
Technical Report
Number 742

Computer Laboratory

UCAM-CL-TR-742
ISSN 1476-2986

TCP, UDP, and Sockets:
Volume 3:

The Service-level Specification

Thomas Ridge, Michael Norrish, Peter Sewell

February 2009

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Thomas Ridge, Michael Norrish, Peter Sewell

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

TCP, UDP, and Sockets:

Volume 3: The Service-level Specification

Thomas Ridge∗

Michael Norrish†

Peter Sewell∗

∗University of Cambridge Computer Laboratory
†NICTA, Canberra

February 22, 2009

ii

Abstract

Despite more than 30 years of research on protocol specification, the major protocols deployed in the
Internet, such as TCP, are described only in informal prose RFCs and executable code. In part this is
because the scale and complexity of these protocols makes them challenging targets for formal descrip-
tions, and because techniques for mathematically rigorous (but appropriately loose) specification are not
in common use.

In this work we show how these difficulties can be addressed. We develop a high-level specification
for TCP and the Sockets API, describing the byte-stream service that TCP provides to users, expressed
in the formalised mathematics of the HOL proof assistant. This complements our previous low-level
specification of the protocol internals, and makes it possible for the first time to state what it means
for TCP to be correct: that the protocol implements the service. We define a precise abstraction
function between the models and validate it by testing, using verified testing infrastructure within HOL.
Some errors may remain, of course, especially as our resources for testing were limited, but it would
be straightforward to use the method on a larger scale. This is a pragmatic alternative to full proof,
providing reasonable confidence at a relatively low entry cost.

Together with our previous validation of the low-level model, this shows how one can rigorously
tie together concrete implementations, low-level protocol models, and specifications of the services they
claim to provide, dealing with the complexity of real-world protocols throughout.

Similar techniques should be applicable, and even more valuable, in the design of new protocols (as
we illustrated elsewhere, for a MAC protocol for the SWIFT optically switched network). For TCP and
Sockets, our specifications had to capture the historical complexities, whereas for a new protocol design,
such specification and testing can identify unintended complexities at an early point in the design.

iii

iv

Brief Contents

Brief Contents iii

Full Contents vii

1 Introduction to the service-level specification 3

2 Host types 19

3 Stream types 27

4 Host LTS labels and rule categories 31

5 Auxiliary functions 35

6 Auxiliary functions for TCP segment creation and drop 45

7 Host LTS: Socket Calls 57

8 Host LTS: TCP Input Processing 207
– deliver in 1 . 208
– deliver in 2 . 210
– deliver in 3 . 212
– deliver in 3b . 220
– deliver in 4 . 221
– deliver in 5 . 221
– deliver in 7 . 222
– deliver in 7a . 223
– deliver in 7b . 224
– deliver in 7c . 224
– deliver in 7d . 225
– deliver in 8 . 226
– deliver in 9 . 226

9 Host LTS: TCP Output 229
– deliver out 1 . 230

10 Host LTS: TCP Timers 233
– timer tt rexmtsyn 1 . 233
– timer tt rexmt 1 . 234
– timer tt persist 1 . 236
– timer tt keep 1 . 236
– timer tt 2msl 1 . 237
– timer tt delack 1 . 237
– timer tt conn est 1 . 237
– timer tt fin wait 2 1 . 238

11 Host LTS: UDP Input Processing 239
– deliver in udp 1 . 239
– deliver in udp 2 . 240
– deliver in udp 3 . 240

12 Host LTS: ICMP Input Processing 241
– deliver in icmp 1 . 241

v

vi

– deliver in icmp 2 . 242
– deliver in icmp 3 . 244
– deliver in icmp 4 . 245
– deliver in icmp 5 . 246
– deliver in icmp 6 . 246
– deliver in icmp 7 . 247

13 Host LTS: Network Input and Output 249
– deliver in 99 . 249
– deliver in 99a . 250
– deliver out 99 . 250
– deliver loop 99 . 250

14 Host LTS: BSD Trace Records and Interface State Changes 253

15 Host LTS: Time Passage 255

16 Stream auxiliary functions 261

17 Network labelled transition system 269

18 Abstraction function 275

Index 282

Full Contents

Brief Contents iii

Full Contents vii

I Overview 1

1 Introduction to the service-level specification 3
1.1 Introduction . 3
1.2 Background: our previous low-level protocol model . 4

– send 3 . 5
1.3 The new service-level specification . 5

– tcpStream . 6
– streamFlags . 6
– write . 6
– send 3 . 7

1.4 The abstraction function . 7
1.5 Experimental validation . 8

– abs hosts one sided . 9
1.6 Related work . 11
1.7 How to read the service-level specification . 12
1.8 Project History . 13
1.9 Conclusion . 14

II TCP3 hostTypes 17

2 Host types 19
2.1 The TCP control block (TCP only) . 19

2.1.1 Summary . 19
2.1.2 Rules . 19
– tcpcb . 19

2.2 Sockets (TCP and UDP) . 19
2.2.1 Summary . 19
2.2.2 Rules . 20
– tcp socket . 20
– protocol info . 20
– socket . 20
– TCP Sock0 . 20
– TCP Sock . 20
– UDP Sock0 . 20
– UDP Sock . 20
– Sock . 20
– tcp sock of . 20
– udp sock of . 20
– proto of . 20
– proto eq . 20

vii

viii

2.3 The host (TCP and UDP) . 21
2.3.1 Summary . 21
2.3.2 Rules . 21
– host . 21
– privileged ports . 21
– ephemeral ports . 21

2.4 Trace records (TCP and UDP) . 22
2.4.1 Summary . 22
2.4.2 Rules . 22
– type abbrev tracerecord . 22
– tracecb eq . 22
– tracesock eq . 22

III TCP3 streamTypes 25

3 Stream types 27
3.1 Stream types (TCP and UDP) . 27

3.1.1 Summary . 27
3.1.2 Rules . 27
– type abbrev streamid . 27
– streamFlags . 27
– tcpStream . 27
– tcpStreams . 28

IV TCP3 host0 29

4 Host LTS labels and rule categories 31
4.1 Transition labels (TCP and UDP) . 31

4.1.1 Summary . 31
4.1.2 Rules . 31
– Lhost0 . 31

V TCP3 auxFns 33

5 Auxiliary functions 35
5.1 Stream versions of routing functions (TCP and UDP) . 35

5.1.1 Summary . 35
5.1.2 Rules . 35
– stream test outroute . 35
– stream loopback on wire . 35

5.2 Files, file descriptors, and sockets (TCP and UDP) . 35
5.2.1 Summary . 36
5.2.2 Rules . 36
– sane socket . 36

5.3 Binding (TCP and UDP) . 36
5.3.1 Summary . 36
5.3.2 Rules . 36
– bound ports protocol autobind . 36
– bound port allowed . 36
– autobind . 37
– bound after . 37
– match score . 37
– lookup udp . 38
– tcp socket best match . 38
– lookup icmp . 39

5.4 TCP Options (TCP only) . 39

ix

5.4.1 Summary . 39
5.4.2 Rules . 39
– do tcp options . 40
– calculate tcp options len . 40

5.5 Buffers, windows, and queues (TCP and UDP) . 40
5.5.1 Summary . 40
5.5.2 Rules . 40
– calculate buf sizes . 40
– send queue space . 41

5.6 UDP support (UDP only) . 41
5.6.1 Summary . 41
5.6.2 Rules . 42
– dosend . 42

5.7 Path MTU Discovery (TCP only) . 42
5.7.1 Summary . 42
5.7.2 Rules . 42
– next smaller . 42
– mtu tab . 42

5.8 The initial TCP control block (TCP only) . 43
5.8.1 Summary . 43
5.8.2 Rules . 43
– initial cb . 43

6 Auxiliary functions for TCP segment creation and drop 45
6.1 General Segment Creation (TCP only) . 45

6.1.1 Summary . 45
6.1.2 Rules . 45
– tcp output required . 45
– tcp output really . 45
– stream tcp output really . 47
– tcp output perhaps . 48
– stream tcp output perhaps . 48

6.2 Segment Queueing (TCP only) . 48
6.2.1 Summary . 48
6.2.2 Rules . 48
– rollback tcp output . 48
– stream rollback tcp output . 49
– enqueue or fail . 50
– stream enqueue or fail . 50
– stream enqueue or fail sock . 50
– enqueue and ignore fail . 50
– enqueue each and ignore fail . 50
– stream mlift tcp output perhaps or fail . 50

6.3 Incoming Segment Functions (TCP only) . 51
6.3.1 Summary . 51
6.3.2 Rules . 51
– update idle . 51

6.4 Drop Segment Functions (TCP only) . 51
6.4.1 Summary . 51
6.4.2 Rules . 51
– dropwithreset . 51
– stream mlift dropafterack or fail . 52

6.5 Close Functions (TCP only) . 52
6.5.1 Summary . 52
6.5.2 Rules . 52
– tcp close . 52
– tcp drop and close . 53

6.6 Socket quad testing and extraction (TCP only) . 53

x

6.6.1 Summary . 53
6.6.2 Rules . 53
– exists quad of . 53
– quad of . 53

VI TCP3 hostLTS 55

7 Host LTS: Socket Calls 57
7.1 accept() (TCP only) . 57

7.1.1 Errors . 57
7.1.2 Common cases . 58
7.1.3 API . 58
7.1.4 Model details . 58
7.1.5 Summary . 59
7.1.6 Rules . 60
– accept 1 . 60
– accept 2 . 61
– accept 3 . 61
– accept 4 . 62
– accept 5 . 63
– accept 6 . 63
– accept 7 . 64

7.2 bind() (TCP and UDP) . 64
7.2.1 Errors . 65
7.2.2 Common cases . 66
7.2.3 API . 66
7.2.4 Model details . 66
7.2.5 Summary . 67
7.2.6 Rules . 67
– bind 1 . 67
– bind 2 . 68
– bind 3 . 68
– bind 5 . 69
– bind 7 . 69
– bind 9 . 70

7.3 close() (TCP and UDP) . 70
7.3.1 Errors . 71
7.3.2 Common cases . 71
7.3.3 API . 72
7.3.4 Model details . 72
7.3.5 Summary . 72
7.3.6 Rules . 72
– close 1 . 72
– close 2 . 73
– close 3 . 74
– close 4 . 75
– close 5 . 76
– close 6 . 77
– close 7 . 77
– close 8 . 78
– close 10 . 80

7.4 connect() (TCP and UDP) . 80
7.4.1 Errors . 81
7.4.2 Common cases . 82
7.4.3 API . 82
7.4.4 Model details . 83
7.4.5 Summary . 83
7.4.6 Rules . 84

xi

– connect 1 . 84
– connect 1a . 86
– connect 2 . 89
– connect 3 . 89
– connect 4 . 90
– connect 4a . 91
– connect 5 . 91
– connect 5a . 92
– connect 5b . 93
– connect 5c . 94
– connect 5d . 95
– connect 6 . 95
– connect 7 . 96
– connect 8 . 97
– connect 9 . 97
– connect 10 . 98

7.5 disconnect() (TCP and UDP) . 99
7.5.1 Errors . 99
7.5.2 Common cases . 100
7.5.3 API . 100
7.5.4 Summary . 100
7.5.5 Rules . 100
– disconnect 4 . 100
– disconnect 5 . 101
– disconnect 1 . 102
– disconnect 2 . 103
– disconnect 3 . 103

7.6 dup() (TCP and UDP) . 104
7.6.1 Errors . 104
7.6.2 Common cases . 104
7.6.3 API . 104
7.6.4 Summary . 105
7.6.5 Rules . 105
– dup 1 . 105
– dup 2 . 105

7.7 dupfd() (TCP and UDP) . 106
7.7.1 Errors . 106
7.7.2 Common cases . 106
7.7.3 API . 106
7.7.4 Model details . 106
7.7.5 Summary . 107
7.7.6 Rules . 107
– dupfd 1 . 107
– dupfd 3 . 107
– dupfd 4 . 108

7.8 getfileflags() (TCP and UDP) . 108
7.8.1 Errors . 108
7.8.2 Common cases . 109
7.8.3 API . 109
7.8.4 Model details . 109
7.8.5 Summary . 109
7.8.6 Rules . 109
– getfileflags 1 . 109

7.9 getifaddrs() (TCP and UDP) . 110
7.9.1 Errors . 110
7.9.2 Common cases . 110
7.9.3 API . 110
7.9.4 Model details . 111

xii

7.9.5 Summary . 111
7.9.6 Rules . 111
– getifaddrs 1 . 111

7.10 getpeername() (TCP and UDP) . 111
7.10.1 Errors . 112
7.10.2 Common cases . 112
7.10.3 API . 112
7.10.4 Model details . 112
7.10.5 Summary . 113
7.10.6 Rules . 114
– getpeername 1 . 114
– getpeername 2 . 114

7.11 getsockbopt() (TCP and UDP) . 115
7.11.1 Errors . 116
7.11.2 Common cases . 116
7.11.3 API . 116
7.11.4 Model details . 116
7.11.5 Summary . 116
7.11.6 Rules . 117
– getsockbopt 1 . 117
– getsockbopt 2 . 117

7.12 getsockerr() (TCP and UDP) . 118
7.12.1 Errors . 118
7.12.2 Common cases . 118
7.12.3 API . 118
7.12.4 Model details . 119
7.12.5 Summary . 119
7.12.6 Rules . 119
– getsockerr 1 . 119
– getsockerr 2 . 119

7.13 getsocklistening() (TCP and UDP) . 120
7.13.1 Errors . 120
7.13.2 Common cases . 120
7.13.3 API . 120
7.13.4 Model details . 121
7.13.5 Summary . 121
7.13.6 Rules . 121
– getsocklistening 1 . 121
– getsocklistening 3 . 122
– getsocklistening 2 . 122

7.14 getsockname() (TCP and UDP) . 123
7.14.1 Errors . 123
7.14.2 Common cases . 123
7.14.3 API . 123
7.14.4 Model details . 124
7.14.5 Summary . 124
7.14.6 Rules . 124
– getsockname 1 . 124
– getsockname 2 . 125
– getsockname 3 . 125

7.15 getsocknopt() (TCP and UDP) . 126
7.15.1 Errors . 126
7.15.2 Common cases . 126
7.15.3 API . 126
7.15.4 Model details . 127
7.15.5 Summary . 127
7.15.6 Rules . 127
– getsocknopt 1 . 127

xiii

– getsocknopt 4 . 128
7.16 getsocktopt() (TCP and UDP) . 128

7.16.1 Errors . 129
7.16.2 Common cases . 129
7.16.3 API . 129
7.16.4 Model details . 129
7.16.5 Summary . 129
7.16.6 Rules . 130
– getsocktopt 1 . 130
– getsocktopt 4 . 130

7.17 listen() (TCP only) . 131
7.17.1 Errors . 131
7.17.2 Common cases . 131
7.17.3 API . 131
7.17.4 Model details . 132
7.17.5 Summary . 132
7.17.6 Rules . 132
– listen 1 . 132
– listen 1b . 133
– listen 1c . 134
– listen 2 . 134
– listen 3 . 135
– listen 4 . 136
– listen 5 . 136
– listen 7 . 137

7.18 recv() (TCP only) . 137
7.18.1 Errors . 138
7.18.2 Common cases . 138
7.18.3 API . 138
7.18.4 Model details . 139
7.18.5 Summary . 139
7.18.6 Rules . 139
– recv 1 . 139
– recv 2 . 141
– recv 3 . 142
– recv 4 . 143
– recv 7 . 144
– recv 8 . 144
– recv 8a . 145
– recv 9 . 146

7.19 recv() (UDP only) . 147
7.19.1 Errors . 147
7.19.2 Common cases . 148
7.19.3 API . 148
7.19.4 Model details . 149
7.19.5 Summary . 149
7.19.6 Rules . 150
– recv 11 . 150
– recv 12 . 151
– recv 13 . 152
– recv 14 . 152
– recv 15 . 153
– recv 16 . 153
– recv 17 . 154
– recv 20 . 155
– recv 21 . 156
– recv 22 . 157
– recv 23 . 157

xiv

– recv 24 . 158
7.20 send() (TCP only) . 159

7.20.1 Errors . 159
7.20.2 Common cases . 160
7.20.3 API . 160
7.20.4 Model details . 160
7.20.5 Summary . 161
7.20.6 Rules . 161
– send 1 . 161
– send 2 . 163
– send 3 . 163
– send 3a . 164
– send 4 . 165
– send 5 . 166
– send 5a . 166
– send 6 . 167
– send 7 . 167
– send 8 . 168

7.21 send() (UDP only) . 169
7.21.1 Errors . 169
7.21.2 Common cases . 170
7.21.3 API . 170
7.21.4 Model details . 171
7.21.5 Summary . 172
7.21.6 Rules . 173
– send 9 . 173
– send 10 . 174
– send 11 . 175
– send 12 . 176
– send 13 . 177
– send 14 . 178
– send 15 . 179
– send 16 . 179
– send 17 . 180
– send 18 . 181
– send 19 . 182
– send 21 . 182
– send 22 . 183
– send 23 . 184

7.22 setfileflags() (TCP and UDP) . 184
7.22.1 Errors . 185
7.22.2 Common cases . 185
7.22.3 API . 185
7.22.4 Model details . 185
7.22.5 Summary . 185
7.22.6 Rules . 185
– setfileflags 1 . 185

7.23 setsockbopt() (TCP and UDP) . 186
7.23.1 Errors . 186
7.23.2 Common cases . 187
7.23.3 API . 187
7.23.4 Model details . 187
7.23.5 Summary . 187
7.23.6 Rules . 187
– setsockbopt 1 . 187
– setsockbopt 2 . 188

7.24 setsocknopt() (TCP and UDP) . 189
7.24.1 Errors . 189

xv

7.24.2 Common cases . 189
7.24.3 API . 189
7.24.4 Model details . 190
7.24.5 Summary . 190
7.24.6 Rules . 190
– setsocknopt 1 . 190
– setsocknopt 2 . 191
– setsocknopt 4 . 191

7.25 setsocktopt() (TCP and UDP) . 192
7.25.1 Errors . 192
7.25.2 Common cases . 192
7.25.3 API . 192
7.25.4 Model details . 193
7.25.5 Summary . 193
7.25.6 Rules . 193
– setsocktopt 1 . 193
– setsocktopt 4 . 194
– setsocktopt 5 . 194

7.26 shutdown() (TCP and UDP) . 195
7.26.1 Errors . 195
7.26.2 Common cases . 195
7.26.3 API . 195
7.26.4 Model details . 196
7.26.5 Summary . 196
7.26.6 Rules . 196
– shutdown 1 . 196
– shutdown 2 . 197
– shutdown 3 . 198
– shutdown 4 . 198

7.27 socket() (TCP and UDP) . 199
7.27.1 Errors . 199
7.27.2 Common cases . 199
7.27.3 API . 199
7.27.4 Model details . 200
7.27.5 Summary . 200
7.27.6 Rules . 200
– socket 1 . 200
– socket 2 . 201

7.28 Miscellaneous (TCP and UDP) . 201
7.28.1 Errors . 202
7.28.2 Summary . 202
7.28.3 Rules . 202
– return 1 . 202
– badf 1 . 203
– notsock 1 . 203
– intr 1 . 203
– resourcefail 1 . 204
– resourcefail 2 . 205

8 Host LTS: TCP Input Processing 207
8.1 Input Processing (TCP only) . 207

8.1.1 Summary . 207
8.1.2 Rules . 208
– deliver in 1 . 208
– deliver in 2 . 210
– deliver in 3 . 212
– di3 topstuff . 214
– di3 newackstuff . 214

xvi

– di3 ackstuff . 215
– di3 datastuff . 216
– di3 ststuff . 216
– di3 socks update . 219
– deliver in 3b . 220
– deliver in 4 . 221
– deliver in 5 . 221
– deliver in 7 . 222
– deliver in 7a . 223
– deliver in 7b . 224
– deliver in 7c . 224
– deliver in 7d . 225
– deliver in 8 . 226
– deliver in 9 . 226

9 Host LTS: TCP Output 229
9.1 Output (TCP only) . 229

9.1.1 Summary . 230
9.1.2 Rules . 230
– deliver out 1 . 230

10 Host LTS: TCP Timers 233
10.1 Timers (TCP only) . 233

10.1.1 Summary . 233
10.1.2 Rules . 233
– timer tt rexmtsyn 1 . 233
– timer tt rexmt 1 . 234
– timer tt persist 1 . 236
– timer tt keep 1 . 236
– timer tt 2msl 1 . 237
– timer tt delack 1 . 237
– timer tt conn est 1 . 237
– timer tt fin wait 2 1 . 238

11 Host LTS: UDP Input Processing 239
11.1 Input Processing (UDP only) . 239

11.1.1 Summary . 239
11.1.2 Rules . 239
– deliver in udp 1 . 239
– deliver in udp 2 . 240
– deliver in udp 3 . 240

12 Host LTS: ICMP Input Processing 241
12.1 Input Processing (ICMP only) . 241

12.1.1 Summary . 241
12.1.2 Rules . 241
– deliver in icmp 1 . 241
– deliver in icmp 2 . 242
– deliver in icmp 3 . 244
– deliver in icmp 4 . 245
– deliver in icmp 5 . 246
– deliver in icmp 6 . 246
– deliver in icmp 7 . 247

13 Host LTS: Network Input and Output 249
13.1 Input and Output (Network only) . 249

13.1.1 Summary . 249
13.1.2 Rules . 249
– deliver in 99 . 249

xvii

– deliver in 99a . 250
– deliver out 99 . 250
– deliver loop 99 . 250

14 Host LTS: BSD Trace Records and Interface State Changes 253
14.1 Trace Records and Interface State Changes (BSD only) 253

14.1.1 Summary . 253
14.1.2 Rules . 253
– trace 1 . 253
– trace 2 . 253
– interface 1 . 254

15 Host LTS: Time Passage 255
15.1 Time Passage auxiliaries (TCP and UDP) . 255

15.1.1 Summary . 255
15.1.2 Rules . 255
– Time Pass timedoption . 255
– Time Pass tcpcb . 256
– Time Pass socket . 256
– fmap every . 256
– fmap every pred . 256
– Time Pass host . 256
– sowriteable . 257
– soreadable . 258

VII TCP3 stream 259

16 Stream auxiliary functions 261
16.1 Default initial values (TCP and UDP) . 261

16.1.1 Summary . 261
16.1.2 Rules . 261
– initial streamFlags . 261
– initial stream . 261
– initial streams . 262
– streamid of quad . 262

16.2 Auxiliary functions (TCP and UDP) . 262
16.2.1 Summary . 262
16.2.2 Rules . 262
– null flgs data . 262
– make syn flgs data . 262
– make syn ack flgs data . 263
– sync streams . 263
– write . 263
– read . 263

16.3 Stream removal (TCP and UDP) . 264
16.3.1 Summary . 264
16.3.2 Rules . 264
– both streams destroyed . 264
– remove destroyed streams . 264
– destroy . 264
– destroy quads . 265

VIII TCP3 net 267

17 Network labelled transition system 269
17.1 Basic network types (TCP and UDP) . 269

17.1.1 Summary . 269

xviii

17.1.2 Rules . 269
– type abbrev hosts . 269
– type abbrev streams . 269
– type abbrev msgs . 269
– type abbrev net . 269
– Lnet0 . 269
– rn . 270

17.2 Network labelled transition system (TCP and UDP) . 270
17.2.1 Summary . 270
17.2.2 Rules . 270
– call . 270
– return . 270
– tau . 270
– interface . 271
– host tau . 271
– time pass . 271
– trace . 271

IX TCP3 absFun 273

18 Abstraction function 275
18.1 Auxiliary functions (TCP and UDP) . 275

18.1.1 Summary . 275
18.1.2 Rules . 275
– tcpcb1 to 3 . 275
– tcp socket1 to 3 . 275
– socket1 to 3 . 275
– host1 to 3 . 276

18.2 Stream reassembly (TCP and UDP) . 276
18.2.1 Summary . 276
18.2.2 Rules . 276
– stream reass . 276

18.3 Abstraction function (TCP and UDP) . 277
18.3.1 Summary . 277
18.3.2 Rules . 277
– ERROR . 277
– abs hosts one sided . 277
– abs hosts . 278
– abs lbl . 279
– abs trans . 279

Index 282

Part I

Overview

1

Chapter 1

Introduction to the service-level
specification

1.1 Introduction

Real-world network protocols are usually described in informal prose RFCs, which inevitably have un-
intentional ambiguities and omissions, and which do not support conformance testing, verification of
implementations, or verification of applications that use these protocols. Moreover, there are many sub-
tly different realisations, including the TCP implementations in BSD, Linux, WinXP, and so on. The
Internet protocols have been extremely successful, but the cost is high: there is considerable legacy
complexity that implementors and users have to deal with, and there is no clear point of reference. To
address this, we have developed techniques to put practical protocol design on a rigorous footing, to make
it possible to specify protocols and services with mathematical precision, and to do verified conformance
testing directly against those specifications. In this work we demonstrate our approach by developing
and validating a high-level specification of the service provided by TCP: the dominant data transport
protocol (underlying email and the web), which provides reliable duplex byte streams, with congestion
control, above the unreliable IP layer.

Our specification deals with the full complexity of the service provided by TCP (except for per-
formance properties). It includes the Sockets API (connect, listen, etc.), hosts, threads, network
interfaces, the interaction with ICMP and UDP, abandoned connections, transient and persistent connec-
tion problems, unexpected socket closure, socket self-connection and so on. The specification comprises
roughly 30 000 lines of (commented) higher-order logic, and mechanized tool support has been essential
for work on this scale. It is written using the HOL system [14]. The bulk of the definition is an opera-
tional semantics, using idioms for timed transition relations, record-structured state, pattern matching
and so on.

We relate this service-level specification to our previous protocol description by defining, again in
HOL, an abstraction function from the (rather complex) low-level protocol states, with sets of TCP seg-
ments on the wire, flow and congestion control data, etc., to the (simpler) service-level states, comprising
byte streams and some status information. This makes explicit how the protocol implements the service.

The main novelty of the approach we take here is the validation of this abstraction function. Ideally,
one would prove that the abstraction relationship holds in all reachable states. Given the scale and
complexity of the specifications, however, it is unclear whether that would be pragmatically feasible,
especially with the limited resources of an academic team. Accordingly, we show how one can validate
the relationship by verified testing. We take traces of the protocol-level specification (themselves validated
against the behaviour of the BSD TCP implementation), and verify (automatically, and in HOL) that
there are corresponding traces of the service-level specification, with the abstraction function holding at
each point. Our previous protocol-level validation, using a special-purpose symbolic evaluator, produced
symbolic traces of the protocol-level specification. We now ground these traces, using a purpose-built
constraint solver to instantiate variables to satisfy any outstanding constraints, and use a new symbolic
evaluator to apply the abstraction function and check that the resulting trace lies in the service-level
specification. By doing this all within HOL, we have high confidence in the validation process itself.

Obviously, such testing cannot provide complete guarantees, but our experience with the kind of
errors it detects suggests that it is still highly discriminating (partly due to the fact that it examines
the internal states of the specifications at every step along a trace) and one can develop useful levels of

3

4

confidence relatively quickly.
In the following sections, we first recall our previous protocol model (Sect. 1.2), before describing the

new service-level specification (Sect. 1.3) and abstraction function (Sect. 1.4), giving small excerpts from
each. We then discuss the validation infrastructure, and the results of validation (Sect. 1.5). Finally, we
discuss related work and conclude.

1.2 Background: our previous low-level protocol model

Our previous low-level specification [5, 8] characterises TCP, UDP and ICMP at the protocol level, in-
cluding hosts, threads, the Sockets API, network interfaces and segments on the wire. As well as the
core functionality of segment retransmission and flow control, TCP must handle details of connection
setup and tear-down, window scaling, congestion control, timeouts, optional TCP features negotiated at
connection setup, interaction with ICMP messages, and so on. The model covers all these. It is parame-
terized by the OS, allowing OS-dependent behaviour to be specified cleanly; it is also non-deterministic,
so as not to constrain implementations unnecessarily.

This level of detail results in a model of roughly 30 000 lines of (commented) higher-order logic (similar
in size to the implementations, but structured rather differently). As further evidence of its accuracy
and completeness, it has been successfully used as the basis for a Haskell implementation of a network
stack [17].

The main part of the protocol model (the pale shaded region below) is the host labelled transition
system, or host LTS, describing the possible interactions of a host OS: between program threads and host
via calls and returns of the Sockets API, and between host and network via message sends and receives.
The protocol model uses the host LTS, and a model of the TCP, UDP and ICMP segments on the wire,
to describe a network of communicating hosts.

TCP

IP

TCP

IP

UDP
ICMP

UDP
ICMP

IP network

applications
libraries and
Distributed Distributed

applications

Host LTS spec

libraries and

Sockets API interface

Wire interface

The host labelled transition relation, h
lbl
−→ h ′, is defined by some 148 rules for the socket calls (5–10

for each interesting call) and some 46 rules for message send/receive and for internal behaviour. An
example of one of the simplest rules is given in Fig. 1.1. The rule describes a host with a blocked thread
attempting to send data to a socket. The thread becomes unblocked and transfers the data to the socket’s
send queue. The send call then returns to the user.

The transition h 〈[...]〉
τ
−→ h 〈[...]〉 appears at the top, where the thread pointed to by tid and the socket

pointed to by sid are unpacked from the original and final hosts, along with the send queue sndq for the
socket. Host fields that are modified in the transition are highlighted. The initial host has thread tid in
state Send2, blocking attempting to send str to sndq . After the transition, tid is in state Ret(OK...),
about to return to the user with str ′′, the data that has not been sent, here constrained to be the empty
string.

The bulk of the rule is the condition (a predicate) guarding the transition, specifying when the rule
applies and what relationship holds between the input and output states. The condition is simply a
conjunction of clauses, with no temporal ordering. The rule only applies if the state of the socket, st ,
is either ESTABLISHED or CLOSE WAIT. Then, provided send queue space is large enough, str is
appended to the sndq in the final host. Lastly, the urgent pointer sndurp′ is set appropriately.

Although the bulk of the model deals with the relatively simple Sockets API, with many rules like
that of Fig. 1.1, the real complexity arises from internal actions that are largely invisible to the Sockets
user, such as retransmission and congestion control. For example, the rule deliver in 3 (not shown) that
handles normal message receipt comprises over 1 000 lines of higher-order logic.

The model has been validated against several thousand real-world network traces, designed to test
corner cases and unexpected situations. Of these, 92% are valid according to the model, and we believe
that for many purposes the model is sufficiently accurate — certainly enough to be used as a reference,
in conjunction with the standard texts.

5

send 3 tcp: slow nonurgent succeed Successfully return from blocked state having sen t data

h 〈[ts := ts ⊕ (tid 7→ (Send2(sid , ∗, str , opts))d);
socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗, sndq , sndurp , rcvq , rcvurp, iobc)))]]〉
τ
−→

h 〈[ts := ts ⊕ (tid 7→ (Ret(OK(implode str ′′)))sched timer);
socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗, sndq + +str ′ , sndurp′ , rcvq , rcvurp, iobc)))]]〉

st ∈ {ESTABLISHED;CLOSE WAIT} ∧
space ∈ send queue space(sf .n(SO SNDBUF))

(length sndq)(MSG OOB ∈ opts)
h.arch cb.t maxseg i2 ∧

space ≥ length str ∧
str ′ = str ∧ str ′′ = [] ∧
sndurp′ = if MSG OOB ∈ opts then ↑(length(sndq + +str ′)− 1) else sndurp

HOL syntax For optional data items, ∗ denotes absence (or a zero IP or port) and ↑ x denotes
presence of value x . Concrete lists are written [1, 2, 3] and appending two lists is written using an infix
++. Records are written within angled brackets 〈[...]〉. Record fields can be accessed by dot notation or
by pattern-matching. Record fields may be overridden: cb′ = cb 〈[irs := seq]〉 states that the record cb′

is the same as the record cb, except that field cb′.irs has the value seq . The expression f ⊕ [(x , y)] or
f ⊕ (x 7→ y) denotes the finite map f updated to map x to y .

Figure 1.1: Protocol-level model, example rule

1.3 The new service-level specification

The service-level specification, illustrated below, describes the behaviour of a network of hosts commu-
nicating over TCP, as observed at the Socket APIs of the connections involved. It does not deal with
TCP segments on the wire (though it necessarily does include ICMP and UDP messages).

TCP

IP

TCP

IP

ICMP
UDP

ICMP
UDP

IP network

applications
libraries and
Distributed Distributed

libraries and
applications

Sockets API interface

In principle one could derive a service-level specification directly from the protocol model, taking the
set of traces it defines and erasing the TCP wire segment transitions. However, that would not give
a usable specification: one in which key properties of TCP, that users depend on, are clearly visible.
Hence, we built the service-level specification by hand, defining a more abstract notion of host state, an
abstract notion of stream object, and a new network transition relation, but aiming to give the same
Sockets-API-observable behaviour.

The abstract host states are substantially simpler than those of the protocol-level model. For exam-
ple, the protocol-level TCP control block contains 44 fields, including retransmit and keep-alive timers;
window sizes, sequence position and scaling information; timestamping and round trip times. Almost
none of these are relevant to the service-level observable behaviour, and so are not needed in the service-
level TCP control block. Along with this, the transition rules that define the protocol dynamics, such as
deliver in 3 , become much simpler. The rules that deal with the Sockets API must be adapted to the
new host state, but they remain largely as before. The overall size of the specification is therefore not
much changed, at around 30 000 lines (including comments).

A naive approach to writing the individual rules would be to existentially quantify those parts of
the host state that are missing at the service level (and then to logically simplify as much as possible).
However, this would lead to a highly non-deterministic and ultimately less useful specification. Instead,
we relied on a number of invariants of the low-level model, arguing informally that, given those, the two

6

behaviours match. We rely on the later validation to detect any errors in these informal arguments.
In the rest of this section we aim to give a flavour of the service-level specification, the details of

which are included in later parts of this document.
The heart of the specification is a model of a bidirectional TCP connection as a pair of unidirectional

byte streams between Sockets endpoints:

– unidirectional stream :
tcpStream =〈[i : ip; (* source IP *)

p : port; (* source port *)
flgs : streamFlags;
data : byte list;
destroyed : bool]〉

The data in the stream is a byte list. Further fields record the source IP address and port of the
stream, control information in the form of flags, and a boolean indicating whether the stream has been
destroyed at the source (say, by deleting the associated socket). Some of these fields are shared with
the low-level specification, but others are purely abstract entities. Note that although a stream may be
destroyed at the source, previously sent messages may still be on the wire, and might later be accepted
by the receiver, so we cannot simply remove the stream when it is destroyed. Similarly, if the source
receives a message for a deleted socket, a RST will typically be generated, which must be recorded in the
stream flags of the destroyed stream. These flags record whether the stream is opening (SYN ,SYNACK),
closing normally (FIN) or abnormally (RST).

– stream control information :
streamFlags =〈[SYN : bool; (* SYN , no ACK *)

SYNACK : bool; (* SYN with ACK *)
FIN : bool;
RST : bool]〉

This control information is carefully abstracted from the protocol level, to capture just enough struc-
ture to express the user-visible behaviour. Note that the SYN and SYNACK flags may be set simul-
taneously, indicating the presence of both kinds of message on the wire. The receiver typically lowers
the stream SYN flag on receipt of a SYN : even though messages with a SYN may still be on the wire,
subsequent SYN s will be detected by the receiver as invalid duplicates of the original. A bidirectional
stream is then just an unordered pair (represented as a set) of unidirectional streams.

The basic operations on a byte stream are to read and write data. The following defines a write from
Sockets endpoint (i1, p1) to endpoint (i2, p2).

– write flags and data to a stream :
write(i1, p1, i2, p2)(flgs, data)s s

′ = (
∃in out in

′
out

′.
sync streams(i1, p1, i2, p2)s(in , out) ∧
sync streams(i1, p1, i2, p2)s

′(in ′, out
′) ∧

in
′ = in ∧

out
′.flgs =

〈[SYN :=(out .flgs.SYN ∨ flgs.SYN);
SYNACK :=(out .flgs.SYNACK ∨ flgs.SYNACK);
FIN :=(out .flgs.FIN ∨ flgs.FIN);
RST :=(out .flgs.RST ∨ flgs.RST)]〉 ∧

out
′.data = (out .data + +data))

Stream s ′ is the result of writing flgs and data to stream s. Stream s consists of a unidirectional
input stream in and output stream out , extracted from the bidirectional stream using the auxiliary
sync streams function. Similarly s ′, the state of the stream after the write, consists of in ′ and out ′.
Since we are writing to the output stream, the input stream remains unchanged, in ′ = in . The flags
on the output stream are modified to reflect flgs. For example, SYN is set in out ′.flgs iff flgs contains a
SYN or out .flgs already has SYN set. Finally, out ′.data is updated by appending data to out .data.

Fig. 1.2 gives the service-level analogue of the previous protocol-level rule. The transition occurs
between triples (h 〈[...]〉, S0 ⊕ [...],M), each consisting of a host, a finite map from stream identifiers to

7

send 3 tcp: slow nonurgent succeed Successfully return from blocked state having sent data

(h 〈[ts := ts ⊕ (tid 7→ (Send2(sid , ∗, str , opts))d);
socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)],M)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK(implode str ′′)))sched timer);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s ′)],M)

st ∈ {ESTABLISHED;CLOSE WAIT} ∧
space ∈ UNIV ∧
space ≥ length str ∧
str ′ = str ∧ str ′′ = [] ∧
flgs = flgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
write(i1, p1, i2, p2)(flgs, str ′)s s ′

Figure 1.2: Service-level specification, example rule

h1.send(xyz)
h2h1

sndq
cd..q

rcvq

rcvq sndq
... ...

ACK

fgh

stu
h2h1

sndq
cd..q

rcvq

rcvq sndq
... ...

ACK

fgh

stufg..zfg..w

h1.send(xyz)

...

cdefg..pqrstuvwxyz

...

cdefg..pqrstuvw

h2h1h2h1

Figure 1.3: Abstraction function, illustrated (data part only)

streams, and a set of UDP and ICMP messages. The latter do not play an active part in this rule, and
can be safely ignored. Host state is unpacked from the host as before. Note that protocol-level constructs
such as rcvurp and iobc are absent from the service-level host state. As well as the host transition, there
is a transition of the related stream s to s ′. The stream is unpacked from the finite map via its unique
identifier streamid of quad(i1, p1, i2, p2), derived from its quad.

As before, the conditions for this rule require that the state of the socket st must be ESTABLISHED

or CLOSE WAIT. Stream s ′ is the result of writing string str ′ and flags flgs to s. Since flgs are all
false, the write does not cause any control flags to be set in s ′, although they may already be set in s of
course.

This rule, and the preceding definitions, demonstrate the conceptual simplicity and stream-like na-
ture of the service level. Other interesting properties of TCP are clearly captured by the service-level
specification. For example, individual writes do not insert record boundaries in the byte stream, and in
general, a read returns only part of the data, uncorrelated with any particular write. The model also
makes clear that the unidirectional streams are to a large extent independent. For example, closing one
direction does not automatically cause the other to close.

1.4 The abstraction function

While the service specification details what service an implementation of TCP provides to the Sockets
interface, the abstraction function details how. The abstraction function maps protocol-level states and
transitions to service-level states and transitions. A protocol-level network consists of a set of hosts, each
with their own TCP stacks, and segments on the wire. The abstraction function takes this data and
calculates abstract byte streams between Sockets API endpoints, together with the abstract connection
status information.

8

The latter is the more intricate part, but we can give only a simple example here: the destroyed flag
is set iff either there is no socket on the protocol-level host matching the quad for the TCP connection
or the state of the TCP socket is CLOSED.

The former is illustrated in Fig. 1.3. For example, consider the simple case where communication has
already been established, and the source is sending a message to the destination that includes the string
“abc...xyz”, of which bytes up to “w” have been moved to the source sndq . Moreover, the destination
has acknowledged all bytes up to “f”, so that the sndq contains “fgh...uvw”, and snd una points to “f”.
The destination rcvq contains “cde...opq”, waiting for the user to read from the socket, and rcv nxt
points just after “q”.

↓ snd una ↓ rcv nxt

message ...abcdefghijklmnopqrstuvwxyz...

source sndq fghijklmnopqrstuvw

destination rcvq cdefghijklmnopq

DROP(rcv nxt − snd una)sndq rstuvw

stream cdefghijklmnopqrstuvw

The data that remains in the stream waiting for the destination endpoint to read, is the byte stream
“cdefghijklmnopqrstuvw”. This is simply the destination rcvq with part of the source sndq appended:
to avoid duplicating the shared part of the byte sequence, (rcv nxt − snd una) bytes are dropped from
sndq before appending it to rcvq .

An excerpt from the HOL definition appears in Fig. 1.4. It takes a quad (i1, p1, i2, p2) identifying
the TCP connection, a source host h, a set of messages msgs on the wire, and a destination host i , and
produces a unidirectional stream. It follows exactly the previous analysis: (rcv nxt − snd una) bytes are
dropped from sndq to give sndq ′, which is then appended to rcvq to give the data in the stream.

Note that, in keeping with the fact that TCP is designed so that hosts can retransmit any data
that is lost on the wire, this abstraction does not depend on the data in transit — at least for normal
connections in which neither endpoint has crashed.

For a given TCP connection, the full abstraction function uses the unidirectional function twice
to form a bidirectional stream constituting the service-level state. As well as mapping the states, the
abstraction function maps the transition labels. Labels corresponding to visible actions at the Sockets
interface, such as a connect call, map to themselves. Labels corresponding to internal protocol actions,
such as the host network interface sending and receiving datagrams from the wire, are invisible at the
service level, and so are mapped to τ , indicating no observable transition. Thus, for each protocol-level
transition, the abstraction function gives a service-level transition with the same behaviour at the Sockets
interface. Mapping the abstraction function over a protocol-level trace gives a service-level trace with
identical Sockets behaviour. Every valid protocol-level trace should map to a valid service-level trace.

1.5 Experimental validation

How can we ensure that TCP implementations (written in C), our previous protocol-level model (in HOL),
and our new service-level specification (also in HOL) are consistent? Arguing that a small specification
corresponds to a simple real-world system can already be extremely challenging. Here, we are faced with
very large specifications and a very complex real-world system. Ideally one would verify the relationship
between the protocol and service specifications by proving that their behaviours correspond, making
use of the abstraction function. One would also prove that the Sockets behaviour of the endpoint
implementations (formalized using a C semantics) conformed to the protocol model.

Proving the relationships between the levels in this way would be a very challenging task indeed.
One of the main barriers is the scale of TCP implementations, including legacy behavioural intricacies
of TCP and Sockets, which were not designed with verification in mind.

Hence, we adopt the pragmatic approach of validating the specifications to provide reasonable confi-
dence in their accuracy. Note that for TCP the implementations are the de facto standard. In producing
specifications after the fact, we aim to validate the specifications against the implementation behaviour.
Our techniques could equally well be used in the other direction for new protocol designs. Our service-
level validation builds on our earlier protocol-level work [5, 8], so we begin by recalling that.

Protocol-level validation We instrumented a test network and wrote tests to drive hosts on the
network, generating real-world traces. We then ensured that the protocol specification admitted those
traces by running a special-purpose symbolic model checker in HOL, correcting the specification, and

9

– unidirectional abstraction function :
abs hosts one sided(i1, p1, i2, p2)(h,msgs, i) = (

(* messages that we are interested in, including oq and iq *)

let (hoq , iiq) =
case (h.oq , i .iq) of ((msgs) 1 , (msgs ′) 2)→ (msgs,msgs ′) in

let msgs = list to set hoq ∪ msgs ∪ (list to set iiq) in
(* only consider TCP messages . . . *)

let msgs = {msg | TCP msg ∈ msgs} in
(* . . . that match the quad *)

let msgs = msgs ∩
{msg | msg = msg 〈[is1 := ↑ i1; ps1 := ↑ p1; is2 := ↑ i2; ps2 := ↑ p2]〉} in

(* pick out the send and receive sockets *)

let smatch i1 p1 i2 p2 s =
((s.is1, s.ps1, s.is2, s.ps2) = (↑ i1, ↑ p1, ↑ i2, ↑ p2)) in

let snd sock = Punique range(smatch i1 p1 i2 p2)h.socks in
let rcv sock = Punique range(smatch i2 p2 i1 p1)i .socks in
let tcpsock of sock = case sock .pr of

TCP1 hostTypes $TCP PROTO tcpsock → tcpsock
‖ 3 → ERROR“abs hosts one sided:tcpsock of”

in
(* the core of the abstraction function is to compute data *)

let (data : byte list) = case (snd sock , rcv sock) of
(↑(8 , hsock), ↑(9 , isock))→ (

let htcpsock = tcpsock of hsock in
let itcpsock = tcpsock of isock in
let (snd una, sndq) = (htcpsock .cb.snd una, htcpsock .sndq) in
let (rcv nxt , rcvq) = (itcpsock .cb.rcv nxt , itcpsock .rcvq) in
let rcv nxt = tcp seq flip sense rcv nxt in
let sndq ′ = DROP((num(rcv nxt − snd una)))sndq in
rcvq + +sndq ′)

‖ (↑(8 , hsock), ∗)→ (
let htcpsock = tcpsock of hsock in
htcpsock .sndq)

‖ (∗, ↑(9 , isock))→ (
let itcpsock = tcpsock of isock in
let (rcv nxt : tcpLocal seq32 , rcvq : byte list) =

(tcp seq flip sense(itcpsock .cb.rcv nxt), itcpsock .rcvq) in
rcvq + +(stream reass rcv nxt msgs))

‖ (∗, ∗)→ ERROR“abs hosts one sided:data”
in
〈[i := i1;

p := p1;
flgs :=
〈[SYN :=(∃msg .msg ∈ msgs ∧msg = msg 〈[SYN :=T;ACK :=F]〉);

SYNACK :=(∃msg .msg ∈ msgs ∧msg = msg 〈[SYN :=T;ACK :=T]〉);
FIN :=(∃msg .msg ∈ msgs ∧msg = msg 〈[FIN :=T]〉);
RST :=(∃msg .msg ∈ msgs ∧msg = msg 〈[RST :=T]〉)

]〉;
data := data;
destroyed :=(case snd sock of
↑(sid , hsock)→ ((tcpsock of hsock).st = CLOSED)
‖ ∗ → T)

]〉)

Figure 1.4: Abstraction function, excerpt

10

iterating, when we discovered errors. Because it is based directly on the formal specification, and deals
with all the internal state of hosts, the checker is extremely rigorous, producing a machine checked
proof of admissibility for each successfully validated trace. Obviously no testing-based method can be
complete, but this found many issues in early drafts of the specification, and also identified a number of
anomalies in TCP implementations.

Service-level validation For the service-level validation, we began with a similar instrumented test
network, but collected double-ended traces, capturing the behaviour of two interacting hosts, rather than
just one endpoint. We then used our previous symbolic evaluation tool to discover symbolic traces of the
protocol-level model that corresponded to the real-world traces. That is a complex and computationally
intensive process, involving backtracking depth-first search and constraint simplification, essentially to
discover internal host state and internal transitions that are not explicit in the trace.

We then ground these symbolic traces, finding instantiations of their variables that satisfy any remain-
ing constraints, to produce a ground protocol-level trace in which all information is explicit. Given such
a ground trace, we can map the abstraction function over it to produce a candidate ground service-level
trace.

It is then necessary to check validity of this trace, which is done with a service-level test oracle. As at
the protocol level, we wrote a new special-purpose service-level checker in HOL which performs symbolic
evaluation of the specification with respect to ground service-level traces. Crucially, this checking process
is much simpler than that at the protocol level because all host values, and all transitions, are already
known. All that remains is to check each ground service-level transition against the specification.

The most significant difference between the old and new checkers is that the former had to perform
a depth-first search to even determine which rule of the protocol model was appropriate. Because that
work has already been done, and because the two specifications have been constructed so that their
individual rules correspond, the service-level checker does not need to do this search. Instead, it can
simply check the service-level version of the rule that was checked at the protocol level, dealing with each
transition in isolation. In particular, this means that the service-level checker need not attempt to infer
the existence of unobservable τ -transitions.

Another significant difference between the two checkers is that the service-level checker can aggres-
sively search for instantiations of existentially quantified variables that arise when a rule’s hypothesis
has to be discharged. At the protocol level, such variables may appear quite unconstrained at first
appearance, but then become progressively more constrained as further steps of the trace are processed.

For example, a simplified rule for the socket call might appear as

fd 6∈ usedfds(h0)

h0〈[socks := socks]〉
tid·socket()
−−−−−−−→ h0〈[socks := socks ⊕ (sid , fd)]〉

stating that when a socket call is made, the host h0’s socks map is updated to associate the new
socket (identified by sid) with file-descriptor fd , subject only to the constraint that the new descriptor
not already be in use. (This under-specification is correct on Windows; on Unix, the file-descriptor is
typically the next available natural number.)

In the protocol-level checker, the fd variable must be left uninstantiated until its value can be deduced
from subsequent steps in the trace. In the service-level checker, both the initial host and the final host are
available because they are the product of the abstraction function applied to the previously generated,
and ground, protocol trace. In a situation such as this, the variable from the hypothesis is present in the
conclusion, and can be immediately instantiated.

In other rules of the service-level specification, there can be a great many variables that occur only
in the hypothesis. These are existentially quantified, and the checker must determine if there is an
instantiation for them that makes the hypothesis true. The most effective way of performing this check
is to simplify, apply decision procedures for arithmetic, and to then repeatedly case-split on boolean
variables, and the guards of if-then-else expressions to search for possible instantiations.

The above process is clearly somewhat involved, and itself would ordinarily be prone to error. To
protect against this we built all the checking infrastructure within HOL. So, when checking a trace, we
are actually building machine-checked proofs that its transitions are admitted by the inductive definition
of the transition relation in the specification.

Results Our earlier protocol-level validation involved several thousand traces designed to exercise the
behaviour of single endpoints, covering both the Sockets API and the wire behaviour. To produce a
reasonably accurate specification, we iterated the checking and specification-fixing process many times.

11

For the service-level specification, we have not attempted the same level of validation, simply due to
resource constraints. Instead, we have focused on developing the method, doing enough validation to
demonstrate its feasibility. Producing a specification in which one should have high confidence might
require another man-year or so of testing — perfectly feasible, and a tiny amount of effort in terms of
industrial protocol stack development, but unlikely to lead to new research insights. That said, most of
the Sockets API behaviour does not relate to the protocol dynamics and is common between the two
specifications, so is already moderately well tested. In all, 30 end-to-end tests were generated, covering
a variety of connection setup and tear-down cases and end-to-end communication, but not including
packet loss, reordering, duplication, and severe delay. After correcting errors, all these traces were found
to validate successfully.

To illustrate how discriminating our testing process is, we mention two errors we discovered during
validation. At the protocol-level, a TCP message moving from a host output queue to the wire corre-
sponds to an unobservable τ event at the service level. Naively we assumed the host state would be
unchanged, since the output queue at the service-level carries only ICMP and UDP messages. However,
this is not correct, since the transmission of a TCP message alters the timer associated with the output
queue, increasing its value. The update to the timer permits the host to delay sending the ICMP and
UDP messages. Without this side-effect, the service-level specification effectively required ICMP and
UDP messages to be sent earlier than they would otherwise have been. To correct this error, the service
specification had to allow the timer to be updated if at the protocol-level there was potentially a TCP
message on the queue that might be transferred to the wire. Another error arose in the definition of
the abstraction function. The analysis of the merging of the send and receive queues on source and
destination hosts, described in Sect. 1.4, was initially incorrect, leading to streams with duplicated, or
missing, runs of data. Fortunately this error was easy to detect by examining the ground service-level
trace, where the duplicated data was immediately apparent.

Our validation processes check that certain traces are included in the protocol-level or service-level
specification. As we have seen, this can be a very discriminating test, but it does not touch on the
possibility that the specifications admit too many traces. That cannot be determined by reference
to the de facto standard implementations, as a reasonable specification here must be looser than any
one implementation. Instead, one must consider whether the specifications are strong enough to be
useful, for proving properties of applications that use the Sockets API, or (as in [17]) as a basis for new
implementations.

1.6 Related work

This work builds on our previous TCP protocol model [6, 7, 5, 8], and we refer the reader there for
detailed discussion of related work. We noted that “to the best of our knowledge, however, no previous
work approaches a specification dealing with the full scale and complexity of a real-world TCP”. This also
applies to the service-level specification. As before, this is unsurprising: we have depended on automated
reasoning tools and on raw compute resources that were simply unavailable in the 1980s or early 1990s.
Our goals have also been different, and in some sense more modest, than the correctness theorems of
traditional formal verification: we have not attempted to prove that an implementation of TCP satisfies
the protocol model, or that the protocol satisfies the service-level specification.

Since the protocol model was published, there have been several papers extending our work in various
directions. As part of his thesis on massively concurrent applications in Haskell [16], Peng Li translated
the protocol specification to Haskell to produce an executable user-space TCP stack. Compton verified
Stenning’s protocol based on our UDP model [11]. Subsequently we verified an implementation of
a persistent message queue based on a model of TCP that, although different from the service-level
specification, was heavily influenced by it [23].

There is a vast literature devoted to verification techniques for protocols, with both proof-based and
model checking approaches, e.g. in conferences such as CAV, CONCUR, FM, FORTE, ICNP, SPIN, and
TACAS. The most detailed rigorous specification of a TCP-like protocol we are aware of is that of Smith
[27], an I/O automata specification and implementation, with a proof that one satisfies the other, used
as a basis for work on T/TCP. The protocol is still substantially idealised, however. Later work by
Smith and Ramakrishnan uses a similar model to verify properties of a model of SACK [26]. A variety
of work addresses radically idealised variants of TCP [10, 12, 24, 13, 3, 19, 20]. Finally, Postel’s PhD
thesis used early Petri net protocol models descriptively [22].

Implementations of TCP in high-level languages have been written by Biagioni in Standard ML [2],
by Castelluccia et al. in Esterel [9], and by Kohler et al. in Prolac [15]. As for any implementation,

12

allowable non-determinism means they cannot be used as oracles for conformance testing.
For concurrent and distributed systems, there are many abstraction-refinement techniques, such as

abstraction relations (which include our abstraction function) and simulation relations, see [18] for an
overview. As an example of these techniques, Alur and Wang address the PPP and DHCP protocols [1].
For each they check refinements between models that are manually extracted from the RFC specification
and from an implementation. Although these techniques are widely used in verification, to the best of
our knowledge, they have never been applied previously to real-world protocols on the scale of TCP.

1.7 How to read the service-level specification

This document is the third volume of a series. The first two volumes describe the protocol-level specifi-
cation. For a full discussion of the protocol-level specification we refer the reader to the companion TCP,
UDP and Sockets, Volume 1: Overview [6] and especially to the section there titled“The Specification —
Introduction”, which gives a brief introduction to the HOL language and to the structure of the model.
The protocol-level specification itself is detailed in TCP, UDP and Sockets, Volume 2: The Specification
[7].

The service-level is closely related to the protocol-level (as the abstraction function makes clear),
and the two specifications are similar in many ways. For example, the service-level specification of the
host transition relation closely parallels that of the protocol-level. The reader familiar with the syntax
and format of the protocol-level rules should find the service-level very familiar. Therefore the overview
of the protocol-level [6] is recommended as an introduction to the style and formalism employed in the
service-level specification. We briefly summarize the main differences between the HOL theory files of
the two specifications.

• The service-level host types in Sect. 2 are more abstract than those at the protocol-level. For
example, a TCP control block contains 44 fields at the protocol level, compared with 2 at the
service level.

• The formal definition of byte streams in Sect. 3 is not present at the protocol level.

• The rule labels in Sect. 4 are essentially the same as those at the protocol level. Although the
rule labels match, it is worth recalling that TCP datagram sends and receives at the protocol level
will be replaced by stream interactions at the service level. The service-level datagram labels are
primarily used for UDP and ICMP messages.

• The auxiliary functions in Sect. 5 are similar to those at the protocol level.

• The Sockets rules in Sect. 7 correspond one-to-one with those at the protocol level. For the most
part they are minor simplifications of the corresponding protocol-level rules. The Sockets API
embodies considerable complexity independent of the internal functioning of TCP, which is why
these rules are not much simpler.

• The interal functioning of TCP in Sect. 8 and Sect. 9 is significantly simpler than that at the
protocol level, because much of the detail of TCP, such as retransmission, has been abstracted
away.

• The behaviour of the byte-streams described in Sect. 16 is unique to the service-level specification.

• The network model in Sect. 17 differs from the protocol level in that it includes additional stream
objects, and transitions related to them.

• The abstraction function in Sect. 18 ties the protocol-level and the service-level specifications
together.

The rest of this document consists of the HOL specification itself. This specification is organised
as a reference (in approximately the logical order in which it is presented to the HOL system), not as
a tutorial. To read the specification one should first look at the key types used (base types from the
protocol level, the service-level host types, and the stream types) and then browse the Host LTS Socket
Call rules.

The service-level and the protocol-level specifications share common theory infrastructure: the service-
level specification imports all protocol-level theories upto and including TCP1_preHostTypes. These
theories are not duplicated here; they can be found in the protocol-level specification [7].

13

1.8 Project History

In this section we summarise our previous work that led up to this TCP specification, to put it in context.
All of these, and the HOL theories for the main specifications, are available on-line1.

Our early work focussed just on UDP, ICMP, and the Sockets API. The first technical report and
TACS paper describe a model without time, threads, or modules, and using informal mathematics. The
ESOP paper reports on a HOL version of the specification, extended to cover those three aspects. The
SIGOPS EW paper is a position paper reflecting on the experience of this and of Norrish’s C semantics
work.

• The UDP Calculus: Rigorous Semantics for Real Networking. Technical report 515. Andrei Ser-
jantov, Peter Sewell, and Keith Wansbrough. iv+70pp. July 2001.

• The UDP Calculus: Rigorous Semantics for Real Networking. Andrei Serjantov, Peter Sewell, and
Keith Wansbrough. In TACS 2001, LNCS 2215, 535–559.

• Timing UDP: mechanized semantics for sockets, threads and failures. Keith Wansbrough, Michael
Norrish, Peter Sewell, Andrei Serjantov. In ESOP 2002, LNCS 2305, 278–294.

• Rigour is good for you and feasible: reflections on formal treatments of C and UDP sockets. Michael
Norrish, Peter Sewell, Keith Wansbrough. In SIGOPS EW 2002, 49–53.

The following demonstrates the feasibility of completely formal reasoning (in the Isabelle proof assistant)
about executable code in a fragment of OCaml above the UDP specification:

• Stenning’s Protocol Implemented in UDP and Verified in Isabelle. Michael Compton. The Aus-
tralasian Theory Symposium, Jan 2005.

The next phase of the project addressed TCP and the Sockets API (including also UDP and aspects
of ICMP), producing a protocol-level specification. The main specification is given in the following
technical reports:

• TCP, UDP, and Sockets: rigorous and experimentally-validated behavioural specification. Volume
1: Overview. Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,
Keith Wansbrough. 88pp. Technical Report 624. March 2005.

• TCP, UDP, and Sockets: rigorous and experimentally-validated behavioural specification. Volume
2: The Specification. Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael
Smith, Keith Wansbrough. 386pp. Technical Report 625. March 2005.

These were accompanied by papers giving a systems-oriented introduction to the work and a theory-
oriented description of the specification idioms and symbolic model-checking technology used:

• Rigorous specification and conformance testing techniques for network protocols, as applied to
TCP, UDP, and Sockets. Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael
Smith, Keith Wansbrough. 12pp. In SIGCOMM 2005.

• Engineering with Logic: HOL Specification and Symbolic-Evaluation Testing for TCP Implemen-
tations. Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, Keith
Wansbrough. 14pp. In POPL 2006.

We then used similar techniques, but at design-time instead of after the fact, for specification and
validation work on a MAC protocol for the SWIFT experimental optically switched network:

• Rigorous Protocol Design in Practice: An Optical Packet-Switch MAC in HOL. Adam Biltcliffe,
Michael Dales, Sam Jansen, Tom Ridge, Peter Sewell. In ICNP 2006.

• SWIFT MAC Protocol: HOL Specification.

Returning to verification above network specifications, we demonstrated that an operational semantics
network model (abstracting from our detailed service-level specification) could be integrated with a

1http://www.cl.cam.ac.uk/~pes20/Netsem/index.html

http://www.cl.cam.ac.uk/~pes20/Netsem/index.html

14

programming language semantics, and used for functional correctness verification of a fault-tolerant
persistent distributed message queue algorithm:

• Verifying distributed systems: the operational approach. Tom Ridge. In POPL 2009.

Finally, we have the specification of this technical report, a high-level service specification related
to the earlier protocol-level specification by a validated abstraction function. This introduction is an
extended version of the paper:

• A rigorous approach to networking: TCP, from implementation to protocol to service. Tom Ridge,
Michael Norrish, Peter Sewell. In FM’08.

1.9 Conclusion
Summary We presented a formal, mechanized, service-level specification of TCP, tackling the full
detail of the real-world protocol. The specification is appropriate for formal and informal reasoning
about applications built above the Sockets layer, and about the service that TCP and TCP-like protocols
provide to the Sockets layer. The service-level specification stands as a precise statement of end-to-end
correctness for TCP. We also presented a formal abstraction function from our previous protocol-level
model of TCP to the service-level specification, thereby explaining how stream-like behaviour arises from
the protocol level. We used novel validation tools, coupled with the results of previous work, to validate
both the service specification and the abstraction function. The specification, abstraction function, and
testing infrastructure were developed entirely in HOL.

On the practice of protocol design This service-level specification is the latest in a line of work
developing rigorous techniques for real-world protocol modelling and specification [25, 28, 21, 5, 8, 4].
In most of this work to date we have focused on post-hoc specification of existing infrastructure (TCP,
UDP, ICMP, and the Sockets API) rather than new protocol design, though the latter is our main goal.
This is for two reasons. Firstly, the existing infrastructure is ubiquitous, and likely to remain so for the
foreseeable future: these wire protocols and the Sockets API are stable articulation points around which
other software shifts. It is therefore well worth characterising exactly what they are, for the benefit of
both users and implementers. Secondly, and more importantly, they are excellent test cases. There has
been a great deal of theoretical work on idealised protocols, but, to develop rigorous techniques that can
usefully be applied, they must be tested with realistic protocols. If we can deal with TCP and Sockets,
with all their accumulated legacy of corner cases and behavioural quirks, then our techniques should
certainly be applicable to new protocols. We believe that that is now demonstrated, and it is confirmed
by our experience with design-time formalisation and conformance testing for an experimental MAC
protocol for an optically switched network [4].

In recent years there has been considerable interest in ‘clean slate’ networking design, and in initiatives
such as FIND and GENI. Protocols developed in such work should, we argue, be developed as trios of
running implementation, rigorous specification, and verified conformance tester between the two. Modest
attention paid to this at design time would greatly ease the task — for example, specifying appropriate
debug trace information, and carefully identifying the deterministic parts of a protocol specification,
would remove the need for backtracking search during validation. Declarative specification of the intended
protocol behaviour, free from the imperative control-flow imposed by typical implementation languages,
enables one to see unnecessary behavioural complexities clearly. Verified conformance testing makes it
possible to keep implementations and specifications in sync as they are developed. Together, they should
lead to cleaner, better-understood and more robust protocols, and hence to less costly and more robust
infrastructure.

More specifically to TCP, we see two main directions for future work. One is simply to scale up our
validation process, covering a wide variety of common protocol stacks, increasing confidence still further
by testing against more traces, identifying and testing additional invariants of connection states, and so
forth, and producing a packaged conformance tester for TCP implementations. This would be useful, and
on an industrial scale would be a relatively small project (compared, perhaps, to the QA effort involved
in developing a new protocol stack), but doing this for an existing protocol may be inappropriate for
a small research group. The weight of legacy complexity here is very large, so non-trivial resources
(perhaps several man-years) would be needed to cope with the detail, but the basic scientific questions,
of how to do this, have now been solved. Doing this for new protocols, on the other hand, seems clearly
worthwhile, even with very limited resources.

15

The second, more research-oriented, question, is to consider not just validation of end-to-end func-
tional correctness (as we have done here), but properties such as end-to-end performance. Ultimately
one could envisage proving network-wide properties, such as network stability, thereby connecting highly
abstract properties of these protocols to the low-level details of their implementations.

Acknowledgements We gratefully acknowledge the use of the Condor facility in the Computer Lab-
oratory, work of Adam Biltcliffe on testing infrastructure, and support from a Royal Society University
Research Fellowship (Sewell) and EPSRC grants EPC510712 and GRT11715. NICTA is funded by the
Australian Government’s Backing Australia’s Ability initiative, in part through the Australian Research
Council.

16 write

Rule version:

Part II

TCP3 hostTypes

17

Chapter 2

Host types

This file defines types for the internal state of the host and its components: files, TCP control blocks,
sockets, interfaces, routing table, thread states, and so on, culminating in the definition of the host type.
It also defines TCP trace records, building on the definition of TCP control blocks.

Broadly following the implementations, each protocol endpoint has a socket structure which has some
common fields (e.g. the associated IP addresses and ports), and some protocol-specific information.

For TCP, which involves a great deal of local state, the protocol-specific information (of type
tcp socket) consists of a TCP state (CLOSED , LISTEN , etc.), send and receive queues, and a TCP
control block, of type tcpcb, with many window parameters, timers, etc. Roughly, the socket structure
and tcp socket substructure contain all the information required by most sockets rules, whereas the tcpcb

contains fields required only by the protocol information.

2.1 The TCP control block (TCP only)

2.1.1 Summary

tcpcb the TCP control block

2.1.2 Rules

– the TCP control block :
tcpcb =〈[

(* timers *)
tt keep : () timed option; (* keepalive timer *)

(* other *)
t softerror : error option (* current transient error; reported only if failure becomes permanent *)
(* could cut this down to the actually-possible errors? *)

]〉

2.2 Sockets (TCP and UDP)

2.2.1 Summary

tcp socket details of a TCP socket
protocol info protocol-specific socket data
socket details of a socket
TCP Sock0 helper constructor
TCP Sock helper constructor

19

20 tcp socket

UDP Sock0 helper constructor
UDP Sock helper constructor
Sock helper constructor
tcp sock of helper accessor (beware ARBitrary behaviour on non-

TCP socket)
udp sock of helper accessor (beware ARBitrary behaviour on non-

UDP socket)
proto of helper accessor
proto eq compare protocol of two protocol info structures

2.2.2 Rules

– details of a TCP socket :
tcp socket

=〈[st : tcpstate; (* here rather than in tcpcb for convenience as heavily used. Called t_state in BSD *)
cb : tcpcb;
lis : socket listen option (* invariant: ∗ iff not LISTEN *)

]〉

– protocol-specific socket data :
protocol info = TCP PROTO of tcp socket

| UDP PROTO of udp socket

– details of a socket :
socket

=〈[fid : fid option; (* associated open file description if any *)
sf : sockflags; (* socket flags *)
is1 : ip option; (* local IP address if any *)
ps

1
: port option; (* local port if any *)

is2 : ip option; (* remote IP address if any *)
ps

2
: port option; (* remote port if any *)

es : error option; (* pending error if any *)
cantsndmore : bool; (* output stream ends at end of send queue *)
cantrcvmore : bool; (* input stream ends at end of receive queue *)
pr : protocol info (* protocol-specific information *)

]〉

– helper constructor :
TCP Sock0(st , cb, lis)
=〈[st := st ; cb := cb; lis := lis]〉

– helper constructor :
TCP Sock v = TCP PROTO(TCP Sock0 v)

– helper constructor :
(UDP Sock0 : dgram list→ udp socket)rcvq =〈[rcvq := rcvq]〉

– helper constructor :
UDP Sock v = UDP PROTO(UDP Sock0 v)

– helper constructor :
Sock(fid , sf , is1, ps1, is2, ps2, es, csm, crm, pr)
=〈[fid :=fid ; sf := sf ; is1 := is1; ps1 := ps1; is2 := is2; ps2 := ps2;

es := es; cantsndmore := csm; cantrcvmore := crm; pr := pr]〉

– helper accessor (beware ARBitrary behaviour on non-TCP socket) :

Rule version: $ Id: TCP3 hostTypesScript.sml,v 1.9 2009/02/20 10:35:33 tjr22 Exp $

privileged ports 21

tcp sock of sock = case sock .pr of TCP PROTO(tcp sock)→ tcp sock ‖ → ARB

– helper accessor (beware ARBitrary behaviour on non-UDP socket) :
udp sock of sock = case sock .pr of UDP PROTO(udp sock)→ udp sock ‖ → ARB

– helper accessor :
proto of(TCP PROTO(1)) = PROTO TCP ∧
proto of(UDP PROTO(3)) = PROTO UDP

– compare protocol of two protocol info structures :
proto eq pr pr ′ = (proto of pr = proto of pr ′)

Description Various convenience functions.

2.3 The host (TCP and UDP)

2.3.1 Summary

host host details
privileged ports
ephemeral ports

2.3.2 Rules

– host details :
host =〈[

arch : arch; (* architecture *)

privs : bool; (* whether process has root/CAP NET ADMIN privilege *)

ifds : ifid 7→ ifd ; (* interfaces *)

rttab : routing table; (* routing table *)

ts : tid 7→ hostThreadState timed ; (* host view of each thread state *)

files : fid 7→ file; (* files *)

socks : sid 7→ socket; (* sockets *)

listen : sid list; (* list of listening sockets *)

bound : sid list; (* list of sockets bound: head of list was first to be bound *)

iq : msg list timed ; (* input queue *)

oq : msg list timed ; (* output queue *)

bndlm : bandlim state; (* bandlimiting *)

ticks : ticker ; (* ticker *)

fds : fd 7→ fid ; (* file descriptors (per-process) *)

params : hostParams(* configuration info*)

]〉

Description The input and output queue timers model the interrupt scheduling delay; the first
element (if any) must be processed by the timer expiry.

– :
privileged ports h = {Port n | n < 1024}

– :
ephemeral ports h = {Port n | n ≥ h.params.min eph port ∧ n ≤ h.params.max eph port}

Rule version: $ Id: TCP3 hostTypesScript.sml,v 1.9 2009/02/20 10:35:33 tjr22 Exp $

22 type abbrev tracerecord

Description Ports below 1024 (on all systems that we know of) are reserved, and can be bound by
privileged users only. Additionally there is a range of ports (1024 through 2048, 3072 or 4999 or 32768
through 61000 inclusive, depending on configuration, are used for autobinding, when no specific port is
specified; these ports are called ”ephemeral”.

2.4 Trace records (TCP and UDP)

For BSD testing we make use of the BSD TCP_DEBUG option, which enables TCP debug trace records
at various points in the code. This permits earlier resolution of nondeterminism in the trace checking
process.

Debug records contain IP and TCP headers, a timestamp, and a copy of the implementation TCP
control block. Three issues complicate their use: firstly, not all the relevant state appears in the trace
record; secondly, the model deviates in its internal structures from the BSD implementation in several
ways; and thirdly, BSD generates trace records in the middle of processing messages, whereas the model
performs atomic transitions (albeit split for blocking invocations). These mean that in different circum-
stances we can use only some of the debug record fields. To save defining a whole new datatype, we
reuse tcpcb. However, we define a special equality that only inspects certain fields, and leaves the others
unconstrained.

Frustratingly, the is1 ps1 is2 ps2 are not always available, since although the TCP control block
is structure-copied into the trace record, the embedded Internet control block is not! However, in cases
where these are not available, the iss should be sufficiently unique to identify the socket of interest.

2.4.1 Summary

type abbrev tracerecord
tracecb eq compare two control blocks for ”equality” modulo known

issues
tracesock eq compare two sockets for ”equality” modulo known issues

2.4.2 Rules

– :
type abbrev tracerecord : traceflavour

#sid

#(ip option(* is1 *)
#port option(* ps1 *)
#ip option(* is2 *)
#port option(* ps2 *)

) option(* not always available! *)
#tcpstate(* st *)
#tcpcb(* cb subset *)

– compare two control blocks for ”equality” modulo known issues :
tracecb eq(flav : traceflavour)(st : tcpstate)(es : error option)(cb : tcpcb)(cb′ : tcpcb)
= T (* placeholder *)

– compare two sockets for ”equality” modulo known issues :
tracesock eq(flav , sid , quad , st , cb)sid ′

sock

= (proto of sock .pr = PROTO TCP ∧
let tcp sock = tcp sock of sock in
sid = sid

′ ∧

Rule version: $ Id: TCP3 hostTypesScript.sml,v 1.9 2009/02/20 10:35:33 tjr22 Exp $

tracesock eq 23

(* If trace is TA DROP then the is2, ps2
values in the trace may not match those in the socket record — the

segment is dropped because it is somehow invalid (and thus not safe to compare) *)
(case quad of
↑(is1, ps1

, is2, ps2
)→ is1 = sock .is1 ∧

ps
1

= sock .ps
1
∧

(if flav = TA DROP then T else is2 = sock .is2) ∧
(if flav = TA DROP then T else ps

2
= sock .ps

2
) ‖

∗ → T) ∧
st = tcp sock .st ∧
tracecb eq flav st sock .es cb tcp sock .cb)

Rule version: $ Id: TCP3 hostTypesScript.sml,v 1.9 2009/02/20 10:35:33 tjr22 Exp $

24 tracesock eq

Rule version: $ Id: TCP3 hostTypesScript.sml,v 1.9 2009/02/20 10:35:33 tjr22 Exp $

Part III

TCP3 streamTypes

25

Chapter 3

Stream types

This file defines types for streams: stream control information to represent control messages on the wire,
a unidirectional stream, and a bidirectional stream.

