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Summary

Program errors are hard to detect and are costly, to both programmers who spend sig-
nificant efforts in debugging, and for systems that are guarded by runtime checks. Static
verification techniques have been applied to imperative and object-oriented languages, like
Java and C#, for checking basic safety properties such as memory leaks. In a pure func-
tional language, many of these basic properties are guaranteed by design, which suggests
the opportunity for verifying more sophisticated program properties. Nevertheless, few
automatic systems for doing so exist. In this thesis, we show the challenges and solutions
to verifying advanced properties of a pure functional language, Haskell. We describe a
sound and automatic static verification framework for Haskell, that is based on contracts
and symbolic execution. Our approach gives precise blame assignments at compile-time
in the presence of higher-order functions and laziness.

First, we give a formal definition of contract satisfaction which can be viewed as a denota-
tional semantics for contracts. We then construct two contract checking wrappers, which
are dual to each other, for checking the contract satisfaction. We prove the soundness
and completeness of the construction of the contract checking wrappers with respect to
the definition of the contract satisfaction. This part of my research shows that the two
wrappers are projections with respect to a partial ordering crashes-more-often and fur-
thermore, they form a projection pair and a closure pair. These properties give contract
checking a strong theoretical foundation.

As the goal is to detect bugs during compile time, we symbolically execute the code
constructed by the contract checking wrappers and prove the soundness of this approach.
We also develop a technique named counter-example-guided (CEG) unrolling which only
unroll function calls on demand. This technique speeds up the checking process.

Finally, our verification approach makes error tracing much easier compared with the ex-
isting set-based analysis. Thus equipped, we are able to tell programmers during compile-
time which function to blame and why if there is a bug in their program. This is a break-
through for lazy languages because it is known to be difficult to report such informative
messages either at compile-time or run-time.
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Chapter 1

Introduction

Program errors are common in software systems, including those that are constructed
from functional languages. For greater software reliability, such errors should be re-
ported accurately and detected early during program development. Contract checking
(both static and dynamic) has been widely used in procedural and object-oriented lan-
guages [LN98, FLL*02, BCCT03, BLS04]. The difficulty of contract checking in func-
tional languages lies in the presence of advanced features such as higher-order func-
tions and laziness. However, dynamic checking of contracts for higher-order functions
has been studied by [FF02, BM06, FB06, HJL06]. Recently, hybrid' contract check-
ing [Fla06, KTG06, KF07, GF07] for functional languages has also been proposed.

Inspired by the idea of the contract semantics [FF02, BM06], in this thesis, we describe
a sound and automatic static verification tool for Haskell, that is based on contracts and
symbolic execution. Our approach gives precise blame assignments at compile-time in the
presence of higher-order functions and laziness. Consider:

f :: [Int] -> Int
f xs = head xs ‘max‘ 0

where head is defined in the module Prelude as follows:
head :: [a] -> a
head (x:xs) = x

head [] = error "empty list"

If we have a call £ [] in our program, its execution will result in the following error
message from the runtime system of the Glasgow Haskell Compiler (GHC):

Exception: Prelude.head: empty list

This gives no information on which part of the program is wrong except that head has
been wrongly called with an empty list. This lack of information is compounded by the

LA static contract checking followed by a dynamic contract checking.
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18 1.1. CONTRIBUTIONS

fact that it is hard to trace function calling sequence at run-time for lazy languages, such
as Haskell.

The programmers’ intention is that head should not be called with an empty list. To
achieve this, programmers can give a contract to the function head. Contracts are imple-
mented as pragmas:

{-# CONTRACT head :: {s | not (null s)} -> {z | True} #-}
where not and null are just ordinary boolean-valued Haskell functions:

null :: [a]l -> Bool
null [] = True
null xs = False

not True = False
not False = True

This contract places the onus on callers of head to ensure that the argument to head
satisfies the expected precondition. With this contract, our compiler would generate the
following error message (by giving a counter-example (f [])) when checking the definition

of £:
Error: f [] calls head

which fails head’s precondition!

Suppose we change f’s definition to the following:

f xs = if null xs then O
else head xs ‘max‘ O

With this correction, our compiler will not give any more warning as the precondition of
head is now fulfilled.

Our goal is to detect crashes in a program where a crash is informally defined as an unex-
pected termination of a program (i.e. a call to error). Divergence (i.e. non-termination)
is not considered to be a crash.

1.1 Contributions

In this thesis, we develop a compile-time checker to highlight a variety of program errors,
such as pattern matching failure and integer-related violations (e.g. division by zero,
array bound checks), that are common in Haskell programs. We make the following
contributions:

1. Our system is the first static checker for a lazy functional language, intended for
ordinary programmers. It has the following features:



CHAPTER 1. INTRODUCTION 19

e We check contract violation statically (like ESC/Java [FLLT02]), rather than
dynamically (like run-time checking approaches [FF02, HJL06]).

e We check each program in a modular fashion on a per-function basis. We
check the contract of a function f using mostly the contracts of functions that
f calls, rather then by looking at their actual definitions. This modularity
property is essential for the system to scale.

e Contracts are written in Haskell itself so that programmers do not need to
learn a new language.

e We design a verification system for a lazy language. The framework can be
easily tuned to verify programs written in a strict language, but not vice versa.

e We can detect and locate bugs in the presence of higher-order functions
and arbitrary data structures (Chapter 4)

Few of these features are individually unique, but no system known to us offers
them in combination.

2. We give a crisp, declarative specification for what it means for a term to satisfy a
contract (Section 4.3), independent of the techniques used (theorem provers, run-
time checks, whatever) to verify that it does indeed satisfy it. This is unusual,
with the notable exception of Blume & McAllester’s work [BM06]. However, unlike
Blume & McAllester (and most other related work on higher-order contracts), we
focus on static verification and target a lazy language. To the best of our knowledge,
this is the first attempt for static checking of higher-order functions with contracts.

3. Our contracts themselves contain unrestricted Haskell terms. That means arbitrary
functions can be used in contracts, including;:

e higher order functions
e recursive functions

e partial functions

which are not supported by most automatic verification tools including popular
ones such as ESC/Java [FLLT02] and Spec# [BLS04]. This hugely increases the
expressiveness of the specification language and allows sophisticated properties to be
conveniently expressed (Chapter 2). This also means we tackle head-on the question
of what happens if the contract itself diverges (Section 5.2) or crashes (Section 5.3).

