
Technical Report
Number 700

Computer Laboratory

UCAM-CL-TR-700
ISSN 1476-2986

Context aware service composition

Maja Vuković

October 2007

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Maja Vuković

This technical report is based on a dissertation submitted
April 2006 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Newnham
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

Context aware applications respond and adapt to changes in the computing

environment. For example, they may react when the location of the user or the

capabilities of the device used change. Despite the increasing importance and

popularity of such applications, advances in application models to support their

development have not kept up. Legacy application design models, which embed

contextual dependencies in the form of if-then rules specifying how applications

should react to context changes, are still widely used. Such models are impractical

to accommodate the large variety of possibly even unanticipated context types

and their values.

This dissertation proposes a new application model for building context aware

applications, considering them as dynamically composed sequences of calls to

services, software components that perform well-defined computational opera-

tions and export open interfaces through which they can be invoked. This work

employs goal-oriented inferencing from planning technologies for selecting the

services and assembling the sequence of their execution, allowing different com-

positions to result from different context parameters such as resources available,

time constraints, and user location. Contextual changes during the execution of

the services may trigger further re-composition causing the application to evolve

dynamically.

An important challenge in providing a context aware service composition fa-

cility is dealing with failures that may occur, for instance as a result of context

changes or missing service descriptions. To handle composition failures, this dis-

sertation introduces GoalMorph, a system which transforms failed composition

requests into alternative ones that can be solved.

This dissertation describes the design and implementation of the proposed

framework for context aware service composition. Experimental evaluation of a

realistic infotainment application demonstrates that the framework provides an

efficient and scalable solution. Furthermore, it shows that GoalMorph transforms

goals successfully, increasing the utility of achieved goals without imposing a

prohibitive composition time overhead.

By developing the proposed framework for fault-tolerant, context aware ser-

vice composition this work ultimately lowers the barrier for building extensible

applications that automatically adapt to the user’s context. This represents a

step towards a new paradigm for developing adaptive software to accommodate

the increasing dynamicity of computing environments.

iii

iv

Acknowledgements
This dissertation would not have been possible without the support of many

great people, to whom I express my gratitude.

First of all, I would like to thank Peter Robinson, my advisor, for giving

me the opportunity and freedom to pursue a PhD as a member of the Rainbow

Group, Computer Laboratory, University of Cambridge. His tremendous support,

guidance and understanding enabled me to complete this project.

I greatly appreciate the discussions with Jean Bacon, Carl Binding, Yigal

Hoefner and Jana Koehler. I am grateful to Andreas Reuter, Anthony Jameson

and Oliver Fritz for encouraging me to pursue a PhD. For their help in proofread-

ing, support and discussions I would like to thank specifically Rana el Kaliouby,

Tihana Kraš, Jennifer Rode, Tal Sobol-Shikler, Mark Stringer, Vikas Taliwal and

Phil Tuddenham.

I would like to thank Giorgos Cheliotis and Christian Facciaruso for our initial

discussion on symmetric matchmaking methods. My thanks go to Anthony Bus-

sani for his kind assistance with state of the art. I would also like to extend my

thanks to Gero Dittman, Diana Gulli, Chiara Marchiori and Roger Zimmerman

for helping make my stay in Zurich pleasant and productive.

I was especially fortunate to have been generously supported by IBM Zurich

Research Laboratory. This has also provided me with an opportunity to work

with leading researchers at IBM Zurich Laboratory and IBM T.J. Watson Re-

search Center. I am grateful to Doug Dykeman and Stefan Hild, without whose

effort and flexibility this would not have been possible.

I would also like to thank Cambridge Commonwealth Trust, Newnham Col-

lege, and the Royal Academy of Engineering for supporting this research.

My time at Cambridge would not have been the same without Aleksandra

Gruevska and Nives Mikelić. I would also like to thank Gordana Apić for offering

practical advice during critical stages of my research.

I would especially like to thank Evangelos Kotsovinos for our extensive dis-

cussions on adaptive composition, constructive feedback on dissertation drafts,

patience and unending support during the most challenging times of this research

project.

Last but not least, I would like to thank my parents, Vladimir and Dragana,

whose hard work and devotion made all this possible. Words cannot express my

gratitude to my sister Tamara and brother Ivan for their love and encouragement.

v

vi

Contents

List of figures ix

List of tables xi

List of algorithms xiii

Abbreviations xv

Terminology xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Research challenges . 5

1.3 Dissertation aims . 7

1.4 Dissertation outline . 9

1.5 Publication record . 10

2 Research context 13

2.1 Context aware computing . 13

2.1.1 Context and context awareness 14

2.1.2 Middleware for context awareness 18

2.1.3 Models for context awareness 22

2.2 Service composition . 26

2.2.1 Foundations . 26

2.2.2 Component technologies 28

2.2.3 Service composition frameworks 29

2.2.4 Web service composition 32

2.2.5 Planning-based service composition 37

2.3 Summary . 45

vii

3 Service composition framework 49

3.1 Usage scenario . 50

3.2 Design requirements . 52

3.3 Framework architecture . 52

3.3.1 Composition request management layer 54

3.3.2 Abstract service composition layer 56

3.3.3 Architecture specific service composition layer 58

3.3.4 Execution and monitoring layer 60

3.4 Failure tolerance . 62

3.4.1 Composition failures . 62

3.4.2 Discovery failures . 63

3.4.3 Execution failures . 64

3.5 Summary . 66

4 Composition failure management 69

4.1 Motivation . 70

4.1.1 Partial satisfaction of composition requests 70

4.1.2 Automated construction of composition requests 71

4.2 GoalMorph: composition failure management using context aware

goal transformations . 72

4.2.1 Goal taxonomy . 72

4.2.2 GoalMorph overview . 74

4.2.3 Context Proxy . 75

4.2.4 Context Mesh . 79

4.2.5 Goal Service . 87

4.2.6 Goal Transformation Engine 92

4.2.7 GoalMorph in use . 99

4.3 Evaluation . 100

4.3.1 GoalMorph effectiveness 101

4.3.2 GoalMorph performance 103

4.3.3 GoalMorph scalability . 106

4.4 Related work . 107

4.4.1 Comparison with GTrans 107

4.4.2 Partial satisfaction planning 109

4.5 Summary . 110

5 Implementation 113

5.1 Abstract service composition layer 115

5.1.1 Abstract Service Repository 115

viii

5.1.2 Composition Engine . 116

5.2 Architecture specific service composition layer 128

5.2.1 Representation of abstract execution plans 128

5.2.2 Plan instantiation . 132

5.3 Execution and monitoring layer 135

5.3.1 Service execution and monitoring 135

5.3.2 Goal state monitoring . 137

5.4 Summary . 138

6 Evaluation 141

6.1 Experimental setup . 141

6.2 Performance . 143

6.3 Scalability . 149

6.3.1 Scalability when increasing domain size 150

6.3.2 Scalability when increasing composition request size 151

6.3.3 Scalability when increasing number of composition requests 151

6.4 Qualitative evaluation . 152

6.4.1 Development effort . 153

6.4.2 Effectiveness . 158

6.5 Summary . 160

7 Conclusion 161

7.1 Contributions . 162

7.2 Future work . 162

7.2.1 User driven goal transformation selection 163

7.2.2 Composition request scheduling 163

7.2.3 Quality of Service for composite service execution 164

7.2.4 Privacy, security and trust for composite services 164

7.3 Summary . 165

Appendix A Interfaces 167

A.1 Composition request management layer 167

A.2 Abstract service composition layer 172

A.3 Architecture specific service composition layer 173

A.4 Execution and monitoring layer 175

Appendix B System extensibility 177

References 179

ix

x

List of Figures

2.1 Web service architecture . 32

2.2 SOAP message structure . 34

2.3 OWL-S service ontology . 36

3.1 Usage scenario: context aware restaurant finder 51

3.2 Overview of the proposed service composition architecture 53

3.3 Composition request management layer 55

3.4 Abstract service composition layer 57

3.5 Architecture specific service composition layer 59

3.6 Execution and monitoring layer 61

3.7 System architecture overview . 67

4.1 Sample formalised composition requests 73

4.2 GoalMorph system overview . 76

4.3 Sample context goal condition in cogotag format 77

4.4 Automated construction of context aware composition request . . 78

4.5 Overview of Context Mesh data organisation 79

4.6 Two orderings for the activity context type 80

4.7 Data structures representing context orderings 82

4.8 Data structures representing context type relationships 83

4.9 Context unfolding process. 84

4.10 Overview of Goal Service data organisation 88

4.11 Data structure for goal predicate orderings 89

4.12 Sample argument ordering . 91

4.13 Data structure for argument orderings 91

4.14 Sample composition request and transformed request 94

4.15 Achievable size of the transformed composition request 102

4.16 Achievable utility of transformed composition request 104

4.17 GoalMorph performance . 105

4.18 Comparison of methods for transformation selection 106

4.19 GoalMorph performance as a function of number of transformations107

xi

5.1 Implementation of the abstract service composition layer 114

5.2 Sample domain description in TLPlan 125

5.3 Sample TLPlan operator . 126

5.4 Sample TLPlan problem . 127

5.5 Sample TLPlan plan . 128

5.6 Implementation of the architecture specific service composition layer129

5.7 Sample partner definition in BPEL4WS 130

5.8 Abstract execution plan in BPEL4WS 131

5.9 Sample UDDI Request . 133

5.10 UDDI response listing services for the query in Figure 5.9 134

5.11 WSDL for sample restaurant directory service 136

6.1 Experimental setup . 143

6.2 Sample UDDI service description 144

6.3 Composition timeline for Case 1 and Case 2 148

6.4 Composition timeline for Case 3a and Case 3b 149

6.5 Scalability when increasing domain size 150

6.6 Scalability when increasing the composition request size 152

6.7 Scalability when increasing number of composition requests 153

xii

List of Tables

2.1 Comparison of context middleware 23

2.2 Comparison of service composition frameworks 31

2.3 Comparison of frameworks for automated Web service composition 47

4.1 Sample context input in the usage scenario 71

4.2 Sample application behaviour for context in Table 4.1 71

4.3 List of core and context goal transformations 98

5.1 Suitability of planners for Web service composition. 119

5.2 Sample planning actions for the usage scenario 124

6.1 Sample service categorisation . 145

6.2 Composition request size and composite service size 151

6.3 Scalability when increasing the composition request size 154

6.4 Design process using legacy approach 155

6.5 Design process using context aware service composition approach 156

6.6 Handling unanticipated context 157

xiii

xiv

List of Algorithms

4.1 Composition failure management 93

4.2 Context aware goal transformation using utilities 95

4.3 Supporting procedures for context aware goal transformation . . . 97

xv

xvi

Abbreviations

ADL Action Description Language

AI Artificial Intelligence

API Application Programming Interface

BPEL4WS Business Process Execution Language for Web Services

BPWS4J Business Process Execution Language for Web Services Java Run Time

CORBA Common Object Request Broker Architecture

DAML DARPA Agent Markup Language

DAML-S DAML for Services

DARPA Defense Advanced Research Projects Agency

DCOM Distributed Component Object Model

HTN Hierarchical Task Network

HTTP HyperText Transfer Protocol

MBP Model Based Planning

MDP Markov Decision Process

OWL Web Ontology Language

OWL-S OWL for Services

PDDL Planning Domain Description Language

RDF Resource Description Framework

RMI Remote Method Invocation

SHOP2 Simple Hierarchical Ordered Planner 2

SOAP Simple Object Access Protocol

STRIPS Stanford Research Institute Problem Solver

TCP/IP Transmission Control Protocol/Internet Protocol

UDDI Universal Description, Discovery and Integration

UNSPSC United Nations Standard Products and Services Code

URL Uniform Resource Locator

WSDL Web Service Description Language

WSMF Web Service Modeling Framework

WSMO Web Service Modeling Ontology

XML eXtensible Markup Language

xvii

xviii

Terminology

Abstract execution plan: a composite service in the representation format

of the run-time execution technology.

Abstract plan: a high-level schema that describes the control flow between

atomic services, which form a composite service.

Abstract service: a high-level description of the capabilities and categorisa-

tion of an atomic service.

Abstract service composition: the process of constructing a composite ser-

vice from abstract services.

Abstract service repository: the facility that stores and manages descrip-

tions of abstract services.

Architecture specific service composition: the process of constructing an

executable composite service, by means of instantiation of abstract services in

the abstract execution plan.

(Atomic) service: a specific instance of a software system that carries out a

computational operation on behalf of a user.

AtomicProcess: an OWL-S description of an atomic service.

Base core goal condition: the absolute minimal core goal condition that

needs to be satisfied to achieve a viable solution for a composition request.

Composition request: a construct that specifies a user’s computational task.

It consists of core and context goal conditions.

xix

CompositeProcess: an OWL-S description of a composite service.

Composite service: a complex service formed by combining specific, atomic,

services, to achieve a desired computational task.

Context: the entire collection of entities and their properties that can enter into

a meaningful relationship with users during their interaction with applications

(including the user and the system themselves), and affect their behaviour.

Context goal condition: a goal condition that arises in a specific context.

Core goal condition: a goal condition that arises from a user’s task intention.

Dependent context goal condition: a context goal condition that is contin-

gent on a core goal condition. It can often take form of an attribute of the core

goal condition.

Deployable service description: a data structure that defines the physical

location of the service, its input and output parameters, preconditions and post-

conditions, as well as failure recovery methods.

Domain description: a formalised list of available actions in the domain, rep-

resenting the causal laws and relationships between actions.

Independent context goal condition: a context goal condition that is not

necessarily contingent on a core goal condition.

Goal (condition): a specific requirement that must be met.

Goal transformation: an operation that changes the form of a goal to generate

an alternative goal. For example, a goal can be replaced by more specific or

generic values.

GoalMorph: a composition failure management system, which uses context

aware goal transformations to modify failed composition requests into ones that

can be solved.

xx

Monitoring procedure: a construct that defines how the framework should

react to unanticipated events resulting from changes in the service operation or

context.

Planning: the process of constructing action sequences that can be executed

in a given initial state to achieve a desired goal.

Planning action: an operator that transforms the world states.

Precondition: a requirement for carrying out a service execution.

Problem definition: a description of the state of the world, called initial state,

and the desired world state, called goal state.

Postcondition: an outcome property that must always hold following the ex-

ecution of service.

Service binding: the message format and protocol details of service opera-

tions.

Service composition: the process of constructing a composite service from

atomic services in order to achieve a specific task.

Service invocation: the process of putting a service instance into operation.

Service registry: a repository that maintains records of service descriptions.

It exports interfaces for service discovery and publishing.

SimpleProcess: an OWL-S description of an abstract service, providing a spe-

cialised view of some AbstractProcess or a simplified representation of some Com-

positeProcess.

of a composite service.

Task: a computational operation to be performed. Tasks are often complex

operations, such as making travel plans and preparing research reports.

xxi

This dissertation uses the following typefaces:

• Names of system components names are shown in title case, Courier New,

such as Context Mesh, and are written in two separate words, except for

the GoalMorph system, which is written as one word.

• Names of internal data structure names are shown in lower case, plain

Courier New font, such as abstract plan.

xxii

Chapter 1

Introduction

Computing devices are becoming faster, smaller, more widespread and universally

connected as the wireless networking revolution continues. At the same time

advances in sensing technologies and the development of knowledge extraction

and management capabilities are providing context information, such as location,

physiological state, and motion. Such data about the user’s setting is collectively

termed context. This suggests a vision of systems that are intimately embedded

in physical and social contexts, promising truly ubiquitous computing [Wei91].

As a result, computing applications now operate in a variety of new settings;

for example, embedded in cars or wearable devices. They use information about

their context to respond and adapt to changes in the computing environment.

They are, in short, increasingly context aware.

However, advances in application models to support the development of con-

text aware systems have not kept up. Researchers have been building and de-

ploying context aware applications in a scenario-specific manner. They have often

tailored them to a specific problem domain, by encoding the anticipated context

and the desired application behaviour.

This dissertation envisages a novel application architecture that is adaptive to

the changing needs of users and the dynamic computer and networking environ-

ments that users may encounter. Adaptive applications are capable of operating

on a variety of computing devices that a user may own, such as a personal com-

puter and a Personal Digital Assistant (PDA). They also adjust the set of features

and adapt functions to the particular needs of the user in different environments.

For example, e-mail software opts to read out e-mail while the user is driving a

car.

This dissertation proposes a new application model for context aware appli-

cations, in which applications are dynamically assembled from services based on

context. Moreover, the configuration of services within an application may also

1

change in order to respond to context changes. This dissertation describes the

design, prototype implementation, and evaluation of an extensible framework for

context aware service composition. It investigates a novel mechanism for han-

dling composition failures, which tackles the problem of composition requests that

cannot be immediately satisfied. Furthermore, it presents a format for context

aware composition requests and a method for constructing them in an automated

way. Finally, the dissertation demonstrates that the proposed framework is an

effective and scalable solution by means of experimental evaluation.

1.1 Motivation

Research in the development of context aware applications has gained significant

attention since the early 1990s. A representative example is the Active Badge

system at Olivetti Research Laboratory [WHFG92]. Active Badges transmit a

signal providing information about their location to a centralised location service,

through a network of sensors. An early application used the Active Badge system

to route phone-calls to the nearest telephone to the user. Bennet et al. [BRH94]

extended this application to transfer a user’s computing session to the nearest

workstation.

At the same time Schilit et al. [SAW94], researchers at Xerox PARC, devel-

oped a suite of context aware applications for PARCTAB [WSA+95], a device

that combines the properties of the Active Badge System and PDA. In their

prior work, Schilit et al. [SD91] described how an operating system can use the

memory of nearby idle computers for backing store, rather than swapping to a

local or remote disk. One of the first PARCTAB [SW95] applications displays

team members and computing devices, such as printers, according to their prox-

imity. Another PARCTAB application is the Location Browser, an application

for viewing a “location-based filesystem”, in which directories are named after

locations and contain files and programs. When a user moves within the building,

the browser updates the displayed directory to match the location of the user.

Lamming et al. [LF94] developed Forget-Me-Not for PARCTAB, one of the

first examples of contextual reminder applications. Forget-Me-Not is a portable

memory aid which automatically collects data. It allows users to search and

display the collected information based on the context, and traverse implicit

links between past events. CyberMinder [DA00], comMotion [MS00] and Memo-

Clip [Bei00] are further examples of reminder applications.

Context aware applications are present in many different domains, ranging

from tour guides to games. Tour guide applications target, for example, museum,

2

exhibition and shop visitors, city tourists and trade show participants. The stan-

dard functionality provided by context aware guides includes context-based infor-

mation retrieval, navigation in unfamiliar environments, point-of-interest lookup,

and dynamic tour generation. Examples of such applications include Personal

Shopping Assistant [ACK94], CyberGuide [LKAA96], SmartSight Tourist Assis-

tant [YYDW99], Context Sensitive Tourist GUIDE [CMD99], Context Sensitive

Nomadic Exhibition Guide [OS00], and the HP Exploratorium Project [FFK+02].

These systems differ in the extent of contextual information they use as well as

the services they provide to the user.

Similarly, fieldwork applications [RPM98, NSBW00] use context to assist mo-

bile workers in field observation and data-collection activities. Another group of

applications enables sharing a user’s context, in order to determine her availabil-

ity for communication. as well as the applicability of a specific communication

medium, such as telephone, chat, and video conference. Some examples include

AudioAura [MBW+98], Situational Awareness [SAT+99], In/Out Board [Dey00],

Context-Call [STM00] and Awarenex [TYB+01].

More recent examples of context aware applications are context aware in-

formation appliances, such as MediaCup and Chameleon Tables. Gellersen et

al. [GBK99] developed MediaCup, a coffee mug empowered with computing ca-

pabilities, which senses how the cup is used. For example, if someone drinks out of

the cup this information is sent to a coffee machine, which may initiate a brewing

process. Selker et al. [SAB02] devised Chameleon Tables, tables which are aware

of their height and neighbouring tables. They respond to context changes by

adjusting their height and the content of information displays, which are docked

on the top of each table.

A number of projects explore applications of context awareness in smart en-

vironments. Ponnekanti et al. [PLF+01] and Roman et al. [RHC+02] developed

adaptive systems that react to changes of resources in order to manage tasks

in an intelligent office. Our prior work employed context awareness to facilitate

adaptive coordination of a smart home environment [KV05].

Context information is also being exploited in games. Headon et al. [HC02]

demonstrate how computer games can be controlled through players interacting

with the physical environment. Contextual information, such as users’ real move-

ments on an ActiveFloor mat [AJLS97] replace cursor key emulation to control

a game. Furthermore, the Citywide Performance [BBC+01] is an example of a

mixed reality performance that takes place across a city. Users of the system

move around the city and experience events that are taking place in a parallel

virtual city, a 3D model that is connected to and overlaid on the physical city.

Applications such as a virtual history guide and games were also developed.

3

In terms of how these applications are developed, they mostly employ a tra-

ditional, monolithic application model. It embeds contextual dependencies as

if-then rules, which describe how context aware systems should react to context

changes. These rules are encoded by the software engineer. Using this approach

whenever the new context types and values are introduced in the system, new

rules describing context behaviour need to be created by the software engineer.

This makes the applications static and inflexible. Furthermore this may often

limit applications to run on a specific device, while offering only predetermined

functions to the user. As a result this model is not suited to accommodate per-

vasive computing environments, which are characterised by richness of context,

by the mobility of users and devices, and by the appearance and disappearance

of resources over time.

The development of context aware applications is a complex task because of

the need to accommodate for a vast variety of context types and their values,

including the ones that cannot be anticipated at the time when the system is

designed. An example scenario is when a new device comes to the market with

different system capabilities from existing ones. The commonly followed approach

of hard-coding the mappings between all possible combinations of context values

and the corresponding application behaviour is impractical. Furthermore, this

makes context aware systems difficult to later extend when new values of exist-

ing context attributes and new context types arise. It is at the best extremely

demanding to foresee all context an application may encounter during its lifetime.

Weiser [Wei91] envisages pervasive applications as means by which a user

performs tasks, rather than a collection of computational features. To achieve

this vision, Banavar et al. [BBG+00] structure applications in terms of tasks and

their sub-tasks, which is a service composition problem.

To address the problem of increasing complexity in facilitating context aware-

ness, I propose the approach of building context aware applications as dynam-

ically composed sequences of calls to Web services, using Artificial Intelligence

(AI) planning technology [VR04b]. Different service compositions of such se-

quences result from different contexts such as available resources, time con-

straints, user location, and user profile. Further recomposition of the service

during its execution may be triggered by changes in the context [VR04a].

Planning systems generate sequences of actions, called plans, which can trans-

form an initial state of the world to a desired goal state. The domain knowl-

edge that planners use to devise a plan includes information about the avail-

able actions, the conditions under which an action applies, termed preconditions,

and the expected outcomes of applying that action, called postconditions or ef-

fects [RN95]. By explicitly declaring Web services as processes in terms of their

4

inputs, outputs, preconditions and effects, planning technology can then be ap-

plied to solve the service composition problem. However, there are challenges

to be overcome for this vision to be realised and these are discussed in the next

section.

Planning systems rely on a domain description, which partially encodes possi-

ble contextual constraints, however, using this approach, it is sufficient to provide

the set of potential values of a certain context type, rather than defining all per-

mutations of all potential values. An example is, when a new device is introduced

to the market, which may lead to a combination of existing device capability val-

ues, such as screen size, network connections, etc. The proposed approach does

not require encoding of all the combinations in the system, but rather the possible

values, and deals with combinations automatically.

1.2 Research challenges

The starting point for this dissertation is the need for a new method for build-

ing context aware applications. Context aware service composition incorporates

research from several different areas, such as context aware computing, service

composition, and AI planning. This section provides an overview of these fields

and a list of challenges that need to be overcome in each of them to enable context

aware service composition.

Context awareness. Building context aware applications is a complex task.

Schilit [SAW94] highlighted the challenge of balancing the requirement for timely

execution with the need for predictable behaviour when developing context aware

applications. Furthermore, Schilit also outlined the following specific problems

to be addressed: the expressiveness of the predicate language and the accuracy

and timeliness of the underlying context information.

Dey [Dey00] identified three main requirements. Firstly, there is a need for

a suitable context model, which describes the relationships between different

types and facilitates inference and abstraction of context. Secondly, a Quality of

Information model is necessary to allow reasoning about the quality parameters

of each context type and value, such as accuracy of location information. Finally,

to enable easy development, a suitable infrastructure for context acquisition and

management is required, which separates the acquisition from the use of context.

Service composition. Syzperski [Szy00] defined service composition as the

process of constructing a complex service from atomic ones to achieve a specific

5

task. The process of service composition inherently requires the specification of

composition requests, a formal specification of static and behavioural properties

of the service components, a matchmaking algorithm, and a modelling language

expressing the logic of a composite service.

Web service technology is a popular way of developing distributed applica-

tions. There are two main directions in providing models for composite Web

services, in order to formalise the specification of Web services, their composition

and execution: industry standards and research ontology-based approaches.

Industry solutions are eXtensible Markup Language (XML) based standards.

Examples include Web Service Choreography Interfaces (WSCI) [Wsc02] and

Business Process Execution Language for Web Services (BPEL4WS) [CAD+05].

van der Aalst et al. [vdADtH03] observed that these languages provide support

for “communication oriented process definition”, but they lack well-defined se-

mantics.

The Semantic Web community focuses on reasoning about Web resources

by describing their preconditions and effects with terms precisely defined in

ontologies. Examples include efforts such as Web Ontology Language for Ser-

vices (OWL-S) [MBH+04] and Web Service Modelling Ontology (WSMO) [FB02].

OWL-S explicitly defines a set of ontologies that support reasoning about Web

services. By contrast, WSMO proposes a conceptual framework within which

such ontologies can be created.

Planning based service composition. Koehler et al. [KS03] identified sev-

eral open issues in planning-based Web service composition. Firstly, conventional

plans are sequences of actions. Modelling Web service interaction requires con-

trol structures involving loops, choice and parallelism. This will enable complex

behaviour of Web services, such as concurrent execution, or iteration while a

certain condition holds. Consequently, an automated means of assembling com-

plex actions from atomic ones is essential. Furthermore, Web service composition

requires modelling a number of sophisticated features compared to the actions

in existing planning technologies, such as varying action durations and resource

constraints.

One important challenge stems from the fact that classical planning assumes

knowledge of all available world states and actions. However, this is an untenable

assumption for context aware service composition, as Web services may generate

new objects or messages at run-time, which can be further processed by other

services. Therefore some means for expressing nondeterminism and unanticipated

behaviour of services is necessary.

6

Context aware service composition. Service composition is a dynamic and

flexible process, which allows for reconfiguration as the context changes and

therefore removing the need for embedded contextual dependencies. Context

commands specify application behaviour in certain contexts. Using context re-

quires actions that are the result of contextual changes to be represented in the

user task specification. Traditionally composition requests are pre-compiled and

stored in repositories; however, this approach is impractical when dealing with

a potentially large number of contextual commands. Some automated means of

constructing context aware composition requests is essential.

The frequently changing context and availability of services in a computing

environment points to the fact that the process of service composition will be

exposed to failures. For example, service composition process may terminate

because of missing service descriptions. Furthermore, failures may occur during

execution of a composite service, because atomic services may stop function-

ing because of network disconnection. Suitable fault tolerance mechanisms are

therefore necessary to make applications resilient to composition and execution

failures.

Additionally, supporting context awareness requires an extensible approach

to accommodate an increasing number of context types, their values and the

corresponding application behaviour.

1.3 Dissertation aims

This dissertation proposes a framework for context aware service composition, to

address the need for a new application model for context awareness. To build

a general-purpose, extensible framework that allows composition requests to be

assembled based on context, a number of important requirements need to be

addressed at the same time. This dissertation investigates the applicability of

planning to Web service composition, proposes a new way of handling composition

failures and presents an extensible system design.

It specifically addresses the following challenges:

1. Composition failure recovery. Service composition may fail due to missing

service descriptions or changing context. However, rather than completely

failing to satisfy a composition request, sometimes it may be possible and

desirable to generate and present a user with a partial, but viable, solution.

2. Automated context aware request construction. A user’s current context

may be used to customise the composition request. Consider a user who

7

wants driving directions. This request must be considered in context. For

example, when a user is driving the navigation application must read out the

driving directions. In contrast to constraints arising from user’s intention,

the context-implied constraints cannot always be predicted and encoded

ahead of time. The effect of context parameters on the composition request

should therefore be determined in an automated way.

3. Execution failure recovery. During execution of a composite service, atomic

services may become unavailable, for example because of a network dis-

connection. The framework should accommodate such failures and employ

suitable recovery mechanisms such as service replacement and caching.

4. Scalability. The domain size may increase as service providers advertise

the services they offer, and as service-oriented architectures gain popu-

larity. Consequently, the number of composition requests is anticipated

to increase over time as a wider user community takes advantage of the

service composition framework. To be able to handle both the increase

in the size of the domain and increase in the number of users and their

requests, the framework must be able to scale gracefully and maintain its

performance and responsiveness. Ensuring that the system’s computational

requirements scale linearly in the above conditions enables the addition of

computational resources on demand, such as possibly using server farms to

cope with scale. The linear growth of computer requirements is a common

scalability criterion, an observation found in systems research [FGC+97].

5. Independence of application domain. The framework should be designed as

a general-purpose solution and its implementation should not include any

scenario-specific dependencies.

6. Independence of component technology. The framework should support a

variety of types of component technologies. Web services are only one

possible type of component-based technology, along with Distributed Com-

ponent Object Model (DCOM) [HK97], Common Object Request Broker

Architecture (CORBA) [Obj91], and other technologies. Furthermore, the

framework should support, at the same time, different types of component

in the composite service, as well as services that may emerge in the future.

7. Independence of composition methodology. This work aims to employ ex-

isting methods for composition, where AI planning is only one possible

solution. Therefore it is important that the framework is open to alter-

native composition methodologies. Different types of planners, as well as

8

non-planning approaches, such as data view integration [TKA03] can also

be used to control service composition. Additionally, different types of co-

mposition methods are suited to different types of composition requests and

application domains. For example, nondeterministic and partially observ-

able domains may benefit from model-based planning.

8. Independence of context middleware. Context middleware is a software

component that provides access to different context values that are of rel-

evance to a composition request. Independence of the context middleware

is essential for two reasons. Firstly, different context types may be pro-

vided by context providers offering services through different middleware

solutions. Secondly, context middleware may fail and the framework may

need to switch to another context acquisition and management system.

1.4 Dissertation outline

This chapter identified the need for a new methodology for the development of

context aware applications. It introduced the idea of context aware service co-

mposition, in which applications are assembled dynamically from atomic services.

It also presented a framework of general research challenges and the specific aims

of this dissertation. This chapter concludes by outlining the contents of this

dissertation and by presenting the author’s publication record.

Chapter 2 analyses related work in context aware computing, and highlights

the necessity for and importance of the new application model for context aware-

ness, by identifying the shortcomings of traditional monolithic solutions. It also

sets out specific requirements for the proposed framework, based on a review of

existing research in planning-based service composition.

Chapter 3 describes the design of the framework for context aware service co-

mposition through a sample usage scenario. It presents the system architecture

in terms of its main components and the operations they provide. It also dis-

cusses how the framework achieves independence of the component technology

and composition methodology by employing internal representations.

Chapter 4 introduces GoalMorph, a novel composition failure management

system. GoalMorph applies context aware goal transformations when composition

requests cannot be satisfied, to generate ones that can be partially fulfilled. This

chapter also experimentally demonstrates that GoalMorph is a practical approach

and does not impose a prohibitive composition time overhead.

Chapter 5 presents an implementation of the system architecture, providing

details of each of the platform components and showing how they realise the

9

desired functionality. It discusses the applicability of planning technology to the

Web service composition problem and describes how the framework employs the

TLPlan [BK95] planning system. Finally, it presents the mechanisms used for

monitoring and handling failure tolerance during execution.

Chapter 6 describes the performance and scalability experiments undertaken,

which demonstrates that the proposed context aware service composition facility

is a viable approach. Furthermore it presents the results of qualitative evaluation

used to determine the framework’s effectiveness in reducing the development ef-

fort required for building context aware applications. Finally, it considers how

the dissertation aims outlined in Section 1.3 have been met by the design of the

proposed framework for context aware service composition.

Chapter 7 highlights the main contributions of this work and the conclusions

reached. It suggests areas with a potential for future work, in the context of

a commercial deployment of complex composite services. These include privacy

and security issues, and a method for scheduling composition requests.

1.5 Publication record

Parts of the work done towards this dissertation have been published1 in inter-

national journals, conferences and workshops as follows.

1. Maja Vuković and Peter Robinson. GoalMorph: Partial Goal Satisfaction

for Flexible Service Composition. International Journal of Web Services

Practices, 1(1–2):40–56, December 2005.

2. Evangelos Kotsovinos and Maja Vuković. su-chef: Adaptive Coordination

of Intelligent Home Environments. In Proceedings of the Joint International

Conference on Autonomic and Autonomous Systems 2005 / International

Conference on Networking and Services 2005 (ICAS/ICNS 2005), Papeete,

Tahiti, October 2005. IEEE Computer Society.

3. Maja Vuković and Peter Robinson. GoalMorph: Partial Goal Satisfac-

tion for Flexible Service Composition. In Proceedings of the International

Conference on Next Generation Web Services Practices (NWeSP), Seoul,

Korea, August 2005.

1I was the lead author on all the publications, except for the paper I co-authored with

Joachim Peer.

10

4. Maja Vuković and Peter Robinson. Context Aware Service Composition.

In Proceedings of the Third UK UbiNet Workshop, Bath, UK, February

2005.

5. Maja Vuković and Peter Robinson. SHOP2 and TLPlan for Proactive Ser-

vice Composition. In Proceedings of the UK-Russia Workshop on Proactive

Computing, Nizhniy Novgorod, Russia, February 2005.

6. Evangelos Kotsovinos and Maja Vuković. su-chef: Dynamic Service Co-

mposition For Next-Generation Cooking. In Proceedings of the Sixth IEEE

Workshop on Mobile Computing Systems (WMCSA 2004), Poster Session,

Lake District, UK, December 2004.

7. Maja Vuković. Plan Based Application Modeling for Context Awareness.

In Proceedings of the Doctoral Colloquium. The Sixth International Con-

ference on Ubiquitous Computing (UbiComp), Nottingham, UK, September

2004.

8. Joachim Peer and Maja Vuković. A Proposal for a Semantic Web Service

Description Format. In Liang-Jie Zhang, editor, Proceedings of the Euro-

pean Conference On Web Services (ECOWS), volume 3250 of Lecture Notes

in Computer Science, pages 285–299, Erfurt, Germany, 2004. Springer.

9. Maja Vuković and Peter Robinson. Application Modeling for Context

Awareness. IEEE Pervasive Computing Magazine, Building and Evalu-

ating Ubiquitous System Software. Work in Progress Section, 3(3):Page 59,

July-October 2004.

10. Maja Vuković and Peter Robinson. Adaptive, Planning Based, Web Service

Composition for Context Awareness. In Proceedings of the Second Interna-

tional Conference on Pervasive Computing (Pervasive 2004), Advances in

Pervasive Computing, volume 176, pages 247–252, April 2004.

11

12

Chapter 2

Research context

Research on context aware service composition tackles the problem of developing

extensible and scalable applications that adapt to context. It incorporates work

from several disciplines, such as context data acquisition, analysis and inference,

modelling, management and distribution, as well as service composition.

This chapter describes related work in two main research categories: context

aware computing and service composition. The first section discusses the concepts

of context and context awareness, and analyses the middleware for context ac-

quisition and management. It surveys existing approaches for developing context

aware applications, such as task-driven computing, which is grounded in the idea

of service composition. The second section presents the foundations of service

composition, the process of constructing flexible software systems from service

components. It describes Web services, a technology that facilitates platform in-

dependence, interoperability and modularity for Web applications. It also shows

how goal-oriented inferencing, an increasingly popular approach from planning

technologies, can be applied to the Web service composition problem. The chap-

ter concludes by highlighting the shortcomings of the existing planning based

service composition frameworks.

2.1 Context aware computing

With the move from traditional desktop computing to mobile and pervasive en-

vironments there is a greater demand for context awareness, a need to exploit

implicit information in order to adapt application behaviour. Context awareness

has gained attention partly as a result of technical advances allowing for low-cost

sensing of context.

13

2.1.1 Context and context awareness

Context definition. Many researchers have attempted to formalise the mean-

ing of context in the computing environment; however, a universally accepted

definition is yet to be agreed. According to the Oxford English dictionary the

word context refers to “the circumstances that form the setting for an event,

statement, or idea”. Past attempts to define context in the computing environ-

ment originally took the approach of the definition by enumeration and later of

using synonyms for context.

Initially, researchers enumerated certain context types, which they considered

important and relevant. Schilit and Theimer [ST94] defined context to be: lo-

cation, identities of nearby people, objects and changes to these objects. The

three context classes that Schilit et al. [SAW94] later identified are computing,

including network connectivity, communication costs, bandwidth, resources, user

parameters such as user profile, location, social situation and physical properties,

for instance lightning, noise level, temperature. Chen and Kotz [CK00] expanded

the taxonomy of Schilit and Theimer, by introducing the time class, which repre-

sents parameters, such as time of day, week, month and season of the year. Dey et

al. [DAW98] refer to context as a user’s emotional state, focus of attention, lo-

cation and orientation, date and time, objects and people in the environment.

Defining context by enumeration is, however, an application-specific approach.

Furthermore it is not complete, as the list of contextual types is not exhaustive.

More formal and more generic definitions used either the user’s environment or

the application environment as the basis for establishing the meaning of context.

Brown [Bro96] considers context as elements of a user’s environment that the

user’s computing device is aware of. Ward et al. [WJH97] view context as the

state of the setting in which the application is operating. Similarly, Schmitd et

al. [SAT+99] described context as:

“... knowledge about the user’s and IT device’s state, including sur-

roundings, situation, and to a less extent, location.”

In their later work, Dey et al. [DA99] discuss that the important aspects of

context cannot be enumerated, as they differ from situation to situation and

depend on the purpose of the application. Furthermore they formally defined

context as:

“... any information that can be used to characterise the situation of

an entity. An entity is a person, place or object that is considered rel-

evant or the interaction between a user and an application, including

the user and applications themselves.”

14

Derived from the definition provided by Dey et al. in the most general sense,

the work presented in this dissertation considers context as the entire collection

of entities and their properties that can enter into a meaningful relationship with

users during their interaction with applications (including the user and the system

themselves), and affect their behaviour.

Context modelling. To make contextual data usable and sharable by appli-

cations, it is necessary to model sensor data values. Most current systems use

their own method when modelling context, thus making exchange of context and

interoperability between existing context aware systems more difficult. To facili-

tate the development of extensible and interoperable context aware applications

it is essential to have a set of principles for specifying any given context from any

domain. A set of well-defined, uniform context models and protocols is required.

Context modelling has been the subject of recent research, although primar-

ily embedded in the study of overall software support for building context aware

applications, such as toolkits [Dey00] and infrastructures [HL01, Jon02]. In the

mobile computing most of the related most work is focused on modelling loca-

tion information, although location is just one of many context types. Human

Computer Interaction (HCI) and Artificial Intelligence (AI) communities are ad-

dressing user and task models.

Most context models use standard methodologies for describing context, such

as key-value pairs and ontologies. These approaches vary in their level of formal-

ism, abstraction capabilities, support for Quality of Information, ease of retrieval

and domain independence. Strang et al. [SLP04] classified context applications

according to the data structures employed for context modelling, extending the

initial categorisation of Chen and Kotz [CK00].

Building on the existing surveys, the most commonly employed data struc-

tures are:

1. Key-value pairs store a set of data items that contain a key, a context

type, and a value, the actual context data. Schilit et al. [SAW94] model

location information in this way. Similarly, Maass et al. [Maa97] store

location information pairs in an X.500 conforming directory information

tree. This approach is simple and allows efficient pattern-matching queries

and retrieval; however it lacks capabilities for modelling complex data.

2. The Logic-based approach applies a formal system to describe context in

terms of a concluding expression or a fact that may be derived from a

set of other expressions. Bates et al. [BHB97] and Harter et al. [HHS+99]

represent a context model as an entity relationship. Chen et al. [CFJ03]

15

devised COBRA-ONT, an ontology for supporting pervasive context aware

systems, expressed in the Web Ontology Language (OWL) [CvHH+01]. Us-

ing COBRA-ONT they describe places, agents, events and their associated

properties in an intelligent meeting-room domain using logical predicates.

The main limitation of this approach is that the scope of the context model

defines the limits of the possible domain of application. The design of the

context model introduces an overhead in application development, because

of lack of automated means in constructing descriptions.