3.1 Stream types (TCP and UDP)

Basic stream types.

3.1.1 Summary

type abbrev streamid
streamFlags stream control information
tcpStream unidirectional stream
tcpStreams bidirectional stream

3.1.2 Rules

– :
type abbrev streamid : (ip#port)set

– stream control information :
streamFlags =〈[

SYN : bool; (* SYN , no ACK *)

SYNACK : bool; (* SYN with ACK *)

FIN : bool;
RST : bool

]〉

Description
We record stream control-flow information with each unidirectional stream. This corresponds to the

protocol-level control-flow messages. For example, the SYNACK flag is set iff there is a message at the
protocol-level (in queues or on the wire) that has both the SYN and the ACK flags set, and which may
be received as a valid message. A message may not be valid if, for example, the sequence number is out
of order.

– unidirectional stream :

27

28 tcpStreams

tcpStream =〈[
i : ip; (* source IP *)

p : port ; (* source port *)

flgs : streamFlags;
data : byte list;
destroyed : bool

]〉

Description
The ip and port record the origin of the stream, which is primarily used to identify a unidirectional

stream in an unordered pair of streams. The flgs record the control-flow information. The data is simply
a list of bytes. The destroyed flag records whether the socket has been closed at the source, or perhaps
removed altogether.

– bidirectional stream :
tcpStreams =〈[streams : tcpStream set]〉

Description
A bidirectional stream is an unordered pair of streams, thus, we expect that there are always two

tcpStreams in streams.

Rule version: $ Id: TCP3 streamTypesScript.sml,v 1.14 2009/02/19 17:47:27 tjr22 Exp $

Part IV

TCP3 host0

29

Chapter 4

Host LTS labels and rule categories

This file defines the labels for the host labelled transition system, characterising the possible interactions
between a host and its environment. It also defines various categories for the host LTS rules.

4.1 Transition labels (TCP and UDP)

Host transition labels.

4.1.1 Summary

Lhost0 Host transition labels

4.1.2 Rules

– Host transition labels :
Lhost0 =

(* library interface *)
Lh call of tid#LIB interface (* invocation of LIB call, written e.g. tid ·(socket(socktype)) *)

| Lh return of tid#TLang (* return result of LIB call, written tid ·v *)

(* message transmission and receipt *)
| Lh senddatagram of msg (* output of message to the network, written msg *)
| Lh recvdatagram of msg (* input of message from the network, written msg *)
| Lh loopdatagram of msg (* loopback output/input, written ←−−→msg *)

(* connectivity changes *)
| Lh interface of ifid#bool (* set interface status to boolean up, written Lh interface(ifid , up) *)

(* miscellaneous *)
| τ (* internal transition, written τ *)
| Lh trace of tracerecord (* TCP trace record, written Lh trace tr *)

31

32 Lhost0

Rule version: $ Id: TCP3 host0Script.sml,v 1.5 2009/02/19 17:47:27 tjr22 Exp $

Part V

TCP3 auxFns

33

Chapter 5

Auxiliary functions

This file defines a large number of auxiliary functions to the host specification.

5.1 Stream versions of routing functions (TCP and UDP)

5.1.1 Summary

stream test outroute if destination IP specified, do test outroute ip
stream loopback on wire check if a message bears a loopback address

5.1.2 Rules

– if destination IP specified, do test outroute ip :
stream test outroute(is2, rttab, ifds, arch)
= case is2 of
↑ i2 → ↑(test outroute ip(i2, rttab, ifds, arch))
‖ → ∗

Description Version for streams.

– check if a message bears a loopback address :
stream loopback on wire(is1, is2)(ifds : ifid 7→ ifd) =
case (is1, is2) of

(∗, ∗)→ F
‖ (∗, ↑ j)→ F
‖ (↑ i , ∗)→ F
‖ (↑ i , ↑ j)→ in loopback i ∧ ¬in local ifds j

Description Version for streams.

5.2 Files, file descriptors, and sockets (TCP and UDP)

The open files of a host are modelled by a set of open file descriptions, indexed by fid . The open files of
a process are identified by file descriptor fd , which is an index into a table of fids. This table is modelled
by a finite map. File descriptors are isomorphic to the natural numbers.

35

36 bound ports protocol autobind

5.2.1 Summary

sane socket socket sanity invariants hold

5.2.2 Rules

– socket sanity invariants hold :
sane socket sock = T

Description There are some demonstrable invariants on a socket; this definition asserts them. These
are largely here to provide explicit bounds to the symbolic evaluator.

5.3 Binding (TCP and UDP)

Both TCP and UDP have a concept of a socket being bound to a local port, which means that that
socket may receive datagrams addressed to that port. A specific local IP address may also be specified,
and a remote IP address and/or port. This ‘quadruple’ (really a quintuple, since the protocol is also
relevant) is used to determine the socket that best matches an incoming datagram.

The functions in this section determine this best-matching socket, using rules appropriate to each
protocol. Support is also provided for determining which ports are available to be bound by a new socket,
and for automatically choosing a port to bind to in cases where the user does not specify one.

5.3.1 Summary

bound ports protocol autobind the set of ports currently bound by a socket for a protocol
bound port allowed is it permitted to bind the given (IP,port) pair?
autobind set of ports available for autobinding
bound after was sid bound more recently than sid ′?
match score score the match against the given pattern of the given

quadruple
lookup udp the set of sockets matching an address quad, for UDP
tcp socket best match the set of sockets matching a quad, for TCP
lookup icmp the set of sockets matching a quad, for ICMP

5.3.2 Rules

– the set of ports currently bound by a socket for a protocol :
bound ports protocol autobind pr socks = {p | ∃s : socket .

s ∈ rng(socks) ∧ s.ps1 = ↑ p ∧
proto of s.pr = pr}

Description Rebinding of ports already bound is often restricted. bound ports protocol autobind is
a list of all ports having a socket of the given protocol binding that port.

– is it permitted to bind the given (IP,port) pair? :

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

bound after 37

bound port allowed pr socks sf arch is p =
p /∈
{port | ∃s : socket .

s ∈ rng(socks) ∧ s.ps1 = ↑ port ∧
proto eq s.pr pr ∧
(if bsd arch arch ∧ SO REUSEADDR ∈ sf .b then

s.is2 = ∗ ∧ s.is1 = is
else if linux arch arch ∧ SO REUSEADDR ∈ sf .b ∧ SO REUSEADDR ∈ s.sf .b ∧

((∃tcp sock .TCP PROTO(tcp sock) = s.pr ∧ ¬(tcp sock .st = LISTEN)) ∨
∃udp sock .UDP PROTO(udp sock) = s.pr) then

F(* If socket is not in LISTEN state or is a UDP socket can always rebind here *)

else if windows arch arch ∧ SO REUSEADDR ∈ sf .b then
F(* can rebind any UDP address; not sure about TCP - assume the same for now *)

else
(is = ∗ ∨ s.is1 = ∗ ∨ (∃i : ip.is = ↑ i ∧ s.is1 = ↑ i)))}

Description This determines whether binding a socket (of protocol pr) to local address is, p is permit-
ted, by considering the other bound sockets on the host and the state of the sockets’ SO REUSEADDR
flags. Note: SB believes this definition is correct for TCP and UDP on BSD and Linux through exhaustive
manual verification. Note: WinXP is still to be checked.

– set of ports available for autobinding :
autobind(↑ p, , ,) = {p} ∧
autobind(∗, pr , h, socks) = (ephemeral ports h)diff(bound ports protocol autobind pr socks)

Description Note that SO REUSEADDR is not considered when choosing a port to autobind to.

– was sid bound more recently than sid ′? :
bound after sid sid ′[] = ASSERTION FAILURE“bound after”(* should never reach this case *) ∧
bound after sid sid ′(sid0 :: bound) =
if sid = sid0 then T(* newly-bound sockets are added to the head *)

else if sid ′ = sid0 then F
else bound after sid sid ′ bound

– score the match against the given pattern of the given quadruple :
(match score(, ∗, ,) = 0n) ∧
(match score(∗, ↑ p1, ∗, ∗)(i3, ps3 , i4, ps4) =

if ps4 = ↑ p1 then 1 else 0) ∧
(match score(↑ i1, ↑ p1, ∗, ∗)(i3, ps3 , i4, ps4) =

if (i1 = i4) ∧ (↑ p1 = ps4) then 2 else 0) ∧
(match score(↑ i1, ↑ p1, ↑ i2, ∗)(i3, ps3 , i4, ps4) =

if (i2 = i3) ∧ (i1 = i4) ∧ (↑ p1 = ps4) then 3 else 0) ∧
(match score(↑ i1, ↑ p1, ↑ i2, ↑ p2)(i3, ps3 , i4, ps4) =

if (↑ p2 = ps3) ∧ (i2 = i3) ∧ (i1 = i4) ∧ (↑ p1 = ps4) then 4
else 0)

Description These two functions are used to match an incoming UDP datagram to a socket. The
bound after function returns T if the socket sid (the first agrument) was bound after the socket sid ′ (the
second argument) according to a list of bound sockets (the third argument).

The match score function gives a score specifying how closely two address quads, one from a socket
and one from a datagram, correspond; a higher score indicates a more specific match.

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

38 tcp socket best match

– the set of sockets matching an address quad, for UDP :
lookup udp socks quad bound arch =

{sid | sid ∈ dom(socks) ∧
let s = socks[sid] in
let sn = match score(s.is1, s.ps1, s.is2, s.ps2)quad in

sn > 0 ∧
if windows arch arch then

if sn = 1 then
¬(∃(sid ′, s ′) :: (socks\\sid).match score(s ′.is1, s

′.ps1, s
′.is2, s

′.ps2)quad > sn)
else T

else
¬(∃(sid ′, s ′) :: (socks\\sid).

(match score(s ′.is1, s
′.ps1, s

′.is2, s
′.ps2)quad > sn ∨

(linux arch arch ∧match score(s ′.is1, s
′.ps1, s

′.is2, s
′.ps2)quad = sn ∧

bound after sid ′ sid bound)))}

Description This function returns a set of UDP sockets which the datagram with address quad quad
may be delivered to. For FreeBSD and Linux there is only one such socket; for WinXP there may be
multiple.

For each socket in the finite map of sockets socks, the score, sn, of the matching of the socket’s
address quad and quad is computed using match score.

Variations

FreeBSD For FreeBSD, the set contains the sockets for which the score is greater than
zero and there is no other socket in socks with a higher score.

Linux For Linux, the set contains the sockets for which the score is greater than zero,
there are no sockets with a higher score, and the socket was bound to its local
port after all the other sockets with the same score.

WinXP For WinXP, the set contains all the sockets with score greater than one and
also the sockets for which the score is one, sn = 1, and there are no sockets
with greater scores.

– the set of sockets matching a quad, for TCP :
tcp socket best match(socks : sid 7→ socket)(sid , sock)(seg : tcpSegment)arch =
(* is the socket sid the best match for segment seg? *)

let s = sock in
let score = match score(s.is1, s.ps1, s.is2, s.ps2)

(the seg .is1, seg .ps1, the seg .is2, seg .ps2) in
¬(∃(sid ′, s ′) :: socks\\sid .

match score(s ′.is1, s
′.ps1, s

′.is2, s
′.ps2)

(the seg .is1, seg .ps1, the seg .is2, seg .ps2) > score)

Description This function determines whether a given socket sid is the best match for a received
TCP segment seg .

The score (obtained using match score) for the given socket is determined, and compared with the
score for each other socket in socks. If none have a greater score, this is the best match and true is
returned; otherwise, false is returned.

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

TCP Options (TCP only) 39

– the set of sockets matching a quad, for ICMP :
lookup icmp socks icmp arch bound =
{sid0 | ∃(sid , sock) :: socks.

sock .ps1 = icmp.ps3 ∧ proto of sock .pr = icmp.proto ∧ sid0 = sid ∧
if windows arch arch then T
else

sock .is1 = icmp.is3 ∧ sock .is2 = icmp.is4 ∧
(sock .ps2 = icmp.ps4 ∨
(linux arch arch ∧

proto of sock .pr = PROTO UDP ∧ sock .ps2 = ∗ ∧
¬(∃(sid ′, s) :: (socks\\sid).

s.is1 = icmp.is3 ∧ s.is2 = icmp.is4 ∧
s.ps1 = icmp.ps3 ∧ s.ps2 = icmp.ps4 ∧
proto of s.pr = icmp.proto ∧
bound after sid ′ sid bound)

))}

Description
This function returns the set of sockets matching a received ICMP datagram icmp.
An ICMP datagram contains the initial portion of the header of the original message to which it is a

response. For a socket to match, it must at least be bound to the same port and protocol as the source
of the original message. Beyond this, architectures differ. Usually, the socket must be connected, and
connected to the same port as the original destination; and the source and destination IP addresses must
agree.

Variations

WinXP For Windows, the socket need not be connected, and the source and destination
IP addresses need not agree; an ICMP is delivered to one socket bound to the
same port and protocol as the original source.

Linux For Linux, UDP ICMPs may also be delivered to unconnected sockets, as long
as no matching connected socket was bound more recently than that socket.

FreeBSD For FreeBSD, the behaviour is as described above.

5.4 TCP Options (TCP only)

TCP option handling.

5.4.1 Summary

do tcp options Constrain the TCP timestamp option values that appear
in an outgoing segment

calculate tcp options len Calculate the length consumed by the TCP options in a
real TCP segment

5.4.2 Rules

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

40 calculate buf sizes

– Constrain the TCP timestamp option values that appear in an outgoing segment :
do tcp options cb tf doing tstmp cb ts recent cb ts val =
if cb tf doing tstmp then

let ts ecr
′ = option case (ts seq 0w) I (timewindow val of cb ts recent) in

↑(cb ts val , ts ecr
′)

else
∗

– Calculate the length consumed by the TCP options in a real TCP segment :
calculate tcp options len cb tf doing tstmp =
if cb tf doing tstmp then 12 else 0 : num

Description This calculation omits window-scaling and mss options as these only appear in SYN
segments during connection setup. The total length consumed by all options will always be a multiple of
4 bytes due to padding. If more TCP options were added to the model, the space consumed by options
would be architecture/options/alignment/padding dependent.

5.5 Buffers, windows, and queues (TCP and UDP)

Various functions that compute buffer sizes, window sizes, and remaining send queue space. Some of
these computations are architecture-specific.

5.5.1 Summary

calculate buf sizes Calculate buffer sizes for rcvbufsize, sndbufsize, t maxseg ,
and snd cwnd

send queue space

5.5.2 Rules

– Calculate buffer sizes for rcvbufsize, sndbufsize, t maxseg, and snd cwnd :
calculate buf sizes cb t maxseg seg mss bw delay product for rt is local conn

rcvbufsize sndbufsize cb tf doing tstmp arch =

let t maxseg ′ =
(* TCPv2p901 claims min 32 for ”sanity”; FreeBSD4.6 has 64 in tcp_mss(). BSD has the route MTU if avail,
or min MSSDFLT (link MTU) otherwise, as the first argument of the MIN below. That is the same calculation
as we did in connect 1 . We don’t repeat it, but use the cached value in cb.t maxseg . *)
let maxseg = (min cb t maxseg(max 64(option case MSSDFLT I seg mss))) in

if linux arch arch then
maxseg

else
(* BSD subtracts the size consumed by options in the TCP header post connection establishment. The
WinXP and Linux behaviour has not been fully tested but it appears Linux does not do this and WinXP
does. *)
maxseg − (calculate tcp options len cb tf doing tstmp)

in
(* round down to multiple of cluster size if larger (as BSD). From BSD code; assuming true for WinXP for
now *)
let t maxseg ′′ = if linux arch arch then t maxseg ′(* from tests *)

else rounddown MCLBYTES t maxseg ′ in

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

UDP support (UDP only) 41

(* buffootle: rcv *)

let rcvbufsize ′ = option case rcvbufsize I bw delay product for rt in
let (rcvbufsize ′′, t maxseg ′′′) = (if rcvbufsize ′ < t maxseg ′′

then (rcvbufsize ′, rcvbufsize ′)
else (min SB MAX (roundup t maxseg ′′ rcvbufsize ′),

t maxseg ′′)) in

(* buffootle: snd *)

let sndbufsize ′ = option case sndbufsize I bw delay product for rt in
let sndbufsize ′′ = (if sndbufsize ′ < t maxseg ′′′

then sndbufsize ′

else min SB MAX (roundup t maxseg ′′ sndbufsize ′)) in

let do rfc3390 = T in

(* compute initial cwnd *)

let snd cwnd =
if do rfc3390 then min(4 ∗ t maxseg ′′′)(max(2 ∗ t maxseg ′′′)4380)
else

(t maxseg ′′′ ∗ (if is local conn then SS FLTSZ LOCAL else SS FLTSZ)) in
(rcvbufsize ′′, sndbufsize ′′, t maxseg ′′′, snd cwnd)

Description Used in deliver in 1 and deliver in 2 .

– :
send queue space(sndq max : num)sndq size oob arch maxseg i2 =
{n | if bsd arch arch then

n ≤ (sndq max − sndq size) + (if oob then oob extra sndbuf else 0)
else if linux arch arch then

(if in loopback i2 then
n = maxseg + ((sndq max − sndq size)div 16816) ∗maxseg

else
n = (2 ∗maxseg) + ((sndq max − sndq size − 1890)div 1888) ∗maxseg)

else n ≥ 0}

Description Calculation of the usable send queue space.
FreeBSD calculates send buffer space based on the byte-count size and max, and the number and

max of mbufs. As we do not model mbuf usage precisely we are somewhat nondeterministic here.
Linux calculates it based on the MSS: the space is some multiple of the MSS; the number of bytes

for each MSS-sized segment is the MSS+overhead where overhead is 420+(20 if using IP), which is why
the i2 argument is needed.

Windows is very strange. Leaving it completely unconstrained is not what actually happens, but
more investigation is needed in future to determine the actual behaviour.

5.6 UDP support (UDP only)

Performing a UDP send, filling in required details as necessary.

5.6.1 Summary

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

42 next smaller

dosend do a UDP send, filling in source address and port as nec-
essary

5.6.2 Rules

– do a UDP send, filling in source address and port as necessary :
(dosend(ifds, rttab, (∗, data), (↑ i1, ↑ p1, ↑ i2, ps2), oq , oq ′, ok) =
enqueue oq(oq ,UDP(〈[is1 := ↑ i1; is2 := ↑ i2;

ps1 := ↑ p1; ps2 := ps2;
data := data]〉),

oq ′, ok)) ∧
(dosend(ifds, rttab, (↑(i , p), data), (∗, ↑ p1, ∗, ∗), oq , oq ′, ok) =
(∃i ′1.enqueue oq(oq ,UDP(〈[is1 := ↑ i ′1; is2 := ↑ i ;

ps1 := ↑ p1; ps2 := ↑ p;
data := data]〉),

oq ′, ok) ∧ i ′1 ∈ auto outroute(i , ∗, rttab, ifds))) ∧
(dosend(ifds, rttab, (↑(i , p), data), (↑ i1, ↑ p1, is2, ps2), oq , oq ′, ok) =
enqueue oq(oq ,UDP(〈[is1 := ↑ i1; is2 := ↑ i ;

ps1 := ↑ p1; ps2 := ↑ p;
data := data]〉),

oq ′, ok))

Description For use in UDP sendto().

5.7 Path MTU Discovery (TCP only)

For efficiency and reliability, it is best to send datagrams that do not need to be fragmented in the
network. However, TCP has direct access only to the maximum packet size (MTU) for the interfaces at
either end of the connection – it has no information about routers and links in between.

To determine the MTU for the entire path, TCP marks all datagrams ‘do not fragment’. It begins by
sending a large datagram; if it receives a ‘fragmentation needed’ ICMP in return it reduces the size of the
datagram and repeats the process. Most modern routers include the link MTU in the ICMP message; if
the message does not contain an MTU, however, TCP uses the next lower MTU in the table below.

5.7.1 Summary

next smaller find next-smaller element of a set
mtu tab path MTU plateaus to try

5.7.2 Rules

– find next-smaller element of a set :
(next smaller : (num→ bool)→ num→ num)xs y = @x :: xs.x < y ∧ ∀x ′ :: xs.x ′ > x =⇒ x ′ ≥ y

– path MTU plateaus to try :
mtu tab arch = if linux arch arch then

{32000; 17914; 8166; 4352; 2002; 1492; 576; 296; 216; 128; 68} : num set

else
{65535; 32000; 17914; 8166; 4352; 2002; 1492; 1006; 508; 296; 68}

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

initial cb 43

Description MTUs to guess for path MTU discovery. This table is from RFC1191, and is the one
that appears in BSD.

On comp.protocols.tcp-ip, Sun, 15 Feb 2004 01:38:26 -0000, <102tj-

cifv6vgm02@corp.supernews.com>, kml@bayarea.net (Kevin Lahey) suggests that this is out-
of-date, and 2312 (WiFi 802.11), 9180 (common ATM), and 9000 (jumbo Ethernet) should be added.
For some polemic discussion, see http://www.psc.edu/~mathis/MTU/.

RFC1191 says explicitly ”We do not expect that the values in the table [...] are going to be valid
forever. The values given here are an implementation suggestion, NOT a specification or requirement.
Implementors should use up-to-date references to pick a set of plateaus [...]”. BSD is therefore not
compliant here.

Linux adds 576, 216, 128 and drops 1006. 576 is used in X.25 networks, and the source says 216 and
128 are needed for AMPRnet AX.25 paths. 1006 is used for SLIP, and was used on the ARPANET.
Linux does not include the modern MTUs listed above.

5.8 The initial TCP control block (TCP only)

The initial state of the TCP control block.

5.8.1 Summary

initial cb

5.8.2 Rules

– :
initial cb =
〈[

tt keep := ∗;
t softerror := ∗

]〉

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

44 initial cb

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

Chapter 6

Auxiliary functions for TCP
segment creation and drop

We gather here all the general TCP segment generation and processing functions that are used in the
host LTS.

6.1 General Segment Creation (TCP only)

The TCP output routines. These, together with the input routines in deliver in 3 , form the heart of
TCP.

6.1.1 Summary

tcp output required determine whether TCP output is required
tcp output really do TCP output
stream tcp output really do TCP output
tcp output perhaps combination of tcp output required and

tcp output really
stream tcp output perhaps combination of tcp output required and

tcp output really

6.1.2 Rules

– determine whether TCP output is required :
tcp output required(do output , persist fun) =
(do output ∈ {T;F} ∧
persist fun ∈ {∗; ↑(λcb : tcpcb.cb)})

Description
This function determines if it is currently necessary to emit a segment. It is not quite a predicate,

because in certain circumstances the operation of testing may start or reset the persist timer, and alter
snd nxt . Thus it returns a pair of a flag do output (with the obvious meaning), and an optional mutator
function persist fun which, if present, performs the required updates on the TCP control block.

– do TCP output :
tcp output really sock(sock ′, outsegs ′) =
let tcp sock = tcp sock of sock in

45

46 tcp output really

let cb = tcp sock .cb in

(* Assert that the socket is fully bound and connected *)

sock .is1 6= ∗ ∧
sock .is2 6= ∗ ∧
sock .ps1 6= ∗ ∧
sock .ps2 6= ∗ ∧

(* Is it possible that a FIN may need to be transmitted? *)

let fin required = (sock .cantsndmore ∧ tcp sock .st /∈ {FIN WAIT 2 ;TIME WAIT}) in

(* Should FIN be set in this segment? *)

choose snd nxt plus length data to send ge last sndq data seq :: {T;F}.
let FIN = (fin required ∧ snd nxt plus length data to send ge last sndq data seq) in

∃snd nxt ′ rcv nxt URG ACK PSH win urp ts data to send .
let seg =〈[is1 := sock .is1;

is2 := sock .is2;
ps1 := sock .ps1;
ps2 := sock .ps2;
seq := snd nxt ′;
ack := rcv nxt ;
URG :=URG ;
ACK :=ACK ;
PSH :=PSH ;
RST :=F;
SYN :=F;
FIN :=FIN ;
win :=win;
ws := ∗;
urp := urp ;
mss := ∗;
ts := ts;
data := data to send

]〉 in

(* If emitting a FIN for the first time then change TCP state *)

let st ′ = if FIN then
case tcp sock .st of

SYN SENT → tcp sock .st ‖ (* can’t move yet – wait until connection established (see
deliver in 2/deliver in 3) *)

SYN RECEIVED → tcp sock .st ‖ (* can’t move yet – wait until connection established (see
deliver in 2/deliver in 3) *)

ESTABLISHED → FIN WAIT 1 ‖
CLOSE WAIT → LAST ACK ‖
FIN WAIT 1 → tcp sock .st ‖ (* FIN retransmission *)

FIN WAIT 2 → tcp sock .st ‖ (* can’t happen *)

CLOSING → tcp sock .st ‖ (* FIN retransmission *)

LAST ACK → tcp sock .st ‖ (* FIN retransmission *)

TIME WAIT → tcp sock .st (* can’t happen *)

else
tcp sock .st in

(* Update the socket *)

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[st := st ′]〉)]〉 ∧

(* Constrain the list of output segments to contain just the segment being emitted *)

outsegs ′ = [TCP seg]

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

stream tcp output really 47

Description
This function constructs the next segment to be output. It is usually called once tcp output required

has returned true, but sometimes is called directly when we wish always to emit a segment. A large
number of TCP state variables are modified also.

Note that while constructing the segment a variety of errors such as ENOBUFS are possible, but this
is not modelled here. Also, window shrinking is not dealt with properly here.

– do TCP output :
stream tcp output really sock(sock ′,FIN) =
let tcp sock = tcp sock of sock in
let cb = tcp sock .cb in

(* Assert that the socket is fully bound and connected *)

sock .is1 6= ∗ ∧
sock .is2 6= ∗ ∧
sock .ps1 6= ∗ ∧
sock .ps2 6= ∗ ∧

(* Is it possible that a FIN may need to be transmitted? *)

let fin required = (sock .cantsndmore ∧ tcp sock .st /∈ {FIN WAIT 2 ;TIME WAIT}) in

(* Should FIN be set in this segment? *)

choose snd nxt plus length data to send ge last sndq data seq :: {T;F}.
FIN = (fin required ∧ snd nxt plus length data to send ge last sndq data seq) ∧

(* If emitting a FIN for the first time then change TCP state *)

let st ′ = if FIN then
case tcp sock .st of

SYN SENT → tcp sock .st ‖ (* can’t move yet – wait until connection established (see
deliver in 2/deliver in 3) *)

SYN RECEIVED → tcp sock .st ‖ (* can’t move yet – wait until connection established (see
deliver in 2/deliver in 3) *)

ESTABLISHED → FIN WAIT 1 ‖
CLOSE WAIT → LAST ACK ‖
FIN WAIT 1 → tcp sock .st ‖ (* FIN retransmission *)

FIN WAIT 2 → tcp sock .st ‖ (* can’t happen *)

CLOSING → tcp sock .st ‖ (* FIN retransmission *)

LAST ACK → tcp sock .st ‖ (* FIN retransmission *)

TIME WAIT → tcp sock .st (* can’t happen *)

else
tcp sock .st in

(* Update the socket *)

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[st := st ′]〉)]〉

Description
This function constructs the next segment to be output. It is usually called once tcp output required

has returned true, but sometimes is called directly when we wish always to emit a segment. A large
number of TCP state variables are modified also.

Note that while constructing the segment a variety of errors such as ENOBUFS are possible, but this
is not modelled here. Also, window shrinking is not dealt with properly here.

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

48 rollback tcp output

– combination of tcp output required and tcp output really :
tcp output perhaps sock(sock ′, outsegs) =
∃do output persist fun.
(tcp output required(do output , persist fun) ∧
let sock

′′ = sock in
if do output then
tcp output really sock

′′(sock ′, outsegs)
else
(sock ′ = sock

′′ ∧ outsegs = []))

– combination of tcp output required and tcp output really :
(* FINs argument records whether any messages were sent, and if so, whether they were a FIN *)
stream tcp output perhaps sock(sock ′,FINs) =
∃do output persist fun.
(tcp output required(do output , persist fun) ∧
let sock

′′ = sock in
if do output then
∃FIN .
stream tcp output really sock

′′(sock ′,FIN)(* definitely does send a seg *) ∧
FINs = ↑ FIN

else
(sock ′ = sock

′′ ∧ FINs = ∗))

6.2 Segment Queueing (TCP only)

Once a segment is generated for output, it must be enqueued for transmission. This enqueuing may fail.
These functions model what happens in this case, and encapsulate the enqueuing-and-possibly-rolling-
back process.

6.2.1 Summary

rollback tcp output Attempt to enqueue segments, reverting appropriate
socket fields if the enqueue fails

stream rollback tcp output Attempt to enqueue segments, reverting appropriate
socket fields if the enqueue fails

enqueue or fail wrap rollback tcp output together with enqueue
stream enqueue or fail wrap rollback tcp output together with enqueue
stream enqueue or fail sock version of enqueue or fail that works with sockets rather

than cbs
enqueue and ignore fail version of enqueue or fail that ignores errors and doesn’t

touch the tcpcb
enqueue each and ignore fail version of above that ignores errors and doesn’t touch the

tcpcb
stream mlift tcp output perhaps or fail do mliftc for function returning at most one segment and

not dealing with queueing flag

6.2.2 Rules

– Attempt to enqueue segments, reverting appropriate socket fields if the enqueue fails :
rollback tcp output rcvdsyn seg arch rttab ifds is connect cb in(cb′, es ′, outsegs

′) =

(* NB: from cb0, only snd nxt , tt delack , last ack sent , rcv adv , tf rxwin0sent , t rttseg , snd max , tt rexmt are
used. *)

(choose allocated :: (if INFINITE RESOURCES then {T} else {T;F}).

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

stream rollback tcp output 49

let route = test outroute(seg , rttab, ifds, arch) in
let f1 = λcb.if ¬rcvdsyn then

cb

else
cb 〈[(* set soft error flag; on ip output routing failure *)

t softerror := the route(* assumes route = SOME (SOME e) *)
]〉 in

if ¬allocated then (* allocation failure *)
cb

′ = cb in ∧ outsegs
′ = [] ∧ es

′ = ↑ ENOBUFS

else if route = ∗ then (* ill-formed segment *)
ASSERTION FAILURE“rollback tcp output:1”(* should never happen *)

else if ∃e.route = ↑(↑ e) then (* routing failure *)
cb

′ = f1 cb in ∧ outsegs
′ = [] ∧ es

′ = the route

else if loopback on wire seg ifds then (* loopback not allowed on wire - RFC1122 *)
(if windows arch arch then

cb
′ = cb in ∧ outsegs

′ = [] ∧ es
′ = ∗(* Windows silently drops segment! *)

else if bsd arch arch then
cb

′ = cb in ∧ outsegs
′ = [] ∧ es

′ = ↑ EADDRNOTAVAIL

else if linux arch arch then
cb

′ = cb in ∧ outsegs
′ = [] ∧ es

′ = ↑ EINVAL

else
ASSERTION FAILURE“rollback tcp output:2”(* never happen *)

)
else

(∃queued .
outsegs

′ = [(seg , queued)] ∧
if ¬queued then (* queueing failure *)

cb
′ = cb in ∧ es

′ = ↑ ENOBUFS

else (* success *)
cb

′ = cb in ∧ es
′ = ∗)

)

– Attempt to enqueue segments, reverting appropriate socket fields if the enqueue fails :
stream rollback tcp output rcvdsyn(is1, is2)arch rttab ifds cb in(cb′, es ′, outsegs

′) =

(* NB: from cb0, only snd nxt , tt delack , last ack sent , rcv adv , tf rxwin0sent , t rttseg , snd max , tt rexmt are
used. *)

(choose allocated :: (if INFINITE RESOURCES then {T} else {T;F}).
let route = stream test outroute(is2, rttab, ifds, arch) in
let f1 = λcb.if ¬rcvdsyn then

cb

else
cb 〈[(* set soft error flag; on ip output routing failure *)

t softerror := the route(* assumes route = SOME (SOME e) *)
]〉 in

if ¬allocated then (* allocation failure *)
cb

′ = cb in ∧ outsegs
′ = F ∧ es

′ = ↑ ENOBUFS

else if route = ∗ then (* ill-formed segment *)
ASSERTION FAILURE“stream rollback tcp output:1”(* should never happen *)

else if ∃e.route = ↑(↑ e) then (* routing failure *)
cb

′ = f1 cb in ∧ outsegs
′ = F ∧ es

′ = the route

else if stream loopback on wire(is1, is2)ifds then (* loopback not allowed on wire - RFC1122 *)
(if windows arch arch then

cb
′ = cb in ∧ outsegs

′ = F ∧ es
′ = ∗(* Windows silently drops segment! *)

else if bsd arch arch then
cb

′ = cb in ∧ outsegs
′ = F ∧ es

′ = ↑ EADDRNOTAVAIL

else if linux arch arch then
cb

′ = cb in ∧ outsegs
′ = F ∧ es

′ = ↑ EINVAL

else
ASSERTION FAILURE“stream rollback tcp output:2”(* never happen *)

)

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

50 enqueue or fail

else
(∃queued .

outsegs
′ = T ∧

if ¬queued then (* queueing failure *)
cb

′ = cb in ∧ es
′ = ↑ ENOBUFS

else (* success *)
cb

′ = cb in ∧ es
′ = ∗)

)

– wrap rollback tcp output together with enqueue :
enqueue or fail rcvdsyn arch rttab ifds outsegs oq cb0 cb in(cb′, oq ′) =
(case outsegs of

[]→ cb
′ = cb0 ∧ oq

′ = oq

‖ [seg]→ (∃outsegs
′
es

′.
rollback tcp output rcvdsyn seg arch rttab ifds F(* X cb0 X *)cb in(cb′, es ′, outsegs

′) ∧
enqueue oq list qinfo(oq , outsegs

′, oq ′))
‖ other84 → ASSERTION FAILURE“enqueue or fail”(* only 0 or 1 segments at a time *)
)

– wrap rollback tcp output together with enqueue :
stream enqueue or fail rcvdsyn arch rttab ifds(is1, is2)cb in cb

′ =
(∃es ′ outsegs

′.stream rollback tcp output rcvdsyn(is1, is2)arch rttab ifds cb in(cb′, es ′, outsegs
′))

– version of enqueue or fail that works with sockets rather than cbs :
stream enqueue or fail sock rcvdsyn arch rttab ifds(is1, is2)sock0 sock sock

′ =
(* NB: could calculate rcvdsyn, but clearer to pass it in *)
let tcp sock = tcp sock of sock in
let tcp sock0 = tcp sock of sock0 in
(∃cb′.
stream enqueue or fail rcvdsyn arch rttab ifds(is1, is2)(tcp sock of sock).cb cb

′ ∧
sock

′ = sock 〈[pr :=TCP PROTO(tcp sock of sock 〈[
cb := cb

′

]〉)]〉)

– version of enqueue or fail that ignores errors and doesn’t touch the tcpcb :
enqueue and ignore fail arch rttab ifds outsegs oq oq

′ =
∃rcvdsyn cb0 cb in cb

′.
enqueue or fail rcvdsyn arch rttab ifds outsegs oq cb0 cb in(cb′, oq ′)

– version of above that ignores errors and doesn’t touch the tcpcb :
(enqueue each and ignore fail arch rttab ifds[]oq oq

′ = (oq = oq
′)) ∧

(enqueue each and ignore fail arch rttab ifds(seg :: segs)oq oq
′′

= ∃oq ′. enqueue and ignore fail arch rttab ifds[seg]oq oq
′ ∧

enqueue each and ignore fail arch rttab ifds segs oq
′
oq

′′)

– do mliftc for function returning at most one segment and not dealing with queueing flag :
stream mlift tcp output perhaps or fail(* X ts val X *)arch rttab ifds

0
s(s ′,FIN) =

∃s1 FINs.
stream tcp output perhaps s(s1,FINs) ∧
case FINs of
∗ → s

′ = s1 ∧ FIN = F
‖ ↑ FIN

′ → (∃cb′
es

′
outsegs

′.(* ignore error return *)
stream rollback tcp output T(s1.is1, s1.is2)arch rttab ifds

0

(* X (tcp sock of s).cb X *)(tcp sock of s1).cb(cb′, es ′, outsegs
′) ∧

s
′ = s1 〈[pr :=TCP PROTO(tcp sock of s1 〈[cb := cb

′]〉)]〉 ∧
FIN = (outsegs

′ ∧ FIN
′))

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

dropwithreset 51

6.3 Incoming Segment Functions (TCP only)

Updates performed to the idle, keepalive, and FIN_WAIT_2 timers for every incoming segment.

6.3.1 Summary

update idle Do updates appropriate to receiving a new segment on a
connection

6.3.2 Rules

– Do updates appropriate to receiving a new segment on a connection :
update idle tcp sock tt keep

′ =
choose tf needfin :: {T;F}.
tt keep

′ = (if ¬(tcp sock .st = SYN RECEIVED ∧ tf needfin) then
(* reset keepalive timer to 2 hours. *)
↑((())

slow timer TCPTV KEEP IDLE
)

else
tcp sock .cb.tt keep)

6.4 Drop Segment Functions (TCP only)

When an erroneous or unexpected segment arrives, it is usually dropped (i.e, ignored). However, the
peer is usually informed immediately by means of a RST or ACK segment.

6.4.1 Summary

dropwithreset emit a RST segment corresponding to the passed segment,
unless that would be stupid.

stream mlift dropafterack or fail send immediate ACK to segment, but otherwise process
it no further

6.4.2 Rules

– emit a RST segment corresponding to the passed segment, unless that would be stupid. :
dropwithreset segRST (is1, is2)ifds0

RST =
(* Needs list of the host’s interfaces, to verify that the incoming segment wasn’t broadcast. Returns a list of
segments. *)

if (* never RST a RST *)
segRST ∨
(* is segment a (link-layer?) broadcast or multicast? *)
F ∨
(* is source or destination broadcast or multicast? *)
(∃i1.is1 = ↑ i1 ∧ is broadormulticast ∅ i1) ∨
(∃i2.is2 = ↑ i2 ∧ is broadormulticast ifds

0
i2)

(* BSD only checks incoming interface, but should have same effect as long as interfaces don’t overlap *)
then

RST = F
else

RST ∈ {T;F}

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

52 tcp close

– send immediate ACK to segment, but otherwise process it no further :
stream mlift dropafterack or fail segRST arch rttab ifds sock(sock ′,FIN ,RST , stop′) =
(* ifds is just in case we need to send a RST, to make sure we don’t send it to a broadcast address. *)
let continue = ¬stop′ in
let tcp sock = tcp sock of sock in
(continue = T ∧
let cb = tcp sock .cb in
choose ACK :: {T;F}.
choose ack lt snd una or snd max lt ack :: {T;F}.
if tcp sock .st = SYN RECEIVED ∧

ACK ∧
ack lt snd una or snd max lt ack

then
(* break loop in ”LAND” DoS attack, and also prevent ACK storm between two listening ports that have
been sent forged SYN segments, each with the source address of the other. (tcp_input.c:2141) *)
sock

′ = sock ∧
FIN = F ∧
dropwithreset segRST (sock .is1, sock .is2)ifds RST

(* ignore queue full error *)
else

(∃sock1 msgFIN .(* ignore errors *)
let tcp sock1 = tcp sock of sock1 in
stream tcp output really sock(sock1,msgFIN)∧ (* did set tf acknow and call tcp output perhaps, which

seemed a bit silly *)
(* notice we here bake in the assumption that the timestamps use the same counter as the band limiter;
perhaps this is unwise *)
∃outsegs

′
cb

′
es

′.
stream rollback tcp output T(sock .is1, sock .is2)arch rttab ifds tcp sock1 .cb(cb′, es ′, outsegs

′) ∧
sock

′ = sock1 〈[pr :=TCP PROTO(tcp sock1 〈[cb := cb
′]〉)]〉 ∧

FIN = (if outsegs
′ then msgFIN else F) ∧

RST = F))

6.5 Close Functions (TCP only)

Closing a connection, updating the socket and TCP control block appropriately.

6.5.1 Summary

tcp close close the socket and remove the TCPCB
tcp drop and close drop TCP connection, reporting the specified error. If

synchronised, send RST to peer

6.5.2 Rules

– close the socket and remove the TCPCB :
tcp close arch sock = sock
〈[cantrcvmore :=T; (* MF doesn’t believe this is correct for Linux or WinXP *)

cantsndmore :=T;
is1 := if bsd arch arch then ∗ else sock .is1;
ps1 := if bsd arch arch then ∗ else sock .ps1;
pr :=TCP PROTO(tcp sock of sock
〈[st :=CLOSED ;

cb := initial cb]〉)
]〉

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

quad of 53

Description This is similar to BSD’s tcp_close(), except that we do not actually remove the
protocol/control blocks. The quad of the socket is cleared, to enable another socket to bind to the
port we were previously using — this isn’t actually done by BSD, but the effect is the same. The
bsd cantconnect flag is set to indicate that the socket is in such a detached state.

– drop TCP connection, reporting the specified error. If synchronised, send RST to peer :
tcp drop and close arch err sock(sock ′, (oflgs, odata : char list)) =
let tcp sock = tcp sock of sock in (
(if tcp sock .st /∈ {CLOSED ;LISTEN ;SYN SENT} then

(oflgs = oflgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=T]〉 ∧
odata ∈ UNIV)

else
(oflgs = oflgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
odata = [])) ∧

let es ′ =
if err = ↑ ETIMEDOUT then

(if tcp sock .cb.t softerror 6= ∗ then
tcp sock .cb.t softerror

else
↑ ETIMEDOUT)

else if err 6= ∗ then err
else sock .es
in
sock ′ = tcp close arch(sock 〈[es := es ′]〉))

Description BSD calls this tcp_drop

6.6 Socket quad testing and extraction (TCP only)

Testing and extracting the quad of a connection from the socket.

6.6.1 Summary

exists quad of test whether a socket quad is set
quad of extract the quad from the socket

6.6.2 Rules

– test whether a socket quad is set :
exists quad of(sock : TCP3 hostTypes $socket) =
∃i1 p1 i2 p2.(↑ i1, ↑ p1, ↑ i2, ↑ p2) = (sock .is1, sock .ps

1
, sock .is2, sock .ps

2
)

– extract the quad from the socket :
quad of(sock : TCP3 hostTypes $socket) =

(the sock .is1, the sock .ps
1
, the sock .is2, the sock .ps

2
)

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

54 quad of

Rule version: $ Id: TCP3 auxFnsScript.sml,v 1.16 2009/02/20 13:08:08 tjr22 Exp $

Part VI

TCP3 hostLTS

55

Chapter 7

Host LTS: Socket Calls

7.1 accept() (TCP only)

accept : fd → fd ∗ (ip ∗ port)

accept(fd) returns the next connection available on the completed connections queue for the listening
TCP socket referenced by file descriptor fd . The returned file descriptor fd refers to the newly-connected
socket; the returned ip and port are its remote address. accept() blocks if the completed connections
queue is empty and the socket does not have the O NONBLOCK flag set.

Any pending errors on the new connection are ignored, except for ECONNABORTED which causes
accept() to fail with ECONNABORTED .

Calling accept() on a UDP socket fails: UDP is not a connection-oriented protocol.

7.1.1 Errors

A call to accept() can fail with the errors below, in which case the corresponding exception is raised:

EAGAIN The socket has the O NONBLOCK flag set and no connections are available
on the completed connections queue.

ECONNABORTED The connection at the head of the completed connections queue has been
aborted; the socket has been shutdown for reading; or the socket has been
closed.

EINVAL Ths socket is not accepting connections, i.e., it is not in the LISTEN state, or
is a UDP socket.

EMFILE The maximum number of file descriptors allowed per process are already open
for this process.

EOPNOTSUPP The socket type of the specified socket does not support accepting connections.
This error is raised if accept() is called on a UDP socket.

ENFILE Out of resources.

ENOBUFS Out of resources.

ENOMEM Out of resources.

EINTR The system was interrupted by a caught signal.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

57

58 accept() (TCP only)

7.1.2 Common cases

accept() is called and immediately returns a connection: accept 1 ; return 1
accept() is called and blocks; a connection is completed and the call returns: accept 2 ; deliver in 99 ;

deliver in 1 ; accept 1 ; return 1

7.1.3 API

Posix: int accept(int socket, struct sockaddr *restrict address,

socklen_t *restrict address_len);

FreeBSD: int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Linux: int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

WinXP: SOCKET accept(SOCKET s, struct sockaddr* addr, int* addrlen);

In the Posix interface:

• socket is the listening socket’s file descriptor, corresponding to the fd argument of the model;

• the returned int is either non-negative, i.e., a file descriptor referring to the newly-connected socket,
or -1 to indicate an error, in which case the error code is in errno. On WinXP an error is indicated
by a return value of INVALID_SOCKET, not -1, with the actual error code available through a call
to WSAGetLastError().

• address is a pointer to a sockaddr structure of length address_len corresponding to the ip ∗port
returned by the model accept(). If address is not a null pointer then it stores the address of
the peer for the accepted connection. For the model accept() it will actually be a sockaddr_in

structure; the peer IP address will be stored in the sin_addr.s_addr field, and the peer port will
be stored in the sin_port field. If address is a null pointer then the peer address is ignored, but
the model accept() always returns the peer address. On input the address_len is the length of
the address structure, and on output it is the length of the stored address.

7.1.4 Model details

If the accept() call blocks then state Accept2 (sid) is entered, where sid is the index of the socket that
accept() was called upon.

The following errors are not included in the model:

• EFAULT signifies that the pointers passed as either the address or address_len arguments were
inaccessible. This is an artefact of the C interface to accept() that is excluded by the clean interface
used in the model.

• EPERM is a Linux-specific error code described by the Linux man page as ”Firewall rules forbid
connection”. This is outside the scope of what is modelled.

• EPROTO is a Linux-specific error code described by the man page as ”Protocol error”. Only TCP
and UDP are modelled here; the only sockets that can exist in the model are bound to a known
protocol.

• WSAECONNRESET is a WinXP-specific error code described in the MSDN page as ”An incoming
connection was indicated, but was subsequently terminated by the remote peer prior to accepting
the call.” This error has not been encountered in exhaustive testing.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

From the Linux man page: Linux accept() passes already-pending network errors on the new socket
as an error code from accept. This behaviour differs from other BSD socket implementations. For reli-
able operation the application should detect the network errors defined for the protocol after accept and
treat them like EAGAIN by retrying. In case of TCP/IP these are ENETDOWN, EPROTO, ENOPRO-
TOOPT, EHOSTDOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP, and ENETUNREACH.

This is currently not modelled, but will be looked at when the Linux semantics are investigated.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

accept() (TCP only) 59

7.1.5 Summary

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

60 accept 1

accept 1 tcp: rc Return new connection; either immediately or from a
blocked state.

accept 2 tcp: block Block waiting for connection
accept 3 tcp: fast fail Fail with EAGAIN : no pending connections and non-

blocking semantics set
accept 4 tcp: rc Fail with ECONNABORTED : the listening socket has

cantsndmore set or has become CLOSED . Returns either
immediately or from a blocked state.

accept 5 tcp: rc Fail with EINVAL: socket not in LISTEN state
accept 6 tcp: rc Fail with EMFILE : out of file descriptors
accept 7 udp: fast fail Fail with EOPNOTSUPP or EINVAL: accept() called on

a UDP socket

7.1.6 Rules

accept 1 tcp: rc Return new connection; either immediately or from a blocked state.

(h 〈[ts := ts ⊕ (tid 7→ (t)d);
fds := fds;
files :=files;
socks :=
socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,

TCP Sock(LISTEN , cb, ↑ lis)));
(sid ′,Sock(∗, sf ′, ↑ i ′1, ↑ p1, ↑ i2, ↑ p2, es

′, cantsndmore ′, cantrcvmore ′,
TCP Sock(ESTABLISHED , cb′, ∗)))]]〉,

SS ,MM)
lbl
−−→ (h 〈[ts := ts ⊕ (tid 7→

(

Ret(OK (fd ′, (i2, p2)))
)

sched timer
);

fds := fds ′;
files :=files ⊕ [(fid ′,File(FT Socket(sid ′),ff default))];
socks :=
socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,

TCP Sock(LISTEN , cb, ↑ lis ′)));
(sid ′,Sock(↑ fid ′, sf ′, ↑ i ′1, ↑ p1, ↑ i2, ↑ p2, es

′,
cantsndmore ′, cantrcvmore ′,TCP Sock(ESTABLISHED , cb′, ∗)))]]〉,

SS ,MM)

t = Run ∧

lbl = tid ·(accept fd) ∧

rc = fast succeed ∧

fid = fds[fd] ∧
fd ∈ dom(fds) ∧

files[fid] = File(FT Socket(sid),ff)

∨

t = Accept2 (sid) ∧

lbl = τ ∧

rc = slow urgent succeed

∧

lis.q = q @ [sid ′] ∧
lis ′.q = q ∧
lis ′.q0 = lis.q0 ∧ lis ′.qlimit = lis.qlimit ∧
(sid 6= sid ′) ∧
es ′ 6= ↑ ECONNABORTED ∧
fid ′ /∈ ((dom(files)) ∪ {fid}) ∧
nextfd h.arch fds fd ′ ∧
fds ′ = fds ⊕ (fd ′,fid ′) ∧
(∀i1.↑ i1 = is1 =⇒ i1 = i ′1)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

accept 3 61

Description
This rule covers two cases: (1) the completed connection queue is non-empty when accept(fd) is

called from a thread tid in the Run state, where fd refers to a TCP socket sid , and (2) a previous
call to accept(fd) on socket sid blocked, leaving its calling thread tid in state Accept2 (sid), and a new
connection has become available.

In either case the listening TCP socket sid has a connection sid ′ at the head of its completed connec-
tions queue sid ′ :: q . A socket entry for sid ′ already exists in the host’s finite map of sockets, socks⊕
The socket is ESTABLISHED , is not shutdown for reading, and is only missing a file description asso-
ciation that would make it accessible via the sockets interface.

A new file description record is created for connection sid ′, indexed by a new fid ′, and this is added
to the host’s finite map of file descriptions files. It is assigned a default set of file flags, ff default . The
socket entry sid ′ is completed with its file association ↑ fid ′ and sid ′ is removed from the head of the
completed connections queue.

When the listening socket sid is bound to a local IP address i1, the accepted socket sid ′ is also bound
to it.

Finally, the new file descriptor fd ′ is created in an architecture-specific way using the auxiliary nextfd ,
and an entry mapping fd ′ to fid ′ is added to the host’s finite map of file descriptors. If the calling thread
was previously blocked in state Accept2 (sid) it proceeds via a τ transition, otherwise by a tid ·(accept fd)
transition. The thread is left in state Ret(OK (fd ′, (i2, p2))) to return the file descriptor and remote
address of the accepted connection in response to the original accept() call.

If the new socket sid ′ has error ECONNABORTED pending in its error field es ′, this is handled by
rule accept 5 . All other pending errors on sid ′ are ignored, but left as the socket’s pending error.

accept 2 tcp: block Block waiting for connection

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·(accept fd)
−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Accept2 (sid))never timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
ff .b(O NONBLOCK) = F ∧
sid ∈ dom(h.socks) ∧
(∃sf is1 p1 cb lis es.

h.socks[sid] = Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es ,F, cantrcvmore,
TCP Sock(LISTEN , cb, ↑ lis)) ∧

lis.q = [])

Description
A blocking accept() call is performed on socket sid when no completed incoming connections are

available. The calling thread blocks until a new connection attempt completes successfully, the call is
interrupted, or the process runs out of file descriptors.

From thread tid , which is initially in the Run state, accept(fd) is called where fd refers to listening
TCP socket sid which is bound to local port p1, is not shutdown for reading and is in blocking mode:
ff .b(O NONBLOCK) = F. The socket’s queue of completed connections is empty, q :=[], hence the
accept() call blocks waiting for a successful new connection attempt, leaving the calling thread state
Accept2 (sid).

Socket sid might not be bound to a local IP address, i.e. is1 could be ∗. In this case the socket is
listening for connection attempts on port p1 for all local IP addresses.

accept 3 tcp: fast fail Fail with EAGAIN : no pending connections and non-blocking semantics

set

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

62 accept 4

tid ·(accept fd)
−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EAGAIN))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
h.fds[fd] = fid ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
ff .b(O NONBLOCK) = T ∧
sid ∈ dom(h.socks) ∧
(∃sf is1 p1 cb lis es.
h.socks[sid] = Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,

TCP Sock(LISTEN , cb, ↑ lis)) ∧
lis.q = [])

Description
A non-blocking accept() call is performed on socket sid when no completed incoming connections are

available. Error EAGAIN is returned to the calling thread.
From thread tid , which is initially in the Run state, accept(fd) is called where fd refers to a lis-

tening TCP socket sid which is bound to local port p1, not shutdown for writing, and in non-blocking
mode: ff .b(O NONBLOCK) = T. The socket’s queue of completed connections is empty, q :=[], hence
the accept() call returns error EAGAIN , leaving the calling thread state Ret(FAIL EAGAIN) after a
tid ·accept(fd) transition.

Socket sid might not be bound to a local IP address, i.e. is1 could be ∗. In this case the socket is
listening for connection attempts on port p1 for all local IP addresses.

accept 4 tcp: rc Fail with ECONNABORTED: the listening socket has cantsndmore set or has

become CLOSED. Returns either immediately or from a blocked state.

(h 〈[ts := ts ⊕ (tid 7→ (t)d);
socks :=
socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,

TCP Sock(st , cb, ↑ lis)))]]〉,
SS ,MM)

lbl
−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ECONNABORTED))sched timer);

socks :=
socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,

TCP Sock(st , cb, ↑ lis)))]]〉,
SS ,MM)

t = Run ∧

st = LISTEN ∧

cantsndmore = T ∧

lbl = tid ·accept(fd) ∧

rc = fast fail ∧

fd ∈ dom(h.fds) ∧

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

∨

t = Accept2 (sid) ∧

((cantrcvmore = T ∧ st = LISTEN) ∨

(st = CLOSED)) ∧

lbl = τ ∧

rc = slow urgent fail

Description
This rule covers two cases: (1) an accept(fd) call is made on a listening TCP socket sid , referenced

by fd , with cantsndmore set, and (2) a previous call to accept() on socket sid blocked, leaving a thread
tid in state Accept2 (sid), but the socket has since either entered the CLOSED state, or had cantrcvmore
set. In both cases, ECONNABORTED is returned.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

accept 6 63

This situation will arise only when a thread calls close() on the listening socket while another thread is
blocking on an accept() call, or if listen() was originally called on a socket which already had cantrcvmore
set. The latter can occur in BSD, which allows listen() to be called in any (non CLOSED or LISTEN)
state, though should never happen under typical use.

If the calling thread was previously blocked in state Accept2 (sid), it proceeds via an τ transition,
otherwise by a tid ·accept(fd) transition. The thread is left in state Ret(FAIL ECONNABORTED) to
return the error ECONNABORTED in response to the initial accept() call.

Note that this rule is not correct when dealing with the FreeBSD behaviour which allows any socket
to be placed in the LISTEN state.

accept 5 tcp: rc Fail with EINVAL: socket not in LISTEN state

(h 〈[ts := ts ⊕ (tid 7→ (t)d)]〉,SS ,MM)
lbl
−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer)]〉,SS ,MM)

t = Run ∧

lbl = tid ·accept(fd) ∧

rc = fast fail ∧

fd ∈ dom(h.fds) ∧

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

∨

t = Accept2 (sid) ∧

lbl = τ ∧

rc = slow urgent fail

∧

sid ∈ dom(h.socks) ∧
TCP PROTO(tcp sock) = (h.socks[sid]).pr ∧
tcp sock .st 6= LISTEN

Description
It is not valid to call accept() on a socket that is not in the LISTEN state.
This rule covers two cases: (1) on the non-listening TCP socket sid , accept() is called from a thread

tid , which is in the Run state, and (2) a previous call to accept() on TCP socket sid blocked because
no completed connections were available, leaving thread tid in state Accept2 (sid) and after the accept()
call blocked the socket changed to a state other than LISTEN .

In the first case the accept(fd) call on socket sid , referenced by file descriptor fd , proceeds by a
tid ·accept(fd) transition and in the latter by a τ transition. In either case, the thread is left in state
Ret(FAIL EINVAL) to return error EINVAL to the caller.

The second case is subtle: a previous call to accept() may have blocked waiting for a new completed
connection to arrive and an operation, such as a close() call, in another thread caused the socket to
change from the LISTEN state.

accept 6 tcp: rc Fail with EMFILE : out of file descriptors

(h 〈[ts := ts ⊕ (tid 7→ (t)d)]〉,SS ,MM)
lbl
−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EMFILE))sched timer)]〉,SS ,MM)

t = Run ∧

lbl = tid ·accept(fd) ∧

rc = fast fail ∧

fd ∈ dom(h.fds) ∧

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧

sid ∈ dom(h.socks) ∧

sock = (h.socks[sid]) ∧

proto of sock .pr = PROTO TCP

∨

t = Accept2 (sid) ∧

lbl = τ ∧

rc = slow nonurgent fail

∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

64 bind() (TCP and UDP)

card(dom(h.fds)) ≥ OPEN MAX

Description
This rule covers two cases: (1) from thread tid , which is in the Run state, an accept(fd) call is made

where fd refers to a TCP socket sid , and (2) a previous call to accept() blocked leaving thread tid in the
Accept2 (sid) state. In either case the accept() call fails with EMFILE as the process (see Model Details)
already has open its maximum number of open file descriptors OPEN MAX .

In the first case the error is returned immediately (fast fail) by performing an tid ·accept(fd) transition,
leaving the thread state Ret(FAIL EMFILE). In the second, the thread is unblocked, also leaving the
thread state Ret(FAIL EMFILE), by performing a τ transition.

Model details
In real systems, error EMFILE indicates that the calling process already has OPEN MAX file de-

scriptors open and is not permitted to open any more. This specification only models one single-process
host with multiple threads, thus EMFILE is generated when the host exceeds the OPEN MAX limit in
this model.

accept 7 udp: fast fail Fail with EOPNOTSUPP or EINVAL: accept() called on a UDP socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·accept(fd)
−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sid ∈ dom(h.socks) ∧
proto of(h.socks[sid]).pr = PROTO UDP ∧
(if bsd arch h.arch then err = EINVAL
else err = EOPNOTSUPP)

Description
Calling accept() on a socket for a connectionless protocol (such as UDP) has no defined behaviour

and is thus an invalid (EINVAL) or unsupported (EOPNOTSUPP) operation.
From thread tid , which is in the Run state, an accept(fd) call is made where fd refers to a UDP socket

identified by sid . The call proceeds by a tid ·accept(fd) transition leaving the thread state Ret(FAIL err)
to return error err . On FreeBSD err is EINVAL; on all other systems the error is EOPNOTSUPP .

Variations

FreeBSD FreeBSD returns error EINVAL if accept() is called on a UDP socket.

7.2 bind() (TCP and UDP)

bind : (fd ∗ ip option ∗ port option)→ unit

bind(fd , is, ps) assigns a local address to the socket referenced by file descriptor fd . The local address,
(is, ps), may consist of an IP address, a port or both an IP address and port.

If bind() is called without specifying a port, bind(, , ∗), the socket’s local port assignment is auto-
bound, i.e. an unused port for the socket’s protocol in the host’s ephemeral port range is selected and
assigned to the socket. Otherwise the port p specified in the bind call, bind(, , ↑ p) forms part of the
socket’s local address.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

bind() (TCP and UDP) 65

On some architectures a range of port values are designated to be privileged, e.g. 0-1023 inclusive.
If a call to bind() requests a port in this range and the caller does not have sufficient privileges the call
will fail.

A bind() call may or may not specify the IP address. If an IP address is not specified, bind(, ∗,),
the socket’s local IP address is set to ∗ and it will receive segments or datagrams addressed to any of
the host’s local IP addresses and port p. Otherwise, the caller specifies a local IP address, bind(, ↑ i ,),
the socket’s local IP address is set to ↑ i , and it only receives segments or datagrams addressed to IP
address i and port p.

A call to bind() may be unsuccessful if the requested IP address or port is unavailable to bind to,
although in certain situations this can be overrriden by setting the socket option SO REUSEADDR
appropriately: see bound port allowed (p36).

A socket can only be bound once: it is not possible to rebind it to a different port later. A bind() call
is not necessary for every socket: sockets may be autobound to an ephemeral port when a call requiring
a port binding is made, e.g. connect().

7.2.1 Errors

A call to bind() can fail with the errors below, in which case the corresponding exception is raised:

EACCES The specified port is in the privileged port range of the host architecture and
the current thread does not have the required privileges to bind to it.

EADDRINUSE The specified address is in use by or conflicts with the address of another socket
using the same protocol. The error may occur in the following situations only:

• bind(, , ↑ p) will fail with EADDRINUSE if another socket is bound to
port p. This error may be preventable by setting the SO REUSEADDR
socket option.

• bind(, ↑ i , ↑ p) will fail with EADDRINUSE if another socket is bound
to port p and IP address i , or is bound to port p and wildcard IP. This
error will not occur if the SO REUSEADDR option is correctly used to
allow multiple sockets to be bound to the same local port.

This error is never returned from a call bind(, , ∗) that requests an autobound
port.

EADDRNOTAVAIL The specified IP address cannot be bound as it is not local to the host.

EINVAL The socket is already bound to an address and the socket’s protocol does not
support rebinding to a new address. Multiple calls to bind() are not permitted.

EISCONN The socket is connected and rebinding to a new local address is not permitted
(TCP ONLY).

ENOBUFS A port was not specified in the bind() call and autobinding failed because no
ephemeral ports for the socket’s protocol are currently available. In addition,
on WinXP the error can signal that the host has insufficient available buffers
to complete the operation.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

66 bind() (TCP and UDP)

7.2.2 Common cases

A server application creates a TCP socket and binds it to its local address. It is then put in the LISTEN
state to accept incoming connections to this address: socket 1 ; return 1 ; bind 1 ; return 1 ; listen1

A UDP socket is created and bound to its local address. recv() is called and the socket blocks, waiting
to receive datagrams sent to the local address: socket 1 ; return 1 ; bind 1 ; return 1 ; recv 12

7.2.3 API

Posix: int bind(int socket, const struct sockaddr *address,

socklen_t address_len);

FreeBSD: int bind(int s, struct sockaddr *addr, socklen_t addrlen);

Linux: int bind(int sockfd, struct sockaddr *addr, socklen_t addrlen);

WinXP: SOCKET bind(SOCKET s, const struct sockaddr* name, int namelen);

In the Posix interface:

• socket is the socket’s file descriptor, corresponding to the fd argument of the model.

• address is a pointer to a sockaddr structure of size socklen_t containing the local IP address
and port to be assigned to the socket, corresponding to the is and ps arguments of the model.
For the AF_INET sockets used in the model, a sockaddr_in structure stores the address. The
sin_addr.s_addr field holds the IP address; if it is set to 0 then the IP address is wildcarded:
is = ∗. The sin_port field stores the port to bind to; if it is set to 0 then the port is wildcarded:
ps = ∗. On WinXP a wildcard IP is specified by the constant INADDR_ANY, not 0

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

The FreeBSD, Linux and WinXP interfaces are similar modulo some argument renaming, except
where noted above.

On Windows Socket 2 the name parameter is not necessarily interpreted as a pointer to a sockaddr

structure but is cast this way for compatilibity with Windows Socket 1.1 and the BSD sockets interface.
The service provider implementing the functionality can choose to interpret the pointer as a pointer to
any block of memory provided that the first two bytes of the block start with the address family used to
create the socket. The default WinXP internet family provider expects a sockaddr structure here. This
change is purely an interface design choice that ultimately achieves the same functionality of providing
a name for the socket and is not modelled.

7.2.4 Model details

The specification only models the AF,PF INET address families thus the address family field of the
struct sockaddr argument to bind() and those errors specific to other address familes, e.g. UNIX
domain sockets, are not modelled here.

In the Posix specification, ENOBUFS may have the additional meaning of ”Insufficient resources were
available to complete the call”. This is more general than the use of ENOBUFS in the model.

The following errors are not modelled:

• EAGAIN is BSD-specific and described in the man page as: ”Kernel resources to complete the request
are temporarily unavailable”. This is not modelled here.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

• EFAULT signifies that the pointers passed as either the address or address_len arguments were
inaccessible. This is an artefact of the C interface to bind() that is excluded by the clean interface
used in the model. On WinXP, the equivalent error WSAEFAULT in addition signifies that the name
address format used in name may be incorrect or the address family in name does not match that
of the socket.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

bind 1 67

• ENOTDIR, ENAMETOOLONG, ENOENT, ELOOP, EIO (BSD-only), EROFS, EISDIR (BSD-only), ENOMEM,
EAFNOTSUPPORT (Posix-only) and EOPNOTSUPP (Posix-only) are errors specific to other address fam-
ilies and are not modelled here. None apply to WinXP as other address families are not available
by default.

7.2.5 Summary

bind 1 all: fast succeed Successfully assign a local address to a socket (possibly
by autobinding the port)

bind 2 all: fast fail Fail with EADDRINUSE : the specified address is already
in use

bind 3 all: fast fail Fail with EADDRNOTAVAIL: the specified IP address is
not available on the host

bind 5 all: fast fail Fail with EINVAL: the socket is already bound to an
address and does not support rebinding; or socket has
been shutdown for writing on FreeBSD

bind 7 all: fast fail Fail with EACCES : the specified port is priveleged and
the current process does not have permission to bind to it

bind 9 all: fast badfail Fail with ENOBUFS : no ephemeral ports free for auto-
binding or, on WinXP only, insufficient buffers available.

7.2.6 Rules

bind 1 all: fast succeed Successfully assign a local address to a socket (possibly by auto-

binding the port)

(h0,SS ,MM)
tid ·bind(fd , is1, ps1)−−−−−−−−−−−−−−−−→ (h,SS ,MM)

h0 = h ′ 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ∗, ∗, ∗, ∗, es , cantsndmore, cantrcvmore, pr))]

]〉 ∧
h = h ′ 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore, pr))];
bound := bound]〉 ∧

fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
sid /∈ (dom(socks)) ∧
(∀i1.is1 = ↑ i1 =⇒ i1 ∈ local ips(h0.ifds)) ∧
p1 ∈ autobind(ps1, (proto of pr), h0, socks) ∧
bound = sid :: h0.bound ∧
(h0.privs ∨ p1 /∈ privileged ports h0) ∧
bound port allowed pr(h0.socks\\sid)sf h0.arch is1 p1 ∧
(case pr of

TCP PROTO(tcp sock)→ tcp sock = TCP Sock0(CLOSED , cb, ∗) ∧
(bsd arch h0.arch =⇒ cantsndmore = F) ‖

UDP PROTO(udp sock)→ udp sock = UDP Sock0([]))

Description
The call bind(fd , is1, ps1) is perfomed on the TCP or UDP socket sid referenced by file descriptor

fd from a thread tid in the Run state. The socket sid is currently uninitialised, i.e. it has no local or

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

68 bind 2

remote address defined (∗, ∗, ∗, ∗), and it contains an uninitialised TCP or UDP protocol block, tcp sock
and udp sock as appropriate for the socket’s protocol.

If an IP address is specified in the bind() call, i.e. is1 = ↑ i1, the call can only succeed if the IP
address i1 is one of those belonging to an interface of host h, i1 ∈ local ips(h0.ifds).

The port p1 that the socket will be bound to is determined by the auxiliary function autobind that
takes as argument the port option ps1 from the bind() call. If ps1 = ↑ p autobind simply returns the
singleton set {p}, constraining the local port binding p1 by p1 = p. Otherwise, autobind returns a set of
available ephemeral ports and p1 is constrained to be a port within the set.

If a port is specified in the bind() call, i.e. ps1 = ↑ p1, either the port is not a privileged port
p1 /∈ privileged ports or the host (actually, process) must have sufficient privileges h0.priv = T.

Not all requested bindings are permissible because other sockets in the system may be bound to the
chosen address or to a conflicting address. To check the binding is1, ↑ p1 is permitted the auxiliary func-
tion bound port allowed is used. bound port allowed is architecture dependent and checks not only the
other sockets bound locally to port p1 on the host, but also the status of the socket flag SO REUSEADDR
for socket sid and the conflicting sockets. The use of the socket flag SO REUSEADDR can permit sockets
to share bindings under some circumstances, resolving the binding conflict. See bound port allowed (p36)
for further information.

The call proceeds by performing a tid ·bind(fd , is1, ps1) transition returning OK () to the calling
thread. Socket sid is bound to local address (is1, ↑ p1)and the host has an updated list of bound sockets
bound with socket sid at its head.

Model details
The list of bound sockets bound is used by the model to determine the order in which sockets are

bound. This is required to model ICMP message and UDP datagram delivery on Linux.

Variations

FreeBSD If sid is a TCP socket then it cannot be shutdown for writing: cantsndmore =
F, and its bsd cantconnect flag cannot be set.

bind 2 all: fast fail Fail with EADDRINUSE : the specified address is already in use

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·bind(fd , is1, ↑ p1)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EADDRINUSE))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = (h.socks[sid]) ∧
¬(bound port allowed sock .pr(h.socks\\sid)sock .sf h.arch is1 p1) ∧
(option case T (λi1.i1 ∈ local ips(h.ifds)) is1 ∨ windows arch h.arch)

Description
From thread tid , which is in the Run state, a bind(fd , is1, ↑ p1) call is performed on the socket sock ,

which is identified by sid and referenced by fd .
If an IP address is specified in the call, is1 = ↑ i1, then i1 must be an IP address for one of the host’s

interfaces. The requested local address binding, (is1, ↑ p1), is not available as it is already in use: see
bound port allowed (p36) for details.

The call proceeds by a tid ·bind(fd , is1, ↑ p1) transition leaving the thread in state
Ret(FAIL EADDRINUSE) to return error EADDRINUSE to the caller.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

bind 7 69

bind 3 all: fast fail Fail with EADDRNOTAVAIL: the specified IP address is not available on

the host

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·bind(fd , ↑ i1, ps1)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EADDRNOTAVAIL))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
i1 /∈ local ips(h.ifds)

Description
From thread tid , which is in the Run state, a bind(fd , ↑ i1, ps1) call is made where fd refers to a

socket sid .
The IP address, i1, to be assigned as part of the socket’s local address does not belong to any of the

interfaces on the host, i1 /∈ local ips(h.ifds), and therefore can not be assigned to the socket.
The call proceeds by a tid ·bind(fd , ↑ i1, ps1) transition leaving the thread in state

Ret(FAIL EADDRNOTAVAIL) to return error EADDRNOTAVAIL to the caller.

bind 5 all: fast fail Fail with EINVAL: the socket is already bound to an address and does

not support rebinding; or socket has been shutdown for writing on FreeBSD

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·bind(fd , is1, ps1)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = sock ∧
(sock .ps1 6= ∗ ∨
(bsd arch h.arch ∧ sock .pr = TCP PROTO(tcp sock) ∧

(sock .cantsndmore ∨
T)))

Description From thread tid , which is in the Run state, a bind(fd , is1, ps1) call is made where fd
refers to a socket sock . The socket already has a local port binding: sock .ps1 6= ∗, and rebinding is not
supported.

A tid ·bind(fd , is1, ps1) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

FreeBSD This rule also applies if fd refers to a TCP socket which is either shut down
for writing or has its bsd cantconnect flag set.

bind 7 all: fast fail Fail with EACCES : the specified port is priveleged and the current

process does not have permission to bind to it

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

70 close() (TCP and UDP)

tid ·bind(fd , is1, ↑ p1)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EACCES))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(¬h.privs ∧ p1 ∈ privileged ports h)

Description
From thread tid , which is in the Run state, a bind(fd , is1, ↑ p1) call is made where fd refers to a

socket sid . The port specified in the bind call, p1, lies in the host’s range of privileged ports, p1 ∈
privileged ports, and the current host (actually, process) does not have sufficient permissions to bind to
it: ¬h.privs.

The call proceeds by a tid ·bind(fd , is1, ↑ p1) transition leaving the thread in state
Ret(FAIL EACCES) to return the access violation error EACCES to the caller.

bind 9 all: fast badfail Fail with ENOBUFS : no ephemeral ports free for autobinding or, on

WinXP only, insufficient buffers available.

