
Technical Report
Number 707

Computer Laboratory

UCAM-CL-TR-707
ISSN 1476-2986

Complexity-effective superscalar
embedded processors using

instruction-level distributed processing

Ian Caulfield

December 2007

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Ian Caulfield

This technical report is based on a dissertation submitted
May 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Modern trends in mobile and embedded devices require ever increasing levels of performance,
while maintaining low power consumption and silicon area usage. This thesis presents a new
architecture for a high-performance embedded processor, based upon the instruction-level dis-
tributed processing (ILDP) methodology. A qualitative analysis of the complexity of an ILDP
implementation as compared to both a typical scalar RISC CPU and a superscalar design is
provided, which shows that the ILDP architecture eliminates or greatly reduces the size of a
number of structures present in a superscalar architecture, allowing its complexity and power
consumption to compare favourably with a simple scalar design.

The performance of an implementation of the ILDP architecture is compared to some typical
processors used in high-performance embedded systems. The effect on performance of a num-
ber of the architectural parameters is analysed, showing that many of the parallel structures
used within the processor can be scaled to provide less parallelism with little cost to the overall
performance. In particular, the size of the register file can be greatly reduced with little average
effect on performance – a size of 32 registers, with 16 visible in the instruction set, is shown to
provide a good trade-off between area/power and performance.

Several novel developments to the ILDP architecture are then described and analysed. Firstly,
a scheme to halve the number of processing elements and thus greatly reduce silicon area and
power consumption is outlined but proves to result in a 12–14% drop in performance. Secondly,
a method to reduce the area and power requirements of the memory logic in the architecture
is presented which can achieve similar performance to the original architecture with a large
reduction in area and power requirements or, at an increased area/power cost, can improve
performance by approximately 24%. Finally, a new organisation for the register file is proposed,
which reduces the silicon area used by the register file by approximately three-quarters and
allows even greater power savings, especially in the case where processing elements are power
gated.

Overall, it is shown that the ILDP methodology is a viable approach for future embedded system
design, and several new variants on the architecture are contributed. Several areas of useful fu-
ture research are highlighted, especially with respect to compiler design for the ILDP paradigm.

3

4

Acknowledgements

I would like to thank my supervisor, Simon Moore, for his advice, guidance and most particu-
larly his patient support over the past few years. Thanks are also due to James Srinivasan and
Simon ‘Harry’ Hollis (and to a lesser degree many other members of the Computer Architecture
Group) for fielding innumerable queries along the lines of “Do you know anything about . . . ?”.

I would like to give special recognition to Diana Wood for providing unconditional support and
putting up with me while I completed my thesis, and for providing assistance with proofreading.
Unthanks go to the members of Cambridge University Bowmen who, whilst providing many
hours of friendship and recreation, conspired to lengthen my stay at university!

My research was funded with a grant from the Engineering and Physical Sciences Research
Council.

5

6

Contents

1 Introduction 15
1.1 Motivation .15
1.2 Contribution .16
1.3 Outline .16

2 Background 17
2.1 Parallelism .17
2.2 Control-flow vs data-flow .18

2.2.1 Static data-flow .19
2.2.2 Coloured data-flow .19
2.2.3 Tagged-token data-flow .19

2.3 Pipelining .20
2.3.1 Data hazards .21
2.3.2 Control hazards .21

2.4 Superscalar architectures .22
2.4.1 In-order superscalar .22
2.4.2 Out-of-order superscalar .23
2.4.3 Parallels between out-of-order and data-flow25

2.5 Multithreading .25
2.5.1 Simultaneous multithreading .25

2.6 Vector architectures .26
2.7 Decoupled architectures .26
2.8 Dependence-based architectures .27
2.9 Instruction-level distributed processing .28
2.10 Multiprocessing .28

2.10.1 Symmetric multiprocessing .29
2.10.2 Non-uniform memory architectures29
2.10.3 Multicore processors .30

2.11 Instruction encoding .30
2.11.1 CISC .30
2.11.2 RISC .31

2.12 Embedded system design .31
2.12.1 Low cost .32
2.12.2 Low power consumption .33

7

Contents

2.12.3 Real-time performance .35
2.13 Future developments .35

3 ILDP in an Embedded Context 37
3.1 Details of ILDP .37
3.2 Instruction set .39
3.3 Programming model .40

3.3.1 Register assignments .40
3.3.2 Memory organisation .42
3.3.3 Function call specification .42

3.4 Microarchitecture .43
3.5 Complexity .46
3.6 Complexity analysis .47

3.6.1 Register rename logic .47
3.6.2 Issue window dependency logic .48
3.6.3 Instruction issue logic .49
3.6.4 Register file .49
3.6.5 Bypass paths .50
3.6.6 Data caches .50

3.7 Power consumption .51
3.8 Summary .52

4 Evaluating ILDP 53
4.1 Performance vs other embedded architectures53

4.1.1 Methodology .53
4.1.2 Compiler toolchain .53
4.1.3 Benchmarks .55
4.1.4 Simulation .55
4.1.5 Results .56
4.1.6 Conclusion .60

4.2 Resource utilization .60
4.2.1 Decode / Issue logic .60
4.2.2 Processing elements .61
4.2.3 Register rename logic .62

4.3 Parameter space exploration .64
4.3.1 Issue width .64
4.3.2 Rename bandwidth .67
4.3.3 FIFO depth .69
4.3.4 Register network bandwidth .73
4.3.5 Physical register file size .76
4.3.6 ISA register file size .78
4.3.7 Cache parameters .80

4.4 Combining approaches .80
4.5 Summary .82

8

Contents

5 Architectural developments 85
5.1 Multiplexing instruction FIFOs onto a processing element85

5.1.1 Implementation details .86
5.1.2 Evaluation .87
5.1.3 Conclusions .87

5.2 Combining memory access units .90
5.2.1 ISA modifications .91
5.2.2 Implementation details .92
5.2.3 Evaluation .93
5.2.4 Further developments .101
5.2.5 Implementation details .101
5.2.6 Evaluation .103
5.2.7 Cache structure .107
5.2.8 Conclusions .107

5.3 Register inlining .109
5.3.1 Implementation details .110
5.3.2 Complexity .112
5.3.3 Evaluation .112
5.3.4 Conclusions .113

5.4 Summary .114

6 Conclusions 115
6.1 Summary .115
6.2 Conclusion .116
6.3 Future work .117

Bibliography 121

9

10

List of Tables

3.1 The ILDP instruction set .41
3.2 Register assignments for the ILDP ABI .42

4.1 Architectural parameters for simulation .57

5.1 Instruction set modifications .91

11

12

List of Figures

3.1 Ways of grouping instructions by their dependencies38
3.2 Instruction encodings .40
3.3 Function stack frame layout .43
3.4 The ILDP architecture, as outlined by Kim and Smith44
3.5 Structure of an ILDP processing element .45

4.1 Performance of ILDP compared to embedded processors58
4.2 Number of instructions executed, compared to ARM58
4.3 IPC of tested processors .59
4.4 Number of instructions processed by the parcel, rename and steer pipeline stages61
4.5 Processing element activity .62
4.6 Distribution of rename map bandwidth usage over time63
4.7 Performance of ILDP at various issue widths, normalised to 4-way case65
4.8 Number of instructions in the parcel, rename and steer pipeline stages66
4.9 Effect on performance of removing register rename map ports67
4.10 Issue pipeline statistics when varying number of rename map ports68
4.11 Distribution of instruction strand lengths in ILDP code70
4.12 Instruction FIFO utilization .71
4.13 Performance at various instruction FIFO sizes, compared to an unbounded FIFO72
4.14 Register network bandwidth utilization .74
4.15 Performance at various register network bandwidths, compared to unbounded

case .75
4.16 Effect of scaling physical register file size from 128 GPRs on performance . . .77
4.17 Effect of scaling both physical and logical register file size on performance . .79
4.18 Effect of increasing cache associativity from 2-way on performance81
4.19 Effect of varying several architectural parameters82

5.1 Multiplexing instruction FIFOs between processing elements86
5.2 Effect on performance of multiplexing instruction FIFOs between PEs88
5.3 Processing element utilization with two FIFOs per PE89
5.4 Design of memory access unit .91
5.5 Additional instruction encodings .92
5.6 Performance of the MAU architecture variant compared to the baseline94
5.7 Performance of the MAU variant when multiple outstanding loads are imple-

mented .96

13

List of Figures

5.8 Effect of reducing register rename bandwidth on performance in the MAU model97
5.9 MAU FIFO occupancy by time .99
5.10 Performance at various MAU FIFO sizes, compared to an unbounded FIFO . .100
5.11 Design of memory access unit, using out-of-order issue102
5.12 Performance of various models of out-of-order memory access unit104
5.13 Effect of out-of-order MAU instruction window size on performance106
5.14 Effect of increasing L1 cache size on performance (compared to 8KB size) . . .108
5.15 Register tag/value portion of PE instruction FIFO111

6.1 Traditional CPU arrangements for multiprocessing118
6.2 An example four-way multiprocessing ILDP CPU119

14

Introduction 1

This dissertation describes a number of architectural designs aimed toward producing high-
performance embedded microprocessors. These build upon the techniques of instruction-level
distributed processing developed by Kim and Smith [30]. I show that these techniques allow
processors to achieve high performance without many of the costs in power consumption and
circuit complexity associated with traditional superscalar architectures.

1.1 Motivation

The embedded microprocessor market is currently growing at a greater rate than the market
for desktop and server processors. More and more products in various market sectors are being
produced with embedded processors – a modern car can contain dozens of embedded processors
controlling various different features within the vehicle. While the desktop microprocessor
market has the highest profit margins, the embedded processor market ships far higher volumes
per year, yielding large overall profits. With large growth and revenues, and increasing demands
for greater functionality at a lower cost, there is considerable scope for research into processor
architecture targeted at embedded systems.

In the mobile device sector, there is an increasing trend toward ‘all-in-one’ devices that perform
a number of functions: a modern smart phone will be able to connect to several varieties of
wireless network, play back (and even record) audio and video, play games, take photos and
browse the Internet. In order to perform these functions, the device must be capable of running
one or more radio protocol stacks, perform audio and video encoding and decoding, render
graphics in real time, perform image processing and be able to execute external scripts or ap-
plications. While a single-function device can be constructed using a simple low-performance
microprocessor and some special-purpose logic, a device with such diverse usage requirements
but similar power and size constraints will generally require a high-performance general pur-
pose processor, which can easily shift from one application to another. Many of the techniques
used to achieve high performance in desktop processors are unsuitable for embedded systems
due to their power or area requirements, and so alternative approaches are required.

15

1. Introduction

1.2 Contribution

In this thesis, I will show that instruction-level distributed processing provides an approach
to designing low-complexity microprocessors providing high performance with a smaller area
and power penalty than an out-of-order superscalar approach. The ILDP model is evaluated
in depth, and several parameters which are likely to have a large effect on the complexity of
the design are explored to find the optimum trade-off between complexity and performance.
Several new developments on the architecture are proposed in order to reduce the overall design
area, and thus power consumption.

1.3 Outline

The remainder of this dissertation is structured as follows:

Chapter2 introduces and describes many of the issues present with and techniques used in mod-
ern microprocessor design, particularly looking at exploiting parallelism for high performance
and the challenges of designing for embedded systems.

Chapter3 describes the instruction-level distributed processor methodology and architecture on
which this work is based, and outlines the implementation built upon them. The complexity of
this design is analysed, compared to typical processor architectures.

Chapter4 analyses the performance of the ILDP design and investigate the effect various archi-
tectural parameters have on performance and complexity.

Chapter5 describes several new designs built upon the ILDP architecture intended to reduce
circuit complexity and power consumption and make this approach more suitable for embedded
implementation while maintaining high performance.

Finally Chapter6 summarises this work and presents conclusions drawn. The contributions
made by this work are outlined and possible areas for future work are described.

16

Background 2

Processor performance can be reduced to the following equation [48]:

Texe=
ninst

Fclk× IPC
+Tmem (2.1)

whereTexegives the overall time to execute a program or set of programs,Fclk refers to the clock
frequency of the system,ninst is the total number of instructions executed, IPC is the average
number of instructions executed within a single clock cycle andTmem is the time spent by the
system waiting for external activities such as I/O or memory accesses. Performance is greater
whenTexe is smaller.

Performance can thus be increased by maximisingFclk and IPC and minimisingninst andTmem.
Clock frequency can be increased by technology scaling as smaller manufacturing processes
become available, by pipelining or by redesigning or replacing complex logic blocks in order
to reduce the critical path. IPC can be increased by exploiting more parallelism within an
architecture. The total instruction count can be reduced by optimising the ISA or improving
the compiler used. Memory access time is generally reduced through the use of caches and
speculatively issuing memory instructions as early as possible.

Technology scaling is creating a trend whereby the delays due to logic are becoming less ex-
pensive and those due to wiring are becoming more expensive, since as feature sizes decrease,
overall die sizes tend to remain the same with additional logic added. A cross-chip wire re-
mains the same length, but the delay to drive a signal along it increases [28] and as clock speeds
increase the number of clock cycles required to drive a signal across a chip rises drastically.
When scaling smaller structures, the transistor delay will decrease at a greater rate than the wire
delay, which means that circuit structures with long wire delays thus scale badly as feature sizes
decrease. Future architectures must be able to localise data usage and minimise, or tolerate
delays in, global communication.

2.1 Parallelism

In order to increase IPC, an architecture must be able to exploit parallelism present within the
workload it is executing. An important thing to note is that a workload with little or no inherent

17

2. Background

parallelism will benefit very little from a parallel architecture – a single program that consists
of a linear sequence of dependent instructions is likely to execute just as well on a simple scalar
architecture as a complex, multithreaded, superscalar one and may actually perform better on
the scalar processor due to the lower overhead of the less complex logic. There are two main
forms of parallelism that can be exploited in hardware:

1) Instruction-level parallelism (ILP) – in general, when taking a group of instructions from
a program, while there will be many interdependencies between them, there will be sets
of instructions that are mutually independent and thus can be executed in parallel. A
special case of ILP isloop-level parallelism(LLP) – where successive iterations of a loop
operate on independent data and can therefore be executed in parallel. Such loops are
parallelized to extract ILP through a process calledloop unrolling.

2) Thread-level parallelism (TLP), where more than one program (orthread) can be ex-
ecuted in parallel. Since programs generally communicate via main memory, if there is
some mechanism for synchronizing memory accesses then all instructions from separate
programs are independent and can be executed concurrently. Processors that take advant-
age of TLP can make up for a shortfall in ILP, but rely on there being more than one
thread of execution in order to make any gains. A processor that can execute more than
one thread concurrently can help reduceTmem, as when one thread stalls on a memory
access, another can execute in its place. TLP workloads can be further characterised
based on how tightly coupled the threads of execution are; a highly coupled workload
will require a lot of communication and synchronization between threads, whereas a set
of completely independent programs will be very loosely coupled. Depending on the
way in which an architecture exploits TLP, it may perform better for more or less coupled
workloads.

2.2 Control-flow vs data-flow

Most microprocessors use acontrol-flowarchitecture, where a program is represented as a linear
sequence of instructions. The model processor executes instructions in order, using a program
counter (PC) to keep track of the current location in the program. Instructions to modify the PC
are provided in order to implement conditional expressions, loops and subroutines. As programs
are represented as a linear sequence, exploiting ILP is difficult, since dependencies between in-
structions must be resolved in order to allow non-linear execution. Also, since the instruction
scheduling is determined statically by the compiler, the processor cannot easily adapt dynamic-
ally to the execution environment – for example, long latency operations such as cache misses
are likely to cause a processor stall even if other operations could theoretically be executed.

Data-flow architectures represent programs as a data-flow graph: each node in the graph is
an instruction, and each arc is a data dependency between instructions. There is no explicit

18

2.2 Control-flow vs data-flow

ordering of the instructions beyond that of the dependencies – any instruction whose source
operands are available can be executed at any time, making ILP easier to exploit. If a single
instruction stalls (for example due to a cache miss) other operations may be issued instead while
data for them is available. Amatching storeis used to find nodes available for execution and
issue them to functional units.

2.2.1 Static data-flow

In the static data-flow model each arc can have at most one datum (ortoken) on it at any one
time. A node becomes available for execution when there are tokens on all of its input arcs. A
reverse signalling mechanism is used for flow control – when a node executes, it signals to all
its predecessors that it has consumed its input tokens and that they may place new tokens on the
arcs.

Due to the single token per arc limitation, this model has problems implementing shared func-
tions as multiple instances of the same function cannot execute concurrently, and there is usually
a limit on the number of backward signalling arcs. These kinds of functions generally need to
be implemented by replicating the function body, which is inefficient.

2.2.2 Coloured data-flow

With coloured data-flow, each arc may carry more than one token. Each token is assigned a
colour and nodes that take more than one input will only match tokens with the same colour.
Result tokens are given the same colour as their source tokens. A function call generates a new
colour for its tokens, allowing concurrent calls to the same function, as the different colours for
each invocation will prevent conflicts.

The circuitry required for colour-matching is complicated, expensive and difficult to pipeline,
which can cause performance problems with this model.

2.2.3 Tagged-token data-flow

The tagged-token dynamic model moves the token storage intoactivation frames– each func-
tion invocation creates an activation frame, similar to stack frames in a control-flow processor.
When the first token arrives for a dyadic operation, its data is stored in the activation frame.
When the second token arrives, the data from the first token is retrieved from the activation
frame and the operation executes.

19

2. Background

This approach is much simpler to implement than the coloured dynamic model and can be
pipelined.

2.3 Pipelining

Several different pieces of hardware are required in a processor – for example: a load unit to
fetch the current instruction word from memory; logic to interpret the instruction’s opcode and
generate control signals for successive hardware blocks; a register file to hold register values;
an ALU to perform computation and a memory unit to load and store data values from memory.
When an instruction is executed, that instruction must generally pass through these blocks in
sequence, and only one block will be active at one time.Pipelining is a technique that allows
higher performance by allowing multiple instructions to be passing through this sequence of
hardware blocks, known as the ‘pipeline’. Latches are placed between each block to synchron-
ize the data movement to the clock. A classic example is the standard RISC pipeline, split into
five stages:

• Instruction fetch

• Instruction decode and register access

• Execute

• Memory access

• Register write-back

A pipeline of n stages increases the typical instruction latency from 1 ton clock cycles, but
reduces the cycle time by nearlyn and allows (potentially)n instructions to be executed con-
currently. Theoretically, this means that the frequency of the processor is increased by a factor
of n while maintaining an optimum IPC of 1. In practice the latches add extra circuit delay
and not all hardware blocks necessarily have equal delay – the clock period must be set to the
worst-case delay of the slowest block, plus the overhead of the latches. If one pipeline stage has
a delay much longer than the others, then it can significantly limit performance.

Pipelining can introduce new issues, however, which are generally referred to ashazards. These
are generally divided intodata hazards, where problems arise with the transfer or validity of
data values, andcontrol hazards, where problems arise with the flow of execution of a program.

20

2.3 Pipelining

2.3.1 Data hazards

In the case of the 5-stage RISC pipeline, if an instruction depends upon a register value gen-
erated by its immediate predecessor, then when it comes to read the register value during the
‘register access’ pipeline stage it will incorrectly read the previous value of the register, as the
predecessor will still be in the ‘execute’ stage and will not have written its result back to the
register file.

Data hazards are generally resolved usingbypass(or forwarding) data paths. For the 5-stage
RISC pipeline, the results of the ‘execute’ and ‘memory access’ pipeline stages are fed directly
into the execute stage on the next cycle, bypassing the register file entirely. The decode logic
then uses a technique known asscoreboardingto keep track of which registers’ values should
be read from the register file and which are currently in the pipeline and should use the bypass
paths.

However, not all data hazards may be resolved like this – if a load instruction is immediately
followed by an instruction using the result of the load, the second instruction will enter the ‘ex-
ecute’ stage at the same time as the load instruction is in the ‘memory access’ stage, performing
the load. With this pipeline arrangement it is impossible to execute these instructions simultan-
eously, as the second instruction requires the result of the load at the time the load commences.
As such, it is impossible to resolve this hazard without delaying the second instruction. Often it
is possible for the compiler to re-order instructions to remove this hazard, but when this is not
possible there are two basic strategies for dealing with this situation in the processor:

• Software interlocking
The processor does nothing to resolve this conflict – it is entirely up to the compiler to
ensure this situation does not occur, and to insert no-ops into the instruction stream where
necessary.

• Hardware interlocking
The processor uses scoreboarding to determine when these hazards will arise, and inserts
no-ops as necessary into the pipeline itself.

2.3.2 Control hazards

When an unconditional branch is decoded, the instruction following it in memory will already
be in the process of being fetched from memory. The processor can either choose to execute
this instruction (the ISA would then specify that the instruction immediately following a jump
is always executed) which is then termed as being in abranch delay slot, or it can nullify it and
allow a no-op to proceed down the pipeline. The advantage of using branch delay slots is that
it simplifies issue logic and can allow slightly better performance. However, branch delay slots

21

2. Background

can cause issues with code compatibility, as the the number of delay slots following a branch
depends on the pipeline organisation – a new version of an architecture may require a different
number of delay slots than a previous architecture yet still have to run code compiled for the old
architecture. The new processor would then have to emulate a different number of delay slots,
negating the original issue logic complexity advantages.

A further problem arises when a conditional branch is executed – if the branch condition is
resolved in the ‘execute’ pipeline stage then the new PC value will not be available until several
cycles after the branch was fetched, which can be a large penalty if the architecture uses a
deep pipeline. This problem is generally tackled usingbranch prediction. In the simplest
case, all conditional branches can be assumed to be not taken, meaning that the instruction
fetch stage continues fetching instructions as it would if the branch had not come up – this
means there is a performance penalty for a taken branch, but none for one that is not taken.
More sophisticated schemes include static branch prediction, where the branch opcode specifies
whether it should be predicted as taken or not taken, and dynamic branch prediction, where the
processor maintains some state on past behaviour of branches in order to guess whether a branch
will be taken or not. Modern dynamic branch predictors can achieve an accuracy in excess of
99%.

2.4 Superscalar architectures

Superscalar architectures (as opposed to standard, orscalararchitectures) increase performance
by executing multiple instructions in parallel, thereby increasing IPC. Superscalar architectures
are generally classified as either beingin-order or out-of-order.

2.4.1 In-order superscalar

In-order architectures are so named because they can only issue instructions in the order they
appear in the instruction stream. For a processor of issue widthn, up ton instructions can be
issued simultaneously, but only if alln instructions are independent. An instruction cannot be
issued in the same cycle as one it depends upon, and none of the instructions following it can
be issued either. For this reason, in-order architectures require good compiler support in order
to arrange the instructions in the program in such a way as to be able to maximise parallel-
ism. Load stalls and other long latency operations can be a problem, as no further instructions
can be issued while the processor is waiting for the data to come back from memory, regard-
less of whether they depend on the result or not. Some architectures providespeculative load
(or pre-fetch) instructions which allow a compiler to insert hints as to future load instructions
earlier in the instruction stream, ahead of conditional operations – any exceptions caused by the
speculative load are ignored, as the actual load might not be executed. This allows load data to

22

2.4 Superscalar architectures

be brought into the cache ahead of the instructions that require it, potentially eliminating some
stalls due to cache misses.

In-order architectures can be further divided depending on whether or not they supportout-of-
order completion. Even when instructions are issued strictly in order, if different instructions
have different latencies, they can complete out of order (this is particularly true with memory
access or floating point instructions). This issue can also arise on single-issue processors if
instructions are allowed to issue on the integer pipeline while slower floating-point instructions
are still executing. If a processor does not support out-of-order completion, then it will stall the
pipeline when an instruction has a high latency, blocking later instructions from finishing first.

Out-of-order completion introduces additional problems, for example maintaining a consistent
state becomes difficult if an instruction causes an exception after some of its successors have
already executed. In some cases it is possible to allow this usingimprecise exceptions– for
instance, in the case of an arithmetic exception, if the process will be terminated rather than
restarted, it may not be necessary to preserve a consistent state. Some architectures provide
‘checkpoint’ instructions, where any exceptions before the checkpoint must be resolved before
any effects of later instructions become visible. However there are many cases where precise
exception handling is required, e.g. branch mispredictions or memory page faults to pages that
have been swapped out. In these cases architectures generally use a mechanism known asin-
order commit– while instructions can execute out-of-order and propagate their results to other
instructions, their results do not become visible in the architectural state (i.e. the register file
and system memory) until they commit, a process that happens strictly in-order. In the case of
an exception, any uncommitted instructions following the instruction causing the exception are
flushed and the system reverts to the last committed state at the exception point before executing
any exception handlers. Smith describes two approaches to implementing in-order commit in
[51]: the reorder buffer, where instruction results are stored until they can be committed to the
register file; or thehistory buffer, which holds old values of registers until they are no longer
needed, from which the register file is restored on an exception.

