
Technical Report
Number 694

Computer Laboratory

UCAM-CL-TR-694
ISSN 1476-2986

Anti-Ω: the weakest failure
detector for set agreement

Piotr Zieliński

July 2007

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Piotr Zieliński

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Anti-Ω: the weakest failure detector for set agreement

Piotr Zieliński
piotr.zielinski@cl.cam.ac.uk

Cavendish Laboratory, University of Cambridge, UK

Abstract

In the set agreement problem, n processes have to decide on at most n− 1 of

the proposed values. This paper shows that the anti-Ω failure detector is both

sufficient and necessary to implement set agreement in an asynchronous shared-

memory system equipped with registers. Each query to anti-Ω returns a single

process id; the specification ensures that there is a correct process whose id is

returned only finitely many times.

1 Introduction

In the set agreement problem, n processes have to decide on at most n − 1 proposed
values [5]. Set agreement has long been believed to be one of the weakest non-anonymous
problem that is not wait-free implementable in an asynchronous system. Recently, the
problem of finding the weakest failure detector to implement it received considerable atten-
tion [6, 14, 23]. This paper presents the solution: it shows that the detector “anti-Ω” [26]
is both sufficient and necessary to implement set agreement in a shared-memory system
equipped with registers.

Each query to the anti-Ω detector returns a process id. The detector guarantees that
there is a correct process whose id will be returned only finitely many times. In other
words, this process id will be eventually never output by the detector. Anti-Ω might
not stabilize: it is possible that more than one process id will be returned infinitely
often. Anti-Ω is the weakest non-implementable eventual failure detector, that is, any
non-implementable eventual failure detector can implement anti-Ω [26].

Essentially, this paper makes two complementary claims: that anti-Ω is both sufficient
and necessary to implement set agreement. Section 3 shows sufficiency by presenting an
anti-Ω based algorithm that can implement set agreement in any environment equipped
with registers. Section 5 uses shows that anti-Ω is required to implement any non-wait-
free-implementable problem, including set agreement. The method used is inspired by
the simulation method of [4].

Section 2 defines set agreement, and establishes the system model, which is then refined
in Section 4. Section 6 discusses the consequences of the results showed here, and suggests
some open questions and possible directions of future work.

3

2 System model and problem statement

The system considered in this paper is a standard shared-memory model. It consists of a
fixed number n of processes p1, . . . , pn, which communicate using some number of shared
read-write registers. In addition to performing read and write operations, a process can
query any of the available failure detectors. For example, Section 3 assumes that each
process has access to the anti-Ω detector [26].

Each query to anti-Ω returns a process id. The detector guarantees that, in any run,
some correct process id will eventually never be returned. In other words, there is a
correct process whose id is returned only a finite number of times.

In k-set agreement, each process can propose a single value. The following require-
ments must be met [5]

Validity. Each decision was proposed by some process.

Agreement. There are at most k different decisions.

Termination. Eventually all correct processes will decide.

Set agreement is k-set agreement with k = n−1, because this is the highest non-trivial k;
in n-set agreement, each process can just decide on its own proposal. Set agreement is
not wait-free implementable in a purely asynchronous system [2, 18, 24].

3 Anti-Ω implements set agreement

This section shows an implementation of set agreement using anti-Ω. It consists of two
steps: (i) using anti-Ω to implement an equivalent detector vector-Ω, and then (ii) using
vector-Ω to implement set agreement.

3.1 Implementing vector-Ω using anti-Ω

Vector-Ω is a vector of n − 1 subdetectors Ω1, . . . , Ωn−1, each returning a single process
id for each query. At least one Ωi is correct, that is, eventually keeps returning the same
correct process for all queries [4]; the other Ωj’s can behave arbitrarily. The processes do
not know which Ωi is/are correct.

Vector-Ω can implement anti-Ω by always outputting a process that is not among the
≤ n − 1 processes selected by the subdetectors Ω1, . . . , Ωn−1. By definition, at least one
Ωi will eventually keep outputting the same correct process p. Process p will therefore
eventually never be output by the emulated anti-Ω, which completes the proof.

Using anti-Ω to implementing vector-Ω is slightly more complicated. Figure 1 presents
an algorithm inspired by the order oracle [26]. Each process pi maintains a single-writer
register countersi, in which it stores an n-element vector. Each element countersi[k]
counts the number of times the anti-Ω detector at process pi returned process pk (lines
2–4).

Lines 5–10 emulate vector-Ω at each process pi. First, the process reads the counter
vectors from all processes and sums them into a temporary local vector total. Roughly
speaking, total[k] is the number of times anti-Ω returned pk so far, at any process. Lines

4

1 countersi ← [0, . . . , 0] { single-writer register, n entries }

2 loop forever

3 output← anti-Ω detector output
4 increment countersi[output] { atomicity not required }

5 when vector-Ω is queried do

6 for k = 1, . . . , n do

7 total[k]← counters1[k] + · · ·+ countersn[k] { atomicity not required }
8 let q1, . . . , qk, . . . , qn be the permutation of {p1, . . . , pn}
9 ordered wrt increasing total[k] (ties broken deterministically)
10 return [q1, . . . , qn−1] as the outputs of Ω1, . . . , Ωn−1

Figure 1: Implementing vector-Ω with anti-Ω.

1 instance Consensusi uses Ωi (for i = 1, . . . , n− 1)

2 function setagreement(v) is

3 for i = 1, 2, . . . , n− 1 do

4 propose v to Consensusi

5 wait until some Consensusi decides, say on v′

6 return v′

Figure 2: Implementing set agreement with vector-Ω.

8–10 order the list of all processes with respect to increasing total[k], and return all but
the last as the output of vector-Ω.

Theorem 3.1. The algorithm in Figure 1 implements vector-Ω.

Proof. Let F be the set of processes that anti-Ω outputs only finitely many times. At any
correct processes, all entries total[k] with k /∈ F will be then increasing without limit. On
the other hand, entries total[k] with k ∈ F , will eventually stop increasing, and be the
same at all correct processes. As a result, eventually the prefix q1, . . . , q|F | of q1, . . . , qn

(lines 8–9) will consists of all processes in F , and will be the same at all correct processes.
Anti-Ω guarantees that F contains at least one correct process, say p. Therefore, there

is an i ≤ |F | such that eventually always qi = p. To finish the proof, we must show that
|F | ≤ n − 1, but is true because anti-Ω must output at least one process id infinitely
often.

