEP lowestCL emptiestLP emptiestPH

Figure 4.6: Frequently-used coallocators and their labels, and sets of coallocators, see Fig. 4.3 for
summary of all notation. L=line, P=page, I=in, F=first, N=new (i.e. empty block), E=emptiest
(i.e. a block of maximal space).

combinations3 of the above stages, this condition removes sixteen.
All coallocators and their labels are in Fig. 4.6. We also identify some sets of coalloca-

tors. The sets SL (‘Same Line’) and SP (‘Same Page’) contain all coallocators we use to
allocate in the same line or page as the hint respectively. The set G contains all the global
coallocators – ones that don’t use a hint address. The set SP has two subsets: SPL, which
contains coallocators which select a location within the hint’s page by first selecting a line
in the hint’s page based upon the number of nodes in it (beyond the fact that allocation
in a full line is not possible). This is either a new (empty) line (NLIP) or the emptiest line
(ELIP). SPL̄ contains all other members of SP (P and FLIP) – notice that FLIP falls into
this set because it does not select any particular line, just the first one that is possible
to allocate in. Similarly, G is divided into four sets GL̄P̄ , GLP̄ , GL̄P , GLP depending upon
whether lines or pages are selected based on the number of nodes in them or not.

4.4.1 Layout properties

In this section we discuss how the different coallocators can be used to improve data layout.

L directly improves line and page layout, because the reallocatee is in the same page and
line as the hint.

P, FLIP directly improve page layout, because the reallocatee is in the same page as the
hint, but not necessarily in the same line.

3(1+1)*(4+1)*(9+1) = 100. Recall that each stage may also be null.

65

4.5. PATTERNS

ELIP, NLIP directly improves page layout by locating the reallocatee and the hint in the
same page, and line layout is indirectly improved, because using the emptiest line available
means that coallocation in the same line as the reallocatee is more likely to be possible
in the future.

Another way to view these methods, is that L is the most optimistic (we try to improve
L1/L2 and TLB performance), P and FLIP are the most pessimistic (we give up on L1/L2
performance, just try to improve TLB performance) and ELIP and NLIP is somewhere in
between (we improve TLB performance, but only indirectly attempt to improve L1/L2
performance).

EL indirectly improves line performance, by increasing the probability that a future L will
succeed.

EP, FLIEP indirectly improves page performance, and hence also perhaps line performance,
since an empty page is more likely to have emptier lines than an arbitrary page.

ELIEP is a compromise, aiming to improve both line and page layout. The page selected
will be as empty as selected by EP, but the line will in general be less empty than EL.

F is the quickest non-failing allocator.

Finally, FL, FP, FLIFP, ELIFP have no particular layout benefit, and are included for sym-
metry’s sake.

4.5 Patterns

Refer to the grammar in Fig. 4.3.
It is often useful to decompose a strategy (a tuple of coallocator-search pairs), into sep-

arate coallocator and search ‘patterns’ . We will do this to concisely describe experiments
where we wish to vary the coallocation and the searching independently.

For example, the strategy

(lowestCLline : parent1, lowestCLline : child1, lowestCLemptiestLH : true)

may be written as a composition of a coallocator pattern and a search pattern using
the × operation as follows

〈lowestCLline; lowestCLemptiestLH〉 × 〈parent1, child1; true〉.

Observe that the use of patterns allows a particular coallocator (e.g. lowestCLline) to be
repeated for several searches, or alternately a particular search to repeated for several
coallocators.

Formally, the × operation takes a coallocator pattern and a search pattern and yields
a strategy. Patterns have some degree ≥ 1. A coallocator or search pattern of degree
d is of the form 〈a1

1, . . . , a
1
n1

; . . . ; ad
1, . . . , a

d
nd
〉 – d lists where list i is of degree ni. The ×

operator acts on degree-1 patterns as follows (to produce a strategy):

〈c1, . . . , cn〉 × 〈s1, . . . , sm〉 ≡ (c1 : s1, . . . , c1 : sm, . . . , cn : s1, . . . , cn : sm)

where 〈c1, . . . , cn〉 is a coallocator pattern and 〈s1, . . . , sm〉 is search pattern.

66

4.6. DYNAMIC FORMS OF CCMALLOC

ccmalloc-newBlock-vanilla � {L} ; SPL ; GL̄P̄ �
ccmalloc-newBlock-extended � {L} ; SPL ; G�
ccmalloc-firstFit-vanilla � {L} ; SPL̄ ; GL̄P̄ �
ccmalloc-firstFit-extended � {L} ; SPL̄ ; G�

Figure 4.7: Definition of the four sets of coallocator patterns that are dynamic forms of ccmalloc.
Note the division into those that use a final coallocator that selects blocks based upon the number
of nodes in them (‘extended’), and those that do not, apart from not using a full block (‘vanilla’).

The × operator acts on degree-d patterns as follows:

〈c1
1, . . . , c

1
n1

; . . . ; cd
1, . . . , c

d
nd
〉 × 〈s11, . . . , s1m1

; . . . ; sd1, . . . , s
d
md
〉

≡ 〈c1
1, . . . , c

1
n1
〉 × 〈s11, . . . , s1m1

〉@ . . . @〈cd
1, . . . , c

d
nd
〉 × 〈sd1, . . . , sdmd

〉

where the ci
j are coallocs and the si

j are searches, and @ is strategy concatenation (i.e.
(x1, . . . , xq)@(y1, . . . , yr) ≡ (x1, . . . , xq, y1, . . . , yr)), and × binds more tightly than @.

In other words, each coallocator or search pattern is a ;-separated list of ,-separated
sublists. When combined with the × operator, the ith sublist from the two patterns are
combined, and then the results are concatenated.

4.6 Dynamic forms of ccmalloc

We now define properly how ccmalloc is extended for dynamic use. In more detail, we
define four sets of coallocator patterns, ccmalloc-newBlock-vanilla, ccmalloc-firstFit-vanilla,
ccmalloc-newBlock-extended and ccmalloc-firstFit-extended, which can be found in Fig. 4.7,
with the definition of the � .� operation as follows: (where Ai

j are sets of coallocators,
and the result is a set of coallocator patterns)

� A1
1, . . . , A

1
n; . . . ; Am

1 , . . . , Am
n �

≡ {〈a1
1, . . . , a

1
n; . . . ; am

1 , . . . , am
n 〉 : ∀a1

1 ∈ A1
1, . . . ,∀am

n ∈ Am
n }

Members of the vanilla sets use only final coallocators whose aim is to allocate quickly
irrespective of the effect on layout (GL̄P̄), not considering the number of nodes when
selecting a block (apart from not using full blocks), which is more in the spirit of the
static form of ccmalloc. The extended sets include all of G.

4.7 Summary

In this chapter we reviewed the use of coallocators to improve the initial layout of an
RDS. We constructed a larger family of coallocators than existed previously in the litera-
ture, including dynamic forms of ccmalloc, and explain the effect they may have on data
layout. We described ‘reallocation’, the use of coallocators to maintain RDS data layout,
and discussed how to apply it to the Dict and MList benchmarks. We will evaluate
reallocation in Chapter 7.

67

Chapter 5

Bulk data movement

5.1 Introduction

The aim of reallocation is to prevent layout degradation by performing individual node
movements when a pointer update occurs. The ability of these movements to prevent
layout degradation depends on the availability of space in the hint’s block, and thus the
quality of the layout produced is not easy to predict. In this section we consider a different
form of data movement, known as ‘bulk data movement’ . A typical bulk data movement
optimisation makes infrequent movement of large numbers of nodes, not necessarily when
pointer updates occur, repairing the layout of part of the RDS, typically by moving all the
nodes to a new part of the heap. Like reallocation, the quality of data layout produced
by this form of movement is sometimes not easy to predict, but in practice more stable
behaviour is often observed than with reallocation.

In this chapter we present bulk data movement optimisations that move data in one
of three ways. Firstly, an infrequent stop-the-world movement of the entire RDS may be
used. Secondly, more frequent smaller movements may be used, to reduce latency. Thirdly,
data movement code may be embedded into existing traversals, to reduce overhead and
latency. In all three methods, the applier has only to ensure that the data movement
occurs frequently enough to maintain a good layout. This is in contrast to reallocation,
where better performance is likely to be obtained by (at least) investigating the insertion
of data movement code into all pointer update sites. In particular, we expect reallocation
to be far more sensitive to the precise form of the pointer updates occurring in the RDS,
since it must reverse the layout degradation caused by each update, whereas a bulk
data movement optimisation needs only to know a good layout for (parts of) the RDS.
Thus bulk data movement and reallocation should be thought of as two complementary
approaches, either of which may be more suitable depending on whether a larger number
of simple changes to a program is preferable to a small number of more complex changes.

We now discuss a very simple bulk data movement optimisation.

5.1.1 Simple bulk data movement

The simplest method of preventing serious layout degradation of an RDS is to occasionally
move the entire structure into a new block of memory (space), using some good layout that
the applier has chosen before runtime. Even this simple method has several subtleties,

69

5.1. INTRODUCTION

which we discuss now.
The shape of the RDS changes at runtime and so the role of the applier is not to

provide a layout consisting of rules of the form ‘place the third node along in the fourth
level of the tree in some location’ (a map from a node’s position in the tree to location
in memory). Instead, they must provide an algorithm that takes as input the structure,
and outputs a mapping of nodes to their new location in memory. Concretely, their role
is most likely to be to provide a function that walks the structure visiting each node
(possibly multiple times, but most efficiently just once), moving nodes as it goes, instead
of explicitly computing a map of the whole structure.

The nodes of the structure are being moved into a new, empty space rather than being
moved around within the current space, and so the new layout of the structure depends
only on its shape, and not on its old layout. This simplifies the optimisation, and allows
full control over the layout quality, but doubles memory usage. Later in this chapter we
will present optimisations using less memory where the previous layout does affect the
new layout.

We observe that a good layout may yield a more effective bulk data movement optimi-
sation than an optimal layout. Our experience with static layouts for Dict and MList
from Chapter 3 suggests that often there will exist a layout that performs almost as well
as the optimal but is far easier to produce. For dynamic use, the best balance between
layout quality and overhead must be found. The role of the applier may therefore be to
explore several different layouts

We now address the issue of when the function should be invoked. In general, layout
degradation occurs gradually as a program runs, because a single pointer can only have
a small impact on the layout of a structure. Invoking the function the programmer has
provided will dramatically improve the layout of the structure, and incur a large overhead.
Thus layout quality follows a sawtooth pattern (not necessarily with equally-sized teeth),
and execution time is a sawtooth except with a large pause when the function is invoked
(see Fig. 5.1 – note that the vertical axis is logarithmic). Thus, if the function is invoked
too frequently, the average execution time for a large number of operations is too high
because of data movement costs, and if it is invoked too infrequently, too much layout
degradation occurs, also increasing execution time.

For a constant rate of layout degradation, as exists in the benchmarks of this thesis,
execution time is minimised by invoking the function periodically with some static period
N . The optimal period depends on the modification rate of the RDS, overhead and many
other factors, and so we will find it by experiment (tuning) rather than theoretically.

5.1.2 Structure of this chapter

The rest of this chapter is as follows. In §5.2, we discuss the implementation of the simple
stop-the-world two-space optimisation for both benchmarks. In the remaining sections,
we discuss several techniques to reduce memory usage, latency and overhead:

1. Approximation: We present a method to reduce memory usage, at the cost of layout
quality. (§5.3)

2. Incrementalisation: We demonstrate that techniques previously used to make incre-
mental garbage collectors can be relatively easily applied to reduce the latency of a

70

5.2. USING TWO SEMI-SPACES

 1

 10

 100

 0.5 1 1.5 2 2.5

tim
e

(m
illi

se
co

nd
s)

operation (*1e6)

1e5 operations
1e3 operations

Figure 5.1: Histogram showing the behaviour of the periodic2space optimisation. Observe that
data movement pauses are very visible at the 1e3-operation scale (approx. 1ms), but not at the
1e5 operation scale (approx. 100ms).

bulk data movement optimisation. (§5.4)

3. Embedding: We demonstrate how inserting optimisation code into existing traversal
loops of a program can be used to reduce latency and may in principle reduce the
overhead. (§5.5)

4. Compaction: We describe a lightweight method of performing additional data move-
ment to create emptier lines or pages, which are later used to directly improve the
layout of part of the structure. (§5.6)

5.2 Using two semi-spaces

The implementation of the simple stop-the-world two-space bulk data movement optimi-
sation is as follows. Twice as much memory is allocated (in other words, m = 2). Every
N operations, the entire RDS is traversed, and all nodes moved into ‘to-space’. The
‘from-space’ is now empty because the applier has guaranteed that all nodes allocated
in from-space are in the RDS (every node is reachable from the roots of the structure).
Movement of nodes is possible because the programmer has provided some method for
updating all parent pointers, as discussed in §2.3.2.1.

71

5.3. USING ONE SPACE

For Dict, the optimisation performs Breadth-First Search (BFS) to collect a line’s
worth of nodes (a ‘cluster’). These are moved (‘clustered’) into an empty line. The
procedure is then repeated for all children of the cluster. The BFS may fail to find enough
nodes to fill a line (i.e. at the bottom of the tree), but the nodes must still be moved to
to-space, and the exact details of how this is done don’t seem to effect layout quality
very much. This is layout goodLine from §3.4.2.1. We will denote this optimisation
periodic2space.

We also investigate a variant of this optimisation, periodic2space-nested, that min-
imises TLB misses as well as L1/L2 misses. Lines are filled using BFS as before, but then
pages are filled by performing breadth-first search over lines (this is layout goodBoth
from §3.4.2.1). We found that this optimisation performs worse than periodic2space in
practice, for two reasons: firstly, periodic2space-nested incurs greater overhead, and sec-
ondly because periodic2space produces quite good TLB performance simply because of
the order in which the tree is traversed1. If a simple stop-the-world optimisation cannot
obtain improved performance from lower TLB misses, it is unlikely that the more com-
plex optimisations in the rest of the chapter can (and the implementation would be far
more difficult), and thus for the rest of this chapter we shall focus solely on lines when
optimising Dict.

As we discussed above, the periodic optimisations pause normal program work for a
significant time during the traversal. This may be unacceptable for some applications.
See for example the performance of periodic2space in Fig. 5.1 (note the vertical axis is
logarithmic). Groups of 1e3 operations may experience a very significant latency, but
groups of 1e5 do not.

For MList, the periodic2space optimisation traverses each list in turn, moving nodes
to a pointer which increments through to-space – list are arranged end-to-end in memory,
without any gaps. This has the advantage that to-space is denser, and we need not keep
track of which cells are in use in to-space, simply remember the value of the pointer. The
disadvantage is that a list may incur one more L1/L2 or TLB miss than necessary, because
no attempt is made to align lists to line or page boundaries – however, since sixteen nodes
fit into one line, this is unlikely to have a significant effect on execution times.

One significant advantage that the periodic2space optimisation has for both bench-
marks over the more complicated optimisations we will discuss later in the chapter is that
there is very little allocator overhead. During the traversal, the memory manger does
not need to keep track of which cells are occupied in from-space or to-space, because
normal program work is halted. Once the traversal is finished, all memory manager data
structures must be rebuilt, but this is a simple task because to-space is divided into an
entirely full contiguous region and an entirely empty contiguous region.

5.3 Using one space

In general, the optimisation of the previous section (periodic2space) requires two contigu-
ous semi-spaces large enough to hold the RDS, giving a memory usage of m = 2. In this
section, we discuss how we can produce a ‘one-space’ optimisation (periodic1space) that

1goodLine achieves ∼ 6 pages per node lookup, compared to the goodBoth’s ∼ 3, where a lookup
visits ∼ 25 nodes.

72

5.3. USING ONE SPACE

periodic1space The lookup macro
traverse(n): lookupStep(n):

let k = space in emptiest line if (!n) return 0;
let S = BFS(n,k) if (n->key == searchKey) return n;
if (|S| == k) if (searchKey < n->key) n=n->c[0];

let L = emptiest(line,heap) else n=n->c[1];
move nodes in S into line L

else
handleSmallSubTree(S)

for all children m of set S:
traverse(m)

embedded1space+throttle=p%
embedded1space+throttle=p%+compact
+thresh=K

Lookup(n): Lookup(n):
with probability 1-p: with probability 1-p:

while (1) while (1)
n=lookupStep(n) n=lookupStep(n)

else else
while (1) while (1)

let k = space in emptiest line let k = space in emptiest line
if (k<=1) if (k<K)

n=lookupStep(n) goto fail
else

let S = BFS(n,k) let S = BFS(n,k)
if (not all of S in same line) if (not all of S in same line)

if (|S| == k) if (|S| == k)
let L = emptiest(line,heap) let L = emptiest(line,heap)
move nodes in S into line L move nodes in S into line L

else else
handleSmallSubTree(S) handleSmallSubTree(S)

while (n ∈ S) while (n ∈ S)
n=lookupStep(n) n=lookupStep(n)

fail:
while (1)

move n to fullest(line,heap)
n=lookupStep(n)

Figure 5.2: Dict: Pseudo-code for periodic1space, embedded1space+throttle=p% and embed-
ded1space+throttle=p%+compact. The BFS(n,k) function returns the set of k nodes found by
Breadth-First Search from node n. A node n is a child of set S iff n is not in S and the parent of
n is in S. The body of the lookup loop is a macro lookupStep. The emptiest(line,heap) function
returns the address of a line of maximal space in the heap, the fullest(line,heap) function returns
the address of a line of minimal nonzero space in the heap. The handleSmallSubTree function
deals with the re-laying out of the tree near the leaves (where less than k nodes are found by
BFS).

73

5.3. USING ONE SPACE

uses a single space, allowing memory usage of 2 > m > 1.
We start by observing that during the ‘collection’ (the movement of nodes from from-

to to-space), large regions of empty space will arise in from-space. Our aim is to recycle
these regions to form part of to-space. A sensible way to do this is to divide the two
spaces into pages, and reuse any empty pages that arise in from-space. Note that this
will produce a layout with the same L1/L2/TLB miss rates, and therefore this layout
will be as efficient under a reasonable model of performance (recall that the hardware
prefetcher does not fetch across page boundaries). To-space and from-space no longer
exist as distinct ‘physical’ parts of the heap – the heap is now one ‘physical’ space split
into two ‘logical’ parts during the execution of the collection. A further way of viewing
this is to consider to-space and from-space as sets of pages, where the location of each
page is irrelevant. In the former, each page is obtained from the system only when the
optimisation attempts to move a node into it (a.k.a. ‘lazy allocation’ or ‘allocate-on-use’).
In the latter, the optimisation returns each page to the system as soon as all its nodes
are moved out of it.

The number of pages in use (in to-space and from-space) give the memory requirements
of the optimisation during collection, which varies as it progresses, starting and ending
at one. Denoting the peak memory requirement mpeak, our aim is to arrange the order
of node movement to minimise mpeak, which in general could be higher than 2 (i.e. worse
than periodic2space).

A sensible way to reduce mpeak is to fill to-space one page at a time – by this we
mean that all the k nodes that belong in a particular page in to-space are put there in k
consecutive nodes movements. This procedure minimises the number of pages in use in
to-space for a given amount of progress of the collection, where progress is expressed as
the number of nodes in to-space. Alternately, for a given number of pages in use in to-
space, the progress of the collection has been maximised. In the absence of any knowledge
about the layout in from-space this is probably the best way to minimise mpeak.

Transforming MList’s periodic2space optimisation to use this form of from-space/to-
space is trivial because list are laid out in order in to-space, filling each page in to-space
before allocation in the next. Dict’s periodic2space-nested also deals in complete pages
where a subtree has enough nodes. If a subtree doesn’t have enough nodes, its nodes are
moved into a specially denoted page used to store smaller subtrees. Thus at most two
pages are being filled at once (one for subtrees with a page worth of nodes, and another
for smaller subtrees), almost satisfying the condition stated above.

For Dict’s periodic2space, which fills lines with nodes before moving onto the next, we
have a choice. One method is to treat each group of pageSize/lineSize lines as one page,
and then deal with incomplete subtrees as above. However, because page layout isn’t
very important for Dict (as shown in §3.4.2.1), it is better to treat from- and to-space
as sets of lines instead. Lines are smaller than pages, and so in general they will arise in
from-space sooner, which will reduce mpeak without significantly reducing layout quality,
and so we will adopt this method. Likewise, the notion of using a smaller block size for
to- and from-space can be applied to MList’s optimisation to reduce mpeak, but this time
with a more serious impact on layout quality, because MList is much more sensitive to
page layout, as shown in §3.4.2.2.

In practice, an mpeak of around 1.35 is seen for Dict when periodic2space is converted
to use one space, considerably lower than periodic2space’s memory requirements. For

74

5.4. INCREMENTALISATION

MList, mpeak depends on v, but is much less than 2. Note that greater overhead is
incurred than with two spaces, because the memory manager must keep track of which
cells are in use during the movement from from-space to to-space so it can maintain a
free list of empty blocks.

Predicting or controlling mpeak is not simple, and so we now discuss how memory
can be properly bounded to any value m ∈ (1, 2]. This is achieved by first claiming the
space (a set of blocks) a factor of m larger than the space the RDS requires, and then
allocating the RDS within them (as with reallocation). The body of the optimisations
are changed so that instead of moving nodes into an empty block, nodes are moved into
a block of maximal space in the space (hereafter referred to as the ‘emptiest’ block in
the space). This is a trivial change for both benchmarks. As the memory allowance is
lowered, the emptiest block will have less and less space in it, reducing the quality of layout
produced. Thus memory is directly traded for performance. The memory manager from
the previous chapter is reused to support finding the emptiest block in the heap (using
the listset∗H memory manager component). We denote this optimisation periodic1space,
and pseudocode for Dict can be found in Fig. 5.2.

When investigating this optimisation for MList we may adjust block size, investigat-
ing intermediate sizes between line size and page size. We do this because the block size
has the potential to affect the quality of the emptiest block in the heap2. For Dict, we
will use blocks only the same size as the line size, because there is very little layout benefit
to using larger blocks.

5.4 Incrementalisation

In this section, we discuss how the latency caused by the periodic2space and periodic1space
optimisations can be reduced in a similar way to the incrementalisation of a garbage
collector [39, 73].

5.4.1 Incrementalising periodic2space

Notice that periodic2space is very like a stop-the-world two-space copying collector. Peri-
odically, it is invoked, and it traverses the heap, using a ‘root set’ as a starting point. For
periodic2space we simply use the root node(s) of the RDS – the tree root for Dict and
the head of each list for MList. During the traversal, nodes are moved into to-space, at
which point from-space is entirely empty.

For Dict, periodic2space is incrementalised as follows. We maintain a queue of roots,
whose descendants in the tree are still to be processed. The optimisation performs a
constant amount of work W every K traversals. A node access in either from-space or
to-space counts as one unit of work. Firstly K is set low enough so that pause time will
be around 1ms. Then, the work/operation ratio W/K is adjusted to its optimum value.
Note that for a constant W/K (i.e. data movement rate), using a larger K will reduce
overhead (because the optimisation doesn’t have to stop and restart so often), but will
cause greater pause time.

2If the block size is the heap size and the heap is of density d, then only a block of density d is
available. If the block size is many times smaller, blocks of lower density are likely to exist given a
favourable distribution of nodes.

75

5.4. INCREMENTALISATION

When the optimisation is invoked, it pops the root queue, which initially just contains
the root of the tree. It then gathers up to a line’s worth of nodes, moves them to an
empty line in to-space, and pushes the children of the cluster to the root queue. This
process continues until the work allowed for this invocation has been performed. When
to-space is empty, the spaces are flipped and the tree root is pushed to the root queue.

Like a two-space incremental GC, we have to ensure no nodes are missed if the ‘mu-
tator’ (node insertion and deletion) changes the structure of the tree. Specifically, we use
a write barrier. Any attempts to write a pointer to from-space into a node in to-space
are captured. When this occur, the pointer is added to the root queue. Thus when a
pointer assignment x->c[i] = y occurs, and x is in to-space and y is in from-space, the
value &(x->c[i]) is added to the root queue. When this pointer is loaded, its target and
eventually all its descendants will be moved into to-space if they are not already there.

The value of the pointer may have been changed between its insertion in the queue and
its use by the optimisation. For example, x->c[i] might now point to a different node
z. In this case, there will be two copies of &(x->c[i]) in the root queue. The approach
taken to this problem is to ignore it – the second copy of x->c[i] will cause an additional
unnecessary traversal of x->c[i]’s subtree. Other additional traversals may arise if a
pointer in any descendant of x->c[i] is updated. Because of the distribution of pointer
updates in Dict (uniformly over nodes), this conservatism does not actually cause a sig-
nificant amount of extra work. Note however that given a pathological sequence of pointer
updates (e.g. repeatedly reassigning a pointer of the root node) the collection would never
terminate, and so the optimisation given here should be considered as demonstrations of
the overheads involved in incrementalisation rather than being satisfactory for general use
(termination could be guaranteed by redefining a unit of work as a node movement from
from- to to-space, but pause time would now be significantly larger, negating the whole
purpose of incrementalising the data movement).

Situations affecting correctness may also arise: if &(x->c[i]) is fetched from the root
queue and x no longer exists because it has been freed or already moved into to-space. The
latter of these two can occur if x is a descendant of α, and a pointer of α is updated after
a pointer of x is updated. The optimisation may pop α’s root queue entry, moving α’s
subtree, which includes x, rendering the &(x->c[i]) entry in the root queue invalid. The
optimisation must therefore ignore invalid pointers, and so the memory manager must
keep track of which cells are in use in from-space. Note that this additional overhead was
not necessary for periodic2space.

Converting periodic2space into incremental2space is much simpler for MList because
the data structure decomposes into many disjoint substructures. The time to re-layout
one list is sufficiently low that we can simply halt normal program work, re-layout a list,
then resume normal program work, without pauses larger than around 1ms. We do not
need to store a queue of roots, as with Dict, simply remember the last list that has been
moved to to-space. The write barrier is also simpler. A node will only be missed by the
collector if it is moved to a list that has already been processed. The write barrier fixes
this by moving into to-space any node that the mutator tries to insert into an already-
processed list. Note that the write-barrier is much simple for MList – indeed the collector
does not need to be aware of pointer updates – precisely because the structure decomposes
into small distinct substructures.

76

5.5. EMBEDDING

5.4.2 Incrementalising periodic1space

Here we discuss how the periodic1space optimisations for the two benchmarks may be
incrementalised to produce the incremental1space optimisations.

As discussed above, incremental2space is really a specialised incremental two-space GC.
It must visit all nodes before flipping spaces to preserve program correctness. For Dict
this means that when the mutator updates a pointer, an entry is pushed into the root
queue. This is a conservative strategy, and will result in extra work being performed by
the collector, but ensures that all nodes are in to-space when the flip occurs.

For periodic1space, however, only one space is used, and so we have the option of
completely removing the write barrier. When the mutator updates a pointer, there is
a possibility that parts of the RDS will simply not be walked by the collector during
its current traversal. This does not matter, because given a non-pathological sequence of
pointer updates, the collector will walk those nodes eventually. The lack of a write barrier
both reduces overhead and simplifies the application of the optimisation, at the possible
expense of performance but not correctness.

Incrementalising periodic1space is also simple for MList – we simply interleave the
re-laying out of lists with normal program work, and no write barrier is required. As
with Dict, nodes are unlikely to always miss being re-laid out unless the pointer update
sequence is pathological.

5.5 Embedding

The optimisations described so far (periodic2space, periodic1space, incremental2space and
incremental1space) walk the data structure disjoint from normal program work. In this
section we demonstrate how the data access overhead can potentially be reduced by
embedding optimisation code into existing program loops.

An embedded optimisation moves parts of the structure close to those visited by normal
program work, instead of walking the structure separately. Our intuition is that the
overhead of a separate traversal of the structure is due mostly to the cost of data misses,
not instruction costs, and so by hijacking existing node fetches it may be possible to
improve the efficiency of an optimisation.

There are further advantages to embedding: data movement work is finely interleaved
with normal program work, reducing latency. Our previous method of reducing latency –
incrementalisation – required a write barrier, which carried an additional overhead. Al-
though simpler than incrementalisation, in our experience, embedding code is still difficult
because any stack references to nodes must be updated after data movement.

The main disadvantage of an embedded optimisation is that the optimisation has lost
control of the order in which nodes are visited, indeed there is no guarantees that the
optimisation will regularly visit – or ever visit – every node in the structure, which may
make particular types of data movement difficult. In particular, we will explain that
embedding periodic2space is possible but particularly ineffective. For other optimisations,
this behaviour may actually be an advantage: if only a subset of the RDS nodes are being
accessed, data movement will only be performed on the active subset, rather than on the
whole RDS as would happen with a non-embedded optimisation.

A further potential disadvantage occurs for branching traversals. For Dict, without

77

5.6. IMPOSING A MINIMUM QUALITY ON NEW LAYOUT

particular attention nodes near the top of the tree will be re-laid out exponentially more
often than nodes near the bottom. In practice, this may prove to be an advantage, because
they are visited exponentially more often than leaf nodes.

5.5.1 Embedding periodic2space

It is possible to embed periodic2space, but it is not very sensible. During Dict’s lookup
loop and MList’s insert and delete loops, each node is inspected to see which space it
is in, and if it is in from-space, a block’s worth of nodes is found (by BFS for Dict or
linearly for MList) and moved to to-space. Once from-space is empty, the spaces are
flipped. Unfortunately, the flip occurs far too infrequently – for the Dict benchmark
almost an order of magnitude less often than the optimal frequency for periodic2space.
A real program would have less favourable access patterns, which makes embedding a
two-space optimisation like periodic2space particularly unhelpful.

