
Technical Report
Number 651

Computer Laboratory

UCAM-CL-TR-651
ISSN 1476-2986

End-user programming
in multiple languages

Rob Hague

October 2005

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Rob Hague

This technical report is based on a dissertation submitted July
2004 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Fitzwilliam College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

End-User Programming in Multiple Languages
Rob Hague

Abstract

Advances in user interface technology have removed the need for the majority of
users to program, but they do not allow the automation of repetitive or indirect
tasks. End-user programming facilities solve this problem without requiring users
to learn and use a conventional programming language, but must be tailored to
specific types of end user. In situations where the user population is particularly
diverse, this presents a problem.

In addition, studies have shown that the performance of tasks based on the
manipulation and interpretation of data depends on the way in which the data is
represented. Different representations may facilitate different tasks, and there is
not necessarily a single, optimal representation that is best for all tasks. In many
cases, the choice of representation is also constrained by other factors, such as
display size. It would be advantageous for an end-user programming system to
provide multiple, interchangeable representations of programs.

This dissertation describes an architecture for providing end-user program-
ming facilities in the networked home, a context with a diverse user population,
and a wide variety of input and output devices. The Media Cubes language,
a novel end-user programming language, is introduced as the context that lead
to the development of the architecture. A framework for translation between
languages via a common intermediate form is then described, with particular
attention paid to the requirements of mappings between languages and the in-
termediate form. The implementation of Lingua Franca, a system realizing this
framework in the given context, is described.

Finally, the system is evaluated by considering several end-user program-
ming languages implemented within this system. It is concluded that translation
between programming languages, via a common intermediate form, is viable for
systems within a limited domain, and the wider applicability of the technique is
discussed.

3

4

Contents

Abstract 3

Table of Contents 5

1 Introduction 7
1.1 From Programmer to User 7
1.2 From User to Programmer 8
1.3 Why Ubiquitous Computing? 9
1.4 Why Multiple Representations? 10
1.5 End-User Programming for Ubiquitous Computing 11
1.6 Aims . 12
1.7 Dissertation Overview 12

2 Related Work 13
2.1 Ubiquitous Computing 13
2.2 Internet Technologies . 16
2.3 Home Area Networks . 17
2.4 Approaches to End-User Programming 19

2.4.1 End-User Programming in Traditional Environments . . . 20
2.4.2 Programming by Example 21
2.4.3 Visual Programming 23

2.5 Programming in the Home 25
2.6 Using Multiple Representations 27
2.7 Conventional Systems for Integrating Multiple Languages . . . 31
2.8 Generation of Multiple Representations from a Single Source . 32

2.8.1 Multiple Representation in Software Visualisation 34
2.8.2 Multi-View Development Environments 37

3 The Media Cubes 41
3.1 Introduction . 41
3.2 Tangible User Interfaces 41
3.3 The Media Cube Device 44
3.4 The Media Cubes Language 46
3.5 An Example Media Cubes Program 50
3.6 The Nature of Events 52
3.7 Implementation . 53
3.8 Evaluation . 55

4 Translation based on common intermediate form 57
4.1 Language Integration via a Shared Intermediate Form 57
4.2 Requirements of Mappings 57
4.3 Execution as Mapping 58
4.4 Secondary Notation in Multiple Languages 59
4.5 Structure as Secondary Notation 61
4.6 An Environment for Multi-Language Programming 63

5 The Lingua Franca Architecture 65
5.1 An Overview of the Lingua Franca Architecture 65

5

6

5.2 The Lingua Franca Execution Model 65
5.3 Examples of Lingua Franca execution 69
5.4 The external representation of Lingua Franca 71
5.5 Operations on the Lingua Franca Corpus 73

6 The Implementation Of Lingua Franca 75
6.1 The Prototype Execution Engine 75
6.2 The LFCore Toolkit . 76
6.3 Prototype Language Environments 79

6.3.1 The Media Cubes Language in Lingua Franca 79
6.3.2 VSeq — Visual Sequences 82
6.3.3 LFScript — A Textual Language 87

7 Evaluation 93
7.1 Implementation of Reversible Translation 93
7.2 Usability Evaluation . 96
7.3 Cognitive Dimensions Analysis 97

7.3.1 Notation, Medium and Environment 98
7.3.2 Visibility and Juxtaposability 99
7.3.3 Diffuseness . 99
7.3.4 Viscosity . 99
7.3.5 Secondary Notation and Provisionality 100
7.3.6 Hidden Dependencies 101
7.3.7 Closeness of Mapping, Consistency and Role Expressiveness 101
7.3.8 Premature Commitment 102
7.3.9 Progressive Evaluation 102
7.3.10 Implications . 103

8 Conclusions & Future Work 105
8.1 Summary . 105
8.2 Contribution . 105
8.3 Future Work . 106

8.3.1 Testing . 106
8.3.2 Additional Language Environments 106
8.3.3 Improvements to Lingua Franca 106
8.3.4 Further Developments of Existing Language Environments 108

8.4 Ubiquitous End-User Programming 110

A Schema for XML Lingua Franca 111

B User Questionnaire 115

Bibliography 117

Chapter 1
Introduction

In the six decades since their invention, programmable electronic
computers have moved from being a tool for mathematicians, scien-
tists and engineers, to being an indispensable part of everyday life.
While this is most obvious in environments such as schools and of-
fices, where monitors, keyboards and other paraphernalia abound, it
has also had a subtler and more profound impact; computers may
be found almost everywhere. One area that is particularly rich in
hidden computing technology is the home. In addition to the obvi-
ous PC or Mac and games console, computing devices are used to
keep the rooms warm and the food cold, to play music and record
TV. However, these devices exist in virtual isolation; they cannot
communicate with each other.

There has been substantial amount of research, both commercial
and academic, into pervasive networks in the home. These allow
devices to communicate with each other, to work together, and to
be controlled remotely. Much work has been done to make these
networks self-configuring and self-maintaining, so that they do not
require the attention of a trained system administrator. One area
that has not had the same degree of attention is the usability aspects
of pervasive home networking; how can a householder utilise the
potential that the network provides?

My work addresses one particular approach to pervasive home
network usability, specifically that of end-user programming. Pro-
gramming may seem an unusual approach to improving usability,
but it will be argued that it provides significant gains over simpler
techniques. The specific approach to end-user programming is based
on a framework that allows users to choose a different language for
each stage of program development, employing whichever language
is best suited to the task at hand. This approach was initially con-
ceived as a result of work on a novel language, the Media Cubes,
which is also presented.

1.1 From Programmer to User

The first computing machines, including early digital computers such as Colossus
and ENIAC, had to be physically reconfigured in order to change their function-
ality. A significant advance came with the advent of stored-program comput-
ers, where an operator could alter the functionality of a computer by modifying
information (in other words, software) as opposed to its physical construction
(hardware). At this point, it became possible to make use of a computer without
having an intimate knowledge of the mechanisms by which it worked. In other
words, it was possible to be a programmer without also being an engineer.

It is difficult to overestimate the importance of this transition. It enabled
specialists in other areas (initially mathematics and the physical sciences) to
apply digital computers to problems in their own fields, without having to be-
come experts in the minutiae of electrical engineering involved in building and

7

8 Chapter 1: Introduction

maintaining the machines themselves. Of course, at this stage, programming was
itself an arcane and difficult to master skill, but it nevertheless dealt at a level
of abstraction closer to the problem at hand.

The development of FORTRAN, the first “high-level” programming lan-
guage, in 1954 represented another significant step. It was designed to allow
scientists to express algorithms in a form closer to the formal language of math-
ematics with which they were already familiar. It could be argued that this goal
was not completely achieved, but in any case, FORTRAN and its successors en-
abled specialists in a wide range of areas to harness the ever-increasing power of
computers.

Until now, we have been equating “user” and “programmer”, and indeed
throughout a large part of the history of computing the two terms were synony-
mous; the only way to use a computer was to program it. As programming, even
with the benefit of a high-level language, is a non-trivial skill to learn, researchers
sought ways to allow people to take advantage of computing without the need for
them to program. This lead to the concept of applications - programs that could
be used as is to perform some specific task. Technologies such as direct manipu-
lation (Sutherland 1963) meant that such applications could be made even easier
to use.

Such improvements in ease of use, married with ever-increasing computa-
tional power and falling device cost, made a far wider range of applications fea-
sible. This has led to the present situation, where computers are used daily by a
wide variety of people, and the vast majority of these users do not program. Such
users are termed end users, and typically purchase packaged operating systems
and applications, and use them unmodified.

1.2 From User to Programmer

The development of computer use from engineer and programmer to end user
has been an overwhelmingly positive move. However, something has been lost
in the transition. An advantage that the user-programmer has over the end
user is the ability to customize the software to meet specific needs. While the
programmer has the ability to modify or extend the behaviour of software more or
less arbitrarily, the end user does not have that choice. They must either petition
the individual or body that created the application, and ask that they provide the
desired feature, or, far more typically, put up with the software’s deficiency and
await the release of the next version, hoping that it will be corrected. This not
only applies to missing features, but errors in existing functionality. In addition,
end-user applications typically provide little opportunity for automation:

This leaves personal computer users in an ironic situation. It is a
truism that computers are good at performing repetitive activities. So
why are we the ones performing repetition, instead of the computer?

(Cypher 1993)

The Free Software and Open Source movements (DiBona et al 1999) appear
at first sight to offer a solution to this problem, and indeed many of the problems
of proprietary software are relieved by allowing end users to have far greater
access to the programmers of the software, or to become programmers themselves.
However, this does not tackle the issue of non-programmers customising the
software that they use. The point is expanded upon by Nardi:

End users are not “casual,” “novice,” or “naive” users; they are
people such as chemists, librarians, teachers, architects, and accoun-

Chapter 1: Introduction 9

tants, who have computational needs and want to make serious use of
computers, but who are not interested in becoming professional pro-
grammers. (Nardi 1993)

Hence, while open source development gives the user the opportunity to
customise their software, they cannot take advantage of this opportunity unless
they invest the time and effort to learn the programming languages and libraries
used, and the peculiarities of a particular software package, and yet more time
actually developing the software. This is an investment that few users (even
those who are experienced programmers) are willing to make. An alternative is
to make programming facilities available in a way designed to be usable by end
users, and not require a high degree of training in programming techniques. This
field is known as End-User Programming.

Designing a programming environment for end users differs in several ways
from designing a programming environment for trained programmers. Such sys-
tems are usually task-specific, and based around a model that is familiar to the
end user population targeted. The interface may also be significantly different
from traditional, text-based programming. In some, but not all, cases, such
systems forego some degree of expressibility in favour of simplicity.

Perhaps the most pervasive type end-user programming system in use today
is the automated spreadsheet, introduced with VisiCalc1, and typified by Lotus
1-2-32 and Microsoft Excel3. These allow users to create automatically updated
cells, the content of which is dependent in some non-trivial way on the content
of other cells (which may also be automatically calculated). Simple spreadsheets
allow the relationships to be specified using familiar algebraic formulae; more
advanced versions, including Excel and 1-2-3, also provide flexible programming
languages, allowing sophisticated applications to be created.

Another significant example of end-user programming is HyperCard, shown
in Figure 1.1. This system allows users to construct hypertext documents con-
sisting of a “stack” of “cards” containing text and images, buttons to enable
navigation, and fields to allow data entry. Scripts can be created in a program-
ming language with a simplified syntax, allowing scripts to be associated with
user actions such as clicking on a button. These scripts can examine the current
state of the stack, such as the values of fields, and cause arbitrary changes to the
content, including navigating to another card. The resulting system is extraordi-
narily flexible; it is accessible to users with little or no programming experience,
yet flexible enough to produce a wide range of high-quality applications (indeed,
several of the systems described in the following chapter were prototyped using
HyperCard).

1.3 Why Ubiquitous Computing?

Weiser (1991) and Norman (1999) propose a vision of ubiquitous computing as
computing that “disappears into the background”. Whereas current information
technology forces, or at least strongly encourages, the user to focus on the tech-
nology, ubiquitous computing allows the user to focus on the information — in
other words, on the task at hand.

Part of this vision is the idea of task-specific Information Appliances, as
proposed by Norman (1999), Raskin (2000) and others. However, while this is

1 http://www.bricklin.com/visicalc.htm
2 http://www.lotus.com/smartsuite
3 http://www.microsoft.com/office/excel/

10 Chapter 1: Introduction

Figure 1.1: HyperCard

a step towards Weiser’s ideal, it is not the whole story. To fully realize that
ideal, it would be necessary for computers to be integrated seamlessly into the
environment; whereas an information appliance is still an object to be focused on,
a user would not consciously notice that they were using a ubiquitous computing
system.

The implementation of ubiquitous computing demands a range of technolo-
gies. In addition to low-cost, power-efficient processing devices and networking
technologies, it may require specialised display technologies (both very large, as
in the Liveboard (Elrod et al 1992), and very small, as in a PDA or mobile
phone).

Sensors are a particular class of hardware that is far more important in
ubiquitous computing than conventional computing. An accurate and timely
picture of the environment in which activity is occurring is a major component
of most ubiquitous computing systems. In addition to novel hardware, ubiquitous
computing systems often have very different needs in terms of operating systems,
networking technologies and other architectural software.

Ubiquitous computing also requires a sea change in the user interfaces tech-
niques used. For example, text entry, something that may be taken for granted
when designing in a desktop environment, becomes difficult when the user does
not necessarily have a room for a keyboard, a surface to rest on, or even a
free hand. Hence, designers must use alternative text entry methods such as
handwriting or gesture recognition, speech, or other techniques, or design appli-
cations in such a way as to avoid text entry entirely. One promising technique
is tangible user interfaces (Ishii and Ullmer 1997), in which physical props are
used as the medium for interaction. While tangible interfaces may be used in
many contexts, the extension of the interface into the real-world environment is
particularly suited to ubiquitous computing.

Chapter 1: Introduction 11

1.4 Why Multiple Representations?

Most, if not all, computing tasks may be regarded as manipulation by the user of
sets of data. This manipulation is mediated by a notation, via which the data is
represented to the user. Notations may be textual languages (such as XML (Bray
et al 2000) or notes in a diary), visual languages (such as icons in a file manager,
or road signs), actions (such as gestures), or combinations thereof. There is a
large body of work in cognitive psychology relating to the use of notations, and
frameworks for applying this work to the design of notations (for example, the
Cognitive Dimensions framework described by Green (1989).)

Several studies (Cox 1996, Green and Petre 1992) have shown that task
performance may be influenced by the way in which the data on which the task
is performed is represented. Moreover, there is not necessarily a single, optimal
representation for a given data set; different representations may be better for
different tasks. Hence, systems that support the use of multiple representations
of the same data may have a considerable impact on overall task performance.

Current programming tools make limited, ad-hoc use of multiple representa-
tions; for example, systems such as JavaDoc4 and DOxygen5 produce hypertext
documentation from source code. Special-purpose notations allow more conve-
nient expression of particular types of software. For example, Lex (Lesk 1975)
allows lexical analysers to be produced using regular expressions, and the GUI
design tools of Microsoft Visual Studio6 allow the creation of user interface code
via manipulations of graphical elements on a virtual canvas. However, in general,
modification of programs must be performed using a single, fixed representation.
Particularly, generated code is normally held to be sacrosanct, to be modified
only by experts (and even then, the modifications are rarely propagated back to
the original notation). A system that permitted a variety of representations to
be interchanged freely would allow programmers to select the most appropriate
for the task at hand. However, the design of such a system must be carefully
considered if it is to be both practical and useful.

1.5 End-User Programming for Ubiquitous Computing

Fulfilling the potential of ubiquitous computing requires that the capabilities
provided by the technology may be harnessed by users. As mentioned, this poses
design problems far removed from those of conventional computing. In addition,
ubiquitous computing moves the use of computers from a relative narrow range
of contexts to a far greater one — almost anywhere, and at any time. This makes
it far harder for system designers to predict, in advance, how people will wish to
use a technology.

End-user programming offers an attractive solution to this problem; design-
ers would no longer need to second-guess users’ desires, as the users themselves
could customise the behaviour of systems as they wish. However, producing
an appropriate end-user programming system in a ubiquitous computing con-
text is not straightforward. In addition to the user interface problems already
mentioned, most ubiquitous computing systems are targeted at a wide user pop-
ulation, making it difficult to design a language that meets the needs of all users.

A system that supported multiple languages would allow the provision of
end-user programming facilities to meet the needs of disparate user groups. In

4 http://java.sun.com/j2se/javadoc/
5 http://www.stack.nl/~dimitri/doxygen/
6 http://msdn.microsoft.com/vstudio/

12 Chapter 1: Introduction

addition, the system would allow different languages to be used for different
tasks, as appropriate. My work is directed at demonstrating the feasibility and
usefulness of such a system.

1.6 Aims

My works aims to achieve the following:

• Produce a theoretical framework to support end-user programming in mul-
tiple languages

• Demonstrate the feasibility of this approach by implementing a system based
on that framework to support end-user programming in the context of do-
mestic ubiquitous computing, and several example programming languages

• Evaluate the system and languages, both from a technical and a usability
standpoint

1.7 Dissertation Overview

The remainder of this dissertation describes my work towards the above aims.
Chapter 2 discusses previous work in related fields. Chapter 3 describes the Me-
dia Cubes language, an end-user programming system designed for use within
the networked home. Chapter 4 proposes a theoretical framework for the inte-
gration of multiple programming languages. Chapter 5 describes an architecture
based on this framework, suitable for use within the networked home. Chapter
6 describes the implementation of this architecture, including both an execution
environment and several example programming languages. Chapter 7 evaluates
the system, and Chapter 8 presents the conclusions and discusses future work.

Chapter 2
Related Work

My work brings together several fields, including ubiquitous com-
puting, end-user programming, and programming environments with
support for multiple languages. This chapter examines the previous
work in these fields, describing the context in which my work was
undertaken.

2.1 Ubiquitous Computing

Ubiquitous computing, as described by Weiser (1991) and elsewhere, has the
potential to become the most significant revolution in computer use since the
graphical user interface. Just as the GUI made computing power far more easily
available to non-programmers, ubiquitous computing may be the key to elim-
inating the need to engage explicitly with a computing device at all, instead
allowing the user to focus on the task (as opposed to the method by which it is
performed).

It is worth noting that ubiquitous computing is not simply achieved by mak-
ing computing devices portable (although this is a useful aim in itself, and a
prerequisite for many ubiquitous computing systems). Nor is providing such
portable devices with connection to a network sufficient (although, again, this
is a useful thing to do). Even a portable, connected laptop computer is still an
object that demands attention. Weiser contrasts this to the written word:

Consider writing, perhaps the first information technology: The abil-
ity to capture a symbolic representation of spoken language for long-
term storage freed information from the limits of individual memory.
Today this technology is ubiquitous in industrialized countries. Not
only do books, magazines and newspapers convey written informa-
tion, but so do street signs, billboards, shop signs and even graffiti.
Candy wrappers are covered in writing. The constant background
presence of these products of “literacy technology” does not require
active attention, but the information to be conveyed is ready for use
at a glance. It is difficult to imagine modern life otherwise.

(Weiser 1991)

While it is indeed true that the written word pervades all aspects of life
in the industrialised world, a significant number of people cannot read with
the facility implied. Those who are partially sighted, dyslexic, lack access to
education, or have difficulty reading for some other reason do not have access
to information in such an effortless fashion, and consequently face substantial
obstacles in many aspects of modern life. Nevertheless, for the majority of people,
“literacy technology” has disappeared into the background; the goal of ubiquitous
computing is to make computing technology do the same.

Ubiquitous computing has been approached in a variety of ways. One of
these is to construct systems that are context aware, in that they can sense the
state of their environment and modify their behaviour accordingly. This allows

13

14 Chapter 2: Related Work

Figure 2.1: Positioning technologies. Clockwise from top left: a GPS
receiver, an Active Badge, an Active Bat, and an Ultrawideband tag
(not to scale)

applications to update their state and alert users appropriately, without explicit
intervention.

Within the field of context awareness, a common theme is location awareness,
where the context in question is the location of users and devices. “Location” in
this context can mean a variety of things, including absolute or relative physical
position (expressed as a point in some coordinate system) and symbolic position
(identifying which of a set of areas the unit is within). Hightower and Borriello
(2001) survey a wide variety of location technologies (some of which are shown
in Figure 2.1), constructing a taxonomy based on several variables (physical
versus symbolic positioning, absolute versus relative, localised versus centralised
awareness, identification) and considers factors such as accuracy, scalability, cost
and other limitations.

The most widely used system assessed is the Global Positioning System
(GPS), a system originally developed by the US Department of Defence, but
made available (with artificially lowered accuracy) for civilian use. This system
is based on a constellation of 24 satellites (plus three redundant backups) serving
an unlimited number of receivers. The receivers calculate the distance to a visible
satellite based on the timing of radio signals received from that satellite. If the

Chapter 2: Related Work 15

distance to four satellites (with known positions) is established, the position of
the receiver may be determined using trilateration. In practice, this position is
accurate to between one and five metres for longitude and latitude (and less accu-
rate for height). This requirement for line-of-sight to several satellites is the chief
weakness of the system; the system does not function indoors, and is impaired in
an urban context, where tall buildings shadow large areas from GPS satellites.
Nevertheless, the system is widely used by individuals for navigation, and by
organisations to track mobile units such as rental cars or emergency vehicles.

Another notable technology surveyed is the Active Badge, developed at
the Olivetti Research Laboratory (later AT&T Laboratories Cambridge). Each
badge has a unique identifier, and periodically transmits this using an infrared
beacon. Fixed base stations equipped with infrared receivers inform the network
of the badge identifiers they receive. As infrared does not pass through walls,
the fact that a base station receives a particular badge identifier may be taken
as evidence that the badge and the base station are in the same room, allowing
the system to locate badges (and, by extension, the person or object the badge
is attached to) to the level of single rooms. Later systems allow smaller zones, or
physical (as opposed to symbolic) positioning, using technologies such as ultra-
sound (used by the successor to the Active Badge, the Active Bat) or computer
vision. Since the publication of the survey in question, several new technologies,
notably ultrawideband radio location, have emerged.

A wide variety of applications may benefit from the addition of location
awareness; for example, an application may select the printer nearest to a user’s
current location, without additional action on their part. Moreover, as well as
augmenting traditional applications, location awareness makes possible a large
number of novel ubiquitous computing applications. One example, from the
Sentient Computing project at AT&T (Addlesee et al 2001), is automatic phone
forwarding; when users are away from their desks, they have the option of routing
calls to their present location, on a per-call basis. This service requires no user
intervention to set up or activate, and only minimal intervention when a call is
received (the user places his or her Active Bat over a phone and presses a button
on the Bat if they wish to take the call, or does nothing if they do not).

A yet more specific example of context awareness, that constitutes perhaps
the most useful variant of the technique, is that of directly selecting a device
using physical proximity. In the above application, the positioning device is
used to indicate the phone at which the user wants to take the call. This need
not be active; a system may detect that a user and a device are collocated at a
particular time, and customise the behaviour of the device in accordance with the
current user’s preferences. The Sentient Computing project extends this concept,
constructing a time line containing the content created by a user using a variety
of devices such as scanners, digital cameras and voice recorders. This content
is annotated with context information, such as who else was present, and the
names of people in photographs taken by a fixed camera. This greatly simplifies
content management without any additional action on the part of the user. The
Pepys system (Newman et al 1991) goes further, attempting to construct an
“autobiography” detailing the users activities throughout the day, to serve as
an aide-memoire. Particular prominence is given to “gatherings”, where the
user was collocated with other people. The system is intriguing, but suffers
from the relatively unreliable and inaccurate nature of the data source (Active
Badges), forcing the software to infer events from incomplete evidence. As a
result autobiographies were often incomplete or erroneous. Nevertheless, they
served as a useful reminder of events, and the system informed future work in
the field.

16 Chapter 2: Related Work

There is a growing body of work investigating the social and psychological
factors involved in the design of ubiquitous computing systems and applications.
One area of investigation seeks to identify the areas of activity for which ubiqui-
tous computing could provide support. Rodden et al (2003) describe an observa-
tional study of users revealed informal “habitats” where certain types of activity
are located within the home; for example, mail that has been opened but is likely
to be of interest to others is placed on the mantlepiece. Behaviours and protocols
such of this may suggest ways in which ubiquitous computing could be worked
into a social context.

2.2 Internet Technologies

The Internet arose from work on a decentralised network for military use, but
has grown to become a global, general purpose network, widely used for myriad
commercial, social and leisure activities. One of the most important factors in
the success of the Internet, and particularly its applications, has been the use of
standard, easy-to-implement technologies.

One of the most successful Internet applications has been the World Wide
Web. This is an extremely simple hypertext system based on retrieving doc-
uments via a global address, or Uniform Resource Locator (URL). Documents
described using the Hypertext Markup Language (HTML, Raggett et al 1999)
may mark sections of the document (usually words or phrases) as anchors, and
associate them with URLs. When such a document is viewed in a browser, ac-
tivating an anchor (for example, by clicking on it with the mouse) causes the
referenced document to be loaded, usually replacing the previous document.

Hypertext Transfer Protocol (HTTP, Fielding et al 1999) is used to retrieve
documents via URLS. This is a straightforward and easily implemented request-
response protocol. Requests consist of a method, a path to the subject resource,
and a protocol identifier. The most common method is GET, which simply
retrieves the specified document. Other methods include POST, used to add
information to a specified document, and PUT and DELETE, used to edit docu-
ments remotely. Responses consists of a response code, a short human-readable
explanation of that code, and a protocol identifier. In addition, both requests and
responses may optionally include headers, name-value pairs encoded as ASCII
text, and a body containing arbitrary data. The body data depends on the
method; for example, the body of a GET request is empty, and the body of the
corresponding response contains the document requested (or a human-readable
error message if the document cannot be provided). Numerous protocols have
been based on HTTP; a notable example is WebDAV (Golland et al 1999), a set
of extensions providing more advanced support for editing documents on remote
servers.

The simplicity of HTML and HTTP was a key factor in their widespread
adoption. Similarly, Extensible Markup Language (XML, Bray et al 2000) has
seen far wider adoption than its predecessor, SGML (ISO standard 8879: 1986),
largely due to its simplicity. XML was originally designed for “marking up”
textual data to provide additional structure. An XML document is represented as
a sequence of Unicode characters. Typically, this sequence is a file, but this is not
universal. Comments akin to those found in programming language source code
may be inserted at most points in the document using appropriate syntax; these
are conventionally ignored by processing software. A preamble may be included
to specify the version of XML used, or to provide a Document Type Definition
to constrain the structure of the document. Following the preamble is a single
element, known as the document root. This may contain additional elements,

Chapter 2: Related Work 17

which may in turn contain elements, and so on, resulting in a tree structure.
Elements have a name, and may optionally be annotated with attributes in the
form of name-value pairs. In addition, elements may contain text in the form of
unstructured character sequences.

While XML’s design goals and terminology are heavily skewed towards the
processing of documents, it has also been widely adopted as a standard for inter-
changing other types of structured data. Examples include Internet standards
such as SOAP (Gudgin et al 2003) and WSDL (Christensen et al 2001), data
formats such as MathML (Carlisle et al 2003) and Chemical Markup Language
(Murray-Rust et al 2000), and business process description languages such as
BPEL4WS (Andrews et al 2003). While other standards, most notably ASN.1
(Dubuisson 2000), provide generic mechanism for the interchange of structured
data, they are notoriously difficult to realise. In particular, discrepancies be-
tween implementations make interchange between them problematic, meaning
that such standards are more suitable for use within an organisation, as opposed
to between organisations. This is at least partially due to the fact that such stan-
dards are based on binary data. XML is a far simpler standard, and is text based.
As a result, it is far easier to develop a fully standards-compliant processor; in-
deed, numerous implementations are widely deployed, with few interoperability
problems reported. A significant disadvantage of XML, compared to binary for-
mats, is its relative verbosity. While this can be ameliorated, to an extent, using
compression, this is an additional processing cost. Furthermore, parsing XML
is typically more costly than parsing a binary format. Hence, the use of XML
represents a trade-off between runtime efficiency and ease of interoperability.

In addition to the core XML standard, there are numerous standardised tech-
nologies for the manipulation and processing of XML. XSLT (Clark 1999) is a
programming language for describing transformations from one XML document
to another. DOM (Le Hors et al 2003) provides a standard document represen-
tation that may be produced by parsers, allowing an application based on DOM
to use any parser supporting the standard. XPath (Clark and DeRose 1999) pro-
vides an expression syntax for referring to parts of an XML document. As well
as specifying a path from a known node (usually the root node), predicates may
be used to provide more exact criteria. For example, the following expression
refers to all title elements that are children of biblioentry elements, and have
at least one biblioset or confgroup sibling:

biblioentry/title[../biblioset or ../confgroup]

The simplicity of XML, combined with the rich set of supporting technolo-
gies available, makes it a good choice for many Internet applications. As well
as the new applications described above, HTML, originally a dialect of SGML,
has been reformulated as a dialect of XML, in order to take advantage of these
factors.

2.3 Home Area Networks

There has been much recent interest, in both industry and academia, in the
possible application of networking technology in a domestic setting. At the sim-
plest level, this can simply mean making existing networking technologies such
as Ethernet or WiFi (IEEE 802.11a/b/g) available in the home. When combined
with a high capacity external Internet connection, this can provide a significant
improvement over single host, dial-up connections, making a far wider variety
of services feasible and convenient. Examples include multimedia services that
rely on the transmission of large amounts of data, and services that are used

18 Chapter 2: Related Work

for brief intervals, for which the relatively long set-up time of a dial-up connec-
tion is a disincentive. Work in this area focuses on adapting this technology to
make it more appropriate for home use: for example reducing the difficulty of
installation and maintenance, as there is unlikely to be a professional systems
administrator in attendance. To this end, manufacturers have used technologies
such as DHCP (Droms 1993) and ZeroConf (Williams 2002) to produce “smart
appliances” that configure themselves, automatically determining the specifics of
any network they are connected to.

A less direct approach is to design systems that support networked control
of existing appliances in the home. X107 provides a commercial product that
allows users to control electrical devices such as lamps via a PC, and allows the
integration of cameras and other sensors. Communication is over existing power
lines, or via wireless links. However, device control is, in almost all cases, limited
to turning on and off. This is because of a lack of a standard for the control of
devices. There are some exceptions; most notably in the field of infrared remote
controls. While not completely standardised, there is enough commonality, and
enough information in the public domain, to allow manufacturers to produce
“universal” remote controls that allow a user to user a single control to operate
several devices (in practice, audio-visual components), even if those devices are
from different manufacturers. Some units add the simple facilities to perform
timed operation. The RedRat8 is notable in that it allows consumer electron-
ics devices to be controlled from a PC. This offers the possibility of arbitrarily
complicated control, but is aimed at the technically sophisticated user.

There are several efforts to produce a standard by which devices can be
networked and controlled, thus allowing uniform solutions to be developed, as
opposed to the current, ad hoc, ones. One of the most promising of these stan-
dards is Universal Plug and Play9 (UPnP). It is produced by a consortium with
several hundred members, mostly device manufacturers and software companies,
but including some academic institutions. The intention is that devices may
be added to a network, and automatically discover and connect to other de-
vices without requiring the user to install device drivers or manually configure
connections.

UPnP is based on standard Internet technologies such as HTTP and XML,
described in the previous section, and covers six areas: addressing, discovery,
description, control, eventing and presentation. Addressing allows devices to
obtain an IP address automatically, either via the centralised DHCP protocol, or,
if there is no DHCP server available, via a decentralised protocol named Auto-IP.
Once a presence on the network has been established in this way, the discovery
layer allows devices to search for other devices on the network that provides
services it is interested in, and advertise services that it itself provides. Hence,
appropriate connections between devices may be made between devices without
user intervention. Once these connections have been made, the description layer
allows more detailed information about devices to be exchanged. This includes
information such as the device name, manufacturer and model, and, importantly,
a specification of the interfaces of the services that the device provides.