3.2 Implementing set agreement using vector-Ω

Figure 2 shows a simple implementation of set agreement using vector-Ω. Each process
proposes its value v to n − 1 independent parallel instances of Consensus [19]. Each
instance Consensusi uses Ωi provided by vector-Ω, which is sufficient to implement Con-
sensus [4, 11, 17, 19]. Since at least one Ωi behaves like Ω, at least one instance Consensusi

will decide (Termination), on the value proposed by one of the processes (Validity). Each

5

Consensusi decides on at most one value, so the total number of different decision cannot
exceed n − 1 (Agreement). Note that even instances Consensusj with Ωj that behave
arbitrarily cannot violate safety properties (Validity and Agreement), because this mis-
behaviour cannot be discovered by examining a finite prefix of a run [15].

3.3 k-vector-Ω and k-set agreement

The algorithm in Figure 2 can be easily generalized to implement k-set agreement, by
replacing all instances of n − 1 with k. This includes using k-vector-Ω detector, which
is the same as vector-Ω, but consists of k subdetectors Ωi, instead of n − 1. Vector-Ω is
k-vector-Ω with k = n − 1. Note that n-vector-Ω is trivially implementable by having
each Ωi constantly output process pi.

3.4 Detectors anti-Ω and Υ

Guerraoui et al. [14] proposed the failure detector Υ and showed that it is capable of
implementing set agreement. Each query to Υ returns a non-empty set of processes. The
detector guarantees that, eventually, all queries will be returning the same non-empty set
T of processes, which is different from the set of correct processes. Detector Υ is the
weakest non-implementable stable eventual failure detector [14].

Anti-Ω is the weakest (not necessarily stable) non-implementable eventual failure de-
tector, which is strictly weaker than Υ [26].

It is fairly easy to see a special case of this result, namely, that Υ is no weaker than anti-
Ω. Assume that each process pi has a local instruction counter, which it periodically writes
to a dedicated shared single-writer register counteri. Anti-Ω can then be implemented
by always returning the member pj of the latest Υ’s output with the lowest counterj. If
the eventual stable output T of Υ contains a faulty process, then only faulty processes
will eventually be output by the emulated anti-Ω (because their counter’s eventually stop
increasing). Otherwise, there is a correct p /∈ T , so this p will eventually never be output.
In both cases, the anti-Ω requirements are satisfied.

4 System model again

In the rest of the paper, I will be considering an equivalent, but more precisely specified,
model. As before, we operate in a shared memory system consisting of n processes
p1, . . . , pn. This time, however, processes communicate using immediate atomic snapshot
memory, which is powerful yet still equivalent to the ordinary register model [3].

4.1 Immediate atomic snapshot model

The immediate atomic snapshot model, depicted in Figure 3, consists of n processes
and the main memory, which contains n single-writer registers reg1, . . . , regn, one per
process. From each process pi’s point of view, a run is a sequence of alternating steps
(i) process pi uses the provided memory snapshot shapshoti to compute the text value
towritei to be written to regi, (ii) the memory performs the requested write and provides
the process with snapshoti = [reg1, . . . , regn]. The value tokeni ∈ {process, memory}

6

p1

pn

memory

reg1, . . . , regn

towrite1

snapshot1

towriten

snapshotn

1

2 n

i tokeni

Figure 3: Immediate snapshot model diagram.

1 initially for each pi is

2 tokeni = process

3 snapshoti = [reg1, . . . , regn] { initial regi specified by the application }
4 towritei = ⊥

5 action a of kind update(B) is

6 enabled if tokeni = memory for all pi ∈ B
7 for all pi ∈ B do regi ← towritei

8 for all pi ∈ B do snapshoti ← [reg1, . . . , regn]
9 for all pi ∈ B do tokeni ← process

10 action a of kind step(pi) is

11 enabled if tokeni = process

12 towritei ← localcompi(snapshoti, external(a))
13 tokeni ← memory

Figure 4: Immediate snapshot model specification.

indicates whether the next step should be taken by pi or the memory. Initially, all tokens
are at the processes, each snapshoti = [reg1, . . . , regn], and the initial reg1, . . . , regn are
specified by the application.

Figure 4 gives the formal description of the system. The system progresses by execut-
ing two kinds of actions: update(B) executed by the memory, and step(pi) executed by
each process pi. The action update(B), with B being a non-empty block (set) of processes
is enabled, if all processes in B are waiting for the memory (nothing is said about tokenj

for pj /∈ B). Action update(B) performs all the writes requested by processes in B, takes
a snapshot for all of them, and moves the corresponding tokens back to the processes.

Action step(pi) is enabled if pi has its token. It uses the provided snapshoti to compute
the next value towritei to be written to the memory, and moves the token back to the
memory. This computation is performed by a function localcompi, which can be thought
of as the algorithm being executed. The meaning of external(a) is explained in Section 4.2
below.

7

4.2 Actions and runs

We need to distinguish between action kinds, such as “update({p1, p3})”, and individual
actions, for example, “the second update({p1, p3}) in the current run”. The difference is
similar to that between a function and a function invocation. An action kind is a piece
of code describing how an action of this kind modifies the state. An action is an opaque
object, with a unique identity within a run, which has its kind accessible through the
predicate kind. Action a is executed by determining kind(a) and then modifying the
system state according to Figure 4. For brevity, “let a = some-kind” is sometimes used
to mean “let a be any action with kind(a) = some-kind”.

A run A is a set actions(A) of actions, together with mappings timeA and externalA.
For each action a, the value timeA(a) is the time at which a is executed. No two actions
have the same timeA(a). Function externalA(a) is the external information available to
action a, such as the failure detector query result, which might refer to the current time
timeA(a). The run is purely asynchronous if there is no external information, that is,
externalA(a) = ⊥ for all actions a. Executing a run consists of executing all actions
a ∈ actions(A) atomically in the order of increasing timeA(a). When A is clear from the
context, I drop the subscript from timeA, externalA, etc.

In any run A, processes can fail by crashing, but the memory never crashes. Nodes
that never crash are correct, the others are faulty. Let correct(A) be the set of correct
processes, and inf (A) ⊆ correct(A), the set of processes that perform infinitely many
steps. A run A is fair if no action of a correct node is enabled forever without being
executed; or, equivalently, iff inf (A) = correct(A).

This paper uses the following symbols for actions of the following kinds

a any action
s step(p) for some p
u update(B) for some B

si step(pi)
uB update(B)
ui update(B) with pi ∈ B

In addition, ak denotes the k-th action in the particular group, for example, sk
i is the k-th

step of process pi, and uk is the k-th update action. Each such symbol uniquely identifies
an action in a run.

Some algorithms in this paper manipulate information about step actions sk
i . Each sk

i

can be represented as a pair (i, k), which and uniquely identifies the action within the run
as the k-th step of pi. This method is analogous to representing a process pi by its id i,
which also uniquely identifies it.