3. Object oriented method encapsulates context data as states of the object,

which can be accessed through specified methods. Project TEA [SAT+99]

introduced the concept cue to abstract raw and logical sensor data. Con-

text data is modelled in a layered structure, where context is then described

as an abstraction on top of the available cues. The Active Object Model

employed in the GUIDE [CMD99] project is specifically designed for a lo-

cation context. While this approach does provide greater flexibility and

modularity of context data, it may result in complex navigational data

access.

4. Markup schemas are based on the concept of a hierarchical data structure,

where each context type is annotated with a description of what role its val-

ues play. Pascoe [Pas97] presented the Stick-e note, which describes context

types as tags and values as their fields in Standard Generalized Markup Lan-

guage (SGML). Later, Ryan [Rya99] developed ConteXtml, an XML based

protocol for exchanging the contextual information, based on the Stick-e

note model. Composite Capabilities/Preferences Profile (CC/PP) [Ccp99]

is an effort to standardise a language for specifying how computing client

devices express their capabilities and preferences. Comprehensive Structure

Context Profile (CSCP) [HBS02] and CC/PP Context Extension [IRRH03],

based on CC/PP, include component attribute trees for specific context

types. However, their extensibility is limited due to constraints of the un-

derlying CC/PP vocabulary.

Context quality. One of the specific characteristics of context is its imper-

fection, as it often relies on properties of real world entities. Context quality

may vary greatly, depending on the data source. Sensors are prone to failures

and as a result context data can often be incorrect, inconsistent and incomplete.

Consequently context aware applications need to allow for these inaccuracies and

16

uncertainties. Quality of Information metrics aim to enable applications to spec-

ify their requirements in terms of data quality.

Dey [Dey00] proposed a Quality of Information model, which includes the

following metrics: accuracy, reliability, coverage, resolution, frequency, and time-

liness. Reliability defines how tolerant the application is with regard to sensor

failures. Coverage and resolution define the set of all possible values for a con-

text attribute, and the change that is required for the context attribute to change

respectively. Frequency defines how often the information needs to be updated

and timeliness defines the time the application allows between the actual context

change and the related notification to the application. Ebling et al. [EHL01] de-

fined two Quality of Information metrics. One is freshness, which denotes when

the context value was last updated and the other is confidence, which describes

to which extent the value is accurate.

Context awareness. In a general sense context awareness refers to the ability

of an application to discover and take advantage of contextual information, such

as user location and nearby devices. To determine whether an application is con-

text aware or not, researchers have devised taxonomies of features characteristic

of context aware applications.

Schilit et al. [SAW94] produced one of the first classifications of context aware

applications. It contains two orthogonal dimensions. The first one identifies

whether the task is to get information or to execute a command. The second one

determines whether the task is executed manually or automatically. Schilit et al.

identified the following types of context aware features in applications:

1. Proximate selection: emphasising or making easier to choose items relevant

to the user’s context.

2. Automatic contextual reconfiguration: addition of new or removal of existing

components based on the context.

3. Contextual commands: parameterisation of the presentation and behaviour

of commands of the user based on the context.

4. Context-triggered actions: automatic execution of application commands

for the user when the right context exists.

Pascoe [Pas97] described the following four features of context aware applications:

1. Contextual sensing: the ability to detect the context and present it.

17

2. Contextual adaptation: automated execution or modification of a service

based on the context.

3. Contextual resource discovery: exploitation of services and resources rele-

vant to the context.

4. Contextual augmentation: association of digital data with the user’s con-

text.

Dey [Dey00] considered an application to be context aware if it uses contex-

tual information to provide relevant information and services to the user, where

relevance depends on the user’s task. Dey proposed three categories of context

aware applications, by combining the ideas from Schilit et al.’s and Pascoe’s tax-

onomies. The first group of context aware applications presents information and

services to a user, based on the context. The second group automatically ex-

ecutes a service when the user enters a specified context. The third group of

applications tags information to contexts for later retrieval.

2.1.2 Middleware for context awareness

Building context aware applications from scratch is not practical, as the facility

for specifying, acquiring and processing context must be developed each time.

As a result researchers are building infrastructures to decrease the development

overhead by decoupling of context from application. Such context architectures

are commonly called context middleware.

Required features. Dey [Dey00] analysed a typical development cycle of a

context aware application and identifies the following essential features of context

middleware for supporting context aware applications:

1. Context specification. This provides means of identifying the problem do-

main, specifying the context, defining the functionality and how the appli-

cation is adapted given the different context data.

2. Resource discovery. Once the contextual information is specified the next

step is to discover the relevant and available data sources, such as sensors,

which address these context needs and provide Application Programming

Interfaces (APIs) to extract the information.

3. Context acquisition. Applications then have to be able to query or be

notified of changes in the context.

18

4. Interpretation. Low level sensor data has to be interpreted and transformed

into high-level context data for use by the application. Ideally, there would

be several layers of context abstraction depending on the application needs.

5. Context storage. The raw low-level sensor and inferred high-level data

need to be stored, in order to allow for tracking of the context history

and changes.

6. Transparent distributed communications. Acquiring the context from a

number of distributed sources should be transparent to applications. The

distributed sources need to be synchronised to allow for accurate compari-

son of the context.

7. Constant availability. The behaviour of context aware applications relies

on context acquired from context providers, which are often independent

distributed systems. Context information must always be available.

Comparison of context middleware. This section analyses the features of

architectures for context acquisition and management. It provides a view of

the evolution of context middleware, ranging from early architectures focused on

making context aware computing applications possible to build, such as Schilit’s

system [Sch95], to the more recent work that aims at easing the application

development, such as Context Toolkit [Dey00] and Context Weaver [CBC+04].

This analysis extends the set of essential architectural features proposed by Dey,

to include the support for the following:

1. Distributed context repository. Having a central repository for storing con-

textual data represents a single point of failure and potential bottleneck for

the context middleware. The ability to have multiple context repositories

is necessary to facilitate constant availability of context middleware.

2. Security. The heterogeneity of wireless network protocols used by the large

variety of network connected hardware and software sensors providing con-

text data increases the risk of security compromises.

3. Privacy. Context middleware may gather, collate and distribute personal

information about individuals. It is essential that users have means for

retaining control over the distribution and dissemination of their private

information.

19

4. Quality of Information. Failures of sensors and network disconnection may

result in imperfect, incomplete, and often unavailable context data. Appli-

cations need a way to specify their required level of context quality.

Schilit [Sch95] presented a system architecture that allows for acquiring device

and user context. It supports the delivery of context through efficient querying

and notification mechanisms. This system consists of three main components:

(1) device agents that maintain the status and capabilities of devices, (2) user

agents that maintain the user preferences and (3) active maps that maintain the

location information of devices and users. Device and user agents are built on an

individual basis, tailored to the set of sensors that each uses.

Pascoe [Pas97] prototyped Stick-e, an architecture for context aware comput-

ing to allow for developers to design context aware applications and user inter-

faces. Context awareness is facilitated through a Stick-e note, which is defined in

terms of the context it is related to and content that it represents. Applications

are developed according to a Model-View-Controller (MVC) pattern, which sepa-

rates an application’s data model, user interface called view, and control logic into

three distinct components so that modifications to one component can be made

with minimal impact to the others. Using this analogy, Stick-e note represents

a model. A controller performs trigger checking, to determine if the specified

context is entered. Finally, the view is an application interface composed de-

pending on the Stick-e note description. The Stick-e note framework, however,

does not provide support for retrieving, storing or interpreting context. It focuses

on allowing application designers to use the context.

The Technology for Enabling Awareness (TEA) [SAT+99] project utilises a

four-layered architecture for context recognition. The first layer contains logical

and physical sensors. The sensor data is encapsulated in cues in the second layer.

The third layer derives context from the cues. Finally, scripting primitives in layer

four allow for an application to perform basic actions when the user enters, leaves

or is in a specified context. The notion of cues provides a separation of context

acquisition and context use. Cues write the data to a central repository, based on

the blackboard model. This architecture was used to determine the context of a

cell phone in order to automatically set its profile, for example switches the ringer

off when user is in the meeting. Overall the system provides limited support for

context specification and does not allow context storage, and as a result it does

not facilitate retrieval of historical context. Furthermore, there is no support for

multiple application accessibility.

Dey et al. [DAS01] devised Context Toolkit, a conceptual framework and a

toolkit for supporting the rapid prototyping of context aware applications. The

20

Context Toolkit uses a notion of context widgets as a programming methodology.

Context widgets are software components, hosted in a distributed infrastructure,

responsible for providing applications with access to context information while

hiding the details of context sensing. The Context Toolkit provides several ser-

vices for context acquisition and management. It encapsulates access to context

data from sensors through a network API. An interpreting service allows for ab-

straction of context data. The distributed infrastructure of the Context Toolkit

enables sharing of context data. The Context Toolkit provides storage for context

data and keeps track of historical context. Finally, it embodies a mechanism for

basic access control to give privacy protection.

Hong et al. [HL01] proposed Context Fabric, a network-accessible middleware

infrastructure. By contrast to the Context Toolkit, this service-based approach

makes the components independent, as they do not need to rely on a central

manager. However, this increases the complexity of the system, as each com-

ponent must contain connections, message processing and failure management

capabilities. The infrastructure approach promises independence of for the hard-

ware platform, operating system, and programming language used. Hong et al.

envisaged the following services within the Context Fabric framework:

• Context Event Service: a universal event system, which takes subscriptions,

stores them and asynchronously notifies interested subscribers.

• Context Query Service: a service that provides a general mechanism for

querying the context state.

• Automatic Path Creation: a service that collects all the relevant sensor

data and instantiates data flows required to meet the context needs.

• Sensor Management Service: a sensor discovery and registration service.

Hong et al. also defined a Context Specification Language (XML-based) for

expressing the context needs at higher levels.

Winograd [Win01] described a data-centric communication and application

programming architecture that supports context aware applications, which are

part of the Interactive Workspaces project (iRoom) at the Stanford University.

This architecture uses a blackboard metaphor with two data layers. The first

layer is an Event Heap, which provides distribution of simple event tuples, for

instance objects that hold context data, implemented by TSpaces [WMLF98]. A

process posts messages to a common shared message board and can subscribe to

receive messages matching a specified pattern. A centralised server manages all

communication with clients and providers. The second layer is Context Memory,

21

an XML structured database of context data. This approach is simple and robust,

as it provides one standard communication link to the blackboard. Winograd

outlined necessary extensions, including mechanism for scalability and facility

for providing multiple linked distributed blackboards.

Cohen et al. [CBC+04] implemented the Context Weaver context middleware,

based on the Context Service project [LSD+02]. Context Weaver keeps track of

context providers and allows applications to access context by describing the kind

of data they require using a uniform interface. It uses descriptive provider queries

to ensure transparency in accessing context data and allows for heterogenous

data sources. For example, location data can be provided by a sensor in one

environment and by a Web service in another. This facilitates portability of

Context Weaver across different computing environments. Also, if a provider fails,

Context Weaver automatically tries to rebind the application to another provider

of the same kind of data. The Context Privacy Engine, embedded in Context

Weaver, allows specification of access controls for each item of context data.

Both administrators and individuals who are subjects of context information can

specify privacy and access control policies.

Summary. Table 2.1 shows that not all of the identified properties are present

in a single architecture. The review shows that there has been an advance in

addressing technical challenges in developing context middleware. However, most

conventional architectures for context awareness do not address social and legal

issues with respect to privacy and security concerns. It is especially evident

that support for privacy and Quality of Information is in its early stages. Only

Context Weaver integrates a Quality of Information into its model of context.

Context Toolkit, Context Fabric and Context Weaver provide limited support

for expressing access control policies for context data.

2.1.3 Models for context awareness

Legacy application models are typically vertically integrated monolithic services,

which provide the entire solution to computational problems handling user’s

tasks. They carry a high development cost with inherent inflexibility and as

such are not suitable to support context awareness. This section reviews the

existing approaches for developing context aware applications.

Task driven computing

Users employ a number of computer applications and services to perform their

tasks, such as writing trip reports, running research experiments, accessing in-

22

Context Middleware

Feature Schilit’s Stick-e TEA Context Context iRoom Context

Toolkit Fabric Weaver

Specification * * * X X * X

Acquisition X X X X X X X

Interpretation × × X X X * X

Storage × × X X X X X

Resource * * * X X × X

discovery

Transparent

distributed * × × X X X X

communications

Constant

availability X × × X X X X

Distributed

context × × × X × * X

repository

Security × × × * * × *

Privacy × × × * * × X

Quality of

Information × × × * * × X

model

Legend: × = no support, * = partial or proposed support, X = full support

Table 2.1: Comparison of context middleware

formation portal and booking opera tickets. Research in task based computing

deals with the problem of task modelling and management. Task models capture

what users need from the computing environment for each of their tasks and task

management enables the automatic configuration of computing environments.

Task based computing relates to context aware service composition in two

ways. Firstly, the task management process itself is context-aware. For instance,

tasks can be suspended automatically when a user moves away from the device;

or a desired task, such as navigation assistance, can be resumed automatically

when a user enters his car. Secondly, tasks are represented as collection of services

involved, therefore task management becomes essentially a service composition

problem. This section provides a review of task based approaches for building

adaptive applications.

Background. Reaching for Weiser’s vision [Wei91], Banavar et al. [BBG+00]

analysed the nature of pervasive applications. They suggested that the traditional

view of computing devices and applications in the context of desktop computing

23

is not compatible with the way mobile computing devices are used and mobile

applications built. As a result, Banavar et al. established models of computing

devices, applications and environments in pervasive computing settings, as part

of their Platform Independent Model for Applications (PIMA) project. They

treat the device as a portal into an application space, rather than the repository

of custom software managed by the user. An application becomes the means

by which a user performs a task, whilst the environment is viewed as the user’s

information enhanced surroundings, and not a virtual space that stores and runs

software.

Based on these propositions they identify the following challenges for an ap-

plication model for pervasive computing:

1. Device neutral application: An application should be developed indepen-

dently of the device on which it may be used, to accommodate for the variet

of different devices available for use in pervasive environments.

2. High-level user interaction: For an application to be device independent its

description should capture the purpose of user interaction at a high level,

rather then including the rigid decomposition of the interaction, which may

be device specific.

3. Abstract service descriptions: In dynamic pervasive environments resources

appear and disappear over time. Therefore an application model should not

make assumptions about the availability of services, rather they should be

specified in an abstract manner.

Banavar et al. presented a new application model, in which the structure

of a program is described in terms of tasks and their sub-tasks, which is, at its

core, a service composition problem. This requires specification of an abstract

service description language, identification and description of abstract interaction

elements and services, and development of a navigation model for managing the

task-based model for the program structure.

The roots of this model are present in a number of existing, mature technolo-

gies. For example, work on User-Interface Management Systems (UIMS) [Ols91],

separates User Interface (UI) from the rest of the application logic. Protocols,

such as Remote Method Invocation (RMI) [WRW96] enable the communica-

tion between distributed components. Java [Fla04] makes it possible to develop

and deploy device independent code. Finally, component frameworks, such as

CORBA [Obj91] allow devices to discover services and adapt application func-

tionality to changes in the user environment.

24

Platforms. The Portolano [EHAB99], Oxygen [Der99], Aura [GSSS02], and

Gaia [RHC+02] projects investigated the idea of task-driven computing in ubiq-

uitous environments. The Portolano project at the University of Washington is

motivated by task-oriented applications, and focuses on the infrastructure and

interface aspects in its implementation. The authors envisioned a computing

environment with multiple user interfaces, which rely upon user intent, inferred

from the user’s interaction with the environment, rather than explicit user direc-

tion as in PIMA. The Portolano project, like PIMA, also considers applications as

collections of network-based services organised into extensible horizontal layers,

which interact with applications and users.

Oxygen [Der99], a project at the Massachusetts Institute of Technology, fo-

cuses on a number of environment-enabling technologies to improve the user ex-

perience. Its authors believe that monolithic software will be replaced by dynamic

mechanisms for application delivery. As part of their work on the automation of

everyday tasks and adaptation of machines to user needs, they develop Pebbles,

platform-independent software components. Each pebble is described in terms

of formal interface specifications and informal descriptions. Saif et al. [SPP+03]

dynamically assemble pebbles using a planning mechanism in response to evolv-

ing system requirements. This architecture is based on the notion of generic

plan customisation, rather than on-line planning. Tasks are, however, explicitly

defined, as in PIMA.

Project Aura [GSSS02] at Carnegie Mellon University, aims to support user

mobility and resource variability while minimising distraction of the user. This

is being addressed at all system levels ranging from hardware, operating system

and application up to the end-users. In order to maintain a user’s computational

task in a mobile environment, Aura introduces a new layer in system abstrac-

tion, called Prism. It lies above the application and service layer, but below the

user layer, and enables task reconfiguration as the context changes. Prism con-

sists of three components: Task Manager, Context Observer and Environment

Manager. Task Manager is the component responsible for explicit representation

of users tasks. Context Observer allows configuration of tasks according to the

environmental characteristics. Finally, Environment Manager facilitates resource

monitoring and adaptation. Wang et al. [WG00] used the approach of task-

driven computing, based on the Aura architecture. They also consider the task

as a coalition of abstract services. Aura continuously monitors the environment

to detect when task requirements are not fulfilled and initiates any necessary

reconfiguration.

Gaia [RHC+02] is middleware for managing resources in physical spaces, de-

veloped at the University of Illinois at Urbana-Champaign. It provides user-

25

oriented interfaces for physical spaces populated with network enabled computing

resources. Gaia enables the development of applications that are adaptable and

customisable based on the space context. Within the Gaia framework, Hess et

al. [HRC02] present a method for building applications in ubiquitous environ-

ments. They introduce the concept of User Virtual Space, which associates data,

tasks and devices with users, enabling application portability across computing

environments. The main focus of this work is on the application construction, to

allow for adaptation given the contextual changes. Hess et al. develop a new de-

sign pattern, called Model-Presentation-Controller-Coordinator (MPCC), which

decouples application components and exposes the internal structure of the ap-

plication. Applications are described in generic terms and may be customised for

the resources available in a particular space.

2.2 Service composition

This section introduces the foundations of service composition and reviews a

number of existing component technologies. It presents the Web service compo-

nent development technology and discusses how AI planning can be applied to

the problem of Web service composition.

2.2.1 Foundations

Service component

The concept of component-based system development emerged from the increas-

ing demand for software to dynamically grow and address changing require-

ments [CKJH02]. To achieve software extensibility and adaptivity this approach

is based on supporting reusability of software components.

One of the first approaches that recognised the value of software modulari-

sation to facilitate flexible and comprehensible system design and to reduce the

development time, was that of Parnas [Par72]. In order to write large systems

consisting of smaller modules, DeRemeer et al. [DK75] identified the need for a

module interconnection language to assemble modules into larger systems.

Smalltalk [Ing78] is a programming system based on the metaphor of com-

municating objects. It represents an early step towards modularised system de-

velopment. Smalltalk formed the basis for object-oriented programming, which

later generalised to component-oriented computing.

Different component definitions emerged in different fields of software engi-

neering research. In the most general sense, a component is a well-conceived,

26

prefabricated, reusable unit of deployment and composition. Syzperski [SP97]

defines the software component as follows:

“A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A soft-

ware component can be deployed independently and is subject to

composition by third parties.”

Derived from this definition, the work presented in this dissertation considers a

service as a specific instance of a software system that carries out a computational

operation on behalf of a user. It exports its interfaces and is capable of being

accessed via standard network protocols.

Service composition

Service composition is the process of constructing a complex composite ser-

vice from atomic services to achieve a specific task. The process of composi-

tion, as Shaw et al. outlined [SG96], involves: formal specification of static

and behavioural properties of the component, matchmaking algorithms and de-

composition techniques.

Service composition models can be categorised into centralised and distributed

ones. In centralised models, there is a single component responsible for assem-

bling a composite service. By contrast in distributed or cooperative models,

service providers interact to devise composite services. This approach introduces

trust issues as services depend on each other to guarantee the overall successful

completion of the composition and execution. In a centralised system a central

broker selects and composes services, thus is more straightforward.

Chakraborty et al. [CJ01] classified composition into off-line and on-line based

on the level of automation and dynamics in the composition process. An off-line,

static approach involves pre-compilation of the composite service prior to the

user’s request, at system design time. This is utilised primarily in stable environ-

ments where context and available resources can be determined in advance. In

contrast, an on-line, dynamic approach refers to service composition being per-

formed on user demand, at run-time. This is suitable for exploiting the current

state of available services and making adaptations based on run time param-

eters, such as the available bandwidth and the cost of executing the various

sub-components.

Service composition has traditionally been viewed as a static process per-

formed manually by the developer at design time. With the emergence of the

Internet, service composition shifted towards operating at run-time, orchestrated

27

by a centralised or distributed composition manager component. As mobile envi-

ronments become increasingly common, composition is performed on an ad-hoc

basis, in a distributed, peer-to-peer way.

Aside from description languages and matchmaking algorithms, service co-

mposition requires suitable failure recovery mechanisms to handle service discov-

ery, composition and execution failures. Research into service composition can be

grouped in three categories: service description languages, composition method-

ologies, and service composition frameworks. The next sections review service

description and discovery formats, composition frameworks and architectures for

planning-based composition.

2.2.2 Component technologies

Several middleware architectures, which aim to simplify the development of in-

teroperable object-based distributed applications, have been developed. To en-

able services to interact and achieve the desired goal a mechanism for self-

advertisement and discovery is required. A number of existing distributed models

for computation, which incorporate means of describing (service) components and

discovery technologies that enable automatic service configuration are described

in this section.

CORBA [Obj91] is middleware for architecture-independent development of

object-based distributed applications transparent to the programmer. Object Re-

quest Brokers (ORBs) facilitate communication between nodes in heterogeneous

environments at the object level. They provide mechanisms for object discovery

and instantiation on remote machines, and marshalling and unmarshalling of ob-

ject parameters. Furthermore ORBs handle security, object retrieval, and method

invocations. CORBA also provides a significant number of support services. The

event and notification services provide a substrate for easier asynchronous inter-

action between objects. The naming service handles associations between names

and objects, including name binding and resolution. The collection service allows

the manipulation of several objects as a group. The concurrency service mediates

simultaneous accesses to an object so that consistency is not compromised. The

object trading service facilitates the offering and discovery of instances of services

of particular types.

Wollarth et al. [WRW96] presented the Remote Method Invocation (RMI)

mechanism for creation of distributed object-based applications in Java. RMI,

like CORBA, uses serialisation techniques to marshal and unmarshal object pa-

rameters. In contrast to CORBA, RMI requires that code is written in the Java

programming language. Using RMI, entire objects can be passed and returned

28

as parameters in remote method invocations whereas in CORBA the parameters

need to be primitive data types, references, or structures composed of the two.

RMI allows for any new Java code to be sent across the network and dynami-

cally executed at run-time by foreign Java Virtual Machines (JVMs). This way

developers do not need to define a fixed codebase at development time although

they need to ensure that the necessary class definitions are available.

The Distributed Component Object Model (DCOM) [HK97] extends the Com-

ponent Object Model (COM) [Cor95] to support communication among objects

on different, network connected, computing devices. It supports remote objects

by running a protocol called Object Remote Procedure Call (ORPC), which is

built on top of Remote Procedure Call (RPC) in Distributed Computing Envi-

ronment(DCE) and interacts with COM’s run-time services. A DCOM server

provides objects of a particular type at run-time, and supports multiple inter-

faces, each representing a different behaviour of the object. A DCOM client calls

into the exposed methods of a DCOM server by acquiring a pointer to one of the

server object’s interfaces. The client object then starts calling the server object’s

exposed methods through the acquired interface pointer as if the server object

resided in the client’s address space. The DCOM server components are language

independent.

2.2.3 Service composition frameworks

This section surveys existing service composition frameworks. The review out-

lines the type of service components each architecture supports and the method-

ology it employs for service composition, and analyses each system’s ability to

recover from both composition request failures and run-time service failures.

eFlow [CIJ+00] is a system for on-line, adaptive composition of e-services,

developed at HP Laboratories in Palo Alto. It models composite services as a

graph defining the order of their execution. Graphs contain three types of nodes:

service nodes, decision nodes and event nodes. Decision nodes carry flow control

rules. Event nodes enable service processes to send and receive information about

suspension, completion and failure of service. eFlow performs composition in a

centralised way. It uses a service broker to discover a service, which can fulfill

the requests specified in the service node definition. eFlow is based on Java

and is compliant with workflow and Internet standards, such as XML and the

Workflow Management Coalition Interface [Hol05], targeting fixed infrastructure

type services.

Mao et al. [MKB01] developed Ninja [Nin97], a system for automated compo-

sition of existing, XML-described services through heterogeneous devices and

29

networks, given Quality of Service metrics. It is based on a cluster computing

platform, which utilises redundant control paths to enable fast fault-recovery. The

central element of Ninja is Automatic Path Creation (APC), a component that

identifies a set of services and the corresponding network connectors for devising

and executing a composite service. To devise a composite service APC creates a

logical path by searching over a graph of the service space using a shortest path

strategy. It then creates a physical path to locate service instances, which is used

to instantiate, execute and monitor a composite service. Ninja achieves good re-

source utilisation by strategically placing and locating services and dynamically

adapting to resource availability.

ICrafter [PLF+01] is a service framework for interactive workspaces, a class

of ubiquitous computing environments. ICrafter services are devices, such as a

scanner or applications, for example a Web browser, with which a user interacts

through appliances, which include input devices. ICrafter provides an infrastruc-

ture for UI selection, generation, and adaptation to offload services and user input

devices. It is designed with the aim of automatically creating UIs for composite

services. The ICrafter architecture utilises a central composition model, which

supports both off-line composition using service templates, and on-line composi-

tion. Services are described using an XML-based Service Description Language

(SDL).

SAHARA [RAC+02] is an architecture for the creation, deployment and man-

agement of services, enabling composition across independent service providers.

It employs a layered reference model, where services range from providing basic

network reachability and creating overlay networks, to instances of application

building blocks, requiring processing and storage. Services are made available

over the Internet and are composed by service level paths. SAHARA supports

both centralised and distributed composition models. It embodies the follow-

ing mechanisms measurement-based adaptation, utility-based resource allocation,

trust management, service verification, and policy management. Finally, it allows

for heterogeneous service composition across different service providers.

Chakraborty et al.[CPJ+02] presented Anamika, a distributed, decentralised

architecture for dynamic service composition in pervasive environments, based

on a peer-to-peer model. Services are described using DAML-S [ABH+02] and

incorporate information about inputs, outputs, functionality classification, as well

as platform specific information, such as processor type. This is used by the

composition broker to reason about possible service compositions. The Anamika

architecture is tolerant to faults arising form service and network unavailability.

Their peer-to-peer model allows any device to act as a broker facilitating service

composition, making the design immune to a single point of failure.

30

Service Framework

Feature eFlow Ninja ICrafter SAHARA Anamika TCF

Distributed × × × X X ×

model

Dynamic X X X X X X

composition

Component XML- XML- XML XML- DAML-S DAML-S,

technology based based SDL based UPnP

Composition Graph Graph Graph Graph DAML-S DAML-S

method

Composition

failure × × × * * ×

recovery

Execution

failure X X X X X X

recovery

Legend: × = no support, * = partial or proposed support X = full support

Table 2.2: Comparison of service composition frameworks

Masuoka et al. [MPL03] developed the Task Computing Framework (TCF) to

allow users to compose and execute complex tasks in ubiquitous environments.

Their architecture provides a Task Computing Client to discover, create, manage

and manipulate services. TCF allows for both on-line and off-line composition.

It embodies a centralised composition model to assemble semantically enriched

Web services, described in DAML-S, as well as plain UPnP services.

Summary. Table 2.2 summarises the features supported by each system. This

review has shown that existing composition architectures predominantly accom-

modate components described in XML-based languages. SAHARA and Anamika

are examples of distributed composition architectures, all others follow a cen-

tralised approach. Early works, such as eFlow and Ninja, employ graph structures

to model composite services, while the more recent work uses DAML-S struc-

tures to store composite service templates. All frameworks are resilient against

run-time failures, such as those caused by system overload or network level dis-

connections. None, however, offer full support for composition-level failures, for

example arising as a result of missing service descriptions.

31

Service
Registry

Service
Requestor

Service
Provider

service
description

service
description

service

FIND
WSDL + UDDI

PUBLISH
WSDL + UDDI

BIND

Figure 2.1: Web service architecture. Chart taken from Gottschalk et

al. [GGKS02]

2.2.4 Web service composition

Web service technology [GGKS02] aims to provide methodologies for constructing

distributed, component-based applications automatically. Just like its predeces-

sors CORBA, DCOM, and RMI, it is built on the idea of separation of the com-

ponent’s interface from its internal mechanism, thus allowing for transparency

in interoperation. This section presents the Web services architecture and Web

Service Description Language. It also discusses a number of semantic languages

for describing Web service capabilities.

Web service architecture

A Web service is a network-accessible software component, which performs a

specific computational task. Figure 2.1 shows the three main operations in the

Web service architecture: service description, discovery and invocation.

Service providers describe Web services using an XML-based formal nota-

tion called Web Service Description Language (WSDL) [CCMW01]. This in-

cludes message formats describing the operations supported, transport proto-

cols, and the Web service’s network location. Services are made available by

32

having their WSDL and related information published to the Universal Descrip-

tion, Discovery and Integration (UDDI) [Udd00] registry. A service consumer

queries UDDI to discover available services matching its request. It fetches the

WSDL file of the wanted service in order to bind to it. To invoke the service,

a requestor uses the specified protocol, most commonly Simple Object Access

Protocol (SOAP) [Soa00].

Web service description. A WSDL document defines services as collections

of network endpoints, called ports. In WSDL, the abstract definition of endpoints

and messages is separated from their concrete network deployment or data format

bindings. This approach facilitates the reuse of abstract definitions: messages,

which are abstract descriptions of the data being exchanged and port types which

are abstract collections of operations. The concrete protocol and data format

specifications for a particular port type constitute a reusable binding. Finally,

a port is defined by associating a network address with a reusable binding. A

collection of ports define a service.

Web service registry. UDDI is a central repository of services, where service

providers advertise themselves in terms of physical contact. To publish a ser-

vice a provider submits the corresponding WSDL document to a UDDI registry,

making it available for any developer or executing service to discover. Service

requestors describe the constraints on service requirements and submit their re-

quest to UDDI, which in turn produces a list of any matching services and returns

their WSDL descriptions.

At present UDDI uses a simple approach to capturing business and service

semantics and search mechanisms. Services are described by following four data

types: businessEntity, businessService, bindingTemplate, and tModel. The

businessEntity provides information about a service provider, and can contain

one or more businessServices. The technical and business descriptions for a

Web service are defined in a businessService and its bindingTemplates. Each

bindingTemplate contains a reference to one or more tModels.

Web services are located based on their name, ports and description of fea-

tures and categories using a tModel metadata construct. tModels enable the

categorisation and identification of entities registered in UDDI. The information

that makes up a tModel includes a key, a name, an optional description, and a

URL that points to a location for additional information.

UDDI supports only a keyword based search of businesses, services and

tModels in its repository, and no form of inference or flexible match between

keywords can be performed. Furthermore WSDL specifications are focused only

33

Figure 2.2: SOAP message structure [Soa00]

on syntactic aspects of a service, thus making it is impossible to locate a Web

service on the basis of what problems it solves [PKPS02].

Web service invocation. The Web services architecture uses Simple Object

Access Protocol (SOAP) [Soa00] to enable communication between Web Services.

SOAP is an XML-based standard mechanism for communicating document-centric

messages and remote procedure calls using XML.

Figure 2.2 shows the structure of a SOAP message, encapsulated in an en-

velope. It contains a header and a body for the message. The header stores

information about the message. For example, a header can contain the date the

message is sent or authentication information. It is not required, but, if present,

must always be included at the top of the envelope.

Composite Web service description. A modelling language is needed to

express the logic of a composite Web service. Recently languages such as Business

Process Execution Language For Web Services (BPEL4WS) [CAD+05] and Web

Service Choreography Interface (WSCI) [Wsc02] have emerged to provide a means

of defining long-lived composite processes.

BPEL4WS, an XML-based language, models composite Web services in terms

34

of the interaction between the participating Web services and the user. It specifies

the role of the partners who provide each Web service and the flow of the messages

they exchange. Each partner definition includes their name, role, and the link

to the service definition in their WSDL file. BPEL4WS supports control flow

constructs to enable sequential and parallel execution of services, conditional

choice and if clauses. Furthermore it provides a scoping system to allow the

encapsulation of logic with local variables, fault handlers, compensation handlers

and event handlers.

Semantic Web service description

Composition requires the ability to specify sequences by selecting suitable build-

ing blocks in the form of Web services. WSDL provides a purely syntactical

description of the interface in terms of messages, operations, and protocols used

by a Web service. A more comprehensive information model of a Web service is

therefore required to reason about Web service capabilities. A number of efforts

towards semantic markup languages for describing Web Services are reviewed

below.

OWL-S. The Web Ontology Language for Services (OWL-S) [MBH+04], pre-

viously known as DAML-S [ABH+02], is an OWL based [CvHH+01] ontology

for describing capabilities and properties of Web services. OWL-S is used respec-

tively by the service providers to advertise their services and by service requestors

to specify the desired services they wish to access.

Figure 2.3 shows the top level of the service ontology for the Service class,

which provides a simple means of organizing the parts of a Web service descrip-

tion. Three components constitute the description of a Web service in OWL-S.

ServiceProfile represents information about the service provider. ServiceModel

specifies service functionality, in terms of its inputs, outputs, preconditions and

effects (commonly abbreviated as IOPE). Details about the communication pro-

tocols used for invocation of the Web service are stored in ServiceGrounding.

There are three types of process in OWL-S, atomic, composite and simple.

AtomicProcess is a basic building block and is not decomposable. It is associated

with ServiceGrounding and can be directly invoked. The CompositeProcess is

formed by other atomic and composite processes. Its decomposition is specified

using a set of control constructs expressing sequential, conditional or iterative

execution of atomic services. SimpleProcess represents the “black box” view of

a process, and cannot be directly executed.

35

ServiceProfile

ServiceModel

ServiceGrounding

Service

presents

(what it does)

described by

(how it works)

supports

(how to access it)

Figure 2.3: OWL-S service ontology. Figure taken from [ABH+02]

WSMO. Roman et al. [RKL+05] proposed Web Service Modelling Ontology

(WSMO) [Wsm04] as a means for semantically annotating Web services to enable

automatic discovery, selection, invocation and composition. It is based on Web

Service Modelling Framework (WSMF) [FB02], which consists of the following

four elements:

1. Ontologies. These provide the domain terminology in terms of concepts

and their relationships.

2. Goal Repositories. These store problem definitions, each consisting of ex-

pected Web service preconditions and postconditions.

3. Web Service Descriptions. These contain non-functional properties, capa-

bility descriptions (IOPEs) and interface descriptions of Web services.

4. Mediators: facilitate Web service interoperability by resolving heterogeneity

problems of different ontologies.

SESMA. In our prior work [PV04], we proposed SEmantic Service MArkup

(SESMA), an XML-based annotation format that allows tight integration with

the existing Web service standards WSDL, SOAP, BPEL and XML. SESMA can

36

be used to annotate service descriptions and process interfaces based on WSDL,

as well as to directly annotate fragments of BPEL process definitions.

SESMA annotations, like OWL-S and WSMO, can be separated according to

the type of information described as functional and non-functional. The func-

tional profile allows for description of service operations in terms of preconditions

and results. Furthermore each service effect may have a secondary precondition,

describing a precondition for a specific effect and its corresponding success con-

dition. The non-functional profile is a collection of entries describing different

aspects of the profile, such as provider details and Quality of Service parameters.

Comparison. OWL-S explicitly defines a set of ontologies that support rea-

soning about Web services. By contrast, WSMO defines a conceptual framework

within which such ontologies can be created. SESMA markup defines a set of

elements to describe a Web service and augments existing description formats,

such as WSDL and BPEL4WS.

At the core of WSMO are mediators, mapping programs that solve interop-

eration problems between Web services. OWL-S and SESMA do not make any

distinction between different types of Web services. Instead, OWL-S provides

Web services with the information needed to find existing mediators that can

resolve their mismatches. Moreover, OWL-S can even create mediators through

the process of Web service composition.

OWL-S introduces its own process modelling ontology and WSMO proposes

the use of Abstract State Machine (ASM)-based process framework. As a result

processes both in OWL-S and WSMO require the use of their respective process

description concepts, making it difficult to reuse existing process descriptions,

such as BPEL definitions. On the other hand, SESMA, is designed to augment

existing representations such as BPEL. Mandell et al. [MM03] provided an ex-

tension of BPEL’s meta model to use semantic Web constructs inside BPEL

documents.

2.2.5 Planning-based service composition

Web service composition has recently gained considerable attention to support

business-to-business or enterprise application integration. It has been applied

in a number of domains ranging from travel planning [MS02], dining and en-

tertainment booking services [DC02, PF02], content and news conversion ser-

vices [SRvS03], to managing supply-chain operations [ZBL+03] and automating

IT processes in the telecommunications domain [ACD+05].

37

Available methods for composing Web services include scripting and coordi-

nation languages [GC92], rule-based systems [PF02], planning [WSH+03], situa-

tion calculus [BCGM03], data view integration [TKA03], and integer program-

ming [ZBN+04], to name but a few. They vary in their ability to represent and

model non-functional properties of the service, to verify the correctness of the

composite service, and to automate the process of service composition fully.

Planning offers a scalable and efficient approach to service composition. It

allows for a composition request to be expressed in terms of goal conditions that

specify a set of constraints and preferences. This section introduces planning

technology and discusses the main research efforts in its application to automate

service composition.

AI Planning

Planning is a problem solving technique, where knowledge about available actions

and their consequences is used to identify a sequence of actions, which, when

applied in a given initial state, satisfy a desired goal [RN95]. There are three

main inputs to a planner: initial state, goal state and domain description. The

initial state describes the starting state of the application domain, commonly

called world. The goal state describes the desired world state. The domain

describes actions that, when invoked, transform the world states. The output

of the planning process is a plan, a sequence of actions that can be executed in

order to achieve the desired goal state.

Planning domain and problem definition. For planning systems to be able

to reason about problems a formalised domain, describing the semantics of avail-

able actions is necessary. Domain definitions describe causal laws and relation-

ships between actions formally.

The simplest form of domain formalism is based on the state-transition model.

The state describes the world at a certain point in time, such as an initial state

or goal state. Actions perform transitions between states. The specific represen-

tation used by STRIPS [FN71], an early automated planner has become a base

for representation languages. This specification is now known as STRIPS.

STRIPS describes each action with a precondition list, add list, and delete

list. An Add and delete lists are dynamic lists of states. The add list describes

the list of the action’s postconditions, which will be added to the description of

the world state following the execution of the action. By contrast, the delete list

contains the list of the actions’s postconditions, which will be deleted from the

world state description once the action completes its execution.

38

Preconditions and postconditions can contain arbitrary well-formed formulae

in first-order logic. A state is modelled as a finite set of ground literals and

there are no external actors in the domain. STRIPS applies the closed-world

assumption, where the only atoms or state-variable descriptions that are true in

a state are the ones explicitly specified in the state. Action execution changes the

truth value of the ground literals describing each state, such as adds or removes

them from the world state.

Such a formalism is suitable for describing restricted state-transition systems,

which are deterministic, static, finite, and fully observable with restricted goals

and implicit time (where actions and events have no duration). To describe

and model more complex and realistic domains, extensions to this representation

are required. Pendault [Ped94] developed Action Description Language (ADL),

which has constructs to specify quantification over preconditions and effects, and

conditional effects.

In order to optimise their performance, most planners use their own repre-

sentation formalism. Ghallab et al. [GHK+98] developed the Planning Domain

Description Language (PDDL) in an effort to provide a standard language for

describing the planning domain and problem specification and to enable inter-

operability between different planning systems. Two variants of the PDDL rep-

resentation are available: STRIPS-based and ADL-based.

In order to facilitate modelling of real world domains, a number of different

versions of PDDL were developed. They support more advanced features, such

as concurrently executing actions and conditional choices. PDDL 2.1 [FL03],

based on ADL planning, is an extension of PDDL for expressing temporal plan-

ning domains separated into different levels of expressiveness. PDDL 2.2 adds

derived predicates and timed initial literals. Bertoli et al. [BCLP03] extended

PDDL to express nondeterminism, limited sensing and iterative conditional plans.

Younes et al. [YL04] proposed probabilistic PDDL (PPDDL), an extension of

PDDL that permits modelling of probabilistic effects. Gerevini et al. [GL05]

devise PDDL version 3.0, which adds support for constraints and preferences,

expressed in a restricted temporal logic.

