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Abstract

In the quest for tractable methods for reasoning about concurrent algorithms both re-
ly/guarantee logic and separation logic have made great advances. Theyboth seek to tame,
or control, the complexity of concurrent interactions, but neither is the ultimateapproach.
Rely-guarantee copes naturally with interference, but its specifications are complex because
they describe the entire state. Conversely separation logic has difficulty dealing with inter-
ference, but its specifications are simpler because they describe only therelevant state that
the program accesses.

We propose a combined system which marries the two approaches. We can describe
interference naturally (using a relation as in rely/guarantee), and wherethere is no inter-
ference, we can reason locally (as in separation logic). We demonstrate the advantages of
the combined approach by verifying a lock-coupling list algorithm, which actually dispos-
es/frees removed nodes.

1 Introduction

Reasoning about shared variable concurrent programs is difficult, because the interference be-
tween the simultaneously executing threads must be taken into account. Our aim is to find
methods that allow this reasoning to be done in a modular and composable way.

On the one hand, we have rely/guarantee, a well-establishedmethod, introduced by Jones,
that is popular in the derivation and the post-hoc verification of concurrent algorithms [12].
RG provides a good way of describing interference by having two relations, the relyR and
the guaranteeG, which describe the state changes performed by the environment or by the
program respectively. Its disadvantage is that the specification of interference isglobal: it must
be checked against every state update, even if it is ‘obvious’ that the update cannot interfere
with anything else. Even Jones [13] acknowledges this limitation and still considers the search
for a satisfactory compositional approach to concurrency an ‘open problem.’

On the other hand, the recent development of separation logic [20, 16] suggests that greater
modularity is possible. There, the∗ operator and the frame rule are used to carve all irrelevant
state out of the specification and focus only on the state thatmatters for the execution of a
certain component or thread. This makes specificationslocal; two components may interfere,
only if they have overlapping specifications. Its disadvantage is that, in dealing with concurrent
programs, it took the simplest approach and uses invariantsto specify thread interaction. This
makes expressing the relational nature of interference often quite difficult and requires many
auxiliary variables [18]. Even O’Hearn acknowledges the weaknesses of separation logic, and
asks if “a marriage between separation logic and rely-guarantee is also possible” [16].
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Here we present such a marriage of rely/guarantee and separation logic, which combines
their advantages and eliminates some of their weaknesses. We split the state into two disjoint
parts: (i) the shared state which is accessible by all threads, and (ii ) the local state which is
accessible by a single component. Then, we use rely/guarantee to deal with the shared state, and
separation logic to deal with the local state. This is best illustrated by our parallel composition
rule:

⊢ C1 sat (p1, R ∪ G2, G1, q1) ⊢ C2 sat (p2, R ∪ G1, G2, q2)

⊢ C1‖C2 sat (p1 ∗ p2, R,G1 ∪ G2, q1 ∗ q2)

This rule is identical to the standard rely/guarantee rule except for the use of∗ instead of∧ in the
pre- and post-conditions. In our specifications, the preconditions (e.g.p1) and the postconditions
(e.g.q1) describe both the local and the shared state. The rely conditions (e.g.R ∪ G2) and
the guarantee conditions (e.g.G1) describe inter-thread interference: how the shared stategets
modified.

The separating conjunction between assertions about both the local and the shared state
splits local state (l) in two parts, but does not divide the shared state (s).

(p1 ∗ p2)(l, s)
def
= ∃l1 l2. l = l1 ⊎ l2 ∧ p1(l1, s) ∧ p2(l2, s)

The parallel composition rules of rely/guarantee and separation logic are special cases of our
parallel composition rule. (1) When the local state is empty,thenp1∗p2 = p1∧p2 and we get the
standard rely/guarantee rule. (2) When the shared state is empty, we do not need to describe its
evolution (R andG are the identity relation). Thenp1 ∗ p2 has the same meaning as separation
logic ∗, and we get the parallel rule of concurrent separation logicwithout resource invariants
(see§2.2).

An important aspect of our approach is that the boundaries between the local state and the
shared state are not fixed, but may change as the program runs.This “ownership transfer”
concept is fundamental to proofs in concurrent separation logic.

In addition, as we encompass separation logic, we can cleanly reason about dynamically
allocated data structures and explicit memory management,avoiding the need to rely on a
garbage-collector. In§4, we demonstrate this by verifying a lock-coupling list algorithm, which
actually disposes/frees removed nodes.

2 Technical background

In this paper, we reason about a parallel programming language with pointer operations. Letx,
y andz range over logical variables, andx, y andz over program variables. We assumetid is a
special variable that identifies the current thread. CommandsC and expressionse are given by
the following grammar,

C ::= x:=e | x:=[e] | [e1]:=e2 | x:=cons(e1, . . . , en) | dispose(e)
| C1; C2 | C1‖C2 | if(b){C1} else {C2} | while(b){C} | atomic(b){C}

e ::= x | x | e + e | n

whereb ranges over boolean expressions. Note that expressionse arepure: they do not refer to
the heap. In the grammar, each assignment contains at most one heap access; assignments with
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multiple heap accesses can be performed using multiple assignments and temporary variables
to store the intermediate results.

The semantics ofatomic are thatC will be executed in one indivisible step. This could
be implemented through locking, hardware atomicity, transactional memories, etc. Choosing
atomic over a given synchronisation primitive (e.g. locks) enables our reasoning to be applied
at multiple abstraction levels. In any case, any synchronisation primitive can be encoded using
atomic.

In the rest of this section, we give a brief overview of the twologics we build on in this
paper.

2.1 Interference – Rely/guarantee specifications

Rely/guaranteespecifications [12] describe the interference between concurrently executing
threads. These specifications are then used to prove concurrent algorithms in a compositional
manner. Each componentc is assigned arely condition that describes the interference it can
tolerate from its environment (namely, the other components of the system). In return, it is
assigned aguaranteecondition that characterises how it can interfere with the others.

The essence of rely/guarantee reasoning is its parallel composition rule. Two components
(threads) may be placed in parallel, if and only if, the guarantee condition of the one component
implies the rely condition of the other and vice versa.

⊢ C1 sat (R ∪ G2, G1)
⊢ C2 sat (R2 ∪ G1, G2)

⊢ C1‖C2 sat (R,G1 ∪ G2)

Since the interference experienced by threadC1 can arise fromC2 or the environment of the
parallel composition, we have to ensure that the total interference (R ∪ G2) is allowed. Simi-
larly C2 must be able to tolerate interference fromC1 and from the environment of the parallel
composition. The interference caused by the parallel composition may be caused by eitherC1

or C2; so, the total interference must include the interferencescaused by each component,G1

andG2 .

2.2 Local reasoning – Separation logic

In Hoare logic [10], assertions describe properties of thewholememory, and hence specifica-
tions, e.g. {P} C {Q}, describe a change of the whole memory. This is inherentlyglobal
reasoning. Anything that is not explicitly preserved in the specification could be changed, for
example{x = 4} y:=5 {x = 4}. Herey is allowed to change, even though it is not mentioned
in the specification.1

The situation is different inseparation logic[20]. Assertions describe properties ofpart of
the memory, and hence specifications describe changes topart of the memory. The rest of the
memory is guaranteed to be unchanged. This is the essence oflocal reasoning, specifications
describe only the memory used by a command, its footprint.

The strength of separation logic comes from a new logical connective: the separating con-
junction,∗. P ∗Q asserts the state can be split into two parts, one described by P and the other

1‘Modifies clauses’ solve this problem, but they are neither pretty nor general.
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{

ArrSegBnd(a, first, last,min,max)
}

qsort (a, first , last ) {
local pivot ;
if ( first <last−1) {

pivot = partition (a, first , last );
qsort (a, first , pivot );

|| qsort(a, pivot, last );
}

}
{

ArrSegSrt(a, first, last,min,max)
}

Figure 1: Parallel Quicksort algorithm and specification

by Q. The separating conjunction allows us to formally capture the essence oflocal reasoning
with the following rules:

{P} C {Q}
(Frame)

{P ∗ R} C {Q ∗ R}

{P1} C1 {Q1} {P2} C2 {Q2} (Par)
{P1 ∗ P2} C1‖C2 {Q1 ∗ Q2}

The first rule says, ifP is separate fromR, andC transformsP into Q then if C finishes
we haveQ and separately still haveR. The second rule says that if two threads have disjoint
memory requirements, they can execute safely in parallel, and the postcondition is simply the
composition of the two threads’ postconditions.2

Example: Parallel Quicksort To motivate the use of separation logic, we verify parallel
quicksort. Parallel quicksort uses disjoint concurrency,hence it is well suited to a separation
logic proof: there is no interference.

We present the algorithm and specification in Figure 1. The algorithm’s precondition,
ArrSegBnd(a, first, last,min,max), asserts that the heap contains a segment of arraya, from
indexfirst to last − 1, with values in the interval[min,max]. The postcondition denotes that
this array segment is sorted. For simplicity, we omit sayingthat it is a permutation of the ini-
tial array segment. We specify thepartition function as follows, but omit the source code and
proof.

{

ArrSegBnd(a, first, last,min,max)
}

pivot = partition(a, first, last)
{

∃X. ArrSegBnd(a, first, pivot,min,X)
∗ ArrSegBnd(a, pivot, last, X,max)

}

The postcondition specifies the two segments are disjoint, hence, we can sort the two segments
in parallel without interference.

{

ArrSegBnd(a, first, pivot,min,X) ∗ ArrSegBnd(a, pivot, last, X,max)
}

qsort(a, first, pivot); || qsort(a, pivot, last);
{

ArrSegSrt(a, first, pivot,min,X) ∗ ArrSegSrt(a, pivot, last, X,max)
}

2Originally, separation logic did not consider global variables as resource; hence the proof rules had nasty
side-conditions. Later, this problem was solved by Bornat et al. [2]. By disallowing direct assignments to global
variables, we avoid the problem.
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To verify this algorithm with rely/guarantee, we would needto express that each parallel
call modified disjoint elements of array. That is,

guarantee: ∀i.(first ≤ i < last) ∨ a[i] = old(a[i])
rely: ∀i.(first ≤ i < last) ⇒ a[i] = old(a[i])

In separation logic, however, we need not mention anything of this sort.

