
Technical Report
Number 75

Computer Laboratory

UCAM-CL-TR-75
ISSN 1476-2986

Design and implementation of a simple
typed language based on the

lambda-calculus

Jon Fairbairn

May 1985

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 1985 Jon Fairbairn

This technical report is based on a dissertation submitted
December 1984 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Gonville & Caius
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

Despite the work of Landin and others as long ago as 1966, almost all recent

programming languages are large and difficult to understand. This thesis is a re-

examination of the possibility of designing and implementing a small but practical

language based on very few primitive constructs.

The text records the syntax and informal semantics of a new language called Pon-

der. The most notable features of the work are a powerful type-system and an efficient

implementation of normal order reduction.

In contrast to Landin’s ISWIM, Ponder is statically typed, an expedient that in-

creases the simplicity of the language by removing the requirement that operations must

be defined for incorrect arguments. The type system is a powerful extension of Milner’s

polymorphic type system for ML in that it allows local quantification of types. This

extension has the advantage that types that would otherwise need to be primitive may

be defined.

The criteria for the well-typedness of Ponder programmes are presented in the form

of a natural deduction system in terms of a relation of generality between types. A new

type checking algorithm derived from these rules is proposed.

Ponder is built on the λ-calculus without the need for additional computation rules.

In spite of this abstract foundation an efficient implementation based on Hughes’ super-

combinator approach is described. Some evidence of the speed of Ponder programmes

is included.

The same strictures have been applied to the design of the syntax of Ponder, which,

rather than having many pre-defined clauses, allows the addition of new constructs by

the use of a simple extension mechanism.

Acknowledgements

I am indebted to the following for reading proofs of this thesis: Bill Clocksin,
Inder Dhingra, Jackie Hawkins, Pete Hutchison, William Stoye, Sarah Woodall
and Stuart Wray. All mistakes are, however, my own work. Particular thanks
are due to Mike Gordon, my supervisor, who has tolerated my eccentricities
throughout my research and who read the earlier drafts that I didn’t dare show
anyone else.

Thanks also to the Computer Laboratory for a friendly (and pollen-free) en-
vironment, and to the Science and Engineering Research Council of Great Britain
for funding the research.

Contents

Foreword 1

Part I: Introduction 3

Background 5
1 Foundations 5
2 Implementation Techniques 9

Informal Description of Ponder 13
1 What a Ponder Programme is 13
2 Objects 13
3 Declarations 14
4 Expressions 15
5 Types 15
6 Lists 16
7 Functions 16
8 Printing Answers 18
9 Input 19
10 Conditionals 19
11 Pairs 20
12 Splitting Lists 20
13 Recursive Functions 21
14 Interaction with a Terminal 22
15 Extensibility 22
16 Polymorphism 23
17 Type Declarations 23
18 Options 24
19 Capsules 25
20 Comments 25
21 Useful Functions 25

Example Ponder Programmes 26
1 If 26
2 Pairs 27
3 Options 28
4 Unions 28
5 A Parser for λ-expressions 29
6 Fix 34

i

ii Contents

Part II: Design 35

The Model 37
1 Requirements 38
2 Other models 39
3 Non Computational Models 40
4 Examination of λ-calculus 41

The Type-System 43
1 The Scope of Type Checking 43
2 Choosing a Type System 44
3 Type Validity 45
4 Type Validity of Expressions 47

Syntax 49
1 Lexical Syntax 49
2 Language Syntax 50
3 Summary of syntax 53

Part III: Implementation 55

Implementing the Model 57
1 History 57
2 On Not Building Trees 58
3 Conditional Expressions 58
4 Improvements to Hughes’ Algorithm 59
5 Compile Time Reduction 60
6 Applicative Order Evaluation 61
7 Optimisations at the Machine Code Level 61
8 Performance Comparisons 62

The Type Checking Algorithm 64
1 type-check 64
2 Checking Assumption Sets 66
3 Examples 67
4 Recursive generators 68
5 Optimisations 68

Part IV: Conclusions 69

Analysis 71
1 The Conceptual Model 71

iii

2 Types 72
3 Syntax 74

Summary 77

Bibliography 78

Appendices 84

1: The Ponder Abstract Machine 85
1 Overall description 85
2 Registers 85
3 Calling sequence 86
4 Machine Representable Values 86
5 Machine instructions 87
6 Pseudo-operations 90
7 Directives 91

2: The Standard Prelude 92
1 The Standard Prelude 92
2 List operations 103

3: Reading From a Terminal 106

Foreword

In 1949 work was completed on EDSAC [OANAR 1949], a computer that had 2kbytes
of store, consumed 12kW of electricity, occupied an entire room and cost approximately
£40 000 for the components alone. Today it is possible to buy a machine with a greater

memory capacity, which is battery powered and will fit in a pocket, for around £80†.
By comparison, the development of software technology has been slow. Fortran became
available around 1956, and Lisp and Algol in 1960. Unlike the computers of 1956 or 1960,
Fortran and Lisp are still in use. The development time for programmes has decreased
little, so the cost of the computer has become insignificant beside that of the programme.

The development of programmes is slow because programming languages are inade-
quate. What constitutes a good language? Something is good if it serves its purpose well.
At first thought, one might assume that the only purpose of a programming language is to
codify an algorithm for interpretation by a computer. But the programme that is written
once by a human, read once by a machine and then used heavily is an rare oddity. Human
nature predisposes us towards the re-use of things, rather than the creation of new things.
Even if a problem is so simple that it can be coded correctly in one attempt it is likely that
the programme will be used again for some other purpose. Most programmes are read by
humans, either to discover why they do not work, or to see whether they will perform some
new task. A good programming language must communicate an algorithm to a human
reader with the minimum possibility of confusion. A good programming language will
allow the application of old solutions to new data without fuss.

Although none of the readily available programming languages achieves this, I have
been asked “Surely Fortran is suitable for scientific programming?” sufficiently often that I
feel obliged to mention it. If Fortran were suitable, scientists would use it for the communi-
cation of formulae and descriptions of processes. Instead they use mathematical notation.
Mathematics is more concise, and easier to read than Fortran.

The conclusion is that programming languages should resemble mathematical nota-
tion. Recent exploration of this idea has resulted in the concept of functional program-
ming. Unfortunately, the implementation of functional languages has not yet reached a
level of efficiency that would make them a commercially viable alternative to ‘traditional’
languages. One part of this thesis describes new techniques that go some way towards
efficient implementation.

The majority of this thesis is devoted to the design of a simple programming language.
An objection to conventional languages is that they are hard to comprehend. I do not mean
that programmes written in these languages are necessarily unintelligible (although this is
often a consequence). The languages themselves are incomprehensible. This is the result of
the tendency of designers to construct languages from the best bits of previous languages,
without regard for the coherence of the whole. Current functional languages suffer less
from this, but nonetheless are often ad-hoc collections of goodies. My intention has been
to design a language in which complexity is replaced by flexibility, but which allows the

† This comes to about 36/- for components when converted to 1949 values.

1

2 Foreword

use of a notation similar to mathematics. A consequence of this design methodology is
that the core of the language is small and readily susceptible to formal description.

An aspect of programming that is different from mathematics is that a programme
must be completely rigorous and formal, because a computer will eventually interpret it.
This can be a disadvantage in that where a human might overlook a simple mistake because
it is nonsense, the computer will go ahead and produce nonsense. The same rigour can be
turned to advantage if we impose a discipline of data types, and have the computer check
that programmes adhere to it.

An argument that a minimal programming language is viable would carry no weight
if it could not be implemented. My research is therefore divided into two parts: the design
of a minimal language called Ponder, and its implementation. Accordingly this thesis is
divided into four parts:
(i) an introduction to the concepts of functional languages and to Ponder in particular,
(ii) a description of the design process that lead to the present language,
(iii) a description of the implementation of Ponder, and
(iv) a critical examination of the result.

I
Introduction

Background

This chapter presents the basic concepts of functional programming, together with
a survey of previous work in this area. A more rigorous treatment of the mathematical
aspects of the calculi can be found in [Barendregt 1980].

1. Foundations

1.1. λ-calculus

1.1.1. Functions

The term function in functional programming corresponds closely with the mathe-
matical idea of a function. A function is a recipe that can be used to calculate a result

when given some arguments. An example is the function that expresses the relationship
between the volume of a sphere and its radius. Traditional mathematical notation has no
explicit representation for functions; we might write v(r) = 4

3
πr3 as a definition of the

function v, but have no means of writing down the value of v.
In his 1941 paper [Church 1941], Church proposed the λ-calculus as a formal notation

for functions. In this notation the function for v is written λr. 4
3
πr3. The ‘λr.’ indicates

that r is the name of the parameter of the function, and is said to bind r. A function can be
applied to an argument, the notation for which is juxtaposition. For example (λr. 4

3
πr3)3

is an expression for the volume of a sphere of radius 3.
Although the notation is for functions of one argument, the use of functions whose

result is a function allows us to simulate functions with any number of parameters. The
volume of a rectangular parallelpiped is a function of three parameters: its length, breadth
and width. In the usual notation vbox(l, b, w) = l × b × w. This can be represented in
λ-notation as vbox = λl.λb.λw.l× b×w. An application appears thus: vbox 10 20 15 is an
expression for the volume of a box 10 by 20 by 15. In this application vbox is applied to
10, and the result is a function for the volume of a box of length 10 in terms of its breadth
and width, which is then applied to the subsequent arguments. The representation of a
function of more than one argument in this way is termed Currying after Haskell B Curry,
although Frege [Frege 1960] seems to have anticipated the idea.

1.1.2. Free and Bound Variables

In the function λw.l × b × w, w is the name of the parameter, and is bound. The
names l and b are not bound, and are said to be free. If we add λX. at the beginning
of an expression, all the free occurrences of X become bound, but bound occurrences are
unaffected. Thus in the expression λx.x, x is bound, and so in λx.λx.x the initial λx binds
no instances of x.

For historical reasons the names of parameters are also referred to as variables.

5

6 Background

1.1.3. Reduction

We can interpret λ-expressions as rules for the computation of the result of the appli-
cation of functions. The major step in the application of a function to an argument is the
substitution of the argument for all the free occurrences of the parameter in the body of
the function. To apply λx.x+x to 3, substitute 3 for free occurrences of x in x+x (which
is the body in this case) to get 3 + 3. Notice that in the application of λx.λx.x to 3 there
are no free occurrences of x in the body, so the result is λx.x. This rule of substitution is
called β-reduction.

Although β-reduction does all the real work, it is insufficient to describe function
application. The problem occurs when a function is applied to a name. For the notation
to be well behaved, the meaning of a function should be independent of the names used:
λx.x means the same as λy.y. But suppose that we apply λx.λy.2×x+y to y. Unmodified
β-substitution would give λy.2 × y + y, in which both occurrences of y are bound. If
the function had been written λx.λz.2 × x + z, the result would have had y as a free
variable, and must be different. Such name clashes are avoided by the requirement that
no free occurrence of a name in an argument may become bound when the argument is
substituted. This requires us to rename any variables in the function that would cause
binding to happen. The renaming process is called α-reduction or α-conversion.

1.2. Combinators

Combinatory logic [Curry 1958] is an alternative formalism to λ-calculus in which all
functions are represented in terms of certain primitive functions, called combinators. A
combinator is a function that has no free variables.

All expressions that may be represented in the λ-calculus with no free variables may
be expressed in terms of combinations of the two combinators S and K:

S f g h △

= f h (g h) (s)

K a b △

= a (k)

(△

= means ‘is defined as’). Alternatively they may be defined in the notation of λ-calculus:
S = λf.λg.λh.f h (g h) and K = λa.λb.a. To show that these are the only combinators
needed, it is sufficient to give an algorithm to translate λ-terms into combinators. As a
first example, define I as S K K. Now I x = x:

I x = S K K x By definition

= K x (K x) By (s)

= x By (k)

Which suggests that I = λx.x, because it gives the same answer as λx.x for any argument†.

† Functions that always give the same answer for the same argument are said to be
extensionally equal.

Introduction 7

This gives us the first rule of the algorithm:

λx.x becomes I

λx.y becomes K y if x not free in y

λx.y z becomes S (λx.y) (λx.z)

To achieve a complete conversion, it is necessary to apply these rules to the terms of the
expression until no λs remain.

Notice that all combinatory expressions may be converted to λ-expressions by the
substitution of the λ-expressions for S, K, and I.

1.2.1. Composition

Another combinator that deserves special notice is the composition operator. The
common name for this combinator is B:

B f g h △

= f (g h)

As a notational convenience, B is often written as the infix operation ◦. If double △

=
λx.x+x, then double◦double is a function that quadruples its argument: (double◦double) 2
is B double double 2 is double (double 2) is double 4 is 8.

Backus [Backus 1978] proposed a variable-free programming style, and a language,
FP, based on combinators. Although all programmes may be written using S and K, the
result would not be readable. FP consists of a set of more expressive combinators, such as
composition.

1.3. Recursion

Neither the λ-calculus nor combinatory logic has an obvious mechanism for the defini-
tion of recursive functions. Nevertheless both are capable of expressing functions that are
defined in terms of themselves. The key observation is that we can define functions that
partially perform the required recursion. The traditional example is the factorial function:

factorial n △

=

{

1 if n = 0
n× factorial (n− 1) otherwise

Notice that if the parameter f of the function fac defined by

fac △

= λf.λn.if n = 0
then 1
else n× f(n− 1)

is the factorial function, then the resulting expression is equivalent to the factorial func-
tion (by β-substitution); fac factorial = factorial . Consider also fac0, defined by fac0

△

=
fac splat where splat is an expression whose evaluation does not terminate (see 1.4 below)

8 Background

fac0 approximates the factorial function in that fac0 0 = factorial 0 and it terminates for
no other value of the argument. Now fac1 = fac fac0 is a better approximation: it has the
same value as factorial for 0 and 1, and terminates nowhere else. Similarly fac2 = fac fac1

is better still in that it works for all values of n up to 2.
This leads us to the means of introducing recursion. The final approximation to

factorial would be fac
∞

= fac (fac (fac(. . .))), with an infinite number of applications
of fac. Suppose we have a function Fix such that Fix fac = fac (Fix fac). Intuitively
Fix fac = fac (fac (fac(. . .))).

Can a Fix be defined? We can arrive at an expression for Fix by reasoning similar
to that by which we came to decide that it is needed. Suppose that we can define a
function Θ such that Θ Θ = Fix. We would then be able to define a new version of Fix
as λf.f (Θ Θ f). But as yet we have no expression for Θ so take it out as a parameter,
giving Θ0

△

= λθ.λf.f (θ θ f). By β-reduction we have that Θ0 Θ = λf.f (Θ Θ f), which,
as we have already seen is equal to Fix. i.e. Θ0 Θ = Fix = Θ Θ, which suggests that
Θ0 = Θ. We now have

Fix △

= Θ Θ

Θ △

= (λθ.λf.f(θ θ f))

because

Fix F = Θ Θ F Definition of Fix

= (λθ.λf.f(θ θ f)) Θ F Definition of Θ

= (λf.f(Θ Θ f) F β-reduction

= F (Θ Θ F) β-reduction

= F (Fix F) Definition of Fix

1.3.1. Recursion Equations

Another formalism for functions is recursion equations, in which a function is defined
recursively by a case analysis of values of its arguments. For example,

f 0 = 1

f (succ n) = succ n × f n

defines the factorial function. Turner has defined several languages based on this principle,
including SASL and KRC [Turner 1982].

1.4. Evaluation Order

In the example of composition, I said that double (double 2) is double 4, having reduced
double 2 first. I could equally have said that double (double 2) is (double 2) + (double 2),
reducing the first application of double first. There are several possible orders of reduction
(in both combinatory logic and λ-calculus), but if a sequence of reductions terminates
it will give the same answer (up to α-conversion) as any other sequence of reductions

Introduction 9

that terminates. (This is known as the Church-Rosser property—a recent reference is
[Rosser 1982]).

In traditional programming languages the most common order of evaluation is applica-

tive order, where the arguments of a function are evaluated before the body. Applicative
order has the disadvantage that it does not necessarily terminate, even though an expres-
sion has a value. Consider K (2 + 2) (S I I (S I I)). In applicative order, the arguments
are evaluated first; (2 + 2) gives 4, but (S I I x) = x x so (S I I (S I I)) = (S I I (S I I)),
which is the same as before. If the K is applied first, the whole expression reduces to
(2+2) and then to 4. Indeed, if the leftmost reducible expression (sometimes called redex)
is always reduced first, the result is guaranteed to be found if it exists [Barendregt 1980].
This is called normal order reduction.

1.5. Types

It is accepted by many that type-checking is an important aid to the production of
correct programmes. A counter argument is that the type systems used in conventional
languages have been too restrictive—a procedure definition must specify the type of its
argument even if it doesn’t matter what that type is.

The language ML, originally designed as a metalanguage for a proof assistant [Gordon
1979] includes a type system that partially overcomes this problem. A programme in ML
is prepared largely without the incorporation of type information, but the ML compiler
infers the types of expressions automatically [Milner 1978]. An expression is not required
to have just one type; λx.x will be inferred to have all types of the form α → α (where
α is a type variable). This frees programmes from the restrictions of rigid type-checking,
but still ensures that they contain no type-errors.

HOPE [Burstall 1980] is a pure functional language that has the same types as ML,
except that the HOPE compiler does not do the same kind of type-inference. Instead, the
programmer is required to specify the type of each function. This allows function names
to be overloaded on the type of their arguments—this means that the same name may be
used for a number of different functions. For example, ‘plus’ is the common name of the
function to add two numbers, but how the addition is to be performed depends on the
type of numbers to be added. The HOPE compiler uses the type information to detect
which function is appropriate to perform the operation on a particular type of argument.

2. Implementation Techniques

The implementation of functional languages can conveniently be divided into two
areas—software and hardware. Although most of the software techniques were originally
intended for ‘conventional’ computers, many of them are useful in conjunction with spe-
cialised hardware.

10 Background

2.1. Software

2.1.1. Lazy Evaluation

Although normal order reduction always finds the answer, it often does more work than
necessary. The normal order reduction of double (double 2) gives (double 2) + (double 2),
and then (double 2) will be evaluated twice. This problem is ameliorated by call by need
[Wadsworth 1971], (also known as lazy evaluation [Henderson 1976]). Rather than copying
expressions, lazy evaluation uses pointers to remember the values of expressions, so that
double (double 2) reduces to Π + Π, where Π is a pointer to (double 2). When Π is
evaluated, the expression becomes 4 + 4; the effect has been to reduce both instances of
(2 + 2) simultaneously.

There has been some confusion in functional programming literature between normal
order and laziness. Rather than use the two terms to mean the same thing I will use
normal order for the order, and reserve laziness for the technique of remembering the value
of subexpressions. I will also use ‘normal order semantics’ as a name for any reduction
order that is guaranteed to produce the answer if normal order does.

2.1.2. Bigger Combinators

A major problem in the implementation of λ-based functional languages is that β-
substitution is a costly process. Combinators have the seductive property that all reduc-
tions are merely re-orderings of parameters. In his seminal papers [Turner 1979, 1979′],
Turner proposed the use of combinators as an implementation technique for functional
languages. He observed, however, that the expression of a function in terms of S, K and I
alone is generally much larger than the original expression. As an attempt to counteract
this problem, he introduced a number of new combinators.

C f g h △

= f h g

B′ a b c d △

= a b (c d)

C′ a b c d △

= a (b d) c

S′ a b c d △

= a (b d) (c d)

These are then incorporated into programmes by the following optimisations:

S (K a) b becomes B a b

S a (K b) becomes C a b

S (B a b) (K c) becomes C′ a b c

S (B a b) c becomes S′ a b c

After these optimisations, the resulting combinator expressions are generally smaller, but
still quadratic in the size of the input programme.

Introduction 11

2.1.3. Super-combinators

The term ‘super-combinator’ was coined by Hughes [Hughes 1982] as a name for gen-
eralised combinators chosen for a particular programme. Expressions translated to com-
binators by Turner’s improved algorithm are quite small, but each combinator reduction
performs only a small amount of work, resulting in poor running speed. Super-combinators
provide a method of making the combinators used in a programme as large as is consistent
with the preservation of the semantics of the original expression. Hughes’ paper describes
reasoning behind the selection of combinators in detail. Here I shall give only an outline
of the algorithm.

By analogy with free variables, Hughes defines a free expression to be an expression
that does not contain a bound variable. In λa.f b (a (b (c d))) all of b, c, d, f, f b and b (c d)
are free expressions. A free expression of a λ-abstraction is a maximal free expression if
it is not part of any larger free expression. The maximal free expressions of the above
example are f b and b (c d).

λ-abstractions are converted to super-combinators by ‘lifting out’ all of the maximal
free expressions as parameters. The λ-abstraction is then replaced by an application of
the resulting combinator to the maximal free expressions. Taking the same example again,
λa.f b (a (b (c d))) is converted to α (f b) (b (c d)) with α △

= λfb.λbcd .λa.fb (a bcd)†.
Hughes describes an improvement on this method that revolves around the numbering

of bound variables: the level of a bound variable is given by the number of enclosing
lambdas. In λf.(λg.(λi.i)f (g g))(λh.f (h h)) the level of f is 1, of both g and h is 2 and of
i is 3. The level of a sub-expression is then the greatest of the levels of all its free variables.
In the context of the above λ-expression, λi.i has level 0 (it has no free variables), (h h)
has level two and (λh.f (h h)) has level one.

