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A marriage of rely/guarantee and separation logic

Viktor Vafeiadis Matthew Parkinson
University of Cambridge University of Cambridge

Abstract

In the quest for tractable methods for reasoning about concurremttalgs both re-
ly/guarantee logic and separation logic have made great advancesbdtheseek to tame,
or control, the complexity of concurrent interactions, but neither is the ultiagpeoach.
Rely-guarantee copes naturally with interference, but its specificatiet®mplex because
they describe the entire state. Conversely separation logic has difficalinglevith inter-
ference, but its specifications are simpler because they describe omglahant state that
the program accesses.

We propose a combined system which marries the two approaches. Wesmaibd
interference naturally (using a relation as in rely/guarantee), and vhere is no inter-
ference, we can reason locally (as in separation logic). We demonsteadethntages of
the combined approach by verifying a lock-coupling list algorithm, whichallgtaispos-
es/frees removed nodes.

1 Introduction

Reasoning about shared variable concurrent programs isutiffboecause the interference be-
tween the simultaneously executing threads must be takerasctount. Our aim is to find
methods that allow this reasoning to be done in a modular anghosable way.

On the one hand, we have rely/guarantee, a well-establisietidod, introduced by Jones,
that is popular in the derivation and the post-hoc verifaa®f concurrent algorithms [12].
RG provides a good way of describing interference by having t&ations, the rely and
the guaranteé&r, which describe the state changes performed by the enveaonor by the
program respectively. Its disadvantage is that the spatidic of interference iglobal: it must
be checked against every state update, even if it is ‘obVibas$ the update cannot interfere
with anything else. Even Jones [13] acknowledges this ditiuh and still considers the search
for a satisfactory compositional approach to concurremcyppen problem.’

On the other hand, the recent development of separation [2@j 16] suggests that greater
modularity is possible. There, theoperator and the frame rule are used to carve all irrelevant
state out of the specification and focus only on the staterttaters for the execution of a
certain component or thread. This makes specificatioce; two components may interfere,
only if they have overlapping specifications. Its disadagetis that, in dealing with concurrent
programs, it took the simplest approach and uses invariarggecify thread interaction. This
makes expressing the relational nature of interferen@najuite difficult and requires many
auxiliary variables [18]. Even O’Hearn acknowledges thekvesses of separation logic, and
asks if “a marriage between separation logic and rely-quaesis also possible” [16].
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Here we present such a marriage of rely/guarantee and sepal@yic, which combines
their advantages and eliminates some of their weaknessesplitthe state into two disjoint
parts: () the shared state which is accessible by all threads, ignth¢ local state which is
accessible by a single component. Then, we use rely/guerémteal with the shared state, and
separation logic to deal with the local state. This is bésstfated by our parallel composition
rule:

= Cisat (p1, RUGy, Gi,q1) F Cysat (py, RUGH, Ga, q2)
F C1]|Cy sat (py * p2, R, G1 U Ga, g1 * ¢2)

This rule is identical to the standard rely/guarantee nabept for the use of instead ofA in the
pre- and post-conditions. In our specifications, the prditmms (e.gp;) and the postconditions
(e.g.q;) describe both the local and the shared state. The rely tonsli(e.g.R U G5) and
the guarantee conditions (e(;) describe inter-thread interference: how the shared gttt
modified.

The separating conjunction between assertions about hetfotal and the shared state
splits local statel} in two parts, but does not divide the shared sta}e (

(]?1 *pg)(l, S) d:ef Elll l2. [ = ll ] lg /\p1<l1, S) /\pg(lg,S)

The parallel composition rules of rely/guarantee and sdjuar logic are special cases of our
parallel composition rule. (1) When the local state is entpgnp; «p, = p; Ap, and we get the
standard rely/guarantee rule. (2) When the shared stateptyamwe do not need to describe its
evolution (R andG are the identity relation). Them * p, has the same meaning as separation
logic %, and we get the parallel rule of concurrent separation lagficout resource invariants
(see§2.2).

An important aspect of our approach is that the boundariegdan the local state and the
shared state are not fixed, but may change as the program Tums.“ownership transfer”
concept is fundamental to proofs in concurrent separatigit!

In addition, as we encompass separation logic, we can gl@aakon about dynamically
allocated data structures and explicit memory managenaewoiding the need to rely on a
garbage-collector. |84, we demonstrate this by verifying a lock-coupling list@ithm, which
actually disposes/frees removed nodes.

2 Technical background

In this paper, we reason about a parallel programming laggyuéth pointer operations. Left,

y andz range over logical variables, angly andz over program variables. We assuniéis a
special variable that identifies the current thread. Commméahand expressionsare given by
the following grammar,

C ==X:=e | X: =[e] | [e1]: =€ | X: =cons(ey, ..., e,) | dispose(e)
| C1; Cy | C1]|Cy | if (){C1} else {Cy} | while(b){C'} | atomic(b){C'}

ex=zx|x|eteln

whereb ranges over boolean expressions. Note that expressiamepure they do not refer to
the heap. In the grammar, each assignment contains at mo&eap access; assignments with
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multiple heap accesses can be performed using multiplgramsints and temporary variables
to store the intermediate results.

The semantics chitomic are thatC' will be executed in one indivisible step. This could
be implemented through locking, hardware atomicity, teatisnal memories, etc. Choosing
atomic over a given synchronisation primitive (e.g. locks) enalder reasoning to be applied
at multiple abstraction levels. In any case, any synchatios primitive can be encoded using
atomic.

In the rest of this section, we give a brief overview of the tgics we build on in this
paper.

2.1 Interference — Rely/guarantee specifications

Rely/guaranteespecifications [12] describe the interference between wwoestly executing
threads. These specifications are then used to prove centaigorithms in a compositional
manner. Each componeats assigned a&ely condition that describes the interference it can
tolerate from its environment (namely, the other compon@fhtthe system). In return, it is
assigned guaranteecondition that characterises how it can interfere with ttres.

The essence of rely/guarantee reasoning is its paralleposition rule. Two components
(threads) may be placed in parallel, if and only if, the gagea condition of the one component
implies the rely condition of the other and vice versa.

H Cl sat (R U GQ, Gl)
F 02 sat (RQ U Gl, Gg)

F 01”02 sat (R, G1 U GQ)

Since the interference experienced by thréadccan arise fronC; or the environment of the
parallel composition, we have to ensure that the total fietence R U G,) is allowed. Simi-
larly C5 must be able to tolerate interference frémand from the environment of the parallel
composition. The interference caused by the parallel caitipo may be caused by eithéf

or Cs; so, the total interference must include the interferemeesed by each componeot,
andGs .

2.2 Local reasoning — Separation logic

In Hoare logic [10], assertions describe properties ofvthelememory, and hence specifica-
tions, e.g. {P} C {Q}, describe a change of the whole memory. This is inheregitpal
reasoning Anything that is not explicitly preserved in the specifioatcould be changed, for
example{x = 4} y: =5 {x = 4}. Herey is allowed to change, even though it is not mentioned
in the specification.

The situation is different iseparation logid20]. Assertions describe propertiesprt of
the memory, and hence specifications describe changestof the memory. The rest of the
memory is guaranteed to be unchanged. This is the essetmeabfeasoning specifications
describe only the memory used by a command, its footprint.

The strength of separation logic comes from a new logicaheotive: the separating con-
junction,x. P x () asserts the state can be split into two parts, one descripédand the other

“*Modifies clauses’ solve this problem, but they are neithetty nor general.
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{ArrSeand(a, first, last, min, max)}
gsort(a, first , last) {
local pivot;
if (first <last-1) {
pivot = partition (a, first , last );
gsort(a, first, pivot);
|| gsort(a, pivot, last );
¥

}

{ArrSegSrt(a, first, last, min, mam)}

Figure 1. Parallel Quicksort algorithm and specification

by Q. The separating conjunction allows us to formally captheedssence dbcal reasoning
with the following rules:

{r}c{Q}
{P* R} C{Q xR}

(P} C1{Q1} {2} Cy {Qq}
{Pr* Po} C1]|Co {Q1 + Qa}

The first rule says, ifP is separate fronRz, and C' transformsP into @ then if C finishes

we have() and separately still havB. The second rule says that if two threads have disjoint
memory requirements, they can execute safely in paratel tlhe postcondition is simply the
composition of the two threads’ postconditions.

(Par)

(Frame)

Example: Parallel Quicksort To motivate the use of separation logic, we verify parallel
quicksort. Parallel quicksort uses disjoint concurrem@nce it is well suited to a separation
logic proof: there is no interference.