Brief details Separation logic has the following assertions for describing the heap,h:

P,Q, S ::= false | emp | e = e′ | e 7→ e′ | ∃x. P | P ⇒ Q | P ∗ Q | P −⊛Q

We encode¬,∧,∨,∀, andtrue in the classical way.emp stands for the empty heap;e 7→ e′

for the heap consisting of a single cell with addresse and contentse′. Separating conjunction,
P ∗ Q, is the most important operator of separation logic. A heaph satisfiesP ∗ Q, if it can be
split in two parts, one of which satisfiesP and the other satisfiesQ. We build heap descriptions
of multiple cell heaps using∗ and 7→. For example,e 7→ e′ ∗ f 7→ f ′ describes twoseparate
heap cells: it is impossible thate andf could be the same address (logically, ife andf are
equal, thene 7→ f ′ ∗ e 7→ f ′ is false).

There remains one new connective to describe:septraction, P −⊛Q.3 Intuitively, P −⊛Q
represents removingP from Q. Formally, it means the heap can be extended with a state
satisfyingP , and the extended state satisfiesQ.

h, i �SL (P ∗ Q)
def
= ∃h1, h2. (h1 ⊎ h2 = h) ∧ h1, i �SL P ∧ h2, i �SL Q

h, i �SL (P −⊛Q)
def
= ∃h1, h2. (h1 ⊎ h = h2) ∧ h1, i �SL P ∧ h2, i �SL Q

Finally, e 7→ e1, . . . , en is a shorthand for(e 7→ e1) ∗ . . . ∗ (e + n − 1 7→ en); ande 7→ means
∃x · e 7→ x.

Assignment to local variables are treated by the ordinary Hoare axiom,{Q[e/x]} x :=e {Q},
whereQ[e/x] substitutese for all occurrences ofx in Q. The other axioms of separation logic
are summarised below.

{e 7→ } [e]:=e′ {e 7→ e′}

{e = y ∧ e 7→ z} x :=[e] {y 7→ z ∧ x = z}

{emp} x := cons(e1, . . . , en) {x 7→ e1, . . . , en}

{e 7→ } dispose(e) {emp}

(These are known as the small axioms, because they deal with the smallest heap affected by
command. If there is more heap present, the frame rule says that it remains unaffected.)

• To write to a heap cell that cell must exist in the heap: i.e. you must own it.
• To read a cell[e] you must own the cell; its contents are copied into variablex; the cell’s

contents are unchanged; and afterwards you still own it. (The logical variabley is used in
casex occurs ine.)

• cons(e1, . . . , en) allocates a new block ofn heap cells. We require the heap is initially
empty, and the postcondition contains the new block of cells.

• dispose(e) deallocates a heap cell. We require the heap contains the cell being disposed;
after disposal it is no longer contained in the heap.

3Sometimes called “existential magic wand”, as it is the dualto “magic wand”:P −⊛Q
def
= ¬(P −∗¬Q). It has

been used in the connection with modal logic in [4].
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3 The combined logic

3.1 Describing interference

The strength of rely/guarantee is the careful description of interference between parallel pro-
cesses. We describe interference in terms of actionsP  Q which describe the changes per-
formed to the shared state. These resemble Morgan’sspecification statements[14], andP and
Q will typically be linked with some existentially quantifiedlogical variables. (We do not need
to mention separately the set of modified shared locations, because these are all included inP .)

The meaning of an actionP  Q is that it replaces the part of the state that satisfiesP
before the action with a part satisfyingQ. Its semantics is the following relation:

[[P  Q]] = {(h1 ⊎ h0, h2 ⊎ h0) | h1, i �SL P ∧ h2, i �SL Q}

It relates some initial stateh1 satisfying the preconditionP to a final stateh2 satisfying the
postcondition. In addition, there may be some disjoint state h0 which is not affected by the
action. In the spirit of separation logic, we want action specifications as ‘small’ as possible,
describingh1 andh2 but noth0, and use the frame rule to perform the same update on a larger
state.

The rely and guarantee conditions are simply sets of actions. Their semantics as a relation
is the reflexive and transitive closure of the union of the semantics of each action in the set.

[[P1  Q1, . . . , Pn  Qn]] =

(

n
⋃

i=1

[[Pi  Qi]]

)∗

We shall writeR for a syntactic rely condition (i.e. a set of actions) andR for a semantic rely
condition (i.e. a binary relation).

3.2 Stability

Rely/guarantee reasoning requires that every pre- and post-condition in a proof is stable under
environment interference. An assertionS is stable under interference of a relationR if and only
if wheneverS holds initially and we perform an update satisfyingR then the resulting state still
satisfiesS.

Definition 1 (Stability). S;R =⇒ S iff for all s, s′ and i such thats, i �SL S and(s, s′) ∈ R,
thens′, i �SL S

By representing the interferenceR as a set of actions, we reduce stability to a simple syntac-
tic check. For a single action[[P  Q]], the following separation logic implication is necessary
and sufficient:

Lemma 2. S; [[P  Q]] =⇒ S iff �SL (P −⊛ S) ∗ Q =⇒ S.

Informally, it says that if from a state that satisfiesS, we subtract the part of the state
satisfyingP , and replace it with some state satisfyingQ, then the result should still satisfyS.
When the action cannot fire because there is no substate ofS satisfyingP , thenP −⊛S is false

and the implication holds trivially.
An assertionS is stable under interference of a set of actionsR when it is stable under

interference of every action inR.
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Lemma 3. S; (R1 ∪R2)
∗ =⇒ S iff S;R1 =⇒ S andS;R2 =⇒ S.

Finally, we define wssaR(Q) to be the weakest assertion that is stronger thanQ and stable
underR.

Definition 4 (Weakest stable stronger assertion). (1) wssaR(Q) ⇒ Q,
(2) wssaR(Q);R =⇒ wssaR(Q), and
(3) for all P , if P ;R =⇒ P andP ⇒ Q, thenP ⇒ wssaR(Q).

3.3 Local and shared state assertions

We can specify a state using two assertions, one describing the local state and the other the
shared state. However, this approach has some drawbacks: specifications are longer, and ex-
tending the logic to a setting with multiple disjoint regions of shared state is clumsy.

Instead, we consider a unified assertion language that describes both the local and the shared
state. This is done by extending the positive fragment of separation logic assertions with ‘boxed’
terms. We could use boxes for both local and shared assertions: for example,P local andP shared.
However, sinceP local ∗ Q local ⇐⇒ P ∗ Q local holds for *, and all the classical operators, we
can omit the local and the “shared” subscript. Hence the syntax of assertions is

p, q, r ::= P | P | p ∗ q | p ∧ q | p ∨ q | ∃x. p | ∀x. p

Semantically, we split the state,σ, of the system into two components: the local statel, and
the shared states. Each component state may be thought to be a partial finite function from
locations to values. We require that the domains of the two states are disjoint, so that the total
state is simply the (disjoint) union of the two states. Assertions without boxes describe purely
the local statel, whereas a boxed assertionP describes the shared states. Formally, we give
the semantics with respect to a ‘rely’ conditionR, a set of actions describing the environment
interference:

l, s, i �R P ⇐⇒ l, i �SL P
l, s, i �R P ⇐⇒ l = ∅ ∧ s, i �SL P
l, s, i �R p1 ∗ p2 ⇐⇒ ∃l1, l2. (l = l1 ⊎ l2) ∧ (l1, s, i �R p1) ∧ (l2, s, i �R p2)
l, s, i �R p1 ∧ p2 ⇐⇒ (l, s, i �R p1) ∧ (l, s, i �R p2)
l, s, i �R p1 ∨ p2 ⇐⇒ (l, s, i �R p1) ∨ (l, s, i �R p2)
l, s, i �R ∀x. p ⇐⇒ ∀v. (l, s, i[x 7→ v] �R p)
l, s, i �R ∃x. p ⇐⇒ ∃v. (l, s, i[x 7→ v] �R p)

Note that∗ is multiplicative over the local state, but additive over the shared state. Hence,
P ∗ Q =⇒ P ∧ Q . The semantics of shared assertions,P , could alternatively be presented
without l = ∅. This results in an equally expressive logic, but the definition above leads to
shorter assertions in practice.

We use wssa[[R]]( ) to make assertions semantically resistant to interference:

Lemma 5. If (l, s, i �R p), s′ ⊎ l defined and[[R]](s, s′) then(l, s′, i �R p).

We define an assertion to be syntactically stable if each of the assertions about the shared
state is stable. By construction, any assertion about the local state of a component is unaffected
by other components, because interference can happen only on the shared state. On the other
hand, a boxed assertionS may be affected.

9



Definition 6 (Stable assertion). 1. P stable under R always;

2. P stable under R iff P ; [[R]] =⇒ P ;

3. (p op q) stable under R iff p stable under R andq stable under R; and

4. (qu x. p) stable under R iff p stable under R
whereop ::= ∧ | ∨ | ∗ andqu ::= ∀ | ∃.

This syntactic condition allows us to change the interpretation of a formula to a more per-
missive rely.

Lemma 7. If (l, s, i �R p), [[R]] ⊆ [[R′]] andp stable under R′ then(l, s, i �R′ p). Note that
(l, s, i �R p) and [[R′]] ⊆ [[R]] then(l, s, i �R′ p).

We present a few entailments for formulae involving shared states.