4. Despite these complications, we are able to give a very strong theorem express-
ing the soundness and completeness of contract wrappers as compared to contract
satisfaction (Chapter 5). Our framework neatly accommodates some subtle points
that others have encountered, including: ensuring that all contracts are inhabited
(Section 4.3.4) and the Any contract (Section 4.3.3).

5. We develop a concise notation (> and <) for describing contract checking, which
enjoys many useful properties (Section 5.5) for presenting a relatively-simple proof
of contract wrappers (Chapter 6).
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1.2. THESIS ROADMAP

10.

Unlike the traditional verification condition (VC) generation? (in some meta lan-
guage) approach that solely relies on a theorem prover to verify it, we treat precondi-
tions and postconditions as boolean-valued functions and check safety properties us-
ing symbolic simplification that adheres to Haskell’s semantics instead (Section 7.1).
This way, we have better control of the whole verification process and whenever nec-
essary, we can ask an external theorem prover for assistance (Section 7.1.2).

We exploit a counter-example guided (CEG) unrolling technique to assist the sym-
bolic simplification process (Section 7.2). CEG approach is used widely for ab-
straction refinement in the model checking community. However, to the best of our
knowledge, this is the first time CEG is used in determining which function call to
be unrolled.

. We give a trace of functional calls that leads to a crash at compile-time, whilst such

traces are usually offered by debugging tools at run-time. A counter-example is
generated and reported together with its function calling trace as a warning message
for each potential bug (Section 7.3).

. We show that this symbolic-simplification approach is indeed sound w.r.t. the spec-

ification (unlike, say, ESC/Java) (Section 7.1). An induction approach used for
contract checking of recursive functions is sound and we give formal definition and
proof of soundness (Section 5.4). Our approach can verify advanced properties such
as sorting (Section 8.3) and AVL trees (Section 8.5).

We integrate it to one branch of the Glasgow Haskell Compiler (GHC) so that the
verification tool can deal with full Haskell. We evaluate our implementation on
small but interesting real-life programs (Chapter 9).

1.2 Thesis Roadmap

This thesis is divided into three parts:

e Appetiser. Chapter 1 and 2 give a programmer’s-eye view of the system and

Section 2.3 describes the intuition of how static contract checking works. Section 1.3
(Technical Background) shows where we position ourselves in the area of program
verification. Readers, who are familiar with program verification or bug detection,
may skip Section 1.3.

Main Course. Chapter 3-9 contains all the details of the static contract checking
framework where Chapter 4-7 are the most substantial chapters of this thesis.

Dessert. This thesis opens a new and fertile research area on static contract check-
ing. Chapter 10 shows possible future work that can be done to enhance the current
system. As there are many approaches in program verification, Chapter 11 justifies
that our approach is new and plausible by comparing with closely related work in

2The computation of a VC is similar to the computation of a weakest precondition.
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detail. We also suggest possible future collaboration with some of the related work.
We put the related work chapter in Part III due to the fact that readers may have to
understand many technical details of our system to appreciate the differences which
may be small but crucial.

For the ease of reading, a page number reference to definitions, theorems and lemmas is
given as a superscript.

1.3 Technical Background

Software reliability is a serious problem for modern society. We are in contact with
software everyday, but this software often contains serious bugs. This is partly because
software is getting more and more complex, and partly because program verification
techniques are not advanced enough.

There are two reasons that make a functional language the language of choice for building
complex and reliable software:

1 It makes programming easier by introducing high-level features such as higher-order
functions, abstract data types, polymorphism, laziness, etc.

T It avoids the side effects caused by pointers and aliasing which make imperative
languages (e.g. C-like languages) much more error prone.

Nevertheless, functional programmers still spend tremendous time in debugging their pro-
grams. From the 2005 Glasgow Haskell Compiler (GHC) survey?, the most-requested fea-
ture, after performance improvement, is some kind of debugger. About two decades after
the design of ML /SML [MTHS89] and one decade after the appearance of Haskell [Tea98],
there is still no compiler that supports static automatic verification of these high-level lan-
guages. The trouble is that these high-level languages support advanced features (such as
higher-order functions, complex recursions, laziness) that make programming easier, but
make verification harder.

Program verification dates back to Hoare logic [Hoa69] and its extensions [EMC77, Apt81,
DJ84, GCHR89, Goe85]. Researchers are actively involved in automatically verifying im-
perative programs at compile-time. Some examples include ESC/Java [FS01, FLL*02]
for Java, Spect [BLS04] for Cf, and SLAM [BRO02] for C. Formal reasoning for mutable
data structures has also been studied, for example, Separation Logic [Rey02, ORY01] has
been used in reasoning for low-level C-like languages. But most safety problems they try
to tackle are avoided by the design of a functional language as mentioned earlier at the
beginning of Section 1.3, hence very few results could be applied to verifying functional
languages. We aim to study sophisticated safety properties of functional programs. In
this thesis, we convert state monads to a core language which is similar to System F so
that we do not have to handle states explicitly.

In this section, we give a brief overview of the world of correctness checking of functional
programs along two axes:

3http:/ /www.haskell.org/ghc/survey2005-summary.html
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(1) level of rigorous in static checking (Section 1.3.1);

(2) compile-time to run-time (Section 1.3.2).

We only aim to give a general idea on the position of our work. More detailed comparisons
of our work with other closely related works can be found in Chapter 11 (Related Work).

1.3.1 Degree of Static Verification

Static checking can improve software productivity because the cost of correcting an error is
reduced dramatically if it is detected early. Figure 1.1 (adapted from [FLLT02]) compares
static checkers on two important dimensions: the degree of error coverage obtained by
running the tool and the cost of running the tool.

coverage
Theorem
Proving

decidable ceiling
Type
Checking

effort

Figure 1.1: Degree of Verification

Our static contract checking (SCC) framework is close to the extended static checking
(ESC) framework. However, existing ESC tools are all unsound (represented with dotted
circle) while ours is sound.

At the lower left corner are the static checking techniques that are widely used, which re-
quire only modest effort, but catch only a limited class of errors, for example, conventional
type checkers.

Another well-known static checking technique is dependent type checking, which is un-
decidable in general. However, if we restrict the constraints used in the dependent types
to linear inequalities over integer domain, the dependent type checking is decidable. For
example, a language that supports decidable dependent type checking is dependent ML
(DML) [XP99].
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At the top right corner are the most sophisticated program verification techniques which
may cover all possible safety checking, for example, Isabelle/HOL [tea06b] and Coq [tea06a].
However, it may take both the theorem prover and programmers (who may have to supply
necessary theorems) a great amount of effort to do the proof.