5.5.2 Embedding periodic1space

For Dict, the periodic1space optimisation is embedded in the lookup loop to produce
embedded1space as follows (code is in Fig. 5.2). The body of the lookup loop is similar to
the body of periodic1space. Firstly, the code inspects the emptiest line in the heap, finding
a cluster of nodes to fill the line by using BFS from the current node. After the nodes are
moved, periodic1space and embedded1space behave differently. The former recurses over
all children of the cluster, whereas the latter performs lookup steps (inspecting the key
and branching left or right or returning), until it exits the cluster, and the procedure is
then repeated until the key is found or the bottom of the tree is reached. Thus, during a
lookup, nodes close to the lookup path are moved. To make this optimisation practical,
data movement may have to be throttled: two versions of the lookup loop are used, a
normal and an optimised, with the optimisation version being used with some probability
p%, indicated as throttle=p% (e.g. periodic1space+throttle=10%).

For MList, code is embedded in both insert and delete traversals. The implementa-
tion is simple because the insert/delete traversals and the data movement traversal are
identical – linear. The only difference is that the insert/delete traversals terminate before
the end of the lists, whereas 1space’s traversal does not. We evaluate three different op-
tions: first, the vanilla variety of embedded1space stops when the original traversal does.
This produces a partially filled block. The second variety, embedded1space+toEndOfBlock,
continues until the current block is filled. The third variety, embedded1space+toEndOfList,
continues until the end of the list. As with Dict, we throttle embedded data movement
using some probability p%, indicated as throttle=p%.

5.6 Imposing a minimum quality on new layout

The layout quality produce by the entire 1space family of optimisations depends only on
the emptiness of the blocks found in the heap. A simple way to improve layout is therefore
to reject any blocks below a certain threshold emptiness, indicated by +thresh=k in the
optimisation name. In other words, the optimisation aborts part of its work, and does
not start again until emptier blocks arise. Dict’s embedded1space+thresh aborts data

78

5.6. IMPOSING A MINIMUM QUALITY ON NEW LAYOUT

movement until the end of the lookup. MList’s embedded1space+thresh similarly aborts
until the end of the insert or delete traversal.

There are three ways in which a sufficiently empty block can be produced (or, even
better, prevent the situation where there are no empty enough blocks). All three involve
data movement which moves nodes with the aim of produce emptier blocks, rather than
directly improving layout. We refer to this process as ‘compaction’. The first form of
compaction (‘allocation site compaction’) – making the correct choice of allocator at any
allocation sites in the program – is a natural side-effect of applying the optimisation to
the program, but is not always applicable. The second method is ‘reallocation site com-
paction’ – the addition of data movement code to reallocation sites. The third method
is to perform data movement within the body of the optimisation (‘optimisation com-
paction’).

1. Allocation site compaction: When any of the optimisations in this thesis are
applied, a custom memory manager is used (indeed, a memory manager produced in
same way as in the previous chapter), and so any allocation sites must be changed to calls
to the memory manager. This raises the question of which coallocator to use at allocation
site. Although an allocator such as firstCH has the lowest overhead for general purposes,
there seems little point in making the memory manager maintain another component
when it is already maintaining bitfieldCB and listsetBH (to keep track of which cells
are allocated, and to locate the emptiest line, respectively, where B is either L or P).
Thus, a sensible choice of allocator would make use of these components. Allocation in
the emptiest line will reduce the quality of lines available for the optimisation, and so
allocation in the fullest line is the natural choice.

Recall that in our benchmarks the number of nodes stays constant, and thus an allo-
cation site must have an associated free somewhere (and this is true for any sufficiently
long-running program that experiences continual RDS layout degradation, because mem-
ory is finite). The node that has been freed doesn’t come from any particular line, so we
may assume the line has an average amount of empty space in it. The new allocation is
in a line of minimal non-zero space, on average a more full line than the line the freeing
is taking place in. And so the overall effect of the alloc-free pair is that the emptier line
of the pair becomes emptier, the fuller line becomes fuller. Thus the optimisation will
eventually have access to better lines. In our benchmarks, there are no allocation sites
during the timed part (because the nodes from the delete operations are reused in the
insert operations), but in general allocation compaction should be used at all allocation
sites. In other words, transforming the program to use a sensible allocator at allocation
sites (which may plausibly be done automatically) will achieve a compaction effect.

2. Reallocation site compaction: Similarly, we may explicitly move nodes to the
fullest line at some selected reallocation sites, increasing the rate of compaction. We in-
dicate this by +site=compact in the optimisation name, where site is the name of the site
as given in §4.3. Despite the similarity of implementation, it is important to note the dif-
ference in meaning between compaction performed at allocation sites and at reallocation
sites: in the first, we are simply allocating in the most sensible way possible (incurring
no extra overhead, and not requiring the updating of any parent pointers), but in the
second we are explicitly performing data movement, whose aim is not to improve layout

79

5.7. SUMMARY

(directly), but to produce emptier blocks which can later be used to improve layout. This
incurs additional overhead and requires some mechanism to update parent pointers.

3. Optimisation compaction: Compaction is applied within the optimisation using a
similar method to the above, which we indicate by appending compact to the optimisa-
tion’s name. The code for Dict for the embedded1space+throttle=p%+compact+thresh=k
is in Fig. 5.2. Observe how when no block above the threshold is found, the remainder of
the lookup operation performs compaction. It is important to investigate the possibility
of performing this compaction work within the optimisation’s code, because it may mean
the applier does not have to worry about locating and applying compaction at reallocation
sites.

5.7 Summary

In this chapter we first described the simple stop-the-world two-space bulk data movement
optimisation periodic2space. We then discussed several techniques to reduce memory us-
age, latency and overhead. We used an approximate data layout to reduce memory usage
(periodic1space). We will improve the data layout created by this approximation by using
compaction – additional data movement whose aim is to create emptier blocks, not to
directly improve data layout. We then tackled latency, either by incrementalising the op-
timisation using techniques similar to those used for garbage collectors (incremental1space,
incremental2space), or by embedding data movement code within existing program loops,
which also may reduce overhead (embedded1space).

A summary of all optimisations including all optional parts can be found in Fig. 5.3.

80

5.7. SUMMARY

Techniques:

periodic2space Using two semi-spaces (§5.2)
periodic1space Using one space (§5.3)
incremental Incrementalisation (§5.4)
embedded Embedding (§5.5)
throttle=p% Throttling (§5.5)
thresh=k Threshold (§5.6)
compact Optimisation compaction (§5.6)
reallocSite=compact Reallocation site compaction (§5.6)

All Dict optimisations:

periodic2space

periodic2space-nested

incremental2space

periodic2space

incremental2space [+compact][+thresh=k][+throttle=p%][+insert=compact]
[+deleteCut=compact] [+deleteMove=compact]

embedded1space [+compact][+thresh=k][+throttle=p%][+insert=compact]
[+deleteCut=compact] [+deleteMove=compact]

All MList optimisations:

periodic2space

incremental2space

periodic1space

incremental1space [+compact] [+thresh=k] [+throttle=p%] [+insert=compact]
[+delete=compact]

embedded1space [+toEndOfList |+toEndOfBlock] [+compact] [+thresh=k]
[+throttle=p%] [+insert=compact] [+delete=compact]

Figure 5.3: Summary of bulk data movement optimisations. [] indicates optional parts of the
optimisation.

81

Chapter 6

Perfect data movement

6.1 Introduction

In the previous two chapters we have presented two different types of optimisation. Both
are relatively simple to understand and implement, but produce a data layout whose
quality is hard to predict. Reallocation depends on there being space in the hint’s block
(line or page), and on the quality of the emptiest block in the heap. The m < 2 forms of
bulk data movement similarly depend on the quality of the emptiest block in the heap to
produce a good layout. Furthermore, both methods have to be tuned – reallocation by
choosing the correct coallocation and search patterns, and the sites to use, and bulk by
adjusting movement rates and thresholds.

In this chapter we investigate methods to restore a predefined data layout after ev-
ery pointer update, which we will call ‘perfect data movement’ . The data movement is
‘perfect’ in the sense that the layout is always restored, not that this is done with the mini-
mum amount of effort, either per-update or amortised – re-laying out the entire RDS after
every update is an example of a (very inefficient) perfect data movement optimisation.

The ‘layout’ that is perfectly restored can take a number of forms. It could be a
specific ‘map’ from nodes to memory locations (e.g. for MList, list are laid out end-
to-end in order in memory), or express a family of maps, for example in terms of node
groupings (e.g. lists are clustered into pages but the pages can be anywhere in memory).
In this chapter we will sometimes use even less precisely defined layouts, for example using
variable-sized groupings. For these less precisely defined layouts, the code that restores
them must first implicitly or explicitly choose a particular map that satisfies the layout,
and then carry out the data movement.

Applying perfect data movement involves considerably more changes to a program
than either bulk data movement or reallocation. Read operations on the RDS stay the
same, but all update operations must be changed substantially to restore data layout.
The data movement code is far more tightly coupled to the program than in the previous
two chapters. We should therefore view perfect data movement simultaneously in two
ways: Firstly, as an optimisation applied to an existing simple RDS (as reallocation and
bulk), and secondly, as a way of synthesising a cache-aware RDS from a cache-unaware
one.

Viewed as an optimisation, we hope perfect data movement will produce improvements
in execution times competitive with reallocation and bulk. By relaxing the layout, we can

83

6.2. DICT

reduce the overhead of maintaining it, and therefore hopefully find a good balance. As
well as any inherent value as an optimisation, perfect data movement gives us further
insight about data movement at pointer update sites, occupying the opposite end of the
spectrum to reallocation. The latter is opportunistic, with no guarantee over layout
quality, but is simple to implement and has low overhead. Perfect data movement does
guarantee a particular layout, but has higher overhead and is significantly harder to
implement. Between these two approaches there is a large middle ground – more precise
than reallocation, but easier to implement than perfect – into which the behaviour of
perfect data movement may provide valuable insight.

Secondly, we can view perfect data movement as a method of producing cache-aware
RDSs. These RDSs are unusual because they can be read in the same way as the original
RDS, but updates must be performed in a different way to preserve data layout. It
is not clear whether this method of producing a cache-aware RDS is any simpler or
easier to automate than devising cache-aware RDS by normal methods, or whether the
resulting RDS would be as efficient as a traditional cache-aware RDS. Although we don’t
consider it in this thesis, removing any pointers internal to clusters of nodes after applying
perfect data movement might by useful to improve the performance (although read-only
operations on the RDS are now different).

In summary, perfect data movement is the process of inserting code into the update
operations of an RDS to restore a chosen layout (which may be relaxed, i.e. have some
flexibility in it) after each update. By varying the layout we can reduce the overhead
required to maintain it, and hopefully obtain good performance. We can view the appli-
cation of perfect data movement as either an optimisation applied to an existing RDS, or
as a way of synthesising a cache-aware RDS. Thus we investigate perfect data movement
for three reasons: firstly as a method of optimisation (although the implementation dif-
ficulty is high), secondly to get a better grasp on pointer-update data movement (there
is a large middle ground between perfect and reallocation), and thirdly to see if the syn-
thesised cache-aware structures compare well to existing cache-aware RDSs (noting that
perfect is at a disadvantage in terms of performance because it retains pointers internal
to clusters).

In the rest of this chapter we describe the application of perfect data movement to the
Dict and MList benchmarks.

6.2 Dict

The B-Tree – the canonical cache-aware structure for the dictionary problem – supports
operations in less than

1 + logB/24−1(N) = 1 +
log2(N)

log2(B/24− 1)

block transfers, where B is the block size in bytes1. By contrast, a binary search tree with
poor layout requires at least log2(N) block transfers. This bound is achieved to within one

1Nodes consist of a count of the number of keys (k ≤ max), k keys, k values, k + 1 pointers, and
a field indicating if a node is a leaf. The node size in bytes is thus 4(3max + 3). Assuming a node
size the same as the block size B, and assuming all nodes have the minimum number of keys (given by
k = (max− 1)/2), we obtain k = B/24− 1.

84

6.2. DICT

block transfer if the tree is perfectly balanced. The only known upper bound is N , because
in the worst case the tree may become linearised. Furthermore, the expected height of the
tree is not known either [20], so an expected number of block transfers cannot be given.
In practice the balance we observe in the Dict benchmark is quite good – the height is
about 25 for a tree with about 220 nodes.

We will now consider the expected number of block transfers needed per operation to
maintain the layout of a binary search tree under uniformly distributed pointer updates.
We assume that the tree is complete and of height H. We assume that the layout uses
complete clusters of height h = log2(B/16) (16 bytes per node). We also assume that H
is a multiple of h, and that H is large compared to h.

Layout is maintained simply by re-laying out the cluster the pointer update is in, and
all clusters below in the tree. The analysis can be found in the appendix in §A.1. The
number of block transfers needed for an operation (a delete then an insertion) is

4H

h
+ c =

4 log2(N)

log2(B/16)
+ c

whereas an unoptimised tree costs
2H + c′

where c and c′ are small. Thus, provided h > 2, maintaining clusters is worthwhile. For
a 128 Byte line size and 16 Byte node size, h = 3. The number of blocks accessed is the
same O() as the B-Tree, but about 3 times more numerically, so unless the instruction
costs of the B-Tree are much higher than reclustering, we expect B-Trees to be more
efficient than perfect data movement.

In summary, for Dict the simple approach of re-laying out the modified cluster and
those below appears promising, although our analysis depended on the tree being well-
balanced. This approach has the advantage that it is not very tightly coupled to the
update code – all that is required is to identify which cluster the pointer update was in (the
‘updated cluster’), and then to re-lay it out, and all clusters below it. The disadvantage of
this simple approach is that a large number of node movements may take place – at least
a cluster’s worth per update. Later in this section we will investigate better solutions
that move the minimum number of nodes required for the first d levels of clusters below
(and including) the updated cluster. The simple approach is the ‘depth zero’ solution in
the sense the data movement performed depends on the form of the update operation for
the first zero levels of clusters – in other words, we resort to a simplistic re-laying out of
clusters immediately. We show in this section that a ‘depth two’ solution – performing
‘update-sensitive’ node movement for the updated cluster and the level below – achieves
near-minimal total node movement experimentally. In the evaluation chapter we will
discover whether minimising node movement is necessary to obtain good performance,
and to what depth. In other words, we will determine how dependent on the form of the
update the optimisation must be to perform well. We consider only small fixed depths
because it is simple than infinite depth, and the distribution of pointer updates suggests
that only a small depth is required (96% are in the bottom two clusters for a perfectly
balanced tree2, and we know that tree in Dict is quite well balanced).

2The tree consists of 1e6 ∼ 220 nodes, and is clustered from the top, so the bottom two levels of cluster
correspond to the bottom five levels of the tree, if the tree is complete. Thus, 1− 2(20−5)/220 = 96%.

85

6.2. DICT

This use of only a small depth is feasible precisely because the tree is well balanced,
and the distribution of pointer updates is such that most updates are near the bottom of
the tree. Thus, the results given for perfect data movement represent the upper bound
on performance that can be obtained for a binary tree. It is quite plausible that data
movement would be applied to unbalanced trees, in an attempt to use data movement
to bridge the performance gap between a vanilla tree and a harder-to-implement self-
balancing tree. By contrast, if pointer updates are not usually near the bottom of the
tree, the fundamental assumption of perfect data movement is contradicted – namely
that it is clearly not worthwhile maintaining layout for parts of the tree that are used too
infrequently (the result of 2H + c′ from the analysis on page 85 does not hold). Instead, a
‘lazy’ method of restoring a known data layout could be used (cf. Bulk data movement’s
technique of embedding data movement in a program’s existing traversals, see §5.5).

In the rest of this section we discuss the two layout we will maintain using perfect
data movement, and review the form of the pointer updates occurring to the tree. We
will then describe the implementation of the optimisation for the two layouts.

6.2.1 Choice of layout

We will use two different layouts. Firstly, the ‘BFS’ layout – each line contains a cluster
of nodes obtain by breadth-first search, and the children of the cluster are dealt with
recursively3. The second layout is called the ‘fixedHeight’ layout and is formed as follows:
Starting from the root x of the tree, we allocated x, x’s children and x’s grandchildren in a
line. We then recursively repeat the same procedure starting from x’s great-grandchildren.
Note that with 16 byte nodes and 128 byte lines we can fit 7 nodes – x and all its children
and grandchildren – into one line, with room for some header fields. If this did not hold,
we could use the first k of x’s grandchildren. Note that this procedure leaves some unused
space in lines if the tree is not complete and is thus not as effective a layout as BFS.
However, it is simpler to maintain – for example the space in lines means that insertions
are often very quick.

Note that both these layouts specify a unique grouping of nodes in cache lines – the
data movement code only has to decide how to achieve the grouping, rather than deciding
on a grouping. Other layouts are possible. We won’t consider layouts that involve pages,
because the investigation in §3.4.2.1 suggested that the benefits will be slight. We also
do not consider relaxing node density (beyond the relaxation that occurs with the unused
space with the fixedHeight layout).

In terms of static behaviour of the two layouts, experiments show that fixedHeight
is at most 5% slower than BFS – which is unsurprising because the balance of the tree
in Dict is good (maximum depth of 25 for ∼ 220 nodes).

6.2.2 Pointer update operations

The insert and delete operations on the tree are composed of three different pointer
updates, attach, cut and substitute:

• Insertion: node attached to null pointer field

3In the methodology chapter we referred to this as the ‘goodLine’ layout, but here we call it to
‘BFS’ to emphasise how the clusters are built.

86

6.2. DICT

depth-zero depth-one depth-two
mF: attach: recluster onAttach(recluster) onAttach(merge)

cut: recluster onCut(recluster,recluster) onCut(split,merge)

mN: attach: recluster onAttach(recluster) onAttach(merge)
cut: recluster copy, onCut(recluster,recluster) copy, onCut(split,merge)
substitute: copy copy copy

Figure 6.1: Functions used for different depths of perfect data movement for the BFS and
fixedHeight layout for Dict’s moveNode (mN) and moveFields (mF) variants. See §6.2
for details.

• Deletion (1-child case): node x with zero or one child cut out of tree

• Deletion (2-child case, moveNode): x’s successor or predecessor (in key order), y, is
found, and cut from the tree. Node y is substituted for x.

• Deletion (2-child case, moveFields): x’s successor or predecessor (in key order), y,
is found, and cut from the tree. The key and value of y are moved into node x.

Note that moveField’s 2-child delete is equivalent to following moveNode’s procedure,
and then freeing node x and moving node y to the same location in memory. This is the
difference between moveNode and moveFields: With moveFields we assume that we
are allowed to free x during delete. In the moveNode variant, it is assumed that delete
cannot free x, stopping delete from reusing its memory location, significantly increasing
the rate of degradation to the tree. This means when repairing layouts using perfect data
movement we cannot reuse x’s cell.

6.2.3 Enforcing the BFS layout

Perfect data movement is achieved using a number of different functions (copy, recluster,
onAttach, onCut, merge and split), whose implementation is different depending on the
layout (BFS or fixedHeight). We write for example BFS.copy or fixedHeight.copy to
talk about a particular function.

The functions are used as shown in Fig. 6.1 to implement depth-zero, depth-one and
depth-two perfect data movement for Dict. (Recall the depth is the depth, measured in
clusters, to which layout is restored using a minimal number of node movements. Below
that depth näıve reclustering is used).

6.2.3.1 moveFields

Recall that each line contains exactly zero or one clusters. This makes the implementation
simpler and more efficient. The count of nodes in the line is the size of that line’s cluster,
so it is not necessary to use BFS to see how large a cluster is. Cluster boundaries are
equivalent to line boundaries, and can be kept track of with low overhead as the tree is
descended. Throughout this section, denote the maximum number of nodes that can fit
in a line n.

87

6.2. DICT

Depth-Zero: The simplest way to to repair layout after the attach and cut operations is
to use the recluster function:

BFS.recluster(node *x) Creates a new cluster with x as root using copy, and then recurses
over the tree by calling recluster(y) for all children y of the cluster (nodes who aren’t in
the cluster but whose parents are).

BFS.copy(node *x) Creates a new cluster with x as root, by finding by BFS the ≤ n
nodes that should be in x’s cluster, and moving them all to an empty line.

Note that this function is identical to the body of the twoSpace bulk data movement op-
timisations for Dict. All that must be done for attach and cut is to identify the correct
x to recluster from – this can be done by observing line transitions in the insert and
lookup operations, respectively. Thus after a modification, the tree is always perfectly
clustered. This approach works, but moves many more nodes than necessary – minimal-
node-movement reclustering is performed to a depth of zero.

Depth-One: We will now discuss how we can reduce the number of node movements. The
first step is to specialise based on whether an attach or a cut is performed, using the func-
tions onAttach and onCut: (Example actions of these functions can be found in Fig. 6.4
and Fig. 6.5)

BFS.onAttach(function fn1)(node *P, node *p, int i, node *x): This function updates
node p’s ith child pointer to point to x, preserving clustering. P is the root of p’s
cluster. First the function discovers if x should be in cluster P or whether a new cluster
should be created for it. If cluster P is not full – which is discovered in constant time
by asking the memory manager how many nodes are in the line – x is moved to P’s
line. Otherwise, we obtain the n nodes that should be in cluster P by BFS. If x is not
found, it is allocated in an empty line (a new cluster). Otherwise, the BFS is continued
for one more node to find the node e in cluster P that should be evicted in favour of x.
e is evicted by calling fn1(e), which moves it out of P’s line, creating space for x.

BFS.onCut(function fn1, function fn2)(node *X, node *x): This function is used to pre-
serve clustering when x is cut from the tree. X is the root of x’s cluster. The cut may
bring some other nodes into the cluster and evict others. If X is not full before the cut
(because the subtree below X’s root contains less than n nodes), then nothing needs to
be done when x is cut – cluster X shrinks by one node. If X is full before x is cut, then
some node movement may occur. After x is cut, the n or n-1 nodes that should be in
X are found by BFS. Any node y not already in the x is moved in and its children c0,
c1 dealt with by fn1(c0), fn1(c1). The first incoming node reuses x’s space. To create
space for further nodes, the BFS is continued to find the node e that should be evicted
from cluster X. This node is evicted by calling fn2(e). Note that there are a few special
cases where a BFS is not required – such as when x was on the boundary of the cluster.

These functions repair the first cluster using a minimal number of node movements. After
the first cluster is repaired, some clusters further down the tree may have to be repaired.
This can be done most simply by calling recluster, giving a solution that performs minimal
reclustering to a depth of one.

88

6.2. DICT

Depth-Two: To increase the depth of minimal-node-movement reclustering to almost two,
the calls to recluster in the above are replaced with calls to merge and split (example
actions of these functions can be found in Fig. 6.6).

These functions are used either to promote a node into the cluster above (splitting its
current cluster), or to push it out the bottom of a cluster (merging the two clusters below
it). The implementation of split performs the minimum number of node movements, but
merge does not always (but is close in practice), and so these functions give a depth of
almost two.

BFS.merge(node *X, node *x): This function evicts node x and any of its descendants
from the cluster rooted at node X. On entry, the cluster at X may be smaller than n,
but the tree is properly clustered below that cluster. If x is not on the boundary of
the cluster, recluster(x) is used to build a new cluster rooted at x. Otherwise, x is on
the boundary of the cluster, and its children are roots of two (possibly null) clusters.
A new cluster is built rooted at x reusing one of the children’s cluster’s lines, chosen to
minimise node movements. Below this recluster is used to recluster the tree.

BFS.split(node *x): x is the root of a cluster. This function splits this cluster into two
new clusters rooted at x’s children (reusing x’s cache line if appropriate), then repairs
clustering below that. The nodes that will form the two new clusters are found by
BFS, and then the minimal numbers of nodes are moved to create them, reusing x’s
line. Below this, recluster is used to recluster the tree.

6.2.3.2 moveNode

Maintaining the BFS layout for moveNode is similar to moveFields, with two impor-
tant differences. The use of the functions is given in Fig. 6.1.

Firstly, we cannot simply invoke onCut. Recall that in moveNode we are assuming
that the node x that is deleted is used by the mutator for some purpose and so its cell
cannot be reused by the Delete operation. Eventually the node is freed so memory is not
exhausted. If the new cluster contains a line’s worth of nodes, we clearly must move all
the nodes into an empty line to cluster them. If the new cluster is smaller, it might be
possible to leave the nodes in the old line, sharing it with the node x, but this increases
the complexity and overhead of the optimisation because cluster size is now no longer the
same as the number of nodes in the line – in particular it means that the cluster must be
moved to a new line later on if it needs to grow. It also means that the time that it takes
for the benchmark to free x becomes another parameter of the benchmark that can be
adjusted. Thus even if the new cluster fits in the line, it is better to move it to an empty
line using the copy function, before invoking onCut.

Secondly, during the delete 2-child case, recall that when deleting node x, its successor
or predecessor y is substituted for it. As we argued above, reusing x’s cell is not possible,
and so to repair the cluster, it must be moved to a new empty line using copy, rather than
simply moving y into x’s cell.

6.2.4 Enforcing the fixedHeight layout

Enforcing the fixedHeight layout is much simpler than BFS. Lookup is changed to track
cluster boundaries in a different way (using the depth from the root of the tree), but the

89

6.2. DICT

fixedHeight.copy(node *x) Creates a new cluster with x as root. x and its children and
grandchildren are moved to an empty line.

fixedHeight.recluster(node *x) Creates a cluster with x as root using copy, then calls
itself for all children y of the cluster (nodes who aren’t in the cluster but whose parents
are).

fixedHeight.onAttach(function notUsed)(int level, node *p, int i, node *x): Updates node
p’s ith child pointer to point to x, preserving clustering. level is the level of the tree the
node x is on, which determines whether x should be in p’s cluster. If so it is moved
there (there is always space by construction), otherwise it is moved to an empty line.

fixedHeight.onCut(function fn1, function notUsed)(int level, node *x): x is cut from the
tree, preserving clustering. level is the level of the tree the node x is on. When x is
cut, all of its descendants are moved up by one node. One row of these may cross the
cluster boundary, and are simply moved into the cluster’s line (there is always space, by
construction). No nodes leave the cluster when a cut occurs. The descendants of any
node that crosses the cluster boundary and joins x’s cluster are dealt with by calling fn1.

fixedHeight.split(node *x): Exactly the same as the split function for BFS, except
instead of finding sets of nodes by calls to BFS, clusters are constructed using the root
node x and its children and grandchildren.

fixedHeight.merge(node *x): Not needed for fixedHeight.

Figure 6.2: The functions used for perfect data movement using the fixedHeight layout for
Dict. See §6.2.4 for details.

insert and delete functions do not need to be changed. The bodies of the onAttach, onCut,
recluster and split functions are changed, and merge is no longer required. See Fig. 6.2 for
descriptions of the functions.

6.2.5 Discussion

6.2.5.1 Overhead

For BFS, we can perform minimal node movements to almost a depth of two, and exactly
a depth of two for fixedHeight. Because of the distribution of pointer updates, this
provides almost minimal total node movements. We can deduce this by observing how
many potentially unnecessary moves are being performed – ones that occur in functions
which have not been shown to move the minimal number of nodes.

The functions onAttach, onCut, merge and split have been constructed so that any node
movements they perform directly (not by calling another function) are necessary. Observe
for example during split and merge that lines are reused in a way to minimise the total
number of node movements. The function recluster does not move nodes itself, it uses the
copy function. The copy function is also used during deletions for the moveNode variant,
but the node movements it performs are necessary. Thus, we can count the number of

90

6.3. MLIST

variant depth
potentially unnecessary nodes moved

moves (%) /operation

moveNode 0 70 7.0
1 10 3.2
2 .75 3.0

moveFields 0 100 5.0
1 33 1.0
2 2 0.8

Figure 6.3: The effect of varying the depth to which cluster rebuilding is performed using the
minimal node of movements, for the BFS layout. The third column shows the proportion of
node moves that occur in functions that are not constructed to perform the minimal number of
movements. Fourth column shows average number of nodes moved per operation.

potentially unnecessary moves (moves which may be unnecessary), we simply count the
nodes moved by copy when called by the recluster function.

Fig. 6.3 shows how the number of potentially unnecessary node movements falls to 2%
or less when the depth is increased to two, the majority of which is achieved by depth
one. In other words, we have demonstrated that overhead measured in number of node
movements can be minimised in practice by concentrating on only the first two levels
of clustering using a few simple functions. Moreover, most of the reduction is obtained
by only concentrating on intelligently reclustering the updated cluster. Thus, devising
algorithms to performing minimal node movement to infinite depth is not necessary, sim-
plifying the implementation of perfect data movement (and least while the assumptions
regard tree balance and distribution of pointer updates hold, see the discussion in §6.2 on
page 85).

6.2.5.2 Memory

Perfect data movement requires a supply of empty blocks, and thus does not have clearly
stated memory usage – worst-case memory mworst will probably be higher than the mem-
ory in use m. By contrast, reallocation and bulk data movement’s 1space have memory
strictly bounded by a value 2 ≥ m > 1 chosen by the applier, and bulk 2space uses a fixed
value of m = 2. Worst-case memory as calculated in Appendix A.2 is in [4, 4.2] for both
layouts. Thus both methods have much larger mworst than the values of m we intend to
use for reallocation and bulk. We will investigate how m relates to mworst in the chapter 7.