4.3 Causal precedence relation

The heart of the proof in Section 5 lies in simulating a failure detector in purely asyn-
chronous runs. To show the correctness of such a simulation, we will have to prove that
the run with a simulated detector is indistinguishable from some (possibly unfair) run
with a real detector. For this reason, we need a precise notion of causal precendence,
introduced below.

Let view(a) be the set of all state variables accessed by action a, including those in

8

s1

1
s2

1

s1

2
s2

2

s1

3

u1

{12}
u1

{23} u1

{1}

Figure 5: Relations (arcs) and
∗
 (paths) in the run s1

1, s1
2, s1

3, u1
{12}, s2

1, s2
2, u1

{23}, u1
{1}.

enabledness tests of a. The value of view(a) depends solely on kind(a). In our case,

view(uB) = {reg1, . . . , regn} ∪ { tokeni, towritei, snapshoti | pi ∈ B },

view(si) = {tokeni, towritei, snapshoti},

where kind(uB) = “update(B)” and kind(si) = “step(pi)”.

Two actions a and a′ conflict if they access the same state variable, that is, view(a)∩
view(a′) 6= ∅. In our case, the following pairs of actions conflict: (i) any two update
actions, u and u′, (ii) a step action si and an update action ui, both involving pi, (iii) two
step actions, si and s′i, by the same process pi. Let us define

a a′ def

⇐⇒ time(a) < time(a′) ∧ view(a) ∩ view(a′) 6= ∅.

The causal precedence relation
∗
 is the transitive closure of , and

0∗
 is the reflexive

closure of
∗
 .

As an example, consider the run

s1
1, s1

2, s1
3, u1

{12}, s2
1, s2

2, u1
{23}, u1

{1},

where sk
i is the k-th step of process pi, and uk

B is the k-th action update(B). In Figure 5,
nodes represent actions, and arcs represent , divided in three above categories of con-
flicting actions: (i) red, (ii) blue, (iii) green. The paths correspond to

∗
 , for example,

s1
2

∗
 u1

{1} because s1
2 s2

2 u1
{23} u1

{1}.

Lemma 4.1. Any runs A, with the same actions(A), relation
∗
 A, and mapping externalA

are indistinguishable.

Lemma 4.2. In a fair run, for any step sj and any correct pi, there is a step si such that
sj

∗
 si.

(All proofs missing from the main text are in the appendix.)

9

Block runs

Consider the sequence of all update actions uk = update(Bk) in a run. Lemma 4.3 shows
that the sequence of blocks B1, B2, . . . uniquely determines the causal precedence relation
∗
 . If the system is purely asynchronous (external(a) = ⊥ for all actions a), then, by
Lemma 4.1,

∗
 determines the entire run. As a result, the sequence B1, B2, . . . can be

treated as a run, called a block run [1]. Note that this simplification applies only to purely
asynchronous systems, without failure detection.

Lemma 4.3. The block sequence B1, B2, . . . determines
∗
 .

4.4 Failure detection

A failure pattern is a function alive(t), which returns the set of non-crashed processes at
any given time t ∈ R. Crashed processes do not recover, therefore t < t′ =⇒ alive(t) ⊇
alive(t′). A run is consistent with a failure pattern alive if crashed processes do not take
steps, that is,

pi ∈ alive(time(si)) for all steps si ∈ actions(A). (1)

Note that consistency does not require fairness: there might be correct processes that
take only finitely many steps (inf (A) ⊆ correct(A) =

⋂

t alive(t)).
A failure detector history is a function history(p, t), which returns the result of process

p querying the detector at time t. Therefore, in systems equipped with a failure detector,
each step s satisfies

external(si) = history(pi, time(si)). (2)

Finally, a failure detector specification is a function that for each possible failure
pattern alive returns the set of possible histories history. Note that the failure detector
behaviour depends only on the failure pattern, and not, for example, on when processes
take steps.

5 Set agreement requires anti-Ω

Section 3 showed that the anti-Ω failure detector is sufficient to implement set agreement.
This section will show that anti-Ω is also necessary. In other words, any failure detector ∆
sufficient to implement a non-wait-free-implementable abstraction, such as set agreement,
can implement anti-Ω.

More precisely, consider any abstraction Problem with the following properties: (i) no
algorithm can implement Problem in all fair runs in the purely asynchronous system,
(ii) there is an algorithm Algorithm∆ that implements Problem in all fair runs of a system
equipped with a failure detector ∆, (iii) the termination condition of Problem is a function
of the state of the system (eg. it does not require knowing which processes are correct,
see below). This section proves that such a detector ∆ can implement anti-Ω.

The proof consists of three parts:

1. Collecting ∆ samples from the current run A (Section 5.1).

2. Using this information to safely simulate ∆ in any run B (Section 5.2).

3. Simulating all possible runs B in order to emulate anti-Ω (Section 5.3).

10

1 initially dom preci = ∅, dom deti = ∅ { empty mappings }

2 function localcompinfo([(prec1, det1), . . . , (precn, detn)], external) at step si is

3 preci(si)← dom prec1 ∪ · · · ∪ dom precn

4 deti(si)← external
5 return (preci, deti)

Figure 6: Computing mappings preci and deti at process pi.

Correctness-independent termination condition for set agreement

The original Termination condition of set agreement refers to process correctness, violating
property (iii) of Problem. However, any set agreement protocol can be transformed in the
following way: (i) when a process pi decides, it writes its decision to a special decision
register deci (emulated as part of regi), initially empty; and (ii) each process repeatedly
scans all registers deci and, if any of them is non-empty, decides on its contents. This
modification obviously preserves all properties of set agreement.

In fair runs, standard Termination (“eventually all correct processes decide”) is equiv-
alent to 1-Register Termination (“eventually at least one deci is non-empty”, pi possibly
faulty). This is because, if a correct process pi decides, then it will write its decision to
deci. On the other hand, if some deci is set, then all correct processes will eventually read
it and decide. (This reasoning requires at least one correct process.)

5.1 Collecting failure detector samples

The algorithm in Figure 6, defined by the function localcompinfo (Figure 4, line 12), gathers
information about the behaviour of the detector ∆, and the causality relation

∗
 between

steps of the current run. Each register regi maintains two mappings, preci and deti, both
mapping only the steps si made so far by process pi. For each such step, deti(si) is the
the output of ∆ during si, and preci(si) is the set of all steps sj (by any process pj) that
causally precede si:

deti(si) = external(si), preci(si) = { sj | sj
∗
 si }.