The translation of a λ-expression to super-combinators proceeds recursively. Each
innermost λ-abstraction is translated to super-combinators until there are no remaining
λ-abstractions. An innermost λ-abstraction is translated by lifting out its maximal free ex-
pressions as before, but they are sorted into increasing order of level before the application
is constructed. If the levels of b, c, d and f are 1, 2, 3 and 4 respectively, λa.f b (a (b (c d)))
will be converted to α (b c d) (f b) with α △

= λbcd .λfb.λa.fb (a bcd). This ordering of pa-
rameters ensures that the maximal free expressions of the resulting combinator application
will be as large as possible.

A similar technique, λ-lifting, is in use at Göteborg [Johnsson 1984], but as it does
not analyse maximal free expressions, it does not always preserve laziness.

2.1.4. Programme Transformation

Another alternative is to transform the functional programme into an equivalent im-
perative one that exploits conventional hardware more efficiently. Burstall and Darling-
ton [Burstall 1977] presented a technique for the semi-automatic transformation of pro-
grammes.

Programme transformation is not confined to implementations on conventional ma-
chines. The compilers for Alice [Darlington 1981] also use this technique, and it is

† fb and bcd are single names.

12 Background

likely that there would be benefits from the its application to programmes for SKIM
[Clarke 1980].

Programme transformation may not be a completely automatic process. This leads to
the problem that a record of how to transform each particular programme must be kept.
Without such a record, the modification of the original programme would necessitate the
re-application of the transformer, a task that one would prefer to be automatic. Darling-
ton [Darlington 1983] has suggested that a good way to keep this record is to write the
programme transformations in some language, and keep this transformer-programme with
the original.

2.2. Hardware

Attempts to implement functional programming languages on conventional machines
often give rise to the observation that the architecture of the machine is not really suitable
for the task. Recent research has shown that given hardware specially designed for the
task, functional languages can be made to run much more efficiently than on ordinary
computers.

The hardware techniques fall into three categories: string, acyclic graph and general
graph reduction. In string reduction the programme is represented by its text and reduction
is performed directly according to the reduction rules. An example may be found in [Mago
1980]. In acyclic graph reduction the programme is represented as a graph, essentially
the syntax tree of the programme text, but with common sub-expressions shared. Alice
[Darlington 1981] is a parallel processor based on this principle. Finally, general graph
reduction allows the programme graph to include cycles, (which usually represent recursive
objects), and SKIM [Clarke 1980] uses graph representations of combinator expressions to
evaluate functional programmes.

Informal Description of Ponder

This chapter is a self contained description of Ponder as if the functions defined in
the standard prelude were built in. This allows me to give intelligible examples before all
of the language has been described. The next chapter, Example Ponder Programmes
gives definitions of the conditional expression and a large example to show how the syntax
defining mechanisms may be used to increase the expressiveness of a programme. The
design of the language is described in more formal detail in Part II; readers interested
in the technical aspects of this work, rather than the language description, may prefer
to skip to Part II. I have also described Ponder as it is, rather than as it should be; I
have glossed over the deficiencies as far as possible. See the chapter Analysis below for a
critical examination of the language.

1. What a Ponder Programme is

Ponder is a pure functional language. A Ponder programme therefore has no side
effects; it is an expression that may be evaluated to give a result. It is important to bear
this in mind when reading the rest of this description.

2. Objects

I call the things that a programme manipulates ‘objects’. This includes functions.
Indeed, if it were not for the fact that the programme must produce results that may be
printed out, the only objects would be functions. As it is, the computer must be able
to interpret a programme in such a way as to produce objects that have some intrinsic
meaning. The most common means of communication with the outside world is by printed
characters.

2.1. Characters

A character is anything that may be typed into the computer as a single key-stroke.
A Ponder programme will be represented by a sequence of characters, so we need a way of
distinguishing characters that stand for themselves from those used to represent the other
pieces of programme. A character icon is a representation of a character. Character icons
are themselves represented by a quotation mark followed by the character. Thus 'a is the
character icon for the letter a, 'b represents the letter b and so on.

13

14 Informal Description of Ponder

2.2. Strings

Very frequently, a programme will want to manipulate a sequence of characters, and in-
clude some constant string of characters. Strings of characters are indicated by surrounding
the characters with quotation marks. An example of a string icon is “38, York Terrace”.

Certain characters can only be included in strings by means of escape characters—a
closing quotation mark is a notable example. The following table shows the representation
used within string icons for these characters.

Character Representation
” '”
' ''

newline 'n

Strings may also be split over long lines:

“this string is on '

two lines”

means the same as

“this string is on two lines”

The rule is that all layout after an apostrophe is ignored.

2.3. Integers

Programmes frequently manipulate numbers. Again, there is a means provided for
writing numbers in programmes, called the integer icon. An integer icon is simply a
sequence of digits, such as 312821. Notice that “312821” is still a string icon, despite its
consisting of digits.

3. Declarations

Quite often, a programme will need to use the same thing more than once. If the
thing is long, or difficult to remember in detail, such as

“Japanese Haiku/ have seventeen syllables/ five then sev’n then five”

it is useful to be able to give it a name. The let-declaration gives an object a name. After
the declaration

Let haiku-description △

= “Japanese Haiku/ have seventeen syllables/ '

five then sev’n then five”;

we may use haiku-description in exactly the same way as “Japanese Haiku/ have seventeen
syllables/ five then sev’n then five”. The semicolon serves to separate the declaration from
any following declaration or expression.

Introduction 15

Although a name may consist of several words, the words must be linked together by
hyphens, because one name followed by another means something different (see ‘expres-
sions’ below). Thus haiku-description and haiku--description are both single names (in
fact the same one, because only the words count), but haiku description is an expression
consisting of two names, haiku and description, and haikudescription is a one word name.
A name consists of letters, hyphens and digits in italics.

4. Expressions

Expressions in Ponder are built up in two ways: either by the application of a function,
or of an operator.

4.1. Function Applications

To apply a function, it is written in front of its argument. So if sin stood for the
sine function, and pi stood for π, sin pi would be an expression with value zero. There
is a function called reverse. For example reverse “regal” is “lager”. Function application
associates to the left, and parentheses—‘(’ and ‘)’—may be used to group things together.
So reverse (reverse “car”) is “car”.

4.2. Infix Operators

Infix operators are written in between their arguments, in the way that + is used to
add two integers together. Indeed 2 + 2 has the value 4 as one might expect. Similarly
6× 7 is 42.

An important difference between operators and functions is that while a function is
just an object and always means the same thing, the meaning of an operator can depend
on what its arguments are. This mirrors the normal notation. For the addition of two
integers, we write +, and to add two fractions together we also write +, but the algorithm
for adding integers is different from the one for fractions. Thus operators (but not function
names) can be overloaded.

5. Types

Every object in Ponder has a type. Types are not objects, so they do not have
types. A character has type Char, an integer type Int and strings have type String. These
types have names, and the convention for writing type-names is similar to that for writing
object-names. To distinguish type-names, they are written in sans serif.

Because certain types are related to each other, Ponder has the facility of parame-

terised types. An example is List. We can have a list of integers, written List [Int] or a list

16 Informal Description of Ponder

of characters, List [Char] or even a list of lists of characters, List [List [Char]]. Incidentally,
a String is just a list of characters, and can equally well be referred to as List [Char].

6. Lists

Lists are common in functional programming. If a programme is to manipulate a
sequence of things, it will usually use a list. Lists are constructed by means of the list
operator ‘::’. Thus “violin”:: “viola”:: “violoncello”:: “double bass” is a list of strings. We
can join together two lists using append , written as an infix operator @. For example (2::
4:: 6:: 8) @ (3:: 5:: 7:: 9) joins together the two lists to get 2:: 4:: 6:: 8:: 3:: 5:: 7:: 9. Reverse
is in fact a list manipulating function, so reverse (1:: 2:: 3) is 3:: 2:: 1. Incidentally, :: is
an overloaded operator: the first :: in 1:: 2:: 3 takes an integer and a list, but the second
takes two integers.

Strings are lists, so all the list operators may be used on strings. Thus “ant” @ “acid”
is “antacid”.

7. Functions

I have mentioned that functions are objects, and that reverse is a function, but have
not yet said how to write them. A function is just an expression with a parameter. A
parameter is a name that has no particular value. Because of this, it is always necessary
to say what the type of a parameter is going to be, so that the compiler can check to see
that it is correctly used. Suppose we want to square integers.

Int i → i × i

is a function† to do this. The parameter is called i , and Int says that the parameter is
always going to be an integer—otherwise it would not be possible to tell which version of
× must be used. The arrow→ is just there to separate the parameter from the expression.

We can name objects using let-declarations, and functions are objects, so we can name
functions:

Let square △

= Int i → i × i ;

after this declaration square 3 means 3× 3, which evaluates to 9.
A function is just a rule that says how to get to the answer when given an argument.

To apply a function, substitute occurrences of the parameter name in the expression after
the arrow with the value of the argument. To compute square (square 3), substitute the ar-
gument (square 3) for the parameter i in the expression i × i to get (square 3)×(square 3).
To find the value of this in turn, we need to compute square 3 by substituting 3 for i giving
9, as before, so the answer is 9× 9, which is 81.

† It corresponds to the λ-expression λi.i× i but includes type information

Introduction 17

Often a function depends on more than one thing. If we often want to compute the
sum of the square of two integers, we might want to write a function to do it, rather than
write it out every time. How do we write a function of more than one argument? Well,
functions are objects, so there is no reason why a function cannot return another function
as its result. Thus

Let sum-squares △

= Int i1 → Int i2 → square i1 + square i2;

declares sum-squares as function with one parameter i1, but which returns a function as
its result.

If we apply sum-squares to 15, what happens? The rule says “substitute the argument
for the parameter in the part after the arrow”. This gives Int i2 → square 15 + square i2,
a function that calculates the sum of the square of a number and the square of 15. If
we apply this in turn to 21, we get square 15 + square 21, which is 225 + 441, which is
666. Function application associates to the left, so we can write these two applications as
sum-squares 15 21.

What if it is not known in advance how many numbers there will be? The answer is
to use lists. We can write the function to compute the sum of the squares of any number
of integers if we make its parameter a list of integers.

Before we do that, let me introduce two more useful functions for lists. Map (the
name is historical, after ‘mapcar’ in LISP) applies a given function to every element of a
list. Thus

map square (1:: 2:: 3:: 4)

is

square 1:: square 2:: square 3:: square 4

which is the list (1:: 2:: 9:: 16), and

map reverse (“no”:: “god”:: “saw”:: “a”:: “mined”:: “pool”)

is

“on”:: “dog”:: “was”:: “a”:: “denim”:: “loop”

The function gather applies a function of two arguments “between” each element of a
list and a terminal value. For the examples, let me use two functions int-plus-int , which is
+ for integers, and int-times-int , similarly. Thus gather int-plus-int 0 (1:: 2:: 3) evaluates
to (1 + (2 + (3 + 0))), and gather int-times-int 1 (1:: 2:: 3) to (1 × (2 × (3 × 1))). This
function is also known as reduce or fold in other languages.

Now we can write an new version of sum-squares:

Let sum-squares △

= List [Int] ints →
gather int-plus-int 0

(map square ints);

Which just uses the map and gather examples together, so that sum-squares (1:: 2:: 3) is
gather int-plus-int 0 (map square (1:: 2:: 3)), which in turn becomes gather int-plus-int 0
(1:: 4:: 9), and finally 1 + 4 + 9 + 0 = 14.

18 Informal Description of Ponder

7.1. Function Types

Functions, like all other objects in Ponder, have types. The type of a function is
written with an arrow from the type of the parameter to the type of the result. Square has
a parameter of type Int, and returns a result of type Int, so its type is written Int → Int.
The compiler checks that every time a function is applied to an argument the type of the
argument matches the type of the parameter of the function.

8. Printing Answers

So far, we have only seen how to compute values. We have seen a function that, when
given a list of integers, will compute the sum of the squares of those integers, but not
how to print it out. A Ponder programme is an expression, and it is required to have a
particular type. A programme cannot just be a sequence of values to be printed. This is
because it is impossible for the compiler to know how you want something to be printed—
do you want your numbers in decimal, binary or Roman numerals? A programme is of
type List [File-action].

For the moment we need not worry what a File-action is, merely note that there is
a function called print-to-terminal that takes a List [Char] and converts it to a List [File-
-action]. The name is, perhaps, misleading. An expression such as print-to-terminal
“Hello!” does not cause “Hello!” to be printed at the terminal. The value of print-to-ter -
minal “Hello!” is a List [File-action] that, when returned as the value of a programme, will
cause “Hello” to be printed at the terminal.

A programme that consists entirely of

print-to-terminal “Hello!”

will print “Hello!” on the terminal (without the quotation marks), and then stop. An
object of type List [File-action] is a list, and so we can use the usual list operations to
manipulate it:

print-to-terminal “Hello” @ print-to-terminal “ world!”

will print “Hello world!” and

reverse (print-to-terminal “Hello” @ print-to-terminal “ world!”)

will print “ world!Hello”.
If we want to print out numbers, we must convert them first into String, and then into

List [File-action]. There is a function called print-int , which is of type Int→ String, which
converts integers to their decimal character representation. Thus print-int 33 is “33”. Now
we can have a complete programme to calculate the sum of some squares:

Let sum-squares △

= List [Int] ints →
gather int-plus-int 0

(map square ints);
print-to-terminal (print-int (sum-squares (1::2::3::4::5)))

Introduction 19

9. Input

Input from the terminal is a list of characters called terminal-input-list . This list
contains all the characters typed at the terminal, in the order in which they are typed.
Thus the first character in the list is the first character typed, and so on. Of course, the
computer can’t predict what the person will type at the keyboard, so whenever the output
of the programme depends on another character from the input list, the programme will
have to wait for that character to be typed.

Note that the keyboard is considered to be separate from the screen, as in this picture:

−→ Programme −→

()

Key depressions are recorded only in the input list—if anything is to happen on the screen
the programme must make it happen.

I have not really described enough of the language to give much of an example of
terminal input. The programme:

print-to-terminal (“Now type: ”@terminal-input-list)

is very silly. When run, it will print “Now type: ” followed by the terminal input list. You
have not typed it in yet, so it will wait until you press a key. When you do, it will print
the character corresponding to it on the terminal, and wait for another one. When you
type that, it is printed, and so on ad infinitum. It depends on your particular computer
as to what you have to do to stop it, and it may not be easy!

We can use the list function map to write an even sillier programme. The function
Char c → 'x when applied to a character returns the character x. Thus the programme:

print-to-terminal (map (Char c → 'x) terminal-input-list)

will type an x for every character typed at it.

10. Conditionals

Clearly a programme must be able to test values, and perform different actions ac-
cording to the result. We will eventually want to be able to write programmes that perform
different actions according to their input.

In the familiar mathematical notation x < 5 is an expression that is true if x is less
than 5, and false otherwise. Similarly in Ponder, x < 5 is an expression that is true or
false; true and false are objects, so they must have a type, and their type is Bool. Bool
stands for Boolean, after Boolean algebra. To test whether a Bool is true or false, there is
a construct called a ‘conditional expression’.

20 Informal Description of Ponder

If condition
Then thing1

Else thing2

Fi

is an expression that has the value thing1 if condition is true and thing2 if it is false.
As an example, here is a function that returns the lesser of two arguments:

Let min △

= Int a → Int b →
If a < b
Then a
Else b
Fi;

Since a conditional expression must have a type, and it can return either of two
expressions, they must have the same type.

11. Pairs

A pair is an object with a left part and a right part. A pair is written with its left part
separated from its right part by a comma, thus: 1, 2. There are two functions to take pairs
apart: left and right . They behave in the obvious manner: left(1, 2) is 1 and right(1, 2)
is 2. To simplify the process of splitting pairs, functions and let-declarations both have
special means of dealing with them. The declaration Let one, two △

= 1, 2; declares one to
have the left part of the pair 1, 2, and two to have the right part. In functions we must,
as always, give the types of the parameters: Int a, Int b → a + b is a function that takes
a pair of integers and adds them together.

Pairs are objects, so there can be pairs of pairs, as in 1, (2, 3) and (3, 4), (5, 6). Comma
associates to the right, so 1, 2, 3 means 1, (2, 3). Thus Let a, b, c, d △

= 1, 2, 3, 4; declares
a, b, c and d to have the values 1, 2, 3 and 4 respectively.

11.1. Pair Types

The type of a pair is Pair , which is parameterised on two arguments. 1, 2 has the
type Pair [Int, Int] and '6, “66” has the type Pair [Char, List [Char]]. For convenience, Pair
may be written with the infix type operator ×, by analogy with the set product operation.

12. Splitting Lists

A list may come to an end: there are no characters after the 'o in “Hello”. The list
that has no elements is called nil .

Introduction 21

As we have seen, lists may be constructed using ::, and as you may expect, it is possible
to take them apart again. The possibility that a list may have no entries in it must always
be taken into consideration. There is a special kind of conditional to do this.

If the-list Is function
Else thing-to-return-if-it-isnt
Fi

If the list is, (i.e. it isn’t nil), it is transformed into a pair containing the first element of
the list and the rest of the list, and function is applied to this pair. An example will make
this clearer:

If terminal-input-list Is Char first , List [Char] rest
→ first :: first :: rest
Else nil
Fi

this expression is nil if the terminal input list is empty (a rare occurrence, but not impos-
sible: the ‘terminal’ may be connected to a file), and the terminal input list with the first
character duplicated otherwise.

13. Recursive Functions

It is often necessary for functions to be recursive, but it is inconvenient to declare
recursive functions using let-declarations (with Fix). If a programme contains the sequence
of declarations

Let f △

= Int a → Int b → a × a + b;
Let f △

= Int a → f a 6;

the use of f in the body of the second definition of f simply refers to the first definition, so f
will subsequently be a function of one parameter that returns the square of that parameter
plus six. The second definition of f is not recursive.

To obtain a recursive definition, we can use a letrec-declaration.

Letrec twiddle-pairs △

= List [Char] list → List [Char]:
If list Is Char c1, List [Char] rest
→ If rest Is Char c2, List [Char] rest
→ c2 :: c1 :: twiddle-pairs rest
Else c1:: nil
Fi

Else nil
Fi

is a function from a list of characters to another list in which the characters are swapped in
pairs. The List [Char]: specifies that the result of the function is to be of type List [Char].
This is necessary because the compiler cannot always discover the type of the body of a

22 Informal Description of Ponder

recursive function, since it can depend on itself. In general, an expression of the form
type: expression indicates that expression has type type.

It is instructive to run the programme

print-to-terminal (twiddle-pairs terminal-input-list)

When the first character is typed, nothing happens. This is because the first character
to be printed is the second character typed, and of course this cannot appear before it is
typed. Whenever an even numbered character is typed, a pair of characters appears on
the screen.

14. Interaction with a Terminal

A further observation is that there is no way to rub out characters typed into the
above programme; the rubout character is treated like any other and sent to the screen in
its turn. It is possible to write a function that performs the correct operations for input
of characters, but it is too complex to describe here. An example is given in appendix 3.

15. Extensibility

Ponder allows you to define your own syntaxes for your programmes. If you want
to say square All-of (1:: 2:: 3) instead of map square (1:: 2:: 3), you can use an Infix
declaration:

Infix All-of △

= map;

this makes All-of into an infix operator.
If an operator is used in conjunction with another, as in a × b + c, the priority of the

operator is important. Operators with high priorities are considered first. × has a higher
priority than +, so the above expression means the same as (a×b)+c, and to get the other
meaning you would have to write a × (b + c). Priorities are numbered in reverse order,
as in common parlance; priority one is the highest priority. You may declare priorities for
your own operators:

Priority 4 × Associates Left;

the Left indicates that the left hand of two operators of the same priority is to take
precedence: a × b × c will mean (a×b)×c. Note that the priority applies to the operator
rather than its associated values: the priority of the operator is the same regardless of the
type of its arguments.

All you need to do to overload your own infix operators is to declare them again with
a different value:

Infix + △

= String a → String b → a @ b;

defines that + for strings is concatenation, but leaves the meaning of + for integers un-
changed.

Introduction 23

Names of functions may not be overloaded, but prefix operators may be. A prefix
operator is one which is placed in front of its (single) argument, such as− in−(a+b). Notice
that only one function can be bound to a name, but overloading allows the association
of more than one function with an operator. A consequence of this is that an operator
cannot be used as an argument to a function; only expressions can.

A prefix declaration is rather similar to the infix kind:

Prefix − △

= String a → reverse a;

defines − of a string to be reverse of it, and again leaves − of integers as it was.
The only other kind of new syntax is the bracket operator. A bracket operator consists

of two parts: the opening bracket and the closing bracket. After the definition

Bracket Begin End △

= function;

an expression like Begin thing End means the same as function thing . Brackets may also
be overloaded.