2.4.2 Out-of-order superscalar

Out-of-order architectures [29; 52] can scan a ‘window’ of instructions following the current
committed execution point, and can execute any instruction from the window whose input op-
erands are available. These architectures avoid several of the bottlenecks present in in-order
architectures – a load instruction can be executed as soon as its address is known, rather than
waiting until all previous instructions have executed, and if a load stalls successive instructions
can continue executing if they do not depend on the load result.

In order to maintain a sufficient level of parallel execution, large structures are necessary to ana-
lyse data dependencies and identify available instructions. These hardware structures consume
a lot of power, making them less suitable for embedded systems.

23

2. Background

With large instruction windows a problem arises in that there arefalse dependenciesbetween
instructions. In the case of the instruction sequence:

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1
R7 := R3 * R4

In this sequence, the fourth instruction depends upon the second and third and the second de-
pends upon the first – however, since all four instructions use the register R3, the third will be
identified as depending upon the second (the second instruction must read R3 before the third
writes to it). The problem is particularly acute for looping code, as each iteration of the loop
uses the same registers, preventing any possible parallelization of the loop.

This problem is generally solved using one of two different approaches: usingregister renaming
or areorder buffer.

With register renaming the processor has a register file containing more registers than the ISA
specifies, and any instruction that writes to a register is allocated a new register from the ex-
panded file. The processor maintains amap tablewhich identifies which of the actual registers
are currently holding the values of the registers specified by the ISA. Since the first and third
instructions in the sequence above will be allocated distinct registers, the dependency between
them will be broken and the third instruction can be executed in parallel with the first two. In
the case of loops, each iteration of the loop can be allocated a fresh set of registers, so a paral-
lelizable loop can be unrolled and executed in parallel. Since most instructions in typical code
write to a register, the size of the register file must be similar to that of the instruction window.

A reorder buffer holds the data from speculatively executed instructions. The register file con-
tains only those values from committed instructions – on a rollback, the register file contains
the consistent architectural state. When an instruction executes, it writes its result back to the
reorder buffer, then instructions commit in order from the reorder buffer and write back to the
register file. An issuing instruction can read data from either the register file or the reorder
buffer, and can issue when all its operands are available from either source. Theregister update
unit [55] is a development on the reorder buffer which handles instruction issue, dependency
checking and in-order commit in a single structure.

Reorder-buffer-based architectures have the advantage that the difficulties of maintaining pre-
cise architectural state are resolved along with allowing out-of-order issue, but generally require
content-addressable memory in their implementation, and thus do not scale well. Register re-
naming scales better, but it is necessary to be able to restore previous versions of the map table
in the event of a rollback.

24

2.5 Multithreading

To fully utilize superscalar architectures, sufficient instruction-level parallelism (ILP) must be
present within the executed code. Smith [54] and Wall [61] explore the limits of such parallelism
within typical processor workloads.

2.4.3 Parallels between out-of-order and data-flow

Modern superscalar architectures effectively map control-flow input onto a data-flow execu-
tion engine – the reorder buffer acts as a matching store over a static data-flow program. The
single-token-per-arc limitation of static data-flow is resolved using register renaming and loop
unrolling – an instruction that is executed multiple times concurrently is replicated with the
reorder buffer, with different register numbers. The size of the instruction window limits the
amount of possible parallelism as it restricts the size of the generated data-flow program.

2.5 Multithreading

Multithreaded architectures allow multiple execution threads to run on a processor concurrently.
The processor is augmented with multiple ‘hardware contexts’ – consisting of the register file,
program counter and any other per-thread architectural state – and can execute instructions
from any of the running threads, exploiting TLP. This allowsTmem to be decreased, as time
spent waiting for memory access can be used to execute another thread, effectively masking
memory latencies.

Multithreaded processors can provide performance improvements on a level comparable to su-
perscalar architectures at a much reduced power usage, making them attractive options for em-
bedded systems, given a sufficiently threaded workload [62; 63]. Since multithreaded architec-
tures share processor resources (in particular the memory hierarchy), they perform well with
tightly-coupled TLP workloads.

2.5.1 Simultaneous multithreading

Simultaneous multithreading (SMT) [10; 37; 59] architectures combine superscalar execution
with multithreaded instruction fetching. Instructions from multiple threads can be issued and
executed simultaneously, improving the overallIPC achieved.

Most studies into SMT architectures use out-of-order superscalar techniques, to further increase
IPC. The two technologies complement each other well, as typical workloads tend to be quite
‘bursty’ in the amount of ILP that can be extracted – the average utilization of the functional

25

2. Background

units within the processor tends to be quite low, but they are necessary in order to provide high
peak performance. An SMT architecture allows instructions from multiple threads to fill in the
gaps.

Several high-end processors are now available which support multithreading – some models of
the Intel Pentium 4 and Core 2 Extreme processors implement ‘Hyperthreading’ [38], the MIPS
34K core implements ‘MIPS MT’ [39] and the IBM POWER5 CPU can execute two threads on
each core.

While SMT architectures allow higher utilization of processor resources, thereby increasing
performance at a relatively small complexity cost, they can also greatly increase the require-
ments on the memory hierarchy, requiring highly associative caches to maintain performance
[4; 15; 21; 22].

2.6 Vector architectures

While superscalar processors exploit parallelism by executing multiple instructions from a
scalar instruction stream concurrently, vector architectures provide instructions that operate on
vectors of data. A scalar add instruction will produce the sum of two values, while a vector
add might sum eight pairs of values at once. This technique is known as Single Instruction,
Multiple Data (SIMD) and generally exploits loop-level parallelism – if a loop operates on an
array of data, where iterations of the loop do not depend on each other’s results, then SIMD
can be used to execute several iterations of the loop simultaneously. The additional hardware
requirements for SIMD are less than those for superscalar processing – the instruction decode
and issue logic remains the same, but register and ALU width are increased, using more silicon
area but without greatly increasing complexity.

Many modern CPU architectures include SIMD instructions in their ISA (e.g. Intel’s MMX
and SSE, AMD’s 3DNow, ARM’s NEON) and combine SIMD with superscalar for additional
potential performance gains. SIMD support in compilers has lagged behind the hardware avail-
ability due to the difficulty of parallelizing linear code – many compilers are unable to generate
SIMD code automatically, instead relying on the programmer to vectorize the programs manu-
ally.

2.7 Decoupled architectures

Decoupled architectures [47] separate an instruction stream into two streams – one to access
memory and the other to perform computation. This allows the memory, or ‘access’, stream to

26

2.8 Dependence-based architectures

run ahead of the ‘execute’ stream, and so helps to reduceTmem. Decoupled techniques were used
in the CRAY-I supercomputer, as well as more recent projects such as PIPE [12] and MISC [60].

Krashinsky and Sung [34] investigate the possibilities of using decoupled architectures to re-
duce complexity in general-purpose processors, while Talla and John [57] look specifically at
multimedia applications.

Kudriavtsev and Kogge [35], Sung et al. [56] describe methods of combining SMT techniques
with decoupled architectures.

Crago et al. [7] extend the basic decoupled system by adding a third processor, to manage the
interaction between the cache and main memory.

Superscalar processors can decouple the memory access and computation instructions to some
degree: if the instruction window is large enough and a separate functional unit can execute
memory accesses from the window, then the processor can hoist memory instructions (particu-
larly loads) to execute earlier and hide some of the effect of long-latency cache misses.

2.8 Dependence-based architectures

Palacharla [42] identifies the issue window logic and data bypass paths within an out-of-order
superscalar as being mostly likely to form the critical path as processors scale for future designs.
A set of superscalar architectures are proposed – ‘dependence-based architectures’ – that reduce
complexity compared to a standard superscalar while maintaining similar per-clock perform-
ance by breaking up these critical logic blocks.

Dependence-based architectures reduce complexity by partitioning the issue window and ex-
ecution resources into multiple clusters. Since each of these clusters has a smaller instruction
window and fewer data bypasses than a single large processor would, the complexity is reduced,
enabling higher clock frequencies. In order to maintain IPC, instructions are steered to clusters
in such a way as to minimise inter-cluster communication while still utilising all execution
resources.

One specific dependence-based architecture outlined is a FIFO-based architecture. The issue
window in an out-of-order superscalar is replaced by a set of FIFOs into which instructions are
placed after decoding. Instructions issue from the FIFO heads, greatly reducing the complexity
of the dependency-checking logic – only the instructions at the FIFO heads need to be checked,
rather than all instructions as in a standard architecture. In order to maintain performance,
dependent instructions are preferentially steered to the same FIFO, so as to minimise stalls at
the FIFO heads. IPC is somewhat reduced from a standard model (about 5%), but the reduction
in complexity should allow higher clock speeds or reduce power consumption.

27

2. Background

2.9 Instruction-level distributed processing

Instruction-level distributed processing (ILDP) [49; 50] describes a set of techniques used to
combat the problem that, asTclk decreases and relative die sizes increase, wire delays on-chip
become more significant to the point where it will no longer be possible to send a signal across a
whole chip in one clock cycle. These techniques build upon the dependence-based architectures
outlined in the previous section.

ILDP architectures break an instruction trace into multiple dependent execution streams, at-
tempting to minimise the number of data values that must be communicated between streams.
These streams can then be issued to separate functional units on-chip, with little communica-
tion required between these functional units. This distributed approach, which minimises global
communication, reduces power consumption. The Alpha 21264 [18] uses a technique along
these lines – there are two ALU ‘clusters’, each with its own copy of the register file. There is
a one-cycle penalty for accessing a value from another stream.

Kim and Smith [30] present a specific ILDP architecture based upon the FIFO-based architec-
ture from [42], using an accumulator-based instruction set to allow instruction dependencies
to be explicitly highlighted within the code, simplifying the task of the instruction issue hard-
ware. The architecture specifies that each functional unit executes in-order, but that they run
independently of each other, so that performance approaches that of an out-of-order processor,
without the same level of complexity. This architecture is described in much greater depth in
Chapter3.

2.10 Multiprocessing

Another way to exploit TLP is viamultiprocessing. If one processor can execute two programs
in a certain time, two processors should theoretically be able to manage it in half that time
(as long as the programs are approximately the same length). In practice communication and
synchronization delays tend to reduce the scaling to below linear. Multiprocessing produces
very good results when a workload can be represented as many independent threads. When
there are fewer threads than processors, when threads need to communicate frequently or a few
threads are much longer than the rest combined, the performance can drop.

Multiprocessor architectures can be identified by how the processors are connected and the
ways in which they access memory.

28

2.10 Multiprocessing

2.10.1 Symmetric multiprocessing

Symmetric multiprocessing(SMP) architectures link together multiple processors on a single
memory bus. SMP architectures are relatively simple to design and provide good performance
for low numbers of processors, but do not scale well as memory contention becomes a serious
problem for large numbers of processors. On-chip caches can cause issues for SMP systems –
additional logic must be provided in order to make sure that the contents of the caches repres-
ent a consistent view of memory and that processors cannot simultaneously write to the same
location in (cached) memory.

2.10.2 Non-uniform memory architectures

Non-uniform memory architectures(NUMA) provide separate memory local to each processor
– processors can access non-local memory, but at a greater latency than local memory. When
the programs running on the processors access mostly only local memory, there can be a great
performance gain due to the reduced memory contention, but the programming model is more
difficult to work with and the requirements on the operating system are greater. NUMA scales
better than SMP – with suitable software and an appropriate communication interconnect, a
NUMA can be built with hundreds of processor nodes. A specific type of NUMA is Cache-
coherent NUMA (ccNUMA), where cached copies of memory regions are kept consistent. With
these systems there can be a significant performance penalty if multiple processors attempt to
access the same region of memory concurrently.

While having a distributed memory organisation, a NUMA still generally has a single address
space – nodes access non-local memory in the same fashion as local memory, but at a greater
performance penalty.Clustered computingarchitectures contain multiple processing nodes
(possibly themselves multiprocessors) which communicate over a more conventional commu-
nication network. Clustered architectures can be scaled to very large numbers of nodes (the
IBM Blue Gene/L [14] supercomputer has 65,536 processing nodes), but typically require very
specialised programming to fully utilize their capacity.

Some applications, typically scientific computing on very large datasets, provide enough par-
allelism to be able to run effectively on a large-scale multiprocessing system – or even require
one. However, general-purpose computing often does not benefit beyond 2-4 CPUs. Some
applications can only run as a single-threaded program, and will therefore not benefit from a
multiprocessor architecture. Multiprocessing provides good performance gains where there are
several threads running independently. In the case where threads communicate a lot, memory
latencies become a performance bottleneck. Depending on the latencies involved in transfer-
ring data between CPUs, and the penalties involved in concurrent access to areas of memory,
multiprocessors (particularly NUMA systems) generally cannot support high levels of coupling
between threads.

29

2. Background

2.10.3 Multicore processors

Multicore processors are a particular implementation of SMP where multiple processor cores
are integrated onto a single chip. As feature sizes become smaller, placing multiple processors
on a single die becomes feasible, and ameliorates the problem of global wire delays in modern
processors becoming a limiting factor in performance, as most communication on-chip will be
local to a processor core. As feature sizes continue to shrink, more processors can be added,
making a cost-effective performance scaling option. The latest generations of desktop pro-
cessors (e.g. Intel’s Core Duo [16] and the AMD’s Athlon X2) have moved to providing two
processor cores on one die, with the cores sharing the L2 cache. Intel are planning to release a
quad-core processor in the near future. Since the processors are connected at a higher level in
the memory hierarchy (between L1 and L2 caches) than SMP or NUMA systems, they perform
better with tightly-coupled threaded workloads.

Multiprocessing is not really a microarchitectural technique, as it is independent of the precise
types of processor – almost any general-purpose CPU can be used in a multiprocessor system.
Multiprocessing is more of a ‘superarchitectural’ technique. As such, it is orthogonal to the
techniques being considered in this thesis; I concentrate on the efficient extraction of ILP from
a single execution thread. There is some discussion of how this research could be applied to
SMT- or SMP-style applications in Chapter6.

2.11 Instruction encoding

In order for a processor to be able to execute a program, the instruction sequence must be
represented in a binary form that can be loaded into memory. The way in which instructions are
represented by binary data is known as theinstruction encoding. There are two main categories
of instruction encoding, relating to two different approaches to instructions sets, known as CISC
and RISC.

2.11.1 CISC

Complex Instruction Set Computers, or CISCs, are generally characterised by large, feature-
rich instruction sets with complicated variable-length encodings. What is now known as CISC
design arose from previous generations of computer architectures – in very early architectures
using core memory, memory access was slow and so implementing functionality as instructions
rather than subroutines gave a performance improvement [43]. The trend continued even with
the development of faster memories; programs written in assembly language benefited from a
richer instruction set, as the effort required on the part of the programmer was reduced, and
additional instructions could be marketed as extra processor features. The classic example of

30

2.12 Embedded system design

a ‘high-level’ complex CISC instruction is the VAX ‘polynomial evaluate’ instruction, which
computes the result of an arbitrary size polynomial given a parameter and a table of coefficients
in memory.

The development of cache memories and high-level language compilers nullified many of the
performance advantages present in CISCs – compilers often could not take advantage of com-
plicated instructions, and instead would synthesise sequences of simpler instructions. In some
cases these sequences executed faster than the complicated instructions they were replacing.
Analyses of code execution patterns showed that on the IBM 370 architecture, approximately
15% of the instruction set accounted for over 90% of executed instructions [43]. The logic re-
quired to decode and execute these complex instructions, and the extra state required in order
to service an interrupt partway through the execution of a long instruction greatly increased the
complexity of designs, increasing their power consumption and production cost.

2.11.2 RISC

The Reduced Instruction Set Computer (RISC) was developed in response to many of the above
problems. By removing complex and rarely-used execution logic, and focusing on an instruc-
tion set well-matched to the needs of the compiler, the cycle time could be greatly reduced. The
logic area saved in making the execution logic simpler allowed other features such as pipelining
and on-chip caches to be included – particularly useful with the limited transistor budgets of
early single-chip VLSI designs.

The instruction encodings chosen for RISCs typically encode all instructions as 32-bit words,
since this enabled a single instruction word to be fetched each cycle from instruction memory.
Fixed bitfields within the instruction word define the opcode and operands. These features
simplify the instruction decoding logic, but decrease code density as all instructions use four
bytes regardless of the number of bits actually needed to encode them – whereas the CISC x86
instruction set can encode instructions in as little as one byte and averages under four.

Modern x86 architectures tend to be implemented as a RISC processor with a code translation
engine which breaks complex instructions up into smaller RISC-like operations (referred to as
µ-ops on the Pentium 4 [23]).

2.12 Embedded system design

Embedded processor designs can require comparable levels of performance to standard pro-
cessors, but there are often strict power or space budgets. Techniques to improve performance
on desktop systems can be entirely inappropriate for embedded systems. Until recently the fo-

31

2. Background

cus in desktop development has been on performance over almost all else, while the embedded
sector has looked into power-efficient performance: the benchmarking unit for embedded ap-
plications is not MIPS – it is MIPS/Watt. In the last year or two, desktop processors have been
moving toward more power-efficient designs – the new Intel Core line of processors is based
on the mobile variant of the Pentium 4, with the peak power consumption of the Core 2 Duo (a
dual-core chip) being half that of previous high-performance Pentium 4 designs.

The main constraints present with embedded processor design are the needs for low cost, low
power consumption and often the ability to provide real-time performance guarantees.

2.12.1 Low cost

Embedded systems often have very tight cost constraints. Even some of the most costly embed-
ded systems, such as modern high-specification PDAs or mobile phones, have a similar retail
price for the whole system as a high-performance desktop CPU on its own.

The recurrent cost of producing a die is equal to the cost of manufacturing a wafer, divided by
the number of functional dice that the wafer contains. Using a Poisson defect distribution the
die yield of a process depends on the area of each die,A, and the defect density of the process,
D, as given in the following equation [64]:

Yield∝ e−AD (2.2)

For mature processes and reasonably small dice, the productAD is very small and the yield
scales approximately linearly with die area – this is generally true when the number of dice per
wafer is much larger than the expected number of defects per wafer. For larger dice, where the
number of dice per wafer is comparable to the expected number of defects per wafer, the yield
falls exponentially as die size increases. For low-cost systems, it is important to keep the die
area within the high-yield linear zone.

Packaging costs are another per-unit cost on top of die costs. For a physically small system, it
is advantageous to have as few chips as possible, reducing the size of the overall circuit board.
Modern embedded systems often use a methodology known asSystem-on-chip(SoC), where
the processor is combined not only with caches but also peripherals and sometimes memory all
on a single die. This can give a cost advantage as well as a space advantage – as long as the
die size is relatively small, combining two designs onto a single die does not increase the die
costs significantly (and reduces mask costs), but does reduce the number of packages required
and eliminates the need for package pins and circuit board area that would have connected
those devices together. The additional requirement to fit various peripheral circuits on-chip
in addition to the processor, while keeping the die size cost-effective, further constrains the
maximum circuit complexity and size of embedded processors.

32

2.12 Embedded system design

On top of per-unit production costs, setup costs for chip production are very high, running
into millions of dollars. In order to make the chip cost viable for a low-cost embedded design
the volume of chips manufactured must be in the order of millions. For designs with lower
target volumes than this, a custom SoC is not possible. For these applications ‘platform chips’
are used – a SoC is designed targeting a range of products, being sufficiently general to be
used in various applications. For example a television set-top-box platform chip might consist
of a general-purpose CPU, a video encoding/decoding hardware block, an IDE interface for
DVR applications, USB and/or IEEE-1394 controllers for I/O and possibly Ethernet or other
networking hardware. A system designer could take one of these chips and build their design
around it. Buying a generic platform chip and tailoring software to requirements greatly reduces
costs.

Another aspect contributing to the cost of a system is the amount of memory present. Embedded
systems often have very small amounts of RAM and FLASH. Better code density allows more
code to fit in the same space, or the same code to fit in less space. This factor has slowed the
uptake of RISC designs for embedded systems, as RISC architectures tend to have poor code
density. CISC-based embedded CPUs such as the Motorola 68000 family became popular as a
result of this.

To tackle this problem, various RISC architectures have been modified to include an embedded-
friendly denser instruction set – for example MIPS16 [32] and ARM Thumb [3] add execution
modes where the instructions are encoded in 16 bits rather than 32. The 16-bit execution modes
usually only expose a subset of the instructions and registers present in the 32-bit mode. These
encodings reduce the size of each instruction by half, but increase the number of instructions
necessary, so the practical savings are listed as being around 40% for MIPS16 or 25% for ARM
(the 32-bit ARM instruction set is denser than that of MIPS, so the gains with ARM Thumb are
smaller). Since the insructions are less powerful and more are required, overall performance can
drop using these reduced encodings, requiring a system designer to balance between code size
and speed – although a number of embedded systems use 16-bit wide flash memory, giving an
additional performance penalty for fetching a wider instruction. The ARM Thumb-2 ISA [44]
allows 16-bit and 32-bit instructions to be mixed without changing the processor operating
mode in order to provide good code density while maintaining high performance. IBM have
introduced CodePack [13] for the embedded PowerPC architecure, which compresses blocks of
instructions.

2.12.2 Low power consumption

A typical battery in a mobile phone or PDA may have a capacity of 1500mAh at 3V, which
translates to a total energy of 16200J. A modern desktop processor can draw over 100W of
power – at 100W, that 1500mAh battery will last less than three minutes! While this is an
extreme example, it highlights the vast difference in the power constraints on embedded systems
compared to desktop systems. Even ‘low-power’ desktop processors such as Intel’s latest Core

33

2. Background

2 consume in the order of 65W. A processor suitable for a battery-powered PDA or phone must
draw less than 1W in order to last for hours on a 1500mAh battery.

Heat dissipation is another issue strongly related to power consumption. The CPU drawing
100W will radiate most of that power as heat and thus will require a large heatsink. Without
this heatsink it will overheat and fail – tests have shown that with the heatsink removed, some
AMD Athlon processors can reach a surface temperature in excess of 300◦C [41]. Embedded
systems may have tight physical size constraints, preventing the use of large heatsinks, and may
also have a limit to the amount of heat that can be generated, due to problems such as limited
airflow preventing heat dissipation (e.g. handheld devices being stored in users’ pockets).

Power consumption is generally represented as the sum ofdynamicpower consumption and
staticpower consumption. Dynamic power consumption represents the power consumed during
switching activity – the power expended charging or discharging output loads as gates turn off
or on. Static power consumption is any power consumed by the circuit independent of activity,
through leakage currents etc. These quantities are given by the following equations [64]:

P = Pdynamic+Pstatic (2.3)

Pdynamic ∝ fCLK ·V2
DD (2.4)

Pstatic = Istatic·VDD (2.5)

Power consumption can be reduced by lowering the supply voltageVDD – dynamic power scales
quadratically with supply voltage. Decreasing supply voltage increases the circuit propagation
delay, however, as given in Equation2.6[31] (α is a constant with a value of approximately 1.3
with current technology). In order to maintain performance with a reducedVDD the threshold
voltageVTH must also be lowered to reduce the propagation delay.

Tpd ∝
VDD

(VDD−VTH)α
(2.6)

There are problems associated with lowering the threshold voltage; reducingVTH also reduces
the noise margin and increases leakage current. Subthreshold leakage current increases expo-
nentially as the threshold voltage is reduced, as shown in Equation2.7, wheren is a process-
dependent constant andVθ is the thermal voltage, which is approximately 26mV at room tem-
perature.

Ileak ∝ e
−VTH
n·Vθ (2.7)

34

2.13 Future developments

An embedded design must make a trade-off between scalingVDD to reduce power consump-
tion but harm performance, and scalingVTH to regain performance but increase static power
consumption.

Driving off-chip signals uses a large amount of power, as the I/O pads and attached circuit
traces have a very high capacitance. SoC designs where memory and peripherals are integrated
on-chip reduce power consumption as on-chip interconnects have a much lower capacitive load
than off-chip connects over circuit boards. High-activity signals such as memory buses can
provide a large power saving if moved on-chip.

Inactive circuitry contributes not only to static power through leakage, but also to dynamic
power, as clock edges will still cause transistors to switch, consuming power. This is a prob-
lem as such circuitry is consuming power without contributing to performance. The power
consumed by inactive circuitry can be reduced by techniques such asclock gatingandpower
gating. Clock gating reduces the dynamic power consumed by gating clock signals so that they
do not propagate into inactive blocks. Power gating removes all power to a circuit block, redu-
cing both the dynamic and static consumption. The disadvantages of these methods are that they
tend to increase the time required to reactivate an inactive block, depending on the granularity
of the gating. Circuits using fine-grain clock gating can be powered up very quickly, and if the
gating is used effectively across a chip, the power savings can be substantial.