For example, in the run in Figure 5, we have

prec(s1
1) = prec(s1

2) = prec(s1
3) = ∅, prec(s2

1) = prec(s2
2) = {s1

1, s
1
2},

where prec(si)
def

= preci(si).
Both preci and deti start empty. At each step si, they are updated by adding a new

entry corresponding to si: deti(si) becomes the current output of ∆, whereas preci(si)
becomes the union of the domains of all mappings prec1, . . . , precn. Lemma 5.1 shows
that each dom precj = { sj | sj

∗
 si }. As a result, in line 3,

preci(si)←
⋃

pj

dom precj =
⋃

pj

{ sj | sj
∗
 si } = { sj | sj

∗
 si }.

Both preci and deti are growing mappings. In general, a growing mapping Xi is a
mapping that (i) starts empty at all processes, (ii) each step si adds a new entry Xi(si).

11

1 initially dom mapi = ∅ { empty mapping }

2 function successori(used) is { steps used ⊆ actions(A) }
3 detectoranti-Ω ← pi

4 for k = 1, 2, . . . do

5 wait until sk
i ∈ dom precA { sk

i is the k-th step of process pi in A }
6 if used ⊆ precA(sk

i) return sk
i

7 function localcompasync([(map1, data1), . . . , (mapn, datan)]) at step si is

8 mapi(s)← successori(range map1 ∪ · · · ∪ range mapn)
9 datai ← localcomp∆

(

[data1, . . . , datan], detA(mapi(s))
)

10 return (mapi, datai)

Figure 7: Emulating failure detector ∆ at process pi.

The mappings X1, . . . , Xn can be thought of as fragments of a single composite mapping
X defined as X

def

=
⋃

i Xi, that is, X(si)
def

= Xi(si). The symbol doms Xi denotes the value
of dom Xi passed to localcomp at step s.

Lemma 5.1. If X is a growing mapping, then domsi
Xj = { sj | sj

∗
 si }.

5.2 Simulating the failure detector in a given run

Section 5.1 showed how to collect failure detector ∆ samples det(s) and the causal prece-
dence relation prec(s) for a given run A. This section shows how to use this information
to simulate ∆ in a purely asynchronous run B. This simulation is indistinguishable from
some run C with a real ∆. FLP and similar results are not violated because C is not nec-
essarily fair, and a simulated ∆ query might not terminate. One possible interpretation
is that the simulation is safe but not necessarily live, for example, the Ω detector can be
simulated by always returning a fixed process.

The algorithm in Figure 7 defines a local computation function localcompasync that
allows us to run any algorithm localcomp∆ that uses ∆. The detector ∆ is simulated
using a function map, which maps steps in the current run B, in which ∆ is emulated, to
steps in the run A, in which samples of ∆ were collected.

The code in Figure 7 computes map and executes the algorithm localcomp∆ at the
same time. At every point in time, each regi stores two pieces of data: the algorithm
data datai, and a growing mapping mapi, the fragment of map = map1 ∪ · · · ∪ mapn.
At each step si, process pi first uses the current values of map1, . . . ,mapn to compute
mapi(si). The real ∆ output at map(s) in run A, that is detA(map(si)), is then used as
the simulated ∆ output for the algorithm localcomp∆ in the current run B (line 9).

The computation of mapi(s) is performed by the function successori, which takes the
values of the mappings mapi (

⋃

j range mapj), and returns the earliest step of process pi

that causally follows all of them in A. To achieve this, successori considers all steps s1
i ,

s2
i , . . . in this order. For each sk

i , it tests whether all steps in used =
⋃

j range mapj

causally precede it in A, and if so return it as the value for map(s) (line 6). Line 3 is part
of the anti-Ω emulation algorithm, and will be explained in Section 5.3.

12

The wait instruction in line 5 ensures that the precA(sk
i) information is available in

line 6, which otherwise might not be if pi performed only finitely many steps in A. It is
also intended to cover the possibility that the entries of precA are supplied to process pi

one by one from some external source, rather than given to it all at once at the beginning
of the algorithm. Section 5.3 contains more details.

Function successori might not terminate, for two reasons. First, because of the wait

instruction in line 5. Second, because of the infinite loop in lines 4–6 and the exit condition
in line 6 holding for no k. Again, Section 5.3 will explain why this is not a problem.

Lemma 5.2. Mapping map preserves causality: sj
∗
 B si =⇒ map(sj)

∗
 A map(si).

Proof. By Lemma 5.1, sj
∗
 B si implies sj ∈ domsi

mapj. Therefore, at the beginning
of step si, we have map(sj) = mapj(sj) ∈ range mapj ⊆

⋃

j range mapj = used, so
successori ensures that map(sj)

∗
 A map(si) (line 8).

Theorem 5.3. Let map be a function actions(B) → actions(A) satisfying Lemma 5.2.
Then, the run B with ∆ simulated by the algorithm in Figure 7 is indistinguishable from
some run C with a real ∆, with inf (C) = inf (B) and correct(C) = correct(A). Run C
may be unfair.

5.3 Emulating anti-Ω

Recall, from the beginning of Section 5, that Problem is an abstraction that is not wait-
free-implementable in a purely asynchronous system, but is wait-free-implementable with
a detector ∆ using an algorithm Algorithm∆ (both assuming fair runs). This section will
show that the detector emulation techniques from previous sections can be used implement
anti-Ω using ∆.

The anti-Ω emulation process consists of two concurrent tasks (Figure 8). The first
task uses the code from Figure 6 to continuously gather information about the behaviour
of failure detector ∆ in the current run A, by updating precA and detA (Section 5.1).

The second task simulates Algorithm∆ in all possible asynchronous runs B, with ∆
simulated using the technique from Section 5.2, and the information precA and detA
being collected by the first task. Since each simulated run B is purely asynchronous, at
least one them does not decide (Lemma 5.6). Since at least one correct process eventually
does not participate in this non-deciding run (Lemma 5.7), outputting only processes
taking steps processes emulates anti-Ω (Theorem 5.8).

Each purely asynchronous run B is equivalent to some block run B1, B2, . . . (Sec-
tion 4.3). Function explore in Figure 8 recursively enumerates and examines all such runs.
More precisely, explore(Sk, Pk) examines all runs, starting in the global system state Sk,
in which only processes in Pk take steps. To generate all runs B, we call explore(S0, P0),
where S0 is the initial state of the simulated system, and P0 = P is the set of all processes
(lines 11–14).

Function explore(Sk, Pk) first checks whether a decision has been made in Sk (1-
Register Termination). If so, it returns, because we are searching for a non-deciding run.
Otherwise, we consider all non-empty Pk+1 ⊆ Pk in any deterministic order consistent with
“⊆”, for example, in the order of increasing |Pk+1|. For each such Pk+1, we recursively
examine all blocks Bk+1 with Bk+1 ⊆ Pk+1. The reason for considering small Pk+1’s first
is to prefer runs with a small number of correct processes (see below).