16. Polymorphism

You may have noticed that I said that reverse “is a list operation”. I have used it
on things of type List [Char] and List [Int]. What is the type of reverse? Its argument
must be a List, but it matters not of what. Reverse works for all types of list. Its type is
∀ E. List [E] → List [E]. The ∀ is pronounced ‘for all’, as in logic.

To write a polymorphic function, just put in a ∀ to declare the name of the type of
which it is independent:

Letrec twiddle-pairs △

= ∀C. List [C] list → List [C]:
If list Is C c1, List [C] rest
→ If rest Is C c2, List [C] rest
→ c1:: c2:: twiddle-pairs rest
Else c1:: nil
Fi

Else nil
Fi;

declares twiddle-pairs again, but this time states that it works for any type of list.
Any expression may be preceded by ‘∀name.’ this declares name for the expression

and indicates that the expression would be valid whatever type replaced name. Moreover,
all type variables must be bound either by ‘∀’ or in declarations (see 17). For convenience,
a sequence of bindings such as ‘∀A. . . . ∀Z.’ may be abbreviated as ‘∀A, . . . , Z.’.

24 Informal Description of Ponder

17. Type Declarations

It is often convenient to give a type a name. For instance, if a programme manipulates
a large number of personnel records, it would be tedious to write out the whole type of
the record each time a function was defined.

Type Personnel-record △

= Name × Birth-date × Salary × Tax-code;

declares Personnel-record as a type.
The declaration of parameterised types is similar, and a type may be made recursive:

Rectype List [T] △

= Option [T × List [T]];

is the definition of List (the type Option is explained below). Note that a type name may
only be applied to the same number of arguments as in its definition. In the case of ∀, the
number is zero.

18. Options

The definition of Lists uses Option. An Option is a thing that may or may not be
there, for example the next element of a list may or may not be there. In fact, If . . . Is . . .,
(which we used to test lists) tests Options. Options are also useful for the results of functions
that may fail. For instance, if we have an association list (a list of pairs of keys and values),
we might define lookup as follows:

Letrec lookup △

=
∀T. String key →
List [String × T] association-list →
Option [T]:
If association-list Is (String × T) hd , List [String × T] rest
→ If key = left hd

Then opt-in (right hd)
Else lookup key rest
Fi

Else nil
Fi;

The function opt-in has type ∀T. T → Option [T]; it converts an object to an optional
object. The object nil has type ∀T. Option [T]: it is an optional anything, and represents
the thing not being there. Thus lookup returns either an object if it finds one with the
correct key, or nil if it does not. The result of lookup may be tested with Is:

If lookup “Date” books Is Book the-book
→ read the-book
Else buy-a-book-by “Date”
Fi

Introduction 25

19. Capsules

Although the representations of two objects may be the same, it is often the case
thatwe do not want to use them interchangeably. For instance, we may be using the
integers 1, 2 and 3 to represent the colours red green and blue, and at the same time using
them to represent the suits clubs, diamonds and hearts. It would merely be coincidence if
clubs = red, and a programme that depended on this would almost certainly be wrong.

The mechanism that allows us to avoid this kind of mistake is the encapsulation of
types. We can declare a type to be a capsule, declare some objects involving the type and
then seal the capsule:

Capsule Type Colour △

= Int;
Let red , green, blue △

= Colour: 1, Colour: 2, Colour: 3;
Let equal-colours △

= Colour a → Colour b → Bool: a = b;
Seal Colour;

Until the capsule is sealed, a Colour is just an Int, so = will work. After it is sealed, the only
objects of type Colour are red , green and blue, and the only (non-polymorphic) function
we can apply to them is equal-colours.

Of course, polymorphic functions (which work for every type of argument) can still
be applied to colours, but expressions such as red = 3 are no longer valid.

20. Comments

Any text in a Ponder programme from a dash (–) to the end of a line is not processed
by the compiler. This serves for the introduction of comments.

21. Useful Functions

A number of useful functions have been written already. Appendix 2 contains an
annotated listing of the ‘standard prelude’, together with listings of functions from ‘library’
preludes.

Example Ponder Programmes

Examples 1–4 show the definitions of mundane constructs in terms of the basic lan-
guage. This avoids the objection that built in constructs are ad hoc (see p49).

1. If

Boolean values may be represented as functions that take two arguments and return
one of them. Thus

Type Bool △

= ∀ T. T → T → T;
Let true △

= Bool: ∀ T. T t → T f → t ;
Let false △

= Bool: ∀ T. T t → T f → f ;

Now true a b is a, and false a b is b.
To define the syntax If-Then-Else-Fi, we can arrange that the operators Then and

Else bind like this: If b Then (t Else e) Fi. From this an implementation of Else is not
difficult; (t Else e) is an expression that, when given a boolean argument, applies it to t
and e:

Infix Else △

= ∀ T . T thing-to-return-if-true → T thing-to-return-if-false →
Bool b →
b thing-to-return-if-true thing-to-return-if-false;

and so Then merely applies the else-part to the boolean:

Infix Then △

= Bool b →
∀ T . (Bool → T) else-part →
else-part b;

Finally, we need to specify the associativity of the operators to get the right binding, and
define the bracket:

Priority 9 Else Associates Right;
Priority 9 Then Associates Right;
Bracket If Fi △

= identity;

Example

If true
Then then-stuff
Else else-stuff
Fi

The If–Fi bracket returns the expression unchanged, so expanding the Then first, we get:

26

Introduction 27

(then-stuff Else else-stuff) true

which in turn becomes

true then-stuff else-stuff

and finally then-stuff .

A convenient improvement on this syntax is the Elif part, which reiterates the choice:

If first-condition
Then first-answer
Elif second-condition
Then second-answer
Elif . . .
Else last-answer
Fi

If first-condition is satisfied, the value of this expression is first-answer , otherwise sec-
ond-condition is tested, and if that is true, the value is second -answer , and so on until all
the possible conditions have failed, in which case the value is last-answer .

If such an expression associates like this:

If c1 Then (e1 Elif (c2 Then (e2 Else ee))) Fi

all that is needed is for Elif to produce an else-part :

Infix Elif △

=∀ T. T then-part →
T conditional-expression →
then-part Else conditional-expression

This description differs slightly from the one in the standard prelude (Appendix 2): in
the standard prelude capsules are used to prevent the misuse of Elif and Else; the above
definitions make them interchangeable, whereas we would prefer that Elif was only used
for reiteration of choices.

2. Pairs

In the current implementation Pairs are built in to the run-time system. There are two
reasons for doing this. Both reasons are for the sake of getting an implementation going—
neither is fundamental. The first is that it is easy to make a store-efficient implementation
of pairs by using two words of store. The second is that the compiler and the run-time
system must agree on how pairs are implemented.

It is possible, and would be worthwhile, to include the definition of pairs as part of
the standard prelude.

28 Example Ponder Programmes

Type Pair [L, R] △

= ∀ U. (L → R → U) → U;
Let left △

= ∀ L, R. Pair [L, R] the-pair →
the-pair (L left-element → R right-element → left-element);

Let right △

= ∀ L, R. Pair [L, R] the-pair →
the-pair (L left-element → R right-element → right-element);

Infix , △

= ∀ L, R. L left-element → R right-element → Pair [L, R]:
∀ U. (L → R → U) unpacking-function →
unpacking-function left-element right-element ;

A pair is a function that takes an unpacking function and applies it to its left and right
elements.

It would be possible for the implementation to detect objects of this type, and treat
them specially.

3. Options

Like pairs, options are built in even though they can be defined within the language.

Type Option [T] △

= ∀R.(T→ R)→ R→ R

an option is thus an object that takes a function to apply if the object is there, and a
default value to return if it is not.

4. Unions

It is often necessary to manipulate objects that may be of any one of a number of
types. We can define a binary disjoint union like this:

Type Union [L, R] △

= ∀ X. (L → X) → (R → X) → X

so that an object that is in the union of L and R takes two functions as arguments and
applies one of them to the value that it represents. We need injection functions to convert
an object to a union:

Let inl
△

= ∀ L, R, X. L object →
(L → X) function-to-apply →
(R → X) function-not-to-apply →
function-to-apply object ;

Let inr
△

= ∀ L, R, X. R object →
(L → X) function-not-to-apply →
(R → X) function-to-apply →
function-to-apply object ;

For practical purposes, a different definition of Union is desirable (see the standard
prelude appendix).

Introduction 29

5. A Parser for λ-expressions

This section gives an example to illustrate the use of new syntaxes in specific problem
areas. The example I have chosen is a parser for λ-expressions, but the techniques used
are applicable to parsers in general. Here λ-expressions conform to the following grammar:

λ-expression =

{

“λ”name-token“.”λ-expression
λ-expression solid-expression
solid-expression

solid-expression =
{

“(”λ-expression“)”
name-token

The idea behind the programme is to make the grammar itself be the parser. A
grammar of this kind is constructed using two basic operations: succession and alternation,
together with recursion. Readers not interested in the details may prefer to skip to p34 to
see the result.

I have omitted priority declarations etc., to make the description shorter.
A parser is a function that takes a list of tokens and converts it into a tree. It may

also fail, if the list of tokens does not conform to the grammar, and if it succeeds, there
will often be some more tokens in the list that it has not ‘read’:

Type Parser [Tokens, Tree] △

= Tokens→ Option [Tree × Token]

5.1. Succession

We can combine two grammars to make another simply by writing one after the other.
For example

two-letter-word = letter letter

means that a two letter word is a letter followed by another letter. We want to do the
same for parsers. parse-letter THEN parse-letter is to be a parser for the corresponding
grammar letter letter .

Infix THEN △

= ∀ Tokens, T1. Parser [Tokens, T1] parser1 →
∀ T2. Parser [Tokens, T2] parser2 →
Tokens input →
If parser1 input Is T1 t1, Tokens rest
→ If parser2 rest Is T2 t2, Tokens rest
→ opt-in ((t1, t2), rest)
Else nil
Fi

Else nil
Fi;

This may be read as “If parser1 returns a tree t1, try parser2 on the remaining tokens and
return the two trees if that succeeds, otherwise fail.”

30 Example Ponder Programmes

5.2. Alternation

The method for alternation is similar. If the first parser succeeds, the result is the
resulting tree, otherwise try the second parser:

Infix OR △

= ∀ Tokens, T1. Parser [Tokens, T1] parser1 →
Parser [Tokens, T1] parser2 →
Tokens input →
If parser1 input Is (T1× Tokens) p
→ opt-in p
Else parser2 input
Fi;

For example, parse-letter OR parse-digit is a parser that succeeds if either parse-letter or
parse-digit succeeds (and hence parses either a letter or digit).

Note that unlike true alternation, OR is not symmetrical. If the first parser succeeds,
it will not try the second parser.

Example
The parser for the grammar

exes =
{ x exes

x

is

Letrec parse-exes △

= Parser [Tokens, Tree]:
parse-x THEN parse-exes OR
parse-x

Notice that the parse-x alternative has to be second. If it came first (on the left of the
OR), parse-exes would succeed on the first x , and never consider the rest.

5.3. Left Recursive Rules

The operators THEN and OR together with recursion allow the definition of gram-
mars. Unfortunately, left-recursive rules are a problem. Our example grammar contains
the production λ-expression = λ-expression solid-expression. When translated to parsers,
this becomes

lambda-expression △

= lambda-expression THEN solid-expression

The THEN will try to parse a lambda-expression first, which entails parsing a lambda-
-expression first. And so on.

I introduce the operator Left-Repeat-Option to solve this problem. Left-Rep-
eat-Option is similar to the postfix operator ‘*’ commonly added to grammars as an
extension, except that it builds up from the left. A parser p △

= a Left-Repeat-Option b
corresponds to the left recursive rule

p =
{

p b
a

Introduction 31

Letrec build-up-from △

=
∀ Tokens, T1, T2. T1 t1 →
Parser [Tokens, T2] parser2 →
((T1× T2) → T1) pair-to-t1 →
Tokens input → Option [T1× Tokens]:
If parser2 input Is T2 t2, Tokens input
→ build-up-from (pair-to-t1 (t1, t2)) parser2 pair-to-t1 input
Else opt-in (t1, input)
Fi;

Infix Left-Repeat-Option △

=
∀ Tokens, T1, T2. Parser [Tokens, T1] parser1 →
Parser [Tokens, T2] parser2 →
((T1× T2) → T1)pair-to-t1 →
Tokens input →
If parser1 input Is T1 t1, Tokens input
→ build-up-from t1 parser2 pair-to-t1 input
Else nil
Fi;

An expression of the form a Left-Repeat-Option b conversion-function is a parser that
works as follows. First it tries a, and if it succeeds, it uses build-up-from together with
conversion-function to build a tree with the result of a as the leftmost leaf.

5.4. Right Recursive Rules

A further problem with this kind of parser is that OR applies the rules from left to
right, and gives up when the first one succeeds. This means that if the grammar contains

a =

{

thing1

thing1thing2

we have to write the parser for a as

(parse-thing1 THEN parse-thing2)
OR parse-thing1

otherwise the parse would always succeed on the first thing1, and never consider a thing2.

A side effect of writing things this way round is that whenever the parser looks for
an a, it will attempt (parse-thing1 THEN parse-thing2), and when this fails it will do the
thing1 again. A more efficient way to deal with this is THEN-Optionally:

32 Example Ponder Programmes

Infix THEN-Optionally △

=
∀ Tokens, T1, T2.
Parser [Tokens, T1] parser1 →
Parser [Tokens, T2] parser2 →
Parser [Tokens, (T1× Option [T2])]:
Tokens tokens →
If parser1 tokens Is T1 t1, Tokens rest
→ If parser2 rest Is T2 t1, Tokens rest
→ opt-in ((t1, opt-in t1), rest)
Else opt-in ((t1, nil), rest)
Fi

Else nil
Fi;

5.5. Tree Conversion

When a parser is constructed using THEN, it produces a pair of trees from the results
of the two parsers. It is then necessary to convert this pair to the appropriate type for the
parse tree. If parser is a Parser [Tokens, T1] and conversion-function converts T1 to a T2,
the expression

parser AS conversion-function

gives a Parser [Tokens, T2].

Infix AS △

=
∀ Tokens, T1. Parser [Tokens, T1] parser →
∀ T2. (T1 → T2) convert-to-t2 → Parser [Tokens, T2]:
Tokens input → Option [T2× Tokens]:
If parser input Is T1 t1, Tokens rest
→ opt-in (convert-to-t2 t1, rest)
Else nil
Fi;

This version allows us to write AS after a Left-Repeat-Option, to make things look
more regular:

Infix AS △

=
∀ Tokens, T1, T2.
(((T1×T2) → T1) → Parser [Tokens, T1] part-parser →
((T1× T2) → T1) convert-to-t1 →
part-parser convert-to-t1 ;

Introduction 33

5.6. Literals

We need some means of introducing terminal symbols into the grammar. The poly-
morphic function literal takes an equality function for Tokens and a Token lit and returns
a parser that succeeds if the first token on the input equals lit :

Let literal △

=∀ Token. (Token → Token → Bool) equal →
Token lit → Parser [List [Token], Token]:
List [Token] input →
If input Is Token first , List [Token] rest
→ If equal first lit

Then opt-in (first, rest)
Else nil
Fi

Else nil
Fi;

For convenience we can define a prefix operator Literal for the particular type of token
we are going to use:

Prefix Literal △

= literal token-equals-token;

where token-equals-token is defined appropriately.

5.7. The parser for λ-expressions

Now that we have had enough definitions, we can get on with the parser for λ-
expressions. First define a briefer type for parsers, assuming that we know what the
types of the tokens and tree are:

Type Parser △

= Parser [Tokens, Tree];

A tree will be a union of the representations of abstractions, applications and names, so
we will need some routines to convert the results of THEN to trees:

Let parenthesised-expression △

= Token open, Tree expression, Token close →
expression;

We can discard the parentheses when building a tree.

Let make-name △

= Token c → Tree: in-name c;
Let application △

= Tree t1, Tree t2 → Tree:
in-application (t1, t2);

Let abstraction △

= Token lambda, Token name, Token dot , Tree expression → Tree:
in-abstraction (name, expression);

The functions in-name, in-application and in-abstraction are intended to put their argu-
ments in the appropriate place in the Tree union.

Finally, the parser itself.

34 Example Ponder Programmes

Letrec expression, solid-expression △

=
Parser × Parser:

– expression:
(Literal lambda THEN Literal name-token THEN Literal dot
THEN expression
AS abstraction) OR

(solid-expression Left-Repeat-Option solid-expression
AS application),

– solid-expression:
(Literal left-parenthesis THEN expression THEN Literal right-parenthesis
AS parenthesised-expression) OR

(Literal name-token AS make-name);

Thus expression string will either evaluate to a pair tree, rest if an initial segment of string
can be parsed to a tree tree or to nil otherwise.

Although it has been known how to write parsers in functional languages for some
time, I believe that the use of an extensible syntax has a considerable impact on the ease
of writing and comprehensibility of such programmes.

6. Fix

A well-typed version of the fixed-point combinator may be defined as follows:

Type TΘ [T] △

= TΘ [T] → (T → T) → T;
Let Θ △

= ∀T. TΘ [T] θ → (T → T) f → T: f (θ θ f);
Let Fix △

= Θ Θ;

Whereupon Fix has type ∀T. (T → T) → T.

II
Design

The Model

The first programming languages were designed around the computers that they were
used to programme. Later language designs tended to be abstracted away from the ma-
chine, usually with the intention of making programmes portable. Even these languages
were based on an abstract notion of computers, rather than of computation, with the re-
sult that attempts to give them formal semantics have often revealed that their meaning
is obscure. Ashcroft and Wadge [Ashcroft 1982] put forward the view that programming
languages should be built upon a mathematical semantics, rather than the semantics built
for the language. Such an approach is beneficial, but it is important to remember that the
intention is to make the language intelligible—it would solve no problems if one were to
base a language on a formalism that, although thoroughly rigorous, was incomprehensible.

In this chapter I examine the requirements for a formalism on which to base a language.
I will use the term ‘model’ to mean any abstract interpretation that may be placed upon
a formalism. While this includes mathematical models, I do not intend to be that specific:
the only models that people really use are the ones in their minds!

Richard Young [Young 1981] has examined the physical models underlying three
different calculators in conjunction with an exploration of the mental models constructed
by their users. The three mental models may be described as ‘no model’, the ‘simple model’
and the ‘analogy model’. The first was a simple ‘four function’ calculator. This calculator
has a simple but obscure physical model involving some registers. While it was possible
to predict the effect of a sequence of key-strokes from the physical model, it was hard to
use this model to decide what was needed to perform a desired calculation. The result
was that the user could not construct his own model for it, and instead used rote-learned
recipes to perform calculations. The second calculator used ‘reverse-polish’ notation. The
physical model was a stack with some operations, each of which removed elements from
the top of the stack and pushed the answer back. A user of such a calculator could easily
understand this model, and use it to predict the behaviour of the calculator. Unfortunately
it is quite hard to convert the conventional notation for an expression into a sequence of
key presses for the calculator. The last of the calculators examined was ‘algebraic’. In this
case the physical model is very complicated, involving a large number of registers, but the
effect was that the user could operate it by analogy. The physical model was an inexact
implementation of the usual algebraic notation—the user could type in an expression in
its original form. Up to a point.

On the face of it, the last model seems to be the best—the user can understand the
language in terms of a model he already knows. There are disadvantages. The real model
of the calculator allows only a finite number of parentheses. Calculations are performed
to limited precision, so the normal rules for algebraic transformation no longer apply.
Furthermore, the lack of knowledge of the real model makes it difficult to recover from a
mistake; in the case of the reverse Polish calculator, only part of a calculation need be lost.
Most programming languages are a combination of the first and third kind of model. This
causes programmes to be written by a combination of recipes and analogies.

The perfect model for a language would be simple enough that all programmers would

37

38 The Model

have the same idea as to what it meant, and yet comprehensive enough to allow all possible
programmes. I suspect that no such model exists, and so compromise is inevitable. I chose
λ-calculus for Ponder because it is simple, computationally complete and has a pleasing
comprehensibility.

In what follows I examine the requirements for a model in more detail, and present
some alternative models and my reasons for rejecting them.

1. Requirements

1.1. Referential Transparency

An important property of mathematical notation is that the meaning of an expression
does not change with time: if two expressions are equal, they are always equal. This means
that any expression may be substituted for any other equivalent expression. This property
is called referential transparency.

Referential transparency is desirable because it allows subexpressions of a programme
to be understood with the minimum of knowledge about the rest of the programme. In
many languages, the lack of referential transparency means that apparently equal expres-
sions are not equivalent. Although in the programme fragment

If x = 2
Then something ; p (x)
Else . . .,

x is established to be equal to 2, we cannot necessarily substitute p (2) for p (x) because
something may change x.

For a programming language to be referentially transparent there must be no side
effects. In other words, an expression only has a value; whenever it is evaluated the value
is the same. An expression may not cause something to be printed—if something is to
be printed, the environment must be defined in such a way that (part of) the value of a
programme is printed. Similarly there may be no transfers of control.