2.12.3 Real-time performance

General-purpose processor design tends to focus on increasing average performance – for ex-
ample a deep pipeline may allow a high clock speed, but will increase the branch misprediction
penalty. The average performance will increase, but the worst case performance can actually
drop. In many embedded systems it is necessary to provide real-time response, thus these sys-
tems must meet tight worst-case performance bounds. Modern architectural techniques such as
branch prediction and memory caching can create a large disparity between typical and worst-
case performance, and often operate in a non-deterministic fashion, making it very hard to
predict what the actual performance will be.

2.13 Future developments

Modern high-performance processors achieve high clock speeds by increasing pipeline depth
and reducing the amount of logic in each pipeline stage; the Pentium 4 [23] uses a 20-stage
pipeline. Hartstein and Puzak [19] and Hrishikesh et al. [24] investigate the limits of such
developments – and show that current architectures are approaching those limits. Some believe
that these limits have already been reached; the AMD Athlon and the latest IBM PowerPC

35

2. Background

both provide comparable performance to the Pentium 4 with shallower pipelines and lower
clock rates. Intel’s latest generation of processors provide higher performance and lower power
consumption at a lower clock speed.

Burger [6] provides an introduction to the problem that, over the course of the next decade, the
relative increase in on-chip wire delays will require new architectures in order to achieve per-
formance gains. Agarwal et al. [1] study this in more detail and it is shown that, if conventional
architectures continue to be used, the current annual performance improvement of 55% will
drop to the region of 12% on future technologies.

36

ILDP in an Embedded Context 3

This chapter describes the Instruction-Level Distributed Processing (ILDP) microarchitecture
as outlined by Kim and Smith [30] and evaluates it in the context of an embedded system. The
complexity of the main architectural blocks of the design are compared qualitatively against a
simple scalar architecture and a typical out-of-order superscalar architecture.

3.1 Details of ILDP

Consider the following line of C code, part of the Tiny Encryption Algorithm:

y += ((z << 4) + a) ^ (z + sum) ^ ((z >> 5) + b);

Ignoring any necessary loads/stores, this line of code can be represented by instructions with
the dependency graph shown in Figure3.1(a). In order for a standard out-of-order superscalar
processor to execute these instructions in as few cycles as possible, it needs to identify which
instructions are independent of each other and thus can be issued simultaneously. Figure3.1(b)
redraws the graph, with instructions that can be issued together grouped. It can be seen that
each group contains no internal arcs, as there are no interdependencies between the instructions
within a group. Two instructions within the same group can always be issued together.

Another way of representing the dependency graph is to group the instructions into streams
where each instruction depends on its predecessor in the stream (except for the first instruction)
so that the instructions in a group form a chain. This attempts to minimise the number of arcs
between groups – an example is shown in Figure3.1(c). Here the instructions are grouped
vertically rather than horizontally. Two instructions that can be executed at the same time must
come from different groups.

The main novel feature of the ILDP architecture is the hierarchical register file – as well as
a set of general purpose registers, there are several accumulator registers. ALU operations
must target and source an accumulator, and cannot reference more than one accumulator. To
use values residing in two different accumulators, one of those values must be moved into a
GPR. This contrasts to the standard RISC approach in which a three-operand model is used:

37

3. ILDP in an Embedded Context

Figure 3.1Ways of grouping instructions by their dependencies

z

<< add>>

sum

a

add

b

add

y

add

y

xor

xor

(a) Dependency graph

z

<< add>>

sum

a

add

b

add

y

add

y

xor

xor

(b) Graph with independent instructions
grouped

z

<<

add

>> sum a

add

b

add

y

add

y

xor

xor

(c) Graph grouped into instruction streams

38

3.2 Instruction set

instructions (other than loads and stores) read one or two registers (or immediate constants) and
then write to a register, using a single (mostly) orthogonal register set. With the ILDP system,
typical instructions are two-operand – the destination (an accumulator) must also appear as a
source.

While a standard superscalar processor needs complex issue logic in order to identify independ-
ent instructions which are ready for execution, ILDP instructions which form a dependency
stream will use the same accumulator. In effect, the vertical groupings of Figure3.1(c) are
explicitly highlighted to the processor by the compiler’s register allocation; each group will be
assigned a different accumulator. The processor can readily identify such dependent streams
and issue instructions from different streams separately. This simplifies instruction issue, ef-
fectively turning the dependency analysis in a reorder buffer on its head.

3.2 Instruction set

Kim and Smith’s ISA specifies eight accumulators and 64 GPRs, which for this research have
been specified as 32 bits wide. Each instruction can use a single GPR as either a source or a
destination, but not both. This simplifies the register rename logic, as shown in Section3.6.1.

A stream of dependent instructions is referred to as astrand. All the instructions within a strand
will access the same accumulator register. Accumulators can belive or dead– a live accumu-
lator is one that is currently being used by an instruction strand and thus contains useful data.
Initially all accumulators are marked as being dead. When an instruction accesses a dead ac-
cumulator, or writes to a live accumulator without reading from it, this starts a new instruction
strand. When an instruction with the ‘.c’ (for ‘close’) suffix to its opcode is executed, the accu-
mulator is marked as dead – thus streams of dependent instructions can be explicitly highlighted
as such within the instruction stream, simplifying the processor’s dependency analysis. This is
covered in more detail in the next section.

Instructions are encoded into 16-bit words referred to asparcels. Each instruction can be en-
coded as one or two parcels – giving a variable-length instruction encoding, with 16 or 32
bits per instruction. The instruction encoding formats are summarised in Figure3.2. Kim and
Smith [30] does not fully describe the instruction set or encoding details, so a full instruction
set and binary encoding have been created based on what is specified.

The instruction set is summarised in Table3.1. The assembler syntax specified is quite verbose,
redundantly specifying source and destination operands that are the same – this was chosen
for clarity in assembly listings. In the ‘semantics’ column,Ai refers to theith accumulator,
Rj refers to thejth GPR,imm is an immediate constant which, depending on the instruction
format, can be 6, 16 or 22 bits wide. The various lengths of immediate allow instructions using
small (common) values to be encoded in a single parcel, reducing code size. For the branch

39

3. ILDP in an Embedded Context

instructions,label refers to a program location to jump to and is encoded in the immediate field
as a PC-relative displacement – a branch to the instruction directly following it would have an
immediate field containing a displacement of zero.

Figure 3.2 Instruction encodings

0 1 5 6 7 9 10 15

0 opcode0 acc reg

Short register format

0 1 5 6 7 9 10 15

0 opcode1 acc imm

Short immediate format

0 1 5 6 7 9 10 15 16 31

1 opcode0 acc reg imm

Long register/immediate format

0 1 5 6 7 9 10 31

1 opcode1 acc imm

Long immediate format

3.3 Programming model

While not a part of the hardware architecture, the Application Binary Interface (ABI) chosen
for this work is described here. The ABI model is based loosely on that of the ARM APCS [9]
and shares features in common with many different architectures.

3.3.1 Register assignments

The architecture specifies 64 GPRs, of which r63 is used to hold the return address after a call
instruction. Table3.2 shows the assigned roles for each of the registers in the ILDP ABI. The
first sixteen registers are used to pass arguments to functions and to return result values.

The stack pointer points to the bottom of the stack, while the frame pointer points to the top of
the current function’s stack frame; this is described further in the next section.

40

3.3 Programming model

Syntax Semantics

Dyadic ALU instructions ; op is one of add, sub, rsb (reverse subtract), and, ior (logical or),
xor, mul
<op> a<i> <= a<i>, r<j> Ai := Ai op Rj

<op> a<i> <= a<i>, #<imm> Ai := Ai op imm
<op> a<i> <= r<j>, #<imm> Ai := Rj op imm
<op>.c r<j> <= a<i>, #<imm> Rj := Ai op imm

Shift instructions; op is one of sll (shift left logical), srl (shift right logical),
sra (shift right arithmetic), rol (rotate left)
<op> a<i> <= a<i>, r<j> Ai := Ai op Rj

<op> a<i> <= a<i>, #<imm> Ai := Ai op imm

Monadic ALU instructions ; op is one of abs, inv
<op> a<i> <= r<j> Ai := op Rj

<op> a<i> <= a<i> Ai := op Ai

Comparison instructions; cond is one of eq, ne, le, lt, ge, gt (all signed)
c<cond> a<i> <= a<i>, r<j> Ai := Ai cond Rj

c<cond> a<i> <= a<i>, #<imm> Ai := Ai cond imm

Move instructions
mov a<i> <= r<j> Ai := Rj

mov a<i> <= #<imm> Ai := imm
mova a<i> <= @<label> Ai := label
mov r<j> <= a<i> Rj := Ai

mov.c r<j> <= a<i> Rj := Ai

Load/store instructions
ldr a<i> <= [a<i>+#imm] Ai := MEM[Ai + imm]
ldr a<i> <= [r<j>+#imm] Ai := MEM[Rj + imm]
str [a<i>+#imm] <= r<j> MEM[Ai + imm] := Rj

str [r<j>+#imm] <= a<i> MEM[Rj + imm] := Ai

Branch instructions
b<cond> @<label> ? a<i>, r<j> PC := label iff Ai cond Rj

b<cond> @<label> ? a<i>, #0 PC := label iff Ai cond0
br @label PC := label

Jump/call instructions
jmp a<i> PC := Ai

jmp r<j> PC := Rj

call a<i> R63 := next_PC;PC := Ai

call r<j> R63 := next_PC;PC := Rj

Other instructions
nop Does nothing
syscall System call

Table 3.1: The ILDP instruction set

41

3. ILDP in an Embedded Context

Register(s) Usage
a0–a7 Scratch registers, not preserved over function call

r0–r15 Argument and result registers
r16–r31 Callee-saved; preserved over function call
r32–r59 Scratch registers, not preserved over function call

r60 Frame pointer
r61 Assembler temporary
r62 Stack pointer
r63 Link register

Table 3.2: Register assignments for the ILDP ABI

The accumulators and most of the GPRs are not preserved over a function call – it is the caller’s
responsibility to save these registers where necessary. The GPRs r16–r31, the frame pointer and
the stack pointer are preserved – in this case a function must ensure that it saves and restores
the values of these registers if it needs to change them while executing.

3.3.2 Memory organisation

A fairly standard program memory model is used. Program code is located at the lowest portion
of virtual memory, with the dynamically allocated heap starting above that. There is a full
descending stack – the stack grows downwards, and the stack pointer points at the location
holding the most recent stack value.

3.3.3 Function call specification

A function is invoked using thecall instruction. On entry to the function, r63 contains the
return address, r62 points to the stack and function arguments are provided in r0–r15 (if these
registers are not sufficient to hold all of the arguments, additional arguments are passed on the
stack).

The function sets up a stack frame to hold its return address, any register values that need
saving and any local storage to the function that may be required – the frame layout is depicted
in Figure3.3. The frame pointer is set up to point at the top of the frame (usually equal to
the initial value of the stack pointer, except for ‘vararg’ functions) and the stack pointer is
decremented to point to the new stack bottom.

On return from a function, any results are placed in r0–r15, saved registers are restored and the
stack frame is popped, then ajmp to the return address is executed.

42

3.4 Microarchitecture

Figure 3.3Function stack frame layout

FP=⇒

Saved return address

Saved frame pointer

Callee-saved registers (if used)
r31...
r16

Local variable storage

Outgoing arguments to functions
(beyond those placed in registers)

SP=⇒

3.4 Microarchitecture

The ILDP architecture is outlined in Figure3.4. The front-end fetch and issue pipeline is four
instructions wide, and is split into four stages:

1) Instruction fetch

2) Decode (termed ‘parcel’ as the fetched parcels have to be reassembled into complete
instructions)

3) General-purpose register rename

4) Instruction issue/steering (also known as accumulator renaming)

The front-end pipeline issues instructions to a set of eight processing elements (PEs) where they
are executed, and then a standard in-order commit mechanism is used to retire instructions. In
this implementation, all parts of the design run at the same speed from a single clock, but due
to the decoupling between the issue pipeline and the PEs, these could potentially be clocked at
different speeds.

43

3. ILDP in an Embedded Context

Figure 3.4The ILDP architecture, as outlined by Kim and Smith

Fetch Parcel Rename Steer

PE L1

PE L1

.

.

.

L2

FIFO

FIFO

R
eg

is
te

r
N

et
w

or
k

The instruction fetch pipeline stage loads a 128-bit word from the instruction cache and places
it into a fetch buffer. The fetch buffer is 192 bits wide and holds any undecoded parcels from
the previous cycle (the parcel logic can consume between 64 and 128 bits in a cycle) as well as
the newly fetched instruction word. The fetch logic aligns the new data correctly when placing
it in the buffer, so that newly fetched parcels appear in sequence immediately after older ones.

The parcel pipeline stage analyses the fetched data in 16-bit blocks and reassembles them into
four instructions – this procedure is made relatively simple as the first bit of a parcel indicates
whether the instruction is encoded in 16 or 32 bits. Since the instructions are variable length,
often not all of a 128-bit word will be consumed at once – the parcel logic can store ‘leftover’
parcels back into the fetch buffer and assemble them in the following cycle along with a newly
fetched word. The parcel stage also performs decoding of the instruction opcode.

In the register rename stage, any of the 64 GPRs used by the instructions are renamed onto a
physical set of 128 registers, using rename logic as in a standard superscalar – although the fact
that most instructions use one GPR (or none) rather than two or three as in a standard processor
allows the rename logic to be simpler and reduces the number of ports required on the rename
map. The pipeline can stall in the rename stage if the register rename map fills – the issue
pipeline will then wait for instructions to commit and free up physical registers for renaming.

The steering pipeline stage allocates instruction strands to processing elements by renaming
the eight ISA accumulator registers onto the eight physical accumulators within the processing
elements. When an instruction starting a new strand is processed by the steering logic, it is
allocated to a free processing element (if there is more than one, the one with the emptiest
issue FIFO is chosen). Further instructions for a strand are issued to whichever PE is currently
executing that strand. After issuing the final instruction of a strand (flagged as such using the
‘.c’ suffix to the opcode), the PE is marked as being available for allocation once more.

44

3.4 Microarchitecture

Figure 3.5Structure of an ILDP processing element

Instruction FIFO

Immediate

Control signals

To/from register replication network

L1 cache

Register
file

A
ccum

ulator

Address

Write data

Read data

The structure of a processing element is shown in Figure3.5. Each PE contains an ALU and
a copy of the register file and memory access logic, as well as a single accumulator and an
instruction FIFO. Each processing element executes instructions in order from its FIFO. As the
instructions executed by each PE form dependent chains, the ALU in the PE is not pipelined,
simplifying its implementation somewhat. Register values and the addresses of store instruc-
tions are replicated between PEs using a communication network. Instructions that use a register
value can only issue if that value is present in the local register file – i.e. if the value has been
received over the register communication network. The exact form of the communication net-
work is not specified as part of the architecture, as ILDP is designed to be tolerant of a high
communication latency, allowing a range of implementations. For this research the network is
modelled as a bus with a 2-cycle latency (mirroring that used in [30]).

Load instructions can only issue if there are no earlier store instructions to the same address in
flight. This is enforced by having a copy of the store queue in each of the PEs – store instructions
are allocated store queue entries in the rename pipeline stage. When a store instruction executes,
it communicates the memory address and stored value over another communication network
similar to that for register values.

Each PE requires its own memory access port. This can be implemented by having a separate
data cache for each PE, with a coherency network to keep the cache contents equal (the approach
described in [30]) or by having multiported caches shared between PEs, or by multiplexing
cache ports between PEs. Multiplexing cache ports between PEs (with associated arbitration
logic) is likely to reduce performance compared to the other options, as the effective bandwidth
to memory is reduced.

45

3. ILDP in an Embedded Context

3.5 Complexity

This architecture should provide several benefits over an out-of-order architecture in terms of
complexity. Since each processing element only communicates values through the register file,
far fewer forwarding paths are required – forwarding paths are only needed within a PE, not
between them as in a standard architecture. The inter-PE communication network can be im-
plemented in various ways depending on performance and area requirements, whereas standard
forwarding paths scale quadratically with issue width and linearly with pipeline depth.

As instructions are issued in-order within PEs, and issued to PEs depending on their accumu-
lator, the issue logic will also be far simpler than a full superscalar processor, eliminating the
need for a reorder buffer etc. Thus the complexity of the ILDP architecture should be similar to
that of an in-order superscalar architecture, but should provide performance similar to an out-
of-order system [30]. This should make it well suited to embedded applications, and is analysed
in greater depth in this section.

Fully analysing the complexity of a processor design is a large and complicated task, generally
requiring implementation of the whole design at the circuit level. Most microprocessors are
full custom designs, so to accurately assess complexity of architectural modifications a full
custom design would be necessary, which is beyond the scope of many research projects. A
simpler approach is a more qualitative analysis, breaking down the design and looking at the
complex structures that are likely to affect the critical path and how they scale with feature size
and architectural parameters. In such an analysis, Palacharla [42] investigated the following
components of modern CPU designs:

• Register rename logic

• Issue window dependency checking logic

• Instruction issue logic

• Register file

• Data bypass paths and logic

Palacharla identifies the issue window logic and bypass paths in a superscalar processor as being
most likely to affect performance in future architectures due to not scaling well with feature
size. The ILDP architecture eliminates the complex reorder buffer of a superscalar architecture
in favour of multiple small simple issue FIFOs.

46

3.6 Complexity analysis

3.6 Complexity analysis

The following sections analyse the components listed above, looking at the blocks contribut-
ing to their complexity, and how architectural parameters affect complexity. The analysis is
performed for typical examples of:

• The ILDP design

• A superscalar architecture

• A simple scalar architecture

3.6.1 Register rename logic

Register rename logic is composed of several blocks:

• The map tablewhich holds the current mappings between logical and physical register
numbers, generally implemented as a RAM indexed on logical register number. There is
also a table holding previous register mappings, used when the processor has to roll back
execution after an exception.

• A free register list, holding the tags of all physical registers available for allocation.

• Logic to allocate new registers from the free register list to instructions that write to
logical registers.

• Logic to detect interdependencies between instructions in the block currently being re-
named and identify those that should read physical registers allocated in the current cycle
instead of those specified in the map table.

• A multiplexer to select the correct physical register numbers for each instruction and pass
the results along the pipeline.

The size of the map table scales with the number of logical registers in the ISA. Its complexity
also depends on the issue width of the processor and the number of operands per instruction in
the ISA.

A typical superscalar processor of issue widthn with instructions that haver input operands and
w output operands will requiren× r read ports andn×w write ports to the map table. A 4-way
issue processor with a typical 3-operand instruction set will have a map table with 8 read ports
and 4 write ports.

47

3. ILDP in an Embedded Context

By contrast, the ILDP architecture can either read or write one register per instruction, so for 4-
way issue just 4 read/write ports would be required, eliminating eight decoders and sets of word
lines compared to a 4-way issue processor. This reduction in logic and wires should reduce
power consumption and also make the block smaller, reducing the overall delay. A separate set
of renaming logic is used in the steering stage to rename the accumulator registers – this also
requires only 4 read/write ports, and will only contain eight entries.

A scalar CPU does not use register renaming, and thus can entirely eliminate rename logic. The
ILDP architecture will necessarily be more complex than a scalar processor in this regard.

3.6.2 Issue window dependency logic

In a standard superscalar, the instruction window holds all in-flight instructions. Instructions
can only be issued once all their input operands are available; the dependency checking logic is
responsible for flagging instructions ready as these operands become available. Each cycle the
physical register numbers of the data that has been computed are checked against the waiting
instructions via an associative lookup – any instructions that match are marked as such. Once
all operands are available, an instruction can be issued.

The instruction window in a superscalar processor is implemented as an associative memory.
Each memory row can hold one instruction, with the associative section containing the data
tags for the instruction’s operands and bits indicating when operands are available. Ann-way
issue processor requiresn associative ports for writing newly available data tags, and each row
then needsn comparators per operand to check for matches. The larger the issue width, the
larger each row will be, and thus the length of the bitlines in the memory will grow. Overall the
delay of this block is quadratic in both the issue width and window size, and at smaller feature
sizes the timing tends to become dominated by wire delays and thus scales poorly with modern
processes.

The ILDP architecture eliminates the instruction window; instead instructions are placed into
FIFOs and issue from the FIFO heads. Dependency checking only needs to be done on the
instructions at the heads of each FIFO, and as each instruction only uses a single register oper-
and, there needs to be only a single comparator per processing element, rather than 8 per row of
the instruction window as in a 4-way superscalar (a 64-instruction window would then require
512 comparators and associated logic). This should make the instruction window logic much
smaller in the ILDP design – the total size of the instruction FIFOs will be similar to that of the
superscalar instruction window, but the dependency checking logic is greatly reduced.

A scalar processor has no instruction window logic (and also no instruction FIFOs).

48

3.6 Complexity analysis

3.6.3 Instruction issue logic

A standard superscalar must identify instructions available for execution and allocate them to
functional units for execution, with the oldest such instructions being executed first. The de-
pendency checking logic above will mark instructions as being available, and then the issue
logic is generally constructed using anarbiter tree. This has an O(logn) time complexity, and a
space complexity of O(nlogn), with n being the instruction window size.

The ILDP architecture, in contrast, issues instructions into the set of FIFOs for the processing
elements. The logic for this is basically a second set of register renaming logic, this time
renaming the accumulator registers onto the set of processing elements. As the set of FIFOs
will generally be small (e.g. eight FIFOs in [30]), this logic block (termed the steering logic)
should be small and fast compared to an arbiter tree for a large instruction window – it will
certainly be faster than the logic for renaming general-purpose registers, due to the smaller map
size, so should not form part of the critical path.

Within a PE, the issue logic simply executes the instruction at the head of the FIFO if it either
does not depend on a register value, or depends on a register value that is available (see3.6.4).

In a scalar processor, the issue logic generally consists of a scoreboard to track which register
values are currently within the register file and which are in flight, along with logic to choose
which forwarding paths (if any) to use and interlock logic to halt the pipeline, inserting a bubble,
when there are data hazards requiring a stall.

3.6.4 Register file

A standard processor architecture will require one read port to the register file for each input
register operand of each executing instruction and one write port for each output operand. This
is basically the same as the register rename map – for a processor with a 4-way execute band-
width, executing 3-operand instructions, 8 read ports and 4 write ports will be required to the
register file. In order to reduce the register file complexity, several superscalar architectures
make multiple copies of the register file, with fewer read ports per file, e.g. an 8 read port, 4
write port register file could be split into two copies with 4 read ports and 4 write ports each.
Writes are replicated to each copy of the register file, while reads are distributed across the
copies. This increases the total die area usage, but reduces the delay of the register file logic.

Since each PE in the ILDP architecture has a separate register file, each individual file needs
fewer ports than a superscalar processor with a single file – this is similar to a superscalar
processor with a split register file. Each instruction can either read or write a single register, and
register values can be received over the register communication network. As such, the ILDP
processor requires only one read/write port and enough write-only ports to handle the bandwidth

49

3. ILDP in an Embedded Context

of the register network on each register file (the read/write port could possibly be replaced by
a read-only port, as register writes from the PE must go through the register network anyway,
and could be written using one of the dedicated write ports).

This compares favourably with a scalar RISC architecture, which will generally have two read
ports and one write port. The ILDP register files should therefore be small (for the number of
registers they contain) and fast, but require replication across each PE, increasing total silicon
area for the design.

3.6.5 Bypass paths

A standard superscalar processor with issue widthw andn pipeline stages requiring bypass (any
stages from the first execution stage before register writeback) will need 2nw2 bypass paths and
2n multiplexers to select the appropriate path for use. For modern systems with deep pipelines,
complex logic and large issue widths this leads to having many long wires with associated
delays. As feature sizes drop, these delays scale badly and can easily become the limiting factor
on performance.

The ILDP architecture separates the bypass paths into local paths within a PE and the global re-
gister value communication network between PEs. Each PE requires only one or two bypasses,
which should be fairly short (and thus fast). The ILDP architecture is designed to be tolerant
of delays in the the register communication network – [30] shows only a small performance
degradation when the delay is increased from zero to two cycles. This tolerance allows various
different implementations to be used for this interconnect, depending on area, power and cycle
time constraints.

A scalar processor will also have 2nw2 bypass paths, but with aw value of 1. For a typical
five-stage pipeline,n is 2, giving four total bypass paths.

3.6.6 Data caches

Data caches are generally hard to scale for high issue widths – adding additional ports to a
first-level cache tends to increase the delay significantly. Modern designs tend either to use a
single-cycle L1 data cache with one read and one write port or a multi-cycle pipelined cache
with two read ports and one write port. Superscalar designs often avoid the need to implement
additional read ports by usingnon-blockingcaches – a single-ported non-blocking cache does
not need to stall when a read access causes a miss; later instructions can continue to use the read
port while the miss is being serviced.

