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Abstract

Global Computing is a vision of a massively networked infrastructure support-
ing a large population of diverse but cooperating entities. Similar to ubiquitous
computing, entities of global computing will operate in environments that are
dynamic and unpredictable, requiring them to be capable of dealing with un-
expected interactions and previously unknown principals using an unreliable
infrastructure.

These properties will pose new security challenges that are not adequately
addressed by existing security models and mechanisms. Traditionally privileges
are statically encoded as security policy, and while rôle-based access control
introduces a layer of abstraction between privilege and identity, rôles, privileges
and context must still be known in advance of any interaction taking place.

Human society has developed the mechanism of trust to overcome initial
suspicion and gradually evolve privileges. Trust successfully enables collabora-
tion amongst human agents — a computational model of trust ought to be able
to enable the same in computational agents. Existing research in this area has
concentrated on developing trust management systems that permit the encod-
ing of, and reasoning about, trust beliefs, but the relationship between these
and privilege is still hard coded. These systems also omit any explicit reasoning
about risk, and its relationship to privilege, nor do they permit the automated
evolution of trust over time.

This thesis examines the relationship between trust, risk and privilege in an
access control system. An outcome-based approach is taken to risk modelling,
using explicit costs and benefits to model the relationship between risk and
privilege. This is used to develop a novel model of access control — trust-
based access control (TBAC) — firstly for the limited domain of collaboration
between Personal Digital Assistants (PDAs), and later for more general global
computing applications using the SECURE computational trust framework.

This general access control model is also used to extend an existing rôle-
based access control system to explicitly reason about trust and risk. A further
refinement is the incorporation of the economic theory of decision-making under
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uncertainty by expressing costs and benefits as utility, or preference-scaling,
functions. It is then shown how Bayesian trust models can be used in the
SECURE framework, and how these models enable a better abstraction to be
obtained in the access control policy. It is also shown how the access control
model can be used to take such decisions as whether the cost of seeking more
information about a principal is justified by the risk associated with granting
the privilege, and to determine whether a principal should respond to such
requests upon receipt. The use of game theory to help in the construction of
policies is also briefly considered.

Global computing has many applications, all of which require access control
to prevent abuse by malicious principals. This thesis develops three in detail:
an information sharing service for PDAs, an identity-based spam detector and a
peer-to-peer collaborative spam detection network. Given the emerging nature
of computational trust systems, in order to evaluate the effectiveness of the
TBAC model, it was first necessary to develop an evaluation methodology.
This takes the approach of a threat-based analysis, considering possible attacks
at the component and system level, to ensure that components are correctly
integrated, and system-level assumptions made by individual components are
valid. Applying the methodology to the implementation of the TBAC model
demonstrates its effectiveness in the scenarios chosen, with good promise for
further, untested, scenarios.
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CHAPTER 1

Introduction

As the mobility and communication properties of computing devices increase,
users will expect these devices to be able to securely obtain services and share
information in a variety of environments. This dissertation shows how such
secure collaboration can be enabled and facilitated by using risk to mediate the
relationship between trust beliefs and privilege.

The European Union Information Society Technologies Programme (EU-
IST) Global Computing Initiative foresees a massively networked infrastructure
supporting a large population of diverse but cooperating entities. The composi-
tion and characteristics of this infrastructure will be dynamic and unpredictable:
entities will be both autonomous and mobile, and will have to be capable of
dealing with unforeseen circumstances ranging from unexpected interactions
with other entities to disconnected operation.

This vision of a massive population of cooperating networked entities is very
similar to Mark Weiser’s vision of ubiquitous computing (ubicomp) [Wei91]. The
central idea of ubicomp is that computing technology is so completely integrated
into everyday lives that no one even notices its presence. One pre-requisite for
this is the ability for entities to continue to operate when encountering new
circumstances since failure would remind the human of the computer’s presence.

There are also similarities to the concept of Grid Computing [App02]. Since
Grid computing began as a middleware for sharing resources between well con-
nected computers, initially a lack of mobility distinguished it from ubiquitous
computing. However, as Grid computing has evolved, researchers have begun
to find synergy with the ubicomp vision and research is now being undertaken
into ubiquitous Grid computing [SBD+03]. This new vision of leveraging Grid
technology to deliver the ubicomp vision has much in common with global com-
puting.

The properties of global computing present new security challenges that are
not adequately addressed by existing security models and mechanisms. The
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14 Chapter 1: Introduction

size of the global computing infrastructure means that security policy must
encompass billions of potential collaborators and attackers. Mobility and the
potential for disconnection from one’s home network requires the ability to make
security decisions autonomously in an environment where identity conveys no
a priori information about the likely behaviour of the principal, precluding the
use of many existing access control systems.

These challenges are not unlike those faced by humans when confronted
with unexpected interactions, or interactions with unknown persons in foreign
or unfamiliar territory. Human society has developed the mechanism of trust
to overcome initial suspicion and gradually evolve privileges. Trust successfully
enables collaboration among human agents, a computational model of trust
ought to be able to enable the same in computational agents.

For example, a mobile entity in an unfamiliar and potentially hostile en-
vironment will need to obtain services such as network connectivity, printing,
use of external displays, and additional computational resources. Alternatively,
perhaps after striking up a conversation with fellow commuter Bob, Alice may
wish to swap mobile phone ring tones, with him without giving access to her
address book. Another scenario might be that having arrived in a new town,
Alice wishes to broadcast a request for restaurant recommendations to her fel-
low train travellers. The responses she receives will undoubtedly be conflicting,
but she may find one or two from people she is indirectly acquainted with, or
has had dealings with before that would allow her to make a more informed
decision.

Such cooperation requires trust between participants. Traditionally trust
may be obtained by deferring the security decision to a mutually trusted third-
party. Recently, decentralised trust management systems have permitted en-
tities to use tokens called certificates to assert their trustworthiness or autho-
risation credentials even when disconnected, but these still require an existing
per-context trust infrastructure that is not guaranteed to exist in global com-
puting.

1.1 The SECURE Project

The EU-IST funded SECURE (Secure Environments for Collaboration among
Ubiquitous Roaming Entities) project, was a three year research project (Jan-
uary 2002 – December 2004) that aimed to produce a novel approach to security
to meet the challenges outlined above. Five institutions were involved in SE-
CURE: the University of Cambridge, Trinity College Dublin, Basic Research
in Computer Science (BRICS) at the University of Aarhus, the University of
Geneva, and the University of Strathclyde. The University of Cambridge led
the work on Security Policy, including the risk and access control aspects of the
project, and it is in this area that this thesis makes its contribution.

SECURE Applications

Since SECURE aims to be a general security model for the global computing
infrastructure, initial work consisted of analysing a number of possible appli-
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cations that the GC infrastructure would enable and capturing their security
requirements.

Dynamic Source Routing (DSR) Source routing in mobile ad hoc net-
works was first described in [JM96]. A node wishes to find other nodes in
the network it can trust to correctly route its packets. Since forwarding a
packet consumes resources, when accepting a packet to forward on some-
one else’s behalf, it must also trust that the node for which it is routing
will reciprocate.

Distributed Gaming [GOJ+02] describes a blackjack gaming system for in-
teracting Personal Digital Assistants (PDAs). Trust can be used to deter-
mine whether a player should be permitted to join a game: players who
earn a reputation for cheating, not paying when they lose, or perhaps just
being too good, would not be permitted to join. If the game protocol
allows the dealer additional opportunities for cheating then a distributed
trust computation could also be used to determine which player is to be
appointed the dealer.

e-purse The e-purse scenario was suggested by Ciarán Bryce of the Univer-
sity of Geneva. It aims to solve the problem of automating small value
payment transactions such as paying for newspapers and bus tickets. The
e-purse owner must trust that the vendor will charge the correct amount,
whilst the vendor must trust that the e-purse user is using bona fide e-cash
in their e-purse so they will actually receive their payment.

Academic Visitors When a colleague from another SECURE partner insti-
tution visits the Cambridge Computer Laboratory giving them access to
computing resources such as printing or the Internet is a laborious pro-
cess. Clearly there is scope for abuse if authorisation is given too easily,
but if it were possible to monitor usage and revoke access if there was
an indication that they were not trustworthy then the process could be
streamlined. Stored experiences could be used to facilitate the enabling
of access (or increase restrictions if the visitor proved untrustworthy!) on
subsequent visits. Further, trust information could be shared between re-
source managers to facilitate access to (or prevent abuse of) resources in
other Departments or Colleges that the visitor might have cause to visit.

PDA Collaboration The increasing communication capabilities of mobile de-
vices, including PDAs, means there is a desire to facilitate a free flow of
information, such as new telephone numbers, photographs, ring tones and
games, whilst securing these devices from the viruses and other security
problems that plague the average personal computer. Users do not want
to be mindful of security, but rather they want it to “just work” when they
wish to exchange contact details with everyone in the room, or collabo-
ratively schedule an appointment without revealing the details of their
diary.
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Distributed Backups/Grid As the world moves into a digital age, storage,
and particularly redundant storage, is of increasing importance. Dis-
tributed storage systems can also be used for publication, for instance to
take advantage of alternative legal jurisdictions, or even just to cache files
nearer to the consumers. However, as the saying goes: “On the Inter-
net, nobody knows you’re a dog.” so users must trust the integrity and
reliability of the providers they choose. Similarly, providers must trust
that users will honour the terms of the contract, not consume excessive
resources, nor do anything illegal.

Collaborative Authorship (Wikis) Slashdot.org has for a long time had a
system that allows registered users to rate submissions from other users.
Wikipedia.org, a free online encyclopedia, goes further and allows users
to edit existing articles as well as add new ones. Readers must trust
that contributors are providing accurate information. Similarly to the
Academic Visitors scenario, trust-based assessment could also be used to
streamline the quality assurance process for contributors with established
track records, or verified expertise in the relevant area, whilst increasing
the level of verification required for less trustworthy or unknown contrib-
utors.

Traffic Congestion Reports This application scenario was discussed at the
SECURE kick-off meeting and inspired by Trinity College, Dublin’s work
on traffic monitoring in Dublin. Vehicles would publish information on
the congestion status of their current position that other near-by vehicles
could then use to optimise their route and avoid congestion. Users must
trust that the information supplied is accurate as malicious users might
propagate false information in an attempt to divert traffic away from
routes they wish to use by indicating that they are heavily congested.

Spam Filtering Email is a good example an application of where the free
flow of information is very useful and enables collaborations that were
not previously possible. Spam is a good example of what happens when
the mechanisms are designed using the assumptions that other principals
are, for the most part, trustworthy. Users of email systems must trust
that the email they receive is useful, interesting, and relevant to them,
and is not unsolicited commercial material or viruses.

Recommendation Systems/Distributed “Sticky” Notes Similar to the
Collaborative Authorship systems, there exist a number of websites, such
as Amazon.com, that will make recommendations about books, music,
and films based on previous purchases or listening habits. Another possi-
bility might be the posting of “virtual sticky notes” in an Active City, for
instance recommending restaurants or providing information to tourists
about sites of interest. With no restrictions on who can post a note, in-
formation overload and clutter will require strict filtering of notes, based
on recommendations from other inhabitants of the city.
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1.2 Research Issues

In summary, the aim of the SECURE project is a general security model for the
global computing infrastructure, in which computational entities interact on a
basis of mutual trust. This aim shall now be refined and the elements relevant
to this thesis highlighted.

Trust is an elusive concept with many competing definitions found in the
literature (see chapter 2). While the development of a formal computational
model of trust is the domain of other members of the SECURE consortium, a
trust-based access control mechanism and security policy must integrate tightly
with the trust model in order to be effective.

Intuitively, there is no reason to require trust unless there is something
at risk. It has long been recognised that the concepts of trust and risk are
closely related, and the nature of this relationship will need to be examined.
Accordingly, if trust is to become the basis for access control decisions then
trust, risk, and privilege must be associated within any computational model.

Once a principal has established trust and risk parameters for their situa-
tion, security policy will determine how they proceed with any interaction.
Whilst the goal of access control is to restrict access to resources and pro-
tect their integrity, global computing will only succeed if new relationships can
be established and collaborations take place in environments where a principal
was previously unknown. The specification and enforcement of security poli-
cies based on trust, risk, and privilege — Trust-Based Access Control (TBAC)
— will therefore form another major component of this thesis. An important
element of this component will be the consideration of previously unknown
principals.

