
Technical Report
Number 663

Computer Laboratory

UCAM-CL-TR-663
ISSN 1476-2986

Syntax-driven analysis of
context-free languages with respect

to fuzzy relational semantics

Richard Bergmair

March 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2006 Richard Bergmair

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Syntax-driven analysis of context-free languages with

respect to fuzzy relational semantics

Richard Bergmair

Abstract

A grammatical framework is presented that augments context-free production
rules with semantic production rules that rely on fuzzy relations as representations
of fuzzy natural language concepts. It is shown how the well-known technique
of syntax-driven semantic analysis can be used to infer from an expression in a
language defined in such a semantically augmented grammar a weak ordering on
the possible worlds it describes. Considering the application of natural language
query processing, we show how to order elements in the domain of a relational
database scheme according to the degree to which they fulfill the intuition behind a
given natural language statement like Carol lives in a small city near San

Francisco.

1 Introduction and motivation

It may be one of the most well established traditions in science to view an expression, no
matter whether drawn from a formal or a natural language, as a strict binary decision
boundary making a sharp distinction between that which is fundamentally right and that
which is fundamentally wrong. However, for a large number of application areas, maybe
even the majority of them, this principle does not reflect any conceivable reality. When
Zadeh (1965) first stated that, in complete contradiction to the well-established dictum,
“the classes of objects encountered in the real world do not have precisely defined criteria
of membership” he probably expressed what was on the minds of most practitioners
working in any of those areas at the time.

“I’d like my new heating to heat up slightly if the heat isn’t already quite high

and the outside temperature is fairly low.” — “I’d like my new camera to
use the flashlight only if the lighting is really low and the camera detects that
I can’t hold the camera steadily for long enough.” – “I’d like that database
query to give me all students who receive a high bursary and spend way too

much money on clothes.”

How is an engineer going to translate those specifications into the world of binary decision
boundaries? Is it okay if the heating-controller increases the target temperature by 2 ◦C
(instead of “slightly”), if the temperature isn’t already > 24 ◦C (instead of “quite high”)
and the outside temperature is < 10 ◦C (instead of “really low”)? If those decision
boundaries perfectly match the intuition behind the original specification, would it be
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fair to say that the parameters 2.2 ◦C, > 23 ◦C, and < 11 ◦C violate this same intuition,
just because some threshold had to be fixed when designing that heating controller?

In a consumer-satisfaction survey, 65% of the respondents claimed to feel
extremely refreshed when drinking Frizz-cola. Another 20% claimed to feel
very refreshed. Only 10% said they would feel not very refreshed, and as little
as 5% said they would feel not refreshed at all.

What is a statistician going to do with this data to conclude, whether or not Frizz-Cola is
refreshing? Does a respondent who calls Frizz-cola extremely refreshing make up for twice
as much evidence to conclude that it is, than a respondent who calls it very refreshing?
If 2 is precisely the correct factor, would it not be absurd to assume that 2.05 is not, just
because a linear scale had to be used, so traditional statistic tools could be applied?

• The car that the man has is nice.

• The wheel that the car that the man has has is nice.

• The rim that the wheel that the car that the man has has has is nice.

Which of these sentences should a linguist accept as grammatically well-formed? Would
it be fair to say, that an “onion-sentence” like this may not use more than 2 levels of
centre embedding? If an onion-sentence with 2 shells is absolutely grammatical, would it
be okay to refuse a sentence with 3 shells as entirely ungrammatical, just because such a
judgement had to be made to write a grammar?

In this paper, we will follow up on Lakoff’s insight that “Natural Language concepts
are fuzzy” and that “therefore natural logic must be a fuzzy logic” (see Parret 1974, p.
196). We will give up on strict logical distinctions between that which is fundamentally
right and that which is fundamentally wrong, and, like Zadeh did, talk about degrees to
which something is right or wrong. We will give up on strict syntactic distinctions between
that which is absolutely grammatical and that which is absolutely ungrammatical, and,
like Lakoff did, talk about degrees to which something is grammatical or ungrammatical.
The primary objective of our model of natural language semantics is not to arrive at
a partitioning of possible worlds described by the statement but rather at an ordering
of them. We believe that this approach makes sense in the context of most modern
applications of natural language technology, the most obvious example being information
retrieval: A search engine that outputs an unordered set of search results would clearly
not attract many users. This is why we believe that natural language semantics with
respect to fuzzy models should be a highly rewarding object of study in natural language
processing.

Furthermore we will follow up on the paradigm shift incepted by Zadeh when he
introduced linguistic variables to fuzzy systems theory (Zadeh 1975a,b,c). We will not
approach approximate reasoning as a mathematical toolset to manipulate sets in terms of
arbitrarily chosen many-valued characteristic functions. Rather, we will try to reinforce
fuzzy logic as the study of the inherently vague concepts of reasoning employed in human
communication, and enforce the agreement of fuzzy models with our intuitions about
the nature of the vague categories of reasoning they are meant to denote. We believe
that this is what distinguishes fuzzy logic from other methods of soft computing such as
neural networks, genetic algorithms, and computational learning theory, which tend to
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turn their models into uninterpretable black-boxes. This is why we believe that fuzzy
models as established by natural language semantics should be a rewarding object of
study in fuzzy systems theory and approximate reasoning.

2 History of prior work

Zadeh’s landmark paper (Zadeh 1965) is probably the starting point of fuzzy logic as
we know it today. Although the importance of everyday quantitative expressions for the
mathematical analysis of vague concepts was recognized earlier, for example by Sheppard
(1954) in the domain of quantitative research methodology, Zadeh was the first to propose
mathematical tools to cope with the general concept of fuzziness on a broad scale. At
the time of their inception, Zadeh’s ideas were well received in the systems engineering
community, and developed into a rich toolset addressing the pressing needs of engineers
to cope with imprecisely defined concepts. (See Gaines & Kohout (1977) for an exposition
of early work in the field).

In the course of the first rush of euphoria, formal language theory, being part of the
body of engineering wisdom that was generically made subject to “fuzzification” during
that time, was taken into the fuzzy domain by Lee & Zadeh (1969). However the idea of a
fuzzified formal language theory did not receive much attention, when fuzzy systems were
only just beginning to be successfully applied to simple control-tasks and formal language
theory was of interest only to fields like compiler construction that naturally had little
use for vague concepts.

Linguists, on the other hand, remained widely unaware of the developments that took
place in the engineering world, until Lakoff picked up the idea of Fuzzy Logic in the mid
1970s (see Parret 1974, p. 196). Unfortunately, although most linguists have had little
trouble accepting the idea of vague concepts, its impact on semantic theory has remained
only of secondary interest to linguists following the tradition of Chomsky (see Parret 1974,
p. 50).

During the same period computer science saw the rise of artificial intelligence and its
historically unparalleled interest in meaning representation. Considerable work on fuzzy
meaning representation schemes was carried out by Goguen (1974), who also attempted
to build a fuzzy Shrdlu, a robot capable of carrying out commands input in natural
language in the domain of a fuzzy microworld (Goguen 1975). Zadeh proposed a fuzzy
meaning representation scheme for natural languages as well (Zadeh 1978). However, these
representation schemes were mainly concerned with meaning as such, rather than meaning
in relation to natural languages. Later, Zadeh presented test-score semantics (Zadeh
1981, 1982) in an approach to bridge the gap between natural language representation
and his fuzzy meaning representation. However his technique was never deployed in an
actual grammar. A decade later, Novak presented what is probably the only work really
concerned with the nuts and bolts of natural language from the point of view of fuzzy
logic (Novak 1992, 1991).

Another important development of the mid 1970s was that, besides fuzzy logic, other
methods of soft computing came along, such as neural networks and genetic algorithms.
Fuzzy logic distinguished itself by putting renewed emphasis on the motivations that
originally gave rise to its inception – the vaguely defined categories employed by humans in
natural language reasoning. It was realized that humans use natural language expressions
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to refer to those categories where fuzzy logic used sets defined in terms of numeric valued
characteristic functions. This lead to the inception of the “linguistic variable” (Zadeh
1975a,b,c), a formal tool which makes explicit the correspondence between these two
denotational variants of vague concepts. Engineers following the new paradigm were
no longer free to pick fuzzy sets at will, but they had to bear in mind that fuzzy sets
are meant to resemble meanings of natural language expressions. This aspect has only
recently experienced renewed attention in an attempt to come to grips with what exactly
it means for a linguistic variable to be interpretable in terms of natural language concepts
(Bodenhofer & Bauer 2003, De Cock et al. 2000, De Cock & Kerre 2002).

After the early days of applying fuzzy logic to each and every conceivable problem that
inspired the artificial intelligence community back in the 1970s, fuzzy logic experienced
some decline in popularity in the decades that followed and matured to become the
subject of major work on the foundations of mathematics, mainly carried out in eastern
Europe, most notably the discovery of fuzzy logic as a generalization of classic logic that
preserves its property of Hilbert completeness, and an operative technology that enabled
many remarkable technical achievements, celebrated mostly by Japanese engineers. But,
despite these successes it may be fair to say that, to this day, fuzzy logic has failed to live
up to the high expectations artificial intelligence enthusiasts once had, when they set out
to deploy the technology to make machines understand the categories of reasoning that
humans use to successfully communicate to each other vague ideas and concepts.

Only recently, Zadeh took up renewed interest in this line of research, addressing the
main shortcoming when he observes that “progress has been, and continues to be, slow
in those areas where a methodology is needed in which the objects of computation are
perceptions – perceptions of time, distance, form, direction, color, shape, truth, likelihood,
intent, and other attributes of physical and mental objects” (Zadeh 2001). The key point
Zadeh has to make about perceptions is that they are inherently fuzzy, and that humans
use natural language representations where machines use numeric measurements. Thus,
the paradigm shift that takes Zadeh into his “new direction of artificial intelligence” is one
that takes us “from computing with numbers to computing with words” (Zadeh 1999).
The representations of fuzzy concepts employed in his computational theory of perceptions
are linguistic in nature. They are expressions of a language he refers to as precisiated
natural language (Zadeh 2004b). Such a language would have to be natural, in the sense
that it is a formal language weakly equivalent to a subset of a natural language, and
precisiated, in the sense that every such expression can automatically be translated to a
form suitable for approximate reasoning.