50

3.7 Power consumption

The ILDP architecture specifies that each PE has its own memory access port. This either
requires each PE to have its own coherent copy of the L1 cache, or that multiple PEs share a
multi-ported L1 cache. Individual caches per PE will be the highest-performance option, but
will require a large silicon area – caches use the majority of silicon area on modern designs,
and replicating the L1 cache eight ways will either use up eight times as much chip area, or
reduce the size of the cache by a factor of eight. Sharing a larger multiported cache between
PEs is likely to increase the cache latency, but in a situation where the silicon area is limited,
the increased size of the cache may improve the hit rate, mitigating this penalty slightly.

A scalar processor will generally have a single L1 cache with one read/write port, which does
not need to support non-blocking accesses.

3.7 Power consumption

The ILDP architecture reduces complexity in a number of key areas compared to a typical
superscalar processor – as such, it should have a correspondingly lower power consumption.
However, the power consumption is still likely to be higher than the scalar RISC CPUs typically
used in embedded systems. Given the higher performance, some degree of additional power
consumption is acceptable; battery life is traded off against speed. One important factor will
be the resulting power efficiency – whether the performance increase is greater than the added
power consumption.

While complex structures are eliminated or scaled down, many of the simpler structures are
replicated across PEs. This will particularly have an effect on the static power consumption,
as some of these (such as the register file) are fairly large blocks. Depending on the usage
patterns of the PEs, it may be possible to use clock and/or power gating to reduce the power
consumption – if many of the PEs are idle for large amounts of time, clock gating will reduce
their dynamic power consumption and power gating will reduce static power consumption.
This would greatly increase the power efficiency, as only those blocks that are active – and
thus directly contributing to performance – would consume power. As blocks that have been
powered down can have fairly large start-up times, it might be necessary for performance to
keep one PE as a ‘hot spare’ – idle, but still powered, to hide the latency of powering up an
inactive PE. Such a spare could still utilize clock gating to reduce power consumption, as clock
gated logic can be restarted much quicker than power gated logic.

One of the structures replicated across each processing element is the register file. This rep-
lication will increase power consumption, potentially quite significantly, as the register file is
a large component and thus will have a correspondingly high static power usage. While PEs
can theoretically be powered down when idle to reduce their power consumption, the data in
the register files has to be kept coherent and up-to-date. As such the register files cannot be

51

3. ILDP in an Embedded Context

powered down – they will continue to consume not only static power, but also dynamic power
due to writes distributed over the register replication network.

3.8 Summary

This chapter has shown that while the ILDP architecture utilizes many superscalar processing
techniques, it eliminates or scales down many of the higher-complexity structures of a super-
scalar processor, bringing its complexity closer to that of a typical embedded processor, at an
increased speed. The performance of the design is analysed quantitatively in the next chapter.

52

Evaluating ILDP 4

This chapter evaluates the performance of the ILDP architecture compared to typical embedded
processors and explores the effect various architectural parameters have on performance.

4.1 Performance vs other embedded architectures

The initial investigation was to evaluate the performance of the ILDP architecture outlined in
Kim and Smith [30] under embedded workloads. Their work executes Alpha binaries using
dynamic code translation in the style of the Transmeta Crusoe [8; 33]. For an embedded sys-
tem, however, dynamic translation at the hardware level adds extra complexity, especially since
binary compatibility is generally less of an issue for these applications – particularly given
the growing popularity of bytecode languages such as Java and .NET, which require dynamic
interpretation or compilation regardless.

4.1.1 Methodology

To evaluate the ILDP architecture presented in Chapter3, a set of benchmarks were run using a
simulation of the ILDP processor and compared to results of the same benchmarks run on other
architectures. Since the possible clock speed of a processor depends heavily on the detailed
circuit-level design, which is beyond the scope of these evaluations, the results are compared
based on the total number of clock cycles used to execute the benchmark workloads. Based on
the complexity analysis in Section3.6, it is assumed that similar clock speeds could be attained
by ILDP and the other tested architectures.

4.1.2 Compiler toolchain

In order to evaluate the architecture, it was necessary to be able to generate instruction code to
execute; thus it was necessary to target a compiler and associated toolchain to the new ISA. The
GNU Compiler Collection (GCC) was initially evaluated but developing a new backend seemed

53

4. Evaluating ILDP

to be an overly involved process so other options were investigated. The SUIF [2] project looked
promising, providing an open modular compiler framework, along with Machine-SUIF [53], a
framework for creating compiler backends to generate machine code.

Using the SUIF framework, I created a basic compiler for the ILDP architecture. There were
some problems adapting the register allocator to handle the hierarchical register file and so a
new pass was developed for the compiler which would annotate the code with hints to allow
register allocation to take place. This was able to compile simple test programs into the ILDP
ISA. The New Jersey Machine-Code Toolkit [45; 46] was used to generate object code – given
a high-level description of the instruction encodings, the NJMCT will generate code to generate
instructions in binary format. The GNU BFD library (part of the binutils package) was then
used to generate ELF object files containing the compiled code.

In order to compile any benchmark suites, a C library was required – the uClibc library seemed
like an appropriate choice, as it is designed to be smaller and more readily portable than the
usual GNU libc. When trying to compile the uClibc library however I found that my compiler
system did not function well for compiling anything larger than basic test programs due to
problems with data layout and linking, and that the library code contained a number of GCC-
specific language features which were tricky to work around. I also found the C front-end to
SUIF to have a number of problems compiling modern C programs. Unfortunately this front-
end is based on a commercial compiler and is only available as a closed-source binary module,
and thus cannot be modified. As such, I investigated alternatives to the main compiler front-end
that could alleviate these problems.

Ultimately, a toolchain based on the GNU compiler and binutils was developed (the document-
ation in [40] proved invaluable), which compiles directly to the ISA of the simulated archi-
tecture. The CGEN [11] tool was used to generate an assembler, disassembler and a basic
functional simulator from a high-level description of the instruction set – similar to the NJMCT
used earlier, but the description includes not only the instruction encoding, but also the assem-
bler syntax and semantics – making it much simpler to generate a full toolchain with minimal
additional effort. The newlib C library was used, as this proved to be even simpler to port to
new architectures than the uClibc library, and also supports ‘multilib’ compilation which allows
several variants of the ISA to be used and to have toolchains automatically built for all variants;
this proved useful for the work in Chapter5.

The strand allocation in the compiler was handled using the existing GCC register allocation
mechanism – for each instruction in the ISA, a pattern is provided to the compiler specifying the
allowable register types for each operand. The compiler contains an internal constraint solver
which tries to allocate registers in such a way as to maximise performance – usually by minim-
ising the number of move instructions that need to be inserted. In practice, the compiler proved
to have a certain amount of difficulty handling some of the constraints peculiar to ILDP – in
particular, it proved very difficult to prevent the compiler from trying to generate accumulator-
to-accumulator move instructions. Also, the constraint that a store instruction could either store
an accumulator value to a register address or a register value to an accumulator address was

54

4.1 Performance vs other embedded architectures

impossible to specify. A number of fixups had to be created to work around these compiler
issues.

Ultimately the code generated by the compiler was often not optimal for the architecture – in
order to improve the generated code the register allocator would need to made aware of the
concept of strands. Unfortunately there was not enough time within the scope of this research
to invest in further compiler developments. The performance of ILDP versus other architectures
(with more mature and better optimised compiler backends) is likely to suffer as a result of this.

4.1.3 Benchmarks

I evaluated a number of benchmark suites to see which would be most suitable. The SPECint
[20] suite is most commonly used for evaluating processor architectures, but is targeted at high-
end systems – the SPECint2000 suite uses a working set of 256MB, too large for an embedded
system for which typically the total system memory will be in the order of 64MB. I felt that a
benchmark suite targeted specifically at evaluating embedded systems would be more appropri-
ate for my research.

The EEMBC suite is the industry standard for embedded benchmarking, but is only available
after purchase of a closed licence with severe restrictions on the publishing of results. I felt that
this would probably be inappropriate for my initial research, and that something more readily
available would be more beneficial for academic work.

MiBench [17] is a freely available embedded benchmark suite based on open-source software
packages. I decided to use this suite for evaluation as it was free and seemed fairly easy to set
up and use.

4.1.4 Simulation

The SimpleScalar simulation environment [5] was investigated for performance evaluation, but
proved to be heavily tied in to a standard superscalar processor model – while it could be used
to simulate the other architectures, it was not suitable to simulate the ILDP design. Instead, a
custom cycle-accurate software simulator was created to run the code for the ILDP model. Each
circuit block within the design was implemented as a block of software, suitably parameterized
so that architectural parameters could be changed and evaluated. An execution framework was
created that would allow automated execution of the benchmark suite over a range of paramet-
ers, and would allow running benchmarks on other architectures for comparison purposes.

For the initial experiments the architectural parameters of the ILDP model were set as in [30],
i.e. with a 4-way issue/retire width and 8 FIFOs/PEs. The register communication network was

55

4. Evaluating ILDP

modelled as a simple bus between the PEs, with a latency of two cycles to transmit the values
between PEs (plus an additional cycle for the PEs to write the data into the register file). The
instruction FIFOs were set to be of unlimited size, and the register communication network
could transmit an unlimited number of values in a single cycle. This allowed the simulations
to run assuming these parameters had been set to a suitable level to allow as close to optimum
performance as possible. Sections4.3.3and4.3.4explore the effect these parameters have on
performance.

4.1.5 Results

The performance of the baseline ILDP architecture was simulated versus a model of the ARM
SA1100 and a PowerPC model, chosen to approximately represent the PPC405 core. For the
SA1100 model, the Simplescalar-ARM [5] simulation system was used, and for the PowerPC
simulations Dynamic Simplescalar was used [25] – while Simplescalar-ARM is supplied with a
configuration for the SA1100, the configuration for the PowerPC model had to be created based
on published specifications [26], and the performance of these models may be less accurate as a
result. A model for the PPC440 core [27] was attempted, but it proved difficult to set the para-
meters for the superscalar execution and it was not possible to test the accuracy of the model
against a real implementation, thus making it impossible to use for comparison. The measured
performance values are based on the number of cycles taken to execute each benchmark – it
is assumed that the achievable clock speeds for these architectures will be similar. The bench-
marks were compiled with the same libraries and toolchain for all architectures (the newlib C
library and GCC version 3.3.2). Due to limitations in the set of the system calls implemented
in newlib, not all of the benchmark tests would link – the results presented are from the 20 tests
which could be compiled. The same set of compiler flags were used for each architecture –
most of the tests were compiled using ‘-O3 ’, but due to compiler issues thetiff tests had to be
compiled with ‘-O2 ’ and thejpegtests were compiled using ‘-O ’.

The results of these simulations can be seen in Figure4.1– the results shown are normalised to
the average execution time for each test. It can be seen that, on average, there is a 18.5% speedup
over the ARM. Thepatricia benchmark shows the greatest improvement – about 172% – while
the adpcm (enc)and tiffdither tests actually run approximately 10% slower than the ARM.
Compared to the PPC405 model, ILDP performs on average 52.8% better, ranging from 23.3%
onadpcm (enc)to 104% better ontiff2rgba.

These results show that the 4-way issue ILDP model performs better than the single-issue ARM,
but not by a very large margin – this is somewhat disappointing, as [30] shows the performance
of ILDP to be similar to that of a 4-way out-of-order architecture. Figure4.2shows that in these
simulations the ILDP architecture executed more total instructions than the other architectures –
in some cases more than twice as many. This is attributed in part to the need for additional move
instructions in the strand-based architecture, in part to the density of three-operand instruction
code over the two-operand ILDP instructions (in an extreme case, an ARM can execute an

56

4.1 Performance vs other embedded architectures

P
ar

am
et

er
IL

D
P

A
R

M
P

P
C

40
5

Is
su

e
w

id
th

4-
w

ay
1-

w
ay

1-
w

ay
E

xe
cu

tio
n

w
id

th
8-

w
ay

1-
w

ay
1-

w
ay

B
ra

nc
h

pr
ed

ic
tio

n
16

K
en

tr
y,

12
-b

it
gl

ob
al

hi
st

or
y

gs
ha

re
A

ll
br

an
ch

es
pr

ed
ic

te
d

no
tt

ak
en

2K
en

tr
y

bi
m

od
al

L1
I-

ca
ch

e
P

er
fe

ct
1-

cy
cl

e
la

te
nc

y
16

K
B

32
-w

ay
as

so
ci

at
iv

e,
32

B
lin

e
si

ze
,1

-c
yc

le
la

te
nc

y,
fif

o
re

pl
ac

em
en

t
P

er
fe

ct
1-

cy
cl

e
la

te
nc

y

L1
D

-c
ac

he
8K

B
2-

w
ay

as
so

ci
at

iv
e,

64
B

lin
e

si
ze

,
1-

cy
cl

e
la

te
nc

y,
ra

nd
om

re
pl

ac
em

en
t

16
K

B
32

-w
ay

as
so

ci
at

iv
e,

32
B

lin
e

si
ze

,1
-c

yc
le

la
te

nc
y,

fif
o

re
pl

ac
em

en
t

32
K

B
2-

w
ay

as
so

ci
at

iv
e,

32
B

lin
e

si
ze

,
1-

cy
cl

e
la

te
nc

y,
LR

U
re

pl
ac

em
en

t
L2

ca
ch

e
25

6K
B

2-
w

ay
as

so
ci

at
iv

e,
12

8B
lin

e
si

ze
,

8-
cy

cl
e

la
te

nc
y,

ra
nd

om
re

pl
ac

e-
m

en
t

no
ne

25
6K

B
8-

w
ay

as
so

ci
at

iv
e,

64
B

lin
e

si
ze

,8
-c

yc
le

la
te

nc
y,

LR
U

re
pl

ac
em

en
t

M
em

or
y

72
-c

yc
le

la
te

nc
y

72
-c

yc
le

la
te

nc
y

72
-c

yc
le

la
te

nc
y

Ta
bl

e
4.

1:
A

rc
hi

te
ct

ur
al

pa
ra

m
et

er
s

fo
r

si
m

ul
at

io
n

57

4. Evaluating ILDP

Figure 4.1Performance of ILDP compared to embedded processors

N
or

m
al

is
ed

 p
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

PPC405 ARM ILDP

Architecture

Figure 4.2Number of instructions executed, compared to ARM

R
el

at
iv

e
nu

m
be

r
of

 in
st

ru
ct

io
ns

0

0.5

1

1.5

2

2.5

3

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

ILDP PPC

Architecture

58

4.1 Performance vs other embedded architectures

Figure 4.3 IPC of tested processors

IP
C

0

0.5

1

1.5

2

2.5

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

PPC405 ARM ILDP

Architecture

arithmetic operation and a shift between arbitrary registers in a single instruction, while the
ILDP can take up to four instructions for such an operation) and in part due to the compiler.
The ILDP compiler is not optimised as well as the compilers for the other architectures – in
the original simulations thecrc benchmark ran approximately 10% slower than the ARM, but
manual analysis of the code suggested two peephole optimizations which were introduced to
the compiler, thus removing two instructions from the inner loop and increasing the overall
performance. In particular, the compiler implementation proved to have problems with the lack
of an accumulator-to-accumulator move instruction and the operand formats for the load/store
instructions.

The IPC attained by the ILDP architecture is much greater than that of the other architectures
(as shown in Figure4.3) but performance is limited by the increased code size. An interesting
comparison would be running the ARM tests on code compiled for the Thumb architecture, as
the Thumb ISA has a number of restrictions similar to ILDP – shifts are performed as separate
instructions and most ALU operations are represented as two-operand instructions. Unfortu-
nately the SimpleScalar-ARM simulator cannot execute Thumb code, so this comparison was
not possible.

59

4. Evaluating ILDP

4.1.6 Conclusion

Overall, while the performance of the tested ILDP architecture is only moderately greater than
the embedded processors used for comparison, the level of IPC achieved is significantly higher
– assuming that the compiler could be further optimised in order to reduce the total number of
instructions executed, the ILDP architecture should show much better performance.

4.2 Resource utilization

As manufacturing moves to smaller feature sizes, static power consumption is becoming more
and more of an issue. Idle circuitry wastes large amounts of power – circuits should either be
utilized or powered down in order to get maximum power efficiency. Investigations were thus
made into how fully hardware resources are being utilized. If a hardware block is replicated in
order to support a certain issue width or execution width, but simulation shows the utilization
to be low, then possibly the width for that block is too high and the level of replication could be
reduced without significant effect on performance.

4.2.1 Decode / Issue logic

The complexity of many components in the processor scale linearly or quadratically with the
issue width of the processor. If the limiting factors in performance come from other aspects of
the system – e.g. the execution width, delays from branch mispredictions or cache misses, or
code containing too little inherent parallelism – then having too high an issue width can mean
the issue pipeline is largely idle, wasting power and can reduce overall performance if the logic
is on the critical path and the added complexity increases the cycle time.

Figure4.4shows the number of instructions processed by each stage of the issue pipeline pro-
portionally in time. When running the benchmark suite on the 4-way issue model, it can be
seen that the parcel (decode), rename and steer (issue) pipeline stages spend on average around
35% of their time completely idle. This is attributed to the level of parallelism present in the
benchmarks – there is simply not enough ILP present in the code to sustain 4-way issue, thus
the issue logic runs ahead of the execution logic and will stall waiting for instructions to be
consumed. Analysing the IPC achieved on these benchmarks corroborates this – as shown in
Figure4.3, the average IPC is only 1.56, and only thebitcountandshatests achieve more than
2 IPC. These results indicate that the issue pipeline is only being utilized at about half capacity
and that a 2-way issue pipeline might be sufficient to maintain performance on these bench-
marks. If the issue width is too high, then the issue pipeline is using more logic than necessary,
which will increase static power consumption. Section4.3.1explores the effects of issue width
on pipeline utilization.

60

4.2 Resource utilization

Figure 4.4Number of instructions processed by the parcel, rename and steer pipeline stages

%
 o

f t
im

e

0

20

40

60

80

100

p pr rs s

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

0 1 2 3 4

Number of instructions processed per cycle

4.2.2 Processing elements

As above, if the number of processing elements is too high compared to the other architectural
parameters, then they will be idle most of the time, wasting power and silicon area. A plot of
the activity of the individual processing elements (Figure4.5) shows that only about 21% of the
time is spent executing instructions – most of the time is spent idle, waiting on GPR values from
other PEs (data stalls), or waiting on loads that are blocked by earlier stores (load conflicts).

The fact that the PEs spend much less than half their time executing implies that complexity
savings could be made by having fewer PEs (e.g. four instead of eight), and associating two
instruction FIFOs and accumulators with each one. The PE would then execute from both
queues in a round-robin fashion – for most of the time one of the queues would be empty or
stalled, so there would be only a minor performance impact. Since each processing element
is independent, those PEs with empty FIFOs could be powered down which would allow high
peak execution rates while saving power. This option is explored in Section5.1.

61

4. Evaluating ILDP

Figure 4.5Processing element activity

%
 o

f t
im

e

0

20

40

60

80

100

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

Execute Data stall Load stall Load conflict Idle

Processing element state

4.2.3 Register rename logic

The rename logic in the ILDP design is simpler than that of a standard superscalar, as the
instructions reference up to one register operand rather than three. The ILDP rename logic
provides one read/write port to the rename map for each instruction in the rename stage of the
pipeline. Depending on the proportion of instructions accessing register values in the instruction
stream, it is possible that the rename logic could be further simplified by providing fewer ports,
and stalling rename of instructions when the available bandwidth is exceeded. Figure4.6shows
the distribution of rename map bandwidth usage over time.

It can be seen that in a large proportion of cycles, no registers are renamed – this is mostly
due to the fact that the issue pipeline is idle for a significant fraction of the time, as shown in
Section4.2.1.

These results show that even when the rename logic is active, it is still not utilized to full
capacity for much of the time. On average, the rename stage uses all four rename ports in
only 9.1% of cycles. Three ports are used 15.9% of the time, two ports for 22.6% and one
port for 10.6%. These results imply that if the complexity of the rename logic were a problem
even with the simplifications inherent to the ILDP architecture, the logic could be scaled back
to only rename three registers per cycle with likely little effect on performance. Scaling to a

62

4.2 Resource utilization

Figure 4.6Distribution of rename map bandwidth usage over time

%
 o

f t
im

e

0

20

40

60

80

100

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

0 1 2 3 4

Rename map ports used

(a) Overall rename map port usage

%
 o

f t
im

e

0

20

40

60

80

100

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

0 1 2 3 4

Rename map ports used

(b) Rename map port write usage

63

4. Evaluating ILDP

rename width of two per cycle could have a more significant effect. This is evaluated further in
Section4.3.2.

Figure4.6(b)shows the usage of the rename map for writes only. This clearly shows that far
fewer ports are used for writing to the rename logic – for nearly 90% of the time one or fewer
writes are performed to the rename map, and more than two writes are performed in less than
0.4% of cycles. If the complexity of implementing all read/write ports is significantly greater
than implementing some ports as read-only, then reducing the write bandwidth to two is likely
to cause a negligible performance reduction, and reducing to a single read/write port may also
be a reasonable performance trade-off.

4.3 Parameter space exploration

As well as evaluating the performance of the ILDP architecture using the parameters specified
in [30], simulations were run exploring various different architectural parameters to see if a
particular combination would be better suited to the constraints of embedded design – redu-
cing the potential complexity and/or power consumption without significantly impacting upon
performance.

4.3.1 Issue width

Experiments were conducted varying the issue bandwidth – as well as the original 4-way issue
model, 2-way issue and single issue were evaluated. Figure4.7 shows the impact on perform-
ance due to scaling the issue width. Going from 4-way issue to 2-way gives on average an 7.6%
drop in performance, although there is a significant variation across the tests – thebitcountand
shatests both lose more than 20% performance. This is unsurprising as both these tests were
able to average more than two instructions per clock on the 4-way architecture – as the tests
with the highest level of parallelism achieved, they are likely to lose out most from the issue
width reduction.

Another result of note from this graph is that thecrc32benchmark actually performs over 25%
better when the issue width is width is set to 2-way issue. This result is unexpected and is
reflected to a smaller degree in theblowfishtests, which show a slight performance improvement
going from 4-way to 2-way issue. Analysis of the simulator statistics does not show any obvious
explanation for these results, and so it is assumed that for some of these tests, a larger issue
width allowing deeper speculative execution can actually limit performance when execution
paths are mis-speculated – instructions are incorrectly executed and can, for example, cause
cache conflicts and pollute the cache with irrelevant data. At a lower issue width, the processor
would execute less deeply down speculative paths, and so be affected to a lesser degree. The

64

4.3 Parameter space exploration

Figure 4.7Performance of ILDP at various issue widths, normalised to 4-way case

N
or

m
al

is
ed

 p
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

1 2 4

Issue width

crc32benchmark would then represent a pathological example of this. If this data point is taken
to be an outlier, the performance drop from going to 2-way issue is about 9.2%. Moving to
single-issue has a much larger impact, with performance dropping on average by nearly 42%.
This reflects the results from Section4.2.1, where a 4-way pipeline was running at around two-
thirds capacity.

Figure 4.8(b) shows the pipeline utilization with 2-way issue: significantly less time (21%)
is spent idle, compared with 4-way issue as described earlier (Figure4.4 is reprinted as Fig-
ure4.8(a)for reference). Having less logic which is utilized more in order to provide compar-
able performance will improve the power efficiency of the issue pipeline.

It is possible that the reduction in complexity of the issue logic in a 2-way issue design would
allow for higher clock speeds as well as reducing power consumption, mitigating the IPC pen-
alty and possibly allowing the 2-way architecture to perform better overall. Even if this is not
the case, the 2-way issue architecture is reasonably close to the 4-way design in terms of per-
formance, and will be more power-efficient. Depending on system design constraints, either
could be suitable for a particular design. The single-issue design does not perform very well
– since the ISA and execution logic are designed with superscalar execution in mind, a single
instruction-per-clock issue pipeline will prove to be a severe bottleneck. For the rest of this
chapter, both the 2-way and 4-way issue designs are evaluated.