6.3 MList

The optimal layout for MList is PcLco, using the notation of §3.4.2.2. We will implement
perfect data movement to maintain this layout, and four others: PcLco, PcLm, PmLc,
Pm (in order of decreasing layout quality). We maintain these using three different
components:

91

6.3. MLIST

clustStrict(blockSize) The nodes of each list are kept clustered in order
within blocks of size blockSize bytes.

clustNonStrict(blockSize) As above, except nodes are not kept in order within
blocks.

min(smallBlockSize,
largeBlockSize)

Supports allocation and freeing of blocks of size
smallBlock, using the minimal number of blocks of
size largeBlock, per list.

As with the cache-aware structures [6, 25, 60] to implement clustering we will relax node
density. Relaxing memory to achieve minimisation isn’t necessary; as we demonstrate
later maintaining the exact minimum can be done with a small constant number of block
transfers. The four layouts are maintained using the components as:

PcLco clustStrict(pageSize)
PcLm clustNonStrict(pageSize)
PmLc clustStrict(lineSize) + min(lineSize,pageSize)
Pm min(nodeSize,pageSize)

Notice that min is used for Pm to support allocation/freeing of nodes, but used for PmLc
to support allocation/freeing of lines which are used by the clustStrict component.

Varying the page size used allows us to reduce memory usage, and to reduce the cost
of updates (at the expense of layout) for strict clustering. Thus we will vary the size
of pages used, between twice the machine page and equal to the line size (apart from
where min(lineSize,pageSize) is used, where we require pageSize > lineSize). This gives
four families of optimisation as summarised below – notice that the Lm and Lc layouts
are also achieved by varying page size:

Shorthand Set Set includes...
min {min(cell, b) : b ∈ B} Lm, PmLm

clustStrict {clustStrict(b) : b ∈ B} Lc, PcLco

clustNonStrict {clustNonStrict(b) : b ∈ B} Lc, PcLm

clust[Non]Strict+min {clustNonStrict(line) + min(line, b) : b ∈ B\{line}} PmLc
∪ {clustStrict(line) + min(line, b) : b ∈ B\{line}}

(for B = {27, 29, 211, 212, 213}, where lineSize= 27 = 128 and pageSize= 212 = 4096)

In the rest of this section we discuss how minimisation and clustering is achieved, for
the latter considering a simpler high-overhead version and a more complex low-overhead
version (cf. Dict’s depth=0 and depth=2).

6.3.1 Minimisation

Minimisation is performed using a simple algorithm. Recall that the aim of minimisation
is to support the allocation and freeing of small blocks (cells or lines) using the minimal
number of large blocks (line or page). In other words for each list, there are some number
of large blocks who have all their small blocks allocated, and at most one large block with
only some of its small blocks allocated.

92

6.3. MLIST

To allocate a new small block, the partially-used large block P is used, if the list has
one. If the list had no partially-used large block, an empty block is claimed and a small
block is allocated in it. Thus under allocation the number of partially-used large blocks
for a list is either zero or one.

Unless A happens to be the list’s partially-used large block, or the list does not have
a partially-used large block, freeing a small block from some large block A will mean
that there are two partially-used large blocks associated with the list. This situation is
prevented by moving one of the partially-used large block’s small blocks into A.

Since any large block may become the list’s partially-used large block, some mechanism
for moving the small blocks must exist. Specifically, the parent of each small block must
be known. If the small blocks are lines, this information can be simply stored in the
line header with little space overhead and update overhead. If the small block is a cell,
we must add a parent pointer to each cell, increasing M by a factor of 1.5. The parent
pointers in cells should be considered not as a change of node definition, but as auxiliary
information attached by the memory manager or optimisation to each cell. Maintaining
parent pointers when small blocks are cells or lines does not involve any additional effort,
because all pointer-update operations on the RDS already have optimisation code applied
to them.

There certainly exist minimisation schemes that don’t require a parent pointer to be
added to each small block, and where nodes may have more than one parent, or the
increase in M by a factor of 1.5 is undesirable, such a scheme may be more attractive.
Such schemes probably achieve minimisation within some bound rather than exactly. We
use the exact scheme here because the implementation is simple, consisting of only a few
lines of code.

6.3.2 Clustering

Firstly, we will describe the layout that is maintained by strict and non-strict clustering,
and then we will discuss two methods of maintaining it – simple and complex clustering.

With strict clustering, clustStrict(size), nodes are stored in order aligned to the bottom
of each block, whose size in bytes is given by the size parameter. The number of nodes n
in the block is stored in a field in the block header – the pointer to the next block is thus
the pointer of the nth node.

With non-strict clustering, clustNonStrict(size), nodes are stored in any order, possibly
with gaps between them. The address of the last node x in the block is stored within the
block header, thus the address of the next block is given by node x’s pointer.

Note that in the strict case, pointers only have to be updated at block boundaries,
because nodes are always stored in order, but in the non-strict case, pointers always have
to be updated. Storing nodes in order increases node density and aids the hardware
prefetcher (for large blocks) but inserting a node into a block is ≤size/8 node movements
rather than one (eight bytes per node). Thus it is hard to tell when non-strict or strict
clustering will be more effective.

Note also that blocks have been augmented with an inter-block pointer (directly for
strict, indirectly for non-strict). Recall that the MList benchmark selects the place to
perform the insertion, or the node to delete, by randomly choosing some i ∈ [0, listLength)
and then pointer-chasing to the ith node in the list. Together with a count of the number

93

6.3. MLIST

of nodes in each block, the inter-block pointer could be used to very rapidly traverse to
the correct node. However, as stated in §3.2.2, we explicitly assume that all nodes before
the ith must be accessed before the insertion and deletion (as if they were being checked
one by one until the correct location for insertion or deletion is found). This means that
the inter-block pointer cannot be used in the main program to reach the ith node. The
optimisation is allowed to use the inter-block pointers to scan forward in the list, because
it is concerned only with layout of nodes (particularly the number of nodes in a block),
not which nodes are found.

Various other clustering layouts beyond strict and non-strict are possible, which we
do not investigate in this thesis. If a block contains k nodes, we may store them in cells
x, x + 1, . . . , x + k − 1, where x is allowed to vary. A dense, linear layout is obtained,
but update costs are less because nodes may be popped or pushed from either end in
O(1). Secondly, we may store nodes in order, but allow gaps. When no gap is available
for an insertion, simple O(k) shuffling up is performed to create a gap. This scheme
would perform well because it is clearly cheaper in terms of node movements than strict
clustering, while achieving a (sparse) linearised layout. Update costs are still higher than
non-strict clustering, however.

Now we describe two methods to preserve the clustered layout, of different sophis-
tication and overhead, simple and complex clustering (c.f. depth=0 and depth=2 for
Dict).

6.3.2.1 Simple clustering

This is possibly the simplest method of density-relaxed clustering. When a block over-
flows, a node is popped out of the current block into the next one, and so on, until an
overflow doesn’t occur or the end of the list is reached. Similarly, underflows are dealt
with by filling gaps, again working only forward in the list. By adjusting the minimum
density of the blocks, reclustering work may be reduced, at the expense of layout and
memory usage.

Assume the list is of length N , and blocks hold between min and max nodes. The
insert or delete operation plus the reclustering work accesses the whole list in the worst
case, thus at most N/min blocks are accessed. This is assuming uniformly distributed
updates, but worst-case reclustering. This is at most 16N/B block accesses per in-
sert/delete+reclustering, where B is the block size in bytes and the nodes are 16 bytes.

6.3.2.2 Complex clustering

As discussed in §2.2.4.2, there are various cache-efficient linked list implementations, all
based around relaxing node density. Using blocks that are at least 50% full is very simple,
because when a block overflows or underflows, the correct density can be restored using the
nodes of at most one adjacent block and one allocation or freeing of a block [6]. In the I/O
model, again assuming uniform updates and worst-case reclustering, the traversal takes
N/2min block transfers, updates take 2 block transfers. min is fixed at (B/8)/2 = B/16,
assuming 8-byte nodes, and thus 2 + 8N/B block transfers are required.

The more complicated ‘VCL’ scheme of Rubin et al. [60] allows a variable minimum
density, which can thus be used to trade-off improved traversal performance for increased
cost of updates. Blocks have between min and max keys in them, stored in order, apart

94

6.3. MLIST

from the last block in the list. The only pointers are between blocks. On insertion, if a
block overflows, the next min blocks are inspected. If a block is found with less than max
nodes, the overflow is dealt with by shuffling nodes until the block is reached. Similarly
if the end of the list is encountered, shuffling occurs and a new block is allocated. If
min blocks with max nodes are found, max −min empty blocks are allocated, and the
min × max + 1 nodes evenly distributed over the max blocks. When underflow occurs
during deletion, nodes are shuffled to restore density if a block is found close enough.
If max blocks with min nodes are found, max − min blocks are freed, and the nodes
redistributed to even density in the remaining min blocks.

Using a VCL scheme to perform node clustering (retaining internal pointers), the
number of blocks accessed is bounded by min + max ≤ max + max = B/8 + B/8 = B/4
(scan forward max blocks and move to min blocks, or scan forward min blocks and move
to max blocks. Each node is 8 bytes). This gives a cost of the insert or delete operation
as (N/2)/min + B/4 = (N/2)/(B/16) + B/4 = 8N/B + B/4. This is worse than the
half-full method by a small factor, but roughly half the cost of simple clustering, for long
enough lists:

Clustering method Block transfers
Simple 16N/B
Complex - 50% full blocks 8N/B + 2
Complex - VCL 8N/B + B/4

We use the VCL scheme rather than the 50% full scheme because it allows finer control
over memory usage (particularly worst case), and because we found in §3.5.2 that is
better in practice, at least when internal pointers are removed. Furthermore, schemes
similar to VCL have been used practically, e.g. as a suggested cache-aware C++ STL list
implementation [25].

6.3.3 Memory usage

For Dict, we use only line-sized clusters, based on the observation made in the method-
ology chapter that page performance is relatively unimportant, but incurs large overhead
to maintain due to the increased number of nodes within a page. Furthermore, apart
from choosing between either fixedHeight or BFS, we have no control over memory.
For MList, we do have control over actual and worst-case memory usage, by varying the
minimum number of nodes in a block when clustering, and by varying block size. Thus,
for MList, we’re interested not only in performance but the relationship of performance
and memory. Worst-case memory can be calculated as follows:

clustStrict(blockSize), clustNonStrict(blockSize): At any given time, each of the v lists will
have at most one block with fewer nodes than the minimum number allowed min. It
is clear that to maximise the number of blocks in use all other blocks in the list must
have min nodes in them. We can write the total number of nodes T in all the lists as
a.min + (T − a.min), where a is the total number of blocks at minimum density, and
T −a.min is the number of nodes that occupy blocks at less than minimum density. Note
that T − a.min ≤ v.(min− 1), since each list can have at most one block with occupancy
min − 1 or less. For given a, memory allowance is maximised if the (T − a.min) nodes

95

6.4. DISCUSSION

are spread between as many blocks as possible (up to one per list). The total number
of blocks is therefore given as a + least((T − a.min), v), which divided by the minimum
number of blocks (T/max) gives the memory usage. For given T and v, the maximum
memory usage is found by varying a, which can be done analytically or by computation.

min(smallBlockSize,largeBlockSize): As above, using block size largeBlockSize, and min =
max.

6.4 Discussion

Perfect data movement is the process of modifying the update operations of an RDS so
a chosen data layout is restored after each update. For Dict, we restore two clustered
layouts: clusters are line-sized and are filled either by BFS (and are therefore full except
near the leaves of the tree) or are of constant height (and therefore may have gaps in them).
The first d ∈ [0, 1, 2] levels of clusters, starting from the cluster the pointer update was in,
are rebuilt using the minimal number of node movements. After this, clusters are rebuilt
simply by moving the nodes to an empty line.

For MList, we maintain several different layouts of the form PxLx as described in
§3.4.2.2. Nodes are clustered either in order and densely packed (strict clustering) or
anywhere within the block (non-strict clustering). Clustering is performed using either a
simple high-overhead method or a more complex lower-overhead method similar to Rubin
et al.’s VCL structure [60]. Minimisation (maintaining a supply of small blocks using a
minimal number of large blocks) is performed using a simple algorithm which requires
augmenting each small block (cell or line) with a parent pointer.

We may view the application of perfect data movement to an RDS in two ways:

1. As an optimisation applied to an existing RDS

2. As a method of creating a new cache-aware RDS

Both are valid viewpoints depending on the details. Viewing as an optimisation is attrac-
tive because the shape of the RDS is the same, and hence read operations are unchanged.
Although updates are far more complicated, they can still be decomposed into the part
of the code that changes the shape of the RDS, and other code which moves nodes in
memory – i.e. two distinct levels, one semantically significant to the program, and an-
other level only related to performance. Furthermore, specific perfect data movement
methods, such as depth-0 for Dict, do not require a great deal of implementation effort
or deep understanding of the pointer update operation (just where it is occurring), and
thus applying them automatically is plausible.

Alternatively, one may believe that this process is sufficiently complicated in general
to view it as a method of producing a new RDS, not optimising an existing RDS. The
depth-2 solution for Dict involves specific knowledge of the type of update occurring –
attaching, cutting and substitution. It seems likely that any compiler or programmer
able to perform this analysis and apply perfect data movement would be able to alter the

96

6.4. DISCUSSION

program to use a cache-aware structure. Therefore we would rather view the application
of perfect data movement to an RDS as a method of synthesising cache-aware RDSs, not
optimisation.

Either of these two view points is valid, and we will address both during the evaluation.
As an optimisation, if perfect data movement is less effective than reallocation, we may
draw conclusions about the correct balance between layout quality and overhead, and
perhaps also that low-overhead approximate methods are better than more precise ones.
If bulk data movement out-performs reallocation and perfect, we might conclude that
pointer-update layout maintenance is less powerful than en-masse layout maintenance.

As a method of constructing a new cache-aware RDS, we will investigate how close
perfect data movement comes to the performance of the traditional cache-aware RDSs we
considered in §3.5 (in other words, to what extent can the gap between a proper cache-
aware structure and a vanilla structure augmented/optimised with data movement code
be bridged). For MList, we are focusing on two levels of the memory hierarchy, and in
particular are using minimisation, which for short lists can achieve similar miss rates to
clustering, but with lower overhead.

We note that the investigation of Dict will give an upper bound on the performance
of the perfect data movement optimisations (but such an investigation is still valuable):
Firstly, pointer updates are uniformly distributed, meaning that most updates are near
the bottom of the tree. Secondly, the tree has been shown to have good balance in
practice. The second point is relevant when comparing perfect data movement against
a B-Tree, because the latter must expend considerable effort keeping itself balanced (the
clear next step is to investigate runtime data movement for self-balancing trees, but we
do not consider this extension in this thesis).

Whether viewed as an optimisation or a new cache-aware structure, there are several
points we will investigate in the evaluation chapter. Unlike reallocation and bulk, per-
fect data movement requires a supply of empty blocks, which produces different actual
and worst-case memory usages. We will therefore investigate reducing the block size for
MList to see if worst-case can be reduced without damaging performance (there are also
probably performance reasons to use smaller blocks). We will also be interested in the
relationship between performance and the layout quality that is maintained – for Dict,
use of fixedHeight instead of BFS, and for MList, several different layouts that are
not as good as PcLco. Finally, for both benchmarks we are interested in how closely cou-
pled to updates the data movement code must be. For Dict we will investigate whether
depth-0 is effective, and if not, what depth is required to get the best performance, and
for MList we will compare simple and complex clustering.

97

6.4. DISCUSSION

c

x

−→
c

x

A
ll
o
ca

ti
o
n

in
p
a
re

n
t

cl
u
st

e
r:

�
x

al
lo

ca
te

d
in

li
n
e

of
cl

u
st

er
c

x

c

−→
x

c

c’

C
re

a
ti

o
n

o
f
n
e
w

cl
u
st

e
r:

�
x

al
lo

ca
te

d
in

n
ew

li
n
e,

cr
ea

ti
n
g

n
ew

cl
u
st

er
c′

x
e

c

−→
x

e
c’c

E
v
ic

ti
o
n

o
f
n
o
d
e

fr
o
m

cl
u
st

e
r:

�
e

m
ov

ed
to

n
ew

li
n
e,

cr
ea

ti
n
g

n
ew

cl
u
st

er
c′

.
�

x
al

lo
ca

te
d

in
li
n
e

of
cl

u
st

er
c.

Figure 6.4: Examples of the operation of the BFS.onAttach function. The node being attached
is labelled X and the pointer it is being attached to is dashed. Lines on the diagrams indicate the
boundaries of clusters. If a set of nodes is encircled, this indicates that that set of nodes inhabit
the same cache line and no other nodes inhabit that cache line. If the line on the diagram is not
closed, this indicates that there may be other nodes in the cache line. All non-null pointers are
shown using line-segments, but the node the pointer points to may be omitted – i.e. if a node
has no line segments below it, it is a leaf node, and if a node a has a line segment that does
not end in a node, this indicates that there is some subtree of at least one node attached to a’s
pointer. A dashed line segment above some node b that does not end in a node indicates that
there may be nodes above b in the tree.

98

6.4. DISCUSSION

x

c

y

−→
c

y
C

u
t

in
a

p
a
rt

ia
ll
y
-f
u
ll

le
a
f
cl

u
st

e
r:

�
x

fr
ee

d
,
cl

u
st

er
c

sh
ri

n
k
s

b
y

on
e

n
o
d
e

x

c

y

−→
c

y

C
u
t

in
a

fu
ll

le
a
f
cl

u
st

e
r:

�
x

fr
ee

d
,
cl

u
st

er
c

sh
ri

n
k
s

b
y

on
e

n
o
d
e

c x
y

z
d
−→

yc

z

C
u
t

in
fu

ll
n
o
n
-l
e
a
f
cl

u
st

e
r:

�
B
F
S
.r
ec

lu
st

er
or

B
F
S
.s
pl

it
(S

ee
F
ig

.
6.

1)
u
se

d
to

sp
li
t

cl
u
st

er
d

in
to

tw
o

cl
u
st

er
s,

an
d

re
cu

r-
si

ve
ly

re
cl

u
st

er
th

e
tr

ee
b
el

ow
.

If
B
F
S
.s
pl

it
is

u
se

d
,
th

e
li
n
e

of
cl

u
st

er
d

w
il
l
b
e

re
u
se

d
fo

r
on

e
of

th
e

n
ew

cl
u
st

er
s.

�
z

m
ov

ed
in

to
li
n
e

of
cl

u
st

er
c

y
z

x

c

−→
y

z

c

C
u
t

in
fu

ll
n
o
n
-l
e
a
f
cl

u
st

e
r:

�
n
o
d
e

z
m

ov
ed

ou
t
of

th
e

li
n
e

of
cl

u
st

er
c

u
si

n
g

ei
th

er
B
F
S
.r
ec

lu
st

er
or

B
F
S
.m

er
ge

(S
ee

F
ig

.
6.

1)
,

an
d

th
e

tr
ee

is
re

cu
rs

iv
el

y
re

cl
u
st

er
ed

b
el

ow
.

�
fo

u
r

n
ew

cl
u
st

er
s

ar
e

cr
ea

te
d

w
it
h

th
e

gr
an

d
-

ch
il
d
re

n
of

y
as

ro
ot

s,
u
si

n
g

ei
th

er
B
F
S
.r
ec

lu
st

er
or

B
F
S
.s
pl

it
,

an
d

th
e

tr
ee

is
re

cu
rs

iv
el

y
re

cl
u
s-

te
re

d
b
el

ow
.

�
y

an
d

it
s

ch
il
d
re

n
m

ov
ed

in
to

th
e

li
n
e

of
cl

u
s-

te
r

c

Figure 6.5: Examples of the operation of the BFS.onCut function. See Fig. 6.4 for details of
how to interpret these diagrams.

99

6.4. DISCUSSION

L
R

C x
−→

xC
B

F
S
.m

er
g
e:

�
N

ew
cl

u
st

er
b
u
il
t
w

it
h

x
as

ro
ot

,
re

u
si

n
g

ei
th

er
L

’s
or

R
’s

li
n
e.

�
T

h
e

tr
ee

is
re

cu
rs

iv
el

y
re

cl
u
st

er
ed

th
e

n
ew

cl
u
st

er
u
si

n
g

th
e

re
cl

us
te

r
fu

n
ct

io
n
.

�
C

lu
st

er
C

h
as

sh
ru

n
k

b
y

on
e

n
o
d
e

x
C

−→
x

B
F
S
.s
p
lit

:
�

N
o
d
e

x
h
as

b
ee

n
m

ov
ed

ou
t

of
it

s
p
re

v
io

u
s

cl
u
st

er
C

b
y

th
e

ca
ll
er

�
T

w
o

n
ew

cl
u
st

er
s

b
u
il
t

w
it
h

ch
il
d
re

n
of

x
as

ro
ot

s,
re

u
si

n
g

li
n
e

C
�

T
h
e

tr
ee

is
re

cu
rs

iv
el

y
re

cl
u
st

er
ed

b
el

ow
u
si

n
g

re
cl

us
te

r

Figure 6.6: Examples of the operation of the BFS.merge and BFS.split functions. See Fig. 6.4
for details of how to interpret these diagrams.

100

Chapter 7

Evaluation

In this chapter we evaluate the performance of each method of optimisation, comparing
each method to the others and to the cache-aware structures. We then discuss further
work, including how the methods may be applied automatically.

7.1 Reallocation

In this section, we investigate what sort of searching and coallocators are suitable for the
different (re)allocation sites in the benchmarks, and determine whether existing general
coallocators (ccmalloc) perform well, or whether we have to specialise the coallocators and
searches per-benchmark. The relative importance of performing data movement at the
different sites is investigated. Finally we investigate whether focusing on lines or pages
or both is more effective.

7.1.1 Dict

The performance of reallocation for Dict compared to the upper bounds (§3.4.3) is shown
below:

v maximum
reallocation

m=1.1 m=2.0
moveNode 55% 24 35
moveFields 36 13 19

In the rest of this section, we will consider which sites are useful for reallocation and
how they interact. We will then investigate the value of attempting to improve TLB
(page) performance as well as L1/L2 (line) performance, and finally consider the effect of
memory.

7.1.1.1 Choice of sites and hints

Firstly, we will investigate which sites are most useful, and what form of searching is most
effective. This investigation is performed by turning a subset of sites off (i.e. forcing a
null strategy), and then varying the strategies used at all the other sites to find the best
combination of strategies. We repeat this for all subsets of sites.

101

7.1. REALLOCATION

moveNodes & moveFields:
{insert := 〈L; EL〉 × 〈parentp1

; t1〉
∧ deleteCut := 〈L; EL〉 × 〈parentp2

, childc2 ; t2〉
∧ deleteMove := 〈L; EL〉 × 〈parentp3

, childc3 ; t3〉
: ∀p1, p2, p3 ∈ {0, 1, 2, 4, 7},∀c1, c2 ∈ {0, 1, 2},∀t1, t2, t3 ∈ {false, true} }

Figure 7.1: Reallocation strategies used for the different sites for Dict, used for the experiments
in §7.1.1.1 and §7.1.1.2, and the results in Figs. 7.16, 7.18 and 7.19.

Chilimbi et al.’s experience with ccmalloc [15], and our preliminary experiments, sug-
gest that 〈L; EL〉 is a good coallocator pattern to use for all sites. Formally, where a site
is enabled, the coallocators we will evaluate are defined by the sets given in Fig. 7.1. Note
that we do all parents before children because we expect this to be the most effective (see
§4.3.1). Results can be found in Fig. 7.16 on page 141, including the values of the p’s, c’s
and t’s that gave the optimal strategy combination.

moveNode: Best performance is obtained from using only the deleteMove and insert
sites – further investigation concludes that performance steadily decreases as the number
of hints (c+p) used at the deleteCut site increases. The deleteCut site is helpful only when
the insert site is not in use. Observe that deleteMove is by far the most powerful site –
by itself it obtains 16%, compared to the best of 24%. Contrast this to the insert site
which yields only 6% if it alone is enabled. Thus we have seen that all three sites have
very different behaviour, and worth. The reason for the different behaviour is possibly
explicable, especially since the structure in question is simple1, but for real programs no
such prediction will be possible in general, and so brute force methods are probably the
best way of determining which sites are valid.

moveFields: For this benchmark it is preferable to perform data movement at both
insert and deleteCut sites (13% vs 5%), a different behaviour to moveNode. For that
variant when deleteMove is disabled it is unhelpful to perform data movement at both
insert and deleteCut site – insert alone is preferable. There are several possible reasons for
this behaviour.

Firstly, recall that the deleteCut site is actually the merging of two different sites,
deleteOneCutBelow and deleteTwoCutBelow. The first is used when a node can be deleted
simply by cutting it from the tree (because it has only one child), the second is for the
moveNode benchmark only and occurs when a node with two children is deleted by
substituting it by its successor or predecessor in the tree. The successor/predecessor is
always removable from the tree by a cut, which corresponds to the deleteTwoCutBelow site.
Thus, although the operation being performed on the tree is the same, the distributions
of the reallocatees for the two sites are different (deleteTwoCutBelow’s are further down
the tree), and since only moveNode has the deleteTwoCutBelow site, this difference may
cause the differing behaviour for the two variants of Dict. In other words, for moveNode
it may be true that reallocation at deleteOneCutBelow (this site shared with moveFields)

1e.g. deleteMove is more powerful because its reallocatee is accessed more often because it is higher
up the tree than either insert (always at a leaf), or deleteCut (usually below a deleteMove).

102

7.1. REALLOCATION

is helpful, but performing the identical reallocation at the deleteTwoCutBelow site has a
deleterious effect, so when merged as a single site deleteCut, it is more efficient to turn
reallocation at the merged site off. We might hypothesise that as well as the sort of
pointer update that occurs at a site, the distribution of where in the structure the site
acts is important.

Secondly, for moveNode it may be the case that reallocation at deleteOneCutBelow is
actually unhelpful when the tree is being updated by node substitution as occurs during
deletion of a node with two children. We might hypothesise that the correct strategy for
a site cannot be chosen without considering the form of pointer update occurring at all
other sites, even if no reallocation is applied there.

In this thesis we merged the two cut sites into one site to reduce the search space,
because we wished to evaluate a large number of different combinations of strategy. We
have insufficient evidence to decide between these two plausible hypotheses. In practice,
it seems advisable to not merge sites until it is certain that their behaviour is similar.

Conclusion: We have found that attempting reallocation at all sites is less effective than
using the correct subset and that reallocation at some sites is much more effective (or
damaging) than at others. Furthermore, we observe that the merged deleteCut site behaves
differently for the two variants of Dict, the precise explanation for which requires further
investigation. We hypothesised either that the addition of extra site(s) into a program
may change the best strategies to use at the existing sites, and/or that the distribution of
where in the structure a pointer update site acts is significant, not just the sort of pointer
update that the site performs.

7.1.1.2 Interaction of sites

Next we will look in greater detail at the interaction of sites.
The experiment used is as described in Fig. 7.1. For moveNode, the previous section

concluded that the best combination of strategies used only the insert and deleteMove
sites, and so we present results obtained by varying the strategy at these two sites in
combination with the null strategy at the deleteCut site. For moveFields, the strategies
at the insert and deleteCut sites are varied independently. See Figs. 7.18 and 7.19.

moveNode: The choice of hints used makes a large difference to performance. The best
reduction (24%) is obtained by using multiple hints, but if only one hint is used at each site
no more than 18% is obtained. Moreover, if the wrong single hint is used, the reduction
can be as low as 9%. When using multiple hints, we observe that using too many hints can
reduce performance, even if we consider only hints gathered using low-overhead methods
(i.e. parent>1). Thus using the correct search pattern is important. Observe however that
the data movement at the two sites appears to combine in a constructive fashion, and so
finding the best search pattern need not be done by exhaustively trying all possibilities.

As with ccmalloc, we find that using EL is helpful (increasing reduction from 14% to
24%), but only at the insert site. Indeed, if no hints are used at this site, the use of EL alone
will increase performance from 16% to 19%. This demonstrates how indirect layout im-
provement at one site (insert) can help direct layout improvement at another (deleteMove).

103

7.1. REALLOCATION

moveNodes/moveFields:
{insert = 〈α, β; γ〉 × 〈parentp1

; t1〉
∧ deleteCut = 〈α, β; γ〉 × 〈parentp2

, childc2 ; t2〉
∧ deleteMove = 〈α, β; γ〉 × 〈parentp3

, childc3 ; t3〉
: ∀α ∈ {null} ∪ SL,∀β ∈ {null} ∪ SP,∀γ ∈ {null} ∪G}

where the pi, ci and ti are the best ones found by §7.1.1.1.
For moveNode: p1 = 1, p2 = 1, p3 = 0, c2 = 2, c3 = 0, t1 = T, t2 = F,
t3 = F.
For moveFields: p1 = 1, p2 = 1, p3 = 0, c2 = 0, c3 = 0, t1 = T, t2 = F,
t3 = F.

Figure 7.2: Reallocation strategies used for the different sites for Dict, used for the experiment
in §7.1.1.3 and the results in Figs. 7.20 and 7.21.

moveFields: At least for the top third of the table, the general pattern is that the data
movement at the two sites combines constructively rather than destructively. Observe
also how the use of EL is different for the two sites: for insert, using EL is helpful (13%
instead of 9%), but for deleteCut, using it is very damaging (4% instead of 13%). In other
words, it is important to use EL, but it must be used correctly. We conclude that each
site’s strategy must be chosen individually, a per-program strategy will not do. The re-
sults also demonstrate the penalty for over eagerly using too many hints – the more hints
are used, the smaller the reduction (using p > 1 at both sites yields 7%, compared to 13%).