Planning systems. Planning technologies differ in the complexity of the prob-

lems they can handle and the representations that they use. Furthermore, they

employ different search algorithms to synthesise plans and the constraints they

observe [GNT04]. A number of different planning methodologies are described

below. The list is not meant to be exhaustive, rather the aim is to provide an

overview demonstrating the range of available planning technologies and their

advantages and disadvantages.

39

1. State space planning. State based planners represent the simplest form of

planning algorithm. They are search algorithms in which the search space

is a subset of the state space. They can be classified into forward and back-

ward, based on the starting point of their search, initial state and goal state

respectively. A forward chaining planner searches in the space generated by

applying to each state all actions whose preconditions are satisfied, starting

at the initial state. In contrast, backward search algorithms [FN71] start

at the goal and apply inverses of the planing actions to produce sub-goals,

stopping if the initial state is reached. The main limitation of state-based

planners is that their performance reduces with the size of the search space.

To address this limitation researchers employ heuristic functions to estimate

the usefulness of the alternative actions a planner can choose from. Heuris-

tic methods are found through discovery and observation of the planning

process. They guide search algorithms often based on feedback from past

executions. This initiated a new type of planning, planning with control

knowledge, as discussed later on. Heuristic Search Planner (HSP) [BG98]

is an example of a forward heuristic planner.

2. Plan space planning. Plan space planners, such as Universal Conditional

Partial Order Planner (UCPOP) [PW92], search the space of partially spec-

ified possible plans. As a result, the searching process becomes a plan

refinement operation. There are two kinds of step that can be taken in

constructing a plan: adding an action, or adding an ordering constraint

between actions. This type of planning is called “partial order planning”,

because until the ordering constraints are added, the order in which actions

are taken is not specified. This approach avoids extensive backtracking that

slows down a state-space planner.

3. Planning graph techniques. Graph based planning algorithms employ graph

structures to represent search spaces. Given a problem statement, the plan-

ning system explicitly constructs and annotates a compact structure called

a planning graph. It represents a plan as a flow of truth values through

the graph, which has the property that useful information for constrain-

ing the search can quickly be propagated through the graph as it is being

built. Graph based planners then exploit this information in the search for

a plan. Graphplan [BF95] takes the initial conditions and action definitions

and uses them to construct a levelled graph. The initial conditions form the

first level of the graph, while each subsequent iteration i constructs the level

i consisting of actions that might be performed at time i. Graphplan per-

forms a backward-chaining search using the information propagated when

40

creating the graph, thereby limiting the amount of searching performed.

Koehler [Koe99] develops the Interference Progression Planner (IPP) plan-

ner, by extending Graphplan to the backward search algorithm to handle

conditional effects and proofs.

4. Hierarchical Task Network Planning. Hierarchical Task Network (HTN)

planners, such as Simple Hierarchical Ordered Planner (SHOP2) developed

by Nau et al. [NMAC+01], are based on the notion of hierarchical decom-

position, also known as reduction or expansion of an action. This process

decomposes an abstract action into a group of steps that form a plan to im-

plement the action. The main objective is to produce a sequence of actions

that perform some activity or task. The description of a planning domain

consists of a set of actions, as well as a set of methods, which prescribe how

to decompose a task into subtasks. The description of a planning prob-

lem contains an initial state; however, instead of a goal formula there is

a partially ordered set of tasks to accomplish. Planning progresses as a

recursive application of the methods to decompose tasks into smaller and

smaller sub-tasks, until primitive tasks, which can be performed directly

using planning actions, are reached. For each composite task, the planner

selects an applicable method and instantiates it to decompose the task into

subtasks. If the plan later turns out to be infeasible, the planner backtracks

and tries other applicable methods.

5. Model Based Planning. Planning based on model checking is a methodology

that aims to address nondeterminism, partial observability and extended

goals. It treats the domain as a nondeterministic state-transition system,

where an action may have multiple outcomes. Temporal logic formulas are

used to express the set of goal states and the conditions of the final plan

execution. Planners use a state transition system and a temporal formula

to generate a plan that controls the system evolution so that all of the

system’s behaviours make the temporal formula true. SimPlan [KBSD97]

is an example of one of the first such planners.

Planning-based service composition frameworks

By explicitly declaring Web services as processes in terms of their inputs, outputs,

preconditions and effects, goal-oriented inferencing from planning technologies

can be applied to the Web service composition problem. This section presents

the main technical challenges for automated, planning-based, Web service compo-

sition, by extending the set identified by Koehler et al. [KS03]. It then compares

41

a number of existing planning based service composition frameworks.

Required features. Planning-based service composition frameworks should

support the following features:

1. Extended goals. Users’ requests may often involve complex conditions af-

fecting the behaviour of a composite service. Aside from specifying the task

intention, users should have some means of specifying additional conditions.

For example, temporal and Quality of Service constraints.

2. Complex actions. The process of Web service composition requires mod-

elling complex executing actions such as concurrently executing actions,

varying action durations and conditional choices, as well as sequentially

executed services.

3. Dynamic composition. Static service composition involves pre-compilation

of the composite service prior to a user’s request. Dynamic composition is

essential for exploiting the current state of available services and making

adaptations based on run time parameters, such as bandwidth and the cost

of executing the various services.

4. Recomposition. As composite services may be executed in a dynamic en-

vironment, the context may change and services may become unavailable.

Therefore it is necessary to have some means of recomposing the service on

the fly.

5. User interaction. Whilst service composition is an automated process, it is

necessary to allow users to provide feedback when they so wish or moreover

be integrated in the composition process. For example, aside from providing

input parameters, users may need to guide the composition, by selecting

the services and re-defining the goals or guide the failure recovery process.

6. Automatic service discovery. Working with a limited domain of services or

predefined service types limits the potential of service composition. More-

over, new services, possibly with new capabilities, may become available or

existing ones may change their functionality. Having an automated means

of service discovery is therefore an essential feature.

7. Nondeterminism. The planning system cannot foresee the exact interaction

that will take place between Web services, the outcomes of service execution

are unpredictable. For example, the planning system does not know in

42

advance whether or not a booking can be made in the desired restaurant,

as it does not have access to information about current table availability.

8. Implicit task specification. One of the key challenges in service composition

is task inference, the ability to anticipate a user’s computational needs,

without requiring explicit user input. Unfortunately, while users know what

their task intention is, they may not know how to realise it in a particular

implementation language. Requiring a user to understand the low-level

details of a potentially unfamiliar computing environment is impractical.

9. Resource constraints. In the real world, services consume resources, such as

network bandwidth, and have a monetary cost associated with their execu-

tion. Moreover, users may have specific Quality of Service requirements on

the failure rate, latency, recovery time and generated traffic of participating

services. Therefore, a mechanism to effectively handle the generation and

consumption of resources properly and to check plans for satisfaction of

resource and time constraints is essential.

10. Composition failure recovery. Planner failures may arise due to missing ser-

vice descriptions, wrong goal descriptions or the planner having incomplete

knowledge of the world. A more flexible means of dealing with this type of

failure is required, instead of returning no response to the user.

11. Execution failure recovery. Composite services will be executed in an un-

predictable and dynamic environment. It is anticipated that plans may fail

during execution, for example as a result of the loss of network connectiv-

ity. A mechanism for fault-resilience is required, such as replacement of the

unavailable services with alternative ones.

Detailed discussion of planners and their applicability to the Web service co-

mposition problem follows in Section 5.1.2, including the selection of the planner

to be used in the proposed context aware service composition framework.

Comparison of planning-based service composition frameworks. Wu et

al. [WSH+03] investigated the applicability of SHOP2 [NMAC+01] to automated

Web service composition, applying it to a scheduling scenario. Their service

composition framework utilises a mediated approach to service composition. It

augments the online execution of information provider services with off-line sim-

ulation of world altering ones. A monitoring component handles SHOP2’s calls

to external information provider services during planning. SHOP2 allows con-

trol constructs such as conditional choice and iterative loops to define complex

43

and concurrent, composite services. The HTN facilitates human intervention,

allowing a human to assist the composition process if necessary.

McIlraith et al. [MS02, MF02, NM02] used and extended Golog [LRL+97], a

high level logic programming language built on top of Situation Calculus [MH69].

Golog composes services encoded in DAML-S. Users explicitly submit compo-

sition requests, which are expressed as generic ConGolog [GLL00] procedures.

These templates are constructed using an off-line planning technique and are

then modified based on user preferences and constraints. Generic templates are

associated with a situation tree, which denotes a partial specification of the be-

haviour of the desired composite service. Each node in the situation tree denotes

a snapshot of the desired service configuration at each point of its execution. This

approach uses knowledge-gathering services to obtain the outcome of the service

execution. The instantiated user specification is a sequence of primitive services

which are then executed by a ConGolog interpreter. The user request is specified

once before the composition, and during the execution of the composite services

users have no control on the executed sequences of actions.

Ponnekatni et al. proposed SWORD [PF02], a toolkit for Web service co-

mposition. SWORD employs a rule-based expert system based on the Rete al-

gorithm [For82]. This system automatically determines if a desired service can

be realised as a composition of existing, predefined, services. Each service is

described in terms of its conditional inputs and outputs, which are defined in a

entity-relationship based domain model. A rule is then generated to define which

outputs can be obtained given particular inputs. The main limitation of their

approach is the lack of support for conditional effects of Web services.

Berardi et al. [BCGM03, Ber05] considered a Web service as a tree of all pos-

sible interactions with clients and develop E-Service Composer (ESC). They used

these templates in Situation Calculus [MH69] to provide automated procedures

for performing composition. This is one of the very few frameworks that includes

interaction with the user directly in the composition process, by presenting a

user as a Web service. Berardi takes a two layered approach in the design of

the framework, separating the composition task between the Abstraction, Syn-

thesis Engine and Realization modules. The Abstraction module uses the WSDL

description of the service, together with behavioural descriptions described in

Web Service Transition Language (WSTL) [BRSM03] to generate a finite state

machine (FSM) describing the composition problem. The Synthesis Engine, the

central composition module, takes the FSM to generate an abstract specification

of the composite service, which is then instantiated by the Realization module.

Akkiraju et al., [AVG+04] devised a two layered workflow composition archi-

tecture. This work focuses on abstract business process flow specification, where

44

processes are described at a high-level using BPEL4WS semantically annotated

with DAML-S. The specific service binding is left to run-time flow execution,

which performs run-time discovery, composition, binding and execution. The

core of this system is the Generic Web Service Proxy, which takes the seman-

tic descriptions of the service requirements represented in DAML-S, the domain

constraints and pointers to UDDI registries. During the execution of a high-level

BPEL4WS specification the Generic Web Service Proxy is invoked at each node

to locate suitable services and automatically bind and invoke the feasible sets.

Akkriraju et al. treat the binding of abstract services as a planning problem,

where the description of the abstract service serves as a goal definition. Their

system employs Planner4J [Sri04], a Java planning infrastructure which embodies

STRIPS-based planners.

Pistore et al. [PBB+04] presented a service composition framework, grounded

in the concept of Planning as Model Checking, also known as Model Based Plan-

ning (MBP). Later they develop the ASTRO [TPC+05] toolset supports auto-

mated service composition, monitoring and execution. ASTRO allows for all lev-

els of domain observability by employing sensing actions. ASTRO uses the EaGLe

goal language [LPT02], which supports complex goals, specifying extended tem-

poral conditions on user goals. ASTRO is implemented in a centralised manner

and generates a composite service definition in BPEL4WS.

Table 2.3 summarises the comparison of planning based service composition

frameworks. Not all of the identified features are present in a single architecture,

as they focused on different research problems. All surveyed architectures employ

a centralised composition model. They address dynamism in the composition,

primarily from the perspective of unavailability of selected Web services, and deal

with the issues of how to replace them with other equally capable Web services

to perform the desired task.

2.3 Summary

This chapter reviewed the fields of context aware computing and service composi-

tion. It highlighted challenges facing legacy application models regarding taking

context into account to adapt application behaviour.

A survey of related work in task driven computing, an approach grounded in

service composition, identified a number of features essential for a dynamic and

flexible model for building context aware applications, such as task inference.

The main research challenges for service composition frameworks were identified

45

including automated construction of explicit representations of user task goals,

adaptation, and composition and execution failure tolerance.

The chapter analysed the shortcomings of existing systems against a list of

characteristics that are desirable for automated, planning-based Web service co-

mposition. Existing service composition frameworks present composition as a

one off effort. Furthermore, most composition frameworks do not fully handle

composition failures, but focus on execution failures.

By contrast to existing service composition frameworks, this dissertation pro-

poses a framework for context aware service composition based on facilitating

composition, continuous monitoring, failure management and composition adap-

tation. The next chapter describes the design of the proposed framework.

46

Service framework

Feature Wu’s mcIliarth’s SWORD ESC Akkrijau’s ASTRO

Composition SHOP2 ConGolog Rete Situation State MBP

method calculus planner

Service OWL-S OWL-S XML WSTL OWL-S BPEL4WS

markup

Composition central central central central central central

model

Extended * X × * X X

goals

Complex X X × X X X

actions

Dynamic * * * X * X

composition

Re- × × × X × ×

composition

User * * * X * *

interaction

Automatic

service × * × X X *

discovery

Non- * * × * * X

determinism

Implicit task × × × × × ×

specification

Resource * * × × * *

constraints

Composition

failure × × × × × ×

recovery

Execution

failure X X × X X X

recovery

Legend: × = no support, * = partial or proposed support, X = full support

Table 2.3: Main research challenges and features of automatic Web service co-

mposition and which of these are met by the surveyed composition frameworks.

47

48

Chapter 3

Service composition framework

The review of related work, presented in the previous chapter, has identified a

number of challenges for conventional architectures for the development and de-

ployment of context aware applications to accommodate dynamic, context-rich

computing environments. Furthermore, the analysis of existing service compo-

sition frameworks has identified a number of their shortcomings. Firstly, they

do not provide adequate resilience to failures arising both at composition and

execution times. Secondly, they do not allow for re-composition. Finally, they

do not sufficiently accommodate multiple service composition methodologies.

To address these limitations, I propose a novel framework for context aware

service composition. This approach is grounded in the process of dynamically

locating, selecting, composing and coordinating atomic services, based on the

current context of a user. Services are continuously recomposed as the con-

text changes, enabling the automated development and adaptation of extensible

and fault-tolerant context aware applications. Furthermore, the proposed frame-

work embodies a composition failure management system, which attempts to

reformulate composition requests into alternative ones that can be solved by the

composition methodology in use.

This chapter describes the design of the service composition framework [VR04a,

VR05a] in terms of the operations it provides. It presents all system components

and their functionality together with the interfaces facilitating their interactions.

Chapters 4 and 5 discuss the implementation and internal structure of the frame-

work components.

49

3.1 Usage scenario

To illustrate how context aware applications can be built using the proposed

framework, this section introduces the following scenario in the scope of an info-

tainment application domain. An infotainment is a term used for services com-

bining context, most commonly location information, with entertainment appli-

cations, such as a point of interest facility.

A user, called Miles, subscribes to a mobile network provider, which hosts

an infotainment portal. This portal offers users a broad array of resources and

services, such as point of interest information, on-line shopping, and search en-

gines. It is a single starting point for retrieving information from multiple, diverse

sources.

To accommodate user requests, the portal employs a composition framework

to coordinate atomic, disparate services. For example, some of the services in

this scenario include:

• RestaurantFinder: provides a directory of restaurants.

• DirectionsFinder: computes the driving directions.

• TranslationService: translates the content from one language to another.

• SpeechSynthesizer: converts from text format to speech.

User requests are enriched with context information. For example, the in-

fotainment portal takes into account the following context types: user location,

user activity, and the computing device in use, provided by context middleware.

Figure 3.1 describes the following two use cases.

Use case 1. In the first case, Miles is using his SmartPhone while walking

around Market Square in Cambridge, UK. Miles has a subscription to an infotain-

ment portal, available from his local mobile provider. This provides Miles access

to a restaurant recommendation service, for example, to make lunch plans with his

college friends. The portal then uses the composition framework, which assembles

a composite service to deal with Miles’ request. The resulting service, tailored to

help Miles locate a Spanish restaurant, is composed from atomic services, such as

RestaurantFinder, a UK-based restaurant directory, and DirectionsFinder,

the navigation service.

50

userResponse

userRequest

userResponse

RestaurantFinder

DirectionFinder

TranslationService

SpeechSynthesizer

Composition
Framework

restaurantRequest

restaurantResponse

directionRequest

directionResponse

translationRequest

translationResponse

speechRequest

speechResponse

Composite Service

Local Mobile Provider

userRequest

userRequest

userResponse

Case 2:

Case 1:

Infotainment
Portal

Roaming Mobile Provider

context
change

Figure 3.1: Usage scenario: context aware restaurant finder

Use case 2. Later in the day, Miles lands in Zurich. He wishes to catch up with

his friends at a Lebanese restaurant. Miles is now registered with a roaming mo-

bile network provider, which provides the local restaurant guide service; however

it does so only in the German, French and Italian languages. Furthermore, this

information is formatted for presentation on a mobile phone. As Miles is driving,

he would prefer the restaurant directions to be routed to his in-vehicle information

system (IVIS) and delivered in speech. A special new service for Miles will be as-

sembled from atomic services, such as: RestaurantFinder, DirectionsFinder,

the TranslationService, and SpeechSynthesizer.

In both cases, Miles has the same goal: he wishes to get directions to a

chosen restaurant. However, the two requests result in the composite services

being constructed from different atomic services, because of the different context

in which the requests are submitted. In the first case, Miles is using a SmartPhone

while walking around Market Square in Cambridge. By contrast, in the second

case, Miles is driving through Zurich, and using IVIS. Because of the context

changes, in the latter case, two additional services are required to fulfill Miles’

request, namely the TranslationService and the SpeechSynthesizer.

To summarise, Miles submits both composition requests in the same way.

He selects the desired task, context is automatically acquired, and the requested

composition process is performed. However, the resulting application is different,

because of the different contexts in which the two requests are submitted.

51

3.2 Design requirements

To enable the development of extensible context aware applications, the pro-

posed composition architecture needs to be general-purpose, and must not embed

any scenario specific dependencies. Furthermore, the system design principles of

context aware service composition must hold independently of the particular in-

frastructure implementing the framework. To fulfill this requirement the design

must allow for extensibility in terms of component technologies and composition

methodologies used.

Context has a central role in this approach and implies a number of design

requirements. Firstly, the framework must allow a system designer and a user to

select what context types an application should take into account. The framework

needs to acquire context from different context sources in a disciplined way. A

mechanism is also needed to describe what action to take when the user enters a

certain context.

Another important challenge in providing a context aware service composition

facility is dealing with failures. For instance, failures may occur at composition

time, as a result of context changes and missing service descriptions. Failures may

also arise at run-time, for example, because of the loss of network connectivity.

The framework must be resilient to both types of failures.

When deployed in production environments the framework will be exposed to

a large number of concurrent composition requests. The design of the framework

must ensure its ability to operate under increasing load, increasing complexity of

requests and increasing size of resulting composite services.

From these requirements I identify a number of required framework oper-

ations, such as specification and construction of context aware composition re-

quests, service composition, execution of composite services, and failure-recovery.

3.3 Framework architecture

This section introduces the design of the proposed framework, building on the

requirements set out in the previous section. It describes the main components of

the system’s architecture using the scenario described in Section 3.1. It presents

the functionality that each component delivers, and the interactions between

them to facilitate fault-tolerant, context aware service composition.

Figure 3.2 shows an overview of the system architecture, which employs a

layered approach to service composition, to fulfill the design requirements out-

lined in the previous section. The four layers in the system architecture map

to the four main stages in the service composition process. The first layer is

52

Layer 1: Composition request management

Layer 2: Abstract service composition

Layer 3: Architecture specific service composition

Layer 4: Execution and monitoring

composition failure

execution failure
context change

or user task change

submit task request

discovery failure

composition
request

abstract
plan

deployable
service

description

Figure 3.2: Overview of the proposed service composition architecture

the composition request management layer, which assembles and, if necessary,

modifies a composition request. Each composition request is a formal def-

inition of the user’s task intention. The next layer is the abstract service co-

mposition layer, which generates an abstract plan. An abstract plan is a

set of abstract services and their control flow, comprising the composite service.

Abstract services are high-level descriptions of service operations and cannot be

directly invoked. The architecture specific service composition layer instantiates

53

the abstract plan and generates a deployable service description, which

represents a service instance. The deployable service description is passed

to the execution and monitoring layer, which invokes the specified service instance

and monitors its execution.

Designing the system in layers, separating the functions required by each

stage in the composition process, presents several advantages. Firstly, this system

design together with internal representations, such as the composition request

and abstract plan, allows the framework to use multiple component technology,

composition methodologies and run-time environments. Secondly, it also aids the

isolation of failures, which are passed to the appropriate layers to be dealt with.

3.3.1 Composition request management layer

Figure 3.3 shows the structure of the first layer of the composition framework.

The composition request is an entry point to the composition process. It spec-

ifies the user’s task and consists of two parts. The first part is a description of

the core user task, for example, Miles’ request in Case 2 of the usage scenario for

directions to the nearest Lebanese restaurant, selected from the Goal Service

(Step 1 – Figure 3.3). The second part contains contextual parameters. For ex-

ample, if Miles is using an IVIS, this would specify a computing device. He is

currently driving down Limmatstrasse in Zurich, which are context types activ-

ity and location obtained from the Context Service (Step 2). Such contextual

parameters further customise the composition request. For instance, in this con-

text, it may be more appropriate to read out the driving directions to Miles. This

layer constructs the composition request and feeds it to the abstract service

composition layer (Step 3).

If the abstract service composition process fails (Step 4a) control is passed

back to the composition request management layer, which attempts to trans-

form the composition request into an alternative request that can be satisfied.

For example, Miles’ original composition request to find the nearest Lebanese

restaurant may be replaced by a more generic request of finding any type of

restaurant nearby. Furthermore, the requirement to present the output in speech

format may be removed, if the speech synthesiser service is missing.

In addition, the composition request may be transformed in order to im-

prove the user experience, and not only when a failure occurs. For example, when

reading out the driving directions to Miles, the system could automatically lower

the music volume, despite the fact that this was not explicitly set as a part of

Miles’ goal. Chapter 4 provides more details about the implementation of the

internal mechanisms used in each of the components in this layer.

54

Context
Mesh

composition
request

Goal
Transformation

Engine

Context
Proxy

Context
Service

5a: transform core
 goal conditions

5b: transform context
goal conditions

2: retrieve context

3b:generate context
goal conditions

4a: composition failure

4b: context change
4c: user task change

6: retrieve context

1: select goal

Layer 3:
Architecture specific service compostion

Layer 4:
Execution and monitoring

Layer 2:
Abstract service compostion

Layer 1:
Composition request management

Goal
Service

3a:generate core
goal conditions

Figure 3.3: Composition request management layer

55

3.3.2 Abstract service composition layer

The service composition process is split into two stages: abstract and architecture

specific. Abstract service composition is the process of assembling abstract ser-

vices, which are generic operations each satisfying different parts of the overall

composition request. Architecture specific composition layer instantiates these

abstract services and constructs an executable composite service.

This two-layered approach has been introduced for a number of reasons.

Firstly, this approach enables the framework to be implemented using any type

of composition methodology, component technology and run-time environment.

Secondly, it facilitates recovery from service discovery and service execution fail-

ures, by isolating the different stages in the composition process. Finally, it

enhances the scalability of the framework, as abstract service composition is per-

formed only on a subset of abstract services, rather than all available service

instances. Chapter 6 analyses this in detail.

Figure 3.4 shows how the abstract service composition generates an abstract

plan, which defines the control flow of abstract services. Firstly, the Translator

Module converts the composition request to a problem definition, which is

in the representation format supported by the composition methodology in use

(Step 1 in Figure 3.4).

The Abstract Service Repository stores and manages abstract service de-

scriptions. In our usage scenario the sample abstract services provided include a

restaurant directory service and a speech synthesiser service. Abstract services

are semantically annotated, their descriptions contain the types of parameters

they expect, as well as preconditions and expected postconditions for their suc-

cessful execution. Each abstract service also points to the files carrying the de-

scriptions of the domain concepts used, such as a definition of restaurant in our

usage scenario. The Translator Module converts the available abstract service

descriptions and domain concepts from the Abstract Service Repository to

generate the domain description, in the representation format supported by

the composition methodology used (Step 2 in Figure 3.4).

The Composition Engine uses the problem definition (Step 1) and the

domain description (Step 2) to generate the abstract plan (Step 3a), which

consists of a list of abstract services to be executed, described in the composition

language. It is then stored in the internal representation format which is inde-

pendent of the composition methodology. Finally, the abstract plan is fed to

the architecture specific service composition layer for instantiation.

If the system fails to create an abstract plan (Step 3b) control is passed back

to the composition request management layer, where the composition request

56

Translator
Module

composition
request

Composition
Engine

1: translate
composition request

3a:abstract
service composition

3b: composition
failure

problem
definiton

abstract
plan

2: translate abstract
service descriptions

Layer 2:
Abstract service composition

domain
description

4: discovery failure

Abstract
Service

Repository

Layer 3:
Architecture specific service compostion

Layer 4:
Execution and monitoring

Layer 1:
Composition request management

Figure 3.4: Abstract service composition layer

57

is transformed into one that may also be satisfiable. If in the architecture specific

composition layer (layer 3) the process of service discovery and instantiation fails,

control is passed back to the abstract service composition layer, which initiates

a recomposition process (Step 4).

The Composition Engine may be implemented by a number of different co-

mposition methodologies, as described in Section 2.2.5. For example, AI Plan-

ning has proven to be a valuable and effective tool for service composition [MF02,

WSH+03]. Abstract services can be represented in terms of their non-functional

and functional properties. Non-functional properties describe service provider

details and Quality of Service parameters. Functional properties contain descrip-

tions of service operations in terms of inputs, outputs, preconditions and effects,

which makes it easy to convert them into planning actions. The Translation

Module converts a composition request into problem definition and ab-

stract service descriptions in the domain description, which are formats sup-

ported by the planner. Chapter 5 describes in more detail how the framework

employs AI planning to handle the service composition problem in an efficient

and scalable way.

3.3.3 Architecture specific service composition layer

Figure 3.5 shows the system components involved in the process of architecture

specific service composition and their interactions.

The Plan Translator (Step 1 — Figure 3.5) converts the abstract plan

into an abstract execution plan, which describes a composite service in archi-

tecture specific format. As the framework stores the abstract plan in an in-

ternal representation format, it is necessary to have translation mechanisms for

different run-time technologies used and their corresponding representation for-

mats. The abstract execution plan describes each service in terms of its

parameters, expected preconditions and postconditions, and any other semantic

tags such service categorisation codes, as well as Quality of Service parameters.

The Plan Instantiator executes the abstract execution plan and medi-

ates the process of service discovery and instantiation. The Service Registry

allows service providers to submit descriptions including their identifiers, name,

interfaces provided, and time-to-live information. It exports interfaces for service

discovery and publishing. It performs service discovery and returns the service

binding information for each service instance.

The Plan Instantiator processes the abstract execution plan and passes

the information about abstract services and the required Quality of Service

parameters to the Service Registry (Step 2). For example, the abstract

58

Plan
Translator

Plan
Instantiator

1: translate abstract plan
to architecture specific

description format

2: service discovery
 and binding

3a: schedule service
instance for invocation

Service
Registry

Layer 2:
Abstract service composition

Layer 1:
Composition request management

Layer 4:
Execution and monitoring

Layer 3:
Architecture specific service composition

deployable
service

description

service
binding

abstract
execution

plan

abstract
plan

3b: service discovery failure

4: service execution failure

Figure 3.5: Architecture specific service composition layer

59

execution plan may contain an abstract service representing a restaurant direc-

tory. Following the discovery process, this abstract service may be instantiated

by, for example, Zagat’s [ZZ99] restaurant directory service. Once the abstract

service is instantiated the Service Registry returns its service binding. Plan

Instantiator uses this service binding as a basis for the deployable service

description (Step 3a) and passes it to the execution and monitoring layer, which

schedules its invocation.

If service discovery fails (Step 3b) control is passed to the abstract service

composition layer, which triggers recomposition. However, if the service fails

during execution, control is passed back to architecture specific composition layer,

where a replacement service is fetched (Step 4).

3.3.4 Execution and monitoring layer

The Execution Engine provides the run-time environment in which services

can be executed. It invokes scheduled services as specified in the deployable

service description (Step 1 — Figure 3.6).

The Monitoring Engine is bound to the Execution Engine to track changes

in the run-time environment, service performance and composition request sta-

tus. The Monitoring Engine verifies the service preconditions before being in-

voked by the Execution Engine. During the service lifetime it observes changes

in the environment and propagates any failures to the upper layers in the frame-

work, where they are dealt with. Finally, once the service completes its operation

the Monitoring Engine verifies service effects, against the expected outcomes.

Service execution may fail due to network disconnection. If a service instance

cannot be invoked the system tries to execute a replacement service, if one has

been previously cached. Pointers to replacement services may be included in the

deployable service description. If the cached service fails as well, control

is passed to the architecture specific composition layer, which replaces it with a

suitable service of the same type (Step 3a). If this operation fails too, the system

continues propagating the failure up the layered framework structure.

Should an unanticipated change in context occur (Steps 3b), or should the

user change the task specification (Step 3c), control is passed to the composition

request management layer, where a new composition request is generated and

recomposition triggered.

The Monitoring Engine updates the state of the Composition Engine and

the Execution Engine. There are several different events that may take place

during the service execution. For example, the actual outcome of the service may

not be as anticipated or the primary aim of the service may be unexpectedly

60

Layer 4:
Execution and monitoring

Execution
Engine

Monitoring
Engine

1: service
exectution

Layer 3:
Architecture specific service composition

2: execution
monitoring

3a: service failure

deployable
service

description

Layer 2:
Abstract service composition

Layer 1:
Composition request management

3b: context change

3c: user task change

Figure 3.6: Execution and monitoring layer

61

satisfied by another service. For instance, the expected outcome of the scheduled

service is to automatically lower the volume of the in-vehicle stereo. Before the

service is executed, the user manually adjusts the stereo volume and therefore

achieves the outcome of the scheduled service. In such cases the Monitoring

Engine adds the information to the state description in the Execution Engine,

which ensures it does not trigger the service execution. Finally, if a required

service precondition is no longer true the service will not be invoked.

To observe context changes and service execution the Monitoring Engine

employs monitoring procedures proposed by Haigh et al. [HV96]. The next

section describes in detail the fault recovery mechanisms employed by the co-

mposition framework.

3.4 Failure tolerance

A number of different failures may occur during the service composition process,

including composition request failures, context middleware failures, network

level disconnections, service discovery failures and service execution failures. Fail-

ures can be classified into three groups based on the stage of the system operation

in which they occur. Composition failures arise during the assembly and instanti-

ation of the composite service, on the first two layers of the framework. Inability

to instantiate abstract services results in discovery failures. Execution failures

occur at run-time, during the operation of the composite service in the execution

and monitoring layer.

This section describes how the system design achieves resilience towards co-

mposition, discovery and execution failures. It also presents how the system

applies appropriate fault control mechanisms to enhance the probability of suc-

cessful processing of composition requests.

3.4.1 Composition failures

Two types of composition failures may occur. Firstly, the system may fail to

assemble a composition request. Secondly, the system may fail to successfully

produce a composite service for a given composition request.

Composition request assembly failure. Several context failures may occur,

impairing the process of composition request construction. One problem is

that the accuracy and reliability of the context data varies. To facilitate a high

level of confidence about the accuracy of context information, the current imple-

62

mentation of the Context Service augments a Quality of Information model, as

described in Lei et al. [LSD+02].

Network disconnection and sensor failure may cause context providers to be-

come unavailable. The system deals with this type of failure in a number of ways.

Firstly, it attempts to locate a different provider for the context type for which

there is no availability of context information.

If no providers are available for the context type in question the system ac-

quires historical contextual data from the Context Service. It may also con-

struct a composition request based on a previously executed task.

In case all automated means of context acquisition and inference fail, the

user is prompted to supply the context value manually either by selecting from

the most common values previously used, or by entering a new value. As a last

resort, the composition request will not include the contextual condition for

which there is no information.

Finally, as part of future work, I anticipate devising an algorithm for inferring

the missing context values by correlating the existing context information.

Composition request failure. If a composition request cannot be satis-

fied, due to a missing service composition or unanticipated context, the abstract

service composition layer passes the composition request back to the compo-

sition request management layer. There the composition failure management

system applies goal transformations to modify the composition request into

one that may be solved by the Composition Engine. The implementation of

this composition failure management system is discussed in detail in Chapter 4.

3.4.2 Discovery failures

Service discovery failures may occur because of an inaccessible Service Registry,

as a result of network disconnection or system overload. Furthermore, the re-

quested service simply may not be available in the registry.

To avoid the Service Registry being a single point of failure, the system has

been designed to operate with multiple service registries. This can be achieved

both by deploying a number of replicas of the same registry, as well as by medi-

ating among a number of different registries.

A discovery failure may be caused if a suitable service instance cannot be

found through the discovery process, or if a service operation no longer matches

its interface. This may be a result of changes in the service functionality, and

can be addressed by using cached services, which were previously invoked, if they

are still available. To facilitate this approach, the system keeps its own log of

63

services executed, together with the context in which they were invoked and the

specification of the original composition request.

For example, if the directions service in English language is not available,

the system may opt to use a German one together with a translation service to

English, and then add a speech synthesiser service. This invokes the composi-

tion of a new sub-request in the abstract service composition layer. If that also

fails control is passed to the composition request management layer, where the

composition request is transformed into one that may be solved.

3.4.3 Execution failures

Unexpected environment changes. Composite services may be executed in

an environment, which is different from the one where composition occurred.

Therefore some assumptions about context values may no longer be valid at the

time of execution. Furthermore, there may be multiple, often unexpected, service

outcomes.

The Monitoring Engine is a component that observes context changes during

the execution of the composite service. It employs monitoring procedures,

proposed by Haigh et al. [HV96], which encapsulate the following data:

• type: A parameter that determines whether a monitoring procedure is

observing an event or a service.

• precondition state: A service precondition state that must be fulfilled

prior to execution.

• expected state: For service monitoring this represents a service postcon-

dition. Otherwise it denotes a definition of the event to be monitored.

• recovery procedure: A standard method for reacting to events of the

above types of failure.

A number of different events may occur during the execution of compos-

ite services. These environment changes may (a) unexpectedly satisfy effects of

scheduled services or (b) invalidate preconditions that were true at the time of

abstract composition. For instance, a user may manually adjust the volume of the

music in the car. As a result the effect of the scheduled service for lowering music

volume is satisfied, and the service should not be executed. In another example,

following the composition process the user’s location changes. As a result the

previously generated driving directions are no longer valid and the translation

service should not proceed with their translation.

64

The Monitoring Engine observes context changes using event monitors, which

are invoked when relevant goal conditions are introduced or removed. It then up-

dates the state of the Composition Engine and the Execution Engine.

Section 5.3.2 provides more details about the implementation details of inter-

nal mechanisms used to facilitate event monitoring.

Service execution failure. Before a service is invoked, the Monitoring Engine

determines if all its preconditions are satisfied. After the execution of the ser-

vice, the Monitoring Engine verifies its postconditions, as there may be multiple

outcomes or the service may fail unexpectedly.

If the service fails the Monitoring Engine invokes recovery mechanisms, as

specified in the monitoring procedure. If the attempted recovery method fails,

control is passed to the abstract composition layer, together with the current

context in which a recomposition may occur. Finally, if the recomposition process

fails as well, control is passed back to the composition request management layer,

in which a composition request is modified or a new one assembled.

Service unavailability. Services may become unavailable as a result of net-

work disconnection. This type of failure is handled in two ways: locally, by each

service instance and globally, with respect to the composite service. To deal with

service unavailability, the framework employs the approach proposed by Gu et

al. [GNY04]. They implement two methods to facilitate fast localised service re-

covery: proactive and reactive. The proactive approach keeps a number of cached

copies to avoid the delays inherent in re-discovering a suitable service instance.

In the absence of a proactive approach the system invokes a reactive approach,

where control is passed back to the architecture specific composition layer, in

which a new service is fetched from the Service Registry.

To reduce the probability of losing service availability and to meet Quality

of Service requirements, the system may also opt to run redundant instances of

composite services to ensure that the overall execution will not be drastically

impaired by delays caused by the failure of one or more atomic services. This

facilitates fast failure recovery and reduced composition overhead, resulting in a

more resilient system. This mechanism will be investigated as part of the future

work described in Chapter 7.

Chapters 4 and 5 describe further implementation details of the fault-recovery

mechanisms.

65

3.5 Summary

This chapter has described the architecture of the proposed framework for flexible

and failure-tolerant context aware service composition. The service composition

framework employs a layered design approach to separate the following four stages

of the composition process: composition request management, abstract service

composition, architecture specific service composition and execution and moni-

toring. Figure 3.7 shows an overview of the layered system design in terms of its

components and their interactions.

This chapter has analysed the operations that the framework supports by

means of a usage scenario in the infotainment domain. Users select the computa-

tional task, which, together with the context, forms the composition request.

The Composition Engine locates, selects and composes abstract services that

meet the constraints of this composition request to construct an abstract plan.

The Plan Translator converts an abstract plan into an abstract execution

plan. It instantiates abstract services by querying available service registries.

Instantiated services are then deployed by the Execution Engine and their be-

haviour is observed by the Monitoring Engine. Changes in the environment and

service performance are handled by monitoring procedures.

The framework does not rely on a specific composition methodology. It has

been designed for openness and extensibility in terms of allowing multiple imple-

mentations of the Composition Engine and component technologies to coexist.

One of the main challenges in developing context aware service composition

facility is being able to handle composition failures. The service composition

process may not be able to successfully assemble a composite service, because of

missing service descriptions or unexpected context. The next chapter analyses

this problem in more detail and describes the implementation of a comprehensive

composition failure management solution.

66

Context
Mesh

composition
request

Goal
Transformation

Engine

Context
Proxy

Context
Service

5a: transform core
 goal conditions

5b: transform context
goal conditions

2: retrieve context

3b:generate context
goal conditions

3a:generate core
goal conditions

6: retrieve context

1: select goal

Layer 1:
Composition request management

Goal
Service

Translator
Module

Composition
Engine

7: translate
composition request

9a:abstract
service composition

9b: composition
failure

problem
definiton

abstract
plan

8: translate abstract
service descriptions

Layer 2:
Abstract service composition

domain
description

Abstract
Service

Repository

Plan
Translator

Plan
Instantiator

10: translate abstract plan
to architecture specific

description format

11: service discovery
 and binding

12a: schedule service
instance for invocation

Service
Registry

Layer 3:
Architecture specific
service composition

deployable
service

description

service
binding

abstract
execution

plan

12b: service discovery failure

Execution
Engine

Monitoring
Engine

13: service
exectution

14: execution
monitoring

15a: service failure

15b: context change

15c: user task change

4: initiate abstract service composition

Layer 4:
Execution and monitoring

Figure 3.7: System architecture overview

67

68

Chapter 4

Composition failure management

Providing context aware service composition facility encompasses research prob-

lems related to handling composition failures and specifying context behaviour.

The service composition process may terminate unsuccessfully, without assem-

bling a composite service as expected, if, for example abstract service descrip-

tions are missing. Another challenge is constructing context commands, which

describe the desired application behaviour, while preserving application’s exten-

sibility. This chapter describes GoalMorph, a system that can be used to tackle

these two problems.

The prototype implementation of the proposed framework for context aware

service composition employs planning technology to assemble composite services.

The composition request, which is a complex structure consisting of a number

of goal conditions, forms what is termed the problem definition in planning

technology. Each goal condition is a specific requirement that must be met. For

example, Miles’ request for driving directions to the nearest restaurant includes

specifying that the desired type of restaurant must be found, gathering the ad-

dress details of the selected restaurant and calculating and presenting driving

directions to navigate Miles from his current location to the selected restaurant.

The success criterion for a planning process is whether all goal conditions

have been satisfied. Often, because of a context change or a missing service

description, planning can fail to fulfill some of the goal conditions. As a result the

problem defined by the composition request is not solved. Because each goal

condition represents a partial solution to the composition request, satisfying

some goal conditions instead of all can be more useful than satisfying none of the

goal conditions at all. This chapter presents GoalMorph [VR05b], a composition

failure management system that applies context aware goal transformations to

failed composition requests to convert them into ones that can potentially be

solved by the AI planner.

69

As part of the GoalMorph system, this chapter also describes cogotags, a

mechanism for automated construction of context aware goals. The Composition

Engine deals with formally defined composition requests. The formal defini-

tion of a composition request varies as a result of different contexts, such as

resources available, time constraints, and user location. A common approach in

service composition is the use of goal repositories, which store pre-defined, for-

malised goal descriptions. As the number of context types and their values grows

this method becomes impractical. It is also not always possible to anticipate all

situations in which the user may submit a request.

