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A Robust Efficient Algorithm for Point Location in Triangulations

Peter J. C. Brown∗ Christopher T. Faigle†

February 1997

Abstract

This report presents a robust alternative to previous approaches to the problem of point
location in triangulations represented using the quadedge data structure. We generalise the
reasons for the failure of an earlier routine to terminate when applied to certain non-Delaunay
triangulations. This leads to our new deterministic algorithm which we prove is guaranteed
to terminate. We also present a novel heuristic for choosing a starting edge for point location
queries and show that this greatly enhances the efficiency of point location for the general case.

1 Introduction

The task of locating the triangle which contains a given point in a triangulation is central to a
number of computational geometry problems. We restrict ourselves to consideration of algorithms
which do not require pre-computed information about the nature of the triangulation and which
use only a small set of topological operations to navigate through the triangulation.

The class of algorithms with which we are concerned was exemplified by Green and Sibson [GS77]
where they described an algorithm which “walked” through a Voronoi diagram. This algorithm
started at an arbitrary point in the diagram and moved from neighbour to neighbour in order
to approach the given point until the closest Voronoi site was found. Guibas and Stolfi [GS85]
presented pseudo-code for Green and Sibson’s algorithm applied to the dual of a Voronoi diagram,
a Delaunay triangulation. Guibas and Stolfi’s paper was chiefly concerned with representing a
subdivision using their quadedge data structure. We restrict our means of navigation through a
triangulation to their set of topological operations which identify the adjacencies of a quadedge.

Heckbert and Garland [HG95a] describe a looping problem which occurs when Guibas and
Stolfi’s algorithm is applied to a particular non-Delaunay triangulation and suggest that one of the
decisions in the algorithm should be made on a random basis in order to increase the likelihood of the
algorithm terminating. We present the general form of triangulation for which Guibas and Stolfi’s
algorithm will not terminate. This analysis leads to a robust reworking of the algorithm which
does not require this random step. We then prove that our point location method is guaranteed to
terminate for any triangulation.

The efficiency of such “walking” algorithms depends on the choice of starting edge; a naive
search would have complexity O(n) for a diagram containing n edges. If point location queries are
likely to be applied in a systematic manner, for example when a sequence of neighbouring points
are added, then using the last edge created for the previously inserted point as the starting point for
each iteration would result in an average cost of O(1) per query. If no such systematic application
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can be assumed then the starting point should be in the centre of the existing points in order to
give the best possible average location query cost of O(n

1

2 ).

We present a heuristic method, the Most Located Edge method, which can be applied to any
“walking” point location algorithm and which produces an approximation to the desired central
starting edge for a point location query.

Section 2 describes the terminology which we use to refer to aspects of a triangulation. Guibas
and Stolfi’s algorithm is covered in detail in section 3 along with an analysis of the cases in which it
will loop and a brief discussion of Heckbert and Garland’s modification [HG95b] which overcomes
this. Our new algorithm is presented in section 4 and the Most Located Edge heuristic in section
5.

2 Terminology

We have adopted the syntax of Guibas and Stolfi which they introduced in connection with their
quadedge structure [GS85]. We require the following basic functions to operate on a directed edge,
e, of a triangulation:

• e.Org returns the geometric origin endpoint of e

• e.Dest returns the geometric destination endpoint of e

• e.Onext returns the next edge counterclockwise around the origin of e

• e.Dprev returns the next edge clockwise around the destination of e

• e.Sym returns the mirror image of e (i.e. an edge in the opposite direction to e)

These features are shown relative to a directed edge e in Figure 1.

Figure 1: Information associated with a directed edge e

3 Guibas and Stolfi’s Point Location Algorithm

Guibas and Stolfi [GS85] present an algorithm to locate a point in a Delaunay triangulation in their
paper on the quadedge structure. Specifically, it returns the edge on which the given point lies or
the edge which has, on its left, the triangle which contains the point.