Hindley-Milner Type Checking

A type of a function is a general specification to the function. For example:

(+) :: Int -> Int -> Int
(/) :: Int -> Int -> Int

both functions (+) and (/) take two integers as input and return an integer as output.
The type of the function does not specify what the function does (whether addition or
division). A type checker reports an error during compile-time when it encounters an
expression such as 1 + True because the second argument True has type Bool which
violates the required type Int. However, an expression (5 + 0) is safe while (5 / 0)
will crash, though both of them are well-typed.

Dependent Type Checking over Restricted Constraint Domains

Dependent type checkers allow more constraints to be specified than conventional type
checkers, for example:

append [] ys ys
append (x:xs) ys = x : append Xs ys
withtype {m,n:Nat} => [a] (m) -> [a] (n) -> [a] (m+n)

The Hindley-Milner type of append is [a] -> [a] -> [a] which says that the function
append takes two lists of elements of type a and return a list of type a. The dependent type
[a] (m) -> [a] (n) -> [a] (m+n) makes the original Hindley-Milner type depend on the
value of m and n which refer to the length of each input list. The extra notation {m,n:Nat}
says that the m and n are universally quantified and they denote natural numbers. So the
dependent type of the function append says that the function takes two lists of length
m and n respectively and return a list whose length is the sum of the lengths of the two
input lists.

Consider the following functions:

(++) = append

rev [] = []

rev (x:xs) = rev xs ++ [x]
withtype {m:Nat} => [al(m) -> [a](m)

length [] =0
length (x:xs) = 1 + length xs
withtype {m:Nat} => [a] (m) -> Int(m)
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The function rev reverses a list, the function length calculates the length of a list and
the function ++ (which can be used in infix form) appends two lists. With the dependent
types, assuming xs and ys are safe, a dependent type checker should be able to tell that
the following expression

case length (rev (xs ++ ys)) == length (rev (ys ++ xs)) of
True -> xs
False -> error "huh"

is safe because length (rev (xs ++ ys)) == length (rev (ys ++ xs)) alwaysreturns
True and the call to “error” cannot be reached.

Extended Static Checking

Extended static checkers extend static type checkers by allowing more expressive con-
straints to be specified, so that they can catch more errors. The Extended Static Check-
ing (ESC) approach shares the same goal as dependent type checking: to check more
properties of a program than the basic type checking. Compare with DML, ESC relaxes
the form of constraints to be verified. It allows arbitrary pure functions to be used in the
specifications. Consider an example in ESC/Haskell, which reflects the general ESC style
of annotation.

foo x y @ requires { prime x > sqrt y }
foo x y @ ensures { $res == xx2 +
foo x y = case prime x > sqrt y of

True -> x*2

False -> error "foo"

where $res denotes the result of the function foo. We can see that arbitrary pure func-
tions can be used in the specification so ESC is undecidable. In the above example, no
tool can statically prove prime x > sqrt y for arbitrary x and y.

Tools that fall into this category include ESC/Modula-3 [LN98], ESC/Java [FLL*02],
Spec# [BLS04] and ESC/Haskell [Xu06]. ESC/Modula-3 and ESC/Java are unsound
while Spec# is sound because it requires invariants to be given. ESC/Haskell is sound
and forms part of this thesis.

Theorem Proving

In the upper right corner of Figure 1.1 is full functional program verification, which
theoretically catches all errors, but is extremely expensive. For example:

taut xs ys = case (rev (xs ++ ys) == rev ys ++ rev xs) of
True -> xs
False -> error "taut"
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We know that if given two safe finite lists xs and ys, the test
rev (xs ++ ys) == rev ys ++ rev xs -- A Theorem for finite lists!

should always evaluate to True because it is a tautology. However, in order to verify
this tautology, a theorem prover may require programmers to provide some non-trivial
lemmas. In the above case, a lemma stating the associativity of the function ++ is needed:

lemma assocAppend xs ys zs =
(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

The theorem prover has to prove the lemma based on the definition of (++) before applying
the lemma to verify the theorem. Often, to prove one lemma, more lemmas have to be
provided and proved. This whole process of proving one theorem can be very expensive.

Nevertheless, a theorem prover can be used as an assisting tool for static contract checking.
This is illustrated in Section 7.1.2 where we use an external theorem prover to simplify
expressions involving arithmetic.

1.3.2 Static Contract Checking vs Dynamic Contract Checking

Programmers can specify a property that they expect a function to have in the form of
a contract. If all functions in a program satisfy their corresponding contracts, a pro-
gram should not give any unexpected error during run-time. However, in general, not all
contract violations can be detected during compile-time. An alternative approach is to
check contract satisfaction at run-time and report failures if any run-time data, that a
function takes, violates the function’s contract. This approach is called dynamic contract
checking. Findler and Felleisen [FF02] adopt this approach and have given a dynamic con-
tract checking algorithm for Scheme, an untyped strict functional language. Research on
dynamic assertion checking includes [VOST05, HJL06, CLO7]. However, dynamic check-
ing suffers from two drawbacks. First, it consumes cycles that could otherwise perform
useful computation. More seriously, dynamic checking provides only limited coverage -
specifications are only checked on data values and code paths of actual executions. Thus,
dynamic checking often results in incomplete and late detection of defects.

Flanagan [F1a06] has proposed a hybrid contract checking scheme: a static contract check-
ing followed by a dynamic contract checking. (He uses the name hybrid type in [Fla06]
because it refers to hybrid refinement type.) Hybrid contract checking can detect defects
statically (whenever possible) and dynamically (only when necessary).

In this thesis, we focus on static contract checking and we can turn contracts that cannot
be checked statically into dynamic contract checks. However, this is easy in the strict
setting and is non-trivial in the lazy setting. Some work on lazy assertions [CMR03, CHO6|
has been proposed, but there are still some difficult open problems left to be solved. We
will elaborate more in Section 10.6.
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Chapter 2

Overview of Static Contract
Checking

The type of a function constitutes a partial specification to the function. For exam-
ple, inc :: Int -> Int says that inc is a function that takes an integer and returns
an integer. A contract of a function gives more detailed specification. For example:
{-# CONTRACT inc :: {x | x > 0} -> {r | r > x} #-} says that the function inc
takes a positive value and returns a value that is greater than the input. A contract
can therefore be viewed as a refinement to a type, so it is also known as refinement type
in [FP91, Dav97, Fla06].