P ⊢SL Q
P ⊢ Q

P ∧ Q ⊢ P ∧ Q P ∨ Q ⊢ P ∨ Q P ∗ Q ⊢ P ∧ Q

∀x. P ⊢ ∀x. P ∃x. P ⊢ ∃x. P P ⊢ P ∗ P P ⊢ emp

Relationship to linear logic The use of two kinds of assertion perhaps calls to mind some
presentations of linear logic, where there are two zones in sequents [9]. However, our two kinds
of assertion, and the passage between them using Box, do not match the two kinds (linear and
intuitionistic) in linear logic, and their passage using !.In particular, our box operator does
not satisfy Dereliction (!A ⊢ A) and Promotion (!A⊢B

!A⊢!B
), although it does satisfy Weakening

(!A ⊢ emp) and Contraction (!A ⊢!A∗!A). It is as if we had two substructural zones, rather
than one substructural and one additive.

3.4 Ownership transfer

Usually the precondition and postcondition of an action have the same heap footprint. For
example, consider the action saying thatx can be incremented:

x 7→ M  x 7→ N ∧ N ≥ M (Increment)

If they have a different footprints, this indicates a transfer of ownership between the shared
state and the local state of a thread. Consider a simple lock with two operations: (Acq) which
changes the lock bit from0 to 1, and removes the protected object,list(y), from the shared
state; and (Rel) which changes the lock bit from1 to 0, and replaces the protected object into
the shared state. We can represent these two operations formally as

(x 7→ 0) ∗ list(y) x 7→ 1 (Acq) x 7→ 1 (x 7→ 0) ∗ list(y) (Rel)

3.5 Specifications and proof rules

The judgement⊢ C sat (p,R,G, q) semantically says that any execution ofC from an initial
state satisfyingp and under interference at mostR, (i) does not fault (e.g. access unallocated
memory), (ii ) causes interference at mostG, and, (iii ) if it terminates, its final state satisfiesq.

Hence, we get the familiar refinement rule.
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R ⇒ R′ p ⇒ p′

⊢ C sat (p′, R′, G′, q′) G′ ⇒ G q′ ⇒ q

⊢ C sat (p,R,G, q)

From separation logic, we inherit the frame rule. This rule says that a program safely running
with initial statep can also be executed with additional stater. As the program runs safely
without r, it cannot accessr when it is present; hence,r is still true at the end. The addi-
tional premise is needed becauser might mention the shared state andC might modify it in an
atomic.

⊢ C sat (p,R,G, q)
(

(r stable under R ∪ G)
∨ (C has no atomics)

)

⊢ C sat (p ∗ r, R,G, q ∗ r)

We adopt all of the small axioms for local state from separation logic (not presented) [15].
Additionally, we have a read axiom for shared state, which allows a non-atomic read from a
shared location if we can rely on its value not changing. Notethat we do not need to check
stability for this read.

Q = (P ∗ X 7→ Y ) x /∈ fv(P )

⊢ (x := [e]) sat (Q ∧ e=X,R,G, Q ∧ x=Y )

The next rule is that of conditional critical regionsatomic(b){C}. For clarity, we present
the rule where the guardb is justtrue. The general case, whereb is non-trivial and may access
the heap, just complicates the essential part of the rule. A simple rule for critical regions would
be the following:

⊢ C sat (P, {}, {}, Q) (P  Q) ⊆ G Q stable under R

⊢ (atomic{C}) sat (P ,R,G, Q )

As in RG, we must check that the postcondition is stable under interference from the environ-
ment, and that changing the shared state fromP to Q is allowed by the guaranteeG.

This rule is sound, but too weak in two ways. First, it does notallow critical regions to access
any local state, as the preconditionP requires that the local state is empty. Second, it requires
that the critical region changes theentire shared state fromP to Q and that the guarantee
condition allows such a change. Thus, we extend the rule by (i) adding a preconditionP2 and a
postconditionQ2 for the local state, and (ii ) allowing the region to change a partP1 of P into a
partQ1 of Q, ensuring that the restF does not change. Additionally, we allow some existential
quantifiers,y in the shared state to be pulled out over both the shared and local state.

⊢ C sat (P1 ∗ P2, {}, {}, Q1 ∗ Q2) Q stable under R
y ∩ FV (P2) = ∅ P ⇒ P1 ∗ F Q1 ∗ F ⇒ Q (P1  Q1) ⊆ G

⊢ (atomic{C}) sat (∃y. P ∗ P2, R,G,∃y. Q ∗ Q2)

A specification,P1  Q1 is allowed by a guaranteeG if its effect is contained inG. Fig. 2
provides rules to approximate this definition in proofs. Therule G-SEQ allows actions to be
sequenced and builds in a form of framing. Note that, ifS is empty, then the rule is a parallel
composition of two actions; ifP2 andQ1 are empty, then the rule sequences the actions. It
would be simpler, if we simply included the frame rule however this is unsound. In fact, the
coframe rule G-COFRM is admissible. G-CONS is similar to the rule of consequence, but the
second implication is reversed,Q ⇒ Q′. Semantically, the property is defined as follows:
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G-EXACT
x 7→ y  x 7→ y ⊆ G

P1  S ∗ Q1 ⊆ G P2 ∗ S  Q2 ⊆ G
G-SEQ

P1 ∗ P2  Q1 ∗ Q2 ⊆ G

�SL P ′⇒P P  Q ⊆ G �SL Q′⇒Q
G-CONS

P ′  Q′ ⊆ G

P  Q ∈ G
G-AX

P  Q ⊆ G

P  Q ⊆ G
G-SUB

P [e/x] Q[e/x] ⊆ G

(P∗F ) (Q∗F ) ⊆ G
G-COFRM

P  Q ⊆ G

Figure 2: Rules and axioms for guarantee allows an action.

Definition 8. P  Q ⊆ G iff [[P  Q]] ⊆ [[G]].

There is a side-condition to the atomic rule requiring thatQ is a preciseassertion. This
is formally defined in§5 (Def. 17). This is a technical requirement inherited from concurrent
separation logic. It ensures that the splitting of the resultant state into local and shared portions
is unambiguous.

We reiterate the parallel composition rule from the introduction. As the interference ex-
perienced by threadC1 can arise fromC2 or the environment of the parallel composition, we
have to ensure that this interferenceR ∪ G2 is allowed. SimilarlyC2 must be able to tolerate
interference fromC1 and from the environment of the parallel composition.

⊢ C1 sat (p1, R ∪ G2, G1, q1) p1 stable under R ∪ G1

⊢ C2 sat (p2, R ∪ G1, G2, q2) p2 stable under R ∪ G2

⊢ C1‖C2 sat (p1 ∗ p2, R,G1 ∪ G2, q1 ∗ q2)

The precondition and postcondition of the composition are the separating conjunction,∗, of the
preconditions/postconditions of the individual threads.In essence, this is the conjunction of
the shared state assertions, and the separating conjunction of the local state assertions (cf. the
semantics of∗ in §3.3).

The proof rules for sequential composition, conditional and iterative commands are com-
pletely standard.

⊢ C1 sat (p ∧ b, R,G, q)
⊢ C2 sat (p ∧ ¬b, R,G, q)

⊢ (if(b){C1} else {C2}) sat (p,R,G, q)

⊢ C1 sat (p,R,G, r)
⊢ C2 sat (r, R,G, q)

⊢ (C1; C2) sat (p,R,G, q)

skip sat (p,R,G, p)
⊢ C sat (p ∧ b, R,G, p)

⊢ (while(b){C}) sat (p,R,G, p ∧ ¬b)

We can also extend our logic to deal with parameterless procedures in the usual way, where
the environmentΓ maps procedure names to their specifications. The previous rules all simply
passΓ around unmodified. When encountering a procedure call, we apply the following rules.

Γ, proc sat (p,R,G, q) ⊢ C sat (p,R,G, q)
providedproc has bodyC.

Γ ⊢ proc sat (p,R,G, q)

Γ, proc sat (p,R,G, q) ⊢ proc sat (p,R,G, q)

We omit parameters and return values to procedures/functions as they can be encoded into the
heap.
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lock(p) {
atomic(p.lock==0){
p. lock = tid ;

// p.oldn = p. next ;
}
}
unlock(p) {
atomic(true ) {
p. lock = 0;
}
}

locate (e){
local p,c;
p = Head;
lock(p);
c = p.next ;
while(c. value<e){
lock(c );
unlock(p);
p = c;
c = p.next ;
}
return (p,c );
}

add(e) {
local x,y,z;
(x,z)= locate (e );
if (z. value!=e){
y = cons(0,e,z );
x.next = y;
}
unlock(x );
}

remove(e){
local x,y,z;
(x,y)= locate (e );
if (y. value==e){
lock(y );
z = y.next ;
x.next = z;
unlock(x ); // A
dispose(y );
} else {
unlock(x );
}
}

Figure 3: Source code for lock coupling list operations. Forclarity, we use a field notation,
hence we encodep.lock, x.value, x.next andp.oldn as[p], [x + 1], [x + 2] and[p + 3], respec-
tively. Commented code is auxiliary, that is, required only for the proof. We use heap reads in
conditional tests forifs andwhiles, which can be encoded using an additional local variable for
the heap read.

4 Example

This section uses the new logic to verify a fine-grained concurrent linked list implementation of
a mutable set data structure (see Fig. 3). It has operationsadd which adds an element to the set,
andremove which removes an element from the set.

The algorithm associates one lock per list node rather than have a single lock for the entire
list. Traversing the list useslock coupling: the lock on one node is not released until the next
node is locked. Somewhat like a person climbing a rope “hand-over-hand,” you always have at
least one hand on the rope.

An element is added to the set by inserting it in the appropriate position, while holding the
lock of its previous node. It is removed by redirecting the previous node’s pointer, while both
the previous and the current node are locked. This ensures that deletions and insertions can
happen concurrently in the same list. The algorithm makes two assumptions about the list: (1)
it is sorted; and (2) the first and last elements have values−∞ and+∞ respectively. This
allows us to avoid checking for the end of the list.

