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Abstract

The focus of this thesis is to develop techniques that opéimoth the speed and
accuracy of a unification-based statistical GLR parser. él@n we can apply these
methods within a broad range of parsing frameworks. We finstta optimise the
level of tag ambiguity resolved during parsing, given that @mploy a front-end
PoS tagger. This work provides the first broad comparisoragfmiodels as we
considerboth tagging and parsing performance. d¢namicmodel achieves the
best accuracy and provides a means to overcome the tradetofeen tag error
rates in single tag per word input and the increase in paré&éganty over multiple-
tag per word input. The second line of research describesel nwdification to
the inside-outside algorithm, wherebwltipleinside and outside probabilities are
assigned for elements within the packed parse forest daitste. This algorithm
enables us to compute a set of ‘weighted GRs’ directly frora #iucture. Our
experiments demonstrate substantial increases in parseraay and throughput
for weighted GR output.

Finally, we describe a novebnfidence-baseadaining framework, that can, in prin-
ciple, be applied to any statistical parser whose outpwfimdd in terms of its con-
sistency with a given level and type of annotation. We derratesthat a semisu-
pervised variant of this framework outperforms both Expgoh-Maximisation
(when both are constrained by unlabelled partial-branggtand the extant (fully
supervised) method. These novel training methods utiléda alitomaticallyex-
tracted from existing corpora. Consequently, they requirenanual effort on be-
half of the grammar writer, facilitating grammar developre
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Chapter 1

Introduction

This thesis develops new parse selection models and tgaalgorithms to improve parsing
accuracy and efficiency of an existing and well-developgdmaalanguage parser. This chapter
first describes, in 8.1, the problem ohatural language parsingorocessing raw text to provide
a linguistic analysis of the text's meaning. The work in tthesis utilises and modifies an
existing well-developed parser namRASP We discuss RASP’s research backgroundlir28
and describe the resources available for use throughout.8 &inally, in 8l.4 and 8.5we
describe the contributions of this thesis and provide amvoew of the chapters to follow,
respectively.

1.1 Natural Language Parsing

In this section, we first define the problemrdtural language parsingln particular, we fol-
low previous work and define the problem as a supervisedilgatask. We discuss current
statistical approaches to parsing and the current statieeedrt performance for this task.

1.1.1 Problem Definition

In natural language processingparseris a computer program capable of analysing a string
of words that form a well-formed sentence to determine aableétgrammatical structure: a
parsell Parses can be represented in a number of wayparme tree(or syntactic tree
tree, henceforth) represents the syntactic structuredaf parase (e.g. verb, noun or adjective
phrases).Grammatical relationfGRs, or relational dependencies) represent the gramrhatica
roles of different words in the sentence (e.g. subject,atpjdhe parser'grammareffectively
provides a mapping from word strings (i.e. terminals of th@ngmar) to the set of possible
parses. For example, in context-free grammars (CFG) thergearspecifies syntax using sim-
ple rule rewrites to build a syntactic tree over a sentence u¥¢ the terms analysis, derivation
and parse interchangeably and consider the specific ouputats as independent, given the
analysis determined by the parser. For example, for theeseaetThe dog barkedour extant
parser outputs the tree and GRs in Figiire

The problem ofparse selections to choose the correct parse from the set of all possi-
ble parses. This task is nontrivial as large numbers of parae result due to ambiguities in
structural attachment and interaction between rules igtaenmar. As a result, researchers
have favoured statistical techniques wherebyiost probable parsis assumed to be correct.

Llparsers optionally includesentence detectiamomponent that marks the sentence boundaries within the raw
text.

13



14 1. INTRODUCTION

TAGGED SENTENCE: (The_ AT dog_NN1 bark+ed_VVD)

TREE: (T/txt-scl/- T/txt=scl/-
(S/np_vp
(NP/det_n1 S/np_vp
The AT
(N1/n dog_NN1)) A
(V1/v bark+ed_VVD))) NP/det_n1 ViN

GRs: (ncsubjbark+ed_VVD dog NN1_)  The AT Nijn  bark+ed VVD
(det dog_NN1 The_AT)

dog_NN1

Figure 1.1: Tree and GR parser output for the sentdriee dog barked TAGGED is the
preprocessed part-of-speech (PoS) tagged sequencedaetitience. The GR typest and
ncsubj correspond to determiner and nonclausal subject relatrespectively. Note that the
labelled bracketing for the tree (TREE) corresponds to tiiesyic structure on the right.

Thus, parse selection is often the taskpafse rankingwhere parses are ranked from most to
least probable and the first parse is considered correct isinifeasible to output all possible
parses, parsers output only thiighest ranked parses (thebest list).

1.1.2 Corpus-based Estimation

In order to learn the probability distributions of the sttital component of the parser, we
often base the distribution on an electronic and structtegt] acorpus This task is often
supervisedn that the corpus, i.e. training data, will contain exanspbé raw text paired with
the full and correct analysis. A parse ranking model shoelgble to model and generalise
from the underlying linguistic preferences of the corpdsmain(e.g. newswire text). That
is, a parse ranking model should model thderlying distribution(UD) which generates the
domain’s linguistic preferences, whereby the primary aggion made is that thisaining data

is representative of the domain. Arguably, learning the WBranore homogeneous domains is
easier than over broader domains.

The parser is applied to sentences (or raw text) terrestddata Ideally, both the test and
training data are drawn from the same domain, whereby theirigadata is considereuh-
domain In contrast, the data may instead du#-of-domain Therefore, overfitting the UD is
undesirable, though generalisation or inductive bias in@sapable of capturing the underlying
preferences manifest in this distribution.

As we aim to model the UD, training over in-domain data hassewn to outperform
models trained over out-of-domain dat&ildea (200)) illustrates that training and testing
Model 1 of Collins (1999 on two different corpora reduces parsing accuracy sigmifig.
However, training over both corpora slightly increasesusacy when testing on either cor-
pus. This illustrates the need for a balanced training cotpat can potentially generalise well
to unseen domains. Even small levels of in-domain data haee Bhown to improve parser
accuracy. For exampl8adayoshiet al. (2005 adapt a statistical parser trained on newswire
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text to the biomedical domain by retraining on the Genia Cerpuugmenting a parser, trained
initially over a different domain, to model the preferencésanother is often referred to as
parser tuningor domain adaptation

We first define parsing in terms of a supervised learning taskhich we aim to induce the
function f : X — Y, given training example&, ye), X € X,yc € Y. We definef(x;) € Y as the
selected candidate far, wherey, is the correct candidate for training exampl& he function
f utilises the functiorGEN to determine set of possible candidatesxore. GEN(x) C Y.
In parsing,x € X is thei-th sentenceyij € GEN(x;) is the j-th parse for theé-th sentence and
yc € Y is the correct analysis. Ag is often a syntactic tree, such corpora are also referred
to astreebanks The functionGEN(x;) creates the compact data structure that represents all
possible parses for sentenge The size of this structure depends largely on the compl@fit
the particular parser's grammar.

1.1.3 Statistical Approaches

For probabilistic approaches to parsing, we utilise theesuped learning task framework,
which assigns a probability to each paggec Y for sentencei. We utilisey;; to denote an

arbitrary parse, ang. to denote the correct parse, for the senteqicéVithin statistical parsers,
the most probable parse is selected as the best candidalbe foorrect parse:

f (%) = argmay, ccen)Pr (X, Yij)

Statistical parsing models incorporate structural antigical parametersféature3 over
yij that aim to include sufficient context to allow the model tarteand reflect linguistic pref-
erences. Models differ in their choice of such features &edftinctionPr, which is used to
estimate the importance of features in relation to one amo#pproaches can be separated in
a variety of ways. We considgenerativeor discriminativeand parametricor nonparametric
approaches. Following, we review current parsing model®ims of these types and their
training criteria, and discuss the types of features theyleyn

Training

Generative models defirer using a joint probability modelP(x;,yij). Such models arpara-
metricin that they utilise a specific set of features; each with aoasated weight, where the
probability of a parse is based on the product of the cormedipg features multiplied by their
associated weights. These models arehellory-basedparsing models, as defined Bjack
et al. (1991), whereby a parse’s probability is the product of the prdiiags for each decision
which results in creation of the parse. For example, in agdistic CFG (PCFG) model, the
features represent the count of each CFG rule applied, wigleveights represent the prob-
ability of the corresponding rule. The predominant methbttaining generative parametric
models is to use maximum likelihood estimation (MLE) withsanoothing’ method to allow
for unseen data. MLE assigns the weights of the model so asxamse the total probability
of all parses in the training data.

In parametric discriminative model®r is the conditional likelihoodP(yij|xi). That is,
we model the probability only in terms of other parses forgbatence. These conditional
probability models (such as log-linear models) utiliseatie training schemes to ensure they
maximise the log-likelihood of the training data and to cemgate for dependencies amongst
features. In either case, for any given sentence in the spthe MLE training criteria does
not ensure that the likelihood of the training parse is gmetitan that of incorrect (competing)
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parses. Nevertheless, conditional models are populaeititdrature, having led to impressive
ranking results when combined with large feature sets (ghgrniak & Johnson 200%lark &
Curran 2004p

In contrast, nonparametric models aim to directly diffeéiae between incorrect and correct
parses for a given sentence. Thus all such models are disative andPr is replaced by,
for example, margin length values in maximum-margin apginea. Nonparametric approaches
such as boosting, SVMs, and (variants of) the Perceptramitign have also yielded impressive
results (e.gCollins & Duffy 2002 Kudoet al.2005 Shen & Joshi 2004 However it is unclear
whether the different training criteria, or the number ayget of features, provide a greater
gain in accuracy.Collins & Roark (2004 report similar accuracy results for both parametric
and nonparametric models over the same feature sets. Fadies nonparametric models are
harder to train using either semisupervised or unsupeteehniques.

Models also differ in the way in which the underlying gramnmatearnt. The statistical
model can be learnt over a manually written grammar, or tlaengnar may be explicitly or
implicitly learnt over a supervised corpus. Thus, to createroad-coverage parser, manual
effort is required mainly to write the grammar or create tbgpas. Though some approaches,
such as ‘U-DOP’, an unsupervised variant of the ‘DOP’ paysitodel, assume no grammar is
available and instead assume a binary branching unlalde@&ds grammargod, 2006.

Feature Spaces

PCFG models are widely acknowledged in the literature aseiqpaate due to their lack of
context. Conversely, other parametric models such as the mafel Bod, 1998 should be
able to model the UD accurately given explicit tree and seéfeatures. We can think of the
level of context available (whether implicit or explicit the model) to lie on a linear scale. At
one end of the scale there are context-free models like PCHh &t the other end we place
full (sentential) context models like DOP. In general, weusse that the number of feature
types and instances in a model is directly proportional ¢éolétwel of context considered. Thus
as we move along this scale, increasing the level of contextjecrease the level of bias, that
Is, the model is less likely to underfit the data. However th®ults in an associated increase
in the number of features where the model is more likely tafivihe data; the ‘bias versus
variance’ trade-off.

Collins (2004 highlights that due to convergence requirements and tal axeertraining,
the number of training samples should be proportional tcstbe of the feature space. There-
fore, we should only include as many features (or as mucheggnas is optimal to ensure
effective generalisation. Both nonparametric and conaiitionodels are valued for their ability
to incorporate a large number of (possibly dependent) feat’ hese features are usually either
n-gram statistics or CFG(-like) rules labelled with a vagyamount of additional structural and
or lexical context. Therefore, the latter set of featuresBOP-like’ in that they model context
with features resembling subtrees (optionally labelletthwaxical information).

However, the large number of lexical features (includingram statistics and lexicalised
structural features) do not generalise well to other domaiildea(200J) illustrates that re-
moving bilexical statistics (derived from the WSJ Corpus)rirModel 1 of Collins (1999
decreases performance by less than 1% over the WSJ whilepearioe was unaffected when
testing over the Brown Corpus (we describe these corpora.BiB. Similarly, Klein & Man-
ning (2003 argue that lexicalised parsing models achieve around 486late improvement
over unlexicalised models trained and tested on the \BiRél (2004 illustrates that the bilexi-
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cal parameters of Model 2 @ollins (1999 contribute less than 0.5% accuracy, while removing
all of the lexical features results in a 3% decrease in acgundnen training and testing over
the WSJ.

Further, efficiency is an important issue for real-world lagggions. All nonparametric and
conditional models are reliant on an initial generative gldd define the space of competing
parses, thparse forestMany also require the initial set of candidate parses fiogrparametric
model to rerank (e.gCollins & Duffy 2002 Kaplanet al.2004 Kudoet al.2005. Suchrerank-
ing parsing models separate the parsing and selection phaseghtsome include the initial
generative probability as a feature of the discriminativlel e.gCollins & Roark(2004). Itis
often impracticable to unpack all parses, though we wolddlig like to provide the reranking
model with the set of all candidate parses if this model iseramcurate. Specifically, there is
a trade off between efficiency and accura®pllins & Roark (2004 define a more efficient
dynamic programming approach to enable their nonparacniodel to train over and rerank
all parses. However this model is only able to consider afsetcal features, available at any
node in the parse forest. This precludes many of the nonfeatdres that can only be applied
to an entire parse.

State-of-the-art Performance

Comparison of parsing systems is hampered, as performanegdded for parsers trained on
different treebanks, tested over different test suitesematliated using a number of evaluation
schemes (depending on the parser’s preferred output: t@Bs). Comparison of performance
over GRs is further complicated as parsers extract GRs witiroh levels of granularity.

Currently, parsers considered state-of-the-art are ofsened and tested on the WSJ and
favour the application of highly lexicalised probabilesthodels. These models report precision
and recall PARSEVAL score8(acket al., 1991 of around 90% (e.gCharniak 2000Collins
1999 Ratnaparkhi 1999 However, the WSJ is arguably a more homogeneous and simpler
corpus than other corpora, such as the Susanne treebanklueerRASP is trained.

Briscoe & Carroll(2006 compare RASP’s performance to that of the XLE parseKaplan
et al. (2004 and of Model 3 ofCollins (1999. Though the comparison is nontrivial, they
illustrate that RASP is substantially faster than both parsegith parser accuracy higher than
that of the Collins’ parser and ranging between ‘cut-dowargmar’ and ‘complete-grammar’
XLE systems. Further RASP is trained over a subset of the BrowpuSothat is, an out-of-
domain training set. Therefore, RASP’s accuracy and effogienarguably state-of-the-art.

Discussion

Nonparametric models which aim to directly differentiaderect from incorrect parses are com-
plex to train and often inefficient to decode. Nevertheld#ssy are currently popular because
of their ability to accurately model the UD and ensure thatghobability (or score) of correct
parses exceeds that of competing incorrect ones for taimputs. Other recent parametric
models, such as log-linear models, are also complex to &adhinefficient to decode. How-
ever, if compared to nonparametric models using the santeréesets and training data, they
produce similar ranking accuracy (e@ollins & Roark 20043.

Generative parametric models capable of direct MLE areeciy disfavoured because em-
pirically their performance has been worgriscoe & Carroll(1993 demonstrate that a gen-
erative probability distribution defined over the actiof@gnondeterministic) generalised LR
parser (GLR;Tomita 1987 provides additional context to the ranking model obtaifrech a
standard PCFG. Further, the parser retains advantages ssangle estimation and efficient
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decoding. In this thesis we utilise this GLR parser, in seacparametric models that can
be easily trained and efficiently decoded and which readilypsrt semisupervised training
techniques.

1.2 Research Background

RASP resulted as part of the tool-set developed within theeAINatural Language Tools
(ANLT) for English at the University of Cambridge funded byetblK Alvey Programme. The
parser is a generative (parametric) model based on the GirfRefrvork.1-2

RASP (the ‘robust accurate statistical parser’) is a sththeart system for text processing
distributed freely for research purposeslt is a set of pipelined modules for sentence boundary
detection, word tokenisation, part-of-speech tagging symdactic parsing which recovers the
grammatical relations between words, phrases and claugsdividual text sentences. The full
(Lisp and C) code base runs to several hundred thousand MMiessRASP system, described
by Briscoe & Carroll(2002), has been downloaded by over 160 groups. This paper, Oeggri
the first release, has been cited 147 times (Google Schol@8/D%) in descriptions of further
research utilising RASP by researchers in the UK, Europe UfeAustralia and Asia. It
has been used to automatically annotate over 1 billion wofdsnglish text in the context
of published work developing lexical databases, quesdimswering systems, text classifiers,
information extraction systems, summarisers, and so.fditle second release of this system is
described byBriscoeet al. (2006.

1.3 Available Resources

This thesis is the result of research conducted at the Compat®ratory of the University
of Cambridge, under the supervision of Professor E.J. Brisgbe co-developed RASP. As a
result, this work benefits from direct access to RASP’s gramomle and all associated pro-
cessing components. RASP is utilised in a number of reseajbgbs both within the Com-
puter Laboratory, and in other universities and in comna¢qiojects. As a result the grammar,
associated processing components and also evaluatiomssheere developed, and thence,
varied throughout the life of this work. The data and evamaschemes used throughout this
work are described in the following sections. Results in eghent experimental chapters are
comparable within their respective chapters only due tangba that occurred in the grammar
and/or evaluation framework.

1.3.1 Corpora

The following sections describe data in use throughoutioik as training, tuning or test data.
The treebanks we use in this work are in one of two possibladts. In either case, a treebahk
consists of a set of training instances. Each training ntgac T is a pair(s,M), wheresis the
automatically preprocessed sentence text (tokenisechbetled with PoS tags, se8.8) andM

is either a fully annotated derivatioA, or an unlabelled bracketing. This bracketing may be
partial in the sense that it may be compatible with more thenderivation produced by a given
parser. Although occasionally the bracketing is itself ptate, the alternative nonterminal
labelling causes indeterminacy. Often the ‘flatter’ brdicigeavailable from existing treebanks
Is compatible with several alternative ‘deeper’ mostlydmyrbranching derivations output by a

L2\ provide details of this framework, and specific detailthefRASP system, in the following chapters.
l'SSeEhttp://www.informatics.susx.ac.uklresearch/nlp/rasp/ for license and download details.
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parser.
Susanne Treebank

The Susanne Corpus (henceforth, Susanne) is a balanced stiise Brown Corpus which
consists of 15 broad categories of American English teSasr(pson1995. This treebank con-
tains detailed syntactic derivations represented as,tbeshe node labelling is incompatible
with our system’s grammar. Figude2 illustrates an example sentence from the corpus. The
RASP developers built two system-compatible corpora froma8oe, a bracketed corpus and
an annotated corpus.

To build the bracketed corpus, sentences were extracted $uasanne and automatically
preprocessed. A few multiwords were retokenised, and théesees were retagged using
RASP’s PoS tagger. The bracketing was then automaticallydaterministically modified
to more closely match that of RASP’s grammar. This pipelirsilted in a bracketed corpus
of 7014 sentences. Figufie3illustrates the corresponding bracketed corpus traimstance
extracted from the original annotation in Figute2 The first item (line) is the preprocessed
word-stems with the corresponding PoS tags (determinedjube original word rather than
the stem). The second line provides unlabelled bracketnegthe words of the sentence.

A01:0700a - APPGm  His his [S[Ns:s.
A01:0700b - NN1c petition  petition .Ns:s]
A01:0700c - VVDv charged charge [Vd.vd]
A01:0700d - JJ mental mental [Ns:0.
A01:0700e - NN1n cruelty  cruelty  .Ns:0]S]
A01:0700f - YF +, - 0]

Figure 1.2: Example sentence from Susanne. The third colllustrates the PoS
tag while the fourth and fifth column show the word and worehlstrespectively.
The final column illustrates the syntactic structure of thtence.

his APP$ petition_NN1 charge_VVN mental_JJ cruelty NN1 .
((his petition) charge (mental cruelty))

Figure 1.3: Example bracketed corpus training instanaa féoisanne.

A fully annotated and system compatible treebank of 480ditrg instances (3543 of which
are unique) from this bracketed corpus was also created. sy$tem parser was applied to
construct a parse forest of analyses which are compatilbetia@ bracketing. For 1258 training
instances, the grammar writer interactively selectedemiisub)analyses within this set until a
single analysis remained. The remaining 2285 trainingimsts were automatically parsed and
all consistent derivations were returned. Since the btagkés consistent with more than one
possible derivation for roughly two thirds of the data, tl2&8 training instances were repeated
twice so that counts from these trees were weighted mordyhigrhe level of reweighting
was determined experimentally using some held out data 8osanne. Even given the partial
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(his_APP$ petition_NN1 charge_VVN mental_JJ cruelty NN1 )
(T/txt-sc1/-+
(S/inp_vp (NP/det_n1 his_APP$ (N1/n petition_NN1))

(V1iv_nl1 charge VVN

(N1/ap_n1/- (AP/al (Al/a mental_JJ)) (N1/n cruelty_NN1)) )
(End-punct3/- ._.)

Figure 1.4: Example annotated corpus training instanae Bosanne.

bracketing derived from Susanne, the costs of derivinguhg &nnotated treebank are high, as
interactive manual disambiguation takes an average of teates per sentence.

Returning to our previous example, Figutel illustrates the fully annotated training in-
stance. Again, the first line contains the preprocessedvibié the second element (subse-
guent lines) correspond to the fully annotated derivatiat will be directly compatible with (a
specific version of) RASP’s grammatr.

Grammar Development Treebank

The grammar development treebank (GDT) is an annotatedispgplist of around two thou-
sand manually maintained sentences paired with correstatiens. Figurel.5 illustrates an
example annotated training instance from the GDT. Eachitrginstance consists of a pair; the
preprocessed text and a corresponding derivation whicbrigoatible with the current version
of RASP’s grammar. The GDT does not include useful frequenfiyrimation as, in general,
each grammatical rule occurs in derivations as many timas s=quired to illustrate its in-
teraction with other rules to define the linguistic coverafi¢he system. Furthermore, these
sentences are short and relatively artificial, having begrsttucted by the grammar writer to
elucidate coverage and minimise ambiguity.

(The_AT technology NN1 is_VBZ long_JJ in_Il the AT tooth_ NN1)
(T/xt-scl/--
(S/np_vp (NP/det_n1 The_AT (N1/n technology NN1))
(V1/be_ap/- is_VBZ
(AP/al
(Al/a_pp long_JJ
(PP/p1
(Plp_np in_lI
(NP/det_n1 the AT (N1/n tooth_NN1)))))))))

Figure 1.5: Example annotated training instance from th& GD

Wall Street Journal

The Penn Treebank (PTB) is a corpus of over 4.5 million word&rakrican English iMarcus
et al, 1993. The corpus has been annotated with PoS tags and arourfthlsdieen annotated
with skeletal syntactic structure. As this corpus is thg@éat treebank available for English,
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(S
(NP-SBJ (DT The) (JJ new) (NN rate))

(VP (MD will)
(VP (VB be)
(ADJP-PRD (JJ payable)
(NP-TMP (NNP Feb.) (CD 15)))))

)

Figure 1.6: Example sentence from section 2 of the WSJ. Bracketlabelled
with the phrasal category or with the PoS tag for each word.

The_ AT new_JJ rate_NN1 wil VM be VBO payable_JJ Feb. NPM 115 MC ..
((The new rate) (will (be (payable (Feb. 15)))) .)

Figure 1.7: Example bracketed corpus training instanaa ftiee WSJ.

the Wall Street Journal (WSJ) sections of the Penn Treebar®)(&e employed as both train-
ing and test data by many researchers in the field of staigiersing. The annotated corpus
implicitly defines a grammar by providing labelled brackgtover words annotated with PoS
tags. An example annotated sentence is shown in Fiyére

We extract the unlabelled bracketing from all sections ef\SJ, including those for the
de facto standard training sections (2-21 inclusive). Tipelme is the same as that used for
creating the bracketed Susanne corpus. However we do rarhatitally map the bracketing
to be more consistent with the system grammar. Instead welhsiramove unary brackets.
The de facto training set is compiled to form a bracketed u®igf 38,329 training instances.
Figurel1.7 shows the resulting bracketed treebank training instamcté corresponding WSJ
sentence shown in Figufe6.

Parc 700 Dependency Bank

King et al. (2003 describe the development of the PARC 700 Dependency Bank]da go
standard set of relational dependencies for 700 sentemaas cat random from section 23
of the WSJ (the de facto standard test set for statisticaiqggrBriscoe & Carroll(2006 parse
the corpus with RASP (and manually correct the output if nexfl); to create a doubly anno-
tated data set, enabling (nontrivial) comparison of RASH wther state-of-the-art statistical
parsers. Figuré.8illustrates an example sentence from the resulting corpiisheth parser’s
annotation.

We test our parser on the same 560 sentence subset (DepBao&fdréh) thaKaplanet al.
(2004 utilise in their study of parser accuracy and efficiencylddm otherwise stated we utilise
DepBank without gold standard PoS tagging, that is, we appiyeatire automated pipeline
including PoS tagger. A gold standard named-entity (NE)kaugr for DepBank was provided
by Stephan Riezler, co-author Bfaplanet al. (2004. The gold standard RASP annotation
over the NE markup was also developed in the format showngarEiL.8. Thus there are two
gold-standards for DepBank, one with and one without NE nugurk-

As this is a test corpus, we build the corresponding files tseéhat consist only of the
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sentence(
id(wsj_2351.19, parc_23.15)
date(2002.6.12)
validators(T.H. King, J.-P. Marcotte)
sentence_form(But that won't be easy.)
structure(adjunct(be™0, but’6)
adjunct(be0, not’5)
stmt_type(be™0, declarative)
subj(be™0, pro™2)
tense(be™, fut)
xcomp(be™0, easy’1)
adegree(easy’1, positive)
subj(easy’1, pro'2)
num(pro™2, sg)
pron_form(pro™2, that)
adegree(but’6, positive))
rasp(
(conj But be)
(ncsubj be that )
(aux be wo)
(ncmod _ easy nt)
(xcomp _ be easy)))

Figure 1.8: Example sentence from PARC 700 Dependency Barttated using
both RASP and the XLE parser Kfaplanet al. (2004).

But_CCB that DD1 wo VM n't XX be_VBO easy JJ . .
Would_VM <w>Mr. Antori_NP2</w> ever RR get VVO back RL in A ?.?

Figure 1.9: Example of sentences from DepBank.

preprocessed sentences. To do so, we extract the raw textlie NE and non-NE DepBank
corpora then process this text (e.g. tokenise and tag) WRAGP’s preprocessing modules.
The first line of Figurel.9 shows an example preprocessed sentence, which correspahés
sentence in Figur#.8 The second line illustrates an example sentence with NEK-unar

Kaplanet al. (2004 report results in terms of both relational dependenciés;hware the re-
formatted and corrected F-structure output from theirdabdunctional grammar (LFG) parser,
and also a set of ‘semantically-relevant’ features. In oodiiied version of DepBank, we
replace these features with a slightly richer relationalatation Briscoe & Carrol] 2006.
Briscoe & Carroll(2006 note that RASP’s parsing results; (scores) are lower than those re-
ported in that paper partly because many of these featueesuanerous and relatively easy to
recover.
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Summary

Susanne is a (balanced) subset of the Brown Corpus which t®o$i$5 broad categories of
American English texts. All but one category (reportagé)tase drawn from different domains
than that of the WSJ. Therefore we consider Susanne as aldrofin training data when
testing on DepBank, followinGildea(2001) and others.

We provide a summary of the data in Tallld. Note that the average parses per sentence
and average GRs per sentence will differ depending on théoweo$ the grammar uséd to
parse the data. However, these statistics provide a basofparison of complexity. The
default system processing limitations were imposed on awsqy (see 6.3 for all corpora
except DepBank, halting the parser for some sentences pricorhpleting parsing. Further,
we considered only sentences with a word length of less thagual to 50. Thus the number
of sentences (Sent) in the corpus is shown, as well as the euofisentences that completed
parsing (Comp). From this latter set we determined the statifor sentence parses and GRs.
The final column (Frag) illustrates the number of parses foictv afragmentary pars€see
82.6.4 was found. That is, the system was unable to find a full pargenghe grammar,
though was still able to return an analysis for the sentence.

1.3.2 Evaluation

We evaluate the parser’s output using a relational depeydamluation schemeéarrollet al,,
1998 Lin, 1998 with standard measures: precision, recall andRelations are organised in a
subsumption based hierarchy. In addition to determinimgigion, recall and ffor each level

in the relation hierarchy, we calculate the micro- and maareraged values for each of these
scores across all relations. The macro-average measuakeidated by taking the average of
each measure for each individual relation, while the maverage measure is calculated from
the counts across all relations.

As previously mentioned, many parsers currently report FA®WS. evaluation measures
based on the labelled bracketing of the parser. That is, gkétras labelled with a nontermi-
nal grammar category and inside the bracket are other momiak categories (more labelled
brackets) or words. This ‘bracketing’ provides a flat repreation of a syntactic tree. There-
fore this evaluation compares the structure of a parse trgmribby the parser with that of the
gold standard tree. In contrast, the relation-based etiratueonsiders the GRs output from the
parser, where the same GR can be produced within differenastyc structures. As a result,
our evaluation does not penalise different structuralesg@ntations but instead aims to provide
merit to the semantics extracted.

Hierarchy Based Evaluation

For each sentence we determine the relations output by tkerghat are correct at each level
of the relational hierarchy. This hierarchy is shown in Feg2.13 in a subsequent section
in which we describe RASP’s grammar. Relations take the gefagra: (relation subtype

head dependent initial) . Arelation is correct if the head and dependent slots aralemd if
the other slots are equal (if specified). The evaluation wépa in the final experimentation
chapter (Chapteb) differs in two respects from evaluation defined@arroll et al. (1999.
Firstly, a different relational hierarchy is applied dueatmajor change in grammar (described
in Briscoe & Carroll 2005 Secondly, the evaluation scheme is altered so that GRtgoun

L4Those quoted here were determined overtsigd 5grammar.
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Words Parses GRs
Data Sentf Comp rande avg stdev med range avg stdev [med [range| avg | stdevFramg
Susanne 7014 6597 2-94 19/52 10.87 |18 1-3.28e9 1.44e6 4.63e7 52| 1B-86 10.03 15 850
GDT 2079| 2079 2-22 6.60 240 6 1-356 4.12 12|56 2 0-18 493 [(204| 5 0
WSJ 39617 37094 1-141 23.98 1141 87 1-1.04e9 7.95e5 1l47e7 |14@R| ©@8.57 8.72 43 6876
DepBank| 560 560] 3-61 22.82 1034 22 1-5.95e10 1.07el10 2.blell| 1483| 18.84 9.25 18 110

Table 1.1: Summary of corpora used throughout this work.WISs statistics are calculated over the de facto trainingosec?-21 inclusive.



1.3 Available Resources 25

are percolated upwards throughout the hierarchy. Thislesdhe root GR typéependent to
represent the unlabelled dependency scbpes.

In the new evaluation, if a relation is incorrect at a giverelan the hierarchy it may still
match for a subsuming relation (if the remaining slots altacha For example, if amemod
relation is mislabelled withimod, it is correct for all relations which subsume botimod and
xmod, e.g.mod. Similarly, the GR is considered incorrect fanod and all relations that subsume
xmod but notncmod. Thus, the evaluation scheme calculates unlabelled depegdccuracy at
thedependency (most general) level in the hierarchy. The micro- and masreraged precision,
recall and I scores are calculated as they were in the previous evatdtoom the counts for
relations in the hierarchy.

Wilcoxon Signed Ranks Test

In statistics, a result isignificantif it was unlikely to have occurred by chance.statistically
significantresult means there is statistical evidence that there ifferetice (not necessarily
large) between two sets of data. We can utilise statistigalfecance to compare two parsers, by
comparing whether their performance was statisticallgificant. Therefore, we can determine
whether a change in the parsing model improves the parsecisracy or if an increase in
accuracy occurs simply by chance.

The Wilcoxon Signed Ranks (Wilcoxon, henceforth) test maparametridest for statis-
tical significance that is appropriate when there is one sataple and several measures. For
example, to compare the accuracy of two parsers over the dameset. As the number of
samples (sentences) is large we use the normal approximfatia. Siegel & Castellar§1988
describe and motivate this test. These results are computgdnicro-average#; scores for
each sentence in the test corpus.

We first determinéCy; the subset of sentences in the test coi@usr which the accuracy
differs between parsers. We determine the set of accur#feyatices between the parsers for
each sentence @y, ranking the (absolute value) of these differences in ofiden smallest to
largest in a lisD. The statisticT.; is the sum of the ranks of the positive, non-zero differences
whered; € D is the difference rankeid(this ranking starts at 1):

T+ — |
dieD,di>0

Mean, variance and observedre determined as follows, whelkkkis the size of the sdly:

N(N+1)
ALk

N(N+1)(2N + 1)
24

Mean= pr+ =

Variance= 0%, =

o T+ — M+
OT+
We use a 0.05 level of significance, which indicates thatethela 5% chance that we in-

correctly find the results are statistically significant whbey are not. We provide z-value
probabilities for significant results reported below, wharresult is statistically significant if

z

L5\e define the new grammar and GR hierarchy only. Readersfarea@toBriscoeet al.(2002 for a diagram
of the previous GR hierarchy.
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the z-value probability is less than 0.05. Therefore, mhoyg the z-value probabilities enables
the reader to ascertain the level of statistical signifieath@t applies. For example, a z-value
probability of 0.01 is judged significant in this work (asstless than 0.05), and indicates that
there is a 1% chance that this conclusion is incorrect.

1.4 Research Goals

The work in this thesis aims to improve parser accuracy, ieffay and training methods of
the extant parser. While these methods utilise (and modifyp R4 extant parsing code and
components, the parse selection and training methods waeageherein are applicable to a
wider range of statistical parsers.

Initial experimentation, including optimising PoS tag neteland developing an efficient
algorithm to determine the weighted GR output format, amdghe author’s familiarisation of
the RASP system and processing modules. Further experititenf@edominantly aims to
improve the training methods available to the parser. ItiQdar to develop semisupervised
training methods, which require no on-going manual efforbehalf of the grammar writer, to
facilitate grammar development.

1.5 Thesis Summary

1.5.1 Contributions of this Thesis

The research in this thesis provides a number of new resultsezhniques (all techniques and
the majority of results have been published), in the folluyvareas:

e Optimising front-end PoS tagging modeWatson(2006 provides a broad comparison of
PoS tag models in terms of both tagging and parsing perfacmagxperimental results
illustrate that parsers are unable to improve on the tagganmtprmance of a ‘good’ PoS
tagger. Resolving the majority of PoS tag ambiguity in thegagaids in both parser
accuracy and the overall system’s efficiency.

e Optimising weighted-GR outputVatsonet al. (2005 define a novel modification to the
Inside-Outside algorithm. This efficient dynamic prograimgnapproach directly deter-
mines the weighted-GR output format from the compact repragion of parses; the
parse forest. The approach improves over previous worlgwither loses efficiency by
unpacking the parse forest, or places extra constrainteca &mbiguity packing, lead-
ing to less compact forests. This novel algorithm signifiaimcreases the throughput
and accuracy of this output format.

e Semisupervised parser trainingVatsonet al. (2007) illustrate more efficient and flex-
ible use of existing training data. The Inside-Outside athm is applied to perform
Expectation-Maximisation over the LR parse table to imprperformance over the cur-
rent, fully supervised training method. Removing the marmdi@irt required to train the
parser facilitates grammar development and domain adaptat

e Confidence-based semisupervised trainiwatsonet al. (2007 describe a new training
framework that defines a weighting scheme over analysesdayed consistent during
training. This method outperforms the Inside-Outside allgm given the same level of
corpus annotation. Further, the method can be applied ttesalyand type of annotation
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by simply redefining which parses are compatible with thgpasrannotation available
during training.

1.5.2 Outline of Subsequent Chapters

Chapter 2 (LR Parser} describes the theory, compilation, and application of LaRsprs or
so-called shift-reduce parsers. We describe the modiicatilefined byfomita (1987 which
extend the LR framework to ambiguous grammars resultinggrGLR parsing framework. We
then describe various methods for defining statisticaliigions over the GLR model. That
Is, to create statistical GLR (SGLR) parsers. Further, thaptdr defines the SGLR parsing
framework employed within RASP. Finally, we describe RASR&gmar, extant training and
application of the parser as well as the different outputiais available for use.

Chapter 3 (Part-of-speech tag modéldescribes experimentation aimed at optimising the
PoS tag models employed by the extant parser. We first deo@vious work which illustrates
that the choice of the PoS tag model employed as a front-eparging significantly affects the
speed and accuracy of the parser. Next, we describe RASRsg®iog components, in partic-
ular, the current PoS tagger. We define a number of diffeeenselection models, including
those that consider the parser itself as a PoS tagger. ¥inadlinvestigate the optimum level
of PoS tag ambiguity to be resolved by the parser itself gratian the front-end PoS tagger.