This thesis describes a system that allows a programmer to write a contract on some (but,
like type signatures, not necessarily all) definitions, and then statically checks whether
the definition satisfies the contract. This check is undecidable, and our system may give
the result “definitely satisfies”, “definitely does not satisfy”, or “don’t know”. In the
latter two cases we emit information that helps to localise the (possible) bug. We begin,
however, by giving the flavour of contracts themselves with various examples. Section 4
gives formal semantics of contracts.

2.1 Expressiveness of the Specification Language

Consider a simple example:

div :: Float -> Float -> Float

div x y = case y == 0 of
True -> error "divide by zero"
False > x / y

where the operator (/) does the primary division job. The function div crashes when
taking an argument that is equal to 0. Programmers can give the function div a contract:

{-# CONTRACT div :: {x | True} —> {y | y /= 0} —> {z | True} #-}

27
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The contract of div says that the first argument can be any number (indicated by the
weakest constraint True) and the second argument should not be zero; if these require-
ments are satisfied, the function should produce a number (again, we do not care what
number it is). With this contract declaration, the compiler can tell (div 5 0) is a bug
without exploring the definition of div.

Recall the earlier example:
{-# CONTRACT inc :: {x | x>0} > {z | z > x} #-}

We see that the x in the precondition is used in the postcondition. Here, we assume that
the scope of x includes the RHS of -> so that we can relate the input and the output of
a function.

We now show the expressiveness of contracts with examples; each subsection focuses on
a particular feature.

2.1.1 Recursive Functions Called in Contracts

Programmers often find that they use a data type with many constructors, but at some
specialised contexts in the program only a subset of these constructors is expected to
occur. Such a data type can also be recursive. For example, in a software module of
the Glasgow Haskell Compiler (GHC) that is used after type checking, we may expect
that types would not contain mutable type variables. Under such a scenario, certain
constructor patterns may be safely ignored. We use a simple example to illustrate such
scenario by defining a datatype T and a predicate noT1 as follows.

data T = T1 Bool | T2 Int | T3 T T

noTl :: T -> Bool

noTl (T1 _) = False

noTl (T2 _) = True

noTl (T3 t1 t2) = noT1 tl1 && noT1 t2

The function noT1 returns True when given any data structure of type T in which there
is no data node with a T1 constructor. We may have a consumer:

sumT :: T -> Int

{-# CONTRACT sumT :: {x | noT1l x} -> {z | True} #-}
sumT (T2 a) = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

which requires that the input data structure does not contain any T1 node. We may also
have a producer like:
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rmTl :: T -> T
{-# CONTRACT rmT1 :: {x | True} -> {z | noT1 z} #-}
rmT1 (T1 a) = case a of
True -> T2 1
False -> T2 0O
rmT1l (T2 a) = T2 a
rmT1 (T3 t1 t2) = T3 (rmT1 t1) (rmT1 t2)

We know that for all crash-free t of type T, a call (sumT (rmT1 t)) will not crash. Thus,
by allowing a recursive predicate (e.g. noT1) to be used in the contracts, we can achieve
such a goal.

2.1.2 Higher-Order Functions Called in Contracts

Now consider a higher-order function filter whose result is asserted with the help of
another recursive higher-order function all.

filter :: (a -> Bool) —> [a] —> [a]
{-# CONTRACT filter :: {f | True} -> {x | True} -> {z | all f z} #-}
filter £ [1 = []
filter £ (x:xs8’) = case (f x) of
True -> x : filter f xs’
False -> filter f xs’

all :: (a -> Bool) —> [a] —> Bool
all £ [] = True
all f (x:xs) = f x && all f xs

(&&) True x = x
(&&) False x = False

Note that in the contract of filter, the variable f in the parameter contract can be used
in the result contract. In general, we assume the scope of bound variables in contracts
extends over the RHS of the ->.

2.1.3 Contracts for Higher Order Function Parameters

The contract notation is more expressive than the requires, ensures notation used in
our initial work [Xu06], because it scales properly to higher order functions. Consider an
example adapted from [BMO6]:

f1 :: (Int -> Int) -> Int
{-# CONTRACT f1 :: ({x | True} > {y | y >=0}) -> {z | z >= 0} #-}
fi1g=(@g1 -1

f2=f1 (\x >x-1)
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The contract of £1 says that if £1 takes a function, which returns a natural number when
given any integer, the function £1 itself returns a natural number.

The Findler-Felleisen algorithm in [FF02] (a dynamic contract checking algorithm) can
detect a violation of the contract of £1, however, it cannot tell the argument of f1 in
the definition of £2 fails £1’s precondition due to lack of evidence during run-time. On
the other hand, the Sage system in [KTG'06] (a hybrid contract checking system) can
detect the failure in £2 statically, and can report contract violation of £1 at run-time. Our
system can report both failures at compile-time with the following informative messages:

Error: f1’s postcondition fails
because (g 1) >= 0 does not imply
(g 1) -1>=0

Error: f2 calls f1
which fails f1’s precondition

2.1.4 Functions without Contracts

A special feature of our system is that it is not necessary for programmers to annotate
all the functions. There are two reasons why a programmer may choose not to annotate
a function with contracts:

1. The programmer is lazy.

2. There is no contract that is more compact than the function definition itself.

Examples of the second case are the function (&&), null and even a recursive function
like noT1 in Section 2.1.

If a function, say f, which may be recursive, does not have a contract annotation, we
assume programmers want to check whether f satisfies the trivial contract {x | True}.

It is possible to infer simple contracts for non-recursive functions, such as head, by col-
lecting conditions that do not leading to a crash. It is much harder to infer contracts for
recursive functions. Contract inference is not in the scope of this thesis; we discuss some
existing work on specification inference in Section 11.5.

2.1.5 Laziness

A conservative contract may cause false alarms especially in the presence of laziness. For
example:

fst (a,b) = a
f3 xs = (null xs, head xs)
f4 xs = fst (£3 xs)



CHAPTER 2. OVERVIEW OF STATIC CONTRACT CHECKING 31

We could give £3 the following contract:
{-# CONTRACT £3 :: {xs | not (null xs)} -> {z | True} #-}

With this contract, our system may report the following error message when checking the
definition of £4.

Error: (f4 []) fails f3’s precondition

However, the call fst (£3 xs) is safe in a lazy language even if xs has value [] because
the call to head [] will not be invoked.