We present the algorithm and specification in Figure 1. Tigeridthm’s precondition,
ArrSegBnd(a, first, last, min, max), asserts that the heap contains a segment of arriagm
index first to last — 1, with values in the intervdbnin, max]. The postcondition denotes that
this array segment is sorted. For simplicity, we omit sayhmt it is a permutation of the ini-
tial array segment. We specify tipartition function as follows, but omit the source code and
proof.

{ArrSeand(a, first, last, min, maac)}
pivot = partition(a, first, last)

3X. ArrSegBnd(a, first, pivot, min, X)
{ « ArrSegBnd(a, pivot, last, X, max) }

The postcondition specifies the two segments are disjoamicd, we can sort the two segments
in parallel without interference.

{ArrSeand(a, first, pivot, min, X') * ArrSegBnd(a, pivot, last, X, max)}
gsort(a, first, pivot); || gsort(a, pivot, last);
{ArrSegSrt(a, first, pivot, min, X)) % ArrSegSrt(a, pivot, last, X, ma:)s)}

20riginally, separation logic did not consider global vates as resource; hence the proof rules had nasty
side-conditions. Later, this problem was solved by Bornatl.g2]. By disallowing direct assignments to global
variables, we avoid the problem.



To verify this algorithm with rely/guarantee, we would ndedexpress that each parallel
call modified disjoint elements of array. That is,

guarantee: Vi.(first < i < last) V a[i] = old(a[i])
rely: Vi.(first < i < last) = ali] = old(a[i])

In separation logic, however, we need not mention anythfriis sort.

Brief details Separation logic has the following assertions for deseghhe heaph:
P,Q,S :=false |emp |e=¢|e— ¢ |Fx.P|P=Q|PxQ|P—-®Q

We encode-, A, V,V, andtrue in the classical wayemp stands for the empty heap;— ¢’
for the heap consisting of a single cell with addressd contents’. Separating conjunction,
P x @, is the most important operator of separation logic. A heaptisfiesP « (), if it can be
split in two parts, one of which satisfiésand the other satisfigg. We build heap descriptions
of multiple cell heaps using and—. For example¢ — ¢’ % f — [’ describes twseparate
heap cells: it is impossible thatand f could be the same address (logicallycidnd f are
equal, there — [’ x e — f’is false).

There remains one new connective to descrasgtraction P —® QE Intuitively, P —® Q
represents removing from (). Formally, it means the heap can be extended with a state
satisfying P, and the extended state satisfigs

hyiEsp (P Q) % 3hy, h. (hy W ho = h) A hy,i Es, P A ho,i Fgr, Q

hyiEs, (P—®Q) & 3hy, hy. (hy Wh = hy) Ahy,i st PAha,i st Q
Finally, e — eq,..., e, is a shorthand fofe — e;) ... % (e + n — 1 — ¢,); ande — _means
dz e x.
Assignment to local variables are treated by the ordinagrelaxiom{Qle/x|} x :=e {Q},
where(@|e/x| substitutes: for all occurrences of in ). The other axioms of separation logic
are summarised below.

{e — _}[el:=¢ {er €'}
{e=yne—z}x:=le]{y— 2Ax=2}

{emp} x := cons(ey,...,e,) {x—e€1,...,en}

{e — _} dispose(e) {emp}

(These are known as the small axioms, because they dealtvwitbnmallest heap affected by
command. If there is more heap present, the frame rule sayg temains unaffected.)

e To write to a heap cell that cell must exist in the heap: i.a1 yast own it.

e To read a celle] you must own the cell; its contents are copied into variablkie cell’'s
contents are unchanged; and afterwards you still own ite (@bical variable, is used in
casex occurs ine.)

e cons(ey,...,e,) allocates a new block of heap cells. We require the heap is initially
empty, and the postcondition contains the new block of cells

e dispose(e) deallocates a heap cell. We require the heap contains thieeded disposed;
after disposal it is no longer contained in the heap.

def

3Sometimes called “existential magic wand”, as it is the dodinagic wand”:P —® Q = —(P - —Q). It has

been used in the connection with modal logic in [4].



3 The combined logic

3.1 Describing interference

The strength of rely/guarantee is the careful descriptioimterference between parallel pro-

cesses. We describe interference in terms of actions () which describe the changes per-

formed to the shared state. These resemble Morga@sification statemenf$4], andP and

@ will typically be linked with some existentially quantifiédgical variables. (We do not need

to mention separately the set of modified shared locati@tsause these are all includedfin)
The meaning of an actio® ~ () is that it replaces the part of the state that satisfies

before the action with a part satisfyidg) Its semantics is the following relation:

[[PWQ]]:{<h1Uﬂho,h2L‘Uho>’hl,’i':SLP/\hQ,Z":SL Q}

It relates some initial statk; satisfying the preconditio® to a final stateh, satisfying the
postcondition. In addition, there may be some disjointestgtwhich is not affected by the
action. In the spirit of separation logic, we want actionafieations as ‘small’ as possible,
describingh, andhs but nothy, and use the frame rule to perform the same update on a larger
state.

The rely and guarantee conditions are simply sets of actibhsir semantics as a relation
is the reflexive and transitive closure of the union of the &eties of each action in the set.

=1
We shall writeR for a syntactic rely condition (i.e. a set of actions) &dor a semantic rely
condition (i.e. a binary relation).

3.2 Stability

Rely/guarantee reasoning requires that every pre- andcposlition in a proof is stable under
environment interference. An assertiiis stable under interference of a relatiBnf and only

if wheneversS holds initially and we perform an update satisfyiRghen the resulting state still
satisfiesS.

Definition 1 (Stability). S; R = S'iff for all s, s’ and: such thats, i Fg, S and(s,s’) € R,
thens’, i Eqr, S

By representing the interferen@as a set of actions, we reduce stability to a simple syntac-
tic check. For a single actioj ~ @], the following separation logic implication is necessary
and sufficient:

Lemma2. S;[P~ Q] = S iff Fg, (P—®5)xQ = 8S.

Informally, it says that if from a state that satisfi§s we subtract the part of the state
satisfying P, and replace it with some state satisfyifdgthen the result should still satisfy.
When the action cannot fire because there is no substatesatisfyingP, thenP —® S is false
and the implication holds trivially.

An assertionS is stable under interference of a set of actidghsvhen it is stable under
interference of every action iR.



Lemma3. S;(RiURy)* = S iff SRy = SandS;Ry = S.

Finally, we define wssa Q) to be the weakest assertion that is stronger thand stable
underRk.

Definition 4 (Weakest stable stronger assertioff]) wssa (@) = @,
(2) wssg (Q); R = wss& (Q), and
(3) forall P,if P;R = PandP = @, thenP = wss& (Q).

3.3 Local and shared state assertions

We can specify a state using two assertions, one describedptal state and the other the
shared state. However, this approach has some drawbaadficgtions are longer, and ex-
tending the logic to a setting with multiple disjoint reggoof shared state is clumsy.

Instead, we consider a unified assertion language thatidesdioth the local and the shared
state. Thisis done by extending the positive fragment cdisson logic assertions with ‘boxed’
terms. We could use boxes for both local and shared asserfammexamplelP} ., andPl, . .,
However, sinceP| . * Q] .q = [P * Q.4 Nolds for *, and all the classical operators, we

can omit thegIOCEII and the ‘$hared SUbscript. Hence the syntax of assertions is

p,g,r =P |[Pllpxq|pAq|pVq|Iz. p|Vz.p

Semantically, we split the state, of the system into two components: the local statnd
the shared state. Each component state may be thought to be a partial finitetimfrom
locations to values. We require that the domains of the tatestare disjoint, so that the total
state is simply the (disjoint) union of the two states. Ageas without boxes describe purely
the local statd, whereas a boxed assertigt describes the shared stateFormally, we give
the semantics with respect to a ‘rely’ conditié) a set of actions describing the environment
interference:

l,S,i':RP <:>l,i':SLP

l,S,i':R <:>l:@/\8,2't:SLP

l,S,Z":Rpl * Do < Elll,lg. (l:llL‘ﬂl2>/\(ll,S,Z":Rp1)/\(lQ,S,i'ZRpQ)
l,s,iFrpi Ape <= (I,s,iFrp1) AN (L, 8,1 Eg p2)

Z,S,i':Rpl V py < (Z,S,’L.i:Rpl)\/(l,S,Z":RpQ)

l,s,iFrVr.p <= Y. (l,s,i[z — v] Fg p)

l,s,iFrdz.p <= Fv. (I,s,i[zr — v] Fr p)

Note that« is multiplicative over the local state, but additive ovee thared state. Hence,
* Q] = [P A Q]. The semantics of shared assertidR$,could alternatively be presented
without/ = (). This results in an equally expressive logic, but the definiebove leads to
shorter assertions in practice.