Control and eventing are concerned with communication between devices;
these provide a set of generally applicable technologies for communication be-
tween devices. Control is based upon the synchronous, RPC-like SOAP protocol;
arguably, asynchronous communication is more appropriate in a ubiquitous com-

7 http://www.x10.com/
8 http://www.redrat.co.uk/
9 http://www.upnp.org/

Chapter 2: Related Work 19

puting context (Saif and Greaves 2001). Eventing is based on the asynchronous
GENA protocol, but is only intended to be used for tracking changes to the state
of devices. Presentation is concerned with presenting an interface to the user. At
time of writing, it is limited to providing an HTML-based web interface. While
this is sufficient for a variety of situations, it is not well suited to novel presen-
tation methods that may be found in a ubiquitous computing context, for such
as verbal input and aural rendering.

The intention is that UPnP is embedded in every device. This is perhaps
optimistic, as the standard’s minimum requirements include an IP stack. This is
feasible in many devices (for example, televisual equipment) that already contain
microprocessors, but is likely to be an obstacle in simpler devices such as coffee
machines and alarm clocks, where both overall cost and profit margin are far
smaller. In addition, UPnP relies heavily on XML, a relatively verbose data rep-
resentation, and HTTP, a protocol with significant overhead for small messages.
While there are numerous advantages to these choices, they also serve to increase
the memory and processor requirements for UPnP devices, and as such may be
considered inappropriate for very small footprint devices.

The AutoHAN project (Blackwell and Hague 2001) is a continuing project
examining all areas of Home Area Networking, focusing on technologies that
make a home area network practical for and usable by the typical home user.
Possible uses for such a network include routing music and video to any room
in the house, automating devices such as lamps and speakers to react to users’
presence and actions, and allowing tasks to be performed at a certain time of
day, or when certain conditions arise.

The project has investigated the reuse of legacy power and telephone wiring
for high-speed data transfer, allowing home networking technology to be used
where installing new wiring is inconvenient or impossible (for example, listed
buildings). Many of these problems may be solved with wireless networking;
however, this has the disadvantage of interference, leading to highly variable
quality of service. In addition, wireless technologies are typically slower than
their wired counterparts, and carry additional security implications in that the
signal may be overheard. As wireless networking technology, in particular spread
spectrum and ultrawideband technologies, improves, the speed and quality of
service concerns will be lessened, but reuse of legacy wiring is often a valuable
medium-term solution.

The project has also developed a novel variant of ATM (Asynchronous Trans-
fer Mode) to allow multimedia data to be streamed around the home. This
provides the quality of service guarantees of normal ATM without the need
for complex routing hardware. This technology has been integrated into ra-
dio tuners, CD players and amplifiers, allowing high-quality audio data to be
transmitted around a home network under computer control. However, while
the system is technologically capable, the problems associated with interfacing
(circuit-switching) ATM with the packet-switching networks that have become a
de facto standard in the marketplace mean that such a technology is likely to be
limited to niche markets, much like standard ATM.

Early in the project, it was noted that the user interface of the system
was critical to its success. Various techniques were investigated. My work has
taken place within the context of this investigation; specifically, in the provision
end-user programming facilities for home networks. This resulted in the Media
Cubes language, described in Chapter 3, and subsequently the Lingua Franca
multi-language programming system, described in Chapter 5 and Chapter 6.

20 Chapter 2: Related Work

2.4 Approaches to End-User Programming

If an end-user programming system is to be successful, the traits of the tar-
get user population must be taken into consideration from the outset. In most
cases, the target users will be significantly different from those of a conventional
programming language (usually professional programmers). As a result, various
approaches have been taken that differ to a greater or lesser extent from those
taken in traditional programming contexts.

2.4.1 End-User Programming in Traditional Environments

The observations by Nardi quoted in Section 1.2 embody the prevailing view of
end-user programming in offices and similar environments, where it is tradition-
ally deployed. In these cases, the purpose of end-user programming is to enable
users to create programmatic abstractions without requiring them to expend un-
due effort. Such abstractions allow the user to customise applications to suit
their individual needs, without the need to either hire professional developers, or
alter their work practices to accommodate the vagaries of the software. End-user
programming is not without its problems, but offers significant benefits.

A common approach is to use a simplified language, with a feature set tailored
to the application at hand, and omitting or concealing any complexity that is not
immediately relevant. The language used may be ad hoc, or it may be an existing
language, such as Visual Basic or Scheme, adapted to suit the specific application
in question. In essence, such an environment provides a programmatic way to
access functionality that is already available to the user via another mechanism
(for example, a graphical user interface). This has the advantage that the user is
already familiar with the functionality in question. It also opens up the possibility
of “Programming by Example”, described the next section.

Such environments allow users to automate repetitive tasks, potentially in-
creasing both efficiency and accuracy. However, these long-term benefits must
be offset against the short-term cost of actually creating the script, and the risk
that the script will not function correctly, or will not be of enough general use
that effort saved will be greater than the cost of creating it. On the basis of these
criteria, the Attention Investment Model (Blackwell 2002) models the decision
process regarding making (or not making) abstractions as an economic decision,
where the scarce resource is the user’s time or attention. Hence, when the user is
assessing the viability of creating a particular abstraction, they estimate the cost
of creating the abstraction, the benefits that it will bring, and the probability
that it will be successful in bringing those benefits (or, conversely, that the pro-
cess will fail, and result in costs with no benefits). An important point to note
is that it is the perceived cost and risk that are important in this calculation.
Hence, a system that is perceived to be difficult (costly or risky) to program
will greatly discourage abstraction-making, regardless of the actual cost or risks
involved.

In most cases, end-user programming systems of this kind are used by a
minority of users, so called “power users” or “gurus”. Such users can and do
create large and complex applications, and in some cases come to rely heavily
on them. However, when the task moves from straightforward automation of
actions previously performed by a user to the creation of large, complex pieces of
software, a system designed for the former proves unsuitable for the latter. Nev-
ertheless, it is possible to construct systems to support the creation of complex
software solutions by individuals who have little or no formal training in software
engineering. For example, Rothermel et al (1998) describes a method by which

Chapter 2: Related Work 21

an environment may provide end users with the facility to test their programs,
an important task as systems and the programs created with them become more
sophisticated and complex.

2.4.2 Programming by Example

A promising approach for end-user programming in many situations is Program-
ming by Example (also known as Programming by Demonstration). This involves
the user performing the task to be automated one or more times, usually using a
direct manipulation interface. This sequence of actions is observed, and used as
the basis for a program. The following quotation from Cypher expands on the
rationale behind this:

The motivation behind Programming by Demonstration is simple and
compelling: if a user knows how to perform a task on a computer,
that should be sufficient to create a program to perform the task. It
should not be necessary to learn a programming language like C or
BASIC. Instead, the user should be able to instruct the computer to
“Watch what I do”, and the computer should create the program that
corresponds to the user’s actions. (Cypher 1993)

The most straightforward form of programming by example is a macro
recorder that simply records a sequence of actions, and repeats them verbatim at
some later time, when the user issues a certain command. Little or no attempt
is made to adapt the actions to the new context. Despite their simplicity, macro
recorder systems are adequate for a surprising number of automation tasks in
many applications. In addition, the straightforward model of programming is
relatively easy for users to grasp.

An obvious extension to this technique is to allow users to edit the recorded
macro. In most cases, the purpose of this is to make the macro more generally
applicable by allowing it to adapt to the context in which it is invoked. If a user
is to edit the macro, it must be presented in some way; usually, this is in the
form of a conventional, text-based programming language of the type mentioned
above. If this language is sufficiently general, as is the case for Visual Basic for
Applications10, then the macros may provide a basis for larger, more complex
scripts. This also provides a path from macro recording to the devlopment of
complex programs using the scripting language.

An interesting variation on this theme is found in the system ToonTalk (Kahn
1996), an end-user programming environment aimed at school-aged children.
Due to the target audience, the system presents elements such as data items and
programs as animated characters in an environment comparable to a video game
(Figure 2.2). Programs are represented as robots that “learn” by “watching” user
actions; to train a robot to perform a specific task, the user performs the intended
actions on some input via the existing direct manipulation interface. When the
robot subsequently sees the same input, it will perform the same actions that
the user did.

Used in this way, the system acts as a simple macro recorder, with the ad-
ditional constraint that the macro will only work in a single context (it will only
work on a specific input value). However, once a robot has been trained in this
manner, the user may generalize it by selectively removing parts of the input
accepted. This relaxes the constraints on acceptable input, allowing any value to

10 http://msdn.microsoft.com/vba/

22 Chapter 2: Related Work

Figure 2.2: The ToonTalk programming environment

Figure 2.3: The EAGER programming by example system.

be used in the specified place. This technique is analogous to the unification of
logical variables in programming languages such as Prolog (Sterling and Shapiro
1994), and, despite its simplicity, is sufficiently general to allow the user to spec-
ify arbitrarily complex programs. It is also arguably less prone to errors than
modification of a traditional language by a user not familiar with that language.

Chapter 2: Related Work 23

A different approach to Programming By Example is to attempt to infer
programs automatically from observations of user actions. This may be done
with or without user intervention. An early example of such a system is Eager
(Cypher 1993, Chapter 9), shown in Figure 2.3. This system consists of an agent
that monitors user actions, and, when it detects a repetitive sequence, offers to
continue it for the user. If this offer is accepted, the agent steps through the
next iteration of the sequence as it has inferred it, giving the user the chance
to correct any incorrect actions. This process may be repeated for as many
iterations as the user feels is necessary. Once they are happy that the agent has
inferred the correct actions, it can be commanded to finish the sequence without
further intervention. The user can also, at any time, cancel the agent’s actions
and return to the previous state.

One important aspect of Eager is that the agent is constantly monitoring user
activity; no user action is required to begin the inference. Another is that the
agent does not take any action without explicit indication from the user, allowing
them to ignore the agent if and when they wish to. Finally, when the user does
decide to allow the agent to proceed with the inferred actions, they may correct
or reverse those actions at any time. An alternative approach, taken by the
predictive calculator described in Chapter 3 of Cypher (1993), constantly offers
the user an inferred action (with no possibility of modification), and only requires
minimal interaction to accept this. In both cases, however, it is paramount that
an incorrect inference is not harmful (in the sense that it costs the user undue
effort or, worse, destroys any of the user’s data.) Inference-based systems such
as these have been successful within limited domains, but less so when applied
to more general problems.

A similar training process in much wider use is that associated with Bayesian
filtering of e-mail to remove Unsolicited Commercial E-Mail (UCE, or “Spam”)
(Graham 2004), as used in products such as Mozilla Thunderbird11 and SpamAs-
sassin12. This technique, based on naive Bayesian inference (Lee 1997), assigns
to each word in an incoming message a probability that the message is UCE,
based on the occurrence of that word in previous UCE messages. If the aggre-
gate probability is greater than some threshold, the message is tagged as UCE.
This is a very effective technique, but requires a large corpus of messages iden-
tified as UCE (or not) to generate the probabilities. While manufacturers can
provide a seed corpus, this is unlikely to identify all messages that a user con-
siders UCE. Hence, the software provides the facility for the user to explicitly
correct assertions by indicating that a particular message labelled as UCE is in
fact legitimate, or vice versa. The probability associated with the words in the
message may then be adjusted accordingly. Over time, the probability table is
adjusted to match the user’s particular pattern of mail, and the accuracy of the
software increases. Furthermore, each user’s training set will be different, making
it infeasible to select “known good” words that provide strong evidence that a
message is legitimate, the inclusion of which would allow a sender to effectively
bypass the filter. When the user is satisfied that the match is sufficiently accu-
rate, he may instruct the software to remove UCE messages without intervention.
In practice, these messages are not deleted, but placed in a “Junk” folder. This
allows the user to check that the software is functioning as desired, and correct
it via further training if it is not.

11 http://www.mozilla.org/products/thunderbird/
12 http://www.spamassassin.org/

24 Chapter 2: Related Work

2.4.3 Visual Programming

A visual language is described by Marriot et al (1998) as “a set of diagrams
which are valid sentences in that language, where a diagram is a collection of
symbols in a two or three dimensional space”. This is reminiscent of Chomsky’s
definition of (spoken and textual) language as a set of valid strings of symbols.
Hence, the key distinction drawn between visual and textual languages is that
textual languages are linear (sequential, one-dimensional), whereas their visual
counterparts are expressed in a two- or three-dimensional medium. Other prop-
erties, such as colour, may also be significant in some visual languages. Visual
Programming (VP) systems use visual as opposed to textual languages to express
programs. The distinction is not always clear-cut; for example, a small number
of “textual” languages, notably Python (Lutz 2001) and Haskell (Peyton-Jones
2003), make some use of the two-dimensional arrangement of tokens, specifically
the indentation of lines of text. In this respect, they may be considered visual
languages, albeit ones in which the visual component is of limited flexibility.

Blackwell (1996) has surveyed and categorised the perceived benefits (termed
metacognitive theories) of VP, and notes a “remarkable consistency of metacog-
nitive concerns amongst VP researchers”. The theories identified are based in
many areas, including introspection by researchers, cognitive theory and folk
psychology. Blackwell concentrates on the theories that Visual Programming
practitioners advance to support their work, but the field also has its share of
detractors. Perhaps most prominent amongst these is Brooks:

A favourite subject for PhD dissertations in software engineering is
graphical, or visual programming, the application of computer graph-
ics to software design. Sometimes the promise of such an approach is
postulated from the analogy with VLSI chip design, where computer
graphics plays so fruitful a role. Sometimes the approach is justified
by considering flowcharts as the ideal program design medium, and
providing powerful facilities for constructing them.

Nothing even convincing, much less exciting, has yet emerged
from such efforts. I am persuaded that nothing will.

. . . software is very difficult to visualize. . . . The VLSI anal-
ogy is fundamentally misleading — a chip design is a layered two-
dimensional object whose geometry reflects its essence. A software
system is not. (Brooks 1995)

Brooks softens his view in latter writings, but the overall pessimism remains,
and is shared by many in the software engineering community. While VP is cer-
tainly not, as is sometimes claimed, a panacea that is better in all respects than
conventional programming methods (Brooks’ “Silver Bullet”), there is neverthe-
less convincing evidence that VP is beneficial in certain specific ways. Whitley
(1997) surveys numerous studies into various aspects of visual languages, and
draws the overall conclusion that visual languages are better than their textual
counterparts for some tasks, and worse in others.

One of the major problems associated with visual programming languages
is scalability. While they offer many advantages when dealing with smaller pro-
grams, it is difficult to extend the applicability to larger programs without sac-
rificing these advantages. Indeed, this is a chief criticism levelled by Brooks in
the passage cited above. Burnett (1995) breaks this problem into nine more spe-
cific sub-problems, including procedural abstraction, efficiency, type safety and
data persistence. The paper cites numerous examples of ways in which visual

Chapter 2: Related Work 25

programming environments attempt to overcome these problems, with varying
degrees of success. Many of the solutions offered, such as transparent storage of
state, are viable. Others, such as the separation of context and detailed views, or
static and dynamic views, represent compromises that, while they mitigate cer-
tain problems, do not eliminate them. These problems may well be fundamental
limitations of Visual Languages. However, in many cases, they are not an issue;
in particular, in the field of end-user programming, an obvious application area
for visual languages, programs may remain small.

VP systems are often based around direct manipulation, a technique more
commonly associated with activities not traditionally thought of as program-
ming. The main characteristics of direct manipulation are, to paraphrase Schnei-
derman (1983): continuous representation of the objects of interest, “physical”
actions, rapid incremental reversible operations whose impact is immediately
visible, and a layered or spiral approach to learning that permits usage with
minimal knowledge. Consequently, many of the lessons learnt in the design of
direct-manipulation based Graphical User Interfaces (GUIs) may be profitably
applied to VP.

A common technique employed in GUI design is metaphor. The system is
made to mimic another, real-world, system. The advantage of a metaphor is
to allow users to “learn by analogy”. However, an inappropriate metaphor, in
addition to hampering learning by analogy, may cause users to make incorrect
assumptions about the system. Furthermore, in some cases, a visual analogy may
not provide significant benefits to comprehension (Blackwell and Green 1999).

In general, the application areas in which VP has been used most successfully
are those where the problem in question has a large visual/spatial component, a
notable example being GUI design. Visual layout and design tools, often found
as components in Integrated Development Environments (IDEs), are now used
almost universally for this task. While early systems limited the user to specifying
simple, absolute layouts, modern systems are considerably more flexible, allowing
users to specify complex relationships between layout parameters in an visual
manner.

In addition, tools such as Apple’s Interface Builder13 go further, providing
graphical representations of programmatic objects outside the user interface, and
for connections between objects. This allows a significant degree of “boilerplate”
code to be specified graphically, alleviating the need for laborious and error-prone
manual coding. Instead of generating the code that would otherwise be generated
by hand, Interface Builder stores the specification as serialised objects, allowing
the connections to be edited in the same graphical way at a latter time.

2.5 Programming in the Home

When considering programming in the home, it is necessary to have a definition
of the term “programming”. We chose to define programming as abstraction over
either time or a class of objects. This definition includes, in addition to the type
of programming traditionally discussed by computer scientists, activities such as
setting a central heating timer, and defining a playlist of CD tracks.

Programming, by this definition, is a widespread activity, and is undertaken
by an extremely diverse user population. Rode et al (2004) describe an ethno-
graphic study of programming activity in various types of households. The re-
searchers visited volunteers at home in the evening, and brought with them a

13 http://developer.apple.com/tools/interfacebuilder/

26 Chapter 2: Related Work

meal to share. This provides an opportunity to build up a rapport with the
participants, and allows informal conversations that frequently reveal additional
information pertinent to the area studied. Following the meal, the participants
performed several classification tasks based on the programmable appliances in
the home, using low-fidelity props to as a tool for discussion. This was followed
by a questionnaire and debriefing.

The study found that “ahead of time” programming (for example, timed
recording with a VCR) was more common than “repeats easy” abstraction (for
example, programming a telephone number into speed dial). Programming activ-
ity was equally common amongst men and women. Some gender differences were
observed in the types of appliance programmed, but the exact nature of these
was ambiguous, and the authors state the need for further study to investigate
these.

An important point revealed by the informal conversations with the partic-
ipants is the wide variety of consequences of failure to program an appliance
correctly. These range from minor irritation (such as the failure of a VCR to
record a particular program) to the disastrous and potentially lethal; partici-
pants voiced the fear that an incorrectly programmed oven would burn down the
house (the likelihood of this actually happening was not addressed, but, regard-
less of this, the fear on the part of the end user is significant in that it affects their
decision as to whether to program a particular device or not). This parallels the
range of failure consequences in traditional programming activities (ranging from
trivial software such as screen savers to safety-critical systems such as air traffic
control), but in this case, the participants are not professional programmers, and
are not being paid to program, and programmable systems in the home should
be designed with this in mind. The authors conclude:

These findings suggest that even where programmable features are
difficult and risky to use, users will persevere in the face of adver-
sity, if they have a real need for the feature. However, where there
is no real need for programming, users will not bother. Thus, while
programmable features may be included in items like ovens and bread-
makers because they are considered selling points, these features may
not in practice enhance the usability of the appliances. If such fea-
tures are considered desirable, or are essential (as is the case with
VCRs), perhaps designers should focus on reducing the chances of
failure, and/or the associated risks. (Rode et al 2004)

Programmability would seem to be particularly useful in the networked
home, where numerous complex devices can interact to provide enhanced func-
tionality. However, there has been relatively little work in this area. One example
of such work is the Accord project (Rodden et al 2004). This project has three
linked objectives; developing new tools and methods for the embedding of com-
putation in everyday objects, investigating the ways in which new functionality
and new use can emerge from interacting collections of such objects, and ensur-
ing that people’s experience of these environments is both coherent and engaging
in space and time. The project cites the work of architectural historian Stewart
Brand, in which the evolution of a building is characterised by the interplay of
the ”six S’s” (Site, Structure, Skin, Services, Space-plan and Stuff). In particu-
lar, it focuses on the interplay between space-plan (the layout of the home) and
stuff (movable artefacts within the home).

The project has developed a component model to represent devices in the
networked home. While many projects focus solely on such architectural issues,
the Accord project is also concerned with allowing users to control and reconfig-

Chapter 2: Related Work 27

ure their home networks. Accordingly, the This model is exposed to users using
a simple language based on “jigsaw-like pieces”, allowing the users to interact
with the model, and dynamically compose and arrange devices and services. The
pieces in question may be physical devices, or elements on a screen. The project
does not aim for a high degree of complexity; all of the jigsaw pieces presented
have one or two connections to other pieces, and limited functionality. Some
pieces act as simple triggers (for example, those corresponding to devices such as
doorbells or motion sensors); others act as producers or consumers of data (for
example, a camera and a display, respectively). In spite of this simplicity, useful
applications may be constructed by combining preexisting components in novel
ways.

The CAMP system (Truong et al 2004) aims to provide a more sophisticated
programming facility for a more specific type of ubiquitous computing applica-
tion in the home; that of media capture and access (for example, taking pictures
when a certain set of conditions are true). This is achieved via a “magnetic
poetry” metaphor (although actual magnetic poetry is not used; instead, pieces
are simulated within a conventional GUI). Users specify conditions and actions
by constructing “sentences” from a restricted, domain-specific vocabulary, rep-
resented as a set of discreet graphical elements (“magnets”). This representation
serves to communicate the restrictions of the vocabulary to the user in a nat-
ural manner. The user selects a set of magnets to form a sentence, which is
interpreted by the system as a condition. The restricted input greatly simplifies
the interpretation, and feedback is provided in the form of a natural language
description based on the interpreted rule.

Unlike many ubiquitous computing systems, CAMP rules are specified in
terms of tasks and goals, as opposed to devices. This is arguably preferable form
the user’s point of view, but may make it more difficult to relate rules to concrete
actions performed by the system. User studies suggest that the CAMP system
is easy to learn and effective for the type of applications addressed. The authors
mention that they intend to apply the techniques used in the CAMP system to
other types of ubiquitous computing applications. While this is a promising
approach in relatively simple cases, it is not clear that the same techniques
would be applicable to more complex cases without adding significant additional
structure (and hence complexity) to the representation used.

2.6 Using Multiple Representations

There is a great deal of empirical evidence that the way in which information is
presented has a dramatic impact on the ease with which it can be used. Whitley
(1997) surveys a large number of psychological studies that suggest that, for
a wide variety of tasks, subjects perform more quickly and accurately if data
is presented to them in one notation rather than another. For example, Day
(1988) asked users to answer questions about when to take various kinds of
medication throughout the day, based on instructions provided in one of several
forms. Subjects were found to be significantly more accurate (76% correct as
opposed to 56% correct) when the information was presented in matrix form, as
opposed to a linear list. He found similar differences in tasks relating to cursor
motion in text editors and to bus schedules; in all three cases, a visual/spatial
representation of the information lead to more accurate task performance. Speed,
where studied, was also improved. In an expanded study of text editing, the
benefits of using a visual notation were found to be even more pronounced.

Several other studies have shown that in specific cases a visual represen-
tation of the data involved significantly inproves task performance. However,

28 Chapter 2: Related Work

Figure 2.4: Forward and backward representations for conditional
logic. Adapted from Green and Petre (1992)

if high:

if wide:

if deep: weep

not deep:

if tall: weep

not tall: cluck

end tall

end deep

not wide:

if long:

if thick: gasp

not thick: roar

end thick

not long:

if thick: sigh

not thick: gasp

end thick

end long

end wide

not high:

if tall: burp

not tall: hiccup

end tall

end high

howl: if honest & tidy & (lazy | sluggish)

laugh: if honest & tidy & ¬ lazy &

¬ sluggish

whisper: if honest & ¬ tidy & (nasty &

greedy | ¬ nasty & ¬ greedy)

bellow: if honest & ¬ tidy & nasty &

¬ greedy

groan: if honest & ¬ tidy & ¬ nasty

& greedy

mutter: if ¬ honest & sluggish

mutter: if ¬ honest & ¬ sluggish

it is not true that a visual representation is superior in all problems, nor is it
the case that for a given set of data there necessarily exists a “best” represen-
tation that is unambiguously superior to all others over all tasks. Green and
Petre (1992) studied user performance on representations of conditional logic
represented using either forward notation (“if-then-else”) or backward notation
(“do-if”) (Figure 2.4). The former was found to facilitate questions where the
subject is given a set of inputs and have to find the resulting output, whilst the
latter facilitated questions where the user worked from outputs to inputs. Other
notations, such as decisions diagrams, may outperform either notation studied;
nevertheless, the study demonstrates a non-trivial relationship between represen-
tation and task performance. In another study, McGuinness (1986) found that,

Chapter 2: Related Work 29

for familial data represented as either a matrix or a tree, the matrix represen-
tation resulted in significantly better performance on questions regarding cousin
relationships, but neither representation was significantly better when the task
concerned inheritance.

This matching between task and notation may be exploited by providing
a way for users to switch between representations of a set of data whilst per-
forming a task. Cox (1996) details a number of studies of subjects performing
analytical reasoning problems of the type found in the GRE exam (used by US
Graduate Schools to assess applicants). An initial study examined the “work
scratchings” (informal notes) of subjects answering questions taken from the
tests. This revealed a variety of representations used for the task, and a degree
of correspondence between the nature of the question and the representation
used.

Based on this study, Cox constructed a software system, switchERI (shown
in Figure 2.5), to provide support for use of multiple representations when solving
analytical reasoning problems. This system made a set of environments available
to the user, each supporting a different kind of representation, and allowed the
user to switch between these environments at will. A study of users using this
software showed that, while often beneficial, switching between representation
was associated with a high cost. One feasible technique to reduce or eliminate
this cost would be the co-construction of representation — having the system
reflect changes made to one representation in the others. A system implementing
this idea, switchERII (also shown in Figure 2.5), was constructed and tested.

swithERII provides several external representations of the problem data
(specifically, GRE analytical reasoning problems). The initial set of data is pro-
vided by the problem, but additional facts can be added as the user infers them.
The key innovation is that, in some cases, changes in one representation of the
data are reflected other representations automatically. This allows the user to
switch between those representations at any time, with low cost. In addition,
the software provides “coaching” hints that suggest the user may wish to switch
to another representation if the current one is likely to be inappropriate.

The results of the study suggest several important facts regarding switch-
ing between representations. Firstly, even with the significant software support
provided by switchERII, switching costs the user in terms of time (although less
time than it would without software support). The subjects were divisible into
two groups. One group, who understood the semantics of the external repre-
sentations used (in particular, Euler set diagrams as shown in Figure 2.5), were
able to switch “judiciously” between representations, taking advantage of the
particular expressive properties of each; this is reflected in good performance.
Conversely, subjects less familiar with the representations used were observed
to “thrash” between representations, swapping chronically in a way Cox likens
to the behaviour of virtual memory systems operating near the limit of actual
memory available. While the level of switching is similar to that of the former
group, it is not reflected in improved performance.

Cox notes several ways in which the system could be improved. One is that
the representations are only available serially. Making multiple representations
available concurrently may be advantageous, and is not significantly more diffi-
cult from a technical standpoint. However, it was not provided in switchERII as
the user study required the experimenters to be able to observe the act of switch-
ing between representations; only allowing the viewing of one notation at once
means that switching between notations is an observable act. He also mentions
that providing switchERII with the ability to parse and interpret the user’s dia-
grams would enable it to provide a greater level of support to switching between

30 Chapter 2: Related Work

Figure 2.5: The switchERI (top) and switchERII (bottom) Intelligent
Learning Environments

Chapter 2: Related Work 31

representations. Cox terms this intelligent co-construction of diagrams.

It should be noted that the problems to which the switchER systems applied
were both simple and highly constrained. While analytical reasoning problems
are by no means trivial, and test some of the skills required in programming (such
as problem comprehension and planning), they are on a far smaller scale. Never-
theless, it seems reasonable to investigate the possibility that co-construction of
representations may be a profitable strategy for larger, more complex problems.

2.7 Conventional Systems for Integrating Multiple
Languages

Since the invention of FORTRAN in 1954, programming languages have prolif-
erated. Today, there are literally hundreds available to the programmer. These
range from highly specialized languages such as Inform (Nelson 2001), used for
the creation of interactive fiction, to C (Kernighan and Ritchie 1988), which
has been used to tackle almost every programming problem imaginable. Each
is more suited to some problems than others. However, in many cases, different
parts of a problem suggest different programming languages. This has lead to
the development of techniques to combine multiple languages.

One approach to integrating multiple languages is to allow code written in
those languages to communicate via some common, well-defined interface (see,
for example, COM (Williams and Kindel 1994)). This approach leads naturally
to the provision of this interface over a network. Communication over a network
introduces many issues that are not present in the local case, but has proved
a useful mechanism for both distributed and multi-language projects, and has
lead to several widespread implementations, including RPC (Birrel and Nelson
1984), CORBA (Yang and Duddy 1996) and DCOM (Horstmann and Kirtland
1997). However, such systems traditionally involve a precise specification of the
interface, leading to problems both for communication across languages, and,
particularly, for communication between organisations. Recent work in this area
has lead to mechanisms supporting more flexible definitions of interfaces, notably
Web Services (Booth et al 2004).

One problem common to all of the above systems is that, to a greater or
lesser extent, the common interface provided is at a relatively course level of
granularity, in that the overhead involved in inter-component communication
makes small components infeasible. More seriously, such systems provide only a
subset of the features available in the individual languages. In many cases, this
trade-off is acceptable, and allows for greater flexibility in the choice of language
for various components. However, if the goal is tight integration of components
written in multiple languages, within a single organisation, these systems fall
short.

In such situations, the common approach is to compile source code in multi-
ple languages into the same intermediate form, allowing integration at the link-
ing stage. Languages are not required to provide access to every feature made
available by the intermediate form, and hence it may support disparate feature
sets from differing languages (in effect, supporting the union of feature sets of
the source languages, as opposed to the intersection of those features sets). Also,
there is generally a smaller overhead involved than with systems based on explicit
communications. Hence, such systems allow developers to implement different
parts of a project in different languages at a finer granularity than would other-
wise be possible. An early example of this technique, still in common use, is to

32 Chapter 2: Related Work

link program logic written in C or C++ (languages that support structured pro-
gramming) to numerical code written in FORTRAN (which, due to its simplicity,
can be compiled into very efficient code, especially on parallel architectures).

A related mechanism is commonly used by scripting languages such as Perl,
Python and TCL (Ousterhout 1998). These languages provide an interface to
a systems programming language, almost always C. This facilitates the use of
the systems language to write extensions that would be cumbersome, inefficient,
or impossible to write in the scripting language, while allowing the use of the
scripting language to write the bulk of the program logic or “glue”. Similarly,
where an interpreter is embedded in a program written in the system language, it
allows that program to be extended using the scripting language, which is often
more suited to the task.

Despite the tight integration that such systems make possible, there exist
difficulties when integrating languages that have significant differences in terms of
data representations passed between components (this is one of the problems also
faced by communication-based systems). This can be alleviated by harmonizing
the data representations, function call protocols, and type systems used in such
a language. A straightforward way to achieve this is to structure one language
to ape the structure of another at some level; for examples, see TCL, which
is designed to interface directly to C, and Jython14, an implementation of the
Python language that uses the object system of Java.