One way to reduce such false alarms is to inline £3 and fst so that we have fst (£3 xs)
simplified to null xs and we know f4 is safe. Although inlining can reduce false alarms
due to laziness, if the size of the lazy function is big, or the function is recursive, the
inlining strategy breaks down. For example:

fstN :: (Int, Int) -> Int -> Int

fstN (a, b) n = case n > 0 of
True -> fstN (a + 1, b) (n - 1)
False -> a

g2 = fstN (5, error "fstN") 100

We need to inline £stN for 100 times to know g2 is safe.

A better way to reduce the false alarms due to laziness is to introduce a special contract
Any, which every expression satisfies. We can give function £stN the following contract:

{-# CONTRACT fstN :: ({x | True}, Any) -> {n | True} -> {z | Truel} #-}

The contract of £stN says that it does not care what the second component of the argu-
ment is, as long as the first component is crash-free, the result is crash-free. Here, with
the contract Any, without inlining any function, our system can tell that g2 is safe.

This means we give a crash (error "msg") a contract Any, while in [BMO06] an expression
that unconditionally crashes satisfies no contract. This is one of the key differences in
designing the contract semantics.

2.1.6 Data Constructor Contract

In Section 2.1.5, we gave fst’s argument the contract ({x | Truel}, Any); that is, the
argument should be a pair whose first component satisfies {x | True}, and whose sec-
ond satisfies Any. We generalise this form for any user-defined data constructor so that
programmers can give a contract to the sub-components of any data constructor. For
example, we can use the list constructor (:) to create a contract like this:

{x | x>0} : {xs | all (<0) xs}
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which says that the first element in the list is positive while the rest are all negative. We
may also have this:

{x 1 x>0} :{y | y>0}: Any

which says that the first two elements are positive while the rest can be anything (i.e.
may crash). There are two things to note:

1. The contract Any and the contract {x | True} are different: all expressions satisfy
Any while only crash-free expressions satisfy {x | True}. The difference is explained
in detail in Section 4.3 and Section 5.1.2.

2. Although we can give a contract to a component of a data structure, it is different
from a recursive contract (Section 10.2).

We allow any user-defined data constructors to be used in declaring a contract. For
example:

data A = A1 Int Bool | A2 A

f5 :: A -> Int
{-# CONTRACT £5 :: Al {x | x > 0} {y | y == True} -> {z | z > x} #-}
f5 (Al x y) = case y of

True ->x + 1

False -> error "f4"

As we allow data constructors to be used in contracts, we can replace the contract
{y | y == True} by True as True itself is a nullary constructor. There are two things
to note:

1. In the contract of £5, the data constructor Al is used, whereas in the type specifi-
cation the data type A is used.

2. A call (£f5 (A2 ...)) fails the precondition of £5.
Moreover, data constructor A2 can be used in constructing contracts as well. For example:
{-# CONTRACT f6 :: A2 {x | f5 x > 0} -> {z | True} #-}

Function £6 expects an input satisfying (A2 (A1 {x | x > 0} True)). Note that the
constructor contract only specifies properties for a top-level data constructor. To specify
properties recursively over a data structure, we need a recursive contract, which is one of
our future enhancements (Section 10).
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2.1.7 Partial Functions in Contracts

A partial function is one that may crash or diverge. For example, function head, which
crashes when given an argument []. Since we allow arbitrary Haskell code in contracts,
what are we to say about contracts that crash or diverge? One possibility is to simply
exclude all such contracts — but excluding divergence (in a statically-checkable system)
requires a termination checker, and excluding functions like head is extremely restrictive.
For example:

head :: [a] -> a

{-# CONTRACT head :: {x | not (null x)} -> {z | True} #-}
head (x:xs8) = x

head [] = error "empty list"

headPlus :: [Int] -> Int

{-# CONTRACT headPlus :: {xs | not (null xs)}
-> {z | z > head xs} #-}

headPlus [] = error "Urk"

headPlus (x:xs) = x+1

Here the postcondition uses head (which may crash), but that seems entirely reasonable
in view of the precondition that xs is non-empty. Nevertheless, such a contract is rejected
by [BMO06], because of the call to head.

Our approach is to permit divergence in contracts (which avoids the requirement for a
termination checker), but to require them to be “crash-free”. Our definition of crash-
free-ness for contracts takes account of dependency, and hence is much more liberal than
requiring each Haskell term in the contract to be independently crash-free (which excludes
head). This liberality is, we believe, key to making contracts usable in practice. We discuss
crash-freeness of contracts in §5.3.1 and divergence in §5.2.1.

2.1.8 Contract Synonym

In previous sections, we used the contract {x | True} at many places. In our system,
we allow programmers to define contract synonyms which are similar to the idea of type
synonyms. For example, we may have:

{-# CONTRACT 0k = {x | True} #-}

{-# CONTRACT Pos = {x | x > 0} #-}

{-# CONTRACT Nat = {x | x >= 0} #-}

{-# CONTRACT NotNull = {xs | not (null xs)} #-}

{-# CONTRACT head :: NotNull -> 0Ok #-}
head (x:xs) = x

In this thesis, a contract synonym is just a shorthand. In future, we may allow contract
synonyms to have parameters.
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2.2 Three Outcomes from Our System

Some properties that our system may attempt to check can either be undecidable or
difficult to verify at compile-time. For example:

gl :: Int -> Int
{-# CONTRACT g1 :: Ok -> Ok #-}
gl x = case (prime x > square x) of
True -> x
False -> error "gl"

where prime gives the xth prime number and square gives x2. Most theorem provers

including ours are unable to tell the condition prime x > square x always holds or not
(in fact, it does not hold), so we report a potential crash. For another example:

g2 :: [a] > [a] -> [al]

{-# CONTRACT g2 :: Ok -> Ok -> Ok #-}

g2 xs ys = case (rev (xs ++ ys) == rev ys ++ rev xs) of
True -> xs
False -> error "g2"

Some theorem provers may be able to prove the validity of the theorem:
rev (xs ++ ys) == rev ys ++ rev xs

for all well-defined xs and ys. However, this is often at high cost and may require extra
lemmas from programmers such as the associativity of the append operator ++.

As it is known to be expensive to catch all errors in a program, our system chooses only
to provide meaningful messages to programmers based on three possible outcomes after
checking for potential crashes for each function definition (say f). They are:

(a) Definitely safe. If the precondition of f is satisfied, any call to f with crash-free
arguments will not crash.