At this point we would like to highlight one rather questionable assumption underlying
the more visionary end of Zadeh’s ideas: that a reduction from the problem of “computing
with words” to the strong AI problem is straightforward or even possible. For example
Zadeh often cites applications such as parking a car, driving in city traffic, playing golf,
or cooking a meal (Zadeh 2001) – those problems that actually do involve perceptions of
time, distance, form, direction, color, or shape, and not just perceptions of language as
such. His approach therefore presumes that representations of such perceptions in natural
languages such as English or German pay justice to the actual objects of cognition, which
assumes a flavour of Whorfianism possibly too strong for most contemporary linguists to
savour.

Nevertheless, a technology as envisioned by Zadeh, that enables the computational
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manipulation of linguistic expressions describing fuzzy concepts remains highly desirable.
In fact, for the technology described in this paper in particular, we can think at least
of two immediate applications: Natural language interfaces to flexible query processing
systems (Zadeh 2003, 2004a, Dvorak & Novak 2000), and software tools supporting the
implementation of fuzzy controllers in a linguistically intuitive way (Novak 1995, 1997,
Bodenhofer & Bauer 2003). More remote applications of such technology may possibly
include information extraction and retrieval and document classification.

3 The application:

Natural language query answering

3.1 The use case

Imagine the following scenario: Police are investigating a case of bank robbery, in which
one of the two perpetrators could be arrested, and confessed the identity of his accomplice.
Unfortunately all he can hint out, is that the accomplice was introduced to him as “Carol”,
and that she had once mentioned that she lived in a small city near San Francisco. In order
to find out where exactly Carol lives, police are now turning to the California registration
office: It has available data about its citizens, its cities, the distances between cities and
about where citizens reside in the form of a relational database, such as the one defined
in Section 4.1.

The investigators get access to the standard querying system used by registration
officers. It allows them to search for residency-records either by name or by city, and for
cities by population or by their distances from other cities. Unfortunately none of these
query masks is of any use for them, since there are too many people called “Carol” in
California, too many small cities and too many cities near San Francisco.

They have to join forces with an IT specialist who formulates the necessary non-
trivial SQL statements for them. Soon they find that not even SQL will provide the
level of access they need. What is “a small city” in terms of population? What city is
“near San Francisco” given its distance from San Francisco in kilometres? Ultimately
they und up fixing some thresholds, and formulating a database query that returns all
residency records, where Carol lives in a city whose population is less than 100000, and
whose distance from San Francisco is less than 100 kilometres. Each of the vast number
of records returned from that query in a random order is then checked by an investigator
who assesses whether or not a given record could be relevant.

It is obvious that this is far from an optimal solution. What we will propose in this pa-
per is a query interface that would let the investigators enter an expression from a query
language such as the one defined in Section 5.1. Since the query language is a subset
of English, they could enter something like Carol lives in a small city near San

Francisco (Zadeh 2001). The system would now return a sequence of records automat-
ically ranked according to the degree to which they fulfill the intuition most humans will
have about this statement.

For example, there might be a database record about someone called Carol who lives
in Half Moon Bay, a city which is both small, and near San Francisco, and a database
record about someone called Carol living in New York. Here it is clear that the former
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record deserves a higher ranking than the latter. However, if there is someone called Carol
who lives in Inverness, a city that is further away from San Francisco than Half Moon Bay
but much smaller this is not so clear. Here we have to find some way to weigh the two
criteria. One reasonable way of obtaining these weights would be to rely on our intuition
about the fuzzy concepts behind near and small. Clearly Carol lives in a really

tiny city fairly close to San Francisco favors Inverness over Half Moon Bay, and
Carol lives in a rather small city extremely close to San Francisco favors
Half Moon Bay over Inverness. It might be reasonable to assume that humans also
use these fuzzy concepts to encode the weights we are looking for. Intensifying modifiers
such as very, or extremely and weakening modifiers such as fairly, or more or less

are used quite frequently in natural language. However, in most traditional models of
natural language semantics, these modifiers do not play the important role they should,
simply because their semantic function does not fit into the picture of a natural language
expression as a strict binary decision boundary.

Fortunately Fuzzy Logic equips us with the tools necessary to extract such information.
These will be described in Section 6. With Fuzzy Logic and vague categories of reasoning
in the back of our mind, we will then turn to the obvious metalinguistic problem at
hand: How can a given expression from a context-free language be mechanically analyzed
with regard to our semantic model. Our solution will employ the rather well-established
technique of syntax-driven semantic analysis described in Section 7.

In Section 8 we will then put together the nuts and bolts of fuzzy semantics to arrive
at a model allowing us to derive the meaning of certain natural language expressions with
respect to relational data models. Appendix A will use all of this in a worked-out example
to determine a sequence of records taken from our example database ordered in such a
way that those records are listed first, that best satisfy the expression Carol lives in

a small city near San Francisco. Appendix B gives a Prolog program that does
the same.

3.2 Ordering-based semantics

More generally, the technique we will propose operates on a set of data represented in
some way Dat = {d1, d2, d3, . . . , dn}. An expression is taken to be a constraint Con on
these records. Such a constraint can be represented by an n-ary relation Con ⊆ Datn on
Dat for some n.

In standard query languages (such as SQL) the semantics of query expressions are
taken to be partition based.

Definition 1. The crisp or partition-based semantics of a query expression, with respect
to a set of records Dat is given by a unary relation Conc ⊆ Dat on Dat . (i.e. a subset
Conc of Dat)

Such a relation Conc partitions Dat into a set True of records in Dat that fulfill the
constraint, and a set False of records in Dat that do not fulfill the constraint. This
can be seen by letting True = Conc and False = Dat \ Conc or vice-versa. Obviously
everything is True or False (True ∪ False = Dat), and nothing is both True and False

(True ∩ False = ∅).
In contrast to this crisp approach, we will take a fuzzy approach by taking the seman-

tics of query expressions to be ordering-based:
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Definition 2. The fuzzy or ordering-based semantics of a query expression, with respect
to a set of records Dat is given by a binary relation Conf ⊆ Dat × Dat on Dat which is
reflexive, transitive and complete (i.e. a weak ordering on Dat).

Such a relation Conf can establish a weak ordering on Dat such that Conf (d1, d2) iff d1

satisfies the constraint “at least as well as” d2. Since Conf is a weak ordering we permit
two elements d1 and d2 to have “the same rank”, i.e. we permit that both Conf (d1, d2)
and Conf (d2, d1) although d1 6= d2.

Consequently the semantics of the unordered set of records

Dat = {d1, d2, d3, . . . , dn}

with respect to a constraint Conc is given by

({d | d fulfills Conc}, {d | d does not fulfill Conc})

in the case of partition-based semantics and by

〈d1, d2, d3, . . . , dn〉 such that i < j → di fulfills Conf at least as well as dj

in the case of ordering-based semantics.

Definition 3. Let Conf denote the ordering-based semantics of an expression. The d-
defuzzification of Conf is given by Conc = {d′ | Conf (d

′, d)}.

So, given the ordering-based semantics 〈d1, d2, d3, . . . , dn〉, we can derive the partition
based semantics ({d1, d2, . . . , di}, {di+1, di+2, . . . , dn}) by simply fixing a di. Intuitively,
departing from the fuzzy semantics for a constraint Conf , we arrive at its crisp semantics
Conc by stating that everything that fulfills Conf at least as well as di fulfills Conc in the
crisp sense, and everything else does not.

Lemma 1. If Conc represents the crisp semantics of an expression with respect to a set

of records Dat, then there also exists Conf , such that Conf denotes the ordering-based

semantics of the same expression with respect to Dat, and Conc is the d-defuzzification of

Conf for some d.

Proof. Let True = Conc and False = Dat −Conc. Choose weak orderings ConT on True

and ConF on False arbitrarily. Let Conf (d1, d2) iff one of the following applies:

• d1 ∈ True, d2 ∈ True, and ConT (d1, d2)

• d1 ∈ False, d2 ∈ False, and ConF (d1, d2)

• d1 ∈ True, d2 ∈ False

Since True is enumerable and weakly ordered, we can choose an element d ∈ True such
that ConT (d′, d) for all d′ ∈ True. It is easy to see that the d-defuzzification of Conf is
Conc.

So, given the partition based semantics ({d1, d2, . . . , di}, {di+1, di+2, . . . , dn}), we can
derive the ordering-based semantics 〈d1, d2, d3, . . . , dn〉 by fixing an arbitrary ordering
〈d1, d2, . . . , di〉 on {d1, d2, . . . , di} and an arbitrary ordering 〈di+1, di+2, . . . , dn〉 on {di+1, di+2,

. . . , dn}. If we concatenate these sequences to give us the fuzzy semantics 〈d1, d2, d3, . . . , dn〉,
then its di-defuzzification will yield the original partition-based semantics again.
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Place

Lives_In

Place_Name

Distance

1

*

1

1

*

1

*

*
1

1 1
Place_Pop

11

Figure 1: An entity-relationship diagram of our relational model

4 The semantic model:

A relational database

4.1 An example data model

The domain we operate in is defined in terms of a crisp data model that allows us to
reason about cities, about distances between cities, about people, and about who of the
people lives in which of the cities.

Our scheme involves the following relations:

• Person(p): The primary key p refers to a person.

• Person Name(p, x): The person referred to by primary key p has name x.

• Place(p): The primary key p refers to a place.

• Place Name(p, x): The place referred to by primary key p has name x.

• Place Pop(p, x): The place referred to by primary key p has population x.

• Place Distance(p, q, x): The places referred to by primary keys p and q are at a
distance x from each other.

• Lives In(x, y): The tuple (x, y) is a primary key referring to a person x living in a
place y.

In an industrial setup these relations will typically be database tables, or XML-files,
but they might just as well be sets of Prolog-facts, or data from a lexicon represented
in some special format. Figure 1 shows an entity-relationship diagram and Figure 2 shows
some example data for this relational scheme.

4.2 The relational model

More generally, we are interested in all semantic models that adhere to any relational
scheme, i.e. any microworld domain that can be represented by any relational database.