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·bind(fd , is1, ps1)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOBUFS))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
ps1 = ∗ ∧
((autobind(ps1, (proto of(h.socks[sid]).pr), h, h.socks) = ∅) ∨
windows arch h.arch)

Description
From thread tid , which is in the Run state, a bind(fd , is1, ps1) call is made where fd refers to a socket

sid .
A port is not specifed in the bind call, i.e. ps1 = ∗, and calling autobind returns the ∅ set rather

than a set of free ephemeral ports that the socket could choose from. This occurs only when there are
no remaining ephemeral ports available for autobinding.

The call proceeds by a tid ·bind(fd , is1, ps1) transition leaving the thread state Ret(FAIL ENOBUFS)
to return the out of resources error ENOBUFS to the caller.

Model details
Posix reports ENOBUFS to signify that ”Insufficient resources were available to complete the call”.

This is not modelled here.

Variations

WinXP On WinXP this error can occur non-deterministically when insufficient buffers
are available.

7.3 close() (TCP and UDP)

close : fd → unit

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

close() (TCP and UDP) 71

A call close(fd) closes file descriptor fd so that it no longer refers to a file description and associated
socket. The closed file descriptor is made available for reuse by the process. If the file descriptor is the
last file descriptor referencing a file description the file description itself is deleted and the underlying
socket is closed. If the socket is a UDP socket it is removed.

It is important to note the distinction drawn above: only closing the last file descriptor of a socket
has an effect on the state of the file description and socket.

The following behaviour may occur when closing the last file descriptor of a TCP socket:

• A TCP socket may have the SO LINGER option set which specifies a maximum duration in seconds
that a close(fd) call is permitted to block.

– In the normal case the SO LINGER option is not set, the close call returns immediately and
asynchronously sends any remaining data and gracefully closes the connection.

– If SO LINGER is set to a non-zero duration, the close(fd) call will block while the TCP
implementation attempts to successfully send any remaining data in the socket’s send buffer
and gracefully close the connection. If the sending of remaining data and the graceful close
are successful within the set duration, close(fd) returns successfully, otherwise the linger timer
expires, close(fd) returns an error EAGAIN , and the close operation continues asychronously,
attempting to send the remaining data.

– The SO LINGER option may be set to zero to indicate that close(fd) should be abortive. A
call to close(fd) tears down the connection by emitting a reset segment to the remote end
(abandoning any data remaining in the socket’s send queue) and returns successfully without
blocking.

• If close(fd) is called on a TCP socket in a pre-established state the file description and socket are
simply closed and removed, regardless of how SO LINGER is set, except on Linux platforms where
SYN RECEIVED is dealt with as an established state for the purposes of close(fd).

• Calling close(fd) on a listening TCP socket closes and removes the socket and aborts each of the
connections on the socket’s pending and completed connection queues.

7.3.1 Errors

A call to close() can fail with the errors below, in which case the corresponding exception is raised:

EAGAIN The linger timer expired for a lingering close() call and the socket has not yet
been successfully closed.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

EINTR The system was interrupted by a caught signal.

7.3.2 Common cases

A TCP socket is created and connected to a peer; other socket calls are made, most likely send() and
recv(), but the SO LINGER option is not set. close() is then called and the connection is gracefully
closed: socket 1 ; . . . ; close 2

A UDP socket is created and socket calls are made on it, mostly send() and recv() calls; the socket
is then closed: socket 1 ; . . . ; close 10

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

72 close 1

7.3.3 API

Posix: int close(int fildes);

FreeBSD: int close(int d);

Linux: int close(int fd);

WinXP: int closesocket(SOCKET s);

In the Posix interface:

• fildes is the file descriptor to close, corresponding to the fd argument of the model close().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

The FreeBSD, Linux and WinXP interfaces are similar modulo argument renaming, except where
noted above.

7.3.4 Model details

The following errors are not modelled:

• In Posix and on FreeBSD and Linux, EIO means an I/O error occurred while reading from or
writing to the file system. Since we model only sockets, not file systems, we do not model this
error.

• On FreeBSD, ENOSPC means the underlying object did not fit, cached data was lost.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.3.5 Summary

close 1 all: fast succeed Successfully close a file descriptor that is not the last file
descriptor for a socket

close 2 tcp: fast succeed Successfully perform a graceful close on the last file de-
scriptor of a synchronised socket

close 3 tcp: fast succeed Successful abortive close of a synchronised socket
close 4 tcp: block Block on a lingering close on the last file descriptor of a

synchronised socket
close 5 tcp: slow urgent suc-

ceed
Successful completion of a lingering close on a synchro-
nised socket

close 6 tcp: slow nonurgent
fail

Fail with EAGAIN : unsuccessful completion of a linger-
ing close on a synchronised socket

close 7 tcp: fast succeed Successfully close the last file descriptor for a socket in
the CLOSED , SYN SENT or SYN RECEIVED states.

close 8 tcp: fast succeed Successfully close the last file descriptor for a listening
TCP socket

close 10 udp: fast succeed Successfully close the last file descriptor of a UDP socket

7.3.6 Rules

close 1 all: fast succeed Successfully close a file descriptor that is not the last file descriptor

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

close 2 73

for a socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds]〉,
SS ,MM)

tid ·close(fd)
−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

fds := fds ′]〉,
SS ,MM)

fd ∈ dom(fds) ∧
fid = fds[fd] ∧
fid ref count(fds,fid) > 1 ∧
fds ′ = fds\\fd

Description
A close(fd) call is performed where fd refers to either a TCP or UDP socket. At least two file

descriptors refer to file description fid , fid ref count(fds,fid) > 1, of which one is fd , fid = fds[fd].
The close(fd) call proceeds by a tid ·close(fd) transition leaving the host in the successful return state

Ret(OK ()). In the final host state, the mapping of file descriptor fd to file descriptor index fid is removed
from the file descriptors finite map fds ′ = fds\\fd , effectively reducing the reference count of the file
description by one. The close() call does not alter the socket’s state as other file descriptors still refer to
the socket through file description fid .

close 2 tcp: fast succeed Successfully perform a graceful close on the last file descriptor of

a synchronised socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds;
files :=files ⊕

[(fid ,File(FT Socket(sid),ff))];
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)
tid ·close(fd)
−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

fds := fds ′;
files :=files\\fid ;
socks := socks ⊕

[(sid ,Sock(∗, sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es,T,T,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s
′)],MM)

(st ∈ {ESTABLISHED ;FIN WAIT 1 ;CLOSING ;FIN WAIT 2 ;
TIME WAIT ;CLOSE WAIT ;LAST ACK} ∨

st = SYN RECEIVED ∧ linux arch h.arch) ∧
(sf .t(SO LINGER) =∞∨
ff .b(O NONBLOCK) = T ∧ sf .t(SO LINGER) 6= 0 ∧ ¬linux arch h.arch) ∧
fd ∈ dom(fds) ∧
fid = fds[fd] ∧
fid ref count(fds,fid) = 1 ∧
fds ′ = fds\\fd ∧
fid /∈ (dom(files)) ∧
(peek , inline) = (F,T) ∧
read(i1, p1, i2, p2)peek inline(flgs, data)s s ′

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

74 close 3

A close(fd) call is performed on the TCP socket sid referenced by file descriptor fd which is the only
file descriptor referencing the socket’s file description: fid ref count(fds,fid) = 1. The TCP socket sid is
in a synchronised state, i.e. a state ≥ ESTABLISHED , or on Linux it may be in the SYN RECEIVED
state.

In the common case the socket’s linger option is not set, sf .t(SO LINGER) = ∞, and regardless of
whether the socket is in non-blocking mode or not, i.e. ff .b(O NONBLOCK) is unconstrained, the call
to close() proceeds successfully without blocking.

On all platforms except for Linux, if the socket is in non-blocking mode ff .b(O NONBLOCK) = T
the linger option may be set with a positive duration: sf .t(SO LINGER) 6= 0). In this case the option
is ignored giving precedence to the socket’s non-blocking semantics. The close() call succeeds without
blocking.

The close(fd) call proceeds by a tid ·close(fd) transition leaving the host in the successful return
state Ret(OK ()). The final socket is marked as unable to send and receive further data, cantsndmore =
T ∧ cantrcvmore = T, eventually causing TCP to transmit all remaining data in the socket’s send queue
and perform a graceful close.

In the final host state, the mapping of file descriptor fd to file descriptor index fid is removed from
the file descriptors finite map fds ′ = fds\\fd and the file description entry fid is removed from the finite
map of file descriptors files\\fid . The socket entry itself, (sid ,Sock(↑ fid ,. . . ,)) is not destroyed at this
point; it remains until the TCP connection has been successfully closed.

Variations

Linux The socket can be in the SYN RECEIVED state or in one of the synchronised
states ≥ ESTABLISHED .
On Linux, non-blocking semantics do not take precedence over
the SO LINGER option, i.e. if the socket is non-blocking,
ff .b(O NONBLOCK) = T and a linger option is set to a non-zero
value, sf .t(SO LINGER) 6= 0, the socket may block on a call to close(). See
also close 4 (p75).

close 3 tcp: fast succeed Successful abortive close of a synchronised socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds;
files :=files ⊕

[(fid ,File(FT Socket(sid),ff))];
socks := socks ⊕

[(sid , sock)];
oq := oq]〉,
SS ,MM)

tid ·close(fd)
−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

fds := fds ′;
files :=files;
socks := socks ⊕ [(sid , sock ′)];
oq := oq ′]〉,
SS ′′,MM)

(st ∈ {ESTABLISHED ;FIN WAIT 1 ;CLOSING ;FIN WAIT 2 ;
TIME WAIT ;CLOSE WAIT ;LAST ACK} ∨

st = SYN RECEIVED ∧ linux arch h.arch) ∧
sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)) ∧
sf .t(SO LINGER) = 0 ∧
fd ∈ dom(fds) ∧
fid = fds[fd] ∧
fid ref count(fds,fid) = 1 ∧
fds ′ = fds\\fd ∧
fid /∈ (dom(files)) ∧
sid /∈ dom(socks) ∧
sock ′ = (tcp close h.arch sock)〈[fid := ∗]〉 ∧
oflgs = oflgs 〈[SYN :=F;SYNACK :=F;RST :=T]〉 ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

close 4 75

odata ∈ UNIV ∧
SS = SS 0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
SS ′ = SS 0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)] ∧
destroy(i1, p1, i2, p2)SS ′ SS ′′

Description
A close(fd) call is performed on the TCP socket sid referenced by file descriptor fd which is the only

file descriptor referencing the socket’s file description: fid ref count(fds,fid) = 1. The TCP socket sid
is in a synchronised state, i.e. a state >= ESTABLISHED , except on Linux platforms where it may be
in the SYN RECEIVED state.

The socket’s linger option is set to a duration of zero, sf .t(SO LINGER) = 0, to signify that an
abortive closure of socket sid is required.

The close(fd) call proceeds by a tid ·close(fd) transition leaving the host in the successful re-
turn state Ret(OK ()). A reset segment seg is constructed from the socket’s control block cb
and address quad (i1, i2, p1, p2) and is appended to the host’s output queue, oq , by the function
enqueue and ignore fail (p50), to create new output queue oq ′. The enqueue and ignore fail function
always succeeds; if it is not possible to add the reset segment seq to the output queue the corresponding
error code is ignored and the reset segment is not queued for transmission.

The mapping of file descriptor fd to index fid is removed from the file descriptors finite map fds ′ =
fds\\fd and the file description entry indexed by fid is removed from the finite map of file descriptions.
The socket is put in the CLOSED state, shutdown for reading and writing, has its control block reset, and
its send and receive queues emptied; this is done by the auxiliary function tcp close (p52). Additionally,
its file description field is cleared.

Variations

Linux The socket can be in the SYN RECEIVED state or in one of the synchronised
states ≥ ESTABLISHED .

close 4 tcp: block Block on a lingering close on the last file descriptor of a synchronised

socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds;
files :=files ⊕

[(fid ,File(FT Socket(sid),ff))];
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ,MM)
tid ·close(fd)
−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Close2 (sid))slow timer(sf .t(SO LINGER)));

fds := fds ′;
files :=files;
socks := socks ⊕

[(sid ,Sock(∗, sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es,T,T,
TCP Sock(st , cb, ∗)))]]〉,

SS ,MM)

(st ∈ {ESTABLISHED ;FIN WAIT 1 ;CLOSING ;FIN WAIT 2 ;
TIME WAIT ;CLOSE WAIT ;LAST ACK} ∨

st = SYN RECEIVED ∧ linux arch h.arch) ∧
sf .t(SO LINGER) /∈ {0;∞} ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

76 close 5

(ff .b(O NONBLOCK) = F ∨ (ff .b(O NONBLOCK) = T ∧ linux arch h.arch)) ∧
fd ∈ dom(fds) ∧
fid = fds[fd] ∧
fid ref count(fds,fid) = 1 ∧
fds ′ = fds\\fd ∧
fid /∈ (dom(files))

Description
A close(fd) call is performed on the TCP socket sid referenced by file descriptor fd which is the only

file descriptor referencing the socket’s file description: fid ref count(fds,fid) = 1. The TCP socket sid
has a blocking mode of operation, ff .b(O NONBLOCK) = F, and is in a synchronised state, i.e. a state
≥ ESTABLISHED .

On Linux, the socket is also permitted to be in the SYN RECEIVED state and it may have non-
blocking semantics ff .b(O NONBLOCK) = T, because the linger option takes precedence over non-
blocking semantics.

The socket’s linger option is set to a positive duration and is neither zero (which signifies an imme-
diate abortive close of the socket) nor infinity (which signifies that the linger option has not been set),
sf .t(SO LINGER) /∈ {0;∞}. The close call blocks for a maximum duration that is the linger option
duration in seconds, during which time TCP attempts to send all remaining data in the socket’s send
buffer and gracefully close the connection.

The close(fd) call proceeds by a tid ·close(fd) transition leaving the host in the blocked state
Close2 (sid). The socket is marked as unable to send and receive further data, cantsndmore =
T ∧ cantrcvmore = T; this eventually causes TCP to send all remaining data in the socket’s send
queue and perform a graceful close.

In the final host state, the mapping of file descriptor fd to file descriptor index fid is removed from
the file descriptors finite map fds ′ = fds\\fd and file description entry fid is removed from the finite
map of file descriptors. The socket entry itself, (sid ,Sock(↑ fid ,. . .)), is not destroyed at this point; it
remains until the TCP socket has been successfully closed by future asychronous events.

Variations

Linux The socket can be in the SYN RECEIVED state or in one of the synchronised
states ≥ ESTABLISHED .
On Linux, non-blocking semantics do not take precedence over
the SO LINGER option, i.e. if the socket is non-blocking,
ff .b(O NONBLOCK) = T and a linger option is set to a non-zero
value, sf .t(SO LINGER) 6= 0 the socket may block on a call to close().

close 5 tcp: slow urgent succeed Successful completion of a lingering close on a synchro-

nised socket

(h 〈[ts := ts ⊕ (tid 7→ (Close2 (sid))d);
socks := socks ⊕

[(sid ,Sock(∗, sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es,T,T,
TCP Sock(st , cb, ∗)))]]〉,

SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕
[(sid ,Sock(∗, sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es,T,T,

TCP Sock(st , cb, ∗)))]]〉,
SS ,MM)

st ∈ {TIME WAIT ;CLOSED ;FIN WAIT 2}

Description
A previous call to close() with the linger option set on the socket blocked leaving thread tid in the

Close2 (sid) state. The socket sid has successfully transmitted all the data in its send queue, sndq = [],
and has completed a graceful close of the connection: st ∈ {TIME WAIT ;CLOSED ;FIN WAIT 2}.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

close 7 77

The rule proceeds via a τ transition leaving thread tid in the Ret(OK ()) state to return successfully
from the blocked close() call. The socket remains in a closed state.

Note that the asychronous sending of any remaining data in the send queue and graceful closing of
the connection is handled by other rules. This rule applies once these events have reached a successful
conclusion.

close 6 tcp: slow nonurgent fail Fail with EAGAIN : unsuccessful completion of a lingering

close on a synchronised socket

(h 〈[ts := ts ⊕ (tid 7→ (Close2 (sid))d);
socks := socks ⊕ [(sid , sock)]
]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EAGAIN))sched timer);

socks := socks ⊕ [(sid , sock)]
]〉,
SS ,MM)

sock = Sock(∗, sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es,T,T,
TCP Sock(st , cb, ∗)) ∧

timer expires d ∧
st /∈ {TIME WAIT ;CLOSED}

Description
A previous call to close() with the linger option set on the socket blocked, leaving thread tid in the

Close2 (sid) state. The linger timer has expired, timer expires d , before the socket has been successfully
closed: st /∈ {TIME WAIT ;CLOSED}.

The rule proceeds via a τ transition leaving thread tid in the Ret(FAIL EAGAIN) state to return
error EAGAIN from the blocked close() call. The socket remains in a synchronised state and is not
destroyed until the socket has been successfully closed by future asychronous events.

The asychronous transmission of any remaining data in the send queue and the graceful closing of
the connection is handled by other rules. This rule is only predicated on the unsuccessfulness of these
operations, i.e. st /∈ {TIME WAIT ;CLOSED}. When the linger timer expires the socket could be
(a) still attempting to successfully transmit the data in the send queue, or (b) be someway through the
graceful close operation. The exact state of the socket is not important here, explaining the relatively
unconstrained socket state in the rule.

close 7 tcp: fast succeed Successfully close the last file descriptor for a socket in the

CLOSED, SYN SENT or SYN RECEIVED states.

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds;
files :=files ⊕ [(fid ,File(FT Socket(sid),ff))];
socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

tid ·close(fd)
−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

fds := fds ′;
files :=files;
socks := socks]〉,
SS ′,MM)

(tcp sock .st ∈ {CLOSED ;SYN SENT} ∨
tcp sock .st = SYN RECEIVED ∧ ¬linux arch h.arch) ∧
TCP PROTO(tcp sock) = sock .pr ∧
fid /∈ (dom(files)) ∧
sid /∈ (dom(socks)) ∧
fd ∈ dom(fds) ∧
fid = fds[fd] ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

78 close 8

fid ref count(fds,fid) = 1 ∧
fds ′ = fds\\fd ∧

case tcp sock .st ∈ {CLOSED ;LISTEN } of
T→ SS ′ = SS
‖ F→ if exists quad of sock then

destroy(quad of sock)SS SS ′

else SS ′ = SS

Description
A close(fd) call is performed on the TCP socket sock , identified by sid and referenced by file descriptor

fd which is the only file descriptor referencing the socket’s file description: fid ref count(fds,fid) = 1.
The TCP socket sock is not in a synchronised state: st ∈ {CLOSED ;SYN SENT}.

The close(fd) call proceeds by a tid ·close(fd) transition leaving the host in the successful return state
Ret(OK ()).

The mapping of file descriptor fd to file descriptor index fid is removed from the host’s finite map of
file descriptors; the file description entry for fid is removed from the host’s finite map of file descriptors;
and the socket entry (sid , sock) is removed from the host’s finite map of sockets.

Variations

Linux The rule does not apply if the socket is in state SYN RECEIVED : for the
purposes of close() this is treated as a synchronised state on Linux.
Note that the socket sock is not in a synchronised state and thus has no data
in its send queue ready for transmission. Closing an unsynchronised socket
simply involves deleting the socket entry and removing all references to it.
These operations are performed immediately by the rule, hence the socket’s
SO LINGER option is not constrained because it has no effect regardless of
how it may be set.

close 8 tcp: fast succeed Successfully close the last file descriptor for a listening TCP socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds;
files :=files ⊕ [(fid ,File(FT Socket(sid),ff))];
socks := socks ⊕ [(sid , sock)];
listen := listen;
oq := oq]〉,
SS ,MM)

tid ·close(fd)
−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

fds := fds ′;
files :=files;
socks := socks ′;
listen := listen ′;
oq := oq ′]〉,
SS ′′,MM)

sock = Sock(↑ fid , sf , is1, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,
TCP Sock(LISTEN , cb, ↑ lis)) ∧

fd ∈ dom(fds) ∧
fid = fds[fd] ∧
fid ref count(fds,fid) = 1 ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

close 8 79

fid /∈ (dom(files)) ∧
sid /∈ (dom(socks)) ∧

(* cantrcvmore/cantsndmore unconstrained under BSD, as may have previously called shutdown *)

(* MS: this is more of an assertion than a condition, so we could get away without it *)

(bsd arch h.arch ∨ (cantsndmore = F ∧ cantrcvmore = F)) ∧

(* BSD and Linux do not send RSTs to sockets on lis.q0 . *)

socks to rst = {sock ′ | ∃sid ′ tcp sock ′.sid ′ ∈ lis.q ∧

sock ′ = socks[sid ′] ∧
TCP PROTO(tcp sock ′) = sock ′.pr ∧
tcp sock ′.st /∈ {CLOSED ;LISTEN ;SYN SENT}} ∧

dom(SS ′) = dom(SS) ∧

(∀sock ′.sock ′ ∈ socks to rst =⇒
let (i1, p1, i2, p2) = quad of sock ′ in
let streamid = streamid of quad(i1, p1, i2, p2) in
∃oflgs odata.
oflgs = oflgs 〈[SYN :=F;SYNACK :=F;RST :=T]〉 ∧
odata ∈ UNIV ∧
write(i1, p1, i2, p2)(oflgs, odata)(SS [streamid])(SS ′[streamid])) ∧

(∀streamid :: dom(SS).
¬(streamid ∈ (image(streamid of quad o quad of)socks to rst)) =⇒
SS ′[streamid] = SS [streamid]) ∧

fds ′ = fds\\fd ∧
listen ′ = filter(λsid ′.sid ′ 6= sid)listen ∧
socks ′ = socks|{sid′|sid′ /∈lis.q0@lis.q} ∧

(* removed sids does not include sid *)

let removed sids = {sid ′ | sid ′ ∈ lis.q0 @ lis.q} in
let removed socks = {sock} ∪ {sock ′ | ∃sid ′.sid ′ ∈ removed sids ∧

socks[sid ′] = sock ′} in
let destroyed = {(i1, p1, i2, p2) | ∃sock .sock ∈ removed socks ∧

(sock .is1, sock .ps1, sock .is2, sock .ps2) = (↑ i1, ↑ p1, ↑ i2, ↑ p2)} in

(* Some streams are destroyed *)

destroy quads destroyed SS ′ SS ′′

Description
A close(fd) call is performed on the TCP socket sock referenced by file descriptor fd which is the

only file descriptor referencing the socket’s file description fid , fid ref count(fds,fid) = 1. Socket sock is
locally bound to port p1 and one or more local IP addresses is1, and is in the LISTEN state.

The listening socket sock may have ESTABLISHED incoming connections on its connection queue
lis.q and incomplete incoming connection attempts on queue lis.q0 . Each connection, regardless of
whether it is complete or not, is represented by a socket entry in h.socks and its corresponding index sid
is on the respective queue. These connections have not been accepted by any thread through a call to
accept() and are dropped on the closure of socket sock .

A set of reset seqments rsts to go is created for each of the sockets referenced by both queues.
This is performed by looking up each socket sock ′ for every sid ′ in the concatentation of both queues,
lis.q0 @ lis.q , and extracting their address quads (sock ′.is1, sock

′.is2, sock
′.ps1, sock

′.ps2) and control
blocks cb.

The close(fd) call proceeds by a tid ·close(fd) transition leaving the host in the successful return state
Ret(OK ()).

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

80 close 10

Model details
The local IP address option is1 of the socket sock is not constrained in this rule. Instead it is

constrained by other rules for bind() and listen() prior to the socket entering the LISTEN state.

close 10 udp: fast succeed Successfully close the last file descriptor of a UDP socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds;
files :=files ⊕ [(fid ,File(FT Socket(sid),ff))];
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,
UDP PROTO(udp)))]]〉,

SS ,MM)
tid ·close(fd)
−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

fds := fds ′;
files :=files;
socks := socks]〉,
SS ,MM)

fd ∈ dom(fds) ∧
fid = fds[fd] ∧
fid ref count(fds,fid) = 1 ∧
fds ′ = fds\\fd ∧
fid /∈ (dom(files)) ∧
sid /∈ (dom(socks))

Description
Consider a UDP socket sid , referenced by fd , with a file description record indexed by fid . fd is the

only open file descriptor referring to the file description record indexed by fid , fid ref count(fds,fid) = 1.
From thread tid , which is in the Run state, a close(fd) call is made and succeeds.

A tid ·close(fd) transition is made, leaving the thread state Ret(OK ()). The socket sid is removed
from the host’s finite map of sockets socks⊕ . . . , the file description record indexed by fid is removed
from the host’s finite map of file descriptions files⊕ . . . , and fd is removed from the host’s finite map of
file descriptors fds ′ = fds\\fd .

7.4 connect() (TCP and UDP)

connect : fd ∗ ip ∗ port option→ unit

A call to connect(fd , ip, port) attempts to connect a TCP socket to a peer, or to set the peer address
of a UDP socket. Here fd is a file descriptor referring to a socket, ip is the peer IP address to connect
to, and port is the peer port.

If fd refers to a TCP socket then TCP’s connection establishment protocol, often called the three-way
handshake, will be used to connect the socket to the peer specified by (ip, port). A peer port must be
specified: port cannot be set to ∗. There must be a listening TCP socket at the peer address, otherwise
the connection attempt will fail with an ECONNRESET or ECONNREFUSED error. The local socket
must be in the CLOSED state: attempts to connect() to a peer when already synchronised with another
peer will fail. To start the connection establishment attempt, a SYN segment will be constructed,
specifying the initial sequeunce number and window size for the connection, and possibly the maximum
segment size, window scaling, and timestamping. The segment is then enqueued on the host’s out-queue;
if this fails then the connect() call fails, otherwise connection establishment proceeds.

If the socket is a blocking one (the O NONBLOCK flag for fd is not set), then the call will block until
the connection is established, or a timeout expires in which case the error ETIMEDOUT is returned.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect() (TCP and UDP) 81

If the socket is non-blocking (the O NONBLOCK flag is set for fd), then the connect() call will fail
with an EINPROGRESS error (or EALREADY on WinXP), and connection establishment will proceed
asynchronously.

Calling connect() again will indicate the current status of the connection establishment in the returned
error: it will fail with EALREADY if the connection has not been established, EISCONN once the
connection has been established, or if the connection establishment failed, an error describing why.
Alternatively, pselect([], [fd], [], ∗,) can be used; it will return when fd is ready for writing which will
be when connection establishment is complete, either successfully or not. On Linux, unsetting the
O NONBLOCK flag for fd and then calling connect() will block until the connection is established or
fails; for WinXP the call will fail with EALREADY and the connection establishment will be performed
asynchronously still; for FreeBSD the call will fail with EISCONN even if the connection has not been
established.

Upon completion of connection establishment the socket will be in state ESTABLISHED , ready to
send and receive data, or CLOSE WAIT if it received a FIN segment during connection establishment.

On FreeBSD, if connection establishment fails having sent a SYN then further connection establish-
ment attempts are not allowed; on Linux and WinXP further attempts are possible.

If fd refers to a UDP socket then the peer address of the socket is set, but no connection is made. The
peer address is then the default destination address for subsequent send() calls (and the only possible
destination address on FreeBSD), and only datagrams with this source address will be delivered to
the socket. On FreeBSD the peer port must be specified: a call to connect(fd , ip, ∗) will fail with an
EADDRNOTAVAIL error; on Linux and WinXP such a call succeeds: datagrams from any port on the
host with IP address ip will be delivered to the socket. Calling connect() on a UDP socket that already
has a peer address set is allowed: the peer address will be replaced with the one specified in the call. On
FreeBSD if the socket has a pending error, that may be returned when the call is made, and the peer
address will also be set.

In order for a socket to connect to a peer or have its peer address set, it must be bound to a local IP
and port. If it is not bound to a local port when the connect() call is made, then it will be autobound:
an unused port for the socket’s protocol in the host’s ephemeral port range is selected and assigned to
the socket. If the socket does not have its local IP address set then it will be bound to the primary IP
address of an interface which has a route to the peer. If the socket does have a local IP address set then
the interface that this IP address will be the one used to connect to the peer; if this interface does not
have a route to the peer then for a TCP socket the connect() call will fail when the SYN is enqueued on
the host’s outqueue; for a UDP socket the call will fail on FreeBSD, whereas on Linux and WinXP the
connect() call will succeed but later send() calls to the peer will fail.

For a TCP socket, its binding quad must be unique: there can be no other socket in the host’s finite
map of sockets with the same binding quad. If the connect() call would result in two sockets having the
same binding quad then it will fail with an EADDRINUSE error. For UDP sockets the same is true on
FreeBSD, but on Linux and WinXP multiple sockets may have the same address quad. The socket that
matching datagrams are delivered to is architecture-dependent: see lookup.

7.4.1 Errors

A call to connect() can fail with the errors below, in which case the corresponding exception is raised:

EADDRNOTAVAIL There is no route to the peer; a port must be specified (port 6= ∗); or there are
no ephemeral ports left.

EADDRINUSE The address quad that would result if the connection was successful is in use
by another socket of the same protocol.

EAGAIN On WinXP, the socket is non-blocking and the connection cannot be established
immediately: it will be established asynchronously. [TCP ONLY]

EALREADY A connection attempt is already in progress on the socket but not yet complete:
it is in state SYN SENT or SYN RECEIVED . [TCP ONLY]

ECONNREFUSED Connection rejected by peer. [TCP ONLY]

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

82 connect() (TCP and UDP)

ECONNRESET Connection rejected by peer. [TCP ONLY]

EHOSTUNREACH No route to the peer.

EINPROGRESS The socket is non-blocking and the connection cannot be established immedi-
ately: it will be established asynchronously. [TCP ONLY]

EINVAL On WinXP, socket is listening. [TCP ONLY]

EISCONN Socket already connected. [TCP ONLY]

ENETDOWN The interface used to reach the peer is down.

ENETUNREACH No route to the peer.

EOPNOTSUPP On FreeBSD, socket is listening. [TCP ONLY]

ETIMEDOUT The connection attempt timed out before a connection was established for a
socket. [TCP ONLY]

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

EINTR The system was interrupted by a caught signal.

ENOBUFS Out of resources.

7.4.2 Common cases

TCP: socket 1 ; connect 1 ; . . .
UDP: socket 1 ; bind 1 ; connect 8 ; . . .

7.4.3 API

Posix: int connect(int socket, const struct sockaddr *address, socklen_t address_len);

FreeBSD: int connect(int s, const struct sockaddr *name, socklen_t namelen);

Linux: int connect(int sockfd, constr struct sockaddr *serv_addr, socklen_t addrlen);

WinXP: int connect(SOCKET s, const struct sockaddr* name, int namelen);

In the Posix interface:

• socket is a file descriptor referring to the socket to make a connection on, corresponding to the fd
argument of the model connect().

• address is a pointer to a sockaddr structure of length address_len specifying the peer to con-
nect to. sockaddr is a generic socket address structure: what is used for the model connect() is
an internet socket address structure sockaddr_in. The sin_family member is set to AF_INET;
the sin_port is the port to connect to, corresponding to the port argument of the model
connect(): sin_port = 0 corresponds to port = ∗ and sin_port=p corresponds to port = ↑ p; the
sin_addr.s_addr member of the structure corresponds to the ip argument of the model connect().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

The FreeBSD, Linux and WinXP interfaces are similar modulo argument renaming, except where
noted above.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect() (TCP and UDP) 83

Note: For UDP sockets, the Winsock Reference says ”The default destination can be changed by
simply calling connect again, even if the socket is already connected. Any datagrams queued for receipt
are discarded if name is different from the previous connect.” This is not the case.

7.4.4 Model details

If the call blocks then the thread enters state Connect2 (sid) where sid is the identifier of the socket
attempting to establish a connection.

The following errors are not modelled:

• EAFNOSUPPORT means that the specified address is not a valid address for the address family of the
specified socket. The model connect() only models the AF_INET family of addresses so this error
cannot occur.

• EFAULT signifies that the pointers passed as either the address or address_len arguments were
inaccessible. This is an artefact of the C interface to connect() that is excluded by the clean
interface used in the model.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

• EINVAL is a Posix-specific error signifying that the address_len argument is not a valid length for
the socket’s address family or invalid address family in the sockaddr structure. The length of the
address to connect to is implicit in the model connect(), and only the AF_INET family of addresses
is modelled so this error cannot occur.

• EPROTOTYPE is a Posix-specific error meaning that the specified address has a different type than the
socket bound to the specified peer address. This error does not occur in any of the implementations
as TCP and UDP sockets are dealt with seperately.

• EACCES, ELOOP, and ENAMETOOLONG are errors dealing with Unix domain sockets which are not
modelled here.

7.4.5 Summary

connect 1 tcp: rc Begin connection establishment by creating a SYN and
trying to enqueue it on host’s outqueue

connect 1a tcp: rc Begin connection establishment by creating a SYN and
trying to enqueue it on host’s outqueue

connect 2 tcp: slow urgent suc-
ceed

Successfully return from blocking state after connection
is successfully established

connect 3 tcp: slow urgent fail Fail with the pending error on a socket in the CLOSED
state

connect 4 tcp: slow urgent fail Fail: socket has pending error
connect 4a tcp: fast fail Fail with pending error
connect 5 tcp: fast fail Fail with EALREADY , EINVAL, EISCONN ,

EOPNOTSUPP : socket already in use
connect 5a all: fast fail Fail: no route to host
connect 5b all: fast fail Fail with EADDRINUSE : address already in use
connect 5c all: fast fail Fail with EADDRNOTAVAIL: no ephemeral ports left
connect 5d tcp: block Block, entering state Connect2 : connection attempt al-

ready in progress and connect called with blocking se-
mantics

connect 6 tcp: fast fail Fail with EINVAL: socket has been shutdown for writing
connect 7 udp: fast succeed Set peer address on socket with binding quad ∗, ps1, ∗, ∗
connect 8 udp: fast succeed Set peer address on socket with local address set
connect 9 udp: fast fail Fail with EADDRNOTAVAIL: port must be specified in

connect() call on FreeBSD
connect 10 udp: fast fail Fail with pending error on FreeBSD, but still set peer

address

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

84 connect 1

7.4.6 Rules

connect 1 tcp: rc Begin connection establishment by creating a SYN and trying to enqueue

it on host’s outqueue

(h,SS ,MM)
tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→ (h ′,SS ′,MM)

(* Thread tid is in state Run and TCP socket sid has binding quad (is1, ps1
, is2, ps2

). *)

h = h0 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb, ∗)))];

oq := oq]〉 ∧

(* Thread tid ends in state t ′ with updated host sockets and output queue *)

h ′ = h0 〈[ts := ts ⊕ (tid 7→ t ′);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i ′1, ↑ p′
1, is

′
2, ps

′
2, es

′′,F,F,
TCP Sock(st ′, cb′′′, ∗)))];

bound := bound ;
oq := oq ′]〉 ∧

(* File descriptor fd refers to TCP socket sid *)

fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧

(* Either sid is bound to a local IP address or one of the host’s interface has a route to i2 and i ′1 is one of its IP
addresses. If it is not routable, then we will fail below, when we try to enqueue the segment. *)

i ′1 ∈ auto outroute(i2, is1, h.rttab, h.ifds) ∧
(* Notice that auto outroute never fails if is1 6= ∗ (i.e., is specified in the socket). *)

(* The socket is either bound to a local port p′

1 or can be autobound to an ephemeral port p′

1 *)

p′
1 ∈ autobind(ps1,PROTO TCP , h, h.socks) ∧
(* If autobinding occurs then sid is added to the head of the host’s list of bound sockets. *)

(if ps1 = ∗ then bound = sid :: h.bound else bound = h.bound) ∧

(* The socket can be in one of two states: (1) it is in state CLOSED in which case its peer address is not set;
it has no pending error; it is not shutdown for writing; and it is not shutdown for reading on non-FreeBSD
architectures. Otherwise, (2) on FreeBSD the socket is in state TIME WAIT , and either is2 and ps

2
are both

set or both are not set. The fact that BSD allows a TIME WAIT socket to be reconnected means that some
fields may contain old data, so we leave them unconstrained here. This is particularly important in the cb. *)

(st = CLOSED ∧ is2 = ∗ ∧ ps2 = ∗ ∧
es = ∗ ∧ cantsndmore = F ∧ (cantrcvmore = F ∨ bsd arch h.arch)) ∧

(* No other TCP sockets on the host have the address quad (↑ i ′1, ↑ p′

1, ↑ i2, ↑ p2). *)

¬(∃(sid ′, s) :: (h.socks\\sid).
s.is1 = ↑ i ′1 ∧ s.ps1 = ↑ p′

1 ∧
s.is2 = ↑ i2 ∧ s.ps2 = ↑ p2 ∧
proto of s.pr = PROTO TCP) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect 1 85

cb′ = cb ∧

(* now build the segment (using an auxiliary, since we might have to retransmit it) *)

(* Make a SYN segment based on the updated control block and the socket’s address quad; see
make syn flgs data (p262) for details. *)

(oflgs, odata) ∈ make syn flgs data∧

(* and send it out... *)

(* If possible, enqueue the segment seg on the host’s outqueue. The auxiliary function
stream rollback tcp output (p49) is used for this; if the segment is a well-formed segment, there is a route
to the peer from i ′1, and there are no buffer allocation failures, outsegs ′ 6= [], then the segment is enqueued
on the host’s outqueue, oq , resulting in a new outqueue, oq ′. The socket’s control block is left as cb′ which is
described above. Otherwise an error may have occurred; possible errors are: (1) ENOBUFS indicating a buffer
allocation failure; (2) a routing error; or (3) EADDRNOTAVAIL on FreeBSD or EINVAL on Linux indicating
that the segment would cause a loopback packet to appear on the wire (on WINXP the segment is silently
dropped with no error in this case). If an error does occur then the socket’s control block reverts to cb, the
control block when the call was made. *)
∃outsegs ′.
stream rollback tcp output F(↑ i ′1, ↑ i2)h.arch h.rttab h.ifds cb′(cb′′, es ′, outsegs ′) ∧
cb′′′ = (if (outsegs ′ ∨ windows arch h.arch) then cb′′ else cb) ∧
(INFINITE RESOURCES =⇒ queued) ∧

(* If the socket is a blocking one, its O NONBLOCK flag is not set, then the call will block, entering state
Connect2 (sid) and leaving the socket in state SYN SENT with peer address (↑ i2, ↑ p2) and, if the segment
could not be enqueued, its pending error set to the error resulting from the attempt to enqueue the segment.
If the socket is non-blocking, its O NONBLOCK flag is set, and the segment was enqueued on the host’s
outqueue, then the call will fail with an EINPROGRESS error (or EAGAIN on WinXP). The socket will be left
in state SYN SENT with peer address (↑ i2, ↑p2). Otherwise, if the segment was not enqueued, then the call
will fail with the error resulting from attempting to enqueue it, ↑ err ; the socket will be left in state CLOSED

with no peer address set. *)

(* In the case of BSD, if we connect via the loopback interface, then the segment exchange occurs so fast that
the socket has connected before the connect-calling thread regains control. When it does, it sees that the socket
has been connected, and therefore returns with success rather than EINPROGRESS . Since this behaviour is due
to timing, however, it may be possible for the connect call to return before all the segments have been sent, for
example if there was an artificially imposed delay on the loopback interface. This behaviour is therefore made
nondeterministic, for a BSD non-blocking socket connecting via loopback, in that it may either fail immediately,
or be blocked for a short time. Linux does not exhibit this behaviour.*)

((* blocking socket, or BSD and using loopback interface *)

((¬ff .b(O NONBLOCK) ∨ (bsd arch h.arch ∧ i2 ∈ local ips h.ifds)) ∧
t ′ = (Connect2 (sid))never timer ∧ rc = block ∧
es ′′ = es ′ ∧ st ′ = SYN SENT ∧ is ′2 = ↑ i2 ∧ ps ′2 = ↑ p2 ∧

s = initial streams(i ′1, p
′
1, i2, p2) ∧

write(i ′1, p
′
1, i2, p2)(oflgs, odata)s s ′ ∧

SS ′ = SS ⊕ [(streamid of quad(i ′1, p
′
1, i2, p2), s

′)]) ∨
(* non-blocking socket *)

(ff .b(O NONBLOCK) ∧
es = ∗ ∧
(err = (if windows arch h.arch then EAGAIN else EINPROGRESS) ∨ ↑ err = es ′) ∧
t ′ = (Ret(FAIL err))sched timer ∧ rc = fast fail ∧ es ′′ = ∗ ∧
if ¬queued then

st ′ = CLOSED ∧ is ′2 = ∗ ∧ ps ′2 = ∗ ∧
(* under BSD st could be TIME WAIT *)

(* REMARK this fail quick behaviour breaks abstraction boundaries *)

SS ′ = SS
else

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

86 connect 1a

st ′ = SYN SENT ∧ is ′2 = ↑ i2 ∧ ps ′2 = ↑ p2 ∧
s = initial streams(i ′1, p

′
1, i2, p2) ∧

write(i ′1, p
′
1, i2, p2)(oflgs, odata)s s ′ ∧

SS ′ = SS ⊕ [(streamid of quad(i ′1, p
′
1, i2, p2), s

′)])
)

Description
From thread tid , a connect(fd , i2, ↑ p2) call is made where fd refers to a TCP socket. The socket is

in state CLOSED with no peer address set, no pending error, and not shutdown for reading or writing.
A SYN segment is created to being connection establishment, and is enqueued on the host’s out-queue.

If the socket is a blocking one (its O NONBLOCK flag is not set) then the call will block: a
tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Connect2 (sid). If the socket is non-
blocking (its O NONBLOCK flag is set) and the segment enqueuing was successful then the call will fail:
a tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Ret(FAIL EINPROGRESS) (or
Ret(FAIL EAGAIN) on WinXP); connection establishment will proceed asynchronously. Otherwise, if
the enqueueing did not succeed, the call will fail with an error err : a tid ·connect(fd , i2, ↑ p2) transition
is made, leaving the thread in state Ret(FAIL err).

For further details see the in-line comments above.

Variations

FreeBSD The socket may also be in state TIME WAIT when the connect() call is made,
with either both its peer IP and port set, or neither set.
The socket may be shutdown for reading when the connect() call is made.

WinXP If there is an early buffer allocation failure when enqueuing the segment, then
it will not be placed on the host’s out-queue and es ′ = ENOBUFS ; the socket’s
control block will be cb′ with its snd nxt and snd max fields set to the intial
sequence number, its last ack seen and rcv adv fields set to 0, its tt delack
option set to ∗, its tt rexmt timer stopped, and its tf rxwin0sent and t rttseg
fields reset.
If there is no route from an interface specified by the local IP address i1 to
the foreign IP address i2 then the socket’s control block will be cb′ with its
snd next field set to the initial sequence number, its last ack sent and rcv adv
fields set to 0, and its tt delack option set to ∗.
If the segment would case a loopback packet to be sent on the wire then the
socket’s control block will be cb′.

connect 1a tcp: rc Begin connection establishment by creating a SYN and trying to enqueue

it on host’s outqueue

(h,SS ,MM)
lbl
−−→ (h ′,SS ′,MM)

(* Thread tid is in state Run and TCP socket sid has binding quad (is1, ps1
, is2, ps2

). *)

h = h0 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb, ∗)))];

oq := oq]〉 ∧

(* Thread tid ends in state t ′ with updated host sockets and output queue *)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect 1a 87

h ′ = h0 〈[ts := ts ⊕ (tid 7→ t ′);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i ′1, ↑ p′
1, is

′
2, ps

′
2, es

′′,F,F,
TCP Sock(st ′, cb′′′, ∗)))];

bound := bound ;
oq := oq ′]〉 ∧

(* File descriptor fd refers to TCP socket sid *)

fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧

(* Either sid is bound to a local IP address or one of the host’s interface has a route to i2 and i ′1 is one of its IP
addresses. If it is not routable, then we will fail below, when we try to enqueue the segment. *)

i ′1 ∈ auto outroute(i2, is1, h.rttab, h.ifds) ∧
(* Notice that auto outroute never fails if is1 6= ∗ (i.e., is specified in the socket). *)

(* The socket is either bound to a local port p′

1 or can be autobound to an ephemeral port p′

1 *)

p′
1 ∈ autobind(ps1,PROTO TCP , h, h.socks) ∧
(* If autobinding occurs then sid is added to the head of the host’s list of bound sockets. *)

(if ps1 = ∗ then bound = sid :: h.bound else bound = h.bound) ∧

(* The socket can be in one of two states: (1) it is in state CLOSED in which case its peer address is not set;
it has no pending error; it is not shutdown for writing; and it is not shutdown for reading on non-FreeBSD
architectures. Otherwise, (2) on FreeBSD the socket is in state TIME WAIT , and either is2 and ps

2
are both

set or both are not set. The fact that BSD allows a TIME WAIT socket to be reconnected means that some
fields may contain old data, so we leave them unconstrained here. This is particularly important in the cb. *)

(bsd arch h.arch ∧ st = TIME WAIT ∧
(is2 6= ∗ =⇒ ps2 6= ∗) ∧

(ps2 6= ∗ =⇒ is2 6= ∗)) ∧

(* No other TCP sockets on the host have the address quad (↑ i ′1, ↑ p′

1, ↑ i2, ↑ p2). *)

¬(∃(sid ′, s) :: (h.socks\\sid).
s.is1 = ↑ i ′1 ∧ s.ps1 = ↑ p′

1 ∧
s.is2 = ↑ i2 ∧ s.ps2 = ↑ p2 ∧
proto of s.pr = PROTO TCP) ∧

cb′ = cb ∧

(* now build the segment (using an auxiliary, since we might have to retransmit it) *)

(* Make a SYN segment based on the updated control block and the socket’s address quad; see
make syn flgs data (p262) for details. *)

(oflgs, odata) ∈ make syn flgs data∧

(* and send it out... *)

(* If possible, enqueue the segment seg on the host’s outqueue. The auxiliary function rollback tcp output (p48)
is used for this; if the segment is a well-formed segment, there is a route to the peer from i ′1, and there are no
buffer allocation failures, outsegs ′ 6= [], then the segment is enqueued on the host’s outqueue, oq , resulting in a
new outqueue, oq ′. The socket’s control block is left as cb′ which is described above. Otherwise an error may
have occurred; possible errors are: (1) ENOBUFS indicating a buffer allocation failure; (2) a routing error; or
(3) EADDRNOTAVAIL on FreeBSD or EINVAL on Linux indicating that the segment would cause a loopback
packet to appear on the wire (on WINXP the segment is silently dropped with no error in this case). If an error
does occur then the socket’s control block reverts to cb, the control block when the call was made. *)
∃outsegs ′.
stream rollback tcp output F(↑ i ′1, ↑ i2)h.arch h.rttab h.ifds cb′(cb′′, es ′, outsegs ′) ∧
cb′′′ = (if (outsegs ′ ∨ windows arch h.arch) then cb′′ else cb) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

88 connect 1a

(INFINITE RESOURCES =⇒ queued) ∧

(* If the socket is a blocking one, its O NONBLOCK flag is not set, then the call will block, entering state
Connect2 (sid) and leaving the socket in state SYN SENT with peer address (↑ i2, ↑ p2) and, if the segment
could not be enqueued, its pending error set to the error resulting from the attempt to enqueue the segment.
If the socket is non-blocking, its O NONBLOCK flag is set, and the segment was enqueued on the host’s
outqueue, then the call will fail with an EINPROGRESS error (or EAGAIN on WinXP). The socket will be left
in state SYN SENT with peer address (↑ i2, ↑p2). Otherwise, if the segment was not enqueued, then the call
will fail with the error resulting from attempting to enqueue it, ↑ err ; the socket will be left in state CLOSED

with no peer address set. *)

(* In the case of BSD, if we connect via the loopback interface, then the segment exchange occurs so fast that
the socket has connected before the connect-calling thread regains control. When it does, it sees that the socket
has been connected, and therefore returns with success rather than EINPROGRESS . Since this behaviour is due
to timing, however, it may be possible for the connect call to return before all the segments have been sent, for
example if there was an artificially imposed delay on the loopback interface. This behaviour is therefore made
nondeterministic, for a BSD non-blocking socket connecting via loopback, in that it may either fail immediately,
or be blocked for a short time. Linux does not exhibit this behaviour.*)

((* blocking socket, or BSD and using loopback interface *)

((¬ff .b(O NONBLOCK) ∨ (bsd arch h.arch ∧ i2 ∈ local ips h.ifds)) ∧
t ′ = (Connect2 (sid))never timer ∧ rc = block ∧
es ′′ = es ′ ∧ st ′ = SYN SENT ∧ is ′2 = ↑ i2 ∧ ps ′2 = ↑ p2 ∧

(* BSD and st = TIME WAIT , so new new stream created *)

lbl = tid ·connect(fd , i2, ↑ p2) ∧
SS = SS 0 ⊕ [(streamid of quad(i ′1, p

′
1, i2, p2), s)] ∧

write(i ′1, p
′
1, i2, p2)(oflgs, odata)s s ′ ∧

SS ′ = SS 0 ⊕ [(streamid of quad(i ′1, p
′
1, i2, p2), s)]) ∨

(* non-blocking socket *)

(ff .b(O NONBLOCK) ∧
es = ∗ ∧
(err = (if windows arch h.arch then EAGAIN else EINPROGRESS) ∨ ↑ err = es ′) ∧
t ′ = (Ret(FAIL err))sched timer ∧ rc = fast fail ∧ es ′′ = ∗ ∧
if ¬queued then

st ′ = CLOSED ∧ is ′2 = ∗ ∧ ps ′2 = ∗ ∧
(* under BSD st = TIME WAIT , and we destroy a stream *)

(* REMARK this fail quick behaviour breaks abstraction boundaries *)

∃i1 p1.(↑ i1, ↑ p1) = (is1, ps1) ∧
destroy(i ′1, p1, i2, p2)SS SS ′ ∧
lbl = tid ·connect(fd , i2, ↑ p2)

else
st ′ = SYN SENT ∧ is ′2 = ↑ i2 ∧ ps ′2 = ↑ p2 ∧

lbl = tid ·connect(fd , i2, ↑ p2) ∧
SS = SS 0 ⊕ [(streamid of quad(i ′1, p

′
1, i2, p2), s)] ∧

write(i ′1, p
′
1, i2, p2)(oflgs, odata)s s ′ ∧

SS ′ = SS 0 ⊕ [(streamid of quad(i ′1, p
′
1, i2, p2), s

′)])

)

Description
From thread tid , a connect(fd , i2, ↑ p2) call is made where fd refers to a TCP socket. The socket is

in state CLOSED with no peer address set, no pending error, and not shutdown for reading or writing.
A SYN segment is created to being connection establishment, and is enqueued on the host’s out-queue.

If the socket is a blocking one (its O NONBLOCK flag is not set) then the call will block: a
tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Connect2 (sid). If the socket is non-
blocking (its O NONBLOCK flag is set) and the segment enqueuing was successful then the call will fail:
a tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Ret(FAIL EINPROGRESS) (or

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect 3 89

Ret(FAIL EAGAIN) on WinXP); connection establishment will proceed asynchronously. Otherwise, if
the enqueueing did not succeed, the call will fail with an error err : a tid ·connect(fd , i2, ↑ p2) transition
is made, leaving the thread in state Ret(FAIL err).

For further details see the in-line comments above.

Variations

FreeBSD The socket may also be in state TIME WAIT when the connect() call is made,
with either both its peer IP and port set, or neither set.
The socket may be shutdown for reading when the connect() call is made.

WinXP If there is an early buffer allocation failure when enqueuing the segment, then
it will not be placed on the host’s out-queue and es ′ = ENOBUFS ; the socket’s
control block will be cb′ with its snd nxt and snd max fields set to the intial
sequence number, its last ack seen and rcv adv fields set to 0, its tt delack
option set to ∗, its tt rexmt timer stopped, and its tf rxwin0sent and t rttseg
fields reset.
If there is no route from an interface specified by the local IP address i1 to
the foreign IP address i2 then the socket’s control block will be cb′ with its
snd next field set to the initial sequence number, its last ack sent and rcv adv
fields set to 0, and its tt delack option set to ∗.
If the segment would case a loopback packet to be sent on the wire then the
socket’s control block will be cb′.

connect 2 tcp: slow urgent succeed Successfully return from blocking state after connection

is successfully established

(h 〈[ts := ts ⊕ (tid 7→ (Connect2 sid)d)]〉,SS ,MM)
τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer)]〉,SS ,MM)

TCP PROTO(tcp sock) = (h.socks[sid]).pr ∧
tcp sock .st ∈ {ESTABLISHED ;CLOSE WAIT} ∧
(¬∃tid ′ d ′.(tid ′ ∈ dom(ts)) ∧ (tid ′ 6= tid) ∧

ts[tid ′] = (Connect2 sid)d′)

Description
Thread tid is blocked in state Connect2 (sid) where sid identifies a TCP socket which is in state

ESTABLISHED : the connection establishment has been successfully completed; or CLOSE WAIT :
connection establishment successfully completed but a FIN was received during establishment. tid is
the only thread which is blocked waiting for the socket sid to establish a connection. As connection
establishment has now completed, the thread can successfully return from the blocked state.

A τ transition is made, leaving the thread state Ret(OK ()).

connect 3 tcp: slow urgent fail Fail with the pending error on a socket in the CLOSED state

(h 〈[ts := ts ⊕ (tid 7→ (Connect2 sid)d);
socks := socks ⊕

[(sid , sock 〈[es := ↑ e]〉)]]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);

socks := socks ⊕
[(sid , sock 〈[es := ∗]〉)]]〉,

SS ,MM)

TCP PROTO(tcp sock) = sock .pr ∧
tcp sock .st = CLOSED

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

90 connect 4

Description
Thread tid is blocked in the Connect2 (sid) state where sid identifies a TCP socket sock that is in

the CLOSED state: connection establishment has failed, leaving the socket in a pending error state
↑ e. Usually this occurs when there is no listening TCP socket at the peer address, giving an error of
ECONNREFUSED or ECONNRESET ; or when the connection establishment timer expired, giving an
error of ETIMEDOUT . The call now returns, failing with the error e, and clearing the pending error
field of the socket.

A τ transition is made, leaving the thread state Ret(FAIL e).

Variations

FreeBSD When connection establishment failed, the bsd cantconnect flag in the control
block would have been set, the socket’s cantsndmore and cantrcvmore flags
would have been set and its local address binding would have been removed.
This renders the sockets useless: call to bind(), connect(), and listen() will all
fail.

connect 4 tcp: slow urgent fail Fail: socket has pending error

(h 〈[ts := ts ⊕ (tid 7→ (Connect2 sid)d);
socks := socks ⊕

[(sid , sock)]]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);

socks := socks ⊕
[(sid , sock ′)]]〉,

SS ′,MM)

sock = Sock(↑ fid , sf , ↑ i1, ps1, ↑ i2, ↑ p2, ↑ err ,F,F,
TCP Sock(SYN SENT , cb, ∗)) ∧

(* On WinXP if the error is from routing to an unavailable address, the error is not returned and the socket is
left alone. The rexmtsyn timer will retry the SYN transmission and eventually fail. *)
¬(windows arch h.arch ∧ err = EINVAL) ∧
if bsd arch h.arch then

if (err = EADDRNOTAVAIL) then

sock ′ = Sock(↑ fid , sf , ↑ i1, ps1, ↑ i2, ↑ p2, ∗,F,F,
TCP Sock(SYN SENT , cb, ∗)) ∧

SS ′ = SS
else

sock ′ = Sock(↑ fid , sf , ↑ i1, ps1, ∗, ∗, ∗,F,F,
TCP Sock(CLOSED , initial cb, ∗)) ∧

case ps1 of ↑ p1 → destroy(i1, p1, i2, p2)SS SS ′

‖ ∗ → SS ′ = SS
else

(* close the socket, but do not shutdown for reading/writing *)

sock ′ = Sock(↑ fid , sf , ↑ i1, ps1, ∗, ∗, ∗,F,F,
TCP Sock(CLOSED , cb′, ∗)) ∧

cb′ = initial cb∧
case ps1 of ↑ p1 → destroy(i1, p1, i2, p2)SS SS ′

‖ ∗ → SS ′ = SS

Description
Thread tid is blocked in the Connect2 (sid) state waiting for a connection to be established. sid

identifies a TCP socket sock that has not been shutdown for reading or writing, and has binding quad

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect 5 91

(↑ i1, ps1, ↑ i2, ↑ p2) and pending error err . The socket is in state SYN SENT , is not listening, has
empty send and receive queues, and no urgent marks set. The call fails, returning the pending error.

A τ transition is made, leaving the thread state Ret(FAIL err). The socket is left in state CLOSED
with its peer address not set, its pending error cleared, and its control block reset to the initial control
block, initial cb.

Variations

FreeBSD If the pending error is EADDRNOTAVAIL then the error is cleared and re-
turned but the rest of the socket stays the same: it is in state SYN SENT so
the SYN will be retransmitted until it times out.
If the pending error is not EADDRNOTAVAIL then the socket is reset as above
except that the the socket’s local ip and port are cleared

WinXP If the error is EINVAL then this rule does not apply.

connect 4a tcp: fast fail Fail with pending error

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[es := ↑ err]〉)]]〉,
SS ,MM)

tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);

socks := socks ⊕
[(sid , sock 〈[es := ∗]〉)]]〉,

SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = sock .pr ∧
tcp sock .st ∈ {CLOSED}

Description
From thread tid , which is in the Run state, a connect(fd , i2, ↑ p2) call is made. fd refers to a TCP

socket sock , identified by sid , with pending error err and in state CLOSED . The call fails with the
pending error.

A tid ·connect(fd , ip, port) transition is made, leaving the thread state Ret(FAIL err) and the socket’s
pending error clear.

The most likely cause of this behaviour is for a non-blocking connect(fd , ,) call to have previously
been made. The call fails, setting the pending error on the socket, and when connect() is called to check
the status of connection establishment the error is returned. In such a case err is most likely to be
ECONNREFUSED , ECONNRESET , or ETIMEDOUT .

connect 5 tcp: fast fail Fail with EALREADY , EINVAL, EISCONN , EOPNOTSUPP : socket

already in use

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

92 connect 5a

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = (h.socks[sid]).pr ∧
case tcp sock .st of

SYN SENT → if ff .b(O NONBLOCK) = T then err = EALREADY (* connection already in
progress *)

else if windows arch h.arch then err = EALREADY (* connection already in
progress *)

else if bsd arch h.arch then err = EISCONN (* connection being estab-
lished *)

else ASSERTION FAILURE“connect 5:1” ‖ (* never happen *)

SYN RECEIVED → if ff .b(O NONBLOCK) = T then err = EALREADY (* connection al-
ready in progress *)

else if windows arch h.arch then err = EALREADY
else if bsd arch h.arch then err = EISCONN (* connection being estab-

lished *)
else ASSERTION FAILURE“connect 5:2” ‖ (* never happen *)

LISTEN → if windows arch h.arch then err = EINVAL (* socket is listening *)

else if bsd arch h.arch then err = EOPNOTSUPP
else if linux arch h.arch then err = EISCONN
else ASSERTION FAILURE“connect 5:3” ‖ (* never happen *)

ESTABLISHED → err = EISCONN ‖ (* socket already connected *)

FIN WAIT 1 → err = EISCONN ‖ (* socket already connected *)

FIN WAIT 2 → err = EISCONN ‖ (* socket already connected *)

CLOSING → err = EISCONN ‖ (* socket already connected *)

CLOSE WAIT → err = EISCONN ‖ (* socket already connected *)

LAST ACK → err = EISCONN ‖ (* socket already connected; seems that fd is valid in this state *)

TIME WAIT → (windows arch h.arch ∨ linux arch h.arch) ∧ err = EISCONN ‖
(* BSD allows a TIME WAIT socket to be reconnected *)

CLOSED → err = EINVAL ∧ bsd arch h.arch

Description
From thread tid , which is in the Run state, a connect(fd , i2, ↑ p2) call is made where fd refers to

a TCP socket identified by sid . The call fails with an error err : if the socket is in state SYN SENT
or SYN RECEIVED and the socket is non-blocking or the host is a WinXP architecture then err =
EALREADY (EISCONN on FreeBSD); if it is in state LISTEN then on WinXP err = EINVAL, on
FreeBSD err = EOPNOTSUPP , and on Linux err = EISCONN ; if it is in state ESTABLISHED ,
FIN WAIT 1 , FIN WAIT 2 , CLOSING , CLOSE WAIT , or TIME WAIT on Linux and WinXP,
err = EISCONN ; if it is in state CLOSED on FreeBSD and has its bsd cantconnect flag set then
err = EINVAL.

A tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Ret(FAIL err).

Variations

FreeBSD If the socket is in state TIME WAIT then the call does not fail: the socket
may be reconnected by connect 1 (p84).

connect 5a all: fast fail Fail: no route to host

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[is1 := ∗; ps1 := ps1]〉)]]〉,
SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect 5b 93

tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);

socks := socks ⊕
[(sid , sock 〈[is1 := is ′1; ps1 := ps ′1]〉)];

bound := bound]〉,
SS ,MM)

(* REMARK although this rule may result in a quad becoming bound, we assume (i2, p2) not bound *)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(if bsd arch h.arch ∧ proto of sock .pr = PROTO TCP then

is ′1 = ↑ i ′1 ∧ i ′1 ∈ local primary ips h.ifds ∧
ps ′1 = ↑ p′

1 ∧ p′
1 ∈ autobind(ps1,PROTO TCP , h, h.socks) ∧

(if ps1 = ∗ then bound = sid :: h.bound else bound = h.bound)
else is ′1 = ∗ ∧ ps ′1 = ps1 ∧ bound = h.bound) ∧
case test outroute ip(i2, h.rttab, h.ifds, h.arch) of

↑ e → err = e
‖ other29 → F ∧
(proto of sock .pr = PROTO UDP =⇒ ¬bsd arch h.arch)

Description
From thread tid , which is in the Run state, a connect(fd , i2, ↑ p2) call is made. fd refers to a socket

identified by sid which does not have a local IP address set. The test outroute ip function is used to
check if there is a route from the host to i2. There is no route so the call will fail with a routing error
err . If there is no interface with a route to the host then on Linux the call fails with ENETUNREACH
and on FreeBSD and WinXP it fails with EHOSTUNREACH . If there are interfaces with a route to the
host but none of these are up then the call fails with ENETDOWN .

A tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Ret(FAIL err), where err is
one of the above errors.

Variations

FreeBSD This rule does not apply to UDP sockets on FreeBSD. Additionally, if the
socket is not bound to a local port then it will be autobound to one and sid
will be appended to the head of the host’s list of bound sockets, bound . The
socket’s local IP address may be set to ↑ i1 even though there is no route from
i1 to i2.

connect 5b all: fast fail Fail with EADDRINUSE : address already in use

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock)];
bound := bound]〉,
SS ,MM)

tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EADDRINUSE))sched timer);

socks := socks ⊕
[(sid , sock 〈[is1 := is ′1; ps1 := ↑ p′

1; is2 := is ′2; ps2 := ps ′2]〉)];
bound := bound ′]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

94 connect 5c

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
i ′1 ∈ auto outroute(i2, sock .is1, h.rttab, h.ifds) ∧
p′
1 ∈ autobind(sock .ps1, (proto of sock .pr), h, h.socks) ∧

(if sock .ps1 = ∗ then bound ′ = sid :: bound else bound ′ = bound) ∧
(proto of sock .pr = PROTO UDP =⇒ ¬(linux arch h.arch ∨ windows arch h.arch)) ∧
(∃(sid ′, s) :: socks\\sid .

s.is1 = ↑ i ′1 ∧ s.ps1 = ↑ p′
1 ∧

s.is2 = ↑ i2 ∧ s.ps2 = ↑ p2 ∧
proto eq sock .pr s.pr) ∧

(if proto of sock .pr = PROTO UDP then
if sock .is2 = ∗ then is ′1 = sock .is1 ∧ is ′2 = ∗ ∧ ps ′2 = ∗
else is ′1 = ∗ ∧ is ′2 = ∗ ∧ ps ′2 = ∗

else is ′1 = sock .is1 ∧ is ′2 = sock .is2 ∧ ps ′2 = sock .ps2)

Description
From thread tid , which is in the Run state, a connect(fd , i2, ↑ p2) call is made where fd refers to a

socket sock identified by sid . The socket is either bound to local port ↑ p′
1, or can be autobound to port

↑ p′
1. The socket either has its local IP address set to ↑ i ′1 or else its local IP address is unset but there

exists an IP address i ′1 for one of the host’s interfaces which has a route to i2. There exists another socket
s in the host’s finite map of sockets, identified by sid ′, that has as its binding quad (↑ i ′1, ↑ p′

1, ↑ i2, ↑ p2).
A tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Ret(FAIL EADDRINUSE):

there is already another socket with the same local address connected to the peer address (↑ i2, ↑ p2).
The socket’s local port is set to ↑ p′

1; if this was accomplished by autobinding then sid is appended to
the head of bound , the host’s list of bound sockets, to create a new list bound ′. If sock is a TCP socket
then its is1, is2, and ps2 fields are unchanged. If sock is a UDP socket on FreeBSD then if its peer IP
address was set, its local IP address will be unset: is ′1 = ∗, otherwise its local IP address will stay as it
was: is ′1 = sock .is1; its peer IP address and port will both be unset: is ′2 = ∗ ∧ ps ′2 = ∗.

Variations

Linux This rule does not apply to UDP sockets: Linux allows two UDP sockets to
have the same binding quad.

WinXP This rule does not apply to UDP sockets: WinXP allows two UDP sockets to
have the same binding quad.

connect 5c all: fast fail Fail with EADDRNOTAVAIL: no ephemeral ports left

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EADDRNOTAVAIL))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(h.socks[sid]).ps1 = ∗ ∧
autobind(∗, (proto of(h.socks[sid]).pr), h, h.socks) = ∅

Description
From thread tid , which is in the Run state, a connect(fd , i2, ↑ p2) is made. fd refers to a socket

identified by sid which is not bound to a local port. There are no ephemeral ports available to autobind
to so the call fails with an EADDRNOTAVAIL error.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect 6 95

A tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state
Ret(FAIL EADDRNOTAVAIL).

connect 5d tcp: block Block, entering state Connect2 : connection attempt already in progress

and connect called with blocking semantics

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Connect2 (sid))never timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = (h.socks[sid]).pr ∧
ff .b(O NONBLOCK) = F ∧
linux arch h.arch ∧
tcp sock .st ∈ {SYN SENT ;SYN RECEIVED}

Description
From thread tid , which is in the Run state, a connect(fd , i2, ↑ p2) call is made. fd refers to a TCP

socket identified by sid which is in state SYN SENT or SYN RECEIVED : in other words, a connection
attempt is already in progress for the socket (this could be an asynchronous connection attempt or one
in another thread). The open file description referred to by fd does not have its O NONBLOCK flag
set so the call blocks, awaiting completion of the original connection attempt.

A tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Connect2 (sid).

Variations

FreeBSD This rule does not apply.

WinXP This rule does not apply.

connect 6 tcp: fast fail Fail with EINVAL: socket has been shutdown for writing

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[cantsndmore :=T; pr :=TCP PROTO(tcp 〈[st :=CLOSED]〉)]〉)]]〉,
SS ,MM)

tid ·connect(fd , i2, ↑ p2)
−−−−−−−−−−−−−−−−−−→

(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer);
socks := socks ⊕

[(sid , sock 〈[cantsndmore :=T; pr :=TCP PROTO(tcp 〈[st :=CLOSED]〉)]〉)]]〉,
SS ,MM)

bsd arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

96 connect 7

On FreeBSD, from thread tid , which is in the Run state, a connect(fd , i2, ↑ p2) call is made. fd refers
to a TCP socket sock identified by sid which is in state CLOSED and has been shutdown for writing.

A tid ·connect(fd , i2, ↑ p2) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

Posix This rule does not apply.

Linux This rule does not apply.

WinXP This rule does not apply.

connect 7 udp: fast succeed Set peer address on socket with binding quad ∗, ps
1
, ∗, ∗

(h0,SS ,MM)

tid ·connect(fd , i2, ps2)−−−−−−−−−−−−−−−−−→
(h0 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i ′1, ↑ p′
1, ↑ i2, ps2, es, cantsndmore ′, cantrcvmore,UDP PROTO(udp)))];

bound := bound
]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ∗, ps1, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))]
]〉 ∧

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
p′
1 ∈ autobind(ps1,PROTO UDP , h0, h0.socks) ∧

(if ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound) ∧
i ′1 ∈ auto outroute(i2, ∗, h0.rttab, h0.ifds) ∧
¬(∃(sid ′, s) :: (h0.socks\\sid).

s.is1 = ↑ i ′1 ∧ s.ps1 = ↑ p′
1 ∧

s.is2 = ↑ i2 ∧ s.ps2 = ps2 ∧
proto of s.pr = PROTO UDP ∧
bsd arch h.arch) ∧

(bsd arch h.arch =⇒ ps2 6= ∗ ∧ es = ∗) ∧
(if windows arch h.arch then cantsndmore ′ = F
else cantsndmore ′ = cantsndmore)

Description
Consider a UDP socket sid , referenced by fd , with no local IP or peer address set. From thread tid ,

which is in the Run state, a connect(fd , i2, ps2) call is made. The socket’s local port is either set to p′
1,

or it is unset and can be autobound to a local ephemeral port p′
1. The local IP address can be set to i ′1

which is the primary IP address for an interface with a route to i2.
A tid ·connect(fd , i2, ps2) transition is made, leaving the thread state Ret(OK ()). The socket’s local

address is set to (↑ i ′1, ↑ p′
1), and its peer address is set to (↑ i2, ps2). If the socket’s local port was

autobound then sid is placed at the head of the host’s list of bound sockets: bound = sid :: h0.bound .

Variations

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

connect 9 97

FreeBSD As above, with the additional conditions that a foreign port is specified in
the connect() call: ps2 6= ∗, and there are no pending errors on the socket.
Furthermore, there may be no other sockets in the host’s finite map of sockets
with the binding quad (↑ i ′1, ↑p

′
1, ↑ i2, ps2).

WinXP As above, except that the socket will not be shutdown for writing after the
connect() call has been made.

connect 8 udp: fast succeed Set peer address on socket with local address set

(h0,SS ,MM)

tid ·connect(fd , i , ps)
−−−−−−−−−−−−−−−−→

(h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i , ps, es, cantsndmore ′, cantrcvmore,UDP PROTO(udp)))]]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, is2, ps2, es, cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(bsd arch h.arch =⇒ ps 6= ∗ ∧ es = ∗) ∧
(if windows arch h.arch then cantsndmore ′ = F
else cantsndmore ′ = cantsndmore) ∧
¬(∃(sid ′, s) :: (h0.socks\\sid).

s.is1 = ↑ i1 ∧ s.ps1 = ↑ p1 ∧
s.is2 = ↑ i ∧ s.ps2 = ps ∧
proto of s.pr = PROTO UDP ∧
bsd arch h.arch)

Description
Consider a UDP socket sid , referenced by fd , with local address set to (↑ i1, ↑p1). Its peer address

may or may not be set. From thread tid , which is in the Run state, a connect(fd , i , ps) call is made.
The call succeeds: a tid ·connect(fd , i , ps) transition is made, leaving the thread in state Ret(OK ()).

The socket has its peer address set to (↑ i , ps).

Variations

FreeBSD As above, with the additional conditions that a foreign port is specified in
the connect() call, ps 6= ∗, and there are no pending errors on the socket.
Furthermore, there may be no other sockets in the host’s finite map of sockets
with the binding quad (↑ i ′1, ↑p

′
1, ↑ i , ps).

WinXP As above, with the additional effect that if the socket was shutdown for writing
when the connect() call was made, it will no longer be shutdown for writing.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

98 connect 10

connect 9 udp: fast fail Fail with EADDRNOTAVAIL: port must be specified in connect() call

on FreeBSD

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

tid ·connect(fd , i , ∗)
−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EADDRNOTAVAIL))sched timer);

socks := socks ⊕
[(sid , sock 〈[is1 := is1; is2 := ∗; ps2 := ∗; pr :=UDP PROTO(udp)]〉)]]〉,

SS ,MM)

bsd arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(if sock .is2 6= ∗ then is1 = ∗ else is1 = sock .is1)

Description
On FreeBSD, consider a UDP socket sid referenced by fd . From thread tid , which is in the Run state,

a connect(fd , i , ∗) call is made. Because no port is specified, the call fails with an EADDRNOTAVAIL
error.

A tid ·connect(fd , i , ∗) transition is made, leaving the thread state Ret(FAIL EADDRNOTAVAIL).
The socket’s peer address is cleared: is2 := ∗ and ps2 := ∗. Additionally, if the socket had its peer IP
address set, sock .is2 6= ∗, then its local IP address will be cleared: is1 = ∗; otherwise it remains the
same: is1 = sock .is1.

Variations

Posix This rule does not apply.

Linux This rule does not apply.