Chapter 4 (Efficient extraction of weighted GRArst describes the Inside-Outside algo-
rithm (IOA) and its application to train PCFGs. We extend #igorithm to SGLR parsers, in
particular, to the extant parsing framework. We show howpiplyaa variant of the 10A to ef-
ficiently extract one of RASP’s output formats (‘weighted GR#irectly from the parse forest
rather than over the set of n-best parses (the extant metfadjhermore, we illustrate that
this solution can not be applied in all situations. Rathentmedify the extant parse forest as
previous work has, resulting in a less compact data streiciue describe a novel modification
to the IOA. This modification enablesultipleinside and outside probabilities to be determined
for each node within the parse forest. Experimental resoltspare this novel approach to the
current one, in terms of both parser throughput and accuracy

Chapter 5 (Confidence-based trainifgeviews the current training method and describes
the limitations of such fully supervised training approashThese limitations have prompted
the development of unsupervised and semisupervised neetlbith we describe. We then
define a confidence-based training framework which can bkeappver any level or type of
corpus annotation, and its relationship to previous worle. al¢o define a number of different
confidence measures that can be employed within this framkeviExperimental results com-
pare these confidence measures and the IOA (Expectationyation), over semisupervised
and unsupervised training corpora, to the current traimeghod.

Chapter 6 (Conclusio) summarises the major contributions of this thesis, and)ssig
future lines of research.



Chapter 2

LR Parsers

This chapter describes the theory and applicatidoRoparsersvhich are a type o$hift-reduce
parser. We define LR parsers and generalised LR (GLR) pars€2sdand 8.4, respectively.
These descriptions build on the theory of finite-state aatanwe provide in 8.2 We de-
scribe existing statistical approaches over the lattesipgrframework in 8.5, Experiments
in this work use an existing and well-developed GLR parsiygjesn which we modify as re-
quired. Finally, we provide details specific to the extantspain 8.6. Much of the theory
described herein regarding finite automata and LR parsimgu@ing parser compilation) has
been adapted frorAho et al. (1986.

2.1 Introduction

The LR parsing strategy was first devised for programminguages, in particular compil-
ers, to enable precompilation of processing steps overguéage. The strategy has since been
generalised for use in a wider range of applications, inolyidatural language parsing. We pre-
viously defined anatural language parsefin §1.1.1 as a program analysing a string of words
(sentence) to return a suitable grammatical structungarae However, in the literature, the
termparserrefers to any program that processes a sequence of inputsto&eeturn structure
over these tokens, given an underlyifogmal languageor grammar In linguistics, the term
grammarapplies to various structures of human language includmgnplogy, morphology
and syntax.

There are many types of grammars. We describe context-filaargars (CFG), a well
known type of generative grammar. A CFG defines the set of plessiput tokens, the grammar
terminals(that is, the alphabéf) of the grammar, in théexicon The production ruleqrules
or productiongfor short) define the way in which these terminals may acddptzombine. The
primary goal of a parser is to organise the input sequencerwiinals, based on the rules, into
larger grammatical units gshrases These larger units are referred toramterminal(NT)
symbols of the grammar. Rules are writtenraarites A — ()" whereA represents &T
symbol of the grammar arf@imay be anycategoryof the grammar i.e. @ or NT symbol. For
example, the rul®lP — Det N stipulates that a noun phrasemay be formed by two terminal
symbols; a determinebét ) followed by a nounK).

As theNT categories combink categories of the grammar, we consider this set of terminals
the span(or word span given that terminals are often words in natural languagsipg) of
the resultingNT category. One (or more) of thedel symbols are consideradot (or top)
categories. If such a top category spans the entire inpueseg, then we accept the input and

28
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return the corresponding structureparse(or derivatior). This structure can be graphically
represented as a tree diagram (see Figutewhere leaves are terminals while nonleaf nodes
represent nonterminals (phrases) of the grammar. Henedgetin “parse tree” (or “phrase-
structure tree”) is used to refer to this structure.

We can formally define a gramm@rusing the tuplgNT, >, P R} where:

e NT is the finite set of nonterminal symbols.
e 2 is the finite set of terminal symbols, disjoint from the K.
e P is the finite set of production rules of the grammar:

NT — (Z|NT)*

e Rc NT, the root category symbaof:!

We first defindfinite-state automatéSA), that can be described with regular expressions
(RE). REs are one way of characterising regular languagesofepsubset of the languages
generated by a CFG). We describe how FSAs are graphicallgsepted agansition graphs
though are encoded and processed by the parsing progragitbsicorrespondintransition
table We then describ&R parsers, that implicitly encode probabilistic deterntigig=SA
(PDFA), thence also utilise a similar table, thie table to drive the parser.

2.2 Finite Automata

If the parser's grammar identifies acceptable sequencesmofrtals only, without associating
structure, then the parser is instead consideregcagniser A recogniser takes as input a
sequence of tokens and returns either ‘accept’ or ‘rejectwput. For example, given the RE
(alb)*ab, we only accept a sequence of input tokens if it consists gfraimber ofa andb
tokens (including 0) followed by the sequeraie The sequencesb andbbababare accepted,
while aabbis not.

FSA can apply either as a parser or as a recogniser given adgaggrammar)Aho et al.
(1986 describe a number of algorithms to compile an FSA from a REGRkwye do not discuss
here. We aim instead to illustrate how these automata ackasseecognisers for RE, and build
on this theory in subsequent sections to illustrate theraata implicit in LR parsers over CFGs.

2.2.1 NFA

Model Definition
A nondeterministic FSA (NFA) is defined using:

e A set of states.
e A set of input symbolg.

e A transition functioractionthat maps state-symbol pairs to the set of next possiblesstat

2Iwhile a single root category symbol is defined, the grammarerekisting parser RASP defines several root
category symbols. Thus, the following explanations assomoee than one root category symbol may be defined
in the parser’'s grammar.
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e AstateS € S which is thestart (or initial ) state.
e A set of state§,.c C S the set okend(or accepj states.

A FSA is deterministic or nondeterministic, wharendeterministieneans that more than
one transition out of a state is possible on the same inpubginihat is,actionreturns one or
more possible states for any given state-symbol pair. THenmut symbole is included inT.

Transition Graph

Thetransition graphdiagrammatically represents an NFA as a labelled direatsplg Vertexes

of the graph each correspond to a state in th&setile labelled edges represent the output of
the functionaction The graph looks like a transition diagram, where edgesadrelled with
terminals of the grammar i.eT = 2. Given the RE in the previous exampl@|b)*ab, the
corresponding transition graph is shown in FigRrée In this example, the NFA is defined over
S={0,1,2} whereS = 0 andSycc = 222, T = {a,b}, andactionis implicit in the labelled
edges of the graph. For exampéetion(1,b) = {2} while action(1,a) = {}.

start)é\> a>G> b )
b

Figure 2.1: NFA for the REalb)*ab.

Paths

An NFA acting as a recogniser, accepts a sequence of inpuidgni we can find a&omplete
paththrough the NFA from the start stat&] to an end state (i8,cc) which consumes the entire
input sequence. Aathrepresents atate sequencehe set of states visited thus far given the
input consumed. For example, we accept the input sequaates we determine the complete
path{0,0,0, 1,2} through the NFA.

To determine a path we utilise two variables: the currenéSaand the remaining input ter-
minals. To start, we initialise these variables to the S@teS. = S and entire input sequence,
respectively. The transitions defined agtion (edges) argarsing actionsthese movements
are conditioned on the current st&eand next token in the input sequence. When we move
along each edge of the NFA, we consume the terminal in thet ispguence that labels the
edge. Returning to our previous example, for the sequahag in state 1 we have consumed
abaand have the remaining inpfib}. Thus we move from state 1 to state 2 consuntiramd,
reaching one of the end states with no remaining input, wemeaccept'.

Transition Table

A transition tableis used as an operational mechanism to drive the parsersaitresorre-
sponding transition graph. There is a simple mapping betwes and columns in the table to
states and terminals (edge labels) in the graph. Thus thedab be determined from the graph

22\\e utilise the state numbeéin § to identify each state.
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and vice versa. For example, Tal#€l illustrates the corresponding transition table for the
NFA graph in Figure2.1. Each row in the transition table represents a state in thi MAile
columns each represent a terminal symbol. Within eachrcéiia table, in row and columnj,

is the set of possible edges (actions) of the NFA for sfagand thej-th terminal &;). Thus, the
table encodes the functi@cttion where each cell contains the set of states returneattign
given the state-symbol pair.

INPUT SYMBOL
STATE | a b
0 0,1 0
1 2
2

Table 2.1: Transition table for the NFA in Figu2el

If actionreturns null (i.e. for empty cells in the table) this implees edge to thsink state
exists, at which point the input sequence is rejected. As@treve consider the corresponding
path toterminateat the current state. A path is consideeadive until it either terminates or
completes.

Multiple Paths

More than one path may be possible through an NFA given art sgguence. Multiple entries
in a single cell represent such ambiguous transitions. itndfise, we continue processing all
active paths until we determine a single complete path, athwpoint we accept the input.
Alternatively, if all active paths terminate, we reject thput. At the state where multiple paths
(edges) are found, we consider the pathdit@rge Conversely, paths are consideredrerge
for shared portions of their state sequence.

For the example sequenababif we consume the first terminalthen two paths are active;
one ending each in state 0 and state 1. From these statesnaenoeb and move to states O
and 2, respectively. At state 2, our path terminates as thetél the unexpended inpyt, b}.

In contrast, the path ending at state O remains active, thaggin we diverge to two paths: to
states 0 and 1. After consuming the last tokethe first path terminates and the second path
ends at state 2. The latter path ends at an accept state aowl onsidered complete.

Formal Language

An NFA implicitly defines itsformal languagethe set of all input strings it accepts. Returning
to our previous example, the formal language is the{s#i;aab bab aaah baah abah bbah ...}.

2.2.2 DFA

A deterministic FSA (DFA) is a special case of an NFA in whiallyoone move is possible
for any given state-symbol pair, and no state has an edgetatimull symbole. Aho et al.
(1986 describe an algorithm to compile an NFA to its equivalenADthat results in a more
efficient recogniser. However, the number of states of th& By expand exponentially and
this conversion is infeasible for large NFA. We do not previetails of this algorithm as they
are not relevant to this work. Figue2illustrates the equivalent DFA for the NFA in Figu2el
Given the automaton is deterministic, we utilise a list trstthe corresponding state se-
guence (path) and input consumed. This list is referred thestack The stackJ is initially
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b

a

QTS
Us AN

Figure 2.2: DFA for the REa|b)*ab.

start
>

empty, and new states and input symbols consumed are adtlezistack as we move through
the NFA. Continuing the previous example, the sequeaizab was accepted with state se-
quence{0,0,0,1,2}. This state sequence is determined given the stack builiglparsing:
{0,a,0,b,0,a,1,b,2}.

Algorithm: Simulating a DFA

The algorithm in Figure2.3 simulates a DFA, taking as input a sequence terminated by the
end-of-file charactere f) and returning either ‘accept’ or ‘reject’. The functioext returns
the next terminal in the input sequence.

Algorithm 1 (Simulating a DFA)
Setg=SHandU={S}

1. repeat forever begin

.I=next)

. Set $= action(;, )

f & eSthenU=UU{l,&};

IF S € Syecand | = eof then return ‘accept’;
.if & =null or| =eof then return ‘reject’;

OO UTh,WN

Figure 2.3: Algorithm to simulate a DFA.

2.3 LR Parsers

LR parsing is a table-driven technique, whereltietableis constructed from an unambiguous
CFG and implicitly encodes a DFA. The LR table defines the naxrsipg action (edge of the
DFA), so that the parser is driven over a sequence of inpatiteds in a similar fashion as
described for a recogniser over a DFA. Consequently, we muee the input left-to-right,
hence the ‘L’ in ‘LR’ parsing. We reduce the input consumedaimt non-terminal categories
whenever possible which results in creating the ‘right-naesivation in reverse’, hence the ‘R’
in ‘LR’

The LR precompilation process results in construction efltR table over the CFG, similar
to the transition table described previously. This proecepsesents the bulk of the processing
required, and subsequently, the parsing process is m@atvmple to encode and apply. We
describe this precompilation process in detail in thisisactAlgorithms that generalise these
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methods to apply over ambiguous grammars, and moreoveefiteedstatistical models within
this generalised framework, are discussed in subsequeidse

2.3.1 LR Parsing Model

In this section we describe how to compile and apply an LRgyasger CFGs, in which rules
are rewrites as defined previousM:T — (Z|NT)*. Following popular terminology, we refer
to the left hand side category as tlthercategory, while terminals and nonterminals on the
right hand side of the rule aaughtersof the production.

Relationship to the Recogniser

INPUT
| al, a2, ...ai,..an, $ |
STACK x

Sm
Xm

< LR Parsing » OUTPUT
Program

S1
X1

Y
S0 LR Table

Figure 2.4: Components of an LR parser.

Figure2.4illustrates the general components of an LR parser, sialt#rose of the recog-
niser described in the previous section. In summary, the &iRqy we describe differs from the
recogniser as follows:

e Input: again consists of sequences of terminals of the grammam {fe set). Although
> does not include and instead includes the end of sentence marker $. Inpuésegsi
are appended with the symbol $ (rather tlearf) to denote the end of the input sequence.

e Parsing actionsconsist of the type of actions described previously (consgmaterminal
symbol, accepting and rejecting input) as well as a fourtloadype: reduceactions, in
which rules (rewrites) of the regular grammar are appligdtom mother NT) categories
from the input consumed. The LR parser is driven over thetinging shift and reduce
actions, hence the parsers are a typshift-reduce automata

e Stack: differs in structure and use from the stack described2i2® Instead of using
a list structure, the stack is implemented as a last-in-diust(LIFO) queue. That is,
symbol-state pairs are removed (POP operations) as wetldexig PUSH operations) to
the top of the stack. The POP operations occur when a redtioa acapplied. We first
remove the daughters of the rule before we add the newlyazmteabdther category of the
rule to the stack.

¢ LR table:differs from the transition table as it also encodes redgtierss. The LR table
consists of two parts; aamctionandgototable. The action table is similar to the transition
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table, where rows represent states and columns represamads of the grammar. Cells
contain competing parse actions given the current Saa@d terminal symbol. The goto
table encodes the next state after a reduce action is applied

e Output: we instead return the corresponding parse tree, whose ategary spans the
entire input (if found). Thus, we implicitly accept inputvfe can find such a derivation
that is determined from the corresponding complete pathutiit the underlying DFA.

2.3.2 Types of LR Parsers

There are several types of LR parse tables, where each typlésrn creation of the correspond-
ing LR parser type, and components of the LR parser are oibetive same as in Figug4.
Aho et al. (1986 describe three techniques to construct an LR(k) parsing taba grammar;
simple LR (SLR), lookahead LR (LALR) and canonical LR. Thesehuds represent increas-
ing left context used to make parsing decisions. Similding,variablek represents the number
of lookahead itemshe unexpended terminals in the input sequence, usedhdscagtext. As
the level of context (the LR method akylincreases, so too do the number of states in the DFA.
The LALR(1) method is popular as it provides a trade-off betwaccuracy (context) and effi-
ciency (number of LR states). We describe LALR(1) parseritantson and application herein,
as we apply such an LALR(1) parser, modified to handle an ambigjunification-based gram-
mar.

2.3.3 Parser Actions

The types of actions applied by an LR parser include thossidered previously for a recog-
niser. We define these three action types informally desdribus far, as well as a fourth action
type which applies a grammar rule.

LR Parser Configuration

We represent theonfigurationof the parser using a pair; the current stack state and underpe
input. For example consider the following configuration:

(SX1S1%2S. - XmSm, @idi4-1.--8n)

We denote categories of the grammar (terminal and nontefjniising the variabl&. This
configuration corresponds to being in st8tg i.e. S = Sy, the next input symbol ig; and the
input consumed thus far (gy...a—1).

The actionFunction

We refer to the unexpended input as the selbokaheadsand the next input token as the
current lookaheador simplylookaheador short):lac. In the recogniser described previously,
we determine the next state using the functamtion which returns the next state given the
current state and lookaheaakction(S;,lac). The next state specified results from one of three
actions: (i) accept the input, (ii) reject the input or (tdnsume the input iterg and move to
the next state specified lagction i.e. & = action(Sy, a). The final action type is referred to as
ashiftaction in LR parsing. These three action types are encodtietiaction table of the LR
table.
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Reduce Actions

In LR parsing, the fourth action type,raduceaction, requires different treatment of the con-
figuration’s stack. A reduce action corresponds to applying of the rules (productions) in
the grammaA — (. Thus we form the catego by combining daughter categorialready
created, wher@ = {D1,D»,...,Dp}. The stack must contain these categories formed in order,
that is, withDp on top of the stack. We remove these daughter categoriestfrerstack and
place the newly created mother categéyand the next state, on the stack. Note that for a
reduce action, we do not consume the next input symbol.

For example, if the grammar contains the rufe— V NPand the stack contains\@on top
and then &, we first remove these two items from the stack before plaitiaghewvP analysis
and next state on the stack. Thus, as the stack is implemasgtIFO queue, a POP operation
removes the daughters of a grammar rule, while PUSH addseilily mreated mother category
on the stack.

For a reduce action, the next state to visit depends on the etposed after popping the
daughter categories from the stack, Hmeestorstate, and the newly formed mother category
A. This information is encoded in the goto table of the LR tallkich we describe further in
subsequent sections. For now, we consider the fun@iOi Oto return the next state to visit,
given the ancestor state and mother category.

Configurations for each Action Type
The type of action returned kaction results in different parser configurations, as follows:

e Shift actionsif action(Sy,a;) = shiftS;j, then the parser executes a shift action and moves
to statej, consuming an input item as we did in the recogniser, ergehia configuration:

(SOX1S1%S. XnSm@iSi @i +1.--8n)

e Reduce actionsif action(Sy,a) = reduceA — 3 then we execute the reduce action by
popping off thep daughters of the production from the stack, exposing the Sta p.
AssumingS; = GOT Q(Sn—p,A) then the resulting configuration will be:

(SoX1S51%2S...Sn-pAS;, &...an)

e Accept:if action(Sy,a) = accept, then parsing is complete.

e Reject:if action(Sy,a) = null, then the path terminates &4 and we reject the input.

2.3.4 LR Table

Action and Goto Tables

The LR table consists of two parts, the action table and the @dle, and implicitly encodes
the grammar DFA The action table, encoded in a similar fashion to the ttemsiable of a
DFA, defines the set of possible actions given the curretd Staand the lookaheald.. States
correspond to rows and lookaheads to columns, while cetlseiiable contain parsing actions.
In the goto table, the rows and columns correspond to thestémrcstate and the nonterminal
category created, respectively.
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Grammar Gq

The unambiguous gramm@r;, shown in Figure.5, is a simple CFG which models preposi-
tional phrasesApP), noun phrases\NP) and verb phrase/§), i.e. NT={PP, NP, VP, S } over
the terminals verb, pronoun and prepositi@®{V,Pro,P }. The original root category of the
grammar was. However, to handle the case where more than one root cgtegspecified,
theaugmented grammanstead defines a single root categdrgnd new rules (for each of the
previous root categories where each rule rewrites the netcaiegory as the old category).

ro: T > S

r1: S -> NP VP

r2: NP -> Pro

r3: PP > P NP

r4: VP -> V NP

r5: VP -> V NP PP

Figure 2.5: GrammaG,. Each rule number, using the format refers to production number
X.

The single top category of an augmented grammar (B.@llows the resulting LR parser
compiled over the grammar to indicate when the input shoelddrepted. That is, the input
is acceptable if an action calls for the creation of this tapegory. Thus, we consider the
LR parser to consist of a single accept st&f{g. Grammar augmentation is performed during
construction of the LR table, that is, as part of the precdettipn process.

Grammar Gi: LR Table

The corresponding LR table f@&; is shown in Table.2, where § specifies a shift to state
while rj specifies a reduce by production numbesf the grammar. The ‘accept’ action and
empty cells specify that we should accept and reject thetjmespectively. The goto table
simply encodes the next state number given the ancester(stat) and newly create mother
category (column).

Grammar Gp. DFA

The correspondingrammar DFAfor G; is shown as a transition graph in Figu2es. Each
vertex corresponds to a state in the LR table and the vertebauillustrates the corresponding
state number. Vertexes may also specify, in brackets, tbeséor state which must have been
exposed to enable the transition to the state. Edges areressgal and labelled with the set of
lookahead items for the edge (i.e. a single edge corresgoretsch lookahead item) and also
the action which is performed.

This transition graph provides a simplified view of the LRgmrbecause the graph is con-
ditionally traversed across a set of edges from a state plegifsees the same reduce rule. That
is, although multiple edges are shown for the same lookdkgadd reduce rule, only one is
applicable given the ancestor state exposed. Consequdetiputomata is deterministic.

Relationship between the Grammar DFA and LR Table
The grammar DFA is constructed from the table in three stagédsllows:

e \ertex creationEach row in the table represents a state. As a result, weeapneatvertex
in the graph for each state in the table. If the vertex’s nunédefined in a cell in the
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state action goto
$ P| Proj V| S| NP VPR PP
0 s3 9 1
1 s2 8
2 s3 4
3 r2 r2 r2
4 r4 SS 7
5 s3 6
6 r3
7 rs
8 rl
9 | accept

Table 2.2: LALR(1) table foG;.

Pro

e

r >0 r0 » accept

9(0)

Figure 2.6: DFA for gramma;.

goto table for state (rowgs, then we label the vertex with the ancestor state This
illustrates that a reduce action should have exp&eah the stack to enable transition
along an edge to this vertex in the DFA.

e Shift edge creation:Each shift in the action tablej dor state (row)S in column Xy
specifies that a directed edge should be created fromidtatgatej with label>.

e Reduce edge creatioffor each reduce action in the action taljlespecifying a reduction
of rule A — (3, for state (row)S in columnZy results in creation of one or more edges.
We create a directed edge from state each stat&, whereS appears in the column for
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categoryAin the goto table.

2.3.5 Parsing Program
The Parsing Process

Parsing determines paths through the underlying DFA, asritbesl previously, from the start
stateS to the accept stat§;c given the current input. To begin parsing, we first initialis
the variable representing the current state to the stad.stEhat is, we sef. = & and also
set the current lookahedd, to the first input token. The parsing program is implementgd b
extending the algorithm for simulating a DFA, as defined2m282 Lines 2—4 of the algorithm
are replaced by statements conditioned on whether thenatarned byaction(S;,lac) is a
shift or reduce. The next input symbol is only consumed ifdhgon is a shift. The stack is
updated for each action type as described2rB&

Parsing overG;

Table 2.3 illustrates the stack configurations reached after eadbrai applied for theG;
LALR(1) parser over the sentence ‘he likes her’ with correspog tagged input sequence:
{he_Pro likes _V her Pro $}. The resulting parse tree is extracted from the stack byikgep
track of which rules applied in order and the word span of eathgory. In this example, the
resulting parse tree is:

(S (NP he _Pro) (VP likes _V (NP her _Pro)))

number| stack input action

1 0 ProV Pro $| shift to state 3
2 OPro3 VPro$ reduce using r2
3 ONP 1 VPro$ shift to state 2
4 ONP1V2 Pro $ shift to state 3
5 ONP1V2Pro3 $ reduce using r2
6 ONP1V2NP4| $ reduce using r4
7 ONP1VPS8 $ reduce using 1l
8 0S9 $ accept

Table 2.3: Stack configuration f@; over PoS tag sequengéro,V,Pro }. The first column
shows the configuration number while the next two columnshftire tuple of each configura-
tion reached. The final column illustrates the next acticiemheined using the stack top state
(&) and current lookahead (the first token in the input column).

2.3.6 Table Construction
LR(K) Parsing and Handles

The LR precompilation process results in compiling theestatf the LR(K) table and the ac-
tions possible given the current state and rkdrbkaheads (including O, for SLR parsers). This
process facilitates a parsing mechanism capable of igamgithehandle the appropriate sub-
string to reduce, along with the rule which should be appieederform the reduction. Thus,
LR tables encode additional context over the underlying QE&R-context is incorporated as
states represent the handle, while right-context is inm@ged in the set df lookaheads.
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For an LR(K) table, we identify which handles are approprgatenthe nextk input sym-
bols as right context. In the shift-reduce LR parser, theesta top of the stack encodes all
the information required to determine the current handtesés of handles if the method is
generalised to apply over an ambiguous grammar).

LALR(1) States

In an LALR(1) parser, each state represents the same (lpft) raving been consumed; either
a terminal category of the grammar or a nonterminal of thegzaly with the same left-context
(category). For example, iB1, NP may appear as the subject (in rut), the object of a verb
(in rulesr4 andr5) or within a preposition phrase (in rui®). Consequently, there are three
corresponding states fouP created in each of these contexts: states 1, 4 and 6, resggcti
A trivial method to determine how many contexts each nonieahtategory may appear in,
involves counting the number of states that appear withencibrresponding column for this
category in the goto table.

LR(k) Items

Algorithms to construct the LR table from the grammar diffi@pending on the type of LR
table, that is, the type of LR parser we wish to construct. dnegal, we createR(k) items
tuples in the fornfA — o - 3, 9], where the first element is a production of the grammar (with a
dot at some position within the daughters of the rule) amla set ok (including 0) terminal
symbols of the grammar. The position of the dot indicatesripat that has been witnessed to
date; daughters to the left of the dot have been seen whilghtiens to the right of the dot may
yet be witnessed (i.e. possible given the grammar).

LR(0) Items

To create the LR states of a grammar, we first create all LRé@sSt That is, we create an
item for each rule in the grammar for each possible positidh@dot (including start and end
positions). The LR(0) items for the ruge — NP VPare shown in Figur@.?.

S — - NP VP
S — NP- VP
S — NP VP-

Figure 2.7: LR(0) items for the rule — NP VP

Kernel ltems

We can defind&ernel(and converselyponkerne) items as those items with the dot in a position
other than immediately to the right of the arrow). In addition to these items, we also consider
the nonkernel items for the augmented top category fe-g.- S) as kernel items.

FIRSTand FOLLOW

If the dot appears at the end of the production (&g- af3-) then this indicates that a reduce
rule is possible at this point during parsing. For examgie, third LR(0) item in Figure.7
indicates that anPis followed by avP, so we reduce to form the mother categ8nAlterna-
tively, if A— a - is an item wherd3 € > then we perform a shift over terminfl We utilise
the functionsFIRST and FOLLOW to determine this kind of information from the item sets
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whereFIRST(X) andFOLLOW(X) indicate the terminal symbols that the symioinay be-
gin with or be followed by in the given grammar. For examplteGy, FIRST(NP) = {Pro }
while FOLLOW(NP) = {V,P,$ }.

Collections of Item Sets: States

The precompilation process begins by augmenting the graranthdetermining the set of all
possible items given the CFG. Items are then grouped in sathwiive rise to the states of
the parser. During construction of these item sets, we tafedg determine theompiled DFA
for the grammar, as each new item set is created from tharexisét by consuming the next
terminal or nonterminal category to appear. From the reguttompiled DFA, we determine
the set of LR states to be the collection of item sets. Theoastof the LR parser are also
encoded in this DFA&:3

closureand goto

In order to group the item sets we require two functiookisureandgoto (where thisgoto
function is distinct from the upperca$gOT O defined previously). The functioalosureis
defined over a set of items where we include each item of | mlosurél), and expand each
item in | to include all the nonkernel items for categories immedyatie the right of the dot
in the item. We repeat this expansion over the items untgath nonkernel items have been
included. Formally, give®\,B,C € NT anda,B,y,p C {Z,NT,¢}, then ifA — a-Bf is in the
closure ofl then so too i8 — -Cyas isC — -p and so on and so forth. As the set of nonkernel
items for any given category is computed (or for efficieneggomputed) for each category of
the grammar, we compress the set of items in a closure sodbhti®em set is represented only
by the kernel items. However, in the following examples weresent each item set in full,
showing both kernel and nonkernel items of the set.

The second functiorgoto, is defined in terms of thelosureoperation. Simplygoto(l, X)
represents the items which result if items in thel seteive a grammar symbXlas input. Thus,
gota(l, X) is defined to be the closure of the set of all itefns> oX - B such thatA — o - X in
the setl.

Constructing the Canonical LR(0) Item Sets

To construct the canonical collection of LR(0) items, weiaiise the set of item® by taking

the closure of the top category kernel items with the dotavtry startT — - S. We repeatedly
determine thgoto(l, X) for eachl € © andX € {Z,NT} adding the resultingot(l, X) item to

a set in@ if they are already present in this set. If not, we create aitew set which includes
the new item. For each new item set we also perform the clagpeeation over this sdtto
augment the item set with the nonkernel items. Th&skeirms our set of states in the compiled
DFA, where each state produceddmto(l, X) has an edge to it from the state corresponding to
| labelled with the categor}(.

Canonical LR(0) Collection for G1

The canonical LR(0) collection of sets for gramn@ris shown in Table€.4. The table shows
the set numbej aslj, and the corresponding kernel and nonkernel items of eacim ske
second and third columns, respectively. The remainingnonhiillustrate the next item set

23Note that the compiled DFA differs from the one we extrachfrihe resulting LR table previously discussed
(the grammar DFA). The algorithm for compiling the LR tableates the compiled DFA which contains edges
from ancestor states rather than from the current state conédion the ancestor state.
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created by determining thgotoof the item (row) and grammar symbol (column). For example,
gotdlg:NP — - Pro,Pro)=l3. That is, from an item in sép we consume &ro terminal symbol
and move to an item its. Starting from closurd@( — - S), we create the first item sk From
here, we calculate thgoto of 1o with eachX symbol in the grammar. FaotoS — - NP VR,

NP) we create the iterB — NP - VP which is currently not in any set in the collection. In view
of this new item, we create a new s$et We then perform the closure operation o8er- NP -

VP in this new set to complete it. We continue until @pato function is unable to create a new
set from the current sets.

ltems goto(l,X)
Set| Kernel Nonkernel S |VP| NP| PP| V| Pro| P
lo | T —-S lg
S —. NP VP l1
NP — - Pro I3
lg | T — S-
I S — NP VP Ig
VP —. V NP I
VP — -V NP PP l>
l2 VP — V - NP la
VP — V - NP PP l4
NP — - Pro I3
I3 | NP — Pro -
l4 VP — V NP .
VP — V NP - PP I7
PP —. P NP I
Is PP — P - NP lg
NP — - Pro I3
lg | PP — P NP-
I7 VP — V NP PP.
Ig S — VP NP-

Table 2.4: The canonical LR(0) sets Gk .

Constructing a SLR Parsing Table

To create the SLR parse table for a grammar, we proceed iragufbllows for augmented
grammaiG:

1. Construct the LR(0) canonical item s@s-= {lg,l1,...I1n} for G.

2. Statel is constructed front;, and the table is initialised to contain empty cells for each
terminal and nonterminal in the action and goto tables,aetbgely.

3. The corresponding parsing actions for the state arerdeted within the action table as
follows:
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(a) If Ij containsA — a - a3, wherea is a terminal, andyoto(lj,a) = I; then we set
the cell in the action table for stateand terminala to contain a shift tdS;, i.e.
action(§,a) =sj.

(b) If I; contains rule numbétwith the dot at the end e.\ — a-, then set each cell in
the action table for staieand for each terminal if OLLOW(A) to contain a reduce
by ruleki.e. k.

(c) If T — S -isinl; this specifies to reduce to the augmented top category. Asid,re
we set the action in the cell for statand terminal $ to be ‘accept’.

4. The goto table consists of transitions for stated nonterminah such that iigota(l, A) =
l; thenGOTQS,A) =§;.

5. We set the initial state of the parsergoi.e. &, determined by the initial closure opera-
tion over the root category iteme.@.— - S.

Constructing the Canonical LR(1) Parse Table

To create a canonical LR(1) table, we modify ttlesureandgoto functions to operate over
LR(1) items to create the item sets. The LR(1) items are degigmécorporate some right
context to guide the parsing decisions. For the LR(1) ité&:— a-,a], we only reduce by
A — a if the next input symbol isa. The important distinction between this parser and the
SLR parser described previously, is that the set of suslymbols will now be a subset of
FOLLOW(A) (recall that we allowed the reduction in the SLR table forgh FOLLOW(A)).

States created over LR(1) items effectively split the statdbe corresponding SLR states
(constructed over LR(0) items) so that each state not onlyaawmnthe information required to
determine the current handle, but also indicate exactlycwlookahead (input) symbols can
follow the handlex, for which there is a possible reduction to the nontermal

In G1, a reduction to fornNP by r2 occurs for the lookahead $ only within the context of a
PPorVPin rulesr3 andr4, respectively. For thePin subject position however, the lookaheads
may be either ofP, V}. So two separate LR(1) item sets now correspond to the reduce t
NP rather than the single LR(0) iteP — Pro .. The LR(1) item sets corresponding to these
situations argNP — Pro -, $§] and[NP — Pro -, {P, V}], respectively.

Constructing the LALR(1) Parse Table

LALR(1) parse tables contain the same number of states asliReta&ble, by compressing
the LR(1) item sets i.e. those states found for the canoniB4l) table. We can compress
the LR(1) item sets into sets with the sam@e Compressed sets contain sets of items in
which only the lookahead values differ. These sets are wsectate the states in the LALR(1)
table. However, creation of the LR(1) item sets can proveasifde for large grammars and
a more efficient algorithm for creating the LALR(1) table ihxas creation of the LR(0) item
sets (represented using kernel items only) which are thgmanted with the set of lookahead
symbols (the second element of the tuple).

In order to augment the LR(0) item sets with lookahead symielsan generate lookaheads
spontaneouslypr they maypropagatefrom one LR(0) item set to the item seg®toitem sets
(described byAndersonet al. 1973 alsoAho et al. 1986. The algorithm utilises a dummy
lookahead symbol # to detect the situations in which lookdkeropagate, calling for multiple
passes over the kernel items to perform the lookahead augtiwen If [B — y-Cd,b| isin |,
and we know for each nontermir@lhe set ofA, where eacl\is a left-mosINT for all possible
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right-most rule expansions;,,) of C i.e. whereC =/, An, then we can determine the values
of a for which [A — X -B,a] is in goto(l, X) as the seFIRST(nd). Note that this will be a
subset oF OLLOW(A), the set giverA\ is derived (expanded) fro@ (and not another category
of the grammar). If the setd is null or may be expanded &thenbis also a possible lookahead
and[A — X -3, b] will be in thegotg(l, X). In this case, we consider that the lookaheadslf).e.
propagate fronB — y-Cdto A — X - .

Constructing the G; LALR(1) Parse Table

G1 is a simple grammar. As a result, the SLR and LALR(1) parseetafllable?.2) are equiv-
alent. This occurs as all nonterminal categories are egganeled from a single nonterminal
category. That is, continuing the discussion in the previgection, the following holds for all
A: FIRST(nd) = FOLLOW(A). Thus we derive the LALR(1) table fdB; either by applying
the SLR table construction method from the item sets (StateBable 2.4, or by augmenting
these item sets with lookaheads.

2.4 GLR Parsing

We now describe modifications to the LR parser to facilitatedeterminism in the parsing
actions. In particular, we describe the modifications magddmmita (1987 that generalise
LR parsing, to compile and apply an LR parser over an ambiguoktG. Tomita describes
generalised LR parsin¢GLR, henceforth), an extension of the LR parsing framewtarkallow
parallel tracking of multiple state transitions and stackams by using agraph-structured
stack. Thus we allow for multiple paths through the NFA to kbedmined, and each complete
path found corresponds to a derivation as discussed.lh B We describe these modifications
over an LALR(1) parser.

2.4.1 Relationship to the LR Parsing Framework

If we consider the LR framework in Figuz4, the modifications thatomita (1987 describes
may be summarised as follows:

e LR table:can specify more than one possible action i.e. sets of transias in the NFA
described previously. Thus cells in the LR table now spezibgt of possible actions and
actionreturns this set given the current state and lookahead.

e Stack:we generalise the standard linear LIFO queue structurediolethe stack to merge
and diverge as the corresponding paths (state sequencgs) do

e LR parsing programprocesses each path in parallel, so that all possible pegifsand
throughout the underlying NFA.

e Output: the set of all possible parses licensed by the grammar. $hita parser outputs
one parse for each complete path found.

2.4.2 Table Construction

The LR table is constructed as described previously, thougte than one action can be applied
given the current state and lookahead. Consequently, teidaractionreturns any number of
possible shift and reduce actions. This results in aatmmflictsor competingactions in cells
throughout the LR table. Shift-reduce or reduce-reducdictare possible, though shift-shift
conflicts are not, al: has a single value which determines a single possible sbifem
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Competing actions correspond to either ambiguities in tlzangnar (that each result in
competing derivations) or to alternative derivations #ratnot distinguishable given the current
context (so that one or more actions result in a path thatteséy terminates).

Grammar G, Example

GrammarGy, shown in Figure2.8, extends Grammadsg; and models simple attachment prefer-
ences for prepositional phrasé&®) between noun phrasesf and verb phrase¥#®). The top
categoryT has also been added, so that the augmented grammar alsmsdntand the rule
rO: T — T. RulerO specifies the edge to the accept state.