Definition 4. A relational scheme Sch = (Dom,Rel) consists of
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Person

p1

p2

p3

p4

Person Name

p1 Carol

p2 Frank

p3 Richard

p4 John

Place

c1

c2

c3

. . .
c57

Lives In

p1 c17

p2 c54

p3 c56

p4 c57

Place Name

c1 Altaneda

c2 Antioch

c3 Aptos

. . .
c6 Berkeley

. . .
c17 Half Moon Bay

. . .
c28 Oakland

. . .
c39 San Francisco

. . .
c53 New York

c54 Los Angeles

c55 Tokyo

c56 Cambridge

c57 Linz

Place Pop

c1 43000

c2 101124

c3 9396

. . .
c6 102049

. . .
c17 12208

. . .
c28 398844

. . .
c39 751682

. . .
c53 8085742

c54 3819951

c55 12064100

c56 131465

c57 183504

Place Distance

c1 c2 537 km
c1 c3 460 km

. . .
c39 c1 554 km
c39 c2 59 km
c39 c3 99 km

. . .
c39 c6 16 km

. . .
c39 c17 33 km

. . .
c39 c28 13 km

. . .
c39 c39 0 km

. . .
c39 c55 8266 km

. . .

Figure 2: Some example data for our database scheme
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• A finite set Dom which establishes the data domain for all atomic values that appear
throughout the database.

• A finite set Rel , of tuples rel ∈ Rel of the form rel = (R, n, p), where

– n ∈ N \ {0} is the arity of the relation.

– R ⊆ Domn is an n-ary relation on Dom, i.e. R is a set of tuples of the form
(d1, d2, . . . , dn) where each di ∈ Dom.

– p ∈ {1, 2, . . . , n} identifies a primary key, which is unique within a relation,
i.e. if r′ ∈ R is of the form r′ = (r′1, r

′

2, . . . , r
′

n) and r′′ ∈ R is of the form
r′′ = (r′′1 , r

′′

2 , . . . , r
′′

n), then r′p = r′′p implies that r′ = r′′.

5 The syntactic model:

A context-free language

5.1 An example grammar

Our query language is defined by a context-free grammar. As a point of departure note
that we want the following expressions (S) to be in our language:

S → Carol lives in a city near San Francisco

S → Carol lives in the large city near San Francisco

S → Carol lives in a very small city near San Francisco

S → Frank lives in San Francisco

We observe that each of these sentences contains a verb (V).

V → lives

and some noun-phrases (NP).

NP → Carol.

NP → San Francisco.

NP → a city near San Francisco.

We can now redefine S by stating that S is of the form.

S → NP V NP

We observe that our new definition of S now contains a number of expressions that were
not in our original definition of S such as Frank lives in a very small city near

San Francisco. The fact that our new definition now generalizes to other expressions
that perfectly match our intuition of what can be a query indicates that we are on the
right track. Unfortunately it will also contain a number of expressions that were not in
our original definition of S for a good reason, such as *Frank lives Frank. However, as
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S → NP VP

VP → V PP

VP → V NP

NP → Nom

NP → Det N’

N’ → N

N’ → AP N

N’ → N’ PP

AP → Adj

PP → near NP

PP → in NP

AP → very AP

Nom → Carol

Nom → Frank

V → lives

Det → a

Adj → small

N → city

Nom → San Fr.

Figure 3: Our example context-free grammar

we assume that we will use this grammar only for analysing sentences that are well-formed
sentences of English, we can neglect this for the moment.

We could proceed with this kind of analysis, until we arrive at the the grammar given
in Figure 5.1. At this point we would like to stress the fact that, from a linguistic point
of view, this grammar is far too simplistic to actually describe a substantial fragment
of English. However it serves demonstrative purposes quite well, as it is not entirely
unreasonable from a linguistic point of view and readily accessible.

5.2 Context-free grammar

More generally, we are interested in all syntactic models that adhere to any context-free
grammar.

Definition 5. A context-free grammar G = (V, T, P, S) consists of

• A finite non-empty set V of non-terminal symbols.

• A finite non-empty set T of terminal symbols.

• A set P of production rules, each of which is of the form A → a1a2 . . . an where A ∈ V

is a grammar variable, and each ai is a symbol, either terminal or non-terminal, i.e.
ai ∈ (V ∪ T).

• A start-symbol S ∈ V.

Definition 6. Fix a grammar G = (V, T, P, S). We say that a non-terminal symbol X ∈ V

yields a string α = t1t2 . . . tn of terminals ti ∈ T iff X → x1x2 . . . xm is a production in P

where for each xi

• xi ∈ V and xi yields the string of terminals αi, or

• xi ∈ T , in which case we take αi to be xi

and α is the concatenation α1 · α2 · . . . · αm.
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x height(x) µTallMen(x)
joe 140 cm 0.00
hank 150 cm 0.00
steve 160 cm 0.25
john 170 cm 0.50
peter 180 cm 0.75
frank 210 cm 1.00
george 220 cm 1.00

Figure 4: Persons and heights in the example

6 The logic tool:

Fuzzy sets and relations

6.1 An example for fuzzy reasoning

In order to work with fuzzy concepts, we will need to manipulate classes of objects with
imprecisely defined criteria of membership, such as the class TallMen of tall men. The
problem with the class of tall men, is that there is no sharp boundary deciding whether
or not john ∈ TallMen, given that John’s height is 170 cm. It would probably make sense
to state that frank ∈ TallMen if Frank’s height is 210 cm, and that hank 6∈ TallMen if
Hank’s height is 150 cm. The idea that lies at the basis of fuzzy logic is that everything
in between will be a matter of degree. That is to say, although there may not be a an
intuitive criterion by which to judge whether or not john ∈ TallMen it will be easy to fix
a ranking of tall men

〈hank, john, frank〉.

Such a ranking can be constructed from a representation by means of numeric degrees
of fulfillment from the unit interval. For example frank’s degree of membership in TallMen

will be 1, when it does not make sense to state that george more closely resembles our
intuition behind what constitutes a tall man than frank, just because George is even
taller than Frank. Similarly, hank’s degree of membership in TallMen will be 0, when it
does not make sense to state that hank more closely resembles our intuition behind what
constitutes a tall man, than joe, just because Joe is even shorter than Hank. The degree
of membership of john in TallMen will be 0.5, since we might want to assign a degree
of membership 0.25 to steve to represent the fact that Steve’s height is between that of
Hank and that of John, and a degree of membership 0.75 to peter to represent the fact
that Peter’s height is between that of John and that of Frank.

Given that, we can now rank the elements, by their degrees of fulfillment, and find
that

〈joe, hank, steve, john, peter, frank, george〉 and

〈hank, joe, steve, john, peter, george, frank〉

equally match the weak ordering established by those degrees of fulfillment and our intu-
ition behind the class TallMen, while

〈joe, hank, peter, john, steve, frank, george〉
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Figure 5: Characteristic functions of different kinds of sets

violates both.

6.2 Fuzzy sets

Fuzzy sets as proposed by Zadeh (1965) formally define these classes of objects with
imprecisely defined criteria of membership. To establish fuzzy sets as a straightforward
generalization of crisp sets, recall that P(X), denoting the powerset of X, is the set of all
subsets A ⊆ X of X. Recall that we can represent the set A in terms of a characteristic
function as follows:

Definition 7. A ∈ P(X) is a crisp set on universe X, iff there exists a characteristic
function χA : X 7→ {0, 1} where

χA(x) =







1, if x ∈ A

0, if x 6∈ A
.

Now we can define fuzzy sets as a straightforward generalization of crisp sets, by letting
their characteristic functions range over the whole unit interval.

Definition 8. (Zadeh 1965) A ∈ F(X) is a fuzzy set on universe X, iff there exists a
characteristic function µB : X 7→ [0, 1] that ranges over the whole unit interval where
µA(x) is the degree to which x is a member in A.
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To further justify the intuitive appeal of this approach, consider the notion of the
α-cut.

Definition 9. The strict α-cut of a fuzzy set A is the crisp set

A>α = {x|µA(x) > α}.

Intuitively α measures something like the degree of strictness we may apply in the
evaluation of fuzzy membership criteria when we approximate a fuzzy concept by a crisp
set. That is to say, whenever we use a crisp set A′ to denote a concept that is actually
fuzzy, we implicitly make an arbitrary choice for α, and take A′ to be A>α for A being
the actual fuzzy concept. Now let A2 and A1 be two crisp sets meant to approximate the
same fuzzy concept A, the membership criteria of A2 being evaluated at least as strictly
as those of A1, i.e. A2 = A>α2 and A1 = A>α1 with α2 ≥ α1. By intuition we would
now expect that A2 ⊆ A1, i.e. the membership of an element that can be verified on the
basis of very strict criteria can also be verified on the basis of less strict criteria, but not
necessarily vice-versa. More precisely:

Lemma 2. For any fuzzy set A it is the case that for all α1 and α2

α2 ≥ α1 ⇒ A>α2 ⊆ A>α1

Proof. We will show that for all x in the universe

x ∈ A>α2 ⇒ x ∈ A>α1 .

Note that, if x ∈ A>α2 , then, by definition 6, we have µA(x) > α2. By hypothesis we have
α2 ≥ α1. From the well-ordering property of the unit-interval we have µA(x) > α1. By
definition 6 we have x ∈ A>α1 .
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6.3 Intersections of fuzzy sets

Given this notion of a fuzzy set we can extend the notion of set intersection from classical
set theory into the fuzzy domain.

If F ∈ F(X) and G ∈ F(X) are two fuzzy sets on X, a fuzzy set H ∈ F(X) which is
the intersection H = F ∩T G of F and G can now be defined in terms of the characteristic
functions µH , µF and µG, more precisely:

Definition 10. (see Klement et al. 2000) A fuzzy set H ∈ F(X) is the intersection of
two fuzzy sets F ∈ F(X) and G ∈ F(X) with respect to a triangular norm T , denoted
H = F ∩T G, iff µH(x) = T (µF (x), µG(x)).

Zadeh’s original choice of T was the minimum-function

Tmin(x, y) =







x, if x ≤ y

y, if x > y
.

In a first approach this choice is absolutely intuitive, considering that Tmin(x, y) = x ∧ y,
where ∧ is the crisp conjunction of two propositions x and y, that take values 0 and 1,
where 0 is falsehood and 1 is truth.