Node predicates We use three predicates to represent a node in the list: (1)Ns(x, v, y),
for a node at locationx with contentsv and tail pointery and with the lock status set tos;
(2) U (x, v, y) for an unlocked node at locationx with contentsv and tail pointery; and (3)
Lt(x, v, y) for a node locked with thread identifiert. We useN (x, v, y) for a node that may or
may not be locked.

Ns(x, v, y)
def
= x 7→ s, v ∗

(

(s = 0 ∧ x + 2 7→ y, )
∨ (s 6= 0 ∧ x + 3 7→ y)

)

∧ x mod4 = 0

U (x, v, y)
def
= N0(x, v, y) Lt(x, v, y)

def
= Nt(x, v, y) ∧ t > 0

13



We assume nodes are aligned,x mod4 = 0, andcons returns aligned nodes.4 The thread
identifier parameter in the locked node is required to specify that a node can only be unlocked
by the thread that locked it. The fourth field/cell is auxiliary. It is used to store the last value of
the nodes tail before it was locked. Once a node is locked its tail field is released to the locking
thread, allowing it to mutate the field outside of critical sections, the auxiliary field is used in
the proof to track the list structure.

Actions The algorithm does four kinds of actions: (1)lock, which locks a node, (2)unlock,
which unlocks a node, (3)add, which inserts a new node to the list, and (4)delete, which
removes a node from the list. All of these actions are parameterised with a set of thread identi-
fiers,T . This allows us to use the actions to represent both relies and guarantees. In particular,
we take a thread with identifiertid to have the guarantee withT = {tid}, and the rely to use
the complement of this set. LetI(T ) be the set of these four actions.

The first two actions are straightforward:

t ∈ T ∧ U (x, v, n) Lt(x, v, n) (lock)

t ∈ T ∧ Lt(x, v, n) U (x, v, n) (unlock)

Now, consider adding a node to the list. We begin by describing an action that ignores the
sorted nature of the list:

t ∈ T ∧ Lt(x, u, n) Lt(x, u,m) ∗ U (m, v, n)

To add an element to the list, we must have locked the previousnode, and then we can swing the
tail pointer to the added node. The added node must have the same tail as previous node before
the update. To preserve the sorted order of the list, the actual add action must also mention the
next node: the inserted value must be between the previous and the next values.

(t ∈ T ) ∧ (u < v < w) ∧ (Lt(x, u, n) ∗ Ns(n,w, y))

 Lt(x, u,m) ∗ U (m, v, n) ∗ Ns(n,w, y) (add)

The final action we allow is removing an element from the list.We must lock the node we
wish to delete,n, and its previous node,x. The tail of the previous node must be updated to the
deleted node’s tail,m.

(v < ∞) ∧ (t ∈ T ) ∧ (Lt(x, u, n) ∗ Lt(n, v,m)) Lt(x, u,m) (delete)

We summarise these actions pictorially in figure 4.

List predicate We use separation to describe the structure of the shared list. The predicate
ls(x,A, y) describes a list segment starting at locationx with the final tail value ofy, and with
contentsA. We use· as a list separator.

ls(x, ∅, x)
def
= emp ls(x, v·B, y)

def
= (∃z. x 6= y ∧ N (x, v, z) ∗ ls(z,B, y))

4Without this restriction a node could be formed by parts of two adjacent nodes. Instead of assuming alignment,
this problem can also be solved by allowing contexts in actions, for example the node is reachable from the head.

14



(lock)v - n v

Locked

- n

(unlock)v

Locked

- n v - n

(add)u

Locked

- w - y u

Locked
A
AU
v �

��

w - y u < v < w

(delete)u

Locked
A
AU
v

Locked

�
��

m u

Locked

- m v < +∞

Figure 4: Pictorial representation of the actions

Note, as we use separation logic we do not need any reachability predicates, our predicate is
simply a recursively defined predicate. The use of∗ and the inequalityx 6= y ensures the list is
acyclic.

We have three basic properties of a list segment: (1) it does not contain the end marker;
(2) an element can be added to the end, provided its tail pointer does not point to anything in
the list; and (3) two lists can be appended, provided the end marker of the second list is not
contained in the first.

Definition 9. P ⇂x
def
= P ∧ ¬(x 7→ ∗ true)

Lemma 10. 1. ls(w,A, z) ⇐⇒ ls(w,A, z)⇂z
2. ls(w,A, x)⇂y ∗ Ns(x, v, y) ⇒ ls(w,A·v, y)
3. ls(w,A, x)⇂y ∗ ls(x,B, y) ⇒ ls(w,A·B, y)

Finally, we give a lemma that enables us to delete a node from alist segment.

Proposition 11. (Ns(x, v, y) −⊛ ls(w,A, z)) is equivalent to∃BC. (A = B·v·C) ∧ w 6= z ∧
(

ls(w,B, x)⇂z ∗ ls(y, C, z)⇂x
)

The algorithm works on sorted lists with the first and last values being−∞ and+∞ respec-
tively. s(A) represents this restriction on a logical listA.

srt(+∞·ǫ)
def
= emp srt(a·b·A)

def
= srt(b·A) ∧ a < b s(−∞·A)

def
= srt(A)

Main proof Appendix A contains the proof outlines. The outline presents the intermediate
assertions in the proof. We present one step of the verification of remove function in detail: the
unlock action labelled “A” in Fig. 3. For simplicity, we inline the unlock body.
{

∃AB. ls(Head, A, x)∗Ltid(x, u, y)∗Ltid(y, e, z)∗ls(z, B,nil)∗s(A·u·B) ∗ (x+27→z)
}

atomic{
{

Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ (x+27→z)
}

x.lock = 0;
{

U(x, u, z) ∗ Ltid(y, e, z)
}

}
{

∃A. ls(Head, A,nil) ∗ s(A) ∗ Ltid(y, e, z)
}
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We must prove four things: (1) the body meets its specification; (2) the body’s specification
is allowed by the guarantee; (3) the outer specification’s postcondition is stable; and (4) find a
frame,F , that satisfies the two implications:

1.
{

Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ (x+27→z)
}

x.lock = 0;
{

U(x, u, z) ∗ Ltid(y, e, z)
}

2. Ltid(x, u, y) ∗ Ltid(y, e, z) U(x, u, z) ⊆ I({tid})

3. ∃A. ls(Head, A,nil) ∗ s(A)) stable underI({tid})

4. ls(Head, A, x)∗Ltid(x, u, y)∗Ltid(y, e, z)∗ls(z, B,nil)∗s(A·u·B)
=⇒ Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ F

U(x, u, z) ∗ Ltid(y, e, z) ∗ F =⇒ ∃A. ls(Head, A,nil) ∗ s(A)

The first is a simple proof in separation logic. The second follows as:

Ltid(x, u, y) ∗ Ltid(y, e, z) Ltid(x, u, z) ⊆ I({tid})
Ltid(x, u, z) U(x, u, V z) ⊆ I({tid})

G-SEQ
Ltid(x, u, y) ∗ Ltid(y, e, z) U(x, u, z) ⊆ I({tid})

Third, to show∃A. ls(Head, A, nil) ∗ s(A) is stable, we use Lemma 2 for the four actions in
the rely: lock, unlock, add anddelete.
(lock): We must show that:

((U (x, v, n) −⊛ ls(y,A, z)) ∗ Lt(x, v, n)) ⇒ ls(y,A, z)

((U (x, v, n) −⊛ s(A·u·v·B)) ∗ Lt(x, v, n)) ⇒ s(A·u·v·B))

The first follows as
(U (x, v, n) −⊛ ls(y,A, z)) ∗ Lt(x, v, n)

⇒ (ls(y,B, x)⇂z ∗ ls(n,C, z) ∗ Lt(x, v, n)) ∧ (A = B·v·C)
⇒ (ls(y,B, x)⇂z ∗ ls(x, v·C, z)) ∧ (A = B·v·C) ⇒ ls(y,A, z)

and the second as

(U (x, v, n) −⊛ s(A)) ∗ Lt(x, v, n) ⇒ false ∗ Lt(x, v, n) ⇒ false ⇒ s(A)

(unlock): This follows in a very similar way to (lock).
(add): We omit the case where we delete froms(A) as this follows trivially. Assumeu < v < w
and simplifying becauseLt(x, u,m) ∗ U (m, v, n) ∗ Ns(n,w, y) ⇒ ls(x, u·v·w, y)

((

Lt(x, u, n)
∗ Ns(n,w, y)

)

−⊛ ls(Head, A, nil)

)

∗ s(A) ∗ ls(x, u·v·w, y)

⇒

(

Ns(n,w, y) −⊛

(

ls(Head, B, x)
∗ ls(n,C, nil)

))

∗ s(B·u·C) ∗ ls(x, u·v·w, y)

⇒



Ns(n,w, y) −⊛





ls(Head, B, x)
∗ Ns′(n,w′, y′)
∗ ls(y′, C ′, nil)









∗ s(B·u·w′·C ′) ∗ ls(x, u·v·w, y)
⇒ ls(Head, B, x) ∗ ls(y, C ′, nil)

∗ s(B·u·w·C ′) ∗ ls(x, u·v·w, y)
⇒ ls(Head, B·u·v·w·C ′, nil) ∗ s(B·u·w·C ′)
⇒ ls(Head, B·u·v·w·C ′, nil) ∗ s(B·u·v·w·C ′)
⇒ ∃A. ls(Head, A, nil) ∗ s(A)
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(delete):
We omit the case where we delete froms(A) as this follows trivially. Assumeu < +∞ and

simplifying becauseLt(x, u, y) ⇒ ls(x, u, y)
((

Lt(x, u, n)
∗ Lt(n,w, y)

)

−⊛ ls(Head, A, nil)

)

∗ s(A) ∗ ls(x, u, y)

⇒

(

Lt(n,w, y) −⊛

(

ls(Head, B, x)
∗ ls(n,C, nil)

))

∗ s(B·u·C) ∗ ls(x, u, y)

⇒



Lt(n,w, y) −⊛





ls(Head, B, x)
∗ Ns′(n,w′, y′)
∗ ls(y′, C ′, nil)









∗ s(B·u·w′·C ′) ∗ ls(x, u, y)
⇒ ls(Head, B, x) ∗ ls(y, C ′, nil)

∗ s(B·u·w·C ′) ∗ ls(x, u, y)
⇒ ls(Head, B·u·C ′, nil) ∗ s(B·u·w·C ′)
⇒ ls(Head, B·u·C ′, nil) ∗ s(B·u·C ′)
⇒ ∃A. ls(Head, A, nil) ∗ s(A)

The proof of stability is long, but the proof steps are largely automatic. We can automate these
checks [6].