1.2. Implementability

It would be nice if the model was such that it could be implemented exactly on a real
machine. Unfortunately real machines have finite limitations. I know of no model that
expresses these limitations without becoming excessively complicated. As a compromise,
it is useful to imagine that although real machines have finite speed, they have unbounded
storage. This compromise is not too damaging, as in practice the bound on storage is very
large: one can always add another disc.

Design 39

While a model must be implementable, it is important not to make efficiency a prime
consideration. A requirement of efficiency often means ‘efficiency for a particular architec-
ture’. The rate of development of computer hardware is sufficiently great that what may
have been a tremendously slow process on yesterday’s machine may be a single operation
on tomorrow’s (see next section).

2. Other models

2.1. An Abstract Machine

The underlying model of many programming languages is an ‘abstract machine’. Such
a model is intended to reflect the behaviour of real machines in a direct way. This has
the effect that it is hard for implementations of the language to take advantages of new
developments in hardware. The BCPL abstract machine has a linear store, but many of
today’s machines have paged or tagged memories. The operations on arrays in Fortran are
restricted to those that may readily be applied to simple vectors. Several machines now
have hardware operations on descriptors.

A more serious defect of the abstract machine model is that the language will in-
evitably be implemented for several different machines. In a low-level model such as
BCPL or C, the addressing ability or word size may differ. Even in a high-level abstract
machine such as that of Algol 68 the arithmetic operations may differ in precision. Unless
the programme can specify the precision to which an operation is carried out, the same
programme may produce different results on different machines.

The final objection to this kind of model is that it forces programming to be at a
lower level. The programmer will inevitably consider the way a programme will run.
Programmes will be written so that details such as the layout of store, how a loop fits into
the cache memory or whether to use half- or full-words take precedence over the clarity of
expression.

2.2. Computational Models

A mathematical model of computation is surely a better candidate for a language?
As well as the λ-calculus, there are Markov Algorithms [Markov 1962], Turing machines
[Turing 1937] register machines [Minsky 1967], recursive functions, and the game of Life
[Berlekamp 1982]. All of these have been proved equivalent in expressive power: a pro-
gramme written for a Turing machine may be translated to the notation of any of the
other models and vice versa. Which one is the most appropriate?

Unlike most of the other models, Markov algorithms have been used as the basis of
a programming language: Snobol [Griswold 1968]. In order to make Snobol a usable
language it was necessary to add features that are not directly expressible in Markov
algorithms. In particular it is possible to define new patterns in Snobol, whereas in a
Markov algorithm the pattern would have to be written out each time it was used.

40 The Model

Turing machines, register machines and the game of Life all share this problem. In
essence, what is missing is an abstraction mechanism: the ability to name an algorithm
and express it in terms of its parameters.

The λ-calculus is nothing but an abstraction mechanism.
A common addition to functional programming languages is “pattern matching,” in

which a function is defined on the structure of its parameter. This requires an equality
function on possible arguments, but equality is not computable on λ-expressions. This
would mean that there was only a restricted set of types of argument on which pattern
matching could be performed, which would conflict with the requirement for orthogonality.
Pattern matching functions and syntaxes may of course be defined where necessary, as with
the Is and Case constructs in appendix 2.

3. Non Computational Models

A language could be based on a model that is not computational.

3.1. Logic

Logic is quite an attractive model, because it allows programmes to be written almost
directly as specifications. To write a sort function, it is necessary only to specify that
the result of sorting a list contains the same elements as the original list, but in order.
An implementation of a language that uses logic in this direct manner will need to use a
decision procedure to compute answers. Unfortunately, if a logic is at all expressive, it is
probable that it will not have a complete decision procedure. It will not be possible to
implement with even moderate efficiency.

Prolog [Clocksin 1981] falls into this category. The intended model for Prolog is Horn
clauses [Horn 1951]. The actual model for Prolog is its interpreter. This means that
a Prolog programme looks like a collection of Horn clauses, but behaves differently. In
particular the order in which the terms of a conjunction appear is significant, so that what
seems to be a correct description of the problem may not terminate. It would be possible to
write a Prolog interpreter that produced an answer whenever there was one. The standard
interpreter searches the goal space depth first, but a complete version would have to use
breadth first search. This kind of search requires workspace that grows exponentially with
the depth of the tree. Although I have said that efficiency is not of paramount importance,
I think that it is clear that such an evaluation scheme would be unacceptably costly.

3.2. Grammars

Another candidate for a non-computational basis is the idea of production rules. Van
Wijngaarden has suggested [van Wijngaarden 1981] that 2-level grammars can provide a
basis for language semantics, but again they are not properly implementable, for similar
reasons.

Design 41

4. Examination of λ-calculus

The λ-calculus satisfies all my stated requirements: it is simple, mathematically precise
and (as I will show later) implementable. It could be asked whether applicative order
evaluation would be more appropriate in a programming language. My answer is that
the requirement for simplicity makes normal order semantics essential. For example, the
definition of the conditional (Examples above) would be impossible in an applicative
order language without the introduction of a new primitive.

4.1. Deficiencies

All of the models I have considered are ‘answer orientated’. A computation is assumed
to begin with some data and compute an answer. In practice, the data are not always all
available until the programme has begun to run (consider interactive programmes), and
sometimes one would like the behaviour of a programme to depend on the time between
data items.

The problem of the production of part of an answer before all the data arrives is
largely solved by normal order semantics. In some cases the behaviour of a programme is
not what one would wish (see the chapter Analysis below).

The requirement that a programme may depend on the timing of its input data is
not modelled at all. One approach, taken by Henderson [Darlington 1982] is to add a new
primitive, non-deterministic-merge on top of a λ-calculus model. There are models that
do take time into account (Temporal logic, CCS etc.), but none is as attractively simple or
has been so extensively explored as the λ-calculus. It is possible to deal with this problem
by modifying the environment in which a programme runs, rather than its model.

Two other approaches include the one used in SKIM [Stoye 1984], and the concept
of hiatons [Park 1982], which are objects inserted into the input to indicate the passing of
time. A programme on the SKIM machine consists of a number of ‘tasks’ communicating
via a non-deterministic micro-coded kernel. A task is a pure function, taking a list of
messages from other tasks and returning a list of messages to the kernel. The kernel
decodes the messages and passes them on to the appropriate task. Although I am inclined
to prefer this kind of approach over the use of a different model I have not given the
problem much consideration.

The use of λ-calculus as a model in some ways suffers from the problems caused by
the use of an analogy-model. It is inevitable that a programme will contain expressions
that are meant to reflect operations that are symmetrical in mathematics. For instance,
in mathematics, both false ∧ a = false and a ∧ false = false. No definition of ∧ in the λ-
calculus has precisely this property; if ⊥ stands for a non-terminating computation either
⊥∧ false = ⊥ or false ∧⊥ = ⊥ because ∧ must ‘look at’ one of its arguments first [Scott
1975]. Similar problems will arise in any model, and λ-calculus has no more problems in
this respect than any other.

4.2. Pragmatics

Finally, I shall reconsider the question of the finite limitations of real machines. I

42 The Model

have said that it is reasonable to pretend that the machine has infinite memory. In many
cases it is worthwhile to make the behaviour of a programme depend on how much free
memory is left. The most justifiable case is when a programme cannot perform a required
operation in the remaining amount of memory. It is reasonable to expect the programme
to report this, and go on to tidy up, rather than to ‘crash’ and lose the effect of the work
done so far. The requirement for referential transparency makes it very difficult to take
care of this kind of eventuality; anything that says how much memory is available will vary
with time.

The Type-System

Should a language have a type system at all? Type checking can detect mistaken
applications of functions. A programme that contained an attempt to compute the square
of a banana would be rejected. This is clearly a Good Thing [Sellar 1930], since the
alternative method of detecting a mistake (namely running the programme) can consume
a great deal of time. Indeed there are numerous cases of programmes in which the silly
mistake was not detected until after it was put into service.

It has been argued that type checking itself is unnecessary; the programmer can work
within a type discipline without the compiler checking it. While I accept that this is
feasible for small programmes, and that large programmes can be broken down into small
fragments, it is when the fragments are joined together that most of the type-errors crop
up. Almost all useful programmes are written by more than one programmer: even the
shortest programmes make some use of library subroutines. When someone makes use of
a routine written by someone else it is quite a common mistake to attempt to use it with
the parameters in the wrong order. A type checker reduces the amount of cross checking
that the programmer must do.

1. The Scope of Type Checking

The design of a type-system inevitably involves compromise. At one extreme, a specifi-
cation of a programme can be regarded as a type; type-checking in this regime corresponds
to proof-checking [Martin-Löf 1975]. At the other, types could be restricted to the arities
of functions. The checker would merely have to count numbers of arguments. The for-
mer requires the inclusion of excessive amounts of information in the programme and the
checking algorithm is slow (or even non-existent). The latter would be barely helpful. In
what follows I describe what I regard as the most reasonable interpretation of the idea of
type-checking.

If the purpose of type checking is to detect errors before the programme is run, it is
pointless to call anything that happens in a run a type error. To a certain extent, it is
a matter of choice whether an error is a type error or not. If we regard a function for
computing reciprocals as being from integers to integers, division by zero is a run-time
error. The reciprocal function could be given a type that indicated that its domain does
not include zero—in this case division by zero is prevented by the type system.

This argument can be carried further. To a large extent it is the choice of the program-
mer that determines the degree to which the type-system prevents errors. If the reciprocal
function has a type that prevents it from being applied to zero the programme will always
have to include instructions to test whether an integer is zero before its reciprocal may
be taken. This may be seen as an unbearable imposition. Conversely, if a programme is
dealing with a limited subset of the integers it may be a great deal of help to define them
as a different type to ensure the integrity of the programme. Essentially type checking can

43

44 The Type-System

assure us that no function is ever applied to an object outside its intended domain. The
type-system must allow this freedom of choice.

2. Choosing a Type System

I began my search for a polymorphic type system with the observation that although
strong typing is helpful it has its drawbacks. Strong type-systems prevent useful abstrac-
tions. In a language such as Pascal or Algol 68 it is often necessary to write what is
essentially the same routine more than once. The routine to append lists of integers is
the same as the one for lists of characters in all but type. It would be better if one could
abstract the type of the append function in some way, so that it did not include the type of
the elements of the list. What is required is that the type checker should not prevent the
application of functions to different types of argument when the difference is irrelevant. A
polymorphic type-system allows one to state that the workings of a function do not depend
on every aspect of its parameters.

One kind of polymorphism is found in Russell [Demers 1980] and Poly [Matthews
1982]. A type is regarded as being identified with its set of operators. Thus integer may
be defined as having +,−,×,÷,=, 1 and 0. This would be very useful if there were some
way of deciding whether two operators were the same or not. The limitation is that in
both of these languages an operator is regarded as the same as another if and only if it
has the same symbol. Thus + for concatenating strings is be regarded as the same kind
of operation as the one on integers, for the purposes of checking. A more severe limitation
is that although types may involve expressions, the type checker only considers textual
equivalence. Suppose Array (m,n) generates a type for arrays with lower bound m and
upper bound n; although 2 + 4 = 4 + 2, Array (1, 2 + 4) is regarded as being different from
Array (1, 4 + 2).

The type system of ML (see Background above) seemed more promising, but still had
some undesirable aspects. In ML, polymorphism is expressed in terms of type-variables.
Thus λx.x has type α → α. The arrow is used to indicate the type of functions, and
may be viewed as an alternative to the more common set notation: A → B corresponds

to BA. α is a type-variable, and may take on any type as a value. Thus α → α stands
for the set of types {Int → Int,Bool → Bool, . . .}. My intuitions led me to regard the free
type-variables as a little unpleasant. Indeed the freeness of the type variables makes it
impossible to express the type of function that relies on its argument being polymorphic.
λf.f(3, 4), f(true, false) is not well typed in ML, even though it is clear that it could be
applied to an object of type α× α→ β.

Among the types that cannot be expressed in ML are pairs and unions. This means
that in ML these must be built in, as must their constructor functions. For the purposes
of making the basic language as simple as possible, this is undesirable.

The absence of declarations of type variables has an obvious solution. Type variables
should be declared by quantifiers over type expressions. Now the type of λx.x is ∀α.α→ α.
Happily, this quantification of types also solves the problem of expressive power. The
type of the function indicated above can be expressed simply by using the type of f :

Design 45

∀β.(∀α.α×α→ β)→ β × β. This expresses that the parameter f must be a polymorphic
function taking a pair of arguments and returning a result of type β. We can say that the
declaration of α is local to the parameter type.

Interestingly, this is not the only type that this function has. Another type is (∀α.α×
α → α) → Int × Bool. Neither of these types subsumes the other (see ≥, below). It is
therefore impossible to infer a most general type within this new type system. I do not
regard this as a problem, since I prefer to exchange the convenience of type-inference for
the convenience of overloaded operators, which of themselves preclude inference.

The presence of locally quantified types allows types such as pairs to be expressed,
so the type system need only include → for functions and quantification. This, however
would be clumsy. It is desirable that the programmer should not have to write out the
definition of pairs every time he writes a function that manipulates them. Evidently what
is needed is a means of giving permanent names to types. Naming is not enough to solve
the problem. A pair type involves two other types—the types of the left and right halves
of the pair. The solution is to allow type declarations with parameters, called generators.

The ability to define named types leads to the question of whether they may be
recursive. Experience has shown that the most natural forms of many data-structures are
recursive in type. Examples are lists and trees. It is possible to define a list-like type that
is not recursive (List [T] △

= ∀A. A→ (T→ A→ A)→ A), but a recursive definition is more
natural.

Finally, a desirable facility is to be able to hide certain properties of a type. Although
we may define a type called Colours that has objects called red , green and blue, which are
represented with integers, we do not want to be able to perform operations such as × on
Colours, nor do we want things like 1, 2 and 3 to be counted as Colours. The mechanism
I have adopted for this is similar to abstract types in ML. If a named type is declared to
be a Capsule, and is subsequently sealed, type checking will then be by name equivalence
(as in ML).

2.1. Summary of the Type System

The type-system to which this chain of reasoning brought me closely resembles that
of MacQueen and Sethi [MacQueen 1982, 1984], but has fewer constructors.

Type =

Type→ Type Function type
∀V.Type Quantified type
Generator[Type1, . . . ,Typen] Generated type
V Type variable

Generated types may be sealed.

3. Type Validity

It is reasonably easy to see that an object of type ∀T.T → T may be used anywhere
that an object of type Int → Int or Bool → Bool may be used. In general, objects with

46 The Type-System

types quantified at the outer level may be used in place of objects having the type variable
instantiated. This section defines the relationships between types and gives the type rules
to which Ponder programmes must conform.

The type ∀T.T → T is said to be ‘more general than’ the type Int → Int. An object
of type ∀T.T → T may be used in more circumstances than an object of type Int → Int.
Before I can describe the rules that make sure that a Ponder programme contains no
applications of functions to arguments for which they are insufficiently general, I must
give the rules that define ≥, ‘at least as general as’.

3.1. The Relation of generality between types

Rules R0 to R8 below define the relation ≥. Vn are type variables, Tn are arbitrary
types (possibly with free variables), Gn are generators, Γ stands for a set of assumptions
each of which is of the form T1 ≥ T2 or G[V1, . . . ,V2]

△

= T and ≥ is as above.

Assumption

Γ ∪ {T1 ≥ T2} ⊢ T1 ≥ T2 R0

Reflexivity

Γ ⊢ T ≥ T R1

This means that from any set of assumptions Γ and type T we can deduce that T ≥ T; i.e.
any type is at least as general as itself.

Transitivity

Γ1 ⊢ T1 ≥ T2, Γ2 ⊢ T2 ≥ T3

Γ1 ∪ Γ2 ⊢ T1 ≥ T3

R2

In rules such as this, assumptions are written above the line and conclusions below it. This
rule may be read as ‘If we can prove from Γ1 that T1 ≥ T2 and from Γ2 that T2 ≥ T3,
then we can prove from the union of Γ1 and Γ2 that T1 ≥ T3.’

Instantiation

Γ ⊢ ∀V.T1 ≥ T1[T2/V] R3

(Expressions of the form T1[T2/V] mean “ T1 with every free occurrence of V replaced by
T2.”) An object that works for all types is more general than an instance of it.

Generalisation

Γ ⊢ T1 ≥ T2

Γ ⊢ T1 ≥ ∀V.T2

V not free in T1 or Γ R4

If a type T1 is more general than a type parameterised on V, regardless of the value of V,
then T1 is also more general than the generalised version of that type.

Design 47

Function

Γ1 ⊢ T3 ≥ T1, Γ2 ⊢ T2 ≥ T4

Γ1 ∪ Γ2 ⊢ T1 → T2 ≥ T3 → T4

R5

A function that requires a less general argument is more general. This is explained by the
following analogy. If a person is giving you something you want, the more he gives, the
more generous he is. Conversely, if a person is taking something you owe him, the less he
takes the more generous he is.

Result

Γ ⊢ (∀V.T1 → T2) ≥ T1 → ∀V.T2 V not free in T1 R6

A quantifier that does not appear in the parameter specifier of a function can be moved
to the result.

Recursion

Γ ∪ {G[V1, . . .Vn] △

= T,G[T1, . . .Tn] ≥ T0} ⊢ T[T1, . . . Tn/V1, . . . Vn] ≥ T0

Γ ∪ {G[V1, . . . Vn] △

= T} ⊢ G[T1, . . . Tn] ≥ T0

R7

this rule allows the comparison of recursive types.

Expansion

Γ ∪ {G[V1, . . . Vn] △

= T} ⊢ T[T1, . . . Tn/V1, . . .Vn] ≥ G[T1, . . . Tn] R8

this gives the meaning of definition (the case with the generator on the left hand side of
≥ is covered by R7).

4. Type Validity of Expressions

This section presents the rules to which valid Ponder programmes must conform. In
general a programme will consist of a ‘casted’ expression, the type of which denotes the
environment in which the programme is intended to run. Most programmes will be required
to have type List [File-action] and are therefore treated as if they were preceded by a cast:
the type checker will be given an expression like List [File-action]: programme.

A programme p is type-valid if a statement of the form T : p for some T may be
proved within the following rules.

The notation T : e means that e has the type T, and Γ is a set of assumptions as
before but may also include assumptions of the form T : v.

Variable Assumption

Γ ∪ {T : v} ⊢ T : v V 0

48 The Type-System

Application

Γ1 ⊢ (T1 → T2) : e1, Γ2 ⊢ T1 : e2

Γ1 ∪ Γ2 ⊢ T2 : e1 e2

V 1

Function

Γ ∪ {T1 : v} ⊢ T2 : e

Γ1 ⊢ T1 → T2 : (T1v → e)
where Γ = Γ1 − {T : v |T is a type} V 2

Cast

Γ ⊢ T1 : e

Γ ⊢ T1 : (T1 : e)
V 3

Generalisation

Γ ⊢ T : e

Γ ⊢ ∀V.T : ∀V.e
V not free in Γ V 4

Restriction

Γ1 ⊢ T1 : e, Γ2 ⊢ T1 ≥ T2

Γ1 ∪ Γ2 ⊢ T2 : e
V 5

Apart from overloaded operators, all other constructs may be dealt with by expanding
them out. An overloaded operator is expanded into a function application of the most
recent version of the operator and this application is checked. If the check fails, the next
most recent version is tried, and so on until one is found which works (otherwise the
programme is invalid).

Syntax

The syntax of a programming language is what the reader sees. It is the vehicle by
which the meaning of the programme is transmitted. The ease with which a programme
is understood by the reader is something that is difficult to measure, and difficult to
predict. Without performing extensive psychological tests it is impossible to determine
the best syntax for a given concept. Inevitably I have had to design the syntax of Ponder
without recourse to such tests, but Weinberg’s book [Weinberg 1971] contains some useful
information. Some aspects of the readability of the programme appear to be self evident.
Different constructs should be sufficiently different that they are easily distinguished. The
syntax of Lisp, while being admirably simple suffers greatly from this problem: all Lisp
programmes look much the same. If a notation for the problem exists already, it would
be useful if that notation could be mimicked in the programme. Why should one have to
write

CALL F01CKF (C, A, B, 8, 8, 8, Z, 1, 1, IFAIL)

to multiply two matrices when one would normally use A × B? The syntax should allow
expressions to be concise, without their becoming over dense—a programme should include
names of objects or functions to help the reader, rather than be a sequence of symbols
unrelieved by words.

It would be impossible to include all possible notations as part of a language. If
the syntax is to resemble that of the problem, it is inevitable that new syntaxes must be
defined. The syntax must therefore be extensible to at least some extent.

Previous attempts at extensibility have produced rather unwieldy languages. If the
programmer is allowed to define arbitrary syntaxes the task of parsing a programme be-
comes an exceedingly slow one. Furthermore, a completely flexible syntax includes so many
new ways of making mistakes that it is impossible for the compiler to generate sensible
error messages. To avoid these problems I have placed severe limitations on the way in
which the language may be extended, but attempted to make the extension mechanism
sufficiently powerful to allow the representation of most plausible notations.