WinXP This rule does not apply.

connect 10 udp: fast fail Fail with pending error on FreeBSD, but still set peer address

(h0,SS ,MM)
tid ·connect(fd , i , ps)
−−−−−−−−−−−−−−−−→ (h0 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);

socks := socks ⊕
[(sid , sock 〈[is2 := ↑ i ; ps2 := ps; es := ∗; pr :=UDP PROTO(udp)]〉)]]〉,

SS ,MM)

bsd arch h.arch ∧
h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);

socks := socks ⊕
[(sid , sock 〈[es := ↑ err ; pr :=UDP PROTO(udp)]〉)]]〉 ∧

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
ps 6= ∗ ∧
¬(∃(sid ′, s) :: (h0.socks\\sid).

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

disconnect() (TCP and UDP) 99

s.is1 = sock .is1 ∧ s.ps1 = sock .ps1 ∧
s.is2 = ↑ i ∧ s.ps2 = ps ∧
proto of s.pr = PROTO UDP)

Description
On FreeBSD, consider a UDP socket sid , referenced by fd , with pending error err . From thread tid ,

which is in the Run state, a connect(fd , i , ps) call is made with ps 6= ∗. There is no other UDP socket
on the host which has the same local address sock .is1, sock .ps1 as sid , and its peer address set to ↑ i , ps.
The call fails, returning the pending error err .

A tid ·connect(fd , i , ps) transition is made, leaving the thread state Ret(FAIL err). The socket’s peer
address is set to (↑ i , ps), and the error is cleared from the socket.

Variations

Linux This rule does not apply.

WinXP This rule does not apply.

7.5 disconnect() (TCP and UDP)

disconnect : fd → unit

A call to disconnect(fd), where fd is a file descriptor referring to a socket, removes the peer address
for a UDP socket. If a UDP socket has peer address set to (↑ i2, ↑ p2) then it can only receive datagrams
with source address (i2, p2). Calling disconnect() on the socket resets its peer address to (∗, ∗), and so it
will be able to receive datagrams with any source address.

It does not make sense to disconnect a TCP socket in this way. Most supported architectures
simply disallow disconnect on such a socket; however, Linux implements it as an abortive close (see
close 3 (p74)).

7.5.1 Errors

A call to disconnect() can fail with the errors below, in which case the corresponding exception is raised:

EADDRNOTAVAIL There are no ephemeral ports left for autobinding to.

EAFNOSUPPORT The address family AF_UNSPEC is not supported. This can be the result for a
successful disconnect() for a UDP socket.

EAGAIN There are no ephemeral ports left for autobinding to.

EALREADY A connection is already in progress.

EBADF The file descriptor fd is an invalid file descriptor.

EISCONN The socket is already connected.

ENOBUFS No buffer space is available.

EOPNOTSUPP The socket is listening and cannot be connected.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

100 disconnect 4

7.5.2 Common cases

disconnect 1 ; return 1

7.5.3 API

disconnect() is a Posix connect() call with the address family set to AF_UNSPEC.
Posix: int connect(int socket, const struct sockaddr *address,

socklen_t address_len);

FreeBSD: int connect(int s, const struct sockaddr *name,

socklen_t namelen);

Linux: int connect(int sockfd, const struct sockaddr *serv_addr,

socklen_t addrlen);

WinXP: int connect(SOCKET s, const struct sockaddr* name,

int namelen);

In the Posix interface:

• socket is a file descriptor referring to a socket. This corresponds to the fd argument of the model
disconnect().

• address is a pointer to a location of size address_len containing a sockaddr structure which
specifies the address to connect to. For a disconnect() call, the sin_family field of the sockaddr

family must be set to AF_UNSPEC; other fields can be set to anything.

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

The Linux man-page states: ”Unconnecting a socket by calling connect with a AF UNSPEC address
is not yet implemented.” As a result, a disconnect() call always returns successfully on Linux.

The WinXP documentation states: ”The default destination can be changed by simply calling connect
again, even if the socket is already connected. Any datagrams queued for receipt are discarded if name is
different from the previous connect.” This implies that calling disconnect() will result in all datagrams
on the socket’s receive queue; however, this is not the case: no datagrams are discarded.

7.5.4 Summary

disconnect 4 tcp: fast fail Fail with EAFNOSUPPORT : address family not sup-
ported; EOPNOTSUPP : operation not supported;
EALREADY : connection already in progress; or
EISCONN : socket already connected

disconnect 5 tcp: fast fail Succeed on Linux, possibly dropping the connection
disconnect 1 udp: fast succeed Unset socket’s peer address
disconnect 2 udp: fast succeed Unset socket’s peer address and autobind local port
disconnect 3 udp: fast fail Fail with EAGAIN , EADDRNOTAVAIL, or ENOBUFS :

there are no ephemeral ports left

7.5.5 Rules

disconnect 4 tcp: fast fail Fail with EAFNOSUPPORT : address family not supported;

EOPNOTSUPP : operation not supported; EALREADY : connection already in progress; or

EISCONN : socket already connected

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·disconnect(fd)
−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

disconnect 5 101

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = (h.socks[sid]).pr ∧
¬(linux arch h.arch) ∧
case tcp sock .st of

CLOSED → if bsd arch h.arch then err = EINVAL ∨ err = EAFNOSUPPORT
else err = EAFNOSUPPORT ‖

LISTEN → if windows arch h.arch then err = EAFNOSUPPORT (* socket is listening *)

else if bsd arch h.arch then err = EOPNOTSUPP
else ASSERTION FAILURE“disconnect 4:1”‖ (* never happen *)

SYN SENT → err = EALREADY ‖ (* connection already in progress *)

SYN RECEIVED → err = EALREADY ‖ (* connection already in progress *)

ESTABLISHED → err = EISCONN ‖ (* socket already connected *)

TIME WAIT → if windows arch h.arch then err = EISCONN
else if bsd arch h.arch then err = EAFNOSUPPORT
else ASSERTION FAILURE“disconnect 4:2”‖ (* never happen *)

1 → err = EISCONN (* all other states *)

Description
Consider a TCP socket sid referenced by fd on a non-Linux architecture. From thread tid , which

is in the Run state, a disconnect(fd) call is made. The call fails with an error err which depends on
the the state of the socket: If the socket is in the CLOSED state then it fails with EAFNOSUPPORT ,
except if on FreeBSD its bsd cantconnect flag is set, in which case it fails with EINVAL;if it is in the
LISTEN state the error is EAFNOSUPPORT on WinXP and EOPNOTSUPP on FreeBSD; if it is in
the SYN SENT or SYN RECEIVED state the error is EALREADY ; if it is in the ESTABLISHED
state the error is EISCONN ; if it is in the TIME WAIT state the error is EISCONN on WinXP and
EAFNOSUPPORT on FreeBSD; in all other states the error is EISCONN .

A tid ·disconnect(fd) transition is made, leaving the thread state Ret(FAIL err) where err is one of
the above errors.

Variations

Linux This rule does not apply.

disconnect 5 tcp: fast fail Succeed on Linux, possibly dropping the connection

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕ [(sid , sock)];
oq := oq]〉,
SS ,MM)

tid ·disconnect(fd)
−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕ [(sid , sock ′)];
oq := oq ′]〉,
SS ′,MM)

linux arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = sock .pr ∧
(if tcp sock .st ∈ {SYN RECEIVED ;ESTABLISHED ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSE WAIT} then

tcp drop and close h.arch ∗ sock(sock ′, (oflgs, odata)) ∧
if exists quad of sock then

∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(quad of sock), s)] ∧
write(quad of sock)(oflgs, odata)s s ′ ∧
destroy(quad of sock)(S0 ⊕ [(streamid of quad(quad of sock), s ′)])SS ′

else

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

102 disconnect 1

SS ′ = SS
else

sock = sock ′ ∧
oq = oq ′ ∧
SS ′ = SS

)

Description
On Linux, consider a TCP socket sid , referenced by fd . From thread tid , which is in the Run state,

a disconnect(fd) call is made and succeeds.
A tid ·disconnect(fd) transition is made, leaving the thread state Ret(OK ()). If the socket is in

the SYN RECEIVED , ESTABLISHED , FIN WAIT 1 , FIN WAIT 2 , or CLOSE WAIT state then
the connection is dropped, a RST segment is constructed, outsegs, which may be placed on the host’s
outqueue, oq , resulting in new outqueue oq ′. If the socket is in any other state then it remains unchanged,
as does the host’s outqueue.

Model details
Note that disconnect() has not been properly implemented on Linux yet so it will always succeed.

Variations

Posix This rule does not apply.

FreeBSD This rule does not apply.

WinXP This rule does not apply.

disconnect 1 udp: fast succeed Unset socket’s peer address

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es, cantsndmore, cantrcvmore,UDP PROTO(udp)))]
]〉,
SS ,MM)

tid ·disconnect(fd)
−−−−−−−−−−−−−−→

(h 〈[ts := ts ⊕ (tid 7→ (Ret(ret))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ∗, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))]
]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(if linux arch h.arch then ret = OK ()
else if windows arch h.arch ∧ ∃i ′2.is2 = ↑ i ′2 then ret = OK ()
else ret = FAIL EAFNOSUPPORT)

Description
Consider a UDP socket sid referenced by fd with (is1, ↑ p1, is2, ps2) as its binding quad. From thread

tid , which is in the Run state, a disconnect(fd) call is made. On Linux the call succeeds; on WinXP if the
socket had its peer IP address set then the call succeeds, otherwise it fails with an EAFNOSUPPORT
error; on FreeBSD the call fails with an EAFNOSUPPORT error.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

disconnect 3 103

A tid ·disconnect(fd) transition is made, leaving the thread state Ret(OK ()) or
Ret(FAIL EAFNOSUPPORT). The socket has its peer address set to (∗, ∗), and its local IP
address set to ∗. The local port, p1, is left in place.

Variations

FreeBSD As above: the call fails with an EAFNOSUPPORT error.

Linux As above: the call succeeds.

WinXP As above: the call succeeds if the socket had a peer IP address set, or fails
with an EAFNOSUPPORT error otherwise.

disconnect 2 udp: fast succeed Unset socket’s peer address and autobind local port

(h0,SS ,MM)

tid ·disconnect fd
−−−−−−−−−−−−−→

(h0 〈[ts := ts ⊕ (tid 7→ (Ret(ret))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ∗, ↑ p1, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))];
bound := sid :: h0.bound]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ∗, ∗, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
p1 ∈ autobind(∗,PROTO UDP , h0, h0.socks) ∧
(if linux arch h.arch then ret = OK ()
else ret = (FAIL EAFNOSUPPORT))

Description
Consider a UDP socket sid referenced by fd and with binding quad (∗, ∗, ∗, ∗). From thread tid ,

which is in the Run state, a disconnect(fd) call is made. The call succeeds on Linux and fails with an
EAFNOSUPPORT error on FreeBSD and WinXP.

A tid ·disconnect(fd) transition is made, leaving the thread either in state Ret(OK ()), or in state
Ret(FAIL EAFNOSUPPORT). The socket is autobound to a local ephemeral port p′

1, and sid is placed
on the head of the host’s list of bound sockets.

Variations

FreeBSD As above: the call fails with an EAFNOSUPPORT error.

Linux As above: the call succeeds.

WinXP As above: the call fails with an EAFNOSUPPORT error.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

104 dup() (TCP and UDP)

disconnect 3 udp: fast fail Fail with EAGAIN , EADDRNOTAVAIL, or ENOBUFS : there are no

ephemeral ports left

(h0,SS ,MM)
tid ·disconnect fd
−−−−−−−−−−−−−→ (h0 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer)]〉,SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ∗, ∗, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
autobind(∗,PROTO UDP , h0, h0.socks) = ∅ ∧
e ∈ {EAGAIN ;EADDRNOTAVAIL;ENOBUFS}

Description
Consider a UDP socket sid referenced by fd and with binding quad ∗, ∗, ∗, ∗. From thread tid , which

is in the Run state, a disconnect(fd) call is made. There are no ephemeral ports left, so the socket
cannot be autobound to a local port. The call fails with an error: EAGAIN , EADDRNOTAVAIL, or
ENOBUFS .

A tid ·disconnect(fd) transition is made, leaving the thread state Ret(FAIL e) where e is one of the
above errors.

7.6 dup() (TCP and UDP)

dup : fd → fd

A call to dup(fd) creates and returns a new file descriptor referring to the open file description referred
to by the file descriptor fd . A successful dup() call will return the least numbered free file descriptor.
The call will only fail if there are no more free file descriptors, or fd is not a valid file descriptor.

7.6.1 Errors

A call to dup() can fail with the errors below, in which case the corresponding exception is raised:

EMFILE There are no more file descriptors available.
EBADF The file descriptor passed is not a valid file descriptor.

7.6.2 Common cases

dup 1 ; return 1

7.6.3 API

Posix: int dup(int fildes);

FreeBSD: int dup(int oldd);

Linux: int dup(int oldfd);

In the Posix interface:

• fildes is a file descriptor referring to the open file description for which another file descriptor is
to be created for. This corresponds to the fd argument of the model dup().

• The returned int is either non-negative to indicate success or -1 to indicate an error, in which case
the error code is in errno. If the call is successful then the returned int is the new file descriptor
corresponding to the fd return type of the model dup().

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

dup 2 105

The FreeBSD and Linux interfaces are similar. This call does not exist on WinXP.

7.6.4 Summary

dup 1 all: fast succeed Successfully duplicate file descriptor
dup 2 all: fast fail Fail with EMFILE : no more file descriptors available

7.6.5 Rules

dup 1 all: fast succeed Successfully duplicate file descriptor

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds]〉,
SS ,MM)

tid ·dup(fd)
−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→

(

Ret(OK fd ′)
)

sched timer
);

fds := fds ′]〉,
SS ,MM)

unix arch h.arch ∧
fd ∈ dom(fds) ∧
fid = fds[fd] ∧
nextfd h.arch fds fd ′ ∧
fd ′ < OPEN MAX FD ∧
fds ′ = fds ⊕ (fd ′,fid)

Description
From thread tid , which is in the Run state, a dup(fd) call is made where fd is a file descriptor

referring to an open file description identified by fid . A new file descriptor, fd ′ can be created in an
architecture-specific way according to the nextfd function. fd ′ is less than the maximum open file
descriptor, OPEN MAX FD . The call succeeds returning fd ′.

A tid ·dup(fd) transition is made, leaving the thread state Ret(OK fd ′). The host’s finite map of file
descriptors, fds, is extended to map the new file descriptor fd ′ to the file identifier fid , which results in
a new finite map of file descriptors fds ′ for the host.

Variations

WinXP This rule does not apply: there is no dup() call on WinXP.

dup 2 all: fast fail Fail with EMFILE : no more file descriptors available

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·dup(fd)
−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EMFILE))sched timer)]〉,SS ,MM)

unix arch h.arch ∧
fd ∈ dom(h.fds) ∧
(card(dom(h.fds)) + 1) ≥ OPEN MAX

Description
From thread tid , which is in the Run state, a dup(fd) call is made where fd is a valid file descriptor:

it has an entry in the host’s finite map of file descriptors, h.fds. Creating another file descriptor would
cause the number of open file descriptors to be greater than or equal to the maximum number of open
file descriptors, OPEN MAX . The call fails with an EMFILE error.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

106 dupfd() (TCP and UDP)

A tid ·dup(fd) transition is made, leaving the thread state Ret(FAIL EMFILE).

Variations

WinXP This rule does not apply: there is no dup() call on WinXP.

7.7 dupfd() (TCP and UDP)

dupfd : fd ∗ int→ fd

A call to dupfd(fd ,n) creates and returns a new file desciptor referring to the open file description
referred to by the file descriptor fd .

A successful dupfd() call will return the least free file descriptor greater than or equal to n. The call
will fail if n is negative or greater than the maximum allowed file descriptor, OPEN MAX ; if the file
descriptor fd is not a valid file descriptor; or if there are no more file descriptors available.

7.7.1 Errors

A call to dupfd() can fail with the errors below, in which case the corresponding exception is raised:

EINVAL The requested file descriptor is invalid: it is negative or greater than the max-
imum allowed.

EMFILE There are no more file descriptors available.

EBADF The file descriptor passed is not a valid file descriptor.

7.7.2 Common cases

dupfd 1 ; return 1

7.7.3 API

dupfd() is Posix fcntl() using the F_DUPFD command:
Posix: int fcntl(int fildes, int cmd, int arg);

FreeBSD: int fcntl(int fd, int cmd, int arg);

Linux: int fcntl(int fd, int cmd, long arg);
In the Posix interface:

• fildes is a file descriptor referring to the open file description for which another file descriptor is
to be created for. This corresponds to the fd argument of the model dupfd().

• cmd is the command to run on the specified file descriptor. For the model dupfd() this command
is set to F_DUPFD.

• The returned int is either non-negative to indicate success or -1 to indicate an error, in which
case the error code is in errno. If the call was successful then the returned int is the new file
descriptor.

The FreeBSD and Linux interfaces are similar. This call does not exist on WinXP.

7.7.4 Model details

Note that dupfd() is fcntl() with F_DUPFD rather than the similar but different dup2().

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

dupfd 3 107

7.7.5 Summary

dupfd 1 all: fast succeed Successfully create a duplicate file descriptor greater than
or equal to n

dupfd 3 all: fast fail Fail with EINVAL: n is negative or greater than the max-
imum allowed file descriptor

dupfd 4 all: fast fail Fail with EMFILE : no more file descriptors available

7.7.6 Rules

dupfd 1 all: fast succeed Successfully create a duplicate file descriptor greater than or equal

to n

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds]〉,
SS ,MM)

tid ·dupfd(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→

(

Ret(OK fd ′)
)

sched timer
);

fds := fds ′]〉,
SS ,MM)

unix arch h.arch ∧
fd ∈ dom(fds) ∧
fid = fds[fd] ∧
n ≥ 0 ∧
FD(num n) < OPEN MAX FD ∧
fd ′ = FD(least n ′.num n ≤ n ′ ∧ FD n ′ < OPEN MAX FD ∧ FD n ′ /∈ dom(fds)) ∧
fds ′ = fds ⊕ (fd ′,fid)

Description
From thread tid , which is in the Run state, a dupfd(fd ,n) call is made. The host’s finite map of file

descriptors is fds, and fd is a valid file descriptor in fds, referring to an open file description identified
by fid . n is non-negative. A file descriptor fd ′ can be created, where it is the least free file descriptor
greater than or equal to n, and less than the maximum allowed file descriptor, OPEN MAX FD . The
call succeeds, returning this new file descriptor fd ′.

A tid ·dupfd(fd ,n) transition is made, leaving the thread state Ret(OKfd ′). An entry mapping fd ′ to
the open file description fid is added to fds, resulting in a new finite map of file descriptors for the host,
fds ′.

Variations

WinXP This rule does not apply: there is no dupfd() call on WinXP.

dupfd 3 all: fast fail Fail with EINVAL: n is negative or greater than the maximum allowed

file descriptor

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·dupfd(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer)]〉,SS ,MM)

unix arch h.arch ∧
n < 0 ∨ num n ≥ OPEN MAX ∧
err = (if bsd arch h.arch then EBADF else EINVAL)

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

108 getfileflags() (TCP and UDP)

From thread tid , which is in the Run state, a dupfd(fd ,n) call is made. n is either negative or greater
than the maximum number of open file descriptors, OPEN MAX . The call fails with an EINVAL error.

A tid ·dupfd(fd ,n) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

WinXP This call does not apply: there is no dupfd() call on WinXP.

FreeBSD On BSD the error EBADF is returned.

dupfd 4 all: fast fail Fail with EMFILE : no more file descriptors available

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·dupfd(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EMFILE))sched timer)]〉,SS ,MM)

unix arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
n ≥ 0 ∧
fd ′ = FD(least n ′.num n ≤ n ′ ∧OPEN MAX FD ≤ FD n ′ ∧ FD n ′ /∈ dom(h.fds))

Description
From thread tid , which is in the Run state, a dupfd(fd ,n) call is made. fd is a file descriptor referring

to open file description fid and n is non-negative. The least file descriptor fd ′ that is greater than or
equal to n is greater than or equal to the maximum open file descriptor, OPEN MAX FD . The call
fails with an EMFILE error.

A tid ·dupfd(fd ,n) transition is made, leaving the thread state Ret(FAIL EMFILE).

Variations

WinXP This rule does not apply: there is no dupfd() call on WinXP.

7.8 getfileflags() (TCP and UDP)

getfileflags : fd → filebflag list

A call to getfileflags(fd) returns a list of the file flags currently set for the file which fd refers to.
The possible file flags are:

• O ASYNC Reports whether signal driven I/O is enabled.

• O NONBLOCK Reports whether a socket is non-blocking.

7.8.1 Errors

A call to getfileflags() can fail with the error below, in which case the corresponding exception is raised:

EBADF The file descriptor passed is not a valid file descriptor.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getfileflags 1 109

7.8.2 Common cases

A call to getfileflags() is made, returning the flags set: getfileflags 1 ; return 1

7.8.3 API

getfileflags() is Posix fcntl(fd,F_GETFL). On WinXP it is ioctlsocket() with the FIONBIO command.
Posix: int fcntl(int fildes, int cmd, ...);

FreeBSD: int fcntl(int fd, int cmd, ...);

Linux: int fcntl(int fd, int cmd);

WinXP: int ioctlsocket(SOCKET s, long cmd, u_long* argp)
In the Posix interface:

• fildes is a file descriptor for the file to retrieve flags from. It corresponds to the fd argument of
the model getfileflags(). On WinXP the s is a socket descriptor corresponding to the fd argument
of the model getfileflags().

• cmd is a command to perform an operation on the file. This is set to F_GETFL for the model
getfileflags(). On WinXP, cmd is set to FIONBIO to get the O NONBLOCK flag; there is no
O ASYNC flag on WinXP.

• The call takes a variable number of arguments. For the model getfileflags() only the two arguments
described above are needed.

• If the call succeeds the returned int represents the file flags that are set corresponding to the
filebflag list return type of the model getfileflags(). If the returned int is -1 then an error has
occurred in which case the error code is in errno. On WinXP an error is indicated by a return
value of SOCKET_ERROR with the actual error code available through a call to WSAGetLastError().

7.8.4 Model details

The following errors are not modelled:

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

• WSAENOTSOCK is a possible error on WinXP as the ioctlsocket() call is specific to a socket. In
the model the getfileflags() call is performed on a file.

7.8.5 Summary

getfileflags 1 all: fast succeed Return list of file flags currently set for an open file de-
scription

7.8.6 Rules

getfileflags 1 all: fast succeed Return list of file flags currently set for an open file description

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getfileflags(fd)
−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK flags))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(ft ,ff) ∧
flags ∈ ORDERINGS ff .b

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

110 getifaddrs() (TCP and UDP)

Description
From thread tid , which is in the Run state, a getfileflags(fd) call is made. fd refers to a file description

File(ft ,ff) where ff is the file flags that are set. The call succeeds, returning flags which is a list
representing some ordering of the boolean file flags ff .b in ff .

A tid ·getfileflags(fd) transition is made, leaving the thread state Ret(OK (flags)).

7.9 getifaddrs() (TCP and UDP)

getifaddrs : unit→ (ifid ∗ ip ∗ ip list ∗ netmask)list

A call to getifaddrs() returns the interface information for a host. For each interface a tuple is
constructed consisting of: the interface name, the primary IP address for the interface, the auxiliary IP
addresses for the interface, and the subnet mask for the interface. A list is constructed with one tuple
for each interface, and this is the return value of the call to getifaddrs().

7.9.1 Errors

EINTR The system was interrupted by a caught signal.

EBADF The file descriptor passed is not a valid file descriptor.

7.9.2 Common cases

getifaddrs 1 ; return 1

7.9.3 API

getifaddrs() is two calls to Posix ioctl(): one with the SIOCGIFCONF request and one with the
SIOCGIFNETMASK request. On FreeBSD there is a specific getifaddrs() call. On WinXP the getifaddrs()
call does not exist.

Posix: int ioctl(int fildes, int request, ... /* arg */);

FreeBSD: int getifaddrs(struct ifaddrs **ifap);

Linux: int ioctl(int d, int request, ...);

In the Posix interface:

• fildes is a file descriptor. There is no corresponding argument in the model getifaddrs().

• request is the operation to perform on the file. When request is SIOCGIFCONF the list of all
interfaces is returned; when it is SIOCNETMASK the subnet mask is returned for an interface.

• The function takes a variable number of arguments. When request is SIOCGIFCONF there is a third
argument: a pointer to a location to store a linked-list of the interfaces; when it is SIOCGIFNETMASK
it is a pointer to a structure containing the interface and it is filled in with the subnet mask for
that interface.

• The returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno.

To construct the return value of type (ifid ∗ ip ∗ ip list ∗ netmask)list, the interface name and the
IP addresses associated with it are obtained from the call to ioctl() using SIOCGIFCONF, and then the
subnet mask for each interface is obtained from a call to ioctl() using SIOCGIFNETMASK.

On FreeBSD the ifap argument to getifaddrs() is a pointer to a location to store a linked list of
the interface information in, corresponding to the return type of the model getifaddrs().

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getpeername() (TCP and UDP) 111

7.9.4 Model details

Any of the errors possible when making an ioctl() call are possible: EIO , ENOTTY , ENXIO , and
ENODEV . None of these are modelled.

Note that the Posix interface admits the possibility that the interfaces will change between the two
calls, whereas in the model interface the getifaddrs() call is atomic.

7.9.5 Summary

getifaddrs 1 all: fast succeed Successfully return host interface information

7.9.6 Rules

getifaddrs 1 all: fast succeed Successfully return host interface information

(h ts := ts ⊕ (tid 7→ (Run)d),SS ,MM)
tid ·getifaddrs()
−−−−−−−−−−−−→ (h ts := ts ⊕ (tid 7→ (Ret(OK iflist))sched timer),SS ,MM)

ifidlist ∈ ORDERINGS ifidset ∧
length ifidlist = length iflist ∧

ifidset = {(ifid , hifd) |
ifid ∈ dom(h.ifds) ∧
hifd = h.ifds[ifid]} ∧

every I(map2(λ(ifid , hifd)(ifid ′, primary , ipslist ,netmask).(ifid ′ = ifid ∧
primary = hifd .primary ∧
ipslist ∈ ORDERINGS hifd .ipset ∧
netmask = hifd .netmask))

ifidlist iflist)

Description
On a Unix architecture, from thread tid , which is in the Run state, a getifaddrs() call is made. The

call succeeds, returning iflist which is a list of tuples: one for each interface on the host. Each tuple
consists of: the interface name; the primary IP address for the interface; a list of the other IP addresses
for the interface; and the netmask for the interface.

A tid ·getifaddrs() transition is made, leaving the thread state Ret(OKiflist).

Variations

WinXP This call does not exist on WinXP.

7.10 getpeername() (TCP and UDP)

getpeername : fd → (ip ∗ port)

A call to getpeername(fd) returns the peer address of the socket referred to by file descriptor fd . If
the file descriptor refers to a socket sock then a successful call will return (i2, p2) where sock .is2 = ↑ i2,
and sock .ps2 = ↑ p2.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

112 getpeername() (TCP and UDP)

7.10.1 Errors

A call to getpeername() can fail with the errors below, in which case the corresponding exception is
raised:

ENOTCONN Socket not connected to a peer.
EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.10.2 Common cases

getpeername 1 ; return 1

7.10.3 API

Posix: int getpeername(int socket, struct sockaddr *restrict address,

socklen_t *restrict address_len);

FreeBSD: int getpeername(int s, struct sockaddr *name,

socklen_t *namelen);

Linux: int getpeername(int s, struct sockaddr *name,

socklen_t *namelen);

WinXP: int getpeername(SOCKET s,struct sockaddr* name,

int* namelen);

In the Posix interface:

• socket is a file descriptor referring to the socket to get the peer address of, corresponding to the
fd argument in the model getpeername().

• address is a pointer to a sockaddr structure of length address_len, which contains the peer
address of the socket upon return. These two correspond to the (ip ∗port) return type of the model
getpeername(). The sin_addr.s_addr field of the address structure holds the peer IP address,
corresponding to the ip in the return tuple; the sin_port field of the address structure holds the
peer port, corresponding to the port in the return tuple.

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.10.4 Model details

The following errors are not modelled:

• According to the FreeBSD man page for getpeername(), ECONNRESET can be returned if the
connection has been reset by the peer. This behaviour has not been observed in any tests.

• On FreeBSD, Linux, and WinXP, EFAULT can be returned if the name parameter points to
memory not in a valid part of the process address space. This is an artefact of the C interface to
getpeername() that is excluded by the clean interface used in the model getpeername().

• In Posix, EINVAL can be returned if the socket has been shutdown; none of the implementations
in the model return this error from a getpeername() call.

• In Posix, EOPNOTSUPP is returned if the getpeername() operation is not supported by the
protocol. Both TCP and UDP support this operation.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getpeername() (TCP and UDP) 113

7.10.5 Summary

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

114 getpeername 2

getpeername 1 all: fast succeed Successfully return socket’s peer address
getpeername 2 all: fast fail Fail with ENOTCONN : socket not connected to a peer

7.10.6 Rules

getpeername 1 all: fast succeed Successfully return socket’s peer address

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getpeername(fd)
−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (i2, p2)))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = h.socks[sid] ∧
sock .is2 = ↑ i2 ∧
(sock .ps2 = ↑ p2 ∨ (windows arch h.arch ∧ sock .ps2 = ∗ ∧

(p2 = Port 0) ∧ proto of sock .pr = PROTO UDP)) ∧
((∀tcp sock .sock .pr = TCP PROTO(tcp sock) =⇒

tcp sock .st ∈ {ESTABLISHED ;CLOSE WAIT ;LAST ACK ;
FIN WAIT 1 ;CLOSING} ∨

(¬sock .cantrcvmore ∧ tcp sock .st = FIN WAIT 2) ∨
(linux arch h.arch ∧ tcp sock .st = SYN RECEIVED) ∨
(* BSD listen bug *)

(bsd arch h.arch ∧ tcp sock .st = LISTEN)) ∨
windows arch h.arch)

Description
From thread tid , which is in the Run state, a getpeername(fd) call is made. fd refers to a socket sock ,

identified by sid , which has its peer IP address set to ↑i2 and its peer port address set to ↑ p2. If sock is a
TCP socket then either it is in state ESTABLISHED , CLOSE WAIT , LAST ACK , FIN WAIT 1 , or
CLOSING ; or it is in state FIN WAIT 2 and is not shutdown for reading. The call succeeds, returning
(i2, p2), the socket’s peer address.

A tid ·getpeername(fd) transition is made, leaving the thread state Ret(OK (i2, p2)).

Variations

FreeBSD If sock is a TCP socket then it may be in state LISTEN ; this is due to the
FreeBSD bug that allows listen() to be called on a synchronised socket.

Linux If sock is a TCP socket then it may also be in state SYN RECEIVED .

WinXP If sock is a UDP socket and has no peer port set, sock .ps2 = ∗ then the call
may still succeed with p2 = Port 0. Additionally, if sock is a TCP socket then
it may be in any state.

getpeername 2 all: fast fail Fail with ENOTCONN : socket not connected to a peer

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsockbopt() (TCP and UDP) 115

tid ·getpeername(fd)
−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOTCONN))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = h.socks[sid] ∧
¬(sock .is2 6= ∗ ∧

(sock .ps2 6= ∗ ∨ (windows arch h.arch ∧ proto of sock .pr = PROTO UDP)) ∧
(∀tcp sock .sock .pr = TCP PROTO(tcp sock) =⇒

tcp sock .st ∈ {ESTABLISHED ;CLOSE WAIT ;LAST ACK ;FIN WAIT 1 ;CLOSING} ∨
(¬sock .cantrcvmore ∧ tcp sock .st = FIN WAIT 2) ∨
(linux arch h.arch ∧ tcp sock .st = SYN RECEIVED) ∨

windows arch h.arch))

Description
From thread tid , which is in the Run state, a getpeername(fd) call is made where fd refers to a socket

sock identified by sid . The socket does not have both its peer IP and port set, If it is a TCP socket
then it is not in state ESTABLISHED , CLOSE WAIT , LAST ACK , FIN WAIT 1 or CLOSING ; or
in state FIN WAIT 2 and not shutdown for reading. The call fails with an ENOTCONN error.

A tid ·getpeername(fd) transition is made, leaving the thread state Ret(FAIL ENOTCONN).

Variations

Linux As above, with the additional condition that if sock is a TCP socket then it is
not in state SYN RECEIVED .

WinXP As above, except that if sock is a TCP socket then it does not matter what
state it is in and if it is a UDP socket then the state of its peer port, whether
it is set or unset, does not matter.

7.11 getsockbopt() (TCP and UDP)

getsockbopt : (fd ∗ sockbflag)→ bool

A call to getsockbopt(fd ,flag) returns the value of one of the socket’s boolean-valued flags.
The fd argument is a file descriptor referring to the socket to retrieve a flag’s value from, and the

flag argument is the boolean-valued socket flag to get. Possible flags are:

• SO BSDCOMPAT Reports whether the BSD semantics for delivery of ICMPs to UDP sockets
with no peer address set is enabled.

• SO DONTROUTE Reports whether outgoing messages bypass the standard routing facilities.

• SO KEEPALIVE Reports whether connections are kept active with periodic transmission of mes-
sages, if this is supported by the protocol.

• SO OOBINLINE Reports whether the socket leaves received out-of-band data (data marked ur-
gent) inline.

• SO REUSEADDR Reports whether the rules used in validating addresses supplied to bind() should
allow reuse of local ports, if this is supported by the protocol.

The return value of the getsockbopt() call is the boolean-value of the specified socket flag.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

116 getsockbopt() (TCP and UDP)

7.11.1 Errors

A call to getsockbopt() can fail with the errors below, in which case the corresponding exception is raised:

ENOPROTOOPT The specified flag is not supported by the protocol.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.11.2 Common cases

getsockbopt 1 ; return 1

7.11.3 API

getsockbopt() is Posix getsockopt() for boolean-valued socket flags.
Posix: int getsockopt(int socket, int level, int option_name,

void *restrict option_value,

socklen_t *restrict option_len);

FreeBSD: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

Linux: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

WinXP: int getsockopt(SOCKET s,int level,int optname,

char* optval, int* optlen);
In the Posix interface:

• socket is the file descriptor of the socket on which to get the flag, corresponding to the fd argument
of the model getsockbopt().

• level is the protocol level at which the flag resides: SOL_SOCKET for the socket level options,
and option_name is the flag to be retrieved. These two correspond to the flag argument to the
model getsockbopt() where the possible values of option_name are limited to: SO BSDCOMPAT ,
SO DONTROUTE , SO KEEPALIVE , SO OOBINLINE , and SO REUSEADDR.

• option_value is a pointer to a location of size option_len to store the value retrieved by get-

sockopt(). These two correspond to the bool return type of the model getsockbopt().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.11.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, typing
prevents an invalid flag from being specified in a call to getsockbopt().

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.11.5 Summary

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsockbopt 2 117

getsockbopt 1 all: fast succeed Successfully retrieve value of boolean socket flag
getsockbopt 2 udp: fast succeed Fail with ENOPROTOOPT : option not valid on WinXP

UDP socket

7.11.6 Rules

getsockbopt 1 all: fast succeed Successfully retrieve value of boolean socket flag

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsockbopt(fd , f)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (sf .b(f))))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sf = (h.socks[sid]).sf ∧
(windows arch h.arch ∧ proto of(h.socks[sid]).pr = PROTO UDP

=⇒ f /∈ {SO KEEPALIVE})

Description
From thread tid , which is in the Run state, a getsockbopt(fd , f) call is made. fd refers to a socket sid

with boolean socket flags sf .b, and f is a boolean socket flag. The call succeeds, returning the value of
f : T if f is set, and F if f is not set in sf .b.

A tid ·getsockbopt(fd , f) transition is made, leaving the thread state Ret(OK (sf .b(f))) where sf .b(f)
is the boolean value of the socket’s flag f .

Variations

WinXP As above, except that if sid is a UDP socket, then f cannot be
SO KEEPALIVE or SO OOBINLINE .

getsockbopt 2 udp: fast succeed Fail with ENOPROTOOPT : option not valid on WinXP UDP

socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

tid ·getsockbopt(fd , f)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOPROTOOPT))sched timer);

socks := socks ⊕
[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉,

SS ,MM)

windows arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
f ∈ {SO KEEPALIVE}

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

118 getsockerr() (TCP and UDP)

On WinXP, consider a UDP socket sid referenced by fd . From thread tid , which is in the Run state,
a getsockbopt(fd , f) call is made, where f is either SO KEEPALIVE or SO OOBINLINE . The call fails
with an ENOPROTOOPT error.

A tid ·getsockbopt(fd , f) transition is made, leaving the thread state Ret(FAIL ENOPROTOOPT).

Variations

FreeBSD This rule does not apply.

Linux This rule does not apply.

7.12 getsockerr() (TCP and UDP)

getsockerr : fd → unit

A call getsockerr(fd) returns the pending error of a socket, clearing it, if there is one.
fd is a file descriptor referring to a socket. If the socket has a pending error then the getsockerr() call

will fail with that error, otherwise it will return successfully.

7.12.1 Errors

In addition to failing with the pending error, a call to getsockerr() can fail with the errors below, in
which case the corresponding exception is raised:

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.12.2 Common cases

getsockerr 1 ; return 1
getsockerr 2 ; return 1

7.12.3 API

getsockerr() is Posix getsockopt() for the SO_ERROR socket option.
Posix: int getsockopt(int socket, int level, int option_name,

void *restrict option_value,

socklen_t *restrict option_len);

FreeBSD: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

Linux: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

WinXP: int getsockopt(SOCKET s,int level,int optname,

char* optval, int* optlen);

In the Posix interface:

• socket is the file descriptor of the socket to get the option on, corresponding to the fd argument
of the model getsockerr().

• level is the protocol level at which the option resides: SOL_SOCKET for the socket level options,
and option_name is the option to be retrieved. For getsockerr() option_name is set to SO_ERROR.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsockerr 2 119

• option_value is a pointer to a location of size option_len to store the value retrieved by get-

sockopt(). When option_name is SO_ERROR these fields are not used.

• the returned int is either 0 to indicate the socket has no pending error or -1 to indicate a pending
error, in which case the error code is in errno. On WinXP an error is indicated by a return value of
SOCKET_ERROR, not -1, with the actual error code available through a call to WSAGetLastError().

7.12.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, the flag
for getsockerr() is always SO_ERROR so this error cannot occur.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.12.5 Summary

getsockerr 1 all: fast succeed Return successfully: no pending error
getsockerr 2 all: fast fail Fail with pending error and clear the error

7.12.6 Rules

getsockerr 1 all: fast succeed Return successfully: no pending error

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsockerr(fd)
−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(h.socks[sid]).es = ∗

Description
From thread tid , which is in the Run state, a getsockerr(fd) call is made. fd refers to a socket sid

which has no pending errors. The call succeeds.
A tid ·getsockerr(fd) transition is made, leaving the thread state Ret(OK ()).

getsockerr 2 all: fast fail Fail with pending error and clear the error

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

tid ·getsockerr(fd)
−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);

socks := socks ⊕ [(sid , sock ′)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
↑ e = sock .es ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

120 getsocklistening() (TCP and UDP)

sock ′ = sock 〈[es := ∗]〉

Description
From thread tid , which is in the Run state, a getsockerr(fd) call is made. fd refers to a socket sid

which has pending error e. The call fails, returning e.
A tid ·getsockerr(fd) transition is made, leaving the thread state Ret(FAIL e) and cleaing the error

e from the socket.

7.13 getsocklistening() (TCP and UDP)

getsocklistening : fd → bool

A call to getsocklistening(fd) returns T if the socket referenced by fd is listening, or F otherwise.
For TCP a socket is listening if it is in the LISTEN state. For UDP, which is not a connection-oriented
protocol, a socket can never be listening.

7.13.1 Errors

A call to getsocklistening() can fail with the errors below, in which case the corresponding exception is
raised:

ENOPROTOOPT FreeBSD does not support this socket option, and on Linux and WinXP this
option is not supported for UDP sockets.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.13.2 Common cases

getsocklistening 1 ; return 1

7.13.3 API

getsocklistening() is Posix getsockopt() for the SO_ACCEPTCONN socket option.
Posix: int getsockopt(int socket, int level, int option_name,

void *restrict option_value,

socklen_t *restrict option_len);

FreeBSD: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

Linux: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

WinXP: int getsockopt(SOCKET s,int level,int optname,

char* optval, int* optlen);
In the Posix interface:

• socket is the file descriptor of the socket to get the option on, corresponding to the fd argument
of the model getsocklistening().

• level is the protocol level at which the option resides: SOL_SOCKET for the socket level options,
and option_name is the option to be retrieved. For getsocklistening() option_name is set to
SO_ACCEPTCONN.

• option_value is a pointer to a location of size option_len to store the value retrieved by get-

sockopt(). The value stored in the location corresponds to the bool return value of the model
getsocklistening().

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsocklistening 1 121

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

The Linux and WinXP interfaces are similar except where noted. FreeBSD does not support the
SO_ACCEPTCONN socket option.

7.13.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, the flag
for getsocklistening() is always SO_ACCEPTCONN so this error cannot occur.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.13.5 Summary

getsocklistening 1 tcp: fast succeed Return successfully: T if socket is listening, F otherwise
getsocklistening 3 tcp: fast fail Fail with ENOPROTOOPT : on FreeBSD operation not

supported
getsocklistening 2 udp: rc Return F or fail with ENOPROTOOPT : a UDP socket

cannot be listening

7.13.6 Rules

getsocklistening 1 tcp: fast succeed Return successfully: T if socket is listening, F otherwise

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsocklistening(fd)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK b))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = (h.socks[sid]).pr ∧
b = (tcp sock .st = LISTEN) ∧
¬(bsd arch h.arch)

Description
From thread tid , which is in the Run state, a getsocklistening(fd) call is made where fd refers to a

TCP socket sid .
A tid ·getsocklistening(fd) transition is made, leaving the thread state Ret(OK b) where b = T if the

socket is in the LISTEN state, and b = F otherwise.

Variations

FreeBSD This rule does not apply: see getsocklistening 3 .

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

122 getsocklistening 2

getsocklistening 3 tcp: fast fail Fail with ENOPROTOOPT : on FreeBSD operation not sup-

ported

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsocklistening(fd)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOPROTOOPT))sched timer)]〉,SS ,MM)

bsd arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = (h.socks[sid]).pr

Description
On FreeBSD, a getsocklistening(fd) call is made from thread tid which is in the Run state wherefd

refers to a TCP socket sid . The call fails with an ENOPROTOOPT error.
A tid ·getsocklistening(fd) transition is made, leaving the thread state Ret(FAIL ENOPROTOOPT).

Variations

Linux This rule does not apply: see getsocklistening 1 .

WinXP This rule does not apply: see getsocklistening 1 .

getsocklistening 2 udp: rc Return F or fail with ENOPROTOOPT : a UDP socket cannot be

listening

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsocklistening(fd)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(ret))sched timer)]〉,SS ,MM)

proto of(h.socks[sid]).pr = PROTO UDP ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
if linux arch h.arch then rc = fast succeed ∧ ret = OK F
else rc = fast fail ∧ ret = FAIL ENOPROTOOPT

Description
Consider a UDP socket sid , referenced by fd . From thread tid , which is in the Run state, a

getsocklistening(fd) call is made. On Linux the call succeeds, returning F; on FreeBSD and WinXP
the call fails with an ENOPROTOOPT error.

A tid ·getsocklistening(fd) transition is made, leaving the thread state Ret(OK (F)) on Linux, and
Ret(FAIL ENOPROTOOPT) on FreeBSD and Linux.

Variations

Posix As above: the call fails with an ENOPROTOOPT error.

FreeBSD As above: the call fails with an ENOPROTOOPT error.

Linux As above: the call succeeds, returning F.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsockname() (TCP and UDP) 123

WinXP As above: the call fails with an ENOPROTOOPT error.

7.14 getsockname() (TCP and UDP)

getsockname : fd → (ip option ∗ port option)

A call to getsockname(fd) returns the local address pair of a socket. If the file descriptor fd refers to
the socket sock then the return value of a successfull call will be (sock .is1, sock .ps1).

7.14.1 Errors

A call to getsockname() can fail with the errors below, in which case the corresponding exception is
raised:

ECONNRESET On FreeBSD, TCP socket has its cb.bsd cantconnect flag set due to previous
connection establishment attempt.

EINVAL Socket not bound to local address on WinXP.
EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

ENOBUFS Out of resources.

7.14.2 Common cases

getsockname 1 ; return 1

7.14.3 API

Posix: int getsockname(int socket, struct sockaddr *restrict address,

socklen_t *restrict address_len);

FreeBSD: int getsockname(int s, struct sockaddr *name,

socklen_t *namelen);

Linux: int getsockname(int s, struct sockaddr *name,

socklen_t *namelen);

WinXP: int getsockname(SOCKET s, struct sockaddr* name,

int* namelen);
In the Posix interface:

• socket is a file descriptor referring to the socket to get the local address of, corresponding to the
fd argument in the model getsockname().

• address is a pointer to a sockaddr structure of length address_len, which contains the local
address of the socket upon return. These two correspond to the (ip option, port option) return
type of the model getsockname(). If the sin_addr.s_addr field of the name structure is set to 0 on
return, then the socket’s local IP address is not set: the ip option member of the return tuple is
set to ∗; otherwise, if it is set to i then it corresponds to the socket having local IP address and so
the ip option member of the return tuple is↑i . If the sin_port field of the name structure is set to
0 on return then the socket does not have a local port set, corresponding to the port option in the
return tuple being ∗; otherwise the sin_port field is set to p corresponding to the socket having
its local port set: the port option in the return tuple is ↑ p.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

124 getsockname 1

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.14.4 Model details

The following errors are not modelled:

• On FreeBSD, Linux, and WinXP, EFAULT can be returned if the name parameter points to
memory not in a valid part of the process address space. This is an artefact of the C interface to
getsockname() that is excluded by the clean interface used in the model getsockname().

• in Posix, EINVAL can be returned if the socket has been shutdown. None of the implementations
return EINVAL in this case.

• in Posix, EOPNOTSUPP is returned if the getsockname() operation is not supported by the pro-
tocol. Both UDP and TCP support this operation.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.14.5 Summary

getsockname 1 all: fast succeed Successfully return socket’s local address
getsockname 2 tcp: fast fail Fail with ECONNRESET : previous connection attempt

has failed on FreeBSD
getsockname 3 all: fast fail Fail with EINVAL: socket not bound on WinXP

7.14.6 Rules

getsockname 1 all: fast succeed Successfully return socket’s local address

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsockname(fd)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (sock .is1, sock .ps1)))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = h.socks[sid] ∧
(case sock .pr of

TCP PROTO(tcp sock)→
bsd arch h.arch =⇒ T ‖

UDP PROTO(444)→ T) ∧
(windows arch h.arch =⇒ sock .is1 6= ∗ ∨ sock .ps1 6= ∗)

Description
From thread tid , which is in the Run state, a getsockname(fd) call is made where fd refers to socket

sock , identified by sid . The socket’s local address is returned: (sock .is1, sock .ps1).
A tid ·getsockname(fd) transition is made, leaving the thread state Ret(OK (sock .is1, sock .ps1)).

Variations

FreeBSD This rule does not apply if the socket’s bsd cantconnect flag is set in its control
block and its local port is not set.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsockname 3 125

WinXP As above with the additional condition that either the socket’s local IP address
or local port must be set.

getsockname 2 tcp: fast fail Fail with ECONNRESET : previous connection attempt has failed

on FreeBSD

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

tid ·getsockname(fd)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ECONNRESET))sched timer);

socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

bsd arch h.arch ∧
sock .pr = TCP PROTO(tcp sock) ∧
(sock .ps1 = ∗) ∧

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

Description
On FreeBSD, from thread tid , which is in the Run state, a getsockname(fd) call is made where fd

refers to a TCP socket sock , identified by sid , which has its bsd cantconnect flag set and is not bound
to a local port.

A tid ·getsockname(fd) transition is made, leaving the thread state Ret(FAIL ECONNRESET).

Variations

Linux This rule does not apply.

WinXP This rule does not apply.

getsockname 3 all: fast fail Fail with EINVAL: socket not bound on WinXP

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[is1 := ∗; ps1 := ∗]〉)]]〉,
SS ,MM)

tid ·getsockname(fd)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer);

socks := socks ⊕
[(sid , sock 〈[is1 := ∗; ps1 := ∗]〉)]]〉,

SS ,MM)

windows arch h.arch ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

126 getsocknopt() (TCP and UDP)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

Description
On WinXP, a getsockname(fd) call is made from thread tid which is in the Run state. fd refers to a

socket sid which has neither its local IP address nor its local port set. The call fails with an EINVAL
error.

A tid ·getsockname(fd) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

Posix This rule does not apply.

FreeBSD This rule does not apply.

Linux This rule does not apply.

7.15 getsocknopt() (TCP and UDP)

getsocknopt : (fd ∗ socknflag)→ int

A call to getsocknopt(fd ,flag) returns the value of one of the socket’s numeric flags. The fd argument
is a file descriptor referring to the socket to retrieve a flag’s value from. The flag argument is a numeric
socket flag. Possible flags are:

• SO RCVBUF Reports receive buffer size information.

• SO RCVLOWAT Reports the minimum number of bytes to process for socket input operations.

• SO SNDBUF Reports send buffer size information.

• SO SNDLOWAT Reports the minimum number of bytes to process for socket output operations.

The return value of the getsocknopt() call is the numeric-value of the specified flag .

7.15.1 Errors

A call to getsocknopt() can fail with the errors below, in which case the corresponding exception is raised:

ENOPROTOOPT The specified flag is not supported by the protocol.
EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.15.2 Common cases

getsocknopt 1 ; return 1

7.15.3 API

getsocknopt() is Posix getsockopt() for numeric socket flags.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsocknopt 1 127

Posix: int getsockopt(int socket, int level, int option_name,

void *restrict option_value,

socklen_t *restrict option_len);

FreeBSD: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

Linux: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

WinXP: int getsockopt(SOCKET s,int level,int optname,

char* optval, int* optlen);
In the Posix interface:

• socket is the file descriptor of the socket to set the option on, corresponding to the fd argument
of the model getsocknopt().

• level is the protocol level at which the option resides: SOL_SOCKET for the socket level options,
and option_name is the option to be retrieved. These two correspond to the flag argument to
the model getsocknopt() where the possible values of option_name are limited to SO RCVBUF ,
SO RCVLOWAT , SO SNDBUF and SO SNDLOWAT .

• option_value is a pointer to a location of size option_len to store the value retrieved by get-

sockopt(). They correspond to the int return type of the model getsocknopt().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.15.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, typing
prevents an invalid flag from being specified in a call to getsocknopt().

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.15.5 Summary

getsocknopt 1 all: fast succeed Successfully retrieve value of a numeric socket flag
getsocknopt 4 all: fast fail Fail with ENOPROTOOPT : value of SO RCVLOWAT

and SO SNDLOWAT not retrievable

7.15.6 Rules

getsocknopt 1 all: fast succeed Successfully retrieve value of a numeric socket flag

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsocknopt(fd , f)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (int of num(sf .n(f)))))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sf = (h.socks[sid]).sf ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

128 getsocktopt() (TCP and UDP)

(windows arch h.arch =⇒ f /∈ {SO RCVLOWAT ;SO SNDLOWAT})

Description
Consider the socket sid , referenced by fd , with socket flags sf . From thread tid , which is in the Run

state, a getsocknopt(fd , f) call is made. f is a numeric socket flag whose value is to be returned. The
call succeeds, returning sf .n(f), the numeric value of flag f for socket sid .

A tid ·getsocknopt(fd , f) transition is made, leaving the thread state Ret(OK (int of num(sf .n(f)))).

Variations

WinXP The flag f is not SO RCVLOWAT or SO SNDLOWAT .

getsocknopt 4 all: fast fail Fail with ENOPROTOOPT : value of SO RCVLOWAT and

SO SNDLOWAT not retrievable

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsocknopt(fd , f)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOPROTOOPT))sched timer)]〉,SS ,MM)

windows arch h.arch ∧
f ∈ {SO RCVLOWAT ;SO SNDLOWAT}

Description
From thread tid , which is in the Run state, a getsocknopt(fd , f) call is made where fd is a file

descriptor. f is a numeric socket flag: either SO RCVLOWAT or SO SNDLOWAT , both flags whose
value is non-retrievable. The call fails with an ENOPROTOOPT error.

A tid ·getsocknopt(fd , f) transition is made, leaving the thread state Ret(FAIL ENOPROTOOPT).

Variations

FreeBSD This rule does not apply.

Linux This rule does not apply.

7.16 getsocktopt() (TCP and UDP)

getsocktopt : (fd ∗ socktflag)→ (int ∗ int) option

A call to getsocktopt(fd ,flag) returns the value of one of the socket’s time-option flags.
The fd argument is a file descriptor referring to the socket to retrieve a flag’s value from. The flag

argument is a time option socket flag. Possible flags are:

• SO RCVTIMEO Reports the timeout value for input operations.

• SO SNDTIMEO Reports the timeout value specifying the amount of time that an output function
blocks because flow control prevents data from being sent.

The return value of the getsocktopt() call is the time-value of the specified flag . A return value of ∗
means the timeout is disabled. A return value of ↑(s,ns) means the timeout value is s seconds and ns
nano-seconds.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

getsocktopt() (TCP and UDP) 129

7.16.1 Errors

A call to getsocktopt() can fail with the errors below, in which case the corresponding exception is raised:

ENOPROTOOPT The specified flag is not supported by the protocol.
EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.16.2 Common cases

getsocktopt 1 ; return 1

7.16.3 API

getsocktopt() is Posix getsockopt() for time-valued socket options.
Posix: int getsockopt(int socket, int level, int option_name,

void *restrict option_value,

socklen_t *restrict option_len);

FreeBSD: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

Linux: int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

WinXP: int getsockopt(SOCKET s,int level,int optname,

char* optval, int* optlen);
In the Posix interface:

• socket is the file descriptor of the socket to set the option on, corresponding to the fd argument
of the model getsocktopt().

• level is the protocol level at which the option resides: SOL_SOCKET for the socket level options,
and option_name is the option to be retrieved. These two correspond to the flag argument to the
model getsocktopt() where the possible values of option_name are limited to SO RCVTIMEO and
SO SNDTIMEO .

• option_value is a pointer to a location of size option_len to store the value retrieved by get-

sockopt(). They correspond to the (int ∗ int) option return type of the model getsocktopt().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.16.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, typing
prevents an invalid flag from being specified in a call to getsocktopt().

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.16.5 Summary

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

130 getsocktopt 4

getsocktopt 1 all: fast succeed Successfully retrieve value of time-option socket flag
getsocktopt 4 all: fast fail Fail with ENOPROTOOPT : on WinXP SO LINGER

not retrievable for UDP sockets

7.16.6 Rules

getsocktopt 1 all: fast succeed Successfully retrieve value of time-option socket flag

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsocktopt(fd , f)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK t))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sf = (h.socks[sid]).sf ∧
t = tltimeopt of time(sf .t(f)) ∧
¬(windows arch h.arch ∧ proto of(h.socks[sid]).pr = PROTO UDP ∧

f = SO LINGER)

Description
From thread tid , which is in the Run state, a getsocktopt(fd , f) call is made. fd is a file descriptor

referring to the socket sid which has socket flags sf , and f is a time-option flag. The call succeeds,
returning OK (t) where t is the value of the socket’s flag f .

A tid ·getsocktopt(fd , f) transition is made, leaving the thread state Ret(OKt).

Model details
The return type is (int ∗ int) option, but the type of a time-option socket flag is time. The auxiliary

function tltimeopt of time is used to do the conversion.

Variations

WinXP As above but in addition if fd refers to a UDP socket then the flag is not
SO LINGER.

getsocktopt 4 all: fast fail Fail with ENOPROTOOPT : on WinXP SO LINGER not retrievable

for UDP sockets

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·getsocktopt(fd , f)
−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOPROTOOPT))sched timer)]〉,SS ,MM)

windows arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
proto of(h.socks[sid]).pr = PROTO UDP ∧
f = SO LINGER

Description
On WinXP, from thread tid which is in the Run state, a getsocktopt(fd , f) call is made. fd is a

file descriptor referring to a UDP socket sid and f is the socket flag SO LINGER. The flag f is not
retrievable so the call fails with an ENOPROTOOPT error.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

listen() (TCP only) 131

A tid ·getsocktopt(fd , f) transition is made, leaving the thread state Ret(ENOPROTOOPT).

Variations

FreeBSD This rule does not apply.

Linux This rule does not apply.

7.17 listen() (TCP only)

listen : fd ∗ int→ unit

A call to listen(fd ,n) puts a TCP socket that is in the CLOSED state into the LISTEN state, making
it a passive socket, so that incoming connections for the socket will be accepted by the host and placed
on its listen queue. Here fd is a file descriptor referring to the socket to put into the LISTEN state
and n is the backlog used to calculate the maximum lengths of the two components of the socket’s listen
queue: its pending connections queue, lis.q0 , and its complete connection queue, lis.q . The details of
this calculation very between architectures. The maximum useful value of n is SOMAXCONN : if n is
greater than this then it will be truncated without generating an error. The minimum value of n is 0: if
it a negative integer then it will be set to 0.

Once a socket is in the LISTEN state, listen() can be called again to change the backlog value.

7.17.1 Errors

A call to listen() can fail with the errors below, in which case the corresponding exception is raised:

EADDRINUSE Another socket is listening on this local port.

EINVAL On FreeBSD the socket has been shutdown for writing; on Linux the socket is
not in the CLOSED or LISTEN state; or on WinXP the socket is not bound,

EISCONN On WinXP the socket is already connected: it is not in the CLOSED or
LISTEN state.

EOPNOTSUPP The listen() operation is not supported for UDP.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.17.2 Common cases

A TCP socket is created, has its local address and port set by bind(), and then is put into the LISTEN
state which can accept new incoming connections: socket 1 ; return 1 ; bind 1 return 1 ; listen1; return 1 ;
. . .

7.17.3 API

Posix: int listen(int socket, int backlog);

FreeBSD: int listen(int s, int backlog);

Linux: int listen(int s, int backlog);

WinXP: int listen(SOCKET s, int backlog);

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

132 listen 1

In the Posix interface:

• socket is a file descriptor referring to the socket to put into the LISTEN state, corresponding to
the fd argument of the model listen().

• backlog is an int on which the maximum permitted length of the socket’s listen queue depends.
It corresponds to the n argument of the model listen().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.17.4 Model details

The following errors are not modelled:

• In Posix, EACCES may be returned if the calling process does not have the appropriate privileges.
This is not modelled here.

• In Posix, EDESTADDRREQ shall be returned if the socket is not bound to a local address and
the protocol does not support listening on an unbound socket. WinXP returns an EINVAL error
in this case; FreeBSD and Linux autobind the socket if listen() is called on an unbound socket.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.17.5 Summary

listen 1 tcp: fast succeed Successfully put socket in LISTEN state
listen 1b tcp: fast succeed Successfully update backlog value
listen 1c tcp: fast succeed Successfully put socket in the LISTEN state from any

non-{CLOSED ;LISTEN } state on FreeBSD
listen 2 tcp: fast fail Fail with EINVAL on WinXP: socket not bound to local

port
listen 3 tcp: fast fail Fail with EINVAL on Linux or EISCONN on WinXP:

socket not in CLOSED or LISTEN state
listen 4 tcp: fast fail Fail with EADDRINUSE on Linux: another socket al-

ready listening on local port
listen 5 tcp: fast fail Fail with EINVAL on BSD: socket shutdown for writing

or bsd cantconnect flag set
listen 7 udp: fast fail Fail with EOPNOTSUPP : listen() called on UDP socket

7.17.6 Rules

listen 1 tcp: fast succeed Successfully put socket in LISTEN state

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es,F, cantrcvmore,
TCP Sock(CLOSED , cb, ∗)))];

listen := listen0]〉,
SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

listen 1b 133

tid ·listen(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es,F, cantrcvmore,

TCP Sock(LISTEN , cb, ↑ lis)))];
listen := sid :: listen0;
bound := bound]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(bsd arch h.arch ∨ cantrcvmore = F) ∧
¬(windows arch h.arch ∧ IS NONE ps1) ∧
(bsd arch h.arch =⇒ T) ∧
p1 ∈ autobind(ps1,PROTO TCP , h, socks\\sid) ∧
(if ps1 = ∗ then bound = sid :: h.bound else bound = h.bound) ∧
lis =〈[q0 :=[];

q :=[];
qlimit :=n]〉

Description
From thread tid , which is currently in the Run state, a listen(fd ,n) call is made. fd is a file descriptor

referring to a TCP socket identified by sid which is not shutdown for writing, is in the CLOSED state,
has an empty send and receive queue, and does not have its send or receive urgent pointers set. The
host’s list of listening sockets is listen0. Either the socket is bound to a local port p1, or it can be
autobound to a local port p1.

The call succeeds: a tid ·listen(fd ,n) transition is made, leaving the thread in state Ret(OK ()). The
socket is put in the LISTEN state, with an empty listen queue, lis, with n as its backlog. sid is added
to the host’s list of listening sockets, listen := sid :: listen0, and if autobinding occurred, it is also added
to the host’s list of bound sockets, h.bound , to create a new list bound .

Variations

FreeBSD The bsd cantconnect flag in the control block must not be set to T (from an
earlier connection establishment attempt).

WinXP As above, except that the socket must be bound to a local port p1. If it is
not bound then autobinding will not occur: the call will fail with an EINVAL
error. See also listen2 (p134).

listen 1b tcp: fast succeed Successfully update backlog value

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es,F, cantrcvmore,
TCP Sock(LISTEN , cb, ↑ lis)))];

listen := listen0]〉,
SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

134 listen 1c

tid ·listen(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es,F, cantrcvmore,

TCP Sock(LISTEN , cb, ↑ lis ′)))];
listen := sid :: listen0]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(bsd arch h.arch ∨ cantrcvmore = F) ∧
lis ′ = lis 〈[qlimit :=n]〉

Description
From thread tid , which is in the Run state, a listen(fd ,n) call is made. fd refers to a TCP socket

identified by sid which is currently in the LISTEN state. The host has a list of listening sockets, listen0.
The call succeeds.

A tid ·listen(fd ,n) transition is made, leaving the thread state Ret(OK ()). The backlog value of the
socket’s listen queue, lis.qlimit is updated to be n, resulting in a new listen queue lis ′ for the socket. sid
is added to the head of the host’s listen queue, listen := sid :: listen0.

listen 1c tcp: fast succeed Successfully put socket in the LISTEN state from any non-

{CLOSED ;LISTEN } state on FreeBSD

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock)];
listen := listen0]〉,
SS ,MM)

tid ·listen(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕
[(sid , sock ′)];

listen := sid :: listen0]〉,
SS ′,MM)

bsd arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,TCP PROTO(tcp sock)) ∧
tcp sock .st /∈ {CLOSED ;LISTEN } ∧
sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[st :=LISTEN ; lis := ↑ lis]〉)]〉 ∧
destroy(i1, p1, i2, p2)SS SS ′ ∧
lis =〈[q0 :=[];

q :=[];
qlimit :=n]〉

Description
On BSD, calling listen() always succeeds on a socket regardless of its state: the state of the socket is

just changed to LISTEN .
From thread tid , which is in the Run state, a listen(fd ,n) call is made. fd refers to a TCP socket

identified by sid which is currently in any non-{CLOSED ;LISTEN } state. The call succeeds.
A tid ·listen(fd ,n) transition is made, leaving the thread state Ret(OK ()). The socket state is updated

to LISTEN , with empty listen queues.

listen 2 tcp: fast fail Fail with EINVAL on WinXP: socket not bound to local port

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

listen 3 135

tid ·listen(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer)]〉,SS ,MM)

windows arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = sock ∧
proto of sock .pr = PROTO TCP ∧
sock .ps1 = ∗

Description
On WinXP, from thread tid , which is in the Run state, a listen(fd ,n) call is made. fd refers to a

TCP socket sock , identified by sid , which is not bound to a local port: sock .ps1 = ∗. The call fails with
an EINVAL error.

A tid ·listen(fd ,n) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

FreeBSD This rule does not apply.

Linux This rule does not apply.

listen 3 tcp: fast fail Fail with EINVAL on Linux or EISCONN on WinXP: socket not in

CLOSED or LISTEN state

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·listen(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = sock ∧
sock .pr = TCP PROTO(tcp sock) ∧
tcp sock .st /∈ {CLOSED ;LISTEN } ∧
¬(bsd arch h.arch) ∧
(if windows arch h.arch then

err = EISCONN
else if linux arch h.arch then

err = EINVAL
else
F)

Description
From thread tid , which is in the Run state, a listen(fd ,n) call is made. fd refers to a TCP socket

sock , identified by sid , which is not in the CLOSED or LISTEN state. On Linux the call fails with an
EINVAL error; on WinXP it fails with an EISCONN error.

A tid ·listen(fd ,n) transition is made, leaving the thread state Ret(FAIL err) where err is one of the
above errors.

Variations

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

136 listen 5

FreeBSD This rule does not apply: listen() can be called from any state.

Linux As above: the call fails with an EINVAL error.

WinXP As above: the call fails with an EISCONN error.

listen 4 tcp: fast fail Fail with EADDRINUSE on Linux: another socket already listening on

local port

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·listen(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EADDRINUSE))sched timer)]〉,SS ,MM)

linux arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = sock ∧
sock .pr = TCP PROTO(tcp sock) ∧
tcp sock .st = CLOSED ∧
sock .ps1 = ↑ p1 ∧
(∃sid ′ sock ′ tcp sock ′.h.socks[sid ′] = sock ′ ∧ sock ′.pr = TCP PROTO(tcp sock ′) ∧

tcp sock ′.st = LISTEN ∧ sock ′.ps1 = sock .ps1 ∧
¬(∃i1 i ′1.i1 6= i ′1 ∧ sock .is1 = ↑ i1 ∧ sock ′.is1 = ↑ i ′1))

Description
On Linux, from thread tid , which is in the Run state, a listen(fd ,n) call is made. fd refers to a TCP

socket sock , identified by sid , in state CLOSED and bound to local port p1. There is another TCP
socket, sock ′, in the host’s finite map of sockets, h.socks that is also bound to local port p1, and is in the
LISTEN state. The two sockets, sock and sock ′, are not bound to different IP addresses: either they are
both bound to the same IP address, one is bound to an IP address and the other is not bound to an IP
address, or neither is bound to an IP address. The call fails with an EADDRINUSE error.

A tid ·listen(fd ,n) transition is made, leaving the thread state Ret(FAIL EADDRINUSE).

Variations

FreeBSD This rule does not apply.

WinXP This rule does not apply.

listen 5 tcp: fast fail Fail with EINVAL on BSD: socket shutdown for writing or bsd cantconnect

flag set

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[cantsndmore := cantsndmore; pr :=TCP PROTO(tcp sock 〈[st := st]〉)]〉)]]〉,
SS ,MM)

tid ·listen(fd ,n)
−−−−−−−−−−−−→

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv() (TCP only) 137

(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer);
socks := socks ⊕

[(sid , sock 〈[cantsndmore := cantsndmore; pr :=TCP PROTO(tcp sock 〈[st := st]〉)]〉)]]〉,
SS ,MM)

bsd arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
st ∈ {CLOSED ;LISTEN } ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(cantsndmore = T ∨T)

Description
On FreeBSD, from thread tid , which is in the Run state, a listen(fd ,n) call is made. fd refers to a TCP

socket sock , identified by sid , which is in the CLOSED or LISTEN state. The socket is either shutdown
for writing or has its bsd cantconnect flag set due to an earlier connection-establishment attempt. The
call fails with an EINVAL error.

A tid ·listen(fd ,n) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

Linux This rule does not apply.

WinXP This rule does not apply.

listen 7 udp: fast fail Fail with EOPNOTSUPP : listen() called on UDP socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·listen(fd ,n)
−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EOPNOTSUPP))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
proto of(h.socks[sid]).pr = PROTO UDP

Description
Consider a UDP socket sid , referenced by fd . From thread tid , which is in the Run state, a listen(fd ,n)

call is made. The call fails with an EOPNOTSUPP error.
A tid ·listen(fd ,n) transition is made, leaving the thread state Ret(FAIL EOPNOTSUPP).
Calling listen() on a socket for a connectionless protocol (such as UDP) is meaningless and is thus

an unsupported (EOPNOTSUPP) operation.

7.18 recv() (TCP only)

recv : fd ∗ int ∗msgbflag list→ (string ∗ ((ip ∗ port) ∗ bool) option)

A call to recv(fd ,n, opts) reads data from a socket’s receive queue. This section describes the be-
haviour for TCP sockets. Here fd is a file descriptor referring to a TCP socket to read data from, n is
the number of bytes of data to read, and opts is a list of message flags. Possible flags are:

• MSG DONTWAIT : Do not block if there is no data available.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

138 recv() (TCP only)

• MSG OOB : Return out-of-band data.

• MSG PEEK : Read data but do not remove it from the socket’s receive queue.

• MSG WAITALL: Block until all n bytes of data are available.

The returned string is the data read from the socket’s receive queue. The ((ip ∗ port) ∗ bool) option is
always returned as ∗ for a TCP socket.

In order to receive data, a TCP socket must be connected to a peer; otherwise, the recv() call will
fail with an ENOTCONN error. If the socket has a pending error then the recv() call will fail with this
error even if there is data available.

If there is no data available and non-blocking behaviour is not enabled (the socket’s O NONBLOCK
flag is not set and the MSG DONTWAIT flag was not used) then the recv() call will block until data
arrives or an error occurs. If non-blocking behaviour is enabled and there is no data or error then the
call will fail with an EAGAIN error.

The MSG OOB flag can be set in order to receive out-of-band data; for this, the socket’s
SO OOBINLINE cannot be set (i.e. out-of-band data must not be being returned inline).

7.18.1 Errors

A call to recv() can fail with the errors below, in which case the corresponding exception is raised:

EAGAIN Non-blocking recv() call made and no data available; or out-of-band data re-
quested and none is available.

EINVAL Out-of-band data requested and SO OOBINLINE flag set or the out-of-band
data has already been read.

ENOTCONN Socket not connected.

ENOTSOCK The file descriptor passed does not refer to a socket.

EBADF The file descriptor passed is not a valid file descriptor.

EINTR The system was interrupted by a caught signal.

ENOBUFS Out of resources.

ENOMEM Out of resources.

7.18.2 Common cases

A TCP socket is created and then connected to a peer; a recv() call is made to receive data from that
peer: socket 1 ; return 1 ; connect 1 ; return 1 ; recv 1 ; . . .

7.18.3 API

Posix: ssize_t recv(int socket, void *buffer, size_t length, int flags);

FreeBSD: ssize_t recv(int s, void *buf, size_t len, int flags);

Linux: int recv(int s, void *buf, size_t len, int flags);

WinXP: int recv(SOCKET s, char* buf, int len, int flags);

In the Posix interface:

• socket is the file descriptor of the socket to receive from, corresponding to the fd argument of the
model recv().

• buffer is a pointer to a buffer to place the received data in, which upon return contains the data
received on the socket. This corresponds to the string return value of the model recv().

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 1 139

• length is the amount of data to be read from the socket, corresponding to the int argument of the
model recv(); it should be at most the length of buffer.

• flags is a disjunction of the message flags that are set for the call, corresponding to the msgbflag
list argument of the model recv().

• the returned ssize_t is either non-negative, in which case it is the the amount of data that was
received by the socket, or it is -1 to indicate an error, in which case the error code is in errno.
On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with the actual error
code available through a call to WSAGetLastError().

The FreeBSD, Linux and WinXP interfaces are similar modulo argument renaming, except where
noted above.

There are other functions used to receive data on a socket. recvfrom() is similar to recv() except it
returns the source address of the data; this is used for UDP but is not necessary for TCP as the source
address will always be the peer the socket has connected to. recvmsg(), another input function, is a
more general form of recv().

7.18.4 Model details

If the call blocks then the thread enters state Recv2 (sid ,n, opts) where:

• sid : sid is the identifier of the socket that the recv() call was made on,

• n : num is the number of bytes to be read, and

• opts : msgbflag list is the list of message flags.

The following errors are not modelled:

• On FreeBSD, Linux, and WinXP, EFAULT can be returned if the buffer parameter points to
memory not in a valid part of the process address space. This is an artefact of the C interface to
ioctl() that is excluded by the clean interface used in the model recv().

• In Posix, EIO may be returned to indicated that an I/O error occurred while reading from or writing
to the file system; this is not modelled here.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

The following Linux message flags are not modelled: MSG_NOSIGNAL, MSG_TRUNC, and MSG_ERRQUEUE.