Finally, we defineF asls(Head, A, x)∗ls(z, B, nil)∗s(A·u·B)

Theorem 12. The algorithm in Fig. 3 is safe and keeps the list always sorted.

5 Semantics and soundness

Our semantics follows the abstract semantics for separation logic of Calcagno, O’Hearn and
Yang [5]. Rather than presenting the semantics with respect to a particular model of the heap,
we use a partial commutative cancellative5 monoid(M,⊎, ∅) as an abstract notion of a heap.
We usem, l, s ando to range over elements ofM .

Our logic explicitly deals with the separation between a thread’s own local state (l) and
the shared state (s), and hence implicitly the environment’s own state (o). Our semantics are
given with respect to a structured heap, which separates these three components.6 This splitting
is only used to prove the soundness of the logic. There is an obvious erasure to a semantics
without a splitting.

Definition 13 (Structured heaps). Heaps
def
= {(l, s, o) | {l, s, o} ⊆ M ∧ l ⊎ s ⊎ o is defined}

Definition 14. (l1, s1, o1)⊎(l2, s2, o2) defined as(l, s, o), iff s1 = s2 = s, l1⊎ l2 = l, o1 = l2⊎o,
ando2 = l1 ⊎ o; otherwise it is undefined.

We useσ to range over these structured heaps. Again following [5], we use abstract com-
mands,A, and abstract boolean tests,b, for our abstract heap model. Note that by encoding
each primitive command onto a pair of abstract commands, we can give our language a grain-
less semantics [21].

5If m1 ⊎ m = m2 ⊎ m, thenm1 = m2.
6The assertions simply ignore the environment.
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l⊎s = l1 b(l1) l′⊎s′ = l2 Q(s′)

η ⊢ (C, (l1, ∅, o))
Emp
−−−→∗(skip, (l2, ∅, o

′))

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

(skip, (l′, s′, o′))

l⊎s = l1 b(l1)

η ⊢ (C, (l1, ∅, o))
Emp
−−−→∗fault

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

fault

l⊎s = l1 b(l1) l2 2 Q∗true

η ⊢ (C, (l1, ∅, o))
Emp
−−−→∗(skip, (l2, ∅, o

′))

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

fault

l⊎s = l1 b(l1) = fault

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

fault

A(l, l′) (l′, s, o) ∈ Heaps

η ⊢ (A, (l, s, o))
R
−→
p

(skip, (l′, s, o))

(¬∃l′. A(l, l′))

η ⊢ (A, (l, s, o))
R
−→
p

fault

R(s, s′) (l, s′, o′) ∈ Heaps

η ⊢ (C, (l, s, o))
R
−→
e

(C, (l, s′, o′)) η ⊢ (skip; C, σ)
R
−→
p

(C, σ)

η ⊢ (while(b){C}, σ)
R
−→
p

(if(b){C;while(b){C}} else {skip}, σ)

η proc = C

η ⊢ (proc, σ)
R
−→
p

(C, σ)

η ⊢ (skip‖skip, σ)
R
−→
p

(skip, σ)

η ⊢ (C, σ)
R
−→
p

(C1, σ
′)

η ⊢ (C; C ′, σ)
R
−→
p

(C1; C
′, σ′)

η ⊢ (C1, σ)
R
−→
p

(C ′
1, σ

′)

η ⊢ (C1‖C2, σ)
R
−→
p

(C ′
1‖C2, σ

′)

η ⊢ (C2, σ)
R
−→
p

(C ′
2, σ

′)

η ⊢ (C1‖C2, σ)
R
−→
p

(C1‖C
′
2, σ

′)

b(l)

η ⊢ (if(b){C1} else {C2}, (l, s, o))
R
−→
p

(C1, (l, s, o))

¬b(l)

η ⊢ (if(b){C1} else {C2}, (l, s, o))
R
−→
p

(C2, (l, s, o))

b(l) = fault

η ⊢ (if(b){C1} else {C2}, (l, s, o))
R
−→
p

fault

η ⊢ (C, σ)
R
−→
p

fault

η ⊢ (C; C2, σ)
R
−→
p

fault

η ⊢ (C, σ)
R
−→
p

fault

η ⊢ (C‖C2, σ)
R
−→
p

fault

η ⊢ (C, σ)
R
−→
p

fault

η ⊢ (C2‖C, σ)
R
−→
p

fault

Figure 5: Operational semantics:Config1 reduces toConfig2 η ⊢ Config1
R
−→
λ

Config2

Definition 15. Primitive commandsA are represented by a subset ofM ×M , satisfying: (1) If
A(l1 ⊎ l, l2), then either there existsl′2 such thatA(l1, l

′
2) and l2 = l ⊎ l′2, or ¬∃l. A(l1, l); and

(2) If ¬∃l2. A(l1 ⊎ l, l2), then¬∃l2. A(l1, l2).

Definition 16. Boolean expressionsb are represented byM → {true, false, fault}, satisfy-
ing: if b(l1 ⊎ l) = v, then eitherb(l1) = v or b(l1) = fault.

We present the semantics of the abstract programming language in Figure 5. We define a

18



reduction stepη ⊢ Config1
R
−→
λ

Config2, as configurationConfig1 makes a reduction step to

Config2 with possible interferenceR and labelλ in a procedure contextη. The label indicates
whether this is a program action,p, or an environment action,e. Configurations are either

fault or a pair of a command and a structured heap,(C, σ). We use
R
−→n as then-step reduction

relation, and
R
−→∗ as the transitive and reflex closure of the reduction relation. A procedure

contextη maps procedure names to commands.
We alter the syntax ofatomic to have a postcondition annotationQ, to specify how the state

is split between shared and local on exit from the block. In CSLthe resource invariant does this
job, but we do not have a single resource invariant in this logic. Each of these postconditions
must be precise, so there is a unique splitting.

Definition 17 (Precise assertion). P is precise iff for everyl ∈ M , there exists at most onelP
such thatlP �SL P and∃l′. lP ⊎ l′ = l.

Consider the semantics ofatomic (Figure 5). The non-faulting rule (1) combines the
thread’s local state with the shared state to create a new local state,l⊎s = l1, (2) checks the
guard holds of this new state,b(l1), (3) executes the command with no interference on the shared
state (Emp), (4) splits the resulting local state into a new shared and local state,l′⊎s′ = l2, and
(5) finally checks the postconditionQ holds of the shared states′. As Q is precise, it uniquely
specifies the splitting in step (4). There are three more rules for atomic where the program
faults on the evaluation of the body, the evaluation of the guard, or fails to find a splitting to
satisfy the postcondition.

The next three rules concern abstract commands and environment transitions. The abstract
commandA executes correctly, if it runs correctly by accessing only the local state. Otherwise,
A faults. Its execution does not affect the shared and environment states. An environment tran-
sition can happen anytime and affects only the shared state and the environment state, provided
that the shared-state change describes the rely relation,R; the local state is unchanged.

The remaining rules deal with the standard language constructs: sequence, parallel, con-

ditional, skip and loop. Note that our semantics has the reduction η ⊢ (skip‖skip, σ)
R
−→
p

(skip, σ) instead of the reductionη ⊢ (skip‖C, σ)
R
−→
p

(C, σ) and its symmetric version. This

simplifies stating some of the following lemmas.
We extend the standard separation logic notion of safety with a guarantee observed by each

program action.

Definition 18 (Guarantee).
(1) η ⊢ (C, σ,R) guars0 G always holds; and

(2) η ⊢ (C, σ,R) guarsn+1 G iff if η ⊢ (C, σ)
R
−→
λ

Config then there existC ′ σ′ such that

Config = (C ′, σ′); η ⊢ (C ′, σ′,R) guarsn G; and if λ = p then(σ, σ′) ∈ G.
We defineη ⊢ (C, σ,R) guars G as a shorthand for∀n.η ⊢ (C, σ,R) guarsn G.

Lemma 19(Locality).

1. If η ⊢ (C, σ1⊎σ′)
R
−→∗ (C ′, σ2) then either there existsσ′

2 such thatη ⊢ (C, σ1)
R
−→∗ (C ′, σ′

2)

andσ′
2 ⊎ σ′ = σ2, or η ⊢ (C, σ1)

R
−→∗ fault; and

2. If η ⊢ (C, σ1 ⊎ σ′)
R
−→∗ fault thenη ⊢ (C, σ1)

R
−→∗ fault.
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Proof. Proved in Coq.

We use the following two lemmas about relies and guarantees.

Lemma 20. 1. If η ⊢ (C, σ,R) guars G, thenη ⊢ (C, σ ⊎ σ′,R) guars G ′

2. If η ⊢ (C, σ,R) guars G andG ⊂ G ′, thenη ⊢ (C, σ,R) guars G ′

Proof. Proved in Coq.

Lemma 21. If η ⊢ (C, σ)
R
−→∗ (C ′, σ′) andR ⊂ R′, thenη ⊢ (C, σ)

R′

−→∗ (C ′, σ′)

Proof. Proved in Coq.