We use wssgj(-) to make assertions semantically resistant to interference

Lemmab. If (I, s,i Fr p), s’ Wi defined and R](s, s') then(l, s',i Fr p).

We define an assertion to be syntactically stable if eacheof#sertions about the shared
state is stable. By construction, any assertion about tte¢ $tate of a component is unaffected
by other components, because interference can happen otiheshared state. On the other
hand, a boxed asserti@#} may be affected.



Definition 6 (Stable assertion) 1. P stable under R always;
2. [P|stable under R iff P; [R] = P;
3. (p op q) stable under R iff p stable under R andq stable under R; and

4. (qux. p)stable under R iff p stable under R
whereop ::= A | V | x andqu =V | 3.

This syntactic condition allows us to change the interpi@teof a formula to a more per-
missive rely.

Lemma 7. If (I,s,7 Fg p), [R] € [R'] andp stable under R’ then(l,s,i Fr p). Note that
(I,s,1Fgr p)and[R'] C [R] then(l, s, i Fgr p).

We present a few entailments for formulae involving shatates.

Pt Q  IPINQIFIPAQ) PIVIQIFIPVQ) Pl*[@F[PAQ)

PI-Q) Va. [P+ Vz. P Jo. [P+ Bz, P [P+ [P]* [P] [P+ emp

Relationship to linear logic The use of two kinds of assertion perhaps calls to mind some
presentations of linear logic, where there are two zonesdgunants [9]. However, our two kinds

of assertion, and the passage between them using Box, do idt tha two kinds (linear and
intuitionistic) in linear logic, and their passage usinglh particular, our box operator does
not satisfy Dereliction!(4 - A) and Promotion £-2), although it does satisfy Weakening
(A + emp) and Contraction!d H!Ax!A). Itis as if we had two substructural zones, rather
than one substructural and one additive.

3.4 Ownership transfer

Usually the precondition and postcondition of an actionehthe same heap footprint. For
example, consider the action saying thatan be incremented:

x—M ~ x—=NAN>M (Increment)

If they have a different footprints, this indicates a tramséf ownership between the shared
state and the local state of a thread. Consider a simple latktwo operations: Acq) which
changes the lock bit froi to 1, and removes the protected objelét(y), from the shared
state; andRel) which changes the lock bit fromto 0, and replaces the protected object into
the shared state. We can represent these two operationslfipas

(x +— 0) = list(y) ~x+— 1 (Acq) x— 1~ (x+—0)xlist(y) (Rel)

3.5 Specifications and proof rules

The judgementt C sat (p, R, G, q) semantically says that any execution(ofrom an initial

state satisfying and under interference at maRt (i) does not fault (e.g. access unallocated

memory), {i) causes interference at mastand, (i) if it terminates, its final state satisfigs
Hence, we get the familiar refinement rule.
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R=R p=19p
FCsat (p/,R.G'\¢) G=G ¢=q
FC sat (p,R,G,q)

From separation logic, we inherit the frame rule. This ridgssthat a program safely running
with initial statep can also be executed with additional stateAs the program runs safely
without r, it cannot access when it is present; hence,is still true at the end. The addi-
tional premise is needed becausmight mention the shared state afidnight modify it in an
atomic.

FCsat (p, R, G,q)
(r stable under RU G)
V (C' has no atomics)

FCsat (pxr,R G qx*r)
We adopt all of the small axioms for local state from separakbgic (not presented) [15].
Additionally, we have a read axiom for shared state, whidébmad a non-atomic read from a

shared location if we can rely on its value not changing. Nb#& we do not need to check
stability for this read.

Q=(PxXr—Y) x¢fo(P)
F(z:=le]) sat (QNe=X,R,G, QN z=Y)
The next rule is that of conditional critical regioasomic(b){C'}. For clarity, we present
the rule where the guardis justtrue. The general case, wheliés non-trivial and may access

the heap, just complicates the essential part of the rulemfle rule for critical regions would
be the following:

FCsat (P {},{},Q) (P~Q) CGqG stable under R
- (atomic{C}) sat (P}, R, G,[Q))

As in RG, we must check that the postcondition is stable underference from the environ-
ment, and that changing the shared state ffdto () is allowed by the guarantee.

This rule is sound, but too weak in two ways. First, it doesafloiv critical regions to access
any local state, as the preconditigfirequires that the local state is empty. Second, it requires
that the critical region changes thlmtire shared state fron® to (Q and that the guarantee
condition allows such a change. Thus, we extend the rulé)ad(ling a preconditio®; and a
postcondition)), for the local state, andij allowing the region to change a pdrt of P into a
part@, of Q, ensuring that the regt does not change. Additionally, we allow some existential
guantifiersy in the shared state to be pulled out over both the shared aatidtate.

FCsat (P * Py, {},{},Q1 % Qo) stable under R
TNFV(P) =0 P=>P*xF Q *F=0Q (P~ Q1) CG

- (atomic{C}) sat (Jy. P|* P2, R, G, 37. [Q]* Q2)

A specification,P; ~ @, is allowed by a guarante® if its effect is contained irt7. Fig./2
provides rules to approximate this definition in proofs. Take G-SQ allows actions to be
sequenced and builds in a form of framing. Note thag i§ empty, then the rule is a parallel
composition of two actions; i, and @, are empty, then the rule sequences the actions. It
would be simpler, if we simply included the frame rule howethes is unsound. In fact, the
coframe rule G-©FRM is admissible. G-ONs s similar to the rule of consequence, but the
second implication is reverse@, = )’. Semantically, the property is defined as follows:

11



P~QeqG

xHywangG-EXACT —PwQQGG-AX
P S0 CGE PxS~Q,CG P~QCG G-SuB
Pl*PQWQl*QggG G-SEQ P[e/x}WQ[e/‘r]gG
Fs, P=P P~ QCG Eg Q=Q (P+F) ~ (QF) S G
P-QcCaqG G-CoNs Pw-0CG G-CoFrM

Figure 2: Rules and axioms for guarantee allows an action.

Definition 8. P~ Q C G iff [P ~ Q] C [G].

There is a side-condition to the atomic rule requiring taits a preciseassertion. This
is formally defined in§5 (Def.[17). This is a technical requirement inherited froomaurrent
separation logic. It ensures that the splitting of the rasitlstate into local and shared portions
IS unambiguous.

We reiterate the parallel composition rule from the intrcttn. As the interference ex-
perienced by thread’, can arise fronC, or the environment of the parallel composition, we
have to ensure that this interferenBeJ GG, is allowed. SimilarlyC; must be able to tolerate
interference fron; and from the environment of the parallel composition.

FCysat (p1, RUGy,Gi,q1)  p; stable under RU Gy
F Cy sat (po, RUG1,Ga,q2)  po stable under RU Gy

F C1]|Cy sat (pr * p2, R, G1 U Ga, g1 * ¢2)

The precondition and postcondition of the composition hesseparating conjunctioR, of the
preconditions/postconditions of the individual threadis.essence, this is the conjunction of
the shared state assertions, and the separating conjunétibe local state assertions (cf. the
semantics ok in §3.3).

The proof rules for sequential composition, conditional &erative commands are com-
pletely standard.

FCysat (pAb,R,G,q) FCysat (p,R,G,r)
= Cysat (pA—b, R, G, q) FCysat (r,R,G,q)
F (if (b){C, } else {Cy}) sat (p, R, G, q) F(Cy;Cy) sat (p, R, G, q)

FCsat (pAb R,G,p)
F (while(b){C}) sat (p, R,G,p A —b)

skip sat (p, R, G,p)

We can also extend our logic to deal with parameterless duoes in the usual way, where
the environmeni’ maps procedure names to their specifications. The prevides all simply
passl” around unmodified. When encountering a procedure call, wiy &pg following rules.

I, procsat (p, R,G,q) F C sat (p, R, G, q)
['F procsat (p, R, G, q)

providedproc has bodyC'.

[, procsat (p, R, G, q) F proc sat (p, R, G, q)

We omit parameters and return values to procedures/furscéie they can be encoded into the
heap.
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locate (e) { remove(e){
lock(p) { local p,c; local x,y,z;
atomic(p.lock==0) | p = Head, add(e) { (x,y)=locate (e);
p.lock = tid; lock(p); local x,y,z; if (y.value==ej
/[p.oldn =p.next; | ¢ = p.next; (x,z)=locate (e); | lock(y);
} while(c.value<e){ | if (z.value!=e] Z =y.next;
lock(c); y = cong(0,e,z);| X.next = z;
unlock(p) { unlock(p); X.next =vy; unlock(x); /I A
atomic(true) { p =cC; } dispos€y);
p.lock = O; C = p.next; unlock(x); } else {
} } } unlock(x);
} return (p,c); }
} }

Figure 3: Source code for lock coupling list operations. E&larity, we use a field notation,
hence we encodglock, x.value, x.next andp.oldn asp|, [x + 1], [x + 2] and[p + 3], respec-
tively. Commented code is auxiliary, that is, required omlythe proof. We use heap reads in
conditional tests foifs andwhiles, which can be encoded using an additional local variable fo
the heap read.