More generally, triangular norms, are defined as follows:

Definition 11. (see Klement et al. 2000) A function T : [0, 1] × [0, 1] 7→ [0, 1] is a
triangular norm, iff it satisfies:

T (x, y) = T (y, x) (commutativity) (1)

T (x, T (y, z)) = T (T (x, y), z) (associativity) (2)

x ≤ y ⇒ T (x, z) ≤ T (y, z) (non-decreasingness) (3)

T (x, 1) = x (neutral element) (4)

Requirements (1), (2), and (4) clearly boil down to intuitions we may have about set
theory in general. We expect that fuzzy set intersection, just like crisp set intersection,
is commutative and associative, and that the intersection of a set with its universe yields
the original set. Requirement (3) is less straightforward, but still boils down to a simple
intuition about fuzzy concepts: We pick a certain element from a fuzzy set A, and discover
it has membership degree z. Then we pick the same element from B, and C and find it
is a member in these sets to degrees x and y respectively. Further suppose that x ≤ y,
i.e. the element is more of a member in B, than in C. If we now take the intersections
B ∩T A and C ∩T A, we expect that the element will also be more of a member in B ∩T A

than in C ∩T A. Putting it even more nonchalant, we could say that non-decreasingness
requires a conjunction to be at most “as true” as its “falsest” conjunct. To show that our
definition is again perfectly consistent with crisp set theory let us formulate our intuitive
expectations about α-cuts of fuzzy intersections, and crisp intersections of α-cuts.

Consider two fuzzy concepts A and B and an arbitrary way to strictly evaluate their
membership criteria. That is to say, fix fuzzy sets A and B, and an α1. Now the crisp
sets A>α1 and B>α1 approximate the fuzzy concepts A and B respectively at degree of
strictness α1. The classical set intersection of these crisp sets yields another crisp set
A>α1 ∩ B>α1 . By intuition we would expect that this crisp set approximates the fuzzy
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concept A ∩T B, again at a degree of strictness α1. Now consider the (intuitive) fuzzy
concept A∩T B and think of a way to evaluate its membership criteria at least as strictly
as those of A or B in isolation. That is to say, fix a fuzzy set-intersection of A and B

and call it A ∩T B, and fix an α2 ≥ α1. Now the crisp set (A ∩T B)>α2 approximates the
fuzzy concept (A ∩T B) at a degree of strictness which is at least α1. Thus a variant of
Theorem 2 would have to hold:

Lemma 3. For any fuzzy sets A and B it is the case that for all α1 and α2

α1 ≤ α2 ⇒ (A ∩T B)>α2 ⊆ A>α1 ∩ B>α1 .

Proof. We will show that for all x in the universe

x ∈ (A ∩T B)>α2 ⇒ x ∈ (A>α1 ∩ B>α1).

For the sake of contradiction, assume that

x ∈ (A ∩T B)>α2 ∧ x 6∈ (A>α1 ∩ B>α1).

Then, by definitions 6 and 10, we get

T (µA(x), µB(x)) > α2 ∧ (µA(x) ≤ α1 ∨ µB(x) ≤ α1).

Since, by hypothesis we have α2 ≥ α1, we can rewrite this as

T (µA(x), µB(x)) > µA(x) ∨ T (µA(x), µB(x)) > µB(x). (5)

Recall the requirements of T for commutativity, for the neutral element, and for non-
decreasingness from definition 11

∀x, y : T (x, y) = T (y, z).

∀x, y : T (x, 1) = x,

∀x, y, z : x ≤ y ⇒ T (x, z) ≤ T (y, z).

By letting y = 1 in the non-decreasingness condition, and substituting from the neutral
element and commutativity we get

∀x, z : T (x, z) ≤ z ∧ T (x, z) ≤ x (6)

in contradiction to (5).

We conclude that our intuition about α-cuts and fuzzy set intersections agrees with
the theoretic model introduced so far, in that both predict the same upper bound on
the elements in a fuzzy set intersection defined in terms of the well-known intersection
operator from classical set theory. This goes well with our intuition, that all elements
that are members of the intersection of A and B at least with degree α will also be a
member in each of the individual sets A and B at least with degree α.

It is an easy exercise to prove that, for the case of Tmin we also get a lower bound of the
form A>α3 ∩ B>α3 ⊆ (A ∩Tmin

B)>α2 for α2 ≤ α3. In general, however, we do not require
this property of a triangular norm. This is why our converse intuition that all elements
that are members in each of A and B at least with degree α will also be a member of the
intersection at least with degree α fails, unless we choose Tmin as a triangular norm.
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6.4 Fuzzy relations and their images

Recall that an n-ary crisp relation R ∈ P(X1×X2×· · ·×Xn) is a subset of the carthesian
product X1×X2×. . .×Xn, i.e. a set of tupes of the form (x1, x2, . . . , xn) for x1 ∈ X1, x2 ∈
X2, . . . , xn ∈ Xn. If a particular tuple (x1, x2, . . . , xn) ∈ R, we say that x1, x2, . . . , xn are
R-related.

Definition 12. R is an n-ary crisp relation on X1 ×X2 × · · · ×Xn iff R ∈ P(X1 ×X2 ×
. . . × Xn).

In Fuzzy Logic, instead of talking about whether or not x1, x2, . . . , xn are R-related,
we will now talk about degrees to which these are R-related. Therefore the following
definition is a straightforward generalization of the crisp case:

Definition 13. We call R an n-ary fuzzy relation on X1 ×X2 × · · · ×Xn iff R ∈ F(X1 ×
X2 × . . . × Xn).

If a particular tuple µR(x1, x2, . . . , xn) = d has membership degree d in R, we say that
x1, x2, . . . , xn are R-related to degree d.

Definition 14. Recall that if R is an n-ary crisp relation on X1 ×X2 × · · · ×Xn, and A

is a crisp subset of X1, then the image of A with respect to R, denoted R(A) is

R(A) = {(x2, x3 , . . . , xn) ∈ X2 × X3 × · · · × Xn

| ∃x1 ∈ X1 : x1 ∈ A ∧ (x1, x2, . . . , xn) ∈ X1 × X2 × · · · × Xn}

We could also express this in terms of its (crisp) characteristic function:

χR(A)(x2, . . . , xn) =







1, if ∃x1 ∈ X1 : x1 ∈ A ∧ (x1, . . . , xn) ∈ X1 × · · · × Xn

0, otherwise
.

Intuitively, the image R(A) of A with respect to an n-ary relation R reduces the arity
of R by essentially binding one (in our definition the first) element in the n-tuple by an
existential quantifier.1 Thus, (x2, . . . , xn) ∈ R(A) iff x2, . . . , xn are R-related to some
x1 ∈ A. Given that, all we need to do, to define images of fuzzy relations is to translate
the crisp proposition ∃x1 ∈ X1 : x1 ∈ A ∧ (x1, . . . , xn) ∈ X1 × · · · × Xn into the fuzzy
domain.

Definition 15. If R is an n-ary fuzzy relation on X1 × X2 × · · · × Xn, and A is a fuzzy
subset of X1, then the image of A with respect to R, denoted R(A) is given by the
characteristic function

µR(A)(x2, x3, . . . , xn) = sup
x1∈X1

{T (µA(x), µR(x1, x2, . . . , xn)}

for a particular choice T of a triangular norm.

1Computational Linguists will note the resemblance of this with the application of an entity to a
lambda expression.
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We used a triangular norm T in place of the crisp conjunction and the supremum as
an aggregation-function over all x1 ∈ X1 in place of the existential quantifier. In the
previous section we have explained some of the intuition behind the use of triangular
norms to capture propositional conjunction. The choice of the supremum as an operation
to capture our intuition of existential quantification is less obvious. Note, in this context,
that for the discrete case, for instance, where X1 is an enumerable set, the supremum
coincides with a maximum, and the existential quantifier coincides with a disjunction.
The maximum happens to be a triangular conorm, the kind of function that resembles
disjunction by common fuzzy logic wisdom. It is an easy exercise to see that, if min(x, y)
resembles x ∧ y and 1− x resembles ¬x, then max(x, y) resembles x ∨ y, by proving that
DeMorgan’s laws hold in both domains.

Further notation

For the rest of this paper we will let expressions of the form A(x) denote, the value µA(x)
of the characteristic function of a fuzzy set A for element x, and expressions of the form
A(x1, x2, . . . , xn) denote the value µA(x1, x2, . . . , xn) of the characteristic function of an
n-ary fuzzy relation A for the tuple (x1, x2, . . . , xn).

7 The linguistic tool:

Syntax-driven semantic analysis

Syntax-driven semantic analysis is the predominant approach to semantic analysis, widely
accepted throughout the communities of computational linguistics and compiler construc-
tion. Its fundamentals can be traced back to Montague (1973) in the domain of natural
languages, and Knuth (1968) in the domain of programming languages. Following this
approach, any grammatical production rule p is viewed to serve two functions: a syntactic,
and a semantic one.

7.1 An example for syntax-driven semantic analysis

Consider a very well-known problem of semantic analysis: the conversion of a number in
textual representation to its numeric representation. For example say we were trying to
characterize the numeric values of text that represents a number in base-3 notation. Our
ultimate goal would be to assign any string s ∈ {0, 1, 2}∗ (i.e. the syntax of a base-3-
number) to its value s ∈ N (i.e. the semantics of a base-3-number). We can characterize
the syntax of base-3-numbers by a context-free grammar as shown in the syntax column
of Figure 8. The table assigns to each syntactic rule a semantic rule.

Figure 9 shows two trees. One depicts the hierachical composition of the syntax
of a text from its syntactic parts, the other depicts the hierachical composition of the
semantics of the same text from the semantics of its parts. It can be seen that both trees
share the same structure. This is a very convenient feature, because the construction
of parse trees is a well understood topic. Once we have established such a one-to-one
correspondence between a context-free production rule and its inherent semantics we can
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syntax semantics
d → 0 d := 0

d → 1 d := 1

d → 2 d := 2

N → d N := d

N → N d N := 3 ∗ N + d

Figure 8: A syntactic grammar for base-3-numbers and the semantic function of each
rule.
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Figure 9: The analysis of a text 2120 for its numeric value 21203.
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build a representation for the meaning of a text as a “side effect” to the syntactic parse, by
simply applying a semantic function to nodes in the tree as we apply a syntactic reduction.

In analogy to our model for the conversion of base-3 numbers given in Figure 8, Figure
10 shows a model for the analysis of English text with respect to our relational model. The
central observation that allowed us to characterize base-3 numbers by means of syntax-
driven semantic analysis was the fact, that we can semantically derive the meaning of a
string that is syntactically derived by N → N d as N := 3∗N+d. For the sample grammar
in Figure 10, it is the concept of the image of a fuzzy relation that “does the trick”.