(b) Definite bug. Any call to f with crash-free arguments, satisfying the declared
precondition of f, crashes or loops.

(c) Possible bug. The system cannot decide which of (a) or (b) is the case.

For the last two cases, a trace of function calls that leads to a (potential) crash together
with a counter-example! will be generated and reported to the programmer. We make a
distinction between definite and possible bugs, in order to show the urgency of the former
and also because the latter may not be a real bug.

IProgrammers can set the number of counter-examples they would like to see.
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2.3 The Plan for Verification

It is all very well for programmers to claim that a function satisfies a contract, but how
can we verify that claim statically (i.e. at compile time)? The usual approach is to extract
verification conditions (VC) from the program that faithfully embody the semantics of
the language and send those VCs to a theorem prover. If we get answer “Yes”, we know a
function satisfies its contract. But if we get answer “No”, it is hard to tell which function
to blame and why.

Our overall plan, which is similar to that of Blume and McAllester [BMOG6], is as follows.

e Our overall goal is to prove that the program does not crash, so we must first say
what programs are, and what it means to “crash” (Chapter 3).

e Next, we give a semantic specification for what it means for a function f to “satisfy
a contract” ¢, written f €t (Chapter 4).

e From a function definition f = e we form a term e >t pronounced “e ensures t”.
This term behaves just like e except that

(a) if e disobeys ¢ then the term crashes;

(b) if the context uses e in a way not permitted by ¢ then the term loops.

The term et is essentially the wrapper mechanism first described by Findler and
Felleisen [FF02], with some important refinements (Chapter 5).

e With these pieces in place, we can write down our main theorem (Chapter 5), namely
that
eet <= (ept)is crash-free

We must ensure that everything works properly, even if e diverges, or laziness is
involved, or the contract contains divergent or crashing terms.

e Using this theorem, we may check whether f € t holds as follows: we attempt
to prove that (e >t) is crash-free — that is, does not crash under all contexts.
We conduct this proof in a particularly straightforward way: we perform symbolic
evaluation of (e > t). If we can simplify the term to a new term €', where €’ is
syntactically safe — that is, contains no crashes everywhere in the expression —
then we are done. This test is sufficient, but not necessary; of course, the general
problem is undecidable.
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Chapter 3

The Language

The language presented in this thesis, named language H, is simply-typed lambda calculus
with case-expression, constructors and integers. Language H is simpler than the language
we use in our implementation, which is the GHC Core Language [Tea98], which is similar
to System F and includes parametric polymorphism.

3.1 Syntax

The syntax of our language H is shown in Figure 3.1. A program is a module that
contains a set of data type declarations and function definitions. Expressions include
variables, type and term abstractions, type and term applications, constructors and case
expressions. We treat let-expressions as syntactic sugar:

letx=e;iney =, (Ar.e3) ey

We omit local letrec as well, we only have recursive (or mutually recursive) top-level
functions. We introduce a special function fin,, which is only for internal usage (Sec-
tion 5.2.1). Readers can ignore the fin,, for the moment. There are two ezception values
adopted from [Xu06]:

BAD is an expression that crashes. A program crashes if and only if it evaluates to BAD.
For example, a user-defined function error can be explicitly defined as:

error :: String -> a
error s = BAD

A preprocessor ensures that source programs with missing cases of pattern matching
are explicitly replaced by the corresponding equations with BAD constructs. For
example, after preprocessing, function head’s definition becomes:

head (x:xs8) = x
head [] BAD

39
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3.1.

SYNTAX

data type decl

data constructors
data type decl
data constructors

Expression
case-expression
constructor
finite evaluation

exception

a crash
unreachable

case alternative

pattern

base types
data type
type variable

pgm € Program
pgm = defl?"'vdefn
def € Definition
def := decl
| fet contract attribution
| fZ=e top-level definition
decl € Data Type
decl = data T & where
e
Ker,—-Ta
| dataT a =
Ky 7| K
x,y,v, f,g € Variables
a,e,p € Exp
a,e,p n= v MxuT).el e e
| caseegof (viT) alts
| Ke¢é
| fin, e
|
T = BAD
| UNR
alts = alty...alt,
alt = pt — e
pt = K(xiomm)... (TpTh)
| DEFAULT
T e Types
T | Int|Booll|()]...
| T
| «
|  Va.r
val € Value
val = n| K €| A\x € t.e | UNR | BAD

Figure 3.1: Syntax of the Language H

UNR (short for “unreachable”) is an expression that gets stuck. This is not considered
as a crash, although the execution comes to a halt without delivering a result. A
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program that loops forever also does not crash, and does not deliver a result, so you
can think of UNR as a term that simply goes into an infinite loop.

The exceptional values are for internal usage and hidden from Haskell programmers. Their
behaviour is made precise by the operational semantics in Figure 3.3.

The top-level declaration f € ¢ is the claim that f satisfies contract t. We discuss contracts
in Chapter 4.

3.2 Type Checking Rules for Expression

The language H is statically typed in the conventional way. Figure 3.1 gives the syntax
of types, while Figure 3.2 gives type checking rules. A type judgement has the form

AkFenT

which states that given A (which is a mapping from variable to its type, contract and
definition), e has type 7 assuming that any free variable in it has type given by A. If
A = (), we omit the A, and write - e:: 7.

AFBAD: 7 [T-BAD] AFUNR: 7 [T-UNR]
viT€EA K:T7T—-TeA AbenT
ArFvor [T-VAR] AFKe:Ta [T-Con]

A F e ::Bool Ax:mbenn
AF fin, e :: Bool [T-Fin] AFMNzum)e):m — [T-Law]
AlFe 1 —n AFeyim
AF (e €)1 [T-App]
A+ T7 Af{veT Ty K, z; = TT}HE
eo T T vaT T s T Thhe oo
’ ’ T-CASE

At (caseegof (vuT T){K; 7; — e}) =7 [ ]

A Ar.eg::m — 7 AlFexT [T-CASELAWM]

A& (case \x.eg of (v::7y — T2) {DEFAULT — e}) =i 7

Figure 3.2: Type Checking Rules

As we do type checking before contract checking, we assume all expressions are well-typed
(i.e. no type error) in the rest of this thesis. Note that nothing substantial in the thesis
depends delicately on the type system. The reason we ask that programs are well-typed
is to avoid the technical inconvenience in designing the semantics of contracts if, say,
evaluation finds an ill-typed expression (3 True).
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3.3 Operational Semantics

The semantics of the language H is given by the confluent, non-deterministic rewrite rules
in Figure 3.3. The language is confluent because it is a subset of the untyped lambda
calculus which is confluent. We use a small-step reduction-rule semantics, rather than
(say) a deterministic more machine-oriented semantics, because the more concrete the
semantics becomes, the more involved the proofs become too.