13

1 function explore(Sk, Pk) is

2 if no decision in state Sk then { test 1-Register Termination }
3 for all non-empty Pk+1 ⊆ Pk in an order consistent with “⊆” do

4 for all non-empty Bk+1 ⊆ Pk+1 do

5 simulate Algorithm∆ from state Sk and record the new state as Sk+1

6 for all pi ∈ Bk+1 do simulate step(pi)
7 simulate update(Bk+1)
8 explore(Sk+1, Pk+1)

9 task information gathering is

10 continuously update precA and detA using the algorithm in Figure 6

11 task anti-Ω emulation is

12 P0 ← P , where P = {p1, . . . , pn}
13 S0 ← the initial state of the simulated system with Algorithm∆

14 explore(S0, P0)

Figure 8: Emulating anti-Ω using ∆ and simulated runs of Algorithm∆.

For each choice of Pk+1 and Bk+1, the algorithm simulates block Bk+1 in state Sk by
first making all processes p ∈ Bk+1 take a step, and then simulating update(Bk+1) itself.
We call the new state Sk+1, and repeat the procedure recursively. Some runs B may be
generated more than once, but this is not a problem.

Each invocation of step(pi) in line 6 invokes the detector simulation from Figure 7,
which sets the current output of the emulated anti-Ω to pi (line 3). The next section
shows that this algorithm correctly emulates anti-Ω.

Correctness of the anti-Ω emulation

Lemma 5.4. In fair runs, the executions of algorithm in Figure 8 are the same at all
correct processes.

Proof. The only process-dependent action in the algorithm is step simulation from Fig-
ure 7, which uses process-and-time-dependent values dom precA = dom detA. Therefore,
the only difference can be caused by line 5 in Figure 7 terminating at some correct pro-
cesses but not on others.

We therefore need to show that if sk
i ∈ dom precA holds at some correct process, then

it will eventually hold at all correct processes. Note that sk
i ∈ doms precA at step s of a

correct process p means sk
i

∗
 s (Lemma 5.1). By Lemma 4.2, for any correct process p′,

there is a step s′ with sk
i

∗
 s

∗
 s′. Again by Lemma 5.1, this implies sk

i ∈ doms′ precA,
which implies the assertion.

As a consequence, it is sufficient to focus on the algorithm behaviour at a single correct
process. First, note that the simulation might get stuck in function successori in Figure 7.
This can happen only if process pi crashes in run A (Lemma 5.5). In this case, line 3 in
Figure 7 ensures that the detector will eventually keep outputting a faulty process (pi),
which satisfies the definition of anti-Ω.

14

Lemma 5.5. If A is fair and pi is correct in A, then successori always terminates.

Proof. Let p′ be the current correct process. We need to prove that (i) line 5 in Figure 7
always terminates, and (ii) there is an sk

i that satisfies line 6, terminating the loop.

(i) Since pi is correct and A is fair, all steps sk
i for k = 1, 2, . . . will eventually occur

in A. For each such k, there is a step s′ by p′, such that sk
i

∗
 s′ (Lemma 4.2).

Lemma 5.1 implies sk
i ∈ doms′ prec.

(ii) By Lemma 4.2, for each step s ∈ used, there is a step s
k(s)
i such that s

∗
 s

k(s)
i . The

latest such step, sk
i with k = maxs∈used k(s), satisfies s

∗
 sk

i for all s ∈ used, which
implies used ⊆ domsk

i
precA (Lemma 5.1). Then, line 3 in Figure 6 ensures that

used ⊆ precA(sk
i).

For the rest of this proof, we can therefore assume that lines 5–7 in Figure 8 always
terminate.

Lemma 5.6. There is an infinite run B which does not decide.

Proof. Consider the tree of all runs B = B1, . . . , Bk that do not decide. Each node in
the tree correspond to some finite run B1, . . . , Bk, with children B1, . . . , Bk+1, one per
each possible value of Bk+1. To obtain a contradiction, assume that this tree is finite;
otherwise König’s infinite-path lemma implies the assertion. This implies that there is a
finite upper bound on the number of steps in any non-deciding run B.

Since the number of non-deciding runs B1 . . . Bk is finite, the algorithm in Figure 8
will terminate in a finite number of steps (we assumed that lines 5–7 always terminate),
using only finite parts of precA and detA. Therefore, we can construct an algorithm
Algorithmasync that uses these finite parts of precA and detA to simulate Algorithm∆ in any
asynchronous run (Figure 7).

Theorem 5.3 states that this run, with a simulated ∆, is indistinguishable from some,
possibly unfair, run with a real ∆. This means that no safety property of Problem will be
violated in the simulation. We have also shown that there is a bound on the number of
steps required to decide. As a result, Algorithmasync is a purely asynchronous algorithm
for Problem. This contradicts the non-wait-free-implementability of Problem, and proves
the assertion.

Lemma 5.7. Each infinite non-deciding run B satisfies inf (B) ⊂ correct(A).

Proof. To simulate all steps of any pi ∈ inf (B) without getting stuck in lines 4–6 in
Figure 7, we need precA(sk

i) for infinitely many steps sk
i ∈ actions(A). This implies

pi ∈ correct(A), which means inf (B) ⊆ correct(A).
By Theorem 5.3, the system cannot distinguish run B, with a simulated ∆, from some

(possibly unfair) run C, with the real ∆. To show that inf (B) ⊂ correct(A), we have
to rule out the only remaining possibility inf (B) = correct(A). In this case, however,
correct(C) = correct(A) = inf(B) = inf(C), so C is fair. As a result, Algorithm∆ must
decide in C, so also in B, contradicting the assumption.

Theorem 5.8. The algorithm in Figure 8 implements anti-Ω.

15

Proof. Consider the recursion tree of explore, in which each node is explore(Sk, Pk), where
k is the depth of that node. It contains each possible run B at least once, for example, by
setting Pk = P for all k. By Lemma 5.6, the tree contains an infinite path corresponding
to some non-deciding run B.

Let B = B1, B2, . . . be such a run, the one encountered first by the algorithm in
Figure 8. The ordering “⊆” in line 3 implies that P1, P2, . . . satisfies Pk =

⋃

k′≥k Bk′ . The
sequence P1 ⊇ P2 ⊇ · · · stabilizes at some Pk =

⋃

k′≥k Bk′ = inf (B). Since B does not
decide, explore(Sk, Pk) will not terminate, and will execute line 6 in Figure 8 only for
pi ∈ Pk′≥k = Pk = inf (B). As a result, only pi ∈ inf (B) will be output by the anti-Ω
emulated in line 3 in Figure 7. By Lemma 5.7, inf (B) ⊂ correct(A), so there is a process
p′ ∈ correct(A) \ inf (B) ⊆ correct(A) that will eventually never be output.