User privacy is also an issue for trust-based systems. The effect of shar-
ing trust information too publicly must be considered from the point of view
of users’ privacy, as well as how that might impact on the effectiveness of the
security policy. Requesting or publishing trust information too publicly could
allow attackers to infer information about security policy, or the identities of a
principal’s trusted peers that could perhaps be used to aid their attack. More-
over, security is a trade-off : in ubicomp environments resources such as energy
for communication and processing are scarce; in any environment there may ex-
ist reputation brokers that charge a small fee for their services. It is therefore
important for the access control manager to be able to consider the potential
cost of the trust calculation when determining access rights — for low value re-
sources the cost of the trust computation could exceed the value of the resource
being protected.

1.3 Thesis Contribution

The primary contribution of this thesis is in the specification and prototype
implementation of a trust- and risk-based access control system within the SE-
CURE framework. This is realised through a number of research contributions:

• The development of a novel access control model for information sharing
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between personal digital assistants using trust and risk.

• The analysis of risk and the development of a formal model of risk for
global computing.

• The extension of traditional rôle-based access control models to include
reasoning about trust and risk.

• A generalised model of trust- (and risk-) based access control (TBAC) for
global computing, that can be used in conjunction with a number of trust
models, not just SECURE.

• An architecture for trust- and risk-based decision-making based on the
SECURE framework including the risk of seeking recommendations, ac-
cess control to the evidence store, and the interaction between trust and
risk.

• An evaluation methodology for computational trust systems, such as SE-
CURE.

• The implementation of the trust, risk and access control components of
the SECURE architecture and an anti-spam application in which TBAC,
risk and other aspects of SECURE architecture are validated.

1.4 Thesis Overview

The following chapter reviews the relevant literature on trust management,
security policy and access control and self-organising distributed systems, such
as those likely to be found in global computing. The aspects of the SECURE
framework produced by people other than the author are also detailed here.

Chapter 3 develops a novel access control model for information sharing
between PDAs using trust and risk. This work serves as a more detailed analysis
of the security requirements of one of the possible application scenarios outlined
above.

The subsequent chapter analyses the concept of risk, the relationship be-
tween trust, risk and privilege and develops a model of risk for securing the
global computing infrastructure. Chapter 5 examines the specification and en-
forcement of trust- and risk-based security policies. This is done by extending
an existing rôle-based access control model and subsequently generalising it.

In light of the experiences of using and evaluating the models described in
chapters 4 and 5, and in response to revisions to other parts of the SECURE
framework, it was felt necessary to revise the initial model. This new model is
presented in chapter 6. Chapter 6 also demonstrates how the new model can in-
tegrate with trust models other than the SECURE one, and makes contributions
in the areas of the risk of requesting trust information from other principals and
controlling access to a principal’s evidence/trust information store.

Chapter 7 describes an implementation and validation of the second gener-
ation SECURE software architecture. As an emerging field, there was not yet
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any standard evaluation methodology that could be used to validate the frame-
work, and therefore it was also necessary to develop one. The methodology
developed is described in this chapter, along with two different spam detection
applications that were used to validate the aspects of the SECURE framework
covered in this thesis.

The final chapter summarises the key results and conclusions of this thesis
and outlines potential future work.
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CHAPTER 2

Background

This chapter describes the research on which this thesis depends. It begins
by surveying access control models for distributed systems, and the develop-
ment of trust management systems. Next, techniques for managing identity
in distributed systems are reviewed, followed by a survey of computational,
evidence-based trust systems that extend trust management systems to for-
mally model trust and permit trust assessment to evolve over time. Finally, the
SECURE framework is described.

2.1 Access Control in Distributed Systems

[Eye04] defines the term Access Control as:

Access Control involves preventing unauthorised users from inter-
acting with particular resources in certain ways, whilst guaranteeing
that authorised users will not be denied their access rights.

Access control models are generally divided into Mandatory (MAC) and Dis-
cretionary (DAC). Models of the former type control access to resources via
system-wide policy. They tend to be very inflexible, and enforcing system-wide
policy is difficult in a widely-distributed system, if such a concept is even mean-
ingful. DAC is more flexible: users may determine the policy used to control
access to their own objects or resources.

Early DAC models, such as Access Control Lists (ACLs) and Capabilities,
defined policy as mappings from principal identities to privileges. However,
these do not scale to the large numbers of principals or resources found in a dis-
tributed system as ACLs become inefficiently long with a large number of prin-
cipals, and capabilities become difficult to manage and administer. Rôle-Based
Access Control (RBAC) is a form of DAC that introduces a level of indirection:
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principals are assigned to rôles, and rôles are assigned privileges [FSG+01], thus
allowing greater scalability.

2.1.1 The Open Architecture for Secure Interworking Services

The Open Architecture for Secure Interworking Services (OASIS)1 [BMY01,
BMY02] is a rôle-based access control implementation with a formal, logic-
based model and a Horn-clause style policy language.

OASIS has a number of novel features that set it apart from other RBAC
systems:

Dynamic Rôle Activation: Rôle certificates are short-lived; that is, they
must be activated within the context of a session, and are revoked when
the session concludes. Since a principal need only activate the rôle(s)
they need to complete the goal of the current session, the principle of
least privilege [SS75] is maintained.

Appointments: Persistent credentials, such as professional qualifications and
group membership, are supported through the use of appointment cer-
tificates. Appointments also permit the delegation of privilege — the
delegator may issue an appointment certificate to the delegatee which
can be used in the appropriate rôle activation.

Parameterisation: All elements of the OASIS policy language can be param-
eterised, thus allowing request-dependent information to be included in
the access control decisions. These parameters are strongly typed.

Context Dependent Evaluation: Information about the current environ-
ment, or context, may be assigned to rôle and privilege parameters. OA-
SIS allows environmental conditions to be evaluated through environmen-
tal predicates. These predicates may provide two-way communication to
components outside the policy-enforcing environment.

Fast Revocation: OASIS is built upon an event architecture that allows rôle
assignments to be rapidly and automatically revoked if a precondition
ceases to be true.

As noted above, the OASIS policy language uses a Horn-clause form, and
there are two forms of rule [BMY02]:

Authorisation rules map rôles to privileges, and follow the structure:

r, e1, ..., ene ⊢ p

According to such rules, the r rôle is assigned the p privilege if all of the
ne number of ek environmental predicates are satisfied.

1The namespace collision with the “OASIS Open” consortium (Organization for the Ad-
vancement of Structured Information Standards) is unfortunate. In this thesis, OASIS shall
refer to the RBAC system, except where explicitly stated otherwise.
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Activation rules have the form:

r1, r2, ..., rnr , ac1, ..., acnac , e1, ..., ene ⊢ r

They may contain any number of prerequisite rôles ri, appointment cer-
tificates acj , and environmental predicates ek. If a principal holds all the
prerequisite rôles and appointment certificates prescribed in such an ac-
tivation rule, and all of the environmental predicates are satisfied, they
may enter the target rôle r.

In activation rules certain prerequisites can be marked as membership
conditions. Such prerequisites must remain true for the principal to re-
main active in the rôle, as opposed to only needing to be true at rôle
activation time. If the membership condition becomes false (the principal
is no longer active in the marked prerequisite rôles, does not hold the
marked appointment certificates, or the environmental predicates become
false) the target rôle is automatically revoked from the principal.

2.1.2 Access Control Policy

Policy is an amorphous term. [DDLS01] defines a policy as “a rule that de-
fines a choice in the behaviour of a system.” In general it is used to refer to
behavioural configuration that is independent of the system’s implementation,
thus allowing the behaviour of the system to be modified without changing the
implementation. In this thesis policy is used to refer specifically to components
of a general framework that determine the behaviour of a particular user or
node. This is distinct from behaviour programmed into an application-specific
instantiation of the framework. Thus, access control policy is the tool by which
a resource manager determines which principals should have access to what
resources under his or her control.

Policy as a mechanism for dynamically controlling the behaviour of a system
is becoming increasingly popular, and there is therefore a plethora of domain-
specific languages for specifying policy. Recent research has focused on two
areas:

• the development of “general” policy languages that are applicable in mul-
tiple domains, thereby allowing re-use of existing tools and knowledge.
For example, [BS04a, DDLS01].

• the development of XML-based standardised domain-specific languages,
such as [OAS03, Mos04].

Access Control “Aware” Policy Languages

OASIS access control policy consists of a set of Horn-clause style rules of the
form described in the previous section.

Ponder is a general, object-oriented, declarative policy language for control-
ling policy-based networking equipment [DDLS01]. It supports a wide
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variety of types of policy, including authorisation, information filtering,
delegation and obligation as well as a language for specifying the set of
conditions under which a policy is valid (“constraints”). Positive and
negative policies are permitted which, whilst intuitive, does make en-
forcement more difficult and can lead to conflicts that must be resolved
using static analysis.

Cassandra is a very general policy language with formal semantics that enable
efficient evaluation and guaranteed termination of rules [BS04a]. Its ex-
pressiveness can be tuned by choosing an appropriate constraint domain,
and thus instead of using special constructs to express standard policy
idioms such as rôles, delegation, and trust management (see section 2.2),
it is sufficient to choose a suitable constraint domain. Cassandra permits
only authorisation policies, not obligations.

Law Governed Interaction (LGI) is a message exchange mechanism that
permits a group of agents to collaborate in a manner governed by an
explicitly specified policy, called the law of that group [AM04]. Similarly
to Cassandra, Ao and Minsky propose, in LGI, a general (access control)
policy system in which common constructs such as rôles may be defined.
They refer to this as rôle-sensitive access control. LGI requires each group
to have a set of mutually trusted agents to enforce the law.

Rei is another recent general policy language, designed to meet the require-
ments of ubiquitous computing [KFJ03]. Its semantics are formally
grounded (Prolog) and policies written in a standard semantic language
(RDF-S). The policies themselves support the deontic logic concepts of
rights, prohibitions, obligations and dispensations, but this leads to poten-
tial run-time conflicts (such as when an obligated action is also prohibited)
and additional meta-policy is required to resolve these.

PERMIS is an RBAC infrastructure based on the X.509 authentication and
authorisation standards [CO02]. In contrast to OASIS, rôles are persis-
tent, not parameterised and organised into a hierarchy [BMCO03]. Au-
thorisation policy is specified in a bespoke XML-based format.

SAML stands for Security Assertion Markup Language [OAS03]. It was de-
signed as a method of sending and receiving authentication information
via XML, although it also includes some basic authorisation semantics.
It has some features, such as an “evidence” field that could make it very
useful for evidence-based systems, such as SECURE, but responses are
limited to Permit, Deny, and Indeterminate. It has been proposed as the
standard authorisation interface for the Grid [Cha03].

XACML is the eXstensible Access Control Markup Language [Mos04]. Like
SAML it is an XML-based standard produced by the OASIS Open con-
sortium, but is a language for specifying access control policy rather than
just being a protocol for forming access control queries and receiving the
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result. It conforms to the ISO standard access control model of separat-
ing enforcement and decision functionality [BMCO03] and allows query
results to be one of four types: Permit, Deny, Indeterminate (the decision-
maker is unable to evaluate the request due to an error, a missing attribute
for example) and Not Applicable (the decision-maker does not have any
policy that applies to this request). Authorisation and obligation policies
are supported and, as the name suggests, XACML is flexible and highly
extensible.

Administering Policy

In large-scale systems, the mechanism for decentralised administration of pol-
icy (such as the creation and deletion of rôles) is an important consideration.
[SBC+97] proposes the use of a second level of RBAC — so called meta-policy
— to administer policy, but then meta-meta-policy is needed to administer
the meta-policy, and so on. The semi-structured and hierarchical nature of
XML introduces new challenges when controlling access to policies written in
XML [FM04, WO04].

Creating policies is another open area of policy administration research.
The main issue here is automating the process of converting high level strategic
policy to low level technical policy and distributing this to all enforcement
points [BLMR04].

2.2 Decentralised Trust Management

Trust management is a complementary mechanism for managing access control
policy in large-scale, widely-distributed systems. The term was introduced by
Blaze et al. [BFL96] to describe the inter-related problems of security policies,
security credentials and trust relationships in networked systems.

2.2.1 Identity in Distributed Access Control

In traditional, non-distributed systems, the identity of a user making a request
is determined by the uid of the process. The uid of a process is controlled by
the operating system kernel, which is implicitly trusted in such matters. In
distributed systems, no such trusted supervisor is available.