65

4. Evaluating ILDP

Figure 4.8Number of instructions in the parcel, rename and steer pipeline stages

%
 o

f t
im

e

0

20

40

60

80

100

p pr rs s

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

0 1 2 3 4

Number of instructions processed per cycle

(a) 4-way issue

%
 o

f t
im

e

0

20

40

60

80

100

p pr rs s

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E
0 1 2

Number of instructions processed per cycle

(b) 2-way issue

66

4.3 Parameter space exploration

Figure 4.9Effect on performance of removing register rename map ports

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−15%

−10%

−5%

0%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

2 3

Number of register rename map ports

4.3.2 Rename bandwidth

If the added complexity of the rename logic due to issue width turns out to be greater than
that of the other pipeline stages, it may be beneficial to reduce the width of the rename stage
while leaving the rest of the issue pipeline at a 4-way width. Section4.2.3shows that for much
of the time the full number of ports on the register rename map are not used. This section
evaluates the effect on performance of reducing the number of ports on the map, thus limiting
the peak rename bandwidth. If instructions enter the rename stage requiring more ports than are
available, the later instructions will have to be stalled. Experiments were conducted varying the
number of rename map ports.

Figure4.9shows the effect on performance of reducing the number of ports implemented in the
rename map. When the number of ports is reduced to three, very little variation in performance
can be observed. The worst affected test isadpcm (dec)which performs slightly under 3%
slower. On average, the three-port case achieves 99.8% of the performance of the baseline 4-
port case. With only two rename map ports, a larger performance reduction is observed – while
many tests perform to within 1% of the baseline model, some tests are more than 10% slower
(theshatest performs 14% worse). On average, with only two rename map ports, 97% of the
4-port performance is still achieved.

Analysing the number of instructions processed per cycle in the issue pipeline shows that the
3-port model (Figure4.10(a)) is, on average, still able to process four instructions in a cycle

67

4. Evaluating ILDP

Figure 4.10Issue pipeline statistics when varying number of rename map ports

%
 o

f t
im

e

0

20

40

60

80

100

p pr rs s

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

0 1 2 3 4

Number of instructions processed per cycle

(a) 3 rename map ports

%
 o

f t
im

e

0

20

40

60

80

100

p pr rs s

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E
0 1 2 3 4

Number of instructions processed per cycle

(b) 2 rename map ports

68

4.3 Parameter space exploration

approximately 35% of the time (compared to 40% in the base model), and the 2-port model
(Figure4.10(b)) processed four instructions in 18% of cycles, and three or more instructions
in 37% of cycles on average. This indicates that there are are many instructions that utilize no
GPRs (e.g. monadic instructions or those using an immediate operand) in the instruction stream,
and that they are distributed fairly evenly within the code.

The reduced dependence of ILDP instructions upon the general-purpose register file means that
implementing fewer ports into the register rename map does not cause a significant variation in
performance in most tests. If the cycle time in a particular implementation were limited by the
complexity of the register rename map and the additional logic required to arbitrate for fewer
ports were not a problem, reducing the number of ports into the map would be a performance-
effective approach to reducing complexity.

4.3.3 FIFO depth

The depth of the instruction FIFOs can affect performance in two ways. If the FIFOs are
too small and fill, instruction issue will halt while they drain. If the FIFOs are too large, the
additional complexity of the control logic and the greater wire delays from the larger structure
could increase the cycle time and reduce overall performance.

It is important that a typical length instruction strand be able to fit within one of the instruc-
tion FIFOs, as all instructions from one strand must issue to the same FIFO. When the first
instruction of a new strand is issued, it is steered to the emptiest FIFO, in order to distribute the
load across all FIFOs. If a strand cannot fit within a FIFO, the issue logic will stall and later
strands cannot be issued until enough instructions are executed from the FIFO in order to allow
the remainder of the strand to issue, and thus instructions from later strands cannot be executed
concurrently. Figure4.11shows the distribution of strand lengths in the executed code. These
results show that over 90% of strands are eight or fewer instructions long, although some are
actually much longer, up to thousands of instructions – further analysis shows that these long
strands tend to be used as loop counters, and thus stay live over all iterations of the loop code (in
cases where the inner code of the loop requires fewer than eight accumulators concurrently). If
the instruction FIFOs are to be able to hold most instruction strands, then these results indicate
that they should have at least eight entries.

Experiments were conducted to analyse the level of FIFO usage; the FIFOs were set to have un-
limited capacity for these simulations. The simulator collected statistics on each FIFO, counting
in how many cycles each level of occupancy occurred, and then averaging this data across each
FIFO as a percentage of the simulation time. Figure4.12shows the distribution of FIFO util-
ization for the benchmark tests, for both 2-way and 4-way issue. The results show that there is
a significant variation in the level of FIFO usage between the different benchmark tests; some,
such as theadpcmtests, have very low FIFO usage, rarely exceeding eight entries, while other
spend large portions of time with more than 20 instructions in their FIFOs. The simulations

69

4. Evaluating ILDP

Figure 4.11Distribution of instruction strand lengths in ILDP code

Instruction strand length (cumulative)
0 4 8 12 16

%
 o

f t
im

e

0

20

40

60

80

100

adpcm (dec)

adpcm (enc)

bitcount

blowfish (dec)

blowfish (enc)

jpeg (enc)

crc32

dijkstra

jpeg (dec)

gsm (dec)

gsm (enc)

patricia

rijndael (dec)

rijndael (enc)

sha

stringsearch

tiff2bw

tiff2rgba

tiffdither

tiffmedian

AVERAGE

of the 2-way issue system show generally a much lower FIFO occupancy than the 4-way issue
results – this is unsurprising, as the tests from the previous section have shown that typically
the execution rate through the processing elements is not high enough to sustain 4-way issue,
and as a result unexecuted instructions accumulate in the FIFOs; with 2-way issue the FIFOs
are filled at a lower rate, closer to that at which they are drained.

These results show that, for the majority of the time, there are fewer than 32 values in each
instruction FIFO, particularly in the 2-way issue model. On average, for 90% of the time,
the 2-way issue machine has a FIFO occupancy of 29 entries or less, while the 4-way issue
results average 44 FIFO entries or less 90% of the time. From these results, it seems likely that
a 32-entry FIFO will be necessary to avoid limiting performance – while the 4-way machine
generally has a higher FIFO occupancy, a smaller FIFO may still not end up becoming a limiting
factor. A smaller FIFO might still be sufficient – the important factor in the FIFO size is that
a single PE stalling (on a load, etc) should not halt issue – instructions for that PE queue in
its FIFO while other PEs continue executing. If all the FIFOs are filling up, it will not be a
significant problem to halt the issue pipeline, although a buffer of queued instructions in the
FIFOs can help mask latency caused by instruction cache misses etc. Further experiments
were conducted, setting the FIFO size to 4, 8, 16, 32 and 48 entries. Figure4.13 shows the
performance obtained for these parameter settings.

These results show that there is very little overall effect on performance due to reducing the
FIFOs from unlimited size all the way down to eight entries on both the 4-way and 2-way issue
machines. Setting the FIFOs to a maximum depth of four entries causes performance to drop by
5.4% in the 4-way case and 8% with 2-way issue. This would suggest that it is sufficient to have
the FIFOs sized to hold a single instruction strand – this allows later strands to issue afterwards

70

4.3 Parameter space exploration

Figure 4.12Instruction FIFO utilization

Number of entries used in FIFO (cumulative)
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

%
 o

f t
im

e

0

20

40

60

80

100

adpcm (dec)

adpcm (enc)

bitcount

blowfish (dec)

blowfish (enc)

cjpeg

crc32

dijkstra

djpeg

gsm (dec)

gsm (enc)

patricia

rijndael (dec)

rijndael (enc)

sha

stringsearch

tiff2bw

tiff2rgba

tiffdither

tiffmedian

AVERAGE

(a) 4-way issue

Number of entries used in FIFO (cumulative)
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

%
 o

f t
im

e

0

20

40

60

80

100

adpcm (dec)

adpcm (enc)

bitcount

blowfish (dec)

blowfish (enc)

cjpeg

crc32

dijkstra

djpeg

gsm (dec)

gsm (enc)

patricia

rijndael (dec)

rijndael (enc)

sha

stringsearch

tiff2bw

tiff2rgba

tiffdither

tiffmedian

AVERAGE

(b) 2-way issue

71

4. Evaluating ILDP

Figure 4.13Performance at various instruction FIFO sizes, compared to an unbounded FIFO

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−20%

−15%

−10%

−5%

0%

5%

10%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

4 8 16 32 48

FIFO Depth

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−30%

−25%

−20%

−15%

−10%

−5%

0%

5%

10%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E
4 8 16 32 48

FIFO Depth

(b) 2-way issue

72

4.3 Parameter space exploration

but execute concurrently. Since there are eight instruction FIFOs, even for an issue width of
four instructions per cycle, the extra room in a FIFO to hold two strands of eight instructions
is not necessary. For shorter instruction strands (on average 79% of strands contain four or
fewer instructions) an 8-entry FIFO will be able to hold two strands. As with the results in
Section4.3.1, some of the benchmarks actually perform better with a reduced FIFO depth, in
particular for the 8-entry case.

4.3.4 Register network bandwidth

The number of values that can be simultaneously communicated over the register value network
is an architectural parameter, which affects the complexity of the network logic and the register
file logic – for a communication widthn there must ben write ports to the register files in addi-
tion to any used by the PEs. If more values are produced in one cycle than can be communicated
over the network then either some processing elements must be stalled until they can transmit
their data, or excess values must be buffered.

Initially the simulator was set up to allow an unlimited number of values to be broadcast within
the same cycle, and tests were run to determine the average bandwidth utilization. Figure4.14
shows the results of these tests.

These results show that, on average in the 4-way issue case, in 38% of cycles the register
communication network is idle, carrying no data. In a further 40% of cycles a single value is
transmitted over the network and in 15% two values are communicated. The 2-way issue results
show a very similar distribution. Overall, for 77% of the time in the 4-way case and 81% of
the time in the 2-way case, the register value network is carrying only one value or none at all.
These results suggest that a register network bandwidth of one value per cycle will be sufficient
to maintain performance, although this will depend on how critical to overall performance are
any values that will be delayed by a bandwidth limitation.

Further tests were then conducted, setting the maximum bandwidth to both one value and two
values per cycle and evaluating the resultant impact on performance. The results are shown in
Figure4.15, with the performance figures normalised to the unlimited bandwidth simulations.

These results show that the setting the register network bandwidth at two instructions per cycle
has very little effect on performance compared to having unlimited bandwidth – this is unsur-
prising, as in the earlier tests more than two values were communicated in a single cycle for
less than 4% of the simulation time in the 2-way case, and less than 7% in the 4-way case.
The single-value bandwidth results show a performance reduction of approximately 3% on
the 4-way issue tests, indicating that delaying some register updates by a cycle when there is
contention on the communication network does not have a critical influence on the overall per-
formance. In the 2-way issue tests, the single-value case performs less than 1.4% worse than

73

4. Evaluating ILDP

Figure 4.14Register network bandwidth utilization

%
 o

f t
im

e

0

20

40

60

80

100

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

0 1 2 3 4+

Number of values communicated in one cycle

(a) 4-way issue

%
 o

f t
im

e

0

20

40

60

80

100

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cj
pe

g

cr
c3

2

di
jk

st
ra

dj
pe

g

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E
0 1 2 3 4+

Number of values communicated in one cycle

(b) 2-way issue

74

4.3 Parameter space exploration

Figure 4.15Performance at various register network bandwidths, compared to unbounded case

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−15%

−10%

−5%

0%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

1 2

Register network bandwidth

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−10%

−8%

−6%

−4%

−2%

0%

2%

4%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

1 2

Register network bandwidth

(b) 2-way issue

75

4. Evaluating ILDP

the unlimited case, indicating that for 2-way issue, a single-value register network is likely to
be sufficient.

Overall, given the added complexity of implementing register communication logic capable of
carrying two values in one cycle, which will require an additional register write port, it seems
likely that the best performance/complexity trade-off is to limit the register network bandwidth
to a single value per cycle.

4.3.5 Physical register file size

Experiments were conducted to see the effect of varying the size of the register file in each of
the processing elements – in the reference ILDP architecture the 64 GPRs are renamed onto
a register file with 128 entries. A smaller register file consumes less power and has a smaller
logic delay ([42] shows that register file delay scales linearly with the number of registers), but
reduces the number of possible in-flight instructions and can therefore reduce performance.

Simulations were conducted with a register file size of 80 and 96, in addition to the baseline
model with 128 registers. After analysing the results from these simulations, very little perform-
ance variation between 128, 96 and 80 registers is displayed. It was decided to run a further set
of tests was run with the size set to 72, 70 and 67 physical registers (due to the implementation
of the simulator, there must be at least three more physical registers than logical ones, thus 67
is the minimum). The results from these simulations are shown in Figure4.16.

Once again, thecrc32benchmark gives anomalous results in the 4-way issue case – reducing the
number of physical registers to 80 results in a 25% performance increase. As in Section4.3.1,
this result is taken as an outlier, and not counted in the average.

On average, there is very little performance difference between the tests with a 72-entry register
file and those with a 128-entry file. Performance drops on average by 4% when the register
file size is reduced to 70 entries, and the minimal 67-entry case performs 18.7% worse than the
baseline 128 register model. This implies that there are generally very few live registers at one
time within typical workloads – probably often between six and eight, given the performance
difference between the 70-entry and 72-entry cases. This is attributed to the accumulator-based
ISA – most values are communicated locally in the accumulators, reducing the level of usage
of the general-purpose register file. Given this, it seems likely that the register file size could be
reduced considerably by also reducing the logical register file size exposed in the ISA, which is
investigated in the next section.

76

4.3 Parameter space exploration

Figure 4.16Effect of scaling physical register file size from 128 GPRs on performance

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−35%

−25%

−15%

−5%

5%

15%

25%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

67 70 72 80 96

Number of GPRs

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−30%

−25%

−20%

−15%

−10%

−5%

0%

5%

10%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

67 70 72 80 96

Number of GPRs

(b) 2-way

77

4. Evaluating ILDP

4.3.6 ISA register file size

There is a limit to how much the physical register file can be scaled, as it must still contain all
of the logical registers, even if the majority of them are dead. If too many logical registers are
specified in the ISA then those registers that are dead for most (or all) of the time will waste
space in the physical register file, and possibly limit performance as the register rename map
will fill sooner. Too few logical registers will force unnecessary stack spills to be inserted in
the instruction stream, limiting performance due to the additional instructions. It is therefore
important to find an appropriate register file size, sufficient to hold most of the live data in most
cases, but small enough to ease implementation.

The ILDP ISA specifies 64 GPRs – this is due to the design in [30] being targeted at executing
Alpha binaries via dynamic translation. The Alpha ISA contains 32 GPRs which are mapped
to ILDP registers r0–r31, and an additional 32 registers are provided for the use of the binary
translation software. In my evaluations, without the additional register requirements of the
dynamic binary translation system, it seems likely that fewer logical registers will be sufficient.
Having fewer logical registers also reduces the complexity of the register rename logic slightly.

Experiments were thus conducted varying the architectural register file size to see if it could
be reduced without significant impact on performance – finding the optimum trade-off between
having enough architectural registers to hold live values and avoid stack spills, but not so many
that the physical register file is filled with dead values or the cycle time is compromised. The
compilation system was modified to generate code using only a subset of either 16 or 32 of the
GPRs, and the simulator was modified so that only these subsets were actually implemented.
Figure4.17shows the results of these tests, with several sizes of both the logical and physical
register files evaluated. There were some problems getting thetiffdither test to compile with the
reduced register file – this test has been omitted from these results.

It can be seen that for most tests there is little performance difference with the reduced register
files. The most notable exception to this is thegsm (enc)benchmark, which consistently per-
forms more than 20% worse in each of the tested configurations. Analysis of the simulation
statistics show that for this test, 21% more instructions are being committed in total – while the
IPC drop for this test is not overly severe, the added spill instructions generated by the compiler
due to the reduced register file cause a significant performance hit. Theadpcmtest shows a
significant performance increase in all the tested configurations – this is due to a higher branch
prediction accuracy than the baseline results, though it is not obvious why this is the case; it is
assumed that the baseline test contains a sequence of code that is badly predicted by the branch
prediction scheme, and the reduction of the register file size changes this code sufficiently to
avoid this. In the 4-way configuration, thecrc32 test once again shows a large performance
improvement when the logical register file size is reduced.

Both the tests with 32 logical registers and 48 physical registers and with 16 logical registers
and 32 physical registers provide comparable performance to the base 64-logical, 128-physical

78

4.3 Parameter space exploration

Figure 4.17Effect of scaling both physical and logical register file size on performance

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−35%

−25%

−15%

−5%

5%

15%

25%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fm

ed
ia

n

A
V

E
R

A
G

E

16/32 16/48 32/48 32/64 16/128 32/128

Number of logical/physical registers

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−30%

−25%

−20%

−15%

−10%

−5%

0%

5%

10%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fm

ed
ia

n

A
V

E
R

A
G

E

16/32 16/48 32/48 32/64 16/128 32/128

Number of logical/physical registers

(b) 2-way issue

79

4. Evaluating ILDP

case on average, and should allow for a great reduction in the size and complexity of the register
file and rename logic. Some tests suffer from the modified ISA – it is possible that this could be
at least partially rectified through compiler optimizations, but ultimately the specific workload
an application would be using will dictate whether reducing the register file size is beneficial
for a particular design.

A further potential benefit of a smaller logical register file, which is not explored here, is that
fewer bits are required in the instruction encoding in order to specify the register number for
register operands, allowing more bits to be used on the opcode or immediate fields. This would
make the instruction encoding more efficient and hopefully allow for a reduction in code size.

4.3.7 Cache parameters

High performance processors with deep pipelines and short cycle times generally have a first-
level cache with low associativity to reduce circuit complexity so that the cache can meet the
timing requirements with a single-cycle latency. By contrast, embedded processors are gen-
erally less aggressively pipelined and tend to have longer cycle times. In these conditions,
first-level caches can be made more associative, improving their hit rates.

Since the work in [30] is targeted at high performance, low cycle time design, the baseline
ILDP architecture uses an 8KB 2-way set associative cache. I evaluated performance of the
ILDP architecture with the cache associativity increased to both 16 and 32 ways, to analyse
how sensitive the performance is to cache associativity.

Figure4.18shows these results. It can be seen that across most of the tests there is very little
performance variation when the associativity is increased – only therijndael and tiffmedian
tests show more than a 1% difference. These results would seem to indicate that, for this set of
benchmarks, a 2-way associativity on the cache is sufficient in the ILDP architecture. This is
attributed to the characteristics of the MiBench benchmark suite – most tests have a fairly low
memory footprint, and thus tend to get high hit rates to the L1 cache even with the restricted
parameters present; increasing the associativity thus has little effect.

4.4 Combining approaches

In the previous section various architectural parameters were identified and analysed, and then
simulations were run to evaluate how each of these parameters affect performance when altered
in isolation. In this section results are presented when those parameters are set to the values
likely to reduce circuit area and power consumption without significantly impacting upon per-
formance.

80

4.4 Combining approaches

Figure 4.18Effect of increasing cache associativity from 2-way on performance

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−5%

−3%

−1%

1%

3%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

16−way 32−way

L1 cache associativity

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−5%

−3%

−1%

1%

3%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

16−way 32−way

L1 cache associativity

(b) 2-way issue

81

4. Evaluating ILDP

Figure 4.19Effect of varying several architectural parameters

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−30%

−20%

−10%

0%

10%

20%

30%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

2−way/16 log/32 phys 2−way/32 log/48 phys 2−way/64 log/80 phys

4−way/16 log/32 phys 4−way/32 log/48 phys 4−way/64 log/80 phys

Figure4.19 shows the results of combining several sets of architectural parameters. Several
configurations of register file size were tested at both 2-way and 4-way issue widths, with the
maximum FIFO depth set at 8 entries and the bandwidth of the register value communication
network set at one value per cycle. The results obtained are as expected – they reflect closely the
results obtained earlier when the parameters were investigated in isolation, indicating that no
unanticipated performance changes arise when multiple paramters are altered. The next section
discusses suitable final choices for values of each of the tested parameters.

4.5 Summary

In this chapter, the ILDP architecture has been analysed compared to several typical embedded
processors, and shows good, but not exceptional performance. However, the overall IPC of
ILDP is more than double that of the other architectures investigated, and shows scope for
considerable performance improvements from compiler improvements.

The architectural parameters set for this architecture were also explored; it is shown that scaling
the issue width from 4-way to 2-way has the potential to reduce logic complexity, but comes at
a 9% performance penalty that may be too great for certain applications. The best trade-off for
the instruction FIFO size was found to be eight entries and the register network performs best
when it can communicate two values concurrently, but a reduction to a bandwidth of one does
not significantly impact upon performance, giving a 3% drop for the 4-way issue model. The
128-register GPR file and 64-register ISA were found to be excessively large for the test suite

82

4.5 Summary

used; a logical register file of 16 entries and a 32-register physical register file were found to
provide performance within 3% of the original model in most cases.

A further observation that can be made from the data presented in this chapter is that increasing
the parallelism of certain components within a processor can, without considering the effect on
cycle time, actually decrease performance per clock. In particular, if the issue pipeline is able to
run too far ahead of the execution logic, performance can suffer as the chances of misprediction
or cache pollution increase. This highlights the need to balance the parallelism of the various
components within a design.

83

84

Architectural developments 5

This chapter details new developments on the ILDP architecture in order to make it more suited
to embedded systems.

5.1 Multiplexing instruction FIFOs onto a processing element

As is shown in section4.2.2, the processing elements spend most of their time idle, either
because their instruction FIFOs are empty or because they are stalled on a memory access
or register value. While inactive PEs can potentially be clock gated or powered down, those
waiting on data or memory dependencies must remain at least partially powered up. Even when
a PE is powered down, it must either maintain and update the contents of its register file by
keeping the register file and update logic powered, or it must synchronise the contents of its
register file on power-up, increasing the latency of restarting a PE and potentially negating the
power savings achieved by powering the PE down. This indicates that power savings could be
made by reducing the number of PEs – since each instruction queue is stalled most of the time,
multiple queues can be assigned to each PE, which can interleave execution of the two with
hopefully very little performance penalty.

This section evaluates the potential of this approach. Since the PEs spend slightly more than
half the execution time in an idle state, a FIFO:PE ratio of 2:1 seems like the best option to
reduce hardware requirements without unduly affecting performance. This ratio would halve
the number of register files and ALUs on-chip, and reduce the memory access requirements –
either half the number of L1 caches would be required, or each L1 cache would need half as
many ports.

Since there are half the number of PEs, the peak execution width is also reduced by half, but it
is hoped that this will not significantly impact performance (the average execution rate is much
lower than the theoretical maximum execution rate) and that the reduction in total silicon area
– and thus power consumption – will outweigh any degradation. If half the PEs are eliminated
whilst maintaining performance, this should greatly improve the power efficiency by better
utilising the remaining logic.

85

5. Architectural developments

Figure 5.1Multiplexing instruction FIFOs between processing elements

Steer

PE

.

.

.

FIFOs

PEFIFOs

5.1.1 Implementation details

The basic structure of the multiplexed FIFO architecture is shown in Figure5.1. The front-
end issue pipeline does not need to be changed in order to implement multiplexed processing
elements; instructions are still issued to the tails of the eight FIFOs, although the steering logic
should probably be tweaked so that new instruction strands are preferentially steered to PEs
wherebothFIFOs are empty.

Each processing element is modified by adding a second accumulator register and FIFO. Mul-
tiplexers are added to select between the two FIFOs and accumulators. Some logic is required
in order to decide which FIFO to execute from – for this a second set of dependency logic is
required, to indicate if the head instruction of the additional FIFO is ready for execution. If only
one of the instructions from the FIFO heads is ready, the arbitration logic selects that instruction
for execution. If both are ready, the instruction is taken from the opposite FIFO to that last used
– a single bit of storage is required to indicate which FIFO was previously executed from.

In terms of complexity, the multiplexers on the outputs from the FIFOs and the accumulators
will add some additional delay in the PEs, which could potentially increase the critical path.
The additional logic will also increase the silicon area of each PE somewhat, although the area
benefits of halving the number of PEs will greatly outweigh this small increase.

86

5.1 Multiplexing instruction FIFOs onto a processing element

5.1.2 Evaluation

The simulation environment was modified to support sharing a processing element between
multiple instruction FIFOs. The processing element has one accumulator per FIFO. If only one
of the instructions at the FIFO heads is ready for execution, then it will be issued. If more than
one is ready, the instructions are issued in a round-robin fashion. Experiments were conducted
reducing the number of PEs to four, with each PE having two instruction FIFOs.

The results in Figure5.2show that there is a significant performance hit using this configuration
– on average the 4-way case is 14.5% slower, while the 2-way results average 13.1% worse. It
seems that, while overall the PEs are idle most of the time, the access pattern is ‘bursty’ and the
full execution width is required to meet the peak performance requirements. In the 2-way case,
the best result (theadpcm (dec)test) is only 1.5% slower, while with 4-way issue the best result
(adpcm (enc)) is 7.2% worse. This is attributed to the lower peak issue rate of the 2-way issue
model – with a lower issue rate, the reduced peak execution rate will be a limiting factor less
often.

