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GTVS: boosting the collection of

application traffic ground truth

Marco Canini, Wei Li, Andrew W. Moore

Abstract

Interesting research in the areas of traffic classification, network monitoring, and

application-orient analysis can not proceed with real trace data labeled with actual

application information. However, hand-labeled traces are an extremely valuable

but scarce resource in the traffic monitoring and analysis community, as a result

of both privacy concerns and technical difficulties: hardly any possibility exists for

payloaded data to be released to the public, while the intensive labor required for

getting the ground-truth application information from the data severely constrains

the feasibility of releasing anonymized versions of hand-labeled payloaded data.

The usual way to obtain the ground truth is fragile, inefficient and not di-

rectly comparable from one’s work to another. This chapter proposes and details

a methodology that significantly boosts the efficiency in compiling the application

traffic ground truth. In contrast with other existing work, our approach maintains

the high certainty as in hand-verification, while striving to save time and labor re-

quired for that. Further, it is implemented as an easy hands-on tool suite which is

now freely available to the public.

In this paper we present a case study using a 30 minute real data trace to

guide the readers through our ground-truth classification process. We also present

a method, which is an extension of GTVS that efficiently classifies HTTP traffic by

its purpose.

1 Introduction

Ground truth1 network information is a fundamental necessity to provide trustworthy
results for accounting, modeling, measurement and performance evaluation purposes.

Further, high-confidence ground-truth data is fundamental to evaluate new methods for
traffic classification and new uses of classification systems.

The lack of ground truth has adversely affected the soundness of many previous works [1].
For example, a lot of papers were evaluating and comparing application identification
methods without accurate ground truth (i.e., relied just on port numbers) or using traces
having a significant amount of unknown traffic.

The collection of ground-truth application information of the Internet traffic is critical to
both research community and the industry:

1The certain knowledge of the associations between each traffic flow and the application causing it.
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• it is the basis and a critical procedure to build applications for information assur-
ance, network monitoring and traffic accounting, and the only way to evaluate their
accuracy,

• it facilitates the networking research on nearly every aspect related to applications,
protocols, network modeling and data analysis, so that methodologies and models
can be derived and updated, and

• it provides fundamental, accurate knowledge of how people use the network; such
knowledge now has increasing importance for network security and enterprise net-
work management.

However, because of significant privacy concerns, hardly any payloaded data can be
released, while publicly accessible anonymized non-payloaded traces (e.g., LBNL [2],
CAIDA [3] and MAWI [4]) are of limited value without accurate application informa-
tion associated with them. A common practice becomes to hand-verify the ground truth
from payloaded trace collected on one’s own or friendly links.

Obtaining the application ground truth from data traces is difficult. On one hand, there
are too much data to be resolved before it is possible to build a sufficient knowledge base
for a desired task. On the other hand, there is too few information, much of which could
even be deceiving, to obtain the knowledge from.

Many different schemes have been used in the past to obtain the ground truth for studies:
Moore and Papagiannaki [5] documented a fine-grained classification scheme comprising
nine identification methods. The ground-truth labels used in [6] were based on “hand-
classification”, while the authors of [7] and [8] were using an “automated payload-based
classification” as they described. The collection of many (if not all) of these ground-truth
data was automated using extensible NIDSes (Network Intrusion Detection Systems) such
as Snort [9] and Bro [10], or through homemade scripts. The efforts made to collect the
ground-truth data were both significant and highly improvised, causing a lot of unnec-
essary, repeated labor, untrustworthy results (e.g., ground truth derived by signature
matching alone) and inconsistency (e.g., different levels of confidence and completeness)
between different works. Further, there is often a lack of verification mechanisms between
multiple information sources, hence faults are inevitable and unrecoverable.

As a consequence of the inconsistency of the analyzed data sets, it is not possible to
rigorously and systematically compare the results of the various classification methods.
This also means that the operational community cannot decide on which method to use
and when.