The recently introduced .NET framework15 represents a more structured
version of this approach. In addition to a common intermediate representation,
it defines a common type system, and a common standard library. This has
allowed compilers for a wide variety of languages to be targeted at the common
environment. These languages may be integrated to a very fine granularity;
for example, it is possible to define a class in Managed C++, subclass it in
Visual Basic, and instantiate and use it in COBOL. This gives programmers
great latitude in the choice of implementation language for any given component,
allowing them to choose the best language for the job.

Another notable system that allows fine-grained interoperability between
components implemented in different languages is the Rainbow system developed
at the University of Manchester (Barringer et al 1997). This system allows users
to design hardware systems using a combination of several languages (named Red,
Yellow, Green and Blue). As with .NET, interoperability is achieved via the use
of an intermediate form. The Green language is interesting in that it provides
two “views”; visual and textual. While this falls short of allowing the user to view
a program in an arbitrary language (for example, a program written in Green
cannot be viewed as Yellow), it nevertheless provides a concrete example of the
use of multiple representations of the same source code in a practical system.

Multi-view development environments are intended to integrate multiple rep-
resentations of the same source code via the use of software visualisation tech-
niques (discussed below). Such environments are described in Section 2.8.2.

2.8 Generation of Multiple Representations from a Single
Source

As discussed in Section 2.6, multiple representations of the same data, with dif-
fering properties, can complement each other when used for problem solving.

14 http://www.jython.org/
15 http://msdn.microsoft.com/netframework/

Chapter 2: Related Work 33

There are numerous other circumstances where multiple representations of the
same data are necessary or beneficial; for example, on-line and printed presenta-
tions of a document. However, as noted by Cox, there is often a high overhead
involved with producing these multiple representations. It is therefore desirable
to produce multiple representations from a single data source automatically.

The problem of producing target documents in multiple formats from a single
source document is a common one, and has been approached in various ways.
One approach is to add a converter to a new format to a tool used to produce
an existing format. Examples include the augmentation of tools for producing
printed output (for example, LaTeX and Microsoft Word) with capabilities to
“export” documents to HTML format (Raggett et al 1999) for publication via
the World Wide Web (specifically, external tools such as HyperLatex, and the
built-in HTML Export facility of Word).

This approach is attractive, as it involves relatively small adjustments to an
existing and familiar tool, but is a less than perfect solution. Given the varying
capabilities of the existing and new representations, there may be aspects of the
former that cannot adequately be represented in the latter. Additionally, it is
difficult to take advantage of features present in the new representation but not
the existing one, as the tool is designed with the latter in mind. This problem
can be mitigated to an extent by adding features to the tool to cope with the
new representation (e.g., the ability to add hyperlinks in Word documents), but
the tool remains primarily grounded in the original representation.

An alternative approach is to produce a tool that is not related to any specific
representation, but allows the user to edit the data directly. Of course, the tool
must provide some representation of the data, but this need not be related to
any of the final, target representations. In practice, achieving a truly neutral
representation is difficult, if not impossible, as structures in one representation
rarely map cleanly onto those of another. A common example is the use of
a “book” metaphor in online documents, where the division of the text into
pages that occur in a fixed order is, in most circumstances, inappropriate for the
digital medium (Gentner and Nielsen 1996). Nevertheless, there are numerous
examples of tools that attempt to separate data from presentation, and thus
facilitate transformation into multiple target representations.

One example is DocBook (Walsh and Muellner 1999), an open standard for a
semantic markup language used to prepare structured documents, ranging in size
and complexity from articles to multi-volume works. It was originally developed
in order to facilitate the production and interchange of technical works, notably
those published by O’Reilly & Associates16. However, it has proved flexible
enough to be useful for a wide variety of documents. One point to note is that
it is designed to support a hierarchical division into volumes, books, chapters,
sections, subsections and so on, a structure more suited to printed documents
than hypertexts, as mentioned above. However, for many kind of documents, the
structure is appropriate and sufficiently general.

DocBook itself was originally defined as a dialect of the general markup
language SGML. More recently, a parallel definition as a dialect of XML has
emerged; this is likely to become the focus of continued development. In ei-
ther case, documents are based on standard format text files, in which certain
sequences are used to specify the structure and properties of sections of text.
These files may be created and edited using standard text editing tools. In addi-
tion, several dedicated tools are available, both for DocBook in particular, and
SGML/XML in general.

16 http://www.oreilly.com/

34 Chapter 2: Related Work

The main difference between DocBook and other SGML- and XML-based
formats, notably HTML, is the choice of tags. Whilst the latter has tags to denote
the appearance of text, the former has tags to denote its meaning. For example,
whereas HTML allows the author to specify the colour and typeface of a section
of text, DocBook allows text to be marked as “author”, “title“, and so on (the
distinction is not entirely clear-cut; HTML has some degree of semantic markup
such as headings, but is however chiefly presentational in its approach, and lacks
the ability to describe structures over documents). Additional structures, such
as sections and chapters, are achieved by nesting such designations.

The intention behind DocBook and similar systems is that, by allowing the
user to specify the data itself, as opposed to the presentation of the data, the
system will have access to all the information it needs to create any representa-
tion. Transformation from DocBook to a specific presentation is handled by an
external processor. Experience has proved that producing a sufficiently general
processor (that is, one that will produce the desired presentation for all input
documents) is difficult. In practice, many documents contain certain elements
for which the correct presentation cannot be determined automatically. For these
elements, the user must specify some or all aspects of the presentation. How-
ever, such specification is unlikely to be portable to all possible presentations,
necessitating several different specifications to deal with various presentations.
This is not ideal — the point of using DocBook was to avoid specifying multiple
representations — but is acceptable if it only occurs infrequently. If such cases
occur frequently, it may be necessary to reconsider the use of the given markup
language.

2.8.1 Multiple Representation in Software Visualisation

Large software systems are, by many measures, amongst the most complex ob-
jects constructed by human beings. Even a modest software project may contain
dozens of structures (both control structures such as loops and data structures
such as classes), described by thousands of lines of source code. Software Visual-
isation systems attempt to manage this complexity by representing the structure
of a piece of software diagrammatically.

One of the earliest formalisms for the representation of software structure as
a diagram is the flow chart, as shown in Figure 2.6. Labelled boxes of different
shapes represent elements of the program; for example, a diamond represents
a conditional branch. The boxes are connected via arrows representing control
flow to form a directed graph. While this is an adequate representation of control
flow, little effort is made to represent data structure.

More recently, much effort has focussed on Unified Modelling Language, or
UML (Rumbaugh et al 1999). This attempts to standardise the type of diagram
used to describe the structure of object oriented systems. It includes representa-
tions for data structures (classes and interfaces, shown in Figure 2.6), control flow
(in terms of which methods invoke which others, and how subsystems interact),
and system construction (both physical and logical).

There are numerous products available for producing UML diagrams from
source code, and for producing source code from UML diagrams. Moreover,
several environments allow the co-construction of UML diagrams and source
code, so that changes in one representation are immediately reflected in the
other. However, in all cases, the systems are constructed on an ad hoc basis, tied
to both the specific representation (UML) and the underlying language.

In contrast, Grant (1999) presents a system, SVT, that attempts to gener-
alise the task of software visualisation. This is achieved via a “semantic model of

Chapter 2: Related Work 35

Figure 2.6: A flow chart (left) and a UML class diagram (right)

 Yes Yes

No

No

END

START

Password
correct?

Eject user

Third
Attempt?

Admit user

Get Password

Shape

+x: int

+y: int

+draw(context)

+getCentre(): Point

Point

+x: int

+y: int

 *

Circle

+radius: int

+getDiameter(): int

Polygon

+numVertices: int

visualisation”. This system decomposes software visualisation into a number of
well defined stages. These stages are defined in terms of mappings between dif-
ferent models of the data; raw data is mapped to a structured data source, which
is in turn mapped to view content (the data that will actually be represented in
the visualisation), then to visual content (the graphical objects representing the
view content), and finally to a set of graphical constraints. A constraints solver
is used to produce an output image that conforms to those constraints.

The output images are in fact generated as projections of 3D models, using
the OpenGL rendering toolkit (Woo et al 1999). In most cases, the 3D model is
in fact a 2D diagram, and the projection is a trivial transformation. It may seem
that using a 3D rendering architecture for all cases where the majority may be
adequately served with a 2D architecture is unnecessarily wasteful of computing
resources. However, as Grant points out, 3D rendering is generally performed
by specialised hardware. As a result, 3D rendering is no more expensive than
2D rendering when the latter is not supported by specialist hardware (indeed, it
may be significantly cheaper in terms of load on the CPU). Furthermore, it brings
several advantages. One is that a single rendering engine can handle both the 2D
and 3D cases. Another is that zooming, an important technique for elision in the
system, is easily achieved by moving the camera perpendicular to the diagram.

Building on the multistage model of visualisation, the system’s main inno-
vation is that both the mapping from data source to view content, and from
view content to visual content, can be specified by the particular application, or
by the user, using the logic programming language Prolog (Sterling and Shapiro
1994). This approach confers a high degree of flexibility, allowing a wide range of
visualisations to be supported. The introduction of the intermediate stage, view
content, between data source and visual content, allows the same subset of the
data to be viewed using a variety of visualisations, and the same visualisation to
be used for different subsets of the data.

The use of Prolog provides a sound theoretical basis for these mappings,
assuming that non-logical constructs such as cut are not used; this is implied,

36 Chapter 2: Related Work

but no indication of how this is enforced is given. The language is well suited
to the representation of relational data (the data source is structured as a set of
assertions between atoms), and queries upon this data. In addition, it is Tur-
ing powerful, and hence can express any relationship between input and output
that one may reasonably expect to be implemented on a conventional computer.
That said, the expression of some relationships is unduly cumbersome, especially
without the use of non-logical constructs, and execution of Prolog is slow in
comparison with low-level, imperative languages such as C++.

Similarly, the use of graphical constraints, as opposed to absolute positioning
as used in other, similar systems affords a high degree of flexibility and ease
to the creation of new visualisations. However, the system as it is described
would be somewhat cumbersome to use for spatial data (for which the system’s
constraints are an unnecessarily verbose representation), and hence would not be
useful for the very high volumes of such data that are the traditional purview of
visualisation systems. However, this is not a problem in the system’s intended
area of application (software visualisation), and is specific to that system as
opposed to the theoretical model it embodies.

Grant describes a simple “visual type system”. This prevents nonsensical
mappings from being created; for example, attempting to represent an arbitrary
string as a colour. The possibility of checking other constraints using the same
system is alluded to, but the mechanism by which this could be achieved is not
made clear. In particular, it is suggested that the type system could be used
to ensure that all view content corresponds to some visual content; specifically,
that the mapping between visual and view content is a bijection. This highlights
another aim of the separation of view and visual content. The data that is
of interest is selected as the view, and all of this data should be presented to
the user in the graphical output. In actual fact, the rendering process may
remove some information in order to present an overview of the graphic to the
user, as the graphic is scaled to fit the available display space, with consequent
loss of detail. Nevertheless, the information is available by navigating the view.
The subject of selective elision is of particular interest in systems supporting
multiple, incompatible representations of the same data, and will be revisited in
later chapters.

The use of Prolog, a dynamic language capable of introspection, for the
specification of mappings means that these mappings may be modified by the
user, while the program is running. SVT provides several ways of doing this.
In addition to loading standard Prolog code from a file, the systems provides
a mutable legend. This primarily serves the purpose of a legend in a normal,
non-interactive diagram, namely communicating the meaning of the visual forms
used to the viewer. However, SVT’s legend is interactive, in that the user can
select a different representation for a given type of datum. While the legend
cannot be used to define new representations, it provides access to all appropriate
representations currently available, as determined by the type system, in a pop-
up menu. The legend is itself a view, generated from the Prolog database (which
includes the predicates currently used for visualisation) in the same way as the
user view of the data itself.

SVT includes limited support for interaction. The rendering component,
written in C++, allows views to be manipulated by, for example, panning, zoom-
ing and rotating. In addition, Prolog rules may be used to react to actions such
as mouse clicks and keystrokes. Such actions may trigger arbitrary Prolog code.
Navigation is achieved by switching to a new visualisation. This is sufficient
for tasks such as file browsing, where the new context differs significantly from
the old, but is arguably cumbersome for interactions consisting of a sequence of

Chapter 2: Related Work 37

small changes to the context. A set of bookmarks provides scaled versions of
other visualisations of the data to facilitate such navigation.

SVT is a very general system, but is of little use on its own as it does not
provide any visualisations. It is intended to be used as a basis for software
visualisation systems. Grant provides one such system, Vmax, an editor for Java
programs with extensive visualisation functionality.

Vmax provides multiple visualisations for Java files, packages, classes, meth-
ods, statements and expressions. These may be used alongside standard textual
representations. Text buffers, implemented in C++, provide a mechanism for
handling large quantities of text overlaid with a nested block structure; this is
used to provide a data source based on program source code or directory listings.
Text windows are provided to allow users to edit source code. This functional-
ity could, in theory, have been implemented in Prolog and SVT, but is not for
performance reasons.

In addition to displaying the graph structure of file systems and Java pack-
ages, and rendering program source code in a variety of forms, Vmax allows the
user to visualise the state of the program at various points as it runs. This is
achieved by inserting “trace points” into the program source code to record the
value of a specified variable at that point; the user may do this using a menu
item, or visually by dragging a representation of the variable to the desired point.
Vmax inserts statements that output the value of that variable to a trace file,
which may then be read in and visualised in a variety of ways. Grant notes that
it would be desirable to have available dynamically updated run-time visualisa-
tions, but Vmax does not have this capability.

Vmax also provides a flexible view for Prolog programs. This view uses
SVT’s interaction capabilities to allow users to edit the program in visual form.
This effectively turns Prolog into a visual language, and, as Prolog is the spec-
ification language used in SVT, allows users to specify new visualisations using
a visual language. While this “visual Prolog” has numerous advantages (chiefly,
that the user is constrained to only produce syntactically correct rules), it suffers
from many of the usual problems of visual languages (see Section 2.4.3), and does
not alleviate the need for the user to understand Prolog. Notably, the fact that
it is a visual language does not necessarily make it more suitable for specifying
visualisations, as the visual form of the rules has no intrinsic relationship to the
visualisations they embody.

A limitation of SVT encountered by Vmax is that there is no structured way
for changes made to a visualisation to be reflected in the underlying data. Where
this is achieved, such as in the legend or the Prolog visualisation described above,
it is implemented on an ad hoc basis using SVT’s interaction capability. A more
systematic approach would allow the creation of mutable visualisations purely
within the framework, allowing visual notations to be easily produced for any
data. This would be an important step towards the use of multiple notations for
manipulation of the same data.

SVT also lacks explicit support for secondary notation, in that a representa-
tion of a data set is entirely determined by that data. This is not problematic for
one-way translation from data to representation, and is largely acceptable in the
case of a single mutable representation with translation in both directions, as in
both cases secondary notation may be encoded alongside the data. However, it
is a serious obstacle to the creation of a system to support multiple, interchange-
able representations, each with its own secondary notation. Chapter 4 discusses
this issue further, and describes one approach to solving it.

38 Chapter 2: Related Work

2.8.2 Multi-View Development Environments

Multi-View Development Environments (MVDEs) generalise the concept of soft-
ware visualisation such that multiple views of a software system may be used
to both examine and manipulate that system. The advantages of doing so have
already been covered in previous sections. One early such system was PECAN
(Reiss 1985). This system provides a variety of views of the program under
construction. Some views, including a syntax-directed editor and a structured
flow graph editor, may be used to edit the program; others are read-only, and
serve to provide alternative views of certain aspects of the program structure.
The system provides a high degree of integration between the views. However,
it was too resource-intensive to be practical on the systems of the time, and,
more seriously, was limited to a fixed set of views, with no explicit provision for
extension.

Meyers (1993) aims to produce a generic multi-view development environ-
ment with an “open-ended set of views”. In particular, the user should be able
to add new views to the system easily; this is seen as a necessary requirement for
evolving software development systems. This generality places severe require-
ments on the mechanism used to integrate the views into a coherent system.
Meyers examines the integration mechanisms in a variety of previous systems,
and finds them inadequate for the specified task. Accordingly, he settles on a
mechanism based on a “canonical representation”. This representation may be
used to generate the type of read-only views typical of all software visualisation.
Furthermore, if the mapping between a view and the canonical representation is
invertible, then that view may be used to edit the underlying system.

Previous software visualisation systems based on the use of a canonical repre-
sentation of the underlying system have represented the system in various ways;
however, none of these are deemed sufficient for supporting a system including
bidirectional translation. Abstract syntax trees and graphs represent the fea-
tures of a particular view, and hence lack the generality required for multi-view
development environments. General hypertext systems have the inverse prob-
lem, in that they typically do not define semantics, leaving no common base for
disparate views. Similarly, the Plan Calculus is considered to be at too high a
level of abstraction for the particular purpose.

Consequently, Meyers develops a new representation for his system. Seman-
tic Program Graphs (SPGs) are directed hypergraphs (directed graphs in which
edges may have multiple sources and multiple sinks) that encode both executable
and non-executable information in the model. The latter includes both structure
and additional information such as comments and whitespace. Meyers examines
the representation of structure in various views, but does not address in detail
the representation of other non-executable information.

Meyers identifies three programming paradigms that SPGs are required to
model; sequential control flow, data-flow based computation, and parallel control
flow. He goes on to show how this modelling may be achieved in all three cases,
demonstrating that SPGs meet this requirement. The modelling and visualisa-
tion of data manipulated by the programs is considered to be largely orthogonal
to the task of representing the programs, and has been addressed in depth by
other work in the field (as discussed in the preceding sections).

The particular semantics of SPGs were chosen in order to match those of a
particular class of views; specifically, a certain level of abstraction. Hence, the
semantics are simplified by omitting features solely required to “support unusu-
ally high level languages like Prolog. . . nor for unusually low level programming
languages like assembler.” This simplifies the representation, and the implemen-

Chapter 2: Related Work 39

tation of views, at the cost of placing limits on the views that may be easily
implemented.

In addition to the representation itself, Meyers describes an architecture to
support the implementation and integration of views based on it. A piece of
software named the “SPG Manager” provides a consistent platform upon which
views may be implemented. This is the only piece of software in the system
that may manipulate the program (as represented by an SPG) directly. Views
communicate with the SPG Manager using a well-defined protocol. This allows
views to both examine and manipulate the program. Such an approach not only
eases the task of the view implementor by abstracting away the details of SPG
management, but also allows views to be kept consistent with the underlying
program.

Meyers identifies several problems specifically associated with producing in-
vertible mappings between views and a canonical representation. The first arises
when features in the canonical representation have no corresponding feature in
the view. Possible solutions to this problem include omitting the feature, approx-
imating it, or representing it as an opaque “black box”. The converse situation,
where the view has features that the canonical representation lacks, does not
have similar solutions. This implies that the features in views are a subset of
those of the in the canonical representation. This is a necessary condition for
invertible mappings (as features not in the canonical representation would be
lost when mapping from the view to the representation and back again), and
is an acceptable limitation if the chosen canonical representation is sufficiently
expressive. Prolog is an example of a view with features that mean that it is
incompatible with SPG; Meyers states that, in such cases, there is no satisfac-
tory way to implement the view in the context of the canonical representation,
without making major changes to one or both.

Several examples of translation between SPGs and various views are pre-
sented. These include translation both to and from finite state automata and
Pascal. Meyers notes that producing these translations is a complex task, the
difficulty of which is compounded by the flexibility of SPGs. This flexibility
makes it necessary for each translation to handle a wide variety of features, some
of which may (as noted above) be absent from the view in question. Accordingly,
the example translations, while extensive, omit some details (such as whitespace
in Pascal) in order to simplify both implementation and explanation. It is ac-
knowledged that such details would have to be fleshed out in order to produce
a practical multi-view development environment. Nevertheless, the examples
strongly suggest that the approach in question is sound.

The SPG architecture provides a strong basis for the development of multi-
view development environments. While the approach taken is very general, the
specific implementation is specialised to programming in a conventional setting,
using certain types of programming languages. Hence, to adapt the technique to
novel contexts or languages, it would be necessary to use a different canonical
representation. In addition, the framework as presented does not go far in ad-
dressing the issues associated with non-executable information (secondary nota-
tion); these issues require further examination, particularly where views support
a wide variety of secondary notation features.

40 Chapter 2: Related Work

Chapter 3
The Media Cubes

A tangible programming language

This chapter discusses the Media Cubes, a novel input device de-
signed to allow users to interact with a home network in a convenient
manner, and a programming language that has been designed around
such devices. We refer to this language as a “tangible programming
language”, as the tokens that are manipulated are physical objects
as opposed to diagrams or text represented to the user via some
interface.

3.1 Introduction

While much of the AutoHAN project, and domestic ubiquitous computing in
general, is focused on simplifying or automating many complex tasks associated
with the networked home, such as setting up devices and enforcing security or
usage policies (Saif et al 2001), it is necessary to provide some means for users to
control the system. Accordingly, the project investigated a range of interaction
techniques. One notable example is the use of voice recognition, combined with
language understanding to disambiguate incomplete statements based on the
user’s context (for example, the command “Turn on the TV” would be interpreted
as referring to the television in the same room as the user). However, it was also
believed that, in addition to direct control of devices, the user must be able to
program new behaviour into the system in order to take full advantage of it.

A systems programming language, Iota.HAN (Bierman and Sewell 2003),
was developed for the project. While this has many advantages (a strong formal
basis, flexible communication primitives, and a static type system that includes
support for XML data), it is aimed squarely at experienced programmers, and is
not suitable for general users. The Cambridge Event Language (CEL), another
language developed as part of the project, is simpler, but still not suitable for
most end users.

As well as the mismatch between traditional programming languages and
the user population to be addressed, traditional programming environments do
not sit well in the context of the networked home. They are based on the manip-
ulation of complex visual objects (almost exclusively text), and as such require
a large, high resolution display to be effective. In the networked home, conve-
nient displays are likely to be low resolution (a television), small (a PDA), low
resolution and small (a mobile phone), or absent entirely. Moreover, appropriate
input devices for text or spatial data may not be available, and when they are
may be of low fidelity, or cumbersome to use.

The Media Cubes were conceived by Blackwell (2000) as an experimental
programming system to overcome the difficulties of both traditional programming
languages, and traditional user interfaces for simple programming tasks, in the
domestic environment. The central idea is that of associating physical objects
with abstract entities (such as “the time when a user enters a room”, “the user
who has entered the room” or “the action of playing a user’s preferred music
when they enter the room”), creating a tangible programming language.

41

42 Chapter 3: The Media Cubes

Figure 3.1: The metaDESK TUI (left), and users interacting with a
phicon (centre) and an activeLENS (right)

3.2 Tangible User Interfaces

The Media Cubes language aims to provide an interface to computing function-
ality (in particular, programming) via the manipulation of physical props. This
approach, while unusual, is not without precedent. Many other projects have
used physical tokens as a component of, or the basis of, their user interface; for
example, Mackay and Pagani (1994) present a system for editing video based
via the manipulation of physical pieces of paper forming a storyboard. Ishii and
Ullmer (1997) describe a view of human computer interaction based on a distinc-
tion between two “realms”; the physical environment, comprised of atoms, and
“cyberspace”, comprised of bits (Negroponte 1995). They observe that inter-
action between these two realms is, at present, largely confined to conventional
graphical (and textual) user interfaces, to the neglect of haptic interactions and
peripheral awareness. To counter this, they propose the development of Tangible
User Interfaces (TUIs), in which physical objects (phicons, or physical icons)
correspond to virtual objects. This leads to a “graspable” interface between the
physical and virtual realms that is not limited to the VDU and keyboard, but
can extend throughout the physical environment.

Numerous examples are provided, including a “tangible geospace” — a TUI
to an interactive map of the MIT campus (Figure 3.1). The map is displayed
on a horizontal desk surface, and the position of the map is determined using a
phicon of a particular landmark, placed on the desk; the map is translated such
that the landmark’s position matches that of its phicon. Orientation and scale
may be manipulated by placing two landmarks on the map, and varying their
relative positions. In addition, an “activeLENS” — an LCD display mounted on
an articulated arm with sensors to monitor its position and orientation — allows
different views of the map, such as satellite imagery, to be accessed within the
same physical space.

The mediaBlocks (Ullmer et al 1998) system is another example with par-
ticular relevance to the Media Cubes. MediaBlocks are phicons corresponding
to sequences of digital multimedia data. Such data is not stored in the block
itself, but is associated with the block’s unique identifier. The blocks themselves
are exceedingly simple, using only a passive technology allowing the identifier
to be read by a more complex device (various technologies are used in different
versions of the system). A number of additional devices were instrumented with
appropriate readers, allowing various manipulations of the data associated with
blocks. Blocks may be browsed using a dedicated device, and printed using an
instrumented printer. Another dedicated device, the media sequencer allows the
contents of blocks to be composed into new sequences. Items may be added and
removed via readers attached to PCs, allowing the blocks to serve their primary

Chapter 3: The Media Cubes 43

Figure 3.2: The mediaBlocks, shown in the context of the media se-
quencer.

function of acting as containers to transport data from one device to another.
While an interesting system, the mediaBlocks are limited to a very narrowly de-
fined role, essentially moving multimedia data from one location to another. The
Media Cubes are intended to provide a more general and flexible interface, but
nevertheless subsume most, potentially all, of the functionality of mediaBlocks.

The key difference between the majority of these systems and the Media
Cubes is that, whereas previous systems provide a direct interface to some func-
tionality, the Media Cubes aim to provide a programming interface to the func-
tionality of the AutoHAN system, as discussed earlier. AlgoBlock (Suzuki and
Kato 1995) is another example of tangible user interface techniques used in the
context of programming. It may be loosely described as a physical syntax for
the Logo language. It is intended to be used by young children in an educa-
tional setting. The chief reason for using a physical language in this context is
to facilitate collaboration between members of a group working on a program.
While the work on Algoblock suggests that physical languages do indeed confer
such benefits, collaboration is not an area we are presently studying, and hence
these particular results are only peripherally relevant to the Media Cubes lan-
guage. However, the work stands as an example of the feasibility of programming
languages based around tangible interface techniques.

The Jigsaw system mentioned in Chapter 2, represents another end-user pro-
gramming language with tangible components (in this case optional). However,
while more sophisticated in terms of behaviour than mediaBlocks, the range of
behaviours expressible in the system is intentionally limited to simple sequential
actions. Conversely, the Media Cubes are intended to provide a level of express-
ibility more akin to that of AlgoBlock and non-tangible end-user programming
languages.

Traditionally, TUIs are difficult to develop, as they require skills in a broad
range of areas, such as hardware development, computer vision and user interface
design. However, as with GUIs, programming toolkits such as CTK (Salber et al
1999) and, more recently, Papier-Mâché (Klemmer et al 2004), have emerged to
simplify the process by abstracting away the details of specific implementation
technologies. The latter has, unusually for a programming toolkit, been studied
in terms of usability, and has been used to implement a variety of applications.
One of the applications created as part of the Paier-Mâché project, SiteView, is a
tangible interface to home automation . However, as the Media Cubes language

44 Chapter 3: The Media Cubes

Figure 3.3: Media Cubes (working prototype), designed by Daniel
Gordon and constructed by Dick Kimpton

Figure 3.4: Media Cubes (non-working mockups)

is based on custom hardware for which drivers would have to be implemented,
the benefit of using such a toolkit would be marginal, and as such no toolkit was
used.

3.3 The “Media Cube” Device

As mentioned, the Media Cubes language is a programming language in which
programs are not constructed using words or graphics, but by manipulating phys-
ical objects. The objects in questions are small blocks, instrumented with sensors
and labelled, first described in Blackwell (2000). Figure 3.3 shows working pro-
totypes of these devices, built by Daniel Gordon and Dick Kimpton. Figure
3.4 shows non-working mockups that more closely resemble the intended final
product.

Like mediaBlocks, the Media Cubes themselves are relatively simple devices.
Each is a small cube with a single button mounted on the uppermost face (the
working prototypes also include a three-colour LED; this feature was not used
in the language design). The bottom face is left blank. On each of the four

Chapter 3: The Media Cubes 45

other faces, a sensor is mounted that may detect when the Cube is next to
another Cube. The Cubes are also equipped with wireless networking hardware,
an internal speaker, and a simple microprocessor. Each is identical aside from
a unique ID. A single function may be invoked by pressing the button, and
programs are constructed by placing Cubes adjacent to one another.

An obvious extension to the language would be the introduction of “Cubes”
that are not in fact cubic, but are instrumented in such a way that they may
interact with the Cubes and be used as components in programs. This would
allow users to directly refer to the device in a program, by placing a Cube next
to it. It may also be useful to have Cubes that incorporate analogue controls for
quantities such as temperature or time.

Programs are not reflected in the state of the Cubes; they exist only in a
software process running on a server. This allows the Cubes to be simple devices,
and to be interchangeable to an extent; if a given Cube is lost or broken, it is
simply a question of updating the software representation of its functionality to
correspond to a physical Cube with a different unique ID. It also allows us to
make changes in the language by modifying the server-side software, avoiding
the more difficult process of embedded software development.

The current Media Cubes prototypes, shown in Figure 3.3, are around 75mm
along each edge, contain a PIC microprocessor, and communicate with the base
station via an infrared (IR) transmitter/receiver pair. The latter fact has caused
problems in actual use. The IR link is adversely affected by environmental in-
frared, such as fluorescent lights and direct sunlight. More seriously, it is direc-
tional, forcing the user to orient the Cubes in a particular way if communication
is to be successful. Future prototypes will use a radio link, alleviating these
problems.

Adjacent Cubes are detected using a coil on each face. This coil is pulsed
around sixteen times per second. The current on the coil, when it is not being
pulsed, is monitored; hence, a current induced by the coil on an adjacent Cube
is detected. This system only detects the faces of a Cube that have other Cubes
adjacent to them; it does not determine which Cubes these are. The information
from several Cubes is used to infer the arrangment. In the current language,
Cubes are only combined in pairs, so this inference is trivial.

The Media Cubes are intended to provide a smooth progression from direct
manipulation to programming. In isolation, they may be used as direct manip-
ulation devices, and particularly simple devices at that; the button mounted on
the top of the Cube may be used to control a single function, or to alternate
between functions, depending on the Cube in question. In this context, Cubes
may be viewed as simplified remote controls. As such, they provide little bar-
rier to adoption, even for users that lack technical confidence. A user may start
by using Cubes that correspond to familiar functions of home appliances, and
then move on to Cube that correspond to more abstract concepts such as media
streams (see below). Once a user is comfortable with using Cubes in isolation,
the concept of using them in combination may be introduced. Hence, the user
makes a relatively seamless transition from direct manipulation to programming.

Another way that the Media Cubes are intended to reduce the cost of creating
an abstraction is by providing a concrete representation of abstract entities in
the system, such as media streams. This is intended to allow the user to refer
to these entities more easily. Having a representation for abstract concepts is
also important with respect to our earlier definition of programming; the Media
Cubes give concrete representation to concepts such as “7: 30pm” and “whenever
the doorbell rings”, allowing the user to create abstractions over time, and “every

46 Chapter 3: The Media Cubes

device that makes a sound”, allowing them to create abstractions over classes.

3.4 The Media Cubes Language

The Media Cubes language, as it stands, is based around a small number of
cubes, along with instrumented devices. These cubes are combined dynamically,
in that, once two faces have been touched together, the cubes may be separated
without removing the association. This contrasts with AlgoBlock, in which the
arrangement of cubes at any instant determines the program, and separating two
cubes removes the corresponding association.