The next section motivates the work described in this chapter. Section 4.2

analyses the proposed goal taxonomy and presents the architecture of GoalMorph

in terms of the functions of each component and its interfaces. Section 4.3 dis-

cusses evaluation results and demonstrates that the implementation of GoalMorph

provides a practical and scalable solution. Finally, Section 4.4 compares GoalMorph

to GTrans [CZ04], a goal transformation framework, and positions GoalMorph in

the research context of partial goal satisfaction.

4.1 Motivation

Two driving factors behind the work presented in this chapter are (a) the need for

supporting partial satisfaction of composition requests and (b) the requirement

for flexible construction of context goal conditions.

4.1.1 Partial satisfaction of composition requests

Tables 4.1 and 4.2 describe the sample context input and expected application

behaviour for three different cases of the usage scenario, introduced in Section 3.1.

Let us consider Case 2 of the scenario, where Miles requests driving direc-

tions to the nearest Lebanese restaurant in Zurich. Because he is driving, Miles

expects the directions to be read out to him, using the in-vehicle information sys-

tem (IVIS). The planning process for this composition request may fail for a

number of reasons. As one example, the planner may have the wrong descriptions

of goal conditions or incomplete knowledge of the domain. In another example,

some of the required services may be unavailable; there may not be any speech

synthesiser facility in this in-vehicle system or any other instance available from

the present computing resources.

Rather than terminating the composition process altogether, it may be pos-

sible to partly satisfy the composition request. The system could acquire fur-

ther information about Miles’ context, such as his social setting and presence and

70

Input: Context data

Case Activity Time Device used Location

1 Walking 12.30pm SmartPhone Market Square, Cambridge

2 Driving 7pm IVIS In-vehicle, Limmatstrasse, Zurich

Table 4.1: Sample context input in the usage scenario

Output: Expected behaviour

Case Presentation Translation

1 Text form n/a

2 Speech form Translate to English

Table 4.2: Sample application behaviour for context in Table 4.1

availability of other computing devices. For example, the system finds out that

Stephanie is also in the car with Miles, and that her mobile phone and Miles’ PDA

are also available for use in the vehicle. By taking these facts into account, the

system could then forward turn-by-turn directions to Stephanie’s mobile phone,

and have her guide Miles through Zurich. This removes the speech synthesis

requirements from the original composition request, and the modified version

of the composition request can then be solved by the planner.

4.1.2 Automated construction of composition requests

In all cases Miles’ task intention is to obtain directions to a nearby restau-

rant. However, description of Miles’ task intention maps to a different system

composition request in different contexts.

In the proposed framework goal conditions are represented in Planning Do-

main Description Language (PDDL). This allows for easy import of goals into

the software component that stores them. As a result the framework can be used

with a large variety of PDDL-based planners. Each goal condition is a predicate

or function specification in first-order-logic. There are two parts to the predicate

definition: name and parameters. Figure 4.1 shows the formalised description of

the composition requests in planning language, for Cases 1 and 2.

Figure 4.1(a) shows the formal representation of the composition request

for Case 1, which contains goal conditions 1 such as (restaurant booking made

3 1300) and (directions found current address restaurant address). The

first goal literal (restaurant booking made 3 1300) indicates that the restau-

1Operator definitions include preconditions that place additional constraints on the variables

themselves, e.g. there are additional conditions on each operation to ensure that the booking

is made for the same restaurant as the directions.

71

rant booking should be made for three people and for 13h. The second goal literal

specifies that the directions should be found, navigating the user from current

location to the restaurant location.

Figure 4.1(b) shows the goal condition (directions speech out), which is

added to the composition request in Case 2 of the usage scenario. This is

because when Miles is driving, directions should be in speech-synthesised form,

as opposed to text form when Miles is walking on the street.

In both cases Miles wanted to obtain the driving directions to the nearest

restaurant, however of different types. The same task intention results in different

formal definitions of composition requests because of the difference of context

in which it is invoked. Formally describing a user’s composition request is

an open challenge for two reasons. Firstly, pre-defining and storing formalised

composition requests becomes unsuitable as the number of context types and

their values grows. Secondly, it is not always possible to foresee all the contexts

of the user. Therefore, a mechanism for flexible, dynamic assembly of context

aware composition requests is essential.

4.2 GoalMorph: composition failure manage-

ment using context aware goal transforma-

tions

This section introduces the goal taxonomy, describes the main components of the

GoalMorph system and presents the operations they provide.

4.2.1 Goal taxonomy

Goal conditions that form the composition request may result from the task

intention of the user or from the context of the user. For example, the goal

(directions found current address restaurant address) indicates a user’s

desired task. In contrast, the (directions speech out) goal condition is trig-

gered when the user is driving. GoalMorph separates goals into intention-driven

core and context-driven context goals. The following is the resulting taxonomy

of goal conditions:

Core goal. Any goal condition that purely describes a user’s task intention,

independent of the current context, is a core goal. In Case 2 of the usage scenario,

shown in Figure 4.1(b), examples of core goals are the (restaurant_found) and

(direction_found) goal conditions.

72

; Initial world

(define (initial_state_Case_1)

(cuisine spanish)

(location cambridge)

...

(persons 3)

(time 1300)

(activity walking)

)

; Goal world

(define (goal_state_Case_1)

(restaurant_found spanish cambridge)

(restaurant_booking_made 3 1300)

(restaurant_booked restaurant_name)

(directions_found current_address restaurant_address)

)

(a) Formal description of composition request for Case 1

; Initial world

(define (initial_state_Case_2)

(cuisine lebanese)

(location zurich)

...

(persons 2)

(time 2000)

(activity driving)

)

; Goal world

(define (goal_state_Case_2)

(restaurant_found lebanese zurich)

(restaurant_booking_made 2 2000)

(restaurant_booked restaurant_name)

(directions_found current_address restaurant_address)

(directions speech_out)

(directions language english)

)

(b) Formal description of composition request for Case 2

Figure 4.1: Formalised composition requests for Cases 1 and 2 of the usage sce-

nario

73

Base core goal. The absolute minimal core goal condition that needs to be

satisfied to achieve a viable solution for a given composition request is termed

a base core goal. It can not be removed from the composition request. For ex-

ample, in the usage scenario in which Miles requests directions to the restaurant,

the base core goal is to find a restaurant. To fulfill the composition request

and supply the user with a feasible solution, this base goal or its respective trans-

formation must be satisfied.

Dependent context goal. A context goal condition that can be seen as an

attribute of a core goal condition or directly related to it, is a dependent context

goal. For example, the goal literal (directions speech out) relies on the pres-

ence of the goal literal (directions found). If the core goal is removed from the

goal set, any related dependent context goals are also removed. For example, the

removal of the core goal (direction_found) implies removal of the dependent

context goal (directions speech_out).

Independent context goal. A context goal condition that does not necessar-

ily directly affect the user’s request is considered to be an independent context

goal. For example, in the usage scenario it may be useful to add the goal condi-

tion of lowering the volume level of an in-car audio system while reading out the

driving directions.

Classification of goal conditions according to the goal taxonomy is user and

application specific. A qualified domain engineer specifies a set of core goals

that describe the user’s task intention. For example, in our restaurant finder

scenario, the core goals include (restaurant_found) and (direction_found).

These task descriptions can further be customised by context goals, such as

(directions speech_out), which are often user specific, and are generated

based on context information acquired from the context middleware. Further-

more, the classification of goal conditions can be extended to take the context of

the user into an account, for example where directions are essential for a user in

a foreign environment, compared to a user in a local environment.

The next section introduces the architecture of the composition request man-

agement layer and describes how core and base core goals are stored in the Goal

Service, and context goals are generated by the Context Proxy.

4.2.2 GoalMorph overview

Figure 4.2 shows the architecture of GoalMorph. The entry point in the GoalMorph

system is a composition request. The user selects the task from the Goal

74

Service (Step 1 in Figure 4.2), which contains the core goal conditions for this

composition request. For example, in the usage scenario, Miles requests driv-

ing directions to the nearest restaurant. Once Miles selects the task, the Goal

Service returns a list of corresponding core goal conditions for the selected task

(Step 3a).

The Context Proxy generates context goal conditions that customise the

composition request based on a user context, which is provided by the Context

Service (Step 2). To implement the Context Service, GoalMorph uses the con-

text middleware solution proposed by Lei et al. [LSD+02]. The Context Service

retrieves context information, such as the user’s location, the device in use and

the user’s activity. This specific implementation of the Context Service sup-

ports both push and pull models for provisioning of context information. It

provides access control mechanisms to protect user data. Furthermore it con-

tains a Quality of Information model, which is used to reason about the accuracy

and freshness of context. The final composition request is assembled from the

core goal conditions from the Goal Service (Step 3a) and the context goal con-

ditions (Step 3b) from the Context Proxy, which are assembled based on the

information provided by the Context Service (Step 2).

If the abstract service composition layer fails to assemble a composite service

given a composition request it passes control to the Goal Transformation

Engine (Step 4a in Figure 4.2). This component reformulates the composition

request into a problem that can be solved by reformulating core (Step 5a) and

context (Step 5b) goal conditions. The transformed composition request is

then fed back to the planner and the composition process resumes.

4.2.3 Context Proxy: automated construction of context

goals

Context goal tags, termed cogotags, are introduced for representing context

goals, which are goal conditions that arise in a specific context. In order to

facilitate publishing and making cogotags generally portable, they are presented

in XML form, as shown in Figure 4.3.

Each cogotag has three parts, a context type, context value and goal condition

that it introduces. There are two types of effect that cogotag may have on the

composition request: additive and subtractive. An example of an additive

cogotag is situation “when user is driving read out the directions”. This results

in the additive condition (directions speech out), requesting the directions in

speech synthesised form. An example of a subtractive cogotag would be “when

user is driving do not display new e-mail notifications”. As a result, the goal

75

Context
Mesh

composition
request

Goal
Transformation

Engine

Context
Proxy

Context
Service

5a: transform core
 goal conditions

5b: transform context
goal conditions

2: retrieve context

3b:generate context
goal conditions

4a: composition failure

4b: context change
4c: user task change

6: retrieve context

1: select goal

Layer 1:
Composition request management

Goal
Service

3a:generate core
goal conditions

Layer 3:
Architecture specific service compostion

Layer 4:
Execution and monitoring

Layer 2:
Abstract service compostion

Figure 4.2: GoalMorph: composition failure management using context aware

goal transformations

76

<COGOTAG>

<CONTEXT-TYPE> activity </CONTEXT-TYPE>

<CONTEXT-VALUE> driving </CONTEXT-VALUE>

<ADD-GOAL-CONDITION PREDICATE="directions" ARGUMENT="speech_out"/>

<REMOVE-GOAL-CONDITION PREDICATE="email_notification" ARGUMENT="on"/>

</COGOTAG>

Figure 4.3: Sample context goal condition in cogotag format

condition (email notification on) is removed from the set of goals forming

the composition request.

The use of cogotags facilitates the dynamic association of context with user

goals, without requiring pre-built contextual dependencies in the Goal Service.

This approach allows for flexible, automated context goal generation, indepen-

dently of the Context Service used.

Following is the description of construction of a composition request. Once

a user selects a desired task (Step 1 – Figure 4.4), corresponding core goal condi-

tions are fetched from the Goal Service (Step 2). The Context Proxy, shown

in Figure 4.4, is a software component that fetches the current context data from

the Context Service (Step 3) and constructs cogotags (Step 4). The frame-

work then converts XML-based cogotags to planner readable PDDL-based goal

conditions (Step 5). At the moment tools such as eXtensible PDDL (XPDDL),

an XML-based representation for PDDL, introduced by Gough [Gou04] are be-

ing developed. The PDDL-based context goal conditions together with core goals

constitute the formalised composition request.

Several different sources of cogotags can exist. Firstly, the Context Service

can attach cogotags to the context data. The Context Proxy can add or remove

goal conditions based on the user’s past interaction with the system. Finally,

users may create and carry their own cogotags in their personal profile. The

current implementation of GoalMorph includes a Context Service that attaches

cogotags to the context data.

The Context Service may fail to provide access to context data, for example,

because of a failure of respective context provider as a result of sensor unavailabil-

ity or network disconnection. If a desired context value cannot be retrieved from

the Context Service, during construction of cogotags, the Context Proxy at-

tempts to obtain a past context value from the Context Service. The Context

Service tracks past contexts in which the user has submitted composition

requests. The software component that implements the Context Service has

the facility to cache the historical values. The Context Service provides histori-

cal values of context type in the following order. Firstly, it returns the most recent

77

3: retrieve context
e.g. location, device, activity

composition
request

2 construct core
goal conditions

4: construct context
goal tags (cogotags)

1: select goal
e.g. get directions

to the nearest
Spanish restaurant

<COGOTAG>
 <CONTEXT-TYPE> activity </CONTEXT-TYPE>
 <CONTEXT-VALUE> driving </CONTEXT-VALUE>
 <ADD-GOAL-CONDITION
 PREDICATE="directions"
 ARGUMENT="speech_out"/>
</COGOTAG

Context
Proxy

Context
Service

Goal
Service

(directions_found)

5: transform to PDDL based
context goal conditions

Figure 4.4: Context Proxy: automated construction of context aware composition

requests using cogotags

78

context type1,
ordering 1

This vector holds pointers to
different orderings of each context type.

context type1,
ordering 2

... ... context type n,
ordering m

This vector stores one possible partial
ordering of values of context type 1.
Each context type can have several
different orderings of its values.

context type
relationship 1

context type
relationship 2

context type
relationship n

This vector holds pointers to definitions
of context type relationships.

context
type 1

context
type 2

context type 1,
utility 1

... This vector stores context types
and their importance values.

context type n,
utlity n

context type 2
utlity 2

context type1,
value 1

context type1,
value 2

... context type 1
value k

...

Figure 4.5: Context Mesh: structures for reconfigurable specification of context

value orderings and context type relationships.

context value of this type. Secondly, it supplies the most frequently occurring

context value of this type.

This historical context data can also be used to generate probabilistic predic-

tions about current and future contexts. Development of a system to compute

probabilistic predictions, by inferring the missing context based on the available

context types,is part of the future work.

4.2.4 Context Mesh

The Context Mesh is a reconfigurable specification of partial orderings of values

for each context type, relationships between context types and importance of

each context type. It is not an ontology, it does not posses semantics about

context types, but rather contains customizable orderings of the context values

and context type relationships, as shown in Figure 4.5.

Context value orderings facilitate the substitution of related context values.

By substituting context values new context goals are created. This is useful for

transformation of unreachable context goals into ones that can be solved.

79

sitting typing talking walking driving

(high) level of mobility(low) level of mobility

(a) Activity ordering based on the level of mobility

sitting walking typing talking driving

(high) level of distraction(low) level of distraction

(b) Activity ordering based on the level of distraction

Figure 4.6: Two orderings for the activity context type

Context orderings. The Context Mesh partially orders context values along

custom defined hierarchies. For example, possible values of the context type

activity of a user can be ordered depending on the level of user mobility. Walking

and sitting are sample values of mobile and stationary activity context type, as

shown in Figure 4.6(a). Shaded circles in Figures 4.6(a) and 4.6(b) represent

values that are true in the current context.

The Context Mesh allows multiple, scenario-specific orderings of each context

type. Aside from the conventional, natural ordering in abstraction type-ordering,

context types can also be organised as an enumerated set, a numbered line, or a

containment of values. For example, the context type activity can be arranged in

the following ways. Firstly, as a set of activities that occur at a specific location,

such as office. Secondly, for instance, activities can be ordered along a numbered

line according to the estimated duration of each activity. Thirdly, activities can

be represented as a component partonomy, in which activities can be organised in

a graph using part-of relations. For instance, typing and sitting form the activity

called working on the laptop. In the example usage scenario activity values are

ordered along a numbered line, according to the level of distraction they cause

to the user. Figure 4.6(b) depicts how typing in this case may be considered less

distracting than driving.

Values of a specific context type are not mutually exclusive. For instance,

Miles could well be talking to the passenger or on the cellphone and driving at

the same time, as shown by the shaded values in Figures 4.6(a) and 4.6(b). This

gives rise to a number of interesting issues. Deciding which of these two or more

activities is of higher relevance to the current scenario becomes the problem of

identifying which ordering of activity context type should be referred to. For

80

example, according to the “level of mobility” ordering in Figure 4.6(a), typing is

lower on the scale than walking. By contrast, typing is higher on the scale than

walking, when considered according to the ordering by “level of distraction”, as

shown in Figure 4.6(b). One solution would be to have this, scenario-specific,

importance measure specified at the domain engineering stage, as means of iden-

tifying preferences. Another issue is how the conjunction of more than one con-

text value affects the anticipated behaviour of the application, for example, the

conjunction of talking and driving is in itself more distracting than driving alone.

This challenge which will be investigated as part of future work.

Context ordering model. Figure 4.7 depicts how the context orderings and

their elements are stored in the Context Mesh. Values of each context type can

be ordered in several different ways, comprising several different context value

orderings. Each of the context ordering vectors stores the context values in a

partially ordered manner. These context orderings are reusable accross different

application scenarios. The figure shows two vectors, containing two different

orderings of the context type activity, one for level of mobility and one for level

of distraction. The actual context values, such as driving, are represented by a

class containing the name of the context type and three lists of pointers XOR, OR

and AND. XOR is a list of values that are mutually exclusive with the context value

in question (e.g. driving and walking). OR list holds values that may coexist (e.g.

driving and talking), and AND lists the values that have to coexist (e.g. driving

and sitting). Furthermore, each context value may have a utility value associated

with it, denoting its relative importance in relation to other values of this type.

Context relations. Context is by nature highly interleaved. A relationship

may exist between different context types, such as an activity occurring at a loca-

tion. Figure 4.8 shows how the Context Mesh stores such relationships between

context types. A vector holds all relationships, and each relationship is repre-

sented by a class containing its properties. For example, relationship happens at

relates context types activity and location. For each context type a preferred

ordering may be specified as well. In some cases, such as context type weather,

context values are not ordered. This is represented by context ordering attribute

“none”. Furthermore, there is a user and scenario-specific utility value assigned

to each relationship, which is used to determine which relationships are of higher

importance. The context type relationships drive the context layering process,

described in detail later in this section.

The relative importance of different context types is overwhelmingly scenario-

specific. For example, consider the case where a user requests driving directions

81

context type: activity
context value: driving
utility: 10

XOR list: walking
OR list: talking, typing
AND list: sitting

talking typing sitting
These vectors store different
context value orderings for
a context type activity.

scenario: restaurant finder
context type: activity
ordering attribute: level of mobility

scenario: restaurant finder
context type: activity
ordering attribute: level of distraction

This class represents
properities of a specific
context value.

driving walking

walking talking sittingdriving typing

Figure 4.7: Data structures representing context orderings

to the nearest restaurant. In this case location, activity and device used may

be of higher importance than weather conditions and lighting or noise levels.

By contrast, the most applicable context types for an e-learning application, an

interactive computer-based training software, could be time requirements, user

profile and device used. For this reason, a utility value is associated with each

context type on a scenario basis.

Context Mesh encoding. The Context Mesh requires that initially a qual-

ified domain engineer encodes context values orderings and application-specific

context-type relationships. Although this does require additional manual effort,

the application programmers’ effort saved by enabling applications to be dynam-

ically composed and to evolve is greater. The encoding of Context Mesh and

Goal Service is analogous to the encoding of library functions in high level pro-

gramming languages, where experienced engineers encode the most commonly

used methods to achieve higher code reusability. Context data orderings in Con-

82

happens at

scenario: restaurant finder
relation name: happens at
context type1: activity
context type2: location
relation utility: 10
context type1 ordering attribute: level of mobility
context type2 ordering attribute: none

This vector stores pointers to
context type relationship defintions.

scenario: restaurant finder
relation name: weather conditions
context type1: location
context type2: weather
relation utility: 4
context type1 ordering attribute: none
context type2 ordering attribute: none

weather conditions

These classes describe
context type relationships.

Figure 4.8: Data structures representing context type relationships

text Mesh are encoded once by qualified domain engineer and can be reusable

accross different application scenarios. As an extension, users or other customize

Context Mesh orderings, and even define their own.

A large number of orderings, resulting from a variety of user and scenario-

specific preferences may in a worst-case scenario result in a high overhead in

encoding the structure for organising such data. However, in most real appli-

cations the needs of individual users are not entirely unique. For example, the

ordering of context type activity based on the level of distraction will be the

same for a number of different users and scenarios. I envisage that by associating

orderings with user profiles instead of individual users many Context Mesh or-

derings can be highly reusable. Context Mesh can thereby be viewed as a set of

application and user profile templates, which can be further customized directly

by the users.

The Context Service provides the information about context types and val-

ues, i.e. activity is cycling. The domain engineer (or user) assigns this context

value to the corresponding context ordering, e.g. defines that activity cycling is

more distractive than driving.

Context layering. Supporting utility-annotated relationships between context

types enables the operation of context layering, shown in Figure 4.9. The bold

framed values, such as in-vehicle information system (IVIS) and in town, repre-

sent values that are true in current context. Context layering refers to the process

83

driving walking talking typing sitting

context type: activity
ordering attribute: level of mobility
utility: 10

context type: device in use
ordering attribute: none
utility: 13

in town at lab at home

context type: location
ordering attribute: none
utility: 7

Context Mesh: Initial set of context types

context type: devices available
ordering attribute: none
utility: 6

alone with a friend with a colleague

context type: social
ordering attribute: none
utility: 4

morning noon afternoon

context type: time
ordering attribute: none
utility: 5

evening

Context Mesh: Set of context types after first round of context unfolding

Context Mesh: Set of context types after second round of context unfolding

sunny drizzle rain

context type: weather
ordering attribute: none
utility: 4

hail snow storm

Step 2:
unfolding location
relation utility: 3

Step 1b:
unfolding activity
relation utility: 7

Step 1d:
unfolding location
relation utility: 5

IVIS desktop SmartPhone laptop PDA

IVIS desktop SmartPhone laptop PDA

Step 1a:
unfolding device in use
relation utility: 10

Step 1c:
unfolding activity
relation utility: 3

Figure 4.9: Context unfolding process.

84

of dynamically expanding and contracting the set of context types that are taken

into account by the service composition framework. Context layering consists of

two operations: context unfolding , which introduces additional context types that

are related to the current set of context types considered, and context folding,

the process that removes context types from the same set.

The algorithm that performs context unfolding works in the following way. It

starts with an initial list of context types considered, which we term the original

context. This includes “device in use”, “activity”, and “location” context types

in the example in Figure 4.9. Starting with the context type with the highest

utility, and for each context type in the original context, the algorithm finds the

context types that are related to it. Then, it adds the related context types to the

set of considered constraints, and moves to the next context type in the original

context. A threshold may be specified to ensure that only relationships of at least

a certain utility will be considered when unfolding the context.

In the example in Figure 4.9, based on the utilities of the context types the

device in use context type is unfolded first, introducing the new type devices

available. This is followed by unfolding of the activity context type, which intro-

duces social context. The resulting set of considered context types is called the

single-unfolded context. Potential consecutive unfolding steps can be taken; in the

example the weather context type is introduced by unfolding location, resulting

to a double-unfolded context.

As pervasive computing environments may introduce a practically unlimited

number of context types related to a user task, organising context by relevance

in layered context type sets is useful for controlling the number of context types

taken into account by the composition framework.

Context goal transformations. Selecting a different context value from con-

text type ordering vector enables substitution of a context value with a weaker

or stronger one. In the same way, moving through the vector of context relation-

ships facilitates the process of context layering, which expands or reduces the set

of context types taken into account by an application.

These structures and the operations they provide for traversing through their

values, facilitate transformation of failed context goals, i.e. goal conditions that

were not achievable during the planning process. The context goal transformation

is a process of substitution of a specific context value. Once the new context value

is obtained, it is passed to the Context Proxy. As a result this triggers a new,

modified context goal.

85

Following is a list of transformations provided by the Context Mesh:

1. Weakening.

Definition: Movement along the specified context type ordering towards a

weaker value, i.e. lower on the scale.

Example: Goal to display information on an LCD screen may be substituted

by a goal to present information on any display device visible and available.

2. Substitution.

Definition: The process of obtaining an equivalent substitute context value,

called a sibling value.

Example: Goal to display information on a desktop PC’s LCD screen may

be substituted by a goal to display information on a TabletPC’s LCD.

3. Strengthening.

Definition: Movement along the specified context type ordering towards a

stronger value, i.e. higher on the scale.

Example: Goal to display information on any type of display device avail-

able in the environment may be substituted by a goal to display information

on an LCD or CRT.

4. Context unfolding.

Definition: The process of expanding the set of context types taken into

consideration. This may often result in a refined goal, where the plan may

eventually overachieve the original goal. This is useful when there are op-

erators with partially satisfied preconditions. Retrieving additional context

types may enable the selection of operators previously not applicable in the

planning process.

Example: The goal condition requires that information is to be displayed

on an LCD screen. When an LCD screen cannot be found in the current en-

vironment of the user, the goal cannot be satisfied. However, a CRT screen

is discovered in the environment, but an examination of the available opera-

tors shows that using this CRT screen has a precondition where (location

in kitchen). At the moment, the location of the user is unknown. By

expanding the Context Mesh and unfolding the location context type, the

user’s present location is detected and the applicability of displaying the

information on the available CRT can be established.

86

5. Context folding.

Definition: Removal of context types, i.e. reduction of number of context

types taken into an account. As a result a context goal is removed from the

current set of open goals that the planner must achieve.

Example: No text to speech service is available. By removing the activity

context type from the Context Mesh, as a goal condition for displaying

directions in the speech form is also removed.

6. Historical value substitution.

Definition: Obtains a substitute, past value of context at a specified point

in time.

Example: If a sensor has failed and a context value can not be obtained, a

context history is accessed to try and retrieve a past context value.

Summary. The Context Mesh is a reconfigurable specification of orderings of

context type values, and the relationships between context types. This allows

for substitution of related context values, thereby facilitating reformulation of

unreachable context goals into ones that can be solved by the planner. Encod-

ing of the relationships between context types further enables context layering,

process of expansion and reduction of context types taken into consideration by

the framework. Consequently this process introduces new or removes old goal

conditions from the original composition request.

4.2.5 Goal Service

The Goal Service, as shown in Figure 4.10, stores task descriptions and their

respective formalised definitions. For example, in our usage scenario the task is

to find restaurant directions. The goal conditions required to be reached for this

task are associated with the task description. The Context Mesh as previously

described specifies relationships and orderings between context types and their

values. Similarly the Goal Service organises core goals and their arguments into

reconfigurable orderings, which facilitate core goal transformations.

Core goal selection and storage. Each composition request is a list of

goal conditions, specified in a language used by the planner. One way to construct

a composition request is to have users manually select the individual goal

conditions to be included. However, while the users know what task they want to

execute, they may not know how to realise the composition request, requiring

87

task 1 This vector stores pointers to user task definitions.task 2 task n

core goal
condition 1

core goal
condition 2

This vector stores
core goal conditions
constituting a formal
 definition of a task 1.

This vector holds pointers
 to goal arguments.

These two vectors store pointers to goal
predicate and argument orderings.

core goal
condition n...

goal argument 1

goal argument 2

...

goal argument n

goal predicate 1

goal predicate 1, ordering 1

goal predicate 1, ordering 2

...

goal predicate 1, ordering n

goal argument 1, ordering 1

goal predicate 1, ordering 2

...

goal argument 1, ordering m

task 1
name

task 1
goal conditions

Figure 4.10: Goal Service: structures for reconfigurable specification of tasks,

goal predicates and arguments.

a user to understand the low-level details of an unfamiliar planning syntax, and

the details of the domain knowledge, is not desirable.

There are several stakeholders in defining a composition request. Users

specify their task intention. Service providers define service operation descrip-

tions, and thereby restrict the set of available goals. Finally, context data limits

the applicability of existing goal conditions.

The Goal Service stores available core goal conditions and organises them

into tasks supported by the framework. These goal conditions are explicitly

defined by domain engineers using the planning language. Once the user selects

a task using a provided Graphical User Interface (GUI), the corresponding goal

conditions are retrieved from the Goal Service and the user is subsequently

prompted to supply the necessary arguments to complete the construction of a

composition request.

88

goal predicate: restaurant_found
utility: 11

restaurant_booked
This vector stores
goal predicate orderings.

scenario: restaurant finder
goal_predicate: restaurant_booked
ordering attribute:by utility

This class represents
goal predicate properties

restaurant_available restaurant_found

Figure 4.11: Data structure for goal predicate orderings

Moreover, the Goal Service keeps track of all composition requests, the

context of their invocation and the number of times each was submitted. This

information can be used to order the previous composition requests by their

invocation frequency, when displaying them in the GUI for goal selection. Fur-

thermore, it can be used to proactively make composition request recommen-

dations and automate their selection.

Goal predicate orderings. The Goal Service holds a number of vectors,

which partially order core goal predicates. Figure 4.11 shows some of the possible

forms that the (restaurant booked) goal condition may take. For example,

given the ordering in Figure 4.11, the goal condition (restaurant found) is

the weakest replacement for the (restaurant booked) goal condition. The goal

condition (restaurant available) represents a state when the restaurant can

be found and its availability queried, however the booking cannot be performed.

Therefore this is also a weaker form of the original (restaurant booked) goal

condition. The goal predicates are represented as a class holding a name and

relationships between predicates, as shown in Figure 4.11.

Goal conditions have utility values assigned to them, initially by a domain

engineer, which can be updated using feedback from the planning system. These

can be used to identify goal conditions that contribute to the effectiveness of the

overall composition request when devising a partial solution. For instance,

the utility value of (restaurant found) in 11, as shown on Figure 4.11. Goal

utilities are application- and user-specific. Designing a system to create and

maintain these utility values is part of the proposed future work.

Argument orderings. Goal predicates may contain a number of arguments.

Therefore, similar to goal predicate orderings, each argument may be associ-

ated with one or more argument orderings, thereby facilitating transformations

89

of goal arguments. For example, the (restaurant found cuisine argument

location argument) goal is associated with two arguments. The first argument,

cuisine argument, denotes the type of the cuisine to be found, such as Spanish.

Similarly, the second argument location argument is used to define the location

of the restaurant, such as Cambridge.

Figure 4.12 shows the possible partial ordering for the cuisine argument,

which is associated with the goal predicate (restaurant found). For exam-

ple, spanish cuisine is a more specific value of a mediterranean cuisine type.

Argument ordering values are associated with utility values, like goal predicate

orderings. For instance, a croatian restaurant, having a utility 13, may be

preferred to a portuguese one, which carries utility value 6.

Figure 4.13 shows a vector storing a possible ordering of the cuisine argument

argument. The argument orderings can be scenario, goal and user-specific. Simi-

larly to context values and goal predicates, a utility value can be associated with

an argument value, which is used to determine its importance.

Core goal transformations. By moving up and down the goal predicate and

argument orderings, the Goal Service enables substitution of goal predicates

and arguments respectively. As a result, new core goal conditions are assembled,

thereby substituting the failed core goals in the original composition request.

Like context goal transformations provided by the Context Mesh, core goal trans-

formations can take several forms:

1. Weakening

Definition: Movement along the goal type or argument ordering respectively

towards a weaker value, i.e. lower on the ordering scale.

Example 1: Type weakening

The (restaurant_booked) goal condition may be substituted by the goal

condition (restaurant_available).

Example 2: Argument weakening

Similarly, if the Spanish restaurant requirement, from the usage scenario,

cannot be satisfied, it can be substituted by the goal condition in which the

argument is generalised. As a result the goal condition (restaurant found

mediterranean) is instantiated.

It is important to note that once the top most element in the argument

ordering is reached it will not be removed. Argument removal is consid-

ered as a separate operation, in order to allow (less important) arguments

90

lebanese 7

cuban 3

brasilian 5

cuisine

middle_eastern 11

mediterranean 9

latin_american 1

greek 11

croatian 13

italian 10

tapas 7spanish 14

portuguese 6

mexican 8

Figure 4.12: Sample argument ordering for argument (cuisine argument)

argument: cuisine_argument
argument value: spanish
utility: 14

mediterranean italian tapas
This vector stores
argument value orderings.

argument: cuisine_argument
goal_predicate: restaurant_found
ordering attribute: none

This class represents
goal argument properties.

greek ...spanish

Figure 4.13: Data structure for argument orderings

91

to be removed sooner in the goal transformation process and to prevent

unnecessary traversing through argument ordering.

2. Strengthening

Definition: Movement along the goal predicate or argument ordering re-

spectively towards a stronger value, i.e. higher on the ordering scale.

Example 1: Type strengthening

The (restaurant found) goal state may be substituted by the “stronger”

goal condition (restaurant available).

Example 2: Argument strengthening

Once the base goal conditions are satisfied, further constraints on the goal

may be imposed. For instance, requesting that the desired restaurant must

be Spanish and have a parking facility.

3. Relaxation

Definition: Removing the goal type or goal argument constraint

Example 1: Predicate relaxation

Removal of this goal condition from the set of goal states to be satisfied.

Example 2: Argument relaxation

For example finding any restaurant, as opposed to a Spanish one. This is

a result of removing the constraint on the restaurant cuisine.

4.2.6 Goal Transformation Engine

Overview. The Goal Transformation Engine is a component that coordi-

nates the process of reformulation of failed composition requests. This process

consists of core and context goal transformations. There are two circumstances

under which goal transformations are performed. Firstly, when no plan is found

for a given request. Secondly, when a plan with a higher utility can be applied

to solve a composition request and as a result overachieve the original one.

Transformation algorithm. Algorithm 4.1 outlines the operation of the Goal

Transformation Engine, which provides composition failure management facil-

ity. The Goal Transformation Engine takes three input parameters: SGOALS,

a list of goal conditions forming the composition request, planningSuccess,

the outcome of the planning process and compositionRequestID, used to store

92

Algorithm 4.1 Composition failure management

1: procedure CompositionFailureManagement(

SGOALS ,

planningSuccess,

compositionRequestID)

2: while (planningSuccess 6= true

or timeOut

or maxNumTransformationsReached) do

3: SACHIEV ABLE = 0

4: SCORE = 0

5: SCONTEXT = 0

6: SACHIEV ABLE , SCORE , SCONTEXT ← separateGoals(SGOALS)

7: STRANSGOALS = 0

8: T = 0

9: STRANSGOALS = ContextAwareGoalTransformation(

compositionRequestID, SCORE , SCONTEXT)

10: STRANSGOALS.add(SACHIEV ABLE)

11: planningSuccess← plan(STRANSGOALS)

12: updateTransformationUtilities(compositionRequestID,

planningSuccess)

13: SGOALS = STRANSGOALS

14: end while

15: end procedure

data related to this composition request. Goal Transformation Engine pro-

cesses SGOALS if planning has failed and separates the failed from the achievable

goal conditions. It generates two sets of failed goal conditions: SCORE , a set

of failed core goal conditions, and SCONTEXT , a set of failed context goal con-

ditions. It stores achievable goals into SACHIEV ABLE . Two sets of failed goals,

SCORE and SCONTEXT , are used by context aware goal transformation operation,

outlined in Algorithm 4.2, which generates STRANSGOALS, the set of transformed

goal conditions. STRANSGOALS is then passed to the planning system. If the

planning process succeeds the algorithm terminates, otherwise it enters another

round of transformation. The result of the planning process is used as feedback

to update the utilities of transformations stored in set T , which keeps track of all

transformations applied to the failed goals.

Algorithm 4.2, which is invoked in line 9 of Algorithm 4.1, describes the pro-

cess of context aware goal transformation in which transformations are selected

93

(define (goal_3_original)

(restaurant_found lebanese zurich)

(restaurant_booking_made 2 2000)

(restaurant_booked restaurant_name)

(directions_found current_address restaurant_address)

(directions speech_out)

(directions language english)

)

(a) Original composition request for Case 2

(define (goal_3_transformed)

(restaurant_found middle_eastern area_3_zurich)

(restaurant_booking_made 2 2100)

(restaurant_booked restaurant_name)

(directions_found current_address restaurant_address)

(directions language english)

(directions stephanie smartphone)

)

(b) Transformed composition request for Case 2 request shown in 4.2.6

Figure 4.14: Sample composition request and transformed request

based on their utilities. To illustrate this methodology consider again what hap-

pens when the Composition Engine fails to satisfy the request in Case 2 of the

usage scenario, shown in Tables 4.1 and 4.2.

For example, the Composition Engine cannot satisfy two goal conditions

from the composition request shown in Figure 4.14(a). The first one is the

core goal condition (restaurant found lebanese zurich). The second one is

the context goal condition (directions speech out).

The goal (restaurant found lebanese zurich) is a base core goal, mean-

ing that without satisfying some form of this goal condition the whole request is

of no utility to the user. The utility-driven algorithm, selects the transformation,

t, with highest-utility, as shown in line 7 of Algorithm 4.2. For example, by apply-

ing an argument weakening transformation, following the ordering shown in Fig-

ure 4.12, it constructs the goal (restaurant found middle eastern zurich).

Each selected transformation is added to the set of final transformations T . The

transformed goal, gt is added to SCORETRANS , the set of transformed core goals.

Once core goal conditions have been reformulated, context goal transforma-

tion is performed, as shown in line 12 of the algorithm. The failed context

94

Algorithm 4.2 Context aware goal transformation using utilities

1: procedure ContextAwareGoalTransformation(

compositionRequestID, SCORE , SCONTEXT)

Require: SCORE 6= 0 or SCONTEXT 6= 0

2: T = 0

3: STRANSGOALS = 0

4: SCORETRANS = 0

5: SCONTEXTTRANS = 0

6: for all g ∈ SCORE do

7: t = GoalService.getT ransformationWithHighestUtility(g)

8: gt = GoalService.transformGoal(g, t)

9: T.add(t)

10: SCORETRANS .add(gt)

11: end for

12: for all gc ∈ SCONTEXT do

13: SCONTEXTPAIRS ← ContextProxy.getContextV aluePairs(gc)

14: for all s ∈ SCONTEXTPAIRS do

15: c = ContextProxy.getContextType(s)

16: v = ContextProxy.getContextV alue(s)

17: o = ContextMesh.getKeyContextOrdering(c)

18: t = ContextMesh.getTransformationWithHighestUtility(c, v, o)

19: st = ContextMesh.transformContext(s, t)

20: SNEWPAIRS.add(st)

21: T.add(t)

22: end for

23: gct = ContextProxy.generateGoal(SNEWPAIRS)

24: SCONTEXTTRANS.add(gct)

25: end for

26: STRANSGOALS.add(SCORETRANS)

27: STRANSGOALS.add(SCONTEXTTRANS)

28: GoalTransformationEngine.notify(compositionRequestID, T)

return STRANSGOALS

29: end procedure

95

goals in the usage scenario is the goal condition (directions speech out).

The Goal Transformation Engine interacts with the Context Mesh and the

Context Proxy to identify which context type and value pairs trigger this goal

condition, shown in line 14. In the usage scenario, it is the activity of the user

that implies that the directions should be in the synthesised speech format. For

each context value pair s, obtained in line 14, the algorithm acquires the ordering

o, which will be used for transformations of this context type c, and its value v.

The Context Mesh may perform one of the transformations as described in

Section 4.2.4. For example, given context types activity, location, and device in

use, it expands the context types and includes social setting, time, weather and

devices available. It uses context utilities to determine in which order context

types will be unfolded and in which order new context types are to be included

in the transformation process. For instance, as shown in Figure 4.9, firstly the

social context and devices available will be considered. Once all the context value

pairs have been transformed for a specific context goal condition, Context Proxy,

as shown in line 23 of Algorithm 4.2, assembles a new context goal based on the

new set of context value pairs, called SNEWPAIRS.

By acquiring the social context, the Context Mesh may find out that Miles is

driving together with Stephanie, represented by the literal (social with friend

stephanie). Furthermore by acquiring information about other devices available

in the environment, it may find out that both Miles and Stephanie own a Smart-

Phone each, in addition to Miles’ laptop being in the back seat. It may therefore

choose to replace the goal of reading out driving directions with the goal con-

dition (directions stephanie smartphone). This will forward the directions

to Stephanie’s SmartPhone, so that she can guide Miles through Zurich. It is

the purpose of the Context Service to filter out and show only the visible and

reachable devices in the environment. For example, if the directions are to be

routed to Miles’ laptop in the back seat, the corresponding notification about

the routing will be displayed on the current device in use. Figure 4.14(b) shows

the transformed composition request, which retains the same size, however its

utility is changed as a result of transformations.

For each context goal, the set TCONTEXT of applicable transformations is

generated. As with core goal conditions, the highest utility transformation, t, is

selected and applied to generate a transformed goal condition, gct. The transfor-

mations and the substitute goal are appended to the set of final transformation

T and the set of transformed context goals SCONTEXTTRANS.