Conclusion: Without use of EL only about three quarters of the optimal reduction is
obtained. Using too many or too few hints or the wrong final coallocator strategy may
significantly reduce performance, or not, depending on the benchmark. In the former
situation, the choice of strategy must be made per-site, not per-program. The results
suggest that finding the best combination of strategies for the sites doesn’t require an
exhaustive search; as long as coallocators are ‘reasonable’ the data movement at two
sites combines constructively rather than destructively. However, because there are local
maxima, some level of sophistication must be used when looking for the best combination
of strategies.

7.1.1.3 Improving page layout

In this section we investigate whether performance can be improved by attempting to
improve page layout as well as, or in place of, line layout. To do this experiment, we will
use the optimal search patterns (given by p, c, t) from each site, and vary the coallocator
pattern.

Formally, we use the reallocation strategies in given in Fig. 7.2. These strategies
express many different approaches, for example < P; EP > is simply the page analogue of
< L; EL >. Patterns beginning with ‘L, ELIP’ or ‘L, NLIP’ attempt to improve page layout
when improving line layout fails, and are dynamic forms of ccmalloc-newBlock. The full
sets of dynamic forms of ccmalloc were given in Fig. 4.7.

Results for all coallocator patterns for moveNode and moveFields are given in
Figs. 7.20 and 7.21. A more detailed look at the ccmalloc sets can be found in Fig. 7.3.

104

7.1. REALLOCATION

moveNode moveFields
< L; EL > 24% 13%
ccmalloc-newBlock-extended 20 7
ccmalloc-newBlock-vanilla 17 4
ccmalloc-firstFit-extended 20 -8
ccmalloc-firstFit-vanilla 17 -16

Figure 7.3: How dynamic forms of ccmalloc compare against the best coallocator pattern
< L;EL >, a summary of some of the results in Figs. 7.20 and 7.21. The definitions of the
sets of different forms of ccmalloc are summarised in Fig. 4.7. See §7.1.1.3 for discussion of this
figure.

moveNode: No attempt to involve page layout improves performance (the best obtains
a 20% reduction in execution time, compared to < L; EL >’s 24%). Omitting the L stage
immediately halves the improvement in layout obtained, and decreases the reduction in
execution time by a factor of three. Some attempts to involve pages do not damage data
layout, but do not improve it either, and because of increased overhead smaller reductions
are obtained. Indeed, most choices of either β or γ can produce a good layout if (respec-
tively) α, γ or α, β are chosen correctly, but few are useful in practice due to overhead. In
other words, when using coallocators to perform runtime data movement, both layout and
overhead are important, and this requires a more precisely chosen coallocator pattern.

Fig. 4.7 shows that ccmalloc-style coallocator patterns perform quite well, especially
when the final coallocator is modified for dynamic use. All four ccmalloc sets have a mem-
ber that produce a good layout and manage at least a 17% improvement (compared to
< L; EL >’s 24%). Notice that the extended sets (those with final coallocator that select
blocks based upon the number of nodes in them), despite the increased overhead, clearly
achieve a better layout because they achieve at 20% reduction. We found no difference
between newBlock and firstFit, nor did we find that modifying newBlock to use ELIP in-
stead of NLIP helped.

moveFields: The results of Fig. 7.21 demonstrate that attempting to involve pages can
significantly damage the layout produced. The best pattern involving pages halves the
reductions in execution time obtained (13%→ 7%), and most others perform much worse.
Looking at Fig. 7.3 and the different forms of ccmalloc, only newBlock produces a positive
reduction, with the extended form obtaining 7% and the vanilla only 4%.

Conclusion: Although statically improving page layout does help the Dict benchmark,
as shown in the methodology chapter, it is hard to realise this dynamically through re-
allocation, and all our attempts to do so using admittedly quite simple strategies were
unsuccessful. For moveNode layout isn’t necessarily damaged, but overhead was higher.
We conclude that combining line and page layout when doing reallocation might be pos-
sible in general, but is not easy, and in particular, where the static gains are slight (as
they are with Dict), attempting to do so can be very damaging. Specifically, we have
demonstrated that layout maintenance using coallocator patterns designed for good static
layout (such as ccmalloc) may incur a larger overhead and generate a much poorer layout

105

7.1. REALLOCATION

 0

 10

 20

 30

 40

 2 1.5 1.2 1.1 1.025

re
du

ct
io

n
(%

)

m

moveNode
moveFields

Figure 7.4: The effect of increasing m for Dict. For this graph, M = 8/7×m. See §7.1.1.4.

than coallocator patterns chosen on a per-benchmark basis.

7.1.1.4 Memory

Finally, we show the benefit of increasing memory allowance. The best strategy for m = 2
was found to be the same as the best at m = 1.1, for both benchmarks (M = 2.28 and
M = 1.25, respectively). Results are in Fig. 7.4.

Increasing the memory allowance improves performance because the EL stage finds
emptier lines, which means that the probability of the L stage succeeding increases, im-
proving layout. This factor greatly outweighs the disadvantage of increasing heap size,
namely increased working set size. Note that for these benchmarks, we get two thirds
of the possible reduction with only 25% extra memory (m = 1.1, M = 1.25), but need
128% extra memory to get the remaining third (m = 2.0, M = 2.28). However, using
20% extra memory (m = 1.05, M = 1.20) halves the reduction. We chose m = 1.1 as the
default memory allowance precisely because it was a good balance between low memory
and useful performance.

7.1.2 MList

The performance of reallocation for MList compared to the upper bounds (§3.4.3) is
shown below:

106

7.1. REALLOCATION

v maximum
reallocation

m=1.1 m=2.0
27 11.7× 8.0 8.0
211 36.1 15.4 15.4
215 11.3 4.7 5.6
219 2.14 1.17 1.35

It was found that data movement at the delete site did not help to prevent data movement,
either by itself or in combination with movement at the insert site. This is in contrast to
the Dict benchmark, where the analogous site (deleteCut) was of some use to maintain a
good layout. This behaviour may be explicable2, because we understand the benchmark,
but such observations give little insight into reallocation in general. Throughout this
evaluation, only the insert site is used.

Based on its static layout properties, we expect MList to respond well to page-
based reallocation, and so in the rest of this section we consider line, page and combined
line+page reallocation, and then discuss how memory affects performance.

7.1.2.1 Line-focused reallocation

The ‘line-focused’ coallocator patterns are the ones that don’t allocate in the hint’s page –
apart from indirectly when allocating in the hint’s line – and don’t use a final coallocator
that select pages based on the number of nodes in them. This is � {null}∪ SL; {null}∪
GLP̄ ∪GL̄P̄ � (refer to §4.6 for description of the notation).

Of the line-focused coallocator patterns, the best is < L; EL >, as with Dict. Results
for this pattern for different searches are in Fig. 7.22. Recall that where the subscript ≥ 1
is used, a range of different subscripts are searched, and the results from the best chosen –
often, the subscript will be 1 or ∞ (For example in the v = 215 figure, next≥1’s subscript
happens always to be ∞, which is why its speedups are the same as the next∞ row. In
the top figure, an intermediate value is better than either 1 or ∞, giving a speedup of
6.0×, compared to 1’s 2.0× and ∞’s 4.4×).
Fig. 7.22 shows that the best search patterns depends on v (which may not be known
until runtime). It also appears that the longer the list, the more sensitive performance is
to getting the search pattern correct:

Short lists: For v = 215, a good layout may be obtained by either next∞ or last∞, but the
former has lower overhead so produces a better speedup (4.7×, 3.9×). This is surprising.
Recall that during traversal last∞ inspects each new line to see if there is space, which
incurs an instruction overhead but cannot cause a cache miss. However, next∞ continues
beyond the inserted node looking for a nonfull line, and so may cause a cache miss. In
general, one would expect the former strategy to be less expensive, but the opposite is
clearly true in this case. Thus, for v = 215 (and more generally, for RDSs made of many
small structures), thinking of overhead purely in terms of line fetches may be too crude.

2Hypothesis: In Dict, if the reallocatee is in the same line as one of its children, it is worthwhile
trying to move it to its parents line, because the branching nature of the tree means that the miss rate
will be lowered. In other words, if node x has parent p and children c1, c2, and before reallocation node
x and node c1 share a line, a miss will be avoided when c1 is accessed, but after successful reallocation
of x, if x and node p share a line, a miss will be avoided when x is accessed, which occurs at least twice
as often as accessing c1.

107

7.1. REALLOCATION

For v = 219, the picture is similar, but we observe that first, which has very low over-
head, manages to produce a good layout, and obtains the best speedup overall – because
lists are only around 8 nodes long, the first node’s line is likely to still be in the cache by
the time the insertee is reached.

Long lists: For v = 27, the pattern last∞ becomes the most effective, which is rather more
intuitive. When lists are longer, the chance of finding a non-full line during traversal to
the insertee is quite good. Using next≥1 or next∞ does produce a good layout, but incurs
a large overhead. For v = 211, we observe behaviour somewhere between v = 215 and
v = 27 – last∞ and next∞ are of equal value.

Conclusion: If the list length is known at compile time, either last∞ or next∞ can be used,
and no further tuning is required. Obtaining good performance without knowing the list
length before runtime can be done using last∞, next1 – for v = 27 and v = 211 the best
speedup is obtained, for v = 215 it achieves 4.0 compared to 4.7, and for v = 219 it obtains
1.12 compared to 1.17.

To obtain the best performance without knowledge of the list length is not possible.
Although the last∞, nextk pattern is best for all list lengths3, the subscript of the next
stage depends on the list length – being 1 for v = 27 and v = 211, and ∞ for v = 215 and
v = 219.

Thus although one can obtain good speedups with a static search pattern, obtaining
the best speedup requires knowing the list lengths before execution, or varying the search
pattern at runtime.

7.1.2.2 Page-focused reallocation

MList responds well to page-based static layouts, and so we now consider ‘page-focused’
reallocation, using page-focused coallocator patterns. These patterns are the ones that
don’t allocate in the hint’s line – unless by coincidence when allocating in the hint’s page –
and don’t use a final coallocator that select lines based on the number of nodes in them.
This is � {null} ∪ SPL̄; {null} ∪GL̄P ∪GL̄P̄ �.

Of the page-focused coallocator patterns, the best is < P; EP >, as with Dict. Results
for this coallocator pattern are in Fig. 7.23.

Performance: Observe that at most two thirds of the speedup of line-focused realloca-
tion (< L; EL >) is obtained. This is surprising because as observed in the methodology
chapter, a page-clustered (PcLm) layout is about 1.5 times faster than a line-clustered
(Lc) layout for MList. Indeed, for v = 219, speedups below 1 are seen – the overhead of
page-focused runtime data movement is too high.

The poor performance of < P; EP > compared to < L; EL >, can be explained in terms
of overhead and layout quality – both are worse with page-based reallocation. Overhead
is higher because to reallocate a node, the cache lines containing the page headers in the
source and destination page must be touched, in addition to the cache lines that hold the
source node and destination cell. For line-based reallocation the header information is in
the same cache line as the source node/destination cell.

3Or extremely close for v = 219.

108

7.1. REALLOCATION

Layout is poorer for page-based reallocation because the layout maintained by it is
only an approximation to PcLm. Using last∞ does generate a layout roughly like dense
clustering of pages, but it is apparently not as good as the layout that < L; EL > achieves.
This may be firstly because different lists share pages, reducing the cluster size, and sec-
ondly because for any given page the set of nodes inhabiting it are spread out in the list.
This means that blocks run the risk of being evicted between uses, which cannot happen
if page clusters are dense, as in PcLm.

Search patterns: Regarding search patterns, as with < L; EL >, either next∞ or last∞ work
well for < P; EP >. Overall, less variation is seen between search patterns. Indeed, the
worst search pattern for < P; EP > produces up to twice as large a speedup as < L; EL >’s
worst search pattern. Observe also that the use of last1 next1 (the nodes either side of the
insertee) is fairly competitive for < P; EP > compared to the best pattern, and 1.3–2.7
times better than last1 next1 for < L; EL >. For situations where the correct search type
cannot be determined before the program is run, or it is not possible to implement longer
searches, < P; EP > may be a sensible conservative choice.

It is easier to select a reasonable search pattern for < P; EP > because pages hold
about 32 times as many nodes and so in general a page is more likely to have some space
in it – shorter search distances are often appropriate. We also observe that the first strat-
egy is more useful for < P; EP > than for < L; EL >, because each list uses fewer pages
and so the first nonfull page in the list is more likely to still be in the cache when the
insertee is accessed (although other factors are involved such as the size and associativity
of the TLB and L2 caches).

Conclusion: Page-focused reallocation underperforms despite the superiority of page-based
layouts statically. This is because of overhead and because the layout achieved by real-
location is only approximate. However, when search length is limited (for example, in a
hypothetical situation where the list is randomly accessed during updates, but linearly
accessed during traversals), or when list length is unpredictable at runtime, pages appear
to be a sensible conservative choice. The exception is for very short lists (v = 219), where
speedups < 1 are obtained.

7.1.2.3 ccmalloc and combined line+page reallocation

We have found that line-focused reallocation outperforms page-focused reallocation, and
now we investigate other coallocator patterns that attempt to focus on both lines and
pages. We are particularly interested in the performance of the ccmalloc sets that were
given in Fig. 4.7, but will use all coallocator patterns in� {null}∪SL; {null}∪SP; {null}∪
G�, as for Dict.

The experiment is described formally in Fig. 7.5. Ideally, for each coallocator pattern
we would like to perform an exhaustive search over all search patterns, to find the best
possible performance of the coallocator pattern. This would take far too long, and so
as a compromise we will use only four search patterns for each coallocator pattern. We
use either a ‘short’ search pattern or a ‘long’ search pattern for pages and lines (indepen-
dently). The short search pattern is last1, next1 – the neighbours of the inserted node.
The long pattern is whatever was found to be optimal for the relevant block, from the
previous sections’ experiments.

109

7.1. REALLOCATION

∀ pageLen ∈ {short, long}, ∀ lineLen ∈ {short, long}
∀α ∈ SL, ∀β ∈ SP, ∀γ ∈ G

insert = 〈α; β; γ〉 × 〈search(v, line, lineLen); search(v, page, pageLen); true〉

where:
search(∗, ∗, short) = last1, next1
search(27, line, long) = last∞, next1
search(27, page, long) = last∞
search(215, line, long) = last1, next∞
search(215, page, long) = first, next1

Figure 7.5: Reallocation strategies used for MList, used for the experiment in §7.1.2.3 and the
results in Fig. 7.24.

Fig. 7.24 gives detailed results – for each coallocator pattern 〈α, β; γ〉 the best speedup
from the four search patterns is given. Performance appears to be determined almost
entirely by layout, rather than overhead. The results show that combining lines and
pages does not work – the best coallocator pattern is either < L; EL > or < P; EP >, the
latter is better when only short searches are allowed.

Fig. 7.25 summarises the performance of the ccmalloc sets, < L; EL > and < P; EP >
for the four different search patterns. For the ccmalloc figures, the bracketed figure gives
the speedup when the second stage of the coalloactor pattern is as originally described
by Chilimbi et al. [15] – NLIP for ccmalloc-newBlock and FLIP for ccmalloc-firstFit. The
unbracketed figures are the best when we also allow ELIP for ccmalloc-newBlock and P for
ccmalloc-firstFit. The bracketed figure is omitted if it is the same as the unbracketed.

Performance: Observe from Fig. 7.25 that it is possible to almost equal < L; EL >’s per-
formance using the extended versions of ccmalloc. When the second stage (coallocation in
the same page) has a smaller chance of succeeding – i.e. when short searches are used for
second stage – performance improves (For example, for v = 27, ccmalloc-firstFit obtains
7.6 with a long line search and short page, but 6.2 with both page and line long). This
indicates that the second stage is unhelpful, although not as damaging for MList as for
Dict-moveFields, for example. In general, Fig. 7.24 shows that for long lists anything
coallocator pattern from the set

{〈L; α; β〉 : ∀α ∈ {null, P, FLIP, ELIP, NLIP},∀β ∈ {EL, ELIEP, FLIEP}}

will perform pretty well, provided the page search length is correct.

Conclusion: Combining lines and pages is not more effective than either a line-focused or
page-focused approach. The line-focused approach is better when the number of hints
is large, but the page-focused approach is better when the number of hints is small.
Although a good static coallocator like ccmalloc can be used for this benchmark (provided
the tertiary stage is chosen properly) the stage that attempts to allocate in the same page
is unhelpful, and the simpler < L; EL > is more effective.

110

7.1. REALLOCATION

 3
 5
 7
 9

 11
 13
 15
 17
 19
 21

 2 1.5 1.2 1 1

sp
ee

du
p

M

L long
P long
L short
P short

(a) v = 27

 1

 3

 5

 7

 2 1.5 1.2 1 1

sp
ee

du
p

M

L long
P long
L short
P short

(b) v = 215

Figure 7.6: The effect of increasing M for MList. See §7.1.2.4.

7.1.2.4 Memory

A review of how blocks are used as an experiment progress: Initially, the structure is
densely packed into a set of full blocks, and there is another set of empty blocks, a factor
m− 1 larger than the set of full blocks. As the experiment progresses, it passes through
several phases. In the initial phase, reallocation’s EL or EP stage always finds an empty
block. Two runs of the benchmark with different m have identical behaviour when they
are both within this phase (apart from any small effect of working set size). As phase one
progresses, the stock of empty blocks may decrease if m is small enough. We restrict our
discussion to this situation because it is the situation observed in the experiments in this
section. Phase two begins the first time EL or EP does not find an empty block, and the
time of its onset depends on m:

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 10 100

ca
ch

e
m

iss
es

 (%
)

operations

m=1.01
m=1.005

m=1.0025

111

7.1. REALLOCATION

 1

 0.5

 0
 1.2 1.1 1.05 1.02 1

pr
op

or
tio

n
of

 s
pe

ed
up

 a
t m

=2

M

normal length
10x longer

(a) L long

 1

 0.5

 0
 1.2 1.1 1.05 1.02 1

pr
op

or
tio

n
of

 s
pe

ed
up

 a
t m

=2

M

(b) P long

 1

 0.5

 0
 2 1.5 1.2 1.1 1

pr
op

or
tio

n
of

 s
pe

ed
up

 a
t m

=2

M

(c) L short

 1

 0.5

 0
 2 1.5 1.2 1.1 1

pr
op

or
tio

n
of

 s
pe

ed
up

 a
t m

=2

M

(d) P short

Figure 7.7: The combined effect of M and experiment run length on the performance of reallo-
cation for MList, v = 27. For each line, the vertical axis shows the speedup as a proportion of
the speedup obtained for m = 2 (The 10× longer experiments achieve speedups at least twice
as large as the normal length).

112

7.1. REALLOCATION

During phase two the heap readjusts until an equilibrium is reached4. During phase 3,
the distribution of blocks in the heap is stable, and hence layout quality and performance
of the benchmark is stable.

As with Dict, we found that the best strategy was the same for m = 2 and m = 1.1.
However, there is some evidence that the relative efficacy of strategies depends on memory
(i.e. the availability of fairly empty blocks). In Fig. 7.6, we shown speedup against M for
m ∈ [1.0025, 2], for v = 27 and v = 215. The lengths of the experiments (measured in
inserts and deletes) are identical, to allow direct comparison between the two list lengths.
v = 27 has been run for ten times longer than the usual experiment length and has not
reached equilibrium (extrapolation suggests that to do so is infeasible), v = 215 for 4
times shorter than usual (and has reached equilibrium). We give results for < L; EL >
and < P; EP >, for both short and long searches, as in the previous section. Note that
line-focused reallocation and page-focused have different M/m because they have different
memory manager space requirements.

The results show that, as expected, increasing m improves performance. It is encour-
aging that only around M = 1.1 is needed for v = 27. Note that the effect of increasing
m is different for short and long searches and for line- and page-based strategies - for
v = 27, only the combination of lines and a short search length benefits from M > 1.1.
The behaviour is also different for the two values of v - for v = 215, both short and long
line searches benefits from M > 1.1. Note also for v = 215 that if only short searches are
allowed, the best strategy is page-focused for M < 1.25, but line-focused for M > 1.25.
Thus in some situations, the best strategy depends on memory usage.

The effect of m depends also on experiment length, as shown in Fig. 7.7 for v = 27

(similar behaviour is seen for other values of v before equilibrium is reached). Observe
that more memory is required for a certain speedup when experiments are run for ten
times longer (about 100 minutes, unoptimised). Although it is not feasible to run v = 27

or v = 211 to equilibrium, the behaviour for v = 215 and v = 219 suggests that, although
memory requirements increase as experiment length increases, the best speedups seen
for shorter runs are still seen at equilibrium for reasonable values of m (< 2). In other
words, although more memory is required for longer runs of the benchmark, long term
performance is not damaged, provided m is large enough (and not more than 2)5.

In practice, the terminal behaviour may not be relevant: Fig. 7.7 demonstrates that
even small amounts of extra memory (m = 1.05) are suitable for runs of around 100
minutes for v = 27.
Conclusion: For MList we have demonstrated that increasing m improves performance,
as seen with Dict. The effect of increasing m depends on the block size, search length,
experiment length, and v. Larger blocks are more resilient to low memory, but provide

4The existence of which is confirmed for v = 219 and v = 215 and thus likely but not confirmed for
v = 211 and v = 27 – recall that the time to reach equilibrium may be different in the unoptimised and
optimised cases.

5Note that we can be certain that there exists a maximum value of m beyond which no further
performance improvement is seen, irrespective of experiment length (ignoring for the moment the effect
of increasing working set size, i.e. we assume the caches retain no blocks between individual list traversals).
This maximum value is no more than the number of cells that fit in a block, because when m exceeds
this value, there will always be an empty block available. The unanswered questions are firstly whether
the maximum value is always a reasonable value (since 14 nodes fit into lines, and 502 into pages), and
secondly failing that, how large m must be to get ‘reasonable’ speedups.

113

7.1. REALLOCATION

less speedup (representing a conservative choice). In practice, for a certain run time of
the program (expressed in minutes not operations), smaller values of v (27) require far
lower m than larger v (215) (1.05 compared to 1.5). The effect of memory at equilibrium
for v = 27 is not known, but experiments with larger v suggest that good speedups will
seen for reasonable m (< 2).

7.1.3 Conclusions

Although preexisting static coallocators such as ccmalloc [15] can be used to prevent layout
degradation, it is more effective to choose coallocators on a per-site basis. For both our
benchmarks, we found that the simple strategy of allocating in the same line as the hint,
and failing that a line of maximal space in the heap (< L; EL >) was the most effective.
Obtaining the best performance from reallocation can achieved by concentrating on the
factors below:

1. Selection of (re)allocation sites: There will typically be several sites in the program
that update pointers within the RDS. For Dict, we found that although reallocation
at any one site can be used to improve layout, better performance comes from using
multiple sites, and use of all sites was sometimes less effective than a subset. For MList,
we found that of the two sites available, only one was useful to improve data layout.
Thus in general, finding the correct subset of sites at which to perform reallocation is
necessary. We may speculate that certain sites are more suitable for reallocation than
others. Sites that substitute one node for another or attach a node to a null pointer
appear to be good candidates for reallocation, but cuts (e.g. deleteCut for Dict or
delete for MList) are of less, but not necessarily zero, usefulness.

2. Choosing hint object(s): Applied simply, reallocation can maintain a reasonable
data layout using just the nodes closest to the (re)allocatee (its new parent and new
child/children). For both benchmarks, we found that it is often beneficial to use more
than one hint object. Hint addresses must be explicitly gathered, incurring overhead,
and thus for each reallocation site there will be optimal number of hints to use. For
MList, using more than the neighbouring nodes can increase speedup by a factor
of 7, and we find that hints accessed before the reallocatee are better than those
after. A hint can be found with relatively little overhead during traversal, simply by
inspecting each new block for empty space. Using hints accessed after the reallocatee
involves additional traversal of the list, which tends not to incur too much overhead
because space is often found quickly, but produces a less effective layout. The best
performance was obtained by using different hints for different list lengths, but quite
good performance can be obtained using the same hints for all list lengths. For Dict,
we find that usually only the nodes in the immediate vicinity of the pointer update
are needed as hints. However, reallocation at substitutions works better when the
reallocatee’s grandchildren are also used as hints, and in the absence of reallocation
at other sites, reallocation at insertion can be improved using a larger number of the
reallocatee’s ancestors. Thus both benchmarks can benefit from using more than one
hint object, but using too many hints will incur a penalty.

3. Block size: For both benchmarks, we find that a purely line-focused reallocation
strategy is almost always the most effective. While not surprising for Dict, given its

114

7.1. REALLOCATION

static layout behaviour, we might have expected MList to respond better to a page-
based or combined line and page strategy. For the latter benchmark, we find that
given the optimal choice of hints, pages provide only half the speedup of lines. When
only the neighbouring nodes are used as hints, pages are more effective at low memory,
but lines are better when memory is high. Regarding pre-existing static coallocators,
we conclude that the dynamic analogues of ccmalloc often perform almost as well as
a simple line-based approach provided the third stage (allocation when same-line and
same-page fails) is chosen properly. For Dict-moveFields however, only half the
reduction of line-based reallocation is obtained. Thus in general, we conclude that
line-based reallocation is easier, safer and more effective than either page or line+page
reallocation.

4. Memory allowance: Increasing the value of m means that the EL stage of reallocation
will find emptier blocks, which improves the chance of the L stage succeeding, improving
layout. For Dict, we find that most improvement is obtained using only m = 1.2, and
m may be reduced to 1.05 with a loss of only half this reduction. For MList, we find
that long lists are very resilient to low m even for runs of 100 minutes (unoptimised),
requiring only m = 1.05 to give the full benefit of reallocation. For shorter lists, the
speedup obtained at equilibrium increases by a factor of two as m is increased, with
most being obtained by m = 1.2. Overall, reallocation works well for M ∈ [1.23, 1.37]
(m = 1.2), and still gives some improvement for M ∈ [1.08, 1.20] (m = 1.05).

7.1.4 Summary for programmers

To apply reallocation, a memory manager must be found or written that supports alloca-
tion in the same line/page as a node and finding of a block of maximal space in the heap.
This can be achieved simply and efficiently using a few linked lists and bitfields, when
RDS objects are the same size (or padded or split to be the same size). The program
must then be modified to use the memory manager for the RDS nodes.

Reallocation at a single site is likely to improve layout, but using multiple sites is much
more effective. However, performing data movement at all sites may be less effective than
at a subset of sites. As a starting point, it appears that sites where a node is attached to a
null pointer or substituted for another nodes will respond well to reallocation. Sites where
a node is cut from the structure (i.e. a node with single child and single parent is removed
by updating the parent’s pointer to point to the child) are not always useful. See §7.5 for
a discussion of how the correct subset of sites to use might be found automatically.

Regarding coallocator patterns, the experiments in this thesis suggest that < L; EL >
is the most effective (move to same line as hint, failing that move to a line of maximal
space), even for structures whose static layout depends also on a good page layout as
well as a good line layout. This conclusion may not hold for all architectures or memory
hierarchies, and so < P; EP > should be tried as well.

Although using a single hint produces non-negligible improvements in data layout,
both structures benefit from more hints. Trying a second hint at a site should require
little extra effort, and if successful code to collect more hints can be inserted. In particular,
for linear traversals, a good search type appears to be to inspect the line of each node seen
during the traversal to the place in the structure where the pointer update occurs, and
then use the most recent as a hint. For branching traversals, the parent node is a more

115

7.2. BULK DATA MOVEMENT

useful hint than the child node(s), but using both parents and children (in that order) is
most effective.

Increasing memory usage improves performance. To minimise memory manager over-
head and maximise layout quality, allow the heap to be unbounded (i.e. fix the EL stage
to always claim/reuse an empty line).

7.2 Bulk data movement

A summary of optimisations and techniques can be found in Fig. 5.3.
Where the parameters of an optimisation had to be adjusted to find the best perfor-

mance, this was done so execution times were stable where possible – i.e. not noticeably
increasing at the end of the experiment. In some situations it was possible to get better
performance in the short term by using lower data movement rates, but this should be
considered against the spirit of the work in this thesis.

7.2.1 Dict

A summary of results for low, medium and high memory usage can be found in Fig. 7.26.
Note that simply periodically moving the entire RDS to a new space clustering nodes
into lines (periodic2space) will achieve 41% and 22% reduction in execution time for
moveNode and moveFields, respectively, compared to the maximum possible reduc-
tions of 55% and 36%. The version of the optimisation that also clusters nodes into pages
(periodic2space-nested) is about 2% worse, despite producing a better layout. This is due
to the increased instruction overhead. As was shown in Fig. 5.1, because they are periodic
both optimisation cause large pauses to normal program work at small scales (i.e. 1ms),
as well as using m = 2.0.

In terms of execution time, these two simple methods perform better than any of the
other bulk data movement optimisations. In the rest of this section we will show that the
more complicated optimisations can obtain reductions that are almost as large, but using
far less memory and without large pauses to normal program work.

7.2.1.1 Reducing memory

The behaviour of periodic1space when m is reduced can be seen in Fig. 7.8. These results
are for the best combination of compaction and threshold (we will talk in more detail
about these two techniques in a later section).

The value of 0% for moveFields for m = 1.1 and m = 1.05 are explained as follows:
Recall that the periodic1space optimisation must be tuned for the optimal period, and that
movement of nodes only takes place if there is a line with space for two nodes in it (since
there is no point moving a node if the movement will not colocate two related nodes).
The figures of zero arise because very little data movement is possible: this means that
layout is scarcely improved, and the tuning therefore uses a very long period, reducing
overhead to the point where the optimisation has no overall effect on execution times.