7.18.5 Summary

recv 1 tcp: fast succeed Successfully return data from the socket without blocking
recv 2 tcp: block Block, entering state Recv2 as not enough data is available
recv 3 tcp: slow nonurgent

succeed
Blocked call returns from Recv2 state

recv 4 tcp: fast fail Fail with EAGAIN : non-blocking call would block wait-
ing for data

recv 7 tcp: fast fail Fail with ENOTCONN : socket not connected
recv 8 tcp: fast fail Fail with pending error
recv 8a tcp: slow urgent fail Fail with pending error from blocked state
recv 9 tcp: fast fail Fail with ESHUTDOWN : socket shut down for reading

on WinXP

7.18.6 Rules

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

140 recv 1

recv 1 tcp: fast succeed Successfully return data from the socket without blocking

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)
tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (implode str , ∗)))sched timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

((st ∈ {ESTABLISHED ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSING ;
TIME WAIT ;CLOSE WAIT ;LAST ACK} ∧
is1 = ↑ i1 ∧ ps1 = ↑ p1 ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2) ∨

(st = CLOSED)) ∧
n = clip int to num n0 ∧
opts = list to set opts0 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧

(* We return now if we can fill the buffer, or we can reach the low-water mark (usually ignored if MSG WAITALL

is set), or we can reach EOF or the next urgent-message boundary. Pending errors are not checked. *)
∃rcvq .
let have all data = (length rcvq ≥ n) in
let have enough data = (length rcvq ≥ sf .n(SO RCVLOWAT)) in
let partial data ok = (MSG WAITALL /∈ opts ∨ n > sf .n(SO RCVBUF) ∨

(¬(bsd arch h.arch) ∧MSG PEEK ∈ opts)) in
(have all data ∨ (have enough data ∧ partial data ok) ∨ cantrcvmore) ∧

str = rcvq ∧

peek = (MSG PEEK ∈ opts) ∧
inline = T ∧
read(i1, p1, i2, p2)peek inline(flgs, rcvq)s s ′ ∧
length rcvq ≤ n

Description
From thread tid , which is in the Run state, a recv(fd ,n0, opts0) call is made where out-of-band data

is not requested. fd refers to a synchronised TCP socket sid with binding quad (↑ i1, ↑ p1, ↑ i2, ↑ p2) and
no pending error. Alternatively the socket is uninitialised and in state CLOSED .

The call can return immediately because either: (1) there are at least n bytes of data in the socket’s
receive queue (the have all data case above); (2) the length of the socket’s receive queue is greater
than or equal to the minimum number of bytes for socket recv() operations, sf .n(SO RCVLOWAT),
and the call does not have to return all n bytes of data; either because (i) the MSG WAITALL flag
is not set in opts0, (ii) the number of bytes requested is greater than the number of bytes in the
socket’s receive queue, or (iii) on non-FreeBSD architectures the MSG PEEK flag is set in opts0 (the
have enough data ∧ partial data ok case above); (3) there is urgent data available in the socket’s receive
queue (the urgent data ahead case above); or (4) the socket has been shutdown for reading.

The call succeeds, returning a string, implode str , which is either: (5) the smaller of the first n
bytes of the socket’s receive queue or its entire receive queue, if the urgent pointer is not set or the socket
is at the urgent mark; or (6) the smaller of the first n bytes of the the socket’s receive queue, the data in
its receive queue up to the urgent mark, and its entire receive queue, if the urgent mark is set and the
socket is not at the urgent mark.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 2 141

A tid ·recv(fd ,n0, opts0) transition is made leaving the thread state Ret(OK (implode str , ∗)). If
the MSG PEEK flag was set in opts0 then the socket’s receive queue remains unchanged; otherwise,
the data str is removed from the head of the socket’s receive queue, rcvq , to leave the socket with new
receive queue rcvq ′. If the receive urgent pointer was not set or was set to ↑ 0 then it will be set to ∗; if
it was set to ↑ om and om is less than the length of the returned string then it will be set to ↑ 0 (because
the returned string was the data in the receive queue up to the urgent mark); otherwise it will be set to
↑(om − length str).

Model details
The amount of data requested, n0, is clipped to a natural number from an integer, using

clip int to num. POSIX specifies an unsigned type for n0 and this is one possible model thereof.
The opts0 argument to recv() is of type msgbflag list, but it is converted to a set, opts, using

list to set.
The data itself is represented as a byte list in the datagram but is returned a string: the implode

function is used to do the conversion.

recv 2 tcp: block Block, entering state Recv2 as not enough data is available

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Recv2 (sid ,n, opts))never timer)]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

n = clip int to num n0 ∧
opts = list to set opts0 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)) ∧
st ∈ {ESTABLISHED ;SYN SENT ;SYN RECEIVED ;FIN WAIT 1 ;FIN WAIT 2} ∧

(* We block if not enough (see recv 1 (p140)) data is available and there is no pending error. *)

∃rcvq .
let blocking = ¬(MSG DONTWAIT ∈ opts ∨ ff .b(O NONBLOCK)) in
let have all data = (length rcvq ≥ n) in
let have enough data = (length rcvq ≥ sf .n(SO RCVLOWAT)) in
let partial data ok = (MSG WAITALL /∈ opts ∨ n > sf .n(SO RCVBUF) ∨

(¬(bsd arch h.arch) ∧MSG PEEK ∈ opts)) in
blocking ∧
¬(have all data ∨ (have enough data ∧ partial data ok) ∨ cantrcvmore) ∧
es = ∗ ∧

peek = T ∧
inline = T ∧
read(i1, p1, i2, p2)peek inline(flgs, rcvq)s s ′

Description
From thread tid , which is in the Run state, a recv(fd ,n0, opts0) call is made where out-of-band data is

not requested. fd refers to a TCP socket sid in state ESTABLISHED , SYN SENT , SYN RECEIVED ,
FIN WAIT 1 , or FIN WAIT 2 , with binding quad (↑ i1, ↑ p1, ↑ i2, ↑ p2) and no pending error. The
call is blocking: the MSG DONTWAIT flag is not set in opts0 and the socket’s O NONBLOCK flag is
not set.

The call cannot return immediately because: (1) there are less than n bytes of data in the socket’s
receive queue; (2) there are less than sf .n(SO RVCLOWAT) (the minimum number of bytes for socket
recv() operations) bytes of data in the socket’s receive queue or the call must return all n bytes of data:

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

142 recv 3

(i) the MSG WAITALL flag is set in opts0, (ii) the number of bytes requested is greater than the length
of the socket’s receive queue, and (iii) the MSG PEEK flag is not set in opts0; (3) there is no urgent
data ahead in the socket’s receive queue; and (4) the socket is not shutdown for reading.

The call blocks in state Recv2 waiting for data; a tid ·recv(fd ,n0, opts0) transition is made, leaving
the thread state Recv2 (sid ,n, opts).

Model details
The amount of data requested, n0, is clipped to a natural number from an integer, using

clip int to num. POSIX specifies an unsigned type for n0, whereas the model uses int.
The opts0 argument to recv() is of type msgbflag list, but it is converted to a set, opts, using

list to set.

Variations

FreeBSD In case (iii) above, the MSG PEEK flag may be set in opts0.

recv 3 tcp: slow nonurgent succeed Blocked call returns from Recv2 state

(h 〈[ts := ts ⊕ (tid 7→ (Recv2 (sid ,n, opts))d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)
τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (implode str , ∗)))sched timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

((st ∈ {ESTABLISHED ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSING ;
TIME WAIT ;CLOSE WAIT ;LAST ACK} ∧

is1 = ↑ i1 ∧ ps1 = ↑ p1 ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2) ∨
st = CLOSED) ∧

∃rcvq .
(* We return at last if we now have enough (see recv 1 (p140)) data available. Pending errors are not checked. *)

let have all data = (length rcvq ≥ n) in
let have enough data = (length rcvq ≥ sf .n(SO RCVLOWAT)) in
let partial data ok = (MSG WAITALL /∈ opts ∨ n > sf .n(SO RCVBUF) ∨

(¬(bsd arch h.arch) ∧MSG PEEK ∈ opts)) in
(have all data ∨ (have enough data ∧ partial data ok) ∨ cantrcvmore) ∧

str = (rcvq : char list) ∧

peek = (MSG PEEK ∈ opts) ∧
inline = T ∧
read(i1, p1, i2, p2)peek inline(flgs, rcvq)s s ′ ∧
length rcvq ≤ n

Description
Thread tid is in the Recv2 (sid ,n, opts) state after a previous recv() call blocked. sid refers either to a

synchronised TCP socket with binding quad (↑ i1, ↑p1, ↑ i2, ↑ p2); or to a TCP socket in state CLOSED .
Sufficient data is not available on the socket for the call to return: either (1) there is at least n

bytes of data in the socket’s receive queue (the have all data case above); (2) the length of the socket’s

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 4 143

receive queue is greater than or equal to the minimum number of bytes for socket recv() operations,
sf .n(SO RCVLOWAT), and the call does not have to return all n bytes of data (the partial data ok
case): either (i) the MSG WAITALL flag is not set in opts, (ii) the number of bytes requested is
greater than the number of bytes in the socket’s receive queue, or (iii) on non-FreeBSD architectures the
MSG PEEK flag is set in opts (the have enough data ∧ partial data ok case above); (3) there is urgent
data available in the socket’s receive queue (the urgent data ahead cae above); or (4) the socket has been
shutdown for reading.

The data returned, str , is either: (1) the smaller of the first n bytes of the socket’s receive queue or
its entire receive queue, if the urgent pointer is not set or the socket is at the urgent mark; or (2) the
smaller of the first n bytes of the the socket’s receive queue, the data in its receive queue up to the urgent
mark, and its entire receive queue, if the urgent mark is set and the socket is not at the urgent mark.

A τ transition is made leaving the thread state Ret(OK (implode str , ∗)). If the MSG PEEK flag
was set in opts then the socket’s receive queue remains unchanged; otherwise, the data str is removed
from the head of the socket’s receive queue, rcvq , to leave the socket with new receive queue rcvq ′. If the
receive urgent pointer was not set or was set to ↑ 0 then it will be set to ∗; if it was set to ↑ om and om
is less than the length of the returned string then it will be set to ↑ 0 (because the returned string was
the data in the receive queue up to the urgent mark); otherwise it will be set to ↑(om − length str).

Model details
The data itself is represented as a byte list in the datagram but is returned a string: the implode

function is used to do the conversion.

recv 4 tcp: fast fail Fail with EAGAIN : non-blocking call would block waiting for data

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EAGAIN))sched timer)]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

n = clip int to num n0 ∧
opts = list to set opts0 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)) ∧
st ∈ {ESTABLISHED ;SYN SENT ;SYN RECEIVED ;FIN WAIT 1 ;FIN WAIT 2} ∧

∃rcvq .
(* We fail if we would otherwise block (see recv 2 (p141); these conditions are identical). *)

let blocking = ¬(MSG DONTWAIT ∈ opts ∨ ff .b(O NONBLOCK)) in
let have all data = (length rcvq ≥ n) in
let have enough data = (length rcvq ≥ sf .n(SO RCVLOWAT)) in
let partial data ok = (MSG WAITALL /∈ opts ∨ n > sf .n(SO RCVBUF) ∨

(¬(bsd arch h.arch) ∧MSG PEEK ∈ opts)) in
¬blocking ∧
¬(have all data ∨ (have enough data ∧ partial data ok) ∨ cantrcvmore) ∧
(rcvq = [] =⇒ es = ∗) ∧

peek = T ∧
inline = T ∧
read(i1, p1, i2, p2)peek inline(flgs, rcvq)s s ′

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

144 recv 7

From thead tid , which is in the Run state, a recv(fd ,n0, opts0) call is made where out-of-band data is
not requested. fd refers to a TCP socket sid with binding quad (↑ i1, ↑ p1, ↑ i2, ↑ p2) and no pending error,
which is in state ESTABLISHED , SYN SENT , SYN RECEIVED , FIN WAIT 1 , or FIN WAIT 2 .
The recv() call is non-blocking: either the MSG DONTWAIT flag was set in opts0 or the socket’s
O NONBLOCK flag is set.

The call would block because: (1) there are less than n bytes of data in the socket’s receive queue;
(2) there are less than sf .n(SO RVCLOWAT) (the minimum number of bytes for socket recv() oper-
ations) bytes of data in the socket’s receive queue or the call must return all n bytes of data: (i) the
MSG WAITALL flag is set in opts0, (ii) the number of bytes requested is greater than the length of
the socket’s receive queue, and (iii) the MSG PEEK flag is not set in opts0; (3) there is no urgent data
ahead in the socket’s receive queue; (4) the socket is not shutdown for reading; and (5) if the socket’s
receive queue is empty then it has no pending error.

The call fails with an EAGAIN error. A tid ·recv(fd ,n0, opts0) transition is made, leaving the thread
state Ret(FAIL EAGAIN).

Model details
The amount of data requested, n0, is clipped to a natural number from an integer, using

clip int to num. POSIX specifies an unsigned type for n0 and this is one possible model thereof.
The opts0 argument to recv() is of type msgbflag list, but it is converted to a set, opts, using

list to set.

Variations

FreeBSD In case (iii) above, the MSG PEEK flag may be set in opts0.

recv 7 tcp: fast fail Fail with ENOTCONN : socket not connected

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOTCONN))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = h.socks[sid] ∧
TCP PROTO(tcp sock) = sock .pr ∧
(tcp sock .st = LISTEN ∨
(tcp sock .st = CLOSED ∧ sock .cantrcvmore = F)

)

Description
From thread tid , which is in the Run state, a recv(fd ,n0, opts0) call is made. fd refers to a TCP

socket sock identified by sid which is either in the LISTEN state or is not shutdown for reading in the
CLOSED state. The call fails with an ENOTCONN error.

A tid ·recv(fd ,n0, opts0) transition is made, leaving the thread state Ret(FAIL ENOTCONN).

recv 8 tcp: fast fail Fail with pending error

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, ↑ e, cantsndmore, cantrcvmore,TCP PROTO(tcp sock)))]]〉,
SS ,MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 8a 145

(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore,TCP PROTO(tcp sock)))]]〉,
SS ,MM)

opts = list to set opts0 ∧
n = clip int to num n0 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
((tcp sock .st /∈ {CLOSED ;LISTEN } ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2) ∨
tcp sock .st = CLOSED) ∧

(* We fail immediately if there is a pending error and we could not otherwise return data (see recv 1 (p140)). *)

let rcvq = ([] : char list) in
let blocking = ¬(MSG DONTWAIT ∈ opts ∨ ff .b(O NONBLOCK)) in
let have all data = (length rcvq ≥ n) in
let have enough data = (length rcvq ≥ sf .n(SO RCVLOWAT)) in
let partial data ok = (MSG WAITALL /∈ opts ∨ n > sf .n(SO RCVBUF) ∨

(¬(bsd arch h.arch) ∧MSG PEEK ∈ opts)) in
¬(have all data ∨ (have enough data ∧ partial data ok)) ∧
(blocking ∨ rcvq = []) ∧

es = if MSG PEEK ∈ opts then ↑ e else ∗

Description
From thread tid , which is in the Run state, a recv(fd ,n0, opts0) call is made. fd refers to a TCP

socket that either is in state CLOSED or is in state other than CLOSED or LISTEN with peer address
set to (↑ i2, ↑ p2). The socket has a pending error e.

The call cannot immediately return data because: (1) there are less than n bytes of data in the
socket’s receive queue; (2) there are less than sf .n(SO RVCLOWAT) (the minimum number of bytes
for socket recv() operations) bytes of data in the socket’s receive queue or the call must return all n
bytes of data: (i) the MSG WAITALL flag is set in opts0, (ii) the number of bytes requested is greater
than the length of the socket’s receive queue, and (iii) the MSG PEEK flag is not set in opts0; (3)
there is no urgent data ahead in the socket’s receive queue; and (4) either the call is a blocking one: the
MSG DONTWAIT flag is set in opts0 or the socket’s O NONBLOCK flag is set, or the socket’s receive
queue is empty.

The call fails, returning the pending error. A tid ·recv(fd ,n0, opts0) transition is made, leaving the
thread state Ret(FAIL e). If the MSG PEEK flag was set in opts0 then the socket’s pending error
remains, otherwise it is cleared.

Model details
The opts0 argument to recv() is of type msgbflag list, but it is converted to a set, opts, using

list to set.

Variations

FreeBSD In case (iii) above, the MSG PEEK flag may be set in opts0.

recv 8a tcp: slow urgent fail Fail with pending error from blocked state

(h 〈[ts := ts ⊕ (tid 7→ (Recv2 (sid ,n, opts))d);
socks := socks ⊕

[(sid , sock 〈[es := ↑ e; pr :=TCP PROTO(tcp sock)]〉)]]〉,
SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

146 recv 9

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);

socks := socks ⊕
[(sid , sock 〈[es := es; pr :=TCP PROTO(tcp sock)]〉)]]〉,

SS ,MM)

rcvq = ([] : char list) ∧

(* We fail now if there is a pending error and we could not otherwise return data (see recv 1 (p140)). *)

let have all data = (length rcvq ≥ n) in
let have enough data = (length rcvq ≥ sock .sf .n(SO RCVLOWAT)) in
let partial data ok = (MSG WAITALL /∈ opts ∨ n > sock .sf .n(SO RCVBUF) ∨

(¬(bsd arch h.arch) ∧MSG PEEK ∈ opts)) in
¬(have all data ∨ (have enough data ∧ partial data ok)) ∧

(es = if MSG PEEK ∈ opts then ↑ e else ∗)

Description
Thread tid is blocked in state Recv2 (sid ,n, opts) where sid identifies a socket with pending error ↑ e.

The call fails, returning the pending error. Data cannot be returned because: (1) there are less than n
bytes of data in the socket’s receive queue; (2) there are less than sf .n(SO RVCLOWAT) (the minimum
number of bytes for socket recv() operations) bytes of data in the socket’s receive queue or the call must
return all n bytes of data: (i) the MSG WAITALL flag is set in opts, (ii) the number of bytes requested
is greater than the length of the socket’s receive queue, and (iii) the MSG PEEK flag is not set in opts;
and (3) there is no urgent data ahead in the socket’s receive queue.

The thread returns from the blocked state, returning the pending error. A τ transition is made,
leaving the thread state Ret(FAIL e). If the MSG PEEK flag was set in opts then the socket’s pending
error remains, otherwise it is cleared.

Variations

FreeBSD In case (iii) above, the MSG PEEK flag may be set in opts.

recv 9 tcp: fast fail Fail with ESHUTDOWN : socket shut down for reading on WinXP

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[cantrcvmore :=T; pr :=TCP PROTO(tcp sock)]〉)]]〉,
SS ,MM)

tid ·recv(fd ,n, opts)
−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ESHUTDOWN))sched timer);

socks := socks ⊕
[(sid , sock 〈[cantrcvmore :=T; pr :=TCP PROTO(tcp sock)]〉)]]〉,

SS ,MM)

windows arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

Description
On WinXP, from thread tid , which is in the Run state, a recv(fd ,n, opts) call is made where fd refers

to a TCP socket sid which is shut down for reading. The call fails with an ESHUTDOWN error.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv() (UDP only) 147

A tid ·recv(fd ,n0, opts0) transition is made, leaving the thread state Ret(FAIL ESHUTDOWN).

Variations

FreeBSD This rule does not apply.

Linux This rule does not apply.

7.19 recv() (UDP only)

recv : (fd ∗ int ∗msgbflag list)→ (string ∗ ((ip ∗ port) ∗ bool) option)

A call to recv(fd ,n, opts) returns data from the datagram on the head of a socket’s receive queue.
This section describes the behaviour for UDP sockets. Here the fd argument is a file descriptor referring
to the socket to receive data from, n specifies the number of bytes of data to read from that socket, and
the opts argument is a list of flags for the recv() call. The possible flags are:

• MSG DONTWAIT : non-blocking behaviour is requested for this call. This flag only has effect on
Linux. FreeBSD and WinXP ignore it. See rules recv 12 and recv 13 .

• MSG PEEK : return data from the datagram on the head of the receive queue, without removing
that datagram from the receive queue.

• MSG WAITALL: do not return until all n bytes of data have been read. Linux and FreeBSD
ignore this flag. WinXP fails with EOPNOTSUPP as this is not meaningful for UDP sockets: the
returned data is from only one datagram.

• MSG OOB : return out-of-band data. This flag is ignored on Linux. On WinXP and FreeBSD the
call fails with EOPNOTSUPP as out-of-band data is not meaningful for UDP sockets.

The returned value of the recv() call, (string ∗ ((ip ∗ port) ∗ bool) option), consists of the data read
from the socket (the string), the source address of the data (the ip ∗ port), and a flag specifying whether
or not all of the datagram’s data was read (the bool). The latter two components are wrapped in an
option type (for type compatibility with the TCP recv()) but are always returned for UDP. The flag only
has meaning on WinXP and should be ignored on FreeBSD and Linux.

For a socket to receive data, it must be bound to a local port. On Linux and FreeBSD, if the socket
is not bound to a local port, then it is autobound to an ephemeral port when the recv() call is made.
On WinXP, calling recv() on a socket that is not bound to a local port is an EINVAL error.

If a non-blocking recv() call is made (the socket’s O NONBLOCK flag is set) and there are no
datagrams on the socket’s receive queue, then the call will fail with EAGAIN . If the call is a blocking
one and the socket’s receive queue is empty then the call will block, returning when a datagram arrives
or an error occurs.

If the socket has a pending error then on FreeBSD and Linux, the call will fail with that error. On
WinXP, errors from ICMP messages are placed on the socket’s receive queue, and so the error will only
be returned when that message is at the head of the receive queue.

7.19.1 Errors

A call to recv() can fail with the errors below, in which case the corresponding exception is raised.

EAGAIN The call would block and non-blocking behaviour is requested. This is done ei-
ther via the MSG DONTWAIT flag being set in the recv() flags or the socket’s
O NONBLOCK flag being set.

EMSGSIZE The amount of data requested in the recv() call on WinXP is less than the
amount of data in the datagram on the head of the receive queue.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

148 recv() (UDP only)

EOPNOTSUPP Operation not supported: out-of-band data is requested on FreeBSD and
WinXP, or the MSG WAITALL flag is set on a recv() call on WinXP.

ESHUTDOWN On WinXP, a recv() call is made on a socket that has been shutdown for
reading.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

EINTR The system was interrupted by a caught signal.

ENOBUFS Out of resources.

ENOMEM Out of resources.

7.19.2 Common cases

A UDP socket is created and bound to a local address. Other calls are made and datagrams are
delivered to the socket; recv() is called to read from a datagram: socket 1 ; return 1 ; bind 1 ; . . . recv 11 ;
return 1 ;

A UDP socket is created and bound to a local address. recv() is called and blocks; a datagram arrives
addressed to the socket’s local address and is placed on its receive queue; the call returns: socket 1 ;
return 1 ; bind 1 ; . . . recv 12 ; deliver in 99 ; deliver in udp 1 ; recv 15 ; return 1 ;

7.19.3 API

Posix: ssize_t recvfrom(int socket, void *restrict buffer, size_t length,

int flags, struct sockaddr *restrict address,

socklen_t *restrict address_len);

FreeBSD: ssize_t recvfrom(int s, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

Linux: int recvfrom(int s, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

WinXP: int recvfrom(SOCKET s, char* buf, int len, int flags,

struct sockaddr* from, int* fromlen);

In the Posix interface:

• socket is the file descriptor of the socket to receive from, corresponding to the fd argument of the
model recv().

• buffer is a pointer to a buffer to place the received data in, which upon return contains the data
received on the socket. This corresponds to the string return value of the model recv().

• length is the amount of data to be read from the socket, corresponding to the int argument of the
model recv(); it should be at most the length of buffer.

• flags is a disjunction of the message flags that are set for the call, corresponding to the msgbflag
list argument of the model recv().

• address is a pointer to a sockaddr structure of length address_len, which upon return contains
the source address of the data received by the socket corresponding to the (ip ∗ port) in the return
value of the model recv(). For the AF_INET sockets used in the model, it is actually a sockaddr_in

that is used: the in_addr.s_addr field corresponds to the ip and the sin_port field corresponds
to the port .

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv() (UDP only) 149

• the returned ssize_t is either non-negative, in which case it is the the amount of data that was
received by the socket, or it is -1 to indicate an error, in which case the error code is in errno.
On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with the actual error
code available through a call to WSAGetLastError().

On WinXP, if the data from a datagram is not all read then the call fails with EMSGSIZE , but still
fills the buffer with data. This is modelled by the bool flag in the model recv(): if it is set to T then the
call succeeded and read all of the datagrams’s data; if it is set to F then the call failed with EMSGSIZE
but still returned data.

There are other functions used to receive data on a socket. recv() is similar to recvfrom() except
it does not have the address and address_len arguments. It is used when the source address of the
data does not need to be returned from the call. recvmsg(), another input function, is a more general
form of recvfrom().

7.19.4 Model details

If the call blocks then the thread enters state Recv2 (sid ,n, opts) where:

• sid : sid is the identifier of the socket that the recv() call was made on,

• n : num is the number of bytes to be read, and

• opts : msgbflag list is the set of message flags.

The following errors are not modelled:

• On FreeBSD, Linux, and WinXP, EFAULT can be returned if the buffer parameter points to
memory not in a valid part of the process address space. This is an artefact of the C interface to
ioctl() that is excluded by the clean interface used in the model recv().

• In Posix, EIO may be returned to indicated that an I/O error occurred while reading from or writing
to the file system; this is not modelled here.

• EINVAL may be returned if the MSG OOB flag is set and no out-of-band data is available; out-of-
band data does not exist for UDP so this does not apply.

• ENOTCONN may be returned if the socket is not connected; this does not apply for UDP as the socket
need not have a peer specified to receive datagrams.

• ETIMEDOUT can be returned due to a transmission timeout on a connection; UDP is not connection-
oriented so this does not apply.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

The following Linx message flags are not modelled: MSG_NOSIGNAL, MSG_TRUNC, and MSG_ERRQUEUE.

7.19.5 Summary

recv 11 udp: fast succeed Receive data successfully without blocking
recv 12 udp: block Block, entering Recv2 state as no datagrams available on

socket
recv 13 udp: fast fail Fail with EAGAIN : call would block and socket is non-

blocking or, on Linux, non-blocking behaviour has been
requested with the MSG DONTWAIT flag

recv 14 udp: fast fail Fail with EAGAIN , EADDRNOTAVAIL, or ENOBUFS :
there are no ephemeral ports left

recv 15 udp: slow urgent suc-
ceed

Blocked call returns from Recv2 state with data

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

150 recv 11

recv 16 udp: fast fail Fail with EOPNOTSUPP : MSG WAITALL flag not sup-
ported on WinXP, or MSG OOB flag not supported on
FreeBSD and WinXP

recv 17 udp: rc Socket shutdown for reading: fail with ESHUTDOWN on
WinXP or succeed on Linux and FreeBSD

recv 20 udp: rc Successful partial read of datagram on head of socket’s
receive queue on WinXP

recv 21 udp: fast succeed Read zero bytes of data from an empty receive queue on
FreeBSD

recv 22 udp: fast fail Fail with EINVAL on WinXP: socket is unbound
recv 23 udp: rc Read ICMP error from receive queue and fail with that

error on WinXP
recv 24 udp: fast fail Fail with pending error

7.19.6 Rules

recv 11 udp: fast succeed Receive data successfully without blocking

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[pr := UDP Sock(rcvq)]〉)]]〉,
SS ,MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→
(

Ret(OK (implode data ′, ↑((i3, ps3), b)))
)

sched timer
);

socks := socks ⊕
[(sid , sock)]]〉,

SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, ∗, cantsndmore, cantrcvmore,UDP Sock(rcvq ′)) ∧
(¬(linux arch h.arch) =⇒ cantrcvmore = F) ∧
rcvq = (Dgram msg(〈[is := i3; ps := ps3; data := data]〉)) :: rcvq ′′ ∧
n = clip int to num n0 ∧
((length data ≤ n ∧ data = data ′) ∨

(length data > n ∧ data ′ = TAKE n data ∧ length data ′ = n ∧ ¬(windows arch h.arch))) ∧
(windows arch h.arch =⇒ b = T) ∧
opts = list to set opts0 ∧
rcvq ′ = (if MSG PEEK ∈ opts then rcvq else rcvq ′′)

Description
Consider a UDP socket sid , referenced by fd . It is not shutdown for reading, has no pending errors,

and is bound to local port p1. Thread tid is in the Run state.
The socket’s receive queue has a datagram at its head with data data and source address i3, ps3. A

call recv(fd ,n0, opts0), from thread tid , succeeds.
A tid ·recv(fd ,n0, opts0) transition is made. The thread is left in state

Ret(OK (implode data ′, ↑(i3, ps3))), where data ′ is either:

• all of the data in the datagram, data, if the amount of data requested n0 is greater than or equal
to the amount of data in the datagram, or

• the first n0 bytes of data if n0 is less than the amount of data in the datagram, unless the architecture
is WinXP (see below).

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 12 151

If the MSG PEEK option is set in opts0 then the entire datagram stays on the receive queue; the
next call to recv() will be able to access this datagram. Otherwise, the entire datagram is discarded from
the receive queue, even if all of its data has not been read.

Model details
The amount of data requested, n0, is clipped to a natural number from an integer, using

clip int to num. POSIX specifies an unsigned type for n0 and this is one possible model thereof.
The opts0 argument to recv() is of type msgbflag list, but it is converted to a set, opts, using

list to set.
The data itself is represented as a byte list in the datagram but is returned a string: the implode

function is used to do the conversion.

Variations

WinXP The amount of data in bytes requested, n0, must be greater than or equal to
the number of bytes of data in the datagram on the head of the receive queue.
The boolean b equals T, indicating that all of the datagram’s data has been
read. Otherwise refer to rule recv 20 .

recv 12 udp: block Block, entering Recv2 state as no datagrams available on socket

(h0,SS ,MM)
tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h0 〈[ts := ts ⊕ (tid 7→ (Recv2 (sid ,n, opts))never timer);

socks := h0.socks ⊕
[(sid , sock 〈[ps1 := ↑ p′

1]〉)];
bound := bound]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock)]]〉 ∧
fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
sock = Sock(↑ fid , sf , is1, ps1, is2, ps2, ∗, cantsndmore,F,UDP Sock([])) ∧
p′
1 ∈ autobind(sock .ps1,PROTO UDP , h0, h0.socks) ∧

(if sock .ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound) ∧
¬((MSG DONTWAIT ∈ opts ∧ linux arch h.arch) ∨ ff .b(O NONBLOCK)) ∧
(bsd arch h.arch =⇒ ¬(n = 0)) ∧
n = clip int to num n0 ∧
opts = list to set opts0

Description
Consider a UDP socket sid , referenced by fd , that has no pending errors, is not shutdown for reading,

has an empty receive queue, and does not have its O NONBLOCK flag set. The socket is either bound
to a local port ↑ p′

1 or can be autobound to a local port ↑ p′
1. From thread tid , which in the Run state,

a recv(fd ,n0, opts0) call is made. Because there are no datagrams on the socket’s receive queue, the call
will block.

A tid ·recv(fd ,n0, opts0) transition will be made, leaving the thread state Recv2 (sid ,n, opts). If
autobinding occurred then sid will be placed on the head of the host’s list of bound sockets: bound =
sid :: h0.bound .

Model details
The amount of data requested, n0, is clipped to a natural number n from an integer, using

clip int to num. POSIX specifies an unsigned type for n0 and this is one possible model thereof.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

152 recv 14

The opts0 argument to recv() is of type msgbflag list, but it is converted to a set, opts, using
list to set.

Variations

FreeBSD As above, with the added condition that the number of bytes requested to be
read is not zero.

Linux As above, with the added condition that the MSG DONTWAIT flag is not set
in opts0.

recv 13 udp: fast fail Fail with EAGAIN : call would block and socket is non-blocking or, on

Linux, non-blocking behaviour has been requested with the MSG DONTWAIT flag

(h0,SS ,MM)
tid ·recv(fd ,n, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EAGAIN))sched timer);

socks := socks ⊕
[(sid , s 〈[es := ∗; pr := UDP Sock([])]〉)]]〉,

SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , s 〈[es := ∗; pr := UDP Sock([])]〉)]]〉 ∧
fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
opts = list to set opts0 ∧
((MSG DONTWAIT ∈ opts ∧ linux arch h.arch) ∨ ff .b(O NONBLOCK))

Description
Consider a UDP socket sid referenced by fd . It has no pending errors, and an empty receive queue.

The socket is non-blocking: its O NONBLOCK flag has been set. From thread tid , in the Run state, a
recv(fd ,n, opts0) call is made. The call would block because the socket has an empty receive queue, so
the call fails with an EAGAIN error.

A tid ·recv(fd ,n, opts0) transition is made, leaving the thread state Ret(FAIL EAGAIN).

Model details
The opts0 argument is of type list. In the model it is converted to a set opts using list to set.

Variations

Linux As above, but the rule also applies if the socket’s O NONBLOCK flag is
not set but the MSG DONTWAIT flag is set in opts0. Also, note that
EWOULDBLOCK and EAGAIN are aliased on Linux.

recv 14 udp: fast fail Fail with EAGAIN , EADDRNOTAVAIL, or ENOBUFS : there are no

ephemeral ports left

(h0,SS ,MM)
tid ·recv(fd ,n, opts)
−−−−−−−−−−−−−−−→ (h0 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer)]〉,SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 16 153

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ∗, ∗, ∗, ∗, ∗, cantsndmore, cantrcvmore,UDP Sock([])))]]〉 ∧

autobind(∗,PROTO UDP , h0, h0.socks) = ∅ ∧
e ∈ {EAGAIN ;EADDRNOTAVAIL;ENOBUFS} ∧
fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff)

Description
Consider a UDP socket sid , referenced by fd . The socket has no pending errors, an empty receive

queue, and binding quad ∗, ∗, ∗, ∗. From thread tid , which is in the Run state, a recv(fd ,n, opts) call
is made. There is no ephemeral port to autobind the socket to, so the call fails with either EAGAIN ,
EADDRNOTAVAIL or ENOBUFS .

A tid ·recv(fd ,n, opts) transition is made, leaving the thread state Ret(FAIL e) where e is one of the
above errors.

recv 15 udp: slow urgent succeed Blocked call returns from Recv2 state with data

(h 〈[ts := ts ⊕ (tid 7→ (Recv2 (sid ,n, opts))d);
socks := socks ⊕

[(sid , sock 〈[ps1 := ↑ p1; es := ∗; pr := UDP Sock(rcvq)]〉)]]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→

(

Ret(OK (implode data ′, ↑((i3, ps3), b)))
)

sched timer
);

socks := socks ⊕
[(sid , sock 〈[ps1 := ↑ p1; es := ∗; pr := UDP Sock(rcvq ′)]〉)]]〉,

SS ,MM)

rcvq = (Dgram msg(〈[is := i3; ps := ps3; data := data]〉)) :: rcvq ′′ ∧
(rcvq ′ = if MSG PEEK ∈ opts then rcvq else rcvq ′′) ∧
((length data ≤ n ∧ data = data ′) ∨

(length data > n ∧ ¬(windows arch h.arch) ∧ data ′ = TAKE n data ′ ∧ length data ′ = n)) ∧
(windows arch h.arch =⇒ b = T)

Description
Consider a UDP socket sid with no pending errors and bound to local port p1. At the head of the

socket’s receive queue, rcvq , is a UDP datagram with source address (i3, ps3) and data data. Thread tid
is blocked in state Recv2 (sid ,n, opts).

The blocked call successfully returns (implode data ′, ↑((i3, ps3, b))). If the number of bytes re-
quested, n, is greater than or equal to the number of bytes of data in the datagram, data, then all of
data is returned. If n is less than the number of bytes in the datagram, then the first n bytes of data
are returned.

A τ transition is made, leaving the thread state Ret(OK (implode data ′, ↑((i3, ps3), b))). If the
MSG PEEK flag was set in opts then the datagram stays on the head of the socket’s receive queue;
otherwise, it is discarded from the receive queue.

Variations

WinXP As above, except the number of bytes of data requested n, must be greater
than or equal to the length in bytes of data. The boolean b equals T, indicating
that all of the datagram’s data was read.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

154 recv 17

recv 16 udp: fast fail Fail with EOPNOTSUPP : MSG WAITALL flag not supported on WinXP,

or MSG OOB flag not supported on FreeBSD and WinXP

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EOPNOTSUPP))sched timer);
socks := socks ⊕

[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
opts = list to set opts0 ∧
(MSG WAITALL ∈ opts ∧ windows arch h.arch)

Description
Consider a UDP socket sid referenced by fd . From thread tid , in the Run state, a recv(fd ,n0, opts0)

call is made. The MSG OOB or MSG WAITALL flags are set in opts0. The call fails with an
EOPNOTSUPP error.

A tid ·recv(fd ,n0, opts0) transition is made, leaving the thread state Ret(FAIL EOPNOTSUPP).

Model details
The opts0 argument is of type list. In the model it is converted to a set opts using list to set.

Variations

Posix As above, except the rule only applies when MSG OOB is set in opts0.

FreeBSD As above, except the rule only applies when MSG OOB is set in opts0.

Linux This rule does not apply.

recv 17 udp: rc Socket shutdown for reading: fail with ESHUTDOWN on WinXP or succeed

on Linux and FreeBSD

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[cantrcvmore :=T; pr := UDP Sock(rcvq)]〉)]]〉,
SS ,MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(ret))sched timer);
socks := socks ⊕

[(sid , sock 〈[cantrcvmore :=T; pr := UDP Sock(rcvq)]〉)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
if windows arch h.arch then ret = FAIL (ESHUTDOWN) ∧ rc = fast fail
else if bsd arch h.arch then ret = OK (“”, ↑((∗, ∗), b)) ∧ rc = fast succeed ∧
sock .es = ∗

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 20 155

else if linux arch h.arch then
rcvq = [] ∧ ret = OK (“”, ↑((∗, ∗), b)) ∧ rc = fast succeed ∧ sock .es = ∗

else ASSERTION FAILURE“recv 17”

Description
Consider a UDP socket sid , referenced by fd , that has been shutdown for reading. From thread

tid , which is in the Run state, a recv(fd ,n0, opts0) call is made. On FreeBSD and Linux, if the socket
has no pending error the call is successfully, returning (“”, ↑((∗, ∗), b)); on WinXP the call fails with an
ESHUTDOWN error.

A tid ·recv(fd ,n0, opts0) transition is made, leaving the thread state Ret(OK (“”, ↑((∗, ∗), b))) on
FreeBSD and Linux, or Ret(FAIL ESHUTDOWN) on WinXP.

Variations

FreeBSD As above: the call succeeds.

Linux As above: the call succeeds with the additional condition that the socket has
an empty receive queue.

WinXP As above: the call fails with an ESHUTDOWN error.

recv 20 udp: rc Successful partial read of datagram on head of socket’s receive queue on

WinXP

(h 〈[ts := ts ⊕ (tid 7→ (t)d);
socks := socks ⊕

[(sid , sock 〈[pr := UDP Sock(rcvq)]〉)]]〉,
SS ,MM)

lbl
−−→ (h 〈[ts := ts ⊕ (tid 7→

(

Ret(OK (implode data ′, ↑((i3, ps3),F)))
)

sched timer
);

socks := socks ⊕
[(sid , sock)]]〉,

SS ,MM)

windows arch h.arch ∧
rcvq = (Dgram msg(〈[is := i3; ps := ps3; data := data]〉)) :: rcvq ′′ ∧
sock = Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, ∗, cantsndmore, cantrcvmore,UDP Sock(rcvq ′)) ∧
((∃fd ff n n0 opts0.

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(rcvq ′ = if MSG PEEK ∈ (list to set opts0) then rcvq else rcvq ′′) ∧
n = clip int to num n0 ∧
n < length data ∧
data ′ = TAKE n data ∧
t = Run ∧
rc = fast succeed ∧
lbl = tid ·recv(fd ,n0, opts0)) ∨

(∃n opts.
lbl = τ ∧
t = Recv2 (sid ,n, opts) ∧
rc = slow urgent succeed ∧
data ′ = TAKE n data ∧
n < length data ∧
rcvq ′ = if MSG PEEK ∈ opts then rcvq else rcvq ′′))

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

156 recv 21

Description
On WinXP, consider a UDP socket sid bound to a local port p1 and with no pending errors. At the

head of the socket’s receive queue is a datagram with source address is := i3; ps := ps3 and data data.
This rule covers two cases:

In the first, from thread tid , which is in the Run state, a recv(fd ,n0, opts0) call is made where
fd refers to the socket sid . The amount of data to be read, n0 bytes, is less than the num-
ber of bytes of data in the datagram, data. The call successfully returns the first n0 bytes of
data from the datagram, data ′. A tid ·recv(fd ,n0, opts0) transition is made leaving the thread state
Ret(OK (implode data ′, ↑((i3, ps3),F))) where the F indicates that not all of the datagram’s data was
read. The datagram is discarded from the socket’s receive queue unless the MSG PEEK flag was set in
opts0, in which case the whole datagram remains on the socket’s receive queue.

In the second case, thread tid is blocked in state Recv2 (sid ,n, opts) where the number of bytes to
be read, n, is less than the number of bytes of data in the datagram. There is now data to be read
so a τ transition is made, leaving the thread state Ret(OK (implode data ′, ↑((i3, ps3),F))) where the F
indicated that not all of the datagram’s data was read. The datagram is discarded from the socket’s
receive queue unless the MSG PEEK flag was set in opts, in which case the whole datagram remains on
the socket’s receive queue.

Model details
The amount of data requested, n0, is clipped to a natural number from an integer, using

clip int to num. POSIX specifies an unsigned type for n0 and this is one possible model thereof.
The data itself is represented as a byte list in the datagram but is returned a string, so the implode

function is used to do the conversion.
In the model the return value is OK (implode data ′, ↑((i3, p3),F)) where the F represents not all

the data in the datagram at the head of the socket’s receive queue being read. What actually happens is
that an EMSGSIZE error is returned, and the data is put into the read buffer specified when the recv()
call was made.

Variations

Posix This rule does not apply.

FreeBSD This rule does not apply.

Linux This rule does not apply.

recv 21 udp: fast succeed Read zero bytes of data from an empty receive queue on FreeBSD

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[pr := UDP Sock([])]〉)]]〉,
SS ,MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (“”, ↑((∗, ∗), b))))sched timer);
socks := socks ⊕

[(sid , sock 〈[pr := UDP Sock([])]〉)]]〉,
SS ,MM)

bsd arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
0 = clip int to num n0

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

recv 23 157

Description
On FreeBSD, consider a UDP socket sid , referenced by fd , with an empty receive queue. From

thread tid , which is in the Run state, a recv(fd ,n0, opts0) call is made where n0 = 0. The call succeeds,
returning the empty string and not specifying an address: OK (“”, ↑((∗, ∗), b)).

A tid ·recv(fd ,n0, opts0) transition is made, leaving the thread state Ret(OK (“”, ↑((∗, ∗), b))).

Variations

Posix This rule does not apply: see rules recv 12 and recv 13 .

Linux This rule does not apply: see rules recv 12 and recv 13 .

WinXP This rule does not apply: see rules recv 12 and recv 13 .

recv 22 udp: fast fail Fail with EINVAL on WinXP: socket is unbound

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[ps1 := ∗; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer);
socks := socks ⊕

[(sid , sock 〈[ps1 := ∗; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

windows arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

Description
On WinXP, consider a UDP socket sid referenced by fd that is not bound to a local port. A

recv(fd ,n0, opts0 call is made from thread tid which is in the Run state. The call fails with an EINVAL
error.

A tid ·recv(fd ,n0, opts0) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

Posix This rule does not apply.

FreeBSD This rule does not apply.

Linux This rule does not apply.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

158 recv 24

recv 23 udp: rc Read ICMP error from receive queue and fail with that error on WinXP

(h 〈[ts := ts ⊕ (tid 7→ (t)d);
socks := socks ⊕

[(sid , sock 〈[pr := UDP Sock(rcvq)]〉)]]〉,
SS ,MM)

lbl
−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);

socks := socks ⊕
[(sid , sock 〈[pr := UDP Sock(rcvq ′)]〉)]]〉,

SS ,MM)

windows arch h.arch ∧
rcvq = (Dgram error(〈[e := err]〉)) :: rcvq ′ ∧
((∃fd n0 opts0 fid ff .t = Run ∧

lbl = tid ·recv(fd ,n0, opts0) ∧
rc = fast fail ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)) ∨

(∃n opts.t = Recv2 (sid ,n, opts) ∧
lbl = τ ∧
rc = slow urgent fail))

Description
On WinXP, consider a UDP socket sid referenced by fd . At the head of the socket’s receive queue,

rcvq , is an ICMP message with error err . This rule covers two cases.
In the first, thread tid is in the Run state and a recv(fd ,n0, opts0) call is made. The call fails with

error err , making a tid ·recv(fd ,n0, opts0) transition. This leaves the thread state Ret(FAIL err), and
the socket with the ICMP message removed from its receive queue.

In the second case, thread tid is blocked in state Recv2 (sid ,n0, opts0). A τ transition is made, leaving
the thread state Ret(FAIL err), and the socket with the ICMP message removed from its receive queue.

Variations

Posix This rule does not apply.

FreeBSD This rule does not apply.

Linux This rule does not apply.

recv 24 udp: fast fail Fail with pending error

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, is2, ps2, ↑ e, cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉,
SS ,MM)

tid ·recv(fd ,n0, opts0)−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);
socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, is2, ps2, es, cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
opts = list to set opts0 ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send() (TCP only) 159

(¬linux arch h.arch =⇒ ∃p2.ps2 = ↑ p2) ∧
es = if MSG PEEK ∈ opts then ↑ e else ∗

Description
From thread tid , which is in the Run state, a recv(fd ,n0, opts0) call is made. fd refers to a UDP

socket that has local address (↑ i1, ↑ p1), has its peer port set: ps2 = ↑ p2, and has pending error ↑ e.
The call fails returning the pending error: a tid ·recv(fd ,n0, opts0) transition is made leaving the

thread state Ret(FAIL EAGAIN). If the MSG PEEK flag was set in opts0 then the socket’s pending
error remains, otherwise it is cleared.

Model details
The opts0 argument to recv() is of type msgbflag list, but it is converted to a set, opts, using

list to set.

Variations

Linux The socket need not have its peer port set.

7.20 send() (TCP only)

send : fd ∗ (ip ∗ port) option ∗ string ∗msgbflag list→ string

This section describes the behaviour of send() for TCP sockets. A call to send(fd , ∗, data,flags)
enqueues data on the TCP socket’s send queue. Here fd is a file descriptor referring to the TCP socket
to enqueue data on. The second argument, of type (ip∗port) option, is the destination address of the data
for UDP, but for a TCP socket it should be set to ∗ (the socket must be connected to a peer before send()
can be called). The data is the data to be sent. Finally, flags is a list of flags for the send() call; possible
flags are: MSG OOB , specifying that the data to be sent is out-of-band data, and MSG DONTWAIT ,
specifying that non-blocking behaviour is to be used for this call. The MSG WAITALL and MSG PEEK
flags may also be set, but as they are meaningless for send() calls, FreeBSD ignores them, and Linux
and WinXP fail with EOPNOTSUPP . The returned string is any data that was not sent.

For a successful send() call, the socket must be in a synchronised state, must not be shutdown for
writing, and must not have a pending error.

If there is not enough room on a socket’s send queue then a send() call may block until space becomes
available. For a successful blocking send() call on FreeBSD the entire string will be enqueued on the
socket’s send queue.

7.20.1 Errors

In addition to errors returned via ICMP (see deliver in icmp 3 (p244)), a call to send() can fail with
the errors below, in which case the corresponding exception is raised:

EAGAIN Non-blocking send() call would block.

ENOTCONN Socket not connected on FreeBSD and WinXP.

EOPNOTSUPP Message flags MSG PEEK and MSG WAITALL not supported. Linux and
WinXP.

EPIPE Socket not connected on Linux; or socket shutdown for writing on FreeBSD
and Linux.

ESHUTDOWN Socket shutdown for writing on WinXP.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

160 send() (TCP only)

EBADF The file descriptor passed is not a valid file descriptor.

EINTR The system was interrupted by a caught signal.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.20.2 Common cases

A TCP socket is created and successfully connects with a peer; data is then sent to the peer: socket 1 ;
return 1 ; connect 1 ; return 1 ; . . . connect 2 ; return 1 ; send 1 ; . . .

7.20.3 API

Posix: ssize_t send(int socket, const void *buffer, size_t length, int flags);

FreeBSD: ssize_t send(int s, const void *msg, size_t len, int flags);

Linux: int send(int s, const void *msg, size_t len, int flags);

WinXP: int send(SOCKET s, const char *buf, int len, int flags);

In the Posix interface:

• socket is the file descriptor of the socket to send from, corresponding to the fd argument of the
model send().

• message is a pointer to the data to be sent of length length. The two together correspond to the
string argument of the model send().

• flags is a disjunction of the message flags for the send() call, corresponding to the msgbflag list

in the model send().

• the returned ssize_t is either non-negative or -1. If it is non-negative then it is the amount of
data from message that was sent. If it is -1 then it indicates an error, in which case the error is
stored in errno. This corresponds to the model send()’s return value of type string which is the
data that was not sent. On WinXP an error is indicated by a return value of SOCKET_ERROR, not
-1, with the actual error code available through a call to WSAGetLastError().

The FreeBSD, Linux and WinXP interfaces are similar modulo argument renaming, except where
noted above.

7.20.4 Model details

If the call blocks then the thread enters state Send2 (sid , ∗, str , opts) (the optional parameter is used for
UDP only), where

• sid : sid is the identifier of the socket that made the send() call,

• str : string is the data to be sent, and

• opts : msgbflag list is the set of options for the send() call.

The following errors are not modelled:

• In Posix and on all three architectures, EDESTADDRREQ indicates that the socket is not connection-
mode and no peer address is set. This doesn’t apply to TCP, which is a connection-mode protocol.

• In Posix, EACCES signifies that write access to the socket is denied. This is not modelled here.

• On FreeBSD and Linux, EFAULT signifies that the pointers passed as either the address or ad-

dress_len arguments were inaccessible. This is an artefact of the C interface to accept() that is
excluded by the clean interface used in the model.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 1 161

• In Posix and on Linux, EINVAL signifies that an invalid argument was passed. The typing of the
model interface prevents this from happening.

• In Posix, EIO signifies that an I/O error occurred while reading from or writing to the file system.
This is not modelled.

• On Linux, EMSGSIZE indicates that the message is too large to be sent all at once, as the socket
requires; this is not a requirement for TCP sockets.

• In Posix, ENETDOWN signifies that the local network interface used to reach the destination is down.
This is not modelled.

The following flags are not modelled:

• On Linux, MSG_CONFIRM is used to tell the link layer not to probe the neighbour.

• On Linux, MSG_NOSIGNAL requests not to send SIGPIPE errors on stream-oriented sockets when the
other end breaks the connection.

• On FreeBSD and WinXP, MSG_DONTROUTE is used by routing programs.

• On FreeBSD, MSG_EOR is used to indicate the end of a record for protocols that support this. It is
not modelled because TCP does not support records.

• On FreeBSD, MSG_EOF is used to implement Transaction TCP which is not modelled here.

7.20.5 Summary

send 1 tcp: fast succeed Successfully send data without blocking
send 2 tcp: block Block waiting for space in socket’s send queue
send 3 tcp: slow nonurgent

succeed
Successfully return from blocked state having sent data

send 3a tcp: block From blocked state, transfer some data to the send queue
and remain blocked

send 4 tcp: fast fail Fail with EAGAIN : non-blocking semantics requested
and call would block

send 5 tcp: fast fail Fail with pending error
send 5a tcp: slow urgent fail Fail from blocked state with pending error
send 6 tcp: fast fail Fail with ENOTCONN or EPIPE : socket not connected
send 7 tcp: rc Fail with EPIPE or ESHUTDOWN : socket shut down

for writing
send 8 tcp: fast fail Fail with EOPNOTSUPP : message flag not valid

7.20.6 Rules

send 1 tcp: fast succeed Successfully send data without blocking

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

162 send 1

tid ·send(fd , ∗, implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (implode str ′′)))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s
′)],MM)

st ∈ {ESTABLISHED ;CLOSE WAIT} ∧
opts = list to set opts0 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧

space ∈ UNIV ∧

({MSG PEEK ;MSG WAITALL} ∩ opts = ∅ ∨ bsd arch h.arch) ∧

(if space ≥ length str then
str ′ = str ∧ str ′′ = []

else
(ff .b(O NONBLOCK) ∨ (MSG DONTWAIT ∈ opts ∧ ¬bsd arch h.arch)) ∧
(if bsd arch h.arch then space ≥ sf .n(SO SNDLOWAT)
else space > 0) ∧
(str ′, str ′′) = SPLIT space str

) ∧

flgs = flgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
write(i1, p1, i2, p2)(flgs, str ′)s s ′

Description
From thread tid , which is in the Run state, a send(fd , ∗, implode str , opts0) call is made. fd

refers to a TCP socket sid that has binding quad (↑ i1, ↑ p1, ↑i2, ↑ p2), has no pending error, is
not shutdown for writing, and is in state ESTABLISHED or CLOSE WAIT . The MSG PEEK and
MSG WAITALL flags are not set in opts0. space is the space in the socket’s send queue, calculated
using send queue space (p41).

This rule covers two cases: (1) there is space in the socket’s send queue for all the data; and (2) there
is not space for all the data but the call is non-blocking (the MSG DONTWAIT flag is set in opts or the
socket’s O NONBLOCK flag is set), and the space is greater than zero, or, on FreeBSD, greater than
the minimum number of bytes for send() operations on the socket, sf .n(SO SNDLOWAT).

In (1) all of the data str is appended to the socket’s send queue and the returned string, str ′′, is the
empty string. In (2), the first space bytes of data, str ′, are appended to the socket’s send queue and the
remaining data, str ′′, is returned.

In both cases a tid ·send(fd , ∗, implode str , opts0) transition is made, leaving the thread state
Ret(OK (implode str ′′)). If the data was marked as out-of-band, MSG OOB ∈ opts, then the
socket’s send urgent pointer will point to the end of the send queue.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

The opts0 argument is of type list. In the model it is converted to a set opts using list to set. The
presence of MSG PEEK is checked for in opts rather than in opts0.

Variations

FreeBSD The MSG PEEK and MSG WAITALL flags may be set in opts0 but for the
call to be non-blocking the socket’s O NONBLOCK flag must be set: the
MSG DONTWAIT flag has no effect.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 3 163

send 2 tcp: block Block waiting for space in socket’s send queue

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ,MM)
tid ·send(fd , ∗, implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ∗, str , opts))never timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
SS ,MM)

opts = list to set opts0 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
¬((¬bsd arch h.arch ∧MSG DONTWAIT ∈ opts) ∨ ff .b(O NONBLOCK)) ∧

space ∈ UNIV ∧

({MSG PEEK ;MSG WAITALL} ∩ opts = ∅ ∨ bsd arch h.arch) ∧

((st ∈ {ESTABLISHED ;CLOSE WAIT} ∧
space < length str) ∨

(linux arch h.arch ∧ st ∈ {SYN SENT ;SYN RECEIVED}))

Description
From thread tid , which is in the Run state, a send(fd , ∗, implode str , opts0) call is made. fd refers

to a TCP socket sid that has binding quad (↑ i1, ↑ p1, ↑i2, ↑ p2), has no pending error, is not shutdown
for writing, and is in state ESTABLISHED or CLOSE WAIT . The call is a blocking one: the socket’s
O NONBLOCK flag is not set and the MSG DONTWAIT flag is not set in opts0. The MSG PEEK
and MSG WAITALL flags are not set in opts0.

The space in the socket’s send queue, space (calculated using send queue space (p41)), is less than
the length in bytes of the data to be sent, str .

The call blocks, leaving the thread state Send2 (sid , ∗, str , opts) via a
tid ·send(fd , ∗, implode str , opts0) transition.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Variations

FreeBSD The MSG PEEK , MSG WAITALL, and MSG DONTWAIT flags may all be
set in opts0: all three are ignored by FreeBSD.

Linux In addition to the above, the rule also applies if connection establishment is still
taking place for the socket: it is in state SYN SENT or SYN RECEIVED .

send 3 tcp: slow nonurgent succeed Successfully return from blocked state having sent

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

164 send 3a

data

(h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ∗, str , opts))d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)
τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (implode str ′′)))sched timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

st ∈ {ESTABLISHED ;CLOSE WAIT} ∧

space ∈ UNIV ∧

space ≥ length str ∧
str ′ = str ∧ str ′′ = [] ∧

flgs = flgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
write(i1, p1, i2, p2)(flgs, str ′)s s ′

Description
Thread tid is blocked in state Send2 (sid , ∗, str , opts) where the TCP socket sid has binding quad

(↑ i1, ↑ p1, ↑ i2, ↑ p2), has no pending error, is not shutdown for writing, and is in state ESTABLISHED
or CLOSE WAIT .

The space in the socket’s send queue, space (calculated using send queue space (p41)), is greater than
or equal to the length of the data to be sent, str . The data is appended to the socket’s send queue and the
call successfully returns the empty string. A τ transition is made, leaving the thread state Ret(OK“”).
If the data was marked as out-of-band, MSG OOB ∈ opts, then the socket’s urgent pointer will be
updated to point to the end of the socket’s send queue.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

send 3a tcp: block From blocked state, transfer some data to the send queue and remain

blocked

(h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ∗, str , opts))d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)
τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ∗, str ′′, opts))never timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

st ∈ {ESTABLISHED ;CLOSE WAIT} ∧
space ∈ UNIV ∧
space < length str ∧ space > 0 ∧
(str ′, str ′′) = SPLIT space str ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 4 165

flgs = flgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
write(i1, p1, i2, p2)(flgs, str ′)s s ′

Description
Thread tid is blocked in state Send2 (sid , ∗, str , opts) where TCP socket sid has binding quad

(↑ i1, ↑ p1, ↑ i2, ↑ p2), has no pending error, is not shutdown for writing, and is in state ESTABLISHED
or CLOSE WAIT . The amount of space in the socket’s send queue, space (calculated using
send queue space (p41)), is less than the length of the remaining data to be sent, str , and greater
than 0. The socket’s send queue is filled by appending the first space bytes of str , str ′, to it.

A τ transition is made, leaving the thread state Send2 (sid , ∗, str ′′, opts) where str ′′ is the remaining
data to be sent. If the data in str is out-of-band, MSG OOB is set in opts, then the socket’s urgent
pointer is updated to point to the end of the socket’s send queue.

Note it is unclear whether or not MSG OOB should be removed from opts in the state.

send 4 tcp: fast fail Fail with EAGAIN : non-blocking semantics requested and call would

block

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·send(fd , ∗, implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EAGAIN))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗)) ∧
opts = list to set opts0 ∧

({MSG PEEK ;MSG WAITALL} ∩ opts = ∅ ∨ bsd arch h.arch) ∧

((¬bsd arch h.arch ∧MSG DONTWAIT ∈ opts) ∨ ff .b(O NONBLOCK)) ∧

((st ∈ {ESTABLISHED ;CLOSE WAIT} ∧
space ∈ UNIV ∧
¬(space ≥ length str ∨ (if bsd arch h.arch then space ≥ sf .n(SO SNDLOWAT) else space > 0))) ∨

(st ∈ {SYN SENT ;SYN RECEIVED} ∧
linux arch h.arch))

Description
From thread tid , which is in the Run state, a send(fd , ∗, implode str , opts0) call is made. fd refers

to a TCP socket that has binding quad (↑ i1, ↑ p1, ↑ i2, ↑p2), has no pending error, is not shutdown for
writing, and is in state ESTABLISHED or CLOSE WAIT . The call is a non-blocking one: either the
socket’s O NONBLOCK flag is set or the MSG DONTWAIT flag is set in opts0. The MSG PEEK and
MSG WAITALL flags are not set in opts0.

The space in the socket’s send queue, space (calculated using send queue space (p41)), is less than
both the length of the data to send str ; and on FreeBSD is less than the minimum number of bytes
for socket send operations, sf .n(SO SNDLOWAT), or on Linux and WinXP is equal to zero. The call
would have to block, but because it is non-blocking, it fails with an EAGAIN error.

A tid ·send(fd , ∗, implode str , opts0) transition is made, leaving the thread in state
Ret(FAIL EAGAIN).

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

166 send 5

The opts0 argument is of type list. In the model it is converted to a set opts using list to set. The
presence of MSG PEEK is checked for in opts rather than in opts0.

Variations

FreeBSD For the call to be non-blocking, the socket’s O NONBLOCK flag must be set;
the MSG DONTWAIT flag is ignored. Additionally, the MSG PEEK and
MSG WAITALL flags may be set in opts0 as they are also ignored.

Linux This rule also applies if the socket is in state SYN SENT or SYN RECEIVED ,
in which case the send queue size does not matter.

send 5 tcp: fast fail Fail with pending error

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[es := ↑ e]〉)]]〉,
SS ,MM)

tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);
socks := socks ⊕

[(sid , sock 〈[es := ∗]〉)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
proto of sock .pr = PROTO TCP

Description
From thread tid , which is in the Run state, a send(fd , addr , implode str , opts0) call is made. fd

refers to a socket sock identified by sid with pending error ↑e. The call fails, returning the pending error.
A tid ·send(fd , addr , implode str , opts) transition is made, leaving the thread in state Ret(FAIL e).

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

send 5a tcp: slow urgent fail Fail from blocked state with pending error

(h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ∗, str , opts))d);
socks := socks ⊕

[(sid , sock 〈[es := ↑ e]〉)]]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);

socks := socks ⊕
[(sid , sock 〈[es := ∗]〉)]]〉,

SS ,MM)

proto of sock .pr = PROTO TCP

Description
Thread tid is blocked in state Send2 (sid , ∗, str , opts) from an earlier send() call. The TCP socket

sid has pending error ↑ e so the call can now return, failing with the error.
A τ transition is made, leaving the thread state Ret(FAIL e).

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 7 167

send 6 tcp: fast fail Fail with ENOTCONN or EPIPE : socket not connected

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·send(fd , ∗, implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = (h.socks[sid]) ∧
TCP PROTO(tcp sock) = sock .pr ∧
sock .es = ∗ ∧
(tcp sock .st ∈ {CLOSED ;LISTEN } ∨

(tcp sock .st ∈ {SYN SENT ;SYN RECEIVED} ∧ ¬(linux arch h.arch)) ∨
F (* Placeholder for: if tcp_disconnect or tcp_usrclose has been invoked *)

) ∧
err = (if linux arch h.arch then EPIPE else ENOTCONN)

Description
From thread tid , which is in the Run state, a send(fd , ∗, implode str , opts0) call is made. fd refers to

a TCP socket sock identified by sid that does not have a pending error. The socket is not synchronised: it
is in state CLOSED , LISTEN , SYN SENT , or SYN RECEIVED . The call fails with an ENOTCONN
error, or EPIPE on Linux.

A tid ·send(fd , ∗, implode str , opts0) transition is made, leaving the thread in state Ret(FAIL err)
where err is one of the above errors.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Variations

Linux The rule does not apply if the socket is in state SYN RECEIVED or
SYN SENT .

send 7 tcp: rc Fail with EPIPE or ESHUTDOWN : socket shut down for writing

(h 〈[ts := ts ⊕ (tid 7→ (t)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es,T, cantrcvmore,TCP PROTO(tcp)))]]〉,
SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

168 send 8

lbl
−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);

socks := socks ⊕
[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es,T, cantrcvmore,TCP PROTO(tcp)))]]〉,

SS ,MM)

∃fd ff str opts0 i2 p2.
fd ∈ dom(h.fds) ∧

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧

t = Run ∧

lbl = tid ·send(fd , ∗, implode str , opts0) ∧

rc = fast fail ∧

is2 = ↑ i2 ∧ ps2 = ↑ p2 ∧

(if tcp.st 6= CLOSED then
∃i1 p1.is1 = ↑ i1 ∧ ps1 = ↑ p1

else T)

∨

∃opts str .
t = Send2 (sid , ∗, str , opts) ∧

lbl = τ ∧

rc = slow urgent fail

∧

(if windows arch h.arch then err = ESHUTDOWN
else err = EPIPE)

Description
This rule covers two cases: (1) from thread tid , which is in the Run state, a

send(fd , ∗, implode str , opts0) call is made; and (2) thread tid is blocked in state Send2 (sid , ∗, str , opts).
In (1), fd refers to a TCP socket sid that has binding quad (is1, ps1, ↑ i2, ↑ p2). In both cases the socket
is shutdown for writing. The call fails with an EPIPE error.

The thread is left in state Ret(FAIL EPIPE), via a tid ·send(fd , ∗, implode str , opts0) transition in
(1) or a τ transition in (2).

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Variations

WinXP The call fails with an ESHUTDOWN error instead of EPIPE .

send 8 tcp: fast fail Fail with EOPNOTSUPP : message flag not valid

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)

tid ·send(fd , ∗, implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EOPNOTSUPP))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
proto of(h.socks[sid]).pr = PROTO TCP ∧
opts = list to set opts0 ∧
(MSG PEEK ∈ opts ∨MSG WAITALL ∈ opts) ∧
¬bsd arch h.arch

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send() (UDP only) 169

From thread tid , which is in the Run state, a send(fd , ∗, implode str , opts0) call is made. fd refers
to a TCP socket identified by sid . Either the MSG PEEK or MSG WAITALL flag is set in opts0. These
flags are not supported so the call fails with an EOPNOTSUPP error.

A tid ·send(fd , ∗, implode str , opts0) transition is made, leaving the thread in state
Ret(FAIL EOPNOTSUPP).

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

The opts0 argument is of type list. In the model it is converted to a set opts using list to set. The
presence of MSG PEEK is checked for in opts rather than in opts0.

Variations

FreeBSD This rule does not apply.

7.21 send() (UDP only)

send : (fd ∗ (ip ∗ port) option ∗ string ∗msgbflag list)→ string

This section describes the behaviour of send() for UDP sockets. A call to send(fd , addr , data,flags)
enqueues a UDP datagram to send to a peer. Here the fd argument is a file descriptor referring to a
UDP socket from which to send data. The destination address of the data can be specified either by the
addr argument, which can be ↑(i3, p3) or ∗, or by the socket’s peer address (its is2 and ps2 fields) if set.
For a successful send(), at least one of these two must be specified. If the socket has a peer address set
and addr is set to ↑(i3, p3), then the address used is architecture-dependent: on FreeBSD the send() call
will fail with an EISCONN error; on Linux and WinXP i3, p3 will be used.

The string, data, is the data to be sent. The length in bytes of data must be less than the architecture-
dependent maximum payload for a UDP datagram. Sending a string of length zero bytes is acceptable.

The msgbflag list is the list of message flags for the send() call. The possible flags are
MSG DONTWAIT and MSG OOB . MSG DONTWAIT specifies that non-blocking behaviour should
be used for this call: see rules send 10 and send 11 . MSG OOB specifies that the data to be sent is
out-of-band data, which is not meaningful for UDP sockets. FreeBSD ignores this flag, but on Linux and
WinXP the send() call will fail: see rule send 20 .

The return value of the send() call is a string of the data which was not sent. A partial send may
occur when the call is interrupted by a signal after having sent some data.

For a datagram to be sent, the socket must be bound to a local port. When a send() call is made,
the socket is autobound to an ephemeral port if it does not have its local port bound.

A successful send() call only guarantees that the datagram has been placed on the host’s out queue. It
does not imply that the datagram has left the host, let alone been successfully delivered to its destination.

A call to send() may block if there is no room on the socket’s send buffer and non-blocking behaviour
has not been requested.

7.21.1 Errors

In addition to errors returned via ICMP (see deliver in icmp 3 (p244)), a call to send() can fail with
the errors below, in which case the corresponding exception is raised:

EADDRINUSE The socket’s peer address is not set and the destination address specified would
give the socket a binding quad i1, p1, i2, p2 which is already in use by another
socket.

EADDRNOTAVAIL There are no ephemeral ports left for autobinding to.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

170 send() (UDP only)

EAGAIN The send() call would block and non-blocking behaviour is requested. This
may have been done either via the MSG DONTWAIT flag being set in the
send() flags or the socket’s O NONBLOCK flag being set.

EDESTADDRREQ The socket does not have its peer address set, and no destination address was
specified.

EINTR A signal interrupted send() before any data was transmitted.

EISCONN On FreeBSD, a destination address was specified and the socket has a peer
address set.

EMSGSIZE The message is too large to be sent in one datagram.

ENOTCONN The socket does not have its peer address set, and no destination address was
specified. This can occur either when the call is first made, or if it blocks and
if the peer address is unset by a call to disconnect() whilst blocked.

EOPNOTSUPP The MSG OOB flag is set on Linux or WinXP.

EPIPE Socket shut down for writing.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

ENOBUFS Out of resources.

ENOMEM Out of resources.

7.21.2 Common cases

send 9 ; return 1 ;

7.21.3 API

Posix: ssize_t sendto(int socket, const void *message, size_t length,

int flags, const struct sockaddr *dest_addr

socklen_t dest_len);

FreeBSD: ssize_t sendto(int s, const void *msg, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);

Linux: int sendto(int s, const void *msg, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);

WinXP: int sendto(SOCKET s, const char* buf, int len, int flags,

const struct sockaddr* to, int tolen);
In the Posix interface:

• socket is the file descriptor of the socket to send from, corresponding to the fd argument of the
model send().

• message is a pointer to the data to be sent of length length. The two together correspond to the
string argument of the model send().

• flags is an OR of the message flags for the send() call, corresponding to the msgbflag list in the
model send().

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send() (UDP only) 171

• dest_addr and dest_len correspond to the addr argument of the model send(). dest_addr is
either null or a pointer to a sockaddr structure containing the destination address for the data. If it
is null it corresponds to addr = ∗. If it contains an address, then it corresponds to addr = ↑(i3, p3)
where i3 and p3 are the IP address and port specified in the sockaddr structure.

• the returned ssize_t is either non-negative or -1. If it is non-negative then it is the amount of
data from message that was sent. If it is -1 then it indicates an error, in which case the error is
stored in errno. This is different to the model send()’s return value of type string which is the
data that was not sent. On WinXP an error is indicated by a return value of SOCKET_ERROR, not
-1, with the actual error code available through a call to WSAGetLastError().

There are other functions used to send data on a socket. send() is similar to sendto() except it does
not have the address and address_len arguments. It is used when the destination address of the data
does not need to be specified. sendmsg(), another output function, is a more general form of sendto().

7.21.4 Model details

If the call blocks then the thread enters state Send2 (sid , ↑(addr , is1, ps1, is2, ps2), str , opts) where

• sid : sid is the identifier of the socket that made the send() call,

• addr : (ip ∗ port) option is the destination address specified in the send() call,

• is1 : ip option is the socket’s local IP address, possibly ∗,

• ps1 : port option is the socket’s local port, possibly ∗,

• is2 : ip option is the IP address of the socket’s peer, possibly ∗,

• ps2 : ip option is the port of the socket’s peer, possibly ∗,

• str : string is the data to be sent, and

• opts : msgbflag list is the set of options for the send() call.

The following errors are not modelled:

• On FreeBSD, EACCES signifies that the destination address is a broadcast address and the
SO_BROADCAST flag has not been set on the socket. Broadcast is not modelled here.

• In Posix, EACCES signifies that write access to the socket is denied. This is not modelled here.

• On FreeBSD and Linux, EFAULT signifies that the pointers passed as either the address or ad-

dress_len arguments were inaccessible. This is an artefact of the C interface to accept() that is
excluded by the clean interface used in the model.

• In Posix and on Linux, EINVAL signifies that an invalid argument was passed. The typing of the
model interface prevents this from happening.

• In Posix, EIO signifies that an I/O error occurred while reading from or writing to the file system.
This is not modelled.

• In Posix, ENETDOWN signifies that the local network interface used to reach the destination is down.
This is not modelled.

The following flags are not modelled:

• On Linux, MSG_CONFIRM is used to tell the link layer not to probe the neighbour.

• On Linux, MSG_NOSIGNAL requests not to send SIGPIPE errors on stream-oriented sockets when the
other end breaks the connection. UDP is not stream-oriented.

• On FreeBSD and WinXP, MSG_DONTROUTE is used by routing programs.

• On FreeBSD, MSG_EOR is used to indicate the end of a record for protocols that support this. It is
not modelled because UDP does not support records.