In this paper, we present GTVS (Ground Truth Verification System), a novel framework
and methodology dedicated to ground-truth verification. It automates the data manipula-
tion and information retrieval processes as well as significantly increasing the efficiency of
human hand-verification methodology. It works at a finest granularity of a bi-directional
flow defined by the standard IP 5-tuple: {src IP, src port, dst IP, dst port and proto.}.
It provides aggregated views and suggests heuristic rules based on multiple criteria, al-
lowing for better recognition of the host behaviors and acceleration of the verification.
Finally, it is extensible to allow additional sources of information, user-defined heuristics
and different classifications, and to achieve different goals.

GTVS boosts the collection of application ground truth by significantly reducing the
time and labor required in the process; it preserves and improves the general quality of
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the ground truth and facilitates validations among many information sources. Finally,
it provides a neat and handy platform to facilitate the management of hand-verification
projects and to allow experiences and data to be shared among the research community.

The following Section reviews and validates an important assumption used in our system.
Section 3 presents an overview of the GTVS framework. Then, a detailed case study
on a 30 minute real data trace is presented to guide the readers through our ground-
truth classification process in Section 4. Section 5 details a complementary methodology
targeted specifically at HTTP traffic and applies it to highlight a few characteristics of
how the HTTP traffic has evolved in recent years. Related works are discussed in Section
6 and Section 7 concludes the paper.

2 Assumption and Validation

We observe that flows belonging to the same service or application often share a subset
of the IP 5-tuple, notably, the {dst IP, dst port, proto.} and {src IP, dst IP} sub-tuples.
For example, TCP packets to and from 207.46.107.73:1863 would be associated to the
Windows Live Messenger.

This leads to an assumption that underpins our approach: flows of the same sub-tuples

are associated to the same service or application. With this, the data can be labeled at
high-level aggregations to accelerate the process. Similar assumptions are implicitly used
in BLINC [7] where traffic is classified using “graphlets” which essentially resolve into
sub-tuples.

We base our assumption on observations of institutional networks (for several institutions)
taken over multi-day periods covering periods since 2003 up until the current day. Within
each day, we identify flows through pattern matching and manual inspection of the payload
contents. The results show that traffic follows our stability assumption for the entire day
in most cases with few exceptions as separately discussed below.

The {dst IP, dst port} sub-tuple. Exceptions are different application encapsulated
in VPNs and SOCKS proxies. Currently, in our settings, this traffic is categorized into
“remote access” class. Others have discussed further mechanisms that can be applied
to identify the encapsulated applications as needed [11]. We also point out that HTTP
represents an exception whenever the protocol is used as a generic transport protocol.
However, once the traffic is identified as HTTP by means of our assumption, further
refinements can be applied as later described in section 5.

The {src IP, dst IP} sub-tuple. Exceptions include VPNs and SOCKS proxies as well
as circumstances where there are multiple applications between a server and a client, e.g.,
a server operating both SSH and Web service. However, in such circumstances, the server
is usually operating traditional services (e.g., Web, FTP, mail or SSH). This sub-tuple
effectively complements the one above in classifying applications on multiple ports (e.g.,
FTP transfers, P2P and media streaming with port hopping).

The consistency assumption is implicit throughout the design and use of GTVS.
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Figure 1: GTVS structure overview.

3 Overview

GTVS can be described in a layered structure, supporting a user-oriented design, as
shown in Figure 1. It supports the work-flow a user would follow when manually verifying
the flows, and collects almost all information that one would maximally find by hand-
classification. It is composed of (i) a basic infrastructure layer for data management
including packet traces and flows database, (ii) an information-rich frontend from which
the user can retrieve all information related to the flows at different aggregations in
order to make decisions, and (iii) a verification process accelerated by flexible heuristic
rules while leveraging human expertise and knowledge of the particular site. A detailed
description for each layer is presented below.

3.1 Data Infrastructure

The data infrastructure processes traces to collect information on different levels of ag-
gregation (packets, flows, {IP, port, proto.} tuples, and hosts). The original data source
is a full payload packet trace which contains the finest grained form of information, i.e.,
the payloaded packets.

The trace is organized into files of relatively small size (e.g., 512 MB) and indexed by
the timestamp of the first packet contained in each file. In addition, a secondary index
is created for each file by indexing each packet using its IP protocol, and source and
destination addresses. This two-level hierarchical index has proved to be very efficient for
supporting time interval queries within large collections of data and arbitrary flow lookup
during the verification process (e.g., when inspection of a single flow is needed).