The advantage of not building a fixed model of the program is that the
language is not subject to the constraints inherent in the model. The first of
these is the number of components. If each component must remain in place,
the size of the model built is limited by the stock of components available. This
problem is not found in conventional programming languages — no-one has ever
been unable to complete a Lisp program because they have run out of parentheses
— but is important in the context of tangible interfaces, where there is a finite,
and in most cases, severely limited, supply of interface elements. The problem
is exacerbated by the fact that physical components may be lost or damaged.
The dynamic strategy adopted for the Media Cubes language allows the reuse of
cubes, allowing the language to be based on far fewer cubes.

In addition, a language in which components must be arranged into a model
representing the program is limited by the geometry of three-dimensional space.
For example, it is not possible to place faces of two cubes against the same face
of another cube simultaneously, assuming that faces must overlap completely.
Even if this constraint is relaxed, fitting more cubes against a single face be-
comes increasingly awkward, and introduces additional geometric constraints, as
more cubes are added. If the model is built in three dimensions (as opposed to
two), the user is also likely to encounter problems relating to the model’s balance
and structural integrity. Moreover, if components are rigid, specifying one rela-
tionship may determine others in an unintended way. These problems may, to
an extent, be circumvented (as in AlgoBlock) by introducing extra components,
some of which may be non-rigid (for example, connecting wires). They do not
occur in systems based on dynamic arrangement.

The dynamic arrangement approach is a good fit for a ubiquitous computing
context, as such systems are long-lived, and should be highly reliable, making
large numbers of difficult-to-replace components problematic. In addition, it
may not be convenient to construct a model, as this requires a relatively large
area, and a work surface of some kind. In contrast, the Media Cubes may be
used while standing or sitting anywhere, and do not require a surface to work
on. However, while this approach has significant benefits, it also has numerous
problems. These are discussed in Section 3.8.

Most cubes in the Media Cubes language follow the standard design of a
cubic block with four “active” faces (i.e., faces instrumented with sensors that
can detect the presence of other active faces, allowing the system to infer that
two active faces are combined), and a single button. The button is used to reset
the cube to its starting state, removing any associations it currently has.

Chapter 3: The Media Cubes 47

!???SDoDoDo WhenWhenWhen WhenWhenWhenever ScriptScriptScript

The key cube upon which the Media Cube language rests is the “Do-When”
cube, used to specify causal relationships. This cube has four active faces. “Do”
accepts an event to emit, or a script to activate, when the specified conditions
occur. “When” and “Whenever” accept conditions in the form of atomic or com-
pound events. The former implies that this is a “one-off” script, that disappears
after being triggered once, while the latter implies a persistent script. The con-
dition and behaviour associated with the most recently touched face are used.
Finally, the “Script” face provides the script described by the other faces to other
cubes; this face can be associated with the Do face of another Do-When cube to
specify sequential causality (“If A happens, then B happens, do C”).

Atomic events are provided by instrumented devices. For example, a light
switch could be instrumented such that it may act as a cube face, providing the
event switching the state of the given light (but see Section 3.6). Similarly, a bar
code reader in the kitchen could provide an event corresponding to scanning an
item, parameterised on the bar code of the item scanned. It may also be useful
to provide a way for the user to browse the recent history of events that the
system has seen, either via a dedicated device or an existing device such as a TV
or PC, and incorporate these events into Media Cubes programs. This would
provide a convenient way for users to explore and access the events produced
by the system (they simply need to perform an action, and then browse for the
resultant events), but care would have to be taken lest the user is overwhelmed
by the sheer number of events presented.

For development purposes, it is useful to produce a simulator for the Media
Cubes language. In order to provide access to events that would be obtained
from devices in the home network, an “Event cube” is introduced. This “cube”
effectively has an infinite number of active faces; a request for a face X is success-
ful if X is a valid event specification (a notification type and subtype, separated
by a slash (/), in the current system), and the resultant face provides the corre-
sponding event. This allows programs to be created within the simulator without
specifying every instrumented device individually.

SubmitSubmitSubmit

The “System” cube provides an interface to the AutoHAN infrastructure.
At present, the only face provided is “Submit”, which accepts a script and “acti-
vates” it. Prior to activation, a script is inert, and does not react to events in the
system. When activated, the script will receive events in which it has registered
an interest (in practice, events that match it’s top-level condition), and react
accordingly. Further developments may result in additional faces being added to
the System cube, for example to assign functionality to newly purchased cubes,
or to modify overall system behaviour. If this results in more faces than the
four accommodated by the standard cube design, the functionality could be split

48 Chapter 3: The Media Cubes

over multiple cubes, or an alternative physical design (such as a palette) could
be used.

A B C D

It has already been mentioned that the dynamic construction approach al-
lows the Media Cubes language to employ fewer components, and leaves it rela-
tively unconstrained by geometry. However, it is still the case that two faces of
the same cube cannot be placed next to each other, and that a cube cannot be
in two places at once. Hence, if one wishes to, for example, use one conditional
script as the action of another, two Do-When cubes are required. An alternative
is to provide a “Clone” cube, such that faces of other cubes may stored tem-
porarily on faces of the Clone cube. Each face is comparable to a clipboard, as
found in desktop user interfaces.

In the case of the previous example, the inner condition would be constructed
in the normal way, and the Script face of the Do-When cube is cloned (by com-
bining it with a face of the Clone cube). The Do-When cube is then reset (by
pressing its button), and the same face of the Clone cube may be used as the
action of the new (outer) conditional.

There are two obvious approaches to implementing the Clone cube. Either
the face of the Clone simply provides the same value as the face cloned provided
at the time the two were associated (passive cloning), or the face of the clone
cube acts as an alias to the cloned face (active cloning). The two are analogous
to call-by-name and call-by-value in Algol, and are equivalent in simple cases,
where a given face of a cube always provides the same value. However, in more
complex cases, the two differ if the state of the cube has changed between the
act of cloning a face, and the use of the clone. Active cloning of individual faces
quickly becomes problematic; for example, what happens if the cube owning the
cloned face is reset? Active cloning of entire cubes has clearer semantics, but is
still more complex than passive cloning of faces, both in terms of implementation,
and of comprehension by the user. Hence, the current Clone cube has passive
semantics.

Chapter 3: The Media Cubes 49

!? !?
InputInputInput

ExampleExampleExample

OutputOutputOutput

EventEventEvent

InputInputInput

ExampleExampleExample

InputInputInput

EventEventEvent

OutputOutputOutput

ExampleExampleExample

The “Generalisation” cube allows users to produce programs that react to a
class of events, as opposed to a single, specific event. The particular semantics of
the cube assume that events have a type, corresponding to the class of event, and
a subtype, identifying a specific event with that class. For example, an event may
have the type OutOf, signifying that it is an event corresponding to something
running out, and a subtype Milk, identifying the particular product that has run
out. Another event may have a type Order and subtype Milk, signifying that the
given product should be reordered. To generalise over an event type, an example
event that has that type is provided to the “InExample” face. Subsequently,
the “InEvent” face corresponds to the any event of that type when used as a
condition.

In most cases, the script reacting to the generalised event is parameterised
such that its behaviour is specialised to according to the subtype of the actual
event received. This is achieved by providing an event with the desired type to
the “OutExample” face of the Generalisation cube; the “OutEvent” face then
provides an event with that type, and the same subtype as the concrete event
received.

Generalisation is undoubtedly the most complex aspect of the Media Cubes
language, and may be too complex for the typical user. A way of generalising
scripts that act on specific events, similar to the scheme employed by ToonTalk,
may be preferable, though it is difficult to see how this could effectively achieved
without visual feedback.

All Of...

The “AllOf” cube allows the creation of compound events. Three of the faces
accept events, and the fourth face provides a compound event corresponding to
the events provided on the other faces. In addition, scripts may be provided in
the place of some or all of events; in this case, the fourth face does not provide a
compound event. In either case, the fourth face may also provides a script that,
when activated, activates the scripts, or emits the events, associated with the
other face.

C DConnectConnectConnect DisconnectDisconnectDisconnect

50 Chapter 3: The Media Cubes

The “Connector” cube is an example of a “higher level” cube. When appro-
priate device connection events are provided to the two “Endpoint” faces, the
“Connect” face provides a script that, when activated, connects the two devices,
and the “Disconnect” face a script that disconnects them. This could be achieved
using the other cubes, but is a common operation, and as such it is convenient
to have a single cube provide access to the functionality.

3.5 An Example Media Cubes Program

The Media Cubes language is best presented using a small example. The program
described is intended to be a simple automated shopping list; when an OutOf
event is received for a particular product, then, the next time the GoShopping/-
event occurs, an Order event is generated for that product. This is achieved by
producing a script that, whenever an OutOf event is received, produces another
script. This “inner” script reacts to the next GoShopping/- event by generating
an Order for the appropriate product.

Each interaction with the cubes is shown via graphic representations of the
cube faces involved, or other devices as appropriate, and followed by an expla-
nation of that stage. Note that there is some flexibility in the ordering of these
interactions; for example, the first and second can be exchanged without altering
the meaning of the program.

The OutOf/Fish event is provided as an example input event to the Gener-
alisation cube. This event could be generated by, for example, a barcode reader
attached to the waste bin; empty packages are scanned before they are thrown
away.

Similarly, the Order/Fish event, is provided as an example output event
to the Generalisation cube. This event could be generated by another barcode
reader, perhaps provided by a store. Note that, while the subtypes of the two
example events are the same in this case, this is not necessary; only the types
are taken into account.

Chapter 3: The Media Cubes 51

Next, the inner conditional is constructed using the Do-When cube. A
GoShopping/- event is provided as a trigger. This event corresponds to some
user action, with no prior meaning. The system provides “blank” event gener-
ators, such as unlabelled buttons or cubes, for this purpose. The When face is
used, as we wish this to be a one-off conditional; only the next GoShopping/-
event should cause the order event to be emitted.

The Do face of the same cube is used to set the action performed; in this
case, to the output event from the Generalisation cube. This event will have the
same subtype as the event received when the input event from the same cube is
used as a trigger.

The Script face of the Do-When cube, corresponding to the script that cre-
ated in the previous steps, is cloned by placing it on a face of the Clone cube.
This allows the script to be used later, independently of further actions on the
Do-When cube. Hence, the latter cube may now be reset.

The outer conditional is now constructed. First, the condition is specified
using the Whenever face of the Do-When cube; this conditional will react to all
events that match its trigger. The use of the input event from the Generalisation
cube means that wherever corresponding output event occurs in the action of
the conditional, it will have the subtype of the received event (and the type of
the output example).

52 Chapter 3: The Media Cubes

The face of the Clone cube holding the inner script is used as the action for
the Do-When cube. Note that, even though the Do-When cube has been reset
and reused since the script was created, the cloned version is still accessible.

Finally, the script is submitted to the system by placing the Script face of
the Do-When cube onto the Submit face of the system cube; it is then activated,
and will receive future events with the same type as the input example (OutOf).

3.6 The Nature of Events

The design of the Media Cubes language is, in general, independent of the un-
derlying event system. All constructs consider events to be atomic units, and
do not operate on the internal structure of an event, with the exception of the
Generalisation cube, which only relies on each event having a type and subtype.
As a consequence, the system designed has great latitude in terms of the events
the system generates and responds to.

Nevertheless, the events made available to the user may have considerable
impact on programming. For example, consider the events corresponding to
switching a device on and off. In physical devices, there is almost always a
single control (a switch) used to toggle between the two states. It is therefore
tempting to have a single event correspond to the operation of this control. This
approach is acceptable in the case of direct manipulation, where the current state
is readily observable, but is unsuited to programming in which the state of the
device when the program is invoked cannot be know ahead of time. Separate
events for on and off are preferable, as they are independent of the current state
of the device. However, if such events are used, it is unclear which event the
physical switch corresponds to, making integration of the physical device with
programming systems such as the Media Cubes problematic. Moreover, if the
physical switch itself emits the event when used, it must now be more complex,
as it must query the state of the device to determine the event to emit.

It may be preferable to construct the system in such a way to support both
types of events. The most obvious way to do this is to synthesise events of one
type in reaction to the other. Then, the system may produce “low-level” events,
which in turn cause “high-level” events to be emitted. These high-level events
are used by end-user programmers. Different sets of events may be more suitable
for different types of language. However, the proliferation of events may cause
confusion when moving from one language, or one level of the system, to another,
and hence should be kept to a minimum where possible.

An alternative way to introduce such concepts into the end-user program-
ming components of a system is the use of “higher-level constructs” such as the

Chapter 3: The Media Cubes 53

Connection cube mentioned in Section 3.4. Such constructions offer a high de-
gree of flexibility without requiring changes to the underlying system, but may
lead to inefficient generated code. Accordingly, a combination of a well chosen
event scheme, with judicious use of higher-level constructs, is likely to be the
most productive approach.

3.7 Implementation

The language, at first sight, would appear to translate directly to an object-
oriented system, with each cube being an object, and faces representing meth-
ods (or messages) for that object. However, it differs from such systems in a
crucial respect: the interactions used to construct programs are symmetric, as
opposed to asymmetric method calls (message passing) in object-oriented pro-
gramming, where the subject–object relationship is made explicit. A statement
Object.method(Subject) or [Object methodOn: Subject] makes it clear that
Object is “in charge”, and determines the semantics of the operation; conversely,
when faces of two cubes are touched, it is not evident which cube “owns” the
interaction. Clearly, a different approach is needed.

Multimethods, as found in the Common LISP Object System (Steele 1984)
(where they are know as “generic functions”) and Dylan (Shalit 1996) provide a
possible direction. In a conventional call to a virtual method of an object, the
run-time type of that object is used to determine the concrete method imple-
mentation to call. In contrast, a multimethod system uses the runtime types of
all participants (object and subject) to determine which concrete method to call.
Note that this is distinct from overloading in Java and C++, in which the static
types of parameters are used to distinguish between similarly named methods of
an interface at compile time; runtime method selection is still entirely determined
by the type of the object to which the called method belongs.

The multimethod systems in these languages are comprehensive, and, as a
result, complex. Two observations allow the system adopted for the Media Cubes
language implementation to be far simpler. Firstly, there are always exactly two
participants in a Media Cubes interaction, and the concrete method to call is
determined by both. This eliminates the need for complex priority algorithms.
Secondly, in any valid interaction, one cube is supplying data, and the other is
acting upon it (in other words, a subject–object relation exists, but the direction
is determined by the order of the operands); however, it is not the case that a
face will always be either a source or a sink (for example, consider the Clone
cube).

Based on these observations, the Media Cubes interpreter resolves interac-
tions as follows. Firstly, it obtains cube face objects for both faces involved in the
interaction. Secondly, it queries each face object involved in the interaction to
obtain a list of types that it can provide (“source” types). For each source type,
the other face object is queried to determine if there is an appropriate “sink”
method to accept values of that type (or a supertype of that type). If a single
matching pair of source and sink methods is found, the sink method call is called
with the result of calling the source method with no arguments. If no methods,
or several pairs of methods, are found, an exception is thrown.

This algorithm is implemented as a static method of the Face class, shown in
Figure 3.5. This class has an instance method getSourceForSinkTypes(Face)
to return the Class returned by the (unique) source method of one face that
corresponds to a sink method of another, which in turn employs the instance
methods getSourceTypes() and getSinkForType(Class), returning null if no
method is found, and throwing an InteractionException if more than one

54 Chapter 3: The Media Cubes

Figure 3.5: The Face Class (with method implementations omitted)

public abstract class Face {
public Method getSourceForType(Class k) { /*...*/ }
public Method getSinkForType(Class k)

throws InteractionException { /*...*/ }
private Class getSourceForSinkTypes(Face otherface)

throws InteractionException { /*...*/ }
public Enumeration getSourceTypes() { /*...*/ }

public static Object interact(Face a, Face b)

throws InteractionException { /*...*/ }
}

Figure 3.6: The Cube Class (with method implementations omitted)

public abstract class Cube {
protected Dictionary faces;

public Face getFace(String name) {/*...*/}
public void addFace(String name, Face face) {/*...*/}

}

method is found. The method is called on each face, passing the other face as a
parameter. If exactly one of these calls returns a class, the corresponding source
and sink methods are used. Otherwise, an InteractionException is thrown;
this may be reported to the user using an auditory warning from the cube’s
internal speaker.

The default implementation of the methods getSourceTypes() and
getSinkForType(Class) uses the Java Reflection API (Arnold and Gosling
1996) to examine the methods available for a given face object. This allows
the common case, where a face has a fixed set of source and sink methods (of-
ten, a single source or sink method) throughout its lifetime, to be implemented
simply by defining sink method with appropriate parameter types, and source
methods with appropriate return types. Faces with more complex semantics,
such as those of the Clone cube, override the default implementations, allowing
them to return source and sink types appropriate to their current state.

Cubes themselves are instances of subclasses of Cube, a simple abstract class
providing only an interface to manage a named set of faces (Figure 3.6). Concrete
subclasses of this class typically add new faces in their constructor. Each subclass

Chapter 3: The Media Cubes 55

defines one or more custom Face subclasses implementing the behaviour of each
face. In most cases, these classes must access private members of the associated
Cube subclass. Java’s inner classes provide a convenient mechanism to provide
this access without violating encapsulation, and also allows each Face subclass
instance to be implicitly associated with a “containing” instance of the associated
Cube subclass.

Interactions are managed by instances of the Interpreter class, which takes
a stream of interactions as input, invokes the interaction resolution algorithm
described above, calls the resultant methods, and passes side effects (such as
errors, or scripts being submitted to the system) to an Environment subclass.
By providing appropriate input streams and environments, the same interpreter
code may be used for simulating the behaviour of the Media Cubes language,
and for the implementation of the language itself.

3.8 Evaluation

The Media Cubes language design described above has numerous positive char-
acteristics. However, it also has significant problems, the foremost of these being
the lack of an external representation of the program under construction. This
forces the user to keep the program in mind throughout.

The first consequence of this is that the program is limited in size to that
which the user may hold in their short-term memory. The size of this “work-
ing memory” is commonly taken to be seven items, plus or minus two. This
estimate is acceptably accurate when the items in questions are discrete units
such as digits or words, but it is less readily applied to complex structures as
found in programming languages. Furthermore, the estimate is predicated on
the assumption that the items are arbitrary and independent. This is clearly
not the case here, as the items are part of a structure, and are being selected
deliberately to contribute towards some goal. However, while these factor may
raise the number of elements that may be held in memory above the traditional
estimate, there is still a relatively low limit on program size.

The second consequence is that, once created, the program cannot be exam-
ined. This means that the original programmer cannot check that the program
has the intended behaviour, and others may not examine the program to de-
termine what it does or how it works. More seriously, the lack of an external
representation precludes editing. The Media Cubes language is genuinely write-
only. As the programs cannot be modified, programming errors may only be
corrected by rewriting the program from scratch.

These limitations restrict the usefulness of the Media Cubes to small, simple
programs. It would be possible to redesign the language such that an external
representation was constructed, as with AlgoBlock, and largely overcome these
problems, but this would entail the problems already discussed. I chose to address
the problems in another way. By providing an alternative representation of
programs created with the Media Cubes, the problems caused by the lack of an
external representation may be eliminated, without changing the language and
sacrificing its positive aspects. I chose to develop a system to support arbitrary
translations between notations, to allow users to select the most appropriate
notation for a given task. The specific problems faced in implementing such a
system are detailed in the following chapter, with subsequent chapters describing
the system implemented.

56 Chapter 3: The Media Cubes

Chapter 4
Translation based on common intermediate form

The Media Cubes language described in the previous chapter has the
unusual property that it is write-only. As a result, it is impossible to
modify programs created using the language, or even examine them
to determine their function. These limitations greatly reduce the
utility of the language. It would be possible to redesign the language
to reduce these problems, but in doing so some of its desirable qual-
ities would be lost. I have taken an alternative approach, namely to
design a framework in which the write-only nature of the language
is accommodated.

The central idea of this framework is to employ multiple lan-
guages, each of which have specific strengths and weaknesses. These
programming languages are integrated at a far finer granularity than
in previous systems (see Section 2.7). Specifically, a program that
was created in one language may be viewed and edited in another.
Languages may be freely combined, allowing the user to select the
most appropriate language for the task at hand.

4.1 Language Integration via a Shared Intermediate Form

The close integration of languages is achieved via a common intermediate form
for programs. Unlike the intermediate forms used in compilers, however, this
form retains sufficient information to reconstruct the source code. Crucially, it
not only allows the reconstruction of a functionally equivalent program, but also
the reconstruction of the exact source code, including “secondary notation” such
as comments. This removes the need to retain source code; the intermediate
form is sufficient.

Furthermore, if such reversible mappings exist between the intermediate form
and several different programming languages, the intermediate form can act as
a bridge, allowing translation from one language to another. This technique has
been profitably employed in previous multi-view development environments, as
described in Section 2.8.2.

While most languages would provide mappings to and from the intermediate
form, this is not required. For some languages, including the Media Cubes, there
is a mapping from the language to the intermediate form, but not from the
intermediate form to the language. In this case, the language can be used to
create programs, but not view them. Conversely, if there is a mapping from the
intermediate form to a given language, but no mapping from that language to
the intermediate form, then that language may be used to examine programs,
but not create them. An aural representation of a program, produced via speech
synthesis, would fall into this category.

Modification of programs is achieved by translating the program into a given
language, editing that program, then translating the modified program back
into the intermediate form. For obvious reasons, languages that do not provide
mappings both from and to the intermediate form may not be used to edit
programs.

57

58 Chapter 4: Translation based on common intermediate form

4.2 Requirements of Mappings

The relationship between the intermediate form and the various programming
languages may be viewed as a set of mappings between the set of all possi-
ble programs that may be represented in the intermediate form (termed simply
programs), and various sets of all valid representations of programs in a given
language. Borrowing from semiotics, these representations are termed texts, but
are not limited to sequences of characters; a text in this sense could equally
comprise of a sound, a graph or a series of gestures.

In the case of bidirectional translation, these mappings are not arbitrary,
but must satisfy certain constraints. Let f be the mapping from a particular
language to the intermediate form, and f−1 be the inverse mapping from the
intermediate form to the language. f must be a bijection between texts in the
given language and programs, in that for every object in the domain (texts in
the language), there is exactly one object in the codomain (programs) that is
related to that object, and vice versa.

Another way of stating this requirement is to say that f composed with f−1

must be the identity on texts, and f−1 composed with f must be the identity
mapping on programs. The first property requires that each text maps to a
unique program. This may be achieved by ensuring that any redundancy in
the source language is reflected in the intermediate form. Similarly, the second
property requires that each program corresponds to a unique text. This would
be equally straightforward if there were only a single language. However, the
purpose of the system is to allow translation between multiple languages. As the
representational capabilities of these languages are not necessarily equivalent,
texts must be structured in such a way as to ensure that information is not lost
when translating from the intermediate form to any given language. One method
of achieving this is described below.

In contrast to bidirectional translation, the mapping associated with a lan-
guage that provides translation in only one direction (either to or from the inter-
mediate form) is largely unconstrained, in that there is no need for the mapping
to have an inverse. The only requirement is that the domain (for translations to
the intermediate form) or codomain (for translations from the intermediate form)
be the universe of programs, and, for translations from the intermediate form,
that every program is mapped to a text. There is no requirement that different
programs must correspond to distinct texts. In theory, it is even permissible to
relax the constraint that the correspondence must be a map, and allow a program
to map to (or be mapped to) different texts nondeterministically. However, it is
difficult to envisage a situation where such a language would be useful. Figure
4.1 presents the possible mappings for input, output and bidirectional languages.

4.3 Execution as Mapping

As well as mapping between the intermediate form and languages used by pro-
grammers, the intermediate form is also the basis for execution. One approach
would be to map the intermediate form to some executable form, for example
machine code or bytecode, and then execute it in the normal way. This mapping
could be treated in exactly the same way as other unidirectional mappings from
the intermediate form.

An alternative would be to model execution on term rewriting. This is a
technique used in many theoretical frameworks for computation, such as the λ-
calculus. In this type of framework, execution is described as a series of steps,
each of which consists of a term in the language being rewritten as another

Chapter 4: Translation based on common intermediate form 59

Figure 4.1: Mappings between programs P , an input language I, an
output language O, and two bidirectional languages F,G

F G

I

O

 P

g

-1g

f

-1f

i

o

term in the language according to a set of well-defined rules. An example is
β-reduction in the λ-calculus, arguably the most important rule in that system.
This is defined (λx.M)y → M [y/x] for expressions y and M , where the latter has
a free variable x; the parameter value y is substituted for x wherever it occurs
in M .

In the case of a deterministic system, such as the λ-calculus with a fixed
reduction order, the set of term rewriting rules describe a map from programs to
programs. In the case of non-deterministic systems such as the π-calculus, the
reduction rules do not describe a map, as each term does not necessarily have a
unique successor that it evolves to. For example, consider the following:

x(y).P |x(y).Q|x < z > .R
↙ ↘

x(y).P |Q[z/y]|R P [z/y]|x(y).Q|R

In this case, the message z may be received by either the x(y).P or x(y).Q (but
not both). The “choice” of process is non-deterministic, and cannot be predicted
in advance.

One advantage of using a term rewriting approach in a multi-language setting
is that it provides a convenient method of debugging; the running program may
be examined after any step. This program may be translated, using the existing
mechanism, into a text in any supported language. This allows the user to view
the program at any stage of execution, in any supported language, and gives
them the same latitude of choice of language for debugging as for other tasks.

4.4 Secondary Notation in Multiple Languages

As mentioned above, for bidirectional translation to function correctly it is nec-
essary that each text in a given language corresponds to exactly one program,
and conversely that each program corresponds to exactly one text in that lan-
guage. However, the same program is also mapped to exactly one text in each
of the numerous other languages in the system. These texts are not necessarily
equivalent. A similar phenomenon occurs in natural languages (see Lyons (1981),
§ 5.3). For example, the English words “sheep” and “mutton” (the meat of a
sheep) are both translated to a single word, mouton, in French, while the French
words libre (unrestricted) and gratis (without charge) are both translated (in
modern, everyday English) as “free”. Similar disparities also occur at the phrase
level, making it impossible to find an exact analogue for a piece of text in one
language in another; information is “lost in translation”.

60 Chapter 4: Translation based on common intermediate form

Figure 4.2: A non-bijective mapping (left) and its sections (centre and
right)

X

Y

Z

P

Q

X

Y

Z

P

Q

X

Y

Z

P

Q

Similarly, the texts of one language may differ in nuances not expressible in
texts of a second language. If a reversible mapping is to be achieved, additional,
hidden features must be added to the texts of the second language in order to
reflect these nuances. As with natural languages, this works both ways; there
may be nuances expressible in the second language, but not the first.

More precisely, execution is best viewed as an operation on programs rather
than texts. As such, programs differing in features that affect execution must be
distinct. However, for most languages, texts have features that are not reflected
in execution. In conventional compilation, such features are discarded, in effect
mapping two texts to the same program. This map can be viewed as grouping
texts into equivalence classes. It does not have an inverse, but, assuming that
for every program there is at least one text that maps to it, it does have sections
such that the map composed with one of its sections is the identity on programs.
In effect, a section maps each program to one of the (possibly many) texts that
maps to that program. For example, consider the case with two programs, P
and Q, and a language with three texts, X, Y and Z. Suppose the translation
from texts to programs maps X and Y to P , and Q to Z. This map has two
sections (shown in Figure 4.2); one maps P to X, and the other P to Y . Both
sections map Q to Z.

For any given mapping, many sections may exist, as a program may be
mapped to any text that translates to it. This suggests that the set of texts in a
language with such a map may be partitioned into subsets of texts that map to
the same program (an equivalence class). Given that these texts are equivalent
in terms of execution, what distinguishes them from one another?

The term Secondary Notation (Petre 1995) is used to describe the features
of a text that do not affect execution, but that the user may nevertheless modify
(such as comments and spacing in textual languages). These are the features
in which “equivalent” texts differ. While it does not affect execution, secondary
notation is of immense importance to humans who read, write and modify the
program. Oberlander (1996) examines the effects of secondary notation in visual
languages, introducing concepts from linguistic pragmatics. In particular, he
suggests that a viewer will assume that secondary notation features have been
included for a reason, and associate meaning with them. If the features are
accidental, there is a significant risk that the user will use them as the basis for
incorrect inferences about the system.

The types of secondary notation available vary significantly between lan-
guages. Examples in textual programming languages include naming of features
such as variables and functions, and indentation and layout of source code. In vi-
sual languages, however, factors such as positioning and scaling, colour and shape
may be used. It is not possible, in general, to provide a satisfactory translation
between these disparate forms of secondary notation in all cases.

If the map between a language and the universe of programs is to have an

Chapter 4: Translation based on common intermediate form 61

Figure 4.3: Structural Variations in C Programs

int f(y) {
int x=1, i=0;

looptest:

if (!(i < 10))

goto loopend;

x *= y;

i += 1;

goto looptest;

loopend:

return x;

}

int g(y) {
int x=1, i=0;

while (i < 10) {
x *= y;

i += 1;

};
return x;

}

int h(y) {
int x=1, i;

for (i=0; i<10; i+=1) {
x *= y;

}
return x;

}

inverse (as opposed to several sections), texts that are distinct only in terms of
secondary notation must map to distinct programs. It follows that, to ensure
that the map for a second, different language also has an inverse, these distinct
programs must correspond to distinct texts in that language. This presents
problems if texts in the second language do not have appropriate features to
represent the distinction.

Consider the case where the first language is a visual language, and the two
texts differ only in the shape used to represent a certain element of the program
(a circle in one text, a triangle in the other). These two texts are mapped to
distinct programs, which are in turn mapped to distinct texts in the second
language, a textual language. While the same program element is represented in
all four texts, the distinction between a circular representation and a triangular
one is meaningless in the second language. As this is the only difference between
the two programs, it would seem that the two texts in the second language must
be indistinguishable. However, they must be distinct texts in order to fulfil the
requirements for bidirectional translation.

For certain sets of languages, it might be possible to devise a uniform scheme
of secondary notation, in which all types of secondary notation have representa-
tions in all languages. However, this is difficult in all but the simplest cases, and
is likely to place undesirable constraints on the types and flexibility of secondary
notation. A better solution is to extend languages such that texts that differ
only in some secondary notation feature not representable in the language are
distinct. The form of this extension takes the form of adding “hidden” features
to texts in the language, allowing superficially similar texts to be distinguished.

4.5 Structure as Secondary Notation

The presentation of secondary notation has been limited to arbitrary information
associated with a particular program element. Perhaps surprisingly, the way in
which code is structured also fits the definition of secondary notation given above.

62 Chapter 4: Translation based on common intermediate form

Consider the three functions in Figure 4.3. All three functions are identical in
terms of execution (in that they produce identical object code, aside from labels,
when compiled). Moreover, annotation of program elements (for example, nam-
ing of variables), is comparable in all three versions. The significant difference
between the three functions is the way the code is structured; this does not affect
execution, and hence falls into the definition of secondary notation.

When attempting to decompile code into a language such as C, such struc-
tures present a problem. The generated object code (in most environments) will
correspond almost exactly to the first version of the code (aside from things such
as labels and variable names). However, the second or third form is likely to be
more comprehensible to programmers. Hence, decompilers attempt to recognise
patterns in the generated code corresponding to higher-level structures. This
approach is hampered by the fact that optimising compilers may reorder instruc-
tions in potentially complex ways to improve performance. Because of this, the
approach is fragile, in that it does not work well if applied to files generated
by a different compiler, much less from a different source language. Addition-
ally, there is no way of distinguishing between functionally equivalent forms that
may occur in the source code. As such, while decompilers are an invaluable tool
to aid in the reverse engineering of software, they are a far cry from the exact
reconstruction of the original source code.