• On FreeBSD, MSG_EOF is used to implement Transaction TCP.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

172 send() (UDP only)

7.21.5 Summary

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 9 173

send 9 udp: fast succeed Enqueue datagram and return successfully
send 10 udp: block Block waiting to enqueue datagram
send 11 udp: fast fail Fail with EAGAIN : call would block and non-blocking

behaviour has been requested
send 12 udp: fast fail Fail with ENOTCONN : no peer address set in socket and

no destination address provided
send 13 udp: fast fail Fail with EMSGSIZE : string to be sent is bigger than

UDPpayloadMax
send 14 udp: fast fail Fail with EAGAIN , EADDRNOTAVAIL or ENOBUFS :

there are no ephemeral ports left
send 15 udp: slow urgent suc-

ceed
Return from blocked state after datagram enqueued

send 16 udp: slow urgent fail Fail: blocked socket has entered an error state
send 17 udp: slow urgent fail Fail with EMSGSIZE or ENOTCONN : blocked socket

has had peer address unset or string to be sent is too big
send 18 udp: fast fail Fail with EOPNOTSUPP : MSG PEEK flag not sup-

ported for send() calls on WinXP; or MSG OOB flag not
supported on WinXP and Linux

send 19 udp: fast fail Fail with EADDRINUSE : on FreeBSD, local and desti-
nation address quad in use by another socket

send 21 udp: fast fail Fail with EISCONN : socket has peer address set and
destination address is specified in call on FreeBSD

send 22 udp: fast fail Fail with EPIPE or ESHUTDOWN : socket shut down
for writing

send 23 udp: fast fail Fail with pending error

7.21.6 Rules

send 9 udp: fast succeed Enqueue datagram and return successfully

(h0,SS ,MM)

tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (“”)))sched timer);
socks := socks ⊕

[(sid , sock 〈[es := es; ps1 := ↑ p′
1; pr :=UDP PROTO(udp)]〉)];

bound := bound ;
oq := oq ′]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[es := es; pr :=UDP PROTO(udp)]〉)]]〉 ∧
fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
sock .cantsndmore = F ∧
STRLEN (implode str) ≤ UDPpayloadMax h0.arch ∧
((addr 6= ∗) ∨ (sock .is2 6= ∗)) ∧
p′
1 ∈ autobind(sock .ps1,PROTO UDP , h0, h0.socks) ∧

(if sock .ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound) ∧
dosend(h.ifds, h.rttab, (addr , str), (sock .is1, ↑ p′

1, sock .is2, sock .ps2), h0.oq , oq ′,T) ∧
(if bsd arch h.arch then (h0.socks[sid]).sf .n(SO SNDBUF) ≥ STRLEN (implode str)

else T) ∧
(¬(windows arch h.arch) =⇒ es = ∗)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

174 send 10

Description
Consider a UDP socket sid referenced by fd that is not shutdown for writing and has no pending

errors. From thread tid , which is in the Run state, a call send(fd , addr , implode str , opts0) succeeds if:

• the length of str is less than UDPpayloadMax , the architecture-dependent maximum payload for
a UDP datagram.

• The socket has a peer IP address set in its is2 field or the addr argument is ↑(i3, p3), specifying a
destination address.

• The socket is bound to a local port p′
1, or it can be autobound to p′

1 and sid added to the list of
bound sockets.

• A UDP datagram is constructed from the socket’s binding quad (sock .is1, ↑p
′
1, sock .is2, sock .ps2),

the destination address argument addr , and the data str . This datagram is successfully enqueued
on the outqueue of the host, oq to form outqueue oq ′ using auxiliary function dosend (p42).

A tid ·send(fd , addr , implode str , opts0) transition is made, leaving the thread in state Ret(OK (“”))
and the host with new outqueue oq ′. If the socket was autobound to a port then sid is appended to the
host’s list of bound sockets.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Variations

Posix The MSG OOB flag is not set in opts0.

FreeBSD On FreeBSD there is an additional condition for a successful send(): the
amount of data to be sent must be less than or equal to the size of the socket’s
send buffer.

Linux The MSG OOB flag is not set in opts0.

WinXP The MSG OOB flag is not set in opts0 and any pending errors are ignored.

send 10 udp: block Block waiting to enqueue datagram

(h0,SS ,MM)

tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts :=
ts ⊕ (tid 7→

(Send2 (sid , ↑(addr , sock .is1, ↑ p′
1, sock .is2, sock .ps2), str , opts))never timer);

socks := socks ⊕
[(sid , sock 〈[es := es; ps1 := ↑ p′

1; pr :=UDP PROTO(udp)]〉)];
bound := bound ;
oq := oq ′]〉,

SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[es := es; pr :=UDP PROTO(udp)]〉)]]〉 ∧
fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 11 175

h0.files[fid] = File(FT Socket(sid),ff) ∧
sock .cantsndmore = F ∧
(¬(windows arch h.arch) =⇒ es = ∗) ∧
opts = list to set opts0 ∧
¬((¬bsd arch h.arch ∧MSG DONTWAIT ∈ opts) ∨ ff .b(O NONBLOCK)) ∧
((linux arch h.arch ∨ windows arch h.arch) =⇒ T) ∧

p′
1 ∈ autobind(sock .ps1,PROTO UDP , h0, h0.socks) ∧

(if sock .ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound) ∧
dosend(h0.ifds, h0.rttab, (addr , str), (sock .is1, ↑ p′

1, sock .is2, sock .ps2), h0.oq , oq ′,F) ∧
((addr 6= ∗) ∨ (sock .is2 6= ∗))

Description
Consider a UDP socket sid referenced by fd that is not shutdown for writing and has no pending

errors. A send(fd , addr , implode str , opts0) call is made from thread tid which is in the Run state.
Either the socket is a blocking one: its O NONBLOCK flag is not set, or the call is a blocking one:

the MSG DONTWAIT flag is not set in opts0.
The socket is either bound to local port p′

1 or can be autobound to a port p′
1. Either the socket has

its peer IP address set, or the destination address of the send() call is set: addr 6= ∗.
A UDP datagram, constructed from the socket’s binding quad sock .is1, ↑p

′
1, sock .is2, sock .ps2, the

destination address argument addr , and the data str , cannot be placed on the outqueue of the host oq .
The call blocks, waiting for the datagram to be enqueued on the host’s outqueue. The thread is left

in state Send2 (sid , ↑(addr , sock .is1, ↑ p′
1, sock .is2, sock .ps2), str , opts). If the socket was autobound to a

port then sid is appended to the head of the host’s list of bound sockets.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

The opts0 argument is of type list. In the model it is converted to a set opts using list to set. The
presence of MSG PEEK is checked for in opts rather than in opts0.

Variations

FreeBSD The MSG DONTWAIT flag may be set in opts0: it is ignored by FreeBSD.

Linux The MSG OOB flag must not be set in opts0.

WinXP The MSG OOB flag must not be set in opts0, and any pending error on the
socket is ignored.

send 11 udp: fast fail Fail with EAGAIN : call would block and non-blocking behaviour has

been requested

(h0,SS ,MM)

tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EAGAIN))sched timer);
socks := socks ⊕

[(sid , sock 〈[es := es; ps1 := ↑ p′
1; pr :=UDP PROTO(udp)]〉)];

bound := bound ;
oq := oq ′]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

176 send 12

socks := socks ⊕
[(sid , sock 〈[es := es; pr :=UDP PROTO(udp)]〉)]]〉 ∧

fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
sock .cantsndmore = F ∧
(¬(windows arch h.arch) =⇒ es = ∗) ∧
p′
1 ∈ autobind(sock .ps1,PROTO UDP , h0, h0.socks) ∧

(if sock .ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound) ∧
((addr 6= ∗) ∨ (sock .is2 6= ∗)) ∧
opts = list to set opts0 ∧
((¬bsd arch h.arch ∧MSG DONTWAIT ∈ opts) ∨ ff .b(O NONBLOCK)) ∧
dosend(h0.ifds, h0.rttab, (addr , str), (sock .is1, sock .ps1, sock .is2, sock .ps2), h0.oq , oq ′,F)

Description
Consider a UDP socket sid referenced by fd that is not shutdown for writing and has no pending

errors. The thread tid is in the Run state and a call send(fd , addr , implode str , opts0 is made.
The socket is either locally bound to a port p′

1 or can be autobound to a port p′
1. Either the socket

has a peer IP address set, or a destination address was provided in the send() call: addr 6= ∗.
Either the socket is non-blocking: its O NONBLOCK flag is set, or the call is non-blocking:

MSG DONTWAIT flag was set in the opts0 argument of send().
A UDP datagram (constructed from the socket’s binding quad (sock .is1, sock .ps1, sock .is2, sock .ps2),

the destination address argument addr , and the data str) cannot be placed on the outqueue of the host
oq .

The send() call fails with an EAGAIN error. A tid ·send(fd , addr , implode str , opts0) transition is
made, leaving the thread state FAIL (EAGAIN), and the host with outqueue oq ′. If the socket was
autobound to a port, sid is appended to the host’s list of bound sockets.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

The opts0 argument is of type list. In the model it is converted to a set opts using list to set. The
presence of MSG PEEK is checked for in opts rather than in opts0.

Note that on Linux EWOULDBLOCK and EAGAIN are aliased.

Variations

FreeBSD The socket’s O NONBLOCK flag must be set for the rule to apply; the
MSG DONTWAIT flag is ignored by FreeBSD.

WinXP Pending errors on the socket are ignored.

send 12 udp: fast fail Fail with ENOTCONN : no peer address set in socket and no destination

address provided

(h0,SS ,MM)

tid ·send(fd , ∗, implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 13 177

(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps
′
1, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))];

bound := bound]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉 ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(if bsd arch h.arch then err = EDESTADDRREQ

else err = ENOTCONN) ∧
(¬(windows arch h.arch) =⇒ es = ∗) ∧
(if linux arch h.arch then

∃p′
1.p

′
1 ∈ autobind(ps1,PROTO UDP , h0, h0.socks) ∧ ps ′1 = ↑ p′

1 ∧
(if ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound)

else bound = h0.bound ∧ ps ′1 = ps1)

Description
Consider a UDP socket sid referenced by fd that has no pending errors.
A call send(fd , addr , implode str , opts0 is made from thread tid which is in the Run state. The

socket is either locally bound to a port p′
1 or it can be autobound to a port p′

1.
The socket does not have a peer address set, and no destination address is specified in the send()

call: addr = ∗. The call will fail with an ENOTCONN error.
A tid ·send(fd , ∗, implode str , opts0) transition will be made, leaving the thread in state

Ret(FAIL ENOTCONN . If the socket was autobound then sid is appended to the head of the host’s
list of bound sockets, h0.bound , resulting in the new list bound .

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Variations

FreeBSD On FreeBSD the error returned is EDESTADDRREQ , the socket must not
be shut down for writing, and if it is not bound to a local port it will not be
autobound.

WinXP Any pending error on the socket is ignored, and if the socket’s local port is not
bound, ps1 = ∗, then it will not be autobound.

send 13 udp: fast fail Fail with EMSGSIZE : string to be sent is bigger than UDPpayloadMax

(h0,SS ,MM)
tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EMSGSIZE))sched timer);

socks := socks ⊕
[(sid , sock 〈[ps1 := ps ′1; pr :=UDP PROTO(udp)]〉)];

bound := bound]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

178 send 14

socks := socks ⊕
[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉 ∧

fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
(STRLEN (implode str) > UDPpayloadMax h0.arch ∨

(bsd arch h.arch ∧ STRLEN (implode str) > (h0.socks[sid]).sf .n(SO SNDBUF))) ∧
ps ′1 ∈ {sock .ps1} ∪ (image(↑)(autobind(sock .ps1,PROTO UDP , h0, h0.socks))) ∧
(if sock .ps1 = ∗ ∧ ps ′1 6= ∗ then bound = sid :: h0.bound else bound = h0.bound)

Description
Consider a UDP socket sid referenced by fd . A call send(fd , addr , implode str , opts0) is made from

thread tid which is in the Run state.
The length in bytes of str is greater than UDPpayloadMax , the architecture-dependent maximum

payload size for a UDP datagram. The send() call fails with an EMSGSIZE error.
A tid ·send(fd , addr , implode str , opts0) transition is made leaving the thread in state

Ret(FAIL EMSGSIZE). Additionally, the socket’s local port ps1 may be autobound if it was not
bound to a local port when the send() call was made. If the autobinding occurs, then the socket’s sid is
added to the list of bound sockets h0.bound , leaving the host’s list of bound sockets as bound .

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Variations

FreeBSD On FreeBSD, the send() call may also fail with EMSGSIZE if the size of str
is greater than the value of the socket’s SO SNDBUF option.

send 14 udp: fast fail Fail with EAGAIN , EADDRNOTAVAIL or ENOBUFS : there are no

ephemeral ports left

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ∗, ∗, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉,
SS ,MM)

tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ∗, ∗, ∗, ∗, es , cantsndmore, cantrcvmore,UDP PROTO(udp)))]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
cantsndmore = F ∧
(¬(windows arch h.arch) =⇒ es = ∗) ∧
autobind(∗,PROTO UDP , h, h.socks) = ∅ ∧
e ∈ {EAGAIN ;EADDRNOTAVAIL;ENOBUFS}

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 16 179

Consider a UDP socket sid referenced by fd that is not shutdown for writing and has no pending
errors. The socket has no peer address set, and is not bound to a local IP address or port.

From the Run state, thread tid makes a send(fd , addr , implode str , opts0) call. The socket can-
not be auto-bound to an ephemeral port so the call fails. The error returned will be EAGAIN ,
EADDRNOTAVAIL, or ENOBUFS .

A tid ·send(fd , addr , implode str , opts0) transition will be made. The thread will be left in state
RET (FAIL e) where e is one of the above errors.

Model details
The data to be sent is of type string in the send() call but is a byte list when the datagram is

constructed. Here the data, str is of type byte list and in the transition implode str is used to convert
it into a string.

Variations

WinXP Any pending error on the socket is ignored.

send 15 udp: slow urgent succeed Return from blocked state after datagram enqueued

(h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ↑(addr , is1, ps1, is2, ps2), str , opts))d);
socks := socks ⊕

[(sid , sock 〈[es := es; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK (“”)))sched timer);

socks := socks ⊕
[(sid , sock 〈[es := es; pr :=UDP PROTO(udp)]〉)];

oq := oq ′]〉,
SS ,MM)

sock .cantsndmore = F ∧
(¬(windows arch h.arch) =⇒ es = ∗) ∧
STRLEN (implode str) ≤ UDPpayloadMax h.arch ∧
(dosend(h.ifds, h.rttab, (addr , str), (is1, ps1, is2, ps2), h.oq , oq ′,T) ∨

dosend(h.ifds, h.rttab, (addr , str), (sock .is1, sock .ps1, sock .is2, sock .ps2), h.oq , oq ′,T)) ∧
(addr 6= ∗ ∨ sock .is2 6= ∗ ∨ is2 6= ∗)

Description
Consider a UDP socket sid that is not shutdown for writing and has no pending errors. The thread

tid is blocked in state Send2 (sid , ↑(addr , is1, ps1, is2, ps2), str).
A datagram can be constructed using str as its data. The length in bytes of str is less than or equal

to UDPpayloadMax , the architecture-dependent maximum payload size for a UDP datagram. There are
three possible destination addresses:

• addr , the destination address specified in the send() call.

• is2, ps2, the socket’s peer address when the send() call was made.

• sock .is2, sock .ps2, the socket’s current peer address.

At least one of addr , is2, and sock .is2 must specify an IP address: they are not all set to ∗. One
of the three addresses will be used as the destination address of the datagram. The datagram can be
successfully enqueued on the host’s outqueue, h.oq , resulting in a new outqueue oq ′.

An τ transition is made, leaving the thread state Ret(OK (“”)), and the host with new outqueue oq ′.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

180 send 17

send 16 udp: slow urgent fail Fail: blocked socket has entered an error state

(h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ↑(addr , is1, ps1, is2, ps2), str))d);
socks := socks ⊕

[(sid , sock 〈[es := ↑ e; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);

socks := socks ⊕
[(sid , sock 〈[es := ∗; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

¬(windows arch h.arch)

Description
Consider a UDP socket sid that has pending error ↑ e. The thread tid is blocked in state

Send2 (sid , ↑(addr , is1, ps1, is2, ps2), str). The error, e, will be returned to the caller.
At τ transition is made, leaving the thread state RET (FAIL e).
Note that the error has occurred after the thread entered the Send2 state: rule send 11 specifies that

the call cannot block if there is a pending error.

Variations

WinXP This rule does not apply: all pending errors on a socket are ignored for a send()
call.

send 17 udp: slow urgent fail Fail with EMSGSIZE or ENOTCONN : blocked socket has had

peer address unset or string to be sent is too big

(h 〈[ts := ts ⊕ (tid 7→ (Send2 (sid , ↑(addr , is1, ps1, is2, ps2), str , opts))d);
socks := socks ⊕

[(sid , sock 〈[sf := sf ; es := es; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);

socks := socks ⊕
[(sid , sock 〈[sf := sf ; es := es; pr :=UDP PROTO(udp)]〉)]]〉,

SS ,MM)

(¬(windows arch h.arch) =⇒ es = ∗) ∧
(∃oq ′.dosend(h.ifds, h.rttab, (addr , str), (is1, ps1, is2, ps2), h.oq , oq ′,T)) ∧
((STRLEN (implode str) > UDPpayloadMax h.arch ∧ (e = EMSGSIZE)) ∨

(bsd arch h.arch ∧ STRLEN (implode str) > sf .n(SO SNDBUF) ∧ (e = EMSGSIZE)) ∨
((sock .is2 = ∗) ∧ (addr = ∗) ∧ (e = ENOTCONN)))

Description
Consider a UDP socket sid with no pending errors. The thread tid is blocked in state

Send2 (sid , ↑(addr , is1, ps1, is2, ps2), str).
A datagram is constructed with str as its payload. Its destination address is taken from addr , the

destination address specified when the send() call was made, or (is2, ps2), the socket’s peer address when
the send() call was made. It is possible to enqueue the datagram on the host’s outqueue, h.oq .

This rule covers two cases. In the first, the length in bytes of str is greater than UDPpayloadMax , the
architecture-dependent maximum payload size for a UDP datagram. The error EMSGSIZE is returned.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 18 181

In the second case, the original send() call did not have a destination address specified: addr = ∗,
and the socket has had the IP address of its peer address unset: sock .is2 = ∗. The peer address of the
socket when the send() call was made, (is2, ps2), is ignored, and an ENOTCONN error is returned.

In either case, a τ transition is made, leaving the thread state Ret(FAIL e) where e is either
EMSGSIZE or ENOTCONN .

Variations

FreeBSD An EMSGSIZE error can also be returned if the size of str is greater than the
value of the socket’s SO SNDBUF option.

WinXP Any pending error on the socket is ignored.

send 18 udp: fast fail Fail with EOPNOTSUPP : MSG PEEK flag not supported for send()

calls on WinXP; or MSG OOB flag not supported on WinXP and Linux

(h0,SS ,MM)
tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EOPNOTSUPP))sched timer);

socks := socks ⊕
[(sid , sock 〈[ps1 := ps ′1; pr :=UDP PROTO(udp)]〉)];

bound := bound]〉,
SS ,MM)

h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕
[(sid , sock 〈[ps1 := ps1; pr :=UDP PROTO(udp)]〉)]]〉 ∧

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
opts = list to set opts0 ∧
(MSG PEEK ∈ opts ∧ windows arch h.arch) ∧
(if linux arch h.arch then

∃p′
1.p

′
1 ∈ autobind(ps1,PROTO UDP , h0, h0.socks) ∧ ps ′1 = ↑ p′

1 ∧
(if ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound)

else
ps1 = ps ′1 ∧ bound = h0.bound)

Description
Consider a UDP socket sid referenced by fd . From thread tid , which is in the Run state, a

send(fd , addr , implode str , opts0) call is made.
This rule covers two cases. In the first, on WinXP, the MSG PEEK flag is set in opts0. In the second

case, on Linux and WinXP, the socket has not been shut down for writing, and the MSG OOB flag is
set in opts0. In either case, the send() call fail with an EOPNOTSUPP error.

A tid ·send(fd , addr , implode str , opts0) transition is made, leaving the thread in state
Ret(FAIL EOPNOTSUPP).

Model details
The opts0 argument is of type list. In the model it is converted to a set opts using list to set. The

presence of MSG PEEK is checked for in opts rather than in opts0.

Variations

FreeBSD FreeBSD ignores the MSG PEEK and MSG OOB flags for send().

Linux Linux ignores the MSG PEEK flag for send().

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

182 send 21

send 19 udp: fast fail Fail with EADDRINUSE : on FreeBSD, local and destination address

quad in use by another socket

(h0,SS ,MM)

tid ·send(fd , ↑(i2, p2), implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EADDRINUSE))sched timer);
socks := socks ⊕

[(sid , sock)];
bound := bound]〉,
SS ,MM)

bsd arch h.arch ∧
h0 = h 〈[ts := ts ⊕ (tid 7→ (Run)d);

socks := socks ⊕
[(sid , sock)]]〉 ∧

sock .cantsndmore = F ∧
(¬(windows arch h.arch) =⇒ sock .es = ∗) ∧
p′
1 ∈ autobind(sock .ps1,PROTO UDP , h0, h0.socks) ∧

(if sock .ps1 = ∗ then bound = sid :: h0.bound else bound = h0.bound) ∧
i ′1 ∈ auto outroute(i2, sock .is1, h0.rttab, h0.ifds) ∧
fd ∈ dom(h0.fds) ∧
fid = h0.fds[fd] ∧
h0.files[fid] = File(FT Socket(sid),ff) ∧
sock = (h0.socks[sid]) ∧
proto of sock .pr = PROTO UDP ∧
(∃sid ′.

sid ′ ∈ dom(h0.socks) ∧
let s = h0.socks[sid

′] in
s.is1 = ↑ i ′1 ∧ s.ps1 = ↑ p′

1 ∧
s.is2 = ↑ i2 ∧ s.ps2 = ↑ p2 ∧
proto of s.pr = PROTO UDP)

Description
On FreeBSD, consider a UDP socket sid referenced by fd that is not shutdown for writing. From

thread tid , which is in the Run state, a send(fd , ↑(i2, p2), implode str , opts0) call is made. The socket is
bound to local port p′

1 or it can be autobound to port p′
1. The socket can be bound to a local IP address

i ′1 which has a route to i2. Another socket, sid ′, is locally bound to (i ′1, p
′
1) and has its peer address set

to (i2, p2). The send() call will fail with an EADDRINUSE error.
A tid ·send(fd , ↑(i2, p2), implode str , opts0) transition will be made, leaving the thread state

Ret(FAIL EADDRINUSE).

Variations

Linux This rule does not apply.

WinXP This rule does not apply.

send 21 udp: fast fail Fail with EISCONN : socket has peer address set and destination ad-

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

send 22 183

dress is specified in call on FreeBSD

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[es := ∗; is2 := ↑ i2; ps2 := ↑ p2; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

tid ·send(fd , ↑(i3, p3), implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EISCONN))sched timer);
socks := socks ⊕

[(sid , sock 〈[es := ∗; is2 := ↑ i2; ps2 := ↑ p2; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
bsd arch h.arch

Description
Consider a UDP socket sid referenced by fd that has its peer address set: is2 = ↑i2, and ps2 = ↑ p2.

From thread tid , which is in the Run state, a send(fd , ↑(i3, p3), implode str , opts0) call is made. On
FreeBSD, the call will fail with the EISCONN error, as the call specified a destination address even
though the socket has a peer address set.

A tid ·send(fd , ↑(i3, p3), implode str , opts0) transition will be made, leaving the thread state
Ret(FAIL EISCONN).

Variations

Posix If the socket is connectionless-mode, the message shall be sent to the address
specified by ↑(i3, p3). See the above send() rules.

Linux This rule does not apply. Linux allows the send() call to occur. See the above
send() rules.

WinXP This rule does not apply. WinXP allows the send() call to occur. See the
above send() rules.

send 22 udp: fast fail Fail with EPIPE or ESHUTDOWN : socket shut down for writing

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es,T, cantrcvmore,UDP PROTO(udp)))]]〉,
SS ,MM)

tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL err))sched timer);
socks := socks ⊕

[(sid ,Sock(↑ fid , sf , is1, ps1, is2, ps2, es,T, cantrcvmore,UDP PROTO(udp)))]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
if windows arch h.arch then err = ESHUTDOWN

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

184 setfileflags() (TCP and UDP)

else err = EPIPE

Description
From thread tid , which is in the Run state, a send(fd , addr , implode str , opts0) call is made where

fd refers to a UDP socket sid that is shut down for writing. The call fails with an EPIPE error.
A tid ·send(fd , addr , implode str , opts0) transition is made, leaving the thread in state

Ret(FAIL EPIPE).

Variations

WinXP The call fails with an ESHUTDOWN error rather than EPIPE .

send 23 udp: fast fail Fail with pending error

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[es := ↑ e]〉)]]〉,
SS ,MM)

tid ·send(fd , addr , implode str , opts0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer);
socks := socks ⊕

[(sid , sock 〈[es := ∗]〉)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
proto of sock .pr = PROTO UDP ∧
¬(windows arch h.arch)

Description
From thread tid , which is in the Run state, a send(fd , addr , implode str , opts0) call is made where

fd refers to a UDP socket sid that has pending error ↑ e. The call fails, returning the pending error.
A tid ·send(fd , addr , implode str , opts0) transition is made, leaving the thread in state Ret(FAIL e).

Variations

WinXP This rule does not apply: all pending errors are ignored for send() calls on
WinXP.

7.22 setfileflags() (TCP and UDP)

setfileflags : (fd ∗ filebflag list)→ unit

A call to setfileflags(fd ,flags) sets the flags on a file referred to by fd . flags is the list of file flags to
set. The possible flags are:

• O ASYNC Specifies whether signal driven I/O is enabled.

• O NONBLOCK Specifies whether a socket is non-blocking.

The call returns successfully if the flags were set, or fails with an error otherwise.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

setfileflags 1 185

7.22.1 Errors

A call to setfileflags() can fail with the errors below, in which case the corresponding exception is raised:

EBADF The file descriptor passed is not a valid file descriptor.

7.22.2 Common cases

setfileflags 1 ; return 1

7.22.3 API

setfileflags() is Posix fcntl(fd,F_GETFL,flags). On WinXP it is ioctlsocket() with the FIONBIO

command.
Posix: int fcntl(int fildes, int cmd, ...);

FreeBSD: int fcntl(int fd, int cmd, ...);

Linux: int fcntl(int fd, int cmd);

WinXP: int ioctlsocket(SOCKET s, long cmd, u_long* argp)

In the Posix interface:

• fildes is a file descriptor for the file to retrieve flags from. It corresponds to the fd argument of
the model setfileflags(). On WinXP the s is a socket descriptor corresponding to the fd argument
of the model setfileflags().

• cmd is a command to perform an operation on the file. This is set to F_GETFL for the model
setfileflags(). On WinXP, cmd is set to FIONBIO to get the O NONBLOCK flag; there is no
O ASYNC flag on WinXP.

• The call takes a variable number of arguments. For the model setfileflags() it takes three argu-
ments: the two described above and a third of type long which represents the list of flags to
set, corresponding to the flags argument of the model setfileflags(). On WinXP this is the argp

argument.

• The returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.22.4 Model details

The following errors are not modelled:

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

• WSAENOTSOCK is a possible error on WinXP as the ioctlsocket() call is specific to a socket. In
the model the setfileflags() call is performed on a file.

7.22.5 Summary

setfileflags 1 all: fast succeed Update all the file flags for an open file description

7.22.6 Rules

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

186 setsockbopt() (TCP and UDP)

setfileflags 1 all: fast succeed Update all the file flags for an open file description

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
files :=files ⊕ [(fid ,File(ft ,ff 〈[b :=ffb]〉))]]〉,
SS ,MM)

tid ·setfileflags(fd ,flags)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

files :=files ⊕ [(fid ,File(ft ,ff 〈[b :=ffb′]〉))]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
ffb′ = λx .x ∈ flags

Description
From thread tid , which is in the Run state, a setfileflags(fd ,flags) call is made. fd refers to the open

file description (fid ,File(ft ,ff 〈[b :=ffb]〉)) where ffb is the set of boolean file flags currently set. flags is
a list of boolean file flags, possibly containing duplicates.

All of the boolean file flags for the file description will be updated. The flags in flags will all be set
to T, and all other flags will be set to F, resulting in a new set of boolean file flags, ffb′.

A tid ·setfileflags(fd ,flags) transition is made, leaving the thread state Ret(OK ()).
Note this is not exactly the same as getfileflags 1 : getfileflags never returns duplicates, but duplicates

may be passed to setfileflags.

7.23 setsockbopt() (TCP and UDP)

setsockbopt : (fd ∗ sockbflag ∗ bool)→ unit

A call setsockbopt(fd , f , b) sets the value of one of a socket’s boolean flags.
Here the fd argument is a file descriptor referring to a socket on which to set a flag, f is the boolean

socket flag to set, and b is the value to set it to. Possible boolean flags are:

• SO BSDCOMPAT Specifies whether the BSD semantics for delivery of ICMPs to UDP sockets
with no peer address set is enabled.

• SO DONTROUTE Requests that outgoing messages bypass the standard routing facilities. The
destination shall be on a directly-connected network, and messages are directed to the appropriate
network interface according to the destination address.

• SO KEEPALIVE Keeps connections active by enabling the periodic transmission of messages, if
this is supported by the protocol.

• SO OOBINLINE Leaves received out-of-band data (data marked urgent) inline.

• SO REUSEADDR Specifies that the rules used in validating addresses supplied to bind() should
allow reuse of local ports, if this is supported by the protocol.

7.23.1 Errors

A call to setsockbopt() can fail with the errors below, in which case the corresponding exception is raised:

ENOPROTOOPT The option is not supported by the protocol.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

setsockbopt 1 187

7.23.2 Common cases

setsockbopt 1 ; return 1

7.23.3 API

setsockbopt() is Posix setsockopt() for boolean-valued socket flags.
Posix: int setsockopt(int socket, int level, int option_name,

const void *option_value,

socklen_t option_len);

FreeBSD: int setsockopt(int s, int level, int optname,

const void *optval, socklen_t optlen);

Linux: int setsockopt(int s, int level, int optname,

const void *optval, socklen_t optlen);

WinXP: int setsockopt(SOCKET s, int level, int optname,

const char* optval,int optlen);
In the Posix interface:

• socket is the file descriptor of the socket to set the option on, corresponding to the fd argument
of the model setsockbopt().

• level is the protocol level at which the flag resides: SOL_SOCKET for the socket level options,
and option_name is the flag to be set. These two correspond to the flag argument of the
model setsockbopt() where the possible values of option_name are limited to: SO BSDCOMPAT ,
SO DONTROUTE , SO KEEPALIVE , SO OOBINLINE , and SO REUSEADDR.

• option_value is a pointer to a location of size option_len containing the value to set the flag to.
These two correspond to the b argument of type bool in the model setsockbopt().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.23.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small. Note this error is not specified
by Posix.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, typing
prevents an invalid flag from being specified in a call to setsockbopt().

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.23.5 Summary

setsockbopt 1 all: fast succeed Successfully set a boolean socket flag
setsockbopt 2 udp: fast fail Fail with ENOPROTOOPT : SO KEEPALIVE and

SO OOBINLINE options not supported for a UDP socket
on WinXP

7.23.6 Rules

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

188 setsockbopt 2

setsockbopt 1 all: fast succeed Successfully set a boolean socket flag

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

tid ·setsockbopt(fd , f , b)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕ [(sid , sock ′)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock ′ = sock 〈[sf := sock .sf 〈[b := sock .sf .b ⊕ (f 7→ b)]〉]〉
∧

(windows arch h.arch ∧ proto of sock .pr = PROTO UDP
=⇒ f /∈ {SO KEEPALIVE})

Description
Consider a socket sid , referenced by fd , and with socket flags sock .sf . From thread tid , which is in

the Run state, a setsockbopt(fd , f , b) call is made. f is the boolean socket flag to be set, and b is the
boolean value to set it to. The call succeeds.

A tid ·setsockbopt(fd , f , b) is made, leaving the thread state Ret(OK ()). The socket’s boolean flags,
sock .sf .b, are updated such that f has the value b.

Variations

WinXP As above, except that if sid is a UDP socket, then f cannot be
SO KEEPALIVE or SO OOBINLINE .

setsockbopt 2 udp: fast fail Fail with ENOPROTOOPT : SO KEEPALIVE and SO OOBINLINE

options not supported for a UDP socket on WinXP

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

tid ·setsockbopt(fd , f , b)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOPROTOOPT))sched timer);

socks := socks ⊕
[(sid , sock 〈[pr :=UDP PROTO(udp)]〉)]]〉,

SS ,MM)

windows arch h.arch ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
f ∈ {SO KEEPALIVE}

Description
On WinXP, consider a UDP socket sid referenced by fd . From thread tid , which is in the Run state,

a setsockbopt(fd , f , b) call is made, where f is either SO KEEPALIVE or SO OOBINLINE . The call
fails with an ENOPROTOOPT error.

A tid ·setsockbopt(fd , f , b) transition is made, leaving the thread state Ret(FAIL ENOPROTOOPT).

Variations

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

setsocknopt() (TCP and UDP) 189

FreeBSD This rule does not apply.

Linux This rule does not apply.

7.24 setsocknopt() (TCP and UDP)

setsocknopt : (fd ∗ socknflag ∗ int)→ unit

A call setsocknopt(fd , f ,n) sets the value of one of a socket’s numeric flags. The fd argument is a file
descriptor referring to a socket to set a flag on, f is the numeric socket flag to set, and n is the value to
set it to. Possible numeric flags are:

• SO RCVBUF Specifies the receive buffer size.

• SO RCVLOWAT Specifies the minimum number of bytes to process for socket input operations.

• SO SNDBUF Specifies the send buffer size.

• SO SNDLOWAT Specifies the minimum number of bytes to process for socket output operations.

7.24.1 Errors

A call to setsocknopt() can fail with the errors below, in which case the corresponding exception is raised:

EINVAL On FreeBSD, attempting to set a numeric flag to zero.
ENOPROTOOPT The option is not supported by the protocol.
EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.24.2 Common cases

setsocknopt 1 ; return 1

7.24.3 API

setsocknopt() is Posix setsockopt() for numeric-valued socket flags.
Posix: int setsockopt(int socket, int level, int option_name,

const void *option_value,

socklen_t option_len);

FreeBSD: int setsockopt(int s, int level, int optname,

const void *optval, socklen_t optlen);

Linux: int setsockopt(int s, int level, int optname,

const void *optval, socklen_t optlen);

WinXP: int setsockopt(SOCKET s, int level, int optname,

const char* optval,int optlen);
In the Posix interface:

• socket is the file descriptor of the socket to set the option on, corresponding to the fd argument
of the model setsocknopt().

• level is the protocol level at which the flag resides: SOL_SOCKET for the socket level options,
and option_name is the flag to be set. These two correspond to the flag argument of the

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

190 setsocknopt 1

model setsocknopt() where the possible values of option_name are limited to: SO RCVBUF ,
SO RCVLOWAT , SO SNDBUF , and SO SNDLOWAT .

• option_value is a pointer to a location of size option_len containing the value to set the flag to.
These two correspond to the n argument of type int in the model setsocknopt().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.24.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small. Note this error is not specified
by Posix.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, typing
prevents an invalid flag from being specified in a call to setsocknopt().

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.24.5 Summary

setsocknopt 1 all: fast succeed Successfully set a numeric socket flag
setsocknopt 2 all: fast fail Fail with EINVAL: on FreeBSD numeric socket flags can-

not be set to zero
setsocknopt 4 all: fast fail Fail with ENOPROTOOPT : SO SNDLOWAT not set-

table on Linux

7.24.6 Rules

setsocknopt 1 all: fast succeed Successfully set a numeric socket flag

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

tid ·setsocknopt(fd , f ,n)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕ [(sid , sock ′)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
n ′ = max(sf min n h.arch f)(min(sf max n h.arch f)(clip int to num n)) ∧
ns = (if bsd arch h.arch ∧ f = SO SNDBUF ∧ n ′ < sock .sf .n(SO SNDLOWAT) then

(sock .sf .n ⊕ (f 7→ n ′))⊕ (SO SNDLOWAT 7→ n ′)
else sock .sf .n ⊕ (f 7→ n ′)) ∧

sock ′ = sock 〈[sf := sock .sf 〈[n :=ns]〉]〉

Description
Consider the socket sid , referenced by fd , with numeric socket flags sock .sf .n. From the thread tid ,

which is in the Run state, a setsocknopt(fd , f ,n) call is made where f is a numeric socket flag to be
updated, and n is the integer value to set it to. The call succeeds.

A tid ·setsocknopt(fd , f ,n) transition is made, leaving the thread state Ret(OK ()). The socket’s
numeric flag f is updated to be the value n ′ which is: the architecture-specific minimum value for

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

setsocknopt 4 191

f sf min n h.arch f , if n is less than this value; the architecture-specific maximum value for f ,
i.e. sf max n h.arch f , if n is greater than this value, or n otherwise.

Variations

FreeBSD If the flag to be set is SO SNDBUF and the new value n is less than the value
of the socket’s SO SNDLOWAT flag then the SO SNDLOWAT flag is also set
to n.

setsocknopt 2 all: fast fail Fail with EINVAL: on FreeBSD numeric socket flags cannot be set

to zero

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·setsocknopt(fd , f ,n)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer)]〉,SS ,MM)

clip int to num n = 0 ∧
bsd arch h.arch

Description
On FreeBSD, from thread tid , which is in the Run state, a setsocknopt(fd , f ,n) call is made where fd

is a file descriptor, f is a numeric socket flag, and n is an integer value to set f to. Because the numeric
value of n equals 0, the call fails with an EINVAL error.

A tid ·setsocknopt(fd , f ,n) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

Posix This rule does not apply.

Linux This rule does not apply.

WinXP This rule does not apply.

setsocknopt 4 all: fast fail Fail with ENOPROTOOPT : SO SNDLOWAT not settable on Linux

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·setsocknopt(fd , f ,n)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOPROTOOPT))sched timer)]〉,SS ,MM)

linux arch h.arch ∧
f = SO SNDLOWAT

Description
On Linux, from thread tid , which is in the Run state, a setsocknopt(fd , f ,n) call is made. f =

SO SNDLOWAT , which is not settable, so the call fails with an ENOPROTOOPT error.
A tid ·setsocknopt(fd , f ,n) transition is made, leaving the thread state Ret(FAIL ENOPROTOOPT).

Variations

FreeBSD This rule does not apply.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

192 setsocktopt() (TCP and UDP)

WinXP This rule does not apply. Note the warning from the Win32 docs (at MSDN
setsockopt):
”If the setsockopt function is called before the bind function, TCP/IP options
will not be checked with TCP/IP until the bind occurs. In this case, the
setsockopt function call will always succeed, but the bind function call may
fail because of an early setsockopt failing.”
This is currently unimplemented.

7.25 setsocktopt() (TCP and UDP)

setsocktopt : (fd ∗ socktflag ∗ (int ∗ int) option)→ unit

A call setsocktopt(fd , f , t) sets the value of one of a socket’s time-option flags.
The fd argument is a file descriptor referring to a socket to set a flag on, f is the time-option socket

flag to set, and t is the value to set it to. Possible time-option flags are:

• SO RCVTIMEO Specifies the timeout value for input operations.

• SO SNDTIMEO Specifies the timeout value that an output function blocks because flow control
prevents data from being sent.

If t = ∗ then the timeout is disabled. If t = ↑(s,ns) then the timeout is set to s seconds and ns
nanoseconds.

7.25.1 Errors

A call to setsocktopt() can fail with the errors below, in which case the corresponding exception is raised:

EBADF The file descriptor fd does not refer to a valid file descriptor.
EDOM The timeout value is too big to fit in the socket structure.
ENOPROTOOPT The option is not supported by the protocol.
ENOTSOCK The file descriptor fd does not refer to a socket.
EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

7.25.2 Common cases

setsocktopt 1 ; return 1

7.25.3 API

setsocktopt() is Posix setsockopt() for time-option socket flags.
Posix: int setsockopt(int socket, int level, int option_name,

const void *option_value,

socklen_t option_len);

FreeBSD: int setsockopt(int s, int level, int optname,

const void *optval, socklen_t optlen);

Linux: int setsockopt(int s, int level, int optname,

const void *optval, socklen_t optlen);

WinXP: int setsockopt(SOCKET s, int level, int optname,

const char* optval,int optlen);

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

setsocktopt 1 193

In the Posix interface:

• socket is the file descriptor of the socket to set the option on, corresponding to the fd argument
of the model setsocktopt().

• level is the protocol level at which the flag resides: SOL_SOCKET for the socket level options, and
option_name is the flag to be set. These two correspond to the flag argument of the model
setsocktopt() where the possible values of option_name are limited to: SO RCVTIMEO and
SO SNDTIMEO .

• option_value is a pointer to a location of size option_len containing the value to set the flag to.
These two correspond to the t argument of type (int ∗ int) option in the model setsocktopt().

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

7.25.4 Model details

The following errors are not modelled:

• EFAULT signifies the pointer passed as option_value was inaccessible. On WinXP, the error WSAE-
FAULT may also signify that the optlen parameter was too small. Note this error is not specified
by Posix.

• EINVAL signifies the option_name was invalid at the specified socket level. In the model, typing
prevents an invalid flag from being specified in a call to setsocknopt().

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.25.5 Summary

setsocktopt 1 all: fast succeed Successfully set a time-option socket flag
setsocktopt 4 all: fast fail Fail with ENOPROTOOPT : on WinXP SO LINGER

not settable for a UDP socket
setsocktopt 5 all: fast fail Fail with EDOM : timeout value too long to fit in socket

structure

7.25.6 Rules

setsocktopt 1 all: fast succeed Successfully set a time-option socket flag

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

tid ·setsocktopt(fd , f , t)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕ [(sid , sock ′)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
tltimeopt wf t ∧
t ′ = time of tltimeopt t ∧
t ′ ≥ 0 ∧
(if f ∈ {SO RCVTIMEO ;SO SNDTIMEO} ∧ t ′ = 0
then t ′′ =∞
else t ′′ = t ′) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

194 setsocktopt 5

(if f = SO LINGER ∧ t = ↑(s,ns) then ns = 0 else T) ∧
(f ∈ {SO RCVTIMEO ;SO SNDTIMEO} =⇒ t ′′ =∞∨ t ′′ ≤ sndrcv timeo t max) ∧
sock ′ = sock 〈[sf := sock .sf 〈[t := sock .sf .t ⊕ (f 7→ t ′′)]〉]〉

Description
From thread tid , which is in the Run state, a setsocktopt(fd , f , t) call is made. fd refers to a socket

sid which has time-option socket flags sock .sf .t ; f is a time-option socket flag: either SO RCVTIMEO
or SO SNDTIMEO ; and t is the well formed time-option value to set f to. The call succeeds.

A tid ·setsocktopt(fd , f , t) transition is made, leaving the thread state Ret(OK ()). If t = ∗ or t =
↑(0, 0) then the socket’s time-option flags are updated such that sock .sf .t(f) = ∗, representing ∞;
otherwise the socket’s time-option flags are updated such that f has the time value represented by t ,
which must be less than snd rcv timeo t max .

Model details
The type of t is (int ∗ int) option, but the type of a time-option socket flag is time. The auxiliary

function time of tltimeopt is used to do the conversion.

setsocktopt 4 all: fast fail Fail with ENOPROTOOPT : on WinXP SO LINGER not settable for

a UDP socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·setsocktopt(fd , f , t)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOPROTOOPT))sched timer)]〉,SS ,MM)

windows arch h.arch ∧
fd ∈ dom(h.fds) ∧ fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
proto of(h.socks[sid]).pr = PROTO UDP ∧
f = SO LINGER

Description
On WinXP, from thread tid , which is in the Run state, a setsocktopt(fd , f , t) call is made. fd is a

file descriptor referring to a UDP socket sid , f is the time-option socket SO LINGER. The flag f is not
settable, so the call fails with an ENOPROTOOPT error.

A tid ·setsocktopt(fd , f , t) transition is made, leaving the thread state Ret(FAIL ENOPROTOOPT).

Variations

FreeBSD This rule does not apply.

Linux This rule does not apply.

setsocktopt 5 all: fast fail Fail with EDOM : timeout value too long to fit in socket structure

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·setsocktopt(fd , f , t)
−−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EDOM))sched timer)]〉,SS ,MM)

f ∈ {SO RCVTIMEO ;SO SNDTIMEO} ∧
tltimeopt wf t ∧
t ′ = time of tltimeopt t ∧
(if t ′ = 0
then t ′′ =∞

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

shutdown() (TCP and UDP) 195

else t ′′ = t ′) ∧
¬(t ′′ =∞∨ t ′′ ≤ sndrcv timeo t max)

Description
From thread tid , which is currently in the Run state, a setsocktopt(fd , f , t) call is made. f is a time-

option socket flag that is either SO RCVTIMEO or SO SNDTIMEO , and t is the time value to set f
to. The call fails with an EDOM error because the value t is too large to fit in the socket structure: it
is not zero and it is greater than sndrcv timeo t max .

A tid ·setsocktopt(fd , f , t) call is made, leaving the thread state Ret(FAIL EDOM).

Model details
The type of t is (int ∗ int) option, but the type of a time-option socket flag is time. The auxiliary

function time of tltimeopt is used to do the conversion.

7.26 shutdown() (TCP and UDP)

shutdown : (fd ∗ bool ∗ bool)→ unit

A call of shutdown(fd , r ,w) shuts down either the read-half of a connection, the write-half of a
connection, or both. The fd is a file descriptor referring to the socket to shutdown; the r and w indicate
whether the socket should be shut down for reading and writing respectively.

For a TCP socket, shutting down the read-half empties the socket’s receive queue, but data will still
be delivered to it and subsequent recv() calls will return data. Shutting down the write-half of a TCP
connection causes the remaining data in the socket’s send queue to be sent and then TCP’s connection
termination to occur.

For Linux and WinXP, a TCP socket may only be shut down if it is in the ESTABLISHED state; on
FreeBSD a socket may be shut down in any state.

For a UDP socket, if the socket is shutdown for reading, data may still be read from the socket’s
receive queue on Linux, but on FreeBSD and WinXP this is not the case. Shutting down the socket for
writing causes subsequent send() calls to fail.

7.26.1 Errors

A call to shutdown() can fail with the errors below, in which case the corresponding exception is raised:

ENOTCONN The socket is not connected and so cannot be shut down.
EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

ENOBUFS Out of resources.

7.26.2 Common cases

A TCP socket is created and connects to a peer; data is transferred between the two; the socket has
no more data to send so calls shutdown() to inform the peer of this: socket 1 ; . . . ; connect 1 ; . . . ;
shutdown 1 ; return 1

7.26.3 API

Posix: int shutdown(int socket, int how);

FreeBSD: int shutdown(int s, int how);

Linux: int shutdown(int s, int how);

WinXP: int shutdown(SOCKET s, int how);

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

196 shutdown 1

In the Posix interface:

• socket is a file descriptor referring to the socket to shut down. This corresponds to the fd argument
of the model shutdown().

• how is an integer specifying the type of shutdown corresponding to the (r ,w) arguments in the
model shutdown(). If how is set to SHUT_RD then the read half of the connection is to be shut down,
corresponding to a shutdown(fd ,T,F) call in the model; if it is set to SHUT_WR then the write half
of the connection is to be shut down, corresponding to a shutdown(fd ,F,T) call in the model; if
it is set to SHUT_RDWR then both the read and write halves of the connection are to be shut down,
corresponding to a shutdown(fd ,T,T) call in the model.

• the returned int is either 0 to indicate success or -1 to indicate an error, in which case the error
code is in errno. On WinXP an error is indicated by a return value of SOCKET_ERROR, not -1, with
the actual error code available through a call to WSAGetLastError().

The FreeBSD, Linux, and WinXP interfaces are similar, except where noted.

7.26.4 Model details

The following errors are not modelled:

• EINVAL signifies that the how argument is invalid. In the model the how argument is represented
by the two boolean flags r and w which guarantees that the only values allowed are (T,T), (T,F),
(F,T), and (F,F). The first three correspond to the allowed values of how: SHUT_RD, SHUT_WR,
and SHUT_RDWR. The last possible value, (F,F), is not allowed by Posix, but the model allows a
shutdown(fd ,F,F) call, which has no effect on the socket.

• WSAEINPROGRESS is WinXP-specific and described in the MSDN page as ”A blocking Windows
Sockets 1.1 call is in progress, or the service provider is still processing a callback function”. This
is not modelled here.

7.26.5 Summary

shutdown 1 tcp: fast succeed Shut down read or write half of TCP connection
shutdown 2 udp: fast succeed Shutdown UDP socket for reading, writing, or both
shutdown 3 tcp: fast fail Fail with ENOTCONN : cannot shutdown a socket that

is not connected on Linux and WinXP
shutdown 4 udp: fast fail Fail with ENOTCONN : socket’s peer address not set on

Linux

7.26.6 Rules

shutdown 1 tcp: fast succeed Shut down read or write half of TCP connection

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock)]]〉,
SS ,MM)

tid ·shutdown(fd , r ,w)
−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕
[(sid , sock ′)]]〉,

SS ,MM)

sock = Sock(↑ fid , sf , is1, ps1, is2, ps2, es, cantsndmore, cantrcvmore, pr) ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
pr = TCP PROTO tcp sock ∧
if bsd arch h.arch ∧ tcp sock .st ∈ {CLOSED ;LISTEN } ∧ w then

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

shutdown 2 197

let sock ′′ = (tcp close h.arch sock) in
sock ′ = sock ′′ 〈[cantsndmore :=(w ∨ cantsndmore);

cantrcvmore :=(r ∨ cantrcvmore);
pr :=TCP PROTO(tcp sock of sock ′′

〈[lis := ∗]〉)
]〉

else
(¬bsd arch h.arch =⇒ ∃i1 p1 i2 p2.tcp sock .st = ESTABLISHED ∧ is1 = ↑ i1 ∧

ps1 = ↑ p1 ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2 ∧ tcp sock .lis = ∗) ∧
pr ′ = pr ∧
sock ′ = Sock(↑ fid , sf , is1, ps1, is2, ps2, es,w ∨ cantsndmore, r ∨ cantrcvmore, pr ′)

Description
From thread tid , which is in the Run state, a shutdown(fd , r ,w) call is made. fd refers to a TCP

socket sid which is in the ESTABLISHED state and has binding quad (↑ i1, ↑ p1, ↑ i2, ↑ p2).
The call suceeds: a tid ·shutdown(fd , r ,w) transition is made, leaving the thread in state Ret(OK ()).

If r = T then the read-half of the connection is shut down, setting cantrcvmore = T and emptying the
socket’s receive queue; if w = T then the write-half of the connection is shut down, setting cantsndmore =
T; otherwise, the socket is unchanged.

Variations

FreeBSD The TCP socket can be in any state, not just ESTABLISHED . If the socket is
in the CLOSED or LISTEN and is to be shutdown for writing, w = T, then
the socket is closed, see tcp close (p52).
Note that testing has shown the socket’s listen queue is not always set to ∗
after a shutdown() call. The precise condition for this being done needs to be
investigated.

shutdown 2 udp: fast succeed Shutdown UDP socket for reading, writing, or both

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[cantrcvmore := cantrcvmore;
cantsndmore := cantsndmore;
pr :=UDP PROTO(udp pr)]〉)]]〉,
SS ,MM)

tid ·shutdown(fd , r ,w)
−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK ()))sched timer);

socks := socks ⊕
[(sid , sock 〈[cantrcvmore :=(r ∨ cantrcvmore);

cantsndmore :=(w ∨ cantsndmore);
pr :=UDP PROTO(udp pr)]〉)]]〉,
SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
(linux arch h.arch =⇒ sock .is2 6= ∗)

Description

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

198 shutdown 4

Consider a UDP socket sid , referenced by fd . From thread tid , which is in the Run state, a
shutdown(fd , r ,w) call is made and succeeds.

A tid ·shutdown(fd , r ,w) transition is made, leaving the thread state Ret(OK ()). If the socket was
shutdown for reading when the call was made or r = T then the socket is shutdown for reading. If
the socket was shutdown for writing when the call was made or w = T then the socket is shutdown for
writing.

Variations

Linux As above, with the added condition that the socket’s peer IP address must be
set: sock .is2 6= ∗.

shutdown 3 tcp: fast fail Fail with ENOTCONN : cannot shutdown a socket that is not con-

nected on Linux and WinXP

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·shutdown(fd , r ,w)
−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOTCONN))sched timer)]〉,SS ,MM)

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
TCP PROTO(tcp sock) = (h.socks[sid]).pr ∧
tcp sock .st 6= ESTABLISHED ∧
¬(bsd arch h.arch)

Description
From thread tid , which is in the Run state, a shutdown(fd , r ,w) call is made where fd refers to a

TCP socket sid which is not in the ESTABLISHED state. The call fails with an ENOTCONN error.
A tid ·shutdown(fd , r ,w) transition is made, leaving the thread state Ret(FAIL ENOTCONN).

Variations

FreeBSD This rule does not apply.

shutdown 4 udp: fast fail Fail with ENOTCONN : socket’s peer address not set on Linux

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
socks := socks ⊕

[(sid , sock 〈[is2 := ∗; pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

tid ·shutdown(fd , r ,w)
−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOTCONN))sched timer);

socks := socks ⊕
[(sid , sock 〈[is2 := ∗;

cantsndmore :=(w ∨ sock .cantsndmore);
cantrcvmore :=(r ∨ sock .cantrcvmore);
pr :=UDP PROTO(udp)]〉)]]〉,
SS ,MM)

linux arch h.arch ∧
fd ∈ dom(h.fds) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

socket() (TCP and UDP) 199

fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff)

Description
On Linux, consider a UDP socket sid referenced by fd with no peer IP address set: is2 := ∗. From

thread tid , which is in the Run state, a shutdown(fd , r ,w) call is made, and fails with an ENOTCONN
error.

A tid ·shutdown(fd , r ,w) transition is made, leaving the thread state Ret(FAIL ENOTCONN). If
the socket was shutdown for reading when the call was made or r = T then the socket is shutdown for
reading. If the socket was shutdown for writing when the call was made or w = T then the socket is
shutdown for writing.

Variations

FreeBSD This rule does not apply: see rule shutdown 2 .

WinXP This rule does not apply: see rule shutdown 2 .

7.27 socket() (TCP and UDP)

socket : sock type → fd

A call to socket(type) creates a new socket. Here type is the type of socket to create: SOCK STREAM
for TCP and SOCK DGRAM for UDP. The returned fd is the file descriptor of the new socket.

7.27.1 Errors

A call to socket() can fail with the errors below, in which case the corresponding exception is raised:

EMFILE No more file descriptors for this process.
ENOBUFS Out of resources.

ENOMEM Out of resources.

ENFILE Out of resources.

7.27.2 Common cases

TCP: socket 1 ; return 1 ; connect 1 ; . . . UDP: socket 1 ; return 1 ; bind 1 ; return 1 ; send 9 ; . . .

7.27.3 API

Posix: int socket(int domain, int type, int protocol);

FreeBSD: int socket(int domain, int type, int protocol);

Linux: int socket(int doamin, int type, int protocol);

WinXP: SOCKET socket(int af, int type, int protocol);

In the Posix interface:

• domain specifies the communication domain in which the socket is to be created, specifying the
protocol family to be used. Only IPv4 sockets are modelled here, so domain is set to AF_INET or
PF_INET.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

200 socket 1

• type specifies the communication semantics: SOCK_STREAM provides sequenced, reliable, two-way,
connection-based byte streams; SOCK_DGRAM supports datagrams (connectionless, unreliable mes-
sages of a fixed maximum length). This corresponds to the sock type argument of the model
socket().

• protocol specifies the particular protocol to be used for the socket. A protocol of 0 requests to
use the default for the appropriate socket type: TCP for SOCK_STREAM and UDP for SOCK_DGRAM.
Alternatively a specific protocol number can be used: 6 for TCP and 17 for UDP. In the model,
SOCK STREAM refers to a TCP socket and SOCK DGRAM to a UDP socket so the protocol

argument is not necessary.

A call to socket(SOCK STREAMM) in the model interface, would be a
socket(AF_INET,SOCK_STREAM,0) call in Posix; a call to socket(SOCK DGRAMM) in the model
interface would be a socket(AF_INET,SOCK_DGRAM,0) call in Posix.

The FreeBSD, Linux and WinXP interfaces are similar modulo argument renaming, except where
noted above.

7.27.4 Model details

The following errors are not modelled:

• In Posix and on Linux, EACCES specifies that the process does not have appropriate privileges. We
do not model a privilege state in which socket creation would be disallowed.

• In Posix and on Linux, EAFNOSUPPORT, specifies that the implementation does not support the
address domain. FreeBSD, Linux, and WinXP all support AF_INET sockets.

• On Linux, EINVAL means unknown protocol, or protocol domain not available. Both TCP and
UDP are known protocols for Linux, and AF_INET is a known domain on Linux.

• In Posix and on Linux, EPROTONOTSUPPORT specifies that the protocol is not supported by the
address family, or the protocol is not supported by the implementation. FreeBSD, Linux, and
WinXP all support the TCP and UDP protocols.

• In Posix, EPROTOTYPE signifies that the socket type is not supported by the protocol. Both
SOCK_STREAM and SOCK_DGRAM are supported by TCP and UDP respectively.

• On WinXP, WSAESOCKTNOSUPPORT means the specified socket type is not supported in this address
family. The AF_INET family supports both SOCK_STREAM and SOCK_DGRAM sockets.

The AF_INET6, AF_LOCAL, AF_ROUTE, and AF_KEY address families; SOCK_RAW socket type; and all
protocols other than TCP and UDP are not modelled.

7.27.5 Summary

socket 1 all: fast succeed Successfully return a new file descriptor for a fresh socket
socket 2 all: fast fail Fail with EMFILE : out of file descriptors for this process

7.27.6 Rules

socket 1 all: fast succeed Successfully return a new file descriptor for a fresh socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d);
fds := fds;
files :=files;
socks := socks]〉,
SS ,MM)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Miscellaneous (TCP and UDP) 201

tid ·(socket(socktype))
−−−−−−−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK fd))sched timer);

fds := fds ′;
files :=files ⊕ [(fid ,File(FT Socket(sid),ff default))];
socks := socks ⊕ [(sid , sock)]]〉,
SS ,MM)

card(dom(fds)) < OPEN MAX ∧
fid /∈ (dom(files)) ∧
sid /∈ (dom(socks)) ∧
nextfd h.arch fds fd ∧
fds ′ = fds ⊕ (fd ,fid) ∧
(case socktype of

SOCK DGRAM → (sock =
Sock(↑ fid , sf default h.arch socktype, ∗, ∗, ∗, ∗, ∗,F,F,UDP Sock([]))) ‖

SOCK STREAM → (sock =
Sock(↑ fid , sf default h.arch socktype, ∗, ∗, ∗, ∗, ∗,F,F,

TCP Sock(CLOSED , initial cb, ∗))))

Description
From thread tid , which is in the Run state, a socket(socktype) call is made. The number of open file

descriptors is less than the maximum permitted, OPEN MAX .
If socktype = SOCK STREAM then a new TCP socket sock is created, in the CLOSED state, with

initial cb (p43) as its control block, and all other fields uninitialised; if socktype = SOCK DGRAM then
a new, unitialised UDP socket sock is created. A new open file description is created pointing to the
socket, and a new file descriptor, fd , is allocated in an architecture specific way (see nextfd) to point to
the open file description. The host’s finite map of sockets is updated to include an entry mapping the
socket identifier sid to the socket; its finite map of file descriptions is updated to add an entry mapping
the file descriptor fid to the file description of the socket; and its finite map of file descriptors is updated,
adding a mapping from fd to fid .

A tid ·socket(sock type) transition is made, leaving the thread state Ret(OKfd) to return the new file
descriptor.

socket 2 all: fast fail Fail with EMFILE : out of file descriptors for this process

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·(socket(s))
−−−−−−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EMFILE))sched timer)]〉,SS ,MM)

card(dom(h.fds)) ≥ OPEN MAX

Description
From thread tid , which is in the Run state, a socket(s) call is made. The number of open file

descriptors is greater than the maximum allowed number, OPEN MAX , and so the call fails with an
EMFILE error.

A tid ·socket(s) transition is made, leaving the thread state Ret(FAIL EMFILE).

7.28 Miscellaneous (TCP and UDP)

This section collects the remaining Sockets API rules:

• The rule return 1 characterising how the the results of system calls are returned to the caller, with
transitions from the thread state (Ret v)d .

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

202 return 1

• Rules badf 1 and notsock 1 deal with all the Sockets API calls that take a file descriptor argument,
dealing uniformly with the error cases in which that file descriptor is not valid or does not refer to
a socket.

• Rule intr 1 applies to all the thread states for blocked calls, Accept2 (sid) etc., characterising the
behaviour in the case where the call is interrupted by a signal.

• Rules resourcefail 1 and resourcefail 2 deal with the cases where calls fail due to a lack of system
resources.

7.28.1 Errors

Common errors.

EBADF The file descriptor passed is not a valid file descriptor.

ENOTSOCK The file descriptor passed does not refer to a socket.

EINTR The system was interrupted by a caught signal.

ENOMEM Out of resources.

ENOBUFS Out of resources.

ENFILE Out of resources.

7.28.2 Summary

return 1 all: misc nonurgent Return result of system call to caller
badf 1 all: fast fail Fail with EBADF : not a valid file descriptor
notsock 1 all: fast fail Fail with ENOTSOCK : file descriptor not a valid socket
intr 1 all: slow nonurgent fail Fail with EINTR: blocked system call interrupted by sig-

nal
resourcefail 1 all: fast badfail Fail with ENFILE , ENOBUFS or ENOMEM : out of re-

sources
resourcefail 2 all: slow nonurgent

badfail
Fail with ENFILE , ENOBUFS or ENOMEM : from a
blocked state with out of resources

7.28.3 Rules

return 1 all: misc nonurgent Return result of system call to caller

(h 〈[ts := ts ⊕ (tid 7→ (Ret v)d)]〉,SS ,MM)
tid ·v
−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Run)never timer)]〉,SS ,MM)

T

Description
A system call from thread tid has completed, leaving the thread state (Ret v)d . The value v (which

may be of the form OK v ′ or FAIL v ′, for success or failure respectively) is returned to the caller
before the timer d expires. The thread continues its execution, indicated by the resulting thread state
(Run)never timer .

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

intr 1 203

badf 1 all: fast fail Fail with EBADF : not a valid file descriptor

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·opn
−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer)]〉,SS ,MM)

fd op fd opn ∧
fd /∈ dom(h.fds) ∧
(if windows arch h.arch then e = ENOTSOCK else e = EBADF)

Description
From thread tid , which is in the Run state, a system call opn is made. The call requires a single valid

file descriptor, but the descriptor passed, fd is not valid: it does not refer to an open file description.
The call fails with an EBADF error, or an ENOTSOCK error on WinXP.

A tid ·opn transition is made, leaving the thread state Ret(FAIL e) where e is one of the above errors.
The system calls this rule applies to are: accept(), bind(), close(), connect(), disconnect(),

dup(), dupfd(), getfileflags(), setfileflags(), getsockname(), getpeername(), getsockbopt(), getsockerr(),
getsocklistening(), getsocknopt(), getsocktopt(), listen(), recv(), send(), setsockbopt(), setsocknopt(),
setsocktopt(), shutdown(), and sockatmark(). See the definition of fd op.

Variations

FreeBSD As above: the call fails with an EBADF error.

Linux As above: the call fails with an EBADF error.

WinXP As above: the call fails with an ENOTSOCK error.

notsock 1 all: fast fail Fail with ENOTSOCK : file descriptor not a valid socket

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·opn
−−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL ENOTSOCK))sched timer)]〉,SS ,MM)

fd sockop fd opn ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(ft ,ff) ∧
¬(∃sid .ft = FT Socket(sid))

Description
From thread tid , which is in the Run state, a system call opn is made. The call requires a single

file descriptor referring to a socket. The file descriptor fd that the user passes refers to an open file
description File(ft ,ff) that does not refer to a socket. The call fails with an ENOTSOCK error.

A tid ·opn transition is made, leaving the thread state Ret(FAIL ENOTSOCK).
The system calls this rule applies to are: accept(), bind(), connect(), disconnect(), getpeername(),

getsockbopt(), getsockerr(), getsocklistening(), getsockname(), getsocknopt(), getsocktopt(), listen(),
recv(), send(), setsockbopt(), setsocknopt(), setsocktopt(), shutdown(), and sockatmark(). See the defini-
tion of fd sockop.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

204 resourcefail 1

intr 1 all: slow nonurgent fail Fail with EINTR: blocked system call interrupted by signal

(h 〈[ts := ts ⊕ (tid 7→ (st)d)]〉,SS ,MM)
τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINTR))sched timer)]〉,SS ,MM)

sock = (h.socks[sid]) ∧
(st = Close2 (sid) ∨
st = Connect2 (sid) ∨
st = Recv2 (sid ,n, opts) ∨
st = Send2 (sid , addr , str , opts) ∨
st = PSelect2 (readfds,writefds, exceptfds) ∨
st = Accept2 (sid))

Description
If on socket sid as user call blocked leaving a thread in one of the states: Close2 (sid), Connect2 (sid),

Recv2 (sid), Send2 (sid), PSelect2 (sid) or Accept2 (sid) and a signal is caught, the calls fails returning
error EINTR.

Model details
This rule is non-deterministic, allowing blocked calls to be interrupted at any point, as the specification

does not model the dynamics of signals.

Variations

POSIX POSIX says that a system call ”shall fail” if ”interrupted by a signal”.

resourcefail 1 all: fast badfail Fail with ENFILE , ENOBUFS or ENOMEM : out of resources

(h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉,SS ,MM)
tid ·call
−−−−−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer)]〉,SS ,MM)

¬INFINITE RESOURCES ∧
fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
sock = (h.socks[sid]) ∧
((call = socket(socktype) ∧ e ∈ {ENFILE ;ENOBUFS ;ENOMEM }) ∨
(call = bind(fd , is1, ps1) ∧ e = ENOBUFS) ∨
(call = connect(fd , i2, ↑ p2) ∧ e = ENOBUFS) ∨
(call = listen(fd ,n) ∧ e = ENOBUFS) ∨
(call = recv(fd ,n, opts) ∧ e ∈ {ENOMEM ;ENOBUFS}) ∨
(call = getsockname(fd) ∧ e = ENOBUFS) ∨
(call = getpeername(fd) ∧ e = ENOBUFS) ∨
(call = shutdown(fd , r ,w) ∧ e = ENOBUFS) ∨
(call = accept(fd) ∧ e ∈ {ENFILE ;ENOBUFS ;ENOMEM }
∧ proto of sock .pr = PROTO TCP))

Description
Thread tid performs a socket(), bind(), connect(), listen(), recv(), getsockname(), getpeername(),

shutdown() or accept() system call on socket sid , referred to by fd , when insufficient system-wide re-
sources are available to complete the request. Return a failure of ENFILE , ENOBUFS or ENOMEM
immediately to the calling thread.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

resourcefail 2 205

This rule applies only when it is assumed that the host being modelled does not have
INFINITE RESOURCES , i.e. the host does not have unlimited memory, mbufs, file descriptors, etc.

Model details
The modelling of failure is deliberately non-deterministic because the cause of errors such as ENFILE

are determined by more than is modelled in this specification. In order to be more precise, the model
would need to describe the whole system to determine when such error conditions could and should arise.

resourcefail 2 all: slow nonurgent badfail Fail with ENFILE , ENOBUFS or ENOMEM : from

a blocked state with out of resources

(h 〈[ts := ts ⊕ (tid 7→ (t)d)]〉,SS ,MM)
τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL e))sched timer)]〉,SS ,MM)

¬INFINITE RESOURCES ∧
sock = (h.socks[sid]) ∧
((t = Accept2 (sid) ∧ e ∈ {ENFILE ;ENOBUFS ;ENOMEM }) ∨
(t = Connect2 (sid) ∧ e = ENOBUFS) ∨
(t = Recv2 (sid ,n, opts) ∧ e ∈ {ENOBUFS ;ENOMEM }))

Description
If thread tid of host h is in state Accept2 (sid), Connect2 (sid) or Recv2 (sid) following an accept(),

connect() or recv() system call that blocked, and the host has subsequently exhausted its system-wide
resources, fail with ENFILE , ENOBUFS or ENOMEM . The error is immediately returned to the thread
that made the system call.

Calls to connect() only return ENOBUFS when resources are exhausted and calls to recv() only
return ENOBUFS or ENOMEM .

This rule applies only when it is assumed that the host being modelled does not have
INFINITE RESOURCES , i.e. the host does not have unlimited memory, mbufs, file descriptors, etc.

Model details
The modelling of failure is deliberately non-deterministic because the cause of errors such as ENFILE

are determined by more than is modelled in this specification. In order to be more precise, the model
would need to describe the whole system to determine when such error conditions could and should arise.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

206 resourcefail 2

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 8

Host LTS: TCP Input Processing

8.1 Input Processing (TCP only)

These rules deal with the processing of TCP segments from the host’s input queue. The most important
are deliver in 1 , deliver in 2 , and deliver in 3 .

deliver in 1 deals with a passive open: a socket in LISTEN state that receives a SYN and sends a
SYN ,ACK .

deliver in 2 deals with the completion of an active open: a socket in SYN SENT state (that has
previously sent a SYN with the connect 1 rule) that receives a SYN ,ACK and sends an ACK . It also
deals with simultaneous opens.

deliver in 3 deals with the common cases of TCP data exchange and connection close: sockets in
connected states that receive data, ACK s, and FIN s. This rule is structured using the relational monad,
combining auxiliaries di3 topstuff, di3 ackstuff, di3 datastuff etc., to factor out many of the imperative
effects of the code.

The other rules deal with RST s and a variety of pathological situations.