7.2 Semantic context-free grammars

Definition 16. A semantic context-free grammar G = (V, T, P, S, Dom) consists of

• A finite non-empty set V of non-terminal symbols.

• A finite non-empty set T of terminal symbols.

• A set P of production rules, each of which is of the form (A → a1a2 . . . an, eval)
where A ∈ V is a grammar variable, and each ai is a symbol, either terminal or
non-terminal, i.e. ai ∈ (V ∪ T). Let u be the number of symbols in a1a2 . . . an that
are non-terminal, so that n − u is the number of symbols that are terminal. Then
eval : Domu 7→ Dom is a mapping from Domu to Dom. In the special case where
u = 0, eval is taken to be a constant value eval ∈ Dom.

• A start-symbol S ∈ V.

• A finite non-empty set Dom establishing the semantic domain.

Definition 17. Fix a semantic context-free grammar G = (V, T, P, S, Dom). We say that
a non-terminal symbol X ∈ V assigns a string α = t1t2 . . . tn of terminals ti ∈ T the
meaning X ∈ Dom in G iff (X → x1x2 . . . xm, eval) is a production in P where for each xi

• xi ∈ V and xi assigns the string of terminals αi the meaning xi, or

• xi ∈ T , in which case we take αi to be xi

and α is the concatenation α1 ·α2 ·. . .·αm and X = eval(x′
1
, x′

2
, . . . , x′

n
), where 〈x′

1
, x′

2
, . . . , x′

u
〉

is the sequence 〈x1, x2, . . . , xn〉 with all the elements removed that represent meanings of
non-terminals. In the special case where u = 0, eval() is taken to evaluate to a constant
value eval ∈ Dom, as defined in the production rule.

8 The syntax/semantics interface:

making ends meet

Figure 10 gives semantic rules for all syntactic productions of our example grammar to
capture their fuzzy semantics with respect to our example data model.

The basic idea is that we can view the meaning of any phrase or word in this grammar
as a fuzzy relation, and that we can determine such a fuzzy relation for each possible word
or phrase that appears in our language, from fuzzy relations describing its sub-phrases or
from data we have in our database.
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syntax semantics

S → NP VP S(x) := supy{T
(

NP(y), VP(x, y)
)

}

VP → V PP VP(x, λy) := supz{T
(

V(x, λy, z), PP(z)
)

}

VP → V NP VP(x, λy) := supz{T
(

V(x, λy, z), NP(z)
)

}

NP → Nom NP(x) := Nom(x)

NP → Det N’ NP(x) := N’(x)

N’ → N N’(x) := N(x)

N’ → AP N N’(x) := T
(

AP(x), N(x)
)

N’ → N’ PP N’(x) := T
(

N’(x), PP(x)
)

AP → Adj AP(x) := Adj(x)

AP → very AP AP(x) :=
(

AP(x)
)2

PP → in NP PP(x) := NP(x)

PP → near NP PP(x) := supy{T
(

NP(y), max(min( 50 km−d
50 km−20 km

, 1), 0
)

| Place Distance(x, y, d)}

V → lives V(x, λy, λz) := 1.0 if Lives In(x, λy, λz), 0.0 otherwise

V → likes V(x, λy, λz) := 1.0 if Likes(x, λy, λz), 0.0 otherwise

Adj → small Adj(x) := max
(

min( 20000−p

20000−10000
, 1), 0

)

| Place Population(x, p)

N → city N(x) := 1.0 if Place(x), 0.0 otherwise

Nom → Carol Nom(x) := 1.0 if Person Name(x, carol), 0.0 otherwise

Nom → Frank Nom(x) := 1.0 if Person Name(x, frank), 0.0 otherwise

Nom → San Fr. Nom(x) := 1.0 if Place Name(x, san francisco), 0.0 otherwise

Det → a Det(x) := 0

Figure 10: Our example semantic grammar
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In the following section we will go through the most important rules of the resulting
semantic grammar. Applying the technique of syntax-driven semantic analysis to this
grammar, we can then derive fuzzy sets resembling the meanings of any grammatically
correct expression.

8.1 The semantics of nominals

Our definition of the meanings of nominals relies on our database containing data about
the names of entities we wish to refer to by nominals. The relation Person Name, for
example, associates a name to a person.

Nom → Carol Nom(x) := 1.0 if Person Name(x, carol), 0.0 otherwise
Nom → Frank Nom(x) := 1.0 if Person Name(x, frank), 0.0 otherwise
Nom → San Fr. Nom(x) := 1.0 if Place Name(x, san francisco), 0.0 otherwise

We can describe the meaning of any nominal by means of a set of things x, such that
the Nom(x) condition is fulfilled. Recall that Nom(x) is the characteristic function of a
fuzzy set (unary fuzzy relation), in this case, of all things x in our domain that are called
Carol, Frank, or San Francisco.

Note that, in our first naive approach, we have assigned crisp meanings to all nominals.
Therefore, in our grammar, it makes sense to state that someone’s name is Carol, but it
does not make sense to state that someone’s name is Carol to a degree of 0.7.

8.2 The semantics of nouns

As opposed to nominals, which pick out specific things from the domain by referring to
them by name, nouns can be abstractions. For example the set of all cities is given by

N → city N(x) := 1.0 if Place(x), 0.0 otherwise

in our example grammar. Here we chose the simplistic approach of, again, constructing
a crisp set of all places in our database, to represent the set of all things referred to as
city.

In a real-world example, this might, however, already be a candidate for a fuzzy
concept, since one might want to employ certain criteria to decide whether something is
a city, possibly based on measures of population or area to distinguish a city from, say, a
town or a metropolis.

8.3 The semantics of adjectives

As our simple example grammar follows the approach of intersective semantics the mean-
ing of an adjective like small will be the set of all small things, in much the same way
as the meaning of the noun phrase small thing would be the set of all small things.

Adj → small Adj(x) := max
(

min( 20000−p

20000−10000
, 1), 0

)

| Place Population(x, p)

Note that the adjective small is a perfect example for a fuzzy concept. What does
it mean, as in this particular case for a city, to be small? A fuzzy set could easily be
set up that takes into account several measures of “smallness” such as population, area
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Figure 11: The characteristic function of small.

or density of infrastructure, etc. In our simple approach we only use population as a
measurement of the size of a city and define a fuzzy decision boundary on this measure
to determine whether a place is a small city.

More particularly, let Place Population(x, p). Then the above definition assigns a de-
gree of fulfillment Adj(x) = 1.0 to all cities x whose population p ≤ 10000, a degree
of fulfillment 0.0 to all cities whose population p ≥ 20000, and a degree of fulfillment

20000−p

20000−10000
which amounts to a linear interpolation between these two points to all cities

whose population is between 10000 and 20000.

8.4 The semantics of adjectival phrases

In our sample grammar, adjectival phrases can consist of nothing but an adjective. In
this case it is quite straightforward to assume that the meaning of the adjectiveal phrase
will be exactly the same as for the only adjective it contains.

AP → Adj AP(x) := Adj(x)

AP → very AP AP(x) :=
(

AP(x)
)2

To exemplify the case where the phrase consists of an adverb followed by an adjectival
phrase, we chose very which serves as a classic example in the fuzzy logic literature of
what it calls a linguistic hedge.

One of the most simplistic techniques to construct the meaning for a fuzzy set resem-
bling veryAP from the meaning of a fuzzy set resembling AP is to square the degrees of
fulfillment. We stick with this solution once proposed by Zadeh for its simplicity. How-
ever, the reader should note that a much more adquate treatment of the famous hedges
is given by De Cock & Kerre (2002).

8.5 The semantics of prepositional phrases

Again, in consequence to our usage of intersective semantics, the meaning of a prepo-
sitional phrase like in San Francisco will be the set of all things that are in San

Francisco, and thus the same as the noun phrases thing in San Francisco or San

Francisco on its own.
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Figure 12: The characteristic function of near.

PP → in NP PP(x) := NP(x)
PP → near NP PP(x) := supy{

T
(

NP(y), max(min( 50 km−d
50 km−20 km

, 1), 0
)

| Place Distance(x, y, d)}

Things get more interesting considering the preposition near, another example for a
true fuzzy concept. The approach we chose was to use geographic distance as a measure-
ment of how close two cities are to each other, and to define a fuzzy decision boundary
on this measure, to determine, given two cities x and y to which degree x satisfies the
constraint that it should be near y.

More particularly, let Place Distance(x, y, d). Then the above definition assigns a de-
gree of fulfillment PP(x) = 1.0 to all cities x whose geographic distance d from y satisfies
d ≤ 20 km, a degree of fulfillment 0.0 to all cities with d ≥ 50 km, and a degree of
fulfillment 50 km−d

50 km−20 km
which amounts to a linear interpolation between these two points

to all cities with 20 km < d < 50 km.

8.6 The semantics of noun phrases

For our approach of intersective semantics, the definition of the meaning of noun-phrases
turns out to be quite straightforward. Our grammar allows for noun phrases that either
rewrite to a nominal (in which case the meaning of the nominal is simply preserved in
the noun phrase) or to a determiner followed by a category we called N’. Here we will
take the simplistic approach that a determiner doesn’t contribute to the meaning of a
noun phrase, and pass up the meaning of the N’ to the noun phrase. An N’, in turn, can
rewrite to a noun (in which case, again, we simply preserve the noun’s meaning and pass
it up to the noun phrase), or be premodified by an adjectival phrase or postmodified by
a prepositional phrase.

NP → Nom NP(x) := Nom(x)
NP → Det N’ NP(x) := N’(x)
N’ → N N’(x) := N(x)

N’ → AP N N’(x) := T
(

AP(x), N(x)
)

N’ → N’ PP N’(x) := T
(

N’(x), PP(x)
)

As we’ve explained before, intersective semantics treats any kind of modification as an
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intersection. Therefore the meaning of a noun phrase like very small city is simply
the set AP of all things that are very small intersected with the set N of all things that
are cities, and the meaning of a noun phrase like a city near San Francisco is simply
the set of all things that are a city and the set of all things that are near San Francisco.

We’ve explained before why we can use triangular norms to capture intersections of
fuzzy constraints in a straightforward and intuitive way, and this is exactly what these
rules make use of.

8.7 The semantics of verbs

So far we have only dealt with, what we where casually referring to as “things”. We
have represented the semantics of phrases headed by nouns, adjectives and prepositions
by means of fuzzy sets that select certain objects from our domain.