The utilization statistics for the processing elements in the multiplexed FIFO model are shown
in Figure5.3. The average time spent executing instructions has increased from approximately
21% to 36%, showing that better overall utilization is being made of the execution logic.

5.1.3 Conclusions

Multiplexing FIFOs between processing elements allows for large area savings – only half the
number of execution units, register files and memory access ports are required. There will also
be potentially large power savings – even if PEs can be extensively clock and power gated, the
register files (and associated synchronization logic) must be powered up at all times consuming
power, and halving the number of these will reduce power consumption. If clock/power gating is
not used, then halving the number of PEs will give an even more significant reduction in overall
power usage. These savings come at the cost of a significant 12–14% performance impact
(although the reduction in the overall complexity of the memory access logic could potentially
reduce the cycle time and slightly mitigate the performance drop), which may well prove too
great a cost for the power and area savings achieved. Section5.3presents an alternative method
of reducing the power consumed by the register file logic that limits the effect of power gating.

87

5. Architectural developments

Figure 5.2Effect on performance of multiplexing instruction FIFOs between PEs

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−30%

−25%

−20%

−15%

−10%

−5%

0%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−35%

−30%

−25%

−20%

−15%

−10%

−5%

0%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

cr
c3

2

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

jp
eg

 (
de

c)

jp
eg

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

(b) 2-way issue

88

5.1 Multiplexing instruction FIFOs onto a processing element

Figure 5.3Processing element utilization with two FIFOs per PE (compare to Figure4.5)

%
 o

f t
im

e

0

20

40

60

80

100

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

Execute Data stall Load stall Load conflict Idle

Processing element state

(a) 4-way issue

%
 o

f t
im

e

0

20

40

60

80

100

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

Execute Data stall Load stall Load conflict Idle

Processing element state

(b) 2-way issue

89

5. Architectural developments

5.2 Combining memory access units

The baseline ILDP architecture has a memory port for each PE – this requires either replicating
a single-ported L1 data cache across each PE, or implementing multi-ported caches which are
shared between PEs. Neither of these options is particularly space- or power-efficient, as the
caches are configured to have identical contents replicated between them, so the silicon area
and power used by the additional caches is effectively wasted – a configuration with four dual-
ported caches will be wasting 75% of the L1 cache silicon area and using four times as much
power as a single cache.

To maintain ordering of memory references and prevent loads from overtaking earlier stores,
each PE must contain a copy of the store address queue. When a load executes, it checks the
queue for any earlier stores to the same address and, if these or any earlier store instructions
with unknown addresses are present, the load will stall. In order to keep the store address
queues synchronised between PEs, a second set of replication logic similar to the register file
replication logic is needed. As with the register file logic, if a PE is powered down, the store
address queue, cache and associated logic must remain powered up in order to keep their state
synchronised with the other PEs.

This section proposes a development on the ILDP architecture where memory accesses are
handled by an additional processing element solely for memory access, called thememory ac-
cess unit(MAU). All memory access instructions in the ISA are modified to operate on general
purpose register operands only, instead of using any of the accumulator registers. The structure
of this unit is shown in Figure5.4; the MAU contains a simple ALU for performing address
computation, and the sole copy of the L1 cache. This modification removes the need for replic-
ation of the cache (and the associated logic for maintaining cache coherency) and the replication
network for synchronising the store address queues between PEs. There is no need for a store
address queue in the MAU, as all memory instructions are naturally ordered in the instruction
FIFO.

There is the potential for performance issues to arise from the ISA modifications – since memory
access instructions do not use accumulator registers, they can no longer form part of strands
and thus the average strand length will possibly be shorter, which may hamper performance as
a higher proportion of the instructions will be used to transfer data between PEs and the register
file than to actually perform computation. There are some cases which benefit from the changes
though – an example is restoring GPR values from the stack, e.g. at the end of a function call, as
the original ISA required registers to be loaded into accumulators and then moved into GPRs.

This approach could allow a more sophisticated issue system to be used for the memory access
unit than the main logic – a full out-of-order issue window could be implemented, with the
reduced size of the window hopefully making the complexity/performance trade-off acceptable.
This would more easily allow load instructions to be hoisted ahead of non-conflicting stores.
Since memory operations are more likely to cause long delays, they will benefit more from

90

5.2 Combining memory access units

Figure 5.4Design of memory access unit

Register
file

L1 cache
Instruction FIFO

Write data

Address

Read data

Immediate

Control signals

To/from register replication network

an advanced issue system than the main processing elements. This approach is investigated in
Section5.2.4.

5.2.1 ISA modifications

The load and store instructions are modified to access only GPR operands. The encoding for
these instructions was chosen so that the stack pointer (r62 in the chosen ABI) can be specified
as the base register using fewer bits, allowing more bits to be allocated to the immediate offset.
The new instructions are described in Table5.1. Since these instructions have two register
operands, they will require alterations to the register rename logic – either additional ports will
have to be added to the rename map, or renaming of a memory instruction will cause a drop in
issue bandwidth. It may be possible to implement the stack pointer as a special case in these
circumstances, mitigating the penalty for the common case of memory operations using the
stack pointer as the base register.

Syntax Semantics

Load/store instructions
ldr r<i> <= [r<j>+#imm] Ri := MEM[Rj + imm]
str [r<j>+#imm] <= r<i> MEM[Rj + imm] := Ri

Table 5.1: Instruction set modifications

91

5. Architectural developments

Figure 5.5Additional instruction encodings

0 1 5 6 7 9 10 15

0 opcode0 imm reg

Short load/store format (stack pointer is base register)

0 1 5 6 7 9 10 15 16 31

1 opcode0 imm reg imm-lo

Long stack-based load/store format

0 1 5 6 7 9 10 15 16 21 22 31

1 opcode1 imm reg0 reg1 imm-lo

Long register-based load/store format

5.2.2 Implementation details

For this approach, the issue logic is modified to issue all memory operations to the MAU –
all other instructions are issued as normal to the standard PEs. The processing elements have
their memory access logic eliminated, along with their copies of the store queue. The cache
coherency logic and the communication network for updating store queue entries between PEs
are also removed.

The register rename logic must be changed to handle the new memory instructions, which
require either reading two GPRs, or reading one and writing one. This necessitates either adding
more ports to the rename map to increase the peak rename bandwidth, or keeping the same
number of read ports and stalling some instructions when memory instructions are renamed.
Both implementations are investigated.

The new memory access unit contains an instruction FIFO and a copy of the register file like
the other PEs. There is a simple ALU (basically just an adder) to perform address computation,
the L1 data cache and the write buffer. Load instructions can read data not yet written to the
cache from the write buffer.

In terms of complexity, in this design the main processing elements become slightly simpler
as the memory logic is removed. The memory PE instead has this logic, but without the need
for load/store dependency checking as memory operations are issued in order. The adder in the
memory PE will have lower complexity than the full ALU in each PE. Eliminating replicated
caches and/or reducing the number of memory ports per cache will reduce total silicon area
usage and hopefully also cache complexity – even if the caches were originally single-ported,
the cache replication logic can still be eliminated. There is likely to be a (modest) reduction in
the overall delay through the processing elements, which, if on the critical path, could allow a

92

5.2 Combining memory access units

higher clock frequency. The changes in cache architecture should allow either a large reduction
in cache power consumption due to the reduction in area, or a greatly increased cache size with
power reductions from decreased traffic on the external memory bus (or some trade-off between
the two) – either way the power efficiency should be increased.

5.2.3 Evaluation

A new machine variant was created in the ILDP toolchain to support the modified ISA; the
‘multilib’ feature of the GNU binutils made this a simple process, as the standard libraries are
automatically built for both ISA variants, and a single compiler switch is used to select the ISA
version to use. The simulator was augmented to simulate the architectural changes described in
the previous section – again, a command-line switch was implemented to select the appropriate
architecture, to make side-by-side comparisons easier.

Figure5.6shows the performance of the separated memory version of the architecture, with in-
order issue in the MAU. In both the 2-way and 4-way issue width cases the average performance
is 2–3% lower than the original ILDP model, but there is a significant variation within the
results. In both cases thetiffdither test performs significantly (more than 25%) better, and in the
2-way issue case thejpeg (dec)test shows a similar improvement. Several tests perform at least
10% worse – in particular thecrc32test performs 18.4% worse on the 4-way model and 35.5%
worse on the 2-way model.

Several possible causes are attributed to the large performance variation:

• The removal of the store queue replication logic holding issue of loads until previous
stores had executed – as all memory instructions are executed in order in the MAU, there
is no need to stall loads as all earlier stores will have already executed and there is no
delay induced by the need to communicate store address values between PEs. Since the
MAU only executes memory operations, it is possible that it can execute further ahead in
the instruction stream that the PEs and thus possibly resolve these loads sooner.

• The change in the instruction set – since the operands used in memory accesses are now
different, some code may compile into longer or shorter code sequences. If this happens
within a heavily-executed inner loop in a program, it can have a significant impact on
performance.

• All memory operations are now serialised and must execute one at a time in order in the
MAU, whereas the standard ILDP model can have an active memory access in each PE
– these accesses are not required to execute in order with respect to each other. Thus a
load causing a cache miss need not stall processor execution in the original model – the
PE executing the load will stall, as will any that then depend on results from the stalled
strand. In the in-order MAU model, a cache miss will cause all memory operations to
stall, and thus any PEs depending on any data from memory will block.

93

5. Architectural developments

Figure 5.6Performance of the MAU architecture variant compared to the baseline

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−20%

−10%

0%

10%

20%

30%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

jp
eg

 (
de

c)

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−40%

−30%

−20%

−10%

0%

10%

20%

30%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

jp
eg

 (
de

c)

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

(b) 2-way issue

94

5.2 Combining memory access units

In order to evaluate the impact that stalling on cache misses has on the MAU model additional
simulations were performed, assuming the implementation of a non-blocking L1 data cache
which allows further memory accesses to execute while a miss is being serviced. Tests were
run with a memory system that would allow ‘hit-under-miss’ functionality where a load can be
issued while there is a single miss active, and one supporting ‘miss-under-miss’ where a load
can complete if up to three earlier loads have missed.

These results are presented in Figure5.7. There is no significant difference between the original
model and the models which permit non-blocking access to the cache – thepatricia test shows
a performance improvement of approximately 0.9%, while all other tests show a performance
difference of less than 0.1%. This is attributed to two main factors:

1) The hit rate on the L1 cache is very high – in many cases greater than 99.5%. With such
a low proportion of misses, the performance improvement of non-blocking cache access
will be negligible.

2) The memory accesses causing cache misses may well show significant spatial locality
– if a benchmark attempts to load an array of data and the first access misses, then the
subsequent accesses to nearby memory locations are also likely to miss, thus negating
any benefit from being able to continue issuing loads after a miss.

Rename map bandwidth

Further simulations were performed, analysing the effect that the register rename bandwidth
has on performance with the MAU model. The simulator was configured for one set of tests to
have full rename bandwidth, allowing a full set of instructions to be renamed if they access two
registers (this is the configuration used in the previous section). The other set of tests limits the
rename bandwidth to be the same as the standard ILDP architecture – a memory operation in
the rename pipeline stage will limit the rename bandwidth for that cycle. Figure5.8shows the
results of these simulations.

The results show that there is very little performance impact caused by reducing the rename
map bandwidth to four ports in the 4-way issue model (less than 1% across all tests) or three
ports in the 2-way issue model (less than 1% on average, up to 2.3% for thepatricia test) –
the proportion of memory accesses in the instruction stream is sufficiently low and the number
of instructions that do not access the register file is sufficiently high that the vast majority of
instructions are not affected by reducing the bandwidth. The 2-way issue model with only two
rename map ports does suffer from a noticable performance reduction – on average it performs
4.2% worse, with the worst affected test beingstringsearchwhich performs 9.6% worse.

Ultimately these results show that changing the ISA over to the MAU model does not require
adding many ports to the rename map, and thus increasing its complexity – virtually identical

95

5. Architectural developments

Figure 5.7Performance of the MAU variant when multiple outstanding loads are implemented

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−5%

−3%

−1%

1%

3%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

jp
eg

 (
de

c)

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

ILDP−MAU miss−under−miss ILDP−MAU hit−under−miss

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−5%

−3%

−1%

1%

3%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

jp
eg

 (
de

c)

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

ILDP−MAU miss−under−miss ILDP−MAU hit−under−miss

(b) 2-way issue

96

5.2 Combining memory access units

Figure 5.8Effect of reducing register rename bandwidth on performance in the MAU model

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−5%

−3%

−1%

1%

3%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

jp
eg

 (
de

c)

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

4 6

Number of register rename ports

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−10%

−8%

−6%

−4%

−2%

0%

2%

4%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

jp
eg

 (
de

c)

di
jk

st
ra

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

2 3

Number of register rename ports

(b) 2-way issue

97

5. Architectural developments

performance is achieved with no additional ports in the 4-way issue case and only a single extra
port with 2-way issue.

Instruction FIFO size

Experiments were also performed to find the optimum FIFO depth for the MAU. Since the ratio
of memory instructions to non-memory instructions is not 1:1 and the non-memory instructions
are distributed across several queues, the optimum depth for the MAU will likely be different
from the other PEs. First the distribution of MAU FIFO occupancy over time was analysed
by running simulations where the MAU FIFO depth is unbounded, as shown in Figure5.9.
These results show that on average for 90% of the time in the 4-way issue model there are
42 or fewer instructions in the MAU instruction FIFO, and with the 2-way model there are
41 or fewer instructions in the MAU FIFO 90% of the time. The various tests show a range
of behaviours – theadpcmtests run using very few FIFO entries (less than four for the vast
majority of simulation time), while thedijkstra andcrc32 tests show a much higher usage –
crc32rarely dips below a MAU FIFO level of 40 entries. These results imply that a MAU FIFO
depth of 32 entries should be sufficient for most tests, with a smaller size likely to perform well
depending on what other factors in the system will limit performance. Section4.3.3showed
that a PE FIFO depth of 8 entries was sufficient for the PE instruction queues, as they need to
be able to hold a complete instruction strand; the MAU FIFO will need to be deep enough to
hold all the memory access operations encountered in the instruction stream when reading in a
complete instruction strand per PE. Simulations were run fixing the MAU FIFO size at 1, 2, 4,
8, 16 and 32 entries – all tests were run with the PE instruction FIFO size set to 8 entries; the
results are presented in Figure5.10compared to the unbounded case.

In general there is little performance difference going from an unbounded MAU FIFO down to
one with only eight entries - theblowfishtests actually show a performance increase with an
8-entry MAU FIFO using 4-way issue, as does thecrc32 test with 2-way issue, but in general
the performance is within 1% of the case where the MAU FIFO size is unrestricted. With a 4-
entry MAU FIFO the performance is generally similar to the 8-entry case, but a couple of tests
start to show slight performance degradation (although thetiff2bw test actually performs better).
When the MAU FIFO size is reduced below four entries a number of tests show a significant
performance reduction, although thecrc32test stands out once again, as it performs better with
a single MAU FIFO entry than with an unbounded MAU FIFO size. Overall these results imply
that the optimum size for the MAU instruction FIFO is between four and eight entries, which
provides performance very close to the unbounded MAU FIFO model.

98

5.2 Combining memory access units

Figure 5.9MAU FIFO occupancy by time

Number of entries used in FIFO (cumulative)
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

%
 o

f t
im

e

0

20

40

60

80

100

adpcm (dec)

adpcm (enc)

bitcount

blowfish (dec)

blowfish (enc)

jpeg (enc)

crc32

dijkstra

jpeg (dec)

gsm (dec)

gsm (enc)

patricia

rijndael (dec)

rijndael (enc)

sha

stringsearch

tiff2bw

tiff2rgba

tiffdither

tiffmedian

AVERAGE

(a) 4-way issue

Number of entries used in FIFO (cumulative)
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

%
 o

f t
im

e

0

20

40

60

80

100

adpcm (dec)

adpcm (enc)

bitcount

blowfish (dec)

blowfish (enc)

jpeg (enc)

crc32

dijkstra

jpeg (dec)

gsm (dec)

gsm (enc)

patricia

rijndael (dec)

rijndael (enc)

sha

stringsearch

tiff2bw

tiff2rgba

tiffdither

tiffmedian

AVERAGE

(b) 2-way issue

99

5. Architectural developments

Figure 5.10Performance at various MAU FIFO sizes, compared to an unbounded FIFO

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−20%

−15%

−10%

−5%

0%

5%

10%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

1 2 4 8 16 32

FIFO Depth

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−30%

−25%

−20%

−15%

−10%

−5%

0%

5%

10%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E
1 2 4 8 16 32

FIFO Depth

(b) 2-way issue

100

5.2 Combining memory access units

5.2.4 Further developments

In order to improve performance of memory accesses, which can form a bottleneck for processor
performance, a further development on the separated memory architecture is to implement full
out-of-order execution for the memory access unit, turning the instruction FIFO into a small
instruction window. Instructions execute in two phases – the address computation executes
as soon as the source operands for the address are ready, without having to wait for memory
resources to be available. Loads can potentially take their results from earlier stores in the
window to the same address, although this option has not been investigated here. If the L1
cache permits non-blocking accesses, then load instructions need not be forced to wait by earlier
loads that caused a cache miss – loads that miss are flagged as such in the window and are either
allocated a miss handling register, or wait for one to become available so they can be reissued.
This allows loads that hit in the cache to execute ahead of several earlier accesses that miss.

The MAU approach is analogous to a decoupled architecture [47], where the memory access
and general processing instructions are handled by separate processors. Since memory access
instructions are more likely to involve long latency operations, they may well benefit more from
an out-of-order execution engine, while the other instructions will execute well on the simpler
logic of the distributed processing elements.

5.2.5 Implementation details

The memory access unit is set up as a small out-of-order issue processor, as shown in Fig-
ure 5.11. The front-end pipeline of the main processor issues instructions into an instruction
window in place of the instruction FIFO in the earlier MAU design. Instructions execute out-
of-order onto three functional units: an ALU for address calculation, a read unit to fetch from
the cache and a write unit to place data into the write buffer.

Two types of load/store dependency handling are evaluated. The simpler method is to prevent
issue of any loads ahead of earlier stores – while loads can execute out of order with respect to
each other, they must wait for stores to resolve in order. In the more complex approach, loads
can issue ahead of earlier stores once the address has been resolved and found not to match. In
both models the address computation is performed fully out of order.

The address calculation functional unit scans the instruction window for operations with avail-
able address operands, then selects the earliest such instruction, performs the address calculation
and finally stores the resulting address back into the instruction window. When instructions are
placed in the window they are flagged to indicate they require an address computation and to
indicate whether the register they depend upon is currently available. When registers become
available, instructions depending on them are flagged as being ready for address computation.
The selection logic for the ALU generates request signals for all instructions that have both the

101

5. Architectural developments

Figure 5.11Design of memory access unit, using out-of-order issue

Register
file

L1 cache

Instruction Window

Write data

Address

Read data

To/from register replication network

‘address calculation required’ and ‘register operand value ready’ bits set, and puts them through
a priority encoder to select the oldest for execution.

The memory read functional unit scans the instruction window for load instructions which have
had their address calculated and are not behind any earlier stores (or just stores that may conflict
if the more sophisticated dependency scheme is used). The earliest available load is then issued
to the L1 cache and will broadcast its result over the register communication network when it is
returned.

The memory write functional unit executes stores in order as their operands become available.
If the oldest store has both address and data operands ready, it will be issued. The address is
checked to ensure that a page fault or other exception will not be raised, and then the store data
is written to the write buffer.

If the L1 cache supports non-blocking, or ‘hit-under-miss’ accesses, then a load that causes a
cache miss is retained in the instruction window and flagged as a miss. When the L1 cache
has fetched the value and notifies the processor, the load is then reissued and completes. While
the cache is servicing the miss, other load instructions can be issued – the issue logic will
check that instructions are not flagged as misses in addition to checking the availability of their

102

5.2 Combining memory access units

address operands. If a subsequent load misses to a different cache line while the L1 cache is
still processing the first miss, the load is written back to the window and flagged as a subsequent
miss – when the data from the first miss is returned, the first ‘subsequent miss’ is unflagged,
making it eligible to be reissued.

If hoisting loads ahead of stores is implemented, the following additions are made to the depend-
ency logic: when an address is calculated and written back to the window, an associative lookup
is performed to locate other instructions accessing the same address (to reduce implementation
complexity, only a low-order subset of the address bits are compared – this will identify some
false dependencies, but is safe). For a store, this operation is used to resolve loads which might
depend on the result of that store. For a load, earlier stores are checked for whether the load
may depend on them.

To resolve these dependencies each load is masked by a number of dependency bits. When
a store is placed in the window, it is allocated one of these bits and loads issued after the
store have this bit set to indicate a possible dependency on that store. When a store address is
computed, the address is compared against the addresses of later loads and any that differ have
their dependency bit corresponding to the store cleared as they cannot depend on that store.
Similarly, when a load address is computed, the address is compared to earlier stores – for
any stores with a different address, the corresponding bits are cleared in the load’s dependency
mask. When a store retires, all loads have the bit corresponding to that load cleared (another
option is that the bits are cleared when the store executes, if loads can read data from the write
buffer). A load is only eligible for issue when it has a clear dependency mask.

5.2.6 Evaluation

The implementation in the previous section was added to the simulator and the performance
compared to the baseline and MAU architectures. The performance was evaluated both with
and without non-blocking access to the cache and with both models of load/store dependency
resolution (whether or not loads can overtake independent stores). Figure5.12shows the results
of these tests.

These results show that the out-of-order MAU model provides comparable performance to the
in-order model when loads are not allowed to issue ahead of stores (in some cases the per-
formance is worse – this is likely due to subtle differences in the implementations within the
simulator model). When loads are permitted to overtake independent stores, several tests show
a marked improvement in performance (up to 72% faster than the in-order MAU). In particu-
lar, those tests that performed worse under the in-order MAU model than in the baseline ILDP
model regain or exceed the original baseline performance – the out-of-order MAU model aver-
ages 23.9% faster than the original ILDP model. This would indicate that the critical factor in
the memory system performance is resolving dependencies between loads and stores, in order
to allow loads to issue as early as possible.

103

5. Architectural developments

Figure 5.12Performance of various models of out-of-order memory access unit

N
or

m
al

is
ed

 p
er

fo
rm

an
ce

0

0.5

1

1.5

2

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

MAU loads out−of−order MAU full out−of−order MAU in−order ILDP

(a) 4-way issue

N
or

m
al

is
ed

 p
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

MAU loads out−of−order MAU full out−of−order MAU in−order ILDP

(b) 2-way issue

104

5.2 Combining memory access units

The out-of-order MAU approach will necessarily have higher complexity than implementing
an in-order memory PE. The smaller size of the instruction window for the memory access
unit as compared to that for a full superscalar processor means that the resulting complexity
will not be as great as using a superscalar implementation for the whole processor. Contrasting
the complexity of the out-of-order MAU design with the baseline ILDP architecture is more
difficult – the added complexity of the issue logic for the MAU is offset somewhat by the
removal of the store queue replication network and the replicated L1 caches and their association
coherency logic. This approach should either use less die area, or use the same die area more
efficiently – even with the more complex memory issue logic, the need for replication of caches
or implementation of multiported caches is removed.

Instruction window size

Since the complexity of the issue window logic scales quadratically [42] in the size of the
window, it is important to keep this window size small. Section5.2.3 indicates that a depth
of between four and eight entries for the instruction FIFO is sufficient with the in-order MAU.
Experiments were conducted to investigate the effect of window size on performance, the results
of which are presented in Figure5.13.

These results show that, on average for the 2-way model, a 16-entry instruction window provides
99.6% of the performance of an unbounded window, while a 12-entry window achieves 99.2%.
Scaling back to eight entries reduces performance by 1.5%, and a 4-entry window performs
7.8% worse than one with no limit; the results in the 4-way case are similar. These results im-
ply that a window size of twelve entries is ample to achieve nearly optimal performance, while
a reduction to eight entries still provides good performance with a large potential complexity
reduction. Thetiff2bw test actually runs 17.6% faster with a 4-entry window – this result is
somewhat unexpected, and further examination has been unable to explain the reason for this
apparent discrepancy. Since this is the only data point to display this behaviour, it is considered
to be an outlier and has been discounted.

If the instruction window size proves to be a critical point when it comes to trading off between
complexity and performance, another possible approach is to use a smaller instruction window
fed by a simple instruction FIFO. This will have lower performance than a large instruction
window as fewer instructions can be reordered (although the relative sizes can potentially be
optimised so that this performance drop is minimal) but will have much lower complexity than
a full window. The performance will be greater than a single small instruction window as the
issue logic does not need to stall when the window becomes full – the instruction can be placed
into the FIFO, and will be moved into the window when space becomes available. Based on the
results presented in this section, if this approach were to be implemented, an instruction FIFO
of 4-8 entries feeding a 4-entry window seems like a suitable trade-off.