8.1.1 Summary

deliver in 1 tcp: network nonur-
gent

Passive open: receive SYN, send SYN,ACK

deliver in 2 tcp: network nonur-
gent

Completion of active open (in SYN SENT receive
SYN,ACK and send ACK) or simultaneous open (in
SYN SENT receive SYN and send SYN,ACK)

deliver in 3 tcp: network nonur-
gent

Receive data, FINs, and ACKs in a connected state

di3 topstuff deliver in 3 initial checks
di3 newackstuff deliver in 3 new ack processing, used in di3 ackstuff
di3 ackstuff deliver in 3 ACK processing
di3 datastuff deliver in 3 data processing
di3 ststuff deliver in 3 TCP state change processing
di3 socks update deliver in 3 socket update processing
deliver in 3b tcp: network nonur-

gent
Receive data after process has gone away

deliver in 4 tcp: network nonur-
gent

Receive and drop (silently) a non-sane or martian segment

deliver in 5 tcp: network nonur-
gent

Receive and drop (maybe with RST) a sane segment that
does not match any socket

deliver in 7 tcp: network nonur-
gent

Receive RST and zap non-{CLOSED ; LISTEN ;
SYN SENT ; SYN RECEIVED ; TIME WAIT} socket

deliver in 7a tcp: network nonur-
gent

Receive RST and zap SYN RECEIVED socket

deliver in 7b tcp: network nonur-
gent

Receive RST and ignore for LISTEN socket

207

208 deliver in 1

deliver in 7c tcp: network nonur-
gent

Receive RST and ignore for SYN SENT (unacceptable
ack) or TIME WAIT socket

deliver in 7d tcp: network nonur-
gent

Receive RST and zap SYN SENT (acceptable ack) socket

deliver in 8 tcp: network nonur-
gent

Receive SYN in non-{CLOSED ; LISTEN ; SYN SENT ;
TIME WAIT} state

deliver in 9 tcp: network nonur-
gent

Receive SYN in TIME WAIT state if there is no match-
ing LISTEN socket or sequence number has not increased

8.1.2 Rules

deliver in 1 tcp: network nonurgent Passive open: receive SYN, send SYN,ACK

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq ;
oq := oq]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→

(h 〈[socks := socks ′ ⊕
(* Listening socket *)

[(sid ,Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es, cantsndmore, cantrcvmore,
TCP Sock(LISTEN , cb, ↑ lis ′)));

(* New socket formed by the incoming SYN *)

(sid ′,Sock(∗, sf ′, ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗, cantsndmore, cantrcvmore,
TCP Sock(SYN RECEIVED , cb′′, ∗)))];

iq := iq ′;
oq := oq ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′′)],MM)

(* Summary: A host h with listening socket sock referenced by index sid receives a valid and well-formed SYN

segment seg addressed to socket sock . A new socket in the SYN RECEIVED state is constructed, referenced
by sid ′(6= sid), is added to the queue of incomplete incoming connection attempts q , and a SYN ,ACK segment
is generated in reply with some field values being chosen or negotiated. The reply segment is finally queued on
the host’s output queue for transmission, ignoring any errors upon queueing failure. *)

sid /∈ (dom(socks)) ∧
sid ′ /∈ (dom(socks)) ∧
sid 6= sid ′ ∧

(* The segment must be of an acceptable form *)

(* Note: some segment fields are ignored during TCP connection establishment and as such may contain arbitrary
values. These are equal to the identifiers postfixed with discard below, which are otherwise unconstrained. *)
read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧
iflgs = iflgs 〈[SYN :=T;SYNACK :=F;RST :=F]〉 ∧
idata ∈ UNIV ∧

(* The segment is addressed to an IP address belonging to one of the interfaces of host h and is not addressed
from or to a link-layer multicast or an IP-layer broadcast address *)
i1 ∈ local ips h.ifds ∧
¬(is broadormulticast h.ifds i1) ∧
¬(is broadormulticast h.ifds i2) ∧

(* Find the socket sock that has the best match for the address quad in segment seg , see
tcp socket best match (p38). Socket sock must have a form matching the patten Sock(. . .). *)
tcp socket best match socks(sid , sock)seg h.arch ∧
sock = Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es, cantsndmore, cantrcvmore,

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in 1 209

TCP Sock(LISTEN , cb, ↑ lis)) ∧

(* A BSD socket in the LISTEN state may have its peer’s IP address is2 and port ps
2

set because listen() can
be called from any TCP state. On other architectures they are both constrained to ∗. *)

((is2 = ∗ ∧ ps2 = ∗) ∨
(bsd arch h.arch ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2)) ∧

(* If socket sid has a local IP address specified it should be the same as the destination IP address of the
segment seg , otherwise the seg is not addressed to this socket. If the socket does not have a local IP address the
segment is acceptable because the socket is listening on all local IP addresses. The segment must not have been
sent by socket sock . Note: a socket is permitted to connect to itself by a simultaneous open. This is handled by
deliver in 2 (p211) and not here. *)

(case is1 of ↑ i ′1 → i ′1 = i1 ‖ ∗ → T) ∧
¬(i1 = i2 ∧ p1 = p2) ∧

(* If another socket in the TIME WAIT state matches the address quad of the SYN segment then only proceed
with the new incoming connection attempt if the sequence number of the segment seq is strictly greater than
the next expected sequence number on the TIME WAIT socket, rcv nxt . This prevents old or duplicate SYN
segments from previous incarnations of the connection from inadvertently creating new connections. *)
¬(∃(sid , sock) :: socks.
∃tcp sock .
sock .pr = TCP PROTO(tcp sock) ∧
tcp sock .st = TIME WAIT ∧
sock .is1 = ↑ i1 ∧ sock .ps1 = ↑ p1 ∧ sock .is2 = ↑ i2 ∧ sock .ps2 = ↑ p2 ∧
F) ∧

(* Otherwise, the TIME WAIT sock is completely defunct because there is a new connection attempt from the
same remote end-point. Close it completely. *)
(* Note: this models the behaviour in RFC1122 Section 4.2.2.13 which states that a new SYN with a sequence
number larger than the maximum seen in the last incarnation may reopen the connection, i.e., reuse the socket
for the new connection changing out of the TIME WAIT state. This is modelled by closing the existing
TIME WAIT socket and creating the new socket from scratch. *)
socks ′ = $o f (λsock .

if ∃tcp sock .sock .pr = TCP PROTO(tcp sock) ∧
tcp sock .st = TIME WAIT ∧
sock .is1 = ↑ i1 ∧ sock .ps1 = ↑ p1 ∧
sock .is2 = ↑ i2 ∧ sock .ps2 = ↑ p2

then
tcp close h.arch sock

else
sock

)socks ∧

(* Accept the new connection attempt to the incomplete connection queue if the queue of completed (established)
connections is not already full *)

accept incoming q0 lis T ∧

(* Possibly drop an arbitrary connection from the queue of incomplete connection attempts – this covers the
behaviour of FreeBSD when the oldest connection in the SYN bucket or in the whole SYN cache is dropped,
depending upon which became full. *)

(choose drop :: drop from q0 lis.
if drop then
∃q0L sid ′′ q0R.

lis.q0 = q0L @ (sid ′′ :: q0R) ∧
q ′
0 = q0L @ q0R

else
q ′
0 = lis.q0

) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

210 deliver in 2

(* Put the new incomplete connection on the (possibly pruned) incomplete connections queue. *)

lis ′ = lis 〈[q0 := sid ′ :: q ′
0]〉 ∧

(* Create a SYN,ACK segment in reply: *)

rcvbufsize ′ ∈ UNIV ∧ sndbufsize ′ ∈ UNIV ∧

(* Store the new receive and send buffer sizes *)

sf ′ = sf 〈[n := funupd list sf .n[(SO RCVBUF , rcvbufsize ′); (SO SNDBUF , sndbufsize ′)]]〉 ∧

(* Update the new connection’s control block in light of above. *)

cb′ = cb 〈[

tt keep := ↑((())slow timer TCPTV KEEP IDLE)
]〉 ∧

(* Construct the SYN,ACK segment using the values stored in the updated control block for the new connec-
tion. *)
oflgs = oflgs 〈[SYN :=F;SYNACK :=T;FIN :=F;RST :=F]〉 ∧
odata ∈ UNIV ∧
write(i1, p1, i2, p2)(oflgs, odata)s ′ s ′′

Model details
During TCP connection establishment, BSD uses syn-caches and syn-buckets to protect against some

types of denial-of-service attack. These techniques delay the memory allocation for a socket’s data
structures until connection establishment is complete. They are not modelled directly in this specification,
which instead favours the use of the full socket structure for clarity. The behaviour is observationally
equivalent provided correct bounds are applied to the lengths of the incoming connection queues.

When a socket completes connection establishment, i.e., enters the ESTABLISHED state, BSD up-
dates the socket’s control block t maxseg field to the minimum of the maximum segment size it advertised
in the emitted SYN,ACK segment and that received in the SYN segment from the remote end. This
update is later than perhaps it need be. This model updates the t maxseg at the moment both the
maximum segment values are known. As a consequence the initial maximum segment value advertised
by the host must be stored just in case the SYN,ACK segment need be retransmitted.

Variations

FreeBSD On FreeBSD, the listen() socket call can be called on a TCP socket in any
state, thus it is possible for a listening TCP socket to have a peer address, i.e.,
is2 and ps2 pair, specified. This in turn affects the behaviour of connection
establishment because an incoming SYN segment only matches this type of
listening socket if its address quad matches the socket’s entire address quad,
heavily restricting the usefulness of such a socket.
Such a restrictive peer address binding is permitted by the model for FreeBSD
only.

deliver in 2 tcp: network nonurgent Completion of active open (in SYN SENT receive

SYN,ACK and send ACK) or simultaneous open (in SYN SENT receive SYN and send SYN,ACK)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in 2 211

(h 〈[socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es,

cantsndmore, cantrcvmore,TCP PROTO tcp sock))];
iq := iq ;
oq := oq]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid ,Sock(↑ fid , sf ′, ↑ i1, ↑ p1, ↑ i2, ↑ p2, es,
cantsndmore, cantrcvmore ′,
TCP Sock(st ′, cb′′, ∗)))];

iq := iq ′;
oq := oq ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′′)],MM)

tcp sock = TCP Sock0(SYN SENT , cb, ∗) ∧

read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧

(iflgs.RST = F ∧ (iflgs.SYN = T ∨ iflgs.SYNACK = T)) ∧

rcvbufsize ′ ∈ UNIV ∧ sndbufsize ′ ∈ UNIV ∧
sf ′ = sf 〈[n := funupd list sf .n[(SO RCVBUF , rcvbufsize ′);

(SO SNDBUF , sndbufsize ′)]]〉 ∧

(* softerror may be cleared during an active open *)

(if iflgs.SYNACK then t softerror ′ = ∗ ∨ t softerror ′ = cb.t softerror
else t softerror ′ = cb.t softerror) ∧

(* data processing is much simpler here than in deliver in 3 because we know we will only ever receive the one
SYN ,ACK datagram (duplicates will be rejected, and there’s only one datagram and so cannot be reordered). *)
data ′ = idata ∧
FIN ′ = iflgs.FIN ∧

cb′ = cb 〈[
tt keep := ↑((())slow timer TCPTV KEEP IDLE);
t softerror := t softerror ′

]〉 ∧

(oflgs, odata) ∈ (if iflgs.SYNACK then null flgs data
else (if bsd arch h.arch then null flgs data

else make syn ack flgs data)) ∧
write(i1, p1, i2, p2)(oflgs, odata)s ′ s ′′ ∧

stream enqueue or fail T h.arch h.rttab h.ifds(↑ i1, ↑ i2)cb
′ cb′′ ∧

(* N.B. the flags are already written to the stream during the sync *)

(* Note that we change state even if enqueuing or routing returned an error, trusting to retransmit to solve our
problem. *)

(if iflgs.SYNACK then
(* completion of active open *)

(if ¬FIN ′ then
(cantrcvmore ′ = cantrcvmore ∧

st ′ ∈
(if cantsndmore = F then

{ESTABLISHED}

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

212 deliver in 3

else {FIN WAIT 2 ;FIN WAIT 1})) (* we were trying to send a FIN from SYN SENT ,
so move straight to FIN WAIT 2 . Definitely the case
with BSD; should also be true for other archs. *)

else
(cantrcvmore ′ = T ∧

st ′ =
(if cantsndmore = F then

CLOSE WAIT
else

LAST ACK))) (* we were trying to send a FIN from SYN SENT and also receive a FIN, so
we move straight into LAST ACK . *)

else
(* simultaneous open *)

(if ¬FIN ′ then
(st ′ = SYN RECEIVED ∧
cantrcvmore ′ = cantrcvmore)

else

(st ′ = CLOSE WAIT∧ (* yes, really! (in BSD) even though we’ve not yet had our initial SYN
acknowledged! See tcp_input.c:2065 +/-2000 *)

cantrcvmore ′ = T))
)

deliver in 3 tcp: network nonurgent Receive data, FINs, and ACKs in a connected state

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq ;
oq := oq ;
bndlm := bndlm]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ′;

iq := iq ′;
oq := oq ′;
bndlm := bndlm ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′′)],MM)

sid /∈ (dom(socks)) ∧
sock .pr = TCP PROTO(tcp sock) ∧

(* Assert that the socket meets some sanity properties. This is logically superfluous but aids semi-automatic
model checking. See sane socket (p36) for further details. *)
sane socket sock ∧

(* Take TCP segment seg from the head of the host’s input queue *)

read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧

(* The segment must be of an acceptable form *)

(* Note: some segment fields (namely TCP options ws and mss), are only used during connection establishment
and any values assigned to them in segments during a connection are simply ignored. They are equal to the
identifiers ws discard and mss discard respectively, which are otherwise unconstrained. *)
iflgs.RST = F ∧

(* The socket is fully connected so its complete address quad must match the address quad of the segment seg .
By definition, sock is the socket with the best address match thus the auxiliary function tcp socket best match
is not required here. *)
sock .is1 = ↑ i1 ∧ sock .ps1 = ↑ p1 ∧
sock .is2 = ↑ i2 ∧ sock .ps2 = ↑ p2 ∧

(* The socket must be in a connected state, or is in the SYN RECEIVED state and seg is the final segment
completing a passive or simultaneous open. *)
tcp sock .st /∈ {CLOSED ;LISTEN ;SYN SENT} ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in 3 213

tcp sock .st ∈ {SYN RECEIVED ;ESTABLISHED ;CLOSE WAIT ;FIN WAIT 1 ;FIN WAIT 2 ;
CLOSING ;LAST ACK ;TIME WAIT} ∧

(* If socket sock has previously emitted a FIN segment check that a thread is still associated with the socket,
i.e. check that the socket still has a valid file identifier fid 6= ∗. If not, and the segment contains new data,
the segment should not be processed by this rule as there is no thread to read the data from the socket after
processing. Query: how does this st condition relate to wesentafin below? *)

(∃cond .¬(tcp sock .st ∈ {FIN WAIT 1 ;CLOSING ;LAST ACK ;FIN WAIT 2 ;TIME WAIT} ∧
cond)) ∧

(* A SYN should be received only in the SYN RECEIVED state. *)

(iflgs.SYN =⇒ tcp sock .st = SYN RECEIVED) ∧

(* If the socket sock has previously sent a FIN segment it has been acknowledged by segment seg if the segment
has the ACK flag set and an acknowledgment number ack ≥ cb.snd max . *)

(ourfinisacked =⇒ wesentafin) ∧

(* wercvdafin approximated by iflgs.FIN *)

(wercvdafin = iflgs.FIN) ∧

(* Process the segment and return an updated socket state *)

(

∃sock0.di3 topstuff sock sock0 ∧

∃sock1 FIN 1 stop1.di3 ackstuff tcp sock ourfinisacked h.arch h.rttab h.ifds sock0(sock1,FIN 1, stop1) ∧
if stop1 = T
then

(sock ′, oflgs.FIN) = (sock1,FIN 1)
else

let datastuff theststuff =
(* Extract and reassemble data (including urgent data). See di3 datastuff (p216). *)

di3 datastuff wercvdafin theststuff ourfinisacked
and ststuff FIN reass =

(* Possibly change the socket’s state (especially on receipt of a valid FIN). See di3 ststuff (p216). *)

di3 ststuff wercvdafin ourfinisacked
in
∃sock2 FIN 2.datastuff ststuff sock1(sock2,FIN 2) ∧
(sock ′, oflgs.FIN) = (sock2,FIN 2 ∨ FIN 1)

) ∧

sock ′.pr = TCP PROTO(tcp sock ′) ∧
sock ′′ = sock ′ ∧

(* If socket sock was initially in the SYN RECEIVED state and after processing seg is in the ESTABLISHED

state (or if the segment contained a FIN and the socket is in one of the FIN WAIT 1 , FIN WAIT 2 or
CLOSE WAIT states), the socket is probably on some other socket’s incomplete connections queue and seg is
the final segment in a passive open. If it is on some other socket’s incomplete connections queue the other socket
is updated to move the newly connected socket’s reference from the incomplete to the complete connections queue
(unless the complete connection queue is full, in which case the new connection is dropped and all references
to it are removed). If not, seg is the final segment in a simultaneous open in which case no other sockets are
updated. The auxiliary function di3 socks update (p219) does all the hard work, updating the relevant sockets
in the finite map socks to yield socks ′. *)

(if tcp sock .st = SYN RECEIVED ∧
tcp sock ′.st ∈ {ESTABLISHED ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSE WAIT} then

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

214 di3 topstuff

di3 socks update sid(socks ⊕ (sid , sock ′′))socks ′

else
(* If the socket was not initially in the SYN RECEIVED state, i.e.seg was processed by an already connected
socket, ensure the updated socket is in the final finite maps of sockets. *)
socks ′ = socks ⊕ (sid , sock ′′)) ∧

write(i1, p1, i2, p2)(oflgs, [])s ′ s ′′

– deliver in 3 initial checks :
di3 topstuff sock sock ′ =
∃tcp sock .
sock .pr = TCP PROTO tcp sock ∧
let cb = tcp sock .cb in

(* Reset the socket’s idle timer and keepalive timer to start counting from zero as activity is taking place on the
socket: a segment is being processed. If the FIN WAIT 2 timer is enabled this may be reset upon processing
this segment. See update idle (p51) for further details *)
choose tt keep′ :: update idle tcp sock .

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock
〈[cb := tcp sock .cb 〈[tt keep := tt keep′]〉]〉)

]〉

– deliver in 3 new ack processing, used in di3 ackstuff :
di3 newackstuff tcp sock 0 ourfinisacked arch rttab ifds sock(sock ′,FIN , sto p) =

∃(sock ′′,FIN ′′, stop′′) :: {(sock ′,FIN , sto p) |
∃t dupacks :: (UNIV : num set).
∃ack lt snd recover :: {T;F}.
(if ¬TCP DO NEWRENO ∨ t dupacks < 3 then

(sock ′,FIN , sto p) = (sock ,F,F)
else if TCP DO NEWRENO ∧ t dupacks ≥ 3 ∧ ack lt snd recover then

(* Attempt to create a segment for output using the modified control block (this is a relational monad
idiom) *)
stream mlift tcp output perhaps or fail arch rttab ifds sock(sock ′,FIN) ∧
sto p = F

else if TCP DO NEWRENO ∧ t dupacks ≥ 3 ∧ ¬ack lt snd recover then
(* The host supports NewReno-style Fast Recovery, the socket has received at least three duplicate ACK

segments and the new ACK acknowledges at least everything upto snd recover , completing the recovery
process. *)

(sock ′,FIN , sto p) = (sock ,F,F)

else ASSERTION FAILURE“di3 newackstuff” (* impossible *)

)}.
(* we never stop in the above, so always continue, but rebind sock *)

let sock = sock ′′ in
∃(sock ′′′,FIN ′′′, stop′′′) :: {(sock ′,FIN , sto p) |

(* If the retransmit timer is set and the socket has done only one retransmit and it is still within the bad
retransmit timer window, then because this is an ACK of new data the retransmission was done in error. Flag
this so that the control block can be recovered from retransmission mode. This is known as a ”bad retransmit”. *)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

di3 ackstuff 215

∃IS SOME emission time :: {T;F}.
∃tcp sock .
(sock .pr = TCP PROTO tcp sock) ∧
(* rebind sock in the process of updating *)

let sock = sock 〈[pr :=TCP PROTO(tcp sock 〈[cb := tcp sock .cb
〈[

(* If the ACK segment allowed us to successfully time
a segment (and update the round-trip time estimates)
then clear the soft error flag and clear the segment
round-trip timer in order that it can be used on a future
segment. *)
t softerror :=̂ ∗ onlywhen IS SOME emission time

]〉]〉)]〉 in

∃ack gt snd una :: {T;F}.
∃tcp sock .
(sock .pr = TCP PROTO tcp sock) ∧
(if tcp sock 0 .st = LAST ACK ∧ ourfinisacked then

(* If the socket’s FIN has been acknowledged and the socket is in the LAST ACK state, close the socket and
stop processing this segment *)
sock ′ = tcp close arch sock ∧
FIN = F ∧
sto p = T

else
(* Otherwise, flag that deliver in 3 can continue processing the segment if need be *)

(sock ′,FIN , sto p) = (sock ,F,F))
}.
sock ′ = sock ′′′ ∧
(FIN = (FIN ′′ ∨ FIN ′′′)) ∧
sto p = stop′′′

– deliver in 3 ACK processing :
di3 ackstuff tcp sock 0 ourfinisacked arch rttab ifds sock(sock ′,FIN , sto p) =
∃ack le snd una :: {T;F}.
∃maybe dup ack :: {T;F}.
if ack le snd una ∧maybe dup ack then

(* Received a duplicate acknowledgement: it is an old acknowledgement (strictly less than snd una) and
it meets the duplicate acknowledgement conditions above. Do Fast Retransmit/Fast Recovery Congestion
Control (RFC 2581 Ch3.2 Pg6) and NewReno-style Fast Recovery (RFC 2582, Ch3 Pg3), updating the control
block variables and creating segments for transmission as appropriate. *)

∃t dupacks ′ :: (UNIV diff{0 : num}).
∃ack lt snd recover :: {T;F}.

if t dupacks ′ < 3 then
(* Fewer than three duplicate acks received so far. Just increment the duplicate ack counter. We must
continue processing, in case FIN is set. *)
(sock ′,FIN , sto p) = (sock ,F,F)

else if t dupacks ′ > 3 ∨ (t dupacks ′ = 3 ∧ TCP DO NEWRENO ∧ ack lt snd recover) then
(* If this is the 4th or higher duplicate ACK then Fast Retransmit/Fast Recovery congestion control is
already in progress. Increase the congestion window by another maximum segment size (as the dupli-
cate ACK indicates another out-or-order segment has been received by the other end and is no longer
consuming network resource), increment the duplicate ACK counter, and attempt to output another
segment. *)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

216 di3 datastuff

(* If this is the 3rd duplicate ACK , the host supports NewReno extensions and ack is strictly less than
the fast recovery ”recovered” sequence number snd recover , then the host is already doing NewReno-style
fast recovery and has possibly falsely retransmitted a segment, the retransmitted segment has been lost or
it has been delayed. Reset the duplicate ACK counter, increase the congestion window by a maximum
segment size (for the same reason as before) and attempt to output another segment. NB: this will
not cause a cycle to develop! The retransmission timer will eventually fire if recovery does not happen
”fast”. *)
stream mlift tcp output perhaps or fail arch rttab ifds sock(sock ′,FIN) ∧
sto p = T (* no need to process the segment any further *)

else if t dupacks ′ = 3 ∧ ¬(TCP DO NEWRENO ∧ ack lt snd recover) then
(* If this is the 3rd duplicate segment and if the host supports NewReno extensions, a NewReno-style
Fast Retransmit is not already in progress, then do a Fast Retransmit *)

(* Attempt to create a segment for output using the modified control block (this is all a relational monad
idiom) *)
stream mlift tcp output perhaps or fail arch rttab ifds sock(sock ′,FIN) ∧

sto p = T (* no need to process the segment any further *)

else ASSERTION FAILURE“di3 ackstuff: Believed to be impossible—here for completion and safety”

else if ack le snd una ∧ ¬maybe dup ack then
(* Have received an old (would use the word ”duplicate” if it did not have a special meaning) ACK and
it is neither a duplicate ACK nor the ACK of a new sequence number thus just clear the duplicate ACK

counter. *)
(sock ′,FIN , sto p) = (sock ,F,F)

else (* Must be: ack > cb.snd una *)

(* This is the ACK of a new sequence number—this case is handled by the auxiliary function
di3 newackstuff (p214) *)
di3 newackstuff tcp sock 0 ourfinisacked arch rttab ifds sock(sock ′,FIN , sto p)

– deliver in 3 data processing :
(di3 datastuff(FIN reass : bool)the ststuff ourfinisacked sock(sock ′ : socket,FIN : bool)) : bool =

let tcp sock = tcp sock of sock in

if tcp sock .st = TIME WAIT ∨ (tcp sock .st = CLOSING ∧ ourfinisacked) then
the ststuff F sock(sock ′,FIN)

else
the ststuff FIN reass sock(sock ′,FIN)

– deliver in 3 TCP state change processing :
di3 ststuff FIN reass ourfinisacked sock(sock ′, stop′) =

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

di3 ststuff 217

(* The entirety of this function is an encoding of the TCP State Transition Diagram (as it is, not as it is
traditionally depicted) post-SYN SENT state. It specifies for given start state and set of conditions (all or some
of which are affected by the processing of the current segment), which state the TCP socket should be moved
into next *)

(* If the processing of the current segment has led to FIN reass being asserted then the whole data stream from
the other end has been received and reconstructed, including the final FIN flag. The socket should have its
read-half flagged as shut down, i.e., cantrcvmore = T, otherwise the socket is not modified. *)
let sock = (if FIN reass then

sock 〈[cantrcvmore :=T]〉
else sock) in

let tcp sock = tcp sock of sock in
let cont = (sock ′ = sock ∧ stop′ = F) in
let enter TIME WAIT = (sock ′ = sock

〈[pr :=TCP PROTO(tcp sock
〈[st :=TIME WAIT ;

cb := tcp sock .cb 〈[tt keep := ∗]〉
]〉)

]〉 ∧
stop′ = F) in

(* State Transition Diagram encoding: *)

(* The state transition encoding, case-split on the current state and whether a FIN from the remote end has
been reassembled *)
case ((tcp sock of sock).st ,FIN reass) of

(* REMARK we are very loose here *)

(SYN RECEIVED ,F)→ (* In SYN RECEIVED and have not received a FIN *)

(∃ack ge suc iss :: {T;F}.
if ack ge suc iss then

(* This socket’s initial SYN has been acknowledged *)

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock
〈[st := if ¬sock .cantsndmore then

ESTABLISHED (* socket is now fully connected *)

else
(* The connecting socket had it’s write-half shutdown by shutdown() forcing a FIN

to be emitted to the other end *)
if ourfinisacked then

(* The emitted FIN has been acknowledged *)

FIN WAIT 2
else

(* Still waiting for the emitted FIN to be acknowledged *)

FIN WAIT 1
]〉)]〉 ∧

stop′ = F
else

(* Not a valid path *)

stop′) ‖

(SYN RECEIVED ,T)→ (* In SYN RECEIVED and have received a FIN *)

(* Enter the CLOSE WAIT state, missing out ESTABLISHED *)

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[st :=CLOSE WAIT]〉)]〉 ∧
stop′ = F ‖

(ESTABLISHED ,F)→ (* In ESTABLISHED and have not received a FIN *)

(* Doing common-case data delivery and acknowledgements. Remain in ESTABLISHED . *)

cont ‖

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

218 di3 ststuff

(ESTABLISHED ,T)→ (* In ESTABLISHED and received a FIN *)

(* Move into the CLOSE WAIT state *)

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[st :=CLOSE WAIT]〉)]〉 ∧
stop′ = F ‖

(CLOSE WAIT ,F)→ (* In CLOSE WAIT and have not received a FIN *)

(* Do nothing and remain in CLOSE WAIT . The socket has its receive-side shut down due to the FIN

it received previously from the remote end. It can continue to emit segments containing data and receive
acknowledgements back until such a time that it closes down and emits a FIN *)
cont ‖

(CLOSE WAIT ,T)→ (* In CLOSE WAIT and received (another) FIN *)

(* The duplicate FIN will have had a new sequence number to be valid and reach this point; RFC793 says
”ignore” it so do not change state! If it were a duplicate with the same sequence number as the previously
accepted FIN , then the deliver in 3 acknowledgement processing function di3 ackstuff would have dropped
it. *)
cont ‖

(FIN WAIT 1 ,F)→ (* In FIN WAIT 1 and have not received a FIN *)

(* This socket will have emitted a FIN to enter FIN WAIT 1 . *)

if ourfinisacked then
(* If this socket’s FIN has been acknowledged, enter state FIN WAIT 2 and start the FIN WAIT 2

timer. The timer ensures that if the other end has gone away without emitting a FIN and does not
transmit any more data the socket is closed rather left dangling. *)
sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[st :=FIN WAIT 2]〉)]〉 ∧
stop′ = F

else
(* If this socket’s FIN has not been acknowledged then remain in FIN WAIT 1 *)

cont ‖

(FIN WAIT 1 ,T)→ (* In FIN WAIT 1 and received a FIN *)

if ourfinisacked then
(* ...and this socket’s FIN has been acknowledged then the connection has been closed successfully so
enter TIME WAIT . Note: this differs slightly from the behaviour of BSD which momentarily enters the
FIN WAIT 2 and after a little more processing enters TIME WAIT *)
enter TIME WAIT

else
(* If this socket’s FIN has not been acknowledged then the other end is attempting to close the connection
simultaneously (a simultaneous close). Move to the CLOSING state *)
sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[st :=CLOSING]〉)]〉 ∧
stop′ = F ‖

(FIN WAIT 2 ,F)→ (* In FIN WAIT 2 and have not received a FIN *)

(* This socket has previously emitted a FIN which has already been acknowledged. It can continue to
receive data from the other end which it must acknowledge. During this time the socket should remain in
FIN WAIT 2 until such a time that it receives a valid FIN from the remote end, or if no activity occurs
on the connection the FIN WAIT 2 timer will fire, eventually closing the socket *)
cont ‖

(FIN WAIT 2 ,T)→ (* In FIN WAIT 2 and have received a FIN *)

(* Connection has been shutdown so enter TIME WAIT *)

enter TIME WAIT ‖

(CLOSING ,F)→ (* In CLOSING and have not received a FIN *)

if ourfinisacked then
(* If this socket’s FIN has been acknowledged (common-case), enter TIME WAIT as the connection has
been successfully closed *)
enter TIME WAIT

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

di3 socks update 219

else
(* Otherwise, the other end has not yet received or processed the FIN emitted by this socket. Remain
in the CLOSING state until it does so. Note: if the previosuly emitted FIN is not acknowledged this
socket’s retransmit timer will eventually fire causing retransmission of the FIN . *)
cont ‖

(CLOSING ,T)→ (* In CLOSING and have received a FIN *)

(* The received FIN is a duplicate FIN with a new sequence number so as per RFC793 is ignored – if it
were a duplicate with the same sequence number as the previously accepted FIN , then the deliver in 3

acknowledgement processing function di3 ackstuff would have dropped it. *)
if ourfinisacked then

(* If this socket’s FIN has been acknowledged then the connection is now successfully closed, so enter
TIME WAIT state *)
enter TIME WAIT

else
(* Otherwise, ignore the new FIN and remain in the same state *)

cont ‖

(LAST ACK ,F)→ (* In LAST ACK and have not received a FIN *)

(* Remain in LAST ACK until this socket’s FIN is acknowledged. Note: eventually the retransmit timer
will fire forcing the FIN to be retransmitted. *)
cont ‖

(LAST ACK ,T)→ (* In LAST ACK and have received a FIN *)

(* This transition is handled specially at the end of di3 newackstuff at which point processing stops, thus
this transition is not possible *)
ASSERTION FAILURE“di3 ststuff” (* impossible *) ‖

(TIME WAIT ,F)→ (* In TIME WAIT and have not received a FIN *)

(* Remaining in TIME WAIT until the 2MSL timer expires *)

cont ‖

(TIME WAIT ,T)→ (* In TIME WAIT and have received a FIN *)

(* Remaining in TIME WAIT until the 2MSL timer expires *)

cont

– deliver in 3 socket update processing :
di3 socks update sid socks socks ′ =

let sock 1 = socks[sid] in
∃tcp sock 1 .
TCP PROTO(tcp sock 1) = sock 1 .pr ∧

(* Socket sock 1 referenced by identifier sid has just finished connection establishement and either there is
another socket with sock 1 on its pending connections queue and this is the completion of a passive open,
or there is not another socket and this is the completion of a simultaneous open. See the inline comment in
deliver in 3 (p212) for further details. *)

let interesting = λsid ′.
sid ′ 6= sid ∧
case (socks[sid ′]).pr of

UDP PROTO udp sock → F
‖ TCP PROTO(tcp sock ′)→

case tcp sock ′.lis of
∗ → F

‖ ↑ lis →

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

220 deliver in 3b

sid ∈ lis.q0 in

let interesting sids = (dom(socks)) ∩ interesting in

if interesting sids 6= {} then
(* There exists another socket sock ′ that is listening and has socket sock 1 referenced by sid on its queue of
incomplete connections lis.q0 . *)
∃sid ′ sock ′ tcp sock ′ lis q0L q0R.
sid ′ ∈ interesting sids ∧
sock ′ = socks[sid ′] ∧
sock ′.pr = TCP PROTO tcp sock ′ ∧
sid ′ 6= sid ∧
tcp sock ′.lis = ↑ lis ∧
lis.q0 = q0L @ (sid :: q0R) ∧

(* Choose non-deterministically whether there is room on the queue of completed connections *)

choose ok :: accept incoming q lis.

if ok then
(* If there is room, then remove socket sid from the queue of incomplete connections and add it to the queue
of completed connections. *)
let lis ′ = lis 〈[q0 := q0L @ q0R;

q := sid :: lis.q]〉 in
let cb′ = tcp sock 1 .cb in

(* Update both the newly connected socket and the listening socket *)

socks ′ = socks ⊕
[(sid , sock 1 〈[pr :=TCP PROTO(tcp sock 1 〈[cb := cb′]〉)]〉);
(sid ′, sock ′ 〈[pr :=TCP PROTO(tcp sock ′ 〈[lis := ↑ lis ′]〉)]〉)]

else
(* ...otherwise there is no room on the listening socket’s completed connections queue, so drop the newly
connected socket and remove it from the listening socket’s queue of incomplete connections. Note: the
dropped connection is not sent a RST but a RST is sent upon receipt of further segments from the other end
as the socket entry has gone away. *)

(* Note that the above note needs to be verified by testing. *)

let lis ′ = lis 〈[q0 := q0L @ q0R]〉 in
socks ′ = socks ⊕ (sid ′, sock ′ 〈[pr :=TCP PROTO(tcp sock ′ 〈[lis := ↑ lis ′]〉)]〉)

else
(* There is no such socket with socket sid on its queue of incomplete connections, thus socket sid was involved
in a simultaneous open. Do not update any socket. *)
socks ′ = socks

deliver in 3b tcp: network nonurgent Receive data after process has gone away

(h 〈[socks := socks;
iq := iq ;
oq := oq ;
bndlm := bndlm]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ′;

iq := iq ′;
oq := oq ′;
bndlm := bndlm ′]〉,
SS ′,MM)

(* Summary: if data arrives after the process associated with a socket has gone away, close socket and emit
RST segment. *)

sid ∈ dom(socks) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in 5 221

sock 0 = socks[sid] ∧
sock 0 .is1 = ↑ i1 ∧ sock 0 .ps1 = ↑ p1 ∧ sock 0 .is2 = ↑ i2 ∧ sock 0 .ps2 = ↑ p2 ∧
sock 0 .pr = TCP PROTO(tcp sock 0) ∧

∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧
iflgs = iflgs 〈[SYN :=F;SYNACK :=F;RST :=F]〉 ∧
idata ∈ UNIV ∧

(* Note that there does not exist a better socket match to which the segment should be sent, as the whole quad
is matched exactly. *)

(* test that this is data arriving after process has gone away *)

tcp sock 0 .st ∈ {FIN WAIT 1 ;CLOSING ;LAST ACK ;FIN WAIT 2 ;TIME WAIT} ∧
sock 0 .fid = ∗ ∧

(* close socket and emit RST segment *)

socks ′ = socks ⊕ (sid , tcp close h.arch sock 0) ∧
oflgs = oflgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=T]〉 ∧
odata ∈ UNIV ∧
∃s ′′.
write(i1, p1, i2, p2)(oflgs, odata)s ′ s ′′ ∧
destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′′)])SS ′

deliver in 4 tcp: network nonurgent Receive and drop (silently) a non-sane or martian

segment

(h 〈[iq := iq]〉,SS ,MM)
τ
−→ (h 〈[iq := iq ′]〉,SS ,MM)

(* Summary: Receive and drop any segment for this host that does not have sensible checksum or offset fields,
or one that originates from a martian address. The first part of this condition is a placeholder, awaiting the day
when we switch to a non-lossy segment representation, hence the F. *)

dequeue iq(iq , iq ′, ↑(TCP seg)) ∧
seg .is2 = ↑ i2 ∧
is1 = seg .is1 ∧
i2 ∈ local ips(h.ifds) ∧
(F∨ (* placeholder for segment checksum and offset field not sensible *)

¬(
T∧ (* placeholder for not a link-layer multicast or broadcast *)

¬(is broadormulticast h.ifds i2)∧ (* seems unlikely, since i1 ∈ local ips h.ifds *)

¬(is1 = ∗) ∧
¬is broadormulticast h.ifds(the is1)

)
)

deliver in 5 tcp: network nonurgent Receive and drop (maybe with RST) a sane segment

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

222 deliver in 7

that does not match any socket

(h 〈[iq := iq ;
oq := oq ;
bndlm := bndlm]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[iq := iq ′;

oq := oq ′;
bndlm := bndlm ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′′)],MM)

(* Summary: Receive and drop any segment for this host that does not match any sockets (but does have
sensible checksum and offset fields). Typically, generate RST in response, computing ack and seq to supposedly
make the other end see this as an ’acceptable ack’. *)

read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧

i1 ∈ local ips(h.ifds) ∧

T∧ (* placeholder for segment checksum and offset field sensible *)

¬(∃((sid , sock) :: h.socks)tcp sock .
sock .pr = TCP PROTO(tcp sock) ∧
match score(sock .is1, sock .ps1, sock .is2, sock .ps2)

(i2, ↑ p2, i1, ↑ p1) > 0
) ∧

dropwithreset iflgs.RST (↑ i2, ↑ i1)h.ifds oflgs.RST ∧
oflgs.SYN = F ∧
oflgs.SYNACK = F ∧
oflgs.FIN = F ∧
odata = [] ∧
write(i1, p1, i2, p2)(oflgs, odata)s ′ s ′′

deliver in 7 tcp: network nonurgent Receive RST and zap non-{CLOSED; LISTEN ;

SYN SENT ; SYN RECEIVED; TIME WAIT} socket

(h 〈[ts := ts ⊕ (tid 7→ (tsst)d);
socks := socks ⊕ [(sid , sock)];
iq := iq]〉,
SS ,MM)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (tsst)d);

socks := socks ⊕ [(sid , sock ′)];
iq := iq ′]〉,
SS ′,MM)

(* Summary: receive RST and silently zap non-{CLOSED ; LISTEN ; SYN SENT ; SYN RECEIVED ;
TIME WAIT} socket *)

sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb, ∗)) ∧

st /∈ {CLOSED ;LISTEN ;SYN SENT ;SYN RECEIVED ;TIME WAIT} ∧

∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧
iflgs.RST = T ∧
idata ∈ UNIV ∧

((* sock .st ∈ {CLOSED ;LISTEN ;SYN SENT ;SYN RECEIVED ;TIME WAIT} excluded already above *)

if st ∈ {ESTABLISHED ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSE WAIT} then
err = ↑ ECONNRESET

else (* sock .st ∈ {CLOSING ;LAST ACK} – leave existing error *)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in 7a 223

err = sock .es) ∧

(* see tcp close (p52) *)

sock ′ = tcp close h.arch(sock 〈[es := err]〉) ∧
destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)])SS ′

deliver in 7a tcp: network nonurgent Receive RST and zap SYN RECEIVED socket

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ⊕ socks update ′;

iq := iq ′]〉,
SS ′,MM)

(* Summary: receive RST and zap SYN RECEIVED socket, removing from listen queue etc. *)

∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧
iflgs.RST = T ∧
idata ∈ UNIV ∧

sid /∈ dom(socks) ∧

sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,
TCP Sock(SYN RECEIVED , cb, ∗)) ∧

((* There is a corresponding listening socket – passive open *)

(∃(sid ′, lsock) :: socks\\sid .
∃tcp lsock lis q0L q0R lsock ′.

lsock .pr = TCP PROTO(tcp lsock) ∧
tcp lsock .st = LISTEN ∧
tcp lsock .lis = ↑ lis ∧
lis.q0 = q0L @ (sid :: q0R) ∧
lsock ′ = lsock
〈[pr :=TCP PROTO(tcp lsock 〈[lis :=

↑(lis 〈[q0 := q0L @ q0R]〉)]〉)]〉 ∧
socks update ′ = [(sid ′, lsock ′); (sid , sock ′)]

) ∨
((* No corresponding socket – simultaneous open *)

socks update ′ = [(sid , sock ′)])) ∧

(* We do not delete the socket entry here because of simultaneous opens. Keep existing error for
SYN RECEIVED socket on RST *)
sock ′ = (tcp close h.arch sock)〈[ps1 := if bsd arch h.arch then ∗ else sock .ps1]〉 ∧
destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)])SS ′

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

224 deliver in 7b

deliver in 7b tcp: network nonurgent Receive RST and ignore for LISTEN socket

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ⊕ [(sid , sock)];

iq := iq ′]〉,
SS ,MM)

(* Summary: receive RST and ignore for LISTEN socket *)

dequeue iq(iq , iq ′, ↑(TCP seg)) ∧
sock = Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es, cantsndmore, cantrcvmore,

TCP Sock(LISTEN , cb, lis)) ∧

(* BSD listen bug – since we can call listen() from any state, the peer IP/port may have been set *)

((is2 = ∗ ∧ ps2 = ∗) ∨
(bsd arch h.arch ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2)) ∧

i1 ∈ local ips h.ifds ∧
T∧ (* placeholder for not a link-layer multicast or broadcast *)

(* seems unlikely, since i1 ∈ local ips h.ifds *)

¬(is broadormulticast h.ifds i1) ∧
¬(is broadormulticast h.ifds i2) ∧
(case is1 of

↑ i ′1 → i ′1 = i1 ‖
∗ → T) ∧

(∃seq discard ack discard URG discard ACK discard PSH discard SYN discard FIN discard
win discard ws discard urp discard mss discard ts discard data discard .

seg =〈[
is1 := ↑ i2;
is2 := ↑ i1;
ps1 := ↑ p2;
ps2 := ↑ p1;
seq := tcp seq flip sense(seq discard : tcp seq foreign);
ack := tcp seq flip sense(ack discard : tcp seq local);
URG :=URG discard ;
ACK :=ACK discard ;
PSH :=PSH discard ;
RST :=T;
SYN :=SYN discard ;
FIN :=FIN discard ;
win :=win discard ;
ws :=ws discard ;
urp := urp discard ;
mss :=mss discard ;
ts := ts discard ;
data := data discard

]〉
) ∧

tcp socket best match(socks\\sid)(sid , sock)seg h.arch (* there does not exist a better socket match to
which the segment should be sent *)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in 7d 225

deliver in 7c tcp: network nonurgent Receive RST and ignore for SYN SENT(unacceptable

ack) or TIME WAIT socket

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ⊕ [(sid , sock ′)];

iq := iq ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

(* Summary: receive RST and ignore for SYN SENT (unacceptable ack) or TIME WAIT socket *)

read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧
sid /∈ dom(socks) ∧
sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)) ∧
st ∈ {SYN SENT ;TIME WAIT} ∧

iflgs.RST = T ∧
idata ∈ UNIV ∧

(* no- or unacceptable- ACK *)

(st = SYN SENT =⇒ F) ∧

sock .pr = TCP PROTO(tcp sock) ∧
(if st = TIME WAIT then (* only update if ≥ ESTABLISHED , c.f. tcp_input.c:887 *)

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock
〈[cb := cb
〈[tt keep := ↑((())slow timer TCPTV KEEP IDLE)]〉

]〉)]〉
else (* st = SYN SENT *)

(* BSD rcv_wnd bug: the receive window updated code in tcp_input gets executed before the segment is
processed, so even for bad segments, it gets updated *)
sock ′ = sock)

deliver in 7d tcp: network nonurgent Receive RST and zap SYN SENT(acceptable ack)

socket

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ⊕ [(sid , sock ′)];

iq := iq ′]〉,
SS ′,MM)

(* Summary Receiving an acceptable-ack RST segment: kill the connection and set the socket’s error field
appropriately, unless we are WinXP where we simply ignore the RST. *)

∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
read(i1, p1, i2, p2)F F(iflgs, idata)s s ′ ∧
sid /∈ dom(socks) ∧
sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(SYN SENT , cb, ∗)) ∧

iflgs.RST = T ∧
idata ∈ UNIV ∧

if windows arch h.arch then

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

226 deliver in 8

sock ′ = sock (* Windows XP just ignores RST’s with a valid ack during connection establishment *) ∧
SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)]
else

(∃err .
err ∈ {ECONNREFUSED ;ECONNRESET}∧ (* Note it is unclear whether or not this error will

overwrite any existing error on the socket *)
sock ′ = (tcp close h.arch sock)〈[ps1 := if bsd arch h.arch then ∗ else sock .ps1; es := ↑ err]〉 ∧
destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)])SS ′)

deliver in 8 tcp: network nonurgent Receive SYN in non-{CLOSED; LISTEN ; SYN SENT ;

TIME WAIT} state

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq ;
oq := oq ;
bndlm := bndlm]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ⊕ [(sid , sock ′)];

iq := iq ′;
oq := oq ′;
bndlm := bndlm ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′′)],MM)

(* Summary: Receive a SYN in non-{CLOSED ; LISTEN ; SYN SENT ; TIME WAIT} state. Drop it and
(depending on the architecture) generate a RST. *)

sid /∈ dom(socks) ∧
sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)) ∧
read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧
iflgs.RST = F ∧ (iflgs.SYN ∨ iflgs.SYNACK) ∧
idata ∈ UNIV ∧

(* Note that it may be the case that this rule should only apply when the SYN is in the trimmed window, should
not it?; it’s OK if there’s a SYN bit set, for example in a retransmission. *)

st /∈ {CLOSED ;LISTEN ;SYN SENT ;TIME WAIT} ∧

sock .pr = TCP PROTO(tcp sock) ∧
let tt keep′ = if tcp sock .st 6= SYN RECEIVED then

↑((())slow timer TCPTV KEEP IDLE)
else

tcp sock .cb.tt keep in

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock
〈[cb := tcp sock .cb 〈[tt keep := tt keep′]〉
]〉)]〉 ∧

oflgs = oflgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=T]〉 ∧
odata ∈ UNIV ∧
write(i1, p1, i2, p2)(oflgs, odata)s ′ s ′′

deliver in 9 tcp: network nonurgent Receive SYN in TIME WAIT state if there is no match-

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in 9 227

ing LISTEN socket or sequence number has not increased

(h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq ;
oq := oq ;
bndlm := bndlm]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ⊕ [(sid , sock)];

iq := iq ′;
oq := oq ′;
bndlm := bndlm ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′′)],MM)

(* Summary: Receive a SYN in TIME WAIT} state where there is no matching LISTEN socket. Drop it and
(depending on the architecture) generate a RST. *)

dequeue iq(iq , iq ′, ↑(TCP seg)) ∧

sid /∈ dom(socks) ∧
sock = Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(TIME WAIT , cb, ∗)) ∧
read(i1, p1, i2, p2)T F(iflgs, idata)s s ′ ∧
iflgs.RST = F ∧ (iflgs.SYN ∨ iflgs.SYNACK) ∧
idata ∈ UNIV ∧

(* no matching LISTEN socket, or the sequence number has not increased *)

(T
∨

¬(∃((sid , sock) :: socks)tcp sock .
sock .pr = TCP PROTO(tcp sock) ∧
tcp sock .st = LISTEN ∧
sock .is1 ∈ {∗; ↑ i1} ∧
sock .ps1 = ↑ p1)

) ∧

oflgs = oflgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=T]〉 ∧
odata ∈ UNIV ∧
write(i1, p1, i2, p2)(oflgs, odata)s ′ s ′′

(* This rule does not appear in the BSD code; what happens there is that the old TIME WAIT state socket is
closed, and then the code jumps back to the top. So this rule covers the case where it then discovers nothing
else is listening, like deliver in 5 . *)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

228 deliver in 9

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 9

Host LTS: TCP Output

9.1 Output (TCP only)

A TCP implementation would typically perform output deterministically, e.g. during the processing
a received segment it may construct and enqueue an acknowledgement segment to be emitted. This
means that the detailed behaviour of a particular implementation depends on exactly where the output
routines are called, affecting when segments are emitted. The contents of an emitted segment, on the
other hand, must usually be determined by the socket state (especially the tcpcb), not from transient
program variables, so that retransmissions can be performed.

In this specification we choose to be somewhat nondeterministic, loosely specifying when common-
case TCP output to occur. This simplifies the modelling of existing implementations (avoiding the need
to capture the code points at which the output routines are called) and should mean the specification is
closer to capturing the set of all reasonable implementations.

A significant defect in the current specification is that it does not impose a very tight lower bound on
how often output takes place. The satisfactory dynamic behaviour of TCP connections depends on an
”ACK clock” property, with receivers acknowledging data sufficiently often to update the sender’s send
window. Characterising this may need additional constraints.

The rule presented in this chapter describes TCP output in the common case, i.e. the behaviour
of TCP when emitting a non-SYN, non-RST segment. The whole behaviour is captured by the
single rule deliver out 1 which relies upon the auxiliary functions tcp output required (p45) and
tcp output really (p45). Output (strictly, adding segments to the host’s output queue) may take place
whenever this rule can fire; it does construct the output segments purely from the socket state.

The two auxiliary functions are loosely based on BSD’s TCP output function, which can be logically
divided into two halves. The first of these —to some approximation— is a guard that prevents output
from occuring unless it is valid to do so, and the second actually creates a segment and passes it to the
IP layer for output. This distinction is mirrored in the specification, with tcp output required acting
as the guard and tcp output really forming the segment ready to be appended to the host’s output
queue. Unfortunately it is not possible to be as clean here as one might hope, because under some
circumstances tcp output required may have side-effects. It should be noted that tcp output really
only creates a segment and does not perform any ”output” — the act of adding the segment (perhaps
unreliably) to the host’s output queue is the job of the caller.

The output cases not covered by deliver out 1 are handled specially and often in a more deterministic
way. Segments with the SYN flag set are created by the auxiliary functions make syn flgs data (p262)
and make syn ack flgs data (p263) and are output deterministically in response to either user events
or segment input. SYN segments are emitted by the rules commonly involved in connection establish-
ment, namely connect 1 , deliver in 1 , deliver in 2 , timer tt rexmtsyn 1 and timer tt rexmt 1 and are
special-cased in this way for clarity because connection establishment performs extra work such as option
negotiation and state initialisation.

The creation of RST segments is used by the rules that require a reset segment to be emitted in
response to a user event, e.g. a close() call on a socket with a zero linger time, or as a socket’s response
to receiving some types of invalid segment.

In a few places, mainly in the specification of certain congestion control methods,
some rules use tcp output really (p45) or the wrapper functions tcp output perhaps (p48) and
stream mlift tcp output perhaps or fail (p50) directly and—more importantly—deterministically. This

229

230 deliver out 1

is partly for clarity, perhaps because an RFC states that output ”MUST” occur at that point, and partly
for convenience, possibly because the model would require much extra state (hence adding unnecessary
complexity) if the output function was not used in-place.

The tcp output perhaps function almost entirely mimics an implementation’s TCP output func-
tion. It calls tcp output required to check that output can take place, applying any side-effects that
it returns, and finally creates the segment with tcp output really. See tcp output perhaps (p48) and
stream mlift tcp output perhaps or fail (p50) for more information.

Other auxiliary functions are involved in TCP output and are described earlier. Once a seg-
ment has been constructed it is added to the host’s output queue by one of enqueue or fail (p50),
stream enqueue or fail sock (p50), enqueue and ignore fail (p50), enqueue each and ignore fail (p50)
or stream mlift tcp output perhaps or fail (p50). These functions are used by deliver out 1 and other
rules in the specification to non-deterministically add a segment to the host’s output queue. In the
common case, a segment is added to the host’s output queue successfully. In other cases, the auxiliary
function rollback tcp output (p48) may assert a segment is unroutable and prevent the segment from
being added to the queue. Some failures are non-deterministic in order to model ”out of resource” style
errors, although most are deterministic routing failures determined from the socket and host states.
rollback tcp output has a second task to ”undo” several of the socket’s control block changes upon an
error condition. Some of the enqueue functions ignore failure, e.g. enqueue and ignore fail, and upon
an error they just fail to queue the segment and do not update the socket with the ”rolled-back” control
block returned by rollback tcp output.

9.1.1 Summary

deliver out 1 tcp: network nonur-
gent

Common case TCP output

9.1.2 Rules

deliver out 1 tcp: network nonurgent Common case TCP output

(h 〈[socks := socks ⊕ [(sid , sock)];
oq := oq]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ⊕ [(sid , sock ′′)];

oq := oq ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

(* Summary: output TCP segment if possible. In some cases update the socket’s persist timer without
performing output. *)

(* The TCP socket is connected *)

sid /∈ dom(socks) ∧
sock = Sock(fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore,

cantrcvmore,TCP PROTO(tcp sock)) ∧
tcp sock = TCP Sock0(st , cb, ∗) ∧

(* and either is in a synchronised state with initial SYN acknowledged. . . *)

((st ∈ {ESTABLISHED ;CLOSE WAIT ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSING ;
LAST ACK ;TIME WAIT}) ∨

(* . . . or is in the SYN SENT or SYN RECEIVED state and a FIN needs to be emitted *)

(st ∈ {SYN SENT ;SYN RECEIVED} ∧ cantsndmore)
) ∧

(* A segment will be emitted if tcp output required asserts that a segment can be output (do output). If
tcp output required returns a function to alter the socket’s persist timer (persist fun), then this does not of
itself mean that a segment is required, however deliver out 1 should still fire to allow the update to take
place. *)

(do output , persist fun) ∈ tcp output required∧
(do output ∨ persist fun 6= ∗) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver out 1 231

(* Apply any persist timer side-effect from tcp output required *)

let sock0 = option case sock (λf .sock 〈[pr :=TCP PROTO(tcp sock cb :=̂ f)]〉) persist fun in

(if do output then (* output a segment *)

(* Construct the segment to emit, updating the socket’s state *)

stream tcp output really sock0(sock
′,FIN) ∧

sock ′.pr = TCP PROTO(tcp sock ′) ∧

(* Add the segment to the host’s output queue, rolling back the socket’s control block state if an error occurs *)

oflgs =〈[SYN :=F;SYNACK :=F;FIN :=FIN ;RST :=F]〉 ∧
odata = [] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
stream enqueue or fail sock(tcp sock ′.st ∈ {CLOSED ;LISTEN ;SYN SENT})h.arch h.rttab h.ifds

(↑ i1, ↑ i2)sock0 sock ′ sock ′′

else (* Do not output a segment, but ensure things are tidied up *)

oq = oq ′ ∧
sock ′′ = sock0 ∧
s ′ = s

)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

232 deliver out 1

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 10

Host LTS: TCP Timers

10.1 Timers (TCP only)

10.1.1 Summary

timer tt rexmtsyn 1tcp: misc nonurgent SYN retransmit timer expires
timer tt rexmt 1 tcp: misc nonurgent retransmit timer expires
timer tt persist 1 tcp: misc nonurgent persist timer expires
timer tt keep 1 tcp: network nonur-

gent
keepalive timer expires

timer tt 2msl 1 tcp: misc nonurgent 2*MSL timer expires
timer tt delack 1 tcp: misc nonurgent delayed-ACK timer expires
timer tt conn est 1tcp: misc nonurgent connection establishment timer expires
timer tt fin wait 2 1tcp: misc nonurgent FIN WAIT 2 timer expires

10.1.2 Rules

timer tt rexmtsyn 1 tcp: misc nonurgent SYN retransmit timer expires

(h 〈[socks := socks ⊕ [(sid , sock)];
oq := oq]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ⊕ [(sid , sock ′)];

oq := oq ′]〉,
SS ′,MM)

sock .pr = TCP PROTO(tcp sock) ∧
shift ∈ UNIV ∧
tcp sock .st = SYN SENT∧ (* this rule is incomplete: RexmtSyn is possible in other states, since deliver in 2

may change state without clearing tt rexmt *)

cb = tcp sock .cb ∧

∃i1 i2 p1 p2.(sock .is1, sock .is2, sock .ps1, sock .ps2) = (↑ i1, ↑ i2, ↑ p1, ↑ p2) ∧
if shift + 1 ≥ TCP MAXRXTSHIFT then

(* Timer has expired too many times. Drop and close the connection *)

(* since socket state is SYN SENT , no segments can be output *)

tcp drop and close h.arch(↑ ETIMEDOUT)sock(sock ′, (oflgs, odata)) ∧
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)])SS ′

else
(* Update the control block based upon the number of occasions on which the timer expired *)

233

234 timer tt rexmt 1

cb′ = cb ∧

∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
(* Create the segment to be retransmitted *)

(oflgs, odata) ∈ make syn flgs data∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)] ∧
(* Attempt to add the new segment to the host’s output queue, constraining the final control block state *)

stream enqueue or fail F h.arch h.rttab h.ifds(↑ i1, ↑ i2)cb
′ cb′′ ∧

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[cb := cb′′]〉)]〉

timer tt rexmt 1 tcp: misc nonurgent retransmit timer expires

(h 〈[socks := socks ⊕
[(sid , sock)];

oq := oq]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′′)];
oq := oq ′]〉,
SS ′,MM)

sock .pr = TCP PROTO(tcp sock) ∧
sock ′.pr = TCP PROTO(tcp sock ′) ∧
(tcp sock .st /∈ {CLOSED ;LISTEN ;SYN SENT ;CLOSE WAIT ;FIN WAIT 2 ;TIME WAIT} ∨

(tcp sock .st = LISTEN ∧ bsd arch h.arch)) ∧

shift ∈ UNIV ∧

cb = tcp sock .cb ∧

(if
shift + 1 > (if tcp sock .st = SYN RECEIVED then

TCP SYNACKMAXRXTSHIFT else TCP MAXRXTSHIFT)
then

(* Note that BSD’s syncaches have a much lower threshold for retransmitting SYN,ACKs than normal *)

(* drop connection *)

tcp drop and close h.arch(↑ ETIMEDOUT)sock(sock ′, (oflgs, odata))∧ (* will always get exactly one
segment *)

if exists quad of sock then
let (i1, p1, i2, p2) = quad of sock in
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
case tcp sock .st = LISTEN of

T→ SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s
′)]

‖ F→ destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s
′)])SS ′

else
SS ′ = SS

else

(* backoff the timer and do a retransmit *)

cb′ = cb ∧

(if tcp sock .st = SYN RECEIVED then
(∃i1 i2 p1 p2.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

timer tt rexmt 1 235

(* If we’re Linux doing a simultaneous open and support timestamping then ensure timestamping
is enabled in any retransmitted SYN,ACK segments. See deliver in 2 for the rationale in full, but
in short Linux is RFC1323 compliant and makes a hash of option negotiation during a simultaneous
open. We make the option decision early (as per the RFC and BSD) and have to hack up SYN,ACK
segments to contain timestamp options if the Linux host supports timestamping. *)
(* Note: this behaviour is also safe if we are here due to a passive open. In this case, if the remote
end does not support timestamping, tf req tstmp is F due to the option negotiation in deliver in 1 .
Then tf doing tstmp is necessarily F too and the retransmitted SYN,ACK segment does not contain
a timestamp. OTOH, if tf req tstmp is still T then so is tf doing tstmp and the faked up cb below
is safe. *)
(* Note that similar to the above note on timestamping, window scaling may also have to be dealt
with here. *)
let cb′′′ = cb′ in

(* Note that tt delack and possibly other timers should be cleared here *)

(sock .is1, sock .is2, sock .ps1, sock .ps2) = (↑ i1, ↑ i2, ↑ p1, ↑ p2) ∧

(* We are in SYN RECEIVED and want to retransmit the SYN,ACK, so we either got here via
deliver in 1 or deliver in 2 . In both cases, calculate buf sizes was used to set cb.t maxseg to the
correct value (as per tcp_mss() in BSD), however, we need to use the old values in retransmitting
the SYN,ACK, as per tcp_mssopt() in BSD. make syn ack segment therefore uses the value stored
in cb.t advmss to set the same mss option in the segment, so we do not need to do anything special
here. *)
oflgs =〈[SYN :=F;SYNACK :=T;FIN :=F;RST :=F]〉 ∧
odata = [] ∧
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)] ∧

(* We need to remember to add the length of the segment data (i.e. 1 for a SYN) back onto snd nxt

in the cb, since this is what tcp output really does for normal retransmits. If we do not do this,
then we’ll end up trying to send the first lot of data with a seq of iss, rather than iss + 1 *)
sock ′ = sock 〈[pr :=TCP PROTO(tcp sock 〈[cb := cb′]〉)]〉

)
else if tcp sock .st = LISTEN then (* BSD LISTEN bug: in BSD it is possible to transition a socket to

the LISTEN state without cancelling the rexmt timer. In this case,
segments are emitted with no flags set. *)

bsd arch h.arch ∧
(∃i1 i2 p1 p2.

(sock .is1, sock .is2, sock .ps1, sock .ps2) = (↑ i1, ↑ i2, ↑ p1, ↑ p2) ∧
sock .cantsndmore =⇒ oflgs.FIN ∧
oflgs = oflgs 〈[SYN :=F;SYNACK :=F;RST :=F]〉 ∧
odata = [] ∧
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)] ∧
(* Retransmission only continues if FIN is set in the outgoing segment (really!) *)

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock
〈[cb := cb′]〉)]〉)

else (* ESTABLISHED ,FIN WAIT 1 ,CLOSING ,LAST ACK *)

(* i.e., cannot be CLOSED ,LISTEN ,SYN SENT ,CLOSE WAIT ,FIN WAIT 2 ,TIME WAIT *)

stream tcp output really
(sock 〈[pr :=TCP PROTO(tcp sock 〈[cb := cb′]〉)]〉)
(sock ′, oflgs.FIN) (* always emits exactly one segment *) ∧
oflgs = oflgs 〈[SYN :=F;SYNACK :=F;RST :=F]〉 ∧
odata = [] ∧
let (i1, p1, i2, p2) = quad of sock in
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)]

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

236 timer tt persist 1

)

) ∧

stream enqueue or fail T h.arch h.rttab h.ifds(sock ′.is1, sock
′.is2)tcp sock ′.cb cb′′ ∧

sock ′′ = sock ′ 〈[pr :=TCP PROTO(tcp sock ′ 〈[cb := cb′′]〉)]〉

timer tt persist 1 tcp: misc nonurgent persist timer expires

(h 〈[socks := socks ⊕
[(sid , sock)];

oq := oq]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′′)];
oq := oq ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

sock .pr = TCP PROTO(tcp sock) ∧
sock ′.pr = TCP PROTO(tcp sock ′) ∧
let sock0 = sock in
stream tcp output really

sock0

(sock ′, oflgs.FIN) ∧
oflgs = oflgs 〈[SYN :=F;SYNACK :=F;RST :=F]〉 ∧
odata = [] ∧

(* guaranteed by stream tcp output really *)

(↑ i1, ↑ p1, ↑ i2, ↑ p2) = (sock .is1, sock .ps1, sock .is2, sock .ps2) ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧

stream enqueue or fail sock(tcp sock ′.st ∈ {CLOSED ;LISTEN ;SYN SENT})h.arch h.rttab h.ifds
(↑ i1, ↑ i2)sock0 sock ′ sock ′′

timer tt keep 1 tcp: network nonurgent keepalive timer expires

(h 〈[socks := socks ⊕
[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,

TCP Sock(st , cb, ∗)))];
oq := oq]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, es, cantsndmore, cantrcvmore,
TCP Sock(st , cb′, ∗)))];

oq := oq ′]〉,
SS ,MM)

(* Note that in another rule the following needs to be specified: if the timer has expired for the last time, then
(in another rule): (if HAVERCVDSYN (i.e., not CLOSED/LISTEN /SYN SENT) then send a RST else do not
do anything yet) ∧ copy soft error to es ∧ free tcpcb, saving RTT *)

cb.tt keep = ↑((())d) ∧
timer expires d ∧

cb′ = cb 〈[tt keep := ↑((())slow timer TCPTV KEEPINTVL)
]〉

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

timer tt conn est 1 237

timer tt 2msl 1 tcp: misc nonurgent 2*MSL timer expires

(h 〈[socks := socks ⊕
[(sid , sock)]]〉,

SS ,MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)]]〉,
SS ′,MM)

(* Summary: When the 2MSL TIME WAIT period expires, the socket is closed. *)

if exists quad of sock then
destroy(quad of sock)SS SS ′

else

sock .pr = TCP PROTO(tcp sock) ∧
sock ′ = tcp close h.arch sock ∧
SS ′ = SS

timer tt delack 1 tcp: misc nonurgent delayed-ACK timer expires

(h 〈[socks := socks ⊕
[(sid , sock)];

oq := oq]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s)],MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′′)];
oq := oq ′]〉,
SS ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)],MM)

sock .pr = TCP PROTO(tcp sock) ∧
sock ′.pr = TCP PROTO(tcp sock ′) ∧
let sock0 = sock in
stream tcp output really sock0(sock

′, oflgs.FIN) ∧
oflgs = oflgs 〈[SYN :=F;SYNACK :=F;RST :=F]〉 ∧
odata = [] ∧
(↑ i1, ↑ p1, ↑ i2, ↑ p2) = (sock0.is1, sock0.ps1, sock0.is2, sock0.ps2) ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
stream enqueue or fail sock(tcp sock ′.st ∈ {CLOSED ;LISTEN ;SYN SENT})h.arch h.rttab h.ifds

(sock0.is1, sock0.is2)sock0 sock ′ sock ′′

Description
This overlaps with deliver out 1 . This is a bit odd, but is a consequence of our liberal nondetermin-

istic TCP output.

timer tt conn est 1 tcp: misc nonurgent connection establishment timer expires

(h 〈[socks := socks ⊕
[(sid , sock)];

oq := oq]〉,
SS ,MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)];
oq := oq ′]〉,
SS ′,MM)

(* Summary: If the connection-establishment timer goes off, drop the connection (possibly RST ing the other
end). *)

sock .pr = TCP PROTO(tcp sock) ∧
tcp drop and close h.arch(↑ ETIMEDOUT)sock(sock ′, (oflgs, odata)) ∧

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

238 timer tt fin wait 2 1

(* Note it should be the case that the socket is in SYN SENT , and so outsegs will be empty, but that is not
definite. *)

(* write to stream if possible *)

if exists quad of sock then
let (i1, p1, i2, p2) = quad of sock in
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)]
else

SS ′ = SS

Description POSIX: says, in the INFORMATIVE section APPLICATION USAGE, that the state
of the socket is unspecified if connect() fails. We could (in the POSIX ”architecture”) model this
accurately.

timer tt fin wait 2 1 tcp: misc nonurgent FIN WAIT 2 timer expires

(h 〈[socks := socks ⊕
[(sid , sock)]]〉,

SS ,MM)

τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)]]〉,
SS ′,MM)

sock .pr = TCP PROTO(tcp sock) ∧
sock ′ = tcp close h.arch sock ∧

if exists quad of sock then
destroy(quad of sock)SS SS ′

else
SS ′ = SS

Description This stops the timer and closes the socket.
Unlike BSD, we take steps to ensure that this timer only fires when it is really time to close the socket.

Specifically, we reset it every time we receive a segment while in FIN WAIT 2 , to TCPTV MAXIDLE .
This means we do not need any guarding conditions here; we just do it.

This means that we do not directly model the BSD behaviour of ”sleep for 10 minutes, then check
every 75 seconds to see if the connection has been idle for 10 minutes”.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 11

Host LTS: UDP Input Processing

11.1 Input Processing (UDP only)

11.1.1 Summary

deliver in udp 1 udp: network nonur-
gent

Get UDP datagram from host’s in-queue and deliver it to
a matching socket

deliver in udp 2 udp: network nonur-
gent

Get UDP datagram from host’s in-queue but generate
ICMP, as no matching socket

deliver in udp 3 udp: network nonur-
gent

Get UDP datagram from host’s in-queue and drop as from
a martian address

11.1.2 Rules

deliver in udp 1 udp: network nonurgent Get UDP datagram from host’s in-queue and

deliver it to a matching socket

(h0,SS ,MM)
τ
−→ (h0 〈[iq := iq ′;

socks := socks ⊕
[(sid , sock pr := UDP Sock(rcvq ′))]]〉,

SS ,MM)

h0 = h 〈[iq := iq ;
socks := socks ⊕

[(sid , sock pr := UDP Sock(rcvq))]]〉 ∧
rcvq ′ = rcvq @ [Dgram msg(〈[data := data; is := ↑ i3; ps := ps3]〉)] ∧
dequeue iq(iq , iq ′, ↑(UDP(〈[is1 := ↑ i3; is2 := ↑ i4; ps1 := ps3; ps2 := ps4; data := data]〉))) ∧
(∃(ifid , ifd) :: (h0.ifds).i4 ∈ ifd .ipset) ∧
sid ∈ lookup udp h0.socks(i3, ps3, i4, ps4)h0.bound h0.arch ∧
T∧ (* placeholder for ”not a link-layer multicast or broadcast” *)

¬(is broadormulticast h0.ifds i4)∧ (* seems unlikely, since i1 ∈ local ips h.ifds *)

¬(is broadormulticast h0.ifds i3)

Description
At the head of the host’s in-queue is a UDP datagram with source address (↑ i3, ps3), destination

address (↑ i4, ps4), and data data. The destination IP address, i4, is an IP address for one of the host’s
interfaces and is not an IP- or link-layer broadcast or multicast address and neither is the source IP
address, i3.

The UDP socket sid matches the address quad of the datagram (see lookup udp (p38) for details).
A τ transition is made. The datagram is removed from the host’s in-queue, iq , and appended to the tail

239

240 deliver in udp 2

of the socket’s receive queue, rcvq ′, leaving the host with in-queue iq ′ and the socket with receive queue
rcvq ′.

deliver in udp 2 udp: network nonurgent Get UDP datagram from host’s in-queue but

generate ICMP, as no matching socket

(h iq := iq ,SS ,MM)
τ
−→ (h 〈[iq := iq ′; oq := if icmp to go then oq ′ else h.oq]〉,SS ,MM)

dequeue iq(iq , iq ′, ↑(UDP(〈[is1 := ↑ i3; is2 := ↑ i4; ps1 := ps3;
ps2 := ps4; data := data]〉))) ∧

lookup udp h.socks(i3, ps3, i4, ps4)h.bound h.arch = ∅ ∧
icmp = ICMP(〈[is1 := ↑ i4; is2 := ↑ i3; is3 := ↑ i3; is4 := ↑ i4;

ps3 := ps3; ps4 := ps4; proto :=PROTO UDP ; seq := ∗;
t := ICMP UNREACH (PORT)]〉) ∧

(enqueue oq(h.oq , icmp, oq ′,T) ∨ icmp to go = F) (* non-deterministic ICMP generation *) ∧
i4 ∈ local ips h.ifds ∧
T∧ (* placeholder for ”not a link-layer multicast or broadcast” *)

¬(is broadormulticast h.ifds i4)∧ (* seems unlikely, since i1 ∈ local ips h.ifds *)

¬(is broadormulticast h.ifds i3)

Description
At the head of the host’s in-queue, iq , is a UDP datagram with source address (↑i3, ps3), destination

address (↑ i4, ps4), and data data. The destination IP address, i4, is an IP address for one of the host’s
interfaces and is neither a broadcast or multicast address; the source IP address, i3, is also not a broadcast
or multicast address. None of the sockets in the host’s finite map of sockets, h.socks, match the datagram
(see lookup udp (p38) for details).

A τ transition is made. The datagram is removed from the host’s in-queue, leaving it with in-queue
iq ′. An ICMP Port-unreachable message may be generated and appended to the tail of the host’s
out-queue in response to the datagram.

deliver in udp 3 udp: network nonurgent Get UDP datagram from host’s in-queue and

drop as from a martian address

(h 〈[iq := iq]〉,SS ,MM)
τ
−→ (h 〈[iq := iq ′]〉,SS ,MM)

dequeue iq(iq , iq ′, ↑(UDP dgram)) ∧
dgram.is2 = ↑ i2 ∧
is1 = dgram.is1 ∧
i2 ∈ local ips(h.ifds) ∧
(F ∨
¬(T ∧
¬(is broadormulticast h.ifds i2)∧ (* seems unlikely, since i1 ∈ local ips h.ifds *)

¬(is1 = ∗) ∧
¬is broadormulticast h.ifds(the is1)

)
)

Description
At the head of the host’s in-queue, iq , is a UDP datagram with destination IP address ↑i2 which is

an IP address for one of the host’s interfaces. Either i2 is an IP-layer broadcast or multicast address, or
the source IP address, is1, is not set or is an IP-layer broadcast or multicast address.