Kerberos [And01] solves this problem using a shared authentication server
that, upon successful authentication, issues a unique encryption key, tied to the
user’s identity, that may be used to communicate with authorisation servers
for the duration of the user’s session. The authentication server shares the
user session keys with trusted “ticket-granting servers” that control access to
resources. When Alice wishes to access a resource, B, she makes a request to
the ticket-granting server, S, using the unique session key obtained from the
authentication server. S sends Alice a ticket (an encrypted message that only
B can read), along with a new key KAB that is known only to Alice and B.
Alice then forwards the ticket to B, along with a message encrypted under the
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key KAB. B replies to the message using KAB thereby proving it knows KAB

and asserting his identity.

Kerberos relies on a centralised infrastructure to solve this identity problem
— the authentication and ticket-granting servers must be available throughout
operation (since sessions are short-lived and must be refreshed every few minutes
to prevent certain types of attack), and they must share keys with all the
resources Alice might wish to access.

Public-key encryption [ACGW99, And01] offers an alternative solution. The
principal generates a key-pair, one public part that is known to all other princi-
pals, and one private part that is kept secret. Messages signed with the private
part can be verified as originating, untampered with, from a particular princi-
pal, using the associated public key. However, this only proves that the message
originated from the person who holds the other part of that particular key-pair
— it conveys no a priori information about the identity of that principal. Thus
the binding of a key to a name known to the authorisation server remains a
problem. The two best-known solutions (so-called Public Key Infrastructures,
PKI) to this problem are the X.509 authentication framework [EFL+99] and
the PGP email security system [ACGW99].

X.509 requires a hierarchical infrastructure of certification authori-
ties (CAs); when a user creates a new key-pair, he or she must have it certified
by a CA which verifies the associated (identity) information. In order for two
parties registered with different CAs to interact using public-keys there must
be a path from one CA to the other, that is, there must be a “root” CA that
is trusted, probably indirectly, by both users.

In contrast, PGP uses an anarchic web-of-trust approach where any user
may certify the key of another user [ACGW99]. Thus, if Alice has a copy of
a public-key that she knows belongs to Bob, and is confident that it has not
been tampered with since he generated it, she may sign the key and pass it to
Charlie. Hence, Alice acts as an introducer of Bob to Charlie. This scheme has
the advantage that unlike X.509 it requires no additional infrastructure and so is
completely decentralised. Conversely, the mechanism of finding a “trust chain”
from Bob to David in order for them to communicate is much less efficient, and
even if a chain is found from Bob to Alice to Charlie to David, Bob must trust
Alice’s judgement that Charlie is trusted to correctly verify David’s identity.

2.2.2 Trust Management Systems

Blaze et al. noted the problems in the “trust architecture” of PGP and X.509
and the fact that these systems address only one facet of the overall trust man-
agement problem [BFL96]. They also observed the issues of policy administra-
tion in distributed systems, noted in section 2.1.2, and subsequently proposed
a general framework for reasoning about security policies, security credentials
and trust relationships [BFL96, BFK98, BFK99].

Traditionally a distributed access control system based on a PKI must de-
termine the answer to two questions:

1. Who is the holder of this public-key?
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2. Can this public key be trusted for this purpose? (For example, being
granted a requested access right.)

A trust management system generalises this process such that the requester
of a service can prove directly that they hold credentials that entitle them to
be assigned a particular privilege. Thus, it is easy to write a trust management
policy that specifies that a particular cryptographic key may be trusted to
authorise purchase orders of up to £500, but purchase orders for greater than
that value must be authorised by k from n possible keys.

The first trust management system was PolicyMaker [BFL96]. It acted
like a database query engine, responding to queries from an application to
determine whether a particular request complied with the current policy. A
query consists of a set of local policy statements, a collection of credentials and
a string describing a proposed trusted action. The returned decision may either
be a simple yes/no, or a list of additional restrictions that would make the
proposed action acceptable. Certificate management (verification, validation
and revocation) is handled by the calling application.

Trust may also be delegated: local policies can be augmented by signed ex-
ternal policies (called certificates), provided there exists a trust chain from the
key which signed the certificate back to the local policy. If such a chain exists
then, subject to any filter conditions imposed by policies in the trust chain,
the certificate is treated as part of the security policy when answering queries.
Filters may be arbitrarily complex since PolicyMaker policies can be written in
any programming language that may be executed in a safe manner (the paper
describes a prototype based on a simplified version of AWK). Thus, authori-
sations may be delegated in a controlled manner where trust assumptions are
explicitly modelled.

KeyNote improved on PolicyMaker by standardising the assertion language
used to write policies [BFK98]. The KeyNote language is simpler, mak-
ing it less resource intensive and easier to analyse. This standardisation
also made it easier to exchange policy and access control information that
would otherwise be stored in application native formats. KeyNote also
provided better support to calling applications by, for example, verify-
ing signatures, but like PolicyMaker it lacked any concept of “negative
credentials” (such as credential revocation lists).

SPKI (Simple Public Key Infrastructure) describes a standard format for au-
thorisation credentials [EFL+99]. Unlike KeyNote and PolicyMaker, it
does not support fully-programmable credentials, hence the model for
checking compliance is considerably simpler, but it does include support
for revocation lists and validity periods.

Fidelis is a trust management system that distinguishes the concepts of poli-
cies and credentials [Yao03]. Credentials are modelled as trust instances
which may be interpreted by the Fidelis Policy Framework using seman-
tics determined by the local policy. Thus, in contrast to the Policy-
Maker/KeyNote approach, trust is delegated instead of the authorisation
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decision itself. The concept of explicitly modelling the transfer of trust
information, as opposed to the delegation of trust, is discussed in more
detail in section 2.3.

SULTAN is a trust management extension of the Ponder policy language de-
scribed in section 2.1.2 [GS03]. It adds trust, distrust, recommendation
and disrecommendation to Ponder, thus permitting the modelling of trust
management systems and also the conveyance of trust, as found in Fi-
delis. SULTAN also permits degrees of trust to be modelled over the
range [−100, 100], where −100 is fully distrusted and 100 is fully trusted.

RT is a rôle-based trust-management framework [LMW02]. Trust manage-
ment is used to control admission to rôles, and determine the mapping
of privileges to rôles. Distributed policy management is facilitated by lo-
calising the authority of rôles — rôles are defined by the namespace of a
particular entity and that entity’s policy determines who is permitted to
enter that rôle. Hence RT offers a trust management system combined
with the advantages of RBAC, such as the ability to selectively activate
only the rôles required for the current goal.

Cassandra is an access control policy framework that aims to incorporate
all common access control idioms, including trust management [BS04b].
Cassandra was also discussed in section 2.1.2.

Weeks [Wee01] presents a mathematical framework for understanding and
comparing trust management systems.

2.2.3 Trust Negotiation

Although trust is not reflexive in nature, some transactions may require that a
trust relationship exist in both directions in order for the transaction to take
place. For example, when two entities that were previously unknown to each
other meet, there may be something of a “Catch-22”2 situation with neither
principal willing to disclose certain credentials, such as membership of a con-
sortium, until the other has proved themselves to be sufficiently trustworthy
(for example by being a member of the same consortium). The use of a ne-
gotiation protocol to gradually disclose credentials and establish trust is called
trust negotiation [WL02, Yao02].

2.3 Trust Modelling

While trust management systems allowed trust to be explicitly modelled in ac-
cess control policy, trust is still a binary concept: an entity is either trusted or
untrusted. This is partly because, as noted above, in PolicyMaker/KeyNote del-
egating trust meant trusting the delegation of an authorisation decision which
usually has a binary (grant/deny) outcome.

2A set of circumstances in which one requirement is dependent upon another, which is in
turn dependent upon the first, from the 1962 novel by Joseph Heller.
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Beth, Borcherding and Klein [BBK94] introduce the concept of degrees of
trust (later incorporated into Trust Management in SULTAN). They also note
the need to distinguish between direct and recommended trust — that is, trust
developed as a result of direct interactions with an entity and trust that relies
upon third parties (who are themselves trusted to provide such information).
However their model takes an entirely statistical approach to trust, using it as
a metric of an entity’s reliability at performing some action. Maurer similarly
uses trust as a metric of confidence (in the interval [0, 1]) in a principal’s honesty
and thoroughness in authenticating another principal’s public key before signing
it [Mau96].

Abdul-Rahman and Hailes developed a general distributed trust
model [ARH97, ARH00] based on the definitions and properties of trust dis-
cussed in the social sciences. They follow Gambetta’s definition [Gam00] that
trust in a principal is a subjective degree of belief about whether that principal
will or will not perform that action.

This definition of trust is augmented by defining three types of trust: in-
terpersonal, which is the direct trust between two entities; system, which is the
trust in the perceived properties of a system; and dispositional, which models
how trusting a principal is in general — for instance, someone with too much
dispositional trust might be considered gullible, whilst someone with very little
dispositional trust might be considered paranoid. Like Beth, Borcherding and
Klein, a distinction is made between direct and recommended trust and inter-
personal trust is considered context-specific: Alice may trust Bob to repair her
car without trusting him to fly a plane.

[ARH00] defines a model of interpersonal trust with the following charac-
teristics:

• trust is context-dependent;

• there exist positive and negative degrees of trust;

• trust is based on entities’ experiences;

• trust information (reputation) may be exchanged with other entities using
recommendations, but trust is not transitive;

• trust is subjective;

• trust is dynamic and non-monotonic (that is, further experiences and
recommendations may increase or decrease the level of trust in another
entity).

Abdul-Rahman and Hailes reject the use of probability as a trust metric as
being semantically meaningless, and unsuitably transitive. Instead agents are
assigned a trust degree on a four point scale (roughly corresponding to “very
untrustworthy”, “untrustworthy”, “trustworthy”, or “very trustworthy”). Rec-
ommender trust is evaluated using the concept of semantic distance. This is
a measure of how different (within a particular context) a principal’s recom-
mendations are from the experiences of the principal evaluating the recom-
mendation. For example, if Alice finds that entities which Bob recommends
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as “trustworthy” in context c are, by her definition, “very trustworthy” then
the semantic distance for Bob in c is +1. Thus, distributed trust represents
the transfer of trust information that is then interpreted locally, quite different
from the notion of delegating trust in PolicyMaker/KeyNote. This notion was
later incorporated into trust management systems in Fidelis (see above).

In their conclusion, Abdul-Rahman and Hailes recognise the ad hoc nature
of their model, particularly the trust metric. They also leave undefined the
specification of contexts, and how to use the results of their model to take
trusting decisions/actions.

2.3.1 Formal Modelling of Trust

“Trust” is a complex notion and thus modelling it is not easy. McKnight and
Chervany defined the problem space with their typology of trust (first published
in 1996 but described in more detail in [MC01]). Although their typology is
large, the three types most relevant to models of trust in Computer Science are
those used in [ARH00], namely interpersonal, system and dispositional.

Jøsang provides further insights into the properties required of a formal
model, noting that trust is a belief [Jø96]. For example, when a human states
that they trust a system they mean they believe it will resist malicious attacks.
Similarly when a human trusts another human they believe that the person is
not malicious. Jøsang also discusses the suitability of using probability to model
trust: while objective probability is clearly meaningless, subjective probability
does represent a belief and so could be valid. If the knowledge on which trust
is based is modelled as objective evidence then subjective probability still fits.
However subjective probability must follow the rules and axioms of objective
probability and since probability is transitive, this would cause trust to be
transitive which intuitively is not the case. Jøsang [Jø96] gives a concrete
example:

If person A has made a good deal with a particular shopkeeper S
at the market, and A then recommends the shopkeeper to person B,
the probability theory would require B’s final trust in the shopkeeper
S to be:

t(B → S) = t(B → A) × t(A→ S)

However it may be that the shopkeeper does not like person B and
therefore would cheat him. Anybody with this knowledge [that S
cheats people he/she does not like] would also know that the formula
does not hold.

Jøsang later proposed a Subjective Logic (“Logic for Uncertain Probabilities”)
based on the Dempster-Schafer theory of evidence as a more accurate model
and metric [Jø01]. Dempster-Schafer allows evidence for and against trusting
a principal to be formally modelled, and since a lack of belief does not imply
disbelief, uncertainty is modelled explicitly. The Subjective Logic uses
Dempster-Schafer to model trust, and also defines the discount and consensus
operators: ⊗ and ⊕. Respectively these allow a principal A to adjust (scale)
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the opinion (trust value) of another principal B according to A’s trust in B, and
the combination of two opinions into a single aggregate one — such as when
including a third party’s opinion into an existing one.