The GLR table (generalised LALR(1)) for this grammar is shawable2.5. The cor-
responding grammar NFA is shown in Figl2&. There are several cells in the table which
define multiple actions. For example, for state 5 with a psémm lookahead we have two
possible actionsaction(5,P) = {r5,s4}. This represents the situation whereN®&occurs after
a terminalP (as the ancestor state is 4) and the lookahe&dswell. So we have the choice
between creating BP using the previously seemandNPwith r5: PP — P NP, or shifting over
the nextP. In the latter case, we may include the currgpwith the next preposition phrase,
using either4 orr7.

0: T ->T

. T->S

r2: S -> NP VP

r3: NP -> Pro

r4: NP -> NP PP
r5: PP -> P NP

r6: VP -> V NP

r7: VP -> V NP PP
r8: VP -> VP PP

Figure 2.8: Gramma®s,.

2.4.3 Graph-structured Stack

If a single derivation is possible, then a single path camesgnt the derivation. Otherwise,
the stack diverges to separate paths where more than ona a&cépplicable and merges when
the same state is reached for the current lookahead (as fignpdint the same actions will
be processed). This equivalence is critical as it allowstdrsequent parsing actions to be ap-
plied to a single entity. Consequently, it allows for trad¢atlmputation over large ambiguous
grammars.

The graph-structured stack (stack, henceforth) forms ah tiEt is a subset of the gram-
mar's NFA implicit in the GLR table. Each vertex in the staakanholds more information
in addition to the state number of the vertex. The additiom@rmation includes the resulting
syntactic structure(s) of the sentence, enabling themqgsiogram to return all full derivations
possible given the grammar. That is, the parsing algorithamall-path parsing algorithm in
that it determines all possible paths in the underlying NiRaf is, all possible derivations.
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state action goto
$ P| Prol V| T| S| NP VPR PP
0 s2 12| 1, 3
1 ri
2 r3 r3 r3
3 s4 s7 10| 6
4 s2 5
5 r5 r5 r5 6
s4
6 r4 r4 r4
7 s2 8
8 ré ré 9
s4
9 r4 r4
r7 r7
10 r2 s4 11
11 r8 r8
12 | accept

Table 2.5: Generalised LALR(1) table fGn.

1'1(10)

$ $

o ——»o ———>o —$>accept

103) % 100) " 12(0)

Figure 2.9: Grammar NFA foBs,.
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Example Stack overG,

Given the sentence ‘He gives it to her’ with corresponding Bm sequencgPro,V,Pro,P,Pro  }

the possible parses, and corresponding state sequenoeaghththe NFA, are shown in Fig-
ure 2.1Q The stack over this example is shown in TaBlé in a similar fashion to the stack
shown for the unambiguous gramn@y in Table2.3. However, thestackcolumn is now sub-
divided into four columns. The first illustrates the stackr&u by all three parses. The second
column illustrates the stacks that each continue from theksin the first column, while the
third illustrates the stack that is again shared betwegpaaies. That is, moving from the first
to second column, the stack diverges (splits). Moving frova $econd column to the third,
shows these stacks merge again. The parse number is shdwenfoutth stack column, which
illustrates the parses that result for the given stack.

PL1:(T (S (NP Pro)
(VP V (NP Pro)
(PP P (NP Pro)))))
0,2,3,7,2,8,4,2,5,9,10,1,12,acc
P2:(T (S (NP Pro)
(VP (VP V (NP Pro))

(PP P (NP Pro)))))
0,2,3,7,2,8,10,4,2,5,11,10,1,12,acc
P3:(T (S (NP Pro)

(VP V (NP (NP Pro)
(PP P (NP Pro)))))
0,2,3,7,2,8,4,2,5,9,8,10,1,12,acc

Figure 2.10: Example parses f@»,, with corresponding state sequences that produced the
parse. The stateccrepresents the accept state.

Figure2.11illustrates the same stack diagrammatically as a NFA. Is figure, the stack
Is separated into word boundary stacks that illustrate #nsipg actions (edges) performed for
each lookahead. Edges are arrows shown with solid linesh Edge corresponds to a parsing
action, which results in moving from one state to the next. &ceduce action the lookahead
is not updated. Thus, reduce actions result in subanalystt®eisame word boundary stack
and correspond to downward edges in this figure. In contfasg shift action we consume
the current lookahead, and a horizontal edge illustrategémsition to the next word boundary
stack. We perform all possible reduce actions prior to parfiog the possible shift actions for
a given lookahead. This order is evident in the edge numderin

For reduce actions (downward edges), we create a mothgoecgtieEom daughter subanal-
yses represented within vertexes of this graph. A dotteel ietween vertex and vertexj
illustrates that the ancestor stais exposed when we perform a reduce action (POP the daugh-
ter categories from the stack) that results in a subandtysi®rtexj. The newly created mother
category (shown in brackets) in vertgxspans the subset of the input shown from vertéx
vertex j. For example, given lookaheadin word boundary stack 1, we reduce from state 2
to 3 with r3 resulting in a\NP. The word span of vertex 3 is from 0 to 1 (i.e. owes) and the
ancestor state is in vertex 0 which represents the staetStat

The diverging paths in this graph, and in the stack examplestiate the two positions
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where the individual parses result. That is, the two nondatestic decision points. The first
decision point occurs at state 8 with lookah@a(tack configuration 6 in Tabl2.6); where
reducing to state 10 results in P2. Similarly, at state 9 Wattkaheads (stack configuration
11b in Table2.6) we decide between P1 and P3.

2.4.4 Parse Forest

As we build the stack during parsing, the compact repretientaf all possible parses, the
parse forestis also built within this structure. The parse forest isoggfitly represented using
subtree sharingndlocal ambiguity packingvhich we now describe.

Relationship between the Parse Forest and Graph-structui Stack

First, recall that the stack is separated into word boundtgks, that is, one word boundary
stack for each item (lookahead) in the input sequence. Wehch vertex of a word boundary
stack we encode the corresponding subanalyses (subtoegbefvertex’s LR state. That is,
each subanalysis results from a parsing action that spetifeevertex’'s LR state as the next
state (for the given lookahead).

Each subanalysis corresponds toaein the parse forest. Thus each vertex in the stack
represents a set of nodes in the parse forest for the givéatead and LR state. Therefore, the
parse forest and graph-structured stack are separatetdattuses, though the stack encodes
the parse forest which represents the analyses built witieistack.

Subtree Sharing

If a vertex is formed after application of a shift action,thtee corresponding nodes (subanal-
yses) for this vertex areord nodes In contrast, after a reduce action, we form a subanalysis
using one or more daughter nodes (in stack vertexes) andemg¢ecairee node A tree node
represents a subanalysis (subtree), created by storimgtilg created mother category as well
as pointersto the daughter nodes (rather than copying each daughte'snedbtrees). This
process is known asubtree sharingas different nodes may specify (that is, contain pointers
to) the same daughter nodes in the parse forest.

Local Ambiguity Packing

If we create nodes (subanalyses) for a vertex, then a subibetse nodes may represent equiv-
alent subanalyses over the same subset of the input seqleaicis, with the same word span).
The definition of node equivalence varies between parsistgsys and grammars. For a CFG,
two subanalyses are equivalent if their mother categorethe same.

Equivalent nodes in a vertex represent competing nodetréas) in the parse forest. As we
create these nodes within the same state of the LR parsértfveisame lookahead symbol and
word span) we apply the same set of subsequent parsing atti@ach. To reduce redundant
processing, we need only apply these parsing actions onteiew of this redundancy we
merge competing nodes in the parse forest (and therefotbgimertex of the stack) through
local ambiguity packingpacking, henceforth). Here, we represent each set of nexieg one
node of the set. Subsequent parsing actions are then applied single representative node
only.

2.4.5 LR Parsing Program

The LR parsing program proceeds in the same fashion as psdyidescribed. Although it
now allows for more than one action to be applied given theeniirstate and lookahead item.
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Table 2.6: Stack configurations f&», over PoS tag sequengero,V,Pro,P,Pro

number from stack input action

1 0 P1,P2,P3 ProVProPPrg$ s2

2 1 OPro2 P1,P2,R3 VProPPro$ r3

3 2 ONP 3 P1,P2,R3 VProPPro$ s7

4 3 ONP3V7 P1,P2,R3 ProPPro$ s2

5 4 ONP3V7Pro2 P1,P2,P3 PPro$ r3

6 5 ONP3V7NP8 P1,P2,RP3 PPro$ r6, s4
7a 6 (r6) ONP3 VP 10 P2 PPro$ s4

8a 7a ONP 3 VP 10 P4 P2 Pro $ s2

8b 6 (s4) V7NP 8 P1,P3

9a 8a ONP 3 VP 10 P4Prg2 P2 $ r3

9b 8b V7NP8 P1,P3

10a 9a ONP3 VP 10 P4NP|5 P2 $ r5
10b 9b V7NP8 P1,P3

1la 10a ONP3 VP 10 PP 11 P2 $ r8
11b 10b V7 NP 8 PP P1,P3 ra, 17
12a 11b (r4) ONP 3 V7NP8 P3 $ r8

13 11a,11b (r7),12a ONP 3 VP 10 P1,P2,P3 $ r2
14 13 0S1 P1,P2,P3 $ ri

15 14 0T 12 P1,P2,R3 $ accept

}. The first column shows the configuration number while
the second column shows the previous stack configurationvaich action was applied (in brackets) if more than one actvas possible.
The next two columns (‘stack’ and ‘input’) form the tuple adah configuration reached. The final column illustrates #teof possible
actions, determined using the stack top st&gd&nd current lookahead (the first token in the input of colypn
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0 Pro 1 Y 2 Pro 3 P 4 Pro S $

RSN el T *“10(vP)
)16(r2)
e * 1(S)
) 17(r1)
el T o 12(T)

Figure 2.11: Example graph-structured stack3giover PoS tag sequen¢ero,V,Pro,P,Pro  }.
Each vertex is shown with the corresponding state numberaidategory for each subanaly-
sis (in brackets). For word vertexes, which are created lyasttions, the category is the word
itself. The vertexes are separated into word boundary stémker each lookahead), where
each word boundary stack number is shown across the topsofigiire. To the right of each
word boundary stack is an item in the input sequence, whesetdm is the lookahead for
the boundary. We also number edges (solid lines) which shewotder in which the actions
are performed and, in brackets, the action to perform. ddites illustrate the ancestor state
exposed for a reduce action that creates a subanalysisfoettex.
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The parsing program begins by initialising the first word dary stack (the Oth stack) to a list

containing a single vertex data structure representingtdréLR state. All other word boundary

stack positions are initialised to empty. The program cards by applying all possible reduce
actions for each vertex in the current word boundary stazkyat subsequent shift actions may
be applied to all possible states in this stack (for the gleekahead).

Each production may be augmented with a set of tests, wheheneaterminal is augmented
with a set of attributes and the tests define whether théatérivalues are acceptablBomita
(1987 describes that during parsing, whenever a reduce actrarsfa higher-level nonterminal
using a phrase structure rule, a separate function assdaiath the rule is called that defines,
passes and/or tests the attribute values of the resultingemoinal. If this function returns
notification that one or more tests have failed, then thegpaliscards the resulting nonterminal.

The parsing program also includes a processing stage tdeegebaction of the set of (n-
best) derivations from the resulting parse forest. Thisedsdconsidered tanpackthe parse
forest, given that the nodes (competing subanalyseg)aieedn the data structure.

2.4.6 Output

Given subtree sharing and packing, the parse forest itspiesents another NFA, where we
may move from root node (representing the root categoryefitammar) to word nodes. The

path diverges where packing occurs and merges for subtaemghTo unpack the parse forest
and extract the set of competing derivations, we simply rie¢chverse the NFA and consider

each possible combination of subanalyses for each node jpetfse forest. That is, we perform

a depth-first search of this structure and for each node wer#te set of possible subanalyses.
Optionally, this set is pruned so that only the n-best setibfgalyses is returned.

Given the set of subanalyses for each daughter node, we @ealternative subanalysis for
the current node for each possible combination of daughtesgalyses with the given mother
category. We combine this set of subanalyses with the seted by any packed nodes, as this
set represents the alternative subanalyses for the curoelet At the root node of the parse
forest, the set of possible analyses represent competmgtiens for the given input sequence
(sentence).

2.4.7 Modifications to the Algorithm

Kipps (1989 reformulates the modifications defined Bpmita (1987 to improve the parser’s
efficiency through changes to the state-popping process.algorithm identifies, for a given
reduce rule, each possilkd@cestor That is, the set of daughters on the stack and the resulting
ancestor vertex. Th&NCESTORS$unction, which dominates the complexity of the parser, de-
termines a set of possible ancestors given the currentxyehie number of daughters and the
mother category we wish to create. This function is modifethat the reduce function utilises

a lookup table, reducing the complexity of the parser frot!, wherep is the maximum
number of daughters for a production it

2.5 Statistical GLR (SGLR) Parsing

This section discusses existing approaches to incorpstatistical models over the GLR (LR,
henceforth) parsing framework defined above. In particwardefine the different normalisa-
tion methods over the LR table, given action counts deriwent a supervised training corpus.
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2.5.1 Probabilistic Approaches
PCFG Model

At first, methods considered LR parsing as a purely operaltimechanism, aiming to distribute
probabilities originally associated with the probabiisCFG (PCFG) Wright & Wrigley,
1989. However, these methods fail to take advantage of the iadditcontext available in
the LR parser. The resulting level of context is equivalerthat available in the PCFG, which
are acknowledged in the literature as inadequate due tkafamntext-sensitivity.

Stack Configurations

Suet al. (199]) propose a model that is moderately more context-sensftase the underlying
CFG. They distribute probability mass across possible adéis for the stack configurations
that result for each lookahead item, i.e. between the plessitrd boundary stacks. The proba-
bility of a parse is the product of the probabilities for eatdick configuration that results (prior
to each shift action) during construction of the parse. &#¥ely, they include full context (stack
configuration) in the probability model. However, this mbdEuires a complex algorithm to
train and is it is not efficient to decode.

Parser Actions

Briscoe & Carroll(1993 (B&C, hereafter) propose a method that distributes prolhiiass
directly between competing parsing actions in the LR tadiethat the parsing model success-
fully incorporates a greater level of context compared ® uhderlying CFG. Further, they
estimate the probability distributions using simple MLEdahe model is efficient to decode.
The probability of each parse is the product of all shiftiregl actions that result in the parse.
Inui et al. (1997 (I&T, hereafter) refine the B&C probabilistic model by prding an alter-
native normalisation method. Associating probabilitiathveach vertex in the stack is prob-
lematic, as vertex represent a set of subanalyses (nodesgwlach results from a different
reduce action. Instea@arroll (1993 associates probabilities with each subanalysis and with
each packed subanalysis, i.e. with each node in the parsst foather than with each vertex in
the graph-structured stack (se&44).

2.5.2 Estimating Action Probabilities

Estimating action probabilities in the LR table consistsapfrecording an action history for
the correct derivation (for each sentence in a treebankgpbjputing the frequency of each
action over all action histories and c) normalising thesgdiencies to determine probability
distributions over conflicting (i.e. shift/reduce or redireduce) actions. Models differ in the
last step, the normalisation method during MLE.

Action Counts

In order to estimate action probabilities, we must firstwkefiom a supervised corpus the count
for each action in the LR table. Given a p&ixA), from an annotated treebank as defined in
81.3.1, we determine the parse forest for the sentend®e then identify the parse in the parse
forest that matches the trédespecified in the treebank. This ‘correct’ parse has a cooredipg
set of shift and reduce actions that results in creation efpidwrse. For each shift and reduce
action in this set, we add a count of 1 to the count for thisoactn the LR table. Repeating
this process for each sentence (training instance) in gabank, we determine the total action
count for each action in the LR table. We now discuss altematormalisation methods to
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form probability distributions within the LR table, and caguently, for parses in the parse
forest.

Lookahead Normalisation

It seems reasonable to determine the probability of eackingaaction through MLE over
competing action sets i.e. within cells of the LR table. Weré&o this normalisation method as
la-norm The resulting probabilities are analogous to the tramsifirobabilities in first-order
HMM PoS-taggers as we assign probability mass betweeniticarssin the underlying NFA
with the same edge label (lookahead item).

State and B&C Normalisation

B&C, by contrast, use MLE to estimate their model’'s paramdtera counts over rows of the
LR table, that is across all lookaheads for each state, wictrefer to astate-norm Their full
normalisation method further distributes probability siastween the alternative states possible
after a reduce action. Thus, they effectively distributebability mass betweeall actions
(edges) possible from a state in the grammar NFA, includimgddges that are conditional
on the ancestor state exposed after a reduce action. Hqowergedistributes probability mass
between actions that do not compete with each other giveautrent input, that is, lookahead
item. As a result, probabilities for actions are deficiest, the probability of all parses licensed
by the grammar do not sumto 1.

Inui Normalisation

I&T propose an alternative normalisation method, based bether the current state was
reached from a shift or reduce action. In which case, thayillige probability mass between
cells (la-norm) or across rows (state-norm), respectivehey motivate this method using the
conditional probability of moving from the current stackéigurationo;_1, to anotherg;. They
estimate this probability using the stack-top st&tenext input symbola; and next actiora;.
They argue that the conditional probability of the next lab&ad is known after a reduce action
(i.e. it is unchanged) and unknown after a shift. Let us aberss; andS mutually exclusive
sets of states, which represent those states reached aftesrsreduce actions, respectively.
The probability of a given transition from one stack statartother (that is, of the given action
;) can be estimated using:

P(lac,aj,o-i|0i1)%{ Placa|S) €S }

P& li) S€$§

Therefore, they normalise over all lookaheads for a statever each lookahead for the
state, depending on whether the state is a memb®&y@fS, respectively.

I&T also remove subdivision of probability mass betweenogacestor states for a given
nonterminal category. They argue that this decision isrdetestic in their model, which is
based on stack state rather than the top-Satelowever, in practice they utilis& to represent
the stack i.e. back-off to a purely state-based level ofedntl&T describe refinements that
are expected to provide performance gains over the model @ ,Bfcause la-norm models
the preferences between competing actions only. Morestage-norm implicitly incorporates
bigram statistics in the model.
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Example

Returning to our previous example over the grami@gar we consider a training corpus that
consists of seven sentences: one example of P1, two of P2camd®B parses. Tabl2.7
shows the total action counts in brackets next to each aatidhe LR table. We illustrate
only the action part of the table as the goto table is unchédfigen Table2.5. A tuple in the
second row illustrates the probabilities for state-noamaorm and the normalisation model by
I&T, respectively. B&C counts and resulting probabilitiésr(each ancestor vertex) appear for
reduce actions in the remaining rows for each state, withatfeestor state in brackets. We do
not apply smoothing in this example. Although if no counts seen for any of the competing
actions in a set, we show the probabilities distributed Bgbatween the unseen actions.

The probability of P1, P2 and P3 for each normalisation maaelshown in Table.8.
Given the training data, the resulting probability modeddd rank P1< P2 < P3. However,
while both lookahead and I&T based normalisations achibigeranking, with probabilities
in ratio to the number of each parse seen during trainind) btatte and B&C normalisation
methods do not. A similar example was shown by 1&T, thoughr aveéifferent grammar. B&C
and state based normalisation both rank&PR1, which on closer inspection of both examples
is primarily due to the subdivision of probability mass tamnompeting actions (at this point in
parsing). That is, to those that are not one of the two detigmnts (from states 8 and 9) as
discussed in3.4.3

2.6 RASP

RASP (the ‘robust accurate statistical parser’) is a rohbasissical analysis system for English
developed byBriscoe & Carroll(2002. RASP is a SGLR parser, applying the probability
distribution over complete derivations, using the I&T pabbity model over parsing actions as
described in 8.5.2 This section provides specific details of RASP’s grammagii §, training

in 82.6.2 parser application in&Z6.3and finally, we describe the output formats available in
§2.6.4

2.6.1 Grammar

Unification-based Metagrammar

Briscoe (2006 describes the manually written feature-based unificagi@mmar, where ter-
minals are defined over PoS taddworthy, 1994 the CLAWS Il tagset). The grammar is
written in the ANLT formalism, i.e. as ametagrammarbased on the notion of generalised
phrase structure grammar (GPSG). Terminals do not inchelaull category and features hold
atomic values so that rules are written using only a subsecdttribute-valued (AV) grammar
possibilities defined by the ANLT formalisnGfoveret al, 1993. The grammars developed
for use in RASP are referred to as the set of ‘tag sequence gueshisg, and version numbers
are appended to this acronym. The grammars utilised in thik are variants of the finasg15
released with version 2 of RASBI(scoe & Carrol) 2006.

Attributes can be organised into sets for the purpose ofifegiropagationféature setsor
simply to enable abbreviated representation of commor(akdsesg. For example, Figurg.12
shows a grammar rule analysing a verb phrase followed byopitonal phrase modifier. The
rule’s name is/1/ivp _pp and the syntactic specification which follows on the firseloontains
alias categoriegl, H1 andP2 which are defined in the grammar as:

ALIAS V1 = [V +, N -, BAR 1].
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state action
$ P Pro Vv
0 s2 (7)
S {113
1 rl (7)
s (1LY
7(12)
1(12)
2 r3(7) r3(7) r3(7)
S {0.33,1,0.33 {0.33,1,0.33 {0.33,1,0.33
03,75 06 03,0 ,78 73,0 06
0®,0.339,0®) 03,05 ,0.338) 0.33%3,09,0®)
3 s4 (0) s7(7)
S {0,1,1 {1,1,1
4 s2(7)
s {11y
5 5 (7) r5 (0) r5 (0)
S {1,1,1 {0,0.5,0.3 {0,1,1
0(6) 5(9) 2(11) 06,009 oD
0,0.719,0.291Y 0,09 01D
s4 (0)
{0,0.5,0.5
6 r4 (0) r4 (0) r4 (0)
S {0.33,1,3 {0.33,1,3 {0.33,1,3
03,0 ,08) 03,0 08 03,0 08
0.11®,0.119,0.11® | 0.11%9,0.119,0.119® 0.11®,0.11%,0.118)
7 s2 (7)
S {1,111
8 r6 (4) 16 (2)
S (10,4) (10,2)
{0.36,1,3 {0.18,0.29,0.29
4(10) 2(10)
0.3619 0.1819
s4 (5)
{0.45,0.71,0.71
9 rd (4) r4 (0)
S {0.8,0.8,0.8 {0,0.5,0.3
03,0 ,4®) 03,0 ,08
03,09 ,0.89 03,0 08
r7 (1) r7 (0)
{0.2,0.2,0.2 {0,0.5,0.3
1(10) 019
0_2(10) 0(10)
10 12 (7) s4 (2)
S {0.78,1,3 {0.22,1,3
7(1)
0.78%
11 r8 (2) r8 (0)
S {1,1,1 {0,1,1
2(10) 0(10)
1(10) 0(10
12 accept
S

Table 2.7: Statistical models over the action tableGer
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Normalisation method

Parse| State-norm la-norm B&C I&T
P1 0.0025 0.1420 0.0018 0.0051
P2 0.0011 0.2900 0.0003 0.0104

P3 0.0036 0.5680 0.0026 0.0204

Table 2.8: Example of the parse probabilities that resuldffferent LR parser normalisation
methods.

V1ip_pp : V1[MOD +] --> H1 P2[ADJ -, WH -] :

= [PSUBCAT NP], (ncmod _ 1 2) :

= [PSUBCAT NONE], (ncmod prt 1 2) :

[PSUBCAT (VP, VPINF, VPING, VPPRT, AP)], (xmod _ 1 2) :
[PSUBCAT (SFIN, SINF, SING)], (cmod _ 1 2) :

[PSUBCAT PP], (pmod 1 2).

1
2
2
2
2
2

Figure 2.12: Example metagrammar rule. This rule defingloows the rule name and syntactic
specification (on the first line), with semantic rules for tBR output format shown in the
remaining lines.

ALIAS H1 = [H + BAR 1].
ALIAS P2 = [V -, N -, BAR 2.

The tsg grammars utilise x-bar theory, expressed in theife82R TheV andN features
represent the major categories of verb and noun, while thuesaand- represent the presence
and absence of the feature, respectively. The head daughtEntified using the feature,
so that in this example, the first daughter is the head daughteaddition to these features,
a number of feature-value pairs are defined in the syntapgciication. For example, the
prepositional phrase daughter is a non-wh phrase.

Object Grammar

The metagrammar enables the grammar writer to expressldsima compressed and manage-
able format e.g. with aliases. These ‘compressed’ rules@miled into arobject grammar
by ‘expanding out’ the phrase structure rules with addaidieatures. The resulting object
grammar contains categories represented as lists, sipgcthye category number followed by
values corresponding to the features for the given categ@gh value is set to either a specific
predetermined value (e.g), or a variable value (starting witf) which is instantiated during
unification. A table holds the corresponding feature narmoesdch category.

For example, the 6th category type in tsg15 corresponds &tacategory. The following
example shows a verb with several features instantiated tixe associated entry in the feature
name table as follows:

(6 - + |1| @2787 @2815 - PAST + - - -)
(N V BAR PLU MOD AUX VFORM FIN CONJ SCOLON QUOTE)

Rules in the object grammar consist of lists of such categofiée first item is the rule’s
mother, followed by the rule name, while remaining categ®riepresent the daughters of the
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rule. Each feature value is instantiated as specified in tiagnammar rule and features that
are required to unify between daughters, or pass from thd Haaghter to the mother, are

specified by using the same variable number (e.g. @7) in thghdar's and mother’s category

lists. TheViivp _pp rule shown in Figur@.12results in the compiled object grammar rule, with
the features set as specified in the aliases and within thetself, as follows:

(#6 - + |1] @7 + @23 @24 @28 - - -) "V1p_pp"
#6 - + |1 @7 @36049 @23 @24 @28 - - @36050))
(#0 - - |2] @36051 @36052 - - @36053 - - @36054)))

CF Backbone

The context-free (CHyackbonggrammar is determined from the object grammar, where rules
contain categories identified using atomic names. Thaah @atomic name has an associated
residue of feature name-value pairs. Given a specified stdabfires we wish to ‘compile’
out of the grammar, we effectively determine a rule for eachsfble combination of these
features i.e. so that a CFG (with no residue of features) tegull features of the grammar
are compiled out:* For example, if a rule contains 2 values for 3 features ttetuaspecified
(i.e. have variable values), all of which we wish to compilg;, dhen we create®2= 8 different
run-time rules. Each of these 8 rules now have specific valeéised for each of the three
features compiled out, and these features no longer needunified during parsing.

We determine the CF backbone from the object grammar in twgestaFirstly, we deter-
mine the set of disjoint categories in the object grammars $at covers the whole grammatr,
where each of the features we wish to compile out have se¢satithe categories (and thence
rules) created. We identify each category with a distinotrat category name. Secondly, we
create a CF rule for each object grammar rule using the atoategory names. Additional
refinements are required to the second stage to deal witlexeomple, coordination and un-
bounded dependencies, which we do not cover here (seedn€aaoll 1993.

In the resulting CF backbone, nonterminals and terminalsargtammar are then identified
using these atomic category names. A table maps these nartfesfeature-value categories.
The grammar for tsg15 consists of 1189 run-time productithra is, in the compiled CF back-
bone. The CF backbone consists of 61 distinct categoriegrg@inals, and 33 nonterminals.
For example, the CF backbone rule for the grammar rule in Eigur2 with V1-41 andp2-48
distinct categories, follows:

(CFRULE :NAME V1ivp_pp :MOTHER V1-41 :DAUGHTERS (V1-41 P2- 48))

V1-41: [N -, V + BAR 1, PLU @7, MOD @1993, AUX @1994, VFORM @1995,
FIN @28, CONJ @2738, SCOLON -, QUOTE @2917]

P2-48: [N -, V -, BAR 2, PSUBCAT @13, PFORM @16, ADJ @18, WH @20,
MOD @22, CONJ @2832, SCOLON -, QUOTE @5439]

Grammatical Relation (GR) Specifications

Briscoeet al. (2006 describe the grammar and the rule-to-rule mapping froralltrees to

grammatical relations (GRs). The mapping specifies for esamar rule the semantic head
of the rule (head, henceforth), and one or more GRs that siheubditput (optionally depending
on feature values instantiated at parse time). Therefoeenontrivial task of determining GRs
via feature propagation and structural context (over eadobst derivation) is no longer required.

24Note that this is infeasible given large broad-coveragéeation grammars.
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For example, the rule in Figur2.12 identifies the first daughtet) as the head (second
line), and that one of five possible GRs is to be output (suls#dines), depending on the
value of thePSUBCATsyntactic feature. If the feature has the valirethen the relation iscmod
(nonclausal modifier), with slots filled by the heads of th&t fand second daughters (thand?
arguments). The resultir@R specificatioms <1, (ncmod _ 1 2)>. That is, each GR specification
is defined asxhead, GR>.%°

Figure 2.13 specifies the set of possible GRs defined in the grammar. ThBseafe ar-
ranged in a subsumption-based hierarchy which illustrédtesntent of the grammar writer to
differentiate arguments from adjuncts. GRs take the folh@Aorm: (relation subtype head
dependent initial) whererelation  specifies the type of relationship between tbad and
dependent . Thesubtype slot encodes additional specifications of the relation tiggesome
relations. Finally, thenitial slot encodes the initial or underlying logical relation bkt
grammatical subject in constructions such as passive.

dependent

tamm

ncmMochd subj_dobj

ncsubm /pcclmp\itu/\

dobj obj2 iobj  xcomp  ccomp

Figure 2.13: The GR subsumption hierarchy

Marked Rules

Of the 1189 productions, 255 are (manually) identified asketr peripheral rather than core
rules of English grammar. These rules are intended to apply when other rules are not
available. For example, there are marked rules to covenyh&shifted arguments to verbs
where, for example, a short PP argument occurs before apmdgented to him the largest case
of cigars she had ever seen

Optional Grammar Constituents

Many rules include multiple optional constituents (for snctness of grammar expression).
For example, a rule for subject auxiliary inversion witalicensesnot before or after the com-
plement which can also optionally be followed by an advdrpiaase:is (not) he (not) the
abbot (clearly)? resulting in 2 = 8 different run-time rules.

250ne or more GRs are defined in the second element of the GRisption. For simplicity, we consider one
GR per specification.
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2.6.2 Training

LR Table Construction

A generalised LALR(1) (LR, henceforth) table is constructemhf the CF backbone grammar
utilising the efficient LALR(1) table construction technejudescribed in 3.6 However,
this algorithm requires multiple passes over the item sepsdpagate the lookaheads correctly
between the sets and, @arroll (1993 reports, was infeasible given the size of RASP’s CF
backbone grammarKristensen & Madser§1981) describe a modification to this algorithm,
applied within RASP, that computes the lookaheads usinggespass over all item sets and
caches intermediate results to enable tractable compntatithe table.

Action Probabilities

Probabilities are associated with actions in the LR tabieguhe normalisation method driui

et al. (1997 as discussed in&5.2 We determine action counts by training on around 5K
fully annotated training instances from Susanne (se8.%. During normalisation, we apply
Laplace estimation to ensure that we assign a non-zero Ipifitp¢o all actions in the LR table.
That is, we assign ‘unseen actions’ a probability equal &r#ctiprocal ofT, whereT is the
total frequency of actions plus 1 for each actaoim A:

T=7 (la+1)

acA
Each unseen action is in the getso that the sum of all action probabilities equals 1.

2.6.3 Parser Application

Processing Components

RASP is based on a pipelined modular architecture in whichisgxreprocessed by a series of
components that perform sentence boundary detectiomis#ten, part of speech (PoS) tag-
ging, named entity recognition and morphological analysefore being passed to a statistical
parser Briscoe & Carroll 2002. The PoS tagged tokens are then mapped to terminals of the
grammar, so that the input sequence is mapped from raw téletterminals of the grammar
prior to parsing.

Parsing Framework

To parse over an input sequence of grammar terminals, weeutite GLR framework previ-
ously defined in 8.4. That is, we apply a graph-structured stack over the GLRetalthe CF
backbone. The shift and reduce actions are obtained ankdyyl considering the atomic cat-
egories only. However, after each reduce action we unifyaagires for the CF rule, effectively
augmenting the rule with a test asTamita(1987).

Thus, on each reduce action the features and the daughtérs fle are unified. That is,
we unify the residue of features not incorporated into the &tkbone grammar. If unification
fails then this derivation path also fails. Since unificataiten fails it is not possible to apply
beam or best first search strategies during constructioheopairse forest; statistically high
scoring paths often end up in unification failure. Hence,ghese forest represents all parses
licensed by the grammar.

Efficiency Modifications
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Kipps (1989 describes how to turn theNCE ST OR&unction (called for each reduce action)
into a table look-up functionCarroll (1993 modifies this algorithm so that the function utilises
acacheof intermediate results to enable fast look-up of ancestodsthese intermediate results
are stored in sets of alternative node sequences. Eacheatthi&eyed orv andk holds the set
of all possible node sequences whose start vertex is destaimcthe stack from vertex. The
entry is updated when each new analysis is formed duringngarso that the cache is always
up to date. The resulting parser’s time complexity is @%o

Packing

Carroll (1993 generalises the atomic category packingomita (1987 (described in 8.4.4

to complex feature-based categories followiighawi (1992. Packing is based on feature
structuresubsumptiorfOepen & Carroll200Q provide a definition), whereby the most general
node represents the set of packed nodebyao & Tsujii (2002 definefeature forestsan
instance of a parse forest in which nodes are sets of proepaltyes rather than, for example,
CFG categories. Thegonjunctivenodes correspond to the node definition we provide, while
disjunctivenodes represent a set of equivalent conjunctive nodesatitipe, we utilise a single
node to represent a set of equivalent nodes. Thereforeingesiknply results in a compact data
representation by grouping equivalent nodes, regardliesedormalism used to define this
structure.

Parse Forest

In view of the multiple root categories, the parse foresinspractice, considered the set of
parse forests, where each dominates analyses spannindhthe sentence with the specified
root category. Nodes within the parse forest, and in theltreguerivations are labelled with
sets of features (attribute-value pairs). As previousBcdssed, the LR action table defines
the set of possible shift and/or reduce actions applicalEnghe current state and lookahead.
The corresponding action probability assigns a score th sawly derived (sub)analysis, and
moreover, to this node in the parse forest. Recall that theedarest is built within the graph-
structured stack, as defined i2.3.4

Figure2.14shows a simplified parse forest containing three parseggeuokfor the follow-
ing preprocessed text:

| _PPIS1 see+ed _VVD the AT manNN1 in_ll the _AT park _NN1

Each node is uniquely identified by the number in the top |e&ach square. Edges to circles

with numbers indicate that a pointer toshareddaughter node is stored. In this case, the
number identifies the corresponding node’s data structtme example, node 5 represents the
word node forsee+ed VVDwhich is a daughter of nodes 4, 18 and 22.

Parse Selection Model

At parse time, the probability of an action corresponding tmarked production: a ‘marked
action’, is effectively reset to be equal to the minimum dfwaiseen action probabilities in
the table. Due to the marked action probabilities and uritioafailure, the extant model’s
probability distributions are deficient. Arguably, the kang of competing derivations is more
important than preserving this property of probabilitytdizitions.

Parses are ranked in order from most to least probable, amidtgemine the n-best deriva-
tions, as discussed inl8l.1 Derivations are found bynpackingthe parse forest, using a
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man_NNT1i

in_ll i

k_NN1

parl

N1/n }—@

the_ AT

f] AZ
1
1

NP/det_n

the_ AT

9
E é1 1Pi

1see+ed_VVD '

O
(P Ez) f ;4)
T/txt-sc1/- S/np_vp
x;:;

NI/n }—@
| @

1/p_np

NP/det_n

p_pp

V1/v_n

Figure 2.14: Simplified parse forest fbisaw the man in the parkEach node in the graph
represents a node in the parse forest and is shown with tlmespanding subanalysis’ rule
name. Two nodes are packed into tHé& _np_pp node, shown using dotted lines, which results
in three alternative parses for the sentence. Edges (wiith Igres) illustrate pointers from
mother to daughter nodes. Squares shown with dashed lisasfidword nodes while solid

lines represent tree nodes.


images/fig-packaged-eg.eps

2.6 RASP 61

depth-first beam search over complete parse forests (tbhossdrin top categories of the gram-
mar). The probability of each derivation is the product ¢fsaift/reduce actions that result in
the derivation Briscoe & Carroll 1993see 2.5.]).

Processing Restrictions

Processing restrictions (time and memory limitations) lsammposed by the user during pars-
ing to enable an efficiency and accuracy trade-off. Furthevord-length limitation may be
specified by the user so that only sentences of length lessathaqual to this value are pro-
cessed. As the size of the parse forest scales, in genepalnentially to sentence length, this
limitation enables the user to further prioritise efficigrme accuracy.

2.6.4 Output Formats

There are a number of output types available, includingasyitt treé-%, GRs and robust min-
imal recursion semantics (RMRS, s€epestake 2003 Each of these is computed from the
n-best derivations. It is also possible to specify that alwoation of these output formats
should be returned.