The vast majority of structures in most programming languages may be de-
scribed in terms of properly nesting groups of program elements. For example,
a C “while” loop is a group of two groups of program elements; a condition and
a body. Similarly, a “for” loop is a group containing another group, containing
three subgroups (the initialiser, condition and advancement), and a group con-
stituting the body of the loop. This suggests that grouping may be a useful basis
for the representation of structure.

Syntactic structures such as loops are represented by a group containing
program elements and groups. All groups are annotated with a “role”, describing
the structure or substructure represented by the group. This may be used to
determine the representation of the structure in a particular languages. There
are four possibilities:

• If the role corresponds to a structure representable in the language, it may
be fully represented.

• If not, it may be represented by grouping.

• The group may be ignored, and the contents are represented in the same
way as they would be if not annotated.

• The group may be represented “opaque”; the group is represented as an
atomic object of some kind, and the contents are not represented at all.

These choices are analogous to the choices that Meyers presents for repre-
senting features of semantic program graphs not available in a particular view.
For most structures, the contents of the group should be restricted. For exam-
ple, the C while loop should contain exactly two groups. If a group does not
conform to such restrictions, it is not possible to simply represent that group
as the desired structure. If this is the case, it may be necessary to fall back
to one of the alternative representations suggested above. Restrictions on the
content of groups may be enforced using a simple type system modelled after
XML Document Type Definitions (Bray et al 2000) or Schemas (Fallside 2001),
(Clark 2001).

In addition to their role, groups may have other secondary notation anno-
tations associated with them. One particularly common annotation is a name.

Chapter 4: Translation based on common intermediate form 63

Others might include shape, colour or position. In this context, a group need
not necessarily reflect any structure beyond grouping; it may simply signify that
a set of program elements are associated, and certain annotations are common
to all of them.

4.6 An Environment for Multi-Language Programming

It would be possible to implement the proposed architecture as a set of command
line tools, both “compilers” and “decompilers”, to translate between files in the
intermediate form and files in various programming languages. Equally, it could
be implemented in the form of an Integrated Development Environment similar
to Microsoft Visual Studio17 or Eclipse18; indeed, both of those systems have
sufficiently powerful extension mechanisms to implement the system as a com-
ponent. However, neither implementation meshes well with novel, non-textual
languages such as the Media Cubes. Furthermore, they demand the user’s atten-
tion, and are tied to traditional computing environments (keyboards, monitors
and mice), and as such are far from ideal components of a ubiquitous computing
system.

A more appropriate solution is a centralised program database, with which
other components communicate via a network. This approach, taken by Meyers’
SPG architecture, decouples implementations of the specific language mappings
from generic functionality such as storage and version control. More importantly,
as the “real” code (i.e., the code held in the database) may only be modified
via a well-specified interface, integrity checks may be enforced, ensuring that
the code in the database is valid. A network interface allows a wide variety
of programming front ends, ranging from command line compilers to tangible
programming languages, to communicate with the system with equal ease.

17 http://msdn.microsoft.com/vstudio/
18 http://www.eclipse.org/

64 Chapter 4: Translation based on common intermediate form

Chapter 5
The Lingua Franca Architecture

This chapter discusses Lingua Franca, a framework designed to fa-
cilitate the use of multiple scripting languages. Unlike most other
multi-language architectures, the Lingua Franca framework allows
different languages to be used for the same program, at different
stages in its development. This is achieved by translating between
various source notations and an intermediate form, dubbed Lingua
Franca.

5.1 An Overview of the Lingua Franca Architecture

I use the term “Lingua Franca” to describe two things; an intermediate form
supporting reversible translation, in which programs may be represented, and
the software architecture supporting the use of this intermediate form. In this
section, I give an overview of the latter, in order to provide a context for the
description of the former.

Central to the Lingua Franca architecture is the execution engine, a piece
of software continually running on a host connected to the home network (the
“home server”), as described in Section 4.6. This software is responsible for the
storage of the corpus, the body of Lingua Franca code held in the system, and
handles execution of that code. It provides an interface for adding, removing
and modifying code in the corpus over the network, and also interfaces Lingua
Franca code with other devices and software in the home network.

The architecture makes use of several of the technologies described in Section
2.2. The external representation of Lingua Franca, used when transferring code
between components of the system, is a dialect of XML. Modification of the
corpus is performed via HTTP, using standard request types. The interface is
comparable to, but simpler than, WebDAV. GET requests retrieve a portion of
the corpus, POST requests insert new code at a specified point, and PUT requests
replace a specified portion of the corpus with new (in practice, modified) code.
The corpus is represented as a single XML document, and the path of the request
is interpreted using the XPath language (Clark and DeRose 1999), allowing the
requester to specify any point in the document tree. XPath expressions are used
to represent a path from the document root to a node (or multiple paths to
multiple nodes), based on node types, attribute values and other criteria. In
particular, it allows queries based on a node identifier, optionally constrained to
a subsection of the document. This type of query is by far the most common in
the case of Lingua Franca.

The end-user programming languages implemented on top of Lingua Franca
are embodied within language environments. These pieces of software run on a
client device somewhere on the network, and communicate with the execution
engine over the network, via HTTP as described above. The relationship is shown
in Figure 5.1.

65

66 Chapter 5: The Lingua Franca Architecture

Figure 5.1: The Lingua Franca architecture

Language Environments

HTTP &
GENA

GENA

Home Server
(runs Lingua Franca

execution environment)

InternetNetwork Enabled
Appliances

[Pr ogr ams [
 Out Of / Mi l k ? ? {
 Al er t / NoMi l k!
 GoShoppi ng/ Food ? {
 Buy/ Mi l k!
 }
 }
]

Media Cubes Aural Rendering
(Delivered over

speakers or telephone)

VSeq
(Running on

desktop computer)

LFScript

HTTP

5.2 The Lingua Franca Execution Model

The Lingua Franca execution model is loosely based on the π-calculus (Milner
1999), with certain important differences. These stem from the decision to model
events in a similar way to GENA (Cohen et al 2000), a publish-and-subscribe
protocol that is used for communicating asynchronous events in both UPnP and
the AutoHAN project.

The model is based on the notion of communication between processes, via
discrete messages (events). Following GENA, events consist of a notification
type (NT), and a notification subtype (NTS), and optionally additional data (the
payload). The entire event may be considered to be a set of name-value pairs.
There must be at least a value corresponding to the name nt, which is taken
to correspond to the notification type, and, if there is a value corresponding
to the name nts, this is taken to correspond to the notification subtype. The
payload may provide one or more additional name-value pairs. Such pairs have
no inherent meaning to the Lingua Franca, but their values may be used as the
notification type or subtype of subsequently emitted events. This is analogous
to passing a name over a channel in the π-calculus. Note that GENA manages
subscriptions and delivery on the basis of notification type only; subtype and
payload are ignored.

Chapter 5: The Lingua Franca Architecture 67

The state of the execution engine is modelled as a set of processes. Each
process is listening for events meeting some specific criteria. When a process
receives such an event, it evolves into zero or more processes, as dictated by
the nature of the process and the event received. In addition, one or more new
events may be emitted, again based on the specific details of the process and the
received event.

Lingua Franca is based multiple dispatch, as opposed to single dispatch as
used in the π-calculus. In the former scheme, an event is received by all processes
listening for such events. Conversely, in the latter scheme, exactly one process
(selected nondeterministically) receives any given event. The use of multiple
dispatch allows Lingua Franca to model the underlying event mechanism directly,
at the expense of being unable to apply theoretical results about the π-calculus
to the system.

Several other theoretical frameworks also share similarities to the Lingua
Franca model. CBS (Prasad 1995) is a “CCS-like calculus where processes speak
one at a time and are heard instantaneously by all others”; this model of commu-
nication is comparable to that of Lingua Franca, but CBS is a first-order calculus,
and requires an underlying language to be Turing-complete. HOBS (Ostrovský et
al 2002) is a Turing-complete, higher-order calculus based on broadcast commu-
nications, with extensive support for encapsulation. It is, however, complex, and
a simpler framework was considered adequate for the application in question.
The asynchronous π-calculus (Boudol 1992) explores the use of asynchronous,
but still point-to-point, communication in a π-calculus like system. Finally, the
bπ-calculus (Ene and Muntean 2001) takes a similar approach to Lingua Franca,
namely to produce a variant of the π-calculus based on broadcast communica-
tion. This system is the most similar to Lingua Franca, and would provide the
best starting point for a formal analysis of the latter.

The simplest type of process dispatches an event and then terminates. This
is represented as follows:

E/e!
Where E is the notification type, and e is the notification subtype. Note that,
following Turner (1995) and similar work, dispatching processes in Lingua Franca
always terminate immediately; this differs from the pure π-calculus as described
by Milner (1999), but simplifies both theory and implementation without sig-
nificant loss of expressiveness. In some cases, events do not have a notification
subtype; in such cases, a hyphen is used in its place. A dispatched event may
optionally be augmented with a “payload”. The following dispatch processes
show these features:

E/−! E/e(name1 = value1, name2 = value2)!

Another fundamental type of process receives an event, and then evolves into
another process. This is represented:

E/e?P

This process would evolve to the process P when an event with notification type
E and notification subtype e was received. It is possible to leave the notification
subtype unspecified. This is represented:

E/∗?P
In this case, an event with notification type E would cause the process to evolve
into P regardless of its notification subtype. Furthermore, it is possible to bind
a name to the specific event received:

E/ ∗ (x)?P

68 Chapter 5: The Lingua Franca Architecture

In this instance, the name x is bound to the specific event received when the
process evolves. This binding is limited in scope to the evolved process P . Within
this process, the name may be used to access components of the events, using
the following notation:

x.c

Where x is a name bound to an event, and c is the name of a component. All
events have components named nt and nts, corresponding to the notification type
and notification subtype respectively, and other components may be derived from
the event payload. Components may be used in the place of notification types
and subtypes, as in the following example:

E/ ∗ (x)?E′/x.nts!

Here, an event with notification type E is received and bound to the name x.
The process then evolves to E′/x.nts! with that binding in scope. This process
dispatches an event with notification type E′ and the same notification subtype
as the received event (which was bound to x), and then terminates.

New names may also be introduced using the ν operator, borrowed from the
π-calculus:

νx(E : x!)

Here, x is bound to a “fresh” event; the scope of the binding is the specified
process, in this case E : x!. The generated value has only a single component
(nt), and hence the component specifier may be omitted without ambiguity.
Each instance of the operator generates a unique notification type, that is, one
that does not occur anywhere else. As the scope of the binding is limited, the
notification type may be used to ensure that a messages may only be received by a
limited set of processes; this is particularly useful in combination with replicated
input, described below. It is important to note that, as notification types may
be passed to other processes via the subtype or payload of an event, the new
notification type may become known to processes outside the ν expression. This
phenomenon is known as scope extrusion, and its analogue in the π-calculus is
discussed in Milner (1999).

Multiple processes may be combined into a single process using parallel com-
position:

P |Q
Where P and Q are processes. The parallel composition allows each process to
react to events as it would otherwise. Assuming that P E- P ′ (meaning that
event E causes process P to evolve into P ′) and Q F- Q′, then:

P |Q E- P ′|Q

P |Q F- P |Q′

Furthermore, if P G- P ′′ and Q G- Q′′, then:

P |Q G- P ′′|Q′′

Both composed processes receive the event. This behaviour is described as mul-
tiple dispatch. In contrast, the π-calculus has single dispatch behaviour, in which
only each event is received by only one process (chosen nondeterministically).
The two behaviours are comparably expressive; Lingua Franca is based on mul-
tiple dispatch in order to model the behaviour of GENA.

The processes described so far are finite, in that they interact with the envi-
ronment a finite number of times, and then terminate. Following Milner (1999),

Chapter 5: The Lingua Franca Architecture 69

Chapter 9, it would be possible to model infinite processes via named definitions,
but the same effect may be achieved more generally by introducing replication.
As with many practical π-calculus based systems (Turner 1995), we restrict this
to replicated input, represented:

E/e(x)??P

The difference is that, instead of evolving to

P ′

(P with the received event bound to x) on receipt of a matching event, this
process evolves to P composed with the original process, i.e.:

E/e(x)??P |P ′

Note that, unlike the analogous construct in the single-dispatch π-calculus, Lin-
gua Franca replicated input cannot be defined in terms of simple input and a
generic replication operator, as a single event should not react with more than
one copy of the replicated input.

Lingua Franca represents alternate choices using the summation construct,
consisting of a set of receive processes joined with the + operator:

(A/a?X/−!) + (B/b?Y/−!) + (C/c?Z/−!)

At most one of the receivers in a sum reacts to an event. When one receiver
reacts, the others are removed. For example, the above process reacts to an A: a
event and evolves to:

X/−!

The sum construct, in combination with the ν operator and replicated input,
allow a wide variety of structures to be implemented within the framework.

5.3 Examples of Lingua Franca execution

Many automation tasks in the home are comparatively simple; for example,
muting the telephone whenever the doorbell rings. Assuming that the system
generates and responds to appropriate events, such tasks translate directly into
Lingua Franca:

Doorbell/Rings??TV/Mute!

Whenever the Doorbell/Rings event occurs, the above process evolves into the
parallel composition of a copy of itself and an dispatch process. The latter
immediately emits the TV/Mute event, and terminates. The end result is identical
to the original process, and hence will respond to further Doorbell/Rings events
in the same way.

Simple processes such as this are useful but limited, in that they only react
to a specific event. The binding constructs of Lingua Franca may be used to
generalise over all events with a given NT. For example:

OutOf/∗(x)??Order/x.nts!

This process behaves in a similar way to the previous example, with one impor-
tant difference; the emitted Order event has the same NTS as the OutOf event

70 Chapter 5: The Lingua Franca Architecture

that generated it. More complex actions are also possible; for example, the pro-
cess may be modified to delay emitting Order events until some other event has
occurred:

OutOf/∗(x)??(Reorder/−?Order/x.nts!)

Whenever the modified process receives an OutOf event, it evolves to a copy of
itself, composed with a receiver for the Reorder/- event, with x bound to the
particular event received. For example, an OutOf/Milk event would cause the
process to evolve to:

OutOf/∗(x)??(Reorder/−?Order/x.nts!)
∣∣∣Reorder/−?Order/Milk!

The copy of the original process may receive further OutOf events, and generate
further receivers. Thus, an OutOf/Bread event would cause the above process to
evolve to:

OutOf/∗(x)??(Reorder/−?Order/x.nts!)
∣∣∣Reorder/−?Order/Milk!∣∣∣Reorder/−?Order/Bread!

When a Reorder/- event is received, the waiting receivers evolve into their result
processes. In this case, the result is:

OutOf/∗(x)??(Reorder/−?Order/x.nts!)
∣∣∣Order/Milk!∣∣∣Order/Bread!

The two dispatch processes then immediately emit the appropriate events (Or-
der/Milk and Order/Bread respectively), and terminate, leaving only the copy
of the original process.

Replicated input in Lingua Franca introduces a process that listens forever ;
there is no way to terminate such a process. In practice, most programs are
intended to be finite in their extent, and this therefore presents a problem. Ter-
mination of such program may be provided by the environment (external to
Lingua Franca), but it is also possible to construct finite but repeating processes
within the architecture.

While all replicated receivers are perpetual, it is in some cases possible to
guarantee that a particular replicated receiver will not receive any further events
(at which point it may be safely ignored or removed). Such a guarantee may be
made when the receiver is predicated on a new name, and there are no potentially
active processes remaining in the scope of the ν operator. For example:

νx
(
x/∗(y)??y.nts/y.nts!

∣∣∣x/A!
∣∣∣x/B!

∣∣∣x/C!
)

Three events with the fresh notification type are dispatched. These react with
the replicated input, resulting in the dispatch of events that do not contain this
notification type. For example, the first dispatch emits x and terminates. The
event reacts with the replicated input, resulting in:

νx
(
x/∗(y)??y.nts/y.nts!

∣∣∣x/B!
∣∣∣x/C!

∣∣∣A/A!
)

Consequently, the event A/A is emitted. The processes B/x! and C/x! have
similar effects. Overall, the process emits the events A/A, B/B, and C/C (in
some order, chosen nondeterministically), and evolves into the following process:

νx(x/∗(y)??y.nts/y.nts!)

Chapter 5: The Lingua Franca Architecture 71

Figure 5.2: A First-In, First-Out Queue in Lingua Franca

Queue/∗(q)??(Append/q.nts(x)?
ν tail(
Queue/tail!
|Append/q.nts(z)??Append/tail(vnt = z.vnt, vnts = z.vnts)!
|Get/q.nts?(x.vnt/x.vnts!|Get/q.nts??Get/tail!)

)
)

It is clear in this case that the replicated receiver will never be activated again, as
the name x is unknown outside the scope of the ν operator. In more complicated
cases, it is not as clear-cut, as it is possible to pass names within events, leading
to scope extrusion as mentioned previously.

Using this technique, it is possible to define processes with a “guard” event,
such that they repeatedly receive events of one kind, until an event of another
kind occurs, at which point they become inactive. This is the basis of until
clauses in LFScript; see Section 6.3.3.

As a final example, Figure 5.2 shows a process that implements a first-in,
first-out (FIFO) queue. A queue is constructed by emitting an event with the
NT Queue; the NTS of this event is used as an identifier for the queue in further
operations. Events of the form Get: q cause the next event on the queue, if any,
to be emitted. The queue is initially empty; there are no receivers for Get events.
Events may be added to the queue using an event of the form Append: q, with a
payload mapping vnt and vnts to the NT and NTS of the event to add to the
queue. When the first such event is received, an empty queue evolves into three
processes. The first dispatches a Queue event with a fresh identifier, creating a
“tail” queue to represent all other items on the queue. The other two respond
to the queue events; the first forwards all further Append events for this queue
to the tail queue, and the second responds to a Get event by emitting the event
appended to this queue, and evolves to a process that forwards all further Get
events to the tail queue. Each “cell” of the queue (corresponding to a single event)
is perpetual. As such, this implementation of a queue is inherently inefficient, and
grows more so over time, as the cost of a get or append operation is proportional
to the number of events that have ever been in the queue. Nevertheless, it serves
to demonstrate the flexibility and expressiveness of the system.

5.4 The external representation of Lingua Franca

In order for Lingua Franca code to be transmitted over a network, or stored in a
file, it is necessary to define an external representation, or serialised form, for it.
As well as representing the executable part of Lingua Franca, it must also be able
to include arbitrary data associated with secondary notation. In addition, given
the heterogeneous nature of home networking systems, it must be cross-platform.

I have chosen XML (see Section 2.2) for the external representation of Lin-
gua Franca. This is a marked contrast to most programming languages, and
most intermediate forms, which use ad hoc text syntaxes and binary formats
respectively. However, in the case of Lingua Franca, interoperability with other
components of the home network is essential, while the rate of transactions, and

72 Chapter 5: The Lingua Franca Architecture

Figure 5.3: XML representation of the execution features of Lingua
Franca

<repreceive xmlns="urn: linguafranca" bindevent="x">

<nt>A</nt>

<receive>

<nt>B</nt>

<nts>b</nts>

<dispatch>

<nt>C</nt>

<nts><param event="x" name="nts"/></nts>

</dispatch>

</receive>

</repreceive>

hence the need for runtime efficiency, is likely to be low. Consequently, XML is
an appropriate choice of interchange format.

Several existing programming languages use XML as a concrete syntax. The
most notable of these is XSLT (Clark 1999), a language used to transform XML
documents. The use of XML, as opposed to an ad hoc syntax, allows processors to
use established and commonly available parsing software where they would oth-
erwise have to implement a custom parser (a relatively complex and error-prone
activity for all but the most trivial syntax). Again, the chief aim is interoper-
ability. A major application of XSLT is for a program (or stylesheet) written in
the language to be downloaded to a web browser, in order to transform another
document prior to display. The success of this application rests on compatibility
between different XSLT implementations.

The representation of Lingua Franca in XML is based upon a straightfor-
ward translation of the expressions used to describe the execution model. Figure
5.3 shows the XML representation of the Lingua Franca corresponding to the
expression:

A/ ∗ (x)??(B/b?C/x.nts!)

This is a process that, each time it receives an event with a notification type
A, creates a process that, upon receiving an event with notification type B and
notification subtype b, dispatches an event with notification type C and the same
notification subtype as the event originally received, and then terminates.

The XML representation of Lingua Franca makes use of XML Namespaces
(Bray et al 1999). The executable elements of Lingua Franca reside in the names-
pace urn: linguafranca. The example uses the xmlns attribute to specify this
namespace as the default, obviating the need to specify a prefix for each element
name.

There is a one-to-one correspondence between the XML elements and the
components of the expressions previously used. The receive, repreceive and
dispatch elements corresponds to ?, ?? and ! respectively. Within these ele-

Chapter 5: The Lingua Franca Architecture 73

ments, the bindevent attribute is used to specify binding (x), and nt and nts
elements are used to specify notification type and subtype (E/e). If the lat-
ter is omitted, the containing expression matches events with any NTS (E/∗).
dispatch elements a required to specify both NT and NTS, and may have a
payload, specified by payload elements with name attributes. Other children of
receive and repreceive elements specify the resultant process. The param tag
is used to recall the values previous bound to names. A feature not shown in the
example is parallel composition of processes; this is achieved simply by placing
the processes as siblings. The ν operator is represented by the new element, with
a bindevent attribute to specify the name introduced, and children represent-
ing the processes affected. Summation is represented by the sum element, which
contains a collection of receive children.

The mapping used produces results that are verbose, even by the standards
of XML. This is in large part due to the use of elements as opposed to attributes
in almost all cases. The reason for this is chiefly to allow the use of an element
(param) to dereference bound names. In an obvious alternative formulation, the
NT and NTS of events would be specified by attributes as opposed to child
elements. As XML attribute values are unstructured, this formulation makes
the task of distinguishing between name dereferences and literal event specifiers
problematic. One solution would be to use some special syntax (for example,
preceding the name with a $ character) within the value. However, this syntax
would be unknown to XML tools, so would require non-standard processing, and
would not be checked via the standard techniques. Another alternative would
be to introduce a parallel set of attributes (say, bnt and bnts) corresponding
to dereferences. However, this would also necessitate integrity checks (for ex-
ample, that no element had both nt and bnt attributes) beyond the scope of
standard tools. A third solution would be not to distinguish between bound
names and literals at all syntactically, and dereference any name that is bound
in the given context, treating all other names as literals. This would be likely to
make the language more confusing (as it is not immediately clear if a given name
was intended to be literal or not), could lead to inadvertent variable capture,
and makes passing names as event data problematic. None of these solutions
are satisfactory, and hence the verbose notation is used. The verbosity is less
problematic than it would be in a conventional textual programming language,
however, as the XML representation of Lingua Franca is a mechanism for ex-
changing programs between software, and is not intended to be manipulated
directly by programmers.

In parallel to the executable elements, Lingua Franca also includes elements
corresponding to the general secondary notation structures described in Chapter
4. group nodes represent grouping. The name attribute provide name for use
by programmers; this is typically displayed by language environments. It may
also be used in XPath expressions to find the group. Optional creator and
role attributes are used to identify, respectively, the language environment that
created the group and the specific type of group. These attributes are used by
language environments to determine how (or if) the group should be displayed.
group nodes may have arbitrary children.

note nodes are used to add point annotations to Lingua Franca programs. As
with group nodes, creator and role attributes are used to determine the exact
nature and presentation of the node. The content of a note node depends on its
role; it may be text or XML, and encodes whatever data the node represents.

74 Chapter 5: The Lingua Franca Architecture

5.5 Operations on the Lingua Franca Corpus

Clients (specifically, language environments) query and modify the Lingua Franca
corpus indirectly, via the execution engine. In the tradition of object-oriented
programming, a small set of operations are provided, and the corpus may only
be modified via these operations.

Clients access this functionality over the network using HTTP 1.0. The
path component of the URL specifies a node in the corpus, using XPath language
(Clark and DeRose 1999). This language allows searching based on path from the
root (document) node, and provides a wide range of flexible predicates to narrow
the search further. However, Lingua Franca subtree specifications typically only
use a subset of this functionality; queries are generally solely based on either
path from the corpus root, or an id attribute.

GET requests are used to retrieve the section of the corpus consisting of the
node specified by the path and all of its children. This is primarily useful for
presenting Lingua Franca code to the user. In certain language environments,
the presented code may be modified and resubmitted to the corpus; This allows
programs to be edited.

PUT requests replace the node at the path, and all its children, with new
Lingua Franca code specified in the message body. These requests are assumed
to replace existing content, so there is a danger that a user will inadvertently
(or maliciously) destroy data in the corpus that is still of use. Fortunately,
the separation between language environment and program database, combined
with the HTTP protocol’s support for returning an informative error message
upon failure, allow an integrated versioning system to be added to the program
database easily.

POST requests are used to add new content to the corpus, as a child of the
node specified by the path. This is distinct from PUT requests in that no existing
content is modified. In theory, it would be possible to use PUT for both cases
by allowing PUT requests to specify a non-existent node. However, there are
numerous problems with this approach. For example, if the node was specified by
its position (e.g., the third child of a given node), it would be easy to inadvertently
replace an existing child that had been added since the corpus was last examined.
Support for revision control would allow clients to avoid this problem, but at the
expense of significant additional complexity and possible extraneous requests to
implement what is a very common operation. The inclusion of POST requests
to add new content explicitly avoids these difficulties.

Finally, DELETE requests are used to remove subtrees from the corpus.
Again, versioning may be built into the database to allow a user to roll back this
action, and hence reduce the danger associated with it.

Chapter 6
The Implementation Of Lingua Franca

This chapter describes the implementation of the Lingua Franca ar-
chitecture. In addition to the execution engine, which also serves as
the program database, three language environments were produced
in order to exercise the translation features of the architecture.

6.1 The Prototype Execution Engine

To enable investigation of the Lingua Franca system, a prototype execution en-
gine was developed. This was not intended to reach the standards of reliability
and runtime efficiency that would be necessary for a component of a home net-
work, but rather to implement the execution and processing of Lingua Franca,
and the external interfaces, such that clients (language environments) may be im-
plemented and tested, and the techniques and issues involved with programming
in multiple notations explored.

The prototype was implemented in Python19, a bytecode-interpreted,
dynamically-typed, object-oriented scripting language with an extensive stan-
dard library that includes XML support. It also includes support for higher
order functions, and has several high-level data types built in. These attributes
make it a good choice for rapid prototyping of applications. In addition, its chief
deficiencies (lack of static typing, and poor runtime efficiency compared to lan-
guages compiled to native code) are not of concern for the development of the
prototype.

The prototype design is based around standard XML technologies. In par-
ticular, it uses DOM (Le Hors et al 2003) as the data model for Lingua Franca
programs, and XPath to specify areas of the program to act upon (for example,
elements that are to be updated in response to a given event). This facilitates an
implementation-independent view of the execution process embodied in the pro-
totype, and provided flexibility that was invaluable as the syntax and semantics
of Lingua Franca evolved. However, DOM trees, being a general representation
of any XML document, are more complex than is required to represent Lingua
Franca programs, and allow invalid Lingua Franca programs to be represented.
For this reason, a dedicated Lingua Franca representation was developed when
the architecture had matured.

Performance is not a priority in the prototype execution engine, and hence a
very simple interpreter is sufficient. An instance of the Handler class manages the
state and behaviour of the interpreter. The state consists of an XML document
representing a Lingua Franca corpus, represented as a DOM tree. The main loop
of the interpreter first selects the first active dispatch node (i.e., the first that is
not an descendant of a receive or repreceive node), using the following XPath
expression:

/lf/corpus/descendant: : dispatch

[not(ancestor: : repreceive or ancestor: : receive)][position()=1]

19 http://www.python.org/

75

76 Chapter 6: The Implementation Of Lingua Franca

It then removes it from the corpus, and processes any receive or repreceive
nodes that react to the event. If no visible dispatch exists, the interpreter pauses
until one does.

The nodes that may potentially receive the event are those receive and
repreceive nodes that are not descendants of another receive or repreceive
node (and are hence active). Such nodes are found using the following XPath
expression:

/lf/corpus/descendant: : *

[self: : repreceive | self: : receive]
[not (ancestor: : repreceive or ancestor: : receive)]

This expression may be extended to find only those nodes that actually react
with the given event simply by adding another predicate examining the nt and
nts children of matching nodes. Receivers are processed by copying their children
to the top level (specified by the XPath expression /lf/corpus), and, in the case
of receive nodes, removing the original node. If the receiver binds the received
event (using the bindevent attribute), any param nodes referring to the bound
event are replaced with the appropriate value drawn from the particular event
received.

Any visible new nodes are eliminated by generating a fresh event type and
subtype, and replacing references to the bound event with values drawn from the
fresh event.

sum nodes are handled by ensuring that, when one of its receive children
is removed during a reaction, the sum node is also removed, along with its other
children. The case where multiple receives with the same sum parent react to
the same event is handled by removing all but one (chosen nondeterministically)
from the list of receivers before it is processed. A refinement, not presently imple-
mented, would be to give priority to receivers that specify a notification subtype
in addition to a notification type over those that specify only a notification type.

External events are handled by connection to a GENA subscription arbiter,
specified when the execution engine is launched. Whenever an event is processed,
the engine sends a corresponding GENA event to the arbiter. Similarly, when
a GENA event is received from the arbiter, a corresponding dispatch node is
appended to the corpus. The execution engine subscribes and unsubscribes to
notification types such that the types subscribed to correspond exactly to the
types received by currently active receivers. GENA subscription is based on
notification type only, and events cannot be filtered on the basis of notification
subtype; hence the events received are a superset of those that the corpus reacts
to.

In addition to instantiating and interfacing with the Handlers class, the
execution engine also includes an HTTP server to allow language environments
to access and modify the corpus. The program is typically runs in “server”
mode, in which it runs indefinitely and responds to network input. Two other
modes of operation are provided for debugging purposes. GUI mode provides
a graphical user interface to allow execution to be paused, or stepped through
one reaction at a time, and allows the corpus to be edited directly. When run in
batch mode, execution proceeds as normal, but exits when there are no pending
reactions. This, in combination with the option to dump dispatched events and
the final corpus state to be dumped to standard out, allows offline testing of
Lingua Franca programs without the need for additional software.

Chapter 6: The Implementation Of Lingua Franca 77

6.2 The LFCore Toolkit

Early prototypes of Lingua Franca components were written in an ad hoc fashion,
using existing technologies. The use of XML was a major advantage in this
situation, as mature technologies with freely available implementations exist for
parsing and document representation. However, as the design of the Lingua
Franca architecture stabilised, the flexibility of generic technologies became less
important. Hence, a dedicated toolkit was designed to facilitate the creation of
Lingua Franca components, chiefly language environments.

LFCore provides a rich representation of Lingua Franca programs, and an
API allowing the extension of this representation to include application-specific
data. The latter is important to enable flexible handling of secondary notation.

LFCore is implemented in Java. That language was chosen for a variety of
reasons. Foremost amongst these are its cross-platform nature, static typing and
extensive support for both XML and standard networking protocols. Tradition-
ally, Java has been seen as inefficient, in terms of run-time performance, com-
pared to languages such as C. This is far less true of modern Java environments,
and in any case is not a major issue for LFCore, as the intended application area
does not require high throughput.

Lingua Franca programs and program fragments are represented as a tree,
with each of the nodes represented by an object of some subclass of LFNode. Each
node has links to both its parent and any children it may have. These fields are
protected, and accessor methods ensure that they remain consistent across the
entire tree.

A common problem associated with heterogeneous trees in object-oriented
languages is extending the interface after its initial creation. Typically, nodes
in the tree are represented by instances of classes conforming to some specific
set of operations. This makes adding a new node type after the initial design
simply a matter of creating a new class that implements the appropriate interface.
However, adding another operation is difficult, as all of the existing classes must
be modified. The situation in LFCore is the opposite of this; the node types
in Lingua Franca are unlikely to change (while the definition of Lingua Franca
remains the same), whereas each language environment is likely to add additional
operations.