Yu and Singh present a belief-based distributed reputation management
system, also using the Dempster-Schafer theory of evidence [YS02]. However,
unlike Jøsang’s model, they use a a metric in the interval [0, 1] for trust and
thus do not explicitly model uncertainty.

Bayesian frameworks offer an alternative mechanism for reasoning about be-
lief and combining evidence. As such, trust models based on Bayesian networks
are also popular (for example, [BB04, WV03]). Although they do not have
the expressiveness of the Subjective Logic they are more tractable for practi-
cal applications. Bayesian-based trust models are described in more detail in
section 6.5.

2.3.2 The SECURE Trust Model

The SECURE trust model combines the trust management and formal mod-
elling approaches by extending Weeks’ mathematical model of trust manage-
ment systems [Wee01] to include evidence-based systems. Thus, each principal
can express their trust policy, that is the assignment of trust values to principals,
as a mathematical function of other principals’ trust policies [CNS03]. These
trust policies can then be combined to produce a consistent trust assignment
for all principals.

In line with other models of trust, trust values are only valid within a partic-
ular context. Thus, the trust model outputs P×Tv, where P is the set of known
principals, and Tv is a list of (ti, ci) pairs, where ti is the trust-value assigned to
p for trust-context ci. The domain of ti in trust-context ci is the lattice Ti over
which there are two orderings defined, trust (indicating increasing/decreasing
trustworthiness) and information (how much evidence was used to calculate the
trust-value). Thus, trust policies may be combined with the least fixed-point
operator, as in Weeks’ model, provided all such policies are suitably monotone.

Trust is determined to be based on two factors: (direct) observations
and (third-party) recommendations, but trust values may have any form
that satisfies the requirement for two orderings. Shand demonstrates the use
of intervals, such as [0%, 100%], and (m,n) “evidence counts” where m rep-
resents the number of successful transactions and n the number of failed in-
teractions [Sha04]. An example application using this trust model is given in
section 5.2.4.

The Revised SECURE Trust Model

Although trust is universally accepted to be in some way context-dependent, no
researchers have yet addressed how trust-contexts can be formally incorporated
into their models.

In light of the work on risk modelling described in chapter 4 of this the-
sis, SECURE decided that its model of context should incorporate outcomes.
Work on context modelling for fields such as ubiquitous computing [WGZP04]
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has suggested an ontology-based approach is required, and thus in SECURE
context is modelled as a hierarchical event structure of outcomes [CDKN04].
For example, figure 2.1 shows an example of an event structure where the fol-
lowing outcomes are possible:

• no outcome yet (∅);

• the outcome was the reject decision;

• the outcome was the accept decision, but the final outcome of forged or
verified has not yet been observed;

• the outcome was forged (implying outcome accept);

• the outcome was verified (implying outcome accept).

reject accept

forged

0

verified

Figure 2.1: Example of an event structure of outcomes.

The “revised” SECURE trust model also standardised the use of (s, i, c)
triples as the format of trust values. Since contexts are now outcome-based, s
represents the number of pieces of evidence supporting a particular outcome, c
the number of pieces of evidence contradicting a particular outcome and i is the
number of pieces of evidence that are inconclusive. Using the example of the
event structure shown in figure 2.1, an observation of outcome accept would lead
to the nodes of the event structure for a particular principal being annotated
with the trust values shown in the “intermediate” column of table 2.1.

Trust Value (s, i, c)
outcome intermediate final

reject (0, 0, 1) (0, 0, 1)
accept (1, 0, 0) (1, 0, 0)
forged (0, 1, 0) (0, 0, 1)
verified (0, 1, 0) (1, 0, 0)

Table 2.1: Trust values attached to event structure outcomes after observing
an accept (intermediate) and verified (final).

If it was later observed that the outcome of the same transaction was verified
then the trust value associated with forged would have 1 taken from i and 1
added to c, and similarly for verified 1 taken from i and 1 added to s, as shown in
the “final” column of table 2.1. Since verified is the leaf of the event structure,
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no more outcomes from this transaction are possible and the transaction is
concluded.

(s, i, c) triples were chosen as they model both uncertainty and information.
It was noted that both quantities are important when making decisions based
on trust and thus needed to be incorporated into the SECURE model.

Communicating Trust Information: Recommendations

The ability to communicate trust information is necessary if principals are to
learn which principals are (un)trustworthy without entering into a potentially
loss-causing interaction. In SECURE, trust information is communicated using
recommendations where a recommendation is defined to be a trust value sent
from Witness W about Subject S. When transferring trust information it is
important to avoid “double counting” and “chinese whispers”. For example,
suppose Alice receives some information about a transaction with Eve in a
recommendation from Bob which she then incorporates into a recommendation
she sends to Charlie. If Charlie also receives the same information about that
transaction direct from Bob, his trust computation will incorporate the result
of that one transaction twice: once from Alice and once from Bob. To avoid
this Alice may only generate recommendations based on her direct observations.
Jøsang, Gray and Kinateder consider the problems of transitive trust topologies
in more detail [JGK03]. Alice could also forward Bob’s recommendation to
Charlie, but this has implications for Bob’s privacy — what if he does not wish
Charlie to know that he performed a transaction with Eve? This problem shall
be revisited later in this thesis.

As per Jøsang’s Subjective Logic (see above), recommendations must be
discounted by a principal’s recommendation integrity3 in the witness before be-
ing incorporated into a local trust computation. Details of a suitable definition
of this operator for the SECURE trust model have yet to be published.

Trust is also often associated with reputation. This differs from recommen-
dations in that reputation is a metric of a principal’s standing, whereas rec-
ommendations are a mechanism for conveying trust information. Reputation is
discussed further below.

2.3.3 Time in Trust Models

Time is clearly important in trust. If privilege is gained from being trusted then
principals may act in a trustworthy fashion in order to gain privileges which they
later abuse. Trusted peers may also be compromised and temporarily controlled
by an attacker, and it may be possible to detect untrustworthy principals by
analysing patterns of behaviour over time [CM05].

Of the trust models described so far, only [BB04] and [WV03] (both based
on Bayesian networks) explicitly incorporate any formal notion of time, and
then only that older experiences contribute less to the trust computation than
more recent ones. [Mez04] models trust as explicitly diminishing with time
using an exponential context-dependent decay factor. This model also neatly

3also referred to as meta-trust, that is, the principal’s trust in the witness as a recommender
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models meta-trust in the same manner as normal trust, but the use of values in
the interval [0, 1] for trust is not as expressive as other models. It also appears
to have the problem of “double counting” indirect trust described above. In
summary, the paper defines:

T : P × P × Φ × τ 7→ [0, 1]

I(α, β, φ, t) =

∑

γ∈Γ T (α, γ, j(φ), t)R(γ, β, φ, t)
∑

γ∈Γ T (α, β, j(φ), t)
where Γ = set of recommenders

R(α, β, φ, t) = ψT (α, β, φ, t) + (1 − ψ)I(α, β, φ, t)

T is (direct) trust, I is indirect trust, R is reputation, P is the set of principals,
Φ is the set of contexts, j(φ) is the meta-trust context associated with φ, τ is
time, ψ is the weighting of direct trust to indirect trust in a reputation. Since
R incorporates some fraction (1 − ψ) of I, if any γ and α have recommenders
in common then the reputation information from those mutual recommenders
will be counted more than once (albeit scaled by (1 − ψ)).

2.3.4 Global Reputation as a Trust Metric

The unregulated nature of peer-to-peer systems and their recent growth in pop-
ularity has given rise to a number of trust metrics designed for such environ-
ments. These typically make the assumption that if principals have an incentive
to be reputed to be trustworthy — for example, in order to attract more cus-
tomers — then they will act in a trustworthy fashion in order to maintain and
improve their reputation. Thus, systems such as [AD01, XL02, KSGM03] de-
fine trust in terms of a global reputation metric. This narrow definition of trust
does not conform to the properties of the formal models of trust described in
section 2.3 since it represents only one facet of the term, but an overview of
three popular “reputation as trust” metrics is given here for completeness.

Aberer and Despotovic propose a system that counts the number of com-
plaints filed by other peers to judge the trustworthiness of a principal [AD01].
Complaints are published and found using their p-grid peer-to-peer architecture,
and nodes for whom there are a higher than average number of complaints are
considered untrustworthy. However, their metric makes the assumption that
all malicious nodes will file complaints about nodes that they cheat in order
to hide their deceit, and so a principal may obtain high trust simply by never
filing a complaint against another node — even if they have been cheated and
have a valid complaint, their own reputation value benefits by not complaining.4

PeerTrust [XL02] also uses the p-grid architecture and an improved version of
the complaint-based metric that takes the number of interactions a principal
has performed into account. Both models use thresholds to determine at what
level a principal is considered trustworthy : Aberer and Despotovic use an ad
hoc heuristic; PeerTrust allows the threshold to be determined by the user,
modelling their dispositional trust. A third metric, eigentrust, defines trust

4Alternatively a principal could operate under two separate identities, one for giving ser-
vices and one for using services.
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to be transitive and uses probabilistic methods to determine a trustworthiness
ordering over all known peers [KSGM03].

The problem with using global reputation as a trust metric is that it cannot
take into account “peer-specific” behaviour, that is, when a peer treats some
minority subset of nodes differently from the general populace. For instance, if a
malicious auction seller cheats all users from the domain .co.uk, but is honest
towards all others, they will maintain an acceptable reputation and make a
better profit than an honest peer. In addition, since global reputation metrics
are public, attackers would be able to adjust their behaviour to optimise the
balance between reputation and profit. Global reputation metrics also usually
rely on the majority of nodes to be honest, an assumption researchers have
found to be doubtful in open systems [Dou02]. A third problem with the specific
systems mentioned here is a failure to separate direct and recommended trust.
They assume that principals who, for example, give good service, will also be
honest when recommending other peers, and hence the metrics offer no defence
against those peers that give good service but defame other peers in the system.

XenoTrust demonstrates a novel method of modelling reputation [DKHP03,
DHH+03]. Free form reputation statements about other principals are stored
in a standard relational database on which users may then perform queries
using standard aggregation functions such as min, max and mean. A pub-
lish/subscribe event system [EFGK01] is then used to notify users when the
aggregated reputation value changes. Although the database is centralised,
there is no limit on how many reputation services could operate, or who can
operate them. An economic system of earning credit for making honest state-
ments, which is debited for each query [FKÖD04], suggests that the expectation
is for there to exist a small number of well-known reputation broker services,
the online equivalent of real life credit bureaus. Identities are managed by cen-
tralised authorities called XenoCorps to prevent nodes with bad reputations
escaping punishment by changing their name.

2.3.5 Summary of Trust Management and Trust Modelling

Trust modelling develops formal models of trust in entities. Trust manage-
ment models trust relationships between entities, and often also refers to the
exchange and dissemination of trust information. Many researchers see the
problems as being inter-related and have produced integrated systems such as
SECURE [CNS03], that incorporate both modelling and management.

Trust is a subjective belief. Abdul-Rahman and Hailes define “A trusts B”
to mean that “A believes B to be trustworthy.” Trust beliefs can be formed
from direct experiences (observations) and recommendations from other prin-
cipals trusted to provide honest information. Recommendations can be used to
propagate a principal’s reputation and thus the need to maintain a good repu-
tation can be an incentive for a principal to behave in a trustworthy manner,
but trust is in general not transitive.

Trust is context-dependent. Thus, a server that is trusted to serve web
pages is not necessarily trusted to handle email. Similarly, a principal trusted
to provide good service may not be trusted to recommend others to provide
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the same service, for instance if they have a vested interest in customers not
discovering their competitors. Following human intuitions of trust, it is felt that
it should be possible to infer trustworthiness in one context from trustworthiness
in another, to a limited extent. The SECURE project’s use of event structures
to model context permits this to be done using the mathematical concept of
morphism.

Few researchers give much consideration to the use of trust informa-
tion to take decisions. The usual method, when it is considered at all, is
to use a threshold to partition principals into trusted/trustworthy and un-
trusted/untrustworthy. These thresholds may be configurable by the human
user [XL02, YS02], or based on heuristics that look for principals with reputa-
tion values outside of a norm [AD01].