The first level of the syntax of a language is lexical syntax: how the string of characters
representing the programme is broken into symbols.

1. Lexical Syntax

To make symbols readily recognisable by both the compiler and the human reader,
they are divided into distinct classes. The kind of a symbol is determined exclusively by
its font. This restriction makes it much easier to construe a sequence of symbols. Without
it, it would be more difficult to see which symbols were operators and which were names.
It makes it easier to learn to recognise certain constructions by eye.

49

50 Syntax

1.1. Names

Names are needed for the parameters of functions and for types. A name must describe
the meaning of the object that it represents. This cannot often be done in one word. If
application is to be represented by juxtaposition (with spaces), spaces clearly cannot be
used to separate the words of a name. Hyphens are used to separate the words in names,
as in long-name.

The names of types are distinguished from the names of variables by the font. A
parameter name is written in italic, operator names and keywords in bold, and types in
sans serif.

Layout has the usual purpose of separating symbols—name name means the same as
name name, but is different from namename.

The remaining classes of symbols are the single character symbols, which are {, },(,),[,],
comma and semicolon, and the ‘special symbols’, which are all the characters that are in
none of the other classes, and are used to form new operators.

2. Language Syntax

2.1. Function Application

In many programming languages, the application of a function (or procedure) is writ-
ten with parentheses round the argument, as in f(x). In Lisp, the parentheses surround
the whole application: (f x). In a functional language, the most common syntactic object
is the application, so either of the above syntaxes would result in programmes containing
large numbers of parentheses. In Ponder, as in λ-calculus, the application of a function f
to an argument g is written f g. Application associates to the left, so f g h means the
same as (f g) h.

2.2. Function Representation

The λ-notation for functions is syntactically already rather clumsy. For the repre-
sentation of functions in this kind of typed language we need to specify the types of the
parameters. The addition of types to λ-notation would result in an ugly syntax.

Functions are represented as Type name → body , which means the same as λname :
Type.body in the notation of the typed λ-calculus, but provides all the information in one
compact form. I chose ‘→’ rather than ‘.’ to separate the parameter from the body, to
reflect the notation for the types of functions.

2.3. Types

The syntax of types is described in the previous chapter. Types may be declared just
as types, or as recursive types, and either of these may be qualified as capsules:

Design 51

Type type-name [parameters] △

= type;
Rectype type-name [. . .] △

= . . . ;
Capsule Type type-name [. . .] △

= . . . ;
Capsule Rectype . . . ;

A capsule must be sealed:

Seal type-name;

2.3.1. Casts

It is sometimes necessary to give the type of an object explicitly, for example in Letrec
declarations (see below). This is written with a cast, which is the type, then a colon and
then the object. This is the opposite way round to the notation commonly used. The
reason for this is that the parameters come before the body of a function with their types.
With casts this way round, the type of a function with a casted body may readily be read
off: Int i→ Int : potentially-large-expression clearly has type Int→ Int.

2.4. Extensibility

As was mentioned in the preliminary part of this chapter, previous attempts at ex-
tensibility have made languages difficult to use.

Algol 68 allows the definition of new infix and prefix operators, so is in a sense exten-
sible. This extensibility is sufficiently restricted that an Algol 68 compiler can still parse
a programme in reasonable time and give comprehensible diagnostics. This prompted me
to have a similarly limited extensibility, but just a little more was needed.

The extension mechanism in Algol 68 was sufficiently limited that most of the basic
constructs had to be built in. This meant that the predefined syntax of Algol 68 was
quite large, and that it was impossible for new constructs to be added. I have found that
the introduction of only one more mechanism allows the definition of analogues of most
syntaxes.

An examination of popular language constructs suggested to me that they could be
divided into two classes: declarations and expressions. Expressions such as ‘If . . .Then
. . .Else . . . ’ can be broken down into infix operators (Then and Else), and a prefix
operator (If). The alternative syntax for conditionals, ‘If Then Else Fi’ cannot be treated
in this way. What is needed is the ability to define new brackets. ‘If Then Else Fi’ is now
just a bracket—If . . .Fi— and two infix operators (see Examples above).

2.4.1. Distfixes

As an alternative to brackets, infixes and prefixes I considered having one more general
mechanism of ‘distfix’ operators, as in HOPE [Burstall 80]. Distfix operators are defined
by means of patterns. This requires that the definition should include indications of where
the arguments are to go, which in turn necessitates the inclusion of their types.

I finally rejected this idea when I realised how complex a mechanism would be needed
to allow the definition of a syntax with optional, repeatable parts such as ‘Elif’ in ‘If Then

52 Syntax

Elif Then . . .Else Fi’. The easiest thing to do is to define Then, Else and Elif as infix
operators after all.

2.4.2. Precedence

The implied grouping of a bracket operator is always obvious. Infix operators are
more ambiguous: a Op1 b Op2 c can be parsed in two ways: (a Op1 b) Op2 c and a Op1

(b Op2 c). The simplest solution is to require that all infix expressions are made explicit
by the inclusion of parentheses. This would defeat the object. It would be unacceptable if
the syntax for a conditional had to be cluttered with parentheses.

The prototype version of Ponder uses a numeric priority mechanism similar to that
of Algol 68, with the addition of an indication of the associativity of the operator. This is
unsatisfactory in a number of ways, and I consider alternatives in the concluding chapters.

2.4.3. Declarations

Bracket and infix operators provide a means to define most expression syntaxes. Dec-
larations are still a problem. A language in which the only means of introduction of new
names was as the parameters of functions would be very tedious to use. As with expres-
sions it would have been preferable to allow the definition of new declarative constructs. A
declaration necessarily involves the manipulation of a name that has not yet been declared
and is of unknown type, and such manipulations are beyond the scope of λ-calculus. I
have been unable to find a simple way of treating this.

In the prototype of Ponder, I have therefore been forced to include a number of pre-
defined declaration mechanisms. There are declarations for each of the syntactic extension
mechanisms. There are declarations for types, and there are declarations for names. As
the simplest kind of declaration I chose the ‘Let’ declaration [Landin 1966].

Let name △

= value;
expression

declares name to have the value value in the expression expression. It is thus equivalent
to

(λname.expression) value.

Worse still, the definition of recursive functions using Let with Fix was so cumbersome
that I was forced to introduce a special Letrec declaration.

Letrec name △

= value; expression

is equivalent to

(λname.expression) (Fix(λname.value))

where Fix △

= ((λy.λf.f (y y f))(λy.λf.f (y y f)))†

In order that the body may be type-checked, it is required that the expression have a
cast—because the type of the expression may depend on itself.

† for a typed version of Fix, see Examples 6

Implementation 53

A further deviation from the rule of simplicity is the simultaneous declaration. Decla-
rations of the form a1, . . . , an

△

= expression (with Let or Letrec) where expression must
have a type T1 × . . . × Tn declare the names a1 . . . an to be the corresponding values
extracted from expression. This constitutes quite a severe breach of the principle of sim-
plicity. The problem of new declarations is discussed further in the concluding chapters.

3. Summary of syntax

Below is an informal summary of the syntax.

expression =

declaration; expression
function-representation
application
infix-application
prefix-application
bracket-application
casted-expression

declaration =

type-declaration
type-seal
type-infix-declaration
infix-declaration
prefix-declaration
bracket-declaration
let-declaration
letrec-declaration

function-representation = Type name → expression

application = expression expression

infix-application = expression op expression

prefix-application = op expression

bracket-application = left-bracket expression right-bracket

casted-expression = type : expression

III
Implementation

Implementing the Model

This chapter is a description of the techniques used in the implementation of the model
of Ponder. The approach adopted combines supercombinators with strictness detection.

1. History

In Background I pointed out that normal order evaluation is preferable to applicative
order because it is guaranteed to find a terminating result, if one exists. Implementations
of Ponder must have normal order semantics.

The most obvious way to implement normal order semantics is to perform the reduc-
tion of the programme in exactly the way that normal order reduction is described. Each
application of a function would involve the substitution of the unevaluated argument value
for the bound variable. Such a reduction scheme is very slow because of the time taken to
locate each instance of the bound variable, and in copying both the body of the function
and each instance of the argument.

A major improvement on this näıve technique is lazy evaluation. Rather than copy
an argument for each instance of the parameter, lazy evaluation takes advantage of the
referential transparency of functional programmes and uses a pointer to the argument.
When any instance of the argument is later evaluated, it is overwritten with its result, so
that all other occurrences benefit from the work done. I call this property (the overwriting
of expressions to achieve single evaluation) ‘laziness’. Lazy evaluation on its own does not
remove the necessity of copying the function as it is applied. Other techniques are needed
for this.

One method is to use ‘closures’ to represent the application of a function to its ar-
guments. A closure consists of a pointer to the function and a vector containing the
arguments. When evaluating the body of the function, the bound variables are looked up
in the vector. An alternative is to use combinators in the manner suggested by Turner
(see Background above). This has the advantage that all variables are removed from
the programme when it is run, removing the need for substitution completely. An early
implementation of Ponder used this technique, but was found to be rather slow. The
inefficiency arises from the small amount of work that was done in each combinator: ex-
periments showed that only 1% of the time was spent reducing combinators; the rest was
spent by the evaluator looking for the next combinator to reduce.

Hughes [Hughes 1982] describes a solution to this problem (see Background again),
which he calls super-combinators. Supercombinators are combinators chosen individually
for the compilation of a particular programme. Rather than transform programmes into
combinations of a small set of pre-defined combinators, Hughes suggested that the compiler
should determine the largest possible combinators for each programme. Lazy evaluation
can only occur when an expression is passed as an argument to a combinator. Lazy
evaluation is only needed when an expression may be evaluated. Supercombinators are an
attempt to pass expressions as arguments only when necessary.

57

58 Implementing the Model

The algorithm developed by Hughes ignores some of the pragmatic properties of eval-
uation, and as a result some expressions are converted to smaller combinators than nec-
essary. This produces a programme that allows for the possibility of the lazy evaluation
of expressions where no useful work can be done. I term the presence of such expressions
‘redundant laziness’. The techniques described below go some way toward alleviating this.

Another applicable technique is programme transformation. I have not used general
programme transformation because the benefits it produces are largely distinct from the
problem of evaluating functional programmes directly—we could advantageously transform
one programme to another, but we need to evaluate the resulting one efficiently too.
Programmes could be transformed into imperative ones, but this then precludes the use
of evaluation techniques that rely on referential transparency.

2. On Not Building Trees

In a combinator evaluator (whether for pre-defined- or super-combinators) unevalu-
ated expressions are generally represented as trees. Each node of such a tree is an ‘ap-
plication cell’ (F, A), which represents the application of a function F to an argument A,
each of which may be either another application cell or an instance of a combinator. A
secondary use of these cells is to record the value of the expression when it is evaluated.

The construction of such a tree necessarily involves the consumption of space that
will have to be released when the application is no longer in use. This necessitates the
use of a heap, together with a garbage collector. The allocation of a new cell takes time
when it occurs, and gives rise to the expectation of more time wasted because of garbage
collections. Another overhead is the time taken to overwrite a cell with its evaluated value;
something that is clearly a waste if the cell is never again examined.

The optimisations below all go towards the elimination of unnecessary tree building.

3. Conditional Expressions

In an expression of the form If a Then b Else c Fi, either b is needed or c is needed
according to the value of a. To evaluate this expression, both b and c would be constructed
as trees in order to instantiate any variables they need, but upon the evaluation of a, one
would be immediately discarded.

Here the type system comes to the rescue. All boolean values have the same type
(∀ T . T → T → T), and so the application of a boolean can be detected by the compiler,
and more sensible code can be generated. The resulting programme will contain code
for the evaluation of a, the value of which will then be tested, and either b or c will be
evaluated. In the compiler this is generalised to all types of the form ∀T.T→ . . .→ T, the
selector functions.

Many functions test conditions, and so this optimisation is very useful.

Implementation 59

4. Improvements to Hughes’ Algorithm

As mentioned above, Hughes’ algorithm divides programmes into combinators that
preserve laziness. Whenever an expression may be lazily evaluated it is ‘lifted out’ as a
parameter to a combinator. Not all expressions can be reduced. Hughes’ algorithm does
not take this into account, and can therefore be improved. I shall describe examples of
this, and the means to avoid it.

4.1. Combinators with Too Few Arguments

In the expression λh.S B h h, S B is free of the parameter h, and therefore is regarded
by Hughes’ algorithm as being a candidate for lazy evaluation, because its value can be
computed regardless of the value of h. This λ-expression would be transformed into the
combinator application α(S B) where α △

= λβ.λh.β h h. This application requires a tree for
S B, and α must form a tree. However, we know from the definition of S that it needs three
arguments before it can do any work. The expression S B h h can be evaluated directly by
calling the subroutine that performs S, with those arguments. We can therefore generate
better code for this if S B is not lifted out.

In the general case, the modification to Hughes’ algorithm is that expressions should
not be lifted out if they consist of a combinator applied to too few arguments. Of course,
each of the arguments of such combinator must be considered for lifting, as they may be
evaluable.

4.2. Recursion

In his paper, Hughes suggests that it may be possible to modify the algorithm to deal
with recursion in a more efficient way. Here I consider such improvements.

Recursion is introduced by use of the Fix combinator. Fix finds a fixed-point of a
function: Fix f △

= f (Fix f). Although Fix may be expressed in terms of λ-calculus (see
Background, above), the use of such a function is not as efficient as possible. A direct
implementation of Fix can reduce Fix f to an application cell like this:

app

↓
f •

which collapses the new Fix f into a pointer to the original. This, together with lazy
evaluation allows the construction of cyclic structures. The evaluation of f can result in a
structure that involves the first argument directly, and this structure will be overwritten
on the original cell.

The Ponder compiler could potentially detect occurrences of versions Fix textually
and replace them with applications of a pre-defined version. It does not do this, because
most applications of Fix are introduced by the compiler itself, for letrec declarations, so
it merely introduces the pre-defined one.

The important property of the pre-defined Fix is that it does not re-compute Fix f
every time. Better results can be achieved if Fix f is replaced by explicit recursion in the

60 Implementing the Model

code for the combinator. If F is a combinator λyf .λarg1.body , we can replace instances
of Fix F with a combinator F ′ recursively defined as in F ′ △

= F F ′. This transformation
preserves laziness because Fix F is a constant—it contains no free variables.

It is often the case that the argument of Fix is not a combinator. This most frequently
occurs for local letrec declarations. If a function is defined recursively and has free variables
a1 . . . an, the resulting combinator expression will be of the form Fix (F a1 . . . an), where
F △

= λa1 . . . an.λyf.body . In this case, the analogous transformation is to replace F with
F ′ △

= λa1 . . . an.F a1 . . . an (F ′ a1 . . . an). This could mean, however, that F ′ a1 . . . an is
evaluated many times, and so laziness would not be preserved.

A subset of this class of transformations is valid. If F is a combinator requiring more
than n + 1 arguments, Fix (F a1 . . . an) can only evaluate to an application of F to too
few arguments, and so no useful work may be done. In such a case, the replacement of F
with F ′ loses no laziness.

4.3. Single Occurrences of Lazy Expressions

If an expression is used exactly once, there is obviously no advantage to be got from
evaluating it lazily. Some such cases can be detected at compile-time. Commonly an
expression that returns a function is immediately applied to another argument. If the
expression is never applied to any other argument, it is effectively used once. For example,
Hughes’ algorithm will convert M △

= λa.λb.a × a + b to M △

= λa.α(a × a) where α △

=
λa2.λb.a2 + b. This transformation is justifiable if M occurs in a programme like this:
(λf.f 3+ f 4)(M 8), because M 8 involves a computation of 8× 8 that would be repeated
if not bound to a parameter. Conversely, if all the applications of M are to two arguments,
no benefit can be had from the binding, and the overhead of remembering a× a is wasted.

The algorithm to deal with this may be approximately summarised as “count the
number of arguments given to each λ-expression, and take this information into account
when extracting the combinators”. There is more to it than this. If M is as before, and
occurs in N △

= λa.λb.1 + M a b and nowhere else, M would be seen as always having two
arguments. If N occurs with one argument, M a will be lifted out of N when extraction
occurs, invalidating the information about M . The correct solution is analogous to the use
of ‘levels’ in the original algorithm. In the original algorithm, the level of a bound variable
increases by one for each λ binding. In the modified algorithm the level increases by one
up to the point where all applications have at least that number of arguments at the same
level.

With M as before, if the only applications of M have two arguments, both a and b
have the same level. If M and N both occur, the level of the parameters of M depends on
those of N .

Unfortunately this optimisation can only be applied when all occurrences of a function
have been found, so it precludes separate compilation.

Implementation 61

5. Compile Time Reduction

In traditional compilers, constant expressions are ‘folded’. An expression such as 2+2
is replaced by an evaluated version (4). An analogous concept for functional languages is
the reduction of certain combinators at compile time.

If an expression is to be reduced at compile time, it must be certain to terminate,
because otherwise the compilation may not terminate. Laziness must also be preserved.
Furthermore, the reduction must not result in significant growth in the size of compiled
code. The requirement for termination can be met by restricting the class of combinators
that may be applied, and laziness is preserved by more restrictions. The requirement about
code growth is harder to quantify.

Laziness is only lost if an evaluable expression is duplicated. Thus an application
may not be applied if an evaluable expression is bound to a parameter that occurs more
than once in the body of the candidate function. For termination, a sufficient restriction
is that an argument must either be a parameter to an outer function or the corresponding
parameter must occur in the body less than twice.

6. Applicative Order Evaluation

The overheads of normal order evaluation are significantly greater than those for
applicative order. If an argument is evaluated before a function call, there is no need to
build a tree to represent it in an unevaluated form. If applicative order can be used without
changing the meaning of the programme, it clearly should be.

Mycroft [Mycroft 1981] describes an algorithm to detect whether a function is ‘strict
on’ any of its parameters. A function is strict on a parameter if, when it is passed a
non terminating argument for that parameter, it will not terminate. More directly, it is
strict on a parameter if all applications of the function will result in the evaluation of the
corresponding argument. The Ponder compiler uses a modified version of this algorithm
to determine when applicative order evaluation may be used.

Wray [Wray 1984] implemented the algorithm for Ponder and included some im-
provements to do with the passing of functions as arguments. If a parameter is used as a
function, the application must always be built as a tree because it is impossible to deter-
mine in advance whether the argument is going to be a combinator or not. In such cases
there is no advantage in forcing the evaluation of the argument.

7. Optimisations at the Machine Code Level

The combinators are compiled into a simple abstract machine code (see Appendix
1). Although obvious benefits would accrue from the use of peephole optimisation, the
techniques are already well understood, so none have been included. A version of the
Ponder compiler has been constructed for the IBM 3081 that does do register optimisation
[Tillotson 1984], resulting in code that runs about five times faster.

62 Implementing the Model

One significant machine level optimisation is the removal of tail recursion. Since func-
tional programming relies heavily on recursion, the consumption of stack in tail recursive
functions is undesirable. The code-generator includes a very simple tail recursion removal
mechanism in which the entire stack frame is moved back along the stack at tail recursive
calls.

8. Performance Comparisons

This section presents measurements of the performance of the system. For bench-
marking, I have used the two functions nfib and tak , and a programme to sort numbers.
Peter Henderson suggested nfib as a benchmark because its value is the number of calls
that it takes to evaluate, so nfib n divided by the time taken for nfib n is a number of calls
per second and tak has been popularly used as a benchmark for Lisp.

Letrec nfib △

= Int n → Int:
If n ≤ 1
Then 1
Else 1 + nfib (n − 1) + nfib (n − 2)
Fi

Letrec tak △

= Int x → Int y → Int z → Int:
If not (y < x)
Then z
Else tak (tak (x − 1) y z)

(tak (y − 1) z x)
(tak (z − 1) x y)

Fi

Let get-median △

= List [Int] l →
If l Is Int m, List [Int] rest
→ opt-in (filter (< m) rest ,

(m:: filter (= m) rest),
filter (> m) rest)

Else nil
Fi;

Letrec quick-sort △

= List [Int] l → List [Int]:
If get-median l Is List [Int] l , List [Int] m, List [Int] r
→ quick-sort l @ m @ quick-sort r
Else nil
Fi;

Implementation 63

For the timings, quick-sort was applied to a list of 41 random numbers. The following
timings were obtained on a Cambridge 8MHz 68000 system.

Optimisation time for time for time for

Mycroft Improve quicksort tak 18 12 6 nfib 20 nfib calls/s
6.88s 157.5s 12.69s 1700

on 6.80s 130.5s 12.69s 1700
on 3.36s 36.6s 8.79s 2500

on on 2.94s 7.4s 3.02s 7250

An ‘on’ in the column ‘Mycroft’ means that strictness detection was performed for
those tests, an on in the ‘Improve’ column means that the improved version of Hughes’
algorithm was used.

For comparison with more conventional languages on the 68000, tak 18 12 6 takes
9.26s in compiled Cambridge Lisp and nfib written in compiled Cambridge Lisp runs at
7400 calls/s, in BCPL at 14 000 and in Algol 68C at 30 000.