We use the following two lemmas about the operational semantics to simplify proofs.

Lemma 22. η ⊢ (C, σ)
R
−→∗ (C ′, σ′) iff η ⊢ (C‖skip, σ)

R
−→∗ (C ′‖skip, σ′).

Proof. Proved in Coq.

Lemma 23. 1. η ⊢ (C, σ)
R
−→∗ (C, σ′) iff η ⊢ (C, σ)

R
−→
e

(C, σ′)

2. η ⊢ (C, σ)
R
−→∗ fault iff η ⊢ (C, σ)

R
−→
e

(C, σ′′)
R
−→
p

fault

3. η ⊢ (C, σ)
R
−→∗ (skip, σ′) iff η ⊢ (C, σ)

R
−→
e

(C, σ′′)
R
−→
p

(skip, σ′′′)
R
−→
e

(skip, σ′)

whereC = atomicQ(b){C ′} or C = A

Proof. Proved in Coq.

To prove the soundness of the parallel composition rule, we require the following: (1) if we
have the guarantee of two commands,C1 andC2, then we have the guarantee of their parallel
composition; and (2) if the parallel composition of two commands can make a reduction, then
the two commands can also make that reduction given an extended rely condition.

Lemma 24. If η ⊢ (C1, σ1, (R∪G2)) guars G1, η ⊢ (C2, σ2, (R∪G1)) guars G2 andσ1⊎σ2 = σ
thenη ⊢ (C1‖C2, σ,R) guars G1 ∪ G2

Proof. Proved in Coq.

Lemma 25. If η ⊢ (C1, σ1, (R ∪ G2)) guars G1, η ⊢ (C2, σ2, (R ∪ G1)) guars G2, σ1 ⊎ σ2 = σ

andη ⊢ (C1‖C2, σ)
R
−→∗ (C ′

1‖C
′
2, σ

′) then there existsσ′
1 andσ′

2 such thatη ⊢ (C1, σ1)
R∪G2−−−→∗

(C ′
1, σ

′
1), η ⊢ (C2, σ2)

R∪G1−−−→∗ (C ′
2, σ

′
2) andσ′

1 ⊎ σ′
2 = σ′.

Proof. Proved in Coq.

The following two lemmas are used in the soundness of the sequencing rule.

Lemma 26. If η ⊢ (C1, σ,R) guars G and for all σ′ such thatη ⊢ (C1, σ)
R
−→∗ (skip, σ′) ⇒

(C2, σ
′,R) guars G, thenη ⊢ (C1; C2, σ,R) guarsn G

Proof. Proved in Coq.

Lemma 27. If η ⊢ (C1; C2, σ)
R
−→n (skip, σ′′) then η ⊢ (C1, σ)

R
−→∗ (skip, σ′) and η ⊢

(C2, σ
′)

R
−→∗ (skip, σ′′).
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Proof. Proved in Coq.

We are now in a position to state and prove the soundness of this logic.

Definition 28. η |=n C sat (p,R,G, q) iff for all R′ ⊆ R andσ �R′ p, then

1. η ⊢ (C, σ, [[R′]]) guars [[G]]; and

2. if η ⊢ (C, σ)
[[R]]′

−−→n (skip, σ′) thenσ′ �[[R]]′ q.

Definition 29. Γ |=n η iff ∀(proc sat (p,R,G, q)) ∈ Γ thenη |=n (η(proc)) sat (p,R,G, q)

Definition 30. Γ |=n C sat (p,R,G, q) iff forall η if Γ |=n η thenη |=n+1 C sat (p,R,G, q)

Theorem 31(Soundness). If Γ ⊢ C sat (p,R,G, q), then∀n.Γ |=n C sat (p,R,G, q)

Proof. By induction on the proof rules. Let[[R]] = R.

• Atomic command:
�SL P1 ∗ P2 =⇒ (b) def

⊢ C sat ((P1 ∗ P2) ∧ b, {}, {},∃y. Q1 ∗ Q2)
Q stable under R (P1  Q1) ⊆ G

y ∩ FV (P2) = ∅ �SL P ⇒ P1 ∗ F �SL Q1 ∗ F ⇒ Q

⊢ (atomicQ(b){C}) sat (∃y. P ∗ P2, R,G,∃y. Q ∗ Q2)

It suffices to consider three possible reduction sequences (Lemma 23). We can ignore
the environment actions due to Lemma 5. Hence we can assume(σ, i) �R P ∗ P2

and(atomicQ(b){C}, σ)
R
−→
p

Config and prove there existsσ′ st Config = (skip, σ′),

(σ, σ′) ∈ [[G]] and(σ′, i) �R Q ∗Q2. Let (l, s, o) = σ andl1 = l ∗ s. Note that, if it cannot
reduce then it holds trivially.
Case: l1, i �SL b does not hold. As(l1, i �SL (b) def), there are no reduction rules that
apply. Hence it holds trivially.
Case:l1, i �SL b holds. Therefore, we knowl1, i′ �SL (P ∗ P2) ∧ B where∃v.i′ = i[y 7→
v].
Hence, by assumption we knowl1, i′ �SL (P1 ∗ F ∗ P2) ∧ b, and asb defined byP1 ∗ P2,
we getl1, i′ �SL ((P1 ∗ P2) ∧ b) ∗ F .
Sol′1, i

′ �SL (P1 ∗ P2) ∧ b ands1, i
′ �SL F wherel′1 ⊎ s1 = l1. By assumption we have:

(C, (l′1, ∅, o), {}) guars {}

∀l2. (C, (l′1, ∅, o))
{}
−→∗ (skip, (l′2, ∅, o

′))
⇒ (l′2, ∅, o

′) �R Q1 ∗ Q2

By Lemma 19 and 20, we know

(C, (l1, ∅, o), {}) guars {} (1)

∀l2. (C, (l1, ∅, o))
{}
−→∗ (skip, (l2, ∅, o

′))
⇒ (l2, ∅, o

′) �R Q1 ∗ Q2 ∗ F ∧ l2 = l′2 ⊎ s1

(2)

We now proceed by case analysis on the possible reduction rule:

1.
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l⊎s = l1 b(l1) = fault

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

fault

We knowl1, i
′ �SL P ∗ P2, thereforeb(l1) 6= fault, so this rule does not apply.

2.
l⊎s = l1 b(l1)

η ⊢ (C, (l1, ∅, o))
Emp
−−−→∗fault

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

fault

From (1) we know the body cannot fault, so this rule does not apply.
3.

l⊎s = l1 b(l1) l2 2 Q∗true

η ⊢ (C, (l1, ∅, o))
Emp
−−−→∗(skip, (l2, ∅, o

′))

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

fault

We know thatl2, i′ �SL Q ∗ Q2 and hencel2 �SL Q ∗ true. Therefore this rule does
not apply.

4.
l⊎s = l1 b(l1) l′⊎s′ = l2 Q(s′)

η ⊢ (C, (l1, ∅, o))
Emp
−−−→∗(skip, (l2, ∅, o

′))

η ⊢ (atomicQ(b){C}, (l, s, o))
R
−→
p

(skip, (l′, s′, o′))

We know thatl2, i′ �SL Q1 ∗ F ∗ Q2 andl′2 ⊎ s1 = l2.
By assumption we knowl2, i′ �SL Q ∗ Q2.
As Q is precise we knowl′ �SL Q2.
As Q is stable underR and Lemma 7, we know(∅, s′, o′), i′ �R Q.
Thus,(l′, s′, o′), i′ �R Q ∗ Q2, and therefore(l′, s′, o′), i �R ∃y. Q ∗ Q2.

We know l′2, i
′ �SL Q1 ∗ Q2. Therefore there exists′′ and l3 such thats′′ ⊎ l3 =

l′2 ands′′, i′ �SL Q1 and l3, i
′ �SL Q2. Therefores′′ ⊎ s1, i

′ �SL Q1 ∗ F and hence
s′′ ⊎ s1, i

′ �SL Q. As Q is precise,l′ ⊎ s′ = l1 ands′′ ⊎ s1 ⊎ l3 = l1, we know
s1 ⊎ s′′ = s′. Hence the step(s′1 ⊎ s1, s

′′ ⊎ s1) is in [[P1  Q1]], and hence inG
as required.

• Sequential composition: Follows from Lemmas 26 and 27.
• Parallel composition: Follows from Lemmas 24 and 25, and using the stability assump-

tions with Lemma 7.
• Skip: Trivial
• Basic action:

sat SL{P}A{Q}

A sat (P,R,G, Q)

It suffices to consider three possible reduction sequences (Lemma 23). Assumeσ �R P ,
and prove

1. (A, σ,R) guars G; and

2. if (A, σ)
R
−→∗ (skip, σ′) thenσ′ �R Q.

To prove (1), assume(A, σ)
R
−→
e

(A, σ′)
R
−→
p

Config and prove existsσ′′ st Config =

(skip, σ′′) and(σ′, σ′′) ∈ G. Let (l, s, e) = σ and(l′, s′, e′) = σ′, by first reduction, we
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know l = l′, and asP only depends on local state, thenσ′ �R P . ThereforeConfig is not
a fault, and henceσ′′ = (l′′′, s′, e′), so(σ′, σ′′) ∈ G.

To prove (2), assume(A, σ)
R
−→
e

(A, σ′)
R
−→
p

(skip, σ′′)
R
−→
e

(skip, σ′′′). By construction,

we knowσ′′ �R Q. Let (l′′, s′′, e′′) = σ′′ and(l′′′, s′′′, e′′′) = σ′′′, hencel′′ = l′′′ therefore
σ′′′ �R Q as required.