The visitor pattern (Gamma et al 1994) describes a structure to handle this
situation. The visitor interface contains a visit method for each type of node.
The node supertype has an accept method that takes a visitor as a parameter.
This is overridden in each concrete node class to call the appropriate visit
method. New operations are added simply by implementing a new subclass of
the visitor class. LFCore has a single visitor interface, LFVisitor, with a visit
method for each LFNode subclass (The method name visit is overloaded, based
on the type of the parameter).

While the visitor pattern makes adding new operations easy, it also makes
adding new node types difficult, as this requires a change to the visitor interface,
and consequently to all classes implementing it. LFVisitor partially avoids
this problem by providing a defaultVisit method that is called by the default
implementation of each visit method. The default method allows visitors to
provide sensible fallback behaviour for node types not known at the time of
writing. However, it is not possible to provide customised behaviour for unknown
subclasses, so this is only a partial solution.

In addition to implementing new operations, language environments are also
likely to define nodes for novel forms of secondary notation. This is achieved

78 Chapter 6: The Implementation Of Lingua Franca

by subclassing the NoteNode class. As mentioned above, adding new classes
to the visitor is problematic. Accordingly, the new classes are handled in the
same way as instances of NoteNode by visitors. Java’s reflection (run-time type
information) facilities are used to distinguish between note classes. In most
cases, a visitor will not act upon secondary notation nodes directly. Instead,
the NoteNode children of a node are typically examined to obtain (and store)
information regarding the presentation of the node. To this end, LFNode provides
methods that return children of a specific class. These methods facilitate the use
of novel NoteNode subclasses to associate arbitrary application-specific data with
parts of a Lingua Franca program.

LFNode encapsulates the transformation of Lingua Franca programs to their
XML external representation. An auxiliary class, LFParser, encapsulates the
transformation from XML to an LFNode-based tree. It uses the event-based SAX
XML parser interface, and so may employ any of the numerous XML parsers
that implement that interface.

In most cases, there is a one-to-one correspondence between LFNode sub-
classes and XML tags. The exception is the note tag; as mentioned, language
environments subclass this to store application-specific data. When a note tag
is encountered, the parser determines the class to instantiate by examining the
tag’s role attribute. If this exists, and corresponds to a known class, then that
class is instantiated. Otherwise, the generic NoteNode class is used. Subclasses
may optionally override the methods used to transform an instance’s data to and
from its XML representation in order to parse the data provided.

Certain types of note node specify general information that may be of use
to multiple language environments. There is nothing preventing one language
environment from using note node subclasses defined by another, but to avoid
multiple language environments implementing the same type of data in different
ways, LFCore provides standard implementations. One such class is the BG-
ColorNode class, used to associate a background colour with a node and all of
its descendants; however, if a descendant has its own BGColorNode child, this
overrides the ancestor’s colour for the node and its own children. The content
of the node is interpreted as a string encoding of a 24-bit integer value. Any
encoding parsed by the decode method of the standard Java Integer class is
accepted, but a hexadecimal encoding preceded by a hash (#) is preferred, and
is the encoding generated by the class when the node is serialized to XML. An
example is shown below:

<xax: note role="rgh22.linguafranca.common.BGColorNode"

creator="VSeq">

#aaaaff

</xax: note>

The creator in this case is typically unimportant; a language environment
that associates meaning with the BGColorNodes should treat them identically
regardless of the language environment that created them.

In addition, LFCore provides classes that may be generally useful when im-
plementing language environments. An example is the IndexVisitor class. This
is a subclass of LFVisitor that allows access to nodes in a tree via numeric index.
When instantiated with a root node and optional class, the visitor traverses the

Chapter 6: The Implementation Of Lingua Franca 79

tree, recording all nodes that match the class (or all nodes if no class is provided)
in the order they are visited (corresponding to depth-first order). Subsequently,
the get method of the IndexVisitor instance may be used to obtain a node
by index, and the indexOf method used to find the index of a particular node.
The class is used to identify and retrieve unrendered note nodes in LFScript, as
described in Section 6.3.3.

The LFCore library is organised in two packages (all Lingua Franca Java
code — including LFCore and the various language environments — is organised
in packages under the linguafranca package). The first, lfcore, contains the
key components of the library — LFNode and its direct subclasses, LFVisitor,
and LFParser — along with their dependencies. The second, common, contains
utility classes such as BGColorNode and IndexVisitor. This division allows the
core library to be imported without the (possibly unused) utility classes, and
separates the essential components of the library from those that are more likely
to change.

6.3 Prototype Language Environments

The following sections describe the language environments that have been im-
plemented for the Lingua Franca architecture. The particular languages have
been chosen to exercise the translation mechanism, and make use of the facilities
that the environment provides. They are all designed for the purpose of program-
ming a home network in a ubiquitous computing context, but serve different user
groups, and are tailored to different programming tasks.

6.3.1 The Media Cubes Language in Lingua Franca

The Media Cubes language has been implemented as a Lingua Franca language
environment. The implementation broadly follows that described in Chapter 3.
As it is a write-only language, representing or tracking note nodes is not an
issue. It is sufficient to provide a means of producing scripts in Lingua Franca
form, and a method for submitting these to the server.

Producing a script in Lingua Franca form is a matter of mapping Media
Cubes constructs onto those of Lingua Franca. This is largely straightforward.
The conditionals produced by the Do-When cube correspond exactly to the re-
ceive and repreceive nodes. Atomic events specified as conditions are trans-
lated directly into nt and nts nodes used for event specification, while those
used as scripts are translated into a dispatch node with the appropriate event
specification.

Figure 6.1 shows the Lingua Franca script produced by the “shopping list”
example presented in Section 3.5. This program will also be used in the following
sections, to allow direct comparison of the languages produced.

The System cube’s Submit face accepts a script, and make an HTTP POST
request containing an XML representation of this script to add the script to
the corpus. A fixed base URL for scripts created by the Media Cubes language
environment is provided when the environment is launched, specifying both the
network address of the execution engine to communicate with, and the point
in the corpus to add created scripts to. Conventionally, this point will be an
appropriately named group that is a direct child of the corpus root. Consequently,
once scripts are submitted, they are immediately activated, and can react to
events with no further action on the part of the user.

80 Chapter 6: The Implementation Of Lingua Franca

Figure 6.1: The shopping list program in Lingua Franca, in both formal
notation and the equivalent XML

OutOf/*(x)??
(
Reorder/-?Order/x.nts!

)
<repreceive xmlns="urn: linguafranca" bindevent="x">

<nt>OutOf</nt>

<receive>

<nt>Reorder</nt>

<nts/>

<dispatch>

<nt>Order</nt>

<nts><param event="x" name="nts"/></nts>

</dispatch>

</receive>

</repreceive>

The Connection cube produces a higher-level structure in Lingua Franca,
consisting of a group containing two dispatch nodes; these nodes dispatch con-
nection events to each endpoint. The use of a group is not strictly necessary, as
the Media Cubes language does not support reversible translation, and hence it
need not be possible to reconstruct the higher-level structure from the generated
Lingua Franca. However, it reflects the relationship between the nodes, and al-
lows other language environments to render the construct appropriately, either
as grouped nodes, or as a special Connection construct if one exists.

The Generalisation cube is implemented by adding a bindevent attribute
binding the received event to a fresh name to the conditional node generated with
the InEvent as a condition. Similarly, the OutEvent generates a dispatch node
where the nt specification contains a param node referencing the same name.

The union of actions (scripts and emitted events) generated by the All-Of
cube simply corresponds to parallel composition of the equivalent Lingua Franca
elements. Producing a union of conditions (which we take to mean “All of these
events happen, in any order, with no limit on time frame”) is not as clear cut, as
Lingua Franca has no inherent notion of such a condition. Hence, another higher
level structure must be introduced.

As is common in higher level structures, a new node is used to introduce a
fresh event. This event is used in the place of the condition on the generated
receiver; the action of this receiver is generated as normal. In addition, a tree
of sum nodes is used to encode all possible orderings of the conditions; if these
conditions all occur (in any order), the new event is emitted. As the new node
guarantees that the name is fresh, the only receiver that reacts to the event is the
conditional previously mentioned. An example of the generated Lingua Franca
(for the union of three events A/-, B/-, and C/-) is shown in Figure 6.2

This formulation provides the desired functionality, but carries the risk of
hugely inflating the size of programs; the need for explicitly encoding each pos-

Chapter 6: The Implementation Of Lingua Franca 81

Figure 6.2: Lingua Franca for a union of conditions generated by the
All-Of cube

<group>

<new bindevent="FRESH">

<sum>

<receive><nt>A</nt>

<sum>

<receive><nt>B</nt>

<receive><nt>C</nt>

<dispatch>

<nt><param event="FRESH" name="nt"/></nt>

</dispatch>

</receive>

</receive>

<receive><nt>C</nt>

<receive><nt>B</nt>

<dispatch>

<nt><param event="FRESH" name="nt"/></nt>

</dispatch>

</receive>

</receive>

</sum>

</receive>

</sum>

(Similar sum nodes for sequences starting with B and C)

<receive>

<nt><param event="FRESH" name="nt"/></nt>

(Generated action)

</receive>

</new>

</group>

82 Chapter 6: The Implementation Of Lingua Franca

Figure 6.3: Lingua Franca Nodes in VSeq (centre) and LFScript (right)

group [Programs[...]]

dispatch <X.nt>/x!

receive Go/Shopping?{...}

repreceive OutOf/*(O)??{...}

new (X){...}

sum X/x?{...}+Y/y?{...}
+Z/z?{...}

sible ordering of events results in programs growing with the factorial of the
number of events that make up the compound. This is clearly unacceptable if
the number of events is to grow beyond a handful. However, as mentioned in
Chapter 3, other factors constrain the size of Media Cubes programs, so, while
there is a problem in theory, it is unlikely to occur in practice. For similar con-
structs in other languages, an alternative, more efficient, formulation would be
used.

6.3.2 VSeq — Visual Sequences

VSeq (“Visual Sequences”) is a language environment that allows the user to
manipulate Lingua Franca programs in the form of event diagrams, in which
causal relationships are represented via a tree of nodes. It is likely to be the main
environment for the manipulation of mid-sized scripts, as it offers visual access
to the full range of Lingua Franca functionality, but may become unmanagable
for large programs.

Language

VSeq represents a Lingua Franca program as a tree diagram broadly mirroring
the structure of the underlying Lingua Franca code. Figure 6.3 gives a summary
of the representation of various node types in VSeq. The basic nodes related to
event handling are represented by lozenge-shaped elements labelled with a notifi-
cation type and subtype. Without any additional graphical elements, such nodes
correspond to receive nodes. Nodes with an outer border represent repreceive
nodes. Nodes underlined with a bar represent dispatch nodes. As dispatch is
terminal in Lingua Franca (i.e., a dispatch process always evolves into the empty
process), such nodes are always leaf nodes of the diagram. At present, VSeq
does not represent payloads for dispatched events; however, future revisions of
the language would include this feature.

Chapter 6: The Implementation Of Lingua Franca 83

Figure 6.4: A VSeq group node, unfolded (left) and folded (right)

Binding is represented by adding the event name, in red, to the top right of
a node (as in the repreceive node shown). Similarly, a red event specification
component represents a reference to a bound name. new nodes are represented
by a red circle, with a bound name represented as previously described. sum
nodes are represented as a light-coloured box containing their receive children,
represented in the normal way (but without a connecting line to the parent).

group nodes are represented by rectangular strips labelled with the group
name. The automatic layout algorithm sizes the strip to be the combined width
of all of the group’s children, providing a visual representation of the extent of
the group. To support selective elision of parts of the program, groups may be
“folded” (and unfolded) by double-clicking on the title strip. When folded, only
the title strip is shown; the children are hidden (as illustrated in Figure 6.4).
While the children cannot be edited, the entire group may be repositioned, and
moved from one parent to another, by manipulating the title strip.

note nodes are not directly represented in the diagram. Instead, nodes with
a creator “vseq” are used to determine properties of the graphical representation
of their parent nodes, such as background colour. Other note nodes are not
displayed. Secondary notation in VSeq consists of visual properties specific to
VSeq, such as the size and position of an element’s representation, and more
general properties, chiefly background colour. These are encoded separately, to
allow other language environments to express generic properties whilst ignoring
those useful only in the context of VSeq.

The ordering implied by the tree corresponds to causality; the effect of a
node is conditional on the event described by its parent. Edges in the diagram
are directional, but are not labelled as such. Instead, the relative vertical position
of connected nodes indicates the direction of the edge between them; the upper
node is the parent, and the lower node is the child. The same convention is used
in Hasse diagrams to indicate partial order over a set; indeed, causality forms a
partial order over the set of nodes of the program.

Aside from the constraint that a node must be strictly below its parent on
the page, graphical elements may be positioned as desired by the user. Ad-
ditionally, VSeq incorporates a simple automatic layout algorithm, in order to
position elements that have not yet been positioned manually by the user. When
a piece of Lingua Franca code is initially loaded into the language environment,
the algorithm examines each node of the tree. If the node is of a type that has a
graphical representation, but it does not have an appropriate note child describ-
ing the specifics of that representation (such as position), an appropriate note
is added. The position encoded by this node is selected such that the child is a
standard vertical distance from its parent, and at a horizontal position such that
is does not overlap any of its siblings representations in their default position (as
they would be laid out by the algorithm).

The horizontal ordering of nodes does not affect the meaning of the program,
in terms of execution. However, it corresponds to the ordering of elements in the
underlying Lingua Franca document, which is itself an implicit form of secondary

84 Chapter 6: The Implementation Of Lingua Franca

Figure 6.5: The shopping list program in VSeq

notation (distinct from explicit secondary notation represented by group and
note elements). This ordering will be reflected in most, if not all, language
environments.

Figure 6.5 shows the shopping list program from Figure 6.1 as represented in
VSeq. The language provides a succinct and readable view of simple programs
such as this, while still having the capacity to show the majority of Lingua Franca
structures.

Implementation

The layout algorithm is implemented via LayoutVisitor, a subclass of LFVisi-
tor (see Section 6.2). VisualPropertiesNode, an application-specific NoteNode
subclass, is defined to store the position of nodes. Instances of this class are
added by the layout algorithm, and updated when the layout is modified by the
user. Position is stored as an offset from the parent. The primary reason for this
is to allow any part of a Lingua Franca corpus to be rendered without reference
to any particular “root”; the relative positioning scheme allows any node to be
designated as the root and placed at the origin. A useful side effect of the scheme
is that the desired interaction behaviour, where any subtree may be repositioned
by moving its root element, is achieved at no cost. The chief disadvantage of the
scheme is that to determine the absolute position of a node, it is necessary to
examine all nodes in the path from that node to the root. In practice, this has
not been a problem. If necessary, VisualPropertiesNode could be extended to
cache absolute position. Such cached data would not be represented in the XML
form of the program, and hence would be calculated afresh each time the pro-
gram was loaded into the language environment (as well as when user modifies
the diagram).

A second subclass of LFVisitor, RenderVisitor, traverses the tree, render-
ing nodes based on the properties held in their VisualPropertiesNode children.
It also examines any BGColorNode children (as described in Section 6.2) to de-
termine the background colour. The background colour of an element’s represen-
tation is a concept that makes sense in many contexts, and hence the common
NoteNode subclass is used. In contrast, the position of an element within a
VSeq diagram is only useful in a single context, and hence is represented by an
application-specific class. Figure 6.6 shows a fragment of Lingua Franca XML
containing both VisualPropertiesNodes and BGColorNodes.

A third subclass of LFVisitor, MouseVisitor, is used to determine which
node (if any) a mouse click hits. It is neccesary to use a visitor for this due to the
relative positioning scheme mentioned above. Again, VisualPropertiesNodes
are examined to determine the positions of nodes.

Chapter 6: The Implementation Of Lingua Franca 85

Figure 6.6: Lingua Franca XML showing VSeq note nodes

<corpus xmlns: xax=’urn: xax’ xmlns=’urn: linguafranca’>

<xax: group name=’Programs’>

<repreceive bindevent=’O’>

<nt>OutOf</nt>

<nts>Milk</nts>

<receive>

<nt>Go</nt><nts>Shopping</nts>

<dispatch>

<nt>Order</nt><nts>Milk</nts>

<xax: note creator=’VSeq’

role=’rgh22.linguafranca.vsec.VisualPropertiesNode’>

0,60,93,27

</xax: note>

</dispatch>

<xax: note creator=’VSeq’

role=’rgh22.linguafranca.vsec.VisualPropertiesNode’>

-58,60,106,27

</xax: note>

<xax: note creator=’VSeq’

role=’rgh22.linguafranca.common.BGColorNode’>

#aaffaa

</xax: note>

A “console” application, shown in Figure 6.7, allows the user to edit the
diagram interactively. This is a standard desktop application, implemented in
Java using the LFCore toolkit described in Section 6.2. It runs on any platform
that provides Java 2 Standard Edition and the Swing user interface toolkit. The
console may be used comfortably in a conventional desktop computing environ-
ment. However, the graphical elements and interaction methods are designed to
be suitable for a lower resolution display than that typically found on desktop
systems. In addition, text entry is kept to a minimum, and the automatic layout
facilities and large graphical elements mean that accurate manipulation via the
pointing device is not necessary. This is intended to allow the system to be used
on low-fidelity displays such as televisions, and small devices such as personal
digital assistants or web tablets. In addition, it should make the system more
accessible to users with reduced motor control or visual acuity.

86 Chapter 6: The Implementation Of Lingua Franca

Figure 6.7: The VSeq console

The console presents a large drawing canvas on which the diagram may be
assembled. The user may navigate around this canvas using standard scrollbars.
A watermark (the grey text reading “Lingua Franca”) is displayed at the origin.
This gives the user an unobtrusive indication at to their position on the plane
(and the position that will be visible next time the application is launched).
If this indication was not present, successive editing operations may cause the
diagram to “drift” away from the origin, and as a result be off-screen when the
same program fragment is subsequently displayed.

The console allows the user to both view and edit the diagram. Nodes
may be moved by dragging with the pointing device. Horizontal ordering of
siblings is reflected in the sequential ordering of elements in the corresponding
Lingua Franca program. Dragging one node over another adds it as a child of
that node, provided that the resulting tree would correspond to a valid Lingua
Franca program.

An important task performed by the VSeq console, and indeed all Lingua
Franca language environments, is to constrain user input such that the program
produced is a valid Lingua Franca program. In addition, language environments
may enforce constraints specific to the particular notation in hand. In the case
of VSeq, this includes ensuring that the vertical ordering remains consistent with
the parent-child relationship; if a child is moved to a position above its parent,
it is detached from that parent and added to the root (there is no visible rep-
resentation of the root node; children of the root appear to be disconnected).
Preserving this invariant means that vertical ordering of connected elements in
a Vseq diagram reflects the causal ordering embodied by the corresponding pro-
gram.

The console also includes a toolbox (the blue area towards the bottom of the

Chapter 6: The Implementation Of Lingua Franca 87

window), enabling a wider range of manipulations of the diagram. These tools
are modeless; a tool is dragged from the toolbox and dropped on the diagram
element that it is to be applied to. The four coloured circles allow the user to
colour parts of the tree. This is purely secondary notation, and has no effect
on execution. The next five tools are used to add new nodes to the tree: they
correspond to receive, repreceive, dispatch, new and sum nodes respectively.
Each tool is shown as a stylised representation of the nodes it creates.

The “TIDY” tool lays out a node and all of its children in an orderly fashion,
without changing the ordering or containment properties. This is achieved using
LayoutVisitor. A parameter is passed to modify the visitors behaviour such
that it will overwrite any existing VisualPropertiesNodes. The “(bind)” tool
is used to add or edit the name bound by a given node. The notification type
and subtype of an event may be edited by double-clicking on the node; at this
point, a dialog box is shown allowing the user to edit the event specification.

6.3.3 LFScript — A Textual Language

The LFScript language is a textual language that allows access to the full range
of Lingua Franca functionality. It is designed primarily for users familiar with
other programming languages. In addition, the AutoHAN project postulates the
emergence of specialist “software plumbers”. These are not necessarily software
developers in the traditional sense, but specialise in customising the behaviour
of programmable systems in the home. Their relationship to the homeowner is
similar to that of a plumber or electrician, in that they perform tasks that the
homeowner has the opportunity to perform, but possibly not the inclination, time
or necessary skills. LFScript would be an ideal language for these specialists.

In keeping with traditional languages, texts in the language are plain (ASCII)
text files. This has the advantage of enabling the programmer to use the plethora
of tools that have been developed for the manipulation of plain text files. Such
tools are typically designed specifically for use by programmers (frequently, by
programmers themselves), and have been refined over decades. As such, they
are well suited for the task at hand, and the target user group (those with
programming experience) will be familiar with at least some of them.

The key problem with using ASCII as texts for the language is that they
provide no way to associate “hidden” information with points in the program,
and hence including non-representable secondary notation is problematic. An
alternative would be to tie LFScript to a specific client, in a similar fashion to
VSeq. However, this would prevent users from employing existing tools. The
approach taken by LFScript is to include a reference to the Lingua Franca pro-
gram from which the text was generated, in the form of the URL used to acquire
the program from the server. Given this reference, it is possible to record un-
representable note nodes by placing an identifier in the appropriate location in
the text. This identifier consists of the “@” character, followed by an integer
corresponding to the index of the note node in the original program. When the
(possibly modified) text is translated back into a program, the note nodes may
be reconstituted by retrieving the original program (via the URL reference) and
querying by index to retrieve individual nodes.

There are two problems with this approach. The first is that the insertion of
such identifiers affects the readability of the source code. This may be mitigated
by using the syntax highlighting available in all modern programming editors to
render the identifiers in a neutral colour. Some editors allow parts of the text to
be hidden, while keeping it in the same position in the file — this eliminates the
problem completely. This approach does not allow the programmer to see the

88 Chapter 6: The Implementation Of Lingua Franca

Figure 6.8: The shopping list program in LFScript

OutOf/*(x)?? {
Reorder/-? {Order/<x.nts>}!

}

locations to which secondary notation has been attached by other environments;
this is unlikely to cause problems, as there is little a programmer can productively
do with such secondary notation.

A more serious problem occurs if the same program is edited by multiple
users concurrently. In this case, the referenced URL included in the file may
not correspond to the same program when the text is submitted as when it was
originally created. If this happens, the indices encoded in the identifiers are
unlikely to correspond to the same note nodes, and hence the wrong nodes will
be inserted into the new program.

It would be possible to store a copy of the original program, as Lingua Franca
XML, and use this to reconstruct the secondary notation. This would guarantee
that the original program was available, but would require the programmer to
maintain two files in parallel. A more comprehensive solution to the problem is
to incorporate a versioning system into the server. With such a system in place,
it is possible to encode a URL that will always retrieve the same result — a
subtree of a specified version of the corpus — by adding a query term (delimited
by a question mark) to the URL, after the path. This allows the correct note
nodes to be retrieved, and the program to be constructed correctly.

The key syntactic constructs in LFScript correspond directly to those in
Lingua Franca, allowing programmers to access the full range of Lingua Franca
functionality is a straightforward way. They are summarised in Figure 6.3. LF-
Script is in many ways similar to the formal notation introduced in Chapter 5,
as may be seen by comparing the LFScript representation of the shopping list
program in Figure 6.8 to the formal representation in Figure 6.1. The key dif-
ferences are the enforced use of braces to delimit the children of a node, and the
additional support for secondary notation elements.

An event specification consists of the notification type and subtype, sepa-
rated by a slash (/). If the specification corresponds to any event with the given
notification types, the subtype is replaced by an asterisk (*). Similarly, if the
specification corresponds to an event with the given notification type and no
subtype, the subtype is replaced by a hyphen (-). Event components in the form
of param nodes are represented <E.n>, where E is the name to reference, and n is
the component of the referenced event to use (the name attribute of the node).

Dispatch nodes are represented by an event specification followed by an ex-
clamation mark. The event specification may, in this case, be supplemented with
additional name-value pairs to specify payload items. These consist of a slash
followed by the name, an equals sign, and a value, either a literal value in quotes,
or a param node as described above. The following example shows both cases:

nt/nts/foo="bar"/baz=<X.nts>!

Receivers are represented by an event specification followed by either a single

Chapter 6: The Implementation Of Lingua Franca 89

question mark (for receive) or two question marks (for repreceive), an optional
binding specification, and a list of children, enclosed in braces ({}). Binding
specifications consist of a name in parentheses (()). new nodes are represented
by a binding specification and list of children with no receiver specification. sum
nodes are represented by a list of receivers interspersed with plus signs (+).

LFScript introduces two types of note nodes; whitespace nodes and com-
ment nodes. Comments begin with two slashes, and continue until the end of
the line, as in C++ and BCPL. Both comments and whitespace may be inserted
between any tokens in the source code. This unconstrained placement of note
nodes means that the relative placement of secondary notation elements may not
be determined simply by their position in the Lingua Franca tree. For example,
consider the two texts “Order/ Milk!” and “Order /Milk!”. Both correspond
to dispatch nodes with equivalent nt and nts children, and a whitespace note
node in between those children, but in the first case the whitespace follows the
slash, and in the second it precedes it. In order to distinguish between po-
tentially ambiguous cases such as this, LFScript inserts additional, empty note
nodes corresponding to non-optional (as opposed to optional, secondary nota-
tion) syntactic elements - in this case, a node with the role slash, either before
or after the whitespace node.

The insertion of non-optional note nodes raises the issue of handling pro-
grams where the LFScript secondary notation is of an unexpected form; for
example, a required node is missing, or there are two adjacent whitespace nodes
(the LFScript parser generates a single whitespace node for each contiguous se-
quence of whitespace characters). This may occur because some rogue language
environment has inserted or removed LFScript secondary notation without re-
specting the constraints imposed by the language. However, a far more likely
cause is that the functional (as opposed to the secondary notation) structure of
the program has been edited in some other language environment; for example,
a node between two whitespace elements may have been removed. As other lan-
guage environments are not in general aware of the additional constraints placed
on note nodes by LFScript, this is unavoidable. Additionally, if a given program
fragment has not been processed by LFScript before, it will obviously lack the
required note nodes.

When the processor finds a node with missing or inappropriate note node
children, it removes all existing whitespace and non-optional nodes that are chil-
dren of the node in question. It then inserts non-optional and whitespace nodes
that conform to the constraints, in such a way that the resultant source code will
be “pretty printed” (indented to reflect structure, with inter-element spacing to
further improve readability). Comments are preserved, but their position relative
to whitespace and non-optional elements may change.

An important aspect of the above process is that only the immediate descen-
dants of a non-conforming node are necessarily modified. If indirect descendants
of the node (i.e., those not directly connected to it) have conforming note nodes,
they are left unaltered. This allows secondary notation to be preserved in ele-
ments that are moved in another language environment.

Unlike note nodes, all group nodes may be represented in LFScript. As
is standard, group nodes without a role correspond to named groups with no
particular semantics. This is represented using double brackets: [Name[...]].
If the group has a creator other than “lfscript”, the creator and role are added:
[Name<Creator-Role>[...]]. Groups with the creator “lfscript” correspond to
higher level structures in LFScript. Each role corresponds to a different structure;
if the role is not recognised, the group is rendered as a non-LFScript group.

90 Chapter 6: The Implementation Of Lingua Franca

Figure 6.9: Lingua Franca equivalent of an LFScript until clause (omit-
ting note nodes for readability)

<group>

<new bindevent="FRESH">

<repreceive><nt><param event="FRESH" name="nt"/></nt>

<sum>

<receive><nt>A</nt>

...

<dispatch><nt><param event="FRESH" name="nt"/></nt></dispatch>

</receive>

<receive><nt>B</nt>

...

<dispatch><nt><param event="FRESH" name="nt"/></nt></dispatch>

</receive>

<receive><nt>C</nt>

...

</receive>

<receive><nt>D</nt>

...

</receive>

</sum>

<dispatch><nt><param event="FRESH" name="nt"/></nt></dispatch>

</repreceive>

<dispatch><nt><param event="FRESH" name="nt"/></nt></dispatch>

</new>

</group>

In addition to the constructs provided by Lingua Franca, LFScript also al-
lows the programmer to define “until” clauses, in which a set of receive nodes
are active until a specified event occurs, at which point the entire clause is de-
activated. The LFScript syntax for such a construct is a sum, representing the
active receive nodes, followed by one or more “guards”, represented by receive
nodes preceded by minus signs, for example:

A/*?{...} + B/*?{...} - C/*?{...} - D/*?{...}
When the above construct is activated, it repeatedly receives A/* and B/*

events, performing the appropriate actions, until a C/* or D/* is received, at
which point the corresponding action is performed, and the entire construct is

Chapter 6: The Implementation Of Lingua Franca 91

deactivated.

This construct is translated into a Lingua Franca group node with creator
“lfscript” and role “until”. A new node is used to introduce a fresh name, and con-
tains the rest of the generated code. This code consists of a repreceive listening
for the fresh event, which in turn contains a sum including all of the specified
receive nodes. Those that correspond to “positive” terms are augmented with
an additional dispatch child that emits the fresh event; those corresponding to
guards do not. Finally, a dispatch emitting the fresh event is placed in parallel
with the repreceive. As an example, the generated code corresponding to the
above expression is shown in Figure 6.9

92 Chapter 6: The Implementation Of Lingua Franca

Chapter 7
Evaluation

The Lingua Franca system described in Chapters 5 and 6 aims to im-
plement the concept of a multi-language programming system based
on reversible translation via a shared intermediate form for a limited
domain. To assess the degree to which the system succeeds in this
goal, it is necessary to establish the correctness and utility of the
reversible translations implemented. It is also necessary to examine
the usability of the language environments produced, to ensure that
the system produced is in fact useful to users. The following sections
evaluate the system according to these criteria, using a variety of
techniques.

7.1 Implementation of Reversible Translation

Unit tests were performed throughout development to ensure that the software
was consistent with the functional specification. For components implemented
in Java (LFCore and the language environments), this was achieved using the
JUnit20 framework. Test cases were written (in Java) for all major functionality
before or as it was implemented, and such tests were retained throughout the
development process. These proved invaluable in determining when modification
to one piece of functionality impinged upon separate, previously implemented
functionality.

The unit tests for the execution engine consist of a Lingua Franca corpus
that reacts to certain events of the form Test/X, where X is the name of a
particular test. The execution engine was run in batch mode with this initial
corpus and an appropriate set of injected events, and the emitted events were
compared to the expected results. As with the JUnit tests, the entire test suite
was run periodically to check that newly added functionality had not introduced
problems in existing code.

The key aim of the Lingua Franca system is to enable reversible translation
between multiple languages. To verify that a particular translator achieves this
aim, it is necessary to test that, for a given program, translating from the pro-
gram to a text, then translating this text into a program, results in the original
program, and that a similar assertion holds for the complimentary sequence of
translations (text to program to text). Hence, the unit tests provide numerous
example texts including all of the features of the texts in question, and example
programs including all of the features of Lingua Franca programs, and test that
the above assertions hold for these examples.

A prerequisite of implementing such a testing regime is a definition of equiv-
alence over both programs and texts. It is tempting to define equivalence of
programs as two programs resulting in equivalent texts when translated into any
language, and similarly equivalence of texts as two texts translating into equiv-
alent programs. While equivalence relations useful in this context will indeed
have these properties, such a circular definition does not provide a sound basis
for testing.