6 Discussion and open questions

This section comments on the proof from Section 5, and suggests some open questions
and directions of future work.

Comments on the proof

First, note that the proof is not specific to set agreement, but works with (almost) any non-
wait-free-implementable abstraction Problem. This provides a confirmation that anti-Ω
is the weakest non-implementable eventual failure detector [26]. Equivalently, any failure
detector that implements Problem also implements set agreement. This does not mean,
however, that set agreement is the weakest non-implementable abstraction [12].

The famous result that Ω is required for Consensus [4] uses the decision of the Con-
sensus algorithm to construct a bivalent run. On the other hand, the proof presented in
this paper does not use the decision value at all, only the fact that set agreement is not
implementable [2, 18, 24]. I consider this a benefit, because we do not need to reprove
non-implementablitity of set agreement, which would arguably be the most difficult part.
In contrast, large parts of [4] are devoted to essentially reproving a version of FLP [9].

As a result, the proof presented in this paper is fairly generic, in the sense that only
Section 5.3 depends on our assumptions about Problem and the anti-Ω detector being
emulated. One could envision that, by changing the algorithm in Section 5.3, we could
prove other minimal failure detector results. One way to do it would be to restrict the
set of runs B to consider. For example, in Consensus, there is a non-deciding run B
containing just two processes [9]. It is possible that this technique will allow us to prove,
for example, that k-vector-Ω is the weakest failure detector to implement k-set agreement
(Section 3.3).

Comments on failure detectors

The simulation in Section 5.2 implies that any detector can be simulated in a way that
preserves all its safety properties. As a result, the weakest detector to implement any
problem is an eventual failure detector, which offers only liveness properties. This is
significant, because eventual failure detectors are fairly well understood in the sense that

16

there is a mechanical procedure for testing their relative strength [26] (assuming a finite
number of possible detector outputs).

This paper considered the shared memory model. Since the message-passing model
does not have registers, it is plausible that the weakest failure detector necessary for
implementing set agreement in this model is anti-Ω + Σ [7]. However, as anti-Ω is the
weakest eventual failure detector, anti-Ω + Σ is equivalent to Σ alone. In other words, if
this conjecture is true, both the register and set agreement would require the same failure
detector in the message passing model.

Finally, note that anti-Ω is the weakest eventual failure detector in both shared-
memory and message-passing models, because the relative strength of eventual failure
detectors is largely model-independent [26].

Limitations of this work and open questions

The approach presented in this paper has two limitations. First, the implementation of
vector-Ω using anti-Ω given in Figure 1 is not anonymous [12], that is, the given algorithm
is not symmetric with respect to process identifiers. The culprit is line 9, “ties broken
deterministically,” which requires a pre-agreed order on processes. The question remains
whether anti-Ω can implement set agreement in an anonymous way? Failing this, can it
implement weaker abstractions such as renaming or weak symmetry breaking [12]?

The other limitation is the assumption (iii) made in the proof in Section 5 that “the
termination condition of Problem is a function of the state of the system”. Can we remove
this restriction from the proof? Is this condition really limiting? We have seen that it
is not for set agreement, but can, for example, renaming or weak symmetry breaking be
transformed in a similar way?

7 Related work

The study of failure detectors was initiated by Chandra et al. [4], who introduced the
concept and several detectors, including P, ♦P, ♦S, and Ω. They also showed that, in a
system with a majority of correct processes, Ω is both sufficient and required to implement
Consensus. Their proof technique, based on simulation, was used for analogous proofs for
other abstractions [16], and inspired the approach presented in this paper.

Failure detectors have been extensively investigated in a number of other publications,
for example [4, 8, 14, 16, 20, 22].

The set agreement problem was introduced by Chaudhuri [5]. The efforts to show
the impossibility of a wait-free solution led to discovering deep connections between
wait-free implementability and combinatorial topology, eventually succeeding in proving
non-implementability of set agreement [2, 18, 24]. Achieving this result was challenging
because, set agreement is one of the weakest non-wait-free-implementable problems.

Establishing the non-implementability started the quest for the weakest detector for
set agreement. Previous attempts led to the Ωk detector [23], the Υ failure detector [14],
the ΠΩk family [6], and anti-Ω [26]. Other recent work related to set agreement can be
found in [10, 12, 13, 20, 21, 25]

17

8 Conclusion

The anti-Ω detector [26] outputs process ids and ensures that some correct process id is
eventually never output. This paper showed that anti-Ω is both sufficient and necessary
to implement set agreement in a shared-memory system equipped with registers.

The sufficiency is established by presenting an algorithm that uses anti-Ω to implement
set agreement. It first implements an equivalent detector vector-Ω, a vector of n− 1
detectors, at least one of which behaves as Ω. Vector-Ω is then used to implement set
agreement. More generally, k-vector-Ω can implement k-set agreement.

The necessity is proved by showing that anti-Ω information can be extracted from
any detector that can implement set agreement. The method collects samples of the
detector outputs in the current run, and then uses them to simulate all possible runs
of a implementing algorithm in order to find a non-deciding one. At least one correct
process eventually does not participate in that run, which is sufficient to emulate anti-Ω.
Interestingly, this method does not use the decision value of the set agreement algorithm,
only the fact it does not terminate in some asynchronous run.

References

[1] Hagit Attiya. A direct lower bound for k-set consensus. In PODC, page 314, 1998.
URL http://doi.acm.org/10.1145/277697.277770.

[2] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In Alok Aggarwal, editor, Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, pages 91–100, San Diego, CA, USA,
May 1993. ACM Press. ISBN 0-89791-591-7.

[3] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming
(extended abstract). In PODC, pages 41–51, 1993.

[4] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving Consensus. Journal of the ACM, 43(4):685–722, 1996.

[5] Chaudhuri. More choices allow more faults: Set Consensus problems in totally asyn-
chronous systems. INFCTRL: Information and Computation, 105, 1993.

[6] Wei Chen, Yu Chen, and Jialin Zhang. On failure detectors weaker than ever. Tech-
nical Report MSR-TR-2007-50, Microsoft Research, may 2007.

[7] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Shared memory
vs message passing. Technical report, LPD, December 2003.

[8] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos,
Petr Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain
fundamental problems in distributed computing. In Proceedings of the 23rd An-
nual ACM Symposium on Principles of Distributed Computing, pages 338–346. ACM
Press, 2004.

18

[9] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed Consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

[10] Eli Gafni. Read-write reductions. In Soma Chaudhuri, Samir R. Das, Himadri S.
Paul, and Srikanta Tirthapura, editors, ICDCN, volume 4308 of Lecture Notes in
Computer Science, pages 349–354. Springer, 2006. ISBN 3-540-68139-6.