2.4 The SECURE Framework

The SECURE trust model described in section 2.3.2 represents only one com-
ponent of the SECURE framework. An overview of the entire framework is
shown in figure 2.2. There are five major component systems: trust, risk, ac-
cess control, evidence and support.

Figure 2.2: Overview of the SECURE model

Trust: The Trust Calculator computes the trustworthiness of a principal using
the model described in section 2.3.2. The Trust Life-cycle Manager is
responsible for the formation, exploitation and evolution of trust infor-
mation, over which the TC then performs its calculations.

Risk: A key observation on the use of trust is that trust is unnecessary unless
there is something at risk. Therefore the Risk Evaluator determines the
risk of the current situation using information supplied by the Risk Con-
figurator. The risk elements of SECURE are developed in chapter 4 of
this thesis.

Access Control: The Access Controller allows for the specification of access
control policies that explicitly reason about trust and risk, and make de-
cisions autonomously. Access control for SECURE is developed in chap-
ters 5 and 6 of this thesis.
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Evidence: The Evidence Store holds all the necessary information (details of
past experiences and received recommendations) for the TLM and RC
to perform their tasks. The Evidence Gatherer is responsible for obtain-
ing recommendations from other principals, and the Interaction Monitor
observes the results (where possible) of any interactions that take place.

Support: The Request Analyser encapsulates the external Application Pro-
grammer Interface (API) of the SECURE kernel. It processes requests,
forwarding them to the various SECURE sub-systems as appropriate,
and mediates any trust negotiation. Entity Recognition is responsible for
managing the process of identifying principals. Applications may use a va-
riety of different mechanisms, such as public-keys, biometrics, passwords
or similar, and since some mechanisms are more capable or secure than
others, the ER module outputs a confidence value tid in the recognition
of a particular principal [SFJ+03].

This thesis is concerned with the risk, access control and policy aspects of
the SECURE framework. A detailed software architecture for SECURE is also
developed in chapter 4.

2.5 Chapter Summary and Conclusions

Traditional access control systems do not scale well to the Global Computing
infrastructure where there are huge numbers of principals, resources, and policy
administrators controlling access to those resources. Trust management is a
key tool in decentralising the policy enforcement and administration, therefore
allowing access control systems to scale. A formal understanding of trust allows
these highly decentralised policies to be better analysed and understood in the
context of higher level policies. More recently, evidence-based computational
models of trust that permit trust assessments to evolve in response to events
have been developed.

However, many researchers focus so intensely on the nuances of the trust
modelling itself that some have observed [Lan03] that paper authors do not
specify what a working system should look like, hence making evaluation ap-
pear impossible. In the case of this thesis, and the SECURE project in gen-
eral, providing access control for the global computing applications described
in chapter 1 is the goal. Having now surveyed the state of the art in distributed
access control and trust management it is now possible to articulate a more
refined goal. The aim of this thesis shall therefore be that:

For a given application domain, a computational trust system (such
as SECURE), should be able to select an interaction partner (or
partners) such that the risk of interacting with that principal is
deemed to be acceptable to the decision-maker.
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CHAPTER 3

Trust for Ubiquitous, Transparent

Collaboration

In this chapter, a simple trust and risk framework limited to facilitating secure
collaboration in ubiquitous and pervasive computer systems is presented.1 It
illustrates in more detail one of the application scenarios from section 1.1.

Ubiquitous computing needs trust between participants in order to support
collaborative activities, such as arranging meetings, while protecting sensitive
information used in the collaboration. At the same time, security measures must
be proportional to the risk involved to allow the interaction between devices to
be as automated as possible.

For example, consider a business meeting with representatives from two
companies. To schedule a follow-up meeting, the attendees would like to find
a time that suits everyone, with the help of electronic diaries and calendars.
However, depending on the trust between the companies, they might not want
to disclose their detailed movements to each other. Instead, the members of
each company might decide to find potential meeting times among themselves,
then share only this aggregate information between the companies. This chapter
proposes trust and risk models to help automate interactions of this sort, making
the computations as unobtrusive as possible while still respecting participants’
trust beliefs.

3.1 Trust Infrastructure

Mutual trust is crucial for ubiquitous devices, which must share information
and work together to present an unobtrusive interface [GSSS02] to their users.

1This PDA scenario and its model of risk extend earlier work with Brian Shand and Jean
Bacon, published in a paper at the PerCom 2003 conference [SDB03].

39
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Using a homogeneous recommendation system, a trust framework allows
users to share and exchange privileged information. This information can in-
clude conventional data such as personal contacts and calendar entries, and also
trust beliefs about principals.

Alice’s 
PDA

Bob’s 
PDA

i,R,R’

i = {Phone #}Alice

R’ = {Rec(i,business,t’)}Alice

R = {Rec(i,Alice,t)}Alice

(a) Alice sends Bob her work
phone number.

Bob’s
 PDA

Charlie’s
 PDA

i,R,R’’

R’’ = {Rec(i,work,t’’)}Bob

Blank

(b) Some time later, Bob forwards Alice’s
number to Charlie.

Figure 3.1: Recommendations in action.

Recommendations can be used to associate data items and explicitly include
a degree of confidence (trust) in that association. For example, Alice might give
a telephone number to Bob, together with recommendations that it is her tele-
phone number and that it be considered privileged business information. This
is illustrated in figure 3.1(a). Alice signs i to certify that she is the origin of
the information and also signs her recommendations to allow the recipient to
evaluate their relevance using Alice’s trust-rating. t represents Alice’s trust in
her recommendation, that is, how much confidence she has in it. Later, Bob
forwards Alice’s number to Charlie (figure 3.1(b)), along with her recommenda-
tion that it is her number (R) and Bob’s recommendation that it is her “work”
number (R′′) in which he has trust t ′′. He could also forward Alice’s original
recommendation R′ that it is her “business” number if he wished to, but he has
chosen not to in this case as the transmission link is expensive and he thinks
Charlie will find his recommendation more useful.

Existing trust models for pervasive computing typically represent trust us-
ing a security policy which explicitly permits or prohibits actions [FJK+01].
These policies are not well suited to dynamic environments, in which partici-
pants have only partial trustworthiness, and trust assessments must constantly
change. To avoid this, Abdul-Rahman and others [ARH00] have also proposed
explicit recommendation systems, but with only very simple trust values. In
the application described in this chapter, recommendations are used to control
the flow of information, as well as for access control and the more complex
recommendation structure can also be combined consistently, by formally or-
dering recommendations according to information content [CNS03]. This gives
a well-founded approach to trust management decisions, which is suitable for
distributed computing applications.

Principals in the framework can also be associated with categories using
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the recommendation system, and being a member of a category may con-
fer certain access control capabilities. Bob might send a recommendation
{Alice,work, t1}Bob to himself, that recommends Alice as a member of cate-
gory “work” with trust t1.

Principals and information are thus associated with categories using the rec-
ommendation system. Each item might have more than one recommendation,
whether from different principals or for different categories. The trust model
assesses the importance of an item (with respect to a category) by combining
all the pertinent recommendations.

In the example above, the importance of displaying Alice’s telephone num-
ber in Charlie’s work category would depend on the degree to which Alice
recommended the number, Bob recommended the number as a “work” num-
ber and Charlie’s trust in Bob as a business acquaintance. Furthermore, Bob
would not pass on the number automatically to Charlie; his PDA only sends
the number because it knows Charlie is a trusted business acquaintance.

In order for a PDA to make these decisions automatically on behalf of its
owner, it must understand the dynamics of how the owner themselves would
make the decision — usually by assessing the trust and risk in the current
context.

The use of categories to assign access privileges is discussed in more detail
in section 3.2. First, the following section extends the example to show how
recommendations give structure to data.

3.1.1 Phone Book Example

A phone book exchange service illustrates the need for and advantages of trust-
based information exchange for ubiquitous computing. Users of handheld com-
puters currently exchange contact details laboriously on a one-to-one basis.
Furthermore, there is no associated trust information, so users cannot recom-
mend to whom the information should be redistributed — for example, private
and business numbers are usually redistributed together.

In this section, it is shown how the trust and risk framework can make this
service more transparent for users and increase automation while preserving
the privacy of personal information.

The phone book database consists of many items, each with associated
recommendations. These may be signed to prove their authenticity, using a
public key infrastructure.

Accessing and displaying information

Each information item has a unique identity, consisting of the author and a
secure hash of the contents; any reference to an item uses this identity. As a
result, recommendations about an item will cease to apply if the contents are
changed. In the case of a phone book, these contents might be a name, a phone
number or an address.

Figure 3.2 illustrates how Charlie uses the trust model to display Alice’s
phone book information in the example above. When Charlie searches his phone
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Figure 3.2: Each piece of information is stored separately and links between
them are determined by the trust model.

book for “Alice”, he finds the entry for Alice’s name, ranked according to the
strength of its recommendations. If he views that entry, he is presented with
the linked information too, again weighted by importance. Very unimportant
entries might not be displayed at all, according to a threshold set by Charlie.

In contrast, consider David, Charlie’s colleague who is allowed to view busi-
ness information in Charlie’s phone book, but nothing personal. If David views
Alice’s information there, he is presented with the restricted view shown in fig-
ure 3.3. Furthermore, the importance of links might be different, if David had
other knowledge of Alice, such as an old work number that is now out of date,
as illustrated here.

Figure 3.3: David receives a different view on Charlie’s information about Alice,
plus additional information from his own database (shown as dashed lines).
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3.1.2 User Privacy

When Alice gives her phone number to Bob, she trusts him not to redistribute
it to people she would not want to know her telephone number. However, Bob
must then realise that Alice has given him her direct line number instead of the
switchboard and not pass it on indiscriminately. In our example in figure 3.1,
Alice’s recommendation R states that she recommends that Bob treat this as
business information and not a public number.

Security expert Bruce Schneier asserts that security is a process of trade-
offs [Sch03] and that every “security” measure must be evaluated as to whether
the security gained is worth the cost [Sch02]. Sometimes the cost trade-off
is subtle and indirect — enforcing strong password policies can make it more
difficult for users to remember their password and thus they take steps, such as
writing it down or reusing it in other domains, that actually reduce the security
of the password.

In a pervasive computing environment the cost of security is an inability
to collaborate with other ubiquitous devices, or lost productivity as the hu-
man owner must explicitly set security policy for each new device he or she
encounters. Accordingly, the aim of this work is to create a security mechanism
suitable for use in the pervasive computing environment where human interven-
tion is a valuable resource [GSSS02], yet due to the nature of the data involved,
security remains important.

The following section shows how rôles and categories can be structured to
preserve the meaning of recommendations. This ensures that user privacy is
better protected in automated information transfers, by unifying trust assess-
ments with access control.

3.2 Categories and Rôles

Information exchange is restricted with the help of categories, arranged in a
partial order. Each PDA owner can have their own set of categories and associ-
ated partial ordering. These categories restrict the distribution of information,
and the actions of principals, and are analogous to rôles in a Rôle-Based Access
Control system [BMY02].

This model extends traditional RBAC rôles by associating a trust assess-
ment with each category assignment. Users of the system can then combine a
risk assessment, together with their trust in the information, to decide whether
or not it should be used or displayed. For example, the risk of displaying an
incorrect telephone number might depend on the cost of the user’s time when
attempting to use it. Conversely, if the number is not displayed (or is shown
as less important), the risk is that the user might not find it, even though it is
correct.

Each category has a list of privileges associated with it; these are action
and category pairs which can be used by principals associated with the cate-
gory. The overall trust assessment of an entity is thus a mapping from action
and category pairs to primitive trust values. These trust assessments and the
contribution of other recommendations are expressed formally as a local policy
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function, defined in [SDB03], analogously to Weeks’ proposal for formalising
access control system policies [Wee01].

Categories are arranged in a natural privilege hierarchy: when category c0
extends the privileges of another c1, write c0 ⊃ c1. Figure 3.4 illustrates a
typical hierarchy, where the top category ⊤ contains the owner of the PDA, cn
represent user defined categories such as immediate family, business colleagues,
business contacts, friends and relatives. A are acquaintances, people known to
the owner, but not categorised, and S are strangers.

⊤ (owner)

c0
c1

c2 c3 c4

A

S

⊥ (empty)

Super-User

Privileged

Group

Public

Figure 3.4: Example of a cate-
gory hierarchy.