N-best Derivations

From the parse forest, RASP unpacks hieestderivations?’ Each derivation is represented
as an embedded list of pointers to nodes of the parse follastrating the syntactic structure
over these nodes. We perform a final unification check acrasls derivation, as packing is
based on subsumption and features may not unify once all ioatidns of packed nodes are
enumerated. If unification fails for an unpacked derivatitven it is removed from the n-best
list.

Fragmentary Parse

If the parser is unable to find a full analysis (that is, onetedan the start category) then
the system outputs fBagmentaryderivation. This is a connected sequence of partial anslyse
spanning the input by applying a modified shortest pathsrigigo (Briscoe & Carrol] 2009.
Therefore, given sufficient memory and time, the systemlis tagproduce an analysis for most
sentences which lie outside the grammar. If we are unablestie the parse forest within the
imposed time or memory limitations, a fragmentary analisreturned.

Syntactic Tree

A syntactic tree (or tree, for short) consists of labelleddeting output in which each set of
brackets corresponds to a rule. The contents of each braukeates the daughters of the
rule, and therefore, the word-span of the phrase itself. tideeis trivial to determine from the
derivation, as the list of pointers has the same structuteeasyntactic tree. We determine the
rule names of the derivation by replacing each pointer todenath the corresponding original
production name (or the word itself for word nodes).

Figure 1.1 shows an example syntactic tree and its corresponding Batléml-bracketing
representation. This flat labelled-bracketing is usedpoagent syntactic trees output by RASP.
For example, Figur2.15shows three parses in this format generated for the parsstfemown
in Figure2.14

26The termtreerefers to syntactic trees in this work, while derivatiorersfto unpacked structures that include
full derivation information e.g. attribute-value pairs.
2The numben is specified by the user, and represents the maximum numiparsés to be unpacked.
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(T/txt-scl/-
(S/np_vp |_PPIS1
(V1N_np seeted_VVD
(NP/det_n1 the AT
(N1/n1_ppl (N1/n man_NN1)
(PP/p1
(P1/p_np in_II (NP/det_nl1 the AT (N1/n park_NN1)))))))))

(T/txt-scl1/-
(S/np_vp I_PPIS1
(VIN_np_pp see+ed VVD (NP/det_nl the AT (N1/n man_NNL1))
(PP/p1
(P1l/p_np in_Il (NP/det_n1 the AT (N1/n park NN1)))))))

(T/xt-scl/-
(S/np_vp |_PPIS1
(V1/vp_pp
(V1v_np seeted VVD (NP/det nl the AT (N1/n man_NN1)))
(PP/pl
(Pl/p_np in_Il (NP/det_n1 the AT (N1/n park_NN1)))))))

Figure 2.15: The n-best syntactic trees output for thresgsafior the sentendesaw the man in
the park

Grammatical Relations (GRS)

The GRs for each derivation are computed from the set of GRifggaimns at each node,
passing the (semantic) head of each subanalysis up to thiigaer level in the derivation (be-
ginning from word nodes). GR specifications for nodes aregtiired, instantiated based on the
features of daughter nodes. These are referred tmfiged until the slots containing numbers
arefilled with the corresponding heads of each daughter node. Forg&athe grammar rule
named\P/det _n has the unfilled GR specificaticte, (det 2 1)>. Therefore, if a\P/det _n local
tree has two daughters with heatle andcatrespectively, the resulting filled GR specification
IS <cat, (det cat the)>. That is, the head of the local treedatand the GR output iglet cat the).
For a derivation, each node has one corresponding head @&ndranore corresponding GRs
(in the filled GR specification). For word nodes, the headéswbrd itself.

Weighted GRs

The weighted GR output for a sentence consists of the unefua grammatical relations in all
derivations licensed for that sentence, where each GR ghiead based on the probabilities of
the derivations in which it occurs. This weight is normatise fall within the range0,1] where

1 indicates that all derivations contain the GR.

Example

If we continue the example for the parse forest shown in Eguk4, the corresponding shift/reduce
probability and instantiated GR specifications for eachenaré shown in Tabl2.9. For exam-
ple, theviivp _pp subanalysis (hode 17) contains the instantiated GR spetodinc<1, (ncmod _ 1 2)>
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since its second daughter has the valBéor its PSUBCATfeature. Note that the head of a word
node is considered the word itself.

GR SPECIFICATION
Node | Word/Rule Probability head GR
1 Tltxt-scl/— 0.0 1
2 S/npvp -0.5391 2 (ncsubj 2 1 )
3 |_.PPIS1 -0.6763 PPIS1
4 V1/iv.nppp | -0.8728 1 (dobj 1 2),(iobj 1 3)
5 see+edvVD | -0.00002 see+ed/VD
6 NP/detn -1.1568 2 (det 2 1)
7 the AT -0.0004 theAT
8 N1/n -1.848 1
9 manNN1 0.0 manNN1
10 PP/pl 0.0 1
11 P1/pnp -0.6565 1 (dobj 1 2)
12 inIl -0.0134 inll
13 NP/detn -0.1663 2 (det 2 1)
14 the AT -0.0005 theAT
15 N1/n -2.307 1
16 park NN1 0.0 parkNN1
17 V1/vppp 0.0 1 (ncmod _ 1 2)
18 Viiv.np -2.5335 1 (dobj 1 2)
19 PP/pl 0.0 1
20 P1/pnp -0.6565 1 (dobj 1 2)
21 in.Il -0.0005 inll
22 Viivnp -1.1534 1 (dobj 1 2)
23 NP/detn -0.1663 2 (det 2 1)
24 N1/nlppl -0.5165 1 (ncmod _ 1 2)
25 P1/pnp -0.6565 1 (dobj 1 2)
26 in.Il -0.0452 inll

Table 2.9: Node (log base 10) probability and instantiat&d gpecifications for parse forest
nodes shown in Figurg.14

Figure 2.16 illustrates the n-best GRs and the corresponding (non-ris@daand nor-
malised) weighted GRs for this sentence. Weights on the GRaa@malised probabilities
representing the weighted proportion of derivations inclitthe GR occurs. A non-normalised
weighting is calculated as the sum of derivation probaégifor derivations that contain the
specific GR. We then normalise the weight using the sum of alakson probabilities. For ex-
ample, the GRiobj see+ed in) iS in one derivation with probability-8.237, the non-normalised
score. The sum of all derivation probabilities+§.843. Therefore, the normalised probability
(and final weight) of the GR is 1082377843 — 0.404265%8

28ps we are dealing with log probabilities, summation and madiion of these probabilities is not straight-
forward. Multiplication of probabilities X and Y, with logrpbabilities x and y respectively is determined using
the formulaX x Y = x+v, division usingX <Y = x—y, summation using +Y = x+ logio(1+ 10¥) and
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N-BEST GRS: (NON-NORMALISED) WEIGHTED GRS:
Parse probability: -8.075 -7.843 (det mBAiN1 the AT)

(det manNN1 the AT) -7.843 (det parlkiNN1 the AT)

(det parkNN1 the AT) -7.843 (dobj inll park_NN1)

(dobj in_Il park_ZNN1) -7.843 (dobj see+e®VD man_NN1)

(dobj see+ed/VD man.NN1) -7.843 (ncsubj see+edVD | _PPIS1)
(ncsubj see+edVD | PPIS1) -8.075 (ncmod manNN1 in_Il)
(ncmod_manNN1 in_II) -8.237 (iobj see+ed/VD in _II)

-9.884 (ncmod see+edvVD in _ll)

Parse probability: -8.237 (NORMALISED) WEIGHTED GRS:
(det manNN1 the AT) 1.0 (det manNN1 the AT)
(det parkNN1 the AT) 1.0 (det parkNN1 the AT)
(dobj in_Il park_ZNN1) 1.0 (dobj inll park NN1)

(dobj see+ed/VD man.NN1) 1.0 (dobj see+edyVD man NN1)

(ncsubj see+eVD | _PPIS1) 1.0 (ncsubjsee+edVD | _PPIS1)

(iobj see+edvVD in _II) 0.5866 (ncmod manNN1 in_II)
9.0960e-3 (ncmodsee+edvVD in _II)
0.404265 (iobj see+edVD in _II)

Parse probability: -9.884

(det manNNL1 the AT)

(det parkNN1 the AT)

(dobj in_Il park NN1)

(dobj see+ed/VD man.NN1)

(ncsubj see+e¥VD | _PPIS1)

(ncmod_ see+edvVD in _lI)

Total probability (sum of all parse probabilities): -7.843

Figure 2.16: The n-best GRs, and non-normalised/normaliseghted GRs determined from
three parses for the sentericaw the man in the parkParse probabilities and non-normalised
weights are shown as log probabilities as RASP stores allgtibties in log (base 10) form
with double float precision.

subtraction using —Y = x+logyo(1—100~).



Chapter 3

Part-of-speech Tag Models

We briefly described the preprocessing stages of the exéasepin 8.6.3 These processing
modules, which we define in382, include a part-of-speech (PoS) tagger (tagger, hentgfort
The tagger maps each token in the input sequence to a set €iblgoB0oS or grammatical
categories defined in the taggedgtionary (or lexicor). The tagger usually decides on the
optimum set of PoS tags given the input sequence, so thatomytag is returned per word.
In this case, the tagger is considered to rursimgle tag per word (tpwnode. However,
most taggers may also run multiple tpwmode, where more than one tag is returned for each
word, though some of the tag ambiguity present in the dietipns resolved by the tagger. If
a tagger is used asfeont-endto a parser, then the resulting PoS tags are considerecheaami
of the parser’s grammar. Tag ambiguity unresolved by thgeatp effectively resolved by the
parser as the parser selects the most likely derivationtteerdfore the corresponding PoS tag
sequence, during parsing.

This chapter describes work that aims to optimise the leM&gambiguity to pass onto the
parser, in terms of both parsing efficiency and accuracy.niestigate this aim with respect to
RASP’s PoS tagger, and define a number of different tag mod#isWiRASP’s architecture in
83.3. Utilising gold standard tag and GR sets enables compaattirese tag models in terms
of both tagging and parser performance B1&and 8.5, respectively. As far as the author is
aware, this work is the first to perform such a broad compari¥ée first describe related work
in 83.1 Much of the work we describe in this chapter appeai/atson(2006.

3.1 Previous Work

This section describes previous work on the integrationo® fggers into the parsing process.
We discuss how PoS taggers may be utilised as front-endgsergathat is, as preprocessing
modules prior to parsing, in31.1 Next, we describe work that focuses on the choice of tag
model, that is, the optimum level of tag ambiguity to pas®dhe parser in38.1.2 Finally, we
describe PoS tag models iB3.83.3

3.1.1 PoS Taggers and Parsers

PoS Tagger Front-end

In 82.3.1, we defined the components of an LR parsing system. We alswiloed natural

language parsers; programs that accept a word string aggtiesequence and return the corre-
sponding analysis (a parse). The input sequence analysibe Iparser consists of terminals of
the grammar, so that the parse structure (consisting oenmirals) is defined and constructed

65
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over these terminals.

Given a CFG, we output a derivation that includes words labeNith PoS tags and non-
terminal categories that each span (a subset of) these BeSDapending on the architecture
of the parser, we can consider either the words or the PoS&tathe terminals of the grammar.
That is, rules of the grammar may include unary rules, wheeentord is the daughter of the
rule and the PoS tag category is the mother of the rule Beg.— the . If we remove these
unary rules, and consider PoS tags terminals of the granth&ar,we require a preprocessing
stage that first maps from the raw text sequence to a PoS tagrss®) In this case, the tagger
is considered &ont-endor preprocessing module to the parser and the input seqieaceet
of word-tag pairs e.ghe _Det.

Resolving PoS Tag Ambiguity

PoS tagging is the process of mapping from raw text to thetBgpSequenceThat is, a method
to select one tag per word. A dictionary defines the set offtagsach terminal of the grammar.
Initially, the set of tags for each word is considered theirsehe dictionary. The tagger then
resolves some or all of the tag ambiguity. If it resolves aibéguity then only one tag per word
will remain and the tagger is considered to beimgle tpwmode.

Conversely if it does not remove any tag ambiguity, we byphestagger altogether and
allow the parser to resolve all the ambiguity. That s, theseabuilds all possible parses relating
to each possible combination of tags in the input sequendeselects the most probable parse,
and thus, the corresponding tag sequence. In this case feati\adly allow the tag dictionary
to define a set of unary grammar rules as discussed previously

A number of intermediate models may be utilised, whereby anry the level of tag am-
biguity passed onto the parser, so that the tagger and panesdyoth resolving some of the
ambiguity. In this way, the tagger and the parser (or a coatlan of both) form a PoS tag
model. While the parser may act as a PoS tag model, the prapaifieach tag determined
by the tagger, given multiple tpw input to the parser, mayrttegrated into, thence affect, the
probability of each resulting derivation (and correspoigdPoS tag sequence).

Affect on Performance

Research investigating the use of PoS taggers as front emuarders has, to date, concen-
trated on whether or not such a preprocessing stage imppawss accuracy and/or efficiency.
Compared to the parser, the tagger resolves tag ambiguityeetily, as parse ambiguity can

increase exponentially with tag ambiguity. Thus, most issidgree that efficiency improves
with a tagger front-end. For exampl€harniaket al. (1996 illustrate that using a front-end

tagger to resolve all tag ambiguity, which achieves 95.98¢iteg accuracy, can significantly

improve the efficiency of the parser. Their efficiency mesithe number of edges in their chart
parser. They measured tagging accuracy only, and so digstdtie impact of these tag models
on parsing accuracy.

Researchers have speculated that both speed and accuracgingpmproves, as the tagger
‘filters out’ unlikely tags resulting in reduced parse amiiig Furthermore, if we reduce tag
errors, we reduce the number of parsing errors that reghk iparser selects incorrect tags, and
therefore, incorrect syntactic analysis over these tagsveder, these studies generally employ
a ‘good’ statistical PoS tagger, as taggers now achievartgggcuracy in the high 90’s when
trained and tested over the same domain.

Dalrymple (2009 investigates whether we can reduce parse ambiguity if welve tag
ambiguity. Dalrymple argues that this will only occur if pas can be differentiated based on
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their tag sequences. If so, resolving tag ambiguity withexfgct tagger’ may improve parser
performance. Otherwise tag errors introduced by a tagdeb&detrimental to parse accuracy
and coverage. Dalrymple illustrates that over section 18hefWSJ (see B3.]), parses are
differentiated based on their tag sequences for 70.53%nésees. Given access to a perfect
tagger, parse ambiguity is reduced by around 50%.

An increase in tag error rates results in a decrease in pacsaracy and coverage. This de-
cline in performance may out-weigh the benefits of increasiciency, depending on whether
the parsing task prioritises efficiency or accuracy in thes@a For exampleKaplan & King
(2003 show that parser coverage (percentage of full parses)ffalin 76% to only 62% if they
employ a front-end PoS tagg@alrymple(2006 suggests that a major source of their tag errors
is their mapping from PoS tags to the terminals of their gramifRurthermore, this error-prone
mapping is evident in their results for parser coverage amdracy over gold-standard PoS
tags. In this case, the parser’s accuracy still declinesjgh these gold-standard tags should
instead provide an upper bound on the task.

Coverage

Parser coverage is often used to reflect parser accurachiouh this is not appropriate as
increased coverage does not necessarily translate t@asedeccuracy, especially if the parser’s
grammar is not well-constrained over the PoS tag termin&lst example,Charniaket al.
(1996 report that incorrect tags only marginally affect the passcoverage. Their parser finds
a complete parse for all sentences given all possible tdgte anly finds a complete parse for
99.2% of sentences over the single tpw input. However, indaear whether the accuracy of
the parser improves given multiple tpw input as parse anityigncreases given multiple tpw
input. That is, the parser is more likely to select an inadreequence of tags (and therefore,
an incorrect parse) given all possible tags.

Discussion

Research investigating front-end PoS taggers supportaigeif parsing efficiency is paramount.
Furthermore, an increase in parser accuracy results if diset®yger’s tagging errors result in
fewer parse errors compared to those due to increased pabsguaty over multiple tpw input.
Thus, the optimal level of tag ambiguity resolved by the padepends on the given PoS tag-
ger and parser, and furthermore, whether parser efficienagauracy is critical in the current
parsing task.

For exampleClark & Curran(20043 illustrate that significant increases in efficiency, ac-
curacy and coverage occur if they integrate a front-end ipleltpw supertagger with their
combinatory categorial grammar (CCG) parser. Supertage=ically rich PoS tags, and spec-
ify the local syntactic constraints for a word. They do ndtyfuesolve tag ambiguity in the
supertagger, as the supertagger in single tpw mode ach@vesaccuracy (low 90’s) than PoS
taggers with coarser tag sets such as the taggéhafniaket al. (1996.

We do not investigate whether a PoS tagger should be useatb(seare referred thalrym-
ple 2006for a recent survey and discussion of this) but instead foauke choice of tag model.
We define a number of tag models in the following section, angigde a broad comparison of
these models in terms of a number of performance metricsdibr fliarsing and tagging.

3.1.2 Tag Models

We define atag modelas the parsing architecture employed to select the tag segue to
provide a ranking (probability) for each tag (given morerttume tag per word). This may
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include utilising the tagger, parser or a mixture of bothudthe resultingag file can contain
any level of tag ambiguity, from single tpw to the full set afjs defined over each word in the
tag dictionary. Recall that tag sequences defined as a sequence of tags (or word-tag pairs)
where one tag was selected for each word (token) in the irgmutence.

Charniak et al. (1996

Charniaket al. (1996 investigate the optimal choice of tag model for a PCFG pasdrcon-
sider the parser’s tagging accuracy, that is, the tag seguenthe top ranked parse. They
conclude that the parser, given multiple tpw input, can mgticantly improve on the tag ac-
curacy of a (single tpw) PoS tagger. Although they employ @ntoarse tag set that consists
of only 19 PoS tags. Therefore, these results may not tri@nfa parsers that employ finer
grained tag sets (such as the set applied by RASP). Furtheyihave assume that tag error
rates correspond to parser error rates, we incorrectlyvassoat all tag errors are equally detri-
mental to parser output. This is not the case however, asxiomple, a noun mistagged as
a verb will have a more adverse effect on parser performdrare mistagging the noun as an
adjective.

Dalrymple (2006

Dalrymple (2006 investigates the impact of PoS tags on parse ambiguityesepted by the
number of parses licensed by the grammar. By grouping paradbeir tag sequences, Dal-
rymple finds that they can differentiate the majority of earén terms of their tag sequence
since only 30% of sentences had all their parses defined logesaime tag sequence. Given the
correct tag sequence in these cases, they estimate thatgralsguity will halve. Dalrymple
suggests that the tag sequence that corresponds to thstlamgeber of parses may well be the
correct tag sequence given that most parses contain thedagrsce, though she is unable to
evaluate this tag selection model without a gold-standegdéet. We consider this tag model in
this work, as well as more sophisticated tagging schemes.

Clark & Curran (20043

Clark & Curran (20043 apply a tag model that uses the parser's CCG grammar to decide
whether supertags output by the supertagger are accept@hkt is, whether the grammar

is able to find a full analysis. A small number of supertagswerd are output initially (1.4
tpw), the set of most probable tags. They continue to inerdlas number of supertags, until
either the parser is able to find a complete analysis or thermem set of tags is considered
(those with probability within range of the most probablg tar the word) is considered. This
method improves the efficiency, coverage and accuracy qidheer.

3.1.3 HMM PoS Taggers

In this section we describe Hidden Markov Models (HMMs), enoaoon statistical PoS tagging
model, as the parser currently utilises a first-order HMM Rager. We also discuss the
algorithms that select a PoS tag sequence from the set defitiexitag dictionary. Furthermore,
we describe methods that determine this dictionary and thes parameters of a HMM.

Hidden Markov Models (HMMSs)

Hidden Markov Models (HMMs) may be viewed as a generalised Hee .2.1), as tags
correspond to states and two types of edges exist. The fpst tiyansition edges, links two
states in the graph. That is, these edges are the same amtiddn edges defined by an NFA.
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The corresponding probability of such an edge represestprbbability that one tag follows
another, or a given set of tags. Ttveler of a HMM is the number of preceding tags we consider
when we calculate the transition probabilities. For exapplsecond order HMM determines
the probability of a tag based on the previous two tags wseeés The second typéexical
edges, is defined for each state, where we define the prdiaifikh word output by that state
i.e. the probability of the word given the tag. Non-zero @bilities for word-tag pairs occur
only if this pair occurs in the tag dictionary. We output thg sequence through the NFA, given
the input sequence of words. Although the correspondirtg sequence is unknown, resulting
in the term ‘hidden’ in ‘Hidden Markov Models'.

Determining Tag Sequences

We determine the tag sequence for an input sequence usimgethienown Viterbi or Forward-
Backward (FBA) algorithms, which are both dynamic programgnapproaches (readers are
referred taSharman 199@r a detailed introduction to these algorithms). The \litedgorithm
selects the tag sequence corresponding to the most likéytip@ugh the HMM, where a path’s
probability is the product of transition and lexical probiies.

Over an input sequence, the FBA determines the probabiligach possible state (tag) in
the HMM. That is, non-zero probabilities result for stateattare members of one or more
complete paths through the HMM. The forward and backwardgpdities correspond to the
total probability of all paths to and from the state, respett. The probability of each state is
the product of forward and backward probabilities for theest This probability is the posterior
tag probability, that is, the probability of the tag giver tvord over the given input sequence
of words. The most probable tag for each word or all posségs for the word (with the corre-
sponding posterior tag probabilities) is returned by tlygéa. Thresholds can be applied over
the posterior probabilities, so that we retain highly-@ble tags only in subsequent process-
ing. Furthermore, the posterior tag probabilities can lserporated into the parser’s statistical
model.

Training a HMM

If we have a tagged corpus from which to learn the model'smpatars (probabilities), then
frequency counts can be used to determine both transitidrieaacal probabilities to produce
MLE. The set of tags observed for each word and their frequane used to create the dic-
tionary. If a hand-tagged corpus is unavailable, we cam @aHMM tagger using either the
Viterbi or the Baum-Welch algorithm. To perform Baum-Welchiming we iteratively update
the model's parameters, starting from an initial set of nhpadeameters. During each iteration,
we update each tag’s probabilities using the forward-bac&vprobabilities of each state (tag).
Baum-Welch is designed to converge on a set of parametersntidaitnise the probability of
a training corpus. That is, this training algorithm is a gatised Expectation-Maximisation
(EM) algorithm.

The Initial Model’s Impact on Performance

Elworthy (1994 andMerialdo(1994) independently define three patterns of Baum-Welch train-
ing given different conditions to determine the initial nebdarameters. Elworthy applies MLE
over a hand-tagged corpus to form one of the initial modetsnfwhich he refines the model
parameters using Baum-Welch over another untagged corpuscldssicalpattern emerges
given a poor initial model, where performance on the tesinsgtoves steadily with each train-
ing iteration. Two other patterns also result, thidal andearly patterns, where the best model
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Is either the start model or the one that results from verytfauming iterations, respectively. In
these cases, the initial model either contains sufficidotimation (e.g. if the model trains over
a hand-tagged corpus) or only partial information (e.giciexnformation only), respectively.

Smoothing and Unknown Words

During training, smoothing assigns unseen word-tag pai@azero probability. Furthermore,
most taggers also incorporate an unseen word module, s $habrd does not have an entry
in the dictionary the tagger is still able to determine thestiikely tag or set of tags for each
word.

3.2 RASP’s Architecture
3.2.1 Processing Stages

RASP is implemented as a series of modules written in C or Comio which can be
pipelined analogously to a series of Unix-style filters. Tinedules include sentence boundary
detection, tokenisation, PoS tagging, NE recognition amdpmological analysis. Next, this
preprocessedext is input to the statistical parseBriscoe & Carrol| 2002.31 Figure3.1il-
lustrates the different processing stages performed gly@nsing, many of which are optional
(e.g. by default NE recognition is not performed). Note thatfinal two processing stages are
both performed by the parser itself.

3.2.2 PoS Tagger

CLAWS Tagset

82.6.1describes RASP’s grammar, where terminals are defined o&tdgs output by a first
order (‘bigram’) HMM PoS tagger originally implemented Bjworthy (1994). The tagset ap-
plied is based on the CLAWS tagset, which is used in SusaBampson 1995ee §.3.J).
The full definition of the tagset is available in this refecenandiurafsky & Martin(2000[Ap-
pendix CJ.

In the CLAWS tagset, the first letter encodes the major PoS oateand subsequent let-
ters/numbers encode increasingly more minor differenEes.example, nouns begin with the
letter ‘N’ and the second letter being a ‘P’ or ‘N’ illustratevhether the noun is proper or not,
respectively. Tags ending with numbers 1 or 2 illustratgusiar or plural versions of the tags.
ThusNP1andNP2are closely related tags, both being proper nouns in singuidplural forms,
respectively.

Training

The tagger is trained on 3 million words of text from Susartne LOB Johanssoet al, 1989
and (a subset of) the BN@éton & Burnard 1998. The resulting tag dictionary contains just
over 50K wordsBriscoe & Carroll(2006 make minor modifications to the tagger’s dictionary,
based on observed parse failures over sections from the Ve8a¢iuding section 23). The fre-
guency counts for each tag are stored in the tag dictionamenGhe training patterns observed
by Elworthy, the frequency counts of these fully annotatetpora provide the best tagging
accuracy. For example, FiguBe2illustrates a number of entries (lines) in the dictionarkigne

3-1processing times given throughout, including those insgibent chapters, do not include these preprocessing
stages. We omit these preprocessing overheads as the\géigehie compared with those required during parsing.
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\ Raw Text

Sentence Boundary Detectio

|

Tokeniser|

|

NE Recognition

|

PoS Tagger

|

Morphological Analysis

|

Parser and Grammar

|

Statistical Disambiguator

>

Figure 3.1: RASP processing pipeline.

We 2 PPIS2 100 NP1 1

all 3 DB 229 DB2 150 RR 55
walked 2 VVD 46 VVN 13

up 3 Il 34 RP 213 VVO 10
the 1 AT 8520

hill 2 NN1 2 NNL1 24

. 1. 6584

Figure 3.2: Example lexical entries in the tag dictionargcEline in the dictionary corresponds
to a word (start of each line) which is followed by the numbEPoS tags for the word. The
line then contains pairs consisting of a PoS tag and correlpg frequency count.

each specifies the word and corresponding tagset and freggennts. The sentend®e all
walked up the hill has the corresponding possible tagset shown for each wainisifigure.

Mapping from PoS Tags to Terminal Categories

The full CLAWS tagset contains over 170 PoS and punctuatios. tagpwever, the current
grammar only utilises 150 of these, of which around 50 areaated with an identical or
subsuming lexical category in the current grammar. Thahesmapping from terminals to PoS
tags is many-to-many. For example, the tagB(past tense form of lexical verb) andIG(-ing
form of lexical verb) are both mapped to the terminal with eard. However the verb form
values for the terminals/fFORMeatures) ar®ASTandING, respectively. Figur8.3illustrates a
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WORD , : [PUNCT comma].

WORD . : [PUNCT dot].

WORD AT : DT[PLU @x, POSS -, WH -].

WORD CC : CJ[CJTYPE END].

WORD CCB : CJ[CJTYPE END].

WORD DB : NO[NTYPE PART, PLU -, POSS -, WH -, CONJ -].

WORD DB2 : NO[NTYPE PART, PLU +, POSS -, WH -, CONJ -].

WORD NN : NONTYPE NORM, PLU @x, POSS -, WH -, CONJ -].

WORD NN1 : NO[NTYPE NORM, PLU -, POSS -, WH -, CONJ -].

WORD PNQO : N2[QUOTE -, SCOLON -, NTYPE PRO, PLU -, POSS -, WH +,CONJ -].
WORD PPIS2 : N2[QUOTE -, SCOLON -, NTYPE PRO, PLU +, POSS -, WH 5 CONJ -].
WORD RA : AO[AFORM NONE, ATYPE TEMP, ADV +, CONJ -].

WORD RP : AO[AFORM NONE, ATYPE CAT, ADV +, CONJ -], PT.

WORD VVD : VO[FIN +, AUX -, VFORM PAST, PLU @x, CONJ -.

Figure 3.3: Example mapping from PoS tag to terminal categBeach line specifies that an
input item (PoS tag) in the grammar is defined, followed by@h&WS PoS tag and a colon
symbol. Following the colon is the metagrammar definitiartfi@ given tag (seeX6.1), where
many of the features are fully specified.

number of example mappings between the PoS tags to the tdsithe grammar.

Tagging Modes

The tagger can be run in single tpw (default) or multiple tpwd®s, where either the most
probable or the set of all possible tags are retained, régplc As the FBA is implemented in
addition to the Viterbi algorithm, the tagger can tradesofcision against recall by returning
all but the most improbable tags up to some relative thresfvahere tags are ranked according
to their posterior probabilities found using the FBA). Hawe in practice, these thresholds
are applied within the parsing module, thus the multiple taput of the tagger contains all
the tags defined in the tag dictionary. When run in multiple tpade, the tagger returns the
posterior tag probability of each possible tag.

For example, the sentend¥e all walked up the hill .has the corresponding dictionary
entries shown in Figur8.2 The single and multiple tpw output of the tagger is shown in
Figure3.4. The multiple tpw output shows each tag in the dictionaryhwiite posterior tag
probability. The single tpw tag sequence results from $elgthe highest scoring tag for each
word.

Unknown Word Handling

The tagger incorporates a well-developed statistical anknword handling moduleRjanqg
1996 Weischedeegt al., 1993 which performs well under most circumstances. Howevemnkno
but rare words often cause problems as tags for all realisaare rarely preserBriscoeet al.
(2006 describes a series of manually developed rules which they-automatically apply to
the dictionary to ameliorate this problem, by adding furtiags with low counts to rare words.
The new tagger has an accuracy of just over 97% on the DepBanhéfz@ction 23 of the WSJ
(see §.3.1), which is competitive performance over this (largely ofidomain) text.
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We_PPIS2 all DB2 walked_VVD up_RP the AT hil_NN1 . .

We PPIS2:0.999983, NP1:1.73948e-05
all DB:0.168974 DB2:0.803405 RR:0.0276206
walked VVD:0.858121 VVN:0.141879
up 11:0.149321 RP:0.850004 VV0:0.000674805
the AT:1
hill NN1:0.607938 NNL1:0.392062

21

Figure 3.4: PoS tag output fo¥e all walked up the hill The first line illustrates the single tpw
output, while subsequent lines illustrate the multiple tvtput.

3.3 Part-of-speech Tag Models

We tend to consider parser efficiency and accuracy as pagsialy that we must trade-off.
However, it is unclear whether errors introduced by a taggsingle tpw mode affect parser
accuracy more so than parse selection errors introducetbdonereased parse ambiguity. Un-
less the parser can select PoS tags with greater accuracynprove over the parsing perfor-
mance (of the single tpw tagset) then both efficiency andracgumprove from the use of a
PoS tagger front-end.

In 83.3.1we describe the various tag models considered in this wohles@& include the
tag models applied b€harniaket al. (1996 and suggested byalrymple(2006. We contrast
these tag models in terms of PoS tag and parser accuracysagugnt sections, using the gold
standard tag and dependency files from DepBank (462 8. Inclusion of the parser in a tag
model assumes that a feed-back loop enables the parset 8efest the PoS tag sequence and
then (without reparsing) select a parse from the group adfgsawvhich contain that tag sequence.

We utilise the first sentence in DepBank to illustrate theedéht tag files that result for
each tag model. This sentenceltswill also purchase$473 million in assets, and recei#50
million in assistance from the RTQokenisation results in the following input sequence i.e.
with punctuation separated from word forntiswill also purchase$ 473 million in assets , and
receive$ 550 million in assistance from the RTC .

3.3.1 Part-of-speech Tag Files

Initially we apply the PoS tagger to create PoS tagged files the raw text files of DepBank.
PoS tag files that originate from the tagger alone are namgéidgwith -TAG’.

SINGLE-TAG

The SINGLE-TAG file contains preprocessed text with the &ggn in forced-choice (single
tpw) mode. As a result, a single tag is selected for each tokéme sentence and we do not
output the associated probability, i.e. each tag has a prittiyaof 1.

ALL-TAG

Similarly, the ALL-TAG file is created by running the taggermultiple tpw mode. The re-
sulting file contains more than one tag per word i.e. all tagfindd for the token in the tag
dictionary. When run in multiple-tag mode, the tagger owtphe posterior tag probabilities
of each tag as described previously. FigBreillustrates the SINGLE-TAG and ALL-TAG file



74 3. PART-OF-SPEECH TAG MODELS

It PPH1 will VM also_RR purchase VV0 $ NNU 473 MC million _NNO in_Il
assets NN2 ,_, and_CC receive_VVO $ NNU 550 _MC million_NN O in_ll
assistance_NN1 from_II the AT RTC_NP1 . .

It It PPH1:1
will will_NN1:3.41324e-06 will_VM:0.999997
also also_RR:1 also_&FW:1.53286e-09
purchase purchase_VV0:0.959841 purchase NN1:0.0401588
$ $ NNU:1
473 473_MC:1
million million_NNO:1
in in_RP:8.33575e-308 in_lI:1
assets asset+s VVZ:6.57905e-306 asset+s NN2:1
I
and and_CC:1
receive receive_VV0:1
$ $ NNU:1
550 550_MC:1
million million_NNO:1
in in_RP:5.443e-308 in_lI:1
assistance assistance_NN1:1
from from_RR:0.000113897 from_RG:2.20964e-05 from_II:0 .999864
the the AT:1
RTC RTC_NP1:1
i

Figure 3.5: PoS tag output farwill also purchase$ 473 million in assets , and recei#s50
million in assistance from the RTCThe first three lines illustrate the single tpw output in the
SINGLE-TAG file, while subsequent lines illustrate the nplé tpw output in the ALL-TAG
file. Each line in ALL-TAG corresponds to the word at the st#rthe line, which is followed
by each possible tag paired with the corresponding postegpprobability. Each possible tag
is shown in the form: wordag:probability. Each word in the ALL-TAG file is analysed the
morphological processing module.

contents for the example sentence. In this example, the BENTAG input is correct, therefore
this tag sequence appears in the gold standard tag file.

3.3.2 Thresholding over Tag Probabilities

ALL-TAG contains token-tag pairs with their correspondpmgsterior tag probability. For effi-
ciency, RASP applies two thresholds over the tag probadslitirior to parsing:2 Firstly, the
parser removes all but the most probable tag if this tag hasstepor probability higher than
0.90. Secondly, only tags more than 1 in 50 times as probabteeamost probable tag are
parsed.

We filter’ the ALL-TAG file to produce the corresponding ta¢ef that result from appli-
cation of the RASP thresholds, retaining the original pasteag probabilities. PoS tag files
that originate from applying parse system thresholds dveAL L-TAG files alone, are named

32These thresholds can be specified by the user.
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ending with *-SYS'.
DEFAULT-SYS

DEFAULT-SYS results from filtering the full tagset in the ALTAG file with the RASP sys-
tem default tag thresholds. For the example sentence, digaty can be resolved by the
application of the system default thresholds. That is, tleedbntains the same tags as the
SINGLE-TAG file, though these are weighted according to tleggm of the tag shown in the
ALL-TAG file. However, this tag weight has no overall effect the parse ranking as all parses
have the same tag sequence.

MULT-SYS

MULT-SYS results from increasing the system default thodgéito 0.99 and 200, respectively.
The tag file contains more tags on average than DEFAULT-SY¥Salthe lowered thresholds,
though still aims to filter out low probability tags. Figusesillustrates the MULT-SYS tag file
contents for the example sentence. Some tag ambiguity nsimas two tags are included for
the tokenpurchasdn the input.

It It PPH1:1
will will_VM:0.999997
also also_RR:1
purchase purchase_VV0:0.959841 purchase_NN1:0.0401588
$ $ NNU:1
473 473 MC:1
million million_NNO:1
in in_Il:1
assets assets NN2:1
!
and and_CC:1
receive receive _VV0:1
$ $ NNU:1
550 550 _MC:1
million million_NNO:1
in in_Il:1
assistance assistance_NN1:1
from from_11:0.999864
the the AT:1
RTC RTC_NP1:1

21

Figure 3.6: MULT-SYS PoS tags fatrwill also purchase$ 473 million in assets , and receive
$550 million in assistance from the RTC .

3.3.3 Top-ranked Parse Tags

We apply the parser-based tag model considereQ@lgrniaket al. (1996, where we select
the tag sequence that appears in the top-ranked parse oytthe parser. We run RASP over
the aforementioned tag files to produce the parser-based fliene and memory limitations
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self-imposed on the system (se&®3 can result in parse time outs, we therefore remove these
limitations.

The original posterior tag probabilities affect parse ragkas RASP incorporates these
probabilities directly. During parsing, the probabilititbe word with a given tag is considered
the probability of this tag. Thus the probability of a paisthie product of all action probabilities
(see 8.6.3 and corresponding posterior tag probabilities. Each tagctintains a single tpw
in the same format as that shown for the SINGLE-TAG file. Paffiles that contain tag
sequences corresponding to the parser’s top parse are rsantag with the original tag file
parsed, and ending with -TOP-PARSE'.