[11] Eli Gafni and Leslie Lamport. Disk Paxos. In International Symposium on Distributed
Computing, pages 330–344, 2000.

[12] Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus tasks: Renaming is
weaker than set agreement. In Shlomi Dolev, editor, DISC, volume 4167 of Lecture
Notes in Computer Science, pages 329–338. Springer, 2006. ISBN 3-540-44624-9.

[13] Eli Gafni, Michel Raynal, and Corentin Travers. Test&set, adaptive renaming and set
agreement: a guided visit to asynchronous computability. Technical report, IRISA,
France, 2007.

[14] R. Guerraoui, M. Herlihy, P. Kouznetsov, N. Lynch, and C. Newport. On the weakest
failure detector ever. Technical Report 1, Max Planck Institute for Software Systems,
2007.

[15] Rachid Guerraoui. Indulgent algorithms. In Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing, pages 289–298, NY, July 2000.
ACM Press.

[16] Rachid Guerraoui and Petr Kouznetsov. Finally the weakest failure detector for
Non-Blocking Atomic Commit. Technical Report LPD-2003-005, EPFL, Lausanne,
Switzerland, December 2003.

[17] Rachid Guerraoui and Michel Raynal. The Alpha of indulgent Consensus. Comput.
J, 50(1):53–67, 2007.

[18] Herlihy and Shavit. The topological structure of asynchronous computability. JACM:
Journal of the ACM, 46, 1999.

[19] Wai-Kau Lo and Vassos Hadzilacos. Using failure detectors to solve consensus in
asynchronous shared-memory systems. In Proceedings of the 8th International Work-
shop on Distributed Algorithms (WDAG), volume 857 of LNCS, pages 280–295, Ter-
schelling, The Netherlands, 29 September–1 October 1994. Springer.

[20] Achour Mostefaoui, Sergio Rajsbaum, Michel Raynal, and Corentin Travers. Irre-
ducibility and additivity of set agreement-oriented failure detector classes. In PODC
’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of dis-
tributed computing, pages 153–162, New York, NY, USA, 2006. ACM Press. ISBN
1-59593-384-0. doi: http://doi.acm.org/10.1145/1146381.1146406.

19

[21] Achour Mostéfaoui, Michel Raynal, and Corentin Travers. Exploring Gafni’s reduc-
tion land: From Ωk to wait-free adaptive (2p − ⌊p/k⌋)-renaming via k-set agree-
ment. In Proceedings of the 20th International Symposium on Distributed Computing
(DISC), volume 4167 of LNCS, pages 1–15, Stockholm, Sweden, September 2006.
Springer.

[22] Michel Raynal. A short introduction to failure detectors for asynchronous distributed
systems. ACM SIGACT News, 35(1):53–70, 2005.

[23] Michel Raynal and Corentin Travers. In search of the holy grail: Looking for the
weakest failure detector for wait-free set agreement. In Proceedings of the 10th Inter-
national Conference on Principles of Distributed Systems (OPODIS), volume 4305
of LNCS, pages 3–19, Bordeaux, France, December 2006. Springer.

[24] Saks and Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SICOMP: SIAM Journal on Computing, 29, 2000.

[25] Corentin Travers Sergio Rajsbaum, Michel Raynal. Failure detectors as schedulers (an
algorithmically-reasoned characterization). Technical report, IRISA, France, 2007.

[26] Piotr Zieliński. Automatic classification of eventual failure detectors. In Proceedings
of the 21st International Symposium on Distributed Computing (DISC), Lemesos,
Cyprus, September 2007. (to appear).

20

A Proofs

Theorem 3.1. The algorithm in Figure 1 implements vector-Ω.

Lemma 4.1. Any runs A, with the same actions(A), relation
∗
 A, and mapping externalA

are indistinguishable.

Proof. For any action a and each state variable var ∈ view(a), let in(a).var and out(a).var
denote the value of var immediately before and after action a. Two runs are indistin-
guishable if they have the same in(a).var and out(a).var for all actions a and variables
var ∈ view(a). I will show that the relation

∗
 A and function externalA are sufficient to

determine these uniquely.
For each state variable var consider the set of all actions that access var:

V = { a | var ∈ view(a) }

The time ordering of actions in V can be determined from
∗
 because for any a, a′ ∈ V :

view(a′) ∩ view(a) ⊇ {var} ⊃ ∅ =⇒
(

time(a′) < time(a) ⇐⇒ a′ a
)

.

The main proof uses structural induction on . Consider any action a and var ∈
view(a). The value var before a is the same as after the latest action a′ ∈ V that
precedes a. In other words, in(a).var = out(a′).var, and we have already determined
out(a′).var by induction, because a′ ∗

 a.
Using this procedure, we can determine in(a).var for all var ∈ view(a), which together

with external(a) is sufficient to determine out(a).var for all var ∈ view(a), thereby
completing the inductive step.

Lemma 4.2. In a fair run, for any step sj and any correct pi, there is a step si such that
sj

∗
 si.

Proof. Step sj enables update({pj}). Memory fairness demands that this action cannot
be enabled forever, so eventually uj = update(B) with pj ∈ B will be executed. Then,
step(pi) cannot be enabled forever, so eventually tokeni = memory, enabling update({pi}).
Therefore, some ui = update(B′) with pi ∈ B′ will eventually take place, resulting in
tokeni = process. As a consequence, si = step(pi) will eventually occur. The assertion
follows from sj

∗
 uj

0∗
 ui

∗
 si.

Lemma 4.3. The block sequence B1, B2, . . . determines
∗
 .

Proof. I will show that B1, B2, . . . determines , and as a consequence
∗
 . Let uk =

update(Bk) be the k-th update action, and uk
i be the k-th action update(B) with pi ∈ B.

To determine , we need to show that each of the three groups of conflicting actions
from Section 4.3 can be uniquely time-ordered given the information in B1, B2,

21

(i) For any two updates uk and uk′

, we have time(uk) < time(uk′

) ⇐⇒ k < k′.

(ii) We have time(sk
i) < time(uk+1

i) < time(sk+1
i) because actions step(p) and update(B)

with p ∈ B alternate. Therefore, time(sk
i) < time(uk′

i) ⇐⇒ k < k′, and time(uk
i) <

time(sk′

i) ⇐⇒ k ≤ k′.

(iii) For any two steps sk
i and sk′

i , we have time(sk
i) < time(sk′

i) ⇐⇒ k < k′.

Lemma 5.1. If X is a growing mapping, then domsi
Xj = { sj | sj

∗
 si }.