In order to capture the semantics of verbs, we will need to make use of fuzzy relations.
For example the meaning of likes in our grammar, would be the relation V(x, y, z) that
holds between three elements from our domain x, y, z if, and only if, x is an eventuality
involving some person y liking some person z.

V → lives V(x, λy, λz) := 1.0 if Lives In(x, λy, λz), 0.0 otherwise
V → likes V(x, λy, λz) := 1.0 if Likes(x, λy, λz), 0.0 otherwise

Here we have, again, assumed that the eventuality that these verbs denote are not
actually fuzzy concepts. One can, however, imagine situations in which verbs refer to
fuzzy concepts. For example if we had a data model that contains facts about moving
people, we might use the velocity with which people are moving to determine whether
someone strolls, walks, or runs.

8.8 The semantics of verb phrases

Now that we know what it means for some factoid x to refer to the action of some person
λy to like some other person λz (i.e. V(x, λy, λz)), what does it mean for x to refer to
the action of λy to like Carol? The way we go about this is to state that x refers to
the action of λy to like Carol if, and only if, there exists some person z such that x

refers to the action of λy liking z (i.e. V(x, λy, z)) and z refers to something described by
Carol (i.e. NP(z)).

VP → V PP VP(x, λy) := supz{T
(

V(x, λy, z), PP(z)
)

}

VP → V NP VP(x, λy) := supz{T
(

V(x, λy, z), NP(z)
)

}

As mentioned earlier, we can translate an existential quantifier to the fuzzy domain,
by means of a supremum, and the conjunction by means of a triangular norm. Thus the
meaning VP of a VP given the meaning V of a V and the meaning NP of a NP will amount to
the fuzzy image V(NP) of NP with respect to V.2 The meaning of verb phrases consisting
of a verb and a prepositional phrase, can be defined by V(PP) in analogy.

2Again, readers accustomed to working with lambda calculus will find the expression V(NP) to capture
the meaning of a verb phrase quite familiar.
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8.9 The semantics of sentences

Now that we know what it means for some factoid x to refer to the action of some person λy

to like Carol (i.e. VP(x, λy)), what does it mean for x to refer to the action described
by Frank likes Carol? In analogy to our definition of the semantics of verb phrases,
we go about this by stating that x refers to the action described by Frank likes Carol

if, and only if, there exists some person y such that x refers to the action of y liking Carol
(i.e. VP(x, y)) and y refers to something described by Frank (i.e. NP(y)).

S → NP VP S(x) := supy{T
(

NP(y), VP(x, y)
)

}

Thus the meaning S of an S given the meaning NP of a NP and the meaning VP of a
VP will amount to the fuzzy image VP(NP) of NP with respect to VP.

8.10 Fuzzy relational semantics of context-free languages

Definition 18. A context-free grammar with fuzzy relational semantics G = (V, T, P, S,

SDom, Rel) is defined by

• a semantic context-free grammar (V, T, P, S,GDom), and

• a relational scheme (SDom,Rel)

where GDom =
⋃

i F(SDom i) over all i between zero and the maximal number of non-
terminals that appear in the body of any production rule in P .

Definition 19. Fix a context-free grammar with fuzzy relational semantics G = (V, T, P, S,

SDom, Rel). We say that X assigns a string α the meaning X in G iff X assigns α the mean-
ing X in (V, T, P, S,GDom) with GDom defined by SDom as above.

Definition 20. Fix a context-free grammar with fuzzy relational semantics G = (V, T, P, S,

SDom, Rel). The fuzzy semantics of a string α = t1t2 . . . tn of terminals ti ∈ T with re-
spect to G is given by the binary relation µS(x) ≤ µS(y) on SDom×SDom where S assigns
α the meaning S in G.

Note that, since the relation ≤ on the unit-interval is a weak ordering, so is the relation
µS(x) ≤ µS(y) on SDom × SDom.

9 Concluding remarks and future directions

In this paper a grammatical framework was shown that augments context-free production
rules with semantic production rules that rely on fuzzy relations as representations of fuzzy
natural language concepts. Furthermore, it was shown how the well-known technique of
syntax-driven semantic analysis can be used to infer from such a semantically augmented
grammar the semantics of a given expression, where the semantics of expressions are taken
to be orderings on the possible worlds they describe.

More specifically we were considering the application of natural language query pro-
cessing to motivate our studies. We assumed that we were given a relational scheme on a
certain domain, and showed how we could arrive at an ordering of that domain according
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to the degree to which its elements satisfy the constraint specified by means of a natu-
ral language statement. We considered the specific example of a relational database on
the domain of people and places containing information about which cities people live
in, populations of cities, and distances between cities, and showed how exactly our tech-
nique could be applied to arrive at an ordered sequence of records satisfying the natural
language query statement Carol lives in a small city near San Francisco.

The primary aim of this paper was to demonstrate the overall approach by particular
examples and to make a first attempt at defining what exactly a fuzzy semantic grammar
may look like, and how it is to be interpreted. However, it raises a number of questions
that were not covered herein. Most importantly: Will the approach scale to cover the
full complexity of the semantic microdomains that are of interest today, such as typical
industrial or scientific knowledge bases, and the full expressive power of natural languages?

On the semantic side this clearly raises questions about computational complexity
and about how inference mechanisms can best be incorporated into the system. On
the syntactic side this certainly requires more sophisticated linguistic formalisms to be
investigated in the context of fuzzy semantics than plain context-free grammars. It seems
promising to define the fuzzy semantics of a natural language proposition in terms of a
tectogrammatical analysis derived from a system that is more state-of-the-art than the
toy-grammar we have used.

Considering the work that lies ahead, we can perhaps only claim to have contributed
a small first step towards the actual inception of a precisiated natural language as a basis
of a computational theory of perceptions, and a tool that may turn out a useful means to
deal with fuzzy concepts in the context of natural language processing applications some
day. However, we also made clear that, in the light of modern applications, the pursuit
of this line of research probably is more rewarding today than ever before.
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A The Carol example

In order to demonstrate the kind of semantic analysis we have in mind more clearly,
let’s turn back to the example data presented in Section 4.1, and try to determine a
degree to which each of them satisfies the natural language proposition Carol lives in

a small city near San Francisco with respect to the grammar from Section 5.1 and
the semantic mapping from Section 8.

Figure 13 shows the structure of both the syntactic and semantic derivations of this
sentence from their respective atomic parts. The nodes in the tree that we can assign
a meaning in our framework are assigned labels N1, N2, . . . , N16. To each label we will
assign a fuzzy relation as a representation of its semantics. Assume, for the sake of
simplicity, that we have already carried out a syntactic parse of the sentence, constructed
a representation of the parse tree, and are now traversing the nodes of the tree in a in a
depth-first post-processing order to assign to each node a semantic representation. During
that traversal we assign to each node the semantic representation as a fuzzy relation, which
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Figure 13: Derivation tree for ”Carol lives in a small city near San Francisco”

we will represent here by means of crisp set of (member, degree of membership)-tuples. The
triangular norm that will be used throughout the example is the minimum.
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1. The syntactic token Carol was found in the input, as a result of the syntactic
reduction Nom → Carol. The semantic production for this syntactic structure is
given in the grammar as

Nom(x) := 1.0 if Person Name(x, carol), 0.0 otherwise.

The Nom in this rule resolves to node N1, so we have

N1(x) := 1.0 if Person Name(x, carol), 0.0 otherwise.

According to the example data in Figure 2 (Section 4.1), only x = p1 fulfills this, so
the semantic representation of node N1 is the fuzzy set

N1 := {(p1, 1)}.

2. The syntactic token Carol was found, as a result of the grammatical reduction
NP → Nom. The semantic production for this syntactic structure is given in the
grammar as

NP(x) := Nom(x).

The NP in this rule resolves to node N2, the Nom resolves to node N1, so we have

N2(x) := N1(x),

so the semantic representation of node N2 is the fuzzy set

N2 := {(p1, 1)},

the same as N1.

3. The syntactic token lives was found in the input, as a result of the syntactic
reduction V → lives. The semantic production for this syntactic structure is given
in the grammar as

V(x, λy, λz) := 1.0 if Lives In(x, λy, λz), 0.0 otherwise.

The V in this rule resolves to node N3, so we have

N3(x, λy, λz) := 1.0 if Lives In(x, λy, λz), 0.0 otherwise.

This is fulfilled by several combinations (x, λy, λz):

x = (p1, c17), λy = p1, λz = c17,

x = (p2, c54), λy = p2, λz = c54,

x = (p3, c56), λy = p3, λz = c56,

x = (p4, c57), λy = p4, λz = c57,

so the semantic representation of node N3 is the fuzzy relation

N3 = { (((p1, c17), p1, c17), 1),

(((p2, c54), p2, c54), 1),

(((p3, c56), p3, c56), 1),

(((p4, c57), p4, c57), 1) }.
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4. The syntactic token a was found in the input, as a result of the syntactic reduction
Det → a. The semantic production for this syntactic structure is given in the
grammar as

Det(x) := 0.

The Det in this rule resolves to node N4, so we have

N4(x) := 0.

For the sake of simplicity we assumed, in this grammar, that determiners do not
carry any meaning, therefore the semantic representation of node N4 is the empty
fuzzy set, i.e. N4 = ∅.

5. The syntactic token small was found in the input, as a result of the syntactic
reduction Adj → small. The semantic production for this syntactic structure is
given in the grammar as

Adj(x) := max(min
(

20000 − p

20000 − 10000
, 1
)

, 0) | Place Population(x, p).

The Adj in this rule resolves to node N5, so we have

N5(x) := max(min
(

20000 − p

20000 − 10000
, 1
)

, 0) | Place Population(x, p).

This condition is fulfilled by the combinations

x = c1, p = 43000,

x = c2, p = 101124,

. . .

x = c57, p = 183504.

A good example is x = c17, p = 12208 we can determine the degree of fulfillment
directly by substituting into this function

max(min
(

20000 − 12208

20000 − 10000
, 1
)

, 0) = 0.7792

The other degrees of fulfillment can be determined analogously, so we get the se-
mantic representation of node N5 as

N5 = {(c1, 0), (c2, 0), . . . , (c17, 0.7792), . . . , (c57, 0)}.