Firstly, the trace is processed in order to collect the information about every flow therein.
The process consists of three tasks:

1. aggregating packets into flows,

2. recording a number of statistics for each flow (e.g., number of packets and bytes,
packet sizes and inter-packet arrival times), and

6



3. pattern matching with known application signatures of the payload content of the
first few packets of a flow.

This information is exported into a database table (Flows table) where an entry is created
for each flow. Then two further tables are created based on the Flows table: namely the
Hosts table and HostPorts table, to support aggregated views of the traffic grouped by
server or client IPs. These views enable the user to browse the general behavior on a
higher aggregation and also to facilitate the verification of traffic at this level.

The tables are indexed by many of their fields such as IP addresses, port numbers,
signature-matching results, etc., in order to drastically reduce the time to lookup in-
formation from the database. This enhances the interactivity of the frontend.

As for the implementation, the data infrastructure makes use of standard data formats
(e.g., pcap traces) and databases systems (e.g., MySQL, BerkeleyDB). In addition, it uses
Click [12, 13] as the default packet processing tool plus a number of custom programs and
scripts that tie the entire structure together.

3.2 The Verification Frontend

This second layer of GTVS consists of a web-based frontend that offers mechanisms to
facilitate the verification process. This includes a graphical interface which presents abun-
dant information at various levels of aggregation, and supports the use of different kinds
of heuristic rules.

The information presented in the verification frontend is collected from a broad set of
sources. This collection virtually combines the merits of many previous traffic classifica-
tion works, including packet payload information (as in [5]), flow statistics (as in many
behavioral traffic classification methods [6, 14, 15]), host-level connection statistics (as
in [7]), host name information [16], and transport-layer behavior of the P2P overlay net-
works [17].

By default, the verification frontend provides:

• Basic information about a flow (e.g., duration, number of packets, total number of
bytes and payload bytes in each direction and TCP flags).

• Breakdown of signature matching results from a fine-tuned set of signatures.

• Host name resolution for all the IP addresses appearing in the trace2.

• Port-based mapping using a comprehensive list of well-known port numbers.

• Packets’ payload content (e.g., tcpdump of a flow).

• Visualization of the peer connection graph of an overlay network.

2Ideally, the IP addresses should be resolved at the time when the trace is collected. However, for

previously collected traces, host names can be mined from the DNS traffic in the original trace as well

as the Host header field in the HTTP requests, or, in the worst case, resolved when the trace is being

verified.
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do_heuristic1(’eDonkey’, "L7Marks LIKE ’%eDonkey%’ AND Flows >= 5",

[’NC+10’, ’NC-10’, ’eDonkey’], 0.8) {|aggId|

GTVS.aggVerify(trace, aggId, ’eDonkey’, ’P2P’)

}

Figure 2: Sample script of a user-defined heuristic rule.

Additionally, further information may be available as an extension, such as data mined
from the payload of flows, flow-behavior features as used in [14], or from external modules
(e.g., NIDSes, specific traffic analyzers, commercial traffic classifiers and Web searching
plugins).

3.3 Heuristic Rules

The verification frontend also supports the use of heuristic rules to determine the ground
truth of a number of flows at a higher aggregation. The main idea is to leverage a core
set of automated procedures to verify subsets of similar flows with very high confidence,
while resorting to human discernment when not enough clues are available to recognize
the nature of certain flows.

The heuristics can either be derived empirically or built up using a combination of sig-
nature matching results, and a priori knowledge about known services, port numbers
and host names. The user can flexibly build his own heuristic set, blending his own site
and application-specific knowledge to facilitate desired tasks. Custom heuristics can be
written in the form of simple scripts that interact with the GTVS API, as illustrated
in Figure 2. Then he needs to validate the heuristics using the verification frontend, or
using a specific dry-run mode which is available for previewing the results of an action
before actually modifying the database. On applying heuristic rules, GTVS will search
for potential candidate flows and verify those which satisfy the conditions given in the
heuristics.

In our experience, the use of heuristic rules has allowed us to drastically reduce the time
needed to verify the ground truth.