ALL-TAG-TOP-PARSE

The ALL-TAG-TOP-PARSE file contains the top-ranked parseseguence when RASP parses
the ALL-TAG file.

DEFAULT-SYS-TOP-PARSE

Similarly, the DEFAULT-SYS-TOP-PARSE contains the topkea parse tag sequence when
DEFAULT-SYS tag file is parsed.

MULT-SYS-TOP-PARSE

Finally, we parse the MULT-SYS tag file to determine the tapked parse tag sequence for the
MULT-SYS-TOP-PARSE file.

3.3.4 Highest Count Tags

We apply the parser-based tag model mentioned, though pteimented, bypalrymple(2006.
This model selects the tag sequence, whereby each tageskfect word appears in the high-
est number of derivations output by the pars&rThe number of derivations containing each
tag is normalised by the total number of parses, and thisessarsed to rerank the tagset for
each token. If the system finds a fragmentary parse (@€e4gfor a sentence then the system
outputs the original tagset for each word.

We consider this reranking over the DEFAULT-SYS file only. isTBnables feasible pro-
cessing times as the grammar licenses too many parses dgtesr ftevels of tag ambiguity.
Ordinarily highly ambiguous sentences are halted due tdirtieeand memory restrictions im-
posed during parsing, though we remove these as we reqgisetmences for all sentences. As
we utilise the DEFAULT-SYS file only, and rank tag sequenceselol on the number of parses,
the corresponding tag files start with the name ‘DEFAULT-SYSM’. We output the top tag
for each word or all tags with the corresponding probabbiged on the (normalised) number
of derivations in which each tag occurs.

DEFAULT-SYS-NUM-TOP

We run RASP over DEFAULT-SYS, and output the top ranked tageece where the ranking
is based on the proportion of derivations which contain tirergtag. This tag file contains a
single tag per word, in the same format as shown for the SINGAE file.

3:3As unpacking all derivations is impracticable, we applyitisde-outside algorithm (I0A) to determine these
counts/probabilities directly from the parse forest. Wealibe the 10A fully in the following chapter.
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DEFAULT-SYS-NUM-ALL

We output all tags of DEFAULT-SYS, though the tag probaleititare replaced with the new
weighting based on the proportion of derivations contajrtire tag. The tag file contains one
or more tags per word, in the same format as shown for the DEFAY S tag file. However,
the corresponding tag weights are updated to the weightrdeted by this tag model.

3.3.5 Weighted Count Tags

We consider a novel tag model that is effectively a more sijulaited version of the previous
tag model based on highest counts. Here, we instead weghbtsed on theveightedsum
of derivations output by the parser. We utilise the corresipay parses’ probability in the
weighted sum. Therefore, the normalised weight of the tageents the proportion of parse
probability mass containing the tag rather than the promoaf parses:3 Thus tags in higher
ranked derivations are considered more likely.

Again, we utilise only the DEFAULT-SYS file to enable feasilprocessing times over the
full data set. The resulting tag files start with the name ‘BHET-SYS-WEIGHT'. We output
the top ranked tag or all tags (with new probability assecawith each) into separate tag
files. The following tag files are in the same format as the DBERSY S-NUM-TOP file and
DEFAULT-SYS-NUM-ALL files, respectively.

DEFAULT-SYS-WEIGHT-TOP

We output the top ranked tag sequence where each tag wepgaseants the proportion of parse
probability mass that contains the given tag.

DEFAULT-SYS-WEIGHT-ALL

We output all tags, reweighting each tag with the new prditgliased on the proportion of
parse probability mass.

3.3.6 Gold Standard Tags

We also utilise the gold standard tagset of DepBank (42 8, to measure the accuracy of the
other tag models and to provide an upper bound on parseraaycurhis tag file is referred to
as GOLD and contains the single (correct) tag per word, irstirae format as shown for the
SINGLE-TAG file.

3.3.7 Summary

Table3.1 summarises the different tag models considered and thespwnding file name for
each. The tag model’s file name is referred to henceforth.

3.4 Part-of-speech Tagging Performance

This section defines a number of tagging evaluation measurg3.4.1 These measures are
applied to contrast the alternative tag models’ perforrean@&3.4.2

3.4.1 Evaluation

Standard precision and recall measures are considered) aith a number of other perfor-
mance metrics which we define here. When determining the coess of a tag against the
gold tag, a few exceptions apply as tags identified as eqnvai the grammar are considered
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| Tag Setup | Name | Description

Tagger SINGLE-TAG Tagger in single tpw mode.
ALL-TAG Tagger in multiple tpw mode.

Thresholds MULT-SYS Thresholds (0.99, 200) applied to ATAG.
DEFAULT-SYS Default thresholds (0.90, 50) applied to ALRG.

Parser ALL-TAG-TOP-PARSE Tag sequence in top parse whenngafd L-TAG.

Thresholds DEFAULT-SYS-TOP-PARSE Tag sequence in top peinem parsing DEFAULT-SYS.

& Parser MULT-SYS-TOP-PARSE Tag sequence in top parse whesingaMULT-SYS.
DEFAULT-SYS-NUM-TOP Most frequently used tag by all parsesr DEFAULT-SYS.
DEFAULT-SYS-NUM-ALL Normalised counts of tags.
DEFAULT-SYS-WEIGHT-TOP| Highest scoring tag based upon tiva sf probabilities

of parses in which tags occur when parsing DEFAULT-S)

DEFAULT-SYS-WEIGHT-ALL | Normalised weighted count of tags.

Manual GOLD The gold standard tagset.

Table 3.1: Tag setup descriptions and corresponding fileesaifihe tag setup (first column) defines whether the taggesttblds (applied
to the posterior tag probabilities output by the taggeryanthe parser is employed in the tag model. Note that we denshe application
of thresholds over posterior tag probabilities a functibthe tagger and not the parser (though in practice thessliblds are applied within
the parser module). DEFAULT-SYS-NUM- and DEFAULT-SYS-WHG ALL tag setups are normalised based upon the number sépar

and sum of all parse probabilities, respectively.
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equivalent for the following metrics. Tags considered eglant are&FO (treated by the gram-
mar as a name) and proper nouns, that is, tags startingWitFurthermore, all nouns (starting
with N) and numbers (starting with) are considered equivalent.

Mean Reciprocal Rank (MRR)

MRR is an evaluation metric that can apply if a model producdistaf possible answers
ordered by probability of correctness. MRR is used in a nurobarformation extraction and
guestion answering (QA) tasks, and was originally definethe@TREC QA task where the
number of answers for each question in the task was set toys onl

As several of our tag models produce tag rankings we utiligereeralised version of the
TREC QA MRR to measure how well each tag model ranks the tagsetfth word. Further-
more, we allow the tagset to be the size specified in the tagpdary. Other metrics effectively
determine boolean values for correctness, that is, refleetiver the top ranked tag is correct.
In contrast, the MRR attempts to exemplify systems that aeetalyank the correct tag higher.
Thus, with identical accuracy, two tag models’ MRR differafig if one is able to consistently
rank the correct tag higher.

Calculation of the MRR is performed using the following eqoatover a set of tag for
each word in the sentence (the set of wod§, where the functiomank provides the rank of
a given tag in the tagsét, with correct tag; € ki:

1 Wl {o if ¢i ¢ ki,

MRR= —— _

Sentences AffectedSent

We report the proportion of sentences affected by taggiry®in the metricSent calculated

as the percentage of tagged sentences containing at leattgging error. This metric aims to
illustrate the proportion of sentences that are affectethgging errors as these sentences are
more likely to result in parsing errors.

Average Tag Cost:ATC

The average tag cost (ATC) is designed to illustrate the gestesstance between the tag selected
and the gold-standard tag, thereby representing the peedicpact on parsing accuracy. In
the CLAWS tagset, the first letter encodes major PoS categarg@msequent letters/numbers
encode more minor differences. Thus, ATC is determinedguisia average position in which
the tag names disagree. If the first letters disagree thernstlaissumed to be more detrimental
than if the last letters or numbers disagree. Therefore, V&Aoser to VVG than to NP1. This
measures whether the majority of tag errors are confusixpesoted to have a detrimental effect
on parsing performance.

The distance between two tags is calculated as the recimiz & the power of the position
in which tag letters or numbers disagree, where the posiidex begins at 0. In the previous
example, the distance is thereforeaée: 0.25 and2—10 =1, respectively. A few exceptions apply
to the distance measure: tags identified as equivalent igrivamar (defined previously) have
a distance of 0. Confusions between nouns (starting Mjitand adjectives (starting with) are
considered less detrimental and thus have a distance el teciprocal of 2 to the power of
thle position in which tag letters or number disagree plus dimat is, we define a distance of
1 = 0.5.
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3.4.2 Results

Table 3.2 illustrates the tagging performance of all eleven tag modetasured against the
GOLD tag file. The first four rows of this table illustrate tlagging performance of the system’s
PoS tagger. The following three rows illustrate the perfamce of the parser’s top parse tag
model for the three alternative multiple tpw tag models. Témaining four rows illustrate the
top parse tag and tag ranking based on the sum of derivatimh&eighted sum of derivations,
respectively.

| Tag Setup | AvgtpW | Precision| Recall MRR ATC| Sent
SINGLE-TAG 1 97.23 97.23 97.18 0.5757 40.71
DEFAULT-SYS 1.12 88.50 98.79 97.94 - 21.79
MULT-SYS 1.23 80.86 99.42 98.26 - 11.25
ALL-TAG 1.51 65.89 99.78| 98.42 - 4.64
DEFAULT-SYS-TOP-PARSE 1 95.38 95.38 95.38 0.6086 59.11
MULT-SYS-TOP-PARSE 1 94.47 94.47 9441 0.6286 64(46
ALL-TAG-TOP-PARSE 1 93.77 93.77 93.71 0.6496 69,29
DEFAULT-SYS-NUM-TOP 1 92.72 93.86 93.68 0.6325 65,71
DEFAULT-SYS-NUM-ALL 1.12 89.23 98.65| 95.99 - 24.11
DEFAULT-SYS-WEIGHT-TOP 1 94.67 95.84 95.66 0.6127 54/82
DEFAULT-SYS-WEIGHT-ALL 1.12 89.23 98.65 97.0b - 24.11

Table 3.2: Tagging Performané&he average tag per word.

PoS Tagger Performance

Accuracy of the tagger in single tpw mode (SINGLE-TAG) on Bapk is good, achieving
precision of 97.23%. This precision is higher than might kgeeted on arbitrary text, as the
tagger dictionary has been adapted to the WSJ (describe212t?8 Upper bounds on tagging
performance are illustrated by the ALL-TAG results, whére dnly tagging errors are made by
the unknown word handling module. Therefore, 4.64% of serd@e have at least one incorrect
tag due to the presence of 0.22% of words being incorredlydd. The proportion of sentences
for which at least one tagging error occurs varies dramiiitiaaross the four PoS tagger models
(from 40.71% to 4.64%). Therefore, if the parser can integtee multiple tagged data and cope
with the additional ambiguity introduced there is limitembm for improvement in terms of tag
selection.

Parser Tagging Performance

While there is some room for improvement over the PoS taggeshawn in Table.2 none
of the alternative parser-based tag models are able to e the accuracy of the single tpw
output of the tagger (or the ranking of multiple tpw as showrthe MRR score).

As the average number of tags per word increases, the penhamenof the parser’s top
parse (the -TOP-PARSE files) declines (reflected in all ev@mnaneasures). However, this
will not necessarily translate to poorer parsing perforogegiven that some tags are closer than
others (based on the distance metric described). Thevalatmall decline in the ATC metric,
compared to the decline in the PoS tagging accuracy, suggesta similar drop in parsing
accuracy is not expected when moving from single to multipVe tagger output.
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Highest and Weighted Count Tag Models

The tag model DEFAULT-SYS-NUM-TOP, mentioned Balrymple (2006, is the poorest
performing tag model. However, RASP’s grammar licenses atgrenumber of derivations
(judged over section 13 of the WSJ) than the XLE parser appli€hlrymple(2006.34 The
more sophisticated weighted model (DEFAULT-SYS-WEIGHTH)@lso performs poorly and
furthermore, this model also fails to improve on the rankafigags (illustrated by the lower
MRR score of DEFAULT-SYS-WEIGHT-ALL).

If we consider DEFAULT-SYS-TOP-PARSE the gold standard, ar@hsure the precision
of tags in DEFAULT-SYS-NUM-TOP and DEFAULT-SYS-WEIGHT-TG# find that 94.86%
and 99.72% of tags agree respectively. This suggests aiplranked parse tags tend to occur
frequently in the higher ranked derivations but less fredjyeacross all derivations. These
findings suggest that it is the statistical model more so tha@ngrammar causing incorrect
tag-selection.

Emulating Lower PoS Tagger Performance

In order to emulate performance of the tag models over ddtahigher levels of unseen words,
we determine tagging performance of each model using aalifbS tagger with artificially
reduced performance over DepBank. We reduced the accur#uoy tZfgging models by around
2%. However, similar results are observed across the tagim@d none of the alternative
parser-based tag models are able to improve on the accurdey BoS tagger.

Furthermore, we test the performance of the tag models beeGDT (see §.3.1). Whilst
RASP is not trained on the GDT, this data represents sentdoceghich the grammar will
have a correct parse. Therefore, this data provides anxppate upper bound on how well the
parser can correct over a PoS tagger. However, similartseard also observed over this data
set and the initial PoS tagger outperforms all other tag nsode

3.5 Parser Performance

While the alternative parser-based tag models are unablagoove on the accuracy of the
tagger, this will not necessarily translate to equally idental parsing performance. That is,
the tagging evaluation measures may not accurately reHedntpact of these models on the
parser’s performance, given that the parser can recover @ertain tag confusions and not
others. Therefore, this section discusses the optimal @detrin terms of parser evaluation
measures over DepBank. We also contrast the performancevadhising NE markup over
DepBank (see 83.1). The NE versions of the tag models described previous,named
starting with the original tag file name followed by *-NE’.

3.5.1 Evaluation

We utilise the micro-average and macro-averggmeasures defined irl8.2against the gold
standard (NE) dependency set for DepBank. The proportioardgésces which result in a frag-
mentary analysis (se€8.4) is also reported, along with the time taken to parse theesent
using an Intel Pentium 4 3.2GHz CPU with 1GB of Ram on a 32 bitigarsf Linux.

34Dalrymple (20086 reports that over section 13 of the WSJ on average 429 dergatesult with a median of
12 derivations. In contrast, RASP finds on average 927K dtoins and a median of 128 over this section.
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3.5.2 Results

Table 3.3 illustrates the performance of the parser using altereaag models as front-ends.
Ten tag models are shown in the first 20 rows of the table, whach model has two corre-
sponding lines of results. The first line of each pair illasts the parser’s performance over all
560 test sentences. Parsing over the correctly taggediies{&OLD) illustrates that a 2.02%
increase in - (6.97% relative reduction in error) results from removihg 2.77% of tag errors.
The last two rows of the table illustrate the upper bounds r@eigion and recall (for all

test sentences) when parsing the DEFAULT-SYS tag setupt. i3 e precision upper bound
is achieved by considering only the GRs resulting from allsgae derivations, and the recall
upper bound by considering GRs from all possible derivat{@asroll & Briscoe 2002.

Micro-average Macro-average

Tag Setup Pred Red¢ F| Prec] Rec| F | Frad | Time*

SINGLE-TAG 71.06| 70.96 71.01 58.08 58.98 58/b3 21.25 0035
73.66| 74.94 74.3Q0 62.51 6345 62.08

DEFAULT-SYS 71.14) 72.21 71.6f 58.02 57.64 57,83 12.85 @B5:
73.09| 74.71 73.89 61.44 60.81 61.02

MULT-SYS 70.10| 71.39 70.74 56.26 57.59 56.82 1000 0:18;27
72.07| 73.49 72.77 59.66 59.72 59.69

ALL-TAG 68.42 | 70.14| 69.27, 54.61 56.90 55.713 6.96 13:40:32
70.48| 72.24 71.3%F 60.39 59.00 59.69

SINGLE-TAG-NE | 73.53| 69.66 71.54 59.10 58.16 5863 25.00 318
75.66| 73.33 74.48 62.88 62.50 62.69

MULT-SYS-NE 7254 70.49 7150 56.96 56.92 56.94 1268 &10:
74.09| 72.620 73.34 62.90 59.16 60.97

ALL-TAG-NE 71.32| 69.30] 70.30 55.21 56.13 55.67 9.28 0:45:51
73.01| 71.29 72.14 61.17 58.29 59.0

DEFAULT-SYS 71.08] 72.21 71.64 58.20 57.82 58,01 12.85 @D3:

-WEIGHT-TOP 7299 74.69 73.88 61.68 61.04 61|38

DEFAULT-SYS 67.95 69.11 6852 53.21 54.85 54,02 12.85 0B33:

-NUM-TOP 69.59| 71.26 70.41 5490 57.57 56.20

GOLD 72.94| 73.12 73.083 6053 61.04 60.y8 14/46 0:04{39
74.58| 75.70 75.14 6494 63.91 64.42

HYBRID 71.59| 72.39] 71.99 59.02 60.36 59.68 - -

Precision U/bound 82.25 31.34 45.39 7022 21.87 33.36 - 4902

Recall U/bound 17.81 87.74 29.60 20.11 82|26 324,32

Table 3.3: Parser PerformancéFrag represents the percentage of fragmentary parses (the
percentage of sentences for which full derivations coultdbefound). *Time is shown in
format hours:minutes:seconds.

Parser Performance

If we first compare the performance of the parser for the @étire tag models over all 560 test
sentences, itis clear that the most efficient tag model isatdpger in single tpw mode (SINGLE-
TAG). The coverage of the parser is increased (the percerdgbfragmentary derivations is
halved) by using DEFAULT-SYS tag setup. Furthermore, angase of 0.66% micro-averaged
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F1 results (a relative error reduction of 2.27%), though theedso a similar decrease in macro-
averaged . However the macro-average is a less informative metrideaseased performance
can result if incorrect GRs occur in rarer GR types instead.

The increase in parse time required to process DEFAULT-3NStriates that there is, as
is often the case, a trade-off between accuracy and efficiedowever, the relatively small
increase in accuracy will not out-weigh the large decreasdficiency for most parsing tasks.
These results and conclusion agree with thos€harniaket al. (1996.

NE Markup

A 0.53% increase in {(1.83% relative reduction in error) results from using gstigndard NE
mark-up, that is, SINGLE-TAG-NE compared to SINGLE-TAG. Qumaning this to the 2.02%
increase in - achieved from the gold standard tag set suggests there & tmdre gained by
concentrating on tag selection than NE recognition. Howewés may not be the case over
data sets for which a high number of unknown words can be rdaakeNEs, for example, in
biological texts.

Comparison over Full Derivations

In order to compare the impact of the alternative tagging ef®dn parser accuracy, it is also
necessary to consider the accuracy for those sentenceshfon ¥ull derivations are found.
To compare all tag models across a consistent set of sesteneeconsider the sentences for
which full (non-fragmentary) derivations result for SINETAG. That is, we remove 21.25%
of sentences that result in fragmentary derivat®h3he accuracy over this set is illustrated in
the second row for each tag model in TaBI8.

The 3.29% increase injFesulting for the SINGLE-TAG tag setup illustrates that egéa
proportion of the parse errors are introduced by the fragamgrparse output. Further, the
margin between the SINGLE-TAG and GOLD tag setups has naddwonly 0.84% . These
results illustrate that tag errors in the SINGLE-TAG file @agot for a large proportion of the
21.25% resulting fragmentary derivations. This raisesnégrésting question: can we rely on
the grammar to find an analysis if and only if the correct tagus@ce is input? A positive
response to this question is expected for grammars whoss (abnterminal categories) are
well-constrained over the grammar’s terminals (PoS tags).

HYBRID Tag Model

Clark & Curran (20043 apply a tag selection strategy whereby they assign a smaiber
of supertags per word initially (1.4 tpw) and increase thenber of supertags if the parser
fails to find an analysis. This is shown to improve the efficiercoverage and accuracy of
the parser. We apply a similar ‘dynamic’ tag selection maelve observe that single tpw
input achieves high accuracy when considering full deioves only, while using multiple tpw
input increases the parser’s coverage. This model outpasfall others considered herein with
respect to parser accuracy. However, efficiency is expdoteécrease (from that over single
tpw) as this tag model parses each sentence repeatedleitingt a full parse is found or we
have considered all possible tags for the input sequence.

Supertagging is a harder task than PoS tagging. In singlertpde, supertaggers achieve
much lower accuracy than extant PoS taggers (around 91%arechpo 97.23%), suggesting

35The proportion of fragmentary derivations is around 5% wdtsan reported bBriscoe & Carroll(2006
as SINGLE-TAG does not include NE mark-up and contains iifietokenisation (for example, quotation marks
varied significantly).
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that resolving the ambiguity during parsing would achieighbr accuracy overall. Moreover,
multiple tpw input should be considered for supertaggertheg achieve similar accuracy to
PoS taggers in this mode (99.1% compared to 99.78%). Alth@uwy dynamic tag model is
similar to that ofClark & Curran(20043, it is a fundamentally different approach due to the
higher accuracy of extant PoS taggers over in-domain datehé&rmore, supertaggers are far
more sensitive to domain changes as subcategorisaticela@i@s closely with word sense which
in turn correlates with the topic/domain.

In order to test this tag selection strategy, we combine thiput from the set of sentences
that result in full derivations when parsing SINGLE-TAG ahe output resulting from parsing
DEFAULT-SYS for the remaining sentenc&8 The accuracy achieved is illustrated in the row
with HYBRID tag setup. This model is the only tag selection mogeich improves on the
accuracy of the parser in terms of both macro- and microaaest if (compared over all test
sentences). Furthermore, as multiple tpw input is only c@ned for the fraction of sentences
for which a fragmentary parse occurs, the time taken to ghessentences should also improve;
ranging between the time to parse the SINGLE-TAG and DEFASKTE tag setups.

3.6 Discussion

Contrasting the alternative tag models’ performance botterims of tagging and parser per-
formance has supported previous findings. That is, thatesipgv input to a parser is sensible
given large speed improvements and only a small decreasimacy. However, if accuracy
is a higher priority than efficiency, then limited tag ambtgshould be passed onto the parser,
as accuracy gains are available (0.66% ielative error reduction of 2.27%). Interestingly,
the system’s default thresholds (optimised on Susann&)dosideration of multiple tags ap-
pear near optimal for DepBank, achieving a trade-off betweereased parse ambiguity and
incorrect PoS tag errors. Significant gains were also magarser coverage, where using the
parser’s default thresholds almost halves the number gfrfeantary derivations (from 21.25%
to 12.85%).

Not one of the tag models based on the parser’s output weeetatprove on the tag-
ging accuracy achieved by the front-end tagger. That isSthN&GLE-TAG model achieved the
highest tagging accuracy. The DEFAULT-SYS-NUM-TOP tag elqoroved to be the worst
performing model in terms of both tagging and parsing penoice. Although as previously
noted, this may be due to the exponential increase in parbegaity given increased tag am-
biguity that occurs in RASP. Parsers with more constrainachgnars may benefit from the use
of this tag model.

The parser was unable to improve on the tagging and parsesagcachieved by the single
tpw PoS tagger. These results may reflect a problem with tegration of the tag probabilities
in the statistical model of the parser. We aim to investighi® issue in future work. Again,
this may not translate to all grammars, as the number of @#oivs licensed by our grammar
are much higher than achieved by, for example, the XLE granfasareported byalrymple
2006.

The dynamic (HYBRID) tag model was the only model to improvehbmgcro- and micro-
averaged E Here, the known trade-off between parse ambiguity and Bg®tror provides a
means to gauge PoS tag error based on parser output. Tleenefen no derivations are found

3-6Note that a fully dynamic tag model can be implemented in yiséesn though was not due to time constraints.
Instead, output of these two tag files are combined to iktstthe model’s performance gain (given only a single
iteration of the dynamic model).
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the model assumes that a PoS tag error is the cause and egteasiumber of tags considered.
These findings are consistent with thoseCtdirk & Curran(2004b, regarding a dynamic tag
model. Though their results were based over a supertagateaathieves lower tagging accuracy
in single tpw mode.

Parsing over the gold standard tag set illustrated that28®2i@crease in £(6.97% relative
reduction in error) results. Comparing this to the 0.53%ense in I (1.83% relative reduction
in error) which results from using gold standard namedeg(NE) mark-up, suggests there is
more to be gained by concentrating on tag selection than N&gretion. However, the con-
clusions drawn here and by Charniak are based upon high penigiPoS taggers that achieve
accuracy rates in the high 90’s. These conclusions are petcéed to translate to parsing sys-
tems that employ taggers with lower accuracy. That is, ta eath higher levels of unseen
words. For example, around 20% of words are ‘unseen’ in biold texts. In such cases,
the use of NE recognition, particularly over the unseen wpoisl expected to affect parsing
performance significantly.



Chapter 4

Efficient Extraction of Weighted GRs

The current parser’s output formats, described2r6§ are each determined from the n-best
list of derivations. Theweighted GRoutput consists of the unique set of GRs across the n-
best GR sets, each weighted by the sum of the probabilitieefations (n-best GR sets) in
which it occurs. This weight is normalised (using the sumllodi@rivation probabilities) to fall
within the rangd0,1] where 1 indicates that all derivations contain the GR. Hetieecurrent
approach unpacks the n-best derivations from the parsstfaerives the corresponding n-best
GR sets and finds the unique set of GRs and corresponding weight

Carroll & Briscoe(20032) illustrate that increasing the size of the n-best list iovass the
upper bound on precision/recall in the high precisionli€gR sets, determined by thresholding
over the GR weights. Therefore, if practicable, it is prabde to include all possible derivations
when calculating weighted GRs. Hence, the extant approaetthisr (i) inefficient (and for
some examples impracticable) if a large number of derinatere licensed by the grammar, or
(i) inaccurate if the number of derivations unpacked (tize sf the n-best list) is less than the
number licensed by the grammar.

In this chapter we present a novel approach, the EWG algoriémabling weighted GRs
to be determined directly from the packed parse forest mrediloy RASP. This approach is
a dynamic programming variant of the Inside-Outside athari(IOA), which is ideal for this
task, enabling exact computation of the GR weights usingritiede and outside probabilities
determined for nodes in our parse forest. We describe theo@APCFGparse forests ing81
Following, we extend the IOA to apply over LR parse forestéemed to as the 104k.

Using the IOA R, we can determine for each node in the parse forest, the Ipititpaf all
derivations that include that node. This probability reyergs the probability of all n-best GR
sets that contain the corresponding GR output for the nodenn@ng over such probabilities
for each (unique) GR output (across all nodes in the parsstpprovides the non-normalised
weight for the GR. Furthermore, the IQA determines the sum of all derivations in the parse
forest, which is the normalising factor.

We describe the application of the IQAto determine weighted GR output directly from
RASP’s parse forest ing82 A single iteration of the IOfR is applied to determine the inside
and outside probabilities over the parse forest. Theseapibities are applied to calculate
weights for the GRs which we determine in parallel. Consedyéhts approach is referred to
as I0OA r(1). However, this solution applies to the extant parsei) ifhe parse forest contains
only derivations licensed by the grammar. That is, no deawma fail the final unification check
we perform over the n-best list of derivations (s€e684). In addition, the solution requires that

86
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(i) each node in the parse forest is assigned a single san{éxical) head. This allows us
to consider the product of inside and outside probabilittessach node as the corresponding
probability of the node’s lexical head.

EWG, defined in 8.3 ensures that (i) holds for all input by altering the localbeguity
packing operation. EWG does not ensure that (ii) holds, wialated work has, instead we
modify the I0A r(1) so that we allow each node in the parse forest to be asbigukipleinside
and outside probabilities, one for each possible lexicath€onsequently, EWG improves on
previous work which either loses efficiency by unpacking plaese forest before extracting
weighted GRs, or places extra constraints on which nodes egratked to ensure that each
node specifies a single lexical head, leading to less conmaaseé forests.

Our experiments, described i#.8, demonstrate substantial increases in parser accuracy
and throughput for weighted GR output. Finally, iA.§ we apply a parse selection strategy
defined byClark & Curran(20041 that utilises the EWG algorithm and achieve 3.01% relative
reduction in error. Furthermore, the GR set output by thisraqch is aconsistent set In
contrast, the high precision GR sets define@€arroll & Briscoe(2002 are neither consistent
nor coherent*! Much of the work we describe in this chapter appeai/atsonet al. (2005.

4.1 Inside-Outside Algorithm (IOA)

We first describe the development and properties of the I08¢ith.1 We then define the IOA
and its standard (iterative) application to PCFG trainingdri.2 Finally, in 8.1.3we illustrate
the simple extension to apply the 10A to the parse foresvddrirom an LR parser and to the
extant parser’s forest.

4.1.1 Background

The Inside-Outside algorithm (I0A) was introduced®gker(1979, as a generalisation of the
HMM'’s Baum-Welch estimation methods (se8.8.3, to enable re-estimation of parameters
in PCFGs over raw (unannotated) text. Inside and outsideapibities are analogous to the
forward and backward probabilities of the Baum-Welch alipon. The IOA was reviewed
by Lari & Young (1990, who extended it to an iterative training method for PCFG&s #tlows
the grammar to be inferred from a training corpus of unret&d size.

Relationship to EM

The I0A is a variant of the Expectation-Maximisation (EMyatithm, in which the basic as-
sumption is that a ‘good’ grammar is one for which trainingteaces are likely to occur. That
is, the IOA as described blyari & Young (1990, is used to find the MLE over training cor-
pora that are not annotateldreschef200]) formally proves that Inside-outside estimation is a
dynamic-programming variant of EM, and therefore, inlsetfie good convergence behaviour
of EM. That s, the IOA converges on a set of parameter esisthiat maximise the probability
of the training corpus.

Local Maxima and Convergence Patterns

The 10A is not without problems. For exampléharniak(1994) illustrates that the algorithm
converges to different local maxima given different idigstimates (randomly selected) for

41IA consistent sedf GRs is one in which each word is the dependent of only oneratlord and aomplete
setis one in which every word is listed as the dependent of ametbed.
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model parameters. Furth&lworthy (1994 found three general patterns for the related Baum-
Welch algorithm over HMM PoS taggers, as described prelyan$3.1.3 in which the algo-
rithm did not necessarily improve given a ‘good’ initial medd

Discussion

We illustrate IOA (EM) training over the extant LR parser iretnext chapter. Although the
convergence properties of IOA are not of concern in this tdrams EWG simply applies a
single iteration of a variant of IOA to determine the proligpof all derivations containing each
GR in the parse forest. That is, we utilise the dynamic pnognang properties of the algorithm
to efficiently compute weights of elements in the data stmect Several parse selection and
training strategies employ similar dynamic programmingrapches, which are necessary for
efficient parser training and application, as unpackingethiire parse forest is unfeasible for
broad coverage natural language parsers. For exaMplap & Tsujii (2002 describe a variant
of the IOA for training a log-linear parsing model from padkeature forests.

4.1.2 The Standard Algorithm

Much of the theory described in this section, regarding stt@tdard’ IOA application to PCFG
training, has been adapted frdrari & Young (1990. We discuss the application ovePEFG
parse forest. Thatis, to a parse forest in which nodes rigsuaitapplying a rule of the grammar,
thence each node represents the mother categdipe rule only. Each subanalysis for a node
N; results due to the application of a rule of the grammar of form jk ori — j. That is, we
assume that the PCFG is in Chomsky Normal Form (CNF).

Overview

We previously described forward and backward probalslitea HMM (which may be con-
sidered a generalised NFA) i88.3 The probability of a state in the HMM is considered the
product of forward and backward probabilities for the staidat is, the total probability of
all complete paths to and from the state, respectively. 18ryi we consider the probability
of nodes in a PCFG parse forest as the product of the inside @wsdie probabilities (the 10
probability) for the nod&\;. This probability corresponds to the sum of derivation imlities
over all derivations that contain tiNT categoryi over the node’s word span. For example, for
the grammar rulé&lP/det _n over the inputhe man the corresponding node’s 10 probability is
equal to the probability of all derivations which includettP/det _n category over this subset
of the input.

We consider the sum of all such 10 probabilities for e&th categoryi, for each possi-
ble word span for nodel; in each sentence in the training corpus, to represent thectegh
frequency of the nonterminal. Thus we effectively re-eatirthe probability of the rule using
relative frequency counts, that is, for productien jk, the probability of the rule is determined
using:

S freqi —ij)
P(i—1ij) Zj,kfreq<i Ty (4.1)
Thus the I0A proceeds by iteratively re-estimating the pholity for each rule in the grammar
where each iteration involves determining such relatiggdiency counts over the entire training
corpus. This process results in converging the probadslidf each rule so that the probability
of the training corpus is maximised. Convergence occursaectfme, as rule rewrites that oc-
cur more frequently for eadNT category are at each iteration assigned a higher propastion
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Figure 4.1: The inside (e) and outside (f) regions for nNde

the probability mass for the category. Thus, the set of seetethat contain these rules each
have a higher probability so that the total probability ;ftb sentences in the corpus increases.
However, to maximise the probability of the entire traincogpus, we must ensure that low fre-
qguency rules are still assigned some of the probability mEss IOA converges on a maximum
that assigns more weight to frequently occurring rules tiktdietermines all training sentences
to occur with *high’ probability.

The inside and outside probabilities for nodes are definegimevhich are applied to deter-
mine these expected frequency counts for each rule. We afswedhe re-estimation equations
that effectively apply Equatiod.1, so that we iteratively converge on a (locally) maximal solu
tion. That is, to perform EM over PCFG.

Inside Probability

We defined a CFG grammar G, ir28, as a tuple{NT,>,PR}. TheNT andZX elements
represent the set of nonterminal and terminal symbols ajtaemar, respectively. The element
P represents the set of productions (rules), wRileepresents the nonterminal category that is
considered the top grammar category.

The probability of a subanalysis is calculated as the pritibabf the rule applied (that
created the subanalysis), multiplied by the product oviedalghter node probabilities. The
inside probability of a node represents the probabilityllidibanalyses for the node, calculated
by summing over their corresponding probability. Convergk outside probability represents
the probability of all analyses which include one of the riedebanalyses.

Given an input sequence of terminals of the gramfwar...ar }, we denote the inside and
outside probabilities for a nod;, that spans input itemas to & inclusively, ase(s,t,N;)
and f(s,t,N;), respectively. Figurd.lillustrates the corresponding nodes in the parse forest
used when calculating the inside and outside probabilited\;. Nonleaf nodes in the figure
represenNT categories, andl; is the root node whose categarys in the sefR. Leaf nodes
represenk categories of the grammar, that is, the input sequéage..ar }.

The inside probabilitye(s,t,N;) represents the probability of subanalyses that are rooted
with mother category for this sentence over the word spaio t. Each production is of the
form i — jk where each set of daughter nodésand N, span fromas to a; anda, 1 to a;,
respectively. Figurd.2 illustrates this structure for nodd. The inside probabilitye(s,t, N)
for a given sentence is calculated using:

e(st,N) = ;[P(i — jk)tfe(s, r,Nj)e(r +1,t,Ny)] (4.2)
I, r=s

We calculate the inside probabilities bottom-up. For a wawde, the inside probability is
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Figure 4.2: Calculation of inside probabilities for nase

either equal to the PoS tag probability (if PoS tag termihalge associated posterior tag prob-
abilities) or considered to be 1. That is, for the input it@yfior word numbess, e(s,s,Ny,) = 1.

As a result, over a single derivation, the inside probabditeach node corresponds to the
product of all CFG rules that are applied to create the sulaisalThat is, the top category’s
inside probability is the derivation’s probability. Ovéret parse forest, the inside probability
of the root node (that is, the probability for sentemgé, = €(1, Tq, NR,)) corresponds to the
summation over the probabilities of all derivations for femtence.

Outside Probability

The outside probability for a nodd,, as shown in Figurd.1, is calculated using all the nodes
for which the node is a daughter (subanalysis). This caliculancludes the inside probability
of the other daughter nodes of whiblis a member. That is, categoirgould appear in two
settings:j — ik or j — ki, as shown in Figurd.3.