Note that at m = 2, periodic1space obtains smaller reductions than periodic2space (16
percentage points for moveNode, 10 for moveFields). There are two reasons for this.
Firstly, although the layout produced is identical in terms of the clustering of nodes into

116

7.2. BULK DATA MOVEMENT

 0

 10

 20

 1 1.2 1.4 1.6 1.8 2

re
du

ct
io

n
(%

)

m

moveNode: periodicOneSpace
incrementalOneSpace

moveFields: periodicOneSpace
incrementalOneSpace

Figure 7.8: Reduction in execution time achieved by periodic1space and incremental1space for
Dict-moveNode and Dict-moveFields, for different m.

lines, the location of these lines in the heap is not. The traversal order of the tree in the
periodic2space combined with the linear filling of to-space means that fairly reasonable
page layout is produced. By contrast, the lines used by the periodic1space optimisation,
although all empty (because m is sufficiently high), are drawn from a stack of empty lines,
which in practice produces TLB miss rates similar to picking lines at random from the
heap. In addition, the lines are densely packed into pages when two semi-spaces are used,
unlike when a single space of size m = 2 is used, reducing the number of pages in use
between swaps of the semi-spaces. Secondly, overhead is higher when one space is in use:
periodic1space must maintain more complicated information about the space at runtime
than periodic2space – in particular, whenever a node is allocated or deallocated, a line
must move from one memory manager listset list to another. Some of this overhead might
be reduced by more sophisticated memory manager design, but we do not consider this
further here.

Once m is decreased below a certain value, the performance of the optimisation begins
to decrease, eventually hitting zero. This value is between 1.1 and 1.2 for moveNode,
and higher for moveFields (between 1.2 and 1.5). This difference is possibly because
the layout degradation that has occurred in the moveFields variant after 1e8 operations
is less than the moveNode variant, which means that – because the overhead of data
movement is the same in both variants – a much better layout must be achieved by
moveFields to get the same reduction, which requires higher quality lines, which requires
larger m.

The resilience that periodic1space demonstrates to two-fold (or even five-fold) reduc-
tions in extra memory allowance is encouraging. In the next section we tackle the problems
of latency by both incrementalisation and embedding, and also evaluate embedding as a
method of reducing overhead.

7.2.1.2 Reducing latency and overhead

Incrementalising periodic2space to produce incremental2space incurs a penalty of 8–9 per-
centage points – moveNode’s reduction goes from 41% to 32%, moveFields’s goes
from 22% to 13%. There are several possible reasons for this. Splitting the traversal into
about 500 separate chunks of work increases overhead – simply to resume the traversal

117

7.2. BULK DATA MOVEMENT

each time. The write barrier incurs an overhead, and is likely to make the optimisation
performs more traversing work than in the periodic version. Finally, it is possible that
splitting the traversal into smaller chunks means that it incurs more cache misses because
the mutator evicts nodes that the traversal will later reuse.

Incrementalising periodic1space: Incrementalising periodic1space appears to improve per-
formance for lower values of m, particularly for moveFields. Fig. 7.8 shows the reduc-
tions achieved by incremental1space and periodic1space for different m.

At m = 2 we incur a small overhead of 1–5 percentage points, as was seen previously,
and we expect that some of the overheads have the same cause. The overhead is less than
with incremental2space possibly because incremental1space does not use a write barrier.
Again, it is hard and perhaps not necessary to understand the precise causes of overhead,
but it is encouraging that the overhead for one-space incrementalisation is far lower than
for two-space.

As m is lowered, the incremental version begins to outperform the periodic version,
which can be seen most clearly for m = 1.2 for moveFields. This improvement can
be explained in terms of the availability of better quality lines, specifically because in-
crementalisation allows compaction to work better: when compaction is turned off, the
incremental version performs worse than the periodic version. The compaction schemes
we employ in this thesis work better when the movement of the tree is split into smaller
chunks, because compaction work (block producing) is interleaved with re-laying out
(block consuming), making it harder for the optimisation to exhaust the supply of good
quality blocks. We discuss this in more detail in the next section. The increased avail-
ability of good quality blocks clearly outweighs the overhead of incrementalisation. Thus,
we should view incrementalisation not merely as a method to fix an optimisation’s high
latency, but as method that combines well with compaction to enable more effective data
movement.

Embedding periodic1space: Embedding periodic1space to produce embedded1space works
remarkably well, as shown in Fig. 7.9.

When m is high, embedding either provides a method of reducing latency without
performance loss, or actually improves performance. This was unexpected – although
embedding reduces the number of cache misses incurred by the optimisation, it has the
disadvantage of significantly increasing the complexity of the code within the traversal
loop. Thus when m is high, we should view embedding not just as a method to reduce
latency but as a method to increasing performance.

When m is low, far less performance is lost than with periodic1space or incremen-
tal1space. For m = 1.1, applying the periodic1space optimisation to moveNode produces
a layout of 1.11–1.38µs per lookup (the lower is after movement, the higher just be-
fore), on average 1.24µs. Applying incremental1space produces a layout of 1.38µs, and
embedded1space obtains 1.29µs. Thus embedded data movement has worse layout than
stop-the-world data movement but incurs less overhead, and so is faster overall. Compared
to incrementalised data movement, embedded both produces a better layout (because of
more finely-interleaved compaction), and has lower overhead.

118

7.2. BULK DATA MOVEMENT

 0

 10

 20

 30

 1 1.2 1.4 1.6 1.8 2

re
du

ct
io

n
(%

)

m

moveNode: periodicOneSpace
embeddedOneSpace

moveFields: periodicOneSpace
embeddedOneSpace

Figure 7.9: Reduction in execution time achieved by periodic1space and embedded1space for
Dict-moveNode and Dict-moveFields, for different m.

7.2.1.3 The role of threshold and compaction

In low memory conditions, embedded1space and incremental1space often perform far bet-
ter than periodic1space because a combination of compaction and threshold allow them to
create a far better layout. In this section we examine in more detail the role of compaction
and threshold for these three optimisations.

periodic1space: Compaction gives a small increase in the quality of layout (5–10%) pro-
duced by the movement of the tree. However, due to overhead, performance decreases
when compaction is used. Although the supply of empty lines has improved, this benefit
does not outweigh the cost of compaction.

Regarding the two different types of compaction – compaction applied at reallocation
sites, and compaction applied within the optimisation – recall that the optimisation will
not move data unless there is a line with at least two empty cells in it (because it is
not worthwhile moving nodes unless two or more nodes can be located in the same line).
When compaction at reallocation opportunities is performed, the number of suitable lines
available at the start of the RDS movement is increased, but runs out before the movement
has finished, and thus parts of the RDS do not have their layout improved. If compaction
is performed within the optimisation (during the movement of the RDS), again, some
parts of the RDS do not have their layout improved because some nodes have been moved
simply to compact lines rather than improve layout.

Thus neither of these simple methods of compaction is wholly successful for peri-
odic1space, and a more sophisticated compaction scheme would help. We do not pursue
this here because we do not expect even optimal zero-overhead compaction to enable pe-
riodic1space to significantly outperform embedded1space: observe that when empty lines
are plentiful, periodic1space only obtains a 25% reduction, which is therefore an upper
bound on the performance of this optimisation, scarcely larger than embedded1space’s
reduction of 23% for m = 1.05.

incremental1space: Compaction improves execution times slightly for moveNode when
m = 1.1 (9% vs 6%). In terms of the quality of layout, for moveNode the layout is
consistently 15% better with compaction, and for moveFields consistently 5% better.

119

7.2. BULK DATA MOVEMENT

As with periodic1space, the overhead of compaction prevents most of this improvement
translating into reduction in execution time.

embedded1space: For m = 1.1, for moveNode a 23% better layout is produced, and
for moveFields, 8%. This translates into significant improvements in performance.
The tables below demonstrate how compaction is most effective when combined with a
threshold quality on the lines used: (i.e. any bad lines are rejected until a good one is
produced by compaction)

threshold threshold
off on off on

co
m

p
.

off 14% 0

co
m

p
.

off 0% 0
on 20 27 on 0 7
moveNode moveFields

In general, using compaction by itself makes sense because each node movement performed
by compaction increases the probability of a good line being available. Using threshold by
itself does not make sense, unless there is some reliable mechanism (i.e. node allocation
and freeing in the main program) which can be relied upon to produce emptier lines (this
is not the case for Dict, which does not have any allocation in the time part of the
benchmark). Threshold and compaction work most effectively in combination.

The correct choice of threshold depends on the benchmark – for moveNode, it is
best to use lines with at most 1 node in them, but for moveFields it is best to allow
only empty lines. This is because the former benchmark has a higher rate of degradation
than the latter, and so the compromise between overhead (cost of compaction to make
emptier lines) and layout quality (threshold) shifts accordingly. When m = 1.5, a similar
situation to the above is found, except that both benchmarks work best with empty lines
only – this time because such lines are easier to produce because the heap is less dense.

It is usually more effective to perform compaction within the optimisation than at
pointer update sites (e.g. for moveNode, 28% compared to 23%). The exception is for
moveFields when m = 2.0 (3% compared to 12%). Thus both forms of compaction are
useful in different situations, but compaction within the optimisation is usually better,
which simplifies the application of the optimisation.

Conclusion: Threshold and compaction are vital to get the best performance out of em-
bedded1space, allowing m to be reduced from 2.0 to 1.10 with reduction only falling from
30% to 27%, for moveNode. These two techniques are of some usefulness for incre-
mental1space in terms of execution time, but ineffective for periodic1space. Furthermore,
it appears unlikely that more sophisticated compaction would allow the incremental or
periodic form to significantly outperform the embedded version, such are the benefits of
embedded’s reduced data access costs and fine interleaving with normal program work.

7.2.2 MList

The results for all optimisations are given in Fig. 7.27.
As with Dict, we are unlikely to improve upon periodic2space in terms of execution

time, but there is definitely room for improvement in terms of memory usage, and latency.

120

7.2. BULK DATA MOVEMENT

Regarding latency, each movement of the RDS costs between 35 and 70ms, so even at the
10ms scale there is at least a 3.5× slow down, and even at 100ms there is a 1.35 to 1.7×
slow down. At the 1s scale, no significant slowdown is seen.

7.2.2.1 Reducing memory

As shown in Fig. 7.27, using m > 1.05 can increase speedup. The trend is that increasing
m is more valuable for larger v.

This is reflected more clearly by considering the layout achieved by an optimisation.
We use the incremental1space optimisation. The figures below show the average layout
quality of a list after it is re-laid out. Quality is expressed in the number of distinct
blocks occupied by the list (Thus an optimal layout for the list, one that uses the fewest
number of blocks, is max(1, length of list / maximum number of nodes per block)). The
last column gives a ratio, expressing the relative quality of the two layouts.

v m = 1.05 m = 2 (m = 1.05)/(m = 2)
27 65.906 65.758 1.0023
211 4.776 4.616 1.034
215 1.585 0.999 1.586
219 3.059 1.127 2.714

Observe that for v = 27 and 211, some improvement is seen for m > 1.05, although not
significant enough to be seen as an increase in speedup. For v = 219 the m = 2 layout is
almost three times better than the m = 1.05 layout (but still not optimal, implying that
using m > 2 might produce a larger speedup).

Practically, we can say that for lists longer than around 2048 nodes, m = 1.05 is good
enough. For lists shorter than this, larger values of m are needed, and m > 2 may be
required to get the best speedup for lists of only eight nodes.

The increasing worth of using m > 1.05 as v increases has three causes. Firstly, the
experiments are different lengths (in terms of insertions/deletions, but about the same
wall clock time unoptimised). This effect is easily removed by running all experiments to
v = 27’s length. The second is as follows. For smaller v, we note that the experimentally-
found optimal list re-laying out frequency is lower (measured in node insertion/deletions).
In other words the number of insertions/deletions between each list being re-laid out is
larger for larger v. When a list is moved, the movement of the list into new blocks creates
a supply of fairly empty blocks, which can be either used to re-layout later lists (or even
the current list). If the list was laid out optimally before it was re-laid out, all the new
blocks are empty. If the list is laid out with a pathological layout (number of blocks =
length of list), all the new blocks have just a single space. Thus, the quality of the blocks
decreases as the layout quality of the list decreases, in other words as the list relaying out
frequency decreases.

Thus, in the figures above, larger v induces a slower re-laying out rate, which decreases
the quality of blocks produced when a list is moved, which makes it harder to achieve
a good layout. Increasing m thus reduces node density and makes better quality blocks
available.

We can remove this effect by moving all lists at the same rate (we use v = 27’s, because
it is fastest). These figures are seen:

121

7.2. BULK DATA MOVEMENT

v m = 1.05 m = 2 (m = 1.05)/(m = 2)
27 65.906 65.758 1.0023
211 4.874 4.759 1.024
215 1.352 1.000 1.352
219 1.546 1.027 1.505

The difference between m = 1.05 and m = 2 is now smaller. Since nodes are moved at
the same rate, the third and final cause is a structural one - how the 222 nodes in the
heap are split into distinct lists. For example, v = 27 requires at least 66 pages per list
on average, whereas v = 215 only requires a quarter of a page. These partially used pages
may explain the different ratio. Similarly, v = 211 requires five pages, one of which is only
8% used. For v = 219, recall that lines are used in place of pages, which may partially
explain the large ratio, and in addition each list uses only 57% of a line on average.

Thus, although it is unclear why different average list lengths respond differently to
increasing m, it is not surprising, since they make use of different numbers of blocks or
different block sizes. Much of the discrepancy in practice is due to data movement rate,
rather than the effect of list size, however. In practice we note that m = 2 works well,
and often less memory is required.

7.2.2.2 Reducing latency and overhead

Here we discuss how incrementalisation and embedding perform for MList.
Incrementalising periodic2space usually incurs very little overhead – in contrast to when

Dict’s periodic2space was incrementalised. This is because MList’s RDS is composed of
distinct lists which are small enough that they can be processed in their entirety without
significant pause to normal program work, avoiding the need for an expensive write barrier.

Similarly, incrementalising periodic1space incurs little overhead (and in one occasion
improves performance slightly), in contrast to the equivalent process for Dict. For Dict,
we attributed the overhead to a mixture of (i) the instruction overhead of resuming the
traversal many times, (ii) increased cache misses due to the mutator and the optimisa-
tions traversals being interleaved, and (iii) the optimisation missing parts of the structure
because the mutator had updated pointers. Recall that no write barrier is need for in-
cremental1space’s correctness, so we omitted it for increased efficiency and ease of imple-
mentation. Of these causes, only the first is applicable to MList – the latter two do not
apply because each substructure is handled in its entirety before allowing the mutator to
continue – which goes some way to explain why incrementalisation occurs little overhead.

In general we conclude that if an RDS can be decomposed into distinct parts with no
(or perhaps few) connecting pointers, much of the overhead and implementation difficulty
of incrementalisation may be removed.

In contrast to this positive result, embedding data movement in existing program
loops is not very effective for MList. Performance is reduced, but it is not entirely clear
why. The number of blocks transfered is demonstrably lower with embedding than with
incrementalisation, and so the decrease in performance is probably due to instruction
overhead or some superscalar effect. For execution time to be significantly affected by
instruction overhead or a superscalar effect, the cost of data accesses must be small. This
appears to hold for MList. Experiments show that the layout maintained by the bulk
optimisation is actually very good, achieving L1/L2/TLB miss rates of only 7% ignoring

122

7.2. BULK DATA MOVEMENT

the effect of the hardware prefetcher (which will work quite well because bulk moves nodes
into a page in order). Thus it is at least plausible that some instruction or superscalar
effect is significant compared to the cost of fetching data and is causing the reduction in
performance.

7.2.2.3 Regarding block size

With very few exceptions, it is most efficient to use blocks the same size as pages, rather
than lines or an intermediate size. Using pages instead of lines gives around three times
the speedup for incremental1space, and four times for periodic1space. For the short lists
we occasionally observe lines being more effective – for example, for v = 215, m = 1.05,
lines give a 1.2 times larger speedup, but for large m pages become more effective.

This is in contrast to reallocation where lines were usually more effective than pages,
and can be easily explained in terms of the overhead of moving nodes one-by-one (real-
location) or en masse (bulk data movement). Specifically, a node movement must access
the destination block’s header, which may be in another line when the block size is larger
than a line. Bulk minimises the number of misses caused by this access by moving many
nodes at once into the destination block.

7.2.3 Conclusions

Periodically copying the entire RDS to a new space (periodic2space) is by far the most
effective method of bulk data movement, and is usually quite close to the maximum pos-
sible improvement – for Dict, we obtained 41% and 22% reduction for moveNode
and moveFields, respectively, compared to maxima of 55% and 36%. For MList we
obtain 10.6× and 1.60×, for v = 27 and 219 respectively, with maxima 11.7× and 2.14×.
However, these large improvements are only achievable using m = 2, and a large latency.
These problems can be tackled by the following techniques:

1. Use of one space: Memory requirements can be reduced by using one space of size
> 1 instead of two of size 1, and moving nodes not to empty blocks, but to a block of
maximal space. Applying this method increases the overhead of runtime data movement,
because the memory manager must maintain a set of linked lists, and move blocks between
them as nodes are moved.

For Dict, using one space imposes an overhead (41%→ 25%, 22%→ 12%), but mem-
ory can be reduced to m = 1.5 without further loss of performance. Using lower values of
m will reduce performance, but much of this can often be regained by using a threshold
on the quality of blocks to which node are moved, in combination with compaction.

For MList, the overhead of using one space is smaller (10.6× → 9.56× and 1.60× →
1.24×, for v = 27 and v = 219, respectively). Using m = 1.05 caused no decrease in
speedup for long lists, and relatively slight decrease for short lists (1.24× → 1.17×), but
we believe that for a longer experiment length all values of v will suffer when m is lowered.

Concerning block size, we use only lines for Dict because investigation of stop-the-
world data movement demonstrated that the additional overhead of improving page layout
was larger than the benefit of the reduced TLB miss rate. For MList, unlike for realloca-
tion, we find that using pages is far more successful than lines (up to three times faster) –
lines are only ever useful for low memory and short lists, and then only slightly – because

123

7.2. BULK DATA MOVEMENT

en masse movement of nodes reduces some of the costs of using larger blocks.

2. Threshold and compaction: For Dict, which suffers from a lack of sufficiently
empty blocks when m is lowered below 1.5, we apply two techniques: firstly the bulk data
movement optimisation stalls normal data movement until a block of a certain quality
(amount of free space) arises, and secondly additional data movement is performed to
explicitly compact blocks to produce blocks of increased quality. This movement can be
performed either at pointer-update sites within the program (where reallocation would
be applied), or within the optimisation, with the latter more effective for Dict.

Compaction is most effective when the movement of the RDS is split into small chunks,
using the techniques of incrementalisation or embedding, which we summarise below. For
example, splitting the traversal up using embedding and then applying compaction al-
lows m to be reduced to 1.10 with little loss in performance (30% → 27%, 12% → 7%,
for moveNode and moveFields respectively, compared to 14% and 0% without com-
paction). This demonstrates that greater sophistication of data movement – combining
data movement that does not directly improve layout with movement that does – can be
used to significantly improve performance.

3. Incrementalisation: Periodic movement of the entire RDS to another space (or
within the same space) is rather like a stop-the-world GC, which we may make incremental
using familiar techniques. This process is easy for MList, and incurs very little overhead,
because the structure decomposes into many distinct lists, each of which can be moved
in their entirety without a significant pause in normal program work. In general, if a
compiler or programmer can decompose a larger RDS into smaller RDSs, latency may
be reduced with little loss in performance. For Dict, this is not possible, and when two
spaces are used a write-barrier is required for correctness (as in a GC) – this form of
incrementalisation caused the reductions obtained to decrease by 8–9 percentage points
(41%→ 32% for moveNode, 22%→ 13% for moveFields).

When one space is used, a write-barrier is not required, the optimisation is simply
allowed to miss parts of the RDS until the next traversal – this decreases the reductions
by only 1–5 percentage points.

In both situations, the data layout produced by incrementalisation is poorer than the
stop-the-world version because the mutator changes the structure as it is being re-laid
out. However, incrementalisation improves the performance of compaction, improving
the resilience to low memory.

4. Embedding: An alternative approach to reducing latency is to embed data move-
ment code in existing program loops, moving nodes in small groups as they are used in the
normal course of execution. This also has the potential to reduce the number of data ac-
cesses generated by the data movement optimisation. For Dict, when m = 2 embedding
the one-space data movement improves the reduction obtained (25%→ 30% for moveN-
ode), compared to incrementalisation which decrease it (25% → 20%). Furthermore for
low memory (m = 1.1) the fine interleaving of data movement code with normal pro-
gram work allows compaction to function more effectively than with incrementalisation
(for moveNode embedded achieves 27%, incrementalisation achieves 9%). For MList,
there is little scope for improvement over incrementalisation, and indeed embedding tends

124

7.3. PERFECT DATA MOVEMENT

to reduce performance. Thus, we conclude that for some programs embedding is a very
valuable technique, but must be applied carefully.

7.2.4 Summary for programmers

If twice as much memory can be used, and occasional large latencies are allowed, oc-
casionally re-laying out the entire RDS in another space is the most effective bulk data
movement (indeed, the best runtime data movement overall). This movement can be done
every k operations, or when miss rates (or some other measure of layout quality) reach a
certain level.

To reduce memory usage, a single space a factor of m > 1 larger than the memory
required by the RDS should be used. This space is split into lines or pages, using a similar
memory manager to that used for reallocation (see §7.1.4). The choice of line or page is
likely to follow the static layout properties of the RDS. The code that moves the RDS
should now move groups of nodes to lines/pages of maximal space, rather than empty
lines/pages.

To reduce latency, two approaches may be used. Firstly, the movement of the RDS
may be incrementalised, which is simple if one space is used because no write barrier is
required. This could be achieved using another thread, provided sufficient care is taken
to ensure the integrity of pointers. Secondly, data movement code may be embedded
in existing program loops. This is harder than a one-space incremental movement of
the RDS, but simpler than two-space. In some cases, embedding is much more effective
than one-space incremental movement, particularly when m is small. Furthermore, data
movement occurs with frequency proportional to the use of structure, which often means
that little tuning of the optimisation is required.

When a single space is used, reducing m may also decrease layout quality. This effect
can be partially prevented by putting a minimum threshold on the amount of space
in the blocks used to re-lay out the structure, and by performing some additional node
movement to produce better quality blocks (compaction). A simple compaction algorithm
is as follows: when normal data movement cannot occur because no block with space above
the threshold was found, move the nodes to block(s) of minimal non-zero space.

7.3 Perfect data movement

In this section we evaluate perfect data movement, investigating the quality of layout
that should be maintained, the memory usage, and how significant reducing the number
of node movements is when restoring data layout.

7.3.1 Dict

Recall that for perfect data movement for Dict we restore one of two layouts (BFS and
fixedHeight), performing the minimal number of node movements to a depth of zero,
one or two clusters.

Fig. 7.10 shows the effect of varying the depth of minimal node movement for BFS,
including the percentage reduction in execution time obtained when s = 1 (the maximum
modification rate of one insertion/deletion for every lookup). Note that this figure is the

125

7.3. PERFECT DATA MOVEMENT

variant depth
potentially unnecessary nodes moved

red’n (%)moves (%) /operation

moveNode 0 70 7.0 -4
1 10 3.2 36
2 .75 3.0 37

moveFields 0 100 5.0 -41
1 33 1.0 19
2 2 0.8 22

Figure 7.10: The effect of varying the depth to which cluster rebuilding is performed using the
minimal node of movements, for the BFS layout. Third column shows the proportion of node
moves that occur in functions that do not necessarily perform minimal movements. Fourth
column shows average number of nodes moved per operation. Final column shows the reduction
in execution time obtained by the optimisation.

same as Fig. 6.3, but with the reductions included. The results show that the depth-
0 solution – näıvely reclustering the updated cluster and those below it – is too slow,
obtaining large negative reductions in execution time. However, depth-1 solutions are all
that are needed to get close to the best performance. In other words, the updated cluster
should be repaired with the minimal number of node movements, but below that näıve
reclustering can be used.

Fig. 7.11 gives reductions in execution times for BFS and fixedHeight, for different
values of s. Also included is the time for the read-only lookup operation, which is a
measure of the layout quality of the tree. The reductions obtained are competitive with
reallocation and bulk data movement, and we compare them in more detail in the next
section. Actual memory usage m is around half of mworst ∈ [4, 4.2]; a steady m = 2.33 for
fixedHeight and m = 1.94 for BFS, irrespective of s.

The relation between BFS and fixedHeight is as expected. When modification
rate is high (s = 1), it better to maintain a slightly worse layout with lower overhead
(fixedHeight). When modification rate is low, more time is spent reading the structure
than updating it, and so it is better to maintain a better layout (BFS). The difference
between the two layouts is not very significant, no more than 4 percentage points. This is
a positive conclusion, because fixedHeight is significantly easier than BFS to implement.

Thus, we see that by use of a simpler layout (fixedHeight) and simpler restoring
(depth-1), performing effective perfect data movement in practice does not require an
especially complicated implementation. In particular, it is our opinion that the imple-
mentation is simpler than a B-Tree.

7.3.2 MList

The two clustering functions clustStrict(blockSize) and clustNonStrict(blockSize), and the
single minimisation function min(smallBlockSize, largeBlockSize) (which is used to allow
the allocation and freeing of small blocks using a minimum number of large blocks)
can be used to maintain several different layouts for MList by perfect data move-
ment. We treat these as four families of optimisations (min, clustStrict, clustNonStrict

126

7.3. PERFECT DATA MOVEMENT

reduction (%) µ seconds/lookup
variant s BFS fixedHeight BFS fixedHeight

moveNode
1 37 43 0.94 0.89

0.1 49 49 0.93 0.89
0.01 41 38 0.95 0.91

moveFields
1 19 22 0.91 0.87

0.1 14 13 0.90 0.87

Figure 7.11: Perfect: Dict: Reduction in execution time for perfect data movement for BFS
and fixedHeight, for Dict benchmark.

and clust[Non]Strict+min), as given in the table on page 92.

7.3.2.1 Overview

Unlike Dict, we have (indirect) control over actual (m, M) and worst-case memory
usage (mworst, Mworst) when performing perfect movement for MList. This is achieved
by varying the block size and the minimum number of nodes allowed in a block. In this
section we consider actual memory usage including all memory manager headers, M . This
is more relevant than m because varying block size alters the value of M/m.

In Fig. 7.29 for v ∈ {27, 211, 215, 219} we plot speedup against M for the four families
of optimisations. Results use the best out of simple and complex clustering. For each
line, these graphs show the improvement (reduction or speedup) obtained for M at most
the value of the horizontal axis. In other words, each line is non-decreasing, even for
optimisations whose performance degrades as M increases. For values of M where there
is no line for a particular optimisation, the optimisation cannot be used with that value
of M .

Apart from for very short lists (v = 219), the most effective of the four families is
simple strict or non-strict clustering. Non-strict is a little better that strict when lists
are short (5.5× for non-strict, 4.5× for strict), but for longer lists strict gives twice the
speedup. For longer lists strict clustering can exploit larger block better because it keeps
nodes in traversal order, allowing the hardware prefetcher to work. For short lists, the
cost of update is more important than the traversal cost, so the O(1) update that non-
strict clustering provides gives a slight improvement over strict. For v = 219 the overhead
of strict and non-strict clustering is too high – the large movement of nodes that occurs
when a block overflows or underflows is unnecessary when the lists are short.

The hybrid strategies in clust[Non]Strict+min are ineffective, either slower than strict/non-
strict clustering, or requiring far more memory.

The min(cell, b) optimisation performs well for an average list length of 8 nodes (v =
219). Note that simple minimisation min(cell, b) requires at least m = 1.5 because each
node has to be augmented with a parent pointer. Although the layout maintained is
not as good as strict and non-strict clustering, the much lower overhead translates to
a respectable 1.6× speedup. For average list length of 128, min(cell, b) also performs
relatively well when m is high enough. For longer lists the optimisation is ineffective,
which is as expected because blocks are unlikely to stay in the cache long enough when lists
contain thousands of nodes. Thus we conclude that min(cell, b) is a good technique either
when lists are short enough or memory is high enough, or when a simpler implementation

127

7.3. PERFECT DATA MOVEMENT

 0

 0.2

 0.4

 0.6

 0.8

 1

 8192 4096 2048 512 128

pr
op

or
tio

n
[0

,1
] o

f b
es

t s
pe

ed
up

block size (Bytes)

v=2^7
v=2^9

v=2^11
v=2^13
v=2^15

Figure 7.12: Perfect: MList: clustStrict(blockSize), for varying blockSize and v. On the
vertical axis, for each value of v, results are scaled linearly so the maximum speedup obtained
is 1 and a speedup of 1× is 0. In more detail, proportionv(blockSize)=(speedupv(blockSize)-
1)/(bestSpeedupv-1).

is favoured.

7.3.2.2 Simple vs. complex clustering

Here we compare the the two different methods of clustering: simple, which moves a node
(or gap) forward in the list until a suitable block is found, and a more complex scheme
similar to Rubin et al.’s VCL structure [60]. Recall from §6.3.2 that in the worst case the
former makes roughly twice as many block accesses as the latter, for long enough lists6.
Fig. 7.28 shows the best of the two families clustStrict and clustNonStrict, for simple and
complex clustering, plotted against M .