4 Accelerating the Ground-Truth Verification with

GTVS

The use of GTVS does not replace the manual verification process but is dedicated to
accelerating it.

Here we suggest two principles, namely those of efficiency and accuracy, which we apply to
the use of GTVS. The efficiency principle is to always try to work upon higher aggregations
(e.g., services rather than individual flows) whenever possible. For example, large numbers
of well-known, traditional service traffic on a specific host can be verified in the first
instance. The accuracy principle is to make decisions only with very high confidence, e.g.,
when strong evidences from two or more mutual-independent information sources match
with each other.
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Distinct IPs Server IPs Server IP:port pairs Client IPs Flows Packets Bytes

25,631 11,517 12,198 14,474 250,403 10.9 M 7.4 GB

Table 1: Working dimensions of our data set.

Normally, the hand verification of an hour-long trace on a 1 Gbps link would take more
than a hundred man-hours [5]. With GTVS, we hope an experienced user would be able
to verify an initial data trace within days. Furthermore, based on the knowledge derived
from the initial data, the traffic on the same site for successive periods could be verified
in a fraction of the initial time.

In this section, we use the case study of a 30 min trace as an example to introduce the
heuristic rules and show how they are exploited to accelerate the verification process.
The trace was collected in mid December 2007 from the link to the Internet of a research
facility. There were several thousands of users on site, mainly researchers, administrators
and technical staff. Table 1 lists the working dimensions of our data set.

Within this half-hour trace, we focus on describing how we verified the complete TCP
flows, i.e., the flows that are captured entirely from triple handshake to tear down. As for
the rest, the UDP flows are verified in a much similar way, except that they are defined
using a configurable timeout value. The incomplete TCP flows are typically composed
of various kinds of scans and unsuccessful connection attempts. Most of this traffic has
distinguishable patterns upon which custom heuristic rules can be built up.

4.1 Initial Application Clues

A set of payload signatures is used in GTVS to help collect the clue of an application from
packet payloads. Our signature set is capable of identifying 35 most popular protocols.
These signatures are derived from databases available on the Web, (e.g., L7-filter [18],
while a substantial number of improvements and adjustments were made to enhance
the accuracy and to reduce the overmatching conditions. We tested the signatures on
previously hand-classified data and several segments of new data. The underspecified
signatures which create many false positives (e.g., eDonkey, Skype) have either been
changed or excluded, while the undermatching ones (e.g., BitTorrent) have been improved.
Of course, the signatures are still far from being able to identify the totality of the traffic.
However, they can be regarded as a useful clue, especially when the results they provide
can be co-validated with different evidence.

4.2 The Verification Process (in Iterations)

Our approach is based on a number of successive iterations, each refining the result.
Each successive classification iteration focuses upon the remaining unclassified flows about
which we have the most confidence. In this way, we can accumulate knowledge based on
the highest level of confidence and use this to assist in the classification of data about
which we have lower levels of confidence.

Our approach requires the grouping of the heuristics to each iteration and then ordering of
the iterations based upon the level of confidence we are able to place in the classification
outcome.
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We have derived a set of heuristics of which a core subset is presented here. We consider
this subset contains those heuristics that provide sufficient generality to be useful for a
wide range of applications across different physical sites.

First iteration. Based on the assumption introduced and justified in section 2, we derive
some simple heuristics below.

If the signature matching results for a specific endpoint (i.e., a TCP or UDP server:port
pair) appear to be strongly consistent, we can reasonably assume that we have identi-
fied a particular service on that endpoint. As already noted, there are a few exceptions
to this assumption, but, it works well for many protocols, especially for those with a
well-established signature (e.g., text-based protocols). Several criteria are used to quan-
titatively justify the consistency: thresholds are specified to guarantee that at least a
certain percentage of flows as well as a minimum number of flows have matched a specific
signature. In addition, only a given subset of signatures is allowed to have matched the
flows. For example, it is known that HTTP might appear in BitTorrent traffic as certain
clients use it in some of their communications, but BitTorrent should not appear in the
flows toward a Web server. This constraint is expressed by defining a subset of possi-
ble signatures (which does not include BitTorrent when the heuristic is used for HTTP
traffic). The thresholds are initially set in a conservative way (e.g., at least 90% and 10
flows), and will be tuned in the third iteration. We apply this heuristic for most of the
protocols.