Band

Super-User
As Privileged, but may also
delete information.

↑

Privileged
As Group, but can also read
own category.

↑

Group
As Public, but can also write to
own category and those below.

↑

Public
Read: Categories lower in
graph. Write: None.

Table 3.1: Privileges are conferred on a cat-
egory by membership of a Privilege Band.

The diagram also shows another important feature of the framework, from
a human interaction perspective. Categories are divided into bands (see ta-
ble 3.1); and these bands then dictate the extra privileges granted to categories
within them. This makes it far more convenient for users to manage their trust
policies, simply by moving categories within their trust lattice. For example,
categories in the “Group” band can by convention recommend that members
may write data to their own categories and those below them, and read data
below them.

The banding of categories allows user privileges to be easily and intuitively
assigned. However, if necessary the banding may be overridden, by explicitly
associating extra permissions with categories or users.

Formally, these bands are a partition of the privileges of the system. For
example, if p(c) represents the privileges of category or band c, then p(Group) =
(p(c2)∪p(c3)∪p(c4))\p(S), the marginal privileges accrued by categories within
the band.

The category bands also have a second function: they facilitate information
exchange, by providing a common framework for expressing category meaning
between devices, even devices with otherwise different categories.

This allows recommendations between devices to be made in terms of cat-
egory bands. As long as users attribute similar meanings to these bands —
encouraged by band privileges — then information transferred between devices
will automatically be restricted to the appropriate band, unless there is an ex-
plicit user override. This is particularly useful in avoiding sensitive information
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being leaked by different collaborating users assigning different meaning to cat-
egories of the same name or placing them in different bands. For example,
suppose Alice has two categories, business and business contacts, the former in
the Privileged band and the latter in Group and she gives her business number
to colleague Bob, whose business category is in Group. However, if Alice sends
an additional recommendation that the number is Privileged then Bob’s address
book should respect this when calculating access rights.

3.2.1 Categories in Calendars

The same framework can also be used for calendar information. In the phone
book there were read and write capabilities for viewing, inserting and updating
phone numbers. When a principal attempts to read a particular time-slot, the
information returned will depend on their location in the hierarchy of categories
in relation to the category of the appointment. All appointments have a pro-
jection into categories lower in the hierarchy, although not into ⊥. This has the
effect that a principal who does not have read permission for an appointment
sees the lower category projection that the time is busy, tentative or free but
not the details of any appointments. Because appointments are not projected
into ⊥, principals in sufficiently low categories (such as S in figure 3.4) do not
see anything at all and can learn no information about the owner’s schedule.

Write permission to a category is the ability to make an appointment in
that category, and categories could be used to determine the default response to
an appointment made in a free slot (for example: “automatically accept all ap-
pointments made by principals who are members of category PhD-Supervisor”).

3.3 Implementation Issues

Trust management through recommendations is well suited to mobile and dis-
tributed applications, since recommendations conveniently factorise and encap-
sulate trust policy (section 2.3.2).

This is particularly important for vulnerably connected nodes such as PDAs,
which must store the relevant components of others’ policy locally, for use
when disconnected. Transferring only a few recommendations from a trust
policy is justified in our application, since extra recommendations correspond
to additional trust information in our partial order. Therefore using a subset of
a policy corresponds to weaker policy assertions, and the resulting trust decision
will also be weaker.

However, locally-cached policies must be kept up to date in order to be
used appropriately. It is therefore proposed to assign time stamps and valid-
ity periods to recommendations which are then refreshed automatically each
time devices interact; this removes any burden on the owner to ensure their
local cache is not about to expire before embarking on a period of extended
disconnection. If a recommendation does expire, using out of date policy may
be preferable to no knowledge at all and so the weight of expired recommenda-
tions is scaled down rather than being discarded. However, the principal danger
of outdated information is that a person may no longer deserve the privileges
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that they once had, for example someone who has been fired from the com-
pany. Therefore old trust policy that says something negative about a principal
cannot cause security to be compromised and so this scaling is only applied to
expired positive recommendations.

Recommendation systems often suffer from issues of long trust chains, be-
cause the meaning of “trust” changes with depth in the chain. By analogy to
human notions of trust, trusting someone to be a good car mechanic is different
from trusting someone to recommend a good car mechanic [JGK03]. However,
in this model the problem is turned on its head by using the implicit trust
assumptions found in the organisation of the user’s phone book to determine
privilege assignments — people categorise the people they know according to
the type of trust they place in them: close friends are clearly highly trusted;
“business colleagues” do not try to sabotage each other’s list of contacts but
would not usually have access to personal numbers; and so on. People within
a single category may have different levels of trust placed in them, but partial
belief in category membership caters for this. When necessary, exceptions can
also be made; the owner of the PDA can fine tune their policies, via the rec-
ommendation system, to customise individual users’ permissions. By explicitly
considering these implicit human intuitions of trust (including the overloading
of the meaning of the term), the framework is made powerful while still being
easy to use, although this correspondence is clearly not true in the general case.
The applicability of this assumption shall be considered in more detail later.

Another common problem with recommendation systems is that the prove-
nance of information can become distorted so that it is no longer possible to
tell whether information from different principals is truly independent or in fact
based on data from a single principal further up the chain. To avoid this, only
recommendations based on first-hand experience may be transmitted by a PDA
— the passing-on of information from another principal is done by forwarding
the relevant recommendations from that principal, but this leads to privacy
implications that will be explored later in this thesis.

3.3.1 Trust Values

Although a number of trust value formats have been proposed (section 2.3), the
trust framework in this application uses (belief, disbelief) pairs, representing the
weight of evidence for and against a particular trust assignment, with belief +
disbelief ≤ 1. This can be compared to Jøsang’s logic of uncertain probabilities,
based on the Dempster-Shafer theory of evidence [Jø01].

No information is represented by (0,0), while (1,0) and (0,1) represent cer-
tain belief and disbelief respectively. These trust values are ordered according
to trustworthiness by defining (b1, d1) � (b2, d2) iff (b1≤b2) and (d2≤d1), which
forms a lattice on the trust domain Tb.

However, there is also a second natural ordering, according to information,
where (b1, d1) ⊑ (b2, d2) iff (b1 ≤ b2) and (d1 ≤ d2), which is used in combining
recommendations, as described in [SDB03].



3.4. Risk Assessment and Decision Making 47

3.4 Risk Assessment and Decision Making

As noted above, security measures must be proportional and appropriate for
the risk involved: a user may happily distribute a business card to strangers to
advertise their business, but may be quite careful as to whom they give their
mobile phone number.

In the same way that a principal’s position in the category hierarchy (fig-
ure 3.4) assigns it a permission, the position of a piece of data implicitly gives
it a value that can be used to assess the risk of an operation involving it: the
higher in the hierarchy, the greater the value. The risk of an operation is defined
as being the sum of the risks of all the possible outcomes of that operation. The
risk of an outcome is a function of the likelihood and impact of that outcome.
This is in line with existing literature on risk management, such as [SGF02] and
the impact of an outcome is taken as the worst-case cost to the user should that
outcome occur. This cost will be a combination of two factors: the seriousness
of the outcome itself and the value of the data involved.

Figure 3.5: Possible interactions between two PDA users.

In the address book scenario, two users may interact in two different ways
as shown in figure 3.5. Either Bob may request a number from Alice, or she
may try to send Bob information, unsolicited. Before either side takes part in
an interaction, there is a decision to be made (shown as the numbers 1 to 4 in
figure 3.5). Those decisions are as follows.

1. Request: Bob wishes to ask Alice’s PDA for a telephone number. As far
as Bob is concerned, the possible outcomes from interacting with Alice
are (in increasing order of impact):

• he obtains the number he wanted and it is correct;

• he obtains the number he wanted but it is incorrect (e.g. out of
date);

• he does not obtain the number he wanted.

2. Response: Alice receives Bob’s request and must decide what access to
her address book she is prepared to give him. From Alice’s point of view,
the possible outcomes of giving Bob access to an entry in her address
book are:
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• Bob obtains the number he wanted;

• Bob obtains the number, but misinterprets or ignores the attached
recommendations and redistributes it indiscriminately.

3. Push-Number: Alice wishes to automatically send her number to cer-
tain PDAs with which she comes into contact. For example she may have
changed her home telephone number recently and wish to inform all the
friends she meets, but not business colleagues. Her PDA must decide
whether to automatically send the number to Bob; the possible outcomes
for Alice are (again in increasing order of impact):

• Bob stores the number and respects Alice’s accompanying recom-
mendations on redistribution;

• Bob discards the number;

• Bob stores the number but ignores the accompanying recommen-
dations on redistribution by, for example, storing the number in a
publicly accessible area of his address book when Alice recommended
that it was privileged business information.

4. Receive-Number: Alice wishes to send Bob some information. Bob
must decide what to do with the received information. The possible out-
comes from his point of view are:

• Bob finds it useful;

• Bob finds the information unhelpful or incorrect;

• Alice attempts a denial of service attack against Bob’s PDA by send-
ing many numbers, aiming to fill its storage space or saturate its
connectivity.

As stated above, the risk of an outcome is a function of the worst case cost
in the event of the outcome occurring, and the probability that the outcome
will occur, which is solely dependent on the principal(s) involved. Using the
idea that trust is a measure of how well an actor is known, it is possible to
assign a probability to each outcome.

The Response trust-decision will now be considered in more detail.

3.4.1 Deciding Whether to Participate

When Bob asks Alice for a number from her address book, in access control
terms, she must decide whether to grant him read permission on that number or
not. The aim of the model is to make this decision as automatic as possible, but
in situations where the correct response is unclear the PDA may then attract
Alice’s attention and ask for her guidance. However, the cost of Alice’s time to
give that guidance must also be factored into the decision, so the cost-benefit
analysis must take into account the benefit from helping someone by giving
them a number, the worst-case cost of giving a number to an inappropriate
person and the cost of asking the owner for guidance.
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Formulae will now be derived for calculating the benefit of each of the three
possible courses of action. Since principals and data may be filed under multiple
categories in an address book, for example colleagues who are also considered
friends, all pairs of categories, (cp, cd), must be considered where there is a
recommendation (or recommendations) with b > d that permit cp to read cd.
cp is the principal’s category and cd is the category of the data item they wish
to read.

There is clearly a benefit to not giving out a number if the PDA has no
trust in that person’s right to that number, that is, if it does not believe them
to be a member of cp. Define:

Benefitno(b−d,valcp) = −valcp .(b−d)

where (b, d) is Alice’s belief and disbelief in Bob’s membership of cp, as com-
puted by the trust engine described in [SDB03]. valcp is the value Alice has
associated with category cp — the more valuable the category and the greater
Alice’s distrust in Bob’s membership, the greater the benefit of saying, “no”.

For calculating Benefityes, in addition to considering how strongly Bob is as-
sociated with cp and the expected benefit of that association (valcp×(b−d)), the
PDA must also consider the relative importance of Bob himself (inferred from
the value of the category of which he is a member) compared to the importance
of the data he is trying to read, which encodes the potential cost of Bob ignoring
Alice’s recommendations and redistributing the number indiscriminately. The
function must represent the fact that there is benefit in helping someone who is
potentially a close friend to read a low value number, while greater assurance
is required to allow access to a more valuable number.

It is also necessary to allow the user to configure their disposition to
trust [MC01], and it may be useful to take any available contextual information
(such as location or the status of the owner) into account. For this purpose,
the variable valread is introduced which represents the importance of generally
being a helpful source of information.

Benefityes(b−d,valcp ,valcd
) = valcp .(b−d) − max (valcd

−valread, 0)

This definition balances the expected benefit of assisting Bob, valcp .(b−
d) + valread, against the value of the data being read, valcd

. The maximum
function prevents the benefit of giving out information from being greater than
the expected benefit of interacting with Bob, even if the value of valread is
greater than the value of the data involved. Section 3.4.2 discusses the valread

variable further.
If a positive trust-relationship between Bob and the requested data does

exist, but is sufficiently tenuous that there is no clear benefit to granting the
request, then it may be worth asking Alice for guidance on the decision. To
represent the cost of Alice’s time in having to focus on her PDA and input the
correct decision, a second user-configurable and context-dependent variable is
introduced, valtime.