20 http://www.junit.org/

93

94 Chapter 7: Evaluation

I have chosen to define equivalence of programs in this context as follows.
Two nodes are equivalent if and only if they are of the same type, they have the
same attributes (in the XML sense) defined, the values of those attributes are
equal (using the standard, case-sensitive definition of equality of strings), and
their content is equivalent. In the case of receive, repreceive, dispatch, sum,
new, param and group, their content is equivalent if and only if they have the
same number of children, and those children, in the order they occur, are pairwise
equivalent (by the current definition). In the case of note nodes, the content is
equivalent if and only if the content of the node in its XML representation is
equal, including whitespace. In the case of nt and nts nodes, if each node
has a single param child, they are equivalent if their children are equivalent.
Otherwise, they are equal if neither has a param child, and the textual content of
the nodes, with leading and trailing whitespace removed, is equal (case-sensitive
string equality). Two nodes that are not equivalent by the rules stated are not
equivalent. With this definition, equivalences of texts can be defined in terms of
equivalences of programs, as described previously.

A problem with using this definition of equivalence of programs to test re-
versible translation occurs in cases where the language environment adds note
nodes to record default information (such as element positions in VSeq, or pretty-
printing in LFScript). In this case, translating a program to a text and back again
results in the original program with additional note nodes; the two programs are
clearly not equivalent by the above definition. It would be possible to construct
language environments such that they removed any note nodes added automat-
ically, and not modified by the user, thus avoiding the problem. However, this
would require the default values to be calculated, potentially a costly operation,
each time a fragment is loaded into the environment. Hence, it is beneficial to
retain this information in the form of note nodes if possible.

Given that the language environments may legitimately add note nodes to a
program, the testing strategy must be modified. One possibility is to relax the
constraints of equivalence used by the test, such that the test is passed if the
two programs with note nodes where the creator corresponds to the language
environment being tested removed are equivalent. This assumes that a language
environment will preserve its own secondary notation elements, and if it does not,
that it will fail the reverse (text to program to text) testing. This was considered
to be sufficient to test the desired behaviour, namely that the translation will
preserve all salient features of programs.

Unit tests written based on this testing regime were implemented for the two
language environments supporting reversible translation (VSeq and LFScript).
Examples were chosen to exercise the translation of all features of programs and
texts, in both directions. Particular attention was paid to the until clauses in
LFScript, as correctly reconstructing higher-level structures is an essential, yet
difficult to implement, feature of Lingua Franca. On the basis of these tests, both
language environments were found to implement reversible translation correctly.

While reversibility of translation is a requirement of the system, it is not
sufficient. If the system is to be useful, it must have the property that the dif-
ference between two programs (specifically, a program and a modified version
generated by translating the program into a text, editing the text, and trans-
lating the changed text back into a program) is reflected by an appropriate and
analogous difference in the corresponding pair of texts in any given language.

Firstly, it should be made clear that, for certain pairs of programs, and
certain languages, an “appropriate” difference in texts is no visible difference at
all. This is the case where the programs differ only in secondary notation features
of some other language, as mentioned in Chapter 4. Moreover, if a language omits

Chapter 7: Evaluation 95

certain program nodes (a common case being those that are children of groups
with an unrecognised role), two different programs may produce the texts that
appear identical. This is to be expected.

Where the two texts differ, a desirable property is that the “degree” of differ-
ence is comparable to that between the programs. In particular, a small change
in a program should not result in a large change in the corresponding text in
any language; this would inhibit editing the program in multiple languages. This
criteria is, at least in part, subjective, as it is based on the perceived degree of
difference between two programs, as observed by the user. Roast et al (2000)
define quantitative measures of viscosity (the degree to which a notational sys-
tem is resistant to change), based on the number of “unitary actions” taken to
transform a program from one state to another. While it would be possible to
produce a quantitative measure of the degree of difference between two programs
in a similar manner, this measure would not necessarily correspond to the degree
of similarity in the programs. Green and Blackwell (1998) define a viscose sys-
tem as one in which “a single goal-related operation on the information structure
requires an undue number of individual actions.” It seems likely that programs
that differ in a single goal-oriented operation would be considered similar, re-
gardless of the effort required to turn one into the other. Consequently, this
measurement does not appear to be a good match to the desired criteria, and as
such the evaluation of the criteria is restricted to qualitative assessment.

A standard test program utilising all Lingua Franca features was used as a
starting point for this evaluation. The program was then translated into both
VSeq and LFScript, modified in various ways, and resubmitted to the execution
engine. A text may then be generated with the other language environment,
and the difference between that text and the one generated from the unmodified
program examined, allowing the degree of difference to be assessed.

VSeq fared well in this assessment. Most program changes produced appro-
priate and analogous changes in the corresponding VSeq text. The results were
immediately useful. In the cases where this did not occur, the Tidy tool provides
a simple way to correct any deficiencies.

LFScript is less successful in this respect. While the translation is reversible,
and modified programs are by no means unusable, whitespace is typically not
reproduced as it would be by a human programmer when elements are moved or
deleted. The pretty-printing of “damaged” subtrees goes some way to mitigating
this problem, but the results are still less than perfect. In particular, the place-
ment of comments is frequently incorrect in the new program. Nevertheless, the
system still enables users to edit programs in several languages in succession.

Another, more serious problem observed in the case of LFScript is that of
higher-level structures. A small change in one language (e.g., VSeq) may disrupt
a higher-level structure in another language (e.g., LFScript). If this results in a
malformed structure that cannot be rendered, the higher-level structure becomes
decomposed into its constituent parts — a change that is generally neither anal-
ogous or appropriate. The labelling of groups with their role and creator greatly
reduces the likelihood of this occurring accidentally, but does not eliminate the
possibility. The obvious alternative would be to design language environments
such that they disallowed modification of the internal components of unrecog-
nised structures; this would solve the problem, but would make such structures
far less useful in a multi-language context. A more satisfactory solution would
be to employ some kind of schema language to ensure that the composition of
higher level structures remains valid. This possibility is expanded upon in the
following chapter.

96 Chapter 7: Evaluation

In general, the system is successful in its aim of facilitating multi-language
programming. Reversible translation is correctly implemented in those environ-
ments that aim to support it, and results when modifying programs are accept-
able. However, there is still room for improvement in some areas, particularly
the reconstruction of LFScript texts and higher level structures in general after
program modification.

7.2 Usability Evaluation

As the primary purpose of the languages produced was to illustrate the feasibility
of multi-language programming environments based on reversible translation, as
opposed to being immediately useful languages in their own right, full usability
testing has not been performed. Nevertheless, an informal study was carried out
on a limited number of users to obtain preliminary, qualitative results about the
two languages aimed at general end users (Media Cubes and VSeq).

For the purposes of the test, the Media Cubes language was realised in a
”Wizard of Oz” fashion using the simulator and non-working prototype cubes;
all other components of the system were the working prototype implementations.
Subjects were first given a brief written description of the Media Cubes language,
and then shown several small examples of Media Cubes programs (based on the
examples in Chapter 3). Throughout the study, subjects were encouraged to
ask questions if they needed clarification on any point. Once the language had
been presented, they were asked to construct a program to accomplish a specific
task (mute the TV whenever the phone or the doorbell rings), using a provided
vocabulary of events. When they were satisfied the constructed program would
fulfil the requirements, the test moved on to the VSeq language.

Subjects were given a similar written description of VSeq, and a demonstra-
tion of how to use the console to edit programs in the language. They were then
shown the previously constructed program in VSeq, and asked to use the lan-
guage to add additional behaviour (when the doorbell, but not the phone, rings,
switch the hall light on). Finally, they were asked to fill in a short questionnaire
about both languages, and the relationship between the two. This questionnaire
is included in Appendix B.

The study was undertaken with five subjects. Three of these had a strong
technical (programming) background; the remaining two did not. All subjects
successfully completed both tasks. Most were hesitant with the Media Cubes,
often asking for the explanation of a particular cube to be reiterated, or for
confirmation that their understanding of the function of a cube was correct.
In some cases, subjects made false starts before producing the correct program.
When errors were made, all were detected either by the system, or by the subject.
In contrast, subjects asked fewer questions regarding the VSeq language, and
produced the correct modifications to the program directly. This may be partly
explained by the fact that VSeq was presented after the Media Cubes, and hence
subjects were already familiar with the underlying Lingua Franca concepts, but
also seems to be in part due to deficiencies in the Media Cubes language itself.
There was no noticeable difference between the performance of technical and
non-technical users with either language.

One feature of the Media Cubes language that caused particular confusion,
amongst both technical and non-technical subjects, was the Generalisation cube.
A common mistake was to assume that both the input and output examples
and events had to be used; in fact, the more general solution of the given task
required only the use of the input faces. Most subjects were also unsure of the
behaviour of the cube in general. This may be a documentation issue, in that

Chapter 7: Evaluation 97

the written explanation, and the naming of the cube faces, does not adequately
express the function of the cube. Conversely, it is possible that the Generalisation
cube concept is inherently flawed, and an alternative mechanism for creating
generalised scripts is required.

The questionnaire was designed to obtain additional information about the
subject’s perceptions of the system. In most cases, subjects were happy with the
correspondence between the Media Cubes program and its VSeq representation.
In general, subjects were more confident that their solution to the VSeq pro-
gramming task was correct than their solution to the Media Cubes task; several
explicitly cited the lack of feedback as a reason for this. One subject described
the Media Cubes language as “too much of a memory test”. Most subjects felt
that having multiple representations was beneficial; those that did not considered
the Media Cubes superfluous.

When asked if they would use the languages to program a home network,
one subject responded that they could not say as they did not know enough
about the alternatives available, and another said that she would not have a
home network. The other subjects answered in the affirmative for VSeq, but not
the Media Cubes, citing some of the problems mentioned above.

Overall, the study suggested that, while VSeq is largely usable as it stands,
the Media Cubes language requires significant further attention. That said, the
Media Cubes aroused significantly more interest from subjects, perhaps due to
the relative novelty of tangible programming languages. This is encouraging in
the context of the Media Cubes as an introductory programming language, and
may be of significant benefit in terms of engaging new users with the system.

7.3 Cognitive Dimensions Analysis

In addition to user testing, it is also informative to examine the languages in
terms of usability on a theoretical basis, both to highlight any usability deficien-
cies caused by the underlying architecture, and to inform further development.
I have chosen the Cognitive Dimensions framework as a tool for this evaluation
(Green 1989). This framework is particularly suited to the evaluation of program-
ming systems. Other methods are less suitable; for example, the Keystroke Level
Model (Card et al 1980) is too low-level to provide a useful overall evaluation,
and does not address problem solving, while Cognitive Walkthrough (Rieman et
al 1995) requires a specific goal, and a specific set of steps to achieve this goal.
Programming tasks are not generally amenable to this kind of specification. Fur-
thermore, the Cognitive Dimensions framework is equally applicable to static
and interactive systems:

In this respect, [the Cognitive Dimensions] approach is unlike most
evaluation methods in HCI, which are solely aimed at interactive de-
vices, such as editors and the like. The focus of those approaches is
on the process of interaction. Therefore, they do not work well for
non-interactive artefacts. (Green and Blackwell 1998)

While two of the systems under examination are interactive (the Media
Cubes language and VSeq), the third is a traditional programming language,
where the notation is largely independent of the environment used to manip-
ulate it. Cognitive Dimensions provide a framework where all three may be
discussed and compared on an equal footing. Blackwell (2003) addresses the
particular issues involved with the application of cognitive dimensions to tangi-
ble programming languages.

98 Chapter 7: Evaluation

A disadvantage of the framework is that it does not provide quantitative
data about systems. It is a “broad-brush” tool for discussion and evaluation of
notational systems. As such, it provides a good way to access early prototype
systems and direct further development.

Lingua Franca constitutes the underlying information structure for all lan-
guage environments. A number of points may be made about this structure that
are common to all language environments. Hidden dependencies are present,
in the form of notification types; there is no inherent link from a piece of code
dispatching an event to all possible receivers of that event. The possibility of
passing names within events compounds this; however, this is an advanced tech-
nique, and although it used in the underlying implementation of some higher-level
structures, it is unlikely to be encountered by the majority of users. Similarly,
comprehending and writing programs that pass names within events requires
hard mental operations, and constitutes making an abstraction. However, a large
amount of functionality can be used without these techniques; hence, the system
is not abstraction hungry. It is, however, abstraction tolerant, as users are free to
make abstractions by inventing events and writing programs that react to them.
This capacity also reduces repetition viscosity.

7.3.1 Notation, Medium and Environment

The notation used in VSeq is that of mutable diagrams. The medium is a con-
ventional display device, either a computer monitor or a television. The console
provides the environment via which users view and manipulate them.

The VSeq environment has a single distinct subdevice, namely the dialog
used to edit the event specification associated with a node. This consists of a
simple dialog with a single line of explanatory text, a text entry area containing
the event specification to be edited, and “OK” and “Cancel” buttons, all us-
ing the host platform’s standard user interface. The chief criticism that may be
raised is that of a lack of closeness of mapping leading to poor role-expressiveness;
a single text entry box is provided to enter two conceptually separate values (no-
tification type and subtype). To further complicate matters, each quantity may
be one of two types (either a literal event component, or a reference to a bound
name). A simple syntax is introduced to derive these values, and determine their
types, from the single text string. This is needlessly complex, and is likely to lead
to error-proneness. The subdevice should be modified (or, given its simplicity,
entirely rewritten) such that it provides a better match for the task in hand.

The LFScript language is much like a traditional language in that the nota-
tion is that of plain text files. The environment is also similar, in that it consists
of a processor that transforms a static source code file into an executable form.
However, the processor differs from its counterparts in traditional programming
environments in that it is also used to obtain source code prior to editing. In
this respect, it is more like the interface to a revision control system. In order
to analyse the system, it is also necessary to specify the text editor used. At
present, LFScript is edited using a standard programmer’s editor with no ad-
ditional support for the language. However, the main target user group of the
language (“digital plumbers” and enthusiastic householders) are unlikely to use
such an editor. Hence, for the purposes of this evaluation, we hypothesise a
dedicated editor with the following characteristics:

• Standard GUI editing features (e.g., insertion of text, cut and paste, search
and replace, mouse-driven navigation and scrolling)

• The ability to open multiple views of the same document simultaneously, in
different windows.

Chapter 7: Evaluation 99

• Automatic indentation and syntax highlighting for the LFScript language.

• Integration with the LFScript processor, such that code may be retrieved
and submitted from within the editor.

The environment of the Media Cubes language consists of the cubes themselves,
manipulated in the medium of physical space. While other components, such
as a base station to connect the cubes to the network, are necessary to support
the language, they are not involved in user interaction, and hence do not form
part of this evaluation. The notation in this case is that of a series of actions
performed with the cubes. This notation is transient, as described by Blackwell
(2003).

7.3.2 Visibility and Juxtaposability

Visibility in VSeq is generally good, unless the diagram is very large. Conversely,
juxtaposability is poor; it is not possible to view two distant sections of a diagram
simultaneously. This problem could be addressed by adding “bookmarks” to
allow users to move to defined points in the diagram instantly, and by allowing
them to open multiple windows viewing different parts of the same diagram.
Improving juxtaposability would also aid the visibility of large diagrams. More
extensive solutions to these visibility concerns are discussed in Section 8.3.4.2.

The visibility and juxtaposability of LFScript are largely determined by the
facilities provided by the editor. The hypothetical editor explicitly includes sup-
port for juxtaposing arbitrary sections of text. Syntax highlighting aids visibil-
ity by making it easier to distinguish syntactic features from one another. The
relatively terse representation (see below) improves both visibility and juxtapos-
ability by allowing a greater amount of code to be viewed in a given area.

The Media Cubes language differs from the other systems analysed, and
from other programming languages, in that it is write-only. Hence, the visibility
of the system is zero; programs cannot be examined at all. This is a feature
common to all systems that make transient marks. However, the ability to view
programs created in the Media Cubes language in other Lingua Franca languages
goes some way towards mitigating this problem.

7.3.3 Diffuseness

The notation chosen for VSeq is relatively diffuse; this was deliberate, with the
intention of making the system less error-prone. However, it also hampers visi-
bility by reducing the amount of code that may be viewed in a given area. Con-
versely, the notation in LFScript is particularly terse; this improves visibility, as
mentioned above.

The Media Cubes language may be regarded as diffuse in two respects.
Firstly, unlike on-screen languages, they require an amount of physical space
to work in (however, in this respect they are terse compared to model-building
languages such as AlgoBlock). Secondly, a large number of distinct actions are
required to achieve any particular effect. As opposed to conventional languages,
where diffuseness typically reduces error-proneness by making information more
explicit, the diffuseness of the Media Cubes language may in fact increase error-
proneness by exacerbating the problems caused by the requirement for the user
to keep the program under construction in memory.

100 Chapter 7: Evaluation

7.3.4 Viscosity

The VSeq environment allows easy modification of all structures in the diagram,
and there are few dependencies. This means that viscosity is generally low. In
particular, the Tidy tool, combined with the ability to move an entire subtree
by dragging its root node, serves to reduce knock-on viscosity by simplifying
any operations made necessary by a change. However, there is no support for
manipulating an arbitrary set of nodes at once, nor for modifying all instances
of an event name. Implementing these features would further reduce viscosity.

The viscosity of LFScript is largely a function of the editor, as this determines
the ease with which dependent changes may be made. The hypothetical editor
does not have any particular support for refactoring — automatically making
a collection of related changes (for example, changing all instances of a bound
name) with a single operation — but textual searching makes carrying out the
same process manually easier and more accurate.

Due to the Media Cube’s lack of visibility, and the consequent inability to
edit programs in the language, its viscosity is extremely high (arguably, infinite):
the only way to make a change to a program is to delete and rewrite it.

7.3.5 Secondary Notation and Provisionality

The secondary notation provided by VSeq supports redundant recoding of infor-
mation in the form of colour and layout; both of these may be used to emphasise
existing structures. VSeq has little support for escape from formalism; the only
feature that can be used in this way is named groups. The ability to attach tex-
tual notes to program nodes would be one obvious way to correct this. Another
extension might be the ability to add arbitrary strokes to the diagram. This
would be highly appropriate when using a pen-based interface such as a Tablet
PC, but less so when using devices less suited to drawing. In addition, the ma-
nipulation of these strokes once they had been laid down would need careful
consideration.

The VSeq console does not include any support for provisionality. This may
be addressed by a facility to deactivate or “comment out” subtrees; this could
be encoded relatively simply in Lingua Franca, and hence would not require any
change to the underlying architecture.

In keeping with most conventional languages, LFScript provides two forms
of secondary notation. Whitespace allows redundant recoding of structural infor-
mation, while comments provide a flexible means to escape from formalism. In
addition, they provide a rudimentary level of support for provisionality, in that
sections of code may be deactivated by placing them inside comments. However,
this is not perfect; identifiers referring to unrendered note nodes would be pre-
served in comments, and, if the code was reintroduced into the “live” program,
these identifiers are likely to refer to the wrong elements. Editor support for
automatically stripping such identifiers from comments before submitting code
would help, but this is only a partial solution. Encoding provisional code in
Lingua Franca as described above would avoid the problem entirely.

The question of secondary notation in the Media Cubes language is an inter-
esting one. While the languages provides no features for annotating the program,
the user has ample opportunity to annotate the environment, for example, by
attaching notes to Cubes (such notes may be regarded as sub-devices). In a tradi-
tional environment, such auxiliary annotations are separate from the information
being manipulated, and rely on cross-referencing to establish correspondences be-
tween elements. Conversely, the tangible nature of the individual elements of the

Chapter 7: Evaluation 101

Media Cubes environment allow such annotations to be associated with elements
directly, making the correspondence substantially more immediate.

7.3.6 Hidden Dependencies

The hidden dependencies of VSeq are those of the underlying information struc-
ture. It would be possible to address these in the environment, perhaps by
highlighting all receivers of an event, or uses of a bound name, but such tech-
niques reduce visibility and juxtaposability, and increase diffuseness, and were
therefore avoided. Similarly, LFScript does not introduce any new hidden de-
pendencies beyond those inherent in Lingua Franca. These are mitigated to an
extent by the searching facilities of the hypothetical editor, which allow other
uses of a name to be more readily located. These facilities could be extended
to be syntax-aware, and, as with VSeq, the environment could highlight depen-
dencies in some manner. In both languages, adding such highlighting would
increase diffuseness and reduce visibility, but, unlike many design trade-offs, the
choice may be made moment-by-moment by the user, by allowing dependency
highlighting to be turned on or off.

As programs cannot be examined in the Media Cubes language, all dependen-
cies in that language are hidden dependencies. However, the types of program
likely to be created with the Media Cubes has few dependencies, mitigating
the problem somewhat. Hidden dependencies are often a problem in tangible
user interfaces; Blackwell (2003) observes that “there is no convenient tangible
equivalent to the ubiquitous node and link formalism that is used to indicate
relationships between independent elements.”

7.3.7 Closeness of Mapping, Consistency and Role Expressiveness

The closeness of mapping of VSeq is reasonable; the diagrams represent the
control flow of the program directly. However, there is no explicit indication of
what each type of (graphical) node corresponds to. This may present a learning
problem for new users. The representation is also consistent, in that the same
elements are always represented in the same way. However, the uniformity of the
representation leads to poor role-expressiveness; in particular, the representations
for receive, repreceive and dispatch nodes are all very similar.

In the case of LFScript, the closeness of mapping is reasonable, assuming
that the user has understood the execution model of Lingua Franca. I believe
that this model is reasonably comprehensible, but user testing would be required
to establish this.

The role-expressiveness of LFScript is relatively good, in that it follows the
convention of using question marks to signify input (receive and repreceive)
and exclamation marks to signify output (dispatch). The syntax is highly con-
sistent, in that a single form only ever means one thing (for example, although
it is used in numerous contexts, an identifier in parentheses always corresponds
to binding that identifier). The only exception to this is the use of angle brack-
ets (<>) to express both references to bound names and the creator and role
of foreign groups. The context should be sufficient to distinguish between the
two cases. The identifier tags inserted to allow the reconstruction of unrendered
note nodes also cause an issue with regard to role-expressiveness, as they do not
correspond to anything in the user’s model of the program. However, the user
never needs to insert or manipulate such tags, merely leave them alone, and as
mentioned they may be deemphasised or hidden by the editor as part of syntax

102 Chapter 7: Evaluation

highlighting. One final point to make is that similarity between the representa-
tions of receive and repreceive, while increasing role-expressiveness, may also
lead to confusion, and a consequently make the system more error-prone.

One of the key benefits of the Media Cubes, and of tangible user interfaces
in general, is good role-expressiveness. This chiefly arises from the use of familiar
objects to model information. In the case of the Media Cubes language, devices
in the home network also constitute elements in the notation of the Media Cubes
language. This results in particularly good role-expressiveness and closeness of
mapping.

7.3.8 Premature Commitment

In both LFScript and VSeq, programs may be constructed in any order, and
hence the only issues with premature commitment are those related to the un-
derlying information structure. These are limited to the choice of new names,
and new event types and subtypes. These aspects of the program may be modi-
fied later (subject to the viscosity of the language in question), and as such there
is relatively little premature commitment in these languages.

In contrast, premature commitment is perhaps the most serious problem
with the Media Cubes language as it stands. The language strongly encourages
bottom-up creation of programs (that is, creation of small components that are
then combined). Top-down programming is possible, but is made needlessly
difficult as it requires a greater number of intermediate steps to be stored using
the Clone cube. This, coupled with the need to keep the program in mind during
its construction (hard mental operations) present a serious usability problem. As
mentioned, these problems are believed to be manageable for small programs,
but impose a limit on program size.

7.3.9 Progressive Evaluation

None of the languages under evaluation provide any support for progressive eval-
uation. This is a serious deficiency; without it, there is no way to test the
functionality of a program without loading it into the live system. This is par-
ticularly acute in the case of LFScript, a language designed for the development
of relatively large and complex programs.

A “sandbox” environment that enabled users to simulate the actions of a
program and test out possible inputs would allow progressive evaluation, greatly
enhancing the environment. Similarly, it has been noted that the expression
rewriting style of the Lingua Franca architecture allows a snapshot of a running
program to be translated into a text in the normal way. VSeq could exploit this
fact to produce a graphical debugging facility that further enhances support for
progressive evaluation.

A similar debugging environment could be produced for LFScript, either as
a (substantial) extension to the hypothetical editor, or as a separate program
that made use of the same notation.

Such support could be achieved by adding to the execution engine the facility
to execute submitted code in a sandbox environment, with a specified set of input
events, and the possibility of single-stepping through the code. In this case, it
would be necessary to provide some interface to control and configure this testing
environment. While a dedicated interface would be easiest to implement, it would
not necessarily be a good match to all language environments. Hence, a better
approach would be to extend the network protocol to support sandbox evaluation,

Chapter 7: Evaluation 103

allowing individual language environments to introduce sub-devices to support
progressive evaluation in an appropriate manner. Alternatively, LFCore could
be extended to support evaluation, allowing these sub-devices to perform tests
of the code without the need to communicate with the central server.

7.3.10 Implications

In general, the evaluation suggests that the VSeq language environment is good
for transcription and incrementation. The lack of juxtaposability (and limited
visibility in the case of large diagrams) is potentially harmful to modification and
exploration, but any problems are likely to be manageable for small to medium
sized programs. This broadly fits the aims of the language.

The qualities of LFScript make it suitable for most programming tasks, al-
though in some cases another language may be more suitable (for example, in the
case of small programs, VSeq may be better suited due to enhanced visibility).
However, much of the usability of LFScript is contingent on the editor used. The
hypothetical editor introduced provides a fair degree of support for the language;
several suggestions for more advanced support have been made during the eval-
uation. Implementing such an editor would be relatively straightforward, either
as customisations to an existing editor, or as a standalone application.

This assessment reinforces the initial conclusions drawn about the Media
Cubes language, namely that the language is only suitable for the creation of
small programs. In particular, it should be noted that modification and explo-
ration are impossible; only incrementation and transcription are supported. The
problem of premature commitment is a major issue for the language, compound-
ing the restrictions on program size previously noted. Even taking into account
the aims of the language, this is far from ideal, and should be addressed in future
revisions. On a more positive note, the ability to add secondary notation in a
natural and flexible way is an unexpected benefit of the tangible approach, and
the good role-expressiveness and closeness of mapping contribute to making the
language easier to learn.

Overall, the three language environments produced are acceptable as demon-
strations of the concept of multi-language translation, but fall short of being
useful languages in their own right. VSeq and LFScript are close to achieving
this aim, but both have a number of relatively minor problems that need to be
addressed. The Media Cubes language has more serious problems, and would re-
quire substantial reworking to become a useful tool. This is not to say that either
tangible programming or write-only languages are necessarily without merit, but
rather that the current instantiation is flawed.

Further possibilities for improvements in the language environments, and the
Lingua Franca architecture itself, are discussed in Chapter 8.

104 Chapter 7: Evaluation

Chapter 8
Conclusions & Future Work

This chapter summarises the work reported, and relates its contribu-
tion to the aims described in Chapter 1. Possible avenues for further
investigation are discussed, and the work is placed in the context of
current and future developments.

8.1 Summary

Chapter 3 presented a design for the Media Cubes language, a tangible program-
ming language for use in the networked home. The design is based around a
dynamic arrangement of components, in which no static model is constructed.
While this approach has numerous advantages, it has several major disadvan-
tages, most notably that, without an external representation of the program, it
is impossible to view or edit programs. This led to the development of a system
to support the representation of a single program in multiple, interchangeable,
languages.

Chapter 4 discussed the problems associated with producing a reversible
mapping between disparate programming languages. In particular, the problems
of representing secondary notation features, and structures not present in all lan-
guages, were examined. A solution was proposed, based on a shared intermediate
form that encoded secondary notation and structural information appropriate to
all languages supported by the system in an extensible manner. This represen-
tation makes reversible mapping between disparate languages feasible.

Chapter 5 presented Lingua Franca, a system based on the ideas in Chapter 4,
for supporting multi-language end-user programming in the networked home. An
intermediate form was detailed, along with its external representation in XML,
and its execution behaviour. A system architecture suitable for implementing
these facilities in a networked environment also described.

Chapter 6 described the implemented components of the system. These
consist of an execution engine that executes Lingua Franca code, and acts as a
program database, plus several language environments that support individual
programming languages. Three language environments — VSeq, LFScript and
the Media Cubes — were presented.

Chapter 7 evaluated the work, examining both the correctness of reversible
translation, and the usability of the languages produced.

8.2 Contribution

In accordance with the aims set out in Section 1.6, the work described has pro-
duced the following:

• An approach for the integration of multiple languages, allowing a program-
mer to easily switch between languages depending on the task being per-
formed, preserving secondary notation and structure

• An example architecture implementing this approach in a particular context,
that of the networked home

105

106 Chapter 8: Conclusions Future Work

• A number of novel programming languages within this architecture, targeting
a variety of user populations and tasks

• An evaluation of the architecture and languages

8.3 Future Work

My work has aimed to demonstrate the feasibility of multi-language end-user
programming based on reversible translation. While this has been achieved,
there are many areas that the work could be extended and built upon.

8.3.1 Testing

As an end-user programming system, user testing would form an essential part of
any further development of the Lingua Franca language environments. While the
current prototypes suffice to demonstrate that such systems can be implemented,
a useful end-user programming language cannot be developed without input from
the intended user population.

Iterative design techniques would provide a good basis for further develop-
ment, as these couple the development process tightly to the reactions of users
in the population in question. Participatory design techniques take this fur-
ther, involving the users directly in the design progress. The Lingua Franca
architecture would be particularly amenable to such techniques, as variations in
semantics may be implemented at a high level (in terms of Lingua Franca code),
facilitating rapid development.

8.3.2 Additional Language Environments

The three language environments presented demonstrate the key features of the
Lingua Franca architecture. However, additional environments would serve both
to exercise the translation capabilities of the system, and to serve other user
populations, usage contexts and programming tasks.

There are currently no output-only language environments implemented
within the Lingua Franca architecture, but these are relatively simple to im-
plement. In particular, if the target language is XML-based (such as HTML
or SVG), the problem may be solved using an XSLT stylesheet, specifying a
mapping between Lingua Franca and the target language. This stylesheet could
be applied by a dedicated language environment that communicated with the
execution engine in the normal way. Alternatively, if the execution engine was
modified to add an appropriate processing instruction, any web browser could
download the program and apply the stylesheet, obviating the need for a sep-
arate client. To support multiple output languages in this way, the execution
engine could add a processing instruction for each and rely on the browser to
provide a means of selection, or the desired language could be encoded in the
URL, allowing the execution engine to provide only the processing instruction
for the desired language.

Input-only languages are similarly straightforward to implement, as both the
Lingua Franca format and the means of submitting it to the server (HTTP) are
well defined and simple to use. Several methods of entering code into the systems
have been suggested, such as natural language (including speech recognition), and
inference from either usage patterns or explicit examples. These examples share
the Media Cubes’ lack of external representation, and hence would benefit from
the facilities provided for Lingua Franca.

Chapter 8: Conclusions Future Work 107

8.3.3 Improvements to Lingua Franca

The core Lingua Franca architecture is sufficient for the purpose of demonstrating
the concept of multi-language translation. However, there are numerous possible
ways in which the system could be improved.

The first is the efficiency of the execution engine. At present, the execu-
tion engine is implemented in Python, uses a standard data representation with
significant overhead, and bases evaluation on a naive interpretation strategy. Sig-
nificant gains in efficiency could be achieved by rewriting the execution engine
in a systems programming language, hence reducing the run-time overhead that
the implementation language imposes. Similarly, a dedicated data representa-
tion, such as that discussed in Section 6.2, may be of benefit. The support for
progressive evaluations discussed in Section 7.3.9 would also be highly beneficial.