6. The syntactic token small was found in the input, as a result of the syntactic
reduction AP → Adj. The semantic production for this syntactic structure is given
in the grammar as

AP(x) := Adj(x).

This resolves to
N6(x) := N5(x).

so we get
N6 = {(c1, 0), (c2, 0), . . . , (c17, 0.7792), . . . , (c57, 0)}.
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7. The syntactic token city was found in the input, as a result of the syntactic reduc-
tion N → city. The semantic production for this syntactic structure is given in the
grammar as

N(x) := 1.0 if Place(x), 0.0 otherwise.

This resolves to
N7(x) := 1.0 if Place(x), 0.0 otherwise.

This is fulfilled by

x = c1,

x = c2,

. . . ,

x = c57,

so the semantic representation of node N7 is the fuzzy set

N7 = {(c1, 1), (c2, 1), . . . , (c57, 1)}.

8. The syntactic token small city was found in the input, as a result of the syntactic
reduction N’ → AP N. The semantic production for this syntactic structure is given
in the grammar as

N’(x) := T
(

AP(x), N(x)
)

.

This resolves to
N8(x) := T

(

N6(x), N7(x)
)

.

This is fulfilled by

x = c1 : T
(

N6(c1), N7(c1)
)

= T
(

0, 1
)

= 0,

x = c2 : T
(

N6(c2), N7(c2)
)

= T
(

0, 1
)

= 0,

. . . ,

x = c17 : T
(

N6(c17), N7(c2)
)

= T
(

0.7792, 1
)

= 0.7792,

. . . ,

x = c57 : T
(

N6(c57), N7(c57)
)

= T
(

0, 1
)

= 0.

Consequently, the semantic representation of node N8 is the fuzzy set

N8 = {(c1, 0), (c2, 0), . . . , (c17, 0.7792), . . . , (c57, 0)}.

9. The syntactic token San Francisco was found in the input, as a result of the syn-
tactic reduction Nom → San Francisco. The semantic production for this syntactic
structure is given in the grammar as

Nom(x) := 1.0 if Place Name(x, san francisco), 0.0 otherwise.

This resolves to

N9(x) := 1.0 if Place Name(x, san francisco), 0.0 otherwise.
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This is fulfilled by

x = c39

so the semantic representation of node N9 is the fuzzy relation

N9 = {(c39, 1)}.

10. The syntactic token San Francisco was found in the input, as a result of the
syntactic reduction NP → Nom. The semantic production for this syntactic structure
is given in the grammar as

NP(x) := Nom(x).

This resolves to

N10(x) := N9(x),

so we have

N10 = {(c39, 1)}.

11. The syntactic token near San Francisco was found in the input, as a result of
the syntactic reduction PP → near NP. The semantic production for this syntactic
structure is given in the grammar as

PP(x) := sup
y
{T
(

NP(y), max(min

(

50 km − d

50 km − 20 km
, 1

)

, 0
)

| Place Distance(x, y, d)}.

This resolves to

N11(x) := sup
y
{T
(

N10(y), max(min

(

50 km − d

50 km − 20 km
, 1

)

, 0
)

| Place Distance(x, y, d)}.

This condition is fulfilled by the combinations

y = c1, x = c2, d = 537 km,

y = c1, x = c3, d = 460 km,

. . .

y = c39, x = c1, d = 554 km,

y = c39, x = c2, d = 59 km,

. . .

y = c39, x = c17, d = 33 km,

. . .

A good example is x = c39, y = c17, d = 33 km. We can determine the degree of
fulfillment directly by substituting into the function

T
(

N10(y), max(min

(

50 km − d

50 km − 20 km
, 1

)

, 0)
)

= T

(

1,
50 km − 33 km

50 km − 20 km

)

= 0.566
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Note that this will be the supremum over all y, since N10(y) = 0 for all y other than
c39. Doing this analogously for the other combinations we get

N11 = { (c1, 0.0), (c2, 0.0), (c3, 0.0), . . . ,

(c6, 1.0), . . . , (c17, 0.566), . . . ,

(c28, 1.0), . . . , (c39, 0.0) . . . , (c57, 0.0) }.

12. The syntactic token small city near San Francisco was found in the input, as
a result of the syntactic reduction N’ → N’ PP. The semantic production for this
syntactic structure is given in the grammar as

N’(x) := T
(

N’(x), PP(x)
)

.

This resolves to
N12(x) := T

(

N8(x), N11(x)
)

.

This is fulfilled by

x = c1 : T
(

N8(c1), N11(c1)
)

= T
(

0, 0
)

= 0,

x = c2 : T
(

N8(c2), N11(c2)
)

= T
(

0, 0
)

= 0,

. . . ,

x = c17 : T
(

N8(c17), N11(c17)
)

= T
(

0.7792, 0.566
)

= 0.566,

. . . ,

x = c57 : T
(

N8(c57), N11(c56)
)

= T
(

0, 0
)

= 0.

Consequently, the semantic representation of node N12 is the fuzzy set

N12 = {(c1, 0), (c2, 0), . . . , (c17, 0.566), . . . , (c57, 0)}.

13. The syntactic token a small city near San Francisco was found in the input,
as a result of the syntactic reduction NP → Det NP. The semantic production for
this syntactic structure is given in the grammar as

NP(x) := N’(x).

This resolves to
N13(x) := N12(x).

Thus we have

N13 = {(c1, 0), (c2, 0), . . . , (c17, 0.566), . . . , (c57, 0)}.

14. The syntactic token in a small city near San Francisco was found in the in-
put, as a result of the syntactic reduction PP → in NP. The semantic production
for this syntactic structure is given in the grammar as

PP(x) := NP(x).

This resolves to
N14(x) := N13(x).

Thus we have

N14 = {(c1, 0), (c2, 0), . . . , (c17, 0.566), . . . , (c57, 0)}.
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15. The syntactic token lives in a small city near San Francisco was found in
the input, as a result of the syntactic reduction VP → V PP. The semantic production
for this syntactic structure is given in the grammar as

VP(x, λy) := sup
z
{T
(

V(x, λy, z), PP(z)
)

}

This resolves to
N15(x, λy) := sup

z
{T
(

N3(x, λy, z), N14(z)
)

}

This condition is fulfilled by the combinations

z = c1, x = (p1, c1), λy = p1 : T
(

N3((p1, c1), p1, c1), N14(c1)
)

= 0,

z = c2, x = (p1, c1), λy = p1 : T
(

N3((p1, c1), p1, c1), N14(c1)
)

= 0,

. . .

z = c17, x = (p1, c17), λy = p1 : T
(

N3((p1, c17), p1, c17), N14(c17)
)

= 0.566,

. . .

Note that, for λy = p1 we must get the supremum at z = c17, since N3(x, λy, z) is
zero for all other combinations. Proceeding analogously with all λy we get:

N15 = { (((p1, c1), p1), 0),

(((p1, c2), p1), 0), . . . ,

(((p1, c17), p1), 0.566), . . . ,

(((p4, c57), p1), 0) }.

16. The syntactic token Carol lives in a small city near San Franciscowas found
in the input, as a result of the syntactic reduction S → NP VP. The semantic pro-
duction for this syntactic structure is given in the grammar as

S(x) := sup
y
{T
(

NP(y), VP(x, y)
)

}

This resolves to
N16(x) := sup

y
{T
(

N2(y), N15(x, y)
)

}

This condition is fulfilled by the combinations

y = p1, x = (p1, c1) : T
(

N2(p1), N15((p1, c1), p1)
)

= 0,

y = p1, x = (p1, c2) : T
(

N2(p1), N15((p1, c2), p1)
)

= 0,

. . .

y = p1, x = (p1, c17) : T
(

N2(p1), N15((p1, c17), p1)
)

= 0.566,

. . .

Note that, for y = p1 we must get the supremum at x = (p1, c17), since N16(x, y) is
zero for all other x. Proceeding analogously with all y we get:

N16 = { ((p1, c1), 0),

((p1, c2), 0), . . . ,

((p1, c17), 0.566), . . . ,

((p4, c57), 0) }.
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So we determined for each element in our domain a degree to which it matches the
meaning of the English sentence Carol lives in a small city near San Francisco,
which is exactly what we wanted to find.

B The prototype

B.1 placesdb.pl

place( k(c,1) ).

place_name( k(c,1) ) --> [altadena].

place_lat( k(c,1), lat(n, ang(34,11,22,99)) ).

place_long( k(c,1), long(w, ang(118,7,49,1)) ).

place_pop( k(c,1), pop(43000) ).

place( k(c,2) ).

place_name( k(c,2) ) --> [antioch].

place_lat( k(c,2), lat(n, ang(38,0,18,0)) ).

place_long( k(c,2), long(w, ang(121,48,17,1)) ).

place_pop( k(c,2), pop(101124) ).

. . .

place( k(c,51) ).

place_name( k(c,51) ) --> [vallejo].

place_lat( k(c,51), lat(n, ang(38,6,15,0)) ).

place_long( k(c,51), long(w, ang(122,15,20,2)) ).

place_pop( k(c,51), pop(119708) ).

place( k(c,52) ).

place_name( k(c,52) ) --> [walnut,creek].

place_lat( k(c,52), lat(n, ang(37,54,22,99)) ).

place_long( k(c,52), long(w, ang(122,3,50,0)) ).

place_pop( k(c,52), pop(65151) ).

place( k(c,53) ).

place_name( k(c,53) ) --> [new,york].

place_lat( k(c,53), lat(n, ang(40,42,51,1)) ).

place_long( k(c,53), long(w, ang(74,0,23,2)) ).

place_pop( k(c,53), pop(8085742) ).

place( k(c,54) ).

place_name( k(c,54) ) --> [los,angeles].

place_lat( k(c,54), lat(n, ang(34,3,8,0)) ).

place_long( k(c,54), long(w, ang(118,14,34,2)) ).

place_pop( k(c,54), pop(3819951) ).

place( k(c,55) ).

place_name( k(c,55) ) --> [tokyo].

place_lat( k(c,55), lat(n, ang(35,41,10,0)) ).
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place_long( k(c,55), long(e, ang(139,45,9,0)) ).

place_pop( k(c,55), pop(12064100) ).

place( k(c,56) ).

place_name( k(c,56) ) --> [cambridge].

place_lat( k(c,56), lat(n, ang(52,12,56,16)) ).

place_long( k(c,56), long(e, ang(0,5,56,8)) ).

place_pop( k(c,56), pop(131465) ).

place( k(c,57) ).

place_name( k(c,57) ) --> [linz].

place_lat( k(c,57), lat(n, ang(48,15,28,0)) ).

place_long( k(c,57), long(e, ang(14,15,46,95)) ).

place_pop( k(c,57), pop(183504) ).