The next heuristics are based on the assumption that flows between the same IP addresses
pair are likely due to the same application. For example, FTP traffic between two hosts
can be easily verified by considering a host that has an already verified FTP service (e.g.,
using the first heuristic) and a number of flows each going to a different high port number
on the same destination address in an incremental fashion. As another example, consider
the HTTPS protocol. In many cases a Web server is running both standard and secure
HTTP services. If a standard HTTP service has been verified on port 80, and a certain
fraction of flows to port 443 matches the SSL signature, then the flows between a hosts
pair can be heuristically verified. Other similar heuristics can be derived for streaming
and VoIP applications: for example, RTSP appear within a TCP control channel while
the data are relayed on a unidirectional UDP stream; instead a VoIP application may use
a SIP session and a bi-directional UDP stream.

Second iteration. A great amount of information can be derived from the host names.
For very popular services (e.g., Google, MSN, eBay), heuristics based on domain names
can be easily defined: e.g., HTTPS traffic to MSN servers is due to MSN messenger instead
of browsers as well as traffic on port 1863. Further, assuming the trace was captured at
the edge of a certain network, specific site information such as the internal services and
traffic policies, can be used to efficiently verify a part of the traffic.

Third iteration. Now we try to lower the thresholds of the previous heuristics by
inspecting the flows on particular hosts which do not match the signature. If those flows
also correspond to the same service application, the threshold can be lowered for those
hosts.

Fourth iteration. In this iteration we consider behavioral characteristics of hosts in
regard to overlay networks, mainly for the identification of P2P traffic. A typical example,
however, is the SMTP traffic which has a strong P2P-like behavior in that SMTP servers
act as both the recipient and the sender of emails. The assumption is that if a host is
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an SMTP server, all the flows generated from this host toward port 25 are mail traffic.
In general, this heuristic is applicable for P2P traffic as long as the information about
the port number can be utilized3 and the assumption of the heuristic can be validated.
In our experience, for example, there is a large number of eDonkey flows which can be
identified using port 4662 and for BitTorrent on the port 6881. It is also possible to use
this heuristic for instant messaging networks, for example, Windows Live Messenger uses
the port 1863. This heuristic can re-iterate through the data set until no new flows are
discovered.

Additionally, for P2P applications that use dynamic port numbers, we resort to a heuristic
that considers the host activities and the relationship with the a certain application’s
overlay network. The idea here is to select an initial set of peers which are known to
run a certain P2P application. For example there are already some P2P nodes identified
in the first iteration, and some Skype clients identified in the second iteration using the
information of centralized login servers Then, for each identified peer, we consider the set
of hosts that it communicates with. We select the subset of hosts corresponding to the
intersection of all these host sets. Lastly, we identify hosts that are likely peers by applying
a threshold (e.g., ≥ 3) on the host’s connection degree (i.e., how many peers are connected
to this host) and selecting those hosts that do not have other conflicting activities (e.g., if
they run multiple P2P applications). For Skype, we also consider whether a host receives
TCP connection on ports 80 and 443 plus a high number chosen at random, as this is a
strong peculiarity of this application.

Fifth iteration. From our experience, at this iteration only a small number of payloaded
flows remain. User-defined heuristics can be derived according to the specific applications
in the analyzed trace, or to the particular behaviors that might be found through manual
inspection.

Also, based on information of the already verified hosts in the data set, one can start to
label the incomplete TCP flows and unknown UDP flows, using the assumption on the
sub-tuple consistency in Section 2.

So far, the heuristic rules have greatly reduced the time to verify the data, although
manual verification of a small amount of remaining traffic is still necessary, especially for
the identification of new applications.

Table 2 summarizes the total traffic breakdown as we verified it. Table 3 shows the partial
results measured at the end of each iteration, which are graphically presented in Figures 3
and 4 for two metrics: flows and bytes, respectively. Figure 5 reports the evolution of
completeness for clients and servers during each iteration. As can be seen, a very small
number of clients are responsible for the 2,041 unknown flows toward 1,736 servers. In
this case, these hosts happen to simultaneously run several P2P applications and we are
not able to determine a final conclusion on the specific application.