The original pseudo-code in that paper is presented below with only syntactic variations. The
code refers to a function RightOf(X,l) which returns true if the point X is strictly to the right of a
directed line l and false otherwise.
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Function: GS Locate
In: X: Point whose location is to be found

T : Triangulation in which point is to be located
Out: e: Edge on which X lies, or which has the triangle containing X

on its left
begin

e := some edge of T
while (true)

if X = e.Org or X = e.Dest then return e
else

if RightOf(X, e) then e := e.Sym
else

if not RightOf(X, e.Onext) then e := e.Onext
else

if not RightOf(X, e.Dprev) then e := e.Dprev
else return e
endif

endif
endif

endif
endwhile

end

3.1 Operation of the algorithm

The general approach of the algorithm is to step from one edge of the triangulation to another, in
the general direction of the point being located, X, whilst ensuring that X remains on the left of
the current edge, e. The process can be envisaged in outline as Figure 2, where we start from an
edge e0 and move to edges e1,e2,e3,. . . in sequence until we find e5 whose left triangle contains the
point we are trying to locate, X. Note that each edge e0,e1,. . . ,e5 has the property that X is on
its left.

To simplify our discussion of this algorithm, note that the code which switches the direction of
the current edge, e, when point X is strictly to its right, i.e.

if RightOf(X, e) then e := e.Sym

will only be invoked, if at all, on the first iteration of the while loop. This is because the
algorithm only moves to another edge (either e.Onext or e.Dprev) if X is not to the right of that
edge and hence the only time we could reach this code segment with X to the right of e is on entry
to the routine.

Heckbert and Garland have also noted this optimisation and have moved the above edge swap-
ping code so that it precedes the main loop. For the remainder of the dicussion of Guibas and
Stolfi’s algorithm we will assume that this change has been implemented.

We now consider how this algorithm searches a triangulation. On entry to the while loop, point
X must be to the left of, or on, edge e by the above argument. The shaded area in Figure 3
indicates the area of the triangulation in which we know point X cannot reside at this stage.

The location of the point X relative to the edges e.Onext and e.Dprev now determines how the
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e0e1e2

e3e4
e5X

Figure 2: An abstract representation of the act of stepping
through a triangulation from an edge e0 in order to locate
the triangle containing a point X

location operation proceeds. The following steps correspond to the numbered regions in Figure 3 :

1. if X is either of the endpoints of e then e is returned by the routine.

2. if this is not the case and instead X lies to the left of, or on, e.Onext then the area of the
triangulation which remains to be searched lies to the left of e.Onext and hence we step to
e.Onext.

3. alternatively, if X lies to the left of, or on, e.Dprev then X must lie in area 3 and so the
search continues from e.Dprev.

4. if neither of these conditions is met then X must be an interior point of the triangle to the
left of edge e or must lie on e and so e is returned by the routine.

Figure 3: X is known to lie in the unshaded area on entry
to the while loop and one iteration of the loop will identify
whether the point lies in areas 1, 2, 3 or 4

3.2 Non-termination of the algorithm

We now consider why the algorithm will fail to terminate in the case presented by Heckbert and
Garland [HG95a] and hence obtain a general non-termination condition.
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In formal terms, each step of the algorithm, when we move in the triangulation from an edge
ei−1 to an edge ei, can be written as

ei =







ei−1.Onext if X is left of, or on, ei−1.Onext

ei−1.Dprev if X is right of ei−1.Onext and X is
left of, or on, ei−1.Dprev

for i = 1, 2, . . . , k where k is such that X lies on ek, or is in the triangle to the left of ek, if the
algorithm terminates, otherwise k = ∞. We take e0 to be the current edge on entry to the main
loop of the locate routine, i.e. the original starting edge oriented so that X is not on its right.

We define e.Onextn (and, in a similar fashion, e.Dprevn) as

e.Onextn =

{

e if n = 0
(e.Onextn−1).Onext if n > 0, n ∈ Z

The algorithm will first traverse a series of edges from e0 such that

en1+p1
= e0.Onextn1 .Dprevp1

for some n1 ∈ {0, 1, 2, . . . , k} and p1 ∈ {0, 1} satisfying the conditions

• X is left of, or on, e0.Onextr for 0 ≤ r ≤ n1, r ∈ Z

• X is right of e0.Onextn1+1

• X is left of, or on, e0.Onextn1 .Dprevs for 0 ≤ s ≤ p1, s ∈ Z

Hence we can express the edge, ek, located by the algorithm (assuming termination) in terms
of the starting edge, e0, as

ek = e0. (Onextnj .Dprevpj )l

for j = 1, 2, . . . , l for some l ≤ k. The conditions which nj , pj must satisfy ∀j are