Proof. First, I will show that any action causally succeeding a step action by some process,
causally succeeds (or equals) the next update action involving that process. Formally, sk

i

be the k-th step by pi, and uk
i be the k-th update involving pi. Note that uk−1

i

∗
 sk

i

∗
 uk

i .
We need to show that, for any action a,

sk
i

∗
 a ⇐⇒ uk

i

0∗
 a, and a

∗
 sk

i ⇐⇒ a
0∗
 uk−1

i . (3)

For the purpose of this proof, u0
i = u0 is the artificial update({p1, . . . , pn}) action that

precedes all other actions, and behaves as if it wrote the initial values to reg1, . . . , regn

and took the snapshots [reg1, . . . , regn] for all processes.
To show (3a), first observe that “ ⇐= ” follows from sk

i

∗
 uk

i

0∗
 a. For “ =⇒ ”, let

sk
i a′ 0∗

 a. We have two cases (i) a′ = sk′

i for some k′ > k, or (ii) a′ = uk′

i with k′ ≥ k.
In both cases uk

i

0∗
 a′ 0∗

 a. Equivalence (3b) can proved in the same way.
To avoid clutter, let us adopt the following shortcuts

sj
def

= s
kj

j , uj
def

= u
kj

j , si
def

= ski

i ui
def

= uki−1
i .

Equivalences (3) imply

sj
∗
 si

(3a)
⇐⇒ uj

0∗
 si

uj 6=si

⇐⇒ uj
∗
 si

(3b)
⇐⇒ uj

0∗
 ui. (4)

Thus, two steps are causally dependent iff one reads (ui) after the other writes (uj).
We need to prove that domsi

Xj = Yj, where

Yj
def

= { sj | sj
∗
 si }

(4)
= { sj | uj

0∗
 ui }.

If Y is empty, then Xj available to si, as read by ui, is the initial ∅, which implies
domsi

Xj = ∅ = Yj. Otherwise, Xj available to si, as read by ui, was written by uj

corresponding to the latest step of pj in Yj, say sj. By induction,

domsi
Xj = domsj

Xj ∪ {sj}
ind
= { s′j | s

′
j

∗
 sj } ∪ {sj} = { s′j | s

′
j

0∗
 sj

∗
 si } ⊆ Yj.

To show equality, assume there is an s′j
∗
 si but s′j 6

0∗
 sj

∗
 si. Since s′j and sj are both

taken by pj, we have s′j 6
0∗
 sj =⇒ sj

∗
 s′j

∗
 si, which means that sj is not the latest step

in Yj, which contradicts the definition of sj.

Lemma 5.2. Mapping map preserves causality: sj
∗
 B si =⇒ map(sj)

∗
 A map(si).

22

Theorem 5.3. Let map be a function actions(B) → actions(A) satisfying Lemma 5.2.
Then, the run B with ∆ simulated by the algorithm in Figure 7 is indistinguishable from
some run C with a real ∆, with inf (C) = inf (B) and correct(C) = correct(A). Run C
may be unfair.

Proof. I will construct such a run C with

actions(C)
def

= actions(B), aliveC
def

= aliveA, historyC
def

= historyA.

Now, actions(C) = actions(B) implies inf (C) = inf (B), and aliveC = aliveA implies
correct(C) = correct(A).

To prove the main indistinguishability claim, we need to specify the times of actions
in actions(C) = actions(B). Let us start with step actions:

timeC(s)
def

= timeA(map(s)).

Order let us order all updates u1, u2, . . . ∈ actions(C) = actions(B) with respect to
∗
 B,

and define
timemin(u

k)
def

= max{ timeC(s) | s
∗

B

uk }

timemax(u
k)

def

= min { timeC(s
′) | uk ∗

B

s′ }
(5)

Now, iteratively assign timeC to u1, u2, . . . , so that

timemin(u
k) < timeC(u

k) < timemax(u
k), timeC(u

k−1) < timeC(u
k). (6)

To show that such an assignment is possible, note that, for any s
∗
 B uk ∗

 B s′, Lemma 5.2
implies map(s)

∗
 A map(s′). Therefore,

timeC(s) = timeA(map(s)) < timeA(map(s′)) = timeC(s
′),

hence,

timemin(u
k) < timemax(u

k) by (5),

timeC(u
k−1) < timemax(u

k−1) ≤ timemax(u
k) by (5) and induction on k,

which makes assignments timeC(u
k) satisfying (6) possible.

To show that B and C are indistinguishable, we need
∗
 B =

∗
 C and externalB =

externalC (Lemma 4.1). The former can be shown by proving B = C, that is, that
all pairs of conflicting actions are executed in both B and C in the same order. In other
words,

timeB(a) < timeB(a′) =⇒ timeC(a) < timeC(a
′) for any conflicting a and a′. (7)

Since timeB(a) 6= timeB(a′), the inverse implication follows automatically by exchanging
a and a′. Using (5) and (6), we can show (7) by considering possible all pairs of conflicting
actions (Section 4.3):

timeB(uk) < timeB(uk′

) =⇒ k < k′ ⇐⇒ timeC(u
k) < timeC(u

k′

),

timeB(uk
i) < timeB(si) =⇒ uk

i B si =⇒ timeC(u
k
i) < timemax(u

k
i) ≤ timeC(si),

timeB(uk
i) > timeB(si) =⇒ si B uk

i =⇒ timeC(si) ≤ timemin(u
k
i) < timeC(uk

i),

timeB(sk
i) < timeB(sk′

i) =⇒ timeB(sk
i) < timeB(uk

i) < timeB(sk′

i) =⇒

=⇒ timeC(sk
i) < timeC(uk

i) < timeC(sk′

i).

23

We have shown that
∗
 B =

∗
 C. To conclude indistinguishability from Lemma 4.1, we

need externalB = externalC. This forces us to define,

externalC(u)
def

= ⊥ = externalB(u)

externalC(s)
def

= detC(s)
def

= detA(map(s)) = externalB(s).

We just need to show that detC is consistent with the failure history historyC , Eq. (2):

detC(si) = detA(map(si)) = historyA(pi, timeA(map(si))) = historyC(pi, timeC(si)),

and that historyC is consistent with the failure pattern aliveC , Eq. (1):

pi ∈ alive(time(map(si))) = alive(time(si)).

Lemma 5.4. In fair runs, the executions of algorithm in Figure 8 are the same at all
correct processes.

Lemma 5.5. If A is fair and pi is correct in A, then successori always terminates.

Lemma 5.6. There is an infinite run B which does not decide.

Lemma 5.7. Each infinite non-deciding run B satisfies inf (B) ⊂ correct(A).

Theorem 5.8. The algorithm in Figure 8 implements anti-Ω.

24