Procedure unfoldContextType, shown in Algorithm 4.3 outlines the unfold-

ing process, shown in Figure 4.9, which incorporates additional context types and

their values into GoalMorph. Context types are sorted in decreasing utility order,

96

Algorithm 4.3 Supporting procedures for context aware goal transformation

1: procedure unfoldContextType(c)

2: SCTY PES = ContextMesh.findRelatedContextTypes(c)

3: OCTY PES = orderContextTypesByDecreasingUtility(SCTY PES)

4: for all cr ∈ OCTY PES do

5: v = ContextProxy.value(cr)

6: gc = ContextProxy.generateContextGoal(v)

7: GoalTransformationEngine.SCONTEXT .add(gc)

8: end for

9: end procedure

10: procedure updateTransformationUtilities(T , planningSuccess)

11: for all t ∈ T do

12: u = GoalTransformationEngine.getUtilityV alue(t)

13: if planningSuccess then

14: u = u + 1

15: else

16: u = u− 1

17: end if

18: end for

19: end procedure

so that context types can be unfolded in the order of their importance.

At present, GoalMorph examines the result of the planning process, and trans-

forms the goal conditions that have not been met, and then triggers replanning.

However, GoalMorph can be configured to transform all the goal conditions, re-

gardless whether or not they were initially satisfied during planning, or to trans-

form only one goal condition in each run (e.g. the least or most important one).

Transformation selection. Table 4.3 summarises the operations provided by

the Goal Service and the Context Mesh, which facilitate core and context goal

transformation respectively.

There are four types of input to the process of computing the set of applicable

transformations for each goal condition: (1) domain control knowledge, (2) utility

function, (3) user input and (4) randomised algorithm.

Domain control knowledge is provided at the domain engineering stage. It

includes control structures expressing the priorities among goal transformations

for a given scenario. This approach however introduces overhead, which arises

97

Core goal transformations Context goal transformations

performed by Goal Service performed by the Context Mesh

1. Weakening 1. Weakening

2. Strengthening 2. Substitution

3. Relaxation 3. Strengthening

4. Context unfolding

5. Context folding

6. Historical value substitution

Table 4.3: List of core and context goal transformations

from the requirement to encode domain control knowledge.

A utility function may be applied together with feedback from the planner, as

shown in Algorithm 4.3. Firstly, the utilities of substitute goals are determined

to calculate the overall cost-benefit of the substitute solution. The higher utility

of a given tranformation, the higher its priority. There may be situations where

two or more transformations have the same utility value, in which case a random

selection is made. If there is a case where both goal weakening and strengthening

are of the same utility, strengthening transformation is preferred. When conflict-

ing context goal conditions emerge from the transformation the original goal has

precedence over the transformed one.

Additionally, the utilities of the corresponding transformation are updated,

based on the success or failure feedback from the planning system. For each

transformation that contributed to a satisfaction of the composition request,

the utility is increased, and vice-versa. When evaluating a number of different

transformed composition requests, a cumulative utility of their goal conditions

is used. More sophisticated and advanced methods such as machine learning

techniques together with user feedback can be used, however they are out of

scope of this work.

User input may also be used to guide goal transformations. In that case,

the domain control knowledge would be used to identify the set of applicable

transformations. The user is then prompted via the graphical interface to select

the transformation. This method, however, requires the user to be familiar with

the internal representation of goal conditions.

Finally, it is possible to use a randomised algorithm, which randomly selects

the transformation to apply to each goal condition.

The current implementation of GoalMorph supports random and utility based

search for selecting transformations. The next section evaluates these two ap-

proaches.

98

Goal dependence and transformation selection. Certain goals can be

inter-dependent, being a precondition of one another. As a result, it is possi-

ble that transforming one goal may make the other (un)achievable, and cause the

transformation algorithm to potentially enter an infinite loop.

One possible way of dealing with loops would be to encode goal relationships

in the domain control knowledge. This would allow planner to avoid such loops,

by having the information about all the pairs of dependent goals. However this

approach introduces prohibitive manual overhead, requiring that interrelations

between all the goals, including their corresponding transformations, are explic-

itly stated.

A special case of goals are context dependent goals, as described in Sec-

tion 4.2.1. These goals are directly associated with core goals. The goal trans-

formation handles context dependent goals by associating their transformation

with that of their “parent” core goals. For example, if the core goal is removed

from the goal list, so will any of its context dependent goals.

The challenge arises when handling transformations of core and context goals

which may be preconditions to each other. For example, goal condition ga is the

precondition of the goal condition gb. Goal ga is initially achievable, and gb is

not. However, after the transformation of ga is no longer achievable. At present

the system imposes a limitation on the maximum number of transformations

applied to a pair of goals, as well as a timeout period. If that occurs, the system

backtracks to the previous transformation run, and preserves the goal conditions

of higher importance. It uses feedback from the planner to compare the achievable

goals against the list of pending goals in each iteration of the transformation

process. It uses goal utilities to determine the goal importance. For example,

if following a transformation a (core) goal with higher priority is satisfied and

the previously achievable goal with lower priority is no longer achievable, it will

proceed with this solution. In case of a randomised transformation algorithm,

the system will attempt to preserve core goals.

4.2.7 GoalMorph in use

This section discusses how GoalMorph can be used to realise the motivating sce-

nario described in Section 4.1.1. In this case, Miles requests driving directions to

the nearest Lebanese restaurant in Zurich. Because Miles is driving, he expects

the directions to be read out to him. However, as the speech synthesiser facility

is not available, the planning process for this composition request fails.

At this point in time GoalMorph is triggered. Firstly, GoalMorph examines

the output produced by the planning system. It analyses goals and groups them

99

into sets of failed goals, and achievable goals. In this case the failed goal was the

one requesting directions to be read out to Miles. This goal was triggered by the

fact that Miles was driving.

Once core goals have been reformulated by applying goal transformations,

GoalMorph passes the control to Context Mesh, which may perform context lay-

ering, the process of expanding and reducing number of context types taken into

consideration by the system. At some point in time the algorithm performs con-

text unfolding. As a result aside from initially considered context types such as

activity, location and device in use, it includes other related context types. For

example, the algorithm discovers the relation between activity and social setting

of the user. After unfolding of the context type activity, it acquires the social

context of Miles it establishes that he is in the car with Stephanie. At the next

iteration of context unfolding, Context Mesh, also introduces another context

type, which describes the available devices in the environment. By acquiring the

current values of this context type, it establishes that there are other devices

present in the environment that can be used, such as Stephanie’s mobile phone

or Miles’ PDA. These new context types and their values, when introduced in

the system, trigger new context goals. For example, directions can now be for-

warded to Stephanie’s phone. This new, reformulated composition request is

then passed back to the composition system.

4.3 Evaluation

Experimental evaluation was conducted on the prototype implementation of the

GoalMorph system to determine its effectiveness, scalability and impact on the

overall performance of the proposed service composition framework. The exper-

iments were performed on a dual Pentium III 800 MHz processor with 2 GB

RAM.

The domain model of the usage scenario, described in Sections 3.1 and 4.1,

contained 100 facts and 20 operators. To evaluate GoalMorph, failure injection

was performed, in which actions were randomly removed from the domain to

simulate missing services. During each failure injection round, the domain size

was reduced by 20% on average.

The Context Mesh contained seven context dimensions, such as the ones de-

scribed in Section 4.2.4, and shown in Figure 4.9. Each context type contained up

to ten different values and their corresponding utilities, which were initially as-

signed random generated values. Furthermore, each context type was associated

with one or more orderings.

100

The size of composition requests varied from 10 to 40 goal conditions. The

system was exercised with the following sample composition requests:

1. Find a dining or entertainment venue (location-based)

2. Find an entertainment venue (event-based)

3. Find a dining venue (cuisine-based)

4. Find directions to the venue

5. Book dining or entertainment venue

6. Make booking and find directions for dining and entertainment venues

All the planning was performed by TLPlan [BK95] in breadth first search

mode with no search control knowledge. TLPlan normally uses domain specific

search control information to guide simple forward chaining search, where the

planning operators are applied to the current state to generate its successors.

Bacchus et al. [BK95] demonstrate that control strategies can be a considerable

aid in speeding up the planning up to twenty times in TLPlan compared to

planning without search knowledge. In this work, however, the focus was on

performance of the goal transformation algorithm itself and the planner was used

without control knowledge.

Two different approaches in the selection of transformations in GoalMorph

were compared. The first one applied a random search algorithm, where trans-

formations were selected in a random way. The second one was utility-driven

mode, in which the goal transformation algorithm was run for each failed goal

until a transformed goal with the highest utility that could be solved was found.

If none of the transformed goals could be solved the GoalMorph algorithm was

set to terminate after two seconds.

4.3.1 GoalMorph effectiveness

The effectiveness of the goal transformation algorithm was evaluated by com-

paring the transformed and original composition requests. Firstly, the size

of the original and transformed composition requests was measured and com-

pared. Secondly, the utility of the transformed composition request and orig-

inal composition request was measured and compared. The effectiveness of

GoalMorph was evaluated both in random search mode and utility mode for se-

lecting transformations. It is important to note that when the planning system

fails, the achievable size and utility of the original composition request are

101

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40
Composition request size (number of goal conditions)

T
ra

n
s

fo
rm

e
d

 c
o

m
p

o
s

it
io

n
 r

e
q

u
e

s
t

s
iz

e
 a

s

p
e
rc

e
n

ta
g

e
 o

f
o

ri
g

in
a
l

c
o

m
p

o
s

it
io

n
 r

e
q

u
e

s
t

s
iz

e

Utility-driven transformation selection Random transformation selection

Figure 4.15: Percentage of achievable transformed composition request size (num-

ber of goal conditions) as a function of original composition request size

both considered equal to zero, as the request is only regarded satisfied by the

planning system if all goal conditions are met.

Size of the transformed composition request. Firstly, the number of goal

conditions that can be satisfied after goal transformation was considered. This

was compared to the total number of goal conditions that are to be satisfied.

Figure 4.15 shows the results of this experiment. Both random-search and utility-

driven goal transformation found goals that could be solved and retained at least

60% of the size of the original composition request.

As expected, the lowest reduction occurs when utility-driven transforma-

tions are applied. However, even the randomised transformation selection al-

gorithm is an improvement to the planning with the original request only, as

the composition request can be partially satisfied. Sometimes transformed

composition requests may even be larger than the original requests. That can

be due to context unfolding, the operation that may introduce new, additional

goal conditions.

102

Figure 4.14 shows the sample composition request and transformation of

this request, for Case 2 of the usage scenario. In this specific experiment, the

transformation request retained 100% of the size of the original request. All failed

goal conditions were substituted by transformed ones.

Utility of the transformed composition request. To evaluate the utility of

the transformed composition request, a model, representing partial fulfillment

of the original composition request as well as individual goals, was employed.

Haddawy et al. [HH93] separate atemporal goals, which describe what needs

to be achieved, into goals with symbolic and quantitative attributes. For exam-

ple, a symbolic goal would be (restaurant found spanish), denoting that the

restaurant must serve Spanish cuisine. An example of a quantitative goal would

be (restaurant booking made 3 1300), representing that table in the selected

restaurant should be made for 3 people. Haddawy et al. further define a degree

of satisfaction function (DSA) for a symbolic atemporal goal. This is defined in

terms of an application-supplied sequence S of mutually exclusive goal literals g1,

g2 ... gn, such that gn is the actual component of the goal and gi represents a

greater degree of satisfaction than gj if i < j. DSA is in the range [0.0-1.0], where

0.0 is representing no satisfaction and 1.0 is full satisfaction of the goal literal.

GoalMorph uses this utility model for atemporal goals to reason about the

extent to which each goal is satisfied. Goal ontologies and utility values from the

Context Mesh and the Goal Service provide a base for devising a function for

core and context goals respectively, specifying partial satisfaction of atemporal

goals.

The overall goal utility is evaluated by measuring the sum of the utilities

of all goal literals. Figure 4.16 shows the utility of the composition request

after random and utility based goal transformations, when varying the problem

complexity from 10 to 40 goals. Reduction in goal utility with goal transformation

does not increase with the number of goal conditions introduced. This is due to

the fact that there is a higher probability of successfully transforming goals with

a higher number of goal conditions. It is important to note that higher goal

size may not necessarily imply a higher utility. Depending on user preferences,

shorter goals may incur higher utility.

4.3.2 GoalMorph performance

Transformation time This experiment compared the time that it takes the

planner to find no solution for the composition request to the time it takes

GoalMorph to transform the failed composition request into one that can be

103

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40

Composition request size (number of goal conditions)

T
ra

n
s
fo

rm
e
d

 c
o

m
p

o
s
it

io
n

 r
e
q

u
e
s
t

u
ti

li
ty

 a
s
 p

e
rc

e
n

ta
g

e

o

f

th
e
 o

ri
g

in
a
l
c
o

m
p

o
s
it

io
n

 r
e
q

u
e
s
t

u
ti

li
ty

Utility driven transformation selection Random transformation selection

Figure 4.16: Percentage of achievable utility of transformed goal as a function of

original goal size

solved and to replan. Figure 4.17 shows the results. As expected, the time differ-

ence increases with the number of transformations. However, the transformation

time remains sufficiently small, less then 1600ms for goals of size 40, to justify

the overhead introduced by goal transformation.

It is important to mention that planning time can be manually bound. There-

fore, the framework can regulate how much time it would allow for the planning

process to fail, before triggering GoalMorph.

Core and context goal transformations performance This experiment

considered the transformation time for core and context aware goals and their

impact on the overall transformation time. As core and context goals may be de-

pendent, only core and context aware goal transformations that can be performed

in isolation were compared.

Context aware goal transformation is expected to take longer than core goal

transformation for a number of reasons. Firstly, the communication with the

Context Mesh and the context layering process are computationally expensive.

104

0

5000

10000

15000

20000

25000

30000

35000

40000

10 20 30 40

Composition request size (number of goal conditions)

C
P

U
 T

im
e

 (
m

s
)

Average transform time using utility driven transformation selection

Average transformation time using random transformation selection

Average planning time (without bound): no plan found

Figure 4.17: Total time to solve a transformed request compared to the planning

time of failed request

Interaction with the Context Proxy to generate new context goals, as well as

interfacing with the Context Service to retrieve historical values, can introduce

further overhead. Finally, the latency of context goal transformations depends

on a number of parameters, such as the number of related context types, the size

of the context ordering, and the number of different hierarchies of each context

type.

Figure 4.18 shows the results obtained when measuring context and core goal

transformations. Total transformation time shows that the GoalMorph modi-

fies composition requests efficiently. As anticipated context goal transformation

takes longer than core goal transformation, due the more comprehensive ordering

structure and communication overhead among GoalMorph components, such as

the Context Mesh and the Context Service. The oscillations in the latency

result from the different complexities of the context goal conditions used and the

corresponding context orderings.

Finally, the time GoalMorph spends on generating possible transformations

can be bound, as well as the number of transformations that will be performed.

105

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60

Number of transformations

C
P

U
 T

im
e

 (
m

s
)

Core transformations Context transformations

Figure 4.18: Performance of utility-driven core and context goal transformations

as number of transformations increases

Furthermore, the planning problem can be solved sufficiently fast, GoalMorph

can be extended to generate a number of modified requests at the same time and

present the alternatives to the user.

4.3.3 GoalMorph scalability

In this experiment an increase in the goal size was simulated and the system’s

behaviour was observed in terms of the number of transformations generated and

the running time of GoalMorph. Figure 4.19 shows that the system scales well,

being able to generate up to 240 core and context transformations in 0.4 seconds

in the random transformation selection mode. As expected, the utility driven

transformation selection mode has a higher running time, due to the search for the

transformed goal with the highest utility, whereas the random search algorithm

terminates once the first feasible goal that can be solved is found.

106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Number of transformations

T
ra

n
s
fo

rm
a
ti

o
n

 t
im

e
 C

P
U

 (
s
)

Utility-based transformation selection Random-based transformation selection

Figure 4.19: GoalMorph performance as a function of number of transformations

4.4 Related work

Most previous work in goal oriented service composition [MS02, WSH+03] has

assumed a static environment where plans can always be solved. In addition they

focus on handling service execution failures, by replacing failed service instances.

In contrast, this work generates solvable goals even when service replacement

is not adequate, for instance, when no services that would satisfy some parts

of a composition request are available. This section compares the GoalMorph

solution to the GTrans [CV98] goal transformation system and discusses previous

research in the area of partial goal satisfaction.

4.4.1 Comparison with GTrans

Cox and Veloso [CV98] introduce a taxonomy of goal transformations based on an

organisation of goals and objects in a goal hierarchy, as an approach to planning in

a world under continual change. They extend PRODIGY [VCP+95], a state space

nonlinear planner, to select the appropriate goal transformations automatically in

107

response to world changes, in order to completely solve the transformed problem.

Based on this work, Cox and Zhang [CZ04] later develop a system called GTrans,

which applies goal transformation approach to mixed-initiative planning.

GoalMorph extends the ideas presented in GTrans by introducing the Context

Mesh to enable context aware goal transformation. This allows the system not

only to transform the actual goal, such as abstracting the goal from finding a

Spanish restaurant to any closest restaurant or substituting Spanish with Mexican

restaurant, but also to transform context goal conditions, to allow for satisfaction

of the next “nearest” goal in the “nearest” context. This approach also enables

the user to specify importance measures across the context types and hierarchies.

GoalMorph differs from GTrans in a number of ways.

1. Selection of goal transformations. When selecting applicable goal trans-

formations, beside the commonly used unguided search, GTrans relies on

domain control knowledge. Cox and Zhang [CZ04] extend GTrans to allow

users to establish and transform goals manually through visual representa-

tion. GoalMorph provides a utility model for goal contexts and their corre-

sponding transformations, in addition to a domain control search strategy

and unguided search using randomised algorithm.

2. Automated transformation. The user explicitly performs goal transforma-

tions in the mixed-initiative version of GTrans. By contrast, the GoalMorph

solution enables the user to provide feedback on the usefulness of a partic-

ular solution after goal transformation and correspondingly updates the

utilities of performed goal transformations. The design of GoalMorph al-

lows the system to be extended to include the user directly in the goal

transformation loop, however the work presented in this dissertation is fo-

cusing on automated goal transformation for providing an improved user

experience.

3. Planner independence. Cox et al. integrate goal transformation with the

PRODIGY planning system, which reasons about both multiple goals and

multiple alternative operations from its domain definition. GoalMorph on

the other hand, is planner independent. It uses internal representation for

goal conditions, their hierarchies and utilities. GoalMorph is the general-

purpose solution. It is planner-independent and can be integrated with

multiple composition methodology.

4. Replanning. GTrans interleaves goal transformation with the actual plan

refinement process. GoalMorph is planner independent and therefore it is

108

designed in such a way to rely on replanning. Goal transformations can be

performed incrementally from the failed plan or completely from scratch

starting with the original composition request definition.

5. Configurable hierarchy types. GTrans allows for goals, their predicates and

arguments to be organised along four key hierarchies: abstraction hierarchy,

number line, enumeration set and patronomy. GoalMorph extends this to

allow for any arbitrary hierarchy to be included. This is achieved by creating

a custom interface that imposes a total or partial ordering on the elements

of each hierarchy.

6. Goal prioritisation. GTrans at present assumes that all goals have the same

priority. However, the authors propose as part of the future work to allow

the planner to explicitly assign relative priorities to the goals. In the pro-

totype implementation of GoalMorph, core goal conditions are transformed

first, followed by context goal conditions. However, the goal utility model

allows for each goal condition to be prioritised thereby guiding the selec-

tion of goal transformations. For example, Miles may express a preference

that having directions in synthesised speech form is more important than

ensuring that a restaurant serves Spanish cuisine. The system would then

perform the transformation of higher ranked goal conditions first. During

the lifetime of the system these rankings can be refined through interaction

with the user.

4.4.2 Partial satisfaction planning

The GoalMorph goal transformation algorithm is related to the area of Partial

Solution Planning (PSP). In PSP the planner is not required to completely sat-

isfy all goal conditions. Instead it focuses on achieving the best subset of goals

given the resource limitations. PSP relaxes hard-goal constraints from classical

planning and associates them with utility values. To solve the problem of partial

goal satisfaction, two approaches have been followed: plan refinement, where the

output of planning is adapted, and goal refinement, where the goals are changed

to produce a solvable problem.

Haddawy and Hanks et al. [HH93] proposed goal-directed utility models to

enable decision-theoretic agents to measure plan success in terms of its preferences

or a utility function that respects some of those preferences. They developed an

extended goal model consisting of atemporal and temporal components, which

are goals that define when something has to be achieved. The model allows for

representation of partial goal satisfaction and provides a structure for representing

109

its utility. Haddawy et al. use the goal’s utility to establish whether one plan

has a higher expected utility than another. Haddawy and Suwadi [HS94] later

employ this model to address the plan generation and refinement problems. They

develop a Decision theoRetIc Planning System (DRIPS), where they incorporate

utility and goal structures. One of the limitations of this model is that neither

goal nor utility structures provide mechanisms for goal prioritisation.

Williamson [Wil94] built PYRRHUS, a decision theoretic planning system

that finds an optimal plan, using a goal and utility structures previously intro-

duced by Haddawy et al. Williamson focuses exclusively on Partial Satisfaction

of the Temporal Component (PSTC) goal and the corresponding utility model.

He uses PSTC to extend the notion of plan quality to take into account partial

satisfaction of the goal and the cost of resources used by the plan. PYRRHUS

is built as an extension of the partial order causal link planner UCPOP [PW92],

which is in turn based on the Systematic Nonliner Planning system [MR91] that

uses causal links. PYRRHUS uses the PSTC utility model to devise domain

specific heuristic knowledge (in the form of an increasing utility function on each

of the goals) for refinement of the plans. The advantage of PYRRHUS is that it

relies on the same heuristics as any goal satisfying planner. Also, PSTC supports

only partial satisfaction of temporal goals, and not for the atemporal goals. Fur-

thermore, while the PYRRHUS system allows for partial satisfaction planning

with goal utilities, it still requires for all the goal conjunctions to be reached.

van den Briel et al. [vdBNDK04] focus on PSP to satisfy only a subset of

goals, while ensuring that the resources in the planning problem are not over-

loaded. They introduce a method for modelling and handling plan quality and

devise a taxonomy of partial satisfaction problems, which allows for differenti-

ating between feasible and optimal plans. In addition they categorise goals in

terms of whether they are completely or partially satisfied. van den Briel et al.

develop and compare integer programming, regression planning with reachabil-

ity heuristics and anytime heuristic search approaches to the PSP. They show

that heuristic planners are comparable to the quality plans generated by integer

programming and provide a practical solution. Their solutions, however, do not

support temporal goal components. There is no prioritisation of goals and no

support for interacting goals, they assume goals to be mutually exclusive.

4.5 Summary

Providing context aware service composition facility raises two issues: dealing

with composition failures and specifying context behaviour.

110

Dynamic computing environments involve contextual changes which may cause

the service composition to fail. This chapter has presented GoalMorph, a compo-

sition failure management system, which uses context aware goal transformation

to facilitate fault tolerant, context aware, service composition. The central com-

ponent of the GoalMorph is the Context Mesh, a multidimensional data structure

for hierarchical organisation of context. The Context Mesh enables context lay-

ering, the process of controlling the amount of context data used to transform

the context goal.

Experimental evaluation of GoalMorph demonstrates that context aware goal

transformation is effective in producing solvable alternatives of composition

requests that cannot be originally solved. GoalMorph generates partially satis-

fied goals, which achieve more than 60% of the original utility, despite the increase

in the goal size in the example environment.Additionally it has shown that the

overhead introduced by GoalMorph, to the service composition framework is min-

imal. It can perform up to 240 core and context transformations in 0.4 seconds

whilst randomly selecting transformations.

The GoalMorph solution was compared to the GTrans goal transformation

framework. By contrast to GTrans, GoalMorph provides automated goal trans-

formations. It accommodates arbitrary transformation selection methods, such as

unguided search and utility based search. GoalMorph performs goal transforma-

tions independently of any planning technology. It allows multiple, customisable

hierarchies for ordering goals and arguments. The chapter has also discussed the

current research efforts in partial goal satisfaction.

Finally, this chapter has also presented cogotags, an XML representation

that allows for flexible and dynamic construction of context aware goals. This

removes the need for pre-built contextual dependencies in the Goal Service.

Cogotags consist of the context type and value that trigger invocation of the

specific goal condition. They allow for injection of goal conditions originating

from the Context Service, the Context Proxy and the user’s profile.

111

112

Chapter 5

Implementation

Chapter 3 discussed the layered design of the proposed service composition in-

frastructure, based on four key operations: composition request management,

abstract service composition, architecture specific service composition, and exe-

cution and monitoring. Chapter 4 presented the implementation details of the

composition request management layer, and proposed the GoalMorph system.

This chapter describes the internal implementation of the components of the

remaining layers.

Section 5.1 presents the implementation It compares a number of existing

solutions in terms of their applicability to the Web service composition problem

and discusses why Web service composition needs more than what conventional

planning systems provide to assemble composite services. This section then de-

scribes how the prototype implementation applies goal-oriented inferencing from

the TLPlan [BK95] planning algorithm to select atomic services that form a

composite Web service.

Section 5.2 discusses the implementation details of the architecture specific co-

mposition layer. It presents how the Plan Instantiator processes an abstract

execution plan, which is described in Business Process Execution Language For

Web Services (BPEL4WS) [CAD+05] format, and mediates the service discovery

and instantiation process.

Finally, Section 5.3 presents the internals of the execution and monitoring

layer. It describes how the Monitoring Engine uses monitoring procedures to

verify service execution, continuously update the state of the Execution Engine

and handle execution failures.

113

Translator
Module

composition
request

TLPLan

Composition
Engine

1: translate
composition request

3a:abstract
service composition

problem
definition
in TLPLan

syntax

abstract
plan

in TLPlan
syntax

2: translate abstract
service descriptions

Layer 1:
Composition request management

Layer 3:
Architecture specific service compostion

Layer 4:
Execution and monitoring

Layer 2:
Abstract service composition

domain
description
in TLPlan

syntax

OWL-S
Services

Abstract Service
Repository

3b: composition failure

4: discovery failure

Figure 5.1: Implementation of the abstract service composition layer

114

5.1 Abstract service composition layer

Once the composition request has been assembled in the composition request

management layer, the Composition Engine proceeds to construct a composite

service. Figure 5.1 describes the abstract service composition process, in which

a composite service is assembled from abstract services format.

This section analyses the ability of several planning technologies to handle

the Web service composition problem. It discusses why Web service composition

needs more complex features than those normally provided by planning tech-

nologies. Finally, it proposes the use of the TLPlan planner in this framework to

address some of the challenges.

5.1.1 Abstract Service Repository

The Abstract Service Repository is a directory that stores and manages ab-

stract services, which carry high-level information about their functional capa-

bilities and service categorisation and cannot be invoked. Conceptually, abstract

services can be seen as analogous to abstract classes in object-oriented languages.

The abstract service composition layer assembles abstract services to con-

struct abstract plans. The use of abstract services has two purposes. Firstly,

grouping the service instances and organising them by the type of operation they

provide reduces the size of the domain description. This makes the search more

efficient in comparison to having domains that include all possible instances. Sec-

ondly, by utilising abstract service descriptions and producing an abstract plan,

the replacement of a failed service by another one of the same type is straight-

forward. The abstract service description forms the search criteria to be used in

service instance discovery. When service execution fails these search parameters

are used to locate and schedule a replacement service for invocation.

In the prototype framework implementation, it is expected that a domain engi-

neer creates and submits abstract service descriptions in OWL-S format, modelled

as SimpleProcess structures, to the prototype Abstract Service Repository.

Abstract service descriptions are then translated into the representation format

supported by the Composition Engine. Later in the process of service composi-

tion they are bound to instances by Plan Instantiator, described in Section 5.2.

At present the OWL-S syntax is used purely for representation of the abstract

services, and no reasoning is performed over the service semantics. The OWL-S

format has been selected, because it is becoming a maturing and prevalent means

of specifying Web service behaviour, as well as for its portability. Consequently,

issues arising from weaknesses of OWL-S with respect to semantic reasoning are

115

not being addressed by this dissertation. For example, supporting functional

descriptions in OWL-S is an important challenge as there is a lack of means of

describing the relationships between inputs and outputs. Hull et al. [HZB+06]

have proposed a formalism for explicitly describing how service inputs and out-

puts are related. They use an OWL ontology to fix the meaning of terms used

in service descriptions. Their approach is designed to be integrated with OWL-S

(or WSMO), allowing for automated reasoning approach for matching services.

Finally, if the proposed composition framework employed a language that did

not support OWL-S syntax, extending the system later to incorporate semantic

Web services would incurr a higher overhead. The ability to import services with

OWL-S syntax in the current prototype represents a first step towards utilising

semantic descriptions.

5.1.2 Composition Engine

This section describes internal details of the composition process and evaluates

the applicability of planning technology to the Web service composition problem.

In the scope of the framework implementation it also presents the use of the

TLPlan planning system.

AI Planner requirements

Goal-oriented inferencing from planning technologies, defined in Section 2.2.5,

can be applied to the Web service composition problem, if the following two

observations are made. Firstly, the high-level description of a user’s task can be

mapped to a planning problem definition. Secondly, Web service descriptions can

be mapped to action descriptions using a planning language.

Web service composition requires a number of sophisticated facilities in the

planning system, so that goal and application domain models are realistic, com-

plete and comprehensive. This section examines several features that planning

systems should support. This list is not exhaustive, however it represents a set

of features desirable for planing-based Web service composition to succeed.

1. PDDL level. PDDL [GHK+98], described in detail in Section 2.2.5, is the

standard language for describing planning domains and problem specifica-

tions, designed to enable planner inter-operability. PDDL 2.1. is based

on Action Description Language (ADL) [Ped94]. It provides constructs for

expressing temporal planning domains separated into different levels of ex-

pressiveness. Level 2 allows numerical constructs, that enable testing and

update of the values of numerical variables. Levels 3 and 4 provide support

116

for explicit representation of time and duration for discrete and continu-

ous actions respectively. Service execution takes time, particularly for long

transactions such as those found in the business domain, and requires sup-

port for actions with continuous effects. Therefore support for all PDDL

levels is needed.

2. Sequences. Structured composite services prescribe the order in which ser-

vices are executed. For example, the user will first select a restaurant and

then the directions service should identify the driving route, based on the

current location of the user and the location of the selected restaurant.

3. Iteration. Often a certain service may need to be repeatedly invoked to

obtain results successively closer to a desired result. This requires an it-

eration control construct. For example, a driving direction service will be

continuously invoked every time there is a location update, until the user

reaches the desired location.

4. Concurrency. Planners typically allow for service instances to be sequen-

tially ordered. More complex, reactive processes require more advanced

mechanisms to handle concurrency. For example, a user may want to a

book a table at a restaurant and at the same time obtain driving directions

to it. Such a request can be satisfied by executing two services simultane-

ously, thus requiring a concurrency construct.

5. Conditional. Service effects often depend on the input provided. Condi-

tional constructs can be used to define pairs of conditional preconditions and

postconditions. For example, the conditional effect of the BookRestaurant

service is (restaurant booked), when (restaurant has space). As a

conditional operator forms an expression, it can also be used to choose an

applicable service for execution depending on the condition.

6. Nondeterminism. The assumption of deterministic behaviour in planning

with Web services in dynamic computing environments is untenable. Web

services may have multiple outcomes, many of which cannot be predicted.

For example, a directions service may stop functioning, or the result gen-

erated by the restaurant service may not be satisfactory to the user. A

facility for nondeterminism is necessary to provide a realistic model of the

environment.

7. Plan optimisation. In a realistic deployment, services consume resources,

such as network bandwidth, and have a monetary cost associated with

117

their execution. Therefore a mechanism is required to impose metrics and

resource constraints on each service as well as the resulting plan, thus al-

lowing for plan optimisation.

8. Extended goals. Users may need to express conditional preferences for dif-

ferent goal conditions comprising their task intention. For instance, a user

may want to specify that a composite service should try first to reserve and

confirm both a restaurant and a cinema from two different service providers.

If one of the two services is not available, or there is no availability at the

same location, it should fall back and cancel both reservations. The ability

to describe complex conditions enables users to place requirements on the

behaviour of processes, and not only on their final state.

9. Partial observability. The planner may not have complete knowledge of

the application domain. For example, a restaurant booking service has as

a prerequisite that a certain number of seats must be available. However,

the planner does not have any information about seat availability. Mech-

anisms for dealing with this problem of partial observability are necessary.

Common methods for handling this include interleaving of planning and ex-

ecution and using knowledge gathering actions, commonly called sensing,

to update the application domain while planning.

10. Availability for multiple platforms. When integrating an existing planning

system it is necessary to know its availability on different platforms, such

as Linux and Windows.

11. Support and maintenance. For a specific planner to be used in deployed co-

mposition systems, the level of support is an important criteria for selection.

It is necessary that the planner employed is actively used and maintained.

12. Source code availability. To optimise the planner for solving specific prob-

lems, it may be of interest to tweak the internal planning algorithm. For

that purpose, access to the source code is required, to define clean interfaces,

descriptions, and facilitate customisations.

Comparison of planning systems

There are three broad divisions of planners, based on the type of problems they

solve [GNT04]. The first group is the classical planners, which deal with com-

plete information and deterministic dynamics. The second group of planners

118

Planning system

Properties SHOP2 TLPlan MDP MBP

Planning HTN Forward chaining Markov Model

methodology with control decision based

knowledge processes planning

PDDL 2.1.

Level 1: ADL planning X X X X

Level 2: Numeric X X X X

Level 3: Discrete time * X * X

Level 4: Continuous time * X * X

Control constructs

Sequences X X X X

Iteration X X X X

Concurrency X * X X

Conditional X X X X

Features

Nondeterminism * * X X

Plan optimisation X X X X

Extended goals × X * X

Partial observation * * * X

Availability for X Linux X Linux

multiple platforms only only

Support and maintenance * * * *

Source code availability X × * ×

Legend: X = full support, × = no support,

∗ = partial, proposed or implementation dependent support

Table 5.1: Suitability of planners for Web service composition.

can support problems with complete information and nondeterministic dynam-

ics. Finally, the third group handles problems with incomplete information and

nondeterministic dynamics.

Table 5.1 shows the extent to which two deterministic planners Simple Hi-

erarchial Ordered Planner 2 (SHOP2) [NMAC+01] and TLPlan [BK95] in the

first group, and two nondeterministic planners, Markov Decision (MDP), in the

second group, and Model Based Planner (MBP), in the third group, meet the

specific technical requirements to provide automated Web service composition.

SHOP2. Nau et al. [NMAC+01] devise SHOP2, a hierarchical task network

(HTN) planning system, whose objective is to perform a set of tasks, rather then

119

achieve a set of goals. SHOP2 uses HTN methods as its control knowledge. These

methods describe how to decompose an abstract task into a group of primitive

operators that form the plan implementing the task.

Wu et al. use SHOP2 to automate service composition [WSH+03] However,

as SHOP2 relies on composite service templates based on HTNs, improvements

would be required to apply it to Web service composition in dynamic environ-

ments. SHOP2 assumes that the state of the world is always accessible, static and

deterministic. In addition, all method descriptions are assumed to be complete

and correct, and to precisely describe all the possible effects.

Although SHOP2 does support a limited form of nondeterminism through

conditional expressions, this is impractical for context aware systems, where the

range of data is more extensive. It is not practical to enumerate all the possible

conditions that must be accommodated, as this would grow exponentially with

the number of steps in the plan.

SHOP2 supports actions of at least Level 2 in PDDL, however, it does not

directly allow for PDDL formatted domains to be imported.. Even though it

does not provide explicit support of actions with duration in Level 3 of PDDL,

called durative actions, it has sufficient expressive power to represent concurrency

and durative actions. Its operators can assign values to variables and do numeric

calculations.

The HTN approach gives more structure to domains and the way goals should

be solved. However, in SHOP2 goals can not be stated declaratively. Hence

SHOP2 has to know in advance which HTN method it should call, making it

impractical in dynamic context aware scenarios. Consequently the planner cannot

solve a completely new, unknown problem for which no method definition exists.

In their more recent work, Sirin et al. [SPH05] integrate a description logic

(DL) reasoning with an HTN planning system to construct a HTN-DL formalism.

This is used to generate compositions of Web services. Web ontologies are used

to write service template descriptions that will allow flexible matchmaking of

services. Each abstract service is described and also preferences in templates as

to which instances are of greater applicability are described.

There are two components of a HTN-DL domain. The first one describes the

planning domain and contains the operator and method descriptions. The second

one is a DL knowledge base that contains task and preference descriptions.

Such a solution can be employed in our service composition framework to

efficiently recognise relationships between different goals, select applicable goal

predicates given the requested tasks and to reduce the number of predicates that

will be considered, such as cuisine types.

120

TLPlan. Bacchus and Kabanza [BK95] develop TLPlan, which uses domain

specific search control information to guide the search algorithm. TLPlan is based

on simple forward chaining search, in which planning actions are applied to the

current state to generate its successors. TLPlan therefore knows the current state

of the world at every step of planning process. Control rules, which are written in

temporal logic, provide domain specific knowledge to inform the planner which

states should be avoided, therefore allowing the planner to backtrack and try

other paths in the search space. Bacchus and Ady [BA01] extend TLPlan to

handle concurrent actions with variable duration.

TLPlan employs a representation language, which is expressive up to Level

4 of PDDL. It is capable of reading a problem definition and generating the

plan in PDDL, however it does not support PDDL-based domain specification.

TLPlan supports all control structures involving concurrency, iteration and non-

deterministic choice to construct complex and expressive composition processes.

Furthermore, it allows for concurrently executing actions with varying durations.

Both TLPlan and SHOP2 support a limited form of nondeterminism through

the use of conditional actions. Kutur and Nau [KN04] propose a technique for

adapting TLPlan and SHOP2 to work in nondeterministic domains. In our prior

work [VR05c] we compared SHOP2 and TLPlan in more detail.

Planning based on Markov Decision Processes. Markov Decision Process

(MDP) based planners are probabilistic; they create conditional plans only for

the contextual situations that are most likely to occur [Put94]. A domain is

defined as a set of states and actions and uses a probability function to model

the uncertainty about action outcomes. Goals take the form of utility functions,

which guide the selection of actions. As a result, the planning process is an

optimisation problem: searching for a plan that maximises the utility function

specified in the goal. The resulting plan is a policy that specifies the actions to

be applied in each state.

Doshi et al. [DGAV04] employ MDP to model the problem of workflow co-

mposition in a supply-chain scenario. Solution of MDP is a policy that guides a

composite service towards its goal. The policy assigns an action to each state of

the workflow that is considered as optimal at that point, based on past interac-

tions with the service. Doshi et al. extend this approach, by interleaving it with

a model that learns the probability of a certain service being satisfied.

Although this method generates fast responses to most contingencies, it may

miss potential opportunities that arise from changes in the world environment.

For example, a service producing a result in an unexpected format may not be

handled adequately. Another limitation is that the size of the state space grows

121

exponentially with the number of features describing the problem, resulting in

what is known as the state explosion problem.

Model Based Planning. This is a nondeterministic method based on the

exhaustive exploration of finite state automata, where actions may have multiple

outcomes. To support extended goals, it uses temporal logic formulas to express

the set of goal states and the conditions for the final plan execution. The planner

uses a state transition system and a temporal formula to generate plans that

control the system evolution so that the system’s behaviour makes the temporal

formula true.

Pistore et al. [PBB+04] employ the Model Based Planning [BCP+01] to solve

a Web service composition problem in a retail domain. Their system allows for

nondeterminism in the initial state and in the outcome of action execution. It can

model planning domains with different degrees of run-time observability. Avail-

able services are partially specified, and the degree of observability on the current

state varies from “full” to “null” observability. Full observability is achieved when

the current state is completely specified. Partial observability occurs when only

partial information is available. Finally, null observability occurs when no infor-

mation on the current state is available.

Each service is represented as a nondeterministic finite state machine, char-

acterised by a set of initial states and by a transition relation that defines how

the execution of each action leads from one state to a new set of states.

Pistore et al.’s approach creates monitors to trace the execution of external

processes, in contrast to the approach of Doshi et al., which assumes that moni-

toring is unnecessary because MDP can deal with any contingencies. Modelling

realistic problems using both MBP and MDP may result in a large number of

states and trigger state explosion. Current efforts in symbolic representation aim

to overcome this problem by employing compact representations of finite-state

models. As a result, model checking is performed by exploring sets of states,

rather than individual ones.

MBP uses NuPDDL, a language equivalent to PDDL 2.1, which can handle

functions, conditional effects, and quantifiers. It also allows for arbitrary nesting

of conditional effects and quantifiers. Most existing MBPs can take as an input

standard deterministic domains in PDDL [BCP+01]. To model nondeterministic

behaviour additional control knowledge, however, must be devised.