• nj ∈ {0, 1, 2, . . . , k}

• pj = 1 ∀j 6= l and pj ∈ {0, 1} for j = l

• X is left of, or on, e0. (Onextnj .Dprevpj )m
.Onextr

for 0 ≤ m < l, 0 ≤ r ≤ nm+1; m, r ∈ Z

• X is right of e0. (Onextnj .Dprevpj )m
.Onextnm+1+1

for 0 ≤ m < l; m ∈ Z

• X is left of, or on, e0. (Onextnj .Dprevpj )m
.Onextnm+1 .Dprevs

for 0 ≤ m < l, 0 ≤ s ≤ pm+1; m, s ∈ Z

Furthermore, nj and pj satisfy
l

∑

j=1

(nj + pj) = k

This notation allows us to produce a more accurate geometrical abstraction of the operation of
the algorithm than the outline indicated in Figure 2. We can observe that the set of edges traversed
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Figure 4: An more accurate abstract representation of the
path through a triangulation taken by GS Locate from an
edge e0 in order to locate the triangle containing a point X

by the algorithm during a location search will be a sequence of multiple (none or more) e.Onext

steps and single e.Dprev steps. This can be visualized as in Figure 4.
The limited searching ability of an edge traversal system with such a structure was demonstrated

by Heckbert and Garland [HG95a]. They noted that when the algorithm was applied to the problem
of locating any point in the shaded area of Figure 5 from starting edge e0, the algorithm looped
forever on the sequence of edges shown. This figure was presented by De Floriani et al [DFNP91] as
an example of a non-Delaunay triangulation on which a partial ordering cannot be applied to the
triangles with respect to a particular viewpoint. It is this lack of “regularity” in the triangulation
which causes the Guibas and Stolfi algorithm to loop.

Figure 5: The sequence of edges through which GS Locate
loops when attempting to locate a point in the shaded region,
when started from edge e0

The fact that the algorithm loops round a set of edges in Figure 5 can be represented in our
notation as

e0 = e0. (Onext.Dprev)3

In the general case, this algorithm will loop if ∃ l, nj , 1 ≤ j ≤ l satisfying the conditions
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• e0 = e0. (Onextnj .Dprev)l

• nj ≥ 0, nj ∈ Z

• X is left of, or on, e0. (Onextnj .Dprev)m
.Onextr

for 0 ≤ m < l, 0 ≤ r ≤ nm+1; m, r ∈ Z

• X is right of e0. (Onextnj .Dprev)m
.Onextnm+1+1

for 0 ≤ m < l; m ∈ Z

• X is left of, or on, e0. (Onextnj .Dprev)m
.Onextnm+1 .Dprev

for 0 ≤ m < l; m ∈ Z

This generalisation describes a looping path with a similar form to the polygon circumscribed
by the edges e0, e1, . . . , e5 in Figure 5 but with two extensions:

1. the number of ‘spokes’ of the polygon (such as the area bounded on two sides by e0 and e1

in the diagram) is equal to l and l ≥ 3;

2. there can be many e.Onext steps within each spoke and, similarly, many e.Dprev steps outside
each spoke.

If GS Locate was applied to the task of locating a point X which lay in the shaded region of
Figure 6 and any of e0, . . . , e10 was the starting edge then the algorithm would loop on the path
shown. This more complex looping path (whose surrounding triangulation has not been drawn)
has four ‘spokes’, multiple e.Dprev steps in the bottom quadrant and multiple e.Onext steps in
the top left spoke.

Figure 6: A more complex looping pattern

Heckbert and Garland [HG95a] modified Guibas and Stolfi’s locate algorithm. Still always
keeping the point on the left, they identifed that the area in which both e.Onext and e.Dprev have
the point on their left must be the source of the looping problem; this is the only area in which
any choice can made. They found that by choosing between e.Onext and e.Dprev randomly the
problem was eliminated. In the next section, we detail an algorithm makes a deterministic choice
in this section, and thus can be proven not to loop.
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4 A Robust Point Location Algorithm

In this section we present our new point location algorithm and prove that it always terminates.
Our algorithm identifies the regions denoted in Figure 7 and then makes a deterministic decision
to step to the edge which has X on its left and which reduces the distance between X and the
current edge by the greatest amount. Let dist(e, X) be the minimum distance between an edge e

and a point X.