• Frame: AsC andskip‖C are equivalent with respect to the operational semantics by
Lemma 22. We can derive the frame rule from the parallel rule.If C contains critical
regions:

|= C sat (p,R,G, q)

|= C sat (wssaR(p), R,G, q) L stable under R ∪ G |= skip sat (L,R ∪ G, {}, L)

|= (C ‖ skip) sat (wssaR(p) ∗ L,R,G, q ∗ L)

|= (C ‖ skip) sat (p ∗ L,R,G, q ∗ L)

|= C sat (p ∗ L,R,G, q ∗ L)
andC does not contain critical regions:

|= C sat (p,R, {}, q)

|= C sat (wssaR(p), R, {}, q)

|= skip sat (L,R, {}, L)

|= skip sat (wssaR(L), R, {}, L)

|= (C ‖ skip) sat (wssaR(p) ∗ wssaR(L), R,G, q ∗ L)

|= (C ‖ skip) sat (p ∗ L,R,G, q ∗ L)

|= C sat (p ∗ L,R,G, q ∗ L)
where

– wssaR(P )
def
= wssaR(P ),

– wssaR(P )
def
= P ,

– wssaR(p op q)
def
= wssaR(p) op wssaR(q), and

– wssaR(qu x. p)
def
= qu x. wssaR(p);

and hence|=R wssa[[R]](p) ⇔ p; and wssa[[R]](p) stable under R.
• Consequence: Follows from Lemmas 21 and 20.
• While rule: Follows directly from induction on number of reduction steps.
• Procedure rule: Follows directly from induction on number of reduction steps.

We must prove the read axiom separately, as it depends on particular model of separation
logic. We can view a non-atomic read as two atomic reads, which fault if the they read different
values: local temp;atomic{x=[e]}; atomic{temp=[e]}; if (x!=temp) fault . As

e 7→ e′ ∗ P ⇔ wssaR(e 7→ e′ ∗ P ) wssaR(e 7→ e′ ∗ P ) ⇒ e 7→ e′ ∗ P

We can derive it as follows:
{

e 7→ e′ ∗ P
}

{

wssaR(e 7→ e′ ∗ P )
}

atomic{x=[e]};
{

wssaR(e 7→ e′ ∗ P ) ∧ x = e′
}
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atomic{temp=[e]};
{

wssaR(e 7→ e′ ∗ P ) ∧ x = e′ ∧ temp = e′
}

if (x!=temp) fault
{

wssaR(e 7→ e′ ∗ P ) ∧ x = e′
}

{

e 7→ e′ ∗ P ∧ x = e′
}

6 Late stability checks

The rules presented so far check stability at the forks of parallel composition and on the exits
of atomic blocks.

We can provide a similar semantics where we delay the stability checks to the entry of
atomics and joins of parallel compositions. This semantics uses the strongest stable weaker
assertion.

Definition 32 (Strongest stable weaker assertion). • q ⇒ sswaR(q);
• sswaR(q);R =⇒ sswaR(q); and
• for all p, if p;R =⇒ R andq ⇒ p, then sswaR(q) ⇒ p.

We use this to define the semantics of shared assertions as:

l, s, i �R P ⇐⇒ l = ∅ ∧ s, i �SL sswa[[R]](P )

This definition also ensures that assertions are semantically resistant to interference.

Lemma 33. If (l, s, i �R p), s′ ⊎ l defined and[[R]](s, s′) then(l, s′, i �R p).

However, this semantics reverses the direction of Lemma 7:

Lemma 34. If (l, s, i �R p), [[R]] ⊇ [[R′]] andp stable under R′ then(l, s, i �R′ p). Note that
(l, s, i �R p) and [[R′]] ⊇ [[R]] then(l, s, i �R′ p).

7 Multiple regions

Concurrent separation logic is defined with multiple resource names for critical regions. We
can trivially extend our treatment to this setting by:

1. associating a region name to each boxed/shared assertion, i.e. P
r
;

2. instead of a singleR and a singleG, having a set of rely/guarantee pairs index by resource
name, namelyI = r1:(R1, G1), . . . , rn:(Rn, Gn); and

3. annotating eachatomic with the relevant set of region names.

Here are the changes in more detail:
Each boxed assertion is now subscripted with the name of the region it describes. The shared

state,s, of our model is a function from region names to separation logic states, such that all the
states in its range are disjoint. The meaning of a boxed assertion is now as follows:

l, s �R P
r

def
= dom(l) = ∅ ∧ s(r) �SL P .
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It asserts that the local state is empty and that the relevantregion of the shared state satisfiesP .
The other regions of the shared state could be anything.

Judgements now have the form⊢ C sat (p, I, q), whereI is a mapping from resource
namesri to rely/guarantee pairs(Ri, Gi). We shall use theIR(ri) (resp.IR(ri)) notation for
accessing the rely (resp. guarantee) component ofI(ri).

Here is a simple rule for atomic blocks that access a single shared regionr:

⊢ C sat (P ′ ∗ P ′′, {}, Q′ ∗ Q′′)
P stable under IR(r) Q stable under IR(r)

P ′  Q′ =⇒ P  Q (P  Q) ⊆ IG(r)

⊢ (atomic{C}) sat (P
r
∗ P ′′, I, Q

r
∗ Q′′)

We can extend this rule to atomic blocks that access multipleshared regions as follows:

⊢ C sat (P ′
1 ∗ . . . ∗ P ′

n ∗ P ′′, {}, Q′
1 ∗ . . . ∗ Q′

n ∗ Q′′)

∀i ∈ {1, . . . , n}

(

Pi stable under IR(ri) Qi stable under IR(ri)
P ′

i  Q′
i =⇒ Pi  Qi (Pi  Qi) ⊆ IG(ri)

)

⊢ (atomic{C}) sat (P1 r1

∗ . . . ∗ Pn rn

∗ P ′′, I, Q1 r1

∗ . . . ∗ Qn rn

∗ Q′′)

As in CSL, we can create a statically scoped shared region of state,

⊢ C sat (P
r
∗ p, I ⊎ {r:(R,G)}, Q

r
∗ q) r /∈ dom(I) p, q contain no

r

⊢ C sat (P ∗ p, I, Q ∗ q)

Our semantics are almost unchanged to before, just with morestructure to represent the
multiple shared regions of memory.

Definition 35 (Structured heap). For a set of resource namesR, we define a structured heap,σ,
as a triple,(l, s, e), wherel, e : M ands : (R ⇀ M), such thatl ⊎ e ⊎ �r∈R s(r) is defined.

Joining two structured heaps is defined exactly as it was defined in Section 5 for a single
shared region:

Definition 36. (l1, s1, e1)⊎(l2, s2, e2) defined as(l, s, e), iff s1 = s2 = s, l1⊎ l2 = l, e1 = l2⊎e,
ande2 = l1 ⊎ e; otherwise it is undefined.

We can trivially extend the operational semantics to this new form of state. The lemmas and
the rest of the definitions are unchanged.

8 Local guards

The local state of a thread has a more subtle rôle in controlling interference than we have seen
so far. It acts as a token, a permission to perform a certain action, and as a guard, a prohibition
that the environment does some action.

In the operational semantics, an environment transition (Figure 5, last rule) requires that
the resulting state is well formed, that the new shared stateis disjoint from the local state. In
essence, the existence of the local staterestrictswhat the environment can do (e.g. it cannot
allocate an existing memory address).
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Besides its prohibitive r̂ole as to what other threads can do, the local state has a permissive
rôle. Its presence allows a thread to do more actions than it would otherwise be able to do
(e.g. in some algorithms, a mutex can be unlocked only by the thread that locked it).

So far, our proof rules have ignored these two rôles of the local state that are present in the
semantics. We can, however, extend our assertion language with guarded boxed assertionsL|S ,
whereL is an assertion about the local state, whose presence is usedin the stability proof ofS.
Similarly, guarded actionsG | P  Q use the guardG to stand for the local state that must be
owned for the action to occur.

Definition 37. The assertionL|S is stable under interference fromG | P  Q, if and only if,

((P −⊛ S) ∗ Q ⇒ S) ∨ ¬(P ∗ G ∗ L) ∨ ¬(Q ∗ L) ∨ ¬(S ∗ L)

The three new cases are when the action cannot execute. The local state that protects the
stability of a shared assertion cannot be accessed directly, because the shared assertion might
become unstable. We must each time redo a stability check.

9 Related work

Owicki & Gries [17] introduced the concept of non-interference between the proofs of parallel
threads. Their method is not compositional and does not permit top-down development of a
proof because the final check of interference-freedom may fail rendering the whole development
useless.

To address this problem, Jones [12] introduced the compositional rely/guarantee method. In
the VDM-style, Jones opted for ‘two-state’ postconditions; other authors [23, 19] have chosen
single-state postconditions. Several authors have provedthe soundness and relative complete-
ness of rely/guarantee [23, 19, 7]; Prensa’s proof [19] is machine checked by the Isabelle the-
orem prover. The completeness results are all modulo the introduction of auxiliary variables.
Abadi and Lamport [1] have adapted RG to temporal logic and have shown its soundness for
safety specifications.

Separation logic [20, 16] takes a different approach to interference by forbidding it except
in critical regions [11]. An invariant,I, is used to describe the shared state. This is a simple
case of our system where the interference specifications (i.e.R andG) are restricted to a very
simple relation,I  I. Brookes has shown concurrent separation logic to be sound [3].

There have been attempts to verify fine-grained concurrent algorithms using both separation
logic and rely/guarantee. Vafeiadiset al. [22] verify several list algorithms using rely/guaran-
tee. Their proofs require reachability predicates to describe lists and they cannot deal with the
disposal of nodes. Parkinsonet al. [18] verify a non-blocking stack algorithm using concurrent
separation logic. Their proof requires a lot of auxiliary state to encode the possible interference.
With the logic presented in this paper much of the auxiliary state can be removed, and hence
the proof becomes clearer.