Benefitask(b−d, valcp) = valcp .(b−d)−valtime+valread
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This equation simply compares the expected benefit of helping Bob (and
also the potential cost if in the case of an erroneous negative decision) to the
cost of Alice’s time that is taken up making the decision. valtime is discussed
further in section 3.4.2.

It follows that Alice’s response to Bob’s request can now be determined by:

Answer = if Benefitno ≥ 0 then “No”

else if Benefityes > 0 then “Yes”

else if Benefitask > 0 then “Ask”

else “No” (3.1)

Intuitively, these equations determine whether there exists cp of which Bob
is a sufficiently strong member to be able to read cd. For simplicity (b − d) is
used as a measure of the strength of a principal’s membership of a category.
Since there are three possible responses to the request — Yes, No, and Ask
owner for guidance — the range of b−d, the interval [−1, 1], can be seen as
being divided into three corresponding regions, as illustrated in figure 3.6.

Figure 3.6: Number line showing how partitions of (b− d) in membership of a
category lead to a decision.

The positions of x and y may be determined by setting Benefityes and
Benefitask to the threshold at which the PDA decides there is sufficient benefit
to take that course of action — 0 in equation (3.1). Re-arranging to find the
corresponding value of b−d gives:

y = max

(

valcd
− valread

valcp

, 0

)

(3.2)

x = min

(

valtime − valread

valcp

, y

)

(3.3)

The region [0, x) is when Bob is a member of cp, but there is insufficient
benefit in saying “yes” or asking the owner to grant the request, so the answer
must be negative. The region [−1, 0) is also logically a negative response as
there is no trust at all in Bob’s membership of cp.

3.4.2 Fine-tuning Policy

The variables valread and valtime used in the benefit equations can be tuned
by the user to give them fine-grained control over their policy and take any
available contextual information into account. For example, the owner may
be able to place the PDA into a “Do-Not-Disturb” mode that would scale the
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value of valtime to infinity. The significance of the values of these variables on
the decision making process can be seen by considering the effect they have on
the thresholds x and y.
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Figure 3.7: Plot showing how the amount of trust required, y, varies with the
values of valcp and valcd

− valread.

Figure 3.7 shows how the values of cp and cd affect the threshold y, for
constant valread. It demonstrates that the Benefityes equation has the desired
property that as valcd

increases for constant valcp a greater amount of trust
in membership of cp is required to grant the request, and as the right-hand
back corner of the graph shows, not even a “fully” trusted principal may read
a number which is of greater value than themselves. Conversely, a principal of
much greater value than valcd

needs a much smaller amount of trust to read
the number, and if valread > valcd

then only the most tenuous connection with
a category is required to be granted the privilege. This leads to the conclusion
that a good choice of value for valread is the value of the category for which
a principal should only need the smallest amount of belief in membership in
order to be able to read it.

The Benefitask equation shows that the choice of valtime is dependent on
the choice of valread since if valtime ≤ valread then the possible benefit of being
helpful always outweighs the cost of the time involved. The result is that the
PDA will always ask the user if b ≥ d, unless the answer is obviously “Yes”.

From equation (3.3) it can be seen that if (valtime−valread) is a constant,
the amount of trust required in the membership of category cp is inversely
proportional to the value of the category. Accordingly, the lower the potential
value of the other principal, the greater the trust required for it to be worth
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disturbing the PDA owner. In practical terms, this indicates that a good choice
of value for valtime is the value of the lowest category with which the user wishes
to be consulted when a principal with strong membership (high value of b−d)
of that category attempts to read a number of equal value.

3.4.3 Other Trusting Decisions

The cost-benefit analysis of the other trust-decisions shown in figure 3.5 will
now be considered.

Request

The PDA owner enters the name of the person about whom they require in-
formation and the category under which they intend to file the data. The
address book application now computes the expected benefit of asking each
person within communication range and then polls each one in turn until one
returns an answer. If the PDA is unable to obtain the number then it can store
the request and ask other PDAs that it encounters in the future.

The expected benefit of asking Alice for a number depends on the relation-
ship between Alice and the number. If the owner is looking for Alice’s number
then she is clearly the best person to ask, but if Bob knows Alice as a friend
and he is looking for the number of a colleague then she is unlikely to be able
to help. In access control terms this is represented as the ability of Alice to
write to the category under which the owner intends to file the number and to
link numbers with the principal that Bob is looking for. This is an analogous
decision to the one made in section 3.4.1 when the PDA must make a decision
based on the read permissions held by the other principal.

Therefore, assuming that Bob is looking for the number belonging to some-
one other than Alice, the expected benefit of asking Alice for a number is:

Benefityes(b−d,valcp ,valcd
) = valcp .(b−d) − max (valcd

−valwrite, 0)

cp is a category which has write permission on the target category cd sup-
plied by the owner of the PDA and of which Alice is a member. valcp and valcd

are the values of cp and cd respectively and hence this equation is analogous to
the benefit equations used to determine whether a principal may read a number
in a category cd. valwrite, like valread, is a tunable parameter that represents
how aggressively the PDA should search for a number. This parameter is much
more dynamic than valread: it can be influenced by the user when initiating a
search via an “urgency” rating on the search screen, but it also takes environ-
mental factors into account such as remaining battery power versus the cost of
communication.

However this equation does not take into account that Alice may be asso-
ciated with multiple categories cp that have write permission on cd, and since
membership of one category may imply membership of another, summing the
benefits for all cp that can read cd would lead to an inflated result. Using
the category structure shown in figure 3.8 as an example, suppose Alice is a
member of ca with trust (0.7, 0.1), and Charlie is a member of c′ch with trust
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(0.8, 0.2). Since the strength of membership (b−d) of their respective categories
is equal and the value of c′ch is greater than that of ca (12 compared to 10) there
should be greater benefit in asking Charlie than Alice. However, by default all
members of ca inherit the permissions of c′a so the näıve solution would give the
benefit of asking Alice as 15. Simply using the category with the greatest value
would also lead to errors: if some weaker recommendations also place Charlie in
category cch with trust (0.2, 0.1), asking Alice would again be assigned a higher
benefit than asking Charlie, despite the greater value of cch.

Figure 3.8: Part of a category hierarchy. Category values are shown in paren-
theses.

The solution employed is thus: for a particular traversal of the lattice,
consider only the category which maximises the principal’s expected benefit
(that is, valc× (b−d)). Since a principal may appear in multiple paths through
the category lattice (the previously mentioned example of colleagues who are
also friends), define a set, C, of these categories. The benefit of asking Alice
for the required number is therefore:

∑

cp∈C

valcp .(b−d) − max (valcd
−valwrite, 0)

Suppose Bob is searching for Charlie’s number. If Charlie is within com-
munication range, his PDA will ask Charlie’s first, but if Charlie is unwilling
to give his number to Bob (perhaps their PDAs have yet to be “introduced”)
or if Charlie is not contactable, then Bob’s PDA will contact the other avail-
able PDAs in decreasing order of the expected benefit of asking them for the
number, until the number is successfully obtained.

Push-Number

It is likely that Bob wishes to distribute his details to those people who would
normally be able to read his number if they were to request it. Therefore, a
number should only be pushed to those users who have read permission on the
category in which it belongs: for each of the principals within communication
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range the PDA evaluates the Benefityes function described in section 3.4.1, and
if it is positive, the number is sent to that principal. The valread variable may
be used to determine how aggressively the PDA pushes its number to potential
receivers.

Receive-Number

To avoid wasting resources, the decision as to whether to receive a number
from another PDA should be taken as early as possible in the interaction.
Unfortunately the current prototype implementation does not have access to the
lower levels of the network stack and can only make a decision whether to accept
a piece of data once it has been received. Since storage is cheap, the approach
taken is that the PDA will accept all recommendations and compute their
usefulness upon demand. This also means that should the PDA later obtain
further recommendations that render the received recommendations more useful
then they will be treated as such, instead of potentially being discarded when
they are first received.

The size of each recommendation depends on the size of the cryptographic
keys used in the implementation but, with a key length of 1024 bits, each
recommendation would be approximately 550 bytes, plus any associated meta-
data. With gigabyte flash memory storage units already appearing on the
market, storing large numbers of these recommendations on a PDA is not a
problem although this could leave the PDA vulnerable to a denial of service
attack.

3.4.4 Deciding What to Display

There is one other operation, not shown in figure 3.5, where the trust model is
invoked. This is in choosing what to display to the owner of the PDA when he
or she wishes to view some information. Suppose Alice wishes to view Bob’s
number. She searches for his name and the PDA finds ten telephone numbers
that are linked to him with varying degrees of strength. Since ten numbers
will not fit onto the PDA display at one time, they are displayed in an order
given by the product of the strength of the trust-model’s belief they belong in
a category (b−d), and the value of that category — the expected benefit of that
number. The interface is designed to allow the user to give feedback on which
number they were looking for and how successful they were at using it. This
means that if Alice tries to use a number that is, for example out of date, she
can click a button next to it and the system takes this to be a recommendation
from her (which is implicitly highly trusted) that this number is not Bob’s and
updates its trust values accordingly.

Alternatively, Alice might browse entries by address book category. These
could be ordered either conventionally (alphabetically), or by the degree of
category membership. Again, the interface allows feedback for incorrect entries,
in the form of extra recommendations.
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3.5 Conclusions

This chapter outlined a framework for an unobtrusive and mostly automated
security model for ubiquitous devices, using a system of trust-evaluated recom-
mendations combined with an explicit risk analysis. This model is useful for a
wide range of pervasive and ubiquitous computing applications, in which the
user’s time is a valuable resource and transparent interaction is needed wherever
possible. The models have been tested by applying them to the prototypical
examples of a phone book and appointment diary, and it is believed that they
would be equally applicable to other ad hoc interactions with principals found
in the owner’s phone book — playing (electronic) games and sharing music, for
example. However, it seems of limited practicality in applications that require
interaction with principals unlikely to feature in the owner’s address book, such
as an e-purse [CSG+03]. Use in unattended environments may also be difficult
as it is not clear whether paradoxical chains can automatically be resolved con-
sistently with human intuition.

Another limitation of this recommendation-based trust model is that it
makes no provision for the automatic detection of untrustworthy principals,
such as those that disobey the requested dissemination policy for a user’s phone
number. It is possible for the PDA to spot some infringements by intermittently
requesting its owner’s personal information from other PDAs it encounters.
Since information from third-parties may only be transferred by forwarding the
original recommendations unchanged (see section 3.3), it is possible to examine
the received recommendations for evidence of misbehaviour but this ad hoc de-
tection cannot be considered to be an effective enforcement of the data-owner’s
policy.

This framework also has a limited cost and risk model since the focus was on
usability, and the example application involves data with a poorly defined, and
highly subjective, notion of “value”. Later chapters will show how this model
can be extended to more expressive application domains and explore suitable
access control policies for autonomous trust- and risk-based decision-making
frameworks.
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CHAPTER 4

Risk in Global Computing

In the previous chapter, trust and risk were used to develop a novel access con-
trol model for information sharing in a ubiquitous computing scenario. This
work highlighted the ability of trust to automate the making of low-risk security
decisions. The importance of considering risk when assigning privilege was also
highlighted: it was noted that a user may be more than happy to distribute a
business card to complete strangers if it means free advertising for their busi-
ness, but may be quite careful to whom they give their mobile phone number.
Hence, a trust-based security paradigm must assess the risks involved in any
operation as part of the process of making a decision — an area not explicitly
considered in the existing trust systems described in chapter 2.

This chapter begins with a detailed exploration of the concept of risk, sur-
veying usage and definition of the term in other fields, then using this research
to define a risk model for use in global computing. This model is illustrated
using two of the example applications from chapter 1. Finally, using the SE-
CURE framework described in section 2.4 as a basis for the instantiation, a
software architecture for SECURE is presented.

4.1 What is Risk?

John Adams gives a detailed analysis of the term risk in [Ada95], drawing
upon all definitions and usages of the word. To disambiguate the various uses
he defines the following two terms:

Risk is the probability of an adverse event in a stated time period. This is the
definition of common parlance.

Detriment is the expected harm or loss associated with an adverse event. The
integrated product of risk and harm is the definition of risk in the risk

57
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and safety literature including, as will be seen later, the safety-critical
programming field of computer science. This product is often expressed
as a cost, such as pounds or loss in expected years.