4 Example

This section uses the new logic to verify a fine-grained careu linked list implementation of
a mutable set data structure (see Fig. 3). It has operatithw/hich adds an element to the set,
andremove which removes an element from the set.

The algorithm associates one lock per list node rather thaa h single lock for the entire
list. Traversing the list usdsck coupling the lock on one node is not released until the next
node is locked. Somewhat like a person climbing a rope “hared-hand,” you always have at
least one hand on the rope.

An element is added to the set by inserting it in the apprégpasition, while holding the
lock of its previous node. It is removed by redirecting theyiwus node’s pointer, while both
the previous and the current node are locked. This ensua¢sighetions and insertions can
happen concurrently in the same list. The algorithm makesassumptions about the list: (1)
it is sorted; and (2) the first and last elements have valuss and +oo respectively. This
allows us to avoid checking for the end of the list.

Node predicates We use three predicates to represent a node in the listN(), v, y),
for a node at location: with contentsy and tail pointery and with the lock status set t9
(2) U(zx,v,y) for an unlocked node at locationwith contentsv and tail pointery; and (3)
Li(z,v,y) for a node locked with thread identifier We useN (z, v, y) for a node that may or
may not be locked.

def (s=0Nzx+2—y, ) B
Ny(z,v,y) = x»—>s,v*( V(s £OAT+3 0 7) A2z mod4 =0
U(ZL‘,U,y) dZEf N()(ZL‘,'U,y) Lt(fE,U,y) d:ef Nt(xvvay) At >0
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We assume nodes are alignedmnod4 = 0, andcons returns aligned nodés.The thread
identifier parameter in the locked node is required to spehdt a node can only be unlocked
by the thread that locked it. The fourth field/cell is auxijialt is used to store the last value of
the nodes tail before it was locked. Once a node is lockediitield is released to the locking
thread, allowing it to mutate the field outside of criticatsens, the auxiliary field is used in
the proof to track the list structure.

Actions The algorithm does four kinds of actions: (bfk, which locks a node, (2)nlock,
which unlocks a node, (dd, which inserts a new node to the list, and [(#®lete, which
removes a node from the list. All of these actions are paranset with a set of thread identi-
fiers,T". This allows us to use the actions to represent both relidgaarantees. In particular,
we take a thread with identifieid to have the guarantee with = {tid}, and the rely to use
the complement of this set. Lé{T") be the set of these four actions.

The first two actions are straightforward:

teT ANU(x,v,n)~ L(x,v,n) (lock)
t €T A L(zx,v,n) ~ U(z,v,n) (unlock)

Now, consider adding a node to the list. We begin by desaibimaction that ignores the
sorted nature of the list:

t €T A Li(x,u,n) ~ Li(x,u,m)* U(m,v,n)

To add an element to the list, we must have locked the previods, and then we can swing the
tail pointer to the added node. The added node must havenetsd as previous node before
the update. To preserve the sorted order of the list, theabatid action must also mention the
next node: the inserted value must be between the previalihamext values.

(teT)N(u<v<w)A(L(x,u,n)* Ng(n,w,y))
~ Li(z,u,m) « U(m,v,n) * Ng(n,w,y) (add)
The final action we allow is removing an element from the & must lock the node we

wish to deleten, and its previous node, The tail of the previous node must be updated to the
deleted node’s taily.

(v<o0)A(t€T)N(Li(x,u,n)* Ly(n,v,m)) ~ L(x,u,m) (delete)

We summarise these actions pictorially in figure 4.

List predicate We use separation to describe the structure of the shated'he predicate
Is(x, A, y) describes a list segment starting at locationith the final tail value ofy, and with
contentsA. We use as a list separator.

Is(z,0,x) ® emp Is(x,v-B,y) aef (Fz.x £y A N(z,0,2) xls(z, B,y))

4Without this restriction a node could be formed by parts af &wljacent nodes. Instead of assuming alignment,
this problem can also be solved by allowing contexts in astifor example the node is reachable from the head.
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v I n v -~ n (lock)
R Locked oo
v| - n v| —+— n (unlock)
Locked
U w| ——+ Yy U w| —4— Yy u<v<<w add
Locked  ~~~°° Cockeds 7  ~~~ 77
v

u Lom w| ——- m v < +00 (delete)
Lockedy 7~~~ Locked ~~~ ~°

v

Locked

Figure 4: Pictorial representation of the actions

Note, as we use separation logic we do not need any readhabifidicates, our predicate is
simply a recursively defined predicate. The use ahd the inequality: # y ensures the list is
acyclic.

We have three basic properties of a list segment: (1) it doésontain the end marker;
(2) an element can be added to the end, provided its tail groddes not point to anything in
the list; and (3) two lists can be appended, provided the eaken of the second list is not
contained in the first.

Definition 9. P/, “pa —(x — _x true)

Lemma10. 1. Is(w, A, z) < Is(w, A, 2)l|.
2. Is(w, A, x) |, * Ny(z,v,y) = Is(w, A-v,y)
3. Is(w, A, x)|, * ls(x, B,y) = Is(w, A-B, y)

Finally, we give a lemma that enables us to delete a node frilshsegment.

Proposition 11. (Ns(z,v,y) —® Is(w, A, z)) is equivalent tadBC. (A = B-v-C) Aw # z A
(ZS(’LU, B> .CE) LZ * lS(y, 07 Z) Lx)

The algorithm works on sorted lists with the first and lastiealbeing-oco and+oo respec-
tively. s(A) represents this restriction on a logical list

srt(+00-€) ® emp srt(a-b-A) & srt(b-A) Na < b s(—o0-A) e srt(A)

Main proof Appendix A contains the proof outlines. The outline presehe intermediate
assertions in the proof. We present one step of the veriicati remove function in detail: the
unlock action labelled “A” in Fig. 3. For simplicity, we imie the unlock body.

{’EIAB. Is(Head, A, x)*Ltiq(x, u, y)*Ltia (v, €, 2)xls(z, B, nil)*s(Au-B)‘ * (x+2—z) }
atomic{{ La(x, u, y) * Lea(y, e, z) * (x+2—z) }x.lock = 0{ U (x,u, z) * Lia(y,e,z) } }
{’EIA. Is(Head, A, nil) * S(A)‘ * Lya(y,e,z)}
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We must prove four things: (1) the body meets its specificat{@) the body’s specification
is allowed by the guarantee; (3) the outer specificationggmndition is stable; and (4) find a
frame, I, that satisfies the two implications:

1. {Ltid(X> u,y) * Lyq(y, e, z) * (x—|—2»—>z)} x.lock = 0; {U(X, u,z) * La(y, e, z)}
2. Ltid (Xa u, Y) * Ltid (Y7 €, Z) ~ U(X7 u, Z) - I({tld})

3. BA. Is(Head, A, nil) * s(A))| stable unde¥ ({tid})

4. Is(Head, A, x)*Liiq(X, u,y)*Lyia(y, €, z)xls(z, B, nil)xs(A-u-B)
- Ltid(xa u, Y) * Ltid(Y7 e, Z) * F'
U(x,u,2) * Lya(y, e,z) * FF = JA. [s(Head, A, nil) x s(A)
The first is a simple proof in separation logic. The seconkbfed as:
Ltid (Xa u, Y) * Ltid (y7 €, Z) ~ Ltid(X7 u, Z) - I({tld})
Lya(x,u,2) ~ U(x,u, Vz) C I({tid})
La(x,u,y) * Liia (v, e,z) ~ U(x,u,z) C I({tid})

Third, to showdA. Is(Head, A, nil) « s(A)| is stable, we use Lemma 2 for the four actions in

the rely:lock, lunlock;/add’anddelete.
(lock): We must show that:

(U(z,v,n) —® s(Au-v-B)) * Ly(z,v,n)) = s(Au-v-B))
The first follows as
(U(z,v,n) =@ Is(y, A, z)) * Li(z,v,n)
= (Is(y, B,z)], xls(n,C, z) *x Ly(x,v,n)) A (A = B-v-C)
= (Is(y, B,x)|, x ls(z,v-C,2)) N (A= Bv-C) = Is(y, A, 2)
and the second as
(U(z,v,n) —® s(A)) * Ly(x,v,n) = falsex L;(x,v,n) = false = s(A)