Notice the interaction between the two sets of optimisations. Without the improve-
ments to Hughes’ algorithm, Mycroft’s makes relatively little difference. The reason is that
the unimproved Hughes’ algorithm produces small combinators with function arguments,
which prevent the strictness detection from having any effect. In the case of quicksort, the
strictness detection is ineffective even with the improved abstraction algorithm. Mycroft’s
algorithm does not have any means of dealing with programmes that manipulate lists, so
all the arguments to list constructing operations are evaluated lazily.

The Type Checking Algorithm

This chapter describes an algorithm that checks whether a Ponder programme con-
forms to the rules laid out in section 3 of The Type-System above. The type checker is
presented as a function type-check, which is defined recursively on the structure of Ponder
programmes. For simplicity, the mechanism to deal with recursive types is presented sepa-
rately. Without recursive types, all generators except capsules may be replaced with their
expansions, so the case analyses of types are written under the assumption that this has
been done. Capsules with no parameters may be treated as if bound by ∀. In comparisons
involving capsules with parameters, the generator names are first compared for equality
and only if they are equal are then expanded out.

In what follows, things represented by V are type variables, T are arbitrary types and
e are Ponder expressions. Whenever ∀V.T occurs, it is assumed that V is distinct from all
other variables encountered (in practice this is implemented by renaming).

1. type-check

The type checker type-check takes a triple (A, τ , e) where e is a Ponder expression, A
is a set of assumptions about type variables and τ is a set of typings of the form T : e.
Each element of A is one of
• Fixed V,
• T ≥ V,
• V ≥ T.

The result of type-check (A, τ , e) is a pair (A′,T) where T represents the type of
e under the new assumptions A′, if e is valid, and Fail otherwise. In other words,
type-check (A, τ , e) = (A′,T) implies that A′ ∪ τ ⊢ T : e.

The type checker requires two subsidiary functions valid , and ≥ ; valid checks a set
of constraints and either returns the same set of constraints or fails, and T1 ≥ T2 is the
set of assumptions needed to show that T1 ≥ T2.

The definition of type-check is given as a case analysis of possible expressions, together
with a short description of the idea underlying each particular case.

Variables
The type of a variable is given by its environment:

type-check (A, τ , v) = (A,T), if (T : v) ∈ τ ; otherwise Fail

64

Implementation 65

Application
To check an application, check the function and argument, and then calculate the

result type:

type-check (A, τ , e1 e2) = (valid (A1 ∪A2 ∪ T1 ≥ (T2 → Vr)),Vr),

where (A1,T1) = type-check (A, τ , e1)

and (A2,T2) = type-check (A, τ , e2)

and Vr is not free in A1, A2, T1, T2 or τ
Function

Type-check the body of the function given that the parameter has the stated type;
the result type is a function from the parameter type to the type of the body:

type-check (A, τ ,Tvv → e) = (A′,Tv → Te),

where (A′,Te) = type-check (A, τ ∪ {Tv : v}, e)
Casts

The type of a cast expression is the type given in the cast, but we must check to see
that the type of the expression ≥ that type:

type-check (A, τ ,T : e) = (A2,T), where A2 = valid (A1 ∪ (T1 ≥ T))

where (A1,T1) = type-check (A, τ , e)
Quantified Expressions

The body of a quantified expression is checked given that the type variable is fixed:

type-check (A, τ ,∀V.e) = (A′ − {Fixed V},∀V.Te),

where (A′,Te) = type-check (A ∪ {Fixed V}, τ , e)

1.1. ≥

≥ is an infix operation between two types. T1 ≥ T2 is a set of assumptions A, such
that A ⊢ T1 ≥ T2. The assumptions may not be consistent; see valid below.

The following rewriting rules define ≥ case by case (a ⇒ b, c means reduce a to b,
otherwise try c):

V ≥ ∀V1.T ⇒ {V ≥ T, Fixed V1}, C0

V ≥ T ⇒ {V ≥ T}, C1

∀V.T1 ≥ T2 ⇒ T1 ≥ T2, C2

This corresponds to R3

T1 → T2 ≥ V ⇒ {T1 → T2 ≥ V}, C3

T1 → T2 ≥ ∀V.T3 ⇒ (T1 → T2 ≥ T3) ∪ {Fixed V}, C4

the ‘Fixed’ represents the fact that V must be free in T3 as in R4

66 The Type Checking Algorithm

T1 → T2 ≥ T3 → T4 ⇒ (T3 ≥ T1) ∪ (T2 ≥ T4) C5

2. Checking Assumption Sets

I now give the rules for valid ; valid first forms the closure of the assumption set and
then checks it for consistency. A is a set of assumptions as for type-check, and ∨ is defined
below.

valid = check (closure A) S1

where closure A is the least set C such that

A ⊆ C S2

{T1 ≥ V,V ≥ T2} ⊆ C =⇒ T1 ≥ T2 ⊆ C S3

{T1 ≥ V,T2 ≥ V} ⊆ C =⇒ T1 ∨ T2 ⊆ C S4

Here =⇒ stands for logical implication. For non-recursive types this set is clearly finite,
because all types introduced to C are subtypes of types in A. This permits an algorithmic
implementation, but care must be taken not to compute the same comparisons repeatedly.
The easiest solution to this is to use the same memory mechanism as for recursive types
(see 4 below).

check A = Fail, if {Fixed V,T ≥ V} ⊆ A S5

Fail, if {Fixed V,V ≥ T} ⊆ A S6

A Otherwise S7

In S5 and S6 T is understood to be distinct from V.

2.1. ∨

This operation is reminiscent of unification [Robinson 1965]. T1 ∨ T2 is the set of
restrictions on variables in T1 and T2 needed to show that there is a T3 such that T1 ≥ T3

and T2 ≥ T3.

V ∨ T ⇒ (V ≥ T) ∪ (T ≥ V), U1

∀V.T1 ∨ T2 ⇒ T1 ∨ T2, U2

T1 → T2 ∨ V ⇒ (T1 → T2 ≥ V) ∪ (V ≥ T1 → T2), U3

T1 → T2 ∨ ∀V.T3 ⇒ T1 → T2 ∨ T3, U4

T1 → T2 ∨ T3 → T4 ⇒ T2 ∨ T4 U5

Implementation 67

Notice that in U5 no account is taken of T1 or T3 because the type (∀V.V)→ T is always
less general than both T1 → T and T3 → T.

3. Examples

If f and x have been declared with types (Int → Int) → Bool and (∀V.V → V)
respectively (where Bool and Int are capsules), then type-check ({}, {(Int → Int) → Bool :
f, (∀V.V→ V) : x}, f x) results in checking f and x, which in turn results in

(valid ((Int→ Int)→ Bool ≥ (∀V.V→ V)→ Vr),Vr)

taking
(Int→ Int)→ Bool ≥ (∀V.V→ V)→ Vr

we get
((∀V.V→ V) ≥ Int→ Int) ∪ (Bool ≥ Vr) By C5

(∀V.V→ V ≥ Int→ Int) ∪ {Bool ≥ Vr} By C1

((V→ V) ≥ (Int→ Int)) ∪ {Bool ≥ Vr} By C2

(Int ≥ V) ∪ (V ≥ Int) ∪ {Bool ≥ Vr} By C5

{Bool ≥ Vr,V ≥ Int, Int ≥ V} By C1 (twice)

valid checks Int ≥ Int (which is true), so the answer is

({Bool ≥ Vr,V ≥ Int, Int ≥ V},Vr)

Which means that f x has type Vr, provided that Bool ≥ Vr.

Suppose that the argument and parameter types had been the other way round. The
initial tests would follow the same course, but

(∀V.V→ V)→ Bool ≥ (Int→ Int)→ Vr

would reduce like this:

(Int→ Int ≥ ∀V.V→ V) ∪ Bool ≥ Vr By C5

(Int→ Int ≥ ∀V.V→ V) ∪ {Bool ≥ Vr} By C1

(Int→ Int ≥ V→ V) ∪ {Bool ≥ Vr,V Fixed} By C4

(V ≥ Int) ∪ (Int ≥ V) ∪ {Bool ≥ Vr,V Fixed} By C5

{Bool ≥ Vr,V Fixed, Int ≥ V,V ≥ Int}

but this time valid would produce Fail (By S5).

68 The Type Checking Algorithm

4. Recursive generators

In the absence of recursive type generators it is clear that rules C1–5 will produce a
finite set of assumptions, since each rule involves a reduction in size of the comparands.
Recursive generators have the effect that types are no longer finite, and so recursion on
their structure may not terminate. The restrictions Ponder imposes on recursive generators
ensure that the expansions of recursive calls to type generators are equivalent to the original
application;

G[V1, . . . ,Vn] △

= . . . G
⇑

[V1, . . . ,Vn] . . .

so the application of G marked with ⇑ will be equivalent to the initial application of G.
Since the texts of recursive generators are finite, it is clear that any infinite series of

comparisons that could arise must be a cycle. Hence I believe that it suffices to introduce
a memory into the algorithm, and not perform any comparison twice (the assumptions
generated must be equivalent to some that have occurred already).

This same mechanism is used in check to avoid checking the same thing twice.

5. Optimisations

The description of the algorithm above is simplified. In fact, it is desirable that a type
error should be detected as soon as possible (the overloading mechanism of Ponder relies
on type-checks that fail).

A number of optimisations to the algorithm are therefore desirable. Instead of comput-
ing the sets of assumptions and then checking for consistency at the end it is useful to pass
the set as computed so far to succeeding comparisons, and use a special function to insert
new elements in the set. This means that inconsistencies of the form {V ≤ T,V Fixed} are
discovered immediately, and the comparison may stop. To speed the process of insertion,
it is useful to sort the assumptions by variable, and to duplicate cases where two variables
are compared, so that the relationship is keyed by both variables.

A further optimisation arises from the observation that it is not necessary to perform
an expansion when comparing type generators that are the same. A more efficient approach
is to compare only the arguments of the two generators. However, it is necessary to
pre-calculate the directions that comparisons will take. For example if F [A, B] △

= A →
B, then for F [A1, B1] ≥ F [A2, B2] we need B1 ≥ B2, but A2 ≥ A1. In a comparison
G[T1L, . . .TnL] ≥ G[T1R, . . . TnR], each TiL will be compared with the corresponding
parameter TiR, either by TiL ≥ TiR, or by TiR ≥ TiL or both. It is a simple matter to
pass over the definition of a generator and classify each parameter according to which way
it will be compared.

IV
Conclusions

Analysis

The work on Ponder has led to number of solutions to old problems, but inevitably
has uncovered new ones. Here I analyse some of the flaws in Ponder and suggest possible
avenues of research that might lead to solutions.

1. The Conceptual Model

The λ-calculus has some inherent peculiarities.

1.1. Interaction

Interactive programmes are still rather difficult to write. If a programme reads lines
from the terminal, it must send out the reflections of the characters typed before it “reads”
from the line. In a language with normal order semantics this all works correctly, because
answers (the reflected characters) are computed as soon as it is possible.

Unfortunately, the same mechanism can cause answers to come out before they are
wanted. Suppose the programme in question is manipulating graphics at the terminal
and movement information on the input is represented by sequences of characters. Such a
programme should not reflect the characters it receives because it must translate them into
graphics operations. If a command is of the form ‘start move: point to source; point to
destination’, and the resulting operation is to be ‘remove at source; re-draw at destination’,
it is quite likely that the ‘remove at source’ will be performed as soon as the ‘point to source’
has been received. What is wanted is that the ‘remove ... re-draw’ sequence does not start
until the destination is received.

1.2. Efficiency

A consequence of the implementation technique is that functions passed as arguments
will always be built into trees. One alternative would be to introduce a new instruction to
the abstract machine, which applied the function to a number of arguments, but this would
often still require tree-building. There is a possibility that the strictness transforming
properties of higher order functions can be detected. If C △

= λf.λg.λh.f h g, C F is strict
on its arguments if F is. Wray has been working on this [Wray 1984].

Another source of inefficiency is that the list constructor operation is lazy on both
its arguments. In practice, if the constructor is ever called, one of the arguments will be
evaluated. Is it possible to detect that a particular list object has the property that if any
cell is looked at, its left hand side is also looked at? If such lists can be detected, they
could be constructed with an operator that is strict on its first argument.

A common behaviour in programmes is that one function produces a list while another
consumes it. In the present implementation the first function will use a cell from the
heap and the second will discard it. Wadler [Wadler 1984] describes an implementation

71

72 Analysis

technique that avoids this problem, but which only works on a certain class of programmes.
Is there an algorithm that detects only some cases, in a manner analogous to the strictness
detection algorithm?

At present only half of the information that Mycroft’s strictness algorithm can produce
is used. As well as the detection of strict arguments, the algorithm can detect expressions
that necessarily terminate. This is potentially useful because such expressions can be
evaluated in applicative order. The present Ponder compiler does not do this because a
function that necessarily terminates does not necessarily take a short time. Consider

(Bool safe → Int x → If safe
Then x
Else 0
Fi) false (factorial 100 000 000)

Although it may be possible to prove that factorial 100 000 000 terminates, it is not nec-
essarily a good idea to evaluate it!

Again an imprecise algorithm would help. Perhaps all that is needed is an estimate
of the time taken to construct the tree of the expression and of the number of reductions
likely in its evaluation.

2. Types

2.1. Type Syntaxes

An objection against Ponder types is that there are no record types or discriminated
unions. I believe that this is really a problem with syntax. At present, ‘records’ may
be defined by use of pairs and operators. The distraction is that for every new record
type one must define all of the field selectors and update functions. Union types have a
similar property. I suspect that a sufficiently sophisticated answer to the module problem
mentioned below would also solve this.

2.2. Capsules

When a capsule is sealed, it ceases to have any relationship with any other type. If
we have the definitions

Type True △

= ∀T1,T2.T1 → T2 → T1

Type Bool △

= ∀T.T→ T→ T

Type Positive-integer △

= True × Natural

Type Integer △

= Bool × Natural

then all Positive-integers are Integers, i.e. Positive-integer ≥ Integer (The Bool is for the sign
of the number; True is a type containing only true, indicating a positive sign). If any of

Conclusions 73

these types are sealed, the relationship is lost. It might be useful to allow the programmer
to specify that certain relationships are to be retained even after sealing.

2.3. Coercions

One solution to the previous problem is to allow the programmer to specify coercions.
A coercion is a function that transforms an object of one type to another, but which can
be inserted automatically by the compiler. Mitchell [Mitchell 1982] describes a method
for doing this in Milner’s type system. I suspect that it would be rather more complicated
to do this in the presence of overloading. Even if it can be done, is it possible for the
compiler to create a coercion function from List [T1] to List [T2] given only a function from
T1 → T2?

2.4. Overloading

The mechanism for overloading operators in Ponder is useful. It allows one to use the
same symbol for the addition of integers, rationals and reals. Arbitrary function names
cannot be overloaded, so the meaning of an expression (with regard to overloading) is
always unambiguous. This does mean that to gather a function down a list it must be
named explicitly: the infix operator cannot be used.

The overloading mechanism in HOPE is more promising at first sight. All function
symbols may be overloaded, and resolution of overloading depends on the whole expression,
rather than just the arguments of the overloaded function. For instance gather plus 0 is
a function that adds together the members of an integer list. HOPE does not allow
overloading to be inherited. Thus gather plus is not an overloaded function; it must
be applied to an argument before the ambiguity can be resolved. This means that one
cannot declare an overloaded object by using overloaded parts. In turn, this means that
abstraction is restricted: Let sum △

= gather plus; sum 0 is not equivalent to gather plus 0.
A partial solution would be to provide some concise notation that restricted the type

of the operator.

2.5. Undefinable Objects

The type-system is closely linked with the λ-calculus. Although I have not defined a
semantic model of the type system, it is easy to prove certain properties of some types.
For example, there are no useful functions of type ∀T. T → T → Bool. Intuitively this
is because in the body of such a function, T is fixed, so there are no non-polymorphic
operations that can be applied to either of the arguments. The only way the function can
return a Bool is always to return true, always return false or never return at all.

2.6. A Mathematical Model

Although I have defined the Ponder type-system rigorously, I have not provided a
semantic model for it. While such a model would be worthwhile, I have not the necessary

74 Analysis

mathematical background to do this; it should not be a difficult task for anyone experienced
in this area.

3. Syntax

3.1. Priority Mechanism

I feel that the current method of specifying the relative binding powers of infix oper-
ators is inadequate:
• It is impossible to specify the relationship between a new operator an old one without

knowing the number associated with it.
• It is impossible to specify a relationship between an infix operator and a built in

construct.
• It is impossible to have a pair of operators for which no relationship is specified.

In particular, the first two make it impossible to get the most desirable scope rules for
clauses like If . . . Fi, because the semicolon in a Let declaration binds less tightly than
all operators except priority nine. In

If Let i △

= 1;
i = 1

Then e1

Else e2

Fi

it would make sense for the scope of i to include both e1 and e2. At present, the priority
of Then is such that a declaration like this is only in scope for the boolean part of the
clause.

The solution may be to treat semicolon etc. as infix operators for the purposes of
defining precedence, and to have a precedence declaration that relates operators with
other operators rather than with numbers. For example

Precedence [× / + −];
Precedence [; Then Else];

Which gives the relative precedences of the mathematical operators, and then the relation-
ship between semicolon, Then and Else. This solution has several drawbacks. The order
of operators within the brackets is ambiguous: which is the most tightly binding? There
is no obvious way to include the direction of association of the operators. There is still no
means of leaving the relationship between two operators unspecified.

3.2. Definitions

The Let and Letrec declarations are somewhat ad-hoc. It could be argued that a
Where declaration would be just as good, or perhaps better. The pre-defined use of
commas to unpick declarations with pairs is arbitrary: this pre-definition requires the

Conclusions 75

definition of pairs to be fixed, and there is no way of introducing similar declarations for
new constructors.

I feel that what is lacking is a means by which the programmer can introduce new
declaration mechanisms. For instance, the familiar

∑n

i=0
notation introduces i as a variable

and so cannot be defined for Ponder. The trouble with declarations is that they manipulate
unbound variables—how can this be done safely, and where does the type of the variable
come from?

3.3. Parameterised Modules

At present the only parameter passing mechanism is for functions. It would often
be useful to parameterise a whole package. For example, a floating point package can
only work to a limited precision, but there is no a priori reason for choosing a limit. It
would be possible to write the package in such a way that the precision had to be specified
at each operation. This would sometimes be useful, but on the whole would be terribly
cumbersome.

I include this problem under the heading of syntax because I believe that the problem
is mainly syntactic. The module could even now be written as a function that, when given
a limit for precision, returned all the floating point functions as a tuple. This is a poor
solution. The user of such a package would have to write new definitions for all the types
and operators.

What is needed is a parameterised module mechanism, which primarily allows the
export of definitions of operators and so-on. Such a facility must be simple, and not give
rise to confusion. The hardest thing seems to be to justify the assertion that modules are
not first-class objects. Modules clearly cannot be first-class, because if passed as arguments
to functions, they would give rise to dynamic binding properties.

The type system in Poly [Matthews 1982] goes some way towards solving this prob-
lem. Because a type is identified with its operators, the instantiation of a precision into a
floating-point package effectively results in the declaration of a new set of operators. Un-
fortunately the use of operators is not as simple as one would hope. Either every instance
of an operator must be labelled with the type from which it is to be drawn, or the operators
must be declared separately from the type (leaving us with the original objection).

While on the subject of Modules it is perhaps worth mentioning separate compilation.
The reason I have not provided a separate compilation mechanism as part of the language
is that I believe it to be an extra-lingual feature. Separate compilation is only needed to
save time when compiling a programme—even if a programme was compiled from three
different files it should still be understood as one programme. Indeed, there is no reason
why Ponder should be compiled ‘in batch’—separate compilation is redundant if the user
sees the Ponder system as a repository for functions. The requirement for separation into
modules within a programme should not be confused with separation for compilation.

3.4. Icons

The types Int, Char and String are only built in because of the need for icons for them.
It is not necessary to build them in because of communication with the outside world—all

76 Analysis

that is needed is a mechanism by which the compiler and the run-time-system agree how
to construct and take apart lists. Characters could just be names for objects declared in
the standard prelude.

It would be nice if the language didn’t need all of the different kinds of icon, though.
I considered the possibility of using a conversion function on strings to provide integer
icons. The difficulty is that an error such as decimal “12B” would not be detected until
the programme was run. Is it feasible to arrange that characters are collected into groups
with different types, all of which are coercible (see above) to Character? Thus “128” would
have type Digits whereas “12B” would have type Letters-and-digits.

Despite this mechanism the notation for numbers would still be cumbersome: a slight
improvement would be to declare # as a prefix operator for the function decimal , but even
so # “128” is uglier than 128. This is quite a strong argument for integer icons, but the
new mechanism would be useful in other circumstances, for example when dealing with
hexadecimal constants.

Summary

I have demonstrated that in many cases a more powerful, smaller system is preferable
to a less powerful but larger one. In particular the addition of two constructs to the
ML type-discipline removes the need for many others and results in a more expressive
system. I believe that I have demonstrated that minimal languages are not just theoretical
curiosities; a spreadsheet system has been written by Stuart Wray in about 2500 lines of
Ponder.