T s .oot]lt+1 . ] T T fr cos-fs Lt T

Figure 4.3: Calculation of outside probabilities for ndde

The outside probability olN;, f(s,t,N;), represents the probability of all possible analyses
that include the nod#&}; and span frona; to as 1 anda;, 1 to ar. We calculate the outside
probability ofN;, using the outside probability of the mother noblg)(multiplied by the product
of inside probabilities of the daughters other tim.e. Nx. We perform a summation over this
probability in each instance whelg is a daughter of a node, i.e. for each posshtjendNj.
The outside probability (s,t,N;) for a given sentence is calculated using:

f(st,N) = %[f(er-)P(j—ﬂk) %1 et+1,r,Ny)]
I, r=t+
+% (r,t,Nj)P(j — ki) Zle r,s—1,Ny)] (4.3)

We calculate the outside probabilities top-down, assigttie outside probability of the root
nodeN; to be 1.
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Re-estimation Equations

We rearrange the standard inside Equada® splitting the equation into two separate equa-
tions. The first equation specifies the rule used, that ispéngcularNT categories fofj and

k. We perform the summation over each possible set of categéor j andk in the second
equation:

t—1
e(st,N;,Nj,N) = P(i — jk) 5 e(s,r,Nj)e(r + 1,t,Ny) (4.4)
r=s
e(st,N) = ZE(S,t,Ni,Nj,Nk) (4.5)
B

The product of inside and outside probabilitefs,t,N;) and f(s,t,N;) represents the sum
of all probabilities for derivations in which the mother egoryi is utilised over the spaas to
&. If we sum over all possible values ferandt for the sentence, then we determine the sum
of all probabilities for derivations in which the mother egoryi appears. If we normalise by
the probability of all derivationsH;) then we determine the proportion of the probability mass
within the parse forest for sentengehat utilises the mother category Within the 10A, this
quantity falls in rangg0,1], and is effectively considered the frequency of the motlagegory
| for the sentence:

freqy(Ni) = ;q eq(S,t,Ni) fg(s,t,Ni)

Similarly, the product of the inside and outside probaibiife(s,t, Ni, Nj, Ny) and f (s, t,N;),
represents the probability of all derivations in which theei — jk is utilised over the spaas
to a. Again, if we sum over the values ferandt, and normalise usingy, then we determine
the weighted proportion of derivations in which the rule jk occurs:

fregq(Ni, Nj,Ny) = Zeq s, t,Ni, Nj, Ni) fg(s,t, Nj) (4.6)

Dividing this proportion by the proportion determined foother category calculates the
relative weighted frequency (i.e. probability) of expargih using the rula — jk for sentence
q:
fregq(Ni, Nj, Ng)

freqq(Ni)

Extending this equation to apply over all sentences for auosimply involves summing
over each sentenagin corpusQ. The following equation represents the relative frequency
count Equationd.1, and is the re-estimation equation applied during each I@Aaiion, to
determine the new probability of each rule> jk of the grammar:

%freqq Ni, Nj, Nk)

Z}freqq (Np)

Pq(Ni, Nj, Ng) =

4.7)

P(i — jk) = P(Ni,Nj,N¢) = (4.8)
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4.1.3 Extensionto LR Parsers

We described the IOA for a PCFG parse forest. However, each mod PCFG parse forest
corresponds to a particular mother category of the grammardescribed in 8.3.6 an LR
parser encodes additional context over the underlying CR@iel of this additional context,
we apply the re-estimation equations for each action in fRedble, rather than for each CFG
production. Therefore this is not a ‘standard’ IOA implenation, and consequently, is referred
to as the I0AR instead.

Calculating Inside and Outside Probabilities

The extension of the IOA to LR parsers is relatively triviag we determine the inside and
outside probabilities of each node in an LR parse forest dgexgise determine for each node
in the PCFG parse forest. Each frequency calculation nowereta the parse action in the LR
table, rather than to the CFG rule applied. That is, we uttligecorresponding probability of
the action for nod&\;, P(a[i]) rather than that of the corresponding rBlg¢ — jk). The product
of the inside and outside probabilities (the 10 probabjlityr each action corresponds to the
sum of probabilities for all derivations in the LR parse &iréhat result due to the LR parse
action. For a word node, the (inside) probability is equaht® probability of the shift action
that results in creation of the word node and (optionallg)pbsterior PoS tag probability.

Action Counts and Normalisation

In the LR parse forest, each notle represents an LR state that spans a subset of the input
sequence. The set of actions fdr; that result in a subanalysis fof (and moving to the LR
state), is considered rather than the set of rules applib@sd actions are usually defined in
different cells of the LR table, as each subanalysis re$udta a reduce action over different
daughter nodes (representing varying left-context, thates, in the LR parser).

We determine the frequency of each action using the norethl@ probability of the action.
Thatis, we apply Equatiofh.6(as described in the following section). However, we do ppiya
the normalisation factor in Equatieh?. Instead, we normalise based on the set of competing
actions for the current state and/or lookahead item rakfzar the node’s mother category or LR
state. For each set of competing actions in the LR table, waalase each action in the set by
the sum over these action frequencies. Therefore, thedrexyof each action calculated using
Equation4.6is considered the action count for each action and we nosmalrer these counts
as we would otherwise over a fully annotated corpus for an BRgr (see the normalisation
methods defined in&5.2.

Extension to the Extant Parser

In addition to the minor modifications made to the algorittorapply over LR parse actions
(rather than PCFG rules), there are a number of practicardifices in the application of the
algorithm described to the parse forest data structure tpihe extant parser.

Nodes in the parse forest are efficiently represented usingree sharing and packing (see
82.4.4. In keeping with previous notation, a set of nodes in thes@dorest will be referred
to using uppercasl. The representative node for the 8gts the noden;, where the number
i uniquely identifies a node (set) in the parse forest. Eacle ngd N; represents a particular
action. Thatis, a single subanalysis for the nod&isethe representative nodemay contain a
set of packed nodes,, wheren, =PACKED(n;). Thus,N; = {nj|PACKED(n;)}. For example,
see Figure2.14 which illustrates a parse forest produced by the extarggparThere are 26
individual nodes, two of which are packed in another, résglin 24 node sets. The noadg
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for V1iv _np_pp represents the fourth node $t, which includes the node itself and the packed
nodesny7 (Viivp _pp) andny, (Vv _np).

Each noden. € N; has a set span (set values $andt), and corresponds to a single parse
action. Similarly, the nodes’ daughter node 4@k € D(n¢) do not vary, that is, each has a set
span and mother category. Further, our grammar is not in Cfrexme than one daughter may
be specified for a grammar rule. As a result, in Equadigihthe valueg, k andr are effectively
set. We determine the inside probability of the node usingalgfied version of this equation:

e(nc) =P(alc]) [] eDN) (4.9)
DN, €D(nc)

Note that we no longer specify the span of the node in thistemuaas this is already set for
each node in the parse forest and each npdepresents a specific data structure in the parse
forest. We use|c] to represent the action for nodethat applies a rule of forlA — a, where
the set of daughter categoriesorresponds to the set of categories in each of the daugbder n
setsD(ng).

As packed nodes represent alternative subanalyses foiottes we apply the summation
for the inside equation. That is, we apply EquatbBover the set of nodes iN;:

o) = 3 elng) (4.10)

We store the inside probability for the node itsajfand utilise this probability to calculate
the node’s 10 probability. However we return the inside @daibty for the noden; as that olN;.

Simplifying the outside equations, given the set data tirecof the parse forest, is per-
formed in a similar fashion. We simplify Equatidn3, as the value is set, as are the daughters
for each mother node; of N;, to:

VneeN,f(ne) =f(N) = 5 f(npP@li])  [] &N (4.11)
nj;Ni€D(n;) Nk€D(nj ), NNy

Different nodes in the parse forest can result from the saangepaction. To determine the
frequency count for each actiag for sentence, we sum over the 10 probability for each node
that results due to application of the action. That is, wepdiinEquation4.6to:

1
fregy(aq) = Eq €q(Ne) fg(Ne) (4.12)
Ne,alcl=ay

Again, we determine this frequency across each sentgicéhe training corpu€). How-
ever, we determine the nominator in Equattb8only:

freqag) = ) fregy(aq)
&'

The denominator for Equatioh8is instead calculated by summing over the frequency counts
for competing actions in the LR table. That is, we normaliseftequency counts for actions
using the extant normalisation method described?i6 &
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4.2 Extracting Grammatical Relations

In this section, we show how to obviate the need to trade difiefcy and accuracy by ex-
tracting weighted GRs directly from the parse forest usingraachic programming variant of
the 10A R; the IOA r(1). This approach, extended i4.8 to handle all parse forests output
by the extant parser, enables efficient calculation of welGRs overll derivationsand
substantially improves the throughput and memory usageegparser.

Our approach removes the intermediate processing staafasiback the n-best derivations
and determine the corresponding set of GRs for each denivatiostead, we show how to
extract the weighted GR output directly from the parse fiord&e assume for now that a single
lexical head is specified per node. In this case, we condi@d probability of the node as the
IO probability of the node’s GR specification. This probapilorms part of the non-normalised
score for the GR.

In 84.2.2 we describe the I0AR(1), which determines weighted GRs directly from the
extant parse forest. We apply Equatiébi2 though over the unique G& rather than for the
actionay for each node. Hereiregy(gq) is the final weight for uniqgue GRBy in the weighted
GR output, wherg)[c| represents the GR output for noag

1
freq(ga) = Py eq(Ne) fq(Nc) (4.13)
Nc,9(C|=Yd

We continue the example over the senteheaw a man in the parkthe parse forest for
which is shown in Figur€.14 The probability of shift/reduce actions and instantia&®
specifications for each node are shown in Téb® Figure2.16illustrates the corresponding
n-best GR sets and weighted GR output formats for this exampl

In practice, more than one lexical head can result for eacke mo the parse forest. We
illustrate this by example in&g2.3 artificially modifying the GR specifications in our conteul
example so that more than one lexical head results for a motdheiparse forest. We illustrate
that the IOAR(1) is unable to extract the corresponding weighted GR dutpm the resulting
parse forest.

Since the parser is unification-based, we first discus4i®.§ modifications to the parsing
algorithm so that local ambiguity packing is based on feastructureequality rather than
subsumption. This ensures that only derivations licenggddgrammar are represented within
the parse forest.

4.2.1 Modification to Local Ambiguity Packing

We described the extant parser’s packing metho2i6.8 where packing is based on feature
structure subsumption. In this section, we discuss thel@nolwith this packing definition in
relation to applying dynamic-programming approaches &parse forest. We also describe
how to modify the packing operation to enable weighted GRstextracted directly from the
parse forest.

Global Consistency for Subsumption-based Packing

Oepen & Carroll(2000 note that when using subsumption-based packing with acatibin-
based grammar, the parse forest may implicitly represenestterivations that are not actually
licensed by the grammar. These derivations have valuestooomore features that are locally
but not globally consistent. This is not a problem when cotimguGRs from derivations that



4.2 Extracting Grammatical Relations 95

have already been unpacked. In this case, the relevantatiofis are checked during the
unpacking process, and unification failure causes the taflederivations to be filtered out.
Unification fails for at least one packed tree in approxinyai®% of the sentences in the
DepBank test suite (sed 8.1). However, such inconsistent derivations are a problenaihyr
approach to probability computation over the parse fotestis based on the IOA. For EWG,
we therefore modify the parsing algorithm so that packingaised on feature structueguality
rather than subsumption.

Packing Operations

Oepen and Carroll give definitions and implementation defait subsumption and equality
operations, which we adopt. In the experiments below, wer tefversions of the extant parser
with subsumption and equality based packing as SUB-PACKINGEQ-PACKING respec-
tively.

When packing based on subsumption, nogés packed into nod@, based on the truth
value returned by the following definition of subsumption:

Given two nodesiy andng with (unification-based) feature lis@a and Og,
thenna subsumesyg if and only if:

1. the category type of A and B, specified by the first elemen®srand Og,
are equal; and

2. each remaining corresponding elemen®afand®g, 85 andBg respectively,
conform to one of the following:

(a) 6a andBg both contain values and these values are equal or
(b) B4 is unspecified

The definition of equality between nodes is similar to thevabdefinition except for a minor
change to par2b, requiringboth8, and6g to be unspecified.

4.2.2 Extracting Grammatical Relations
Unfilled GR Specifications

The extant parser’'s grammar, described 20681, encodes a set of possible GR specifications
for each rule of the grammar. The particular GR specificatimam applies for the resulting node
nc in the parse forest may depend on the feature values of thesmaughter®(nc). That

is, the grammar defines a rule-to-rule mapping from locadr® GR specifications that are
optionally instantiated during parse time so that one GRifipation, in the form<head, GR>

is specified for each nod® in the parse forest. Theead of the GR specification defines the
semantic head (head, henceforth) for this node, whilesthes the GR output for the node.

The GR specifications for each node in our example senteechawn in Tabl2.9. These
areunfilled (see 2.6.4), as the GR slots are specified using the number of the daughtese
head should be used. Node 13 f&t/det n spans over the subset of the inghé parkand
has the unfilled GR specificatiome, (det 2 1)>. This GR specification defines that the second
daughter’'s head is the node’s head, and the GR output by tthe isoadet(erminer) where
the head anddependent slots are to be filled by the heads of the second and first dargght
respectively (the and1 arguments).
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Filled GR Specifications

GR specifications are referred to as unfilled until the slotga@ning numbers arfdled with the
corresponding head of each daughter node. We consideraleofieach word node as the word
itself. For example, the resulting filled GR specification f@de 13 is<park, (det park the)>,
l.e. the head of the node grk and the GR output iglet park the).

Over a single derivation, the corresponding set of GRs is cdetpbfrom the instantiated
GR specifications at each node in the derivation, passingp¢lad determined for each node
(for the filled GR specification) upwards from daughter to Ineotnodes in the derivation. For
example, the corresponding n-best GR sets for each dervatitput for our example sentence
are shown in Figur@.16

Processing Stages

Three processing stages are required to determine wei@fsdover the parse forest. That
is, to apply the IOARr(1). We calculate (1) filled GR specifications and corresjpanéhside
probabilities, (2) outside (and non-normalised) probaéd of a unique GR set, and (3) nor-
malised probabilities (that is, the final weights) of the gi#ed GR set. Note that the inside and
outside probabilities in the first two stages are effecyivldtermined using a single iteration of
the 10A R, though we do not update our model’'s parameters.

The first two processing stages are covered in detail in thewimg sections. The final
stage normalises the probabilities of the unique GR set\adidg each weight by the sum of
all the derivation probabilities. That is, by dividing withe root-node’s inside probabilityP4
for sentencey). Stage (3) can instead be performed during stage (2), sovthancrementally
determine the normalised probabilities of each unique GRyasletermine this normalising
factor during stage (1).

Inside Probability and GR Determination

We now describe how to determine the inside probabilitiesr dlre node seth); in the parse
forest. We perform a depth-first search, filling GR speciftces from word-nodes to the root
node and returning the head and inside probability for eactenn the extant parse forest, as
described in 4.1.3 We determine the inside probability for each nodand node sdll;. That

is, using Equatiordt.9 and Equatior#.10to calculate the inside probabilitiesn:) ande(N;),
respectively.

We fill the GR specification for the nod® using each head for the daughter node sets.
That is, we use the head fo\, € D(n¢) to fill the GR slot if the numbel is specified in the
unfilled GR. We restrict the set of parse forests considerdia®e in which each nodg € N,
specifies the same lexical head. For each npdee determine a tupléheadnc),e(n¢)} that
represents the head and inside probability of the node. d&abr eode sd\l;, the tuple returned is
{headn;),e(N;)}, wheren; is the representative node for the Bt We defined previously that
the head of a word node to be the word itself. Furthermore,efi@ed the inside probability of
a word node to be the probability of the shift action whichategel the word node. Therefore, it
Is trivial to determine the head and inside probability facke node in the parse forest.

Example Sentence

For our example sentence, Taldld illustrates the inside probability and filled GR specifica-
tions for each node in the parse forest shown in Figudel This table builds on Tabl2.9
which illustrates the shift/reduce action probability dhd corresponding instantiated (though
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unfilled) GR specification$? The filled GR specifications contain GRs that can be seen in the
n-best GR sets and weighted GR output formats shown in Figi& Forns (V1 _np_pp),

we illustrate a pair of probabilities. The first is the insgl®bability of the node(ns) and the
second is for the node s&fN4). All three nodes of the s&l, specify the same heade+ed _VVD
Thus, we pass up the pdisee+ed VWD —6.6284} for this node set.

Outside Probability and Weighted GR Determination

Once we determine the inside probabilities and fill each G&tigipation for each node in the
parse forest, we traverse the parse forest top-down tordigteroutside probabilities as dis-
cussed in 4.1.3 Table4.2illustrates the outside probability for each node (and neet¢ in
the continued example. We sum over each possible outsidlpitity (for each subanalysis in
which the node is a daughter node) i.e. for each ngdeow) of the table. This summation is
shown for each mother noatg, for the node in Equatiod.11 We consider the outside proba-
bility f(nc),¥nc € Ni as the outside probability of the node Blgtas shown in this equation. For
example, we show a pair of probabilities for several coluwing, one for the node itself and
one forN. The outside probability dl4 is considered the outside probability for each node in
the set, that isng, n17 andnyo.

The 10 probability of each node is the 10 probability for treeresponding GR output by the
node. This probability corresponds to (a portion of) the sirall derivation probabilities that
include the GR, that is, the non-normalised probability ef@R. In the case where the same GR
occurs in different nodes of the parse forest, we sum ovelQHer each of these nodes. That
is, we apply the summation in Equatidtil3 To normalise the GR and determifig2gy(gq) as
shown in this equation (the final weight of the GR), we dividetty inside probability of the
root node. In our example, we show the normalised 10 prolhglidr each node (instance of a
GR) then sum over these normalised probabilities insteadeXample, the GRdet man _NN1
the _AT) results for nodes 6 and 23, summing over their (normalis@giGbabilities we weight
this GR with value 1.

In practice, we store a hash table indexed against each GReAletg@rmine outside proba-
bilities for each node, we (incrementally) store the 10 @doibty in the hash table against each
GR index. Thus after traversing the parse forest, the hdsa tantains a list of unique GRs
and corresponding non-normalised weights. The non-nisethket of GRs for the example
sentence is shown in Figug&16 In order to normalise this set we utilise the inside probabi
ity of the root node, that is, the probability of all deriaisP,. The final (normalised) set of
weighted GRs for this example is also shown in Fig2uH5 whereP; = —7.8438.

4.2.3 Problem: Multiple Lexical Heads

The I0A_ R(1) solution applies only if a single lexical head resultsdach node, though this is
often not the case. We extend the example parse forest destyseviously to illustrate how
multiple heads may occur for each (tree) node in the parsstoin related work, discussed
in the following section, the parse forest is altered so #hsingle lexical head is guaranteed to
result for each node. This allows these approaches to appiyiar solution as that described
previously to determine weighted GR output.

Consider the set of nodes for the mother categaryn Figure2.14 that is, nodes 4, 17
and 22. Each node specifies the hegded VVD However, if we alter the GR specification for

42Note that some values in this table, and others followingHisrexample, differ slightly from the exact values
that are calculated in this example in practice, due to rimgnerrors.
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GR SPECIFICATION
Node| Word/Rule Prob Inside head GR(s)
1 T/txt-sc1/— | 0.0 -7.8438 see+a&f/D
2 S/npvp -0.5391 | -7.8438 see+advD | (ncsubj see+ted _VVD |_PPIS1 )
3 |_PPIS1 -0.6763| -0.6763 _RPIS1
4 Vi nppp | -0.8728| [-7.02172,-6.6284] see+¥dD | (dobj seeted _VVD manNN1)(iobj seeted _VVD in_ll)
5 see+edvVD | -0.00002 -.00002 see+edVD
6 NP/detn -1.1568 | -3.0052 mahIN1 (det man _NN1 the _AT)
7 the AT -0.0004 | -.0004 theAT
8 N1/n -1.848 -1.848 mahiN1
9 manNN1 0.0 0.0 marm\N1
10 PP/pl 0.0 -3.1437 iH
11 P1/pnp -0.6565| -3.1437 irhl (dobj in _II park _NN1)
12 inll -0.0134 | -0.0134 inll
13 NP/detn -0.1663 | -2.4738 parkiN1 (det park _NN1 the _AT)
14 the AT -0.0005 | 0.0005 the\T
15 N1/n -2.307 -2.307 parkiIN1
16 park NN1 0.0 0.0 parkNN1
17 V1/vppp 0.0 -8.66952 see+edVvD | (ncmod _ seeted VVD in_ll)
18 V1i.np -2.5335| -5.53872 see+&0/D | (dobj see+ted _VVD manNN1)
19 PP/pl 0.0 -3.1308 if
20 P1/pnp -0.6565| -3.1308 il (dobj in Il park _NN1)
21 in.l -0.0005 | -0.0005 inll
22 V1i.np -1.1534 | -6.86012 see+&0/D | (dobj seeted _VVD manNN1)
23 NP/detn -0.1663 | -5.7067 mahiN1 (det man _NN1 the _AT)
24 N1/nlppl | -0.5165| -5.54 mahiN1 (ncmod _ manNN1 in _Il)
25 P1/pnp -0.6565| -3.1755 il (dobj in _Il park _NN1)
26 inl -0.0452 | -0.0452 inll

98

Table 4.1: Inside (log base 10) probabilities and filled GBc#jcations for parse forest nodes shown in Figuidetand Table2.9. The shift
or reduce probability for the node is shown in the third caiuamd the inside probability for the node is shown in the fowalumn. The
remaining two columns illustrate the filled GR specificationthe node.
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V1livp pp to <2, (ncmod _ 1 2) >, then the second daughter is now considered the head. In this
case, bothviiv _np_pp andVii _np specify the headee+ed _VVD, while V1/ivp _pp specifies the
headn _II . Thus for the mother nod&np _vp, we can fill the GR specification2, (ncsubj 2 1)>

as before, creating the filled GR specificatiersee+ed_VVD, (ncsubj see+ed VVD I_PPIS1)>. We

may also fill the GR specification using the second daughtad kembination:

<in_ll, (ncsubj in_Il I_LPPIS1)>. It is clear in this example that node 2/rp vp) appears in all
possible derivations for the sentence. However, the tweiplesfilled GR specifications clearly

do not appear in every possible derivation. Consequentlgre/@o longer able to utilise the 10

of the node within the frequency calculations for the filleR pecifications of the node. The
new set of n-best GRs and weighted GRs is shown in Figute

We describe the solution to this problem 4.8 That is, we describe modifications to the
IOA | Rr(1) described in this section. This algorithm is called ‘EVS'it is capable aéxtracting
weightedGRs fromany parse forest produced by the extant parser and is not linotdtbse in
which a single lexical head results per node. EWG is basedeosiittiple observation that if a set
of nodesN; specify more than one possible head, then the inside pridgaifieach head forms
part of the probabilitye(N;). We re-define the summation over nodes\jrin Equation4.1Q so
that we condition the summation on the node’s head, whertutiaionH returns the head of

a node:
e(N) = e(ne)
cheNi ,Hz(nc)h

That is, we can determine the inside probability for eachdtetor N; e(N;, h) using the
inside probabilities for each node in the set where the prssequation can be split into two
parts:

e(Nj,h) = 2( ) e(ne) (4.14)
nceN;,H(nc)=h

eN) = ;e(Ni,h)

In the event that multiple heads occur for a node set, usiegitigle probabilitye(N;) to
represent the probability of each head over-estimatesrtitpility e(N;, h) for a headunless
a single head only results for the node set. That is, the guevsolution applies only if every
node (set) has a single head.

4.2.4 Problem: Multiple Parse Forests

As described in 8.6.3 the grammar specifies a number of possible root categsnesnumber
of root node structures can result. Each of these structi@fése a set of derivations, where each
derivation spans the whole sentence with the specified ttggogy. In practice, we consider
the parse forest as the set of such root node data structures.

In the following section, we describe EWG over a single roaeydhough the extension to
multiple root nodes is trivial. To determine the inside pabiltity of the sentenc®,, applied to
normalise the weights of the weighted GR output, we sum dweiirtside probability of each
root node produced. We perform the outside probabilityudateon by assigning the outside
probability ofeachroot node to be 1.
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N-BEST GRS: (NON-NORMALISED) WEIGHTED GRS:
Parse probability: -8.075 -7.843 (det mBAiN1 the AT)

(det manNN1 the AT) -7.843 (det parlkiNN1 the AT)

(det parkNN1 the AT) -7.843 (dobj inll park_NN1)

(dobj in_Il park_ZNN1) -7.843 (dobj see+e®VD man_NN1)

(dobj see+ed/VD man.NN1) -7.847 (ncsubj see+edVD | _PPIS1)
(ncsubj see+e¥VD | _PPIS1) -8.075 (ncmod manNN1 in_ll)
(ncmod_manNN1 in_II) -8.237 (iobj see+ed/VD in _II)
-9.884 (ncmod see+edvVD in _ll)
-9.884 (ncsubj idl | _PPIS1)

Parse probability: -8.237 (NORMALISED) WEIGHTED GRS:
(det manNNL1 the AT) 1.0 (det manNN1 the AT)
(det parkNN1 the AT) 1.0 (det parkNN1 the AT)
(dobj in_Il park_ZNN1) 1.0 (dobj inll park_.NN1)

(dobj see+ed/VD man NN1) 1.0 (dobj see+e®¥VD man NN1)

(ncsubj see+eVD | _PPIS1) 0.990904 (ncsubj see+advD | PPIS1)

(iobj see+edvVD in _II) 0.5866 (ncmod manNN1 in_Il)
9.0960e-3 (ncmodsee+edvVD in _II)
0.404265 (iobj see+edVD in _II)

Parse probability: -9.884 9.0960e-3 (ncsub)lih_PPIS1)

(det manNNL1 the AT)

(det parkNN1 the AT)

(dobj in_Il park_NN1)

(dobj see+ed/VD man.NN1)

(ncsubj inll 1 _PPIS1)

(ncmod_ see+edvVD in _ll)

Total probability (sum of all parse probabilities): -7.843

Figure 4.4: The n-best GRs, and non-normalised/normaliseghted GRs for the three parses
for the sentencksaw the man in the panksing an altered GR specification in the rdlévp pp.
The corresponding parse forest and original GR set are shoRigures2.14and2.16 respec-
tively.

4.3 The EWG Algorithm

In the previous section we illustrated the application & t®A r(1) over the extant parse
forest to extract weighted GRs. As long as a single lexicatilreaults for each node in the
parse forest, the corresponding IO probability of the nody e used as the 10 probability
of the GR output by the node. However, in practice, more thanlexical head may result for
each node in the parse forest. We describe the modificatiaale to our previous approach in
subsequent sections, and discuss the relationship of @al BBG algorithm to previous work
in 84.3.3

As described previously, three processing stages areregfjto determine weighted GRs
over the parse forest. Several changes are required to $hetége of processing in which we
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fill GR specifications and calculate inside probabilitiee #iscuss these changes th3 1, and
describe the data structure created during this stage.stristure is traversed during the next
stage of processing, described th3 2 to determine outside probabilities and non-normalised
weighted GRs.

4.3.1 Inside Probability Calculation and GR Instantiation

Inside Data Structure

EWG allows multiple heads and their corresponding prokbiédslito propagate upwards in the
parse forest. We return a set of data structures for eachseitls where each corresponds to
a possible head for the node set. For now, we consider thasstiatcture fﬂl,i) to hold simply
the head and corresponding inside probability. Thus, asrbete pass up a tuple that consists
of the node’s head and inside probability. Although now ntbe: one tuple is possible.

Multiple Heads in a Node Set

We first consider the case where each node has a single fillesp&étfication, and a filled GR
specification in a packed node defines a different lexicadl he#hat of the representative node.

In this case, we allownultiple headgo be passed up by the node set. Hence, the summation
over nodes iMN; in Equatiord.10needs to beonditionedon the possible heads of a node, where
e(Ni, h) is the inside probability of each heador node selN. That is we apply Equatio#.14

eNh = Y eng) (4.15)
nceN;,H(ne)=h

We create a data structL@ =< h,e(N;, h) > for each heath for the node seli;. For example,
continuing the altered example .3 we determine such a data structure for each head
see+ed VVDandin _Il , returning forN, the list:

{(seered WP— < seered VWD —6.6324>, 5" =<in I ,—8.66952>}

Here, the inside probability of the heaek+ed VVDis calculated using the inside probability of
ng andnyy. That is, using the nodes whose GR specifications have tliesbe@d _VVD For the
headin _Il , the inside probability is that of the single noulg.

Multiple Filled GR Specifications

We now need to consider multiple heads passed up by eachtéangle, resulting imultiple
filled GR specification®r a single node. We create one filled GR specification fohg@assible
combination of daughters’ heads. As described previotmiyhe mother nod&/np _vp, we fill
the GR specificatior 2, (ncsubj 2 1)> with each of the heads fdd;. This results in the filled GR
specifications<see+ed_VVD, (ncsubj see+ed VVD |_PPIS1)> and<in_ll, (ncsubj in_Il |_PPIS1)>.

GR Specification Inside Probability

Each possible head for daughter node §#ts € D(n;) has an associated inside probability,
e(DN;, h), and we determine the probability of each filled GR specificats;,, € G(n¢) for a
nodeng, using each daughter’s head probability.

That is, we consider Equatigh9to apply to the lexical head of each daughtgechosen to
fill the GR specification (in the set of possible lexical hefmglaughter node sét H(DN;)):

e(Ne,sm) = P(alc]) [ e(DN, hy) (4.16)
hxeH (DN ),hk€sm,DN;€D(n¢)
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Returning to our previous example, we now calculate the epidbabilities of the GR speci-
fications: <see+ed_VVD, (ncsubj see+ed_VVD I_PPIS1)> and <in_ll, (ncsubjin_ll I_PPIS1)>. These
probabilities are equal to the reduce probability of theenog (-0.5391) multiplied by (i)
the inside probability of head PPIS1 (-0.6763), and (ii) the inside probabilities of the heads
see+ed VVD(-6.6324) andn Il (-8.66952), respectively. That is, for the first filled GR spe
ification, the inside probability i§ (—0.5391— 0.6763— 6.6324) = —7.8478, while for the
second it isy (—0.5391— 0.6763— 8.66952 = —9.88492%3

The same word can appear as a head for more than one daughteodé. This occurs if
competing analyses have daughters with different wordspad, therefore, particular words
can be considered in the span of either daughter. As the gaampenmits both pre- and post-
modifiers, it is possible for words in the ‘overlapping’ sparnbe passed up as heads for both
daughters. Therefore, semantic heads are not combinesiiuthkey are different words.

Head Inside Probability: Grouping GR Specifications
As a node can have multiple filled GR specificati@(s$\.), and packed nodes can also contain
multiple filled GR specifications, we alter Equatiéri5to:

e(Ni,h) = &(Nc, ) (4.17)

nc%\‘i smeG(ne),H(sm)=h

Here,e(nc,sm) (the inside probability of filled GR specificatia, for nodenc) is determined
using Equatiod.16 Hence, (a) calculation of inside probabilities takes iat@ount multi-
ple semantic heads, and (b) GR specifications are filled wsregy possible combination of
daughters’ heads.

Node Data Structures

For each node séj, which includes the representative nagieand any packed nodes, we
propagate up the set of data structu{é%} for each possible hedufor the node set. At word
nodes, we simply return the word and the shift score of themsdthe semantic head and inside
probability, respectively.

{S’{Q,i} also stores the corresponding set of GR specifications wéheadh. That is, we
storeG(N;, h) = {sm}, Vsm € G(n¢),nc € Ni,H(sm) = h. Furthermore, for each filled GR speci-
ficationsy which results for nodec in the setN;, we store the node’s action probabilRya[c])
and inside probability of the GR specificatiefnc, Sm).

K, = (h,e(Ni,h),G(Ni,h) = {(sm:< h,{GR} >, P(alc]), e(nc, sm), {S }11))

Note that we store the set Gﬂ"Nl structures for each daughter’'s heladused to fill a GR
specification.

For example, for the node sBY; in the continued example, we store the filled GR spec-
ifications <see+ed_VVD, (ncsubj see+ed_VVD I_PPIS1)> and <in_Il, (ncsubj in_Il I_PPIS1)> for each
headsee+ed VVDandin _Il , respectively. Thus fok, we return the set{%ﬁed NN S',QAfNNl},
where these data structures are shown in FiguBe Similarly, we return the set foN,:
{Sgered NNL g VL which are also shown in Figurk6.

43As previously described, summation of log probabilitiesdsiivalent to the multiplication of these probabil-
ities.
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§\e|4e+ed NI — see+ed VWD —6.6324 G(Ng, see+ed WD) >
G(Na,see+ed VVD) ={(< see+ed _VVD
{(dobj see+ed _VVD manNN1),(iobj seeted  _VVD in_ll) } >,
P(al4]) = —0.8728 —7.02172 {¢eed VO graniVL i 1 1)
(< seet+ed VD {(dobj see+ed _VVD manNN1)} >,
P(a[22]) = —1.1534 —6.86012 { e -YV0, ganiiy )y

23

" = <in Il ,—8.66952G(Ns,in \NNI) >

G(Ng,in Il ) ={(<in I ,{(ncmod _ see+ed VWD in_ll) } >,
P(a[17]) = 0.0, ~8.66952 {SFered WD g 1l 1)1

18

Figure 4.5: Example EWG data structuresfar

Seered NN = < see+ed VWD —7.8478 G(Nyp, see+ed VWD) >
G(Ny,see+ed VVD) ={(< see+ed VVD {(ncsubj see+ted _VVD |_PPIS1) } >,

P(a[2]) = —0.5391 —7.8478 {g\ngPm 7 Sﬁﬂed oy
ﬂz,Nle < in _NN1 —9.88492 G(Ngp,in _-NN1) >
G(Ng2,in NN1) ={(< in _NNL {(ncsubj in _NN1 [_PPIS1) } >,
P(a[2]) = —0.5391 —9.88492 {§; 75!, g NN1} )3

Figure 4.6: Example EWG data structures Kor

Overview
Each node se\jj, of noden; with packed nodesp, is processed in full as follows:

e Process each of the node’s packed nagge&s described fon; following) to determine
the packed node’s list of filled GR specifications and cowasing inside probabilities.

e Process the nodg, with daughter®(n;):

— Instantiaten;’s GR specifications based on features of daughdérs).

— Process each daughter node sddiM € D(n;) to determine a list of possible heads
and corresponding inside probabilities for each. That is,dstermine the set of
§5kN| structures for each daughter node set.

— Fill the GR specification of; with each possible combination of daughters’ heads,
creating the seB(n;).

— Calculate the inside probability of each filled GR specifmat(n;, sy), that is, for
eachsy € G(n;) using Equatiort.16
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o Combine the alternative filled GR specificationsipnd of each of the packed nodgs
to determine the list of unique semantic headsnd corresponding inside probabilities
e(N;, h) using Equatior.17.

o CreateSl,i for each uniquénr and return the set of such structures in a |{§ﬁ}

This results in the data structure over the parse foredtighaver the set of parse forests
with root nodeN;: S = {Sl,r}. This structure is traversed during the next stage of psicgs
so that the parse forest itself is only traversed once.

4.3.2 Outside Probability Calculation
GR Specification Outside Probability

After the inside probabilities are computed (bottom-upg tesulting data structui® is tra-
versed to compute outside probabilities. This data stragtalready split into alternative heads
for each node sefj (SR,i). Therefore, it is trivial to traverse this structure toetetine outside
probabilities. The outside probability Sﬁi is equal to the outside probability of each filled GR

specification data structure store(ﬂhll. Thatis,f(ne,sm) = f(Ni, h) for each possibley, filled
for nodenc € N;, where the head of the GR specificatgis h.

Daughter Node Outside Probability

We then calculate the outside probability of each daughtele®N, € D(n;), whose head
hg was used to fill the GR specificatiay, resulting for noden.. We consider the outside
probability of the GR specification to be that of the mothed&an Equationd.11 Further,
we utilise the inside probability of each daughter n@dd, for the head, a fellow daughter,
which also fills the GR specificaticg,. Note that the set of probabilitiefDNp, h;) for each

k andr is already stored within the data structure wsgh The test we define for this product
(hr € sy) is not required if we apply this equation within the dataistures created during the
previous processing stage.

f(DN}, hy) = Z f(ne,sm)P(alc]) |_| e(DNp, hy) (4.18)
Nc DNpeD(nc),DNp#DN; ,hr esm

For example, foMN4 we calculate the outside probability of the hesad+ed VVD, where
f(ng, < see+ed _VVD {(ncsubj see+ted _VVD I_PPIS1) } >)=0,P(a[2]) = —0.5391 ande(N3z,| PPIS1) =
—0.6763“as:

f(Ng,see+ed NN1) = 0+ —0.5391+ —0.6763= —1.2154

Considering thaf (ng,sm) = f(Ng, see+ed NN1) for GR sy, with headsee+ed NN1, we determine
the non-normalised weight of the GRs fof {(dobj see+ed _VVD manNN1),(iobj see+ted  _VVD
in Il) } as -1.2154 + -7.02172 = -8.23712. Normalising each GR by4388we find, for
example, the final weight diobj seeted _VVD in_ll) is 0.40428"°

44The logyo probability of 1 is 0. Again, we use summation to perform rplittation for log probabilities.
45Again, these figures differ slightly from weight shown in &ig4.4, due to rounding errors.
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Traversing the New Data Structure

Therefore, once we create the new data structure, outsidbpilities for each node are deter-
mined over this structure in the regular fashion, rathen ttner the parse forest. We simply
equate the outside probability of each head to be that ofy@@responding filled GR specifi-
cation data structure.