(unlock): This follows in a very similar way tol¢ck).
(add): We omit the case where we delete frefl) as this follows trivially. Assume < v < w
and simplifying becausé;(x, u, m) x U(m,v,n) x Ny(n,w,y) = ls(z, u-v-w,y)

(2652 ) = e )

x s(A) * Is(x, uv-w, y)

> (s o 20 )

x s(Bu-C) * ls(z, u-vw,y)
Is(Head, B, z)
= | Ny(n,w,y) —® | = Ng(n,w',y)
* Is(y', ", nil)
x $(B-u-w'-C") x Is(x, u-v-w,y)
= Is(Head, B, x) x Is(y, C’, nil)
x s(B-uw-C') * Is(x, u-v-w,y)
Is(Head, B-u-v-w-C", nil) * s(B-u-w-C")
Is(Head, B-u-v-w-C’, nil) * s(B-u-v-w-C")
JA. Is(Head, A, nil) x s(A)

G-SEQ

R
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(delete):

We omit the case where we delete frafi!l) as this follows trivially. Assume < +oco and
simplifying becausd.;(x, u,y) = Is(z,u,y)

= (Lt(naway) —®

((Lt(:‘"“’”) ) —® zs(Head,A,nﬂ))
Is( Head B, z)
= | L(n,w,y) = (n,w', y')
* ls (v, C’ nil)
u
= [s(Head, B-u-C’,nil) * s(B-u-C")
= JA. Is(Head, A, nil) * s(A)

* Lt (na w, y)
x S(A) * Is(z,u,y)
Is(Head, B, z)
* 1s(n, C, nil)
x $(B-u-C) * ls(x ,u,y
* s(B-u-w' C’)*ls T, u,y)
= Is(Head, B, x) x Is(y, C’, nil)
x s(Bu-w-C") % Is(x,u,y)
= [s(Head, B-u-C’,nil) * s(B-u-w-C")
The proof of stability is long, but the proof steps are laygaitomatic. We can automate these
checks [6].
Finally, we defineF" asis(Head, A, x)*ls(z, B, nil)xs(A-u-B)
Theorem 12. The algorithm in Fig. 3 is safe and keeps the list always sorted
5 Semantics and soundness
Our semantics follows the abstract semantics for separagic of Calcagno, O’Hearn and
Yang [5]. Rather than presenting the semantics with respegfparticular model of the heap,
we use a partial commutative cancella[waonmd(M W, )) as an abstract notion of a heap.
We usem, [, s ando to range over elements of.
Our logic explicitly deals with the separation between ad#a’'s own local state/) and

the shared states), and hence implicitly the environment’s own statg. (Our semantics are
given with respect to a structured heap, which separatss thece componer{sThls splitting

is only used to prove the soundness of the logic. There is &b erasure to a semantics
without a splitting.

Definition 13 (Structured heapsHeaps g {(l,s,0) | {l,s,0} T M ANlWsWoisdefined

Definition 14. (ll, S1, 01) W (lg, Sa, 02) defined a&{l, S, O), iff $1 =83 =58,L1Wly =1,00 = laWo,
ando, = [; W o; otherwise it is undefined.

We useo to range over these structured heaps. Again following [&,use abstract com-
mands,A, and abstract boolean tests,for our abstract heap model. Note that by encoding
each primitive command onto a pair of abstract commands,anegve our language a grain-
less semantics [21].

S51f my Wm = mo Wm, thenm, = me.
5The assertions simply ignore the environment.
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lWs =1 b(ll) l/ Ws' = lo Q(S/) lWs =1 b(ll)
mp

n = (C, (11,9, 0)) (Sklpv (12,0,0")) nk(C,(l1,0,0)) E—>*fault
n F (atomicg(b){C'}, (l,s,o)) 5 (skip, (I',¢',0")) nt (atomicg(b){C}, (1, s,0)) % fault

lWs =1y b(ll) Iy ¥ Qx*true
nt(C, (14,0, 0)) P (skip, (lg,@ o)) l"gs =11 b(lh) = fault
n F (atomicq(b){C}, (I, s,0)) ;» fault 7k (atomicg(b){C},(l,s,0)) % fault

ALY (U, s,0) € Heaps (=3 A(L, 1)
nF (4, (1,5,0) = (skip, (I',5,0)  nF (4, (L 5,0)) = fault
P P

R(s,s") (I,s,0") € Heaps
nt(C,(1,s,0) 2 (C,(I,s,0) nk (skip;C, o) = (C,0)
e p

nproc = C
n F (while(b){C}, o) % (if (b){C; while(b){C}} else {skip},o) nF (proc,o) % (C,0)

nk (Co) 2 (Cy, o)
b

n - (skipllskip, o) ~ (skip,0) 7+ (C;C",0) = (Cy;C", )
P p

0t (Cr0) > (Cf.0) nE (C2,0) > (Cho')
154 p
nE (C1lC20) 7 (CilIC20’) = (Cil[Ca0) T (C1]ICh )

b(l)
- (if (0){C1 } else {Cs}, (1, 5, 0)) % (C1, (1, 5,0))

—b(l) b(l) = fault
- (if(b){C } else {C5}, (1, 5,0)) % (Cs, (1,5,0)) nF (if(D){Cy}else{Cs},(,s,0)) % fault

nt(C,o) &, fault nt (C,o) &, fault nt (C,o) &, fault
P P P

nk (C;Cs,0) R, fault 7yt (C||C2,0) R, fault 7yt (Ca]|C, o) E, fault
P P P

Figure 5: Operational semantic§onfig, reduces tacConfigs n+ Config % Configo

Definition 15. Primitive commands! are represented by a subset/df x M, satisfying: (1) If
A(ly Wi, 1), then either there exist§ such thatA(ly, ;) andl, = 1w}, or =3l. A(l4,1); and
(2) If —ls. A(ll ) l, lz), then_Ellg. A(ll, lg)

Definition 16. Boolean expressiorisare represented by/ — {true, false, fault}, satisfy-
ing: if b(l; W) = v, then eithet(l;) = v or b(l;) = fault.

We present the semantics of the abstract programming laegaaFigure 5. We define a
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reduction step; F Config, % Config,, as configuratiorConfig, makes a reduction step to

Config, with possible interferenc® and label\ in a procedure context The label indicates
whether this is a program actiop, or an environment actiorg. Configurations are either

fault or a pair of a command and a structured héapg). We use" as then-step reduction

relation, ands* as the transitive and reflex closure of the reduction retatié procedure
contextn maps procedure names to commands.

We alter the syntax aftomic to have a postcondition annotatigh to specify how the state
Is split between shared and local on exit from the block. In @®l.resource invariant does this
job, but we do not have a single resource invariant in thigclogach of these postconditions
must be precise, so there is a unique splitting.

Definition 17 (Precise assertion)P is precise iff for every € M, there exists at most orig
such thatlp Eg;, Pand3l’. lp Wl = 1.

Consider the semantics aftomic (Figure 5). The non-faulting rule (1) combines the
thread’s local state with the shared state to create a neal $tate,/ws = [, (2) checks the
guard holds of this new stati/, ), (3) executes the command with no interference on the shared
state Emp), (4) splits the resulting local state into a new shared andllstate]'ws’ = 5, and
(5) finally checks the postconditia holds of the shared staté As () is precise, it uniquely
specifies the splitting in step (4). There are three moresrideatomic where the program
faults on the evaluation of the body, the evaluation of tharduor fails to find a splitting to
satisfy the postcondition.

The next three rules concern abstract commands and enwrdrtnansitions. The abstract
commandA executes correctly, if it runs correctly by accessing ohiylocal state. Otherwise,
A faults. Its execution does not affect the shared and envieon states. An environment tran-
sition can happen anytime and affects only the shared stdtéha environment state, provided
that the shared-state change describes the rely rel&iothe local state is unchanged.

The remaining rules deal with the standard language castrgsequence, parallel, con-

ditional, skip and loop. Note that our semantics has theatiolun - (skip||skip, o) R,
P

(skip, o) instead of the reduction i~ (skip||C, o) R, (C, o) and its symmetric version. This
1

simplifies stating some of the following lemmas.
We extend the standard separation logic notion of safety a/guarantee observed by each
program action.

Definition 18 (Guarantee)

(1) n+ (C,0,R) guars, G always holds; and

2)n F (C,0,R) guars,,, Giffif n = (C, o) % Config then there exist’ ¢’ such that
Config = (C',d'); nF (C’",0', R) guars,, G; and if \ = p then(o, ') € G.

We define) - (C, 0, R) guars G as a shorthand fovn.n - (C, 0, R) guars, G.