The application of this approach to syntax has been somewhat less successful. Con-
structs such as if- and case- clauses may be defined, but the resulting syntax is sometimes
less elegant than would be possible in a built-in version. For example the case-clause for
unions requires the type of the object to be specified for every case, even though it is
implicitly known already.

The use of a simple model for the semantics of the language is successful in that
it allows powerful tools to be built, particularly in conjunction with the syntax-defining
mechanism. The implementation of the model still leaves much to be desired. A ran-
domly chosen Ponder programme may be more than ten times slower than its imperative
counterpart.

77

Bibliography

[Ashcroft 1982]:
E.A. Ashcroft, W.W. Wadge,
Px for Semantics,
ACM Transactions on Programming Languages and Systems Number 4, 1982

[Backus 1978]:
J. Backus,
Can Programming be Liberated from the von Neumann Style?,
Communications of the Association for Computing Machinery Volume 21 Number 8

[Barendregt 1980]:
H.P. Barendregt,
The λ-calculus, its Syntax and Semantics,
North Holland

[Berlekamp 1982]:
E.R. Berlekamp, J.H. Conway and R.K. Guy,
Winning Ways Volume 2: Games in Particular,
Academic Press

[Burstall 1977]:
R.M. Burstall, J. Darlington,
A transformation System for Developing Recursive Programs,
Journal of the ACM 24

[Burstall 1980]:
R.M. Burstall, D.B. Macqueen, D.T. Sanella,
Hope: An Experimental Applicative Language,
Edinburgh Department of Computer Science Technical Report CSR 62-80

[Church 1941]:
Alonzo Church,
The Calculi of Lambda-Conversion,
Princeton University Press

[Clarke 1980]:
T.J.W. Clarke, P.J.S. Gladstone, P.D. Maclain, A.C. Norman,
SKIM—The S, K, I Reduction Machine,
Proceedings of the ACM Lisp Conference 1980

78

79

[Clocksin 1981]:
W.F. Clocksin and C.S. Mellish,
Programming in Prolog,
Springer Verlag

[Curry 1958]:
H.B. Curry and R. Feys,
Combinatory Logic,
North Holland, Amsterdam

[Darlington 1981]:
J. Darlington, M. Reeve,
Alice—A Multiprocessor Reduction Machine for the Parallel Evaluation of Applicative
Languages,
Proceedings of the ACM Conference on Functional Programming Languages and Com-
puter Architecture, New Hampshire 1981

[Darlington 1982]:
J. Darlington, P. Henderson and D. Turner (editors),
Functional Programming and its Applications,
Cambridge University Press

[Darlington 1983]:
J. Darlington,
Program Transformation in the Alice Project,
Department of Computing, Imperial College London, November 1983

[Davis 1965]:
Martin Davis (Editor),
The Undecidable,
Raven Press

[Demers 1980]:
A.J. Demers, J.E. Donahue,
Data Types, Parameters and Type Checking,
Proceedings of the 7th Symposium on the Principles of Programming Languages, ACM
January 1980

[Frege 1960]:
Gottlob Frege,
Function and Concept,
In [Geach 1960]

80 Bibliography

[Geach 1960]:
D. Geach and R.W. Black,
Translations from the Philosophical writings of Gottlob Frege,
Oxford University Press

[Gordon 1979]:
M.J.C. Gordon, R. Milner, C.P. Wadsworth,
Edinburgh LCF,
Springer Lecture notes in Computer Science Number 78, Springer Verlag

[Griswold 1968]:
R.E. Griswold, J.F. Poage and I.P. Polonsky,
The Snobol4 Programming Language,
Prentice Hall

[Henderson 1976]:
P. Henderson, J.H. Morris,
A Lazy Evaluator,
Conference Record of the Third Annual ACM Symposium on Principles of Program-
ming Languages, January 1976

[Horn 1951]:
A. Horn,
On Sentences which are True of Direct Unions of Algebras,
Journal of Symbolic Logic 16, March 1951

[Hughes 1982]:
R.J.M. Hughes,
Graph Reduction with Super-combinators,
Oxford University Programming Research Group Technical Monograph PRG-28

[Johnsson 1984]:
T. Johnsson,
Efficient Compilation of Lazy Evaluation,
Proceedings of the 1984 Symposium on Compiler Construction, Montreal

[Landin 1966]:
P.J. Landin,
The Next 700 Programming Languages,
Communications of the ACM, Volume 9 Number 3, March 1966

81

[MacQueen 1982]:
D.B. MacQueen and Ravi Sethi,
A Semantic Model of Types for Applicative Languages,
Symposium on Lisp and Functional Programming, ACM

[MacQueen 1984]:
D.B. MacQueen, Ravi Sethi and G. Plotkin,
An Ideal Model for Recursive Polymorphic Types,
Eleventh Annual ACM Symposium on the Principles of Programming Languages

[Magó 1980]:
G.A. Magó,
A Network of Processors to Execute Reduction Languages,
International Journal of Computer and Information Science, Volume 8 Numbers 5 &
6

[Markov 1962]:
A.A. Markov,
Theory of Algorithms,
Israel Program for Scientific Translations, Jerusalem

[Martin-Löf 1975]:
Per Martin-Löf,
Intuitionistic Type-Theory,
Logic Colloquium 1973, Rose and Shepherdson (Editors), North Holland

[Matthews 1982]:
D.C.J. Matthews,
Introduction to Poly,
Cambridge University Computer Laboratory Technical Report Number 29

[Milner 1978]:
R. Milner,
A Theory of Polymorphism in Programming,
Journal of Computer and Systems Science Number 17

[Minsky 1967]:
M. Minsky,
Computation: Finite and Infinite Machines,
Prentice Hall

82 Bibliography

[Mitchell 1982]:
J.C. Mitchell,
Coercion and Type Inference,
ACM Symposium on Lisp and Functional Programming

[Mycroft 1981]:
A. Mycroft,
The Theory and Practice of Transforming Call by Need Into Call by Value,
4th International Symposium on Programming, Springer Lecture Notes in Computer
Science 83, Springer Verlag

[OANAR 1949]:
United States Office of Naval Research
The EDSAC Computing Machine, Cambridge University,
Technical Report OANAR-43-49

[Park 1982]:
D. Park,
The Fairness Problem and Determinism in Computing Networks,
Proceedings of the 4th Advanced Conference on the Theory of Computer Science,
Mathematisch Centrum, Amsterdam

[Robinson 1965]:
J.A. Robinson,
A Machine Orientated Logic Based on the Resolution Principle,
Journal of the ACM 12 pp 23–31

[Rosser 1982]:
J. Berkely Rosser,
Highlights of the History of the λ-calculus,
In Conference Record of the ACM Symposium on Lisp and Functional Programming

[Scott 1975]:
D. Scott,
Some Philosophical Issues Concerning the Theory of Combinators,
Proceedings of the 1975 Rome Symposium on λ-calculus and Computer Science The-
ory, Springer Lecture Notes in Computer Science Volume 73, B. Lercher (Editor)

[Sellar 1930]:
W.C. Sellar and R.J. Yeatman,
1066 And all that,
Methuen

83

[Stoye 1984]:
W.R. Stoye,
A New Scheme for Writing Functional Operating Systems,
Cambridge University Computer Laboratory Technical Report Number 65

[Tillotson 1984]:
M. Tillotson,
Implementing Ponder on the 3081,
University of Cambridge Computer Science Tripos Dissertation

[Turing 1937]:
A.M. Turing,
On Computable Numbers with an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society. (Reprinted in [Davis 65])

[Turner 1979]:
D.A. Turner,
A New Implementation Technique for Applicative Languages,
Software Practice and Experience Number 9, January 1979

[Turner 1979′]:
D.A. Turner,
Another Algorithm for Bracket Abstraction,
Journal of Symbolic Logic Volume 44 Number 2, Association for Symbolic Logic

[Turner 1982]:
D.A. Turner,
Recursion Equations as a Programming Language,
In [Darlington 1982]

[van Wijngaarden 1981]:
A. van Wijngaarden,
Languageless Programming,
Mathematisch Centrum Department of Computer Science 1W 181/81

[Wadler 1984]:
P.L. Wadler,
Listlessness is Better than Laziness,
Proceedings of the 3rd Symposium on Lisp and Functional Programming

84 Bibliography

[Wadsworth 1971]:
C.P. Wadsworth,
A Graph Evaluation Technique of the λ-calculus,
Chapter 4 of his PhD. Thesis Semantics and Pragmatics of the Lambda-Calculus,
University of Oxford

[Weinberg 1971]:
G.M. Weinberg,
The Psychology of Computer Programming,
van Nostrand Reinhold

[Wray 1984]:
S.C. Wray,
Strictness Detection in the Ponder Compiler,
Cambridge University Computer Laboratory Technical Report in preparation

[Young 1981]:
R. Young,
Mental Models,
International Journal of Man-Machine Studies 15, July 1981, D.R. Hill and B.R. Gai-
nes (Editors), Academic Press

Appendix 1: The Ponder Abstract Machine

1. Overall description

The machine consists of a stack and a heap, and some registers. The stack is used
mainly to store arguments to functions and information about how to return to the previous
stack frame. The heap is used for all other information: the cells of lists, applications of
functions etc. The heap consists entirely of two word cells, as in Lisp.

The present interface with the outside world is that input is read from files named
within the programme, and the only means of output is to return a list of ‘file actions’. For
the purposes of implementing the abstract machine, this is adequate, allowing sufficiently
many test programmes to be run. Because of this, the programme loaded is driven from a
main evaluation loop that calls Eval on the programme to get a list cell, the head of which
must then be evaluated (using Eval) to get a file action.

The description assumes a syntax for machine instructions, but in practice this may
depend on the particular assembler used, and may in fact never be used, as it is intended
that the code-generator should be transported by rewriting the segments of the code-
generator that output code, rather than by writing a separate programme to convert from
abstract to concrete code.

2. Registers

The abstract instructions are stack based, and hence mention no registers explicitly,
but the configuration of store implies the existence of certain address registers. To simplify
description we assume that the stack is laid out in a particular way, but an implementation
may do something different if the effect is the same;

Programme-Counter points to the next instruction to be evaluated.
Stack-top points to the top element of the stack.
Stack-base points to the base of stack so that the garbage collector can find all

pointers to active store.
Arg-base points to the first argument of the current supercombinator, and (hence)

to the return link and its own previous value.
Free-list points to the list of cells that are known not to be in use, and from which

new cells will be allocated.
First-heap-block points to the base of the first block of store, so that the garbage

collector can know where everything is.

Of these, it would seem sensible to keep only some in real registers, since the others will
be accessed very rarely. Stack-base and First-heap-block will only be accessed at a garbage
collection. Programme-Counter will normally be in the corresponding real register.

85

86 The Ponder Abstract Machine

3. Calling sequence

The arguments to the combinator to be called are pushed onto the stack; eg: the code
generated for (Three-argument-combinator X Y Z) would be Push Z; Push Y; then Push
X; Call Three-argument-combinator.

The Call instruction would enter the compiled code for the combinator, pushing the
return address and the previous argument base onto the stack.

Hence the sequence Push Y; Push X; Call S would take the stack from

Stack-top → old-top
...

Arg-base → old-link
...

to
Stack-top → return-link
Arg-base → • →

X
Y

old-top
...

old-link ←
...

4. Machine Representable Values

May be any one of the following:

Object Use

Integer integer values
Character character values

Return address address of code to return to
Combinator point to the code of combinators
Application point to an application on the heap

Pair point to a pair on the heap
Selector encode selector function
Bottom represents “Undefined”

The objects on the stack, and the elements of each side of an application will be of one of
these types.

Objects must be distinguishable by the machine, so that Eval can work—one method
of achieving this is to put tag bits in the top three bits of each word. (Another two bits
will be used by the garbage collector).

Appendix 1 87

Integers and characters normally both have tag bits of zero, so that arithmetic oper-
ations are easily done.

Return addresses and other code and stack pointers normally have tag bits of zero,
since the garbage collector does not need to follow them.

Combinators are represented as pointers into the code, and have three external labels,
for various uses. The first is Cdddddd (where d is a decimal digit), and is a pointer to
the entry point of the combinator, and has combinator tag bits, so that it may be passed
around as an object recognisable to the garbage collector. The second is Edddddd and is
known as the ‘eval args label’. This is the entry point of the combinator for use when the
arguments have not yet been evaluated, and is the same as the Cdddddd label except that
it has no tag bits. The third is Ddddddd, and is for use when the arguments have been
evaluated, and is know as the ‘do not eval args label’. Neither Edddddd nor Ddddddd have
tag bits, because they are used as machine addresses for calls and jumps, and we don’t
want to get tag bits on Programme-Counter.

The code pointer also gives access to two other fields, so that a combinator looks like
this:

CAF-list
number of arguments

Cdddddd, Edddddd ⇒ Eval-arg
Eval-arg

...
Ddddddd ⇒ First real instruction

...

The number of arguments field is used by Eval to see if there are sufficient arguments for the
combinator. CAF-list is a list of expressions that are pointed to directly by the combinator,
and that the garbage collector must mark. CAF stands for Constant Applicative Form.
CAFs are put into a heap block to be loaded with the programme (see below).

Applications and pairs are represented as pointers into the heap with appropriate tag
bits.

Selectors are compact representations of functions that return exactly one of their
arguments. They are represented as two numbers packed into one machine word (with
appropriate tag bits). In this appendix they are indicated as ‘[U nargs which]’ where
‘nargs’ is the number of arguments that the selector takes, and ‘which’ is the number of
the one that the selector will return.

5. Machine instructions

Within the code-generator, each of these instructions is represented by a different type
of structure. An implementation could simply output them as macro calls in the assembler
language of the target machine. This would be a sensible course while debugging Eval and
the garbage collector, but of course precludes useful register and store optimisations.

88 The Ponder Abstract Machine

Jump
The next instruction executed is the one specified by the parameter to this instruction.
Jump-label <label>

Call
The next instruction executed is the one specified by the parameter to this instruc-

tion. The return address and arg-base are pushed onto the stack, as described in ‘calling
sequence’ above.

Call-label <label>

Switch-into
Pop a value from the stack. It will be a selector of the form [U nargs which]. The

next instruction executed is the whichth one in the label list that is a parameter to this
instruction.

Switch-into<nargs> <label>[,<label>]*

Return
When it is time to return from a combinator, the stack will look like this:

Stack-top → result
return-link

Arg-base → old-argbase
arg1

...
argn

X
...

And after returning it will look like this:

Stack-top → result
X
...

with Arg-base = old-argbase (and we will be executing the code indicated by the return-
link.)

Tail-to
Takes execution from this combinator to another, without creating a new stack frame,

so the stack goes from:
Stack-top → a1

...
am

return-link
Arg-base → old-argbase

arg1
...

(a) ⇒ argn
...

Appendix 1 89

to
Stack-top → return-link
Arg-base → old-arg-base

a1
...

(a) → am
...

Tail-to <name>,m

Push
The parameter to this instruction is pushed onto the stack.

Constant data
Push-constant <constant>
Push-label <label>
Push-application <application>
Push-sel <nargs>,<which>
Push-bottom
Push-pair <pair>

Each of the constant data instructions set the tag bits of their argument appropriately.

Argument
Push-arg <argument number>
Note that argument n is at offset n from Arg-base. (or −n depending on the direction

that the stack grows)

Fap
Form an application on the stack, by popping the top two items on the stack, building

an application on the heap from them, and pushing a pointer to this application back onto
the stack.

Stack-top → A
B
X
...

After Fap becomes

Stack-top →
a
p
p
• → B A

X
...

Eval
Ensures that the parameter to this instruction has been evaluated—causes a new stack

frame to be created, with only the parameter on it. When evaluation of this need proceed
no further, the value left on the stack is placed back in the stack location whence it came,

90 The Ponder Abstract Machine

and the recently created stack frame destroyed. Thus Eval must save such information as
the old stack base and size, since combinators that it calls may in turn call Eval.

Eval-arg <argument number>
Eval-top
Eval works by testing first to see whether the object is an application, and if it is

not, it simply returns it. Otherwise it traverses the left spine of the application, pushing
pointers to the applications on the stack, until it reaches either a combinator or a selector
at the head. Ponder’s type checking ensures that this is the case, i.e. that no applications
will be built in which the left hand side is not a function.

If it is a combinator, the appropriate number of arguments is copied from the right
hand sides of the cells pushed in the first phase up to the top of the stack. The combinator
is then called (by a simulated Call instruction), and returns its result at the top of the
stack. This result is then overwritten into the application cell that was the sub-expression
just evaluated (and therefore may be identified as the cell that contained the last argument
to the combinator). Because the whole cell must be overwritten with something that is
potentially not an application, the result is written into the right hand side, and an I
combinator (represented as the selector [U 1 1]) in the left.

In the case of a selector the action is slightly more complicated, since it is possible to
replace many of the applications involved with simpler ones:

[U 1 1] x⇒ x

[U nargs 1] x y⇒ [U (nargs-1) 1] x

[U nargs which] x y⇒ [U (nargs-1) (which-1)] y

however, in the case of selectors there is no need to copy the arguments up the stack, as
the result may as well be selected directly from the application that contained it.

Tail-Eval
In order to save stack, the sequence
Eval-top
Return

is always converted to
Tail-eval

This means that if Eval is implemented as a subroutine call, the stack frame can be cleared
up first. This is important in that it can correspond to tail recursion in some combinators.

6. Pseudo-operations

The operations in this section are only used when initialising the programme.

Fill-cell
Takes the top application on the stack and overwrites them into the named location

in the data block.
Fill-cell <label>

Appendix 2 91

7. Directives

Start-combinator
Indicates the name of the next combinator and how many arguments it takes. This

constructs code containing the CAF list of the combinator, and its number of arguments.
It should also remember the number of arguments so that instructions like Return can
work.

Start-combinator <name>,<number of arguments>

Start-data-block
Indicates the start of the heap block that contains initial data (such as strings and

CAFs).

End-list
Fills in the last element of a list in the data block with nil (see ‘List-cell’ below).

List-cell
Reserves a cell in the data block, and initialises the left hand half to a constant value:
List-cell-pair 'a: make a pair with 'a in the LHS
List-cell-application f: make an application with f in the LHS

If one List-cell follows another, the right hand half of the former is filled with an
application or pair pointer to the latter, so that

List-cell-pair 'h
List-cell-pair 'e
List-cell-pair 'l
List-cell-pair 'l
List-cell-pair 'o
End-list

will build the string “hello” in the data block.

Reserve-cell
Reserves a cell in the data block to be filled in by ‘Fill-cell’.

End-data-block
Indicates the end of the data block.

Appendix 2: The Standard Prelude

This appendix contains an annotated copy of the ‘standard prelude’ of common func-
tions, followed by a ‘library prelude’ of list operations. The preludes have been developed
concurrently with the language, so the functions are written in various styles.

1. The Standard Prelude

Certain functions are built into the run-time-system. The definitions of these functions
are included here for their type information.

The types Bool and File-action must be defined now because they are involved in the
types of the functions. All the operations on File-action belong in the ‘outside world’, so it
is sealed without any definitions.

Capsule Type Bool △

= ∀T. T → T → T;
Capsule Type File-action △

= Pair [Int, List [Char]];
Seal File-action;

Two functions that convert between characters and their integer equivalents:

Let int-to-char △

= Int → Char: . . .;
Let char-to-int △

= Char → Int: . . .;

Operations on lists and file actions:

Let null △

= ∀T. Option [T] → Bool: . . .;
Let nil △

= ∀T. Option [T]: . . .;
Let opt-in △

= ∀T. T → Option [T]: . . .;
Let opt-out △

= ∀T. Option [T] → T: . . .;
Let get-file △

= List [Char] → Option [List [Char]]: . . .;
Let append-to-file △

= List [Char] → Option [(List [Char] → File-action)]: . . .;
Let make-file △

= List [Char] → Option [(List [Char] → File-action)]: . . .;
Let delete-file △

= List [Char] → Option [File-action]: . . .;
Let head △

= ∀T. List [T] → T: . . .;
Let tail △

= ∀T. List [T] → List [T]: . . .;
Let list △

= ∀T. T → List [T] → List [T]: . . .;

Character comparison functions:

Let char-eq-char △

= Char → Char → Bool: . . .;
Let char-lt-char △

= Char → Char → Bool: . . .;
Let char-le-char △

= Char → Char → Bool: . . .;
Let char-gt-char △

= Char → Char → Bool: . . .;
Let char-ge-char △

= Char → Char → Bool: . . .;

Integer comparisons

92

Appendix 2 93

Let int-eq-int △

= Int → Int → Bool: . . .;
Let int-lt-int △

= Int → Int → Bool: . . .;
Let int-gt-int △

= Int → Int → Bool: . . .;
Let int-le-int △

= Int → Int → Bool: . . .;
Let int-ge-int △

= Int → Int → Bool: . . .;
Let int-ne-int △

= Int → Int → Bool: . . .;

Other integer operations:

Let int-plus-int △

= Int → Int → Int: . . .;
Let int-minus-int △

= Int → Int → Int: . . .;
Let int-times-int △

= Int → Int → Int: . . .;
Let int-over-int △

= Int → Int → Int: . . .;
Let int-rem-int △

= Int → Int → Int: . . .;
Let int-and-int △

= Int → Int → Int: . . .;
Let int-or-int △

= Int → Int → Int: . . .;
Let minus-int △

= Int → Int: . . .;
Let int-shift-left-int △

= Int → Int → Int: . . .;
Let int-shift-right-int △

= Int → Int → Int: . . .;
Let not-int △

= Int → Int: . . .;
Let int-times-int-giving-pair △

= Int → Int → Pair [Int, Int]: . . .;

Now the real definitions. First we have some simple functions:

Letrec abort △

= ∀T. T: abort ;
Let i △

= ∀T. T t → t ;

Now define the relative binding powers of the common operators.