105

5. Architectural developments

Figure 5.13Effect of out-of-order MAU instruction window size on performance

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−30%

−20%

−10%

0%

10%

20%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

4 8 12 16

MAU instruction window size

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−25%

−20%

−15%

−10%

−5%

0%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E
4 8 12 16

MAU instruction window size

(b) 2-way issue

106

5.2 Combining memory access units

5.2.7 Cache structure

In section4.3.7 the effect of varying the associativity of the L1 cache is analysed. Scaling
the design from multiple replicated caches to a single cache makes it more feasible to increase
the cache size. This section investigates the effect cache size has on performance in the MAU
design. The original ILDP design contains a total of 64KB of L1 cache, partitioned into eight
blocks of 8KB each. Experiments were conducted with a single L1 cache of 64KB total size, as
well as a smaller cache of 32KB or 16KB. The performance of each of these configurations was
then compared to the results with a single 8KB cache. All tests were run using the out-of-order
MAU model, with an 8-entry instruction window.

The results from these tests are presented in Figure5.14. As in section4.3.7, there is only a
small variation in performance. When using 2-way issue, thedijkstra andrijndael (dec)tests
perform slightly over 1% better with the larger cache sizes. The 4-way issue case seems more
bound by the cache parameters – in particular thetiffmediantest (which was the only test to
show a noticable performance improvement when the associativity was increased) is 5.8% faster
when run with a 64KB cache. Overall, the performance improvements are marginal, which is
again attributed to the low memory footprint of the MiBench suite.

5.2.8 Conclusions

The approach of separating memory accesses out into a different processing unit is explored in
detail using several approaches. A simple implementation issuing memory operations in order
can result in a large reduction in silicon area usage and provide a very similar overall level of
performance. More sophisticated schemes can be used that allow reordering of load instructions
to prevent stalls on register values or cache misses. At the cost of higher complexity, these more
advanced designs provide greater performance (up to a 24% improvement over the base model
using 4-way issue) while still having a greatly reduced area.

107

5. Architectural developments

Figure 5.14Effect of increasing L1 cache size on performance (compared to 8KB size)

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−5%

−3%

−1%

1%

3%

5%

7%

9%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E

16KB 32KB 64KB

L1 cache size

(a) 4-way issue

P
er

fo
rm

an
ce

 d
iff

er
en

ce

−5%

−3%

−1%

1%

3%

5%

ad
pc

m
 (

de
c)

ad
pc

m
 (

en
c)

bi
tc

ou
nt

bl
ow

fis
h

(d
ec

)

bl
ow

fis
h

(e
nc

)

jp
eg

 (
en

c)

cr
c3

2

di
jk

st
ra

jp
eg

 (
de

c)

gs
m

 (
de

c)

gs
m

 (
en

c)

pa
tr

ic
ia

rij
nd

ae
l (

de
c)

rij
nd

ae
l (

en
c)

sh
a

st
rin

gs
ea

rc
h

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

A
V

E
R

A
G

E
16KB 32KB 64KB

L1 cache size

(b) 2-way issue

108

5.3 Register inlining

5.3 Register inlining

The base ILDP architecture replicates the register file, having a copy in each of the processing
elements. With 128 physical registers and 8 PEs this means there are a total of 1024 registers
on the processor. Even if the size of the physical register file is scaled back to 32 registers, the
overall processor will require a total of 256 registers. Since all register values are replicated to
all PEs, but most values will be used by only one or two PEs, most of the values in the register
files will be effectively dead – this amounts to a huge waste of both area and power, both in
terms of static consumption from holding these useless values and dynamic consumption from
writing them into the register files. Even if power gating is utilized on inactive PEs, the register
file and replication logic must still be powered and kept up-to-date, in order that register file
contents are valid when PEs are awakened.

Lipasti et al. [36] describe a scheme for improving the performance of superscalar architectures
whereby registers containing small values can be stored directly in the reorder buffer in place
of the register number. This bypasses the register file access when the instruction is executed,
reducing the latency of instructions using registers containing small values (which form the ma-
jority of data values held in registers). While their work is targeted on improving performance,
this approach can be used to reduce complexity, as it potentially allows the register file to have
fewer ports, or allows a multi-cycle latency register file to be implemented using less aggressive
logic. While such a design would reduce the register file performance, this would be mitigated
by the reduced access frequency. The lower complexity could also possibly reduce overall cycle
time, improving overall performance.

Using a similar technique, this section proposes a development to the ILDP architecture to re-
duce the overall silicon area usage. The register file in each PE is eliminated and instead the
instruction FIFO is augmented with an associative memory for holding the register operand
tags. Rather than using inlining to reduce register file latency, here it is used to reduce stor-
age replication and thus save die area and reduce power consumption. When a register value
is received by the PE, rather than being written into the register file, an associative lookup is
performed on the instruction FIFO to find any instructions depending on that value. For those
entries that match, the data value is then written into the FIFO alongside the matching instruc-
tions. In this scheme, only live data would actually be stored within each processing element –
while some values may be replicated within the FIFO, energy is not spent storing data values
which ultimately are not used. As the FIFO size (e.g. 8 entries) is much smaller than the overall
register file size (32–128 entries), this should greatly reduce overall silicon area.

A single copy of the full register file is maintained – this contains the only copies of old registers
that no longer hold the values of any architectural registers at the issue point, and thus are
speculatively dead, but may actually be needed in the case of an exception causing rollback to
a point where they are in scope. This register file is accessed by the issue logic after register
renaming and before the instruction is steered. Instructions depending on data values already
available in the register file read them at that point in the pipeline, while those requiring data

109

5. Architectural developments

not yet computed are issued to the processing elements along with the tag of the register they
depend upon, and are updated later in the instruction FIFO when the value becomes available.

This system should allow for large power savings, as any idle processing elements can be en-
tirely powered down, without needing to keep a register file and update logic active. Even active
PEs will consume less static power, as the memory for storing operand values inline in the FIFO
is smaller than a copy of the register file.

5.3.1 Implementation details

In this scheme, each processing element is modified by removing the register file and replacing
it with an enhanced version of the instruction FIFO. In addition to the standard FIFO control
logic, the augmented instruction FIFO contains several blocks of RAM and some logic for
performing the associative lookup. The FIFO must store, for each instruction:

• A tag identifying the individual instruction

• The opcode of the instruction

• If the instruction writes to a general-purpose register, a tag identifying that register

• Any immediate operand value it may have

• For instructions accessing a register operand, either the tag identifying the register provid-
ing the operand or the value of the register operand itself

• A flag to indicate whether the instruction is waiting on a register value

The tag, opcode and immediate values are stored as in a standard FIFO: in a RAM with one
write and one read port and some logic to generate the address pointers for these ports and to
handle empty/full notification. The register values and register tags are stored in separate RAM
arrays, sharing the read and write ports of the main FIFO, with an additional write port for
register value updates from the inter-PE communication network.

When a register value is received, the register tag is asserted onto the associative lookup port
of the register tag array. Comparators in each row compare the incoming tag with the stored
tag, and all entries that match drive an associated wordline. These wordlines drive the addi-
tional write port on the register value array, writing the new register value into each location
of the instruction FIFO that depends on the register being updated. A one-bit array of flags is
maintained to indicate whether a row is waiting on a register value – this bit is cleared when the
register value arrives, and an instruction will only issue if it is not waiting on data.

110

5.3 Register inlining

Figure 5.15Register tag/value portion of PE instruction FIFO

r
2
1

r
5

x
x
x

FIFO read
pointer

FIFO write
pointer

r
2
1

x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

1
2
3
4
5
6
7
8

Register value
to PE

Register tag from replication networkRegister value from replication network

Register value from issue pipeline
(if value known at issue)

Register tag from issue pipeline
(if value not known at issue)

Match lines

0
0
0
0
0
0
4
2

x
x
x
x
x
x
x
x

Figure5.15illustrates the organisation of the register value and tag portions of the instruction
FIFO. In the figure there are five instructions currently stored in the FIFO. The instruction
at the head of the FIFO has already had its register value resolved, and is thus available for
issue; the third instruction also has its source operand present in the FIFO. The second, fourth
and fifth instructions are all still waiting on data to become available. If, in the next cycle, the
value of r21 becomes available, then the tag for r21 will be asserted to the associative tag RAM.
This will match the two entries containing the r21 tag, and thus drive the associated match lines
high. The value of r21 will be asserted to the write port for the value RAM, and thus the value
entries corresponding to the second and fourth instructions in the FIFO will be updated, while
the entries will be marked to indicate that the values have been resolved and thus the instructions
can execute.

A small lookaside buffer is maintained in each PE to store any values received in the last cycle or
two (depending on the delay between the register lookup in the issue pipeline and an instruction
being written into the PE’s instruction FIFO), so that instructions that are ‘in flight’ between
the register access stage in the issue pipeline and the tail of the instruction FIFOs do not miss
register updates. When an instruction is written to the tail of a FIFO, this buffer is accessed to
see if it holds the value of any source registers of the instruction.

111

5. Architectural developments

While in the baseline architecture there are copies of the register file in each PE, in this approach
there is a single register file, accessed in the issue pipeline (probably in the ‘steer’ stage, but de-
pending on timing an additional stage might need to be inserted between ‘rename’ and ‘steer’).
If an instruction being steered reads a register value that has already been computed, that value
is read from the register file at this point and the instruction is placed into the destination FIFO
having already had its input dependencies resolved. This register file is updated as it receives
the data broadcast over the register communication network. Thus the file requires one read
port for each instruction that can be in the steering stage at once (although theoretically fewer
ports could be implemented; see Section4.2.3) and one write port per value that can be sent
over the register network in a single cycle.

5.3.2 Complexity

The logic required to implement the associative FIFOs is analogous to the associative logic
on an instruction window in a superscalar processor to tag ready instructions, but with only a
single associative write port. The reduced size of the individual instruction FIFOs compared to
a superscalar instruction window (the size of all the FIFOs added together is comparable to the
size of a full instruction window) should reduce the delay of this structure – the delay of such
an associative memory is quadratic in the number of words, although for small issue widths the
quadratic term is not very significant and the scaling is closer to linear [42].

The main delays through this structure are the bitline delays on the read and write ports, the
wordline delays and the delay through decoder or comparator logic. For the non-associative
accesses on a FIFO pop, the delay consists first of the delay through the address decoder, then
through the wordline from the decoder, and finally through the bitlines to the output connec-
tions. For a FIFO push, the bitline drive time can occur concurrently with the decoder and
wordline delays. With an associative write, first the bitlines into the tag memory must be driven,
then the comparators must drive the appropriate wordlines. The bitlines into the register value
memory can also be driven concurrently with the other delays.

The main register file accessed in the issue pipeline needs to have as many read ports as the
register rename map, plus as many write ports as are needed by the register replication logic.
Given the number of ports required, this register file could become a problem meeting timing re-
quirements, although the number of ports required is still far less than for a standard superscalar
processor of the same issue width.

5.3.3 Evaluation

At the architectural level, this technique should provide the same per-clock performance as the
baseline ILDP architecture – this design simply rearranges the storage mechanism for GPRs

112

5.3 Register inlining

and does not introduce any additional delays at the clock cycle level, unless the added register
access in the issue pipeline requires adding an additional pipeline stage. At the circuit level,
the new FIFO arrangement is more complex than the previous multiple register file design, but
the additional complexity is mostly from extra logic; the bitline delays of the instruction FIFOs
will be smaller than those of the original register files as there are fewer words in the memory.
By reducing wire delays at the expense of greater logic delays, this design should scale better
at smaller feature sizes than a register file (as logic delays scale better than wire delays), thus
the overall cycle time is unlikely to be significantly affected by this change, as the associative
memory should not form part of the critical path.

There should be a significant reduction in power consumption using this technique, as the 128-
entry register file in each PE is replaced by a single register file in the issue logic and a smaller
associative file alongside the existing instruction FIFO – with a FIFO depth of eight, the as-
sociative register memory will contain only eight entries, rather than the original 128. Greater
benefits can be realised if clock gating or power gating are also used – since only live data is
stored within the PEs then, when an inactive PE is powered down, the register memory and the
register file update logic can also be powered down, giving a large power saving if PEs are shut
down for much of the time.

5.3.4 Conclusions

Inlining the register file into the instruction FIFOs reduces overall silicon area, decreases static
power consumption and should not significantly affect performance, although the performance
effect is hard to judge without performing a full circuit synthesis. Rather than being replicated
across all the PEs in case it will be required, data is only stored within a PE if it is definitely
going to be used in the future. If a PE has an empty instruction FIFO, it contains no live data
and thus register file inlining enables further power savings by allowing all of the PEs to be
powered down if power gating is used.

Given that using register file inlining allows a PE to be completely powered down, this technique
could be used in combination with the FIFO multiplexing from Section5.1 to allow a highly
scalable power management system to be implemented. If some of the PEs are augmented to be
able to have more than one strand currently assigned to them, then it is possible to power down
individual PEs when the processor is in a low power mode, allowing the remaining powered
PEs to handle execution. For example, with four PEs capable of executing two strands and four
capable of only one, the core could be configured to run with anywhere between four and eight
PEs activated at one time, trading off power consumption versus performance.

113

5. Architectural developments

5.4 Summary

Several developments on the ILDP architecture are described to reduce the overall complexity
of the architecture. Reducing the number of processing elements and assigning multiple in-
struction FIFOs to them can greatly reduce the total silicon area of the design (the area used by
execution resources and L1 cache would be halved), but has a significant performance penalty
of 12–14%.

Adding an additional processing element to handle memory accesses and removing the memory
logic from the original processing elements greatly reduces area by removing the need for the
store queue replication logic and maintaining only one copy of the L1 cache, providing similar
peformance with simple in-order issue logic, or a 24% speedup with more sophisticated issue
logic.

Eliminating the replicated register file in each processing element and replacing them with a
single register file and an associative operand memory in the instruction FIFO allows the total
silicon area to be reduced and also allows potentially very good power savings, with hopefully
a negligible performance impact.

114

Conclusions 6

This thesis has evaluated the performance and complexity of the ILDP architecture in the con-
text of an embedded environment. Numerous performance simulations have been run, evalu-
ating the effect of a range of architectural parameters and analysing the suitability of various
developments upon the architecture. This chapter summarizes these results and presents several
avenues for potential future research based on this work.

6.1 Summary

In Chapter3 I gave a detailed overview of the ILDP microarchitecture and instruction set, and
I provided a qualitative analysis of the complexity of an ILDP implementation, as compared to
both a typical scalar RISC CPU and a superscalar design. The ILDP architecture eliminates or
greatly reduces the size of a number of structures present in a superscalar architecture, allowing
its complexity to compare favourably with a simple scalar design.

In Chapter4 I compared the performance of an implementation of the ILDP architecture to some
typical processors used in high-performance embedded systems. The results show potential, but
highlight the need for a better compiler implementation than the one used for these tests. I went
on to analyse the effect on performance of a number of the architectural parameters; I have
shown that many of the parallel structures used within the processor can be scaled to provide
less parallelism with little cost to the overall performance, for example the register renaming
stage can be scaled from being able to process four instructions per cycle to three with a drop in
performance of less than 0.2%. In particular, the size of the register file can be greatly reduced
with little average effect on performance.

I presented several possible developments to the ILDP architecture in Chapter5. A scheme
to halve the number of processing elements, and thus greatly reduce silicon area and power
consumption, was outlined but proved to have a significant effect on performance. I presented
a method to reduce the area and power requirements of the memory logic in the architecture by
adding a new processing element with sole responsibility for handling memory accesses. If this
new unit is configured to execute instructions in order, then similar performance to the original
architecture is achieved with a large reduction in area and power requirements. If the new unit
is set up to execute memory operations out of order then, at an increased area/power cost, a

115

6. Conclusions

significant improvement in performance is possible. Finally, a new organisation for the register
file was proposed, which greatly reduces the overall area used and has the potential to reduce
power consumption, especially in the presence of clock or power gating.

6.2 Conclusion

It has been shown that the ILDP architecture is able to achieve a high degree of instruction-
level parallelism – the IPC attained in benchmarks was more than double that of the other
architectures modelled. The overall performance compared to these models is less impressive
– a 53% improvement over the PowerPC model and a 19% improvement over the ARM model.
This is due to the ILDP code for the benchmarks requiring many more instructions than the
other architectures, which is attributed in part to the basic features of the ISA, in part to specific
choices made in this implementation which could be altered, and in part to the prototype nature
of the compiler backend, being unable to optimise as efficiently as the backends for ARM
and PowerPC. While it was not possible to simulate against an out-of-order architecture, Kim
and Smith [30] show that the baseline ILDP performance is comparable to an out-of-order
processor. Overall it is shown that ILDP has the potential for high performance, without much
of the overhead present in traditional out-of-order superscalar architectures.

The initial ILDP model was based closely on that presented by Kim and Smith [30], which
has fairly hefty resource requirements, which will come at a cost in silicon area and power
consumption. I have shown that many of these structures – in particular the general-purpose
register file – can be reduced in size (with associated power and area benefits) without unduly
impacting upon performance: reducing the register file from 128 to 32 GPRs only results in a
4% drop in performance whilst reducing the area used by the register file by 75%. If the band-
width of the issue pipeline is then reduced from four instructions per cycle to two, performance
falls by a further 8.1%, but the area used by the issue pipeline will be approximately halved, and
the reduction in complexity in the issue logic could well allow the cycle time to be decreased,
allowing the design to be clocked faster.

I have proposed several advancements to the architecture that can improve performance, reduce
resource requirements and in particular allow the design to be very scalable, allowing the trade-
off between performance and area/power to be chosen both at design time and, with appropriate
power gating techniques, dynamically while executing. Moving the memory access logic from
the individual PEs to a specialized memory access unit eliminates any need for replicating
copies of the L1 cache (saving area and power) and, if using more sophisticated scheduling
logic than the main processing elements, can improve performance by 23.9%. Removing the
replicated register files from the processing elements and instead using a more dataflow-oriented
technique akin to Tomasulo’s reservation stations [58] allows individual processing elements to
be powered down without loss of useful state – this enables fine-grained power/performance
scaling by controlling the number of active PEs.

116

6.3 Future work

It seems unlikely that this particular architecture will be used commercially in the near future –
in the present high-performance embedded processor market code compatibility is still a large
issue and moving to a new, incompatible, ISA is difficult. However, there is currently a trend
towards the use of intermediate bytecode languages such as Java and .NET which are either
interpreted or converted to native code using just-in-time compilation, so a switch to an ISA
using some of these ideas may well be more likely in a few years. This could provide a number
of performance advantages – currently software designed to be portable between various imple-
mentations and revisions of an architecture must usually be compiled for the lowest common
denominator (x86 binaries are often compiled for the old Pentium architecture in order to en-
sure compatibility with a wide range of processors), but the compiler is thus unable to use any
of the features of newer architectures, or to perform core-specific scheduling. If just-in-time
compilation is used then optimizations can be performed for the specific model of processor
being targeted.

Ultimately, it has been shown that there is definite merit in an instruction set which allows the
compiler to more obviously indicate instruction data dependencies to the processor, grouping
dependent instructions into strands which can execute in close proximity. This type of instruc-
tion set allows simpler issue logic for out-of-order execution using information provided by
the compiler, without the need for the detailed microarchitectural knowledge required when the
compiler must perform static scheduling, as in the IA64 architecture.

6.3 Future work

There are a number of areas in which future research could continue upon the work presented
within this dissertation. In particular, while detailed analysis has been performed on processor
performance in terms of number of cycles executed, there is scope for more investigation into
the impact various architectural features have upon cycle time. There would probably be merit
in synthesizing a design of the ILDP architecture in order to identify where the critical timing
paths lie.

Another area which could be further developed is that of the chosen instruction set architecture.
It would be useful to perform an analysis showing which features of the instruction set could
affect performance, particularly when comparing the performance of the ILDP architecture to
that of other architectures. Several of the features of the instruction set proved to cause diffi-
culties when adapting the GCC compiler to generate code for ILDP – some of these features
could possibly be changed to allow improved compiler efficiency.

There is considerable scope for investigating how to perform compilation for the accumulator-
based ILDP architecture. This research was based on a GCC backend targeted to ILDP, with
appropriate fixups and some optimizations in order to support register allocation for the hier-
archical register file. A strategy that might be able to generate better code out of the compiler

117

6. Conclusions

Figure 6.1Traditional CPU arrangements for multiprocessing

IP

FU

FU

FU

FU

(a) A single superscalar CPU

IP

IP

FU

FU

FU

FU

(b) A two-way SMT CPU

IP

FU

FU

FU

FU

IP

FU

FU

FU

FU

(c) A two-way SMP CPU

might utilize an additional compiler pass to organise instructions into strands, identifying which
values would be allocated to GPRs and which to accumulators.

The organisation of the ILDP architecture allows for future research into more flexible schemes
of multiprocessing compared to the current approaches of symmetric multithreading and sym-
metric multiprocessing. Figure6.1(a)shows a 4-way superscalar CPU, with the issue pipeline
depicted as ‘IP’, and each functional unit represented as ‘FU’. When a superscalar processor
implements SMT, typically the issue logic will be replicated and then share the original execu-
tion resources (Figure6.1(b)), while an SMP solution will replicate both issue and execution
resources with no sharing (Figure6.1(c)).

A multiprocessing ILDP system could take a hybrid approach, where two issue pipelines feed a
set of e.g. twelve PEs – while the issue logic has been replicated twice, there is only 50% more
execution logic. As some processing elements are dedicated to one issue pipeline and some are
shared (rather than the fully shared approach of SMT or the fully dedicated approach of SMP),
some of the performance issues present with SMT should be avoided, without the full cost of
an SMP solution.

As the number of issue pipelines is increased, more interesting arrangements of execution re-
sources could potentially be devised – e.g. the arrangement in Figure6.2 with four issue units
and 20 processing elements, where each issue unit has two dedicated PEs and two PEs shared
with each other issue unit. This reduces the overall logic replication compared to a full 4-way
SMP implementation, which would require 32 PEs, but limits the additional complexity of the

118

6.3 Future work

Figure 6.2An example four-way multiprocessing ILDP CPU

IP

IP

FU

FU

FU

IP

IP

FU FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU FU

FU FU

PEs and the interconnection logic, as each PE need only communicate with a maximum of two
of the issue pipelines and a limited subset of the other PEs. Performance should potentially be
on par with a fully replicated SMP, as each issue pipeline has two dedicated PEs and need only
contend with one other pipeline for each of the others – allocation strategies can be chosen to
minimise conflicts as much as possible. This type of organisation would allow for very fine-
grained power control, as individual processing elements and issue pipelines could be powered
on or off, with the processor performance hopefully scaling well as the number of resources is
increased or decreased. This is in marked contrast to current SMP solutions, which typically
only allow power control at the level of an entire core.

119

120

Bibliography

[1] Vikas Agarwal, M S Hrishikesh, Stephen W Keckler, and Doug Burger.
Clock rate versus IPC: the end of the road for conventional microarchitectures.
In Proceedings of the 27th Annual International Symposium on Computer Architecture,

pages 248–259. IEEE Computer Society, 2000.
http://citeseer.ist.psu.edu/agarwal00clock.html

Referenced on page36.

[2] Gerald Aigner, Amer Diwan, David L Heine, Monica S Lam, David L Moore, Brian R
Murphy, and Constantine Sapuntzakis.

An overview of the SUIF2 compiler infrastructure.
http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/overview.ps

Referenced on page54.

[3] ARM Ltd.
An introduction to Thumb .
Technical Report ARM DVI-0001A, Advanced RISC Machines Ltd, March 1995
Referenced on page33.

[4] Florin Baboescu and Dean M Tullsen.
Memory subsystem design for multithreaded processors.
Technical report, University of California, San Diego, 1997.
http://citeseer.ist.psu.edu/577904.html

Referenced on page26.

[5] Doug Burger, Todd M Austin, and Steve Bennett.
Evaluating future microprocessors: The SimpleScalar tool set.
Technical Report CS-TR-1996-1308, University of Wisconsin-Madison, July 1996.
http://citeseer.ist.psu.edu/burger96evaluating.html

Referenced on pages55and56.

121

http://citeseer.ist.psu.edu/agarwal00clock.html
http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/overview.ps
http://citeseer.ist.psu.edu/577904.html
http://citeseer.ist.psu.edu/burger96evaluating.html

Bibliography

[6] Doug Burger and James R Goodman.
Billion-transistor architectures .
IEEE Computer, volume 30 issue 9, pages 46–49, September 1997.
http://citeseer.ist.psu.edu/534110.html

Referenced on page36.