Finally, we evaluate L7’s accuracy based on the obtained ground truth. Table 4 shows
per-class false negatives and positives. Signatures do not significantly over match, yielding
to very few false positives. However, with the exception of web-browsing class, all classes
exhibit many false negatives. This is due to two major factors: underspecified signatures
and obfuscated traffic. In both cases, our method can exploit information about traffic
aggregates to derive the actual application and produce accurate ground truth.

3Despite many P2P hosts using non-standard port numbers, we still observe that many P2P nodes

still use the well-known port numbers.
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Class Flows Packets Bytes [MB]
email 10,871 808,272 470.55
ftp 555 894,805 838.22
gaming 150 2,882 0.47
im 506 21,036 4.18
malicious 4,008 62,259 5.30
p2p 17,851 1,125,766 685.43
remote 317 135,735 109.26
services 618 16,675 9.22
streaming 11 17,815 16.33
voip 1,043 52,020 11.92
web-browsing 212,432 7,630,649 4,889.80
unknown 2,041 112,840 52.66

Table 2: Traffic breakdown by class.

Class
Number of flows by iterations

1st 2nd 3rd 4th 5th
email 7,225 8,743 9,439 10,420 10,871
ftp 555 555 555 555 555
gaming 0 108 108 108 150
im 65 503 505 505 506
malicious 0 0 0 0 4,008
p2p 12,046 12,046 12,728 17,708 17,851
remote 254 254 254 254 317
services 466 604 610 610 618
streaming 0 2 8 8 11
voip 0 121 121 1,042 1,043
web-browsing 207,888 208,313 211,522 211,522 212,432
unknown 21,904 19,154 14,553 7,671 2,041

Table 3: Evolution of verification completeness by iteration.
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Class
False negatives [%] False positives [%]

Flows Packets Bytes Flows Packets Bytes
email 25.99 22.33 21.75 0.00 0.00 0.00
ftp 81.26 99.53 99.97 0.00 0.00 0.00
gaming 100.00 100.00 100.00 0.00 0.00 0.00
im 74.90 79.60 81.78 0.00 0.00 0.00
malicious 100.00 100.00 100.00 0.00 0.00 0.00
p2p 16.75 16.65 14.67 0.34 1.85 2.10
remote 18.93 0.52 0.04 0.00 0.00 0.00
services 98.54 99.48 99.94 0.00 0.00 0.00
streaming 27.27 0.15 0.02 0.00 0.00 0.00
voip 100.00 100.00 100.00 0.00 0.00 0.00
web-browsing 0.29 0.42 0.40 0.42 0.52 0.27

Table 4: Evaluation of L7’s per-class accuracy.

4.3 Discussion

Here, we have focused on describing the verification of application traffic. The verifica-
tion processes of malicious and unwanted traffic can similarly be based on their specific
patterns.

One can see that the first-time use of GTVS on any given trace will often require the
inspection of small segments of data throughout the process, in customizing and testing
new heuristics, dry-runs, tuning thresholds and final manual decisions on hard objects.
However, if one is carrying out a continuous ground truth collection work on a specific site
or on many sites simultaneously, time would be further saved as we expect only limited
tuning and validation are needed.

Since this framework will become publicly available, we envision it will also be easier to
share the knowledge within the community: not only the protocol signatures but also the
heuristics and application-specific knowledge will become a public resource.

We also note that the confidence of the ground truth verified by GTVS relies mainly on
its user. Therefore to collect good ground truth requires sufficient user interactions and
dry-runs to double-confirm the user’s judgments.

5 Classifying HTTP Traffic

The Hyper-Text Transfer Protocol (HTTP) is perhaps the most significant protocol used
on the Internet today. Traditionally, the HTTP has played a fundamental part in the
Web-browsing activities (e.g., publishing, searching, advertising), however the growth of
network computing, web applications and services have expanded its role beyond user-
driven web browsers, while increasing the number of applications that use HTTP for a
variety of functions.