Lemma 19(Locality).

1. Ifnk (C,o1W0) U (C', 09) then either there exists, such that) - (C, 01) R (C’, )
ando), Wo' =0y, 0rntk (C,0q) R fault; and
2. IfnF (C 0y Wo') 2 fault theny - (C, o) = fault.
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Proof. Proved in Coqg. n
We use the following two lemmas about relies and guarantees.

Lemma20. 1. Ifnt (C,0,R)guars G, thennt (C,oW o', R) guars G’
2. Ifnt (C,o,R) guars G andG C G, thenn t- (C, 0, R) guars G’

Proof. Proved in Coqg. [

Lemma?2l.If nt (C,0) U (C",o’')andR C R/, thenn - (C,0) R (', o)

Proof. Proved in Coq. O
We use the following two lemmas about the operational seigsatd simplify proofs.

Lemma 22.n F (C, o) 2 (C, o) iff n - (C||skip, o) = (C'||skip, o).

Proof. Proved in Cog. [

Lemma 23. 1%(00) “(C, o) iffnF (C,0) 2 (C, o)

2. nk (C,0) B faultiff n - (C,0) 5 (C,6") & fault

| o
3. nkF(C, 0) * (skip,o’) iff n = (C,0) R, (C,0") R, (skip, o) R, (skip, o’)
e P e
whereC' = atomicg(b){C'} orC' = A
Proof. Proved in Cog. [

To prove the soundness of the parallel composition rule egeaire the following: (1) if we
have the guarantee of two commands,andCs, then we have the guarantee of their parallel
composition; and (2) if the parallel composition of two coamds can make a reduction, then
the two commands can also make that reduction given an exdenetly condition.

Lemma 24. If n H (017 o1, (RUQQ)) guars gl, n H (CQ, 09, (Rugl)) guars gg and01 Hoy =0
thenn - (C1]|Cy, 0, R) guars G U Gy

Proof. Proved in Coqg. [

Lemma 25. If n = (Cy, 01, (R U Gy)) guars Gy, n F (Cy, 02, (RUG)) guars Go, 01 W oy =0
andn - (C1]|Cy, o) 2 (C1]|CY, o) then there exists] and o, such thaty - (Cy, o) 2292+
(C1, o), b (Co, 00) 2295 (€Y, o) and o, W oy = o

Proof. Proved in Coq. O

The following two lemmas are used in the soundness of thessipg rule.

Lemma 26. If n - (Cy,0,R) guars G and for all o’ such thaty - (C4,0) Ry (skip,o’) =
(Cy,0',R) guars G, thenn  (Cy;Cy, 0, R) guars,, G

Proof. Proved in Coqg. [

Lemma 27. If n F (Cy;Cs,0) 2on (skip,o”) thenn + (Cy,0) 2 (skip,o’) andn +
(Cy,0") B (skip, o).
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Proof. Proved in Coqg. n
We are now in a position to state and prove the soundnesssdbtiic.

Definition 28. n |=,, C sat (p, R, G, q) iffforall R C R ando Fr p, then
1. nt (C,o,[R]) guars [G]; and

2. ity (C,0) L (skip, o*) theno’ Firy .
Definition 29. T" |=,, ) iff ¥(proc sat (p, R, G, q)) € T thenn |=,, (n(proc)) sat (p, R, G, q)
Definition 30. T" |=,, C' sat (p, R, G, q) iff forall n if " |=,, n thenn =,,.1 C sat (p, R, G, q)
Theorem 31(Soundness)If I' - C sat (p, R, G, q), thenvn.I" |, C sat (p, R, G, q)
Proof. By induction on the proof rules. LgRR] = R.

e Atomic command:
FsL P x Py = (b) def
= Csat (Pr+ Py) Ab A} A} 37 @+ Q)
stable under R (P~ Q) CG
JNFV(P) =10 Fsp, P= P x F Fs, Q1 x F = Q
- (atomicq(b){C}) sat (By. P|* P, R,G,3y. Q] * Q2)
It suffices to consider three possible reduction sequernamsrfia 23). We can ignore
the environment actions due to Lemma 5. Hence we can assume Fr [P| x P»

and (atomicy(b){C'}, 0) R, Config and prove there exists st Config = (skip, o’),
p

(0,0") € [G] and(¢’, 1) Fr [Q]* Q2. Let(l, s,0) = o andl; = [« s. Note that, if it cannot
reduce then it holds trivially.

Case: [1,i Fgp, b does not hold. Asgly,: Fgp, (b) def), there are no reduction rules that
apply. Hence it holds trivially.

Case:ly,i Fgr, b holds. Therefore, we knowy, i’ Fg, (P % P») A B wheredv.i’ = i[y —

.
Hence, by assumption we kndw i’ Egp, (P * F % P,) A b, and a9 defined byP; x P,,
we getly, i Fsp, (P * Py) Ab) x F.

Soly, 7 Eg, (P x P2) ANbandsy, i’ Fgr, F ' wherel] W s; = [;. By assumption we have:

(C, (I, 0,0),{}) guars {}

Wi, (C, (1;,0,0)) 5 (skip, (15,0, )
= (l/27 (Z)u O/) ':R Ql * Q?

By Lemma 19 and 20, we know

(Cv (llv ®7 O)v {}) guars {} (1)
Vi, (C, (11,0, 0)) 5+ (skip, (15,0, o)) )

:}(l2’@’0/> hRQl*QQ*FAZQZZQLﬂSl

We now proceed by case analysis on the possible reductien rul
1.
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IWs =1 b(l;) = fault
n F (atomico(b){C}, (I, s,0)) = fault
P
We knowly,i" Egp, P % Ps, thereforeb(l;) # fault, so this rule does not apply.

lws =1y b(l)
nF (C,(11,0,0) 22 fault
N (atomice (0){C}, (I, s,0)) = fault
From (1) we know the body cannot fault, so this rSIe does nphyap

s =1 b(l) Iy ¥ Qxtrue
nF (C, (11,0, 0)) Z22x(skip, (I, 0, 0'))
n F (atomico(b){C}, (I, s,0)) = fault
We know that,, i’ Fs, Q * Q2 and hencé, Fgr, Q * tprue. Therefore this rule does
not apply.

s =1 b(ly) lws =1 Q)
nF (C,(11,0,0)) Z22x(skip, (I, 0, 0'))
n F (atomico(b){C}, (I,s,0)) = (skip, (I', s',0'))
We know thatly, i’ Fgp, Q1 * F' * Q2 andl, W 51p: l5.
By assumption we knows, i’ Fs, Q * Q.

As (@ is precise we know Fgp, Q5.
As Q is stable undeR and Lemma 7, we knod, ', o), ' Fr (@

Thus,(l',s',0"),7 Er [ * Q2, and thereforél’, s',0'),i Er 3. Q| * Q.

We knowl}, i Fg1, Q1 * Q2. Therefore there exist” andl; such thats” W l; =
I ands” i Fqr, Q1 andls, i’ Fgr, Q2. Therefores” W sy, Fgr, @1 * F and hence
s"Wsy,i Egr, Q. As Q is precise/l' W s’ = [y ands” W sy Wil3 = [, we know
s1 W s” = §'. Hence the steps| W sy, s" Wsy)isin[P, ~ @], and hence int7
as required.

e Sequential composition: Follows from Lemmas 26 [and 27.

e Parallel composition: Follows from Lemmas 24 25, andgufiie stability assump-
tions with Lemma 7.

e Skip: Trivial

e Basic action:

sat 5. {P}A{Q}
Asat (P,R,G,Q)
It suffices to consider three possible reduction sequenhesarqa 23). Assume 5 P,
and prove
1. (A,0,R) guars G; and
2. if (A, o) By (skip, o’) theno’ Fr Q.