At present, events in Lingua Franca are defined as a set of name-value pairs,
one of which is required (“nt”) and another of which has defined semantics if it
is present (“nts”). While this representation is sufficiently powerful to encode
channel passing as in the π-calculus, it provides very limited facilities for Lingua
Franca programs to manipulate data. While for many programs, routing events
without changing their content is sufficient, the inability to manipulate date is
nevertheless a serious problem.

A solution would be to adopt a more general structure for events. XML
would be the obvious choice for this, as in addition to its suitability to the task,
the facilities for manipulating it are already in place. Hence, an event would
consist of a single event XML element with arbitrary children. To reference
event data, a param node would not provide a component name. Instead, it
would provide an XPath expression to be applied to the event data to obtain the
result. Similarly, instead of having nt and nts children, dispatch nodes would
have arbitrary children; these would become the children of the emitted event
node.

While more powerful in terms of data manipulation, this event structure is
less closely tied to the underlying GENA event mechanism. While GENA events
may have an arbitrary XML payload, they must also have an NT, and optionally
an NTS, by which subscriptions are organised. Hence, the new event structure
must encode this data. One possibility would be to add nt and ntsattributes
to the event elements (and consequently the dispatch nodes). However, this
has the disadvantages described in Section 5.4, and for these reasons it may be
preferable to use child elements. It would also be necessary to consider the case
where no NT is provided. Possibilities include disallowing such events, providing
a default NT, or considering such events “internal” and not forwarding them to
the external event system.

As mentioned, the support for higher level structures would benefit from a
schema language, allowing their internal composition to be formally specified.
A group corresponding to a structure would include a URL to the appropriate
schema. This would allow language environments to preserve higher level struc-
tures not previously encountered, simply by ensuring that any edits made do not
invalidate the group with respect to the referenced schema.

More generally, the execution engine provides an ideal platform for numer-
ous program management facilities. One obvious extension would be a revision
control system to manage updates to the corpus. In addition to the normal ben-
efits of such systems (such as the ability to roll back to a previous version of
a program), this would be obviate the need for language environments to store
the program on which they were based, as mentioned in Section 6.3.3. Simi-

108 Chapter 8: Conclusions Future Work

larly, the execution engine would be a sensible place to implement the policy and
consistency checking described by Saif et al (2001).

8.3.4 Further Developments of Existing Language Environments

While sufficient to demonstrate the viability of the Lingua Franca architecture,
the language environments implemented have significant room for improvement.
A number of possible improvements were presented in Section 7.3; others are
discussed here.

Development of LFScript

The LFScript language is the most similar to conventional programming lan-
guages, and is most likely to scale well. Hence, it is likely to be the primary
language for the development of substantial programs within the environment.
While LFScript already provides access to the full functionality of Lingua Franca,
it lacks features to support large-scale program development.

A key feature to be added would be explicit support for the creation of
reusable code fragments, akin to functions in conventional languages. Such code
fragments may be readily created using new and repreceive nodes, using tech-
niques similar to those described by Milner (1999); however, adding support for
them in the language would make their use simpler and less error-prone.

A more comprehensive solution, and one more in keeping with the nature
of the Lingua Franca architecture, would be the implementation of a hygienic
macro system such as that found in Scheme (Kelsey et al 1998). This would
allow LFScript programmers to add new syntactic forms to the language in a
structured way. A sufficiently flexible system would allow abstractions such as
that described above to be easily defined and extended by the user.

The use of groups to represent higher-level structures in LFScript (and in
Lingua Franca in general) provides an established framework for integrating the
defined structures with the system as a whole. Moreover, the retention of struc-
tural data that allows the defined syntax to be reconstructed would mean that
debuggers may show the code as it was written, as opposed to the generated
code, mitigating one of the problems traditional associated with macro systems.

Another improvement to the system would be to remove the identifier tags
from the source code. However, to preserve the reversible translation between
LFScript and Lingua Franca, it must be possible to reproduce secondary notation
from other languages. The format of the texts does not provide any way to store
such secondary notation, and so it must be retrieved from the original source
program via the included reference.

One possible approach would be to compare a text generated from the orig-
inal program to the modified text. A set of transformations could then be com-
puted to transform the former to the latter. An equivalent set of translation
from the original program to the modified program would effect the modifica-
tions while preserving the secondary notation.

While this would appear to be attractive in principle, there are obstacles
to implementing it in practice. Chief amongst these is the fact that standard
algorithms to compute differences between documents encode movement of code
from one place to another as a deletion followed by an insertion. This is precisely
the behaviour we do not want, as it does not preserve secondary notation. If a
suitable algorithm could be found (perhaps taking advantage of the well-defined
tree structure of programs), this approach would be a possibility, but extensive
investigation and testing would be required to determine if it is in fact viable.

Chapter 8: Conclusions Future Work 109

Development of VSeq

There are numerous minor improvements that could be made to the VSeq console
application. For example, the drawing canvas is currently of a fixed, though
large size. It would be preferable to make the canvas infinite in size, but this
presents a problem for standard scroll bars, which display the size of the viewed
area relative to a fixed area. A solution would be to have the canvas extend
dynamically whenever a diagram component is moved close to the edge of the
canvas. This would allow the entire diagram to be accommodated, no matter
how large it grows, whilst retaining the standard method of navigating a large
plane.

Other techniques may be profitably employed to manage large diagrams. A
thumbnail version of the diagram may aid navigation. Generalising this idea,
allowing the user to zoom in and out provides a flexible way to view overall
structure and fine-grain details in a single interface. Alternatively, large-scale
displays such as the Escritoire (Ashdown 2004) may be profitably employed.
While a desk-style display with fine-grained control is unlikely to be present in
the home, a large projected display may be present as part of a home cinema
system. Adding a coarse-grained pointing device to such a setup would be useful
in several contexts, and would provide a novel interface to VSeq.

As it stands, VSeq lacks higher-level structures. Graphical representations
of such structures would be an obvious extension to the environment. The rep-
resentation of existing structures, such as those generated by the Media Cubes’
Connection cube, or the until clause in LFScript, would be a starting point.
Higher-level structures specific to VSeq could also be developed.

As with LFScript, it may be desirable to allow users to add new types of
higher-level structure to the system. One way in which this may be accomplished
would be to introduce a system of “stencils”, as found in structured drawing
programs such as Visio21. These allow groups of objects to be stored in a palette,
and copied into the diagram when required. Analogously, VSeq could provide a
facility to save a subtree of the diagram to the toolbox. Thereafter, a copy of
this subtree could be inserted into the diagram in the same way that other tools
are used; namely, by dragging the tool from the toolbox to the drawing area.

Such stencils would provide a mechanism to insert complex structures into
the diagram easily. It would be necessary to provide facilities for adding and
editing stencils; while the former is straightforward, the latter would need atten-
tion. In addition, stencils as described are not parameterised. It could be argued
that it is possible to encode parameterisation using Lingua Franca primitives,
but as mentioned previously this is complex and error prone. Hence, it would
be useful to provide a mechanism to parameterise stencils over certain elements.
The code templates provided by many IDEs, in which editing a component also
changes related components, until the template is “fixed”, provide a model for
one way in which this may be achieved.

Development of the Media Cubes

Before the Media Cubes are tested on users, it would be necessary to improve
the prototype devices. As mentioned, infrared communication has proved to be
unsuitable for the application to which the devices have been put; specifically,
the directionality of infrared means that the cubes must be carefully oriented
relative to the base station, making them awkward to use. In addition, the

21 http://office.microsoft.com/visio

110 Chapter 8: Conclusions Future Work

relative unreliability of infrared channels, and their susceptibility to interference
from both natural and fluorescent lighting make them unsuitable for use in a
home networking context. Replacing the infrared communication with a short
range, low power radio link would make the prototypes suitable for use by end
users in a testing context.

8.4 Ubiquitous End-User Programming

As ubiquitous computing matures, and becomes a part of everyday life, the way
in which users control it will become increasingly important. While direct or
implicit control may suffice for many applications, the sheer diversity of situations
in which ubiquitous technology may be used means that users will, at some point,
want to tailor the technology to their own specific needs. Multi-language end-
user programming systems such as Lingua Franca provide a compelling approach
to allowing the widest possible variety of users to do this, thus fully harnessing
the potential of ubiquitous computing technology.

Appendix A
Schema for XML Lingua Franca

The following schema defines the XML representation of Lingua Franca in the
RELAX NG schema language (Clark 2001).

<?xml version="1.0" encoding="iso-8859-1"?>

<grammar xmlns="http: //relaxng.org/ns/structure/1.0"

ns="urn: linguafranca"

datatypeLibrary="http: //www.w3.org/2001/XMLSchema-datatypes">

<start>

<element name="lf">

<element name="eventqueue">

<zeroOrMore>

<ref name="dispatch.element"/>

</zeroOrMore>

</element>

<element name="corpus">

<zeroOrMore>

<ref name="process.category"/>

</zeroOrMore>

</element>

</element>

</start>

<define name="process.category">

<choice>

<ref name="dispatch.element"/>

<ref name="repreceive.element"/>

<ref name="receive.element"/>

<ref name="group.element"/>

<ref name="note.element"/>

<ref name="new.element"/>

<ref name="sum.element"/>

</choice>

111

112 Appendix A: Schema for XML Lingua Franca

</define>

<define name="eventspec">

<ref name="nt.element"/>

<optional><ref name="nts.element"/></optional>

<zeroOrMore><ref name="payload.element"/></zeroOrMore>

</define>

<define name="dispatch.element">

<element name="dispatch">

<ref name="eventspec"/>

</element>

</define>

<define name="repreceive.element">

<element name="repreceive">

<optional>

<attribute name="bindevent"><text/></attribute>

</optional>

<ref name="eventspec"/>

<zeroOrMore><ref name="process.category"/></zeroOrMore>

</element>

</define>

<define name="receive.element">

<element name="receive">

<optional>

<attribute name="bindevent"><text/></attribute>

</optional>

<ref name="eventspec"/>

<zeroOrMore><ref name="process.category"/></zeroOrMore>

</element>

</define>

<define name="nt.element">

<element name="nt">

<choice>

Appendix A: Schema for XML Lingua Franca 113

<text/>

<ref name="param.element"/>

</choice>

</element>

</define>

<define name="nts.element">

<element name="nts">

<choice>

<text/>

<ref name="param.element"/>

</choice>

</element>

</define>

<define name="param.element">

<element name="param">

<attribute name="event"><text/></attribute>

<attribute name="name"><text/></attribute>

</element>

</define>

<define name="new.element">

<element name="new">

<attribute name="bindevent"><text/></attribute>

<zeroOrMore><ref name="process.category"/></zeroOrMore>

</element>

</define>

<define name="sum.element">

<element name="sum">

<oneOrMore><ref name="receive.element"/></oneOrMore>

</element>

</define>

<define name="payload.element">

<element name="payload">

114 Appendix A: Schema for XML Lingua Franca

<attribute name="name"><text/></attribute>

<choice>

<text/>

<ref name="param.element"/>

</choice>

</element>

</define>

<define name="group.element">

<element name="group">

<attribute name="name"><text/></attribute>

<zeroOrMore><ref name="process.category"/></zeroOrMore>

</element>

</define>

<define name="note.element">

<element name="note">

<text/>

</element>

</define>

</grammar>

Appendix B
User Questionnaire

The following is the questionnaire given to subjects in the study described in
Section 7.2. It has been reformatted to fit the page, but is otherwise unaltered.

Media Cubes VSeq

Do you feel you understood the
language as presented?

Was the language adequate to express
the program given?

How confident are you that the
programs created did what they were
intended to?

Would you use the language to control
a home network? (Please state
reasons)

Was the correspondence between the
programs in the two languages clear?

Was it useful to have multiple
representations of the program?

Do you have any other comments on
the system in general?

115

116 Appendix B: User Questionnaire

Bibliography

Addlesee, M., Curwen, R., Hodges, S., Newman, J., Steggles, P., Ward, A. and
Hopper, A. Implementing a Sentient Computing System. IEEE Computer,
34(8) (2001), 50–56

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S. and Trickovic, I. Business Process
Execution Language for Web Services Version 1.1. (2003) Available at
http://www-106.ibm.com/developerworks/library/ws-bpel/

Arnold, K. and Gosling, J. The Java Programming Language. (Addison-Wesley,
1996)

Ashdown, M. Personal Projected Displays. (PhD Thesis, 2004)

Barringer, H., Fellows, D., Gough, G., Jinks, P. and Williams, A. Multi-View
Design of Asynchronous Micorpipeline Systems using Rainbow. In VLSI
’97 (1997)

Bierman, G. M. and Sewell, P. Iota: A concurrent, XML scripting language
with applications to Home-Area Networks. Technical Report 557 (ISSN
1476-2986) (University of Cambridge, 2003)

Birrel, A. D. and Nelson, B. J. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1) (1984), 39–59

Blackwell, A. Cognitive Dimensions of Tangible Programming Languages. In
First Joint Conference of EASE and PPIG (2003), 391–405

Blackwell, A. F. First Steps in Programming: A Rationale for Attention In-
vestment Models. In IEE Symposium on Human-Centric Computing Lan-
guages and Environments (2002), 2–10

Blackwell, A. F. Metacognitive Theories of Visual Programming: What do we
think we are doing? In Proceedings IEEE Symposium on Visual Languages
(1996), 240–246

Blackwell, A. F. Using physical blocks to define interactions between electronic
devices in a network. (UK Patent GB2358726, 2000)

Blackwell, A. F. and Green, T. R. G. Does Metaphor Increase Visual Language
Usability? In Proceedings IEEE Symposium on Visual Languages (1999),
246–253

Blackwell, A. F. and Hague, R. AutoHAN: An Architecture for Programming the
Home. In the IEEE Symposia on Human-Centric Computing Languages
and Environments (2001), 150–157

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.
and Orchard, D. (Eds). Web Services Architecture. (World Wide Web
Consortium (W3C), 2004) Available at http://www.w3.org/TR/ws-arch/

Boudol, G. Asynchrony and the π-calculus. (INRIA Sophia-Antipolis , 1992)

Bray, T., Hollander, D. and Layman, A. (Eds). Namespaces in XML. (World
Wide Web Consortium (W3C), 1999) Available at http://www.w3.org/
TR/1999/REC-xml-names-19990114

117

118 Bibliography

Bray, T., Paoli, J., Sperberg-McQueen, C. M. and Maler, E. (Eds). Extensible
Markup Language (XML) 1.0 (Second Edition). (World Wide Web Consor-
tium (W3C), 2000) Available at http://www.w3.org/TR/2000/REC-xml-
20001006

Brooks, F. P., Jr. The Mythical Man-Month: Essays on Software Engineering.
(Anniversary edition, Addison-Wesley, 1995)

Burnett, M. Scaling Up Visual Programming Languages. IEEE Computer, 28(3)
(1995), 45–54

Card, S. K., Morgan, T. P. and Newell, A. The keystroke-level model for user
performance time with interactive systems. Communications of the ACM,
23(7) (1980), 396–410

Carlisle, D., Ion, P., Miner, R. and Poppelier, N. (Eds). Mathematical Markup
Language (MathML) Version 2.0 (Second Edition). (World Wide Web
Consortium (W3C), 2003) Available at http://www.w3.org/TR/2003/
REC-MathML2-20031021/

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. Web Services
Description Language (WSDL) 1.1. (World Wide Web Consortium (W3C),
2001) Available at http://www.w3.org/TR/2001/NOTE-wsdl-20010315

Clark, J. (Ed). XSL Transformations (XSLT) Version 1.0. (World Wide Web
Consortium (W3C), 1999) Available at http://www.w3.org/TR/1999/
REC-xslt-19991116

Clark, J. (Ed). RELAX NG Specification. (The Organization for the Advance-
ment of Structured Information Standards [OASIS] , 2001) Available at
http://www.relaxng.org/spec-20011203.html

Clark, J. and DeRose, S. (Eds). XML Path Language (XPath) Version 1.0.
(World Wide Web Consortium (W3C), 1999) Available at http://www.
w3.org/TR/1999/REC-xpath-19991116

Cohen, J., Aggarwal, S. and Goland, Y. Y. General Event Notification Architec-
ture Base: Client to Arbiter. (Internet draft, 2000) Available at http://
www.upnp.org/download/draft-cohen-gena-client-01.txt

Cox, R. Analytical Reasoning with multiple external representations . (PhD The-
sis, University of Edinburgh, 1996)

Cypher, A. (Ed). Watch What I Do: Programming By Demonstration. (MIT
Press, 1993)

Day, R. S. Alternative representations. The Psychology of Learning and Motiva-
tion, 22 (Academic Press, 1988), 261–305

DiBona, C., Ockman, S. and Stone, M. (Eds). Open Sources: Voices of the Open
Source Revolution. (O’Reilly and Associates, 1999)

Droms, R. Dynamic Host Configuration Protocol (DHCP). (Request For Com-
ments (RFC) 1531, 1993)

Dubuisson, O. ASN.1 - Communication between heterogeneous systems. (Morgan
Kaufmann, 2000)

Elrod, S., Pier, K., Tang, J., Welch, B., Bruce, R., Gold, R., Goldberg, D., Ha-
lasz, F., Janssen, W., Lee, D., McCall, K. and Pedersen, E. Liveboard: a
large interactive display supporting group meetings, presentations, and re-
mote collaboration. In SIGCHI conference on Human factors in computing
systems (1992), 599 – 607

Bibliography 119

Ene, C. and Muntean, T. A Broadcast-based Calculus for Communicating Sys-
tems. In 6th International Workshop on Formal Methods for Parallel
Programming: Theory and Applications (2001)

Fallside, D. C. (Ed). XML Schema Part 0: Primer. (World Wide Web Consor-
tium (W3C), 2001) Available at http://www.w3.org/TR/xmlschema-0/

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and
Berners-Lee, T. Hypertext Transfer Protocol - HTTP/1.1. (Request For
Comments (RFC) 2616, 1999)

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements
of Reusable Software Design. (Addison-Wesley, 1994)

Gentner, D. and Nielsen, J. The Anti-Mac interface. Communications of the
ACM, 39(8) (1996), 70–82

Golland, Y., Whitehead, E. J., Jr, Faizi, A., Carter, S. and Jensen, D. HTTP
Extensions for distributed authoring. (Request For Comments (RFC) 2518,
1999)

Graham, P. Hackers and Painters. (O’Reilly and Associates, 2004)

Grant, C. A. M. Software visualization in Prolog. Technical Report 511 (ISSN
1476-2986) (PhD Thesis, University of Cambridge, 1999)

Green, T. R. G. and Petre, M. When Visual Programs are Harder to Read
than Textual Programs. In Human-Computer Interaction: Tasks and Or-
ganisation, Proceedings ECCE-6 (6th European Conference Cognitive Er-
gonomics) (1992)

Green, T. R. G. Cognitive Dimensions Of Notation. In People and Computers V,
Sutcliffe, A. and Macaulay, L. (Eds). (Cambridge University Press, 1989),
443–460

Green, T. R. G. and Blackwell, A. F. Design for usability using Cognitive Dimen-
sions. (Tutorial at BCS conference on Human Computer Interaction, 1998)
Available at http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/
CDtutorial.pdf

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J. and Nielsen, H. F. (Eds).
SOAP Version 1.2 Part 1: Messaging Framework. (World Wide Web
Consortium (W3C), 2003) Available at http://www.w3.org/TR/soap12-
part1/

Hightower, J. and Borriello, G. Location Systems for Ubiquitous Computing.
IEEE Computer, 34(8) (2001), 57–66

Horstmann, M. and Kirtland, M. DCOM Architecture. (1997) Available at
http://msdn.microsoft.com/library/en-us/dndcom/html/
msdn_dcomarch.asp

Ishii, H. and Ullmer, B. Tangible Bits: Towards Seamless Interfaces between
People, Bits and Atoms. In CHI ’97 (ACM, 1997)

Kahn, K. ToonTalk - An Animated Programming Environment G for Children.
Journal of Visual Languages and Computing, (1996)

Kelsey, R., Clinger, W. and Rees, J. (Eds). Abelson, H., Adams, N. I., IV,
Bartley, D. H., Brooks, G., Dybvig, R. K., Friedman, D. P., Halstead,
R., Hanson, C., Haynes, C. T., Kohlbecker, E., Oxley, D., Pitman, K.
M., Rozas, G. J., Steele, G. L., Jr, Sussman, G. J. and Ward, M. The
Revised5 Report on The Algorithmic Language Scheme. (1998) Available
at http://www.schemers.org/Documents/Standards/R5RS/

120 Bibliography

Kernighan, B. W. and Ritchie, D. M. The C Programming Language. (Second
Edition, Prentice-Hall, 1988)

Klemmer, S. R., Li, J., Lin, J. and Landay, J. A. Papier-Mâché: Toolkit Sup-
port for Tangible Input. In CHI 2004: Conference on Human Factors in
Computer Systems (ACM Press, 2004)

Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., Champion, M. and
Byme, S. (Eds). Document Object Model (DOM) Level 2 Core Specifica-
tion. (World Wide Web Consortium (W3C), 2003) Available at http://
www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/

Lee, P. M. Bayesian Statistics: An Introduction. (Second Edition, Oxford Uni-
versity Press, 1997)

Lesk, M. E. Lex - A Lexical Analyzer Generator. (Comp. Sci. Tech Rep. No 39,
Bell Laboratories, 1975)

Lutz, M. Programming Python. (Second Edition, O’Reilly and Associates, 2001)

Lyons, J. Language and Linguistics: An Introduction. (Cambridge University
Press, 1981)

Mackay, W. E. and Pagani, D. S. Video Mosaic: Laying out time in a physical
space. In ACM Multimedia ’94 (ACM Press, 1994)

Marriot, K., Meyer, B. and Wittenburg, K. B. A Survey of Visual Language
Specification and Recognition. Visual Language Theory, (Springer-Verlag
New York Inc., 1998), 5–85

McGuinness, C. Problem representation: The effects of spatial arrays. Memory
and Cognition, 13(3) (1986), 270–280

Meyers, S. D. Representing Software Systems in Multiple-View Development
Environments. Technical Report (ISSN CS-93-18) (PhD Thesis, Brown
University, 1993)

Milner, R. Communicating and Mobile Systems: the π-Calculus. (Cambridge
University Press, 1999)

Murray-Rust, P., Rzepa, H. S., Wright, M. and Zara, S. A Universal approach to
Web-based Chemistry using XML and CML. Chemical Communications,
(16) (2000), 1471–1472

Nardi, B. A. A Small Matter of Programming. (MIT Press, 1993)

Negroponte, N. Being Digital. (Hodder and Stoughton, 1995)

Rees, G. (Ed). Nelson, G. The Inform Designer’s Manual. (4th Edition, Inter-
active Fiction Library, 2001)

Newman, W. M., Eldridge, M. A. and Lamming, M. G. PEPYS: Generating
Autobiographies by Automatic Tracking. In ECSCW ’91 (1991), 175–188

Norman, D. The Invisible Computer. (MIT Press, 1999)

Oberlander, J. Grice for graphics: pragmatic implicature in network diagrams..
Information Design Journal, 8 (1996), 163–179

Ostrovský, K., Prasad, K. V. S. and Taha, W. Towards a Primitive Higher Order
Calculus of Broadcasting Systems. In PPDP ’02 (2002)

Ousterhout, J. K. Scripting: Higher-Level Programming for the 21st Century.
IEEE Computer, 31(3) (1998), 23–30

Petre, M. Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Communications of the ACM, 38(6) (1995), 70–82

Bibliography 121

Peyton-Jones, S. (Ed). Haskell 98 Language and Libraries: The Revised Report.
(A special issue of the Journal of Functional Programming, Cambridge
University Press, 2003)

Prasad, K. V. S. A Calculus of Broadcasting Systems. Science of Computer
Programming, (25) (1995)

Raggett, D., Le Hors, A. and Jacobs, I. (Eds). HTML 4.01 Specification. (World
Wide Web Consortium (W3C), 1999) Available at http://www.w3.org/
TR/html401/

Raskin, J. The Humane Interface. (Addison-Wesley, 2000)

Reiss, S. P. PECAN: program development systems that support multiple views.
IEEE Transactions on Software Engineering, 11(3) (IEEE Press, 1985),
276–285

Rieman, J., Franzke, M. and Redmiles, D. Usability evaluation with the cognitive
walkthrough. In Conference on Human Factors in Computing Systems
(1995), 387–388

Roast, C. R., Khazaei, B. and Siddiqi, J. I. Formal Comparisons of Program Mod-
ification. In IEEE International Symposium on Visual Languages (VL’00)
(2000), 165–171

Rodden, T., Crabtree, A., Hemmings, T. and Benford, S. Finding a place for
UbiComp in the home. In The Fifth International Conference Ubiquitous
Computing (2003)

Rodden, T., Crabtree, A., Hemmings, T., Koleva, B., Humble, J., Åkesson, K.
and Hansson, P. Between the dazzle of a new building and its eventual
corpse: assembling the ubiquitous home. In Proceedings of the 2004 con-
ference on Designing interactive systems: processes, practices, methods,
and techniques (ACM Press, 2004), 71–80

Rode, J. A., Toye, E. F. and Blackwell, A. F. The Fuzzy Felt Ethnography -
understanding the programming patterns of domestic appliances. In 2nd
International Conference on Appliance Design (2004), 1–22

Rothermel, G., Li, L., DuPuis, C. and Burnett, M. What You See Is What You
Test: A Methodology for Testing Form-Based Visual Programs. In 1988
International Conference on Software Engineering (1998), 198–207

Rumbaugh, J., Jacobson, I. and Bouch, G. The Unified Modelling Language
Reference Manual. (Addison-Wesley, 1999)

Saif, U., Gordon, D. and Greaves, D. Internet Access to A Home Area Network.
IEEE Internet Computing, 5(1) (2001), 54–63

Saif, U. and Greaves, D. Communication Primitives for Ubiquitous Systems or
RPC Considered Harmful. In ICDCS International Workshop on Smart
Appliances and Wearable Computing (2001)

Salber, D., Dey, A. K. and Abowd, G. D. The Context Toolkit: Aiding the
Development of Context-Enabled Applications. In CHI ’99 (ACM Press,
1999)

Schneiderman, B. Direct Manipulation: A step beyond programming languages.
IEEE Computer, 16(8) (1983), 57–69

Shalit, A. The Dylan Reference Manual. (Addison-Wesley Developers Press,
1996)

Steele, G. Common LISP: The Language. (2nd, Digital Press, 1984)

Sterling, L. and Shapiro, E. The Art Of Prolog. (Second Edition, MIT Press,
1994)

122 Bibliography

Sutherland, I. SketchPad: A Man-Machine Graphical Communication System.
(PhD Thesis, Massachusetts Institute of Technology , 1963)

Suzuki, H. and Kato, H. Interaction-Level Support for Collaborative Learning:
AlgoBlock - An Open Programming Language. In Computer Support for
Collaborative Learning ’95 (1995)

Truong, K. N., Huang, E. M. and Abowd, G. D. CAMP: A Magnetic Poetry
Interface for End-User Programming of Capture Applications for the Home.
In Proceedings of UbiComp 2004, the Sixth International Conference on
Ubiquitous Computing (2004)

Turner, D. N. The Polymorphic π-calculus: Theory and Implementation . (Uni-
versity of Edinburgh, 1995)

Ullmer, B., Ishii, H. and Glas, D. mediaBlocks: Physical Containers, Transports,
and Controls for Online Media. In SIGGRAPH’98 (1998), 379–386

Walsh, N. and Muellner, L. DocBook: The Definitive Guide. (O’Reilly and As-
sociates, 1999)

Weiser, M. The Computer for the 21st Century. Scientific American, (1991),
94–110

Whitley, K. N. Visual Programming Languages and the Empirical Evidence For
and Against . Journal of Visual Languages and Computing, 8(1) (1997),
109–142

Williams, A. Requirements for Automatic Configuration of IP Hosts. (Internet
Draft, 2002)

Williams, S. and Kindel, C. The Component Object Model: A Technical
Overview. (1994) Available at http://msdn.microsoft.com/library/
en-us/dncomg/html/msdn_comppr.asp

Woo, M., Neider, J., Davis, T. and Shreiner, D. OpenGL programming guide:
the official guide to learning OpenGL. (Addison Wesley, 1999)

Yang, Z. and Duddy, K. CORBA: A Platform for Distributed Object Computing.
Operating Systems Review, 30(2) (1996), 4–31

	651.pdf
	Abstract
	Table of Contents
	1 : Introduction
	1.1 : From Programmer to User
	1.2 : From User to Programmer
	1.3 : Why Ubiquitous Computing?
	1.4 : Why Multiple Representations?
	1.5 : End-User Programming for Ubiquitous Computing
	1.6 : Aims
	1.7 : Dissertation Overview

	2 : Related Work
	2.1 : Ubiquitous Computing
	2.2 : Internet Technologies
	2.3 : Home Area Networks
	2.4 : Approaches to End-User Programming
	2.4.1 : End-User Programming in Traditional Environments
	2.4.2 : Programming by Example
	2.4.3 : Visual Programming

	2.5 : Programming in the Home
	2.6 : Using Multiple Representations
	2.7 : Conventional Systems for Integrating Multiple Languages
	2.8 : Generation of Multiple Representations from a Single Source
	2.8.1 : Multiple Representation in Software Visualisation
	2.8.2 : Multi-View Development Environments

	3 : The Media Cubes
	3.1 : Introduction
	3.2 : Tangible User Interfaces
	3.3 : The Media Cube Device
	3.4 : The Media Cubes Language
	3.5 : An Example Media Cubes Program
	3.6 : The Nature of Events
	3.7 : Implementation
	3.8 : Evaluation

	4 : Translation based on common intermediate form
	4.1 : Language Integration via a Shared Intermediate Form
	4.2 : Requirements of Mappings
	4.3 : Execution as Mapping
	4.4 : Secondary Notation in Multiple Languages
	4.5 : Structure as Secondary Notation
	4.6 : An Environment for Multi-Language Programming

	5 : The Lingua Franca Architecture
	5.1 : An Overview of the Lingua Franca Architecture
	5.2 : The Lingua Franca Execution Model
	5.3 : Examples of Lingua Franca execution
	5.4 : The external representation of Lingua Franca
	5.5 : Operations on the Lingua Franca Corpus

	6 : The Implementation Of Lingua Franca
	6.1 : The Prototype Execution Engine
	6.2 : The LFCore Toolkit
	6.3 : Prototype Language Environments
	6.3.1 : The Media Cubes Language in Lingua Franca
	6.3.2 : VSeq - Visual Sequences
	6.3.3 : LFScript - A Textual Language

	7 : Evaluation
	7.1 : Implementation of Reversible Translation
	7.2 : Usability Evaluation
	7.3 : Cognitive Dimensions Analysis
	7.3.1 : Notation, Medium and Environment
	7.3.2 : Visibility and Juxtaposability
	7.3.3 : Diffuseness
	7.3.4 : Viscosity
	7.3.5 : Secondary Notation and Provisionality
	7.3.6 : Hidden Dependencies
	7.3.7 : Closeness of Mapping, Consistency and Role Expressiveness
	7.3.8 : Premature Commitment
	7.3.9 : Progressive Evaluation
	7.3.10 : Implications

	8 : Conclusions & Future Work
	8.1 : Summary
	8.2 : Contribution
	8.3 : Future Work
	8.3.1 : Testing
	8.3.2 : Additional Language Environments
	8.3.3 : Improvements to Lingua Franca
	8.3.4 : Further Developments of Existing Language Environments

	8.4 : Ubiquitous End-User Programming

	Appendix A: Schema for XML Lingua Franca
	Appendix B: User Questionnaire
	Bibliography