As is expected from the worst case block accesses, complex clustering is more effective
than simple for long lists (v = 27). For shorter lists, simple clustering is occasionally a
little better because it has lower overhead, but the difference is slight. Thus, in practice,
the simple method of clustering is sufficient to perform effective perfect data movement
when the average list length is around 2048 or less (v ≥ 211).

7.3.2.3 Choosing the correct block size

Here we discuss the effect of block size on the performance of perfect data movement
for MList. Using a larger block size has the potential to improve layout, firstly because
fewer pages are accessed when a list is traversed (hence fewer TLB misses), and secondly
because the hardware prefetcher may remove L1/L2 misses, if nodes are kept in order
within blocks. However, using large blocks may increase the number of pages, increasing
working set size, increasing miss rates.

6About 1.99 times as many block accesses for v = 27, and 1.88 times as many for v = 211.

128

7.3. PERFECT DATA MOVEMENT

Now considering overhead, for strict clustering using larger blocks increases the length
of any node shuffling within a block, but will reduce the chance of a block overflowing or
underflowing, and thus the effect of block size on overhead is not easily predictable. A
further effect is that the longer the lists the more time is spent traversing to the point at
which the update occurs, and so the overhead of updates is less significant.

How the performance of an optimisation relates to blocksize is thus not easy to predict.
Fig. 7.12 shows the effect of block size on the performance of the best optimisation, simple
strict clustering (clustStrict). The vertical axis is scaled so that for each value of v the best
speedup corresponds to 1 and a speedup of 1× corresponds to 0 (i.e. y= (speedupv(x)-
1)/(bestSpeedupv-1), where x denotes the horizontal axis and y the vertical).

Experiments show that for all lists, increasing the block size increases the quality of
data layout, but as shown in the figure this does not translate to improved performance,
because increasing block size also increases update cost. For v = 215, where lists are on
average 128 nodes (8 cache line’s worth), the best balance between maximising layout
quality and minimising update cost is to use blocks the same size as cache lines, rather
than just using a block size large enough to contain each list within it. As v is increased,
the best block size increases, and thus the increase in overhead is less significant than the
improvement in layout that larger blocks give. However, it is never most efficient to use
a block size that will contain the whole list.

In terms of the tuning of the perfect data movement optimisation, we note that there
is no single block size that works reasonable well for the list lengths covered here. Using a
block size either half or twice as large as the best block size, can cause up to a 0.45 loss in
speedup (using the scaling from the figure), usually around a 0.20 loss. Using only either
line or page will cause a 0.25 loss, and furthermore if the incorrect choice of these two
options is used, large losses are possible: For example, when v = 27, using lines instead of
pages gives a 0.8 loss. Thus a conservative approach that attempts to minimise memory
wastage for all list lengths by using small blocks7 may remove the majority of the speedup
if lists turn out to be long when the program runs.

In conclusion, we have shown by varying blocksize that best performance often comes
from using perfect data movement to restore a reasonable layout rather than the best
layout. The perfect data movement optimisation in this thesis are effective, but must
be tuned based on list length, which may only be possible at runtime. More complex
schemes (e.g. adjusting the block size on a list-by-list basis using a memory manager that
provides blocks of several sizes) might allow the optimisation to adjust to changes in list
length at runtime.

7.3.2.4 Worst-case memory

Unlike reallocation or bulk, perfect data movement does not have a specified memory
usage, but we may calculate the upper bound on memory usage (the ‘worst-case’ memory
usage), as we did for MList in §6.3.3. The results from Fig. 7.29 are shown against
worst-case memory usage in Fig. 7.30.

In general, worst-case memory is larger relative to actual memory when blocks are
large and/or the minimum number of nodes in a block (i.e. the minimum number of
nodes for clustering) gets smaller. For v < 219, it appears that the best optimisations

7For v = 215, using pages gives m = 4, compared to using lines which gives m = 1.2.

129

7.3. PERFECT DATA MOVEMENT

keep blocks at least three quarters full, and don’t use large blocks when to do so would
waste a lot of memory. This prevents worst-case memory usage from being much larger
than actual memory usage.

The most significant difference is for long lists, where the minimum amount of memory
needed to get any improvement (or the best improvement) increases from close to 1 to
around 1.2. This is not a large amount of extra memory in real terms. However, for
v = 219, worst-case memory is rather higher – mworst = 3.2 is required to get a 1.6×
speedup, compared to the actual memory usage m = 2.3.

In conclusion, for average list length larger than a line, perfect data movement for
MList is suitable for applications where memory must be properly bounded, provided
the minimum number of nodes per blocks is kept high, which appears to happen naturally
when the best optimisation is chosen and tuned to maximise improvement in execution
time. This is in contrast to Dict where worst-case memory is at least 4, and actual
memory usage was between 1.9 and 2.4. For lists less than a line, the worst-case memory
requirements are even higher than the already high actual memory usage.

7.3.3 Conclusions

Here we summarise a few observations on the construction of an effective perfect data
movement optimisation:

1. Choice of layout: There is considerable evidence that using a layout worse than
optimal is necessary to get the best performance. For Dict, when the update rate s is
high it is more effective to use the slightly worse fixedHeight layout because is cheaper
to maintain, but for low s using the better BFS layout is more effective. For MList
layout relaxation takes three forms: reducing memory density, reducing block size, and
using a layout involving non-strict clustering and/or minimisation. Reducing memory
density is necessary to reduce cost of update from linear in list length to linear in block
size. Regarding block size, the best performance comes from using a block size in the
range [lineSize,pageSize], depending on the list length, whereas the best layout is always
produced by using pages. Non-strict clustering is slightly better than strict for v ≥ 215,
and use of min(cell,line) is very effective for v = 219, but in all other situations the most
effective optimisation was strict clustering (the analogue of the cache-aware solution).

2. Memory usage: Depending on the benchmark, the memory demands of perfect
data movement may be high – both practically and worst-case. For Dict, m ∈ [1.9, 2.4]
is required in practice, but the worst-case memory is somewhere in [4, 4.2], far too high
for memory-constrained applications. For Mlist, provided lists are larger than a line,
the amount of memory used is comparable to reallocation and bulk, and the worst-case
memory is also reasonable.

3. Implementation difficulty: Perfect data movement maintains a chosen layout,
but does not need to do so with the minimum number of node movements. This makes
perfect data movement a little more attractive as a source of optimisations. For Dict, we
combine a few simple functions and rely on the observation that most modifications are
near the bottom of the tree, rather than always performing the minimal number of node

130

7.3. PERFECT DATA MOVEMENT

movements. We observe that it is only necessary to perform the minimal number of node
movements within the updated cluster to achieve good performance. Simply rebuilding
the updated cluster from scratch after a pointer update is far too expensive, and thus
perfect data movement must be applied using some knowledge of the pointer update that
has occurred. Furthermore, we have shown that if the tree is well-balanced, we can use
a simple fixed cluster height, instead of defining clusters by BFS, which greatly simplifies
the implementation. For MList, we have shown that simple clustering (shuffling a node
or gap forward until space is found) performs as well as more complex clustering schemes,
when the average list length is smaller than a few thousand nodes.

7.3.4 Summary for programmers

Perfect data movement is harder to implement than either reallocation or bulk data
movement, but is often more effective. In some situations it may be simpler than using
a cache-aware structure, and for branching traversals our results suggest that its perfor-
mance is competitive with the cache-aware structure. In addition perfect data movement
may be preferable to using a cache-aware structure because read accesses of the structure
are unchanged.

Unlike reallocation or bulk data movement, worst-case memory usage is different from
typical-case memory usage. Worst-case memory is reasonable for linear structures, but
may exceed four times the space required for the unoptimised structure for branching
structures.

For linear traversals, perfect data movement can be achieved simply by using a good
cache-aware structure, but retaining pointers between nodes. Such cache-aware structures
typically keep nodes grouped into blocks, stored either in-order or out-of-order (the latter
is cheaper to update, but the former has a better layout). When an insertion or deletion
occurs, nodes are moved between blocks to keep the number of nodes in each block below a
minimum value. The minimum number of nodes per block and the block size (between the
size of a line and size of a page) should be varied to find the best balance between overhead,
layout quality and memory usage. For sufficiently short lists (in our experiments, a few
thousands nodes), simply shuffling nodes (or gaps) forward in the list is an effective way
of restoring blocks to the correct number of nodes (given a non-pathological sequence of
updates). For longer lists, more complicated schemes may be more effective (for example
the ‘VCL’ scheme of Rubin et al. [60]).

For branching traversals, perfect data movement can be achieved by clustering nodes
into blocks. We did not find any value in using blocks larger than pages. Clusters may
be filled either using breadth-first search or be a rigid shape. The latter is simpler to
implement but for sparse trees may waste memory and create a poorer layout. On insertion
and deletion, the updated cluster and all clusters below it in the tree are repaired. This
requires a favourable distribution of pointer updates – uniformly distributed insertions
and deletions in a binary tree work well, but if updates were too heavily weighted to
the root of the tree the amount of reclustering per update would be sufficiently high to
prevent the improvement in layout translating into an improvement in performance. The
results in this thesis suggest that at least the updated cluster and possibly the first level
of clusters below should be repaired intelligently, rather than just moving all nodes to an
empty line. This is significantly more complicated for clusters filled using breadth-first

131

7.4. COMPARISON

search than rigidly-shaped clusters.

7.4 Comparison

We now compare the three different families of optimisation, concentrating on four differ-
ent ‘environments’ , formed by two binary choices.

Firstly, we consider either high or low latency. Recall that latency is defined by look-
ing at subsequences of operations that take about 1ms in the unoptimised benchmark.
An optimisation is said to have low latency when no subsequence’s performance is sig-
nificantly decreased when the optimisation is applied. We summarise the latency of the
different optimisations and cache-aware structures below:

Reallocation: Low latency, since only a single node moved per operation.

Bulk data movement:
• periodic: High latency due to movement of whole structure.
• incremental: Low latency, because program work only has to be paused for long enough

to move a block’s worth of nodes. Note however, that the larger the pause the more
efficient incrementalisation will be.
• embedded: Low latency, because data movement is only turned on occasionally and is

interleaved with normal program work.

Perfect data movement: Low latency in practice, due to distribution of pointer updates in
the structure, but high latency in pathological situations. e.g. for Dict, multiple updates
near the root of the tree, causing reclustering of a large part of the structure.

Cache-aware structures:
• Dict: Low latency.
• MList: Low latency in practice, but high in pathological situations, as for perfect

data movement.

In this evaluation we will consider only the latency observed in practice –i.e. only bulk
data movement’s periodic optimisations have high latency.

Secondly, we consider either actual memory usage (m, M) or worst-case memory usage
(mworst, Mworst). Both bulk data movement and reallocation have M = Mworst, but the
cache-aware RDSs and perfect can have significantly larger Mworst than M .

A summary of the latency and memory properties of the different optimisations and
structures can be found in Fig. 7.13. The results for all optimisations for the four en-
vironments for the two variants of Dict and four list lengths for MList are given in
Figs. 7.31–7.36. For cache-aware and reallocation the best results obtained are given. For
perfect data movement we give only the best result for MList, but for Dict we show
both perfect optimisations (BFS and fixedHeight). For bulk data movement we show
the best one-space optimisation and the best two-space optimisation. The value of the
maximum improvement possible from runtime data movement (as calculated in §3.4.3),
is also shown.

For each series, these graphs show the improvement (reduction or speedup) obtained
for memory at most the value of the horizontal axis. In other words, each line is non-
decreasing, even for optimisations whose performance degrades as memory increases (e.g.

132

7.4. COMPARISON

latency
optimisation/structure observed patho’l memory
reallocation low low M = Mworst

bulk: periodic high high M = Mworst

bulk: incremental, embedded low low M = Mworst

perfect low high M < Mworst

cache-aware: Dict low low M < Mworst

cache-aware: MList low high M < Mworst

Figure 7.13: For the three optimisations, and cache-aware RDSs, this figure shows whether
actual memory M is different to worst-case memory Mworst, and the observed and pathological
latency.

due to increasing working set size). If the line for a particular optimisation does not exist
for some value of M , it means the optimisation cannot be used with that value of M .
Finally, note that no results is given within the shaded box, which is between [1, 1.2] on
the horizontal (memory) axis. This is because to show accurately how the improvements
decreased to zero (or lower) as memory tended to one would require a large number of
experiments, but we don’t consider this behaviour important – it is simpler just to omit
the results.

In the rest of this section we will firstly compare the easier to apply techniques (re-
allocation and bulk data movement) and then compare them to perfect data movement.
Secondly, we discuss the long-term stability of each optimisation technique, and how they
may be tuned. Finally, we compare the optimisation to other methods of preventing layout
degradation in RDSs (cache-aware RDSs and layout-improving garbage collectors).

7.4.1 Easily applied optimisations: reallocation and bulk

Here, note that M = Mworst, and only bulk data movement’s periodic optimisations have
high latency in practice.

Dict: When low latency is required, reallocation gives 1.5–2 times larger reductions than
bulk data movement for moveFields, and is a few percentage points better for moveN-
ode. For low enough memory, bulk is better than reallocation – giving a 23% reduction
for moveNode compared to reallocation’s 15%. When high latency is allowed, bulk
is 5–7 percentage points better than reallocation provided M is larger than ∼ 2 (when
the periodic2space optimisation can be used). The periodic optimisations do not beat
reallocation when low latency is required.

Thus, both optimisation techniques are valuable, with the best depending on both
memory allowance and whether high latency is allowed.

MList: For M around 1.5, bulk gives a larger speedup than reallocation (but usually only
by a factor of 1.1), apart from for very short list (v = 219) where bulk is a little worse
than reallocation (a factor of 0.9). For lower values of M , reallocation’s performance
decreases, but only by a significant amount for v = 215, where bulk data movement
obtains almost twice the speedup of reallocation for M = 1.2. For M greater than around
2, the periodic bulk data movement optimisation is by far outstanding because the two-

133

7.4. COMPARISON

space optimisations can be used, producing speedups between 1.1 and 1.8 larger than
reallocation.

Thus, for MList, bulk data movement is more powerful in general. However, for mid-
range values of M (around 1.5) the difference between reallocation and bulk is relatively
small. Unlike with Dict, allowing high latency does not have a significant effect on the
absolute or relative performance of the two techniques.

Discussion: Bulk data movement and reallocation are both easily applied, but are orthogo-
nal approaches to data movement: the former corrects the degradation of every individual
pointer-update, the latter corrects many degradations en masse. We might expect bulk
data movement to be more effective because many of the memory manager costs can be
reduced, but the results demonstrate that reallocation is often equally good, and some-
times better, depending on the benchmark, memory allowance, and whether high latency
is allowed.

7.4.2 Perfect data movement

Here, note that perfect data movement has M 6= Mworst, and only bulk data movement’s
periodic optimisations have high latency in practice.

Dict: Both methods of perfect data movement either equal or exceed reallocation, by 9
percentage points for moveNode and 3 for moveFields. However, they do so a cost of
M ≥∼ 2.2, and Mworst ∈ [4.57, 4.80], whereas reallocation obtains most of its reduction
by M = Mworst = 1.35. Perfect always outperforms bulk.

MList: Ignoring the min(c,l) perfect optimisation, which is extremely effective for the
lists of length 8 of v = 219, the results show that perfect data movement is better than
reallocation for long list (v = 27), but worsens as lists shorten, eventually becoming slower.
For v = 27, the performance of the perfect optimisation is only slightly better than bulk,
but worse than bulk for larger v.

Discussion: We have observed that perfect data movement can outperform reallocation
for both benchmarks, and thus we may conclude that performing more complex data
movement at pointer update sites is worthwhile – and there may be a middle ground
of optimisations more effective than reallocation but simpler to apply than perfect. For
MList, we observe that neither form of pointer-update data movement approaches bulk’s
simple twoSpace optimisations, which suggests that for some benchmarks correcting data
movement en masse is far more effective.

The relative performance of reallocation, bulk and perfect suggest that well-tuned
approximate optimisations (bulk, reallocation) will perform fairly well compared to, and
sometime exceed, more precise data movement (perfect). Thus, implementation effort
may be traded for tuning effort.

7.4.3 Stability

The experimental results given in this thesis are for the improvement in execution time
seen for a small group of operations at the end of the experiment, whose length is around
ten minutes. For bulk and perfect, the optimisations that achieve the largest improvement
according to this measure are also stable – in other words the improvement does not

134

7.4. COMPARISON

improvement
benchmark normal length 10× longer
Dict-moveNode† 31% S 31% S
Dict-moveFields 18% U 27% U
MList v = 27 8.11× U 20.7× U
MList v = 211 14.9× U 9.64× U
MList v = 215 5.65× S 5.07× S
MList v = 219 1.34× S 1.27× S

Figure 7.14: The stability of reallocation. The reduction or speedup obtained using the normal
experiment length, and ten times longer, are shown for the different benchmarks. ‘S’ indicates
stable, ‘U’ unstable.

decrease if the experiment is run for longer. In some cases the improvement will increase
if the unoptimised benchmark’s data layout continues to degrade.

In bulk data movement’s case the stability is aimed for when tuning parameters. For
perfect data movement for MList, it often takes most of the experiment length to achieve
a stable time – this is because the structures are built by insertion, but updated using
insertion and deletions, and so the block densities take some time to reach an equilibrium.

Reallocation is not always stable, but good improvements are still seen when the
experiments are run to ten times normal length, as shown in Fig. 7.14. More detail of
MList’s stability can be found in §7.1.2.4.

In conclusion, all the optimisations in this thesis, even the most ad-hoc, can be relied
on to produce improvements in both the short- and long-term.

7.4.4 Tuning

Here we demonstrate the effect on performance of mistuning bulk data movement optimi-
sations. Similar results for reallocation were given in Figs. 7.16–7.25 (varying the subset
of sites, varying the coallocators, and varying the block size), and for perfect in Fig. 7.12
(varying block size for MList).

Fig. 7.15 shows how the optimal data movement rate depends on the list length (for
MList) or the value of s (for Dict) – observe that if the list length or s are different at
run time to what was tuned for, a lot of performance can be lost.

For Dict-moveNode and the embeddedOneSpace optimisation, Fig. 7.37 shows in
more detail how the optimal values of data movement rate and threshold depend on both
s and m. Observe that some of the behaviour is unexpected – when m = 2 memory is
plentiful, and one would expect optimisation to be easier, but the penalty for mistuning
is far higher than for m = 1.1.

7.4.5 Comparison to other solutions

Here we compare the three optimisation families to two other methods of preventing RDS
data layout degradation: cache-aware RDSs and layout-improving garbage collectors.

135

7.4. COMPARISON

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e+07 1e+06 100000 10000 1000 100

pr
op

or
tio

n
[0

,1
] o

f b
es

t s
pe

ed
up

movement period (operations)

MList - periodicTwoSpace

v=2^7
v=2^11
v=2^15
v=2^19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e+08 1e+07 1e+06 100000 10000 1000 100

pr
op

or
tio

n
[0

,1
] o

f b
es

t s
pe

ed
up

movement period (operations)

MList - incrementalOneSpace

v=2^7
v=2^11
v=2^15
v=2^19

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 1e+06 1e+07 1e+08

pr
op

or
tio

n
[0

,1
] o

f b
es

t r
ed

uc
tio

n

movement period (operations)

Dict-moveNode - periodicTwoSpace

moveNode s=1
moveNode s=0.1

moveNode s=0.01
 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 1e+06 1e+07 1e+08

pr
op

or
tio

n
[0

,1
] o

f b
es

t r
ed

uc
tio

n

movement period (operations)

Dict-moveFields - periodicTwoSpace

moveFields s=1
moveFields s=0.1

moveFields s=0.01

Figure 7.15: The effect of mistuning data movement rates, for both benchmarks, for the peri-
odicTwoSpace and the best low-latency oneSpace optimisation. The horizontal axis shows the
period of movement of the whole RDS, measured in operations. The vertical axis shows propor-
tion of best reduction for Dict, and proportion of best speedup for MList (as in Fig. 7.12).

7.4.5.1 Cache-aware RDSs

The results in Figs. 7.31–7.36 are used.

Dict: For moveNode, the cache-aware solution is better than the best easily applica-
ble solution (reallocation) but not as good as the better perfect data movement solution
(BFS). Regarding implementation effort it is debatable whether BFS is harder to imple-
ment than a B-Tree, but the latter has far lower worst-case memory requirements, so is
probably preferable.

For moveFields, cache-aware performs badly, obtaining only half the reduction of
reallocation. This difference in performance is perhaps because a B-Tree maintains a
well-balanced tree unlike the binary search tree used for Dict, or perhaps because the
B-Tree has higher instruction costs than the optimisations despite maintaining a better
layout.

In conclusion, we may view the application of reallocation, bulk or perfect to Dict as
a way of synthesising cache-aware data structures that are more effective than B-Trees
in some situations (e.g. for moveFields, or when m can be high), but harder to reason
about analytically.

MList: We do not expect perfect data movement to exceed the cache-aware RDSs, be-
cause apart from for v = 219, the former is just clustStrict, which is simply a density-

136

7.4. COMPARISON

relaxed, higher overhead form of the latter. Indeed, the removal of internal pointers within
blocks allows cache-aware to far outperform all our data movement optimisations – even
exceeding the maximum speedup we could obtain by runtime data movement for v ≤ 211.
Memory usage M is also very low, often below one, something too that is not achievable
by applying runtime data movement to a simple linked list structure.

The exception to cache-aware’s dominance is for the short lists of v = 219, where
bulk’s periodic optimisations are either competitive with (high latency not allowed) or
better than (high latency allowed) the cache-aware RDSs.

Although the cache-aware solutions are usually better than the runtime data movement
optimisations, the former is never better by more than a factor of 1.5. This is achieved for
example for v = 211, where the cache-aware solution achieves a speedup of 40× and the
best runtime data movement optimisation achieves 27×. Compared to the unoptimised
benchmark, this may not be significant difference; it is conceivable that a programmer
might find using a simple linked list with the incremental2space optimisation and m = 2 a
better compromise between performance and implementation effort than the cache-aware
RDS. Thus we conclude that runtime data movement allows most of the benefit of using a
cache-aware solution to be realised, through methods which may be easier to implement.

7.4.5.2 Locality-Improving GCs

The bulk optimisations can be seen as modelling the sort of runtime data movement an
LIGC might achieve (for results, refer to Figs. 7.26 and 7.27). For both benchmarks
periodicTwoSpace achieves the best improvements, and thus we might expect that if a
programmer isn’t concerned with memory usage or latency, a stop-the-world two-space
LIGC will achieve similar improvement, provided the rate of data movement is correct
(refer to §7.4.4 and Fig. 7.15), the overhead of updating parents can be reduced and some
mechanism for producing a good layout in to-space is used (either by the programmer
explicitly choosing a layout as in Novark et al. [51], or by profiling [12, 17, 35, 66]).

For low-latency situations, our results suggest that the performance hit of using an
incremental GC is not too severe8.

For low memory for MList, our results suggest that using one space and moving
to the best block available allows the reduction of memory without significant impact
on performance. Locating the best block is simpler when all objects are the same size,
and so if the RDS can inhabit its own region (a transformation which can be done au-
tomatically [44]) both layout and overhead will be reduced. This process may allow the
possibility of walking the RDS heap at a different rate to the rest of the heap (cf. gener-
ational garbage collection). If the whole heap must be walked to re-layout the RDS, the
performance overhead will be large.

For low memory for Dict, we found that periodic or incremental bulk data movement
was far less effective than embedding data movement code in traversal loops. The impli-
cation of this is that for low memory, runtime data movement in a GC may be ineffective,
and a solution more closely coupled to the program will work more effectively – such as
bulk’s embeddedOneSpace, reallocation or perfect data movement.

8This is for Dict. For MList, we relied on the fact that the RDS can be split into small distinct
parts, avoiding the need for a write barrier. This will not be possible for an LIGC without some help
from the applier to identify distinct parts of the RDS. However, we believe that, like Dict, the overhead
of the write barrier would not be prohibitive.

137

7.5. FURTHER WORK

In conclusion, our results demonstrate that GC-based runtime data movement can
be effective for high memory and high latency, provided the cost of updating parents is
low and the data movement rate is correctly adjusted, but for tougher conditions, non-
GC techniques such as embedding data movement traversals, reallocation or perfect data
movement are likely to be more effective.

7.4.5.3 Summary

In reallocation, this thesis demonstrates a novel pointer-update-time ad-hoc approach
to data movement, which produces good improvement with low latency and copes nat-
urally with low memory. In perfect data movement, the limits of pointer-update data
movement have been investigated, synthesising a new cache-aware structure for trees that
outperforms B-Trees in practice. In bulk data movement, this thesis demonstrates the
performance that a good LIGC may achieve, and identifies the limitations, and suggest
refinements such as embedding data movement and compaction, providing new insight
which may guide the design of these collectors.

The techniques of this thesis come close to and on one occasion exceed the performance
of traditional cache-aware structures. We observe here that the results of this thesis
represent the upper bound on the performance that may be achieved by runtime data
movement (due for example to the lack of parent pointers in structures, and the uniformity
of pointer updates), but note also that the benchmarks used are representative of real
problems and have certainly not been contrived to justify particular optimisations. Thus,
we believe that there is much potential to make use of these techniques in practice. We
conclude that although a programmer should always use a structure designed for good
cache behaviour, in many situations this is not practical9, and the techniques of thesis
will be of great use to improve performance.

7.5 Further work

All the optimisations require some mechanism to update pointers, different approaches to
this problem were discussed in §2.3.2.1. For realistic use, optimisations should be able to
cope with multiple node sizes. The memory manager could be rewritten to allow hetero-
geneous nodes, but it is more efficient if the memory manager is homogeneous. This can
be achieved by a combination of separating differently-sized objects into distinct regions,
padding objects so they are the same size and splitting the hot and cold parts (using
current techniques, see §2.2.5). We note also that the heap may be grown and shrunk
dynamically, which we avoided in this thesis because we did not want the performance of
the system memory manager to be a factor.

Reallocation: Given some mechanism to update parents, reallocation is a practical opti-
misation, and all that is required is to apply it automatically. To do this, we must choose
the correct sites to use, and the sort of reallocation to use at each site. A method such
as the following may be used.

9e.g. 1. No such cache-aware analogue of a ‘hand-rolled’ structure exists, 2. The requirements are not
known in advance, 3. The implementation effort of the cache-aware structure is too great, 4. It is not
initially known that data layout problems are a significant cause of poor program performance.

138

7.5. FURTHER WORK

Each of the k sites has either (i) no reallocation applied (ii) coallocator pattern 〈L; null〉,
with one hint chosen in the immediate vicinity of the realloctee (iii) coallocator pattern
〈L; EL〉, with hint as before, or (iv) coallocator pattern 〈null; EL〉. The space to be searched
is 4k, and methods such as those used in Chow et al. [19] can be used to reduce it. Once
this search has been performed, the number of hints used can be increased at each site,
noting that we expect the number of hints to have an optimal value, since using more
hints imposes a higher overhead and may degrade layout quality.

Finding the pointer-updates sites for an RDS is within the reach of static analysis,
and we expect it to be relatively easy to find one hint object by static analysis as well.
Increasing the number of hints will probably require the insertion of code into program
loops, for example as was done with the last∞ search type for MList, thus a semi-
automatic approach may be more feasible.

Bulk: Deploying bulk data movement practically could be done it two ways – either using
the techniques within an LIGC (apart from embedded), or applying them automatically
as optimisations. Regarding the former, with the incremental variants any help the pro-
grammer can give to reduce the cost of or remove the write barrier will help to improve
performance. Applying the embedded optimisations automatically may be made easier
using automatic tools to unwind loops etc, but it is not clear how simple this process
could be made.

For both directions, finding the correct parameters for bulk data movement is critical.
As was shown in Fig. 7.15, if the behaviour of the program is not what was tuned for,
significant performance can be lost. Furthermore, the behaviour may change at runtime.
Tuning parameters statically has been tackled in the past (E.g Chow et al. [19], Bodin
et al. [9]) – our optimisations have at most four dimensions, of which only two take more
than a half dozen values.

Dynamic tuning (choosing parameters at runtime) may be possible in a number of
ways. Note that while changing movement rate, thresholds and turning compaction on and
off at runtime may be easy, changing block size will require the cooperation of the memory
manager. The ideal method of tuning is for the optimisation to adjust its parameters
online in response to the execution time for a group of operations. The aim would be
to minimise execution time, subject to layout quality staying constant (i.e. there is no
point minimising time now if layout will degrade in the future). This may be possible for
programs whose behaviour changes slowly over time, or changes infrequently. A second
method is to construct a map from observable behaviour of the program – pointer update
rate, average list length, etc – to the value of parameters to use. This requires statically
finding the optimal set of parameters for many different variants of the program. This
allows the optimisation to select the best parameters if the behaviour of the program
changes at runtime, but the procedure must be repeated for different machines.

The above is clearly extremely speculative, and current work in this area is still in its in-
fancy. For example, even in Chen’s state-of-the-art locality-improve garbage collector [12]
a very simple heuristic is used to determine the data movement rate: a layout-improving
collection is activated when miss rates exceed a threshold. As we have shown, the key
to efficient runtime data movement is doing it at the correct rate, thus balancing over-
head and layout, and so such a scheme requires a properly tuned program- and machine-
dependent threshold to achieve the best performance.