This is largely thanks to the request-response paradigm between a client and a server
for which HTTP was defined. Such a paradigm is robust and flexible enough to allow
most kinds of data transmission tasks besides the fundamental Web-browsing activities.
Also, a HTTP client is handy to implement and can be easily embedded in any software
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Data Set Web servers Distinct client HTTP HTTP bytes
applications connections [MB]

Day1 2137 113 50,002 695
Day3 2509 232 105,813 1,950

Table 5: Number of servers, applications, connections and bytes in the traces.

to display advertisements or to send or retrieve data in a light-weighted way. Such dual
property of HTTP has led to a rise of several phenomena, such as:

Non-Web Activities over HTTP. HTTP has accommodated remarkably more differ-
ent kinds of activities than Web-browsing, for example sending and receiving email, file
downloading and sharing, instant messengers and multimedia streaming, as long as they
can follow the request-response paradigm. Some of them were using a web interface, while
many others blend the traffic into HTTP traffic in order to gain market advantages, data
transmission priority or at least to be allowed by firewall rules.

Embedded HTTP Clients. Applications not related to web-based activities would also
use HTTP for a secondary function, for example: advertiser sponsored software retrieving
advertisements or an operating system automatically checking for updates.

Unlike works that characterize an individual new component in the HTTP traffic such
as [19], we are interested to explore the increasing variety of application activities over
HTTP, such as advertising, crawlers, file downloads, web-based applications and news
feeds, and analyze the evolution of the usage of HTTP. From these analyzes, we aim
to (i) understand the growth of the HTTP traffic, (ii) illustrate in depth how HTTP
is being used on the current Internet and (iii) describe the use of payload indicators
that can reveal the actual purpose of an HTTP connection. We consider this work as a
contribution to the understanding of the Internet evolution through a measurement study.
In common with [19], we conclude that this work has to be done on a continual basis.
A clear opportunity exists to spot the future trend in the traffic models, social network
models and economic models of the next generation Internet.

5.1 Method

Data

To analyze the application activities within the HTTP “traffic-mix” as a whole, we col-
lected a half-hour trace at around 11 AM of a working day in late 2006 (referred to as
Day3) from the edge of a research-institute network and compare it with a trace collected
at a similar time from the same network in 2003 (called Day1). The research facility
has about 1,000 users and is connected to the Internet via a full-duplex Gigabit Ethernet
link. We monitored the bi-directional traffic on its link to the Internet. We study the
connections over HTTP, excluding connections which use an extended HTTP protocol
specific for some P2P file sharing applications. The HTTP traffic is identified based on
packet content and host knowledge using GTVS, regardless of port numbers. The traces
are listed in Table 5. The number of distinct client applications is estimated from the
user-agent field and excluding different versions of the same application.
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Class Activities Signatures from
Web-browsing visiting web pages using a web

browser
Method + URL + User Agent
+ Content Type

Web app applications via web interface:
e.g., Java applets, web gad-
gets, and a variety of software

URL + User Agent

Crawler bots crawling web pages User Agent
File download file downloading over HTTP URL + Content Type + User

Agent
Webmail web-based e-mail service Host name
Advertising advertisements on a web page

or embedded in software
Host name + Content Type

Multimedia streaming media or viewing
media files on web pages

URL + User Agent

SW update software update over HTTP
(both automated and manual)

Content Type + User Agent

News feeds RSS feeds URL + Content Type
Link validator automated link validators User Agent
Calendar calendar application based on

web, e.g., ical, gcal
User Agent, Host name

Attack malicious traffic over HTTP User Agent + Url
IM Windows Live Messenger User Agent
Monitoring network monitoring User Agent

Table 6: Heuristics to identify different HTTP traffic classes.

Classification

Within the traces, we discovered many different applications and purposes over HTTP. We
try to categorize the traffic into a number of classes based on its purpose. There are several
key fields in HTTP headers that can reveal the client and the activity information of a
connection, including the request method, host name, URL of the target object (which
often includes the file name of the object), content type, and the user-agent [20]. An
individual field may not be sufficient: for example, each different type of user-agents tells
us of a different application, but there are many applications which tend to use default
browser settings. However, through manual payload inspection, we are able to derive
a number of heuristics to classify the majority of the traffic using a combination of the
signatures in these fields. These signatures are manually derived from trace payload and
online resources such as [21] and will have minimum false positives but may contain some
false negatives for other categories than Web-browsing. Table 6 describes the activity
classes as well as the signatures we use to identify them.