A τ transition is made. The datagram is dropped from the host’s in-queue, leaving it with in-queue
iq ′.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 12

Host LTS: ICMP Input Processing

12.1 Input Processing (ICMP only)

12.1.1 Summary

deliver in icmp 1 all: network nonur-
gent

Receive ICMP UNREACH NET etc for known socket

deliver in icmp 2 all: network nonur-
gent

Receive ICMP UNREACH NEEDFRAG for known
socket

deliver in icmp 3 all: network nonur-
gent

Receive ICMP UNREACH PORT etc for known socket

deliver in icmp 4 all: network nonur-
gent

Receive ICMP PARAMPROB etc for known socket

deliver in icmp 5 all: network nonur-
gent

Receive ICMP SOURCE QUENCH for known socket

deliver in icmp 6 all: network nonur-
gent

Receive and ignore other ICMP

deliver in icmp 7 all: network nonur-
gent

Receive and ignore invalid or unmatched ICMP

12.1.2 Rules

deliver in icmp 1 all: network nonurgent Receive ICMP UNREACH NET etc for known

socket

(h0,SS ,MM)
τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)];
iq := iq ′;
oq := oq ′]〉,
SS ′,MM)

h0 = h 〈[socks := socks ⊕
[(sid , sock)];

iq := iq ;
oq := oq]〉 ∧

dequeue iq(iq , iq ′, ↑(ICMP icmp)) ∧
icmp.t ∈ {ICMP UNREACH c |

c ∈ {NET ;HOST ;SRCFAIL;NET UNKNOWN ;HOST UNKNOWN ; ISOLATED ;
TOSNET ;TOSHOST ;PREC VIOLATION ;PREC CUTOFF}} ∧

icmp.is3 = ↑ i3 ∧
i3 /∈ IN MULTICAST ∧
sid ∈ lookup icmp h0.socks icmp h0.arch h0.bound ∧

241

242 deliver in icmp 2

(case sock .pr of
TCP PROTO(tcp sock)→

(∃icmp seq .icmp.seq = ↑ icmp seq ∧
∃snd una le icmp seq :: {T;F}.
∃icmp seq lt snd max :: {T;F}.
∃cond :: {T;F}.
(tcp sock .cb.t softerror = ∗ =⇒ cond = F) ∧
if snd una le icmp seq ∧ icmp seq lt snd max then

if tcp sock .st = ESTABLISHED then
sock ′ = sock∧ (* ignore transient error while connected *)

oq ′ = oq ∧
SS ′ = SS

else if tcp sock .st ∈ {CLOSED ;LISTEN ;SYN SENT ;SYN RECEIVED} ∧
cond then

∃oflgs odata. tcp drop and close h.arch(↑ EHOSTUNREACH)sock(sock ′, (oflgs, odata)) ∧
if exists quad of sock then

let (i1, p1, i2, p2) = quad of sock in
∃S0 s s ′.S0 = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
if tcp sock .st = CLOSED then

SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s
′)]

else
destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)])SS ′

else
SS ′ = SS

else
sock ′ = sock 〈[pr :=TCP PROTO(tcp sock

〈[cb := tcp sock .cb
〈[t softerror := ↑ EHOSTUNREACH]〉]〉)]〉 ∧

oq ′ = oq ∧
SS ′ = SS

else
(* Note the case where it is a syncache entry is not dealt with here: a syncache_unreach() should
be done instead *)

sock ′ = sock ∧
oq ′ = oq ∧
SS ′ = SS) ‖

UDP PROTO(udp sock)→
if windows arch h.arch then

sock ′ = sock 〈[pr :=UDP PROTO(udp sock
〈[rcvq := udp sock .rcvq @ [(Dgram error(〈[e :=ECONNRESET]〉))]]〉)]〉 ∧ oq ′ = oq

else
sock ′ = sock 〈[es :=̂ ↑ ECONNREFUSED

onlywhen((sock .is2 6= ∗) ∨ ¬(SO BSDCOMPAT ∈ sock .sf .b))]〉 ∧ oq ′ = oq)

Description Corresponds to FreeBSD 4.6-RELEASE’s PRC UNREACH NET.

deliver in icmp 2 all: network nonurgent Receive ICMP UNREACH NEEDFRAG for known

socket

(h0,SS ,MM)
τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)];
iq := iq ′;
oq := oq ′]〉,
SS ′,MM)

h0 = h 〈[socks := socks ⊕

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in icmp 2 243

[(sid , sock)];
iq := iq ;
oq := oq]〉 ∧

dequeue iq(iq , iq ′, ↑(ICMP icmp)) ∧
icmp.t = ICMP UNREACH (NEEDFRAG icmpmtu) ∧
(icmp.is3 = ∗ ∨ the icmp.is3 /∈ IN MULTICAST) ∧
sid ∈ lookup icmp h0.socks icmp h0.arch h0.bound ∧
let nextmtu = if F∧ (* Note this is a placeholder for ”there is a host (not net) route for icmp.is4” *)

F then (* Note this is a placeholder for ”rmx.mtu not locked” *)

let curmtu = 1492 in (* Note this value should be taken from rmx.mtu *)

let nextmtu = case icmpmtu of
↑ mtu → w2n mtu
‖ ∗ → next smaller(mtu tab h0.arch)curmtu in

if nextmtu < 296 then
(* Note this should lock curmtu in rmxcache; and not change rmxcache MTU from
curmtu *)
↑ curmtu

else
(* Note here, nextmtu should be stored in rmxcache *)

↑ nextmtu
else
∗ in

(case sock .pr of
TCP PROTO(tcp sock)→

(∃icmp seq .icmp.seq = ↑ icmp seq ∧
if is some icmp.is3 then

∃cond :: {T;F}.
(if cond then

if nextmtu = ∗ then
sock ′ = sock ∧
oq ′ = oq ∧
SS ′ = SS

else
∃tf doing tstmp :: {T;F}.
let mss = min(sock .sf .n(SO SNDBUF))

(rounddown MCLBYTES
(the nextmtu − 40− (if tf doing tstmp then 12 else 0))) in
(* BSD: TS, plus NOOP for alignment *)

∃cond ′ :: {T;F}.
if cond ′ then

let sock ′′ = sock in
∃sock ′′′ FINs tcp sock ′′′.
sock ′′′.pr = TCP PROTO(tcp sock ′′′) ∧
stream tcp output perhaps sock ′′(sock ′′′,FINs) ∧
stream enqueue or fail sock(tcp sock ′′′.st /∈ {CLOSED ;LISTEN ;SYN SENT})
h.arch h.rttab h.ifds(sock .is1, sock .is2)
sock ′′ sock ′′′ sock ′ ∧
case FINs of ∗ → SS ′ = SS

‖ ↑ FIN →
let oflgs =〈[SYN :=F;SYNACK :=F;FIN :=FIN ;RST :=F]〉 in
let (i1, p1, i2, p2) = quad of sock in
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, [])s s ′ ∧
SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)]
else

sock ′ = sock ∧ oq ′ = oq ∧ SS ′ = SS
else
(* Note the case where it is a syncache entry is not dealt with here: a syncache_unreach() should
be done instead *)

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

244 deliver in icmp 3

sock ′ = sock ∧ oq ′ = oq ∧ SS ′ = SS)
else

sock ′ = sock ∧ oq ′ = oq ∧ SS ′ = SS) ‖
UDP PROTO(udp sock)→
if windows arch h.arch then

sock ′ = sock 〈[pr :=UDP PROTO(udp sock
〈[rcvq := udp sock .rcvq @ [(Dgram error(〈[e :=EMSGSIZE]〉))]]〉)]〉 ∧ oq ′ = oq

else
sock ′ = sock 〈[es := ↑ EMSGSIZE]〉 ∧ oq ′ = oq)

Description Corresponds to FreeBSD 4.6-RELEASE’s PRC MSGSIZE.

deliver in icmp 3 all: network nonurgent Receive ICMP UNREACH PORT etc for known

socket

(h0,SS ,MM)
τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)];
iq := iq ′;
oq := oq ′]〉,
SS ′,MM)

h0 = h 〈[socks := socks ⊕
[(sid , sock)];

iq := iq ;
oq := oq]〉 ∧

dequeue iq(iq , iq ′, ↑(ICMP icmp)) ∧
icmp.t ∈ {ICMP UNREACH c |

c ∈ {PROTOCOL;PORT ;NET PROHIB ;HOST PROHIB ;FILTER PROHIB}} ∧
icmp.is3 = ↑ i3 ∧
i3 /∈ IN MULTICAST ∧
sid ∈ lookup icmp h0.socks icmp h0.arch h0.bound ∧
(case sock .pr of

TCP PROTO(tcp sock)→
(∃icmp seq .icmp.seq = ↑ icmp seq ∧
∃cond :: {T;F}.
if cond then

if tcp sock .st = SYN SENT then
∃oflgsodata.
(* know from definition of tcp drop and close that no segs will be emitted *)

tcp drop and close h.arch(↑ ECONNREFUSED)sock(sock ′, oflgsodata) ∧
null flgs data oflgsodata ∧
if exists quad of sock then

destroy(quad of sock)SS SS ′

else
SS ′ = SS

else
sock ′ = sock ∧ oq ′ = oq ∧ SS ′ = SS

else
(* Note the case where it is a syncache entry is not dealt with here: a syncache_unreach() should
be done instead *)
sock ′ = sock ∧ oq ′ = oq ∧ SS ′ = SS) ‖

UDP PROTO(udp sock)→
(if windows arch h.arch then

sock ′ = sock 〈[pr :=UDP PROTO(udp sock
〈[rcvq := udp sock .rcvq @ [(Dgram error(〈[e :=ECONNRESET]〉))]]〉)]〉 ∧

oq ′ = oq

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in icmp 4 245

else
sock ′ = sock 〈[es :=̂ ↑(ECONNREFUSED)

onlywhen((sock .is2 6= ∗) ∨ ¬(SO BSDCOMPAT ∈ sock .sf .b))]〉 ∧ oq ′ = oq))

Description Corresponds to FreeBSD 4.6-RELEASE’s PRC UNREACH PORT and
PRC UNREACH ADMIN PROHIB.

deliver in icmp 4 all: network nonurgent Receive ICMP PARAMPROB etc for known socket

(h0,SS ,MM)
τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)];
iq := iq ′;
oq := oq ′]〉,
SS ′,MM)

h0 = h 〈[socks := socks ⊕
[(sid , sock)];

iq := iq ;
oq := oq]〉 ∧

dequeue iq(iq , iq ′, ↑(ICMP icmp)) ∧
icmp.t ∈ {ICMP PARAMPROB c |

c ∈ {BADHDR;NEEDOPT}} ∧
icmp.is3 = ↑ i3 ∧
i3 /∈ IN MULTICAST ∧
sid ∈ lookup icmp h0.socks icmp h0.arch h0.bound ∧
(case sock .pr of

TCP PROTO(tcp sock)→
(∃icmp seq .icmp.seq = ↑ icmp seq ∧
∃cond :: {T;F}.
if cond then

∃cond ′ :: {T;F}.
cond ′ =⇒ tcp sock .cb.t softerror 6= ∗ ∧
if tcp sock .st ∈ {CLOSED ;LISTEN ;SYN SENT ;SYN RECEIVED} ∧

cond ′ then
∃oflgs odata.
tcp drop and close h.arch(↑ ENOPROTOOPT)sock(sock ′, (oflgs, odata)) ∧
if exists quad of sock then

let (i1, p1, i2, p2) = quad of sock in
∃S0 s s ′.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
write(i1, p1, i2, p2)(oflgs, odata)s s ′ ∧
if tcp sock .st = CLOSED then

SS ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s
′)]

else
destroy(i1, p1, i2, p2)(S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s

′)])SS ′

else
SS ′ = SS

else

sock ′ = sock 〈[pr :=TCP PROTO(tcp sock
〈[cb := tcp sock .cb 〈[t softerror := ↑ ENOPROTOOPT]〉]〉)]〉 ∧

oq ′ = oq ∧
SS ′ = SS

else

sock ′ = sock ∧ oq ′ = oq ∧ SS ′ = SS) ‖

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

246 deliver in icmp 5

UDP PROTO(udp sock)→
(if windows arch h.arch then

sock ′ = sock 〈[pr :=UDP PROTO(udp sock
〈[rcvq := udp sock .rcvq @ [(Dgram error(〈[e :=ENOPROTOOPT]〉))]]〉)]〉 ∧

oq ′ = oq
else

sock ′ = sock 〈[es := ↑(ENOPROTOOPT)]〉 ∧ oq ′ = oq))

Description Corresponds to FreeBSD 4.6-RELEASE’s PRC PARAMPROB.

deliver in icmp 5 all: network nonurgent Receive ICMP SOURCE QUENCH for known

socket

(h0,SS ,MM)
τ
−→ (h 〈[socks := socks ⊕

[(sid , sock ′)];
iq := iq ′]〉,
SS ,MM)

h0 = h 〈[socks := socks ⊕
[(sid , sock)];

iq := iq]〉 ∧
dequeue iq(iq , iq ′, ↑(ICMP icmp)) ∧
icmp.t = ICMP SOURCE QUENCH QUENCH ∧
icmp.is3 = ↑ i3 ∧
i3 /∈ IN MULTICAST ∧
sid ∈ lookup icmp h0.socks icmp h0.arch h0.bound ∧
(case sock .pr of

TCP PROTO(tcp sock)→
(∃icmp seq .icmp.seq = ↑ icmp seq ∧
∃cond :: {T;F}.
if cond then

sock ′ = sock
(* Note the state of the TCP socket should be checked here. *)

(* Note it might be necessary to make an allowance for local/remote connection? *)

else
(* Note the case where it is a syncache entry is not dealt with here: a syncache_unreach() should
be done instead *)
sock ′ = sock) ‖

UDP PROTO(udp sock)→
(if windows arch h.arch then

sock ′ = sock 〈[pr :=UDP PROTO(udp sock
〈[rcvq := udp sock .rcvq @ [(Dgram error(〈[e :=EHOSTUNREACH]〉))]]〉)]〉

else
sock ′ = sock 〈[es := ↑(EHOSTUNREACH)]〉))

Description Corresponds to FreeBSD 4.6-RELEASE’s PRC QUENCH.

deliver in icmp 6 all: network nonurgent Receive and ignore other ICMP

(h 〈[iq := iq]〉,SS ,MM)
τ
−→ (h 〈[iq := iq ′]〉,SS ,MM)

dequeue iq(iq , iq ′, ↑(ICMP icmp)) ∧
(icmp.t ∈ {ICMP TIME EXCEEDED INTRANS ; ICMP TIME EXCEEDED REASS} ∨
icmp.t ∈ {ICMP UNREACH (OTHER x) | x ∈ UNIV } ∨

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver in icmp 7 247

icmp.t ∈ {ICMP SOURCE QUENCH (OTHER x) | x ∈ UNIV } ∨
icmp.t ∈ {ICMP TIME EXCEEDED(OTHER x) | x ∈ UNIV } ∨
icmp.t ∈ {ICMP PARAMPROB(OTHER x) | x ∈ UNIV })

Description If ICMP TIME EXCEEDED (either INTRANS or REASS), or if a bad code is received,
then ignore silently.

deliver in icmp 7 all: network nonurgent Receive and ignore invalid or unmatched ICMP

(h 〈[iq := iq]〉,SS ,MM)
τ
−→ (h 〈[iq := iq ′]〉,SS ,MM)

dequeue iq(iq , iq ′, ↑(ICMP icmp)) ∧
(icmp.t ∈ {ICMP UNREACH c | ¬∃x .c = OTHER x} ∨
icmp.t ∈ {ICMP PARAMPROB c | c ∈ {BADHDR;NEEDOPT}} ∨
icmp.t = ICMP SOURCE QUENCH QUENCH) ∧
(if ∃icmpmtu.icmp.t = ICMP UNREACH (NEEDFRAG icmpmtu) then

∃i3.icmp.is3 = ↑ i3 ∧ i3 ∈ IN MULTICAST
else

(icmp.is3 = ∗ ∨
the icmp.is3 ∈ IN MULTICAST ∨
¬(∃(sid , s) :: (h.socks).

s.is1 = icmp.is3 ∧ s.is2 = icmp.is4 ∧
s.ps1 = icmp.ps3 ∧ s.ps2 = icmp.ps4 ∧
proto of s.pr = icmp.proto)))

Description If the ICMP is a type we handle, but the source IP is IP 0 0 00 or a multicast address,
or there’s no matching socket, then drop silently. ICMP UNREACH NEEDFRAG is handled specially,
since we do not care if it’s IP 0 0 0 0, only if it’s multicast.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

248 deliver in icmp 7

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 13

Host LTS: Network Input and
Output

13.1 Input and Output (Network only)

13.1.1 Summary

deliver in 99 all: network nonur-
gent

Really receive things

deliver in 99a all: network nonur-
gent

Ignore things not for us

deliver out 99 all: network nonur-
gent

Really send things

deliver loop 99 all: network nonur-
gent

Loop back a loopback message

13.1.2 Rules

deliver in 99 all: network nonurgent Really receive things

(h 〈[iq := iq]〉,SS ,MM)
lbl
−−→ (h 〈[iq := iq ′]〉,SS ,MM ′)

(lbl = τ ∧
MM ′ = MM ∧
(∃q d q ′ d ′ tcp segment .

iq = (q)d ∧
iq ′ = (q)d′ ∧
enqueue iq(iq ,TCP tcp segment , (q ′)d′ , queued)))

∨
(lbl = msg ∧

MM = BAG INSERT msg MM ′ ∧
sane msg msg ∧
↑ i1 = msg .is2 ∧
i1 ∈ local ips(h.ifds) ∧
enqueue iq(iq ,msg , iq ′, queued))

Description Actually receive a message from the wire into the input queue. Note that if it cannot
be queued (because the queue is full), it is silently dropped.

We only accept messages that are for this host. We also assert that any message we receive is
well-formed (this excludes elements of type msg that have no physical realisation).

249

250 deliver in 99a

Note the delay in in-queuing the datagram is not modelled here.

deliver in 99a all: network nonurgent Ignore things not for us

(h 〈[iq := iq]〉,SS ,BAG INSERT msg MM)
msg
−−−→ (h 〈[iq := iq ′]〉,SS ,BAG INSERT msg MM)

↑ i1 = msg .is2 ∧
i1 /∈ local ips(h.ifds) ∧
iq = iq ′

Description Do not accept messages that are not for this host.

deliver out 99 all: network nonurgent Really send things

(h 〈[oq := oq]〉,SS ,MM)
lbl
−−→ (h 〈[oq := oq ′]〉,SS ,MM ′)

(lbl = τ ∧
MM ′ = MM ∧

(∃q d tcp segment .
oq = (q)d ∧
dequeue oq((TCP tcp segment :: q)d , oq ′, ↑(TCP tcp segment))))

∨
(lbl = msg ∧

MM ′ = BAG INSERT msg MM ∧
dequeue oq(oq , oq ′, ↑ msg) ∧
(∃i2.msg .is2 = ↑ i2 ∧ i2 /∈ local ips h.ifds))

Description Actually emit a segment from the output queue.
Note the delay in dequeuing the datagram is not modelled here.

deliver loop 99 all: network nonurgent Loop back a loopback message

(h 〈[iq := iq ;
oq := oq]〉,
SS ,MM)

lbl
−−→ (h 〈[iq := iq ′;

oq := oq ′]〉,
SS ,MM)

(lbl = τ ∧

(∃q d tcp segment .
oq = (q)d ∧
dequeue oq((TCP tcp segment :: q)d , oq ′, ↑(TCP tcp segment))) ∧

(∃q d q ′ d ′ tcp segment .
iq = (q)d ∧
iq ′ = (q)d′ ∧
enqueue iq(iq ,TCP tcp segment , (q ′)d′ , queued)))

∨
(dequeue oq(oq , oq ′, ↑ msg) ∧

(∃i2.msg .is2 = ↑ i2 ∧ i2 ∈ local ips h.ifds) ∧
(lbl = if windows arch h.arch then τ

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

deliver loop 99 251

else←−−→msg) ∧
enqueue iq(iq ,msg , iq ′, queued))

Description Deliver a loopback message (for loopback address, or any of our addresses) from the
outqueue to the inqueue. (if we tagged each message in the outqueue with its interface, we’d just pick
loopback-interface segments, but we do not, so we just discriminate on IP addresses).

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

252 deliver loop 99

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 14

Host LTS: BSD Trace Records and
Interface State Changes

14.1 Trace Records and Interface State Changes (BSD only)

14.1.1 Summary

trace 1 all: misc nonurgent Trace TCPCB state, ESTABLISHED or later
trace 2 all: misc nonurgent Trace TCPCB state, pre-ESTABLISHED
interface 1 all: misc nonurgent Change connectivity

14.1.2 Rules

trace 1 all: misc nonurgent Trace TCPCB state, ESTABLISHED or later

(h,SS ,MM)
Lh trace tr
−−−−−−−−−−→ (h,SS ,MM)

sid ∈ dom(h.socks) ∧
tr = (flav , sid , quad , st , cb) ∧
st ∈ {ESTABLISHED ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSING ;

CLOSE WAIT ;LAST ACK ;TIME WAIT} ∧
tracesock eq tr sid(h.socks[sid])

Description This rule exposes certain of the fields of the socket and TCPCB, to allow open-box
testing.

Note that although the label carries an entire TCPCB, only certain selected fields are constrained to
be equal to the actual TCPCB. See tracesock eq (p22) and tracecb eq (p22) for details.

Checking trace equality is problematic as BSD generates trace records that fall logically inbetween
the atomic transitions in this model. This happens frequently when in a state before ESTABLISHED .
We only check for equality when we are in ESTABLISHED or later states.

trace 2 all: misc nonurgent Trace TCPCB state, pre-ESTABLISHED

(h,SS ,MM)
Lh trace tr
−−−−−−−−−−→ (h,SS ,MM)

sid ∈ dom(h.socks) ∧
tr = (flav , sid , quad , st , cb) ∧
st /∈ {ESTABLISHED ;FIN WAIT 1 ;FIN WAIT 2 ;CLOSING ;

253

254 interface 1

CLOSE WAIT ;LAST ACK ;TIME WAIT} ∧
(st = CLOSED∨ (* BSD emits one of these each time a tcpcb is created, eg at end of 3WHS *)

((∃sock tcp sock .
sock = (h.socks[sid]) ∧
proto of sock .pr = PROTO TCP ∧
tcp sock = tcp sock of sock ∧
(case quad of
↑(is1, ps1, is2, ps2)→ if flav = TA DROP ∨ tcp sock .st = CLOSED then T

else
is1 = sock .is1 ∧ ps1 = sock .ps1 ∧ is2 = sock .is2 ∧ ps2 = sock .ps2 ‖

∗ → T) ∧
(st = tcp sock .st ∨ tcp sock .st = CLOSED))))

interface 1 all: misc nonurgent Change connectivity

(h 〈[ifds := ifds]〉,SS ,MM)
Lh interface(ifid , up)
−−−−−−−−−−−−−−−−−−−→ (h 〈[ifds := ifds ′]〉,SS ,MM)

ifid ∈ dom(ifds) ∧
ifds ′ = ifds ⊕ (ifid , (ifds [ifid])〈[up := up]〉)

Description Allow interfaces to be externally brought up or taken down.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Chapter 15

Host LTS: Time Passage

15.1 Time Passage auxiliaries (TCP and UDP)

Time passage is a function, completely deterministic. Any nondeterminism must occur as a result of a
tau (or other) transition.

In the present semantics, time passage merely:

1. decrements all timers uniformly

2. prevents time passage if a timer reaches zero

3. prevents time passage if an urgent action is enabled.

We model the first two points with functions Time Pass ∗, for various types ∗. These functions return
an option type: if the result is NONE then time may not pass for the given duration. Essentially they
pick out everything in a host state of type ′a timed , and do something with it.

We treat the last point in the network transition rules below.

15.1.1 Summary

Time Pass timedoption time passes for an ′a timed option value
Time Pass tcpcb time passes for a tcp control block
Time Pass socket time passes for a socket
fmap every apply f to range of finite map, and succeed if each appli-

cation succeeds
fmap every pred apply f to range of finite map, and succeed if each appli-

cation succeeds
Time Pass host time passes for a host
sowriteable check whether a socket is writable
soreadable check whether a socket is readable

15.1.2 Rules

– time passes for an ′
a timed option value :

(Time Pass timedoption : duration → ′
a timed option→ ′

a timed option option)
dur x0

= case x0 of
∗ → ↑ ∗ ‖
↑ x → (case Time Pass timed dur x of

∗ → ∗ ‖
↑ x0

′ → ↑(↑ x0
′))

255

256 Time Pass tcpcb

– time passes for a tcp control block :
(Time Pass tcpcb : duration → tcpcb→ tcpcb set option)(* recall: ’a set == ’a -> bool *)
dur cb

= let tt keep
′ = Time Pass timedoption dur cb.tt keep

in
if is some tt keep

′

then
↑(λcb

′.
cb

′ =
cb 〈[(* not going to list everything here; too much! *)

tt keep := the tt keep
′

]〉)
else
∗

– time passes for a socket :
(Time Pass socket : duration → socket→ socket set option)
dur s

= case s.pr of UDP PROTO(udp)→ ↑{s}
‖ TCP PROTO(tcp s)→
let cb

′
s = Time Pass tcpcb dur tcp s.cb

in
if is some cb

′
s

then
↑(λs

′.
choose cb

′ :: the cb
′
s.

s
′ =

s 〈[(* fid unchanged *)
(* sf unchanged *)
(* is1,ps1,is2,ps2 unchanged *)
(* es unchanged *)
pr :=TCP PROTO(tcp s 〈[cb := cb

′]〉)
]〉)

else
∗

– apply f to range of finite map, and succeed if each application succeeds :
(fmap every : (′a → ′

b option)→ (′c 7→ ′
a)→ (′c 7→ ′

b) option)
f fm =

let fm
′ = f o f fm

in
if ∗ ∈ rng(fm ′)
then ∗
else ↑(the o f fm

′)

– apply f to range of finite map, and succeed if each application succeeds :
(fmap every pred : (′a → ′

b set option)→ (′c 7→ ′
a)→ (′c 7→ ′

b)set option)
f fm =

if ∃y .y ∈ rng(fm) ∧ f y = ∗ then
∗

else
↑{fm ′ | dom(fm) = dom(fm ′) ∧

∀x .x ∈ dom(fm) =⇒ fm
′[x] ∈ (the(f (fm[x])))}

– time passes for a host :
(Time Pass host : duration → host→ host set option)
dur h

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

sowriteable 257

= let ts
′ = fmap every(Time Pass timed dur)h.ts

and socks
′
s = fmap every pred(Time Pass socket dur)h.socks

and iq
′ = Time Pass timed dur h.iq

and oq
′ = Time Pass timed dur h.oq

and ticks
′
s = Time Pass ticker dur h.ticks

in
if is some ts

′ ∧
is some socks

′
s ∧

is some iq
′ ∧

is some oq
′

then
↑(λh

′.
choose socks

′ :: the socks
′
s.

choose ticks
′ :: ticks ′s.

h
′ =

h 〈[(* arch unchanged *)
(* ifds unchanged *)
ts := the ts

′;
(* files unchanged *)
socks := socks

′;
(* listen unchanged *)
(* bound unchanged *)
iq := the iq

′;
oq := the oq

′;
ticks := ticks

′

(* fds unchanged *)
]〉)

else
∗

– check whether a socket is writable :
sowriteable arch sock SS b =
case sock .pr of
TCP PROTO(tcp)→ (
∃sndq .
(if exists quad of sock then

let (i1, p1, i2, p2) = quad of sock in
∃S0 s.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
∃peek inline flgs s ′.
read(i2, p2, i1, p1)peek inline(flgs, sndq)s s ′

else
sndq = []) ∧

b = (
((tcp.st ∈ {ESTABLISHED ;CLOSE WAIT} ∧

sock .sf .n(SO SNDBUF)− length sndq ≥ sock .sf .n(SO SNDLOWAT)) ∨ (* change to send buffer space *)

(if linux arch arch then ¬sock .cantsndmore else sock .cantsndmore) ∨
(linux arch arch ∧ tcp.st = CLOSED) ∨
sock .es 6= ∗))) ‖

UDP PROTO(udp)→ T

Variations

Linux On all OSes, attempting to write to a closed socket yields an immediate error.
Only on Linux, however, does sowriteable return T in this case.
On Linux, if the outgoing half of the connection has been closed by the appli-
cation, the socket becomes non-writeable, whereas on other OSes it becomes
writeable (because an immediate error would result from writing).

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

258 soreadable

– check whether a socket is readable :
soreadable arch sock SS b =
case sock .pr of
TCP PROTO(tcp)→ (
∃rcvq .
(if exists quad of sock then

let (i1, p1, i2, p2) = quad of sock in
∃S0 s.SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
∃peek inline flgs s ′.
read(i1, p1, i2, p2)peek inline(flgs, rcvq)s s ′

else
rcvq = []) ∧

b = (
(length rcvq ≥ sock .sf .n(SO RCVLOWAT) ∨
sock .cantrcvmore ∨
(linux arch arch ∧ tcp.st = CLOSED) ∨
(tcp.st = LISTEN ∧
∃lis.tcp.lis = ↑ lis ∧

lis.q 6= []) ∨
sock .es 6= ∗))) ‖

UDP PROTO(udp)→
b = (udp.rcvq 6= [] ∨ sock .es 6= ∗ ∨ (sock .cantrcvmore ∧ ¬windows arch arch))

Description
A TCP socket sock is readable if: (1) the length of its receive queue is greater than or equal to the

minimum number of bytes for socket input operations, sf .n(SO RCVLOWAT); (2) it has been shut
down for reading; (3) on Linux, it is in the CLOSED state; it is in the LISTEN state and has at least
one connection on its completed connection queue; or (4) it has a pending error.

A UDP socket sock is readable if its receive queue is not empty, it has a pending error, or it has been
shutdown for reading.

Variations

Linux On all OSes, attempting to read from a closed socket yields an immediate error.
Only on Linux, however, does soreadable return T in this case.

WinXP The socket will not be readable if it has been shutdown for reading.

Rule version: $ Id: TCP3 hostLTSScript.sml,v 1.39 2009/02/20 13:08:08 tjr22 Exp $

Part VII

TCP3 stream

259

Chapter 16

Stream auxiliary functions

This file gives default initial values for stream types, and defines auxiliary functions, such as reading and
writing to streams, and destroying one or more streams from a stream map.

16.1 Default initial values (TCP and UDP)

Default initial values for stream types.

16.1.1 Summary

initial streamFlags initial stream flags
initial stream initial unidirectional stream
initial streams initial bidirectional stream
streamid of quad form the stream identifier from quad

16.1.2 Rules

– initial stream flags :
initial streamFlags =〈[

SYN :=F;
SYNACK :=F;
FIN :=F;
RST :=F

]〉

Description
The initial flags are all false, since no messages are in transit.

– initial unidirectional stream :
initial stream(i , p)destroyed =〈[

i := i ;
p := p;
flgs := initial streamFlags;
data :=[];
destroyed := destroyed

]〉

261

262 null flgs data

Description
A unidirectional stream is constructed by giving the originating ip address and port, and the value

the destroyed flag should take. Then data is initialized to the empty list.

– initial bidirectional stream :
initial streams(i1, p1, i2, p2) = (

(* in stream is initially destroyed because other host knows nothing of the connection attempt *)

let in = initial stream(i2, p2)T in
let out = initial stream(i1, p1)F in
〈[streams :={in ; out}]〉)

Description
A stream is constructed based on the quad (i1, p1, i2, p2). Only one endpoint, at the originating host

(i1, p1), exists, thus, the output stream is not destroyed, whilst the input stream is destroyed.

– form the stream identifier from quad :
streamid of quad((i1, p1, i2, p2) : ip#port#ip#port) = {(i1, p1); (i2, p2)}

Description
A stream identifier is an unordered pair of the endpoint ip and port addresses.

16.2 Auxiliary functions (TCP and UDP)

Auxiliary stream functions, such as reading and writing to a stream.

16.2.1 Summary

null flgs data flags and data corresponding to no control information
make syn flgs data flags and data corresponding to an initial SYN message
make syn ack flgs data flags and data corresponding to an initial SYNACK mes-

sage
sync streams retrieve unidirectional streams from bidirectional stream
write write flags and data to a stream
read read flags and data from a stream

16.2.2 Rules

– flags and data corresponding to no control information :
null flgs data(flgs, data) = (

flgs =〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
data = [])

– flags and data corresponding to an initial SYN message :
make syn flgs data(flgs, data : char list) = (

flgs =〈[SYN :=T;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
data = [])

Rule version: $ Id: TCP3 streamScript.sml,v 1.18 2009/02/20 10:35:33 tjr22 Exp $

read 263

– flags and data corresponding to an initial SYNACK message :
make syn ack flgs data(flgs, data : char list) = (

flgs =〈[SYN :=F;SYNACK :=T;FIN :=F;RST :=F]〉 ∧
data = [])

– retrieve unidirectional streams from bidirectional stream :
sync streams(i1 : ip, p1 : port , i2 : ip, p2 : port)(s : tcpStreams)(in , out) = (

s.streams = {in ; out} ∧
(in .i , in .p) = (i2, p2) ∧
(out .i , out .p) = (i1, p1))

(* i1 p1 are local, i2 p2 are foreign *)

Description
A function to extract the input stream in and output stream out from a bidirectional stream s based

on the ip address and port of an endpoint.

– write flags and data to a stream :
write(i1, p1, i2, p2)(flgs, data)s s ′ = (
∃in out in ′ out ′.
sync streams(i1, p1, i2, p2)s(in , out) ∧
sync streams(i1, p1, i2, p2)s

′(in ′, out ′) ∧
in ′ = in ∧
out ′.flgs =
〈[SYN :=(out .flgs.SYN ∨ flgs.SYN);

SYNACK :=(out .flgs.SYNACK ∨ flgs.SYNACK);
FIN :=(out .flgs.FIN ∨ flgs.FIN);
RST :=(out .flgs.RST ∨ flgs.RST)

]〉 ∧
out ′.data = (out .data + +data))

Description
The unidirectional streams before (in , out) and after (in ′, out ′) are first extracted using sync streams.

The flgs and data of the output stream out ′ are updated to reflect the write. For example, data is
appended to out .data to form out ′.data.

– read flags and data from a stream :
read(i1, p1, i2, p2)(peek : bool)(inline : bool)(flgs : streamFlags, data : char list)s s ′ = (
∃in out in ′ out ′.
sync streams(i1, p1, i2, p2)s(in , out) ∧
sync streams(i1, p1, i2, p2)s

′(in ′, out ′) ∧
out ′ = out ∧

(case flgs.SYN of T→ in ′.flgs.SYN = F ∧ in .flgs.SYN = T ‖ F→ in ′.flgs.SYN = in .flgs.SYN) ∧
(case flgs.SYNACK of

T→ in ′.flgs.SYNACK = F ∧ in .flgs.SYNACK = T
‖ F→ in ′.flgs.SYNACK = in .flgs.SYNACK) ∧

(case flgs.FIN of T→ in ′.flgs.FIN = F ∧ in .flgs.FIN = T ‖ F→ in ′.flgs.FIN = in .flgs.FIN) ∧

Rule version: $ Id: TCP3 streamScript.sml,v 1.18 2009/02/20 10:35:33 tjr22 Exp $

264 both streams destroyed

(case flgs.RST of T→ in ′.flgs.RST = F ∧ in .flgs.RST = T ‖ F→ in ′.flgs.RST = in .flgs.RST) ∧

(∃pre post .
((pre + +data + +post) = in .data) ∧
(inline =⇒ pre = []) ∧
if peek then

in ′.data = in .data
else

in ′.data = (pre + +post)))

Description
The unidirectional streams before (in , out) and after (in ′, out ′) are first extracted using sync streams.

The flgs and data of the input stream in ′ are updated to reflect the read. For example, if flgs.SYN is set,
a SYN was read, which causes the SYN flag for input stream in ′ to be lowered; furthore, in .flgs.SYN
must also have been set, i.e. there must have been a SYN to read.

16.3 Stream removal (TCP and UDP)

Auxiliary functions to help with removing streams when they have been destroyed.

16.3.1 Summary

both streams destroyed test whether both unidirectional streams are destroyed
remove destroyed streams restrict the stream map to those streams that are not

destroyed
destroy destroy a particular unidirectional stream, then clean up
destroy quads destroy all quads in a stream map, then clean up

16.3.2 Rules

– test whether both unidirectional streams are destroyed :
both streams destroyed ss = ∀s t .ss.streams = {s; t} =⇒ s.destroyed ∧ t .destroyed

– restrict the stream map to those streams that are not destroyed :
remove destroyed streams(SS : streamid 7→ tcpStreams) = (

let alive = {stid | ¬both streams destroyed(SS [stid])} in
SS |alive)

Description
Streams where both unidirectional streams are destroyed are garbage collected.

– destroy a particular unidirectional stream, then clean up :
destroy(i1, p1, i2, p2)SS S ′′ = (
∃S0 s in out s ′ S ′.
SS = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)] ∧
sync streams(i1, p1, i2, p2)s(in , out) ∧
s ′ =〈[streams :={in ; out 〈[destroyed :=T]〉}]〉 ∧

Rule version: $ Id: TCP3 streamScript.sml,v 1.18 2009/02/20 10:35:33 tjr22 Exp $

destroy quads 265

S ′ = S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s
′)] ∧

S ′′ = remove destroyed streams S ′)

Description
The particular stream s identified by quad (i1, p1, i2, p2) is extracted from the stream map SS . In

turn, the input and output streams are extracted from s. The stream s is updated to mark the output
stream out as destroyed, producing the updated stream map S ′. Finally, streams with both endpoints
destroyed are garbage collected using remove destroyed streams.

– destroy all quads in a stream map, then clean up :
destroy quads quads(SS : streamid 7→ tcpStreams)S ′′ = (
∃S ′.dom(S ′) = dom(SS) ∧
(∀stid .stid ∈ (dom(SS)) =⇒

∃in out in ′ out ′.
(SS [stid]).streams = {in ; out} ∧
in ′ = in 〈[destroyed :=̂ T onlywhen((in .i , in .p, out .i , out .p) ∈ quads)]〉 ∧
out ′ = out 〈[destroyed :=̂ T onlywhen((out .i , out .p, in .i , in .p) ∈ quads)]〉 ∧
(S ′[stid]).streams = {in ′; out ′}) ∧

S ′′ = remove destroyed streams S ′)

Description
Similar to destroy, but allowing the destruction of multiple streams, for example, when a listening

socket with pending connections is closed.

Rule version: $ Id: TCP3 streamScript.sml,v 1.18 2009/02/20 10:35:33 tjr22 Exp $

266 destroy quads

Rule version: $ Id: TCP3 streamScript.sml,v 1.18 2009/02/20 10:35:33 tjr22 Exp $

Part VIII

TCP3 net

267

Chapter 17

Network labelled transition system

This file defines the network model, using the host LTS defined previously.

17.1 Basic network types (TCP and UDP)

Basic network types, and transition labels.

17.1.1 Summary

type abbrev hosts
type abbrev streams
type abbrev msgs
type abbrev net
Lnet0 net transition labels
rn net transition rule names

17.1.2 Rules

– :
type abbrev hosts : hostid 7→ host

– :
type abbrev streams : streamid 7→ tcpStreams

– :
type abbrev msgs : msg multiset

– :
type abbrev net : hosts#streams#msgs

– net transition labels :
Lnet0 =

(* library interface *)
Ln call of hostid#tid#LIB interface

| Ln return of hostid#tid#TLang

(* connectivity changes *)

269

270 call

| Ln interface of hostid#ifid#bool

(* miscellaneous *)
| Ln tau

| Ln epsilon of duration

– net transition rule names :
rn = call | return | tau | interface | host tau | time pass | trace

17.2 Network labelled transition system (TCP and UDP)

17.2.1 Summary

call
return
tau
interface
host tau
time pass
trace

17.2.2 Rules

call

((hs ⊕ (hid , h),S ,M) : net)
(Ln call(hid , tid , c))
−−−−−−−−−−−−−−−−−→ (hs ⊕ (hid , h ′),S ′,M ′)

(rn/ ∗ rp, rc ∗ /(h,S ,M)
tid ·c
−−−−→ (h ′,S ′,M ′))

Description
A thread tid on host h executes a sockets call c which does not sync with the streams.

return

((hs ⊕ (hid , h),S ,M) : net)
(Ln return(hid , tid , v))
−−−−−−−−−−−−−−−−−−−−→ (hs ⊕ (hid , h ′),S ′,M ′)

(rn/ ∗ rp, rc ∗ /(h,S ,M)
tid ·v
−−−−→ (h ′,S ′,M ′))

Description
A thread tid on host h returns from a sockets call.

tau

((hs,S ,M) : net)
(Ln tau)
−−−−−−−→ (hs,S ,M)

T

Rule version:

trace 271

Description
This tau action at the network level corresponds to the hosts doing a msg or a msg transition.

interface

((hs ⊕ (hid , h),S ,M) : net)
(Ln interface(hid , ifid , up))
−−−−−−−−−−−−−−−−−−−−−−−→ (hs ⊕ (hid , h ′),S ′,M ′)

(rn/ ∗ rp, rc ∗ /(h,S ,M)
Lh interface(ifid , up)
−−−−−−−−−−−−−−−−−−−→ (h ′,S ′,M ′))

Description
Network interface change.

host tau

((hs ⊕ (hid , h),S ,M) : net)
Ln tau
−−−−−−→ (hs ⊕ (hid , h ′),S ′,M ′)

(rn/ ∗ rp, rc ∗ /(h,S ,M)
τ
−→ (h ′,S ′,M ′))

Description
Allow a host to do a τ transition.

time pass

((hs,S ,M) : net)
(Ln epsilon dur)
−−−−−−−−−−−−−−→ (hs ′′,S ,M)

(∀h.h ∈ rng(hs) =⇒ ¬(∃rn rp rc lbl h ′ S ′ M ′.

(rn/ ∗ rp, rc ∗ /(h,S ,M)
lbl
−−→ (h ′,S ′,M ′)) ∧ is urgent rc)) ∧

(* Time passes for the hosts. *)

hs ′ = (Time Pass host dur)o f hs ∧
¬(∗ ∈ rng(hs ′)) ∧

dom(hs ′′) = dom(hs) ∧
(∀hid .hid ∈ dom(hs) =⇒ hs ′′[hid] ∈ (the(hs ′[hid])))

Description
Allow time to pass for hosts. The check ¬(∗ ∈ rng(hs ′)) ensures that time actually can pass for a

host, i.e. that there are no urgent events that need to happen.

trace

((hs ⊕ (hid , h),S ,M) : net)
(Ln tau)
−−−−−−−→ (hs ⊕ (hid , h ′),S ′,M ′)

hid /∈ dom(hs) ∧

Rule version:

272 trace

(rn/ ∗ rp, rc ∗ /(h,S ,M)
Lh trace tr
−−−−−−−−−−→ (h ′,S ′,M ′))

Description
Trace records give Ln tau transitions at the network level.

Rule version:

Part IX

TCP3 absFun

273

Chapter 18

Abstraction function

This file defines the abstraction function, from protocol-level network states (and transition labels) to
service-level network states (and transition labels).

18.1 Auxiliary functions (TCP and UDP)

Basic abstraction functions for basic TCP host types.

18.1.1 Summary

tcpcb1 to 3 abstract a tcpcb

tcp socket1 to 3 abstract a tcp socket

socket1 to 3 abstraction a socket

host1 to 3 abstract a host

18.1.2 Rules

– abstract a tcpcb :
(tcpcb1 to 3 : TCP1 hostTypes $tcpcb → TCP3 hostTypes $tcpcb)cb = (
〈[tt keep := cb.tt keep;

t softerror := cb.t softerror

]〉)

– abstract a tcp socket :
(tcp socket1 to 3 : TCP1 hostTypes $tcp socket → TCP3 hostTypes $tcp socket)s = (
〈[st := s.st ;

cb := tcpcb1 to 3 s.cb;
lis := s.lis

]〉)

– abstraction a socket :
(socket1 to 3 : TCP1 hostTypes $socket → TCP3 hostTypes $socket)s = (
〈[fid := s.fid ;

sf := s.sf ;
is1 := s.is1;
ps

1
:= s.ps

1
;

is2 := s.is2;
ps

2
:= s.ps

2
;

es := s.es;
cantsndmore := s.cantsndmore;

275

276 stream reass

cantrcvmore := s.cantrcvmore;
pr :=(case s.pr of TCP PROTO tcp sock → TCP PROTO(tcp socket1 to 3 tcp sock)
‖ UDP PROTO udp sock → UDP PROTO udp sock)

]〉)

– abstract a host :
(host1 to 3 : TCP1 hostTypes $host → TCP3 hostTypes $host)h = (

let filter non TCP msgs =
λq .case q of (msgs)

d
→ (filter(λmsg .case msg of TCP 1 → F ‖ 2 → T)msgs)

d

in
〈[arch := h.arch;

privs := h.privs;
ifds := h.ifds;
rttab := h.rttab;
ts := h.ts;
files := h.files;
socks := socket1 to 3 o f h.socks;
listen := h.listen;
bound := h.bound ;
iq :=filter non TCP msgs h.iq ;
oq :=filter non TCP msgs h.oq ;
bndlm := h.bndlm;
ticks := h.ticks;
fds := h.fds;
params := h.params

]〉)

18.2 Stream reassembly (TCP and UDP)

For the case where the sender is absent, we have to recover the stream contents from segments on the
wire, using a stream reassembly function.

18.2.1 Summary

stream reass reassemble the stream from segments on the wire

18.2.2 Rules

– reassemble the stream from segments on the wire :
stream reass(seq : tcpLocal seq32)(segs : tcpSegment set) = (
(* REMARK first arg should be word32 *)

let myrel = {(i , c) |
∃seg .seg ∈ segs ∧
num(i − seg .seq) < length seg .data ∧
c = EL(num(i − seg .seq))seg .data} in

let cs = {(cs : byte list) |
(∀n : num.n < length cs =⇒ myrel(seq + n,EL n cs)) ∧
(¬∃c.(seq + (length cs), c) ∈ myrel)} in

CHOICE cs)

Description
This stream reassembly function is closely based on that defined in the protocol-level specification.

Rule version:

abs hosts one sided 277

18.3 Abstraction function (TCP and UDP)

The full abstraction function builds on a unidirectional version. Both are presented in this section.

18.3.1 Summary

ERROR a simple way to indicate that an error has occurred
abs hosts one sided unidirectional abstraction function
abs hosts the full abstraction function for host states
abs lbl abstract transition labels
abs trans abstract a full protocol-level network transition

18.3.2 Rules

– a simple way to indicate that an error has occurred :
ERROR(a : ′

a) = (ARB : ′
b)

– unidirectional abstraction function :
abs hosts one sided(i1, p1, i2, p2)(h,msgs , i) = (

(* get the messages that we are interested in, including those in oq and iq *)

let (hoq , iiq) =
case (h.oq , i .iq) of ((omsgs) 1 , (imsgs) 2)→ (omsgs, imsgs) in

let msgs = list to set hoq ∪ msgs ∪ (list to set iiq) in
(* only consider TCP messages . . . *)

let msgs = {msg | TCP msg ∈ msgs} in
(* . . . that match the quad *)

let msgs = msgs ∩
{msg | msg = msg 〈[is1 := ↑ i1; ps1 := ↑ p1; is2 := ↑ i2; ps2 := ↑ p2]〉} in

(* pick out the send and receive sockets *)

let smatch i1 p1 i2 p2 s = ((s.is1, s.ps1, s.is2, s.ps2) = (↑ i1, ↑ p1, ↑ i2, ↑ p2)) in
let snd sock = Punique range(smatch i1 p1 i2 p2)h.socks in
let rcv sock = Punique range(smatch i2 p2 i1 p1)i .socks in

let tcpsock of sock = case sock .pr of
TCP1 hostTypes $TCP PROTO tcpsock → tcpsock
‖ 3 → ERROR“abs hosts one sided:tcpsock of”

in

(* the difficult part of the abstraction function is to compute data *)

let (data : byte list) = case (snd sock , rcv sock) of
(↑(8 , hsock), ↑(9 , isock))→ (

let htcpsock = tcpsock of hsock in
let itcpsock = tcpsock of isock in
let (snd una, sndq) = (htcpsock .cb.snd una, htcpsock .sndq) in
let (rcv nxt , rcvq) = (itcpsock .cb.rcv nxt , itcpsock .rcvq) in
let rcv nxt = tcp seq flip sense rcv nxt in
let sndq ′ = DROP((num(rcv nxt − snd una)))sndq in
rcvq + +sndq ′)

‖ (↑(8 , hsock), ∗)→ (
let htcpsock = tcpsock of hsock in
htcpsock .sndq)

Rule version:

278 abs hosts

‖ (∗, ↑(9 , isock))→ (
let itcpsock = tcpsock of isock in
let (rcv nxt : tcpLocal seq32 , rcvq : byte list) =

(tcp seq flip sense(itcpsock .cb.rcv nxt), itcpsock .rcvq) in
rcvq + +(stream reass rcv nxt msgs))

‖ (∗, ∗)→ ERROR“abs hosts one sided:data”
in
〈[i := i1;

p := p1;
flgs :=
〈[SYN :=(∃msg .msg ∈ msgs ∧msg = msg 〈[SYN :=T;ACK :=F]〉);

SYNACK :=(∃msg .msg ∈ msgs ∧msg = msg 〈[SYN :=T;ACK :=T]〉);
FIN :=(∃msg .msg ∈ msgs ∧msg = msg 〈[FIN :=T]〉);
RST :=(∃msg .msg ∈ msgs ∧msg = msg 〈[RST :=T]〉)

]〉;
data := data;
destroyed :=(case snd sock of
↑(sid , hsock)→ ((tcpsock of hsock).st = CLOSED)
‖ ∗ → T)

]〉)

Description
The core of the abstraction function is to compute the data in the stream, given the connection

endpoints and the segments on the wire.
Normally the sender and receiver endpoints are both active. In this case, the sender sndq and the

receiver rcvq contain bytes corresponding to sequence number intervals. These intervals overlap, so to
recover the data in the stream, we must drop some data from the sndq . We drop rcv nxt − snd una
bytes and then append the resulting sndq ′ to rcvq to form the contents of the stream.

The other cases are handled in a similar way. If the receiver endpoint is absent, the data is just that
data in the sender’s sndq . If the sender endpoint is absent, the data is reassembled from segments on
the wire, using stream reass.

The flgs are calculated based on the flags set in segments on the wire. In fact, this should also take
into account segment validity, but currently this is not handled correctly at the protocol-level, and we
want to maintain the invariant that every protocol-level trace maps to a service-level trace.

The destroyed flag is true iff the socket is CLOSED or no longer exists.

– the full abstraction function for host states :
abs hosts(i1, p1, i2, p2)(h1 ,msgs, h2) = (

let n1 = host1 to 3 h1 in
let n2 = host1 to 3 h2 in
let (streams : tcpStreams option) =

let s12 = abs hosts one sided(i1, p1, i2, p2)(h1 ,msgs, h2) in
let s21 = abs hosts one sided(i2, p2, i1, p1)(h2 ,msgs, h1) in
(case s12 .destroyed ∧ s21 .destroyed of

T→ ∗
‖ F→ ↑〈[streams :={s12 ; s21}]〉)

in
(n1 , streams,n2))

Description
The abstraction function maps protocol-level host states and segments on the wire to service-level

host states and streams. It uses the unidirectional abstraction function abs hosts one sided twice to

Rule version:

abs trans 279

form streams s12 and s21 . If these streams are both destroyed, then the resulting streams (an option)
is ∗, otherwise it is a pair of the unidirectional streams.

– abstract transition labels :
abs lbl lbl = (case lbl of

Ln0 call(hid , tid , lib)→ Ln call(hid , tid , lib)
‖ Ln0 return(hid , tid , tlang)→ Ln return(hid , tid , tlang)
‖ Ln0 interface(hid , ifid , up)→ ERROR“absfn: Ln0 interface”
‖ Ln0 tau → Ln tau

‖ Ln0 epsilon dur → Ln epsilon dur
‖ Ln0 trace tr → Ln tau)

Description
The abstraction function must also map protocol-level transition labels to service-level transition

labels. This is a straightforward bijection. Interface changes are not currently handled at the service
level.

– abstract a full protocol-level network transition :
abs trans(i1, p1, i2, p2)(h1 ,msgs, h2)lbl(h1 ′,msgs ′, h2 ′) = (

let n = abs hosts(i1, p1, i2, p2)(h1 ,msgs, h2) in
let n ′ = abs hosts(i1, p1, i2, p2)(h1

′,msgs ′, h2 ′) in
let nlbl = abs lbl lbl in
(n,nlbl ,n ′))

Description
The abs trans function ties together the previous host and label abstraction functions to produce a

service-level transition from a protocol-level transition.

Rule version:

280 abs trans

Rule version:

Bibliography

[1] R. Alur and B.-Y. Wang. Verifying network protocol implementations by symbolic refinement
checking. In Proc. CAV ’01, LNCS 2102, pages 169–181, 2001.

[2] E. Biagioni. A structured TCP in Standard ML. In Proc. SIGCOMM ’94, pages 36–45, 1994.

[3] J. Billington and B. Han. On defining the service provided by TCP. In Proc. ACSC: 26th Aus-
tralasian Computer Science Conference, Adelaide, 2003.

[4] A. Biltcliffe, M. Dales, S. Jansen, T. Ridge, and P. Sewell. Rigorous protocol design in practice: An
optical packet-switch MAC in HOL. In Proc. ICNP, The 14th IEEE International Conference on
Network Protocols, Nov. 2006.

[5] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough. Rigorous specification
and conformance testing techniques for network protocols, as applied to TCP, UDP, and Sockets.
In Proc. SIGCOMM 2005 (Philadelphia), Aug. 2005.

[6] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough. TCP, UDP, and Sock-
ets: rigorous and experimentally-validated behavioural specification. Volume 1: Overview. Techni-
cal Report UCAM-CL-TR-624, Computer Laboratory, University of Cambridge, Mar. 2005. 88pp.
Available at http://www.cl.cam.ac.uk/users/pes20/Netsem/.

[7] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough. TCP, UDP, and
Sockets: rigorous and experimentally-validated behavioural specification. Volume 2: The specifica-
tion. Technical Report UCAM-CL-TR-625, Computer Laboratory, University of Cambridge, Mar.
2005. 386pp. Available at http://www.cl.cam.ac.uk/users/pes20/Netsem/.

[8] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough. Engineering with
logic: HOL specification and symbolic-evaluation testing for TCP implementations. In POPL’06:
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 55–66, New York, NY, USA, 2006. ACM Press.

[9] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient protocol code from an abstract
specification. IEEE/ACM Trans. Netw., 5(4):514–524, 1997. Full version of a paper in SIGCOMM
’96.

[10] D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement of the sliding window
protocol. In Proc. TACAS’03, LNCS 2619, pages 113–127, 2003.

[11] M. Compton. Stenning’s protocol implemented in UDP and verified in Isabelle. In M. D. Atkinson
and F. K. H. A. Dehne, editors, CATS, volume 41 of CRPIT, pages 21–30. Australian Computer
Society, 2005.

[12] E. Fersman and B. Jonsson. Abstraction of communication channels in Promela: A case study. In
Proc. 7th SPIN Workshop, LNCS 1885, pages 187–204, 2000.

[13] R. Hofmann and F. Lemmen. Specification-driven monitoring of TCP/IP. In Proc. 8th Euromicro
Workshop on Parallel and Distributed Processing, Jan. 2000.

[14] The HOL 4 system, Kananaskis-3 release. hol.sourceforge.net.

[15] E. Kohler, M. F. Kaashoek, and D. R. Montgomery. A readable TCP in the Prolac protocol language.
In Proc. SIGGCOMM ’99, pages 3–13, August 1999.

281

http://www.cl.cam.ac.uk/users/pes20/Netsem/
http://www.cl.cam.ac.uk/users/pes20/Netsem/
hol.sourceforge.net

282 BIBLIOGRAPHY

[16] P. Li. Programmable Concurrency in a Pure and Lazy Language. PhD thesis, University of Penn-
sylvania, August 2008.

[17] P. Li and S. Zdancewic. Combining events and threads for scalable network services. In Proc. PLDI,
pages 189–199, 2007.

[18] N. Lynch and F. Vaangdrager. Forward and backward simulations – Part I: Untimed systems.
Information and Computation, 121(2):214–233, Sept. 1995.

[19] S. L. Murphy and A. U. Shankar. A verified connection management protocol for the transport
layer. In Proc. SIGCOMM, pages 110–125, 1987.

[20] S. L. Murphy and A. U. Shankar. Service specification and protocol construction for the transport
layer. In Proc. SIGCOMM, pages 88–97, 1988.

[21] M. Norrish, P. Sewell, and K. Wansbrough. Rigour is good for you, and feasible: reflections on formal
treatments of C and UDP sockets. In Proceedings of the 10th ACM SIGOPS European Workshop
(Saint-Emilion), pages 49–53, Sept. 2002.

[22] J. Postel. A Graph Model Analysis of Computer Communications Protocols. University of California,
Computer Science Department, PhD Thesis, 1974.

[23] T. Ridge. Verifying distributed systems: the operational approach. In Z. Shao and B. C. Pierce,
editors, POPL, pages 429–440. ACM, 2009.

[24] I. Schieferdecker. Abruptly-terminated connections in TCP – a verification example. In Proc. COST
247 International Workshop on Applied Formal Methods In System Design, June 1996.

[25] A. Serjantov, P. Sewell, and K. Wansbrough. The UDP calculus: Rigorous semantics for real net-
working. In Proc. TACS 2001: Fourth International Symposium on Theoretical Aspects of Computer
Software, Tohoku University, Sendai, Oct. 2001.

[26] M. A. Smith and K. K. Ramakrishnan. Formal specification and verification of safety and perfor-
mance of TCP selective acknowledgment. IEEE/ACM Trans. Netw., 10(2):193–207, 2002.

[27] M. A. S. Smith. Formal verification of communication protocols. In Proc. FORTE IX/PSTV XVI,
pages 129–144, 1996.

[28] K. Wansbrough, M. Norrish, P. Sewell, and A. Serjantov. Timing UDP: mechanized semantics for
sockets, threads and failures. In Proc. ESOP, LNCS 2305, pages 278–294, Apr. 2002.

Rule version:

Index

abs hosts, 278
abs hosts one sided , 9, 277
abs lbl , 279
abs trans, 279
accept 1 , 60
accept 2 , 61
accept 3 , 61
accept 4 , 62
accept 5 , 63
accept 6 , 63
accept 7 , 64
autobind , 37

badf 1 , 203
bind 1 , 67
bind 2 , 68
bind 3 , 68
bind 5 , 69
bind 7 , 69
bind 9 , 70
both streams destroyed , 264
bound after , 37
bound port allowed , 36
bound ports protocol autobind , 36

calculate buf sizes, 40
calculate tcp options len, 40
call , 270
close 1 , 72
close 10 , 80
close 2 , 73
close 3 , 74
close 4 , 75
close 5 , 76
close 6 , 77
close 7 , 77
close 8 , 78
connect 1 , 84
connect 10 , 98
connect 1a, 86
connect 2 , 89
connect 3 , 89
connect 4 , 90
connect 4a, 91
connect 5 , 91
connect 5a, 92
connect 5b, 93
connect 5c, 94
connect 5d , 95
connect 6 , 95

connect 7 , 96
connect 8 , 97
connect 9 , 97

deliver in 1 , 208
deliver in 2 , 210
deliver in 3 , 212
deliver in 3b, 220
deliver in 4 , 221
deliver in 5 , 221
deliver in 7 , 222
deliver in 7a, 223
deliver in 7b, 224
deliver in 7c, 224
deliver in 7d , 225
deliver in 8 , 226
deliver in 9 , 226
deliver in 99 , 249
deliver in 99a, 250
deliver in icmp 1 , 241
deliver in icmp 2 , 242
deliver in icmp 3 , 244
deliver in icmp 4 , 245
deliver in icmp 5 , 246
deliver in icmp 6 , 246
deliver in icmp 7 , 247
deliver in udp 1 , 239
deliver in udp 2 , 240
deliver in udp 3 , 240
deliver loop 99 , 250
deliver out 1 , 230
deliver out 99 , 250
destroy , 264
destroy quads, 265
di3 ackstuff , 215
di3 datastuff , 216
di3 newackstuff , 214
di3 socks update, 219
di3 ststuff , 216
di3 topstuff , 214
disconnect 1 , 102
disconnect 2 , 103
disconnect 3 , 103
disconnect 4 , 100
disconnect 5 , 101
do tcp options, 40
dosend , 42
dropwithreset , 51
dup 1 , 105
dup 2 , 105

283

284 INDEX

dupfd 1 , 107
dupfd 3 , 107
dupfd 4 , 108

enqueue and ignore fail , 50
enqueue each and ignore fail , 50
enqueue or fail , 50
ephemeral ports, 21
ERROR, 277
exists quad of , 53

fmap every , 256
fmap every pred , 256

getfileflags 1 , 109
getifaddrs 1 , 111
getpeername 1 , 114
getpeername 2 , 114
getsockbopt 1 , 117
getsockbopt 2 , 117
getsockerr 1 , 119
getsockerr 2 , 119
getsocklistening 1 , 121
getsocklistening 2 , 122
getsocklistening 3 , 122
getsockname 1 , 124
getsockname 2 , 125
getsockname 3 , 125
getsocknopt 1 , 127
getsocknopt 4 , 128
getsocktopt 1 , 130
getsocktopt 4 , 130

host , 21
host1 to 3 , 276
host tau, 271

initial cb, 43
initial stream, 261
initial streamFlags, 261
initial streams, 262
interface, 271
interface 1 , 254
intr 1 , 203

Lhost0 , 31
listen 1 , 132
listen 1b, 133
listen 1c, 134
listen 2 , 134
listen 3 , 135
listen 4 , 136
listen 5 , 136
listen 7 , 137
Lnet0 , 269
lookup icmp, 39
lookup udp, 38

make syn ack flgs data, 263
make syn flgs data, 262

match score, 37
mtu tab, 42

next smaller , 42
notsock 1 , 203
null flgs data, 262

privileged ports, 21
proto eq , 20
proto of , 20
protocol info, 20

quad of , 53

read , 263
recv 1 , 139
recv 11 , 150
recv 12 , 151
recv 13 , 152
recv 14 , 152
recv 15 , 153
recv 16 , 153
recv 17 , 154
recv 2 , 141
recv 20 , 155
recv 21 , 156
recv 22 , 157
recv 23 , 157
recv 24 , 158
recv 3 , 142
recv 4 , 143
recv 7 , 144
recv 8 , 144
recv 8a, 145
recv 9 , 146
remove destroyed streams, 264
resourcefail 1 , 204
resourcefail 2 , 205
return, 270
return 1 , 202
rn, 270
rollback tcp output , 48

sane socket , 36
send 1 , 161
send 10 , 174
send 11 , 175
send 12 , 176
send 13 , 177
send 14 , 178
send 15 , 179
send 16 , 179
send 17 , 180
send 18 , 181
send 19 , 182
send 2 , 163
send 21 , 182
send 22 , 183
send 23 , 184

Rule version:

INDEX 285

send 3 , 5, 7, 163
send 3a, 164
send 4 , 165
send 5 , 166
send 5a, 166
send 6 , 167
send 7 , 167
send 8 , 168
send 9 , 173
send queue space, 41
setfileflags 1 , 185
setsockbopt 1 , 187
setsockbopt 2 , 188
setsocknopt 1 , 190
setsocknopt 2 , 191
setsocknopt 4 , 191
setsocktopt 1 , 193
setsocktopt 4 , 194
setsocktopt 5 , 194
shutdown 1 , 196
shutdown 2 , 197
shutdown 3 , 198
shutdown 4 , 198
Sock , 20
socket , 20
socket1 to 3 , 275
socket 1 , 200
socket 2 , 201
soreadable, 258
sowriteable, 257
stream enqueue or fail , 50
stream enqueue or fail sock , 50
stream loopback on wire, 35
stream mlift dropafterack or fail , 52
stream mlift tcp output perhaps or fail , 50
stream reass, 276
stream rollback tcp output , 49
stream tcp output perhaps, 48
stream tcp output really , 47
stream test outroute, 35
streamFlags, 6, 27
streamid of quad , 262
sync streams, 263

tau, 270
tcp close, 52
tcp drop and close, 53
tcp output perhaps, 48
tcp output really , 45
tcp output required , 45
TCP Sock , 20
TCP Sock0 , 20
tcp sock of , 20
tcp socket , 20
tcp socket1 to 3 , 275
tcp socket best match, 38
tcpcb, 19
tcpcb1 to 3 , 275
tcpStream, 6, 27

tcpStreams, 28
time pass, 271
Time Pass host , 256
Time Pass socket , 256
Time Pass tcpcb, 256
Time Pass timedoption, 255
timer tt 2msl 1 , 237
timer tt conn est 1 , 237
timer tt delack 1 , 237
timer tt fin wait 2 1 , 238
timer tt keep 1 , 236
timer tt persist 1 , 236
timer tt rexmt 1 , 234
timer tt rexmtsyn 1 , 233
trace, 271
trace 1 , 253
trace 2 , 253
tracecb eq , 22
tracesock eq , 22
type abbrev hosts, 269
type abbrev msgs, 269
type abbrev net , 269
type abbrev streamid , 27
type abbrev streams, 269
type abbrev tracerecord , 22

UDP Sock , 20
UDP Sock0 , 20
udp sock of , 20
update idle, 51

write, 6, 263

Rule version:

	742.pdf
	Brief Contents
	Full Contents
	I Overview
	Introduction to the service-level specification
	Introduction
	Background: our previous low-level protocol model
	send_3

	The new service-level specification
	tcpStream
	streamFlags
	write
	send_3

	The abstraction function
	Experimental validation

	abs_hosts_one_sided
	Related work
	How to read the service-level specification
	Project History
	Conclusion

	II TCP3_hostTypes
	 Host types
	The TCP control block (TCP only)
	Summary
	Rules
	tcpcb

	Sockets (TCP and UDP)
	Summary
	Rules
	tcp_socket
	protocol_info
	socket
	TCP_Sock0
	TCP_Sock
	UDP_Sock0
	UDP_Sock
	Sock
	tcp_sock_of
	udp_sock_of
	proto_of
	proto_eq

	The host (TCP and UDP)
	Summary
	Rules
	host
	privileged_ports
	ephemeral_ports

	Trace records (TCP and UDP)
	Summary
	Rules
	type_abbrev_tracerecord
	tracecb_eq
	tracesock_eq

	III TCP3_streamTypes
	 Stream types
	Stream types (TCP and UDP)
	Summary
	Rules
	type_abbrev_streamid
	streamFlags
	tcpStream
	tcpStreams

	IV TCP3_host0
	 Host LTS labels and rule categories
	Transition labels (TCP and UDP)
	Summary
	Rules
	Lhost0

	V TCP3_auxFns
	 Auxiliary functions
	Stream versions of routing functions (TCP and UDP)
	Summary
	Rules
	stream_test_outroute
	stream_loopback_on_wire

	Files, file descriptors, and sockets (TCP and UDP)
	Summary
	Rules
	sane_socket

	Binding (TCP and UDP)
	Summary
	Rules
	bound_ports_protocol_autobind
	bound_port_allowed
	autobind
	bound_after
	match_score
	lookup_udp
	tcp_socket_best_match
	lookup_icmp

	TCP Options (TCP only)
	Summary
	Rules
	do_tcp_options
	calculate_tcp_options_len

	Buffers, windows, and queues (TCP and UDP)
	Summary
	Rules
	calculate_buf_sizes
	send_queue_space

	UDP support (UDP only)
	Summary
	Rules
	dosend

	Path MTU Discovery (TCP only)
	Summary
	Rules
	next_smaller
	mtu_tab

	The initial TCP control block (TCP only)
	Summary
	Rules
	initial_cb

	 Auxiliary functions for TCP segment creation and drop
	General Segment Creation (TCP only)
	Summary
	Rules
	tcp_output_required
	tcp_output_really
	stream_tcp_output_really
	tcp_output_perhaps
	stream_tcp_output_perhaps

	Segment Queueing (TCP only)
	Summary
	Rules
	rollback_tcp_output
	stream_rollback_tcp_output
	enqueue_or_fail
	stream_enqueue_or_fail
	stream_enqueue_or_fail_sock
	enqueue_and_ignore_fail
	enqueue_each_and_ignore_fail
	stream_mlift_tcp_output_perhaps_or_fail

	Incoming Segment Functions (TCP only)
	Summary
	Rules
	update_idle

	Drop Segment Functions (TCP only)
	Summary
	Rules
	dropwithreset
	stream_mlift_dropafterack_or_fail

	Close Functions (TCP only)
	Summary
	Rules
	tcp_close
	tcp_drop_and_close

	Socket quad testing and extraction (TCP only)
	Summary
	Rules
	exists_quad_of
	quad_of

	VI TCP3_hostLTS
	 Host LTS: Socket Calls
	accept() (TCP only)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	accept_1
	accept_2
	accept_3
	accept_4
	accept_5
	accept_6
	accept_7

	bind() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	bind_1
	bind_2
	bind_3
	bind_5
	bind_7
	bind_9

	close() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	close_1
	close_2
	close_3
	close_4
	close_5
	close_6
	close_7
	close_8
	close_10

	connect() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	connect_1
	connect_1a
	connect_2
	connect_3
	connect_4
	connect_4a
	connect_5
	connect_5a
	connect_5b
	connect_5c
	connect_5d
	connect_6
	connect_7
	connect_8
	connect_9
	connect_10

	disconnect() (TCP and UDP)
	Errors
	Common cases
	API
	Summary
	Rules
	disconnect_4
	disconnect_5
	disconnect_1
	disconnect_2
	disconnect_3

	dup() (TCP and UDP)
	Errors
	Common cases
	API
	Summary
	Rules
	dup_1
	dup_2

	dupfd() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	dupfd_1
	dupfd_3
	dupfd_4

	getfileflags() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getfileflags_1

	getifaddrs() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getifaddrs_1

	getpeername() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getpeername_1
	getpeername_2

	getsockbopt() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getsockbopt_1
	getsockbopt_2

	getsockerr() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getsockerr_1
	getsockerr_2

	getsocklistening() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getsocklistening_1
	getsocklistening_3
	getsocklistening_2

	getsockname() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getsockname_1
	getsockname_2
	getsockname_3

	getsocknopt() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getsocknopt_1
	getsocknopt_4

	getsocktopt() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	getsocktopt_1
	getsocktopt_4

	listen() (TCP only)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	listen_1
	listen_1b
	listen_1c
	listen_2
	listen_3
	listen_4
	listen_5
	listen_7

	recv() (TCP only)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	recv_1
	recv_2
	recv_3
	recv_4
	recv_7
	recv_8
	recv_8a
	recv_9

	recv() (UDP only)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	recv_11
	recv_12
	recv_13
	recv_14
	recv_15
	recv_16
	recv_17
	recv_20
	recv_21
	recv_22
	recv_23
	recv_24

	send() (TCP only)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	send_1
	send_2
	send_3
	send_3a
	send_4
	send_5
	send_5a
	send_6
	send_7
	send_8

	send() (UDP only)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	send_9
	send_10
	send_11
	send_12
	send_13
	send_14
	send_15
	send_16
	send_17
	send_18
	send_19
	send_21
	send_22
	send_23

	setfileflags() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	setfileflags_1

	setsockbopt() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	setsockbopt_1
	setsockbopt_2

	setsocknopt() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	setsocknopt_1
	setsocknopt_2
	setsocknopt_4

	setsocktopt() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	setsocktopt_1
	setsocktopt_4
	setsocktopt_5

	shutdown() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	shutdown_1
	shutdown_2
	shutdown_3
	shutdown_4

	socket() (TCP and UDP)
	Errors
	Common cases
	API
	Model details
	Summary
	Rules
	socket_1
	socket_2

	Miscellaneous (TCP and UDP)
	Errors
	Summary
	Rules
	return_1
	badf_1
	notsock_1
	intr_1
	resourcefail_1
	resourcefail_2

	 Host LTS: TCP Input Processing
	Input Processing (TCP only)
	Summary
	Rules
	deliver_in_1
	deliver_in_2
	deliver_in_3
	di3_topstuff
	di3_newackstuff
	di3_ackstuff
	di3_datastuff
	di3_ststuff
	di3_socks_update
	deliver_in_3b
	deliver_in_4
	deliver_in_5
	deliver_in_7
	deliver_in_7a
	deliver_in_7b
	deliver_in_7c
	deliver_in_7d
	deliver_in_8
	deliver_in_9

	 Host LTS: TCP Output
	Output (TCP only)
	Summary
	Rules
	deliver_out_1

	 Host LTS: TCP Timers
	Timers (TCP only)
	Summary
	Rules
	timer_tt_rexmtsyn_1
	timer_tt_rexmt_1
	timer_tt_persist_1
	timer_tt_keep_1
	timer_tt_2msl_1
	timer_tt_delack_1
	timer_tt_conn_est_1
	timer_tt_fin_wait_2_1

	 Host LTS: UDP Input Processing
	Input Processing (UDP only)
	Summary
	Rules
	deliver_in_udp_1
	deliver_in_udp_2
	deliver_in_udp_3

	 Host LTS: ICMP Input Processing
	Input Processing (ICMP only)
	Summary
	Rules
	deliver_in_icmp_1
	deliver_in_icmp_2
	deliver_in_icmp_3
	deliver_in_icmp_4
	deliver_in_icmp_5
	deliver_in_icmp_6
	deliver_in_icmp_7

	 Host LTS: Network Input and Output
	Input and Output (Network only)
	Summary
	Rules
	deliver_in_99
	deliver_in_99a
	deliver_out_99
	deliver_loop_99

	 Host LTS: BSD Trace Records and Interface State Changes
	Trace Records and Interface State Changes (BSD only)
	Summary
	Rules
	trace_1
	trace_2
	interface_1

	 Host LTS: Time Passage
	Time Passage auxiliaries (TCP and UDP)
	Summary
	Rules
	Time_Pass_timedoption
	Time_Pass_tcpcb
	Time_Pass_socket
	fmap_every
	fmap_every_pred
	Time_Pass_host
	sowriteable
	soreadable

	VII TCP3_stream
	 Stream auxiliary functions
	Default initial values (TCP and UDP)
	Summary
	Rules
	initial_streamFlags
	initial_stream
	initial_streams
	streamid_of_quad

	Auxiliary functions (TCP and UDP)
	Summary
	Rules
	null_flgs_data
	make_syn_flgs_data
	make_syn_ack_flgs_data
	sync_streams
	write
	read

	Stream removal (TCP and UDP)
	Summary
	Rules
	both_streams_destroyed
	remove_destroyed_streams
	destroy
	destroy_quads

	VIII TCP3_net
	 Network labelled transition system
	Basic network types (TCP and UDP)
	Summary
	Rules
	type_abbrev_hosts
	type_abbrev_streams
	type_abbrev_msgs
	type_abbrev_net
	Lnet0
	rn

	Network labelled transition system (TCP and UDP)
	Summary
	Rules
	call
	return
	tau
	interface
	host_tau
	time_pass
	trace

	IX TCP3_absFun
	 Abstraction function
	Auxiliary functions (TCP and UDP)
	Summary
	Rules
	tcpcb1_to_3
	tcp_socket1_to_3
	socket1_to_3
	host1_to_3

	Stream reassembly (TCP and UDP)
	Summary
	Rules
	stream_reass

	Abstraction function (TCP and UDP)
	Summary
	Rules
	ERROR
	abs_hosts_one_sided
	abs_hosts
	abs_lbl
	abs_trans

	Index