Function: BF Locate
In: X: Point whose location is to be found

T : Triangulation in which point is to be located
Out: e: Edge on which X lies, or which has the triangle containing X

on its left.
begin

e := some edge of T
if RightOf(X, e) then e := e.Sym endif
while (true)

if X = e.Org or X = e.Dest then
return e

else
whichop := 0
if not RightOf(X, e.Onext) then whichop += 1 endif
if not RightOf(X, e.Dprev) then whichop += 2 endif
case whichop of

when 0: return e
when 1: e := e.Onext
when 2: e := e.Dprev
when 3:

if dist(e.Onext, X) < dist(e.Dprev, X) then
e := e.Onext

else
e := e.Dprev

endif
endcase

endif
endwhile

end

4.1 Operation of the algorithm

In operation, our algorithm more closely resembles that of Heckbert and Garland [HG95b] than
Guibas and Stolfi’s original routine. The check for whether the direction of the current edge should
be reversed now precedes the main loop and hence we can assume that point X will be to the left
of, or on, edge e on entry to the loop. The shaded area in Figure 7 indicates the area in which X

cannot lie on entry to the loop.

By establishing initially whether X lies to the left of, or on, either or both of e.Onext and
e.Dprev, we can immediately identify which of the regions in Figure 7 remain to be searched.
These regions correspond to the following options.
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1. If X is either of the endpoints of edge e then we return e.

2. If X is internal to the triangle to the left of e then we can also return e.

3. If X lies to the left of, or on, e.Onext and to the right of e.Dprev then we step to e.Onext

and continue the location process.

4. If X lies to the left of, or on, e.Dprev and to the right of e.Onext then we move to e.Dprev.

5. Otherwise X lies to the left of both e.Onext and e.Dprev and so we move to the edge that
minimises the distance between X and the edge.

Figure 7: The regions around e which our algorithm deals with separately

4.2 Calculation of Closest Edge

When we have an edge e and a point X such that X is in area 5 of Figure 7, i.e. X is left of both
e.Onext and e.Dprev, the calculation of which edge is closest to X can be performed easily since
the value of this measure is unimportant. We expand area 5 into three regions, as in Figure 8. If
X lies in the shaded area on the left then it is closer to e.Onext and, similarly, if X lies in the
shaded area on the right then it is closer to e.Dprev. If X lies in the middle shaded area, the vertex
e.Onext.Dest (= e.Dprev.Org) is the closest point on e.Onext and e.Dprev to X and hence either
edge may be chosen.

Let ~eo be the vector represented by the directed edge e.Onext.Sym, i.e. ~eo = e.Onext.Org −
e.Onext.Dest and let ~xe = X − e.Onext.Dest. By the definition of the inner product,

~eo. ~xe = |~eo|| ~xe| cos θ

Hence we can determine whether the angle 6 (e.Onext.Org, e.Onext.Dest, X) is greater than
π
2

by examining the sign of the above inner product. If ~eo. ~xe < 0, we choose e.Dprev, oth-
erwise we choose e.Onext. In practice this biases the path by choosing Dprev more often than
Onext, so in our implementation we alternate between examining this angle and the opposite angle,
6 (e.Dprev.Dest, e.Dprev.Org, X).

4.3 Proof of termination

In this section we will prove that, given a finite triangulation, our algorithm will terminate. We
prove that an invariant of the algorithm is that we never increase the value of d, where d is the
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Figure 8: Partition of area 5 into points closest to each candidate edge

distance between X and the closest point on the current edge. We then show that if we perform
an e.Onext followed by an e.Dprev, or an e.Dprev followed by an e.Onext, then d will decrease.
Finally, we show that a looping path must contain at least one of these two combinations. Taken
together, these facts verify that our algorithm will not loop, since looping back to an edge means
returning to a particular distance d, which is impossible since since we must decrease d at some
point and we never increase d.

Lemma 4.1. BF Locate will never increase d, the distance between X and the closest point on
the current edge.