Most of these rules are entirely conventional. The rule [E-top| deals with a top-level
function call f. We fetch its definition from the environment A, which maps a variable
to its type, contract and definition. To save clutter, we usually leave this environment
implicit, rather than writing (say) A b e; — s es.

Evaluation proceeds by repeatedly replacing the current redex with its corresponding one-
step reduction until a value is reached. (Note that BAD and UNR are considered values.)
Rule [E-ctx] allows a reduction step to take place anywhere. The expression C[e] means
substituting the e in the context C by the expression e (i.e. Cle/e]). The relation e; — e
performs a single step reduction and the relation —* is the reflexive-transitive closure of
—.

The unconventional features are the “M” subscript on the reduction arrow, the form
fin, e, and the reduction rules [E-fin1,2,3]. Their job is to convert a boolean-valued
divergent expression to True before the fuel M is used up. These aspects all concern
contracts containing divergent expressions, and are discussed in detail in Section 5.2.1,
where we define —* in terms of —7%,. For the moment, we can simply ignore the subscripts
and fin.

The rule [E-beta] performs the standard S-reduction. When a scrutinee of a case expres-
sion is a data constructor that matches one of the patterns, it is also a redex, shown in
the rule [E-matchl]. If the scrutinee does not match any pattern pt; except the DEFAULT
branch, then the DEFAULT branch will be taken as shown in the rule [E-match2], In the
rule [E-match3], if the scrutinee is a function and the only branch is DEFAULT, the RHS
of the branch is taken. The rule is only useful when we introduce a function ‘seq‘ in
Section 5.1.1. In the rule [E-match4], if the scrutinee does not match any pattern and
there is no DEFAULT branch, indicated by (K @ ¢ pt;), we return UNR. This relates to the
fact that during preprocessing we fill in all missing branches by BAD, and now we would
like to use UNR to indicate a missing branch. The purpose of doing so is to make the
symbolic execution less cluttered. We discuss symbolic execution in detail in Section 7.1.
Rules [E-exapp] and [E-excase] deal with exception values in the usual way.

Now we can give the usual definition of contextual equivalence:

Definition 1 (Semantically Equivalent) Two expressions e; and ey are semantically
equivalent, namely e; = eq, iff

VC. Cle;] =" BAD <= ([es] —" BAD

Two expressions are said to be semantically equivalent, if under all closing contexts, if
one evaluates to BAD, the other also evaluates to BAD. The conventional definition on
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Figure 3.3: Semantics of the Language H

semantical equivalence uses () (unit) or any value that is syntactically comparable, for
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example, True, False, etc. That is:
VC. Cle] =" () <= Cles] =" ()

However, if we use this definition together with our operational semantics, we cannot
distinguish the two exceptional values BAD and UNR. So instead of using (), we choose
another syntactically comparable value BAD.

Lemma 1 (Equivalence) For all (possibly open) expressions ey, es, if e; —* eq, then
€1 =5 €9.

As mentioned earlier, there exists an implicit environment that maps variables to its type,
contract and definition. So Lemma 1 actually says “if A Fe; —* ey, then A F e} = e5”.

Lemma 2", which is only used in the proof of Lemma 57 says that the strictness of a
context does not change the behaviour of an expression. This implies that if we can prove
a theorem that holds for strict context, then the theorem holds for all contexts.

Lemma 2 (Strict Context)

VS, BAD ¢, S, S[e] /" BAD < VC, BAD ¢, C, C[e] /~" BAD

ProOOF We prove two directions separately.
(=) We prove it by induction on the size of context. We only have to examine those
non-strict context one by one:

1. Case C' = ¢’ (": Since BAD ¢, C, BAD ¢, ¢/. That means ¢’ /~+* BAD. By inspecting
rules in Figure 3.3, BAD can only be caught by the rule [E-exapp]. By induction
hypothesis, VC',BAD ¢ C',C'[e] +* BAD. Since ¢’ /* BAD, C'[e] /* BAD, BAD ¢; ¢’
and BAD ¢, C’, we have C[e] /* BAD as desired.

2. Case C' = A\z.C": It is a lambda value, so C[e] /+* BAD.

3. Case C =K ey...C!...e,: It is a constructor value, so C[e] /* BAD.

4. Case C' = case € of {py — e1;...p; — Cl;...;p, — e,}: Since BAD ¢, C, BAD
¢, ¢/. That means ¢’ /~* BAD. By inspecting rules in Figure 3.3, BAD can only be
caught by rule [E-excase]. By induction hypothesis, VYC',BAD ¢, C’,C'[e] +/* BAD.
Since € +/* BAD, C'[e] /* BAD, BAD ¢, ¢ and BAD ¢, C', we have C[e] /* BAD as

desired.

5. Case C'= \z.C": It is a lambda value, so C[e] /* BAD.

(<) Immediate because a strict context S is a subcontext of C'. m
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3.4 Crashing

We use BAD to signal that something has gone wrong in the program: it has crashed. A
program is correct if and only if the main function in a program does not crash.

Definition 2 (Crash) A closed expression e crashes iff e —* BAD.

Our technique can only guarantee partial correctness. A diverging program does not
crash.

Definition 3 (Diverges) A closed expression e diverges, written e, iff either e —* UNR,
or there is no value val such that e —* val.

At compile-time, one easy way to check the safety of a program is to see whether the
program is syntactically safe:

Definition 4 (Syntactic safety) A (possibly-open) expression e is syntactically safe iff
BAD ¢ e. Similarly, a context C is syntactically safe iff BAD ¢ C.

The notation BAD ¢ e means BAD does not syntactically appear anywhere in e, similarly
for BAD ¢, C. For example, \x.z is syntactically safe while A\x. (BAD,z) is not. An
expression with free variables is not considered as syntactically safe.