Overview

In practice, we apply a breadth first search (FIFO queue) &véo minimise multiple process-
ing of shared data structures. We initialise this queue tdain each root node with an outside
probability of 1. We perform a POP operation to determinentipet paired list from the queue.
This pair consists of the data structure and correspondingjde probability:{SQ,w f(N;,h)}.
We process each pair as follows:

e Process each of the GR specificationsm). For each filled GR specificatics, where
Sm € G(Ni, h) was created for node. € N;:

— Let f(ne,sm) = f(N;, h) and calculate the 10 probability sf, using:
IO(nC7ST1> - e(nC7Sm)f(nCasTl) (419)

— Add10(nc, sm) to the (non-normalised) probability for the GR in the fille&Gpec-
ification sy

— Process the data structure for each daughter heelabsen to fills,, from the daugh-
ter node seDN, € D(n;). That is, process each of the daughter data structures (that
each specify a single head) used to fill the slots in the GRifspegioon s, For each

§5"Nl stored forsy:

« Calculate the outside probabilify DN, hx) of the heady from daughter node
setDN, using the reduce probability of the nodgwhich createdsy,: P(a|c]),
which is also stored in the data structure. That is, we usatau4.18without
the summation overg; the set of mother nodes for whi@h\, is a daughter.

*x Queue the data structL@j\lI and corresponding outside probabilftyDN;, hy).

We calculate the outside probabilities (top-down) and, mie find filled GR specifica-
tions, we incrementally store the non-normalised (I0) \Weigf each GR in a hash table, as
described previously. Each increment represents thetisituahere the node is a daughter of
another in the parse forest. That is, performs the summatien mother nodes; in Equa-
tion 4.18 Thus, if an outside probability is determined for a dataicttire already queued,
then the probability is appended to the list of outside phdliges for the queued item and Prior
to calculating Equatio®.19 we perform a summation over each outside probability, where

f(ne,sm) =3 F(N;,h).
Traversing the Parse Forest

We could instead store the inside probabilities and the sé&lled GR specifications within
each node of the parse forest, rather than creat8 tfaga structures. In this case, we calculate
outside probabilitiesonditionedon which lexical head (from each daughter) is used to fill each
GR specification. Here, we pass down the outside probalfi{l, h) to each node. € N; and
then to each of the GR specifications storeddif and only if the head of the GR specification
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Is h. This test is not required when processing dseas GR specifications are already grouped
by head value. Equatioh.18is already shown with the condition that we include the iasid
probabilitye(DNp, hy) for daughterp if and only if b filled a slot insy.

4.3.3 Related Work

In the previous sections we illustrated that a dynamic @ogning approach over the parse
forest can be used to calculate weighted GR outmlit if a single head is determined for each
node in the parse forest. Further we illustrated how to ektérs application to successfully
associatenultipleheads, and corresponding inside and outside probahiltigis each node in
the parse forest using our novel EWG algorithm.

The approach we take is similar to thatSicthmid & Rooth(2001), where ‘expected gov-
ernors’ (similar to our filled GR specifications) are detered for each node. However they
ensure that competing nodes (i.e. each node in a node sé® pparse forest have tlsame
head Initially, they create a packed parse forest and duringcarse pass the parse forest
nodes are split if multiple heads occur. A single iteratiéthe 10A is applied over this split
PCFG parse forest data structure, as described for LR paestdaising the IOAr(1) in 84.2.2
However, as they utilise a PCFG grammar, rules specify howterchine dependency relations
given tuples consisting of tHeT categories of mother and daughters of CFG rules. In contrast,
within the extant parser such rules are encoded in finer ggdaimification-based rules within
the grammar itself. Moreover, these are optionally insééed on the features of the rules’
daughters.

Clark & Curran (20040 apply the dynamic programming approachMiyao & Tsujii
(2002 to determine weighted dependency relations (DR) withinrt6€G parser. They al-
ter their packing algorithm so that nodes in the packed aftgttively have the same semantic
head. That is, their definition for feature structure eglenee is extended to include the head
of each node as well.

These previous approaches determined dependency rslatrah corresponding weights
directly from the parse forest, using dynamic programmingraaches similar to the 1Q&(1)
we describe. That s, they ensure that a single head is sgmktofi each node, which results in a
less compact parse forest. As a result, they require additirocessing overheads to create the
parse forest, and moreover, to determine inside and oytsadebilities from this less compact
parse forest.

In order to apply the EWG algorithm, we also modify the paclaigprithm to be based on
feature structure equality rather than subsumption. Tésslts in a less compact parse forest,
though only to the extent originally found in the parse ftsed Schmid & Rooth(2001) and
Clark & Curran(2004b). If we extend the definition of node equivalence to incluge node’s
head (of a filled GR specification), or split the nodes in a pagtessing stage as the previous
approaches have, this increases the size of the parse fiothgtr. Therefore, we consider our
approach as an efficient alternative to those in previougwgiven that many existing parsers
already utilise equality-based packing.

4.4 EWG Performance

This section presents experimental results showing (ajavwea efficiency and (b) increased
upper bounds of precision and recall achieved using EWG.drfdlowing section, 8.5, we
show (c) increased accuracy achieved by a parse selecgoritam that would otherwise be
too inefficient to consider. We utilise the same data (DepBanil machine hardware described
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in3.5.1

4.4.1 Comparing Packing Schemes

Figures4.7 and4.8 compare the efficiency of EWG to the EQ-PACKING and SUB-PACKING
methods in terms of CPU time and memory, respectit€ipote that EWG applies equality-
based packing to ensure only derivations licensed by theamia are considered.

As the maximum number of (n-best) derivations increasesPBQKING requires more
time and memory than SUB-PACKING. However, if we compare tr@esgems with an n-
best value of 1, the difference in time and memory is nedkgitlhis suggests that it is the
unpacking stage which is responsible for the decreasedghput. For EWG we are forced to
use equality-based packing. Although these results stgjggsthis condition does not affect
the algorithm’s throughput.

2500 T T T T T T T T
SUB-PACKING —¢—
EQ—PACE\IHG e

2000

1500

Time (sec)

1000

500

0
0 100 200 300 400 500 600 700 800 900 :
Maximum number of parses (n—best)

Figure 4.7: Comparison of total CPU time required by the diiférversions of the parsing
system for calculation of weighted GRs over the n-best deona.

4.4.2 Efficiency of EWG

Both figures illustrate that the time and memory required by Eqv€static, because the algo-
rithm considers all derivations represented in the parsestaoegardless of the value of n-best
specified. Therefore, the ‘cross-over points’ are of paléicinterest: at which n-best value is
EWG's efficiency the same as that of the current system’s?vetig is approximately 580 and
100 for time and memory, respectively (comparing EWG to E@GRMNG). That is, the cur-
rent system takes the same amount of time to calculate veeldBRs over approximately 580
n-best parses as the EWG algorithm takes to calculate weli@bis directly from the parse
forest (over all parses). Similarly, the memory requiretaeare approximately equal for the
current system utilising an n-best list of size 100. Consetjyeas the size of the n-best list un-
packed (for the existing system’s calculation of weightdeis{sincreases over these cross-over

46CPU time and memory usage are as reported usintjrtige function in Allegro Common Lisp 7.0 and do
not include system start-up overheads or the time requiredérbage collection.
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Figure 4.8: Comparison of total memory required by the défferversions of the system for
calculation of weighted GRs over the n-best derivations.

points, the EWG algorithm becomes more efficient in compartsathe existing system (for
the given dataset).

Given that there are on average around 9K derivations peerses for DepBank, these
results indicate a substantial improvement in both effigyeand accuracy for weighted GR
calculation. However, the median number of derivationssgatence is around 50, suggesting
that large derivation numbers for a small subset of the tait¢ sire skewing the arithmetic
mean. Therefore, the complexity of this subset signifigadéicreases throughput, and EWG
improves efficiency for these sentences more so than forothe

4.4.3 Data Analysis

The general relationship between sentence length and murhiderivations suggests that the
EWG is more beneficial for longer sentences. Figu@shows the distribution of derivation
ambiguity over sentence length. The figure illustratesttiinhumber of derivations can not be
reliably predicted from sentence length, though the geémelationship holds. Considering the
cross-over points for time and memory, the number of seetenéth more than 580 and 100
derivations were 216 and 276, respectively. These poietslaown using dotted lines in the
figure. Thus, the EWG outperforms the current algorithm fouad half of the sentences in the
data set. The relative gain achieved overall for EWG refld@sad subset of sentences signifi-
cantly decreases throughput. Hence, the EWG is expectednmieeefficient than the current
method for determining weighted GRs if longer sentences l@sept in the data set and if the
size of the n-best list is set to a value greater than the -@esspoint(s). Tabld..1illustrates
the average and median number of parses for a number ofatiffdata set$” Consequently,
EWG is expected to outperform the current method over alla@arpxcept the simple GDT.

4"We employ a version of the tsg15 grammar in these experintieatss less ambiguous than the one released
with version 2 of RASP (applied to determine the statistic$ablel.1). As a result, EWG is expected to provide
even further performance gains over the current methoddtarohining weighted GRs.
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Figure 4.9: Scatter graph of parse ambiguity to sentenagheione point per sentence). The
cross-over points are illustrated for time and memory. Tleimum number of derivations

shown is 1K, points plotted at 1K correspond to sentencels aqual to or greater than 1K

derivations.

4.4.4 Accuracy of EWG

Upper bounds on precision and recall are determined usieghblds over the weighted GRs of
1 and 0, respectivefy® Upper bounds of precision and recall provided by EWG are 78rf
82.02, respectively. This results in aptpper bound of 81.22%. However, considering the top
100 derivations only, we achieve upper bounds on precisioirecall of 78.77% and 81.18%
respectively, resulting in anjFupper bound of 79.96%. Therefore, using EWG, we achieve
a relative increase of 6.29% for the Epper bound on the task. Similari@arroll & Briscoe
(2002 demonstrate (on an earlier, different test suite) thakiasing the number of derivations
(n-best) from 100 to 1K increases precision of weighted GR em 89.59% to 90.24%, a
relative error reduction (RER) of 6.8%. Therefore, EWG aclseveubstantial improvement in
both efficiency and accuracy for weighted GR calculatione &pproach provides an increase
in the upper bounds of precision and recall, that is, it ptesian increased, fipper bound on
the task.

4.5 Application to Parse Selection

The previous section illustrated the increased level otiefiicy achieved by EWG compared
to the extant method for calculating weighted GRs. This eaadtiescribes a parse selection
algorithm using EWG that would otherwise be too inefficienapply.

We previously described the work @flark & Curran(2004h, whereby weighted depen-
dency relations (DRs) are determined directly from a packedltc They also describe a parse
selection algorithm which maximises the expected recallegfendencies. Their algorithm se-

48In these experiments we use a threshold efel(with £ = 0.0001) instead of a threshold ofdl to reduce the
influence of very low ranked derivations. Note that theseeufymunds are at least as high as those achieved by
selecting the best possible single n-best GR set.
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lects the DR set with the highest average DR score based ondights from the weighted
DRs.

We apply this parse selection algorithm in two ways. We (egnk the n-best GR sets based
on the average weight of GRs and select the highest rankingrsgt) apply a simple variant
of the Viterbi algorithm to select the GR set with the highestrage weighted score over the
data structure built during EWG. The latter approach, basethe parse selection algorithm
in Clark & Curran(2004b), takes into accourdll possible derivationgand effectively reranks
these derivations using weights output by EWG. These appesaare referred to &ERANK
(over the top 1K derivations) arBEST-AVGrespectively. Tabld.3illustrates the performance
of the extant parsing model and of these approaches over Dé&pBa

Micro-average Macro-average
Model Prec| Rec F Prec| Rec I
Extant 71.24) 71.24 71.24 58.42 59.62 59,01

RERANK || 71.72) 70.94 71.33 59.47 60.22 59.84
BEST-AVG | 71.59| 71.49 71.54 59.53 60.63 60.08

Table 4.3: Performance of the two parse selection algogathm

The GR set corresponding to the system’s top parse achiavesa 71.24%. By applying
BEST-AVG and RERANK parse selection, we achieve a relativer eeduction (compared to
the upper bound of 81.22%) of 3.01% and 0.90%, respectiVélgrefore, BEST-AVG achieves
higher accuracy and is more efficient than RERANK. This suggsit BEST-AVG is able to
select derivations that are ranked in a position lower thanThus, as expected, it is advan-
tageous to consider all derivations during reranking taskss also worth noting that these
parse selection schemes are able to outpeisistenset of GRs, unlike the high precision GR
output defined byCarroll & Briscoe(2002.

4.6 Discussion

We described a dynamic programming approach based on thédiQ@koducing weighted GR
output directly from the parse forest of the extant unifmatbased LR parser. Our approach
is novel in that we allow any node in the parse forest to hawttiple heads This removes
the additional processing overheads, introduced by egp#iting nodes in the parse forest
(and duplicating the associated data structures) or froidibg a less compact parse forest,
as described in previous approaches. In an evaluation candeast test suite (DepBank), the
approach achieves substantial improvements in accuratpanser throughput over the extant
implementation. EWG is available for use within the seconéase of the RASP parser, as an
alternative method to calculate the weighted GR output &rm

We intend to extend this work to develop more sophisticatedgselection schemes based
on weighted GR output. Reranking the n-best GR sets resudtsamsistent but not necessarily
a complete set of GRs. Given the (increased) upper bound ersjare for the high precision
GR output, we hope to boost the corresponding recall medsudetermining a consistent
and complete set of GRs directly from the weighted GR set. Whiirnee this discussion in
Chapter6.



Chapter 5

Confidence-based Training

We discussed statistical approaches to parsind.ih.§ where we defined training a parser as
a supervisedearning task. The current training method for RASP, descriim &.3, utilises
such a supervised training framework. It employs around 6kulby-annotated and system
compatible derivations from a subset of Susanne to derezadtion counts, thus corresponding
probabilities, of the LR model. However, such treebankdiariged in their use and coverage,
and furthermore, are expensive to develop and maintainsel lmitations, discussed in detalil
in 85.1, have prompted the developmentufsupervise@andsemisupervisestatistical training
approaches that illustrate promising results.

In this chapter we focus on semisupervised training apesaeviewed in 82 and de-
scribe novetonfidence-basedaining methods, and their relationship to previous worlkgs.4.
We contrast the performance of the extant parser trainedSwganne, with that of the same
parser trained over unannotated or unlabelled partiathzheted sentences from this treebank
and from the WSJ. That is, we contrast the performance of threr, fully supervised, training
method to that of the unsupervised or semisupervised comtgdbased methods i $.

We also compare the performance of these methods againkdAhe, the IOA extended
to apply over our extant LR parser as describeddrl& and further, to apply over unlabelled
partially-bracketed data followinBereira & Schabed 992. We consider the 104 a variant
of Expectation-Maximisation (EM), followin@reschef200]). Hence, in the experimentation
described herein, we refer to the IQAtraining methods applied as EM.

The semisupervised variants of the confidence-based nethe@describe outperform both
EM (when both are constrained over the same data set) anditrentfully supervised train-
ing method, achieving statistically significant improvertseover the extant parser. Though we
would expect a supervised method to outperform a semisigeelone over theamedata set,
these results suggest that a semisupervised method carfoutp a supervised one given suf-
ficient training data. As semisupervised data is simplextaaet from existing, though incom-
patible, corpora and also simpler to develop, these metamelpreferable to fully supervised
methods and aid in adapting the parser to new domains.

Although our training methods are considered semisupedlytbey utilise partially-annotated
data automatically extracted from existing corpora. Assaltethey require no manual effort
on behalf of the grammar writer. These methods have beenedibp the extant parser, as they
provide significant increases in accuracy, and furthergreackin grammar development. Much
of the work we describe in this chapter appearg/atsonet al. (2007).

112



5.1 Motivation 113

5.1 Motivation

Currently, many statistical parsers require extensive atailéd treebanks, as many of their lex-
ical and structural parameters are estimated in a fullesuged fashion from treebank deriva-
tions. Collins (1999 is a detailed exposition of one such ongoing line of redeawtich utilises
the standard training sections of the WSJ. However, thereliaeglvantages to this approach
which we discuss in this section.

Manual Effort

Firstly, treebanks are expensive to create manually. Egyrgfiven a manually written grammar,
the grammar writer must alsmaintain these treebanks. For exampld,.31 described the
annotated (supervised) training corpus of the extant péraeincorporates a manually written
feature-based unification grammar (s@€e681). Grammar updates require equivalent (manual)
updates to the annotation in this training corpus, wheeraative manual disambiguation takes
an average of ten minutes per sentence.

Usability

Secondly, the richer the annotation required, the hardgtatadapt the treebank to train parsers
which make different assumptions about the structure absyic analyses. For exampldock-
enmaier(2003 trains a CCG statistical parser on the WSJ, but first maps tebdrk to CCG
derivations semi-automatically.

Coverage

Thirdly, many (lexical) parameter estimates do not geimralell between domains as dis-
cussed in 8.1.3 For instanceGildea(2001) reports that WSJ derived bilexical parameters in
Collins (1999 Model 1 parser contribute about 1% to parse selection acguwwhen test data
is in the same domain. In contrast, they yield no improveni@ntest data selected from the
Brown Corpus (of which Susanne is a subset). However, traiougg both corpora slightly
increases performance when testing on either corpus.

Therefore, the use of in-domain training data improvesipgraccuracy. In-domain data
can be included with out-of-domain data in a single trairgogous. Alternatively, the parser
may beadaptedto the new domain by retraining the parser over a separaprispusing the
existing parser as thiaitial model Here, even small levels of in-domain data are shown to
improve parser accuracy. Note that we can frame the probkepaser tuningor domain
adaptationas an unsupervised or (semi)supervised task.

For example Tadayoshiet al. (2005 adapt a statistical parser trained on the WSJ to the
biomedical domain by retraining on the Genia Corpus, augesenith manually corrected
derivations in the same format. They are able to tune thesgoavith around 5K of in-domain
annotated sentences (a small set compared to 40K of WSJ sestirat train the parser ini-
tially).

Discussion

In order to make statistical parsing more viable for a ranigapplications, we need to make
more effective and flexible use of existing training data amdimise the cost of annotation
for new data created to tune a system to a new domain. Therdfa focus of this work is to
developsemisupervisettaining approaches that utilise partially-annotated dtracted from
existing, though incompatible, treebanks. Further, tmesthods can apply over unsupervised
in-domain data, to adapt the parser to a new domain if require
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5.2 Research Background

Training methods can be defined based on the level of supdraisnotation. That is the level
of manual effort required, to provide training data prioratoduring the training process. If
we utilise fully annotated training data we consider therapph to besupervised The limita-
tions of these approaches have prompted the developmensoparvised and semisupervised
methods.

Although unsupervised methods have proven relatively eoesssful, semisupervised meth-
ods have illustrated promising results. We provide exampleseveral relatively successful
unsupervised training methods i®.8.1 and review the popular semisupervised approaches
in 85.2.2

5.2.1 Unsupervised Training

Training approaches that require no (manual) annotatiercansideredinsupervised These
methods are generally based on the IOA, which we describ#eiprevious chapter, and have
been largely unsuccessful to date. Although an advantagaatf approaches is that raw data
in any domain is readily available.

In recent years, inferring the grammar and statistical hvden unlabelled data has pro-
vided some encouraging results. For examiglein & Manning (2002 report promising results
for unsupervised grammar induction over the ATIS Corpdarcuset al, 1993 and section 10
of the WSJ. The unlabelleé, of 71% achieved for the WSJ section is only around 10% lower
than the performance of a supervised PCFG trained over the saation.Klein & Manning
(2004 extend this work, and combine the constituency based nwitlela dependency model,
which achieves a further increase in performance to 77.6%.

Similarly, Bod (2006 illustrates that an unsupervised ‘DOP’ parser trainedgi&M re-
lated to the IOA (‘UML-DOP’) outperforms a supervised PCFGanlboth are trained over the
WSJ. However the underlying models differ, and we still exgeemi)supervised training to
outperform unsupervised training given ttmemodel and data set.

5.2.2 Semisupervised Training

Given limited (in-domain) training data or manual efforedable, two general types of semisu-
pervised training methods are pursued in research, eitisegase theuantity and/orquality

of training data while minimising the corresponding regdimanual effort. Approaches can
consist of a mixture of (i) using an existing, though incotife, treebank’s annotation, (ii)
active learning and (iii) bootstrappingmethods. We describe each of these approaches (and
their variants), and research which focuses on these mgthothis section. These approaches
utilise either partially annotated data or a mixture of b&pervised and unsupervised data.

Mapping Treebanks

Given an existing corpus, with different representati@ssumptions, we can semi-automatically
map the corpus to a representation compatible with the pauggammar. For exampléjock-
enmaiern(2003 trains a CCG statistical parser on the WSJ, but first maps tebdrk to CCG
derivations semi-automatically, creating B€GBank Similarly, Miyao & Tsuijii (2005 semi-
automatically map the WSJ to a head-driven phrase structarargar (HPSG) treebank. The
resulting treebanks are fully annotated, facilitating eswsed training. However, the semi-
automatic mapping requires less manual effort comparelet@reation of these corpora from
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scratch, so we consider the underlying method to be semagpd. These methods are more
labour intensive than those that follow.

Partial Treebank Annotation

Alternatively we can utilise only a subset of the annotatiuat is potentially more compatible
with the parser’'s grammaPereira & Schabe@l 992 adapt the I0A to apply over semisuper-
vised data, that is, over unlabelled bracketing, that thesaet from the WSJ. They constrain
the training data (derivations) they consider within thé\l©® those consistent with the con-
stituent boundaries defined by the bracketing. One advarttiihis approach is that, although
less information is derived from the treebank, it geneeslisetter to parsers which make differ-
ent representational assumptions. Furthermore it is easid’ereira and Schabes did, to map
unlabelled bracketing to a format more consistent with #ngdt grammar. Another is that the
cost of annotation with unlabelled brackets is lower tha & developing a representationally
richer treebank.

More recentlyRiezleret al. (2002 illustrate a method to train a maximum entropy parsing
model over semi-supervised data. They utilise all devetiin the model consistent with the
labelled bracketing of the WSJ. They first extract a partialodation from the WSJ treebank
that consists of the PoS tags and labelled brackets thaekmeant for determining their GRs.
In order to utilise this annotation, they map from WSJ PoS tadke terminals of their gram-
mar. Parsing over these PoS tags results in a number of posgsibvations, as the extracted
annotation is not sufficient to disambiguate the finer giieG derivations. They modify the
standard log-linear objective function so that they ineladl such consistent derivations (nor-
malising by the set of all derivations). In contrast to theraach ofPereira & Schabed 992,
this approach incorporates all derivations licensed bygtiaanmar during normalisation, and
not only those consistent with the partial annotation.

Clark & Curran(20048, following Riezleret al.(2002), train their maximum entropy model
for their CCG parser using all derivations consistent withgbtl standard derivations in the
CCGBank created bilockenmaie(2003. However, inClark & Curran(2006, they utilise
partially annotated data only, where the training data istei®nly of supertags. They extend
the work ofClark & Curran(20048, and redefine the consistency of a derivation in terms of
the corresponding dependency relations. They considesehef dependencies that occur in
at leastk% of all derivations (licensed by the set of supertags in taming data) to be a gold
standard dependency set. This set of dependencies is analtg the set of high precision
weighted GRs produced by RASP created using a threshdd@1®0. This approach achieves
impressive performance; only 1.2% worse on section 23 o¥ii8d than the model trained on
full annotations.

Hwa (1999 applies the I0A to (partially) labelled data followifgreira & Schabgd.992).
However these experiments focus on the level of bracketiycanstitute type (labels of the
brackets), over the ATIS and WSJ corpora, from which the grammay be reliably learnt. This
experimentation illustrates that higher level constitaethat constitute only a small proportion
of the bracketing, are the most informative. In fact, tortridie underlying grammar, the model
requires only 25% (randomly selected) of the bracketingtoeve over 90% accuracy for ATIS.
In contrast, if the model trains over all brackets, it achgaround 93% accuracy. Similarly, on
the WSJ, the model achieves within 3% of the fully supervisadigpmance when it trains over
25% of (randomly selected) brackets. Results are slightixetaf Hwa infers the grammar as
well as the statistical model.
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Active Learning

Active learning(AL) is a framework foractively selecting samples that should be manually
annotated. The primary goal of AL is to reduce the number oiogated training sentences
needed to achieve the same level of parsing accuracy. A pomeéthod for AL isselective
sampling(Cohnet al,, 1994, whereby the AL system selects the next set of unannotai®d s
ples (from a large unannotated corpus) to be annotated. &oral language parsing, we wish
to select the set of sentences which is most informative rédgghes favour eitharertainty-or
committeeased methods.

For certainty based methods, an initial (optionally suge) parser selects the set of unan-
notated sentences with the lowest confidence, e.g. demvptobability. For committee-based
approaches, a set of parsers is used to annotate the unadrsegatences. The set of sentences
that led to the highest number of parser disagreementsdstsel

A number of different certainty- and committee-based apphes are explored in the liter-
ature, which we do not cover here. Instead, we refer readedsiborne & Baldridgg2004),
who provide references to research in this area and companeetrformance of a number of
these approaches. They illustrate that, in general, oéythiased sampling slightly outperforms
committee-based sampling. Furthermore, they show thét inethods clearly outperform se-
lection methods that apply random sampling, sentencehesnud overall structural ambiguity
(number of derivations).

Bootstrapping

Bootstrapping significantly increases the quantity of iregndata, where additional training
data isautomaticallyannotated using an initial statistical model. These methwmmbine a
(small)seedset of manually labelled data, with a (large) set of unlaadsiootstrapdata which

is automatically labelled. If the seed and bootstrap datafram different domains, then we
consider this alomain adaptatiormethod. If the seed data is also unannotated, then the ap-
proach is unsupervised.

These methods generally require manual effort to creatéenthal seed data only, unless
an existing treebank is utilised to train the initial modeh either case, such methods are
considered semisupervised due to the annotation providédei seed data set. There are a
number of variants to the general bootstrapping frameweok.example, the way in which the
data sets are combined may differ.

Self-training

In self-trainingapproaches, we train an initial parsing model over the satd @ his parser then
labels the bootstrap data set, that is, the parser labadwiidraining dataCharniak(1997) is
the first to apply this method, though he did not use this teofoigy. In general, the top-ranked
derivation for each sentence in the bootstrap data is add#ukttraining data as though the
parser’s annotation is correct. That is, counts are sim@gged between the seed and labelled
bootstrap data sets.

Initial research in these methods illustrates that eithedest performance gains, or sig-
nificant decreases occur, in parsing and PoS tagging mo@élarniak(1997) reports minor
gains if he retrains a parser over 30 million words of unsuviged WSJ text. That is, he uses
an initial ‘basic’ model to annotate these sentences. &riyjiClark et al. (2003 illustrate that
self-training with PoS taggers results in unimpressivéquarance, regardless of the size of the
initial seed data set.
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This framework incorporates any number of iterations. Ifwge more than one iteration,
then we repeatedly update the initial model by labellingeéh&re bootstrap data or only the
next portion of this data. Furthermore, we can set the sizeaoh portion depending on the
number of iterations to perfornSteedmaret al. (20030 illustrate modest improvement and a
steady decline in performance when performing self-tregrior each of two different parsers,
respectively. Each parser is initialised with the first 586tences from the standard WSJ train-
ing sections. Using self-training iterations, each iteraincorporates 30 sentences of which 20
of those with the highest top-derivation probabilities m@uded. Therefore, this self-training
method utilises some selective sampling within each i@mat

Recently, successful instances of self-training have bedbtighed in the literatureBac-
chianiet al. (2006 report the first successful self-training experimentst-@itdomain labelled
seed data (from the Brown Corpus) is used to train the initiadehavhich is then applied over
the in-domain, though unannotated, WSJ bootstrap dateegepting an unsupervised domain
adaptation task). A single training iteration is perforno®@r the entire bootstrap data set. The
set of (up to 20) candidate derivations for each sentenad waighted by their normalised
derivation probability, is included during training. Thissults in weighting features of the
model (corresponding to each derivation) using weightdogoais to the expected frequency
counts for the 10A, as described previously ¥kh.B2 They simply combine the counts from
each corpus, though set the contribution of the in-domaotdiap data to be 5 times that of
the out-of-domain seed data (this weight was optimised persised data). The performance
of the self-trained parser increases from 75.70% to 80.55%ore over section 23 of the WSJ,
as the number of WSJ sentences in the bootstrap data incfease8 to 200K. Furthermore,
this work shows that during supervised domain adaptatiomplg merging counts from each
corpus outperforms model interpolation. That is, it outpens interpolation between different
parsing models where each model is trained over a sepangesc@Consequently, they utilised
count-merging during the unsupervised domain adaptation.

Similarly, McClosky et al. (2006 report successful self-training experiments over a dis-
criminative reranking parser. Here, an initial generapaeser outputs the 50-best list, which
Is reranked by a discriminative maximum entropy model. dwihg Bacchianiet al. (2006,
counts from each domain are simply merged where in-domainJj\W&a is weighted 5 times
higher. However, they utilise only the top-ranked parsgouby either the generative or dis-
criminative parsing system during self-training and cdasithese top-derivations to be ‘cor-
rect’. The (baseline) reranking system achieves 91f386ore when trained and tested over the
standard WSJ sections. They illustrate that self-trainsiggithe generative model alone, i.e.
the generative parser’s top-parse, results in a declinerfopnance. However, incorporating
the top-ranked derivations output by the full reranking elachproves parser performance to
92.1%, currently the best reported PARSEVAL accuracy foMiutg].

Co-training

Co-trainingis another variant of bootstrapping in which parsers anaetch other'dootstrap
training data iteratively. Generally, co-training outipems self-training methods, even when
one parser initially achieves much lower accuracy thantarofThis method requires that the
annotation from both parsers are (somewhat) compatible.

Co-training has been used in a number of natural language sy applications including
word-sense disambiguation, web-page classification antedgentity identification.Sarkar
(2001 performs the first application of co-training to parsinging two components of a single
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lexicalised tree adjoining grammar (LTAG) parser; the stggger and the parser. A PoS tag
dictionary is constructed over the labeled and unlabebaditrg data which is used by both the
supertagger and the parser. Initial models for the supgetaand parser are created by training
over a small initial data set of around 10K (seed) sentenaesn Eections 2-6 of the WSJ.
Sarkar co-trains over around 30K unannotated (bootstexggaces extracted from sections 7-
21, and evaluates the models over the de facto WSJ sectionh#3cdFtrained parsing model
achieves 80.02% and 79.64% precision and recall, respgctwhile the initial parsing model
(trained over the seed data) achieves only 72.23% and 69.63%ectively. Therefore, co-
training is able to significantly improve the initial modeperformance. These results are not
as significant as those in previous applications, thoughkipgris arguably harder than those
tasks which involve a smaller and simpler set of labels alalively small parameter spaces.

Steedmaret al. (20030 extend the work oSarkar(2001) by co-training usingseparate
parsers: the (same) LTAG parser and Model Zoflins (1999. They effectively combine the
co-training framework with the AL selective sampling medhselecting 20 sentences of 30
during each iteration as previously described. Their teglow that co-training outperforms
self-training significantly, and is most beneficial when thieelled seed data sets are smaller
(500 compared to 1K sentences). Though they note that tlierpemce of co-training from
500 seed sentences and an additional 2K of co-labelled tbapisentences, never achieves the
accuracy of the initial model trained over 1K seed sente(it@9% compared to 78.6%).

Furthermore, performance achieved by co-training overBiteevn Corpus is around 2%
lower (76.8% vs. 79.0%) than that achieved over the WSJ. Téri®pnance drop is in agree-
ment to that noted byildea (2001). However if they seed the data with an additional 100
sentences from the WSJ, then the resulting co-trained peafoce increases to 78.2%, close
to that achieved by seeding the model with in-domain datg dfierefore, these experiments
help to illustrate that limited in-domain data can help paeccuracySteedmaret al. (20033
continue fromSteedmaret al. (2003h, and investigate alternative scoring functions withia th
selective sampling methods in each co-training iteration.

Corrected Co-training

The training frameworks discussed thus far can be combmedoduce a wide-range of train-
ing architectures. For instancBjerce & Cardig(2001) propose a semisupervised variant of
co-training, whichSteedmaret al. (20033 apply, termedcorrected co-training This model
attempts to combine the strengths of co-training and AL.if@ueach co-training iteration, se-
lected samples are manually verified and corrected if requBteedmaret al.(2003g compare
the performance of co-training and corrected co-trainmgere they apply the same sampling
method in both cases. That is selective sampling deterntireasext set of bootstrap sentences
to annotate, and these sentences are either annotatedlipan@tomatically by the (other)
parser. As expected, corrected co-training significaritipices the number of bootstrap training
sentences required to achieve the same level of parseraagcurhough corrected co-training
requires additional manual effort.

5.3 Extant Parser Training and Resources

In this section we review the available training corpora 3§l and extant parser training in
85.3.2 which we described in full within previous chapters. We aletierivation consistency
over a fully supervised corpus as applied by the extant paasd over a semisupervised (unla-
belled partially-bracketed) corpus as describeé®byeira & Schabgd.992. Finally, we review
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the evaluation methods irb8.3 and following, describe the baseline system in this word an
its performance in8.3.4

5.3.1 Corpora

Corpus Format

In 81.3.1, we described a treebaiikwhich consists of a set of training instances. Each training
instance is a pair(s,M), wheresis the automatically preprocessed text (tokenised andiéabe
with PoS tags (see32.2 andM is either a fully annotated derivatios, or an unlabelled
bracketingJ. We extend this definition to include unsupervised corporahichM is null.

In this section we define the set of training corpora, anavathg, derivation consistency for
each treebank type where eitlfeor U is paired with each sentence in a corpus. The bracketing
inU may be partial in the sense that it may be consistent with thareone derivation produced
by a given parser. For unsupervised training, all derivetiare considered ‘consistent’ given
that no annotation is provided. Note that the sentevaleich is parsed during training, consists
entirely of automatically preprocessed text using the RABEBIme in all corpora considered.
That is, we do not utilise the PoS tags in either Susanne dMBa.

Training Corpora

We previously described fully annotated and bracketedararfor Susanne and the WSJ in
81.3.1 We utilise these corpora in the experimentation describetthis chapter, and also
the combination of both bracketed Susanne and WSJ corporaisé/the sentence-delimited
preprocessed text from Susanne during unsupervisedrigaini

We refer to the fully annotated corpus created from a subds®tisanne, the extant training
data, ad, as this represents thaselinetraining corpusB consists of 4801 training instances
in the format(s,A).

The bracketed corpora extracted from Susanne and the WSéfareed to asS andW.
These corpora consist of 7014 and 38,329 training instanesgectively, in the formas,U ).
The concatenated file containing both Susanne and WSJ beddkaining instances is referred
to asSW. We refer to the unsupervised variant of Beorpus as§,. However, in practice, we
process th&file and ignore the bracketing paired with each sentence

Annotated Derivation Consistency

Givent = (s,A), there exists a single derivation in the parse forest thedmspatible (correct).
In this case, equality between the derivation tree and #ebank annotatioA identifies the
single correct (consistent) derivation.

Bracketed Derivation Consistency

Following Pereira & Schabgd.992, givent = (s,U ), a node’s span in the parse forestadid if

it does not overlap with any span defineduinA derivation is consideredonsistentf the span

of every node in the derivation is valid . That is, if no crossing brackets are present in the
derivation. Each valid node in the parse forest is consaleomsistent if one or more possible
daughter node sets are also consistent and if it is a memlaecaisistent derivation!

5Iwhen we walk the parse forest during the EM training methodsallect consistent node’s actions and the
corresponding 10 probability. We walk the parse forest glealid paths, so that we only consider the set of nodes
in the parse forest that appear in one or more consistenadieris.
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For example, Figuré.3illustrates an example bracketed lemmatised traininguics from
Susanne. The (single) derivation output by the extant péose¢his sentence is shown in Fig-
ure5.1 The corresponding constituent boundarigghis (petition)) (charge (((mental)) (cru-
elty))))) are consistent with the unlabelled-bracketing extractethfSusanne shown in Fig-
ure 1.3 ((his petition) charge (mental cruelty)

(T/txt-sc1/-+
(S/np_vp (NP/det_n1 his_APP$ (N1/n petition_NN1))
(V1iv_nl charge VVN
(N1/ap_nl/- (AP/al (Al/a mental_JJ))
(N1/n cruelty_NN1))))
(End-punct3/- ._.))

Figure 5.1: Example RASP output for a sentence from Susanne.

Given the set of consistent nodes in the parse forest, oif ®@ingistent derivations within
the n-best list, we extract the corresponding action hiesand estimate action probabilities, as
described in 8.6.2 We extract the corresponding action for each consisteth¢ mothe parse
forest (see 4.1.3. Alternatively, for each node in a consistent derivatimhere actions may
occur in more than one derivation. In this way, partial bedirlg is used to constrain the set of
derivations (and thus, corresponding LR parse actionsgidered in training to those that are
compatible with this bracketing.

5.3.2 Extant Parser Training

In this section we briefly review theory regarding supertis@ining for parametric models,
and that of the extant parser, described fully in previousptérs.