Summary The review of planning technologies demonstrates that not all of the

identified features required for Web service composition are present in a single

122

planning system. Each planner has been designed and implemented to deal with

different types of problems.

Automated domain construction is the main challenge for all reviewed plan-

ning systems. While hand-coded search control does help both SHOP2 and

TLPlan plan effectively, it incurs a significant overhead. It requires expertise

in both the domain representation and the specifics of the planner, and therefore

limits the possible extent of automation of the Web service composition process.

MDP and MBP provide flexible nondeterministic approaches to constructing

composite services. However, the main challenge is again related to domain

modelling, as these approaches may result in state explosion.

TLPlan for Web service composition

The prototype implementation of the framework adopts TLPlan, which supports

all necessary control constructs, thus enabling complex Web service processes. It

is freely available for Linux at the time of writing and supports PDDL 2.1 up

to Level 4. Based on the comparison TLPlan is the simplest of the evaluated

planners, which meets our main requirements.

This section describes how TLPlan is used to synthesise plans in the domain

of our usage scenario, which has been described in Section 3.1. The fundamen-

tal steps in using a planning system include describing the planning domain,

specifying the initial and goal worlds, and invoking the planning process.

Domain description. A domain description contains details about the lit-

erals, predicates and function symbols to be used in the domain. TLPlan takes

them in a number of forms. Firstly, as described symbols, which are basic pred-

icates and functions that get updated by actions. Secondly, as defined symbols,

which are defined by first-order formulas. Finally, as external symbols, which are

used to invoke external C routines. Once all of the symbols have been defined,

the domain can be described using the first-order language generated by these

predicate and function symbols.

Each literal is defined either as a predicate or function symbol of the domain

by first-order formulas. The predicate definition consists of the name of the

defined symbol, such as a function or a predicate, and arity that specifies the

number of parameters accepted by the defined symbol. The corresponding world

states are then described by the symbol name and arguments.

In our usage scenario symbols and predicates are needed to represent infor-

mation about restaurant and other domain related concepts. For example, each

restaurant has following properties address, cuisine type, and seating capacity.

123

Action Preconditions Postconditions (adds)

restaurant finder (restaurant type r type) (restaurant found restaurant name)

address finder
(business name b name) (address found)

(city c) (location to)

direction finder
(location from) (directions found from to)

(location to)

translator(from, to, content)

(language from) (translated content language to)

(language to)

txt2speech(content) (txt form content) (speech out content)

Table 5.2: Sample planning actions for the usage scenario

Figure 5.2 shows literals describing concepts in the usage scenario. For ex-

ample, the literal (predicate restaurant booking made 2) is used to describe

the effect of a booking being made. It has arity 2, where arguments represent the

number of persons and the time for which the booking was made. Similarly the

literal (predicate restaurant smoking 2) indicates the restaurant’s smoking

policy, where the arguments are an identifier for the restaurant and its smok-

ing policy. A defined literal (predicate restaurant has space 2) is used to

determine if the booking can be made. Symbols declared to be defined must

subsequently be given definitions, as shown in the last section of the figure.

The next step is to define actions in the domain, which in TLPlan is done using

operators in either Stanford Research Institute Problem Solver (STRIPS) [FN71]

language or Action Description Language (ADL) [Ped94]. They both generate

first-order formulas that are evaluated in the current world to generate successor

worlds. TLPlan operators are defined by lists of preconditions and postconditions,

where adds, the list of facts that will be added upon execution of the operator,

and deletes, the list of facts that will be removed upon execution of the operator.

ADL operators are activated when the planning system evaluates the add or del

clause in the operator. This in turn is controlled by the evaluator’s rules for

early termination. Functions can be used and updated by including a function

specification inside an add clause, and ADL operators can specify a recursive set

of updates by invoking recursive defined predicates in their sets of clauses.

Table 5.2 outlines some of the actions in the usage scenario, together with

their preconditions and postconditions. Examples include a service that searches

restaurants by cuisine type, an address finder, a driving directions service, a trans-

lation service, and a speech-synthesizing service. Figure 5.3 shows the operator

definition for making the restaurant booking.

124

(declare-described-symbols

;; Restaurant ontology

(predicate catering_facility 1)

(predicate catering_facility_take_away 1)

(predicate catering_facility_home_delivery 1)

...

(predicate catering_facility_restaurant 1)

(predicate catering_facility_bistro 1)

(predicate catering_facility_cafeteria 1)

;; Restaurant operation effects

(predicate restaurant_found 1)

(predicate restaurant_booking_made 2)

;; Restaurant properties

(predicate restaurant_name 1)

(predicate restaurant_address 2)

(predicate restaurant_email 2)

(predicate restaurant_website 2)

(predicate restaurant_smoking 2)

(predicate restaurant_cuisine 2)

(predicate persons 1)

(predicate time 1)

;; Device properties

(predicate volume_level 1)

(predicate brightness_level 1)

...

)

;; Comment: declared symbols

(declare_defined_symbols

(predicate restaurant_has_space 2)

...

)

;; Comment: symbol definition

;;; Restaurant-Has-Space: True iff the table has space.

(def-defined-predicate (restaurant_has_space)

(exists (?r ?n) (restaurant_name ?r)

(restaurant_space ?r ?n) (> ?n 0)))

Figure 5.2: Sample domain description in TLPlan

125

(def-adl-operator

(make_restaurant_booking ?r ?ppl ?t)

(pre

(restaurant ?r)

(restaurant_found ?r)

(restaurant_booking_online ?r ?e)

(restaurant_has_space ?r ?ppl)

(persons ?ppl)

(time ?t)

(and

(not (restaurant_booking_made ?ppl ?t))

(not (restaurant_booked ?r))

(restaurant ?r)

(persons ?ppl)

(time ?t)))

(add

(restaurant_booking_made ?ppl ?t)

(restaurant_booked ?r)

)

)

Figure 5.3: Sample TLPlan operator

Problem definition. The problem definition specifies the initial world and the

goal world, using lists of domain predicates and function definitions. Figure 5.4

shows a sample problem definition for the usage scenario.

The initial world describes the properties of the domain, and literals that

hold true. For example, the literal (activity driving) describes that the user

is currently driving.

Figure 5.4 shows the goal conditions (directions found current address

restaurant address) and (direction speech out) as states to be reached.

The core part of this request is finding the directions, and the context goal is

that directions should be read out in audio form, as the user is currently driving.

Planning goals serve two purposes. Firstly, they represent information about

the planning problem, in our framework is a composition request. They pro-

vide criteria for delivering successful plans, consisting of goal conditions that must

be satisfied. For example, a user request for driving directions is described by

the conjunction of goal states in TLPlan syntax. Secondly, goals limit inference

in the planning process. They guide the search algorithm and determine the

applicability of operators.

126

; Initial world (define (initial_state_Case_3)

(cuisine lebanese)

(location zurich)

...

(persons 2)

(time 2000)

(activity driving)

)

; Goal world (define (goal_state_Case_3)

(restaurant_found_location lebanese zurich)

(restaurant_booking_made 2 2000)

(restaurant_booked restaurant_name)

(directions_found current_address restaurant_address)

(directions speech_out)

)

Figure 5.4: Sample TLPlan problem

Finally, TLPlan also allows for extended goals, where the goal can be rep-

resented as an arbitrary temporal formula. Furthermore, if every initial world

in this domain has some special context specific features, such as one off pred-

icates that should only be used in this run of the problem, or one wants to set

up some additional described predicates and functions, TLPlan provides special

commands to allow for customisation.

Plan. The planner is invoked by loading the domain description file and the

problem definition file. TLPlan is based on forward chaining search and im-

plements both depth-first and breadth-first search. It also supports the following

variants of each search algorithm (a) use of operator priority, (b) disabling back-

tracking, which means that there is only one operator as successor for each world,

and (c) use of a heuristic based on costs defined in the operator definitions to

guide the search.

The resulting plan is a list of operators and a sequence in which they should

be applied. Figure 5.5 shows the sample output given the problem in Figure 5.4.

127

(get_restaurant_by_cuisine_location lebanese zurich)

(get_restaurant_address restaurant_name)

(make_restaurant_booking restaurant_name 2 2000)

(get_directions_door_to_door current_address restaurant_address)

(translate de en directions)

(txt2speech directions)

Figure 5.5: Sample TLPlan plan

5.2 Architecture specific service composition layer

This section describes how symbolic planning action descriptions are turned into

deployable service descriptions ready to be executed in a run-time environment.

Figure 5.6 shows the implementation of the architecture specific service compo-

sition layer.

5.2.1 Representation of abstract execution plans

This layer converts the abstract plan into the abstract execution plan,

which is represented in the architecture specific language. To express the logic

of a composite Web service the framework uses BPEL4WS, an XML-based flow

composition language.

BPEL4WS models the interaction among participating Web services, termed

partners in BPEL4WS, to describe composite Web services. It specifies the role

of the partners providing each Web service and the flow of the messages they ex-

change. Figure 5.7 shows how partners are defined. In the current implementation

partners are: partner user and partner plan instantiator proxy. Partner

definition includes partner name, role, and the link to the service definition in its

Web Service Description Language (WSDL) [CCMW01] file.

Figure 5.8 shows the abstract execution plan in the BPEL4WS format.

The partner partner user represents interaction with the user. The partner

partner plan instantiator proxy represents the Plan Instantiator compo-

nent. Its instantiate operation is called for each service description in the

abstract execution plan. As an input it takes the service description, Qual-

ity of Service parameters and the location of the Service Registries. It uses

this information to perform service discovery and binding. For example, the

<invoke> construct invoke restaurant-lookup-ch takes as an input the vari-

able input restaurant-lookup-ch, which contains search and input parameters

for a restaurant finder service instance.

128

WSDL file

service
binding

BPEL4WS

abstract
execution

plan

UDDI file

search
query

Plan
Translator

BPWS4J v2.1

Plan
Instantiator

1: translate abstract plan
to architecture specific

description format

2: service discovery
 and binding

3a: schedule service
instance for invocation

Layer 2:
Abstract service composition

Layer 1:
Composition request management

Layer 4:
Execution and monitoring

Layer 3:
Architecture specific service composition

{WSDL ref, monitoring procedure}

deployable service description

abstract
plan

3b: service discovery failure

4: service execution failure

jUDDI v0.94

Service
Registry

Figure 5.6: Implementation of the architecture specific service composition layer

129

<process

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

name="RestaurantProcess"

targetNamespace="urn:restaurant:main"

xmlns:tns="urn:restaurant:main">

<partners>

<partner name="partner_user"

xmlns:user_ns="urn:prototype:user"

serviceLinkType=

"user_ns:{urn:prototype:user}

RestaurantDirectionsServiceComposition_SLT"/>

<partner name="partner_plan_instantiator_proxy"

xmlns:domain_ns="urn:prototype:restaurant"

serviceLinkType=

"domain_ns:{urn:prototype:restaurant}

PlanInstantiatorProxy_SLT"/>

</partners>

...

</process>

Figure 5.7: Sample partner definition in Business Process Execution Langauge

for Web Services

In the usage scenario, partner plan instantiator proxy instantiates ser-

vices corresponding to the operations, such as getRestaurant and getDirections.

The reply_RestaurantProcess subprocess ends with a <reply> activity. This

indicates that the process is to send a message to the partner partner_user in

reply to a message that was received through a <receive> construct.

The abstract execution plan, described in BPEL4WS is deployed on IBM

Business Process Execution Language for Web Services Java Run Time (BPWS4J)

v2.1 [IBM04], a platform that executes BPEL4WS processes. The BPWS4J is a

Web component that runs on an application server. This implementation of the

framework uses the Tomcat v5.1 [Tom06] application server.

The main limitation of BPWS4J is that it does not allow for dynamic binding

and discovery of services. As an input it takes three parameters: (1) a BPEL4WS

document that describes a composite service to be executed, (2) a WSDL doc-

ument without binding information, which describes the interface that the com-

posite service will present to clients or partners in BPEL4WS terms and (3)

WSDL documents that describe the services that the composite service may in-

voke during its execution. An abstract execution plan contains an abstract

130

<sequence name="RestaurantProcess_sequence">

<receive name="receive_RestaurantProcess" partner="partner_user"

xmlns:user_ns="urn:prototype:user"

portType="user_ns:RestaurantDirectionsPT"

operation="user_ns:getRestaurantDirections"

variable="var_user">

</receive>

...

<invoke name="invoke_restaurant-lookup-ch" partner="plan_instantiator_proxy"

xmlns:domain_ns="urn:prototype:restaurant"

portType="domain_ns:Proxy_PT"

operation="domain_ns:instantiate"

inputVariable="input_restaurant-lookup-ch"

outputVariable="output_restaurant-lookup-ch">

</invoke>

<assign >

<copy>

<from variable="output_restaurant-lookup-ch"

part="restaurantName"/>

<to variable="input_address-lookup-ch"

part="restaurantName"/>

</copy>

</assign>

...

<invoke name="invoke_direction-lookup-ch" partner="plan_instantiator_proxy"

portType="domain_ns:Proxy_PT"

operation="instantiate"

inputVariable="input_direction-lookup-ch"

outputVariable="output_direction-lookup-ch">

</invoke>

<assign >

<copy>

<from variable="output_direction-lookup-ch" part="directions"/>

<to variable="var_user" part="directions"/>

</copy>

</assign>

<reply name="reply_RestaurantProcess" partner="partner_user"

xmlns:user_ns="urn:prototype:user"

portType="user_ns:RestaurantDirectionsPT"

operation="user_ns:getRestaurantDirections"

variable="var_user">

</reply>

</sequence>

Figure 5.8: Abstract execution plan in Business Process Execution Language for

Web Services

131

service description. It does not have information about service instances and

their WSDL documents, which are a necessary parameter to BPWS4J as de-

scribed above.

To address this limitation, the framework introduces the Plan Instantiator

component. The BPWS4J uses the Plan Instantiator as a proxy to com-

municate with Service Registries to obtain WSDL files and instantiate ser-

vices. This is achieved by encapsulating service search parameters as an input to

the instantiate operation of the partner plan instantiator proxy partner,

shown in Figure 5.8.

In our scenario, the process starts when the request for the operation called

getRestaurantDirections from the partner partner_user has been received,

indicated by the element <receive>, as shown in Figure 5.8. After this request

has been received, a number of services are instantiated and invoked, which are

represented by the <invoke> elements.

5.2.2 Plan instantiation

The Plan Instantiator processes the abstract execution plan and contacts

the Service Registry to instantiate each abstract service, which is part of a

composite service.

Service discovery. The Service Registry is a network based directory sys-

tem that contains information about available service instances. It stores con-

tracts from service providers and relays those contracts to interested service con-

sumers. The Service Registry may also act as a proxy for the provider, en-

abling the client to interact with a single point of contact for all required services.

The framework employs Universal Description, Discovery, and Integration

(UDDI), an XML-based standard for describing, publishing, and finding Web

services. The Service Registry is realised using jUDDI [Jud03], an open source

Java implementation of the UDDI specification for a Web service registry.

The Plan Instantiator constructs a search query based on an abstract ser-

vice description. It submits the query, together with optional Quality of Service

parameters, to the Service Registry to locate service instances.

Figure 5.9 shows a sample search request in UDDI format, which can be

issued to locate services implementing a restaurant finder service. The search

can be constrained by a specific businessProvider, which is identified by a

businessKey. Additional keyedReferences can be added to the categoryBag

as filters, to narrow the scope of the service descriptions that are returned in

response to this search query. The services are matched if their categoryBags

132

<?xml version="1.0" encoding="utf-8"?> <soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<find_service

businessKey="ADD69E70-8E5C-11DA-A96D-E3E1BE8701E7"

maxRows="3" generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384"

keyName="Restaurants" keyValue="90101501" />

<keyedReference

tModelKey="UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384"

keyName="Restaurants and catering" keyValue="90100000"/>

<keyedReference keyName="keyword"

keyValue="restaurant-lookup-ch" />

<keyedReference keyName="precondition"

keyValue="restaurant_name" />

<keyedReference keyName="precondition"

keyValue="restaurant_type" />

<keyedReference keyName="postcondition"

keyValue="restaurant_found" />

</categoryBag>

</find_service>

</soapenv:Body>

</soapenv:Envelope>

Figure 5.9: Sample UDDI Request

are a subset of the categoryBag used in the search, which is performed by the

find service method. The construct keyedReference represents a namespace

qualified name-value pair and is associated with a particular tModel.

As described in Section 2.2.4, UDDI uses the data structure tModel to organ-

ise services. Each tModel consists of a name, an explanatory description, and a

Universal Unique Identifier (UUID). There are a number of predefined tModel

structures, which represent classification schemes. For example, the tModel, with

the key UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384, is the United Nations

Standard Products and Services Code System (UNSPSC) [Uns98], a single global

product and service classification system. The sample search query requires that

the service instance is assigned both to the Restaurants and Restaurants and

catering service categories , which correspond to 90101501 and 90100000 codes

respectively, according to UNSPSC.

The keyedReference, which requires the service to find a restaurant, de-

133

<?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<serviceList generic="2.0"

operator="jUDDI.org" xmlns="urn:uddi-org:api_v2">

<serviceInfos>

<serviceInfo

businessKey="ADD69E70-8E5C-11DA-A96D-E3E1BE8701E7"

serviceKey="86E8AFF0-8E5D-11DA-A96D-D429756505D9">

<name>Sample Swiss Restaurant Service 1</name>

</serviceInfo>

<serviceInfo

businessKey="ADD69E70-8E5C-11DA-A96D-E3E1BE8701E7"

serviceKey="834DAEE0-8E5D-11DA-A96D-E9E5BC9E3DF9">

<name>Sample Swiss Restaurant Service 2</name>

</serviceInfo>

<serviceInfo

businessKey="ADD69E70-8E5C-11DA-A96D-E3E1BE8701E7"

serviceKey="8000A6C0-8E5D-11DA-A96D-F5A9FAE03222">

<name>Sample Swiss Restaurant Service 3 </name>

</serviceInfo>

...

</serviceInfos>

</serviceList> </Body> </Envelope>

Figure 5.10: UDDI response listing services for the query in Figure 5.9

fined by keyName="postcondition" keyValue="restaurant found", is not as-

sociated with a predefined tModel. It rather belongs to a generic tModel, which

is used to define customised classifications.

The UDDI query can specify the parameter maxRows, which determines the

maximum number of matching service instances to be returned. At present, the

framework fetches three instances, one for immediate invocation and the other

two as backups, as a proactive measure to mitigate service execution failure.

Figure 5.10 shows an XML-based list of matching services, which is a result of

the query shown in Figure 5.9.

Service deployment. When a service instance is selected from the UDDI re-

sponse, such as one in Figure 5.10, the Service Registry returns its WSDL file.

Figure 5.11 shows the sample WSDL file for a restaurant service. Given this bind-

134

ing information the system generates a deployable service representation,

which stores a pointer to the WSDL file and the corresponding monitoring

procedure which is described in detail in the next section. Pointers to additional

replacement services, such as the one listed in Figure 5.10, may be included to

serve as replicas in case the original service fails.

5.3 Execution and monitoring layer

This section describes how the framework mediates the interaction between the

composition layers and the execution environment. It presents how the frame-

work adapts and applies the monitoring model proposed by Haigh et al. [HV96],

which includes two types of monitoring procedures: service monitors, discussed

in Section 5.3.1, observe service execution, and event monitors, described in Sec-

tion 5.3.2, track changes in the environment.

5.3.1 Service execution and monitoring

The Execution Engine schedules and invokes service instances, which are de-

fined by deployable service descriptions. During service execution the en-

vironment is changing and can therefore invalidate the facts, which are used by

the Composition Engine to assemble a composite service. The purpose of the

Monitoring Engine is to provide the Composition Engine and the Execution

Engine with an up-to-date view of the state of the execution environment.

The execution of each service is embedded in a monitoring procedure, which

verifies service preconditions and postconditions. The monitoring procedure

is run sequentially, before and after service execution. For example, before

a RestaurantFinder service is executed, the Monitoring Engine determines

whether the cuisine type parameter has been supplied. If this is not the case, con-

trol is passed back to the user and the composition request management layer to

acquire the missing parameters. Similarly, before executing the DirectionFinder

service, if the current location is no longer available, control is passed to the co-

mposition request management layer to reformulate the request.

Once all necessary preconditions are satisfied, the service is invoked. The

Monitoring Engine then examines the outcome of service execution and passes

control back to the abstract service composition and the architecture specific

service composition layers, if the actual outcome of service operation is not as

expected. For example, if details of restaurants are not produced as a result of

executing the RestaurantFinder service, control is passed back to the abstract

service composition and the architecture specific service composition layers, as

135

<?xml version="1.0" ?> <definitions

targetNamespace="urn:prototype:restaurant"

xmlns:rns="urn:prototype:restaurant"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:format="http://schemas.xmlsoap.org/wsdl/formatbinding/"

xmlns:java="http://schemas.xmlsoap.org/wsdl/java/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="getRestaurantRequest">

<part name="type" type="xsd:string"/>

<part name="location" type="xsd:string"/>

</message>

<message name="getRestaurantResponse">

<part name="restaurantName" type="xsd:string"/>

</message>

<portType name="RestaurantLookupService_CH_PT">

<operation name="getRestaurant">

<input message="rns:getRestaurantRequest"/>

<output message="rns:getRestaurantResponse"/>

</operation>

</portType>

<binding name="JavaBinding" type="rns:RestaurantLookupService_CH_PT">

<java:binding/>

<format:typeMapping encoding="Java" style="Java">

<format:typeMap typeName="xsd:string" formatType="java.lang.String" />

</format:typeMapping>

<operation name="getRestaurant">

<java:operation methodName="getRestaurant" methodType="instance"/>

<input/>

<output/>

</operation>

</binding>

<service name="RestaurantLookupService_CH">

<documentation>Restaurant Provider Service</documentation>

<port name="JavaPort" binding="rns:JavaBinding">

<java:address

className="composition.services.RestaurantLookupService_CH"/>

</port>

</service>

</definitions>

Figure 5.11: WSDL for sample restaurant directory service

136

shown in Figure 5.1. The Monitoring Engine also passes the information on the

current state of the environment to the Composition Engine, which may trigger

a recomposition of the request.

As an example, if the selected service cannot find a desired restaurant, the

architecture specific service composition layer may try to find an alternative ser-

vice that can fulfill the request. If that fails, the abstract service composition

layer will try to recompose the request if possible. If that fails, the GoalMorph

system in the composition request management layer, described in Chapter 4,

may transform the composition request, therefore searching for a take away

place or a bistro in the same area. Similarly, if the BookRestaurant service

fails due to the unavailablity of seats, an update of the state occurs and another

restaurant may be selected.

The next chapter discusses the performance of this interleaved composition

and execution process and how it provides an effective and useful failure man-

agement method.

5.3.2 Goal state monitoring

Certain events may cause changes in the environment that affect the ability to

completely satisfy a composition request. Also, new opportunities may arise

that the framework can take advantage of. It is necessary to monitor goal condi-

tions and track unexpected events in the environment, in addition to monitoring

and verifying service execution.

Event monitors are structured in the same way as service monitors and are

invoked when relevant goal conditions are introduced or removed. They run in

parallel with the executing service, and update the state of the Composition

Engine and Execution Engine. At present service descriptions define service

monitors and a system designer sets up event monitors. Deciding which events to

monitor that are relevant to service composition raises an open research challenge.

In the context of this work events are considered to be goal states and un-

expected side-effects of the service execution. Unforseen events are handled in

the following way. If the main service effect has been unexpectedly satisfied,

for example the user manually lowers the music volume, the Execution Engine

state is updated and the scheduled service for controlling music volume is not

invoked. Observing the environment and maintaining a state description in this

way improves the efficiency of the system because it will not attempt redundant

service executions.

If a required precondition is no longer true, as a side-effect of some other ac-

tion, the system detects the relevant precondition and contacts the Composition

137

Engine to replan in an attempt to achieve it. For instance, if a user’s location

changes and the existing driving directions are no longer valid, the translation

service should no longer proceed with the translation of the original request.

Goal state monitoring is an important and a large challenge to be addressed

in the composite service execution. Whilst this issue is not dealt with in this dis-

sertation, the framework has been designed to integrate the existing, ready-made,

solution proposed by Haigh et al. [HV96]. This enables detection of execution

failures and compensation for them, as well as responding to changes in the en-

vironment.

5.4 Summary

This chapter has focused on practical issues related to the implementation and

deployment of the prototype framework for context aware service composition.

Implementation details of the abstract service composition, architecture specific

service composition and execution and monitoring layers were described. The

internal architecture of platform components, introduced in Chapter 3, was pre-

sented, showing how they deliver the required functionality.

Firstly, the implementation of the abstract service composition layer was pre-

sented. Facilities provided by the Abstract Service Repository, which allow

for independence of component technology and support semantic service anno-

tation, were described. The applicability of existing planning systems to Web

service composition problems was discussed and the use of the forward chaining

planner TLPlan has been demonstrated.

Secondly, the architecture specific service composition layer was described,

presenting how the Plan Instantiator is used to construct executable plans and

to achieve independence of the run-time environment. The Service Registry

has been developed as a UDDI based component to collect service advertisements

and perform service lookups. Given an abstract execution plan specified in

BPEL4WS, the Plan Instantiator communicates with the Service Registry

to instantiate services and generate deployable service sequences.

Thirdly, the implementation of the execution and monitoring layer was dis-

cussed. The Monitoring Engine provides facilities to examine whether the pre-

conditions and postconditions of an executable service are met and also to track

changes in the environment.

The use of internal representation structures facilitates system extensibility,

as identified in Section 1.3. The fault tolerance challenges set in Section 3.4 have

been met by the use of monitoring procedures to provide adequate resilience to

138

execution failures. The next chapter assesses, through experiments and discus-

sion, the efficiency, scalability, and effectiveness of the design decisions made and

the mechanisms employed.

139

140

Chapter 6

Evaluation

This chapter presents the evaluation of the prototype implementation of the

framework for context aware service composition. Quantitative methods are

employed to measure the framework’s performance and scalability. Qualitative

approaches are followed to determine its effectiveness in terms of reducing the

development effort required for building context aware applications.

Firstly, the latency of the framework was considered. The time taken by the

constituent phases of a composition process was measured for test cases with

and without composition and execution failures. Secondly, the scalability of

the framework was evaluated from three perspectives: (1) increasing size of the

application domain, in terms of the number of available service instances in the

Service Registry, (2) increasing size of a composition request, which is the

number of individual goal conditions to be satisfied, and (3) increasing number

of concurrent composition requests.

The development effort and efficiency of the proposed approach in building

context aware applications is analysed and compared to the traditional appli-

cation design approach. Finally, this chapter discusses how the requirements

for a new application model, which have been identified in Section 1.3, are met

through a combination of design decisions, mechanisms provided, and implemen-

tation choices followed.

6.1 Experimental setup

Framework deployment. Figure 6.1 shows the configuration of the environ-

ment in which the experiments were conducted. Two machines were used hosting

different layers of the framework. The machine providing access to the abstract

service composition layer, which contained TLPlan, was a dual processor Pentium

141

III 800 MHz with 2 GB RAM, located in Cambridge, UK. An IBM Thinkpad

T41 with an Intel Pentium M 1700MHz processor and 1 GB RAM contained

the composition request management, architecture specific service composition,

and execution and monitoring layers. This machine was located in Berlin, Ger-

many. The two machines were connected over the Internet via a link capable

of supplying 380 kbps. The average throughput was measured using Test TCP

(TTCP) [MS85].

This setup is illustrative of an arrangement where the different parts of the

framework, such as the Composition Engine and the Service Registry are

distributed on nodes hosted on different machines connected to Internet.

Figure 6.1 also shows the particular infrastructure implementing the presented

framework. Abstract service composition was controlled by TLPlan. An appli-

cation server Tomcat v5.5 contained the Service Registry, which was imple-

mented using jUDDI v0.94 [Jud03], and the BPWS4J engine [IBM04], a platform

for creating and executing BPEL4WS processes.

Sample domain. To conduct the experimental evaluation a sample context

aware infotainment application domain was developed for describing the usage

scenario, which was presented in Section 3.1. The Goal Service contained

twenty different composition requests. The Context Service provided seven

different context types, whose values triggered creation of context goal condi-

tions. There were twenty sample abstract services in the Abstract Service

Repository, such as RestaurantFinder and DirectionsFinder. The domain

description consisted of 100 facts and twenty abstract services.

The Service Registry contained a number of instances of each abstract

service available in the Abstract Service Repository. Service instances were

assigned to several categories, which classified service capabilities and described

their geographical coverage, in the Service Registry.

Table 6.1 shows the number of categories each service instance was assigned

to. The tModel structure in UDDI stores the category information. The types of

categories employed were two; geographical category, describing the geographical

area in which service is applicable, and UNSPSC code categorisation. In addition,

tModels were constructed to describe service preconditions and postconditions.

Figure 6.2 shows a sample UDDI description for a “Sample Swiss Restaurant

Service 3”, whose WSDL file is shown in Figure 5.11. This service is categorized

as Restaurant and Restaurant and Catering service using UNSPCS codes.

Additional tModel structures describe preconditions and postconditions of this

service. For example, restaurant type and restaurant found are a precondi-

tion and a postcondition respectively for the sample service in Figure 6.2.

142

jUDDI v0.94

380 Kbps, 93ms

P5 1.7GHz,
1GB RAM,

100Mbit Ethernet

Layer 3:
Architecture specific service compostion

Layer 4:
Execution and monitoring

Layer 2:
Abstract service compostion

Layer 1:
Composition request management

Tomcat v5.5

GoalMorph

P5 1.7GHz,
1GB RAM,

100Mbit Ethernet

TLPlan
P3 800MHz,

2GB RAM,
100Mbit Ethernet

380 Kbps, 93ms

BPWS4J

Figure 6.1: Experimental setup

6.2 Performance

This section evaluates the overall process of service composition, which is divided

into steps corresponding to the operation performed by each layer in the soft-

ware architecture, as described in Section 3.3. The composition performance is

analysed for the following four different variants of our usage scenario.

143

<?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<serviceDetail generic="2.0" operator="jUDDI.org"

xmlns="urn:uddi-org:api_v2">

<businessService businessKey="ADD69E70-8E5C-11DA-A96D-E3E1BE8701E7"

serviceKey="8000A6C0-8E5D-11DA-A96D-F5A9FAE03222">

<name>Sample Swiss Restaurant Service 3</name>

<bindingTemplates>

<bindingTemplate bindingKey="80053AA0-8E5D-11DA-A96D-A07AE3BE618C"

serviceKey="8000A6C0-8E5D-11DA-A96D-F5A9FAE03222">

<accessPoint URLType="AccessPoint.HTTP">

localhost:8080/RestaurantLookup.wsdl</accessPoint>

<tModelInstanceDetails/>

</bindingTemplate>

</bindingTemplates>

<categoryBag>

<keyedReference keyName="precondition"

keyValue="restaurant_name"

tModelKey="UUID:A035A07C-F362-44dd-8F95-E2B134BF43B4"/>

<keyedReference keyName="precondition"

keyValue="restaurant_type"

tModelKey="UUID:A035A07C-F362-44dd-8F95-E2B134BF43B4"/>

<keyedReference keyName="postcondition"

keyValue="restaurant_found"

tModelKey="UUID:A035A07C-F362-44dd-8F95-E2B134BF43B4"/>

<keyedReference

keyName="keyword" keyValue="restaurant-lookup-ch"

tModelKey="UUID:A035A07C-F362-44dd-8F95-E2B134BF43B4"/>

<keyedReference

keyName="Restaurants" keyValue="90101501"

tModelKey="UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384"/>

<keyedReference

keyName="Restaurants and catering" keyValue="90100000"

tModelKey="UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384"/>

</categoryBag>

</businessService>

</serviceDetail>

</soapenv:Body>

</soapenv:Envelope>

Figure 6.2: Sample UDDI description for service instance shown in Figure 5.10

144

Service type Number of Number of Number of

geographical semantic UNSPCS

categories annotations codes

RestaurantFinder 1 3 2

AddressFinder 1 2 1

DirectionsFinder 1 3 4

Translation-Service 1 2 1

SpeechSynthesizer 1 2 1

Table 6.1: Sample service categorisation

Test cases

Case 1. The composition time was measured for the case in which the process

of service composition occurred under ideal conditions, without any composition

or execution failures.

Case 2. In this use case a composition failure was simulated by randomly re-

moving service descriptions from the domain description, before a composition

request was submitted. The failure injection process reduced the domain de-

scription size by 20% on average. As a result, this triggers the operation of the

GoalMorph composition failure management system. The total composition time

was measured, including the time for service failure recovery.

The following two cases illustrate scenarios in which the service fails during

execution thereby triggering a service replacement process. Two different ways

of handling such execution failures were compared.

Case 3a. Firstly, the traditional approach to service failure was applied. Service

execution failures caused control to be passed from the execution and monitoring

layer back to the architecture specific composition layer, in which a replacement

service is discovered, bound and scheduled for invocation.

Case 3b. A second variant of this case employed a proactive approach to service

failure recovery. Several service replicas were deployed at the same time as the

initial service instance. This reduced the overhead of the discovery process once

the execution failure occurred.

145

Measurements

For each test case the times required by the following steps were measured:

1. Layer 1: composition request management

(a) Retrieval of core goal conditions from the Goal Service.

(b) Context retrieval from the Context Service.

(c) Construction of context goal conditions by the Context Proxy.

(d) Assembling of the composition request.

2. Layer 2: abstract service composition

(a) Translation of the composition request to a problem definition.

(b) Translation of abstract service descriptions in the Abstract Service

Repository to generate a domain description.

(c) Composition of an abstract plan by the planner using the problem

definition and the domain description.

3. Layer 3: architecture specific service composition

(a) Creation of an abstract execution plan in the BPEL4WS format.

(b) Deployment of a BPEL4WS file on the BPWS4J engine.

(c) Atomic service discovery and instantiation.

4. Layer 4: execution and monitoring

(a) Service invocation, contacting a service at a specified binding.

(b) Running the Monitoring Engine, which observes the environment

and service execution to discover failures.

5. Layer 1: composition failure recovery

(a) Transformation of the failed composition request, using the GoalMorph

system, into ones that may be possible to be solved.

6. Layers 3 and 4: service execution failure recovery

(a) Running the recovery mechanism after service execution failure to re-

place the failed service with another operating instance.

146

Step 2b in the list was performed only once at the beginning of the overall

evaluation, as each test case uses the same domain description. Therefore the

measurements do not include the time for this step. On average, loading the

domain and translating it to the format supported by the Composition Engine

takes approximately 4.3 seconds. Furthermore, steps 5 and 6 are only measured

when a composition (Case 2) or a service execution failure occurs (Cases 3a and

3b). In addition, the experiments in Section 4.3.1 show the quality of the modified

plans in comparison to the original service composition request.

The time needed for service discovery and instantiation includes the total time

for all atomic service forming the composite service. Future work will consider

interleaved service discovery and execution, in which each discovered service is

immediately invoked, and the subsequent service is instantiated at the same time.

Measurement procedure The measurements were performed by obtaining

snapshots of the total CPU time consumed by the system after each of the steps

in the composition process as previously described. To obtain these figures I used

JConfig [JCo02], a cross-platform library, which employs native OS-dependent

system calls, and transfers data to Java through Java Native Interface (JNI). All

the measurements were rounded to the nearest milisecond.

Composition timeline

Figures 6.3 and 6.4 show the composition timeline for each test case. All mea-

surements were performed for a composition request containing ten goal con-

ditions, out of which five are context goals. The resulting composite service

consisted of 23 atomic services. The discovery process was performed using the

Service Registry, which consisted of 160 service instances, each categorized in

three to six classes. The measurements were repeated twenty times.

Figure 6.3 compares the average composition time for test cases with and

without composition failure. When composition failure occurs in Case 2, it trig-

gers the GoalMorph composition failure management system. This results in an

overhead of 42 ms, out of which 40 ms is the time required for the planning

process to fail, 1 ms to transform the goal and 1 ms to replan the request. It is

important to note that the planning time can be bound, by setting the planner

to timeout if the plan is not found within a certain time period.

Figure 6.4 shows the comparison of the composition timeline for the other

two cases, in which an execution failure occurs. By contrast to Case 3a, in which

each service is replaced as it fails, in Case 3b a service replica are fetched and

cached, during the initial service discovery process. The proactive approach in

147

0

25

50

75

100

125

150

175

C
o

m
p

o
s

it
io

n
 t

im
e

 (
C

P
U

 m
s

)

Layers 3 and 4 117 115

Layer 2 (replanning) 0 1

Layer 1(GoalMorph) 0 1

Layer 2 (planning) 1 40

Layer 1 7 6

Case 1: service composition

without failures

Case 2: service composition with

GoalMorph handling composition

failures

Figure 6.3: Composition timeline for Case 1 and Case 2

Case 3b reduces the failure recovery time from 25 ms to 10 ms.

On average the normal composition without any failures takes approximately

125 ms for a composite service consisting of 23 atomic services. The overhead in-

troduced by handling composition failures (2 ms + planning time) and execution

failures (10 ms) is acceptably small.

It is important to note that the reason why the architecture specific compo-

sition layer takes a disproportionate amount of time, compared to other steps, is

because of the low performance of the WSDL parser [Wsd05] used for generating

the BPEL4WS file.

148

0

20

40

60

80

100

120

140

160

C
o

m
p

o
s
it

io
n

 t
im

e
 (

C
P

U
 m

s
)

Execution failure recovery 20 5

Monitoring 6 5

Layers 3 and 4 116 117

Layer 2 (planning) 1 1

Layer 1 7 7

Case 3a: service composition

with reactive recovery of

execution failures

Case 3b: service composition

with proactive recovery of

execution failures

Figure 6.4: Composition timeline for Case 3a and Case 3b

6.3 Scalability

This section discusses scalability issues in the proposed framework design, which

are raised by different types of participating components and operations carried

out between them. The experimental evaluation considers the framework’s ability

to operate under increasing: (1) domain size, (2) size of composition requests

and (3) number of concurrent composition requests. The experimental con-

figuration used for performance described in Section 6.1 was also used to run

the scalability tests. The complexity of the planning domain size was extended

to contain 150 facts and 100 service types, to accommodate composite services

consisting of up to 100 atomic services.

149

 0

 50

 100

 150

 200

 250

 80 41 23 9

C
om

po
si

tio
n

tim
e

(C
P

U
 m

s)

Size of composite service

Domain 80
Domain 160
Domain 320
Domain 640

Figure 6.5: Scalability when increasing domain size

6.3.1 Scalability when increasing domain size

This experiment varied the number of service instances available in the Service

Registry from 80 to 640. The parameters of the planning domain remained as

described in Section 6.1, consisting of 100 facts and twenty abstract service types.

For each stage of the domain growth a full composition process was executed to

reconstruct the framework operation. At the same time the size of the resulting

composite service was varied from 9 to 80. It is important to mention that the

composite service may include more than one instance of an abstract service.

Often in the composite service atomic services are executed more than once.

The composition process was invoked twenty times to measure the average

CPU time. Figure 6.5 shows the results of this experiment, demonstrating that

the framework can can scale to a realistic domain size (640 instances), while still

requiring less than 229 ms of CPU time to compose complex services.

150

Test cases

Composition request size (number of goal conditions) 5 10 20 40

Number of context goal conditions 1 5 7 10

Average size of the resulting composite service 9 23 41 80

Table 6.2: Composition request size and composite service size

6.3.2 Scalability when increasing composition request size

This experiment measured the impact of composition request size on the co-

mposition time. The number of goals in the composition request was varied

from 5 to 40, and the number of context goal conditions was varied from 1 to 10,

respectively. Table 6.2 shows composition request sizes, the number of context

goals in each and the average size of a resulting composite service used for testing.

This experiment measures the trend in composition time as the number of

context goal conditions in the composition request was increased. Figure 6.6

shows the average composition time and provides a breakdown of performance

for each layer of the framework.

While the overall composition time increases with the complexity of the

composition request and consequently the resulting size of the composite ser-

vice, the framework can compose and invoke a composite service of size 80, which

corresponds to the composition request of size 40, in less than 0.224 seconds

of CPU time.

6.3.3 Scalability when increasing number of composition

requests

This experiment was conducted to measure how the system responds to an in-

creasing number of concurrent composition requests. The number of concur-

rent composition sessions was varied from 1 to 100.

The BPWS4J engine v2.1, which is used in the implementation of the proto-

type, does not support programmatical deployment of more then one BPEL4WS

file simultaneously, at the time of writing. Therefore the measurements focus on

the scalability of the framework without the deployment of the BPEL4WS file.