139

7.5. FURTHER WORK

Perfect: Applying perfect automatically is probably not possible, but we may view the
results of this thesis as insight into cache-aware RDSs. For MList, we found that the
existing best cache-aware RDS was usually the best source of perfect data movement
optimisation, and so the work doesn’t provide much insight. However, we observe here
that the actual and worst-case memory usage of these schemes may be reduced by adapting
block size based on list length.

For Dict both BFS and fixedHeight can outperform a B-Tree implementation, and
we expect that the new cache-aware structure produced from perfect data movement using
these layouts by removing any pointers internal to a cluster would be even more effective.
The worst-case memory usage is the main disadvantage to such a structure, but this could
be tackled in a number of ways, for example by allowing small subtrees to share lines (a
subtree is moved to a new line if it cannot grow within the line).

The tuning of perfect data movement and the new cache-aware structures can be
achieved in a similar way to bulk (refer to Fig. 7.12 for the effect of MList’s average list
length on optimal block size).

140

7.5. FURTHER WORK

values of p, c, t
site enabled deleteMove insert deleteCut

deleteMove insert deleteCut reduction (%) p c t p t p c t
X X (X) 24 1 2 F 1 T 0 0 F
X X 24 1 2 F 1 T
X X 17 1 2 T 0 0 T

X (X) 6 7 F 0 0 F
X 16 1 2 T

X 1 1 0 F
X 6 7 F

0
(a) Dict-moveNode

values of p, c, t
site enabled insert deleteCut

insert deleteCut reduction (%) p t p c t
X X 13 1 T 1 0 F
X 5 7 T

X 5 1 0 F
0

(b) Dict-moveFields

Figure 7.16: Reallocation: Dict: The effect of only enabling a subset of sites. The reduction
in execution time obtained is given, for all different subsets of sites enabled. In the left-hand
figures, the ‘X’ symbol indicates that a site is enabled and is performing data movement. The
‘(X)’ symbol indicates that a site is enabled, but the best combination of strategies used a null
strategy at that site (i.e. where p = c = t = 0). In the right-hand figures, the values of p, c
and t that gave the best performance are given (in the t column, T=true, F=false). Refer to
§7.1.1.1 for more description and evaluation of these results, and Fig. 7.1.

min×, min% −→ ←− 1×, 0%

1×, 0% −→

←− max×, max%

Figure 7.17: Read from top to bottom, and within each row from left to right, this figure shows
the palette used for Figs. 7.18–7.24 and 7.37. Negative improvements – reductions less than
zero (%), or speedups less than one (×) – use a color scheme when blue corresponds to the
worst negative improvement in the figure. No improvement corresponds to white. Positive im-
provements – reductions greater than zero (%), or speedups greater than one (×) – pass through
green, yellow and orange arriving at red, which corresponds to the best positive improvement in
the figure.

141

7.5. FURTHER WORK

insert
p 1 > 1 0 1 > 1 0

p c t t t t f f f

de
le

te
M

ov
e

1 > 1 f 24 22 19 14 14 11
1 > 1 t 24 22 19 20 20 16
1 1 f 23 21 16 13 13 9
1 1 t 22 20 17 19 19 16

> 1 > 1 f 22 21 17 14 13 9
> 1 > 1 t 21 20 17 19 19 16
> 1 1 f 21 20 15 13 12 8
> 1 1 t 20 19 15 18 18 15
> 1 0 f 18 18 11 11 11 6

1 0 f 18 18 11 11 11 6
> 1 0 t 17 16 10 16 16 13

1 0 t 17 16 10 16 16 13
0 > 1 f 14 14 11 11 11 9
0 > 1 t 13 14 9 14 13 12
0 1 f 13 13 9 9 9 7
0 1 t 12 11 8 11 11 10
0 0 f −0 5 −4 2 6 0
0 0 t −3 −3 −5 −1 −2 0

Figure 7.18: Reallocation: Dict-moveNode. Reduction in execution time when the strategy
used at the insert and deleteMove sites are varied independently, with the deleteCut strategy
null. The strategies used for insert and deleteMove are given in Fig. 7.1. Where p’s value is
> 1, the best result obtained for p ∈ {2, 4, 7} is used. The palette used is in Fig. 7.17.

142

7.5. FURTHER WORK

insert
p 1 > 1 1 0 0 > 1

p c t t t f t f f

de
le

te
C
ut

1 0 f 13 9 9 6 5 5
> 1 0 f 10 7 6 5 1 1

1 1 f 10 6 7 5 3 3
1 2 f 7 3 5 2 2 1

> 1 1 f 7 4 4 4 0 0
> 1 2 f 5 2 3 1 0 0

1 2 t 3 −1 4 0 3 0
1 1 t 3 −2 2 0 4 0

> 1 2 t 2 −3 2 0 1 0
> 1 1 t 1 −3 2 −1 0 0

1 0 t 1 −4 1 −2 3 1
> 1 0 t 0 −4 1 −3 0 1

0 0 f −0 5 2 −6 0 1
0 1 f −3 2 0 −8 2 1
0 2 f −4 0 −2 −10 3 −2
0 2 t −7 −11 −6 −14 6 −9
0 1 t −7 −10 −8 −12 6 −9
0 0 t −14 −16 −10 −16 9 −13

Figure 7.19: Reallocation: Dict-moveFields. Reduction in execution time when the strategy
used at the insert and deleteCut sites are varied independently. The strategies used are given in
Fig. 7.1. Where p’s value is > 1, the best result obtained for p ∈ {2, 4, 7} is used. The palette
used is in Fig. 7.17.

143

7.5. FURTHER WORK

γ
E
L

E
P

- F E
L
IE

P

F
P

F
L
IE

P

F
L
IF

P

E
L
IF

P

F
L

α
,β

L 24 17 15 14 10 5 3 3 0 0
L, NLIP 20 9 15 14 - 17 - - - −5
L, P 12 20 20 15 7 17 12 10 5 −7
L, ELIP 4 11 12 7 12 8 - - 9 −11
L, FLIP 4 10 10 5 - 5 9 6 - −8

0 −8 0 3 −14 −3 −9 −3 −7 1
P −1 7 7 2 −5 1 0 −3 −10 −6
FLIP −3 1 3 0 - −2 1 −1 - −7
NLIP −8 −15 −3 −4 - −8 - - - −26
ELIP −9 −3 −1 −6 −4 −8 - - −6 −10

30 25 12 14 24 10 12 6 7 −2
28 21 17 18 - 26 - - - −3
29 29 28 29 27 26 27 24 24 −1
30 29 28 28 29 26 - - 27 −2
23 23 21 21 - 18 22 18 - −2
−0 −3 0 0 −5 −2 −3 −3 −3 −2
16 16 15 15 15 11 15 9 9 −2
15 15 14 13 - 9 13 9 - −3
−3 −3 −3 −3 - −2 - - - −20
15 14 14 14 13 9 - - 8 −3

Figure 7.20: Reallocation: Dict-moveNode: The effect of using pages as well as lines. The
coallocator pattern 〈α, β; γ〉 is varied as shown in the table, and figures for reduction in execution
time (%) are given in the top table. The bottom table gives the percentage reduction in
underlying time (i.e. a measure of how much layout has been improved ignoring the overhead of
runtime data movement). Refer to §7.1.1.3 for more description and evaluation of these results,
and Fig. 7.2 for the reallocation strategies used. The palette used is in Fig. 7.17.

144

7.5. FURTHER WORK

γ
E
L

E
P

- F E
L
IE

P

F
P

F
L
IE

P

F
L
IF

P

E
L
IF

P

F
L

α
,β

L 13 6 9 7 −3 −11 −6 −9 −14 −2
L, NLIP 7 −4 6 4 - −16 - - - −5
L, P −13 −4 −6 −12 −21 −15 −13 −16 −22 −15
L, ELIP −25 −17 −15 −23 −15 −23 - - −19 −24
L, FLIP −20 −13 −12 −17 - −19 −13 −16 - −16

−7 −15 0 −1 −20 −9 −17 −9 −14 −2
P −21 −13 −8 −16 −27 −19 −22 −17 −23 −18
FLIP −24 −19 −14 −19 - −19 −16 −16 - −18
NLIP −16 −29 −8 −10 - −18 - - - −10
ELIP −31 −24 −19 −26 −22 −24 - - −21 −21

25 20 10 11 19 0 9 −2 −2 0
22 16 13 13 - 0 - - - 3
15 15 12 11 12 3 12 0 0 8
14 14 10 10 14 0 - - 1 5
11 10 7 8 - −1 9 −1 - 7
0 0 0 0 −2 0 −2 −2 −2 0
9 9 8 7 6 0 7 −1 −1 6
6 7 5 5 - −1 6 −2 - 5
−3 −2 −3 −3 - −2 - - - −2
6 6 6 5 6 −1 - - −1 −2

Figure 7.21: Reallocation: Dict-moveFields: The effect of using pages as well as lines.
The coallocator pattern 〈α, β; γ〉 is varied as shown in the table, and figures for reduction in
execution time (%) are given in the top table. The bottom table gives the percentage reduction
in underlying time (i.e. a measure of how much layout has been improved ignoring the overhead
of runtime data movement). Refer to §7.1.1.3 for more description and evaluation of these
results, and Fig. 7.2 for the reallocation strategies used. The palette used is in Fig. 7.17.

145

7.5. FURTHER WORK

before
- last1 last≥1 last∞ first

af
te

r

- 1.9 7.9 7.9 2.6

v = 27next1 2.0 2.1 8.0 8.0 2.6
next≥1 6.1 6.0 8.0 8.0 2.6
next∞ 4.4 4.4 4.4 4.0 2.3

2.2 15.3 15.3 2.9

v = 2112.2 2.6 15.3 15.3 2.9
15.0 15.0 15.4 15.4 9.0
15.0 15.0 15.0 10.5 9.0

1.7 3.9 3.9 3.1

v = 2151.7 2.0 4.0 4.0 3.1
4.7 4.7 4.7 4.7 4.7
4.6 4.7 4.7 4.7 4.7

1.06 1.12 1.12 1.16

v = 2191.03 1.09 1.12 1.12 1.14
1.17 1.14 1.15 1.15 1.15
1.17 1.14 1.15 1.15 1.14

Figure 7.22: Reallocation: MList: Speedup figures for line-based reallocation (see §7.1.2.1).
We use insert := 〈L;EL〉 × 〈 before, after ; true〉, where the search types before and after
are varied independently, and delete := null. Where a value of ≥ 1 is indicated, it means
that the optimal value in [1,∞] is used. For example when before=last≥1 and after=next≥1,
the best pattern in the set of patterns {〈lastα, nextβ; true〉 : ∀α ∈ [1,∞],∀β ∈ [1,∞]} is used.
The figures for no hints (before=after=-) are omitted because using just EL yields no layout
improvement and incurs overhead. The palette used is in Fig. 7.17.

146

7.5. FURTHER WORK

before
- last1 last≥1 last∞ first

af
te

r

- 4.0 4.8 4.8 2.3

v = 27next1 3.9 3.9 4.7 4.7 2.3
next≥1 4.8 4.8 4.8 4.7 2.8
next∞ 4.6 4.6 4.6 4.1 2.7

7.0 10.3 10.3 4.6

v = 2117.2 7.2 10.3 10.3 4.6
10.9 10.6 10.7 10.7 9.1
10.9 10.6 10.6 10.0 9.1

2.3 2.8 2.8 3.3

v = 2152.6 2.6 2.8 2.8 3.3
2.7 2.8 2.9 2.9 3.3
2.7 2.8 2.9 2.9 3.2

0.93 1.00 1.00 1.00

v = 2190.97 0.99 0.99 0.99 0.99
0.97 0.99 0.99 0.99 0.99
0.97 0.99 0.99 0.99 0.99

Figure 7.23: Reallocation: MList: Speedup figure for page-based reallocation (see §7.1.2.2).
We use insert := 〈P ;EP 〉 × 〈 before, after ; true〉, where the search types before and after
are varied independently, and delete := null. Where a value of ≥ 1 is indicated, it means
that the optimal value in [1,∞] is used. For example when before=last≥1 and after=next≥1,
the best pattern in the set of patterns {〈lastα, nextβ; true〉 : ∀α ∈ [1,∞],∀β ∈ [1,∞]} is used.
The figures for no hints (before=after=-) are omitted because using just EP yields no layout
improvement and incurs overhead. The palette used is in Fig. 7.17.

147

7.5. FURTHER WORK

γ
E
L

E
L
IE

P

F
L
IE

P

E
P

- F F
L

F
P

F
L
IF

P

E
L
IF

P

α
,β

L 8.0 8.0 6.9 2.0 1.0 1.0 1.0 1.0 1.0 1.0
L P 7.9 7.9 7.0 4.6 1.0 1.0 1.3 1.5 1.8 1.8
L NLIP 7.8 - - 7.1 1.2 1.2 1.2 1.2 - -
L FLIP 7.6 - 7.0 4.4 1.4 1.7 1.9 1.5 1.8 -
L ELIP 7.6 7.9 - 6.9 1.7 2.2 1.9 1.8 - 1.8
ELIP 4.0 4.4 - 4.4 1.4 1.6 1.5 1.5 - 1.5
FLIP 4.0 - 4.3 4.3 1.4 1.6 1.5 1.4 1.4 -
P 3.6 4.4 4.3 4.8 1.0 1.0 1.0 1.5 1.4 1.5
- 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NLIP 1.0 - - 1.0 1.0 1.0 1.0 1.0 - -

v = 27

α
,β

L 4.6 4.2 3.3 1.7 1.0 1.0 0.9 0.9 0.9 0.9
L P 4.4 4.2 4.5 3.4 0.9 0.9 0.9 0.9 0.9 0.9
L NLIP 4.4 - - 4.3 0.9 0.9 0.9 0.9 - -
L FLIP 4.0 - 4.1 3.2 1.0 1.0 1.0 0.9 0.9 -
L ELIP 4.0 4.4 - 4.3 1.0 1.0 1.0 0.9 - 0.9
ELIP 2.8 2.9 - 2.9 1.0 1.0 1.0 1.0 - 1.0
FLIP 2.8 - 3.1 3.1 1.0 1.1 1.0 1.0 1.0 -
P 2.9 2.9 3.1 3.2 1.0 1.0 1.0 0.9 0.9 0.9
- 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NLIP 1.0 - - 0.9 1.0 1.0 1.0 1.0 - -

v = 215

Figure 7.24: Reallocation: MList: The effect of using pages as well as lines. Shown are the
speedups in execution time as the coallocator pattern 〈α, β; γ〉 is varied. The search patterns
are given in Fig. 7.5, with evaluation of these results given in §7.1.2.3. The palette used is in
Fig. 7.17.

148

7.5. FURTHER WORK

search dist. coallocator pattern

line page P EP L EL
ccmalloc-newBlock- ccmalloc-firstFit-
vanilla extended vanilla extended

s s 4.0 2.1 1.0 3.7(2.0) 1.0 3.9(3.7)
s l 4.7 2.1 1.4(0.9) 4.4(1.6) 1.5 4.7(4.2)
l s 4.0 8.0 1.3(1.2) 7.8 1.2 7.6
l l 4.8 8.0 2.2(1.0) 7.0 1.9 6.2

best 4.8× 8.0 2.2(1.2) 7.8 1.9 7.6

v = 27

search dist. coallocator pattern

line page P EP L EL
ccmalloc-newBlock- ccmalloc-firstFit-
vanilla extended vanilla extended

s s 2.4 1.8 0.9 2.8(1.8) 1.0 2.9(2.6)
s l 3.1 1.9 1.0 3.3(1.6) 1.0 3.4(3.2)
l s 2.5 4.6 0.7 4.4 0.7 4.4(4.0)
l l 3.2 4.6 0.8(0.7) 4.4(4.3) 0.7 4.5(4.1)

best 3.2× 4.6 1.0 4.4 1.0 4.5(4.1)

v = 215

Figure 7.25: Reallocation: MList: The effect of using pages as well as lines. Refer to §7.1.2.3
for more description and evaluation of these results, and Fig. 4.7 for the reallocation patterns
used for ccmalloc.

149

7.5. FURTHER WORK

variant optimisation m=2 1.5 1.1

moveNode periodic2space 41% - -
(max. = 55%) incremental2space 32 - -

periodic1space 25 25 10
incremental1space[,thresh][,compact] 20 22 9
embedded1space[,thresh][,compact][,throttle] 30 31 27

moveFields periodic2space 22 - -
(max. = 36%) incremental2space 13 - -

periodic1space 12 11 0
incremental1space[,thresh][,compact] 11 10 0
embedded1space[,thresh][,compact][,throttle] 12 11 7

Figure 7.26: Bulk data movement: Dict: Results for different optimisations, expressed as
reduction in execution time. All figures given are for the optimal combination of threshold,
compaction, throttling, data movement rate, etc. The ‘max.’ figure is the maximum possible
reduction, as calculated in §3.4.3.

optimisation m v = 27 211 215 219

max. N/A 11.7× 36.1 11.3 2.14
periodic2space 2.00 10.6 27.1 8.45 1.60
incremental2space 2.00 10.5 26.9 8.09 1.48
periodic1space 1.05 9.56 21.6 5.16 1.17a

incremental1space 1.05 9.72 19.5 5.09b 1.06c

embedded1space 1.05 7.11 12.8d 3.64e 1.17f

a: 1.17× → 1.24× as m→ 1.1 b: 5.09× → 5.68× as m→ 2.0
c: 1.06× → 1.23× as m→ 1.5 d: 12.8× → 13.7× as m→ 1.1
e: 3.64× → 4.61× as m→ 2.0 f: 1.17× → 1.24× as m→ 1.1

Figure 7.27: Bulk: MList: Results for different optimisations. All figures given are for the
optimal combination of threshold, compaction, throttling, data movement rate, etc. The ‘max.’
figure is the maximum possible reduction, as calculated in §3.4.3.

150

7.5. FURTHER WORK

 1

 3

 5

 7

 9

 11

 13

 1 1.2 1.4 1.6 1.8 2

sp
ee

du
p

m

v=2^7

 1

 10

 19

 28

 37

 1 1.2 1.4 1.6 1.8 2

sp
ee

du
p

m

v=2^11

 1

 3

 5

 7

 9

 11

 13

 1 1.2 1.4 1.6 1.8 2

sp
ee

du
p

m

v=2^15

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5

sp
ee

du
p

m

v=2^19

simple
complex

max

Figure 7.28: Perfect: MList: This figure shows the best of the clustStrict and clustNonStrict
perfect data movement optimisations, using either complex or simple clustering.

151

7.5. FURTHER WORK

 1

 3

 5

 7

 9

 11

 13

 1 1.2 1.4 1.6 1.8 2

sp
ee

du
p

M

v=2^7

 1

 10

 19

 28

 37

 1 1.2 1.4 1.6 1.8 2

sp
ee

du
p

M

v=2^11

 1

 3

 5

 7

 9

 11

 13

 1 1.5 2 2.5 3

sp
ee

du
p

M

v=2^15

 0.5

 1

 1.5

 2

 2.5

 1 3 5

sp
ee

du
p

M

v=2^19

min(cell,*)
clustStrict(*)

clustNonStrict(*)
clust[Non]Strict(line) + min(line,*)

max

Figure 7.29: Perfect: MList: The speedup given by the different forms of perfect data move-
ment, plotted against actual memory usage M . The ‘max’ line is the theoretical maximum
speedup obtainable if the optimal layout were maintained with zero overhead.

152

7.5. FURTHER WORK

 1

 3

 5

 7

 9

 11

 13

 1 1.2 1.4 1.6 1.8 2

sp
ee

du
p

M_{worst}

v=2^7

 1

 10

 19

 28

 37

 1 1.2 1.4 1.6 1.8 2

sp
ee

du
p

M_{worst}

v=2^11

 1

 3

 5

 7

 9

 11

 13

 1 1.5 2 2.5 3

sp
ee

du
p

M_{worst}

v=2^15

 0.5

 1

 1.5

 2

 2.5

 1 3 5

sp
ee

du
p

M_{worst}

v=2^19

min(cell,*)
clustStrict(*)

clustNonStrict(*)
clust[Non]Strict(line) + min(line,*)

max

Figure 7.30: Perfect: MList: As Fig. 7.29, but worst-case memory usage is used on the
horizontal axis.

153

7.5. FURTHER WORK

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M
_{

wo
rs

t}

di
ct

 m
ov

eN
od

e
s=

1
- h

ig
h

la
te

nc
y

NO
T

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M
_{

wo
rs

t}

di
ct

 m
ov

eN
od

e
s=

1
- h

ig
h

la
te

nc
y

al
lo

we
d

 -
W

O
RS

T
m

em
or

y
us

ag
e

m
ax

ca
ch

e-
aw

ar
e

(B
-T

re
e)

re
al

lo
ca

tio
n

- L
 E

L
bu

lk
- p

er
io

di
cT

wo
Sp

ac
e

bu
lk

- e
m

be
dd

ed
O

ne
Sp

ac
e

pe
rfe

ct
 -

BF
S

pe
rfe

ct
 -

fix
ed

He
ig

ht

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M

di
ct

 m
ov

eN
od

e
s=

1
- h

ig
h

la
te

nc
y

NO
T

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M

di
ct

 m
ov

eN
od

e
s=

1
- h

ig
h

la
te

nc
y

al
lo

we
d

 -
ac

tu
al

 m
em

or
y

us
ag

e

Figure 7.31: Dict-moveNode, all results. See §7.4.

154

7.5. FURTHER WORK

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M
_{

wo
rs

t}

di
ct

 m
ov

eF
ie

ld
s

s=
1

- h
ig

h
la

te
nc

y
NO

T
al

lo
we

d
 -

W
O

RS
T

m
em

or
y

us
ag

e

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M
_{

wo
rs

t}

di
ct

 m
ov

eF
ie

ld
s

s=
1

- h
ig

h
la

te
nc

y
al

lo
we

d
 -

W
O

RS
T

m
em

or
y

us
ag

e

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M

di
ct

 m
ov

eF
ie

ld
s

s=
1

- h
ig

h
la

te
nc

y
NO

T
al

lo
we

d
 -

ac
tu

al
 m

em
or

y
us

ag
e

m
ax

ca
ch

e-
aw

ar
e

(B
-T

re
e)

re
al

lo
ca

tio
n

- L
 E

L
bu

lk
- i

nc
re

m
en

ta
lT

wo
Sp

ac
e

bu
lk

- e
m

be
dd

ed
O

ne
Sp

ac
e

pe
rfe

ct
 -

BF
S

pe
rfe

ct
 -

fix
ed

He
ig

ht

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0 1

.2
 1

.5
 2

 3
 4

reduction (%)

M

di
ct

 m
ov

eF
ie

ld
s

s=
1

- h
ig

h
la

te
nc

y
al

lo
we

d
 -

ac
tu

al
 m

em
or

y
us

ag
e

Figure 7.32: Dict-moveFields, all results. See §7.4.

155

7.5. FURTHER WORK

 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M
_{

wo
rs

t}

v=
2^

7
- h

ig
h

la
te

nc
y

NO
T

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M
_{

wo
rs

t}

v=
2^

7
- h

ig
h

la
te

nc
y

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e m
ax

ca
ch

eA
wa

re

re
al

lo
ca

tio
n:

 <
L;

 E
L>

bu
lk

da
ta

 m
ov

em
en

t:
pe

rio
di

cT
wo

Sp
ac

e
bu

lk
da

ta
 m

ov
em

en
t:

pe
rio

di
cO

ne
Sp

ac
e

pe
rfe

ct
 d

at
a

m
ov

em
en

t
re

su
lts

 n
ot

 s
ho

wn
 in

 th
is

re
gi

on

 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M

v=
2^

7
- h

ig
h

la
te

nc
y

NO
T

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M

v=
2^

7
- h

ig
h

la
te

nc
y

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

Figure 7.33: MList v = 27, all results. See §7.4.

156

7.5. FURTHER WORK

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M
_{

wo
rs

t}

v=
2^

11
 -

hi
gh

 la
te

nc
y

NO
T

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M
_{

wo
rs

t}

v=
2^

11
 -

hi
gh

 la
te

nc
y

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

m
ax

ca
ch

eA
wa

re
 (v

cl)
re

al
lo

ca
tio

n:
 <

L;
 E

L>
bu

lk
da

ta
 m

ov
em

en
t:

pe
rio

di
cT

wo
Sp

ac
e

bu
lk

da
ta

 m
ov

em
en

t:
pe

rio
di

cO
ne

Sp
ac

e
pe

rfe
ct

 d
at

a
m

ov
em

en
t

re
su

lts
 n

ot
 s

ho
wn

 in
 th

is
re

gi
on

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M

v=
2^

11
 -

hi
gh

 la
te

nc
y

NO
T

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M

v=
2^

11
 -

hi
gh

 la
te

nc
y

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

Figure 7.34: MList v = 211, all results. See §7.4.

157

7.5. FURTHER WORK

 2 4 6 8 1
0

 1
2

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M
_{

wo
rs

t}

v=
2^

15
 -

hi
gh

 la
te

nc
y

NO
T

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

 2 4 6 8 1
0

 1
2

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M
_{

wo
rs

t}

v=
2^

15
 -

hi
gh

 la
te

nc
y

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

m
ax

ca
ch

eA
wa

re

re
al

lo
ca

tio
n:

 <
L;

 E
L>

bu
lk

da
ta

 m
ov

em
en

t:
pe

rio
di

cT
wo

Sp
ac

e
bu

lk
da

ta
 m

ov
em

en
t:

in
cr

em
en

ta
lO

ne
Sp

ac
e

pe
rfe

ct
 d

at
a

m
ov

em
en

t
re

su
lts

 n
ot

 s
ho

wn
 in

 th
is

re
gi

on

 2 4 6 8 1
0

 1
2

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M

v=
2^

15
 -

hi
gh

 la
te

nc
y

NO
T

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

 2 4 6 8 1
0

 1
2

 0
.5

 1
 1

.5
 2

 2
.5

speedup

M

v=
2^

15
 -

hi
gh

 la
te

nc
y

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

Figure 7.35: MList v = 215, all results. See §7.4.

158

7.5. FURTHER WORK

 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 0
.5

 1
 1

.5
 2

 2
.5

 3
 3

.5

speedup

M
_{

wo
rs

t}

v=
2^

19
 -

hi
gh

 la
te

nc
y

NO
T

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 0
.5

 1
 1

.5
 2

 2
.5

 3
 3

.5

speedup

M
_{

wo
rs

t}

v=
2^

19
 -

hi
gh

 la
te

nc
y

al
lo

we
d

- W
O

RS
T

m
em

or
y

us
ag

e

 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 0
.5

 1
 1

.5
 2

 2
.5

 3
 3

.5

speedup

M

v=
2^

19
 -

hi
gh

 la
te

nc
y

NO
T

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

m
ax

ca
ch

e-
aw

ar
e:

 V
CL

re
al

lo
ca

tio
n:

 <
L;

 E
L>

bu
lk

da
ta

 m
ov

em
en

t:
in

cr
em

en
ta

lT
wo

Sp
ac

e
bu

lk
da

ta
 m

ov
em

en
t:

in
cr

em
en

ta
lO

ne
Sp

ac
e

pe
rfe

ct
 d

at
a

m
ov

em
en

t
re

su
lts

 n
ot

 s
ho

wn
 in

 th
is

re
gi

on

 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 0
.5

 1
 1

.5
 2

 2
.5

 3
 3

.5

speedup

M

v=
2^

19
 -

hi
gh

 la
te

nc
y

al
lo

we
d

- a
ct

ua
l m

em
or

y
us

ag
e

Figure 7.36: MList v = 219, all results. See §7.4.

159

7.5. FURTHER WORK
th

re
sh

ol
d

1
2

3
4

5
6

7

datamovementrate

1.
00

0
2

0
1

2
2

2
3

−
4
−

4
7

23
35

39
38

s = 0.1
0.

75
0

10
9

9
10

11
10

10
0

0
11

25
34

36
35

0.
50

0
20

20
20

21
21

21
22

6
7

19
29

35
36

34
0.

25
0

19
20

20
20

20
21

37
14

14
26

32
34

34
31

0.
10

0
22

21
21

22
22

22
38

19
19

29
32

32
30

27
0.

05
0

28
29

29
29

29
30

35
19

20
29

30
29

27
24

0.
01

0
31

31
30

32
32

32
26

0.
00

5
29

29
29

29
30

30
22

0.
00

1
18

19
19

19
20

19
12

−
60
−

59
−

57
−

53
−

53
−

53
22

−
5
−

6
15

25
27

27
25

s = 1

−
36
−

35
−

34
−

32
−

32
−

34
23

−
1

0
17

25
26

26
23

−
14
−

14
−

13
−

7
−

5
−

10
24

6
6

21
25

25
25

22
10

10
12

19
18

12
24

12
12

23
24

24
22

19
21

22
23

30
28

23
20

16
16

22
21

20
19

16
22

23
31

31
31

23
17

15
16

20
19

18
16

13
13

15
25

24
15

15
8

13
13

15
13

12
10

8
9

10
10

8
8

8
1

1
−

1
1

−
1
−

1
−

1
−

5
m

=
2

m
=

1.
1

Figure 7.37: The effect of adjusting threshold and data movement rate for the Dict-moveNode
benchmark using the embeddedOneSpace optimisation, and two values of s and two values of m.
Data movement rate is expressed as proportion of lookup traversals that have data movement
enabled. Threshold=7 corresponds to an empty line. The palette used is in Fig. 7.17.

160

Chapter 8

Conclusion

Recursive data structures provide great flexibility to the programmer, but their perfor-
mance often depends on the location of RDS objects in memory. Even if the initial
location of an object is good, data layout is likely to degrade as the RDS is used.