Proof. We assume that our algorithm is currently on an edge, e. Let p be the closest point to X

on e; d is the distance between p and X. p must lie in the interior of e or be either the destination
or origin endpoint of e. These three cases are illustrated in Figure 9.

a) When p lies within the edge e, as in Figure 9(a), at least one of e.Onext or e.Dprev must
intersect the circle of radius d centred at X. Consider the areas of Figure 7 in which X may
lie:

1. X cannot lie in area 1, i.e. X cannot be an endpoint of e, since p is in the interior of e.

2. If X lies in area 2 then our algorithm will terminate.

3,4. The edge which we choose next, i.e either e.Onext or e.Dprev, must intersect with the
circle of radius d centred at X and hence by stepping to this edge d must decrease.

5. Again, one of e.Onext or e.Dprev must intersect the circle and we explicitly choose the
edge which reduces d by the greatest amount. In the event that the closest point to X

on these edges is the common vertex of e.Onext and e.Dprev, we can choose either edge.

Hence whichever edge we step to, d will always decrease.

b) When p is at e.Dest, stepping to e.Dprev will not increase d. If X is in areas 1 or 3 of
Figure 7, we will always choose e.Dprev. The medium shading in Figure 9(b) indicates where
the common vertex of e.Onext and e.Dprev may lie to cause X to be in area 3. If X is in area
4, we will choose e.Onext and the light shading in Figure 9(b) indicates where the common
vertex would cause X to be in area 4. Note that when we choose e.Onext, we will also
decrease d because e.Onext must intersect with the circle of radius d. Even at the extreme
case of e being a tangent to the circle at p, for a valid triangulation e.Onext must cross the
circle.

The triangle ∆(e.Org, p, x) delimits where the common vertex may lie such that X would be
in area 5. If the common vertex is also within the circle then obviously d is decreased by
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stepping to either e.Onext or e.Dprev. If the common vertex is inside this triangle but outside
the circle, p will always be closer than any point on e.Onext, so we will choose e.Dprev. For
vertices on the circle, some point on e.Dprev must cross the circle so we will again choose
e.Dprev. Thus when the common vertex lies anywhere in the entire dark shaded area, we
will choose e.Dprev.

Thus our choice of next edge will never increase d.

c) When p is at e.Org, this is exactly the symmetric case of (b).

Figure 9: Cases for the Locate Proof: a) p within edge b) p at Dest c) p at Org

Lemma 4.2. Performing an Onext followed by a Dprev, or a Dprev followed by an Onext, will
always decrease d.

Proof. If p is in the interior of the current edge e then, by the argument for case (a) in the proof
of Lemma 4.1, we will decrease d regardless of the next choice of edge.

We split the proof for when p is an endpoint of e into the two cases of Onext-Dprev (i.e.
performing an Onext followed by a Dprev) and Dprev-Onext.

Onext-Dprev If p is at e.Dest, then choosing e.Onext will decrease d by the argument for case
(b) of Lemma 4.1.

If p is at e.Org, then choosing e.Onext will either decrease d or d it will be decreased by the
following Dprev, by the argument for case (c) of Lemma 4.1.

Dprev-Onext This is exactly symmetric to the argument for Onext-Dprev.

Lemma 4.3. Looping requires at least one Onext-Dprev or Dprev-Onext combination.
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Proof. Looping requires at least two edge steps (one from e and one returning to e). However if
the looping path consists of only Onext’s or Dprev’s, it represents a set of edges with a single
common endpoint. In a proper triangulation, one of these edges around the point must have X on
its right. Therefore we cannot loop if we choose only Onext’s or Dprev’s and thus it must be the
case that a looping path must contain an Onext followed by a Dprev and/or a Dprev followed by
an Onext.

Theorem 4.4. BF Locate will not loop.

Proof. Any edge can only contain one point, p, which is the closest point to X on that edge and
hence a single value of d is associated with every edge. A looping path which returns to an edge
must therefore return to a previous value of d. However, since BF Locate will never increase d,
by Lemma 4.1, and the routine must actually decrease d, by Lemma 4.2 and Lemma 4.3, we can
never return to a particular d, and thus we cannot loop.

5 Most Located Edge Heuristic

Various heuristics can be applied to the problem of selecting a starting edge for any “walking” point
location routine. The importance of selecting such an edge was discussed in [GS77], in particular,
a systematic pattern in the point location queries can be used to assist with the selection of the
starting edge. As a corollary to this, when a point location routine is used during a series of point
insertions, the current point being inserted is often close to the last one inserted. Heckbert and
Garland [HG95b] used this fact in their implemention of a heuristic which we call the last inserted
method. This is an improvement of the naive method in which the starting edge is fixed. We
present a new heuristic, the most located method, which does not require prior knowledge of the
pattern of point location queries, but retains information about past queries in order to select an
approximately central starting edge.