Figure 6.7 shows that there is a very modest increase in the composition

time as the number of concurrent composition sessions grows. Specifically, the

total composition time for one hundred simultaneous composition requests is

less than twice the composition time for a single composition request. This

demonstrates the ability of the system to scale gracefully to accommodate large

numbers of concurrent composition requests.

151

 0

 50

 100

 150

 200

 250

 40 20 10 5

C
om

po
si

tio
n

tim
e

(C
P

U
 m

s)

Composition request size

Layer 1
Layer 2
Layers 3 and 4

Figure 6.6: Scalability when increasing the composition request size, for domain

size 160.

Table 6.3 shows the distribution of composition time across different layers

and the corresponding composition steps. It is important to mention that the

reported time for service discovery, binding and invocation is a total time for

processing all the participating atomic services. The results have been rounded to

one decimal place. The bottleneck of the composition process is the generation of

the BPEL4WS file, due to the low performance of the WSDL parser used [Wsd05].

Furthermore, the relatively small increase in the time taken for layers 3 and

4, shown in Table 6.3, results from the caching mechanism employed by the

Service Registry, as the test data set contained composition requests consisting

of overlapping service instance queries.

6.4 Qualitative evaluation

In addition to the previously described quantitative evaluation methods, two

further qualitative directions of evaluation are undertaken. The first one analyses

the effort involved in developing context aware applications using the traditional

152

 0

 20

 40

 60

 80

 100

 120

 140

 100 50 10 1

C
om

po
si

tio
n

tim
e

(C
P

U
 m

s)

Number of composition requests

Legend
Layer 1: assembling composition request
Layer 2: planning
Layer 3: BPEL construction
Layer 3: BPEL deployment
Layer 3 and 4: service discovery, binding, exection

Figure 6.7: Scalability when increasing number of composition requests

application development methodology. It then compares it to the effort it takes to

develop context aware applications using the proposed methodology, grounded in

the context aware service composition framework. The second path of evaluation

considers how the aims outlined in Section 1.3 have been met by the framework

design.

6.4.1 Development effort

This dissertation presents a framework for context aware application develop-

ment, grounded in the idea of planning-based service composition. The drive

behind the design of the framework is to make context aware applications easier

to build, in order to reduce their complexity and increase their extensibility.

At present there is no set of standard metrics for measuring system complexity.

Furthermore, there is no formal specification of qualitative parameters to evaluate

the design of the system.

Determining a set of metrics for evaluating autonomic, ubiquitous systems is

a continuous research topic. Ranganathan et al. [RC03] propose measurements

153

Step 1 request 10 requests 50 requests 100 requests

Layer 1: 5 30 30 45

Composition request assembly

Layer 2: 10 30 30 40

Abstract service composition

Layer 3: 11 13 16 19

Generate BPEL4WS

Layer 3: 55 n/a n/a n/a

Deploy BPEL4WS

Layers 3 and 4:

Service discovery, binding, 51 118 120 124

and execution scheduling

Total time (ms) 132 191 196 228

Table 6.3: Scalability when increasing the composition request size: composition

time distribution (CPU ms)

based on task-structure complexity, unpredictability, size complexity, chaotic

complexity and algorithmic complexity. McCann et al.[MH04] identify a set of

metrics for autonomic systems based on AI, primarily dealing with the perfor-

mance of the system, rather then its design. This set contains parameters such

as Quality of Service, granularity and flexibility, failure avoidance, degree of au-

tonomy and time to adapt.

The complexity of the system can be viewed from the perspective of a number

of different stakeholders. An application developer is concerned with development

time, flexibility and extensibility of the application. A system administrator is

concerned with the amount of management and configuration required to keep the

application running. Most importantly, the end user is concerned with how the

complexity of the system affects its usability and the ability of the user to spec-

ify and select computational tasks; in other words, to specify the composition

request in the proposed framework.

This section describes the steps involved in developing context aware appli-

cations using legacy application frameworks, which embed the contextual depen-

dencies. It compares them to the ones in the approach proposed in this disserta-

tion using the sample application scenario, described in Section 3.1. These two

approaches are compared in terms of the design and development effort.

Developing applications using a legacy design model. Table 6.4 sum-

marises the steps involved in developing applications based on traditional design

models, using available application design toolkits and context middleware solu-

154

Step Step description Development Frequency Difficulty

mode

Task specification

1 Specify context semi repeated easy

2 Register with context providers auto repeated easy

3 Specify desired core goal manual repeated moderate

4 Specify desired context behaviour semi repeated difficult

5 Select desired task semi repeated moderate

Application behaviour specification and configuration

6 Develop core functionality manual one-off moderate

7 Encode context aware behaviour manual repeated difficult

Application execution

8 (Platform-specific) deployment semi repeated moderate

Unpredictability and failure recovery

9 React to context changes semi repeated difficult

10 React to task changes auto repeated moderate

11 React to execution failures semi repeated moderate

Table 6.4: Design process for building context aware applications using a legacy

approach

tion, where appropriate.

For each phase in the development process, the table shows its development

mode, its frequency when adaptation is required and its difficulty. Development

modes are categorised as follows manual coding, semi-automated with the assis-

tance of toolkits and scripts, or fully automated with the assistance of frameworks

or middleware.

The difficulty of the different phases depends on the availability of suitable

frameworks, toolkits and scripts. For example context specification and regis-

tration with context providers are increasingly common feature of context mid-

dleware solutions. The key challenges in using this design method are how to

specify context behaviour and how the developer can encode it. This legacy ap-

proach is scenario specific. There is very little reusability of essential phases in

development of context aware applications in a different application domain.

The most critical steps are 4, 7, and 9 to 11, which deal with the specification

of context behaviour and the systems’s ability to handle unpredictability and

react to failures. These tasks are most difficult as they require a high amount of

effort to specify and encode context behaviour. For example, to incorporate a new

context command, based on a new context type or value, a developer needs to

perform several actions. Firstly, the developer has to specify desired context types

to be retrieved from context middleware. Then the developer has to embed the

155

Step Step description Development Frequency Difficulty

mode

Task specification

1 Specify context semi repeated easy

2 Register with context providers auto repeated easy

3 Specify desired core task semi repeated easy

4 Specify desired context behaviour auto repeated easy

5 Select desired task semi repeated easy

Application behaviour specification and configuration

6 Semantic description of services semi one-off difficult

7 Generate domain description semi one-off moderate

8 Generate problem definition auto repeated easy

9 Generate abstract plan auto repeated easy

10 React to plan failures auto repeated easy

11 Generate architecture specific plan auto repeated easy

Application execution

12 Service discovery and invocation auto repeated easy

Unpredictability and failure recovery

13 React to context changes auto repeated easy

14 React to task changes auto repeated easy

15 React to execution failures auto repeated easy

Table 6.5: Design process for building context aware applications using the pro-

posed approach, based on the concept of context aware service composition

new context functionality, which is a process that often requires reprogramming

the existing application. Finally, the main limitation of this approach is that the

set of features provided by the application is predefined.

Developing applications using context aware service composition. Ta-

ble 6.5 summarises the design steps involved in building context aware applica-

tions using the approach proposed in this dissertation. Most of the phases are

semi automated. This approach introduces two complex phases: semantic anno-

tation of services (Step 6) and construction of the domain description (Step 7).

Despite the fact that they require extensive (manual) design and development,

both stages only occur once for each application domain.

Some of the phases shown in Table 6.5 can be automated and their develop-

ment can be further simplified. For example, goals in the Goal Service can be

automatically obtained by analysing the domain specification, and inferring the

possible composition requests that can be fulfilled.

Finally, the most important advantage of this approach is its generality. It

is independent of specific application scenario and embeds a general method for

156

Feature Legacy approach Context aware

service composition

New context type
Automatically discovered Automatically discovered

using middleware using middleware

New context value
Context goal Context goal

manually encoded automatically generated

New context behaviour
Requires reprogramming Automatically generated,

the application behaviour may trigger recomposition

Table 6.6: Comparison of legacy and proposed application models in dealing with

unanticipated context

specifying context behaviour.

Comparison: supporting new context behaviours Tables 6.4 and 6.5

show the steps involved in developing the sample application using the legacy

approach and the new application model, respectively.

The goal of a context aware application designer is to develop applications that

adapt their behaviour in response to context. The three most difficult and time

consuming steps: execution, deployment and failure recovery are taken care of by

the framework. The designer is expected to concentrate on the specification and

performance of the context aware behaviours. Table 6.6 summarises how both of

these approaches handle unanticipated context and evolving requirements.

The context aware service composition approach still requires certain amount

of prediction and encoding of the set of possible constraints, and the impact they

would have on the viability of a given plan (i.e., the domain description). There

are three different ways how the framework new and unanticipated constraints

could be dealt with by the framework, all within the scope of ContextMesh and

GoalMorph system.

1. Context middleware provides context information in the form of a key-

attribute pair, therefore cycling is provided it may be classified as context

type activity. Unless the explicit representation of cycling is already present

in GoalMorph (or provided by domain engineer- see third item), user may

provide any user and application specific categorization and association of

cycling (such as relation of cycling to other types of activities).

2. System handles new combinations of context. For example, a new device

available in the market may be a combination of existing device capability

values. Therefore there is no need to encode all the combinations in the sys-

157

tem, as the different context rules will be provided through ContextProxy

and planner will reason over those.

3. Finally, when a completely new concept (e.g. cycling) is introduced, the

assumption is that the domain engineer will provide some form of a tag

associated with cycling, which will describe it in terms of its type and any

context hierarchy membership and relation to other existing values, as well

as initial utility value. This tag may also point to the actual ontology that

contains the description of the concept.

In conclusion, despite the initial overhead in devising the new framework, it

provides many advantages. It reduces the need for many steps in the design

process that are replicated across individual applications and provides uniform

support for these steps.

6.4.2 Effectiveness

The quantitative evaluation undertaken shows that the implementation of the

framework provides an efficient and scalable service composition infrastructure.

This section discusses in detail how each of the framework requirements and dis-

sertation aims identified in Section 1.3 is met through system design principles

that hold independently of the specific infrastructure implementing the frame-

work.

1. Composition failure recovery. This dissertation introduces GoalMorph, a

system for composition failure management. GoalMorph converts failed

composition requests into ones that can be solved, by utilizing core and

context goal transformation. The central component of GoalMorph is the

Context Mesh, a multidimensional data structure for hierarchical organi-

sation of context. It enables context layering, operation which controls the

amount of context data considered when transforming the context goal.

2. Automated context aware goal construction. The framework presents the

Context Proxy, a component that generates cogotags, context goal tags,

for representing context goal conditions. The Context Proxy fetches the

current context data from the Context Service and assembles context

goal conditions. Context behaviour rules may be injected into the Context

Proxy by the user, the Context Service or inferred from the past interac-

tion of user with the system.

158

3. Execution failure recovery. The framework takes active steps to maintain

the quality of composed services during their execution. It keeps a small

number of service replicas for each service type. As a result, it can easily and

quickly recover failures caused by service unavailability, by immediately re-

placing a failed service with a running one. The advantage of this approach

is that it reduces the failure recovery overhead by avoiding invoking the

discovery process to find a new service at execution time.

4. Scalability. The quantitative evaluation has shown that the framework ef-

ficiently copes with the increasing domain size and composition request

size. The proposed framework can handle more than a hundred of concur-

rent composition requests without presenting performance bottlenecks.

The system scales linearly as the complexity and the volume of requests

grow, allowing an on demand addition of resources to cope with the in-

creased demand.

5. Independence of application domain. The proposed framework supports any

kind of application scenario without requiring compliance to any domain-

specific code, aside from the domain description, which is extracted from

the Abstract Service Repository and imported into the Composition

Engine.

6. Independence of component technology. The framework does not assume

or require a specific component technology, such as DCOM, CORBA or

Web service. It accommodates plug-in modules that convert the specific

component description format into an internal representation format. This

enables the framework to accommodate any future emerging standards.

7. Independence of composition methodology. The framework is open to alter-

native composition methodologies. As described in Chapter 3, the frame-

work employs an internal representation of the composite service. The

Translation Module converts the composition request into the problem

definition format supported by the composition method in use. The re-

sulting abstract plan, representing composite service, is similarly stored

in the internal representation format, to be converted to the implementa-

tion specific language. The benefit of such a design is twofold. Firstly, it

results in an open and extensible framework, in which multiple different co-

mposition algorithms, such as model based and probabilistic planning, can

coexist, providing specialised composition methodology tailored to the level

of determinism and observability of the application domain. Secondly, it

makes the Composition Engine independent of the execution environment.

159

8. Independence of context middleware. The framework employs internal rep-

resentation for context types and their corresponding values. This has a

number of important benefits. It enhances the extensibility of the frame-

work and enables the acquisition of context from multiple context middle-

ware solutions. Additionally, it supports switching between different con-

text middleware solutions when the Context Service becomes unavailable.

6.5 Summary

The efficiency and scalability of the developed framework were demonstrated

through experimental evaluation. The prototype system allows for composition

and deployment of complex services, consisting of 80 components, in less than

0.225 seconds , when the Service Registry contains 160 service instances. It

can scale to 100 concurrent composition requests without presenting performance

bottlenecks.

The development effort required for building context aware applications using

the proposed approach was also analysed. The proposed method was contrasted

to the traditional application design approach. Whilst the proposed approach

does require manual effort, e.g. Context Mesh encoding, the application pro-

grammers’ effort saved by enabling applications to be dynamically composed and

to evolve is greater. The framework automises the most difficult, manual and

frequently occurring steps in developing context aware applications, such as en-

coding the large and increasing number of combinations of context types that

applications have to adapt to. Finally, the chapter presented how each of the

requirements for a new application model and dissertation aims, identified in

Section 1.3, is met through the system design principles employed.

160

Chapter 7

Conclusion

The proposed context aware service composition framework represents a novel

model for developing context aware applications in a structured and extensible

way. Services are assembled based on the user’s context, such as available re-

sources, time constraints, and location. The core feature of this approach is

the recomposition of the composite service during its execution, which may be

triggered by changes in the context.

This is a challenging endeavor because of the failures that may arise during

the composition process, the lack of automated ways for context aware goal con-

struction, and the shortcomings of existing AI planning systems to fully handle

the complexity of the service composition problem.

The framework provides a general-purpose, failure-tolerant solution for con-

text aware service composition by combining a number of novel ideas. Firstly,

it employs GoalMorph, a composition failure management system, which applies

context aware goal transformations to failed composition requests to convert

them into the ones that can be solved. At the same time, the layered frame-

work design and the use of internal representations are instrumental in achieving

independence of the framework from a specific component technology, semantic

language, composition methodology and run-time environment. Finally, a new

format for representing context aware goals, called cogotags, has been devised

to enable automated construction of context aware composition requests.

A prototype implementation of the proposed framework has been developed

and deployed. Evaluation results demonstrated that the framework provides a

practical, efficient and scalable solution for realistic applications. The prototype

system allows for composition and deployment of complex services, consisting of

80 components, in less than 0.22 seconds, when the Service Registry contains

160 service instances. It can scale to more than a hundred concurrent composition

requests without causing performance bottlenecks.

161

GoalMorph, the framework extension to handle composition failures has been

shown not to significantly impair the performance of the framework, adding only

0.001 seconds for a single goal transformation. GoalMorph transforms failed

composition requests, consisting of more than 40 goal conditions in the ex-

ample environment, into requests that can be solved and achieves more than 60%

of the original composition request utility on average.

7.1 Contributions

This dissertation makes four principal contributions:

1. It reviews existing work in context aware computing and service composi-

tion and identifies the main research challenges that need to be tackled by

a new application model to facilitate context awareness.

2. It evaluates the state of the art in existing AI planning technology and

analyses its applicability to the Web service composition problem.

3. It describes the design and implementation of a novel proposed service

composition framework for building context aware applications. It demon-

strates that the mechanisms and techniques employed work efficiently and

scalably.

4. It presents GoalMorph, a composition failure management system, which ap-

plies context aware goal transformations to failed composition requests

to convert them into ones that can be solved by the Composition Engine.

GoalMorph introduces the following:

(a) A model for the representation of context aware goals.

(b) A taxonomy of core and context goals and the corresponding transfor-

mations used to transform failed composition requests.

(c) A utility based mechanism for trading off goal transformations and cor-

responding partial success in achieving one goal against partial success

in achieving another.

7.2 Future work

To further address the goal transformation problem and allow for more flexible

service composition, several related challenges need to be overcome. This section

describes some of the potential directions for future work.

162

7.2.1 User driven goal transformation selection

GoalMorph allows for multiple methods to guide the selection of applicable goal

transformations. At present the utility driven transformation mechanism uses

planner success to update the originally randomly assigned transformation uti-

lities. The next step is to extend GoalMorph to update utilities based on user

feedback. For that, a model representing the user’s satisfaction with a trans-

formed request is needed.

Quantification of user preferences is a popular research topic. Poladian et

al. [PSGS04] devise a mathematical model for optimising the dynamic configura-

tion of resource-aware services. They use this approach to maximise configuration

utility based on three input parameters: user preferences, application capability

profiles, and resource availability. Poladian et al. express a user’s utility by means

of a user preference function that maps from a multidimensional configuration

space to a one-dimensional utility space.

One idea would be to adapt this model to guide the utility-based transforma-

tion selection process in GoalMorph. Poladian et al. consider utility as a mea-

sure of a user happiness with respect to the possible outcomes. In GoalMorph,

this would be a formal representation of how useful a transformed composition

request is relative to the original request. Using a similar approach to Pola-

dian et al. the goal transformation utility can be encoded as a number between

zero and one, where zero utility corresponds to the transformed goal being unac-

ceptable for the request, and one corresponds to complete user satisfaction. As a

result, when the utility is one, increasing it may not improve the user’s perception

of usefulness for the specific task. Furthermore, based on the acquired utilities,

learning methods can be applied to guide future goal transformations.

7.2.2 Composition request scheduling

A production deployment of the framework, with the GoalMorph extension will

result in a number of composition requests competing for system resources.

Given a number of independent requests and their possible transformations, a

mechanism for their prioritisation is essential.

A method for scheduling of composition requests or transformations de-

pending on high-level criteria, such as the importance of goals and the subscrip-

tion class of the users submitting the requests, is envisaged. For instance, users

paying the lowest subscription fee may get a lower probability of their goal utility

requirements being met, whereas a high subscription user with the same require-

ments may get a higher probability and a faster service response.

163

7.2.3 Quality of Service for composite service execution

Current research approaches to providing Quality of Service-based service co-

mposition assume that service providers include Quality of Service specifications

in the service description and that this will be available through service reg-

istries [ZBN+04]. However, Fan et al. [FK05] report that only a very small num-

ber of real services are actually semantically annotated, at the time of writing.

Furthermore there is a significant gap between the leading research activities and

the reality of Web service applications.

As future work assembling and executing composite services based on real-

time Quality of Service measurements, acquired through interaction with the

services, is proposed. The system learns about service capabilities and records

their properties such as failure rate, latency and generated traffic. The measured

Quality of Service information is then used for selecting service instances. Users

can specify their Quality of Service requirements together with a composition

request. The system examines the Quality of Service requirements and exist-

ing services and their capabilities to determine the probability with which the

user requirements will be met. It is important that the system does not give a

yes/no admission control decision to the user, rather it informs the user about

the probability of success and lets the user choose whether to proceed.

To improve the probability of meeting Quality of Service requirements, the

system may opt to run redundant instances of the composite service (or specific

services) to ensure that the overall execution will not be drastically impaired by

delays caused by the failure of one or more atomic services.

7.2.4 Privacy, security and trust for composite services

User context, such as location, activity, and social setting, is enormously sensitive

information. Mechanisms for managing privacy either through access control

management or by ensuring anonymity to prevent tracking of users and their

requests, are essential.

Furthermore, authentication and trust management in a federated environ-

ment, where services and composition framework are owned and administered

by different organisations, is a challenging problem. A federated authentication,

authorisation and accounting (AAA) infrastructure is required to enable secure

service composition and interoperation.

Web Service Security Language (WS-Security) [ADLH+02] is an extension of

SOAP developed to provide message integrity, confidentiality, and authentication.

The WS-Security model has been designed to aid the implementation of Web

164

services in a platform independent and loosely coupled manner. It also provides

mechanisms for establishing secure communications, defining policies for how

services interact, and defining rules of trust between domains of services. The

WS-Security model contains several components, which reflect the constraints

and capabilities of Web services, such as Web Service Policy Language (WS-

Policy) and Web Service Trust Language (WS-Trust).

When reasoning about service composition, the composition engine compo-

nent needs to evaluate reliability, interoperability, availability, fault tolerance,

and performability of loosely coupled and distributed services. This requires a

more complex model of trustworthiness.

7.3 Summary

This dissertation has proposed a new approach for developing context aware

applications based on the idea of context aware service composition. It has pre-

sented and evaluated a framework that uses this approach and embodies new

system design principles, which hold independently of the particular infrastruc-

ture implementing the framework.

The framework successfully uses AI planning to control service composition

based on the user’s context. Contextual changes may trigger recomposition of

services during execution, causing the application to evolve dynamically.

Also, the framework has introduced a comprehensive composition failure man-

agement system, GoalMorph, grounded in the idea of context aware goal trans-

formations. By means of a sample application this work has demonstrated that

context aware service composition can work in practice and provides an efficient,

scalable and practical approach for building context aware applications.

By developing the prototype context aware service composition framework,

this dissertation has contributed to enabling the development of extensible, fault-

tolerant, and evolving context aware applications. The research presented within

the scope of the proposed framework represents a step towards a new model for

developing adaptive applications, which coordinate a varying set of software com-

ponents to realise the computational task in highly dynamic and unpredictable

conditions.

165

166

Appendix A

Interfaces

This appendix presents the interfaces that each component exports and the func-

tionality that it delivers. The way the operations are performed in the prototype

implementation of the framework is described in Chapters 4 and 5.

A.1 Composition request management layer

The interfaces of the components that participate in the process of composition

request management are shown in Figure 4.2.

Goal Service

The Goal Service exports the following interfaces for managing user tasks and

composition requests.

1. list application domains()

This method lists all available application domains, which are supported by

the system, such as infotainment portal, mail replication, and smart home

automation.

2. get available tasks(application domain)

application domain: Dimension of search, such as entertainment services.

This method lists the supported tasks in the selected application domain.

3. select task(task id)

task id: Desired task to be composed.

This method sets the task to be composed.

167

4. get goals(task id)

task id: An identifier of the task.

This method returns a formal representation of the goal conditions for this

the task, specified by task id, which form the core part of the composition

request.

5. transform core goal(request id, goal id)

request id: An identifier of the composition request being transformed.

goal id: Desired core goal condition to be transformed.

This method transforms the core goal conditions specified by goal id. The

value of substitution goal depends on the actual transformation employed,

such as goal specialisation.

Context Service

The Context Service is a component responsible for acquisition and manage-

ment of context. It allows other system components both to query and subscribe

for notifications about context change. The interfaces it exports are:

1. list available context providers()

This method lists all the available context providers and corresponding

context types.

2. register with context provider(context type, context provider,

time interval)

context type: Desired context type to be monitored.

context provider: An optional argument identifying the context provider.

time interval: An option argument specifying the time interval in which

the values should be retrieved.

This method enables the client to subscribe to the context provider, defined

by the context provider, the selected context type in callback mode. As

a result the client is notified of a new value, in the given time interval.

3. get context value(context type, context provider)

context type: The type of the context whose value is to be accessed.

context provider: An optional argument identifying the provider.

This method returns the current value of the desired context type.

168

Context Proxy

The Context Proxy creates, manages and stores the context goal conditions,

which describe application behaviour, such as “if the user is driving, then display

the directions in speech form”. The interfaces it exports are:

1. get context goal(request id, context type, context value)

request id: The composition request (task type) for which the goal

should be retrieved.

context type: The type of context for which the rule should be retrieved.

context value: The value of the context that triggers the goal.

This method returns any goals that are triggered by the given context value

of this context type.

2. create context goal(request id, context type, context value,

effect type, effect)

request id: A composition request with which a context goal should

be associated.

context type: The type of context for which this goal should be created.

context value: The value of the context that triggers the rule.

effect type: There are two types of effect: one that denotes that a con-

dition holds, called additive, and one that represents that a condition does

not hold, called subtractive.

effect: The description of the effect that must or must not hold at the

end of the execution of the composite service.

This method generates context goal condition in the cogotag format.

3. update context goal(request id, context goal id, context type,

context value, effect type, effect)

request id: An identifier of the composition request.

context goal id: An identifier of the context goal to be updated.

context type: A type of context for which the goal should be updated.

context value: A value of the context that triggers this goal.

effect type: The effects are of two types: ones that denote that a condi-

tion must hold and ones that denote that a condition must not hold.

effect: The description of the effect that must or must not hold at the

end of the execution of the composition request.

This method updates the existing context goal condition.

169

4. list context goal conditions()

This method lists all available context goal conditions in the Context

Proxy.

5. list context goal conditions(request id)

request id: An identifier of the composition request for which the con-

text goal conditions should be listed.

This method lists all the available context goal conditions stored in the

Context Proxy associated with a specific composition request.

6. list context rules(context type, domain id)

context type: The type of context for which the rules should be listed.

domain in: An optional argument providing an identifier of the domain.)

This method lists all the available context goal conditions for a specified

context type. This is used by Context Mesh to retrieve goal conditions,

for new context types and values, which result from transformations.

Goal Transformation Engine

This component coordinates transformation of failed composition requests

into ones that can be solved by the Composition Engine. Transformation is

not only applied when composition process fails, but also, potentially to opti-

mise an existing composition request and provide a more useful solution, for

example with a higher Quality of Service.

To select suitable transformations, the Goal Transformation Engine em-

ploys several different methods including a utility function, a random search, or

a domain-knowledge dependent method. A utility based search uses numerical

values associated with each transformation, derived from planner feedback as uti-

lities to guide the transformation selection process. The interfaces exported by

this component are:

1. transform composition request(request id)

request id: A composition request to be transformed.

This method triggers the overall process of the composition request trans-

formation. For each core and context goal condition it passes control to the

Goal Service and the Context Mesh respectively.

2. list transformation selection methods()

This method lists available methods for the selection of transformations.

170

3. add transformation selection method (method id,

method description, plug in)

method id: An identifier of the new transformation selection method.

method description: A method description.

plug in: The URL of the component implementing this transformation

selection method.

The method for transformation selection can be guided by different mech-

anisms, such as utility driven and random search.

4. select transformation selection method (method id)

method id: An identifier of the selected method.

This method sets the method that will be used to select transformations.

5. update transformation utilities (method id, request id,

utilities)

method id: A transformation method for which utilities should be updated.

request id: An identifier of the composition request for which utilities

should be updated.

utilities: A set of numerical values associated with transformations for

this request.

This method is used to update the utilities of each single transformation

applied for a specific composition request.

6. track transformation success (method id, request id,

new request id, success)

method id: An identifier of the transformation method for which utilities

should be updated.

request id: An identifier of the original composition request.

new request id: An identifier of the transformed composition request.

success: A flag keeping track whether the overall transformation of the

request was successful or not.

This method keeps track of the success of each transformation request. The

two methods above are invoked following composite service execution.

Context Mesh

The Context Mesh transforms context goal conditions. It interacts with the

Context Service to retrieve context data and with the Context Proxy to gen-

171

erate transformed context goal conditions. There are several ways a context goal

can be transformed, and these are discussed in detail in the Chapter 4.

1. transform context goal(request id, goal id)

request id: An identifier of the composition request being transformed.

goal id: Desired context goal condition to be transformed.

This method transforms the context goal condition, specified by goal id.

It either returns a new context goal condition, which is generated by the

Context Proxy, or completely removes the original goal condition from the

composition request.

A.2 Abstract service composition layer

This layer is responsible for composition on the abstract level. It passes control

to the composition request management layer if the request cannot be satisfied,

and to the architecture specific service composition layer if the abstract plan

was successfully generated.

Translation Module

The Translation Module converts the internal representation of the composition

request into one supported by the composition methodology in use.

1. generate problem definition(request id)

request id: An identifier of the composition request whose formal rep-

resentation is to be converted.

This method converts the composition request, specified by request id,

from an internal representation to the one supported by the Composition

Engine.

2. generate domain definition(abstract services)

abstract services: A list of available abstract service in the domain.

This method converts abstract services in the domain from an internal

representation to the one supported by the Composition Engine.

3. list conversion methods()

This method lists supported composition methods and their respective plug-

ins for conversion of representations.

172

4. get conversion method(method id)

method id: A method whose conversion schema is to be retrieved.

This returns the method for the conversion of the composition request

and the domain for the composition technology in use.

5. add conversion method(method id, plug in)

method id: A composition method for which the plug in is being added.

plug in: The URL of the component implementing this conversion method.

This method facilitates integration of new conversion methods. As a result

it system is extensible and open towards new composition approaches.

Abstract Service Repository

This component stores information about and provides retrieval of abstract ser-

vices.

1. list available service types()

This lists available abstract service types in the domain.

2. get domain description()

This returns the domain description encompassing abstract services in the

representation format supported by the Composition Engine.

Composition Engine

This component locates, selects and composes abstract services that meet the

constraints of a composition request to construct an abstract plan.

1. compose abstract plan(problem definition, domain description)

problem definition: A formal description of initial and goal states.

domain description: A formal description of available abstract service.

This method performs the composition on an abstract level. It returns an

abstract plan in the language of the composition method. Chapter 5

describes in more detail TLPlan representation of a problem definition,

domain description and abstract plan.

A.3 Architecture specific service composition layer

This layer converts an abstract plan to the one that can be deployed and

executed, by instantiating abstract services.

173

Plan Translator

This component converts an abstract plan into an abstract execution plan.

1. generate abstract execution plan(abstract plan, format)

abstract plan: An abstract representation of the composite service gen-

erated by the Composition Engine.

format: An identifier of the representation format used for translation.

This method returns the abstract execution plan in the representa-

tion language supported by the execution environment, by converting the

abstract plan generated by the Composition Engine.

Plan Instantiator

This component generates an executable and deployable service, based on the

given abstract plan.

1. instantiate(abstract service, search criteria)

abstract service: A description of an abstract service, which forms the

main criteria for finding matching instances.

search criteria: Additional criteria that must be satisfied by selected

service, such as Quality of Service parameters.

This method is used to contact the Service Registry in order to instan-

tiate an abstract service.

2. generate deployable service(service description,

service binding)

service description: Information on preconditions and postconditions

that must hold before and after the execution of the service.

service binding: Information on how to access this service.

This returns the service instance to be deployed and executed. In addi-

tion to the service binding information, required service preconditions and

postconditions are also passed to the execution and monitoring layer.

Service Registry

A Service Registry is a network-based directory that contains information

about available services. It is an entity that stores contracts from service providers

and provides those contracts to interested service consumers.

174

1. publish service(service id, service data)

service id: An identifier of the service to be published.

service data: Functional and binding information about this service.

Service providers use this method to publish their services to the Service

Registry, making them available for use by other service requestors.

2. find service(search criteria, max rows)

service description: A set of service capabilities.

max rows: An optional argument specifying the maximum number of match-

ing service instances to be returned.

This lists all service instances that match the requested properties.

3. get service(service id)

service id: A unique identifier of the service to be accessed.

This returns the binding information for the selected service.

A.4 Execution and monitoring layer

This layer invokes service instances and continuously monitors their execution.

Execution Engine

This component is an off-the-self run-time environment.

1. execute service(service id)

service id: An identifier of the service instance to be invoked.

This is provided by the execution platform and is used to execute the service

instance, specified by service id.

Monitoring Engine

This provides monitoring capabilities to manage service execution.

1. set service monitoring procedure(service id,

monitoring procedure id)

service id: An identifier of the service to be monitored.

monitoring procedure id: An identifier of the monitoring procedure.

175

2. set event monitoring procedure(event id, monitoring procedure id)

event id: An identifier of the event to be monitored.

monitoring procedure id: An identifier of the monitoring procedure to

be applied.

These two methods define services and events that the Monitoring Engine

should observe. Monitoring procedures are described in detail in Section 5.3

3. fire service failure(service instance, failure type,

environment)

service id: An identifier of service to be monitored.

failure type: There are two types of failure, a service failure, such as

when service stops responding, or service unavailability, for example, if ser-

vice cannot be initially invoked.

environment: Describes the current state of the execution environment.

This is activated when a service failure occurs and triggers the fault recovery

process. Information about the environment is used to update the state of

the Execution Engine.

4. fire event failure(event id, environment)

event id: An identifier of the event.

environment: Describes the current state of the execution environment.

This activates when an unexpected event occurs. A description of the cur-

rent environment is passed to the Composition Engine and Execution

Engine.

176

Appendix B

System extensibility

Different application domains and composition problems may require the ap-

plied composition methodology to support different features, such as varying

degree of observability. Furthermore, new component technologies and compo-

sition methodologies are routinely becoming available. For the framework to be

considered general-purpose, no single service component technology and composi-

tion methodology can be assumed. The service composition framework therefore

needs to be designed in an open way so that new features can be added easily,

without requiring significant changes to the framework.

To facilitate extensibility, the system employs internal representations of the

composition request and abstract plan. Translation modules are employed

for each new composition method or component technology, which is introduced

in the system, to represent the internal structure of the composition request

and the abstract plan.

Independence of composition methodology

The composition request is a construct that specifies a user’s computational

task. The data structure used to represent it contains the following:

1. request id:

A unique identifier for the formalised composition request.

2. task id:

A unique identifier of the high-level task this request is associated with.

3. application domain id:

A unique identifier of the application domain to which this composition

request belongs to.

177

4. core goals:

A list of the core goal conditions.

5. context goals:

A list of the context goal conditions.

6. priority level:

The level of importance of this goal, used when several goals require system

resources at the same time.

The central part of the composition request is goal conditions, whose de-

scription in the current implementation of the framework follows the formalism

used in state transition systems [FN71]. Each goal condition consists of a type

and a set of values. Values include primitives, such as integers and strings, struc-

ture values containing named components, and list values containing components.

Every goal condition has an XML representation and every XML document in

the correct format can be viewed as a goal condition value.

The problem definition is a set of goal conditions represented in XML form.

The domain description is a list of semantically enriched abstract services,

mapped to the abstract planning actions. The Abstract Service Repository

is designed to cooperate with third-party mediators, supporting heterogeneous

ontologies that different service providers may use to describe their capabilities.

The architecture is also independent of the component technology used, and

in addition facilitates the use of multiple component technologies provided that

the service description can be translated into the internal representation format.

The abstract plan makes the system open to any composition methodology and

further allows the coexistence of multiple composition methodologies, as different

composition methodologies may be more applicable to the problem at hand.

Independence of execution environment

The Plan Translator transforms an abstract plan into an abstract execution

plan. For each abstract service in the abstract execution plan The Plan

Instantiator creates a deployable service representation, which contains:

1. a service binding in the implementation specific representation

2. service preconditions and postcondition

3. redundant services for substitution in case of failure

4. a monitoring procedure including recovery method

178

The Monitoring Engine is designed to wrap around the Execution Engine

provided by the run-time environment. There are no architectural barriers to

supporting multiple execution environments at the same time, assuming they

can be accessed through interfaces defined in the architecture specific service

composition layer.

In summary, the open and extensible design of the system ensures a low

maintenance cost in terms of effort, because existing execution environments and

available composition methods are supported and can easily be integrated, as

the mechanisms for easy composition management, execution and monitoring

are provided by the proposed framework.

179

180

Bibliography

[ABH+02] Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Las-

sila, David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini

Narayanan, Massimo Paolucci, Terry R. Payne, and Katia Sycara.

DAML-S: Web Service Description for the Semantic Web. In

Proceedings of the First International Semantic Web Conference

(ISWC), Sardinia, Italy, June 2002.

[ACD+05] Vikas Agarwal, Girish B. Chafle, Koustuv Dasgupta, Sumit Mittal,

and Biplav Srivastava. Evaluating Planning Based Approaches for

End to End Composition and Execution of Web Services. In Pro-

ceedings of the Twentieth National Conference on Artificial Intel-

ligence (AAAI-05). Workshop on Exploring Planning and Schedul-

ing for Web Services, Grid and Autonomic Computing, Pittsburgh,

Pennsylvania, USA, 2005.

[ACK94] Abhaya Asthana, Mark Cravatts, and Paul Krzyzanowski. An In-

door Wireless System for Personalized Shopping Assistance. In

Proceedings of the IEEE Workshop on Mobile Computing Systems

and Applications (WMCSA), Santa Cruz, CA, USA, December

1994.

[ADLH+02] Bob Atkinson, Giovanni Della-Libera, Satoshi Hada, Maryann

Hondo, Phillip Hallam-Baker, Johannes Klein, Brian LaMac-

chia, Paul Leach, John Manferdelli, Hiroshi Maruyama, An-

thony Nadalin, Nataraj Nagaratnam, Hemma Prafullchandra,

John Shewchuk, and Dan Simon. Specification: Web Ser-

vices Security (WS-Security). Available at http://www-106.ibm.

com/developerworks/webservices/library/ws-secure/, April

2002. (Last accessed 1st March 2006).

[AJLS97] Mike Addlesee, Alan Jones, Finnbar Livesey, and Ferdinando

181

Samaria. ORL Active Floor. IEEE Personal Communications,

4(5):35–41, 1997.

[AVG+04] Rama Akkiraju, Kunal Verma, Richard Goodwin, Prashant Doshi,

and Juhnyoung Lee. Executing Abstract Web Process Flows.

In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS). Workshop on Planning and

Scheduling for Web and Grid Services, Whistler, British Columbia,

Canada, June 2004.

[BA01] Fahiem Bacchus and Michael Ady. Planning with Resources and

Concurrency: A Forward Chaining Approach. In Proceedings of

the Seventeenth International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 417–424, Seattle, Washington, USA, August

2001.

[BBC+01] Steve Benford, John Bowers, Paul Chandler, Luigina Ciolfi, Mar-

tin Flintham, Mike Fraser, Chris Greenhalgh, Tony Hall, Sten Olof

Hellstrm, Shahram Izadi, Tom Rodden, Holger Schnädelbach, and

Ian Taylor. Unearthing Virtual History: Using Diverse Interfaces

To Reveal Hidden Virtual Worlds. In Proceedings of the Inter-

national Conference on Ubiquitous Computing (UbiComp) 2001,

pages 1–6. ACM, November 2001.

[BBG+00] Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Mun-

son, Jeremy Sussman, and Deborra Zukowski. Challenges: An Ap-

plication Model for Pervasive Computing. In Proceedings of the

Sixth Annual International Conference on Mobile Computing and

Networking (MOBICOM), pages 266–274, Boston, Massachusetts,

United States, 2000. ACM Press.

[BCGM03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, and Mas-

simo Mecella. Reasoning about Actions for e-Service Composition.

In Proceedings of the 13th International Conference on Automated

Planning and Scheduling. Workshop on Planning for Web Services,

Trento, Italy, June 2003.

[BCLP03] Piergiorgio Bertoli, Alessandro Cimatti, Ugo Dal Lago, and Marco

Pistore. Extending PDDL to Nondeterminism, Limited Sensing

and Iterative Conditional. In Proceedings of The International Con-

ference on Automated Planning and Scheduling (ICAPS). Work-

182

shop on Planning Domain Description Language (PDDL), Trento,

Italy, June 2003.

[BCP+01] Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, Marco

Roveri, and Paolo Traverso. MBP: a Model Based Planner. In

Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence (IJCAI). Workshop on Planning under Un-

certainty and Incomplete Information, Seattle, Washington, USA,

August 2001.

[Bei00] Michael Beigl. MemoClip: A Location-Based Remembrance Ap-

pliance. Personal and Ubiquitous Computing, 4(4):230–233, 2000.

[Ber05] Daniela Berardi. Automatic Service Composition. Models, Tech-

niques, Tools. PhD thesis, University of Rome ”La Sapienza”,

Rome, Italy, 2005.

[BF95] Avrim Blum and Merrick Furst. Fast Planning Through Planning

Graph Analysis. In Proceedings of the 14th International Joint

Conference on Artificial Intelligence (IJCAI 95), pages 1636–1642,

Montréal, Québec, Canada, 1995.

[BG98] Blai Bonet and Hector Geffner. HSP: Heuristic Search Plan-

ner. Entry at the Fourth International Conference on Artifi-

cial Intelligence Planning Systems (AIPS-98), Planning Compe-

tition. Available at http://www.ldc.usb.ve/~bonet/reports/

aips98-competition.ps, August 1998. (Last accessed 1st March

2006).

[BHB97] John Bates, David Halls, and Jean Bacon. Middleware Support for

Mobile Multimedia Applications. ICL Systems Journal, 12(2):289–

314, November 1997.

[BK95] Fahiem Bacchus and Froduald Kabanza. Using Temporal Logic

to Control Search in a Forward Chaining Planner. In Proceedings

of the Second International Workshop on Temporal Representation

and Reasoning (TIME), Melbourne Beach, Florida, USA, 1995.