Concurrently with our work, Feng, Ferreira and Shao [8] proposed a different combination
of rely/guarantee and separation logic, SAGL. Both our approach and SAGL partition memory
into shared and private parts. However, in SAGL, every primitive command is assumed to be
atomic. Our approach is more flexible and allows one to specify what is atomic; everything
else is considered non-atomic. By default, non-atomic commands cannot update shared state,
so we only need stability checks when there is an atomic command: in the lock coupling list
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only at the lock and unlock operations. On the other hand, SAGL must check stability after
every single command. Moreover, in SAGL, the rely and guarantee conditions are relations and
stability checks are semantic implications. We instead provide convenient syntax for writing
down these relations, and reduces the semantic implicationinto a simple logic implication. This
allowed us to automated our logic [6], and hence automatically verify the safety of a collection
of fine-grained list algorithms.

SAGL is presented as a logic for assembly code, and is thus hard to apply at different
abstraction levels. It does not contain separation logic asa proper subsystem, as it lacks the
standard version of the frame rule [20]. This means that it cannot prove the usual separation
logic specification of procedures such ascopy tree [15]. In contrast, our system subsumes
SL [20], as well as the single-resource variant of CSL [16]: hence, the same proofs there (for a
single resource) go through directly in our system. Of course, the real interest is the treatment of
additional examples, such as lock coupling, that neither separation logic nor rely/guarantee can
prove tractably. Our system also includes a rely-guaranteesystem, which is why we claim to
have produced a marriage of the two approaches. It may be possible to extend SAGL to include
the frame rule for procedures, but we understand that such extension is by no means obvious.

With this all being said, there are remarkable similaritiesbetween our work and SAGL; that
they were arrived at independently is perhaps encouraging as to the naturalness of the basic
ideas.

10 Conclusion

We have presented a marriage of rely/guarantee with separation logic. We proved soundness
with respect to an abstract operational semantics in the style of abstract separation logic [5].
Hence, our proof can be reused with different languages and with different separation logics,
e.g. permissions and variables as resource [2]. Our logic allows us to give a clear and simple
proof of the lock-coupling list algorithm, which includes memory disposal. Moreover, our logic
can be efficiently automated [6].
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A Proof outlines

locate (e){ local p,c, t ;
{

∃A. ls(Head, A,nil) ∗ s(A) ∧ −∞ < e
}

p = Head;
{

∃ZB. ls(Head, {}, p) ∗ N(p,−∞, Z) ∗ ls(Z, B,nil) ∗ s(−∞·B) ∧ −∞ < e
}

lock(p);
{

∃Z. ∃B. ls(Head, {}, p) ∗ Ltid(p,−∞, Z) ∗ ls(Z, B,nil) ∗ s(−∞·B) ∗ (p+27→Z) ∧ −∞ < e
}

c = p.next ;
t = c. value ;
while ( t < e) {
{

∃u.
∃ZAB. ls(Head, A,p) ∗ Ltid(p, u, c)
∗ N(c, t, Z) ∗ ls(c, B,nil) ∗ s(A·u·t·B)

∗ (p+27→c) ∧ u < e ∧ t<e

}

lock(c );
{

∃uZ.
∃AB. ls(Head, A,p) ∗ Ltid(p, u, c)
∗ Ltid(c, t, Z) ∗ ls(Z, B,nil) ∗ s(A·u·t·B)

∗ (p+27→c) ∗ (c+2 7→Z) ∧ t < e

}

unlock(p);
{

∃Z.
∃AB. ls(Head, A, c) ∗ Ltid(c, t, Z)

∗ ls(Z, B,nil) ∗ s(A·t·B)
∗ (c+2 7→Z) ∧ t < e

}

p = c;
c = p.next ;
t = c. value ;
{

∃u.
∃ZAB. ls(Head, A,p) ∗ Ltid(p, u, c)
∗ N(c, t, Z) ∗ ls(Z, B,nil) ∗ s(A·u·t·B)

∗ (p+27→c) ∧ u < e

}

}
{

∃uv.
∃ZAB. ls(Head, A,p) ∗ Ltid(p, u, c)
∗ N(c, v, Z) ∗ ls(Z, B,nil) ∗ s(A·u·v·B)

∗ (p+27→c) ∧ u < e ∧ e ≤ v

}

return (p,c );
}

add(e) { local x,y,z, t ;
{

∃A. ls(Head, A,nil) ∧ s(A) ∧ −∞ < e
}

(x,z) = locate (e );
{

∃uv. ∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, z) ∗ N(z, v, Z) ∗ ls(Z, B,nil) ∗ s(A·u·v·B)

∗ (x+27→z) ∧ u < e ∧ e ≤ v

}

t = z. value ; if ( t != e) {
y = cons(0,e,z );
x.next = y;

{

∃uv.
∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, z)

∗ ls(z, B,nil) ∗ s(A·u·e·B)
∗ (x+27→y) ∗ U(y, e, z)

}
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}
unlock(x );

{

∃v. ∃A. ls(Head, A,nil) ∗ s(A)
}

}

remove(e){ local x,y,z, t ;
{

∃A. ls(Head, A,nil) ∗ s(A) ∧ −∞ < e ∧ e < +∞
}

(x,y) = locate (e );
{

∃uv. ∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ N(y, v, Z) ∗ ls(Z, B,nil) ∗ s(A·u·v·B)

∗ (x+27→y) ∧ u < e ∧ e ≤ v ∧ e < +∞

}

t = y.value ; if ( t == e) {
{

∃u. ∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ N(y, e, Z) ∗ ls(Z, B,nil) ∗ s(A·u·e·B)

∗ (x+27→y) ∧ e < +∞

}

lock(y );
{

∃uZ. ∃AB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ Ltid(y, e, Z) ∗ ls(Z, B,nil) ∗ s(A·u·e·B)

∗ (x+27→y) ∗ (y+27→Z) ∧ e < +∞

}

z = y.next ; x.next = z;
{

∃u. ∃AB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ ls(z, B,nil) ∗ s(A·u·B)

∗(x+27→z) ∗ (y+27→z)

}

unlock(x );
{

∃A. ls(Head, A,nil) ∗ s(A) ∗ Ltid(y, e, z) ∗ (y+27→z)
}

dispose(y );
} else { unlock(x ); }

{

∃A. ls(Head, A,nil) ∗ s(A)
}

}

B Heap-reading expressions

The examples of this paper use a more complex set of expressions which dereference the heap.

E ::= n | x | [E] | E + E | E − E | . . .

We can, however, translate theseimpureexpressions into a formula asserting that they evaluate
to a given value,v. We writeJEKv for such a translation.

JnKv
def
= v = n

JxKv
def
= v = x

J[E]Kv
def
= ∃y. y 7→ v ∧ JEKy

JE1+E2Kv
def
= ∃x1 x2. v=x1+x2 ∧ JE1Kx1

∧ JE2Kx1

We say that the expressionE is defined in the current heap, ifJEKx is true for some valuex.

(E) def ⇐⇒ ∃x.JEKx

Similarly, we can allow boolean tests to access the heap:

b ::= E==E | . . .
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These boolean tests can be lifted to formulae in the logic by

JE1==E2K
def
= ∃x1, x2. JE1Kx1

∧ JE2Kx2
∧ x1 = x2

A boolean test is defined in the current heap if all its expressions are defined.

(E1==E2) def
def
= ∃x1, x2. JE1Kx1

∧ JE2Kx2

Finally, we can give the actual atomic rule with a heap-reading guard as

�SL P1 ∗ P2 =⇒ (b) def
⊢ C sat ((P1 ∗ P2) ∧ b, {}, {},∃y. Q1 ∗ Q2)

Q stable under R (P1  Q1) ⊆ G
y ∩ FV (P2) = ∅ �SL P ⇒ P1 ∗ F �SL Q1 ∗ F ⇒ Q

⊢ (atomicQ(b){C}) sat (∃y. P ∗ P2, R,G,∃y. Q ∗ Q2)

C Properties of septraction (−⊛)

The following properties are direct consequences of the definitions.

emp −⊛ P ⇐⇒ P

(P ∗ Q) −⊛R ⇐⇒ P −⊛ (Q −⊛R)

P −⊛Q ⇐⇒ P −⊛ (Q ∧ (P ∗ true))

In addition, septraction distributes over∨, and semi-distributes over∧.

P −⊛ (Q ∨ R) ⇐⇒ (P −⊛Q) ∨ (P −⊛R)

(P ∨ Q) −⊛R ⇐⇒ (P −⊛R) ∨ (Q −⊛R)

P −⊛ (Q ∧ R) =⇒ (P −⊛Q) ∧ (P −⊛R)

(Q ∧ R) −⊛ P =⇒ (Q −⊛ P ) ∧ (R −⊛ P )

If P is exact(i.e. for allh1, h2, andi, if h1, i �SL P andh2, i �SL P thenh1 = h2), the last two
properties become equivalences. When we are septracting a single memory cell,x 7→ y, then
futher properties hold:

x 7→ y −⊛ P ⇐⇒ (x 7→ y −⊛ P )⇂x

x 7→ y −⊛ z 7→ w ⇐⇒ x = z ∧ y = w ∧ emp

x 7→ y −⊛ (P ∗ Q) ⇐⇒ ((x 7→ y −⊛ P ) ∗ Q⇂x)

∨ ((x 7→ y −⊛Q) ∗ P ⇂x)

x 7→ y −⊛ emp ⇐⇒ false

whereP ⇂x
def
= P ∧ ¬(∃y. x 7→ y ∗ true). Intuitively, if we remove a memory cell fromP , the

result does not contain the removed cell. If we remove a memory cell from another memory cell,
the two memory cells must be identical and the resulting state is empty. Removing a memory
cell from a separating conjuction of two formulae generatesa case split: the cell could belong
either to the first conjunct or to the second. This equivalence is reminiscent of the chain rule of
differentiation (d(yz)

dx
= dy

dx
z + y dz

dx
). Finally, removing a cell from the empty heap is impossible.
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