To prove (1), assumeéA, o) R, (A, o) R, Config and prove existg” st Config =
e p
(skip,c”) and(¢’,0") € G. Let(l,s,e) = o and(l',s',¢’) = &', by first reduction, we
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know! = I’, and asP only depends on local state, theh=x P. ThereforeConfig is not
a fault, and hence” = (I, s', ¢’), so(o’, 0”) e€g.
To prove (2), assume4, o) R, (A, o) R, (skip, ”) (skip, ¢”). By construction,
e P e
we knowo” Er Q. Let(I”,s" ") = " and(l"”,s", ") = ¢, hence” = [" therefore
o"” Er @ as required.
e Frame: AsC andskip||C are equivalent with respect to the operational semantics by

Lemma 22. We can derive the frame rule from the parallel rifleC’ contains critical
regions:

= Csat (p,R,G,q)
= C sat (wss&(p), R,G,q) L stableunder RUG |=skipsat (L,RUG,{},L)
= (C' || skip) sat (wss&(p) * L, R,G,q* L)
= (C'| skip) sat (px L, R,G,q* L)
= Csat (pxL,R,G,q* L)
andC does not contain critical regions:
= Csat (p, R, {},q) = skip sat (L, R,{}, L)

= C sat (wss&(p), R,{},q) [ skipsat (wss& (L), R,{},L)
= (C' || skip) sat (wss& (p) xwssa (L), R,G,q L)

E (C || skip) sat (p* L, R,G,q* L)
=Csat (pxL,R,G,q*L)

where
— wssg ([P) = ® wssa, (P,
def
— wss&(P) =
— Wss& (p op q) wssag( ) op Wss& (¢), and

— wssg (qu . p) e quz. wssa (p);
and hencg=r Wssag;(p) < p; and wssgg;(p) stable under R.
e Consequence: Follows from Lemmas 21 and 20.
e While rule: Follows directly from induction on number of rexdion steps.
e Procedure rule: Follows directly from induction on numbgrealuction steps.

[

We must prove the read axiom separately, as it depends doysartmodel of separation
logic. We can view a non-atomic read as two atomic reads,wfaiglt if the they read different
values: local tempatomic{x=[e]}; atomic{temp=[e]; if (x!=temp) fault. As

e — ¢ x Pl < wssg (e — ¢ * P) WSS (e e« P)=er e x P

We can derive it as follows:

{le— ¢« B}

{Mssag(e — e P)‘}
atomic{x=[e]};

{wssag (e — ¢ x P)| Az =¢}
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atomic{temp=[e]};

{wssag (¢ — ¢ P)|Ax=¢ Atemp =€}
if (x!=temp) fault

{wssag (e — ¢ x P)| Az =¢}

(e Pne=r}

6 Late stability checks

The rules presented so far check stability at the forks dcdlfgdrcomposition and on the exits
of atomic blocks.

We can provide a similar semantics where we delay the dtaloiiecks to the entry of
atomics and joins of parallel compositions. This semantics usestiongest stable weaker
assertion.

Definition 32 (Strongest stable weaker assertion) e ¢ = sswa (q);
e SSW&(q); R = sswa(q); and
e forall p, if p; R = R andq = p, then sswa(q) = p.

We use this to define the semantics of shared assertions as:
l,s,i Fr|P| <= 1 =0NAs,iFg, sswag)(P)
This definition also ensures that assertions are semdwptiealstant to interference.
Lemma 33.If (I, s,i Fr p), s’ Wl defined and R](s, s') then(l, s, i Fg p).
However, this semantics reverses the direction of Lemma 7:

Lemma 34.1If (I,s,i Fr p), [R] 2 [R'] andp stable under R’ then(l, s,i Fr p). Note that
(1,s,iFr p) and[R'] 2 [R] then(l, s,i g p).

7 Multiple regions

Concurrent separation logic is defined with multiple reseurames for critical regions. We
can trivially extend our treatment to this setting by:

1. associating a region name to each boxed/shared asséEtiT;

2. instead of a singl& and a singl&~, having a set of rely/guarantee pairs index by resource
name, namely = r:(Ry,G4),...,r:(R,, G,); and

3. annotating eachtomic with the relevant set of region names.

Here are the changes in more detail:

Each boxed assertion is now subscripted with the name oétjien it describes. The shared
state,s, of our model is a function from region names to separatigitlstates, such that all the
states in its range are disjoint. The meaning of a boxed &®sés now as follows:

l,s Er [P o dom(l) =0 N s(r) EsL P.
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It asserts that the local state is empty and that the releegian of the shared state satisfies
The other regions of the shared state could be anything.

Judgements now have the fotmC sat (p,Z,q), whereZ is a mapping from resource
namesr; to rely/guarantee pair§R;, G;). We shall use th&x(r;) (resp.Zx(r;)) notation for
accessing the rely (resp. guarantee) component:oj.

Here is a simple rule for atomic blocks that access a singlesshregion :

- Csat (P x P, {},Q *Q")
stable under Zx(r) stable under Zx(r)
P’WQ':>PWQ (P~ Q) CZg(r)

- (atomic{C}) sat ([P| = P",Z,|Q] * Q")

We can extend this rule to atomic blocks that access muH;ipﬂxeed regions as follows:

FCsat (Pl «...xP.xP" {},Q)%...xQ, «Q")
viel ) stable under Zg(r;) stable under Zx(r;)
fE et P-’WQ‘ — P~ Q) (RWQ')CIG(W)

1

- (atomic{C'}) sat ( Lok [B] x PTLLQM] * L x Q")

As in CSL, we can create a statically scoped shared regiomts, st

= Csat (P] *p,ZW{r:(R,G)},[Q. *q) ¢ dom(Z) p,qcontainnd]
FCsat (P*xp,Z,Q *q)

Our semantics are almost unchanged to before, just with stoueture to represent the
multiple shared regions of memory.

Definition 35 (Structured heap)For a set of resource nam&s we define a structured heagp,
as atriple,(l, s,e), wherel,e : M ands : (R — M), such that W e W ®,cg s(r) is defined.

Joining two structured heaps is defined exactly as it was elgfim Section 5 for a single
shared region:

Definition 36. (ll, S1, 61) %) (lg, Sa, 62) defined a$l, S, 6), iff S1 = S9 = S, ll L‘Ulz =, e = lgL‘Ue,
ande, = [; W e; otherwise it is undefined.

We can trivially extend the operational semantics to thig feem of state. The lemmas and
the rest of the definitions are unchanged.

8 Local guards

The local state of a thread has a more suliile m controlling interference than we have seen
so far. It acts as a token, a permission to perform a certdiora@nd as a guard, a prohibition
that the environment does some action.

In the operational semantics, an environment transitioguf€e| 5, last rule) requires that
the resulting state is well formed, that the new shared stadésjoint from the local state. In
essence, the existence of the local stasdrictswhat the environment can do (e.g. it cannot
allocate an existing memory address).
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Besides its prohibitivedle as to what other threads can do, the local state has agséveni
role. Its presence allows a thread to do more actions than utdwvotherwise be able to do
(e.g. in some algorithms, a mutex can be unlocked only byhteat that locked it).

So far, our proof rules have ignored these twies of the local state that are present in the
semantics. We can, however, extend our assertion langugggwarded boxed asserti,
wherelL is an assertion about the local state, whose presence isrueistability proof ofS.
Similarly, guarded action& | P ~ @ use the guard- to stand for the local state that must be
owned for the action to occur.

Definition 37. The assertio is stable under interference fro6i | P ~ @, if and only if,
(P-®S)*Q=S)V(P*xGxL)V—-(Qx*L)V~—(Sx*L)

The three new cases are when the action cannot execute. ddlestate that protects the
stability of a shared assertion cannot be accessed dirbeityause the shared assertion might
become unstable. We must each time redo a stability check.

9 Related work

Owicki & Gries [17] introduced the concept of non-interfiece between the proofs of parallel
threads. Their method is not compositional and does not ipéoprdown development of a
proof because the final check of interference-freedom mhefadering the whole development
useless.

To address this problem, Jones/[12] introduced the comppaltrely/guarantee method. In
the VDM-style, Jones opted for ‘two-state’ postconditipather authors [23, 19] have chosen
single-state postconditions. Several authors have priheedoundness and relative complete-
ness of rely/guarantee [23,/19, 7]; Prensa’s proof [19] ishire checked by the Isabelle the-
orem prover. The completeness results are all modulo thedinttion of auxiliary variables.
Abadi and Lamport [1] have adapted RG to temporal logic ane sown its soundness for
safety specifications.

Separation logic [20, 16] takes a different approach torfatence by forbidding it except
in critical regions [11]. An invariant/, is used to describe the shared state. This is a simple
case of our system where the interference specificatioms{iand ) are restricted to a very
simple relation] ~ I. Brookes has shown concurrent separation logic to be sodnd [3

There have been attempts to verify fine-grained concurtgatithms using both separation
logic and rely/guarantee. Vafeiadks$ al. [22] verify several list algorithms using rely/guaran-
tee. Their proofs require reachability predicates to desdists and they cannot deal with the
disposal of nodes. Parkinsenal. [18] verify a non-blocking stack algorithm using concuitren
separation logic. Their proof requires a lot of auxiliargtstto encode the possible interference.
With the logic presented in this paper much of the auxiliaatescan be removed, and hence
the proof becomes clearer.