94 The Standard Prelude

Priority 5 × Associates Right;
Priority 5 Long-times Associates Right;
Priority 5 ÷ Associates Left;
Priority 5 Rem Associates Left;
Priority 6 + Associates Left;
Priority 6 − Associates Left;
Priority 7 ∧ Associates Left;
Priority 7 ∨ Associates Left;
Priority 7 Shift-left Associates Right;
Priority 7 Shift-right Associates Right;
Priority 8 = Associates Left;
Priority 8 < Associates Left;
Priority 8 > Associates Left;
Priority 8 ≤ Associates Left;
Priority 8 ≥ Associates Left;
Priority 8 6= Associates Left;
Priority 8 Elem Associates Left;
Priority 8 :: Associates Right;
Priority 8 @ Associates Right;
Priority 8 And Associates Right;
Priority 8 Or Associates Right;

The Cartesian product operator:

Typeinfix × △

= Pair;

Functional composition:

Priority 5 ◦ Associates Left;
Let compose △

= ∀A, B, C. (B → A) ba → (C → B) cb → C c →
ba (cb c);

Infix ◦ △

= compose;

The C combinator is useful for the operator definitions, because a < b means int-lt-int a b,
but the prefix version < a b, means int-lt-int b a, which is c int-lt-int a b.

Let C △

= ∀Tx, Ty, Trf. (Ty → Tx → Trf) f → Tx x → Ty y → Trf: f y x ;

The following are defined in terms of built in functions: predicates are given prefix versions
for use with Case clauses (see below)

Appendix 2 95

Infix = △

= Char → Char → Bool: char-eq-char ;
Prefix = △

= Char → Char → Bool: char-eq-char ;
Infix < △

= Char → Char → Bool: char-lt-char ;
Prefix < △

= Char → Char → Bool: C char-lt-char ;
Infix ≤ △

= Char → Char → Bool: char-le-char ;
Prefix ≤ △

= Char → Char → Bool: C char-le-char ;
Infix > △

= Char → Char → Bool: char-gt-char ;
Prefix > △

= Char → Char → Bool: C char-gt-char ;
Infix ≥ △

= Char → Char → Bool: char-ge-char ;
Prefix ≥ △

= Char → Char → Bool: C char-ge-char ;

Infix = △

= Int → Int → Bool: int-eq-int ;
Prefix = △

= Int → Int → Bool: int-eq-int ;
Infix < △

= Int → Int → Bool: int-lt-int ;
Prefix < △

= Int → Int → Bool: C int-lt-int ;
Infix > △

= Int → Int → Bool: int-gt-int ;
Prefix > △

= Int → Int → Bool: C int-gt-int ;
Infix ≤ △

= Int → Int → Bool: int-le-int ;
Prefix ≤ △

= Int → Int → Bool: C int-le-int ;
Infix ≥ △

= Int → Int → Bool: int-ge-int ;
Prefix ≥ △

= Int → Int → Bool: C int-ge-int ;
Infix = △

= Int → Int → Bool: int-ne-int ;
Prefix = △

= Int → Int → Bool: C int-ne-int ;

There are no prefix versions for the other integer operators except minus:

Infix + △

= Int → Int → Int: int-plus-int ;
Infix − △

= Int → Int → Int: int-minus-int ;
Infix × △

= Int → Int → Int: int-times-int ;
Infix Long-times △

= Int → Int → (Int × Int): int-times-int-giving-pair ;
Infix ÷ △

= Int → Int → Int: int-over-int ;
Infix Rem △

= Int → Int → Int: int-rem-int ;
Infix ∧ △

= Int → Int → Int: int-and-int ;
Infix ∨ △

= Int → Int → Int: int-or-int ;
Infix Shift-left △

= Int → Int → Int: int-shift-left-int ;
Infix Shift-right△

= Int → Int → Int: int-shift-right-int ;
Prefix − △

= Int → Int: minus-int ;
Prefix Not △

= Int → Int: not-int ;

Boolean values; true a b becomes a and false a b becomes b:

Let true △

= Bool: ∀T. T t → T f → t ;
Let false △

= Bool: ∀T. T t → T f → f ;

Similar functions for pairs:

Let left △

= ∀L, R. L l , R r → l ;
Let right △

= ∀L, R. L l , R r → r ;

96 The Standard Prelude

Now the syntax definitions for If clauses. We want to be able to write

If condition
Then expression to return if condition is true
Else expression to return if condition is false
Fi;

and also extend this to allow a simpler writing of

If condition1
Then expression to return if condition1 is true
Else If condition2

Then thing2
Else thing3
Fi

Fi;

as

If condition1
Then expression to return if condition1 is true
Elif condition2
Then thing2
Else thing3
Fi

Unfortunately the type checker in the present compiler is too pessimistic about result
types, so that we have to make this use a pair to ‘balance’ the alternatives of the condition,
otherwise an expression like

If condition
Then abort
Else thing
Fi

would not work.

The capsule If-clause is used solely to make sure that If . . .Fi is only put around the
correct kind of expression:

Appendix 2 97

Capsule Type If-clause [T] △

= T;
Bracket If Fi △

= ∀T. If-clause [T] it → T: it ;
Priority 9 Then Associates Right;
Priority 9 Else Associates Right;
Capsule Type Else-part [T1, T2]

△

= Pair [T1, T2];
– Else just forms a pair from its two arguments:
Infix Else △

= ∀T1. T1 then-part → ∀T2. T2 else-part → Else-part [T1, T2]:
then-part , else-part ;

– Then ‘balances’ the types of the two alternatives, and applies the Boolean:
Infix Then △

= Bool b → ∀T. Else-part [T, T] → If-clause [T]:
∀T. T then, T else → b then else;

– Elif reiterates the choice:
Priority 9 Elif Associates Right;
Infix Elif △

= ∀T1. T1 previous-then → ∀T2. If-clause [T2] if-clause →
Else-part [T1, T2]:
(previous-then Else If if-clause Fi);

It is also convenient to have a special kind of choice clause for options:

If option-value Is function
Else . . .
Fi;

That looks a bit odd, but it makes more sense when function is written out with its
arguments like this:

If option Is Sometype something
→ thing to do if it is
Else thing to do if it isn’t
Fi

Let is-fn △

= ∀T. Option [T] obj → ∀R. Else-part [(T → R), R] ep →
If-clause [R]:
If null obj
Then right ep
Else left ep (opt-out obj)
Fi;

Priority 9 Is Associates Right;
Infix Is △

= is-fn;
Seal If-clause;
Seal Else-part;
Seal Bool;

some familiar operations on Booleans:

98 The Standard Prelude

Let not △

= Bool a → If a
Then false
Else true
Fi;

Prefix Not △

= not ;
Infix And △

= Bool a → Bool b → If a
Then b
Else false
Fi;

Infix Or △

= Bool a → Bool b → If a
Then true
Else b
Fi;

Syntax definitions for case clauses: Unions and ‘switchons’
‘Switchons’: Aim for a syntax:

Case value
In predicate ⇒ Thing to return if (predicate value).

Other predicate ⇒ other thing
Out thing to return if value satisfied none of the predicates
Esac;

The definitions of the In and Out operators for switchons appear after their definitions
as operators. Switchon-choice is needed for ⇒.

Let switchon-choice △

=∀T. (T → Bool) predicate →
∀R. R thing1, (T → R) thing2 →
T x →
If predicate x
Then thing1

Else thing2 x
Fi;

Binary unions. Unfortunately the cases must be referenced by number.

Capsule Type Union [A, B] △

= ∀R. (A → R) → (B → R) → R;
Priority 5 ⊎ Associates Right;
Typeinfix ⊎ △

= Union;
Type Dot △

= ∀T. T;

Dot marks the end of a sequence of united values. Without it, we would need different
injection functions etc for every number of united types. Always use A ⊎ B ⊎ ... ⊎ Dot.

Injection Functions

Let in1
△

=∀A. A a → (A ⊎ Dot):
∀R. (A → R) ar → (Dot → R) br → ar a;

Appendix 2 99

with the aid of an injection function for the right half,

Let inr
△

= ∀A, B. B b → (A ⊎ B):
∀R. (A → R) ar → (B → R) br → br b;

we can build a function to make new injection functions from old:

Let next-in △

= ∀A, B, T. (T → (A ⊎ B)) in-n → inr ◦ in-n;

The is functions project from unions. if A ⊎ B ⊎ Dot: x , is1 x will return an Option [A].

Type Is-tag [U, Which] △

= U → Option [Which];
Let is1

△

= ∀A, B. Is-tag [(A ⊎ B), A]:
∀A, B. (A ⊎ B) uab →
uab opt-in (∀T. T t → nil);

Internally we need to be able to test A ⊎ B for B:

Let isr
△

= ∀A, B.
(A ⊎ B) uab →
uab (∀T. T t → Option [B]: nil) opt-in;

given an isn produce isn+1

Let next-is △

= ∀New, U, Which. Is-tag [U, Which] previous-is →
Is-tag [(New ⊎ U), Which]:
(New ⊎ U) unewu →
unewu (∀T. T t → Option [Which]: nil) previous-is;

Seal Union;

Function for use with the Case syntax:

Let option-choice △

= ∀U, W, R. Is-tag [U, W] isn →
(W → R) which-res, (U → R) if-not → U u →
If isn u Is W which
→ which-res which
Else if-not u
Fi;

now define some frequently used union operators

Let in2
△

= next-in in1; Let is2
△

= next-is is1;

Let in3
△

= next-in in2; Let is3
△

= next-is is2;

Let in4
△

= next-in in3; Let is4
△

= next-is is3;

define some operators to get a reasonable syntax

Priority 9 In Associates Right;
Priority 9 Out Associates Right;
Priority 9 ⇒ Associates Right;
Priority 9 Associates Right;

100 The Standard Prelude

Let out-part △

= ∀T. T t → ∀R. R r → t ;
Let in △

= ∀A, B. A a → (A → B) ab → ab a;

Infix In △

= in;
Infix Out △

= ∀A, B. A a → B b → a, out-part b;
Infix ⇒ △

= option-choice;
Infix ⇒ △

= switchon-choice;
Infix △

= ∀A, B. A a → B b → a, b;
Bracket Case Esac △

= i ;

so that we can go

Case union-typed-expression
In is1 ⇒ Type-1 t → thing

is3 ⇒ Type-3 t → thing
Out something else
Esac

and

Case expression
In predicate-giving-option ⇒ thing
...
Esac

Two alternative brackets:

Bracket Begin End △

= i ;
Bracket ⊳ ⊲ △

= i ;

Option operations (other than If and Case)

Priority 4 $ Associates Right;
Let default △

= ∀T. Option [T] opt → T default →
If opt Is
i
Else default
Fi;

Infix $ △

= default ;

Thus e1 $ e2 is opt-out e1 if e1 Is, and e2 otherwise.

List operations:
This is a collection of polymorphic functions that almost every programme needs:

Constructing a List
a :: b :: c means the same as a :: b :: c :: nil if a, b and c are of the same type, which

is achieved by overloading ::

Appendix 2 101

Infix :: △

= ∀T. T h → T t → list h (list t nil);
Infix :: △

= list ;

Letrec append △

= ∀T. List [T] l1 → List [T] l2 → List [T]:
If null l1
Then l2
Else head l1 :: append (tail l1) l2
Fi;

convenient shorthand: (a:: b:: c) @ (d:: e) becomes (a:: b:: c:: d:: e)

Infix @ △

= append ;

map f (a :: b :: c) becomes f a :: f b :: f c

Let map △

=∀T1, T2. (T1 → T2) f →

Begin Letrec mapf △

= List [T1] l → List [T2]:
If null l
Then nil
Else f (head l) :: mapf (tail l)
Fi;

mapf
End;

Left-gather and right-gather , functions for infixing functions in lists. Both need an initial
element to get them off the ground. right-gather f e (a :: b :: c) becomes f a (f b (f c e))
Written in infix notation: a f (b f (c f e)) as if f associated to the right.

Let right-gather △

=∀T1, T2. (T2 → T1 → T1) f → T1 e →

Begin Letrec gather △

= List [T2] l → T1:
If null l
Then e
Else f (head l) (gather (tail l))
Fi;

gather
End;

left-gather f e (a :: b :: c) becomes f (f (f e a) b) c

Let left-gather △

=∀Tl, Ta. (Ta → Tl → Ta) f →

Begin Letrec gather △

=Ta e → List [Tl] l → Ta:
If null l
Then e
Else gather (f e (head l)) (tail l)
Fi;

gather
End;

102 The Standard Prelude

Let gather △

= right-gather ; – because it is the most popular of the two.

Another powerful one: filter predicate l is a list of the members of l that satisfy predicate.

Letrec filter △

= ∀T. (T → Bool) predicate → List [T] l → List [T]:
If null l
Then nil
Elif predicate (head l)
Then head l :: filter predicate (tail l)
Else filter predicate (tail l)
Fi;

reverse a list:

Letrec reverse △

= ∀T. List [T] reversed → List [T] reversee → List [T]:
If null reversee
Then reversed
Else reverse (head reversee :: reversed) (tail reversee)
Fi;

Let reverse △

= reverse nil ;

The length of a list:

Letrec length △

= Int len → ∀T . List [T] l → Int:
If null l
Then len
Else length (len + 1) (tail l)
Fi;

Let length △

= length 0;

take the first (up to) n elements of a list:

Letrec first △

= Int n → ∀T. List [T] l → List [T]:
If null l
Then nil
Elif n = 0
Then nil
Else head l :: first (n − 1) (tail l)
Fi;

pick the nth member of a list:

Letrec elem △

= Int → (∀T.List [T] → T):
Int n → ∀T. List [T] l →
If n = 1
Then head l
Else elem (n − 1) (tail l)
Fi;

Infix Elem △

= elem;
Type String △

= List [Char];

Appendix 2 103

Functions for printing and reading strings:

Let digits △

= “0123456789”;

Let print-int △

= Int n →

Begin Let char-from-dig △

= Int n →
(n + 1) Elem digits;

Letrec string-from-int △

= Int n → String so-far → String:
If n = 0
Then so-far
Else string-from-int (n ÷ 10)

((char-from-dig (n Rem 10)) :: so-far)
Fi;

If n = 0
Then '0 :: nil
Elif n < 0
Then '− :: string-from-int (− n) nil
Else string-from-int n nil
Fi

End;

Let position-of-char-in △

= String s → Char ch → Int:

BeginLetrec pos-in △

= String s → Int p → Int:
If null s
Then 0
Elif head s = ch
Then p
Else pos-in (tail s) (p + 1)
Fi;

pos-in s 1
End;

Functions for interaction with the terminal:

Let terminal-input-list △

= String: opt-out (get-file “*”); – always works.
Let string-to-terminal △

= String s → opt-out (make-file “*”) s;
Let print-to-terminal △

= String s → string-to-terminal s :: nil ;

HOLE

The HOLE indicates to the compiler that the preceding text has been a prelude; pro-
grammes which use a particular prelude (in this case all programmes) are compiled as if
they were inserted in place of the HOLE.

104 The Standard Prelude

2. List operations

Join two lists with a filler between them, provided that the second is not nil . This is
useful for printing things with commas between the elements:

Let join-with △

= ∀T. List [T] filler → List [T] l1 → List [T] l2 →
l1 @ If null l2

Then nil
Else filler @ l2
Fi;

Letrec is-in △

= ∀T. (T → T → Bool) eq → T s → List [T] list → Bool:
If list Is T head , List [T] tail
→ If eq head s

Then true
Else is-in eq s tail
Fi

Else false
Fi;

Letrec skip-first △

= Int n → ∀T. List [T] l → List [T]:
If null l
Then nil
Elif n = 0
Then l
Else skip-first (n − 1) (tail l)
Fi;

Priority 5 FROM Associates Right;
Infix FROM △

= c skip-first ;

Letrec upto △

= ∀T. List [T] l → Int n → List [T]:
If n = 0
Then nil
Elif l Is T h, List [T] t
→ h :: upto t (n − 1)
Else nil
Fi;

Priority 5 UPTO Associates Right;
Infix UPTO △

= upto;

Appendix 3 105

Functions for splitting lists. Split predicate list splits list into a pair of lists. The first is an
initial sublist of list for which none of the members satisfy predicate, and the second is the
remainder.

Letrec split △

= ∀ T. (T → Bool) predicate → List [T] l →
List [T] × List [T]:
If l Is T first , List [T] rest
→ If predicate first

Then nil , l

Else Let before, after △

= split predicate rest ;
(first :: before), after

Fi

Else nil , nil
Fi;

Let until △

= ∀ T. (T → Bool) predicate → left ◦ split predicate;
– This one should be somewhere else:
Let not-predicate △

= ∀T. (T → Bool) predicate → T x → Not predicate x ;
Let while △

= until ◦ not-predicate;

Let associated △

=
∀ T1, T2, T3. (T3 → T1 → Bool) equal →
T3 thing →
List [(T1 × T2)] association-list →
Option [T2]:

Begin Type Assoc △

= T1 × T2;
If filter (equal thing ◦ left) association-list Is Assoc a, List [Assoc] rest
→ opt-in (right a)
Else nil
Fi

End
HOLE

In this case, the prelude is called “list-operations”. To access the definitions contained
above, a programme can begin with a comment like this:

– PARENT “list-operations”

which indicates that the definitions in the file “list-operations” should be included.

Appendix 3: Reading From a Terminal

– PARENT “string-operations”
– read an item, reflecting characters as we go.
– uses valid-characters and terminators to decide whether or not to
– accept a character.
–
– some useful characters:
Let rubout △

= int-to-char 127;
Let backspace △

= int-to-char 8;
Let bell △

= int-to-char 7;

Letrec read-item △

=
(Char → Bool) is-a-valid-char → (Char → Bool) is-a-terminator →
String so-far → String input →
String × String × String:

– (Item × remainder of input × reflections)
If input Is Char ch, String rest

→ Begin Let read-item △

= read-item is-a-valid-char is-a-terminator ;

Let invalid △

= Begin Let new , rest , ref △

= read-item so-far rest ;
new , rest , (bell :: ref)

End;
Case ch
In = rubout
⇒ If Not null so-far

Then Let new , rest , ref △

= read-item (tail so-far) rest ;
new , rest , (backspace :: ' :: backspace :: ref)

Else invalid
Fi

is-a-terminator
⇒ If is-a-valid-char ch

Then (ch :: so-far), rest , (ch :: nil)
Else so-far , rest , nil
Fi

is-a-valid-char
⇒ Let new , rest , ref △

= read-item (ch :: so-far) rest ;
new , rest , (ch :: ref)

Out invalid
Esac

End;
Else so-far , input , nil
Fi;

106

Appendix 3 107

– But that produces the item backwards, and involves a variable
– that the user needn’t know about, so redefine it:
Let read-item △

=
(Char → Bool) is-a-valid-char →
(Char → Bool) is-a-terminator →
String input →

Begin Let item, rest , ref △

= read-item is-a-valid-char is-a-terminator nil input ;
reverse item, rest , ref

End;

Let read-line △

= read-item (Char x → true) (Char c → c = ''r – carriage return
Or c = ''l – line feed
Or c = ''n – new line
Or c = ''e); – escape

HOLE

Now read-line terminal-input-list will return three strings. The first will be the first
line read from the terminal, the second will be the remainder of the input and the third
will be the characters which should be printed at the terminal in response to the user’s
key-strokes.

The following programme illustrates the use of read-line:

Let line, rest , reflection △

= read-item terminal-input-list ;
“Please type a line terminated with carriage return, line feed or escape'n” @
print-to-terminal reflection @ “'nThis line backwards is:'n” @
reverse line @ “'nFinished'n”

when the programme is run the user is prompted for a line. When a key other than rubout
is pressed, it is reflected to the terminal. When rubout is pressed, the programme responds
with backspace, space, backspace to erase the last character on the line, or a bell if there are
no characters on the line. When one of the terminator characters is typed, it is reflected,
but the programme then goes on to print a message, followed by the text of the line
backwards and then “Finished”, after which it stops.

Read-item behaves in a similar way to read-line, but requires two predicate arguments.
The first should return true for every character that is to be accepted, and the second should
return true for every character that is to indicate the end of an item.