[7] Stephen P Crago, Apoorv Srivastava, Kevin Obenland, and Alvin M Despain.
A high-performance, hierarchical decoupled architecture.
Technical Report ACAL-TR-96-07, Advanced Computer Architecture Laboratory,

University of Southern California, November 1996.
http://citeseer.ist.psu.edu/crago96highperformance.html

Referenced on page27.

[8] J Dehnert, B Grant, J Banning, R Johnson, T Kistler, A Klaiber, and J Mattson.
The Transmeta Code Morphing software: Using speculation, recovery, and adaptive

retranslation to address real-life challenges.
In Proceedings of the International Symposium on Code Generation and Optimization,

pages 15–24. IEEE Computer Society, 2003.
citeseer.ist.psu.edu/dehnert03transmeta.html

Referenced on page53.

[9] Richard Earnshaw.
Procedure call standard for the ARM architecture.
Technical Report GENC-003534, ARM, May 2006.
http://www.arm.com/miscPDFs/8031.pdf

Referenced on page40.

[10] Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, Rebecca L Stamm, and Dean M
Tullsen.

Simultaneous multithreading: A platform for next-generation processors.
IEEE Micro, volume 17 issue 5, pages 12–19, September/October 1997.
http://citeseer.ist.psu.edu/eggers97simultaneous.html

Referenced on page25.

[11] Douglas J Evans.
The Cpu tools GENerator, CGEN, Mar 2001.
http://sources.redhat.com/cgen/docs-1.0/cgen.html

Referenced on page54.

[12] Matthew K Farrens and Andrew R Pleszkun.
Overview of the PIPE processor implementation.
In Proceedings of the 24th Annual Hawaii International Conference on System Sciences,

pages 433–443. IEEE Computer Society, January 1991.
http://citeseer.ist.psu.edu/farrens91overview.html

Referenced on page27.

122

http://citeseer.ist.psu.edu/534110.html
http://citeseer.ist.psu.edu/crago96highperformance.html
citeseer.ist.psu.edu/dehnert03transmeta.html
http://www.arm.com/miscPDFs/8031.pdf
http://citeseer.ist.psu.edu/eggers97simultaneous.html
http://sources.redhat.com/cgen/docs-1.0/cgen.html
http://citeseer.ist.psu.edu/farrens91overview.html

Bibliography

[13] Mark Game and Alan Booker.
Codepack: Code compression for PowerPC processors.
International Business Machines (IBM) Corporation, 1998
Referenced on page33.

[14] A Gara, M A Blumrich, D Chen, G L-T Chiu, P Coteus, M E Giampapa, R A Haring,
P Heidelberger, D Hoenicke, G V Kopcsay, T A Liebsch, M Ohmacht, B D
Steinmacher-Burow, T Takken, and P Vranas.

Overview of the Blue Gene/L system architecture.
IBM Journal of Research and Development, volume 49 issue 2, pages 195–212, 2005.
http://www.research.ibm.com/journal/rd/492/gara.pdf

Referenced on page29.

[15] Montse García, José González, and Antonio González.
Data caches for multithreaded processors.
In Workshop on MultiThreaded Execution Architecture and Compilation, January 2000.
http://citeseer.ist.psu.edu/396929.html

Referenced on page26.

[16] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem.
Introduction to Intel Core Duo processor architecture.
Intel Technology Journal, volume 10 issue 2, pages 89–98, May 2006.
http://download.intel.com/technology/itj/2006/volume10issue02/

vol10_art01.pdf

Referenced on page30.

[17] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge,
and Richard B Brown.

MiBench: A free, commercially representative embedded benchmark suite.
In Proceedings of the IEEE 4th Annual Workshop on Workload Characterization. IEEE

Computer Society, December 2001.
http://www.eecs.umich.edu/mibench/Publications/MiBench.pdf

Referenced on page55.

[18] Linley Gwennap.
Digital 21264 sets new standard.
Microprocessor Report, volume 10 issue 14, pages 11–16, October 1996.
http://www.cs.virginia.edu/~dp8x/alpha21264/paper/new%

20standard.pdf

Referenced on page28.

123

http://www.research.ibm.com/journal/rd/492/gara.pdf
http://citeseer.ist.psu.edu/396929.html
http://download.intel.com/technology/itj/2006/volume10issue02/vol10_art01.pdf
http://download.intel.com/technology/itj/2006/volume10issue02/vol10_art01.pdf
http://www.eecs.umich.edu/mibench/Publications/MiBench.pdf
http://www.cs.virginia.edu/~dp8x/alpha21264/paper/new%20standard.pdf
http://www.cs.virginia.edu/~dp8x/alpha21264/paper/new%20standard.pdf

Bibliography

[19] Allan M Hartstein and Thomas R Puzak.
The optimum pipeline depth for a microprocessor.
In Proceedings of the 29th Annual International Symposium on Computer Architecture,

pages 7–13. IEEE Computer Society, May 2002.
http://systems.cs.colorado.edu/ISCA2002/FinalPapers/

hartsteina_optimum_pipeline_color.pdf

Referenced on page35.

[20] John L Henning.
SPEC CPU2000: Measuring CPU performance in the new millennium.
IEEE Computer, volume 33 issue 7, pages 28–35, July 2000.
http://www.spec.org/cpu2000/papers/COMPUTER_200007.JLH.pdf

Referenced on page55.

[21] S Hily and A Seznec.
Standard memory hierarchy does not fit simultaneous multithreading.
In Workshop on MultiThreaded Execution Architecture and Compilation, January 1998.
http://citeseer.ist.psu.edu/hily98standard.html

Referenced on page26.

[22] Sébastien Hily and André Seznec.
Contention on 2nd level cache may limit the effectiveness of simultaneous

multithreading .
Technical Report PI-1086, Institut de Recherche en Informatique et Systèmes Aléatoires

(IRISA), 1997.
http://citeseer.ist.psu.edu/hily97contention.html

Referenced on page26.

[23] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan Kyker, and
Patrice Roussel.

The microarchitecture of the Pentium 4 processor.
Intel Technology Journal, volume 5 issue 1, February 2001.
http://www.intel.com/technology/itj/q12001/pdf/art_2.pdf

Referenced on pages31and35.

[24] M S Hrishikesh, Norman P Jouppi, Keith I Farkas, Doug Burger, Stephen W Keckler, and
Premkishore Shivakumar.

The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays.
In Proceedings of the 29th Annual International Symposium on Computer Architecture,

pages 14–24. IEEE Computer Society, May 2002.
http://systems.cs.colorado.edu/ISCA2002/FinalPapers/

hrishikeshm_optimal_revised.ps

Referenced on page35.

124

http://systems.cs.colorado.edu/ISCA2002/FinalPapers/hartsteina_optimum_pipeline_color.pdf
http://systems.cs.colorado.edu/ISCA2002/FinalPapers/hartsteina_optimum_pipeline_color.pdf
http://www.spec.org/cpu2000/papers/COMPUTER_200007.JLH.pdf
http://citeseer.ist.psu.edu/hily98standard.html
http://citeseer.ist.psu.edu/hily97contention.html
http://www.intel.com/technology/itj/q12001/pdf/art_2.pdf
http://systems.cs.colorado.edu/ISCA2002/FinalPapers/hrishikeshm_optimal_revised.ps
http://systems.cs.colorado.edu/ISCA2002/FinalPapers/hrishikeshm_optimal_revised.ps

Bibliography

[25] Xianglong Huang, J Eliot B Moss, Kathryn S McKinley, Steve Blackburn, and Doug
Burger.

Dynamic Simplescalar: Simulating Java virtual machines.
Technical Report TR-03-03, University of Texas, 2003.
http://www.cs.utexas.edu/ftp/pub/techreports/tr03-03.ps.gz

Referenced on page56.

[26] IBM Microelectronics Division.
The PowerPC 405 Core, February 1998.
http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/

852569B20050FF77852569970063B427/$file/405cr_wp.pdf

Referenced on page56.

[27] IBM Microelectronics Division.
The PowerPC 440 Core, September 1999.
http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/

852569B20050FF77852569970063431C/$file/440_wp.pdf

Referenced on page56.

[28] ITRS.
International Technology Roadmap for Semiconductors: Interconnect, 2006.
http://www.itrs.net/Links/2006Update/FinalToPost/

09_Interconnect2006Update.pdf

Referenced on page17.

[29] Robert M Keller.
Look-ahead processors.
ACM Computing Surveys, volume 7 issue 4, pages 177–195, 1975.
http://portal.acm.org/citation.cfm?id=356657

Referenced on page23.

[30] Ho-Seop Kim and James E Smith.
An instruction set and microarchitecture for instruction level distributed processing.
In Proceedings of the 29th Annual International Symposium on Computer Architecture,

pages 71–81. IEEE Computer Society, May 2002.
http://citeseer.ist.psu.edu/kim02instruction.html

Referenced on pages15, 28, 37, 39, 45, 46, 49, 50, 53, 55, 56, 64, 78, 80, and116.

[31] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Kristián Flautner, Jie S Hu,
Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan.

Leakage current: Moore’s law meets static power.
IEEE Computer, volume 36 issue 12, pages 68–75, 2003
Referenced on page34.

125

http://www.cs.utexas.edu/ftp/pub/techreports/tr03-03.ps.gz
http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970063B427/$file/405cr_wp.pdf
http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970063B427/$file/405cr_wp.pdf
http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970063431C/$file/440_wp.pdf
http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970063431C/$file/440_wp.pdf
http://www.itrs.net/Links/2006Update/FinalToPost/09_Interconnect2006Update.pdf
http://www.itrs.net/Links/2006Update/FinalToPost/09_Interconnect2006Update.pdf
http://portal.acm.org/citation.cfm?id=356657
http://citeseer.ist.psu.edu/kim02instruction.html

Bibliography

[32] K Kissell.
MIPS16: High-density MIPS for the embedded market.
Silicon Graphics MIPS Group, 1997
Referenced on page33.

[33] Alexander Klaiber.
The technology behind Crusoe processors: Low-power x86-compatible processors

implemented with Code Morphing software.
Technical report, Transmeta Corporation, 2000.
http://www.transmeta.com/pdfs/paper_aklaiber_19jan00.pdf

Referenced on page53.

[34] Ronny Krashinsky and Michael Sung.
Decoupled architectures for complexity-effective general purpose processors.
http://citeseer.ist.psu.edu/krashinsky00decoupled.html .
Advanced VLSI Computer Architecture term project, Massachusetts Institute of

Technology, December 2000
Referenced on page27.

[35] Alexei Kudriavtsev and Peter Kogge.
SMT possibilities for decoupled architecture.
In Technical Committee on Computer Architecture (TCCA) Newsletter: Papers from

MEmory access DEcoupling for superscalar and multiple issue Architectures
(MEDEA-2000) Workshop. IEEE Computer Society, January 2001.

http://tab.computer.org/tcca/NEWS/jan2001/kudriavtsev.pdf

Referenced on page27.

[36] Mikko H Lipasti, Brian R Mestan, and Erika Gunadi.
Physical register inlining.
In Proceedings of the 31st Annual International Symposium on Computer Architecture,

pages 325–335. IEEE Computer Society, June 2004.
http://www.ece.wisc.edu/~pharm/papers/isca2004_egunadi.pdf

Referenced on page109.

[37] Jack L Lo, Susan J Eggers, Joel S Emer, Henry M Levy, Rebecca L Stamm, and Dean M
Tullsen.

Converting thread-level parallelism to instruction-level parallelism via simultaneous
multithreading .

ACM Transactions on Computer Systems, volume 15 issue 3, pages 322–354, August
1997.

http://www.cs.washington.edu/research/smt/papers/

tlp2ilp.final.pdf

Referenced on page25.

126

http://www.transmeta.com/pdfs/paper_aklaiber_19jan00.pdf
http://citeseer.ist.psu.edu/krashinsky00decoupled.html
http://tab.computer.org/tcca/NEWS/jan2001/kudriavtsev.pdf
http://www.ece.wisc.edu/~pharm/papers/isca2004_egunadi.pdf
http://www.cs.washington.edu/research/smt/papers/tlp2ilp.final.pdf
http://www.cs.washington.edu/research/smt/papers/tlp2ilp.final.pdf

Bibliography

[38] Deborah T Marr, Frank Binns, David L Hill, Glenn Hinton, David A Koufaty, J Alan
Miller, and Michael Upton.

Hyper-threading technology architecture and microarchitecture.
Intel Technology Journal, volume 6 issue 1, pages 4–15, February 2002.
http://download.intel.com/technology/itj/2002/volume06issue01/

art01_hyper/vol6iss1_art01.pdf

Referenced on page26.

[39] MIPS Technologies, Inc.
The MIPS MT application-specific extension to the MIPS32 architecture.
Technical Report MD00378, 2005
Referenced on page26.

[40] Hans-Peter Nilsson.
Porting GCC for dunces, May 2000.
http://ftp.axis.se/pub/users/hp/pgccfd/pgccfd.pdf

Referenced on page54.

[41] Thomas Pabst and Frank Völkel.
Hot Spot: How modern processors cope with heat emergencies.
Tom’s Hardware Guide, September 2001.
http://tomshardware.co.uk/2001/09/17/hot_spot/

Referenced on page34.

[42] Subbarao Palacharla.
Complexity-effective superscalar processors.
PhD thesis, University of Wisconsin-Madison, 1998.
http://www.ece.wisc.edu/~jes/papers/subba.thesis.pdf

Referenced on pages27, 28, 46, 76, 105, and112.

[43] David A Patterson and David R Ditzel.
The case for the reduced instruction set computer.
SIGARCH Computer Architecture News, volume 8 issue 6, pages 25–33, 1980.
http://portal.acm.org/citation.cfm?id=641917

Referenced on pages30and31.

[44] Richard Phelan.
Improving ARM code density and performance.
Technical report, ARM, June 2003.
http://www.arm.com/pdfs/

Thumb-2CoreTechnologyWhitepaper-Final4.pdf

Referenced on page33.

127

http://download.intel.com/technology/itj/2002/volume06issue01/art01_hyper/vol6iss1_art01.pdf
http://download.intel.com/technology/itj/2002/volume06issue01/art01_hyper/vol6iss1_art01.pdf
http://ftp.axis.se/pub/users/hp/pgccfd/pgccfd.pdf
http://tomshardware.co.uk/2001/09/17/hot_spot/
http://www.ece.wisc.edu/~jes/papers/subba.thesis.pdf
http://portal.acm.org/citation.cfm?id=641917
http://www.arm.com/pdfs/Thumb-2CoreTechnologyWhitepaper-Final4.pdf
http://www.arm.com/pdfs/Thumb-2CoreTechnologyWhitepaper-Final4.pdf

Bibliography

[45] Norman Ramsey and Mary F Fernández.
The New Jersey machine-code toolkit.
In Proceedings of the 1995 USENIX Technical Conference, pages 289–302. USENIX

Association, January 1995.
http://www.eecs.harvard.edu/~nr/pubs/tk-usenix.ps

Referenced on page54.

[46] Norman Ramsey and Mary F Fernández.
Specifying representations of machine instructions.
ACM Transactions on Programming Languages and Systems, volume 19 issue 3, pages

492–524, May 1997.
http://www.eecs.harvard.edu/~nr/pubs/specifying.ps

Referenced on page54.

[47] James E Smith.
Decoupled access/execute computer architectures.
In Proceedings of the 9th Annual International Symposium on Computer Architecture,

pages 231–238. IEEE Computer Society, 1982.
http://www.cs.berkeley.edu/~yatish/prelim/daeca.pdf

Referenced on pages26and101.

[48] James E Smith.
Characterizing computer performance with a single number.
Communications of the ACM, volume 31 issue 10, pages 1202–1206, 1988
Referenced on page17.

[49] James E Smith.
Instruction level distributed processing: Adapting to shifting technology.
In Proceedings of the 7th International Conference on High Performance Computing,

pages 245–258. Springer, December 2000.
http://www.ece.wisc.edu/~jes/papers/hipc.00.pdf

Referenced on page28.

[50] James E Smith.
Instruction-level distributed processing.
IEEE Computer, volume 34 issue 4, pages 59–65, April 2001.
http://citeseer.ist.psu.edu/534110.html

Referenced on page28.

[51] James E Smith and Andrew R Pleszkun.
Implementation of precise interrupts in pipelined processors.
In Proceedings of the 12th Annual International Symposium on Computer Architecture,

pages 36–44, Los Alamitos, CA, USA, 1985. IEEE Computer Society.
http://portal.acm.org/citation.cfm?id=327125

Referenced on page23.

128

http://www.eecs.harvard.edu/~nr/pubs/tk-usenix.ps
http://www.eecs.harvard.edu/~nr/pubs/specifying.ps
http://www.cs.berkeley.edu/~yatish/prelim/daeca.pdf
http://www.ece.wisc.edu/~jes/papers/hipc.00.pdf
http://citeseer.ist.psu.edu/534110.html
http://portal.acm.org/citation.cfm?id=327125

Bibliography

[52] James E Smith and Gurindar S Sohi.
The microarchitecture of superscalar processors.
Proceedings of the IEEE, volume 83, pages 1609–1624, 1995.
http://citeseer.ist.psu.edu/35243.html

Referenced on page23.

[53] Michael D Smith and Glenn Holloway.
An introduction to Machine SUIF .
http://www.eecs.harvard.edu/hube/software/nci/overview.html

Referenced on page54.

[54] Michael D Smith, Mike Johnson, and Mark A Horowitz.
Limits on multiple instruction issue.
In Proceedings of the 3rd International Conference on Architectural Support for

Programming Languages and Operating System (ASPLOS), pages 290–302, New
York, NY, 1989. ACM Press.

http://citeseer.ist.psu.edu/smith89limits.html

Referenced on page25.

[55] Gurindar S Sohi and Sriram Vajapeyam.
Instruction issue logic for high-performance, interruptable pipelined processors.
In Proceedings of the 14th Annual International Symposium on Computer Architecture,

pages 27–34. IEEE Computer Society, 1987.
http://www.eecs.harvard.edu/~dbrooks/cs146/sohi-ruu.pdf

Referenced on page24.

[56] Michael Sung, Ronny Krashinsky, and Krste Asanović.
Multithreading decoupled architectures for complexity-effective general purpose

computing.
SIGARCH Computer Architecture News, volume 29 issue 5, pages 56–61, 2001.
http://citeseer.ist.psu.edu/sung01multithreading.html

Referenced on page27.

[57] Deependra Talla and Lizy K John.
Mediabreeze: A decoupled architecture for accelerating multimedia applications.
SIGARCH Computer Architecture News, volume 29 issue 5, pages 62–67, 2001.
http://citeseer.ist.psu.edu/526028.html

Referenced on page27.

[58] R M Tomasulo.
An efficient algorithm for exploiting multiple arithmetic units .
IBM Journal of Research and Development, volume 11 issue 1, pages 25–33, 1967.
http://www.research.ibm.com/journal/rd/111/tomasulo.pdf

Referenced on page116.

129

http://citeseer.ist.psu.edu/35243.html
http://www.eecs.harvard.edu/hube/software/nci/overview.html
http://citeseer.ist.psu.edu/smith89limits.html
http://www.eecs.harvard.edu/~dbrooks/cs146/sohi-ruu.pdf
http://citeseer.ist.psu.edu/sung01multithreading.html
http://citeseer.ist.psu.edu/526028.html
http://www.research.ibm.com/journal/rd/111/tomasulo.pdf

Bibliography

[59] Dean M Tullsen, Susan Eggers, and Henry M Levy.
Simultaneous multithreading: Maximizing on-chip parallelism.
In Proceedings of the 22nd Annual International Symposium on Computer Architecture.

IEEE Computer Society, 1995.
http://citeseer.ist.psu.edu/tullsen95simultaneous.html

Referenced on page25.

[60] Gary Tyson, Matthew Farrens, and Andrew R Pleszkun.
MISC: a multiple instruction stream computer .
In Proceedings of the 25th Annual International Symposium on Microarchitecture

(MICRO 25), pages 193–196. IEEE Computer Society, 1992.
http://citeseer.ist.psu.edu/tyson92misc.html

Referenced on page27.

[61] David W Wall.
Limits of instruction-level parallelism .
In Proceedings of the 4th International Conference on Architectural Support for

Programming Languages and Operating System (ASPLOS), pages 176–189, New
York, NY, 1991. ACM Press.

http://citeseer.ist.psu.edu/wall90limits.html

Referenced on page25.

[62] Panit Watcharawitch and Simon Moore.
JMA: The Java-Multithreading Architecture for embedded processors.
In International Conference on Computer Design (ICCD). IEEE Computer Society,

September 2002.
http://www.srcf.ucam.org/~pw240/Project/JMA_long.pdf

Referenced on page25.

[63] Panit Watcharawitch and Simon Moore.
MulTEP: MultiThreaded Embedded Processors.
In An International Symposium on Low-Power and High-Speed Chips (Cool Chips) IV,

volume I. IEEE/IEICE/IPSJ/ACM SIGARCH Computer Society, April 2003.
http://www.cl.cam.ac.uk/~pw240/Coolchip_MulTEP.pdf

Referenced on page25.

[64] Neil H E Weste and David Harris.
CMOS VLSI design: A Circuits and Systems Perspective.
Pearson/Addison-Wesley, 3rd edition, 2005
Referenced on pages32and34.

130

http://citeseer.ist.psu.edu/tullsen95simultaneous.html
http://citeseer.ist.psu.edu/tyson92misc.html
http://citeseer.ist.psu.edu/wall90limits.html
http://www.srcf.ucam.org/~pw240/Project/JMA_long.pdf
http://www.cl.cam.ac.uk/~pw240/Coolchip_MulTEP.pdf

	707.pdf
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	2 Background
	2.1 Parallelism
	2.2 Control-flow vs data-flow
	2.2.1 Static data-flow
	2.2.2 Coloured data-flow
	2.2.3 Tagged-token data-flow

	2.3 Pipelining
	2.3.1 Data hazards
	2.3.2 Control hazards

	2.4 Superscalar architectures
	2.4.1 In-order superscalar
	2.4.2 Out-of-order superscalar
	2.4.3 Parallels between out-of-order and data-flow

	2.5 Multithreading
	2.5.1 Simultaneous multithreading

	2.6 Vector architectures
	2.7 Decoupled architectures
	2.8 Dependence-based architectures
	2.9 Instruction-level distributed processing
	2.10 Multiprocessing
	2.10.1 Symmetric multiprocessing
	2.10.2 Non-uniform memory architectures
	2.10.3 Multicore processors

	2.11 Instruction encoding
	2.11.1 CISC
	2.11.2 RISC

	2.12 Embedded system design
	2.12.1 Low cost
	2.12.2 Low power consumption
	2.12.3 Real-time performance

	2.13 Future developments

	3 ILDP in an Embedded Context
	3.1 Details of ILDP
	3.2 Instruction set
	3.3 Programming model
	3.3.1 Register assignments
	3.3.2 Memory organisation
	3.3.3 Function call specification

	3.4 Microarchitecture
	3.5 Complexity
	3.6 Complexity analysis
	3.6.1 Register rename logic
	3.6.2 Issue window dependency logic
	3.6.3 Instruction issue logic
	3.6.4 Register file
	3.6.5 Bypass paths
	3.6.6 Data caches

	3.7 Power consumption
	3.8 Summary

	4 Evaluating ILDP
	4.1 Performance vs other embedded architectures
	4.1.1 Methodology
	4.1.2 Compiler toolchain
	4.1.3 Benchmarks
	4.1.4 Simulation
	4.1.5 Results
	4.1.6 Conclusion

	4.2 Resource utilization
	4.2.1 Decode / Issue logic
	4.2.2 Processing elements
	4.2.3 Register rename logic

	4.3 Parameter space exploration
	4.3.1 Issue width
	4.3.2 Rename bandwidth
	4.3.3 FIFO depth
	4.3.4 Register network bandwidth
	4.3.5 Physical register file size
	4.3.6 ISA register file size
	4.3.7 Cache parameters

	4.4 Combining approaches
	4.5 Summary

	5 Architectural developments
	5.1 Multiplexing instruction FIFOs onto a processing element
	5.1.1 Implementation details
	5.1.2 Evaluation
	5.1.3 Conclusions

	5.2 Combining memory access units
	5.2.1 ISA modifications
	5.2.2 Implementation details
	5.2.3 Evaluation
	5.2.4 Further developments
	5.2.5 Implementation details
	5.2.6 Evaluation
	5.2.7 Cache structure
	5.2.8 Conclusions

	5.3 Register inlining
	5.3.1 Implementation details
	5.3.2 Complexity
	5.3.3 Evaluation
	5.3.4 Conclusions

	5.4 Summary

	6 Conclusions
	6.1 Summary
	6.2 Conclusion
	6.3 Future work

	Bibliography