Training Parametric Models

As described previously, a supervised corpusti@ebanl, T consists of a set of training in-
stances where each training instamce T is a pair(s,A). The parse forest is created by
parsing oves, representing the set of derivatiops< Y. A single derivation in the parse forest
Yc € Y is equal to the derivatioA, and therefore, is considered the ‘correct’ derivatione $ht
of features for each correct derivatigg is extracted for each training instartce T.

The features’ frequencies are used to determine MLE for tbdat) often using relative
frequency estimates over sets of competing features. Fampbe, the set of rule rewrites
for a given NT category of a PCFG. For an LR parser, the featareparsing actions and
we normalise the frequency of these actions based on thieftetaency across each set of
competing actions in the LR table.

LR Parser Training

Estimating action probabilities in the LR table (se25%2 consists of (a) recording an ac-
tion history for the correct derivatioy, for each training instancg € T, (b) computing the
frequency of each action over all action histories and (ejnatising these frequencies to de-
termine probability distributions over conflicting acteon

For supervised training, the weight of each action in thé $iesp is considered to be 1. That
Is, we consider step (b) a weighted frequency sum over actidrere each action witnessed
has a weight of 1. Therefore, to determine the frequency dmey in the LR table, where
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the functionHIST returns the set of LR parsing actions used to create the geawation, we
apply the following equation whe&Xx,y) returns 1 ifx equalsy and O otherwise:

flreq(ad):tzr > daag) (5.1)
i€T acHIST(yc)

Extant Parser Training

The extant parser (our model trained using the extant sigeetwmethod described i”28.2), is
considered the baseline system in this work. We determiti@nacounts by training oB. That

is, we apply Equatiob.1 over the action histories for each correct derivation is gupervised
corpus. We normalise over these action counts using thealsation method defined dpui

et al. (1997, as discussed in&5.2 In addition, we apply Laplace estimation within this
normalisation method in the extant parser, to ensure atiracin the table are assigned a non-
zero probability (thé, function). In view of these definitions, we consider the liasesystem

in this work to be the parsing systdi(B).

5.3.3 Evaluation

We employ DepBank (seel8.]) as test data in subsequent experiments to compare parser
performance. Further we utilise the Wilcoxon test for statal significance (seel83.2 and
provide z-values probabilities to compare parsing systgmesiominantly against the baseline
system.

5.3.4 Baseline

The micro-average®; score for the baseline system over DepBank is 75.61%, whiaér (0
similar sets of relational dependencies) is broadly coaiparto recent evaluation results pub-
lished byKaplanet al. (20049 with their state-of-the-art parsing systeBriscoe & Carrol)
2006.

5.4 Confidence-based Training Approaches

In this section we describ@nfidence-basedaining. The general framework of this approach,
and its relationship to previous approaches, is definedid.§ Following, in $.4.2 we de-
scribe a number of confidence measures, which we apply inxperienentation discussed in
85.5. Finally we define a self-training variant of the framewank8b.4.3which is also applied
in experimentation to follow.

5.4.1 Framework

The general confidence-based training framework is desttriib this section, and is closely
related to the self-training frameworks discussed. Werilgsin subsequent sections, the ini-
tial parsing model which is trained over seed data, and tipphietd to annotate the bootstrap
data. The differentiating factor of our framework is thearoration of alternativeonfidence
measures which depend on the initial parsing model used.

We also extend the self-training framework to include vagyllevels of annotation in both
the seed and bootstrap data sets. As a result, we perforrpemssed or semisupervised train-
ing, where the level and type of annotation may vary. Givgntgpe of annotation, we require
only a definition ofderivation consistengyas we define our models over the set of consistent
derivations for each sentence in the bootstrap data set.
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Note that the confidence-based framework can also be exte¢adieclude co-training tech-
niques, and therefore, applied to a wide range of parsingetaaahd training methods. We
describe a single-pass over the entire bootstrap dataldalyever, we could extend the frame-
work so that the initial model is repeatedly updated. Thigesion is analogous to the iterative
self-training methods described.

Initial Parsing Model

The first stage in our framework simply involves training #gtatistical parser over the initial
seed data. While in self-training the seed data is generaltyall supervised corpus, any initial
parsing model can be considered. Therefore, we can traimitied model over an arbitrarily
large seed data set (including null) using semisupervisemsupervised training techniques.

Annotating Derivations

The self-training methods previously described utiliseratial parsing model tannotatere-
maining unlabelled data. That is, they parse the unlabeléed with the initial parser and take
the top-ranked parse produced for each sentence as adtliiaming data. Therefore, these
methods effectively consider the annotation of this tofxegiparse as correct. The final parsing
model is created by training over both the seed corpus andrthetated bootstrap corpus in a
fully supervised fashion. In contrast, our models consadledlerivations produced by the initial
model, and weight the contribution of the correspondinguiess of the derivation based on the
initial model’'sconfidencen each derivation.

If we apply the confidence training framework over unsupaEdiseed and bootstrap data,
then this method is related to the workidd (2006, which was published after the work in this
chapter was complete. Bod applies an unsupervised varidselbtraining’ with the ‘DOP’
parser. The parser is trained with simple frequency eséismaver the top 100 derivations,
‘U-DOP’, which performs 2% worse than a supervised PCFG wtleath bare trained over the
WSJ. However, while all derivations are considered in thesguency estimates, each of the
derivations are weighteelqually We include all derivations in the confidence-based methods
though we weight them according to the initial model’s coerfice in the derivations returned.

If the bootstrap data consists of semisupervised (thatigiglly annotated) data, then we
follow previous work (e.gPereira & Schabes 199and restrict the set of derivations we include
to those that are consistent with this annotation. Effetjwe apply any partial annotation as a
means to ‘filter’ out the derivations in the n-best list theg Bacompatible with this annotation.
This increases the quality of the derivations considerathduraining. Thus, the higher the
level of annotation in the bootstrap data, the better ouhouds are expected to perform.

Estimating Action Probabilities

The corresponding features @t derivations within the n-best list (optionally, only thosen-
sistent with annotation, if available) are utilised duringining. However, we weight the fea-
tures of the model based on the correspondigvation confidencef the initial parsing model
used to derive the n-best list. A variant of Equat®d is applied over the set of consistent
derivations, where we instead applyvaightedsum. The weight is determined using the func-
tion c over the derivations in which the feature appears. We deterthe frequency of each
action in the LR parse table using the weighted frequencyacheoccurrence of the action
across alt; € T in each consistent derivatighe Y:

freq(aq) = c(yi) (5.2)

tigr Yi,ad€HIST(yi)
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The frequency of each feature determined over the bootdtatpis combined directly with
the frequency of each feature over the seed data i.e. usurg-oeerging.

Relationship to the IOA (EM)

We described the extension of the unsupervised I0A to LRepsuis &.1.3 the IOA R. The
frequency Equatiord.1.3 can be considered in terms of the confidence measure function
applied to nodes; of the parse forest as follows:

freqlag) = Zr % c(nj) (5.3)
tic nj,aj:ad
1

c(nj) = ﬁie(nj)f(nj)

Equation5.3is related to the confidence-based frequency Equétirwhere we sum over
derivations rather than nodes of the parse forest. Recdaltiieanormalised 10 probability for
a node represents the summation of probabilities for alvagons in which the node occurs,
normalised by the sum of all derivation probabilities. Cansntly, if we unpaclall possible
derivations represented in the parse forest, weightedday lermalised probabilities, then the
resulting weighted frequency counts for each unique nodkese derivations is equal to the
corresponding parse forest node’s normalised IO prothgbili

If we utilise a functiorc in Equation5.2, that returns the derivation’s normalised probability
(as inBacchianiet al. 2006 we effectively perform one iteration of the IQA, though over the
set of n-best derivations rather than the entire derivagipaice. Thus the confidence based
methods require only a small proportion (equivalent to alsinteration) of the processing
overhead required to train using IQA

Relationship to Previous Work

In summary, the framework defined is related to, though iifigated from, previous work
described as follows:

e Self-training: while we utilise an initial model to annagdurther training data, we con-
sider unsupervised and semisupervised training for thialiparsing model. Moreover,
we include the set adll derivations (consistent with the annotation, if availaldéthe
bootstrap data rather than only the highest ranked desivati

e Partially-annotated data: we constrain the set of deawatconsidered to those that are
consistent with the partial annotation. However, we carcstand rank this derivation set
using aninitial parsing modelrained over a separate seed data set. Previous approaches
that have constrained the set of derivations use only aumifarsing model to construct
and rank the derivations. That is, include counts from threg(g) bootstrap data only to
create the resulting parsing model.

e The work ofBacchianiet al. (2006, regarding unsupervised self-training, is closely re-
lated to our framework, though was published after the wotkis chapter was complete.
A feature’s weight, i.e. the functior is the corresponding derivations’ normalised prob-
ability. This weighting effectively determines the freaquayg of features over the bootstrap
data by applying one iteration of unsupervised I0OA, conmamethe 20-best derivations
only, instead of the entire parse forest.
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In effect, we have combined the successful semisuperviaadrtg approaches that (i) con-
strain the set of derivations considered to those consistgh partial annotation (e.gClark
& Curran 2006 Pereira & Schabes 199Riezleret al. 2002 with (ii) self-training approaches
(e.g. Bacchianiet al. 2006 McClosky et al. 200§. Although we generalise the framework
to include unsupervised training and apply confidence basgghting within the frequency
counts for features.

5.4.2 Confidence Measures

During confidence-based training, we select more than oreatien, placing an appropriate
weight on the corresponding action histories based on titi@limodel’'s confidence in the
derivation. In this section we define three such confidencasomes for consistent derivations
(i.e. returned for the functioain Equation5.2). In subsequent experimentation we contrast the
performance of each against EM, over both unsupervisedenispervised corpora.

We weight transitions corresponding to each derivatiokedn with probability p in the set
of sizen either usin%, % or p itself to weight counts. These methods all perform norraéits
over the resulting action histories using the training tiorcl, (defined in $.3.2 and are
referred to a€,,, C; andC,, respectively. These functions take two arguments: aiaimitodel
and the bootstrap data to train over, respectively. As weaongthe accuracy of the initial
model, and decrease the size of the n-best list in respdresacturacy of the resulting parsing
model is expected to increase across all of these measueediséviss each measure, in turn, in
the following sections.

Uniform Measure: C,

Cn is a ‘uniform’ model which weights each action count only Ine tdegree of derivation
ambiguity and makes no explicit use of ranking informatidm effect, the initial parser only
acts to provide the n-best derivations, where the likelthoba correct parse being in this set
increases as the accuracy of the initial model increasesle\Wiei weight in a uniform manner,
both the initial parsing model and the number of derivatiomssidered (the size of thebest
list) affect the accuracy of the resulting trained parséisTnethod is similar to that dRiezler

et al. (2002, where all consistent derivations are included in thelingar objective function.
However, we normalise using consistent derivations only.

Ranking Measure: G

C; weights each action count using the corresponding desivatrank. This measure is based
on the intuition that features that consistently occur ghly ranked derivations are more likely
to be correct, and hence, should be assigned a greater poopairthe probability mass.

Probability Measure: C,

Cp weights each action count using the derivations’ probigbilihis measure places the greatest
level of trust in the initial model’s statistical compone@iven a ‘perfect’ initial parsing model,
Cp is expected to outperform all other possible measuresaasigns probability mass to correct
syntactic subanalyses only is simpler than and different to one iteration of IQAas we use
inside probabilities only, and furthermore, do not nors@lased on the sum of all derivation
probabilities.

In the case that we consider an n-best list of size 1, this odeth considered similar to
Viterbi training for HMMs, where the top-ranked path’s patiiity is used in the weighted
frequency sum for corresponding edges in the path.
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5.4.3 Self-training

In experimentation to follow, we also perform a variant af¢&ining within the confidence
training framework. That is, we assign a weight of 1 to eadioacorresponding to the top-
ranked parse output by the initial model over the bootstraihg corpus. We refer to this
training method a€;.

This method is closely related to the self-training metheaployed in the literature which
we discussed previously, though we first “filter’ the set diest derivations. That is, we con-
sider only those derivations that are consistent with thiégdannotation of the sentence.

5.5 Experimentation

As we utilise an initial model to annotate additional trampidata, our methods are closely
related to self-training methods. However, in experimgomadiscussed in this section, we
train entirely from either unannotated or unlabelled pélstibracketed data using the confi-
dence training framework described in the previous secfldverefore, these methods are best
described as unsupervised or semisupervised, respgctiVelexpect the extant parser trained
over a fully supervised corpus to outperform one trained thesame corpus with less detailed
annotation. However, both EM (IQA&) and confidence-based methods are trained lavger
semisupervised (and unsupervised) corpora, providingtgrepotential for these methods to
outperform the extant parser.

In 85.5.1we contrast these models over semisupervised corporastiogsentirely of un-
labelled partially-bracketed data. We utilise such dataaexed from Susanne and the WSJ,
as a major focus of this work is the flexible reuse of existiggbanks to train a wider vari-
ety of statistical parsing models. We train a different paysnodel for each of the confidence
measures (described i 8.2, and for the self-training method (described B143. Here,
the confidence-based training achieves statisticallyifsggnt improvements in parser accuracy
over both EM and the current supervised training methoddtiten, these methods are more
efficient than EM and require no manual annotation effort endif of the grammar writer.

Following, in 8.5.2 we compare the unsupervised variants of EM and the confdenc
based models over the unsupervised Susanne c&pusurprisingly both models perform
only slightly worse than the extant fully supervised methadreover, these differences are not
statistically significant (if we select the best performklg iteration).

5.5.1 Semisupervised Training

In this section, we compare the accuracy of the current parsieing model trained from a

fully-annotated portion of Susanne with one trained frodaballed partially-bracketed training

instances derived from this treebank and from the WSJ. We dstrate that the confidence-
based semisupervised techniques outperform EM when betbaastrained by partial brack-

eting. Both methods based on partially-bracketed trainatg dutperform the fully supervised
technique, and both can, in principle, be applied to anyssiezdl parser whose output is consis-
tent with such partial-bracketing. We also explore tunimg model to a different domain and
the effect of in-domain data in the semisupervised traipiragesses.

Experimental Setup

We parsed all the bracketed training data using the baselakl to obtain up to 1K top-ranked
derivations and found that a significant proportion of th&eeces of the potential set available
for training had only a single derivation consistent withithunlabelled bracketing. We refer to
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this set of sentences as thirambiguous training datéy) and refer to the remaining sentences
(for which more than one consistent derivation was returasdheambiguous training data
(a). The availability of significant quantities of unambigsdraining data that can be found au-
tomatically suggests that we may be able to dispense witbdbity reannotation step required
to generate the fully supervised training corps,

Table5.lillustrates the split of the corpora into mutually exclessetsy, a, ‘no match’ and
‘timeout’. The latter two sets are not utilised during tiagnand refer to sentences for which
all derivations were inconsistent with the bracketing amoke for which no derivations were
found due to time and memory limitations (self-imposed) o $ystem, respectivel? As
our grammar is different from that implicit in the WSJ theraikigh proportion of sentences
where no derivations were consistent with the unmodified Biiei8keting. However, a prelim-
inary investigation of the ‘no match’ data did not yield angar patterns of inconsistency that
we could quickly ameliorate by simple modifications of theBPdracketing. We leave for the
future a more extensive investigation of these cases wimghjnciple, would allow us to make
more use of this training data. An alternative approachwvleahave also explored is to utilise a
similar confidence-based training approach with dataggrtannotated for grammatical rela-
tions Watson & Briscoe2007).

Corpus |y| |a| NoMatch Timeout
S 1097 4138 1322 191
W 6334 15152 15749 1094

SW 7409 19248 16946 1475

Table 5.1: Corpus split fa, W andSW.

Confidence-based Approaches

Models derived using the unambiguous training datas the seed data alone are relatively ac-
curate, achieving indistinguishable performance to th#t®baseline system given in-domain
(eitherW or SW) training data. We utilise these models as initial modeld &ain over the
corresponding ambiguous data sets (considered the kayptiita) for each corpus with each
of the confidence-based models. We consider the top 1K diemgoutput by each of the ini-
tial models over the bootstrap data, and then remove demgfrom this n-best list that are
inconsistent with the corresponding unlabelled bracketin

The initial models are novel, being the first to consider the of such unambiguous data
only. These models were based on the intuition that, as oslypgle derivation is consistent
with the annotation, we can assume that the partial-anootet sufficient to disambiguate the
finer grained derivations of the extant parser. This databsaconsidered analogous to the
seed data set used during the self-training methods intératire, where a supervised (high
confidence) data set is used to train the initial model.

Table5.2gives results for all confidence-based models. Resultsstaitiy significant com-
pared to the baseline system are shown in bold print (inejeastalic print (decrease). These
methods show promise, often yielding systems whose pediocmis significantly better than
the baseline system. Meth@ achieved the best performance in this experiment and redain

52As there are time and memory restrictions during parsing S\ results are not equal to the sum of those
from SandW analysis.
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consistently better across different corpora. Throughioaidifferent approaches a domain ef-
fect can be seen, models utilising j&are worse, although the best performing models benefit
from the use of botlsandW as training data (i.eSW). These results are consistent with those
found byGildea(2001).

The ‘self-training’ C; method performs the worst of all retrained models, resglima
declinein performance over the initial model for boti andSW. The increase in performance
for this model ovelS may reflect the benefit of using a balanced corpus duringitigithough
may be due to the relatively small size of the seed data cereidvhere there is less chance
for bias in the model to be reflected in the reannotated data.

While many statistical parsers extract the grammar in peredith the corresponding sta-
tistical parse selection model, our results demonstrateekisting treebanks can be utilised to
train parsers that deploy grammars that make other regegseral assumptions. As a result,
our methods can be applied by a range of parsers to minimesadémual effort required to train
a parser or adapt to a new domain.

| Model | Prec|] Rec| F | P(2)* |
Baseline 77.03 74.22 75.61 -

IL(Y(S)) 76.02| 73.40 74.69| 0.0294
C1(IL(Y(9)), 77.05] 7422 7561 0.4960

)

) 7751| 74.80 76.13 0.0655
) 77.73| 74.98 76.33| 0.0154
) 76.45| 73.91 7516 0.2090

1L (y(W)) 77.01| 7431 75.64 0.1038

Ci(lL(yW)),a(W)) [ 76.90] 74.23 7555 0.2546

Ca(IL(y(W)),a(W)) | 77.85| 75.07 76.43] 0.0017

Cr(IL(Y(W)),a(W)) | 77.88] 75.04 76.43] 0.0011
) )

- 77.40| 74.79 76.05 0.1335
1L (y(SW)) 77.09] 74.35 7570 0.1003

C1(IL(Y(SW)),a(SW)) | 76.86| 74.21] 7551 0.2483
Ca(IL(Y(SW)),a(SW)) | 77.88| 75.05 76.44| 0.0048
C(IL(Y(SW)),a(SW)) | 78.01| 75.13 76.54| 0.0007
Cp(IL(Y(SW)),a(SW)) | 77.54] 74.95 76.23 0.0618

Table 5.2: Performance of confidence-based training maneBepBank *represents the sta-
tistical significance of the system against the baselineahod

Comparing EM and Confidence-based Approaches

As previously noted, we consider the I@#a variant of EM followingPresche(2001). In order
to further extend the 104 to apply over semisupervised corpora, followiPgreira & Schabes
(1992, we simply have to extend Equatidn3 (i.e. Equation4.1.3 so that only consistent
nodes are included in this summation. We employ the funatiover nodes, which returns 1 if
a node is consistent (seb.8.1) and O if not.

freQ(ad):tZr % T(nj)c(n;)
€1'nj,alj]=aq
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We perform EM starting from two initial models; either a wriih probability model]. (),
or from models derived from unambiguous training dgtayVe create the uniform model by
distributing the probability mass equally between commgeéictions in the LR table. This model
achieves 69.92%, which is fairly good given that no trairdiaga has been incorporated into the
statistical model, indicating the expressive power of theéarlying manually written grammar.
We denote the EM models using the functiBM. This function accepts the same input
as the confidence based functions, that is, an initial maalkiae bootstrap data to train over,
respectively. We utilise the cross entropy estimate desdiinPereira & Schabgd.992, where
the cross entropifd over a given corpu€ and grammag is based or®; the total probability
of all derivations for each sentente C:
Eclog(Pt)
te

HC,G) =
t
t;!

Figure5.2 shows the cross entropy decreasing monotonically fromatitar 2 (as guaran-
teed by the EM method) for different corpora and initial msd&ome models show an initial
increase in cross-entropy from iteration 1 to iterationé&;duse the models are initialised from
a subset of the data which is used to perform maximisations$zentropy increases, by defini-
tion, as we incorporate ambiguous data with more than ongistemt derivation (i.e. increasing
the ratio oflog(R) to |t]).

1.9

1.8

1.7

1.6+
H(C,G)
15+
1.4+

13-

1.2 ! ! ! ! ! ! !
O 2 4 6 8 10 12 14 16

Iteration Number

Figure 5.2: Cross entropy convergence for semisupervise@\ys, W andSW.

Performance over DepBank can be seen in Fight&®$.4, and5.5for each corpu§, W and
SW, respectively. Comparing the accuracyGpfand EM in each of Figures.3 5.4, and5.5, it
is evident thaC; outperforms EM across all data sets, regardless of thalimtodel applied.
In most cases, these results are statistically signifieetry when we manually select the best
model (iteration) for EM.

The graphs of EM performance illustrate the same ‘classacal ‘initial’ patterns observed
by Elworthy (1994 (described in §.1.3. When EM is initialised from a relatively poor model,
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Figure 5.4: Performance ove' for C;, and EM.

such as that built frons (Figure5.3), a ‘classical’ pattern emerges with relatively steady im-
provement from iteration 1 until performance asymptotesweler, when the starting point is
better (e.g. in FigureS.4and5.5), the ‘initial’ pattern emerges. That is, the best perfonce

is reached after a small number of iterations.

Domain Adaptation

When building NLP applications it is preferable to accunateine a parser to a new domain
with minimal manual effort. To obtain training data in a neanthin, annotating a corpus with
partial-bracketing information is much cheaper than fulhatation. To investigate whether
such data would be of value, we considevédo be the corpus over which we were tuning and
applied the best performing model trained o8e€; (1L (Y(S)),a(S)), as our initial model. That
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Figure 5.5: Performance ov8iVfor C; and EM.

is, we considewV as in-domain data (as DepBank is extracted from section 280/MSJ) and
we utilise a model trained over out-of-domain data to aredtais corpus. We consider this a
semisupervised domain adaptation task.

Figure5.6illustrates the performance 6 compared to EM. Tuning using was not sig-
nificantly different from the model built directly from thentre data set withC;, achieving
76.57% as opposed to 76.54%. An contrast, EM performs better given in-domain data from
the beginning rather than tuning to the new domdain.outperforms EM except for one par-
ticular EM iteration as shown in this figure. Though it is wortoting the behaviour of EM
given only the tuning dataX) rather than the data from both domai®A). In this case, the
graph illustrates a combination of Elworthy’s ‘initial’ driclassical’ patterns. The steep drop
in performance (to under 70% ) after the first iteration is probably due to loss of inforioat
from S. However, this run also eventually converges to similafqgrerance, suggesting that the
information inSis effectively disregarded as it forms only a small portid®6V, and that these
runs effectively converge to a local maximum oVeér

Bacchianiet al. (2009 explore the effect of weighting the contribution (frequgrtounts)
of the in-domain and out-of-domain training data sets. Tdesnonstrates that altering this
weighting can have beneficial effects. However, 8W corpus already contains a dispropor-
tionate number of in-domai sentences (40K of 47K). Furthermore, our results suggast th
the parsing models are effectively converging on the WSJeecase.

5.5.2 Unsupervised Training

The confidence-based models were primarily developed #®rouer semisupervised corpora.
However, we wished to consider the performance of these Imgien unsupervised data. In
this case, we illustrate the approximate accuracy lowenfdar these models (given an initial
parsing model) as we rely entirely on the initial model to @ate the bootstrap data. In this
section we first describe the experimental setup, and follgydescribe the performance of the
different confidence measures over the unsupervised SeisanpusS, available in this work.
Finally, we train the same parsing model using EM over theipaesrised data, and contrast the
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Figure 5.6: Tuning over the WSW) from SusanneS).

resulting parser’s performance to that achieved by theeatiparser and the confidence-based
methods.

Experimental Setup

We consider an initial uniform probability model, i.d, (). We output the top 1K deriva-
tions from this initial model over th&, corpus, and include all these derivations within the
confidence-based framework.

Confidence-based Approaches

Table 5.3 illustrates the performance of the unsupervised modelgreveurprisingly, the,
model achieves lower thougtatistically indistinguishabl@erformance to that of the current,
fully supervised, parsing model. The unsupervised corpuasains around 7K sentences while
the supervised corpus contains 5K. The additional traidiaig, combined with the relatively
good performance of the uniform model, is able to achiewg/fanpressive results. This model
significantly outperforms the alternativ@€, andC,, confidence measures, indicating that this
method is fairly robust to the choice of initial parsing mbd&hese results, combined with
those discussed previously, indicate tGaperforms well over corpora with varying levels of
annotation.

The results of self-training i.eC; have resulted in an increase in performance over the
initial model. We previously hypothesised that the marginerease for this model oves is
due to the lack of inherent bias within the initial model, las tnambiguous seed dat®) was
a relatively small data set. This theory is supported bydhesults in which the initial uniform
model contains no learnt bias. Any learnt (incorrect) lisgja bias appears to be compounded
in the resulting self-trained model, though this is expeete these biases are selected for when
self-annotating the data. The self-training model alspexiorms theC, model over this data.
However, the probability-based confidence measure is ¢agéc perform poorly if the initial
model’s probability model is unable to assign probabilitgs® to correct constituents only. In
these experiments, the initial uniform model we employ dusseflect any preference between
competing parse actions.
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| Model | Prec|] Rec|] F | P(2)* |
Baseline 77.05 7422 75.61 -
IL() 70.98| 68.90 69.92| 0.000
Ci(IL(),Sy) | 74.94| 72.50 73.70| 0.0000
Ca(IL(),Su) | 75.74| 73.25 74.48| 0.0024
C(IL(),S) | 76.28] 73.81] 75.02 0.117
Co(IL(), &) | 72.25| 70.23 71.23| 0.0000

Table 5.3: Performance of all unsupervised confidenceebaselels on DepBanKrepresents
the statistical significance of the system against the lmeeseiodel.

Comparison to EM

We perform unsupervised EM ovEgj using the IOAR, as described ing1.3 the cross-entropy
of which is shown in Figur&.7. Figure5.8illustrates the performance of the unsupervi€ed
and EM overS,. The ‘initial’ pattern of Elworthy (1994 emerges for EM, where the best
performing iterations are those from 2 to 4, where the EM exigpms the confidence-based
method for these iterations. These iterations of EM, andcthh&fidence-based methad,
achieve lower performance compared to the current modeligih these results are not sig-
nificant. However, if we were unable to manually select th&t beodel (iteration) for EM, then
the resulting EM model (the model resulting for the convdrfiih iteration) would be signifi-
cantly lower (z-value of 0.0040) to that of the current modéierefore the&, training method
is preferable, even in an unsupervised training task.

EM(IL(),S)) ——

2.55
2.5
H(C,G)

2.45

2.4

*— A g *—

235 \ \ \ \ \ \ \ \
4 5 6 7 8

Iteration Number

Figure 5.7: Cross entropy convergence for EM over unsupeah8s

5.6 Discussion

We have presented several semisuperv@didence-baseiaining methods which have sig-
nificantly improved performance over the current suped/iseethod, while also reducing the



5.6 Discussion 133

76

755 —

75

74.5

Fh 74

73.5

73

Baseline
725 Crgh_gi’sj ...... -

EM

72 ‘ ’SJ; R

0 2 4 6 8 10
Iteration Number

IL
|

Figure 5.8: Performance ov&; for C; and EM.

manual effort required to create training or tuning data. N&%e shown that given a medium-
sized unlabelled partially-bracketed corpus, the confiddmased models achieve superior re-
sults to those achieved with EM applied to the same SGLR mleetion model. Indeed, a
bracketed corpus provides flexibility as existing treelsacen be utilised despite the incompat-
ibility between the system grammar and the underlying granwhthe treebank. Mapping an
incompatible annotated treebank to a compatible parttaiicketed corpus is relatively easy
compared to mapping to a compatible fully-annotated corpus

An immediate benefit of this work is that (re)training passetith incrementally-modified
grammars based on different linguistic frameworks shoeldnoich more straightforward. For
example, se®epenet al. (2002 for a discussion of the problem. Furthermore, our findings
suggest that it may be possible to usefully tune a parser emadomain with less annotation
effort.

Of the confidence measures considef@dgonsistently performed the best, illustrating its
robust nature across different domains and varying leviedsinotation. The ‘self-trainingCq
measure performed poorly in the semisupervised trainisk fiar several corpora, supporting
the findings in initial self-training studies.

Our findings mirror those dElworthy (1994 andMerialdo(1994) for POS tagging and sug-
gest that EM is not always the most suitable training metlesgécially when some in-domain
training data is available). The confidence-based methads wuccessful because the level
of noise introduced did not outweigh the benefit of incorpiatpall derivations compatible
with the bracketing in which the derivations contained dtpgoportion of correct constituents.
These findings may not hold if the level of bracketing avdéatnes not adequately constrain
the derivations considereddwa (1999 describes a related investigation with EM. However,
we illustrated that even over an unsupervised corpusCtlenfidence method achieved sta-
tistically equivalent performance to the extant modelhaligh, this may not translate to other
parsers in which the uniform statistical model performsrpyoar if the models are also required
to infer the grammar during training.

In future work we intend to further investigate the problefituming to a new domain, given
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that minimal manual effort is a major priority. We hope to dep methods which required
no manual annotation. For example, high precision aut@enpetitial bracketing using phrase
chunking and/or named entity recognition techniques mygditl enough information to support
the training methods developed in this work.

Finally, further experiments regarding alternative coserfice measures within the frame-
work described may prove beneficial. For example, we coulthatise the ranking measure
based on the number of consistent derivations. This cordelereasure would ensure that each
sentence in the bootstrap data contributes equally to thedrBe action frequency counts. Sev-
eral other variants of the framework may also improve thd passe model’s performance. For
example, we could perform iterative rounds of reannotatier portions of the bootstrap data,
as applied in the previous self-training experiments, i@maple those described [8teedman
et al. (200319.
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Conclusion

The focus of this thesis was the optimisation, in terms ofilpatrser accuracy and efficiency, of
an extant and well-developed SGLR parser. In this chapterewiew the novel contributions
of this thesis and also describe future lines of investigatiThis discussion is organised by
chapter.

Chapter 3 considered the optimal choice of PoS tag model employed égttant parser,
given that a front-end PoS tagger (i.e. preprocessing coemd is applied. Previous work
shows that parser efficiency improves if tag ambiguity i®he=d by the front-end PoS tagger,
though the accuracy and coverage of the parser declines ss/#1 of tag error increases. Con-
sequently, we investigated the optimum level of tag amlygioi pass to the parser considering
both PoS tag and parser performance. As far as the authoraieathis work is the first to
perform such a broad comparison. This broad comparisonpsritant as different tag confu-
sions are not equally detrimental to parser output (ilatsdl within the experimental results of
this chapter). While the initial tag selection models inigeged achieve poor tagging perfor-
mance, we show that gains in parser accuracy and coverageal&ble if we allow the parser
to resolve some of the tag ambiguity. However, this resulta significant decline in parser
efficiency.

Parsing results suggested that tag errors introduced dydBeagger cause a large propor-
tion of the resulting fragmentary parses found over thelsitag per word input. We hypothe-
sised that a grammar (especially one that is well-constchover the terminals) may be relied
upon to find a parse over correct PoS tag sequences only.darres, we describeddynamic
tag selection model similar to that applied Glark & Curran 2004aThis model increases the
number of tags considered in parsing, starting from the fsetost probable tags, until a com-
plete derivation is found. Here, the known trade-off betwparse ambiguity and PoS tag error
provides a means to gauge PoS tag error based on parser. Anautificial implementation of
the model achieves the parsing accuracy and efficiency édatige proportion of nonfragmen-
tary parses over the single tpw input. However, it also ilpstthe accuracy over the remaining
set of (otherwise fragmentary) parses, as we reparse théskawer tag sets (removing the tag
errors introduced) resulting in an overall increase in @aascuracy and coverage. As we only
reparse a relatively small proportion of sentences ourieffay is improved over that of the
parser considering multiple tag per word input across atldentences.

In future work, we aim to implement the dynamic model withire textant parser, as our
experimental results were achieved by merging resultimggpautput files only. Furthermore,
we hope to apply this tag selection model over domains in kwtlie PoS tagger achieves poor

135
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single tpw tagging accuracy. Here, we hope to investigatetidr the dynamic model can im-
prove parse accuracy and coverage while increasing parseighput over a range of domains.
That is, whether the grammar can reliably be used to indittetgresence of tag errors over
out-of-domain (tag and parser) data.

Chapter 4 defined a novel method that improves the throughput and acgof the ‘weighted
GRs’ output format. The extant method required a number afgssing stages to determine this
output format: unpacking the n-best derivations from thes@dorest, deriving the correspond-
ing n-best GR sets and finding the unique set of GRs and comdsmpweights. Although the
accuracy of the output improves as the size of the n-bestdistidered increases, the efficiency
declines in turn.

We illustrated how to obviate the need to trade off efficieaogl accuracy by extracting
weighted GRs directly from the parse forest using a dynanagigamming approach based on
the IOA. However, this method correctly calculates the Wesgf this output only if aingle
lexical head is found for each node in the parse forest. Relatek enforces this condition by
placing extra constraints on which nodes can be packednig&aolless compact parse forests.
Instead, we defined a novel dynamic programming approaeiENWG’ algorithm to enable
multipleinside and outside probabilities for each node in the pamssst, one for each possible
lexical head. Experimental results demonstrated that tvellEWG algorithm achieved sub-
stantial increases in parser accuracy and throughput fightesl GR output. EWG is available
for use within the second release of RASP (Beiscoeet al. 2006, as an alternative method
to calculate the weighted GR output format. This algorithoald be applied to any graph-
structured data structure, over which we aim to estimatghted frequency estimates for node
attributes for which more than one value may apply.

We employed the parse selection strategy define@layk & Curran(2004h. This method
applied the EWG algorithm and achieved 3.01% relative rediat error forF;. However, itis
infeasible to define some GRs within the mapping from loca¢drto GRs in RASP’s grammatr.
Therefore each of the n-best GR sets is consistent, thoughhotarepresent a complete GR
set. These ‘missing’ GRs do not appear within the weighted Gigut and should be inferred
given an incomplete, though consistent, set of GRs.Hhgper bound of the task is calculated
using the high precision and recall GR sets determined freaeighted GR output. This upper
bound is currently in the low 80’s, and reflects the shoitifelhe GR representation.

In future work, we aim to develop parse selection stratediectly over the weighted GR
output format, the GRs of which form a directed graph (DG). &odf the DG are words of the
input, while edges from head to dependent are labelled Weh3R’s type and weight. Given
a (nontrivial) definition of GR consistency, we aim to detarenthe set of consistent GRs in
this DG. For example, we could employ a suitable search @itgor(defined in graph-theory)
to select the most probable consistent subset of this DGidftork proves feasible, we aim to
infer the GRs that are missing from this consistent set, tmfarconsistenand complete GR
set.

Finally, in Chapter 5, we described a novel training framework similar to the-s&lining
approaches employed in the literature, that can be apmgiedwide range of parsing models.
The framework considered weighting the contribution ofdativations within the n-best list
that areconsistentwith the training corpus annotation (if any). This weiglgtiils based on the
correspondinglerivation confidencef the initial parsing model. We described a number of
different confidence measures, and compared these ovege chwlifferent domains. Th&;
measure, based on the inverse of the derivation’s rankegdrtavbe fairly robust in terms of the
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choice of initial parsing model, training domain and theslesf corpus annotation available.

The confidence-based parsing models consistently outpsetbExpectation-Maximisation
in the experimentation described, over both semisupeahase unsupervised training corpora.
Furthermore, constraining the confidence-based modetgy usilabelled partially-bracketed
data (automatically extracted from existing corpora) ftesuin several parsing models that
significantly outperformed the extant parser. Thenodel, trained over the bracketed Susanne
corpusS, has been adopted as the training method within the extas¢pd his model improves
the accuracy of the resulting parser, moreover, it aidsamgnar development as the grammar
writer is no longer required to maintain a fully-supervisegtbank. In fact, this method requires
no manual effort on behalf of the grammar writer and the ebiarser’s training method is now
fully automated.

In future work, we aim to investigate methods to usefullygtuine parser to new domains,
given that several studies have illustrated that evendignih-domain training data can signif-
icantly improve parser accuracy. The unsupervised trgiexperiments illustrated that ti@
method may be sufficiently robust to handle unsupervisedadlordaptation. We also aim to
investigate automatic methods (requiring no direct artiwtafor providing partial-annotation
to constrain the set of derivations considered. Here, higlcipion automatic partial brack-
eting using phrase chunking and/or named entity recognteéchniques might yield enough
information to support the training methods developed is ttiesis.
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