8.1 Contributions

This thesis is an exploration of three complementary optimisation techniques which use
runtime data movement to prevent data layout degradation in two fundamental recursive
data structures (sets of singly linked lists, and binary trees). Particular attention was
paid to reducing the memory usage used by optimisations, and to reducing the latency of
normal program work.

To maximise the number of different methods of runtime data movement investigated
by this thesis, optimisations were applied by hand, rather than by a compiler. Neverthe-
less, two of the three techniques involve only small changes to a program, and we conclude
that it is likely that tools could be built to greatly reduce the amount of work required
of the programmer. The third technique provides valuable insight into the limitations of
runtime data movement.

Below, we summarise the three techniques.

8.1.1 Reallocation

The technique of Chapter 4 is the insertion of data movement code into some subset of
the points in a program which alter pointers in the RDS. This code moves a single object
to the same line or page as one of a number of ‘hint’ objects identified by the applier
of the optimisation. Reallocation produces significant performance improvements using
only 35% extra memory1.

This work is a development of previous work on memory ‘coallocators’ – memory
allocators which can be used to improve heap data layout at allocation time only [15].
These functions can be easily adapted to move data at runtime, but we observe that better
performance may be obtained with functions designed for runtime data movement. In
particular, for dynamic usage, overhead is far more important, and so often a compromise

1M = 1.35, in notation of this thesis.

161

8.1. CONTRIBUTIONS

between layout quality and the difficulty of maintaining it must be made. For example,
we may focus optimisation on the performance of the L1 and L2 cache (cache lines), even
for a structure whose performance also depends heavily on TLB performance (pages).

8.1.2 Bulk data movement

The technique of Chapter 5 is the infrequent moving of large numbers of nodes, rather
than the movement of individual nodes at pointer-update sites. The simplest optimisation
of this form is to periodically move the entire RDS to a different area of memory, restoring
layout to some known quality. For applications where extra memory usage can be as high
as 100%, and where large infrequent pauses of program work are irrelevant, this is often
the most effective runtime data movement optimisation.

The memory requirement of an optimisation may be reduced by re-laying out an RDS
within the area of memory it currently occupies, rather than using a new area of memory.
This incurs a small overhead, but allows extra memory usage to be reduced to as low
as 12–74% (depending on the benchmark), with no further loss of performance. Further
reduction in memory usage requires ‘compaction’ – the explicit movement of nodes to
create emptier contiguous areas of memory, rather than to directly improve layout. This
may be more effective carried out within an optimisation or at a program’s pointer-update
sites, depending on the benchmark.

The latency may be reduced by incrementalising the movement of the RDS in a similar
way to that used to produce an incremental garbage collector. Incrementalisation incurs
either a write-barrier overhead when the RDS is moved to an empty area of memory, or
a layout quality overhead when the RDS is moved within its original area of memory,
but these overheads are not large. Latency may also be reduced by ‘embedding’ data
movement code in a program’s existing traversal of the RDS. For some benchmarks this
is far more effective than incrementalisation, even for only 25% extra memory. This is
because merging the re-laying out of the RDS with a programs usage of the RDS reduces
the data access overhead of runtime data movement, and also because the fine interleaving
of data movement work and normal program work enables more effective compaction.

One might expect bulk to be always better than reallocation, because many of the
overheads of runtime data movement can be reduced by moving nodes in small groups,
but when memory usage and latency are taken into account, neither bulk data movement
nor reallocation is universally superior.

8.1.3 Perfect data movement

The technique of Chapter 6 is similar to reallocation, in that data movement code is
inserted into every point of the program that updates a pointer in the RDS, but differs in
the number of nodes moved and the complexity of the code that is inserted. Specifically,
after each pointer update a chosen data layout is ‘perfectly’ restored, unlike reallocation’s
ad-hoc single-node movements, which produce a layout of unpredictable quality (although
often good in practice).

As with previous optimisations we conclude that good performance depends on finding
the best compromise between overhead and layout quality, observing that sub-optimal
layouts are sometimes more effective, and furthermore reducing layout quality can be

162

8.2. SUMMARY

used to reduce memory usage.
Perfect data movement often outperforms reallocation, but may require a lot more

memory. We may consider perfect data movement and reallocation as occupying opposite
ends of a spectrum, and their relative performance provides insight into the performance of
any optimisations that may lie in between – those that create a more predictable layout
than reallocation, but are less complicated to implement than perfect data movement,
and require less memory. For other benchmarks, bulk data movement is more effective
than both reallocation and perfect data movement, suggesting that in some situations the
overhead of performing single node movements at pointer-update sites is simply too high
compared to bulk data movement’s en-masse node movements.

8.1.4 Discussion

Although the work in this thesis has produced viable optimisations, it has also provided
insight into other methods of rectifying or avoiding RDS layout degradation – using a
layout-improving GC or a cache-aware RDS, respectively.

In comparison with a GC, the behaviour of the bulk data movement optimisation
suggest that properly-tuned layout-improving GCs can be effective when memory is high
and large pauses are allowed, but for tougher conditions, embedding data movement in
existing traversals, or ad-hoc pointer update optimisations (e.g. reallocation) will be more
effective.

The complexity of the code required for a perfect data movement optimisation is
sufficiently high that it maybe be more sensible to regard it not as an optimisation but
as a method of synthesising a new cache-aware RDS, particularly when combined with
the removal of any pointers internal to cache blocks (which we did not consider in this
thesis). Indeed, we find that perfect data movement applied to a binary search tree
exceeds the performance of a well-tuned B-Tree. Even the opportunistic data movement
of reallocation sometimes equals the performance of the B-Tree. It should be noted,
however, that for a number of reasons the results of this thesis provide an upper bound
on the performance that may be achieved using these techniques, rather than the typical
case; a programmer should use a cache-aware structure if one exists.

We therefore prefer to view runtime data movement as a useful compromise between
performance and difficulty of implementation. This behaviour is observed for the multiple
linked-list benchmark – although cache-aware RDSs are about 1.5 times faster than the
best bulk data movement or reallocation optimisation, the latter is between 5–20 times
faster than the unoptimised benchmark.

8.2 Summary

The application of runtime data movement to prevent the data layout degradation of
recursive data structures has not been studied, apart from in a small number of layout-
improving garbage collectors, where the emphasis is on practicality, not performance.
RDS layout degradation may be avoided by use of a much more complex cache-aware
structure. In this thesis, we have investigated the application of runtime data movement
to simple RDSs, but unlike GCs have prioritised performance, and have on occasion come
close to, or exceeded, the performance of cache-aware RDSs. The relative performance

163

8.2. SUMMARY

of the techniques of different complexity in this thesis suggest that, in general, more
sophisticated data movement will result in better performance. In the future, as the cost
of a cache miss continues to rise relative to cycle time, more sophisticated runtime data
movement – implemented either explicitly, within a GC or an optimisation, or implicitly,
as a new cache-aware RDS – will become both more practical and more worthwhile.

164

Appendix A

Derivations for Dict perfect data
movement

This appendix contains derivations of results for perfect data movement for the Dict
optimisation. See Chapter 6.

A.1 The cost of depth-zero reclustering

The derivation below gives the expected number of block accesses for a complete binary
tree, when perfect data movement is used to restore layout by repairing all clusters below
a pointer update. Clusters are rebuilt näıvely, i.e. by moving all nodes to an empty line,
aka ‘depth-zero’ perfect data movement.

Consider a complete binary tree of height H, with clusters that are also complete and
of height h. We assume that H is large and a multiple of h. Here we work out the cost
of repairing the layout below uniformly distributed pointer updates. The probability pk

of updating a pointer at depth k ∈ [0, H − 1] is 2k

2H−1
. When a pointer is updated, the

cluster its node is in is moved to a new line, and all clusters below are similarly rebuilt.
During a cut or substitute operation, the tree remains well-clustered in the cluster below
the one that contains the pointer update. The number of blocks below and including the
ith cluster from the top of the tree is 1+2h +(2h)2 + . . .+(2h)(H/h−i) = 2H−hi−1

2h−1
. To repair

the clusters will access twice that amount of blocks (source + destination blocks), plus
at most one extra block if a node has been substituted. Including the i additional blocks
accessed during traversal to the node whose pointer is updated, the expected amount of
block transfers per pointer update is thus:

H
h
−1∑

i=0

h−1∑
j=0

phi+j

(
2(2(H−hi) − 1)

2h − 1
+ 1 + i

)
=

1

2H − 1

∑
i

2hi

((
i + 1 +

2(2H−hi − 1)

2h − 1

) h−1∑
j=0

2j

)

=
2h − 1

2H − 1

∑
i

i2hi +
2h − 1

2H − 1

∑
i

2hi +
H
h
2H+1

2H − 1
− 2

2H − 1

∑
i

2hi = A + B + C + D

165

APPENDIX A. DERIVATIONS FOR DICT PERFECT DATA MOVEMENT

n−1∑
i=0

ixn =
x(1− xn−1)

(x− 1)2
+

(n− 1)xn

x− 1
⇒ A =

2h − 1

2H − 1

(
2h(1− 2h(H/h−1))

(1− 2h)2
− (H/h− 1)2H

(1− 2h)

)

=
2h
(
1− 2H−h

)
(2H − 1)(2h − 1)

+
(H/h− 1)2H

2H − 1
→ 1

1− 2h
+ (H/h− 1) for large H/h

B =
2h − 1

2H − 1

2H − 1

2h − 1
= 1 C → 2H

h
for large H/h

D = − 2

2H − 1

2H − 1

2h − 1
=

2

2h − 1

Thus the expected number of block accesses for uniformly distributed pointer updates is
3H
h

+ ε′, for small ε′. The expected number of block accesses for the pointer updates due
to the delete operation is therefore less than this, because (i) substitutions are uniformly
distributed, (ii) cuts are below uniformly distributed locations in the tree.

Insertion always takes at most H
h

+ 1 accesses (H
h

for the traversal, and 1 for the pos-
sible creation of a new cluster). Thus the number of blocks accessed for an insert/delete
pair is no more than 4H

h
+ ε, for small ε. 2

A.2 Dict perfect data movement, worst-case mem-

ory

Below we derive the value of mworst for perfect data movement for Dict using the BFS
and fixedHeight layouts.

A.2.1 BFS

Assume each cluster lives in its own block, which can store at most 7 nodes. Let c(T, k)
be the number of clusters with k nodes in tree T , and n(T) be the number of nodes in
the tree T , and m(T) be the memory used by tree T , where m(T) = (c(T, 1) + . . . +
C(T, 7))/(n(T)/7).

Firstly we show that for any tree T there is another tree T ′ with c(T ′, i) ≤ 5,∀i ∈ [2, 6]
and n(T) = n(T ′) and m(T ′) ≥ m(T). Given the tree T , the tree T ′ is produced as follows.
Nodes are moved around the tree to change the size of clusters. E.g. any two 6-clusters
can be changed into a 7-cluster with five 1-clusters attached to it:

6+6 → 7+1+1+1+1+1
5+5 → 7+1+1+1
4+4 → 7+1
3+3+3 → 7+1+1
2+2+2+2+2+2 → 7+1+1+1+1+1

166

APPENDIX A. DERIVATIONS FOR DICT PERFECT DATA MOVEMENT

This rearrangement of nodes from 2-,3-,4-,5-,6-clusters is valid because such clusters do
not have children, and because the number of 1’s produced is less than 8 (the maximum
number of possible children of the cluster with 7 nodes). Note that the total number of
clusters does not decrease, hence the memory usage does not decrease.

Therefore, a tree T of maximal memory usage has the property n(T) = 7c(T, 7) +
c(T, 1)+ δ, where δ is the insignificant number of nodes that live in clusters with > 1 and
< 7 nodes.

Note that c(T, 1) ≤ 8c(T, 7), because (i) each 1-cluster must have a parent cluster if
n(T) > 1 and (ii) only 7-clusters can have child clusters and (iii) each 7-cluster has at most

8 child clusters. Using n(T) = 7c(T, 7) + c(T, 1) + δ we get c(T, 1) ≤ 8(n(T)−δ)
15

≤ 8(n(T)
15

.
The memory allowance m(T) is given by:

c(T, 1) + c(T, 7)

n/7
=

c(T, 1) + (n− c(T, 1))/7

n(T)/7
=

n(T) + 6c(T, 1)

n(T)
≤ 4.2

A complete tree of height 3k + 1, has c(T, 7) = (8k − 1)/(8 − 1), and c(T, 1) = 8k, and

n(T) = 23k+1 = 2 · 8k, giving m(T) = (8k−1)/7+8k

n(T)/7
= 8k+1−1

2·8k ≈ 4.

Thus mworst is in [4, 4.2]. 2

A.2.2 fixedHeight

The derivation is similar to above. Recall that clusters are of fixed maximum height 3.
Let C(T, i, j), i ∈ [1, 7], j ∈ {0, 2, 4, 6, 8} be the number of clusters that have i nodes
and can have at most j child clusters (denote this an (i, j)-cluster). Valid clusters are:
(1, 0), (2, 0), (3, 0), (3, 2), (4, 2), (4, 4), (5, 4), (6, 6), (7, 8).

We rearrange nodes so the tree has only an significant number of (1, 0) and (7, 8)
clusters:

4× (2, 0) → (7, 8) + (1, 0)
3× (3, 0) → (7, 8) + 2× (1, 0)
3× (3, 2) → (7, 8) + 2× (1, 0)
2× (4, 2) → (7, 8) + (1, 0)
2× (4, 4) → (7, 8) + (1, 0)
2× (5, 4) → (7, 8) + 3× (1, 0)
4× (6, 6) → 3× (7, 8) + 3× (1, 0)

Note as for BFS that number of nodes stays the same, and the number of possible child
clusters doesn’t decrease, and the number of clusters doesn’t decrease. Now we may write
n(T) = 7C(T, 7, 8) + C(T, 1, 0) + δ, for some small δ.

Note that the tree and clusters are now the same shape as in BFS’s derivation, thus
giving mworst is also in [4, 4.2] also. In both cases, memory is maximised when clusters
with as many clusters with seven nodes and clusters with one node are used, which are
the same shape for both clustering methods, giving the same memory bounds. 2

167

Bibliography

[1] Agaram, K. K., and Keckler, S. W. The memory behavior of data structures in
C SPEC CPU2000 benchmarks. http://www.spec.org/Workshops/2006/papers/

14 akkartik-spec06.pdf, 2006.

[2] Aggarwal, A., and Jeffrey, S. V. The input/output complexity of sorting and
related problems. Communications of the ACM 31, 9 (1988).

[3] Annavaram, M., Patel, J. M., and Davidson, E. S. Data prefetching by
dependence graph precomputation. SIGARCH Computer Architecture News 29, 2
(2001).

[4] Badawy, A.-H. A., Aggarwal, A., Yeung, D., and Tseng, C.-W. Evaluating
the impact of memory system performance on software prefetching and locality op-
timizations. In Proceedings of the 15th International Conference on Supercomputing
(2001).

[5] Belady, L. A study of replacement algorithms for a virtual storage computer. IBM
Systems Journal 5, 2 (1966).

[6] Bender, M., Cole, R., Demaine, E., and Farach-Colton, M. Scanning and
traversing: Maintaining data for traversals in memory hierarchy. In Proceedings of
the Annual European Symposium on Algorithms (2002).

[7] Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W.,
Wies, T., and Yang, H. Shape analysis for composite data structures. In Pro-
ceedings of the 19th International Conference on Computer Aided Verification (2007).

[8] Berger, E. D., Zorn, B. G., and McKinley, K. S. Reconsidering custom
memory allocation. In Proceedings of the 17th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (2002).

[9] Bodin, F., Kisuki, T., Knijnenburg, P., O’Boyle, M., and Rohou, E. Iter-
ative compilation in a non-linear optimisation space. In Proceedings of the Workshop
on Profile and Feedback Directed Compilation (1998).

[10] Cahoon, B., and McKinley, K. S. Data flow analysis for software prefetching
linked data structures in java. In Proceedings of the 10th International Conference
on Parallel Architectures and Compilation Techniques (2001).

[11] Calder, B., Krintz, C., John, S., and Austin, T. Cache-conscious data
placement. SIGPLAN Notices 33, 11 (1998).

168

BIBLIOGRAPHY

[12] Chen, W., Bhansali, S., Chilimbi, T., Gao, X., and Chuang, W. Profile-
guided proactive garbage collection for locality optimization. In Proceedings of the
27th Conference on Programming Language Design and Implementation (2006).

[13] Cheney, C. J. A nonrecursive list compacting algorithm. Communications of the
ACM 13, 11 (1970).

[14] Chilimbi, T. M., Davidson, B., and Larus, J. R. Cache-conscious structure
definition. SIGPLAN Notices 34, 5 (1999).

[15] Chilimbi, T. M., Hill, M. D., and Larus, J. R. Cache-conscious structure
layout. SIGPLAN Notices 34, 5 (1999).

[16] Chilimbi, T. M., and Hirzel, M. Dynamic hot data stream prefetching for
general-purpose programs. In Proceedings of the 23rd Conference on Programming
language design and implementation (2002).

[17] Chilimbi, T. M., and Larus, J. R. Using generational garbage collection to
implement cache-conscious data placement. In Proceedings of the 1st International
Symposium on Memory Management (1998).

[18] Chilimbi, T. M., Larus, J. R., and Hill, M. D. Improving pointer-based codes
through cache-conscious data placement. Tech. Rep. CS-TR-98-1365, University of
Wisconsin-Madison, 1998.

[19] Chow, K., and Wu, Y. Feedback-directed selection and characterization of com-
piler optimizations. In Proceedings of the 32nd Annual International Symposium on
Microarchitecture, Second Workshop on Feedback-Directed Optimization (November
1999).

[20] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to Algo-
rithms, first ed. MIT Press, 1990.

[21] Courts, R. Improving locality of reference in a garbage-collecting memory man-
agement system. Communications of the ACM 31, 9 (1988).

[22] Feng, Y., and Berger, E. A locality-improving dynamic memory allocator.
Tech. Rep. TR09-05, Department of Computer Science, University of Massachusetts
Amherst, 2005.

[23] Fix, J. D. The set-associative cache performance of search trees. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2003).

[24] Franz, M., and Kistler, T. Splitting data objects to increase cache utilization.
Tech. Rep. 98-34, Department of Information and Computer Science, University of
California, Irvine, 1998.

[25] Frias, L., Petit, J., and Roura, S. Lists revisited: Cache-conscious stl lists. In
Proceedings of the 5th International Workshop on Experimental Algorithmics (2006).

169

BIBLIOGRAPHY

[26] Gay, D., and Aiken, A. Memory management with explicit regions. SIGPLAN
notices 33, 5 (1998).

[27] Gay, D., and Aiken, A. Language support for regions. SIGPLAN notices 36, 5
(2001).

[28] Hallberg, J., Palm, T., and Brorsson, M. Cache-conscious allocation of
pointer-based data structures revisited with hw/sw prefetching. In Proceedings of
the 2nd Annual Workshop on Duplicating, Deconstructing, and Debunking, in con-
junction with the 30th International Symposium on Computer Architecture (2003).

[29] Hennessy, J. L., and Patterson, D. A. Computer Architecture: A Quantitative
Approach, second ed. Morgan Kaufmann, 1996.

[30] Henning, J. SPEC CPU2000. In IEEE Computer (2000).

[31] Hertz, M., and Berger, E. D. Quantifying the performance of garbage collection
vs. explicit memory management. In Proceedings of the 20th Annual Conference on
Object Oriented Programming, Systems, Languages, and Applications (2005).

[32] Hill, M. D., and Smith, A. J. Evaluating associativity in CPU caches. IEEE
Transactions on Computers 38, 12 (1989).

[33] Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker,
A., and Roussel, P. The microarchitecture of the pentium 4 processor. Intel
Technology Journal (Q1, 2001).

[34] Hirzel, M., Henkel, J., Diwan, A., and Hind, M. Understanding the connec-
tivity of heap objects. In Proceedings of the 3rd International Symposium on Memory
Management (2002).

[35] Huang, X., Blackburn, S., McKinley, K., Moss, E., Wang, Z., and
Cheng, P. The garbage collection advantage: improving program locality. In Pro-
ceedings of the 19th Annual Conference on Object-Oriented Programming, Systems,
Languages, and Applications (2004).

[36] Inagaki, T., Onodera, T., Komatsu, H., and Nakatani, T. Stride prefetch-
ing by dynamically inspecting objects. In Proceedings of the 24th Conference on
Programming language design and implementation (2003).

[37] Intel. AP-485 Intel processor identification and the CPUID instruction. http:

//www.intel.com/design/processor/applnots/241618.htm.

[38] Intel. How to choose between hardware and software prefetch on 32-Bit In-
tel architecture. http://software.intel.com/en-us/articles/how-to-choose-

between-hardware-and-software-prefetch-on-32-bit-intel-architecture.

[39] Jones, R., and Lins, R. Garbage Collection: Algorithms for automatic dynamic
memory management. Wiley, 1999.

170

BIBLIOGRAPHY

[40] Karlsson, M., Dahlgren, F., and Stenstrom, P. A prefetching technique for
irregular accesses to linked data structures. In Proceedings of the 6th International
Conference on High Performance Computer Architecture (2000).

[41] Kistler, T., and Franz, M. Automated data-member layout of heap objects to
improve memory-hierarchy performance. ACM Transactions on Programming Lan-
guange Systems 22, 3 (2000).

[42] Ladner, R. E., Fix, J. D., and LaMarca, A. Cache performance analysis of
traversals and random accesses. In Proceedings of the ACM SIAM Symposium on
Discrete Algorithms (1999).

[43] Lam, M. S., Wilson, P. R., and Moher, T. G. Object type directed garbage
collection to improve locality. In Proceedings of the International Workshop on Mem-
ory Management (1992).

[44] Lattner, C., and Adve, V. Automatic pool allocation for disjoint data structures.
In Proceedings of MSP ’02: 2002 Workshop on Memory System Performance (2002).

[45] Luk, C.-K., and Mowry, T. C. Compiler-based prefetching for recursive data
structures. In Proceedings of the 7th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (1996).

[46] Luk, C.-K., and Mowry, T. C. Memory forwarding: enabling aggressive layout
optimizations by guaranteeing the safety of data relocation. In Proceedings of the
26th Annual International Symposium on Computer Architecture (1999).

[47] Luk, C.-K., Muth, R., Patil, H., Weiss, R., Lowney, P. G., and Cohn, R.
Profile-guided post-link stride prefetching. In Proceedings of the 16th International
Conference on Supercomputing (2002).

[48] Manegold, S. Cache calibrator (v0.9e), a cache-memory and TLB calibration tool.
http://monetdb.cwi.nl/Calibrator/calibrator.shtml.

[49] Mehta, D. P., and Sahni, S. Handbook of Data Structures and Applications.
Chapman and Hall, 2005.

[50] Moon, D. A. Garbage collection in a large LISP system. In Proceedings of the
ACM Symposium on LISP and Functional Programming (1984).

[51] Novark, G., Strohman, T., and Berger, E. D. Custom object layout
for garbage-collected languages. Tech. Rep. UM-CS-2006-007, University of Mas-
sachusetts, Amherst, 2006.

[52] Petrank, E., and Rawitz, D. The hardness of cache conscious data placement.
In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
programming languages (2002).

[53] Rabbah, R. M., Sandanagobalane, H., Ekpanyapong, M., and Wong,
W.-F. Compiler orchestrated prefetching via speculation and predication. SIGOPS
Operating Systems Review 38, 5 (2004).

171

BIBLIOGRAPHY

[54] Raman, E., and August, D. I. Recursive data structure profiling. In Proceedings
of the Workshop on Memory System Performance (2005).

[55] Rao, J., and Ross, K. A. Cache conscious indexing for decision-support in main
memory. In Proceedings of the 25th International Conference on Very Large Data
Bases (1999).

[56] Rao, J., and Ross, K. A. Making B+ trees cache conscious in main memory.
SIGMOD Record 29, 2 (2000).

[57] Rogers, A., Carlisle, M., Reppy, J., and Hendren, L. Supporting dynamic
data structures on distributed memory systems. In ACM Transactions on Program-
ming Languages and Systems (1995).

[58] Roth, A., Moshovos, A., and Sohi, G. S. Dependence based prefetching for
linked data structures. SIGOPS Operating Systems Review 32, 5 (1998).

[59] Roth, A., and Sohi, G. S. Effective jump-pointer prefetching for linked data
structures. In Proceedings of the 8th International Conference on Architectural Sym-
posium on Computer Architecture (1999).

[60] Rubin, S., Bernstein, D., and Rodeh, M. Virtual cache line: A new technique
to improve cache exploitation for recursive data structures. In Proceedings of the 8th
International Conference on Compiler Construction (1999).

[61] Sair, S., and Charney, M. Memory behavior of the SPEC2000 benchmark suite.
Tech. rep., IBM T. J. Watson Research Center, 2000.

[62] Seidl, M. L., and Zorn, B. Predicting references to dynamically allocated objects.
Tech. Rep. CU-CS-826-97, Department of Computer Science, University of Colorado
at Boulder, 1997.

[63] Seidl, M. L., and Zorn, B. Segregating heap objects by reference behavior and
lifetime. In Proceedings of the 8th International Conference on Architectural support
for programming languages and operating systems (1998).

[64] Seidl, M. L., and Zorn, B. Low cost methods for predicting heap object behavior.
In Proceedings of the 2nd Workshop on Feedback Directed Optimization (1999).

[65] Seidl, M. L., and Zorn, B. Implementing heap-object behavior prediction effi-
ciently and effectively. Software Practice and Experience 31, 9 (2001).

[66] Shuf, Y., Gupta, M., Franke, H., Appel, A., and Singh, J. P. Creating and
preserving locality of java applications at allocation and garbage collection times.
In Proceedings of the 17th Conference on Object-Oriented Programming, Systems,
Languages, and Applications (2002).

[67] Stoutchinin, A., Amaral, J. N., Gao, G. R., Dehnert, J. C., Jain, S.,
and Douillet, A. Speculative prefetching of induction pointers. In Proceedings of
the 10th International Conference on Compiler Construction (2001).

172

BIBLIOGRAPHY

[68] Tofte, M. A brief introduction to regions. In ISMM ’98: Proceedings of the 1st
International Symposium on Memory Management (1998).

[69] Truong, D. Considerations on dynamically allocated data structure layout opti-
mization. In Proceedings of the Workshop on Profile and Feedback Directed Compi-
lation (1998).

[70] Truong, D., Bodin, F., and Seznec, A. Accurate data layout into blocks may
boost cache performance. In Proceedings of the 2nd Workshop on Interaction between
Compilers and Computer Architecture (1997).

[71] Truong, D. N., Bodin, F., and Seznec, A. Improving cache behavior of dynam-
ically allocated data structures. In Proceedings of the 6th International Conference
on Parallel Architectures and Compilation Techniques (1998).

[72] White, J. L. Address/memory management for a gigantic LISP environment or, GC
considered harmful. In Proceedings of the ACM Conference on LISP and Functional
Programming (1980).

[73] Wilson, P. R. Uniprocessor garbage collection techniques. In Proceedings of the
International Workshop on Memory Management (1992).

[74] Wilson, P. R., Lam, M. S., and Moher, T. G. Effective static-graph reorga-
nization to improve locality in garbage-collected systems. In Proceedings of the 12th
Conference on Programming Language Design and Implementation (1991).

[75] Wu, Y. Efficient discovery of regular stride patterns in irregular programs and its
use in compiler prefetching. SIGPLAN notices 37, 5 (2002).

[76] Wu, Y., Serrano, M. J., Krishnaiyer, R., Li, W., and Fang, J. Value-profile
guided stride prefetching for irregular code. In Proceedings of the 11th International
Conference on Compiler Construction (2002).

[77] Zhang, H., and Martonosi, M. A mathematical cache miss analysis for pointer
data structures. In Proceedings of the SIAM Conference on Parallel Processing for
Scientific Computing (2001).

173

List of terms

This list gives the section in which a term is defined.

allocatee, §4.1

BFS, §6.2.1
block, §2.1

cache-aware, §1.3
ccmalloc. §4.1.1
clustering for Dict, §6.2.1
(simple, complex, strict, non-strict)
clustering for MList (clustStrict, clust-
NonStrict), §6.3.2
coallocator. §4.1
compact, §5.6
(memory-manager) component, §4.2.4

depth-d, §6.2
Dict, §3.2.1

embedded, §5.5
environment, §7.4

fixedHeight, §6.2.1

goodLine, etc, §3.4.2.1

hardware prefetcher, §2.1.2
hint, §4.1

incremental, §5.4

latency, §3.3.4
LIGC (Layout-Improving Garbage
Collector), §1.3
line-focused, §7.1.2.1
Lm, etc, §3.4.2.2
map, §6.1

minimisation (min) §6.3.1
MList, §3.2.2
moveNode, moveFields, §3.2.1

PcLm, etc, §3.4.2.2

node, §1.1

oneSpace, 1space, §5.3
(benchmark) operation, §3.2.1
(memory-manager) operation, §4.2.3

page, §2.1.1
page-focused, §7.1.2.2
(search or coallocator) pattern, §4.5
periodic, §5.2

RDS, §1.1
RDS heap, §4.2
reallocatee, §4.2.2
runtime data movement, §1.2

search type, §4.2.2
(allocation, reallocation) site, §4.1
stage, §4.2.2
strategy, §4.2.2

thresh, §5.6
throttle, §5.5.2
tuning, §2.3.3
twoSpace, 2space, §5.2

worst, §3.4.2.1

174