[BRH94] Frazer Bennett, Tristan Richardson, and Andy Harter. Teleporting

- Making Applications Mobile. In Proceedings of the Workshop

on Mobile Computing Systems and Applications, Santa Cruz, CA,

USA, December 1994.

183

[Bro96] Peter J. Brown. The Stick-e Document: A Framework for Creating

Context-Aware Applications. In Electronic Publishing, pages 259–

272, Laxenburg, Austria, September 1996.

[BRSM03] Daniela Berardi, Fabio De Rosa, Luca De Santis, and Massimo

Mecella. Finite State Automata as Conceptual Model for e-

Services. In Proceedings of the Seventh World Conference on

Integrated Design and Process Technology (IDPT). Modeling and

Developing Process-Centric Virtual Enterprises with Web-Services

(VIEWS’03), Austin, Texas, USA, 2003.

[CAD+05] Francisco Curbera, Tony Andrews, Hitesh Dholakia, Yaron Goland,

Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug

Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.

Business Process Execution Language For Web Services, version

1.1. White Paper available at ftp://www6.software.ibm.com/

software/developer/library/ws-bpel.pdf, 2005. (Last ac-

cessed 1st March 2006).

[CBC+04] Norman H. Cohen, James Black, Paul Castro, Maria Ebling, Barry

Leiba, Archan Misra, and Wolfgang Segmuller. Building Context-

Aware Applications with Context Weaver. Research Report RC

23388, IBM, October 2004.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and San-

jiva Weerawarana. Web Services Description Language (WSDL)

1.1. Specification available at http://www.w3.org/TR/wsdl, 2001.

(Last accessed 1st March 2006).

[Ccp99] Composite Capabilities/Preference Profiles. Website available at

http://www.w3.org/Mobile/CCPP/, 1999. (Last accessed 1st

March 2006).

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. An Ontology for

Context-Aware Pervasive Computing Environments. Knowledge

Engineering Review, 18(3):197–207, 2003.

[CIJ+00] Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and

Ming-Chien Shan. Adaptive and Dynamic Service Composition

in eFlow. In Proceedings of the 12th International Conference on

Advanced Information Systems Engineering (CAiSE), pages 13–31,

Stockholm, Sweden, June 2000.

184

[CJ01] Dipanjan Chakraborty and Anupam Joshi. Dynamic Service Co-

mposition: State-of-the-Art and Research Directions. Techni-

cal Report TR-CS-01-19, Department of Computer Science and

Electrical Engineering, University of Maryland, Baltimore County,

Maryland, USA, 2001.

[CK00] Guanling Chen and David Kotz. A Survey of Context-Aware

Mobile Computing Research. Technical Report TR2000-381, De-

partment of Computer Science, Darmouth College, Hanover, New

Hampshire, USA, November 2000.

[CKJH02] Ivica Crnković, Zeynep Kiziltan, Totte Jonsson, and Brahim Hnich.

Specification of Software Components. In I. Crnković and M. Lars-

son, editors, Building Reliable Component-Based Systems, chap-

ter 1, pages 5–22. Artech House, 2002.

[CMD99] Keith Cheverst, Keith Mitchell, and Nigel Davies. Design of an

Object Model for a Context Sensitive Tourist GUIDE. Computers

and Graphics, 23(6):883–891, 1999.

[Cor95] Microsoft Corporation. The Component Object Model Specifica-

tion, Version 0.9. Available at http://www.microsoft.com/com/

resources/comdocs.asp, October 1995. (Last accessed 1st March

2006).

[CPJ+02] Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Timothy

Finin, and Yelena Yesha. A Reactive Service Composition Archi-

tecture for Pervasive Computing Environment. In Proceedings of

the Seventh Personal Wireless Communications Conference (PWC

2002), Singapore, 2002.

[CV98] Michael T. Cox and Manuela M. Veloso. Goal Transformations in

Continuous Planning. In Proceedings of the American Association

for Artificial Intelligence (AAAI) Fall Symposium on Distributed

Continual Planning, Orlando, Florida, USA, October 1998. AAAI

Press.

[CvHH+01] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.

DAML+OIL Reference Description. Project Website available at

http://www.w3.org/TR/daml+oil-reference, 2001. (Last ac-

cessed 1st March 2006).

185

[CZ04] Michael T. Cox and Chen Zhang. Planning as a Mixed-Initiative

Goal Manipulation Process. Technical Report WSU-CS-04-02,

Wright State University, Department of Computer Science and En-

gineering, Dayton, Ohio, USA, 2004.

[DA99] Anind K. Dey and Gregory D. Abowd. Towards a Better Un-

derstanding of Context and Context-Awareness. Technical Report

GIT-GVU-99-22, Georgia Institute of Technology, College of Com-

puting, Atlanta, Georgia, USA, June 1999.

[DA00] Anind K. Dey and Gregory D. Abowd. CybreMinder: A Context-

Aware System for Supporting Reminders. In Proceedings of the Sec-

ond International Symposium on Handheld and Ubiquitous Com-

puting (HUC2K), pages 172–186, Bristol, UK, 2000.

[DAS01] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A Concep-

tual Framework and a Toolkit for Supporting the Rapid Prototyp-

ing of Context-Aware Applications. Human-Computer Interaction

(HCI) Journal, 16:97–166, 2001.

[DAW98] Anind K. Dey, Gregory D. Abowd, and Andrew Wood. CyberDesk:

a Framework for Providing Self-Integrating Context-Aware Ser-

vices. In Proceedings of the Third International Conference on

Intelligent User Interfaces, pages 47–54, San Francisco, California,

USA, 1998. ACM Press.

[DC02] Johnatan Dale and Luigi Ceccaroni. Pizza and a Movie: A Case

Study in Advanced Web-Services. In Proceedings of the Interna-

tional Conference on Autonomous Agents and Multiagents (AA-

MAS). Agentcities: Workshop on Challenges in Open Agent Sys-

tems, Bologna, Italy, 2002.

[Der99] Michael L. Dertouzos. The Future of Computing. Scientific Amer-

ican, 281(2):52–63, August 1999.

[Dey00] Anind K. Dey. Providing Architectural Support for Building

Context-Aware Applications. PhD thesis, Georgia Institute of Tech-

nology, Atlanta, Georgia, USA, 2000.

[DGAV04] Prashant Doshi, Richard Goodwin, Rama Akkiraju, and Kunal

Verma. Dynamic Workflow Composition using Markov Decision

Processes. In Proceedings of the IEEE International Conference

186

on Web Services (ICWS), Industrial Track, San Diego, California,

USA, July 2004.

[DK75] Frank DeRemer and Hans Kron. Programming-in-the-large ver-

sus Programming-in-the-small. ACM Special Interest Group

on Programming Languages Notices (ACM SIGPLAN Notices),

10(6):114–121, 1975.

[EHAB99] Mike Esler, Jeffrey Hightower, Tom Anderson, and Gaetano Bor-

riello. Next Century Challenges: Data-centric Networking for Invis-

ible Computing: the Portolano Project at the University of Wash-

ington. In Proceedings of the Fifth Annual ACM/IEEE Interna-

tional Conference on Mobile Computing and Networking (MOBI-

COM), pages 256–262, Seattle, Washington, United States, August

1999. ACM Press.

[EHL01] Maria R. Ebling, Guerney D. H. Hunt, and Hui Lei. Issues for

Context Services for Pervasive Computing. In Proceedings of the

IFIP/ACM International Conference on Distributed Systems Plat-

forms, Heidelberg, Germany, November 2001.

[FB02] Dieter Fensel and Christoph Bussler. The Web Service Modeling

Framework (WSMF). Electronic Commerce Research and Applica-

tions, 1(2):113–137, 2002.

[FFK+02] Margaret Fleck, Marcos Frid, Tim Kindberg, Eamonn O’Brien-

Strain, Rakhi Rajani, and Mirjana Spasojevic. From Informing to

Remembering: Ubiquitous Systems in Interactive Museums. Per-

vasive Computing, 1(2):12–21, 2002.

[FGC+97] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer,

and Paul Gauthier. Cluster-Based Scalable Network Services. In

Symposium on Operating Systems Principles, pages 78–91, 1997.

[FK05] Jianchun Fan and Subbarao Kambhampati. A Snapshot of Public

Web Services. ACM Special Interest Group on Management Of

Data (ACM SIGMOD) Record, 34(1):24–32, 2005.

[FL03] Maria Fox and Derek Long. PDDL2.1: An Extension to PDDL

for Expressing Temporal Planning Domains. Journal of Artificial

Intelligence Research, 20:61–124, 2003.

187

[Fla04] David Flanagan. Java in a Nutshell. O’Reilly Media, Inc., Se-

bastopol, California, USA, 5th edition, 2004.

[FN71] Richard Fikes and Nils J. Nilsson. STRIPS: A New Approach to

the Application of Theorem Proving to Problem Solving. Artifical

Intelligence, 2(3–4):189–208, 1971.

[For82] Charles Forgy. Rete: A Fast Algorithm for the Many Pat-

terns/Many Objects Match Problem. Artificial Intelligence,

19(1):17–37, 1982.

[GBK99] Hans-W. Gellersen, Michael Beigl, and Holger Krull. The Medi-

aCup: Awareness Technology Embedded in an Everyday Object.

In Proceedings of the First International Symposium on Handheld

and Ubiquitous Computing (HUC), pages 308–310, Karlsruhe, Ger-

many, 1999. Springer-Verlag.

[GC92] David Gelernter and Nicholas Carriero. Coordination Languages

and Their Significance. Communications of the ACM, 35(2):97–

107, 1992.

[GGKS02] Karl Gottschalk, Stephen Graham, Heather Kreger, and James

Snell. Introduction to Web Services Architecture. IBM Systems

Journal, 41(2):170–177, 2002.

[GHK+98] Malik Ghallab, Adele Howe, Craig A. Knoblock, Drew McDermott,

Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wikins.

PDDL—The Planning Domain Definition Language. The Inter-

national Conference on Artificial Intelligence Planning Systems

(AIPS-98) Planning Competition Language Specifications. Spec-

ification available at ftp://ftp.cs.yale.edu/pub/mcdermott/

software/pddl.tar.gz, 1998. (Last accessed 1st March 2006).

[GL05] Alfonso Gerevini and Derek Long. Plan Constraints and Prefer-

ences in PDDL3. Technical Report R.T. 2005-08-47, Department

of Electronics for Automation, University of Brescia, Brescia, Italy,

August 2005.

[GLL00] Giuseppe De Giacomo, Yves Lesperance, and Hector J. Levesque.

Congolog, a Concurrent Programming Language Based on the Sit-

uation Calculus. Artificial Intelligence, 121(1-2):109–169, 2000.

188

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Plan-

ning, Theory and Practice. Elsevier, 2004.

[GNY04] Xiaohui Gu, Klara Nahrstedt, and Bin Yu. SpiderNet: an Inte-

grated Peer-to-Peer Service Composition Framework. In Proceed-

ings of the IEEE International Symposium on High Performance

Distributed Computing (HPDC), pages 110–119, Honolulu, Hawaii,

USA, June 2004.

[Gou04] Jonathan Gough. XPDDL: The eXtensible Planning Domain Def-

inition Language. Schema available at http://www.cis.strath.

ac.uk/~jg/XPDDL/, 2004. (Last accessed 1st March 2006).

[GSSS02] David Garlan, Daniel P. Siewiorek, Asim Smailagic, and Peter

Steenkiste. Project Aura: Toward Distraction-Free Pervasive Com-

puting. IEEE Pervasive Computing, 1(2):22–31, 2002.

[HBS02] Albert Held, Sven Buchholz, and Alexander Schill. Modeling of

Context Information for Pervasive Computing Applications. In

Proceedings of the Sixth World Multiconference on Systemics, Cy-

bernetics and Informatics (SCI2002), Orlando, Florida, USA, 2002.

[HC02] Robert Headon and Rupert Curwen. Movement Awareness for

Ubiquitous Game Control. Personal and Ubiquitous Computing,

6(5-6):407–415, 2002.

[HH93] Peter Haddawy and Steve Hanks. Utility Models for Goal-Directed

Decision Theoretic Planners. Technical Report TR-93-06-04, Uni-

versity of Washington, Department of Computer Science and En-

gineering, Seattle, Washington, USA, 1993.

[HHS+99] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul

Webster. The Anatomy of a Context-Aware Application. In Pro-

ceedings of the Fifth Annual ACM/IEEE International Conference

on Mobile Computing and Networking (MOBICOM), pages 59–68,

Seattle, Washington, United States, August 1999.

[HK97] Markus Horstmann and Mary Kirtland. DCOM Archi-

tecture. Technical article, Microsoft Corporation, Available

at http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/dndcom/html/msdn_dcomarch.asp, July 1997.

(Last accessed 1st March 2006).

189

[HL01] Jason I. Hong and James A. Landay. An Infrastructure Approach to

Context-Aware Computing. Human-Computer Interaction (HCI)

Journal, 16:287–303, 2001.

[Hol05] David Hollingsworth. The Workflow Management Coalition

Specification. Specifications available at http://www.wfmc.org/

standards/docs/tc003v11.pdf, 2005. (Last accessed 1st March

2006).

[HRC02] Christopher K. Hess, Manuel Román, and Roy H. Campbell. Build-

ing Applications for Ubiquitous Computing Environments. In Pro-

ceedings of the First International Conference on Pervasive Com-

puting, Lecture Notes in Computer Science, pages 16–29, Zurich,

August 2002. Springer-Verlag.

[HS94] Peter Haddawy and Meliani Suwandi. Decision-Theoretic Refine-

ment Planning using Inheritance Abstraction. In Proceedings of the

Second International Conference on Artificial Intelligence Planning

Systems, pages 266–271, Chicago, Illinois, June 1994. AAAI Press.

[HV96] Karen Zita Haigh and Manuela Veloso. Interleaving Planning

and Robot Execution for Asynchronous User Requests. In Plan-

ning with Incomplete Information for Robot Problems: Papers from

the 1996 American Association for Artificial Intelligence (AAAI)

Spring Symposium, pages 35–44, Stanford University in Palo Alto,

California, USA, March 1996. AAAI Press, Menlo Park, California.

[HZB+06] Duncan Hull, Evgeny Zolin, Andrey Bovykin, Ian Horrocks, Ul-

rike Sattler, and Robert Stevens. Deciding semantic matching of

stateless services. In Proceedings of the 21st National Conference

on Artificial Intelligence (AAAI 2006), 2006. To appear.

[IBM04] IBM. The IBM Business Process Execution Language for Web

Services JavaTM Run Time (BPWS4J). Software available at http:

//www.alphaworks.ibm.com/tech/bpws4j, 2004. (Last accessed

1st March 2006).

[Ing78] Daniel H. H. Ingalls. The Smalltalk-76 Programming System

Design and Implementation. In Proceedings of the Fifth ACM

SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL), pages 9–16, Tucson, Arizona, USA, 1978. ACM

Press.

190

[IRRH03] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and

Karen Henricksen. Experiences in using CC/PP in Context-Aware

Systems. In M. S. Chen and P.K. Chrysanthis and M. Sloman and

A. Zaslavsky, editor, Proceedings of the Fourth International Con-

ference on Mobile Data Management (MDM2003), pages 247–261,

Melbourne, Australia, 2003. Lecture Notes in Computer Science

(LNCS), Springer.

[JCo02] JConfig. Software available from http://tolstoy.com/samizdat/

jconfig.html, 2002. (Last accessed 19th July 2006).

[Jon02] Martin Jonsson. Context Shadow: A Person-Centric Infrastructure

for Context Aware Computing. In Proceedings of the Artificial In-

telligence in Mobile Systems Workshop in Conjuction with Euro-

pean Conference on Artificial Intelligence (ECAI), Lyon, France,

July 2002.

[Jud03] jUDDI v.0.94rc: Java Implementation of the Universal Description

Discovery, and Integration (UDDI) Specification for Web Services.

Apache Web Services Project. Software available at http://ws.

apache.org/juddi/, 2003. (Last accessed 1st March 2006).

[KBSD97] Froduald Kabanza, M. Barbeau, and Richard St-Denis. Planning

Control Rules for Reactive Agents. Artificial Intelligence, 95(1):67–

113, 1997.

[KN04] Ugur Kuter and Dana S. Nau. Forward-Chaining Planning in Non-

deterministic Domains. In Proceedings of the Nineteenth National

Conference on Artificial Intelligence, Sixteenth Conference on In-

novative Applications of Artificial Intelligence, pages 513–518, San

Jose, California, USA, June 2004.

[Koe99] Jana Koehler. Handling of Conditional Effects and Negative Goals

in IPP. Technical Report 128/99, University of Freiburg, Freiburg,

Germany, 1999.

[KS03] Jana Koehler and Biplav Srivastava. Web Service Composition:

Current Solutions and Open Problems. In The International Con-

ference on Automated Planning and Scheduling (ICAPS). Work-

shop on Planning for Web Services, pages 28–35, Trento, Italy,

2003.

191

[KV05] Evangelos Kotsovinos and Maja Vuković. su-chef: Adaptive Co-

ordination of Intelligent Home Environments. In Proceedings of

the Joint International Conference on Autonomic and Autonomous

Systems 2005 / International Conference on Networking and Ser-

vices 2005 (ICAS/ICNS 2005), Papeete, Tahiti, October 2005.

IEEE Computer Society.

[LF94] Mik Lamming and Mike Flynn. Forget-me-not: Intimate Comput-

ing in Support of Human Memory. In Proceedings of the FRIEND21

Symposium on Next Generation Human Interfaces, Tokyo, Japan,

1994.

[LKAA96] Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G.

Atkeson. Rapid Prototyping of Mobile Context-Aware Applica-

tions: The Cyberguide Case Study. In Proceedings of the Second

Annual International Conference on Mobile Computing and Net-

working, pages 97–107, White Plains, New York, USA, 1996. ACM

Press.

[LPT02] Ugo Dal Lago, Marco Pistore, and Paolo Traverso. Planning with

a Language for Extended Goals. In Proceedings of the Eighteenth

National Conference on Artificial Intelligence, pages 447–454, Ed-

monton, Alberta, Canada, 2002. AAAI.

[LRL+97] Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen

Lin, and Richard B. Scherl. GOLOG: A Logic Programming Lan-

guage for Dynamic Domains. Journal of Logic Programming, 31(1-

3):59–83, 1997.

[LSD+02] Hui Lei, Daby M. Sow, John S. Davis II, Guruduth Banavar, and

Maria R. Ebling. The Design and Applications of a Context Ser-

vice. ACM SIGMOBILE Mobile Computing and Communications

Review, 6(4):45–55, 2002.

[Maa97] Henning Maass. Location-Aware Mobile Applications Based on Di-

rectory Services. In Proceedings of the Third Annual ACM/IEEE

International Conference on Mobile Computing and Networking

(MOBICOM), pages 23–33, Budapest, Hungary, 1997. ACM Press.

[MBH+04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew Mc-

Dermott, Sheila McIlraith, Srini Narayanan, Massimo Paolucci, Bi-

jan Parsia, Terry Payne, Evren Sirin, Naveen Srinivasan, and Katia

192

Sycara. OWL-S: Semantic Markup for Web Services. White paper.

Available at http://www.w3.org/Submission/OWL-S, 2004. (Last

accessed 1st March 2006).

[MBW+98] Elizabeth D. Mynatt, Maribeth Back, Roy Want, Michael Baer,

and Jason B. Ellis. Designing Audio Aura. In Proceeding of the

Conference on Human Factors in Computing Systems (CHI 98),

pages 566–573, Los Angeles, California, USA, April 1998.

[MF02] Sheila A. McIlraith and Ronald Fadel. Planning with Complex

Actions. In Salem Benferhat and Enrico Giunchiglia, editors, Pro-

ceedings of the 9th International Workshop on Non-Monotonic Rea-

soning (NMR 2002), pages 356–364, Toulouse, France, April 2002.

[MH69] John McCarthy and Patrick J. Hayes. Some Philosophical Prob-

lems From the Standpoint of Artificial Intelligence. In B. Meltzer

and D. Michie, editors, Machine Intelligence 4, pages 463–502. Ed-

inburgh University Press, Edinburgh, 1969.

[MH04] Julie A. McCann and Markus C. Huebscher. Evaluation Issues in

Autonomic Computing. In Hai Jin, Yi Pan, and Nong Xiao, editors,

Proceedings of the Third International Conference on Grid and Co-

operative Computing Workshops (GCC), volume 3252 of Lecture

Notes in Computer Science, pages 597–608, Wuhan, China, 2004.

Springer.

[MKB01] Z. Morley Mao, Randy H. Katz, and Eric A. Brewer. Fault-tolerant,

Scalable, Wide-Area Internet Service Composition. Technical Re-

port UCB/CSD-01-1129, EECS Department, University of Califor-

nia, Berkeley, California, USA, 2001.

[MM03] Daniel J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS

for the Semantic Web: The Bottom-Up Approach to Web Service

Interoperation. In Dieter Fensel, Katia P. Sycara, and John My-

lopoulos, editors, Proceedings of the Second International Semantic

Web Conference, pages 227–241, Sanibel Island, Florida, USA, Oc-

tober 2003.

[MPL03] Ryusuke Masuoka, Bijan Parsia, and Yannis Labrou. Task Com-

puting - The Semantic Web Meets Pervasive Computing. In Dieter

193

Fensel, Katia P. Sycara, and John Mylopoulos, editors, Proceed-

ings of the Second International Semantic Web Conference, pages

866–881, Sanibel Island, Florida, USA, October 2003.

[MR91] David A. McAllester and David Rosenblitt. Systematic Nonlinear

Planning. In Proceedings of the Ninth National Conference on Arti-

ficial Intelligence (AAAI-91), pages 634–639, Anaheim, California,

USA, 1991.

[MS85] Mike Muuss and Terry Slattery. ttcp: Test TCP. US Army Bal-

listics Research Lab (BRL). Enhanced version by Silicon Graphics

Incorporated, October 1991. Software available from ftp://ftp.

sgi.com/sgi/src/ttcp, November 1985. (Last accessed 1st March

2006).

[MS00] Natalia Marmasse and Chris Schmandt. Location-Aware Infor-

mation Delivery with ComMotion. In Proceedings of the Second

International Symposium on Handheld and Ubiquitous Computing

(HUC2K), pages 157–171, Bristol, UK, 2000.

[MS02] Sheila McIlraith and Tran Cao Son. Adapting Golog for Composi-

tion of Semantic Web Services. In Proceedings of the Eighth Inter-

national Conference on Knowledge Representation and Reasoning

(KR2002), Toulouse, France, April 2002.

[Nin97] The Ninja Project Enabling Internet-scale Services from Arbitrarily

Small Devices. Project Website available at http://ninja.cs.

berkeley.edu/, 1997. (Last accessed 1st March 2006).

[NM02] Srini Narayanan and Sheila McIlraith. Simulation, Verification and

Automated Composition of Web Services. In Proceedings of the

11th International World Wide Web Conference (WWW 2002),

Honolulu, Hawaii, USA, May 2002.

[NMAC+01] Dana S. Nau, Héctor Muñoz-Avila, Yue Cao, Amnon Lotem, and

Steven Mitchell. Total-Order Planning with Partially Ordered Sub-

tasks. In Bernhard Nebel, editor, Proceedings of the Seventeenth

International Joint Conference on Artificial Intelligence (IJCAI),

pages 425–430, Seattle, Washington, USA, August 2001.

[NSBW00] Joern Nilsson, Tomas Sokoler, Thomas Binder, and Nina Wetcke.

Beyond the Control Room: Mobile Devices for Spatially Distri-

buted Interaction on Industrial Process Plants. In Proceedings of

194

the Second International Symposium on Handheld and Ubiquitous

Computing (HUC2K), pages 30–45, Bristol, UK, 2000.

[Obj91] Object Management Group and X/Open. The Common Object

Request Broker: Architecture and Specification (CORBA). Tech-

nical Report 91.12.1, Object Management Group (OMG), 1991.

Available from http://www.omg.org.

[Ols91] Dan R. Jr Olsen. User Interface Management Systems: Models and

Algorithms. The Morgan Kaufmann, 1991.

[OS00] Reinhard Oppermann and Marcus Specht. A Context-Sensitive No-

madic Information System as an Exhibition Guide. In Proceedings

of the Second International Symposium on Handheld and Ubiqui-

tous Computing (HUC2K), pages 127–142, Bristol, UK, 2000.

[Par72] David L. Parnas. On the Criteria to be used in Decomposing Sys-

tems into Modules. Communications of the ACM, 15(12):1053–

1058, December 1972.

[Pas97] Jason Pascoe. The Stick-e Note Architecture: Extending the In-

terface Beyond the User. In Johanna Moore, Ernest Edmonds, and

Angel Puerta, editors, Proceedings of the International Conference

on Intelligent User Interfaces, pages 261–264, Orlando, Florida,

USA, January 1997. ACM.

[PBB+04] Marco Pistore, Fabio Barbon, Piergiorgio Bertoli, D. Shaparau,

and Paolo Traverso. Planning and Monitoring Web Service Co-

mposition. In Proceedings of the Artificial Intelligence: Method-

ology, Systems, and Applications, 11th International Conference

(AIMSA), pages 106–115, Varna, Bulgaria, September 2004.

[Ped94] Edwin P. D. Pednault. ADL and the State-Transition Model of

Action. Journal of Logic and Computation, 4(5):467–512, 1994.

[PF02] Shankar R. Ponnekanti and Armando Fox. Sword: A Developer

Toolkit for Web Service Composition. In Proceedings of the 11th

World Wide Web Conference (Web Engineering Track), Honolulu,

Hawaii, USA, May 2002.

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Ka-

tia P. Sycara. Importing the Semantic Web in UDDI. In Proceedings

195

of the Workshop on Web Services, E-Business, and the Semantic

Web (WES), pages 225–236, Toronto, Ontario, Canada, May 2002.

[PLF+01] Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan,

and Terry Winograd. ICrafter: A Service Framework for Ubiqui-

tous Computing Environments. In Proceedings of the Third Inter-

national Conference on Ubiquitous Computing (UbiComp), pages

56–75, Atlanta, Georgia, USA, 2001. Springer-Verlag.

[PSGS04] Vahe Poladian, Joao Pedro Sousa, David Garlan, and Mary Shaw.

Dynamic Configuration of Resource-Aware Services. In Proceed-

ings of the 26th International Conference on Software Engineering

(ICSE), pages 604–613, Washington, DC, USA, 2004. IEEE Com-

puter Society.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete

Stochastic Dynamic Programming. John Wiley & Sons, Inc., 1994.

[PV04] Joachim Peer and Maja Vuković. A Proposal for a Semantic Web

Service Description Format. In Liang-Jie Zhang, editor, Proceed-

ings of the European Conference On Web Services (ECOWS), vol-

ume 3250 of Lecture Notes in Computer Science, pages 285–299,

Erfurt, Germany, 2004. Springer.

[PW92] J. Scott Penberthy and Daniel S. Weld. UCPOP: A Sound, Com-

plete, Partial Order Planner for ADL. In Bernhard Nebel, Charles

Rich, and William Swartout, editors, Proceedings of the Third In-

ternational Conference on Principles of Knowledge Representation

and Reasoning, pages 103–114, Cambridge, Massachusetts, USA,

1992.

[RAC+02] Bhaskaran Raman, Sharad Agarwal, Yan Chen, Matthew Casar,

Weidong Cui, Per Johansson, Kevin Lai, Tal Lavian, Srid-

har Machiraju, Z. Morley Mao, Lakshimanrayanan Subramanian,

Takashi Suzuki, Shelley Zhuang, Anthony D. Joseph, Randy H.

Katz, and Ion Stoica. The SAHARA Model for Service Composi-

tion across Multiple Providers. In Proceedings of the First Interna-

tional Conference on Pervasive Computing, volume 2414 of Lecture

Notes in Computer Science, pages 1–14, Zurich, Switzerland, Au-

gust 2002. Springer-Verlag. Invited paper.

196

[RC03] Anand Ranganathan and Roy H. Campbell. What is the Com-

plexity of a Distributed System? Technical Report UIUCDCS-R-

2005-2568, University of Illinois at Urbana-Champaign, Urbana-

Champaign, Illinois, USA, April 2003.

[RHC+02] Manuel Roman, Christopher Hess, Renato Cerqueira, Anand Ran-

ganathan, Roy H. Campbell, and Klara Nahrstedt. Gaia: a Mid-

dleware Platform for Active Spaces. ACM SIGMOBILE Mobile

Computing and Communications Review, 6(4):65–67, 2002.

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Rubén Lara Jos de

Bruijn, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph

Bussler, and Dieter Fensel. Web Service Modeling Ontology. Ap-

plied Ontology, 1(1):77–106, 2005.

[RN95] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mod-

ern Approach. Prentice Hall, Upper Saddle River, NJ, 1995.

[RPM98] Nick S. Ryan, Jason Pascoe, and David Morse. Enhanced Re-

ality Fieldwork: the Context-aware Archaeological Assistant. In

V. Gaffney, M. van Leusen, and S. Exxon, editors, Proceedings of

the 25th Computer Applications in Archaeology 1997, British Ar-

chaeological Reports, Oxford,UK, October 1998.

[Rya99] Nick Ryan. ConteXtML: Exchanging Contextual Information

between a Mobile Client and the FieldNote Server. Lan-

guage specifications available at http://www.cs.kent.ac.uk/

projects/mobicomp/fnc/ConteXtML.html, 1999. (Last accessed

1st March 2006).

[SAB02] Ted Selker, Ernesto Arroyo, and Win Burleson. Chameleon Tables:

Using Context Information in Everyday Objects. In Extended Ab-

stracts on Human Factors in Computer Systems (CHI), pages 580–

581, Minneapolis, Minnesota, USA, 2002. ACM Press.

[SAT+99] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo

Tuomela, Kristof Van Laerhoven, and Walter Van de Velde. Ad-

vanced Interaction in Context. In Proceedings of the First Interna-

tional Symposium on Handheld and Ubiquitous Computing (HUC),

pages 89–101, Karlsruhe, Germany, 1999. Springer-Verlag.

197

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-Aware Com-

puting Applications. In Proceedings of the IEEE Workshop on Mo-

bile Computing Systems and Applications, Santa Cruz, CA, USA,

1994.

[Sch95] Bill N. Schilit. System Architecture for Context-Aware Mobile Com-

puting. PhD thesis, Columbia University, New York, USA, 1995.

[SD91] Bill Schilit and Dan Duchamp. Adaptive Remote Paging for Mobile

Computers. Technical Report CUCS-004-91, Columbia University

Computer Science Department, New York, USA, February 1991.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives

on an Emerging Discipline. Prentice-Hall, Inc., 1996.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A Context Model-

ing Survey. In Proceedings of the Workshop on Advanced Context

Modelling, Reasoning and Management as Part of The Sixth Inter-

national Conference on Ubiquitous Computing (UbiComp), Not-

tingham, UK, September 2004.

[Soa00] SOAP Specifications. Website available at http://www.w3.org/

TR/soap/, 2000. (Last accessed 1st March 2006).

[SP97] Clemens Szyperski and Cuno Pfister. Summary of Work-

shop on Component-Oriented Programming (WCOP96). In

M. Mühlhaeuser, editor, Special Issues in Object-Oriented Pro-

gramming. Prooceedings of the European Conference on Object-

Oriented Programming (ECOOP). Workshop Reader, pages 127–

130, Linz, Austria, 1997. dpunkt Verlag.

[SPH05] Evren Sirin, Bijan Parsian, and Jim Hendler. Template-based Co-

mposition of Semantic Web Services. In Proceedings of the 2005

AAAI Fall Symposium Series on Agents and the Semantic Web,

Menlo Park, CA, 2005. AAAI Press / The MIT Press.

[SPP+03] Umar Saif, Hubert Pham, Justin Mazzola Paluska, Jason Water-

man, Chris Terman, and Steve Ward. A Case for Goal-oriented

Programming Semantics. In Proceedings of the Fifth Annual Con-

ference on Ubiquitous Computing, Workshop on System Support for

Ubiquitous Computing (UbiSys), Seattle, Washington, USA, 2003.

198

[Sri04] Biplav Srivastava. A software framework for applying planning

techniques. Research Report RI 04001, IBM, March 2004.

[SRvS03] Marta Sabou, Debbie Richards, and Sander van Splunter. An Expe-

rience Report on Using DAML-S. In Proceedings of the Twelfth In-

ternational World Wide Web Conference, Workshop on E-Services

and the Semantic Web (ESSW’03), Budapest, Hungary, May 20-24

2003.

[ST94] Bill Schilit and M. Theimer. Disseminating Active Map Informa-

tion to Mobile Hosts. IEEE Network, 8(5):22–32, 1994.

[STM00] Albrecht Schmidt, Antti Takaluoma, and Jani Mantyjarvi.

Context-Aware Telephony Over WAP. Personal Ubiquitous Com-

put., 4(4):225–229, 2000.

[SW95] Bill Schilit and Roy Want. The Xerox PARCTAB. Project Web-

site available at http://www.ubiq.com/parctab/, 1995. (Last ac-

cessed 1st March 2006).

[Szy00] Clemens Szyperski. Component Software and The Way Ahead,

chapter 1, pages 1–20. Cambridge University Press, 2000.

[TKA03] Snehal Thakkar, Craig A. Knoblock, and José Luis Ambite. A View

Integration Approach to Dynamic Composition of Web Services.

In Proceedings of the 13th International Conference on Automated

Planning and Scheduling. Workshop on Planning for Web Services,

Trento, Italy, June 2003.

[Tom06] Apache Tomcat v5.5 Application Server. Software available at

http://tomcat.apache.org/, 2006. (Last accessed 1st March

2006).

[TPC+05] Michele Trainotti, Marco Pistore, Gaetano Calabrese, Gabriele Za-

cco, Gigi Lucchese, Fabio Barbon, Piergiorgio Bertoli, and Paolo

Traverso. ASTRO: Supporting Composition and Execution of Web

Services. In Proceedings of the International Conference on Auto-

mated and Planning Sheduling (ICAPS). Demo, Monterey, Califor-

nia, USA, June 2005.

[TYB+01] John C. Tang, Nicole Yankelovich, James Begole, Max Van Kleek,

Francis Li, and Janak Bhalodia. Connexus To Awarenex: Extend-

199

ing Awareness to Mobile Users. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pages 221–228,

Seattle, Washington, United States, 2001. ACM Press.

[Udd00] Universal Description, Discovery Integration(UDDI). Project

Website available at http//www.uddi.org, 2000. (Last accessed

1st March 2006).

[Uns98] The United Nations Standard Products and Services Code UN-

SPSC. Website available at http://www.unspsc.org/, 1998. (Last

accessed 1st March 2006).

[VCP+95] Manuela Veloso, Jaime Carbonell, Alicia Pérez, Daniel Borrajo,

Eugene Fink, and Jim Blythe. Integrating Planning and Learn-

ing: The PRODIGY Architecture. Journal of Experimental and

Theoretical Artificial Intelligence, 7(1):81–120, 1995.

[vdADtH03] Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter

Hofstede. Web Service Composition Languages: Old Wine in New

Bottles? In Proceedings of the 29th EUROMICRO Conference

2003, New Waves in System Architecture, pages 298–307, Belek-

Antalya, Turkey, September 2003. IEEE Computer Society.

[vdBNDK04] Menkes van den Briel, Romeo Sanchez Nigenda, Minh Binh Do,

and Subbarao Kambhampati. Effective Approaches for Partial

Satisfaction (Over-Subscription) Planning. In Proceedings of the

Nineteenth National Conference on Artificial Intelligence, Sixteenth

Conference on Innovative Applications of Artificial Intelligence,

pages 562–569, San Jose, California, USA, July 2004.

[VR04a] Maja Vuković and Peter Robinson. Adaptive, Planning Based, Web

Service Composition for Context Awareness. In Gabriele Kotsis,

editor, Advances in Pervasive Computing. A Collection of Contri-

butions Presented at PERVASIVE 2004, volume 176, pages 247–

252. Oesterreichische Computer Gesellschaft (Hrsg.), April 2004.

[VR04b] Maja Vuković and Peter Robinson. Application Modeling for Con-

text Awareness. Building and Evaluating Ubiquitous System Soft-

ware. (Work in Progress Section). IEEE Pervasive Computing Mag-

azine, 3(3):Page 59, July-October 2004.

200

[VR05a] Maja Vuković and Peter Robinson. Context Aware Service Compo-

sition. In Proceedings of the Third UK UbiNet Workshop, Bath,

UK, 2005.

[VR05b] Maja Vuković and Peter Robinson. GoalMorph: Partial Goal Sat-

isfaction for Flexible Service Composition. International Journal

of Web Services Practices, 1(1–2):40–56, December 2005.

[VR05c] Maja Vuković and Peter Robinson. SHOP2 and TLPlan for Proac-

tive Service Composition. In Proceedings of the UK-Russia Work-

shop on Proactive Computing, Nizhniy Novgorod, Russia, February

2005.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific Amer-

ican, 265(3):66–75, January 1991.

[WG00] Zhenyu Wang and David Garlan. Task-Driven Computing. Techni-

cal Report CMU-CS-00-154, School of Computer Science, Carnegie

Mellon University, Pittsburgh, Pennsylvania, USA, May 2000.

[WHFG92] Roy Want, Andy Hopper, Veronica Falco, and Jonathan Gibbons.

The Active Badge Location System. ACM Transactions on Infor-

mation Systems (TOIS), 10(1):91–102, 1992.

[Wil94] Mike Williamson. Optimal Planning With a Goal-Directed Utility

Model. In Kristian J. Hammond, editor, Proceedings of the Second

International Conference on AI Planning Systems, pages 176–181,

Chicago, Illinois, USA, 1994.

[Win01] Terry Winograd. Architectures for Context. Human-Computer

Interaction (HCI) Journal, 16:401–419, 2001.

[WJH97] Andy Ward, Alan Jones, and Andy Hopper. A New Location

Technique for the Active Office. IEEE Personal Communications,

4(5):42–47, October 1997.

[WMLF98] Peter Wyckoff, Stephen W. McLaughry, Tobin J. Lehman, and

Daniel A. Ford. TSpaces. IBM Systems Journal, 37(3):454–474,

1998.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed Object

Model for the Java System. In Proceedings of the Second Confer-

ence on Object-Oriented Technologies (COOTS), pages 219–231,

Toronto, Ontario, Canada, June 1996. USENIX.

201

[WSA+95] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Pe-

tersen, David Goldberg, John R. Ellis, and Mark Weiser. The

ParcTab Ubiquitous Computing Experiment. Technical Report

CSL-95-1, Xerox Palo Alto Research Center, Palo Alto, Califor-

nia, USA, March 1995.

[Wsc02] Web Service Choreography Interface (WSCI) 1.0. Website available

at http://www.w3.org/TR/wsci/, 2002. (Last accessed 1st March

2006).

[Wsd05] Web Services Description Language for Java. Software available

at http://sourceforge.net/projects/wsdl4j, 2005. (Last ac-

cessed 1st March 2006).

[WSH+03] Dan Wu, Evren Sirin, James Hendler, Dana Nau, and Bijan Parsia.

Automatic Web Services Composition Using SHOP2. In Proceed-

ings of the 13th International Conference on Automated Planning

and Scheduling. Workshop on Planning for Web Services, Trento,

Italy, June 2003.

[Wsm04] Web Service Modelling Ontology. Website available at http://

www.wsmo.org/, 2004. (Last accessed 1st March 2006).

[YL04] Hakan L. S. Younes and Michael L. Littman. PPDDL1.0: An

Extension to PDDL for Expressing Planning Domains with Proba-

bilistic Effects. Technical Report CMU-CS-04-167, Computer Sci-

ence Department, Carnegie Mellon University, Pittsburgh, Penn-

sylvania, USA, October 2004.

[YYDW99] Jie Yang, Weiyi Yang, Matthias Denecke, and Alex Waibel. Smart

Sight: A Tourist Assistant System. In Proceedings of the Third

International Symposium on Wearable Computers (ISWC), Pitts-

burgh, Pennsylvania, USA, October 1999.

[ZBL+03] Liangzhao Zeng, Boualem Benatallah, Hui Lei, Anne H. H. Ngu,

David Flaxer, and Henry Chang. Flexible Composition of Enter-

prise Web Services. Electronic Markets, 13(2), 2003.

[ZBN+04] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon

Dumas, Jayant Kalagnanam, and Henry Chang. QoS-Aware Mid-

dleware for Web Services Composition. IEEE Transactions on Soft-

ware Engineering, 30(5):311–327, 2004.

202

[ZZ99] Tim Zagat and Nina Zagat. ZagatSurvey: Restaurant, Nightlife,

Hotels, Attractions. Website available at http://www.zagat.com,

1999. (Last accessed 1st March 2006).

203