5.1 Naive Method

The naive method simply uses the a fixed starting edge for the location routine. This has no further
computation cost but, unless the starting edge is near the “centre” of the data, it generally results
in long searches and a high average cost if the chosen edge is on the hull of the triangulation. This
method is particularly bad in the case of advancing front meshing or terrain triangulation, where
newly inserted edges tend to be increasingly distant from the initial edge.

5.2 Last Inserted Method

The last inserted method is intended to be used for point location queries associated with multiple
point insertions. On each iteration, it uses an edge attached to the most recently inserted point as
the new starting edge. This gives an almost constant search time when the current point is inserted
near the last inserted one, as in an advancing front method, but has only a slight benefit over the
naive method when points are inserted randomly. However when the last inserted point is near one
edge of the triangulation, this method results in long point location searches after the triangulation
has been constructed.
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5.3 Most Located Method

Neither the naive, nor the last inserted, method works well for completely random point searching
or insertion. Ideally, we want to choose a starting edge which is “near” the centre of the data.
However, maintaining statistical information about the distribution of points in the triangulation
would be too complex and anyway it is unclear as to how an edge’s geometric position can be
regarded as a single entity, since it has two end-points. Furthermore, the geometric centre of the
data may not be near the statistical centre of the data. For example, all of the data may be grouped
in one corner of the domain, in which case a geometric measure could be meaningless.

We propose an alternative method, called the most located edge method, which chooses a starting
edge based on the edge most often encountered in previous calls to the point location routine. For
each edge, we keep a counter which is incremented every time that edge is encountered in a point
location path (although the counter of the current starting edge is not incremented). If an edge’s
counter becomes greater than that of the current starting edge, then this edge will be used as our
starting edge in the next point location query.

This method relies on neither the geometry of the edges nor on the relative position of edges,
but it does maintain a measure of every edge’s relative probability of being encountered in a
location search. The method always permits the starting edge to change since, given sufficient
point location queries, another edge will eventually reach a higher count than the current starting
edge. The starting edge selected using this method tends to gravitate towards the edges in the
centre of the data. The results in Table 5.3 show the relative merit of this heuristic versus both the
naive and last inserted methods, applied to the location of points as they were randomly inserted
into a triangulation. Results are presented for Guibas and Stolfi’s original algorithm (GS), Heckbert
and Garland’s modification (HG) and our new point location algorithm (BF).

Starting Edge Heuristic
Points Locate Naive Last Inserted Most Located

20 GS 107 80 83
HG 94 66 82
BF 87 62 70

500 GS 11,115 9,517 7,270
HG 11,727 9,004 6,592
BF 10,127 8,706 6,633

5000 GS 335,953 299,386 216,356
HG 388,713 286,304 206,815
BF 299,569 272,703 198,568

10000 GS 928,275 838,617 609,190
HG 948,304 804,113 583,599
BF 832,249 765,711 561,161

20000 GS 2,568,811 2,360,299 1,724,096
HG 2,659,668 2,263,330 1,646,989
BF 2,307,920 2,152,600 1,579,075

Table 1: Number of edges encountered in point location paths when
the given number of points were randomly inserted in a triangulation.

Again, if we have geometrical or topological knowledge about the edges or points, then other
methods probably will give better results. However, for the case where no additional information is
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known, this algorithm far outperforms both the last inserted and the naive methods on average, and
our results show that we searched on roughly 1

3
fewer edges than the naive method and roughly 1

4

fewer edges than the last inserted method, regardless of the location algorithm used. It should also
be noted that our point location method performed better than Guibas and Stolfi’s, and Heckbert
and Garland’s, on every occasion except when 500 points were inserted using the most located
heuristic and here the random nature of Heckbert and Garland’s routine resulted in its marginally
better performance.

6 Conclusions

We have presented a robust alternative to previous approaches to the problem of point location
in triangulations represented using the quadedge data structure. We have proven that our new
deterministic algorithm is guaranteed to terminate. We have also presented a novel heuristic for
choosing an efficient starting edge for general point location queries.
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