Concurrently with our work, Feng, Ferreira and Shao [8] pegba different combination
of rely/guarantee and separation logic, SAGL. Both our apginand SAGL partition memory
into shared and private parts. However, in SAGL, every giv@icommand is assumed to be
atomic. Our approach is more flexible and allows one to spewifat is atomic; everything
else is considered non-atomic. By default, non-atomic cong®@&annot update shared state,
so we only need stability checks when there is an atomic camdmia the lock coupling list
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only at the lock and unlock operations. On the other hand, [SA®st check stability after
every single command. Moreover, in SAGL, the rely and guaeononditions are relations and
stability checks are semantic implications. We insteadideoconvenient syntax for writing
down these relations, and reduces the semantic implicetiora simple logic implication. This
allowed us to automated our logic [6], and hence automéivelify the safety of a collection
of fine-grained list algorithms.

SAGL is presented as a logic for assembly code, and is thus thaapply at different
abstraction levels. It does not contain separation logia psoper subsystem, as it lacks the
standard version of the frame rule [20]. This means thatnho&aprove the usual separation
logic specification of procedures suchaspy _t r ee [15]. In contrast, our system subsumes
SL [20], as well as the single-resource variant of CSL [16hdee the same proofs there (for a
single resource) go through directly in our system. Of cepitse real interest is the treatment of
additional examples, such as lock coupling, that neitheasgion logic nor rely/guarantee can
prove tractably. Our system also includes a rely-guarasyetem, which is why we claim to
have produced a marriage of the two approaches. It may bépogsextend SAGL to include
the frame rule for procedures, but we understand that suem®n is by no means obvious.

With this all being said, there are remarkable similaribesveen our work and SAGL; that
they were arrived at independently is perhaps encouraging ¢e naturalness of the basic
ideas.

10 Conclusion

We have presented a marriage of rely/guarantee with sepatagic. We proved soundness
with respect to an abstract operational semantics in tHe sfyabstract separation logic [5].
Hence, our proof can be reused with different languages atiddiferent separation logics,
e.g. permissions and variables as resource [2]. Our lofpaalus to give a clear and simple
proof of the lock-coupling list algorithm, which includesemory disposal. Moreover, our logic
can be efficiently automated [6].
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A Proof outlines

locate (e){ local p,c,t;
{]EIA. Is(Head, A, nil) * S(A)‘/\ —o0 < e}
p = Head;
{’EIZB. Is(Head, {},p) * N(p, —00, Z) x ls(Z, B, nil) * s(—oo~B)‘ A —oo < e}
lock(p);
{3Z. ’EIB. Is(Head, {}, p) * Ltia(p, —00, Z) x ls(Z, B, nil) * s(—oo‘B)‘ * (p+2—Z) N —oc0 < e}
C = p.next;
t = c.value;
while (t <e) {
{Elu 17 AB. ls(Head, A, p) * Liq(p, u, c)
"% N(c,t,Z) *ls(c, B,nil) * s(A-u-t-B)
lock(c);
{EIuZ. HAB. ls(Head, A, p) * Lq(p, u, ¢)
« Lya(c,t, Z) x1s(Z, B,nil) * s(A-u-t-B)
unlock(p);
{EIZ JAB. ls(Head, A, ¢) x Lyq(c, t, Z)
’ x1s(Z, B,nil) x s(A-t-B)

*(p—|—2»—>c)/\u<e/\t<e}

* (p+2—c) * (c+2—2Z) Nt < e}

% (c+2—2Z) ANt < e}

C;
p.next;
c.value;

17 AB. ls(Head, A, p) * Liq(p, u, c)

« N(c,t,Z) *1s(Z, B,nil) x s(A-u-t-B)

u. * (p+2—c) Au < e}

—— " 00T
L

}
5 17 AB. ls(Head, A, p) * Liq(p, u, c)
Ul N(e,v, Z) #1s(Z, B, nil) * s(A-u-v-B)
return (p,c);

}

add(e){ local x,y,z,t;
{BA. Is(Head, A, nil) A s(A)|A —o0 < e}
(x,z) = locate (e);
{Eluv. ’EIZAB. Is(Head, A, x) * Ltjq(x, u,2) * N(z,v, Z) xls(Z, B,nil) % 5(A-u~v-B)‘}
* (x4+2—z) ANu<eAe<w
t =z.value;if (t!=-e) {
y =cong(0,e,z);
X.next =vy;
dZAB. ls(Head, A, x) * Li;q(x, u, z
{Huv. ils(z, B,nil)) * st(il(-u-eBg * (e 2my) * U(y,e,z)}
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}

unlock(x);
{3v. FA. Is(Head, A, nil) * s(A)[}
}

remove(e){ local x,y,z,t;
{’EIA. Is(Head, A, nil) * s(A)‘ AN—oo<ele<+oo}
(x,y) = locate (e);
{Eluv. ’EIZAB. Is(Head, A, x) * Lyq(x, u,y) * N(y,v, Z) % ls(Z, B,nil) % S(A-U'U-B)‘}
* (x+2—y)ANu<eANe<vAe< 400
t =y.value; if (t ==e) {
{Elu. ’EIZAB. Is(Head, A, x) * Lyq(x,u,y) * N(y, e, Z) * ls(Z, B,nil) % s(A-u-e-B)‘}
* (x4+2-y) Ae < 400
lock(y);
{EIuZ. ’EIAB. Is(Head, A,x) * Lq(x, u,y) * Lya(y, e, Z) x 1s(Z, B, nil) x S(A'U'G'B)‘}
* (x+2-y) * (y+2—2Z) ANe < +o0
Z =y.next; x.next = z;
{Elu. ’EIAB. Is(Head, A, x) * Lyiq(x, u,y) * Liq (v, e, 2) * Is(z, B, nil) * S(A'U'B)‘}
*(x+2—2) * (y+2—2)
unlock(x);
{’EIA. Is(Head, A, nil) * S(A)‘ * Lya(y, e,2) % (y+2—z) }
disposgy);
} else { unlock(x); }
{’EIA. Is(Head, A, nil) * S(A)‘}
}

B Heap-reading expressions

The examples of this paper use a more complex set of expnsssiuch dereference the heap.

E:=n|z|[E]|E+E|E-FE]|...

We can, however, translate thesgpureexpressions into a formula asserting that they evaluate

to a given valuey. We write [ E], for such a translation.

[n]. d—e:v =n
[x]» Ly =2
[E]., € 3y. y — v A [E],

[[El‘I—EQ]]U d:ef 3!131 To. U:IE1+ZL‘2 A [[El]]acl A [[EQ]]J;I

We say that the expressidnis defined in the current heap,[i’] . is true for some value.

(E) def «<—= 3z.[F].
Similarly, we can allow boolean tests to access the heap:
bi=FE==F]|...
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These boolean tests can be lifted to formulae in the logic by
[Bi==E,] € 321, 2. [E1]a, A [Eollay A 21 = 2
A boolean test is defined in the current heap if all its expoessare defined.
(Ey==E,) def® 32, 2. [E1]a, A [Es]las
Finally, we can give the actual atomic rule with a heap-negdjuard as

|ZSLP1*P2:(b)def
FCsat (Pox P) Ab{},{}, 7. Q1 Qo)
stable under R (P~ Q) CGE
GOFV(R) =0 FEq P=P+F Fg Qi +xF=0Q

- (atomicy (b){C}) sat (Bg. P|* Ps, R, G, 37. [Q] * Q2)

C Properties of septraction (®)

The following properties are direct consequences of theidiefs.

emp —® P <— P
(PxQ)—®R < P-®(Q—®R)
P®Q < P-—®(QA(Pxtrue))

In addition, septraction distributes over and semi-distributes ove.

P®(QVR) < (P-®Q)V(P—-®R)
(PVQ)®R < (P-®R)V(Q-®R)
P®(QANR) = (P-®Q)N(P-®R)
(QANR)®P —= (Q—®P)N(R—® P)

If Pisexact(i.e. for allhy, hy, andi, if hy,i Es;, P andhs, i Fs;, P thenh, = hs), the last two
properties become equivalences. When we are septractimgla shemory cellx — v, then
futher properties hold:

Ty —®P << (r—y-®P)|,
T—Y—®z—ow < r=2zANy=w/Aemp
vy =@ (PrQ) = (r—y - P) QL)
V((z—y—®Q)*Pl,)
r+—y—®emp < false
whereP|, L PA —(Jy. = — y *x true). Intuitively, if we remove a memory cell fror®, the
result does not contain the removed cell. If we remove a mgeallfrom another memory cell,
the two memory cells must be identical and the resultingessaémpty. Removing a memory
cell from a separating conjuction of two formulae generatease split: the cell could belong
either to the first conjunct or to the second. This equivaaaceminiscent of the chain rule of

differentiation % = %z + yj—i). Finally, removing a cell from the empty heap is impossible
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