5.2 Results

We compared the total bytes in each HTTP traffic classes in the two traces, as shown in
Table 7. While the whole HTTP traffic increased by 180%, Web-browsing and Crawler
both increased by about 108%. However, several classes have seen a sharp rise: Web app,
File download, Advertising, Webmail, Multimedia, News feeds and IM. Further, the Day3
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Class
Day1 Day3 Day1:Day3

[KB] [%] [KB] [%]
Web-browsing 506,109 71.11 1,052,879 52.71 1:2.08
Web app 22,063 3.10 317,204 15.88 1:14.38
Crawler 143,440 20.15 296,048 14.82 1:2.06
File download 24,817 3.49 232,878 11.66 1:9.38
Webmail 5,418 0.76 43,319 2.17 1:8.00
Advertising 3,804 0.53 28,962 1.45 1:7.61
Multimedia 1,949 0.27 10,627 0.53 1:5.45
SW update 3,583 0.50 8,140 0.41 1:2.27
News feeds 336 0.05 6,108 0.31 1:18.18
Link validator 157 0.04 439 0.02 1:2.79
Calendar 0 0.00 324 0.02 1:∞
Attack 0 0.00 232 0.01 1:∞
IM 1 0.0001 211 0.01 1:222.82
Monitoring 24 0.003 26 0.001 1:0.92

Table 7: Traffic volume comparison between Day1 and Day3.
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Figure 6: Day3 HTTP traffic breakdown.

HTTP traffic breakdown is shown in Figure 6, in which the Web-browsing component only
constitutes of no more than 53% of the HTTP traffic.

6 Related Work

The lack of carefully verified traffic traces is publicly recognized as a major obstacle for
much interesting research. A recent call to arms has been issued by Salgarelli et al. in [22].

On the technical aspects, our work can be seen as a cumulative progress, with lots of
inspirations from previous traffic classification works, including [6, 7, 14, 16, 17, 23]. Each
of these works made use of a different set of information sources, which are combined in
our framework.

A content-based classification scheme comprising of nine identification methods was pre-
sented in [5]. Despite their highly accurate and complete results, there was not a sys-
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tematic infrastructure or an indication of how the procedure can be efficiently organized.
Thus a barrier still exists preventing other people from repeating their method. Further,
the work presented here uses a broader set of information sources.

In [24], the authors suggested a technique based on active measurements to cover the
shortage of ground-truth data. Their system includes a modified network driver (to be
executed on the end-hosts) that extends outbound IP packets with the Router Alert
option field. This field, which is said to be transparent for routers and end-hosts, is
used to mark each packet with the first two characters of the corresponding program
name. The mark makes it possible to differentiate traffic using just a packet header field.
However, two characters of the program name are not enough to avoid name aliasing that
would be very undesirable for application-specific service differentiation. Furthermore,
the marking operation increments of four bytes all packets except those whose size is the
MTU (Maximum Transfer Unit). Therefore, the resulting traffic is altered and classifiers
trained from this traffic will implicitly see untrustworthy packet sizes for one direction of
the flows.

Specific to the classification of malicious traffic through pattern recognition techniques,
is the work presented in [25]. The authors described a self-training architecture for au-
tomatically building a database of labeled traffic traces. They also showed that NIDSes
trained on such a database perform approximatively as well as the same systems trained
on correctly labeled data. However, in their method each packet is labeled either as
normal or as an attack. This is not sufficient to express the multi-class traffic composi-
tion for application identification purposes, although their approach might be used as an
additional information source in our methodology.

7 Conclusions

In this paper, we presented the novel Ground Truth Verification System (GTVS). A
detailed guide is shown on how to use GTVS to accelerate the verification process, as
well as the results by iterations from a case study of real traffic. Further, we are publicily
releasing this system and our rule sets at http://www.cl.cam.ac.uk/research/srg/

netos/brasil/.

It is hoped that it will substantially save the time and labor for individual researchers,
and more public data with ground truth labels may subsequently become available to the
community in the near future.
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