Definition 5 (Crash-free Expression) A (possibly-open) expression e is crash-free iff

VC.BAD ¢, C, - Cle] :: (), Cle] " BAD

The notation + Cle] :: () means C[e] is closed and well-typed under the type system
shown in Figure 3.2. The Definition 57 says that if an expression does not crash in all
safe contexts, which are like probes for BAD, then the expression cannot crash regardless
whether there is any BAD syntactically appearing in it because all of them are unreachable.
That means a crash-free expression may not be syntactically safe, for example:

\x -> case x * x >= 0 of
True -> x + 1
False -> BAD

The tautology x x x >= 0 is always true, so the BAD can never be reached. For another
example, (BAD, 3) is not crash-free because there exists a context (fst o), such that:

fst (BAD,3) — BAD

In short, crash-freeness is a semantic concept, and hence undecidable, while syntactic-
safety is syntactic and readily decidable. Certainly, a syntactically safe expression is
crash-free and crash-freeness is preserved during execution.

Lemma 3 (Syntactically Safe Expression is Crash-free) For all e,

e is syntactically safe = e is crash-free
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PROOF Given BAD ¢, e, for all C such that BAD ¢, C, we know BAD ¢, C[e]. Recall the
operational semantics in Figure 3.3, in order to introduce a BAD at RHS of —, we must
have a BAD at the LHS of —. Since BAD ¢, C[e], we have C[e] +* BAD. n

Lemma 4 (Crash-free Preservation) Given e; — ea,
e1 18 crash-free <= ey is crash-free

PROOF We prove two directions by contradiction.

(=)

Suppose e, is not crash-free. By Definition 57 (Crash-free Expression), there exists a C
such that BAD ¢, C and C[ey] —* BAD. By [E-ctx| and e; — ey and C[es] —* BAD, we
have: Cle;] —* C[es] —* BAD. As we know e, is crash-free, we reach contradiction. Thus,
we are done.

(<)

Suppose e; is not crash-free. By Definition 57 (Crash-free Expression), there exists a
C such that BAD ¢, C and C[e;] —* BAD. By [E-ctx] and e; — ey and confluence of the
language, we have C[es] —* BAD. With the assumption that ey is crash-free, we reach
contradiction. Thus, we are done. n

The forward direction of Lemma 5°° cannot be derived directly from the definition of
crash-free expression (Definition 5p45), which requires the context to be syntactically safe.
In the proof of Lemma 5°° ((=) direction), we use an operator |.| which replaces all BADs
in an expression by UNR. We call it neutering, which is recursively defined in Figure 3.4.

The neutering operator satisfies the Lemma 6"

Llel] = le]

|BAD| = UNR
|UNR|] = UNR
lerea] = [e1] |ea]

[ M.e] = lv.le]
|Ker...ep] = K lei...|len]
|case ey of {pt; — ¢;}| = case |ey] of {pt; — |e;]}

Figure 3.4: Neutering Expression and Contract

Lemma 5 (Crash-free Function) For all (possibly-open) terms A\z.e,

Azx.e is crash-free
<~
for all (possibly-open) crash-free €', el[e’/x] is crash-free.

PrOOF We prove two directions separately.
(=)

Ax.e is crash-free

= (By Lemma 6", ¢ is crash-free = €] =5 €
and by the definition of crash-free expression)
for all crash-free €', e[e’/x] is crash-free
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(<) We have the following proof.

Ve e[e' /x| is crash-free

=  (By Lemma 4"")
Ve, (Ax.e) € is crash-free

= (By Definition 5" (Crash-free Expression))
(1) Ve,VC, BAD ¢, C, C[(Ax.e) €] /~* BAD
=  (By Lemma 2"* (Strict Context))

—
[\
~—

Ve VD', BAD ¢, D', D'[(A\x.e) €'] /»* BAD

= (reasoning at (*) below)
(3) VD, BAD &, D, D[(\z.c)] /* BAD
=  (By Lemma 2" (Strict Context))

VC, BAD ¢, C, C[(A\x.e)] /~* BAD

< (By Definition 5"* (Crash-free Expression))
Azx.e is crash-free

(*) To prove (3), we appeal to Lemma 2", which allows us to examine only strict contexts.
There are 3 cases to consider:

e Case C = e. Since (Az.e) is a value, (Az.e) * BAD.
e Case C = e ¢”. By (2) where we choose ¢’ as €”, we are done.

e Case C = case e of alts. Since A\z.e is not a constructor, case Ax.e of alts cannot
be further reduced, so (case Ax.e of alts) /* BAD.

End of proof. n
Lemma 6 (Neutering) If e is crash-free, then |e] = e.

PROOF Since e is crash-free, all BADs in e are not reachable so by converting all BADs in
e to UNR by |.| does not change the semantics of e. Formally, we prove this by induction
on reduction rules. ]

3.5 Behaves-the-same

We now define an ordering, named Behaves-the-same, which is useful in later sections.

Definition 6 (Behaves the same) Ezpression ey behaves the same as es w.r.t. a set of
exceptions R, written ey < g eq, iff for all contexts C, such that Vi € {1,2}. + Cle;] :: ()

Cles] =*re R = Cle] ="r

Definition 6" says that e; either behaves the same as e, or throws an exception from
R. (The definition does not look as strong as that, but as every theorist knows, it is.
For example, could e; produce True while e5 produces False? No, because we could find
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a context C that would make C[ey] throw an exception while C[e;] does not.) In our
framework, there are only two exceptional values in R: BAD and UNR. Certainly, if e, itself
throws an exception, then e; must throw the same exception.

As we only have two exceptional values BAD, UNR (which are dual to each other) in R, this
yields Lemma 7°°. We omit {} if there is only one element in R.

Lemma 7 (Properties of Behaves-the-same) For all closed e; and e,
e Ly €2 = €2 g €1

PrROOF We prove two directions separately.
(=) We have the following proof:

€1 <<UNR €9

<= (By defn of <)
VC. Cles] —* UNR = C[e;] —* UNR

<= (By logic)
VC. C[le1] /2 UNR = C[les] /* UNR

We want to show that VD. D[e;] —* BAD = D][es] —* BAD.
Assume D[e;] —* BAD.
Let C = case (fin D[e]) of {DEFAULT — UNR}
Now we have C[e;] —* BAD = C[es] /" UNR.
Since C[es] = case D[es] of {DEFAULT — UNR}, we have D[ey] —* BAD.
So we have

VD. D[e;] —* BAD = D[ey] —* BAD

(<) By replacing BAD by UNR and UNR by BAD in the above proof for the direction (=),
we get the proof for the direction (<=). n

3.6 Crashes-more-often

We now study the specialized ordering crashes-more-often, which plays a crucial role in
proving Property 1",

Definition 7 (Crashes-more-often) An expression ey crashes more often than 