B.2 placeskb.pl

ang2rad( ang( Deg, Min, Sec, HSec ), Rad ) :-

Rad is (Deg + Min/60 + Sec/(60*60) + HSec/(60*60*100)) * pi/180.

lat2rad(n, Ang, Rad ) :-

ang2rad( Ang, AngDec ),

Rad is pi/2 - AngDec.

lat2rad(s, Ang, Rad ) :-

ang2rad( Ang, AngRad ),

Rad is pi/2 + AngRad.

long2rad(e, Ang, Rad ) :-

ang2rad( Ang, Rad ).

long2rad(w, Ang, Rad ) :-

ang2rad( Ang, AngRad ),

Rad is -AngRad.

spheric_distance(LatA, LongA, LatB, LongB, X) :-

X is 6371 * acos( sin(LatA) * sin(LatB) * cos( LongA-LongB ) +

cos(LatA) * cos(LatB) ).

place_distance( A, B, dist( Dist ) ) :-

place( A ),

place_lat( A, lat( LatNSA, LatA ) ),

lat2rad( LatNSA, LatA, LatRadA ),

place_long( A, long( LongEWA, LongA ) ),

long2rad( LongEWA, LongA, LongRadA ),

place( B ),

place_lat( B, lat( LatNSB, LatB ) ),

lat2rad( LatNSB, LatB, LatRadB ),

place_long( B, long( LongEWB, LongB ) ),
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long2rad( LongEWB, LongB, LongRadB ),

spheric_distance(

LatRadA, LongRadA,

LatRadB, LongRadB,

Dist ).

B.3 peopledb.pl

person( k(p,1) ).

person_name( k(p,1) ) --> [carol].

person( k(p,2) ).

person_name( k(p,2) ) --> [frank].

person( k(p,3) ).

person_name( k(p,3) ) --> [richard].

person( k(p,4) ).

person_name( k(p,4) ) --> [john].

lives_in( k(r, k(p,1), k(c,17)) ).

lives_in( k(r, k(p,2), k(c,54)) ).

lives_in( k(r, k(p,3), k(c,56)) ).

lives_in( k(r, k(p,4), k(c,57)) ).

likes( k(l, k(p,1), k(p,3)) ).

likes( k(l, k(p,1), k(p,4)) ).

B.4 db.pl

domain(X) :- place(X).

domain(X) :- person(X).

domain(X) :- lives_in(X).

domain(X) :- likes(X).

B.5 fuzzylogic.pl

tnorm(D,X,Y):-D is float(min(X,Y)).

tnorm(D,[X1,X2]):-tnorm(D,X1,X2).

tnorm(D,[X1,X2|Xs]):-tnorm(Y,[X2|Xs]),tnorm(D,X1,Y).

supr(D,X,Y):-D is float(max(X,Y)).

supr(D,[X1,X2|Xs]):-supr(Y,[X2|Xs]),supr(D,X1,Y).

supr(D,[D]).

atlFuzSet( D, X, Xmin,Xcen ) :-

D is max( min( (X-Xmin)/(Xcen-Xmin), 1 ), 0).

atmFuzSet( D, X, Xcen,Xmax ) :-
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D is max( min( (Xmax-X)/(Xmax-Xcen), 1 ), 0).

trapFuzSet( D,X, Xmin,XcenA,XcenB,Xmax ) :-

atlFuzSet( D, X, Xmin, XcenA ), atmFuzSet( D, X, XcenB, Xmax ).

triFuzSet( D, X, Xmin,Xcen,Xmax ) :-

trapFuzSet( D,X, Xmin,Xcen,Xcen,Xmax ).

B.6 language.pl

sent( SentD, X, A, [] ) :-

domain( X ),

findall( DoF, Y^sentx( DoF, X, Y, A, [] ), DoFs ),

supr( SentD, DoFs ).

sentx( SentD, X, Y ) -->

np( NpD, Y ),

vp( VpD, X, Y ),

{ tnorm( SentD, NpD, VpD ) }.

vp( VpD, X, Y, A, [] ) :-

domain( X ), domain( Y ),

findall( DoF, Z^vpx( DoF, X, Y, Z, A, [] ), DoFs ),

supr( VpD, DoFs ).

vpx( VpD, X, Y, Z ) -->

v( VD, X, Y, Z ), pp( PpD, Z ),

{ tnorm( VpD, VD, PpD ) }.

vpx( VpD, X, Y, Z ) -->

v( VD, X, Y, Z ), np( NpD, Z ),

{ tnorm( VpD, VD, NpD ) }.

v( 1.0, k(r, Y, Z), Y, Z ) --> [lives],

{ lives_in( k(r, Y, Z) ), person( Y ), place( Z ) }.

v( 1.0, k(l, Y, Z), Y, Z ) --> [likes],

{ likes( k(l, Y, Z) ), person( Y ), person( Z ) }.

np( NpD, X ) --> nom( NpD, X ).

np( NpD, X ) --> det, nb( NpD, X ).

nb( D, X ) --> nb1( D, X ).

nb( D, X ) --> nb2( D, X ).

nb2( NbD, X ) --> n( NbD, X ).

nb2( NbD, X ) --> ap( ApD, X ), n( ND, X ),
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{ tnorm( NbD, [ApD, ND] ) }.

nb1( NpD, X ) --> nb2( NppD, X ), pp( PpD, X ),

{ tnorm( NpD, [NppD, PpD] ) }.

pp( PpD, X ) --> [in], np( PpD, X ),

{ place( X ) }.

pp( PpD, X, A, [] ) :-

domain( X ),

findall( DoF, Y^ppx( DoF, X, Y, A, [] ), DoFs ),

supr( PpD, DoFs ).

ppx( PpD, X, Y ) --> [near], np( NpD, Y ),

{ place( X ), place( Y ), X \= Y,

place_distance( X, Y, dist( Dist ) ),

atmFuzSet( PD, Dist, 20, 50 ),

tnorm( PpD, PD, NpD ) }.

ap( ApD, X ) --> [very], ap( AppD, X ),

{ ApD is AppD*AppD }.

ap( ApD, X ) --> [fairly], ap( AppD, X ),

{ ApD is sqrt(AppD) }.

ap( ApD, X) --> adj( ApD, X ).

det --> [the].

det --> [a].

adj( AD, X ) --> [huge],

{ place( X ),

place_pop( X, pop( Pop ) ),

atlFuzSet( AD, Pop, 1000000, 3000000 ) }.

adj( AD, X ) --> [large],

{ place( X ),

place_pop( X, pop( Pop ) ),

atlFuzSet( AD, Pop, 300000, 500000 ) }.

adj( AD, X ) --> [small],

{ place( X ),

place_pop( X, pop( Pop ) ),

atmFuzSet( AD, Pop, 10000, 20000 ) }.

45



adj( AD, X ) --> [tiny],

{ place( X ),

place_pop( X, pop( Pop ) ),

atmFuzSet( AD, Pop, 100, 1500 ) }.

n( 1.0, X ) --> [city],

{ place(X) }.

n( 1.0, X ) --> [town],

{ place(X) }.

nom( 1.0, X ) --> place_name( X ),

{ place( X ) }.

nom( 1.0, X ) --> person_name( X ),

{ person( X ) }.

B.7 main.pl

#!/usr/bin/pl -s

:-consult(fuzzylogic).

:-consult(placesdbsrt).

:-consult(placeskb).

:-consult(peopledbsrt).

:-consult(db).

:-consult(language).

B.8 A Dialog with the Prototype

% fuzzylogic compiled 0.00 sec, 2,568 bytes

% placesdbsrt compiled 0.01 sec, 35,208 bytes

% placeskb compiled 0.00 sec, 2,516 bytes

% peopledbsrt compiled 0.00 sec, 2,408 bytes

% db compiled 0.00 sec, 636 bytes

% language compiled 0.01 sec, 7,508 bytes

% ./main.pl compiled 0.02 sec, 53,216 bytes

Welcome to SWI-Prolog (Multi-threaded, Version 5.1.13)

Copyright (c) 1990-2003 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.
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For help, use ?- help(Topic). or ?- apropos(Word).

?- nom(D, X, [san,francisco], []).

D = 1.0

X = k(c, 39) ;

No

?- nom(D, X, [carol], []).

D = 1.0

X = k(p, 1) ;

?- np(D, X, [a,city], []).

D = 1.0

X = k(c, 1) ;

. . .

D = 1.0

X = k(c, 57) ;

No

?- np(D, X, [a,small,city], []).

D = 0.0

X = k(c, 1) ;

. . .

D = 0.0

X = k(c, 10) ;

D = 0.9967

X = k(c, 11) ;

. . .

D = 0.0

X = k(c, 57) ;

No

?- np(D, X, [a,very,small,city], []).

D = 0.0

X = k(c, 1) ;

. . .

D = 0.0

X = k(c, 10) ;

D = 0.993411

X = k(c, 11) ;
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. . .

D = 0.0

X = k(c, 57) ;

No

?- np(D, X, [a,very,very,small,city], []).

D = 0.0

X = k(c, 1) ;

. . .

D = 0.0

X = k(c, 10) ;

D = 0.986865

X = k(c, 11) ;

. . .

D = 0.0

X = k(c, 57) ;

No

?- pp( D, X, [near,a,small,city], [] ).

D = 0.0

X = k(c, 1) ;

. . .

D = 0.922049

X = k(c, 10) ;

D = 1.0

X = k(c, 11) ;

. . .

D = 0.0

X = k(c, 57) ;

No

?- sent( D, X, [carol,lives,in,a,small,city,near,san,francisco], [] ).

D = 0.7792

X = k(r, k(p, 1), k(c, 17)) ;

No

?- sent( D, X, [carol,lives,in,a,very,small,city,near,a,\

big,city,near,san,francisco], [] ).
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D = 0.607153

X = k(r, k(p, 1), k(c, 17)) ;

No

?- sent( D, X, [carol,lives,near,a,very,small,city,near,a,\

big,city,near,san,francisco], [] ).

D = 0.779021

X = k(r, k(p, 1), k(c, 17)) ;

No
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