Adams also states in [Ada95] that social scientists see risk as being an
inherently subjective quantity — people see the world differently and react dif-
ferently, so it is hard to measure objective risk because behaviour is modified
in response to perceived risk. A classic example is when roads that are felt
to be highly dangerous by local residents have statistically fewer accidents be-
cause people are more vigilant. However, in a computational decision-making
framework, this distinction of perceived and objective risk is irrelevant. If risk
can be perceived then, in a computational world, it must be quantifiable. The
economist, Frank H. Knight [Kni21] arrived at a similar definition for risk,
defining it as being a special type of uncertainty.

Risk applies to situations when one is unsure of the outcome, but the odds are
known.

Uncertainty applies to situations when one is unsure of the outcome and the
odds are unknown.

Within the insurance industry, risk is defined as being the potential varia-
tion from the expected outcome, which can be measured using the standard
deviation of the outcome distribution [AB00].

Risk Models in Computer Science

Within the safety-critical programming industry, the following definition of risk
seems to be widely, although not universally, accepted [Lev95]:

A hazard is defined as a state that together with other conditions in the
environment will lead inevitably to an accident. It has two components:

1. severity (the worst possible accident that could result from the hazard
given the environment in its unfavourable state);

2. likelihood of occurrence.

An accident is the result of a number of hazard states existing simultane-
ously. Therefore the risk of an accident is the probability of some combination
of hazard states occurring concurrently. Risk is the hazard combined with:

1. the likelihood that the hazard will lead to an accident;

2. hazard exposure or duration (latency).

4.2 A Risk Model for Global Computing

Of the models and definitions described above, the insurance industry notion of
risk seems the most appropriate for an access control system: when the system
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grants privileges to a principal it is with the expectation that they will be used
in a particular manner (for example, to update patient records to record the
treatment that was administered), but there is also the possibility that the
principal will deviate from this expected behaviour. The combined likelihood
and severity (detriment in Adams’ terms) of that variation is the risk of granting
those privileges to the principal.

The proposed risk model is that each principal, before making a decision on
whether to interact with another principal, analyses all the possible outcomes
from that interaction and assesses the possible variation from the expected one.
This will be done by calculating the likelihood and maximum potential cost or
benefit1 of each outcome.

This risk model builds upon the simple model developed for the PDA appli-
cation described in chapter 3. That application had a weak notion of detriment,
which is extended here to be modelled explicitly as monetary costs and benefits.
The use of a tangible asset allows a market mechanism to be used to quantify
preferences and priorities that may then be distilled into policy. This addresses
one of the important open problems in many policy systems, namely the process
of converting high-level strategic policy to low-level technical policy [BLMR04].

It is likely that in many applications, some outcomes will actually be dis-
tributed over a space that has a range of potential costs with corresponding
probabilities. For example in a distributed file system, one outcome might be
that part of a file is lost. However, depending on the data stored in the file,
there may be a non-linear relationship between the cost and which blocks are
lost. This could be modelled as one outcome for every possible combination of
data blocks lost, but this would quickly lead to an unmanageably large num-
ber of very similar potential outcomes. The proposed solution is to allow each
outcome to have a probabilistic variable cost, represented as a cost-Probability
Density Function — a probability density function with cost on the x-axis, or
cost-PDF.

4.2.1 Deriving Costs and Probabilities for an Outcome

For many application scenarios the outcomes and associated costs will be pre-
determined statically by the user, effectively encapsulating part of their security
policy. For long-running systems, costs may change over time and new outcomes
may be detected that were previously not expected. This is discussed further
in section 4.2.3.

The objective theory of probability states that the likelihood of each out-
come can be determined by dividing the number of occurrences of the outcome
by the total number of events observed [Ram31]. However, what if the user has
no previous observations to draw upon, or a change in context invalidates some
or all of any previous observations?

It was noted above that risk is the quantification of uncertainty, and that
when interacting with autonomous agents in a global computing environment

1For simplicity, “benefit” shall be defined as the negative side of the cost axis. All future
references to cost may be taken to also include any potential benefit.
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the risk lies with the uncertainty in the future behaviour of the other agents.
Accordingly, Gambetta proposes the following definition in [Gam00]:

trust (or, symmetrically, distrust) is a particular level of subjective
probability with which an agent assesses that another agent (or
group of agents) will perform a particular action, both before he
can monitor such an action ... and in a context in which it affects
his own action.

This suggests that the likelihood of each outcome should be a function of the
trustworthiness of the requesting principal, and any past experiences of this
situation. However, since past experiences are also used to calculate trust, the
trust value already encapsulates the objective probability and so the likelihood
shall depend only on the trustworthiness.

4.2.2 Combining Trust and Risk

To recap from chapter 2, in SECURE trust in a principal is computed by exam-
ining evidence (direct observations and third-party recommendation) relevant
to the current context. The output of the trust calculator is t, a list of (ti, ci)
pairs, where ti is the trust-value assigned to p for trust-context ci. The domain
of a trust-value ti in trust-context ci is the lattice Ti over which there are two
orderings defined, trust (indicating increasing/decreasing trustworthiness) and
information (how much evidence was used to calculate the trust-value) [CNS03].

Figure 4.1 illustrates a user (the decision-maker) contemplating entering
into parameterised interaction with a principal, p. For each possible outcome
the decision-maker has a parameterised cost-PDF (that is, a family of cost-
PDFs) which represent the range of possible costs and benefits that may be
incurred by the user should this outcome occur. The name of the principal and
any parameters associated with the request are passed to the trust-model which
returns some trust-information t as described above. The function shown as ⋆
in Figure 4.1 then uses t to determine the values of the parameters of the cost-
PDF and therefore selects which of the family of cost-PDFs is most appropriate
in this situation.

For example, suppose t is a vector consisting of t1 and t2. For this particular
outcome, the cost-PDF might be a Gaussian distribution with mean determined
by t1 and variance determined by t1 ⊕ t2.

Once a cost-PDF for each outcome has been determined, the cost-PDFs for
all the possible outcomes are combined and analysed according to the decision-
maker’s security policy — a process that will be described further in chapter 5
— and a decision made as to whether or not to go ahead with this interaction.

4.2.3 The Trust Life-Cycle and Trust-Contexts

The dashed lines in Figure 4.1 represent the second half of the “trust life-
cycle.” Once the decision has been made, some interaction may or may not
take place and sometime later there will be feedback from that interaction,
which is analysed by the ⋄ function and the trust-policy updated appropriately.
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Figure 4.1: The interface between trust and risk.

In some applications the request and receipt of feedback are not only sepa-
rated by a time delay but may not directly correspond at all. The outcome may
not be observable, or might be a poor indicator of behaviour — in a distributed
backup system, for example, it is better to test hosts’ responses methodically
than to rely on the presumably rare events that correspond to actual file recov-
ery operations.

In order to function, both the ⋆ and ⋄ boxes in figure 4.1 require a mapping
between outcomes and trust-contexts. The former uses such a mapping to
correctly parameterise the cost-PDFs, the latter to update the principal’s trust
information in the correct trust-context in light of the actual outcome. As
described in section 2.3.2, the SECURE project has chosen to unify the concepts
of trust-contexts and outcomes by using an event structure of outcomes as trust-
contexts. This neatly removes the need for the policy writer to laboriously define
a trust-contexts/outcomes bijection, and facilitates the easy marriage of trust
and risk components. An illustration of using event structures for outcomes is
given in section 4.3.1. Using outcomes in this way also integrates well with the
feedback system as the “Feedback” input shown in figure 4.1 becomes simply
the outcome(s) that actually occur.
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An important criterion for global computing is the ability to handle new
situations — that is, the acknowledgement that all the information cannot
be known in advance. A powerful feature of the event structure is that it is
extensible, so new outcomes may be added as they become known, thus allowing
the risk model to evolve in a similar manner to the way trust assessments change
in response to principal behaviour. Cvrcek and Moody outline a framework for
a model of dynamic risk in SECURE [CM05].

4.3 Application Examples

4.3.1 An e-Purse Scenario

An e-purse is a communications device that contains a smart-card on which
electronic tokens with monetary value may be stored and used to pass this e-
cash to other similarly equipped devices [SB02]. E-cash is useful in situations
where the payments are too small for it to be cost-effective to use a credit-card
and the use of real cash undesirable. Bus tickets, for example, usually cost much
less than the smallest denomination of bank note, and having drivers deal with
coins is inefficient as it takes time for them to find the passenger’s change, plus
there is the risk of robbery and loss.

Figure 4.2 illustrates how an e-purse could be used to pay for a bus jour-
ney. There are four trust-mediated decisions to be taken and the dashed line
represents possible trust-information exchanged between the bus company and
the bank. Each of these four decisions, and how they might be taken using the
SECURE framework, will now be described in more detail.

3

Request

£
£

Permission to
board bus

User

Bus CompanyBank

4

2

1

Trust information

Figure 4.2: Overview of operation of e-Purse

1. User request to buy e-cash from a bank . The user contacts an agent of
their bank and requests the transfer of e-cash to their mobile phone. It is
envisaged that the user would prefer to deal with their own bank directly,
but may be forced to deal with an unknown agent, for example if they
are in a foreign country. Possible outcomes are:

• The bank does not trust the user sufficiently to send them any e-cash
and the transfer is refused.
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• The bank sends the requested amount of e-cash.

• The bank sends a different amount of e-cash.

• The bank sends forged2 e-cash.

• The bank deducts the correct amount of money from the user’s ac-
count.

• The bank deducts an incorrect amount of money from the user’s
account.

2. Bank agent sends e-cash to the user . The bank has to decide how much
e-cash to transfer to the user. Possible outcomes are:

• User receives their cash and spends it.

• The user is not the owner of the account to be accessed, bank is
forced to cover the real owner’s loss.

3. User requests permission to board bus. Many public transportation sys-
tems use a zone-based charging system, where journeys between zones
incur a higher charge than within a zone. To automate the charging
process, the bus registers the user when they board, and charges the pas-
senger’s e-purse when they disembark. When a person attempts to board
a bus, their e-purse registers with the bus e-purse via a bluetooth connec-
tion and the bus must then make a decision as to whether to allow them
to board, based on factors such as the maximum cost of a journey on the
bus’s current route. Possible outcomes are:

• User pays the correct amount when they disembark the bus.

• User has insufficient funds to cover the cost of the journey.

• User pays with forged e-cash that is rejected by the bank when the
bus company tries to redeem it at the end of the day.

4. Bus requests payment for a ticket . Possible outcomes are:

• The bus requests the correct amount for the journey.

• The bus overcharges for journey taken.

• Something other than the bus the user is on is trying to charge the
user’s e-purse, or the user is not actually on the bus but is perhaps
just near a bus.

It is noted that for decisions 1 and 2 the model is similar to that already
employed by international credit card networks, such as VISA. The level of
verification (that is, trust required) is dependent on the risk associated with
the transaction. A more novel use of the SECURE model is for decision 3,
which will now be discussed in more detail.

2i.e., e-cash that appears genuine under the verification procedure available to e-purses,
but is rejected when redeemed at a bank
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Boarding the Bus

Factors that will influence the bus’s decision to let a person aboard are:

• user’s history with this bus company;

• recommendations from banks;

• recommendations from other bus companies;

• maximum cost of ticket on current route.

The costs and benefits of each outcome are related to the fare the passenger
is expected to pay. It is assumed that for a particular context (such as time,
day of week, location), the number of zones travelled by a passenger in a single
journey is randomly and independently distributed. This can be modelled using
a Poisson distribution, P (λ), where λ is the average number of zones travelled
through on a single journey.

P (λ) : f(x) =
e−λλx

x!

This leads to the following costs and benefits for each outcome, expressed
as probability-density functions.

• User pays the correct amount when they disembark the bus. Benefit
= P (fare(λ)) where fare(n) is the function that determines the fare for
travelling through n zones.

• User has insufficient funds to cover the cost of the journey. If this is an
honest mistake then the amount of money that the passenger is short of
the fare will be a random number between one pence and the full fare.3

Therefore, the cost and benefit will be uniformly distributed between
the full fare (minus one pence) and the cost of transporting a non-paying
passenger; that is between P (fare(λ)) and P (cost(λ)) where cost(n) is the
function that determines the cost-price of a fare for travelling n number
of zones. This is illustrated in figure 4.3.

• User pays with forged e-cash that is rejected by the bank when the bus
company tries to redeem it at the end of the day. Cost = P (cost(λ)),
where cost(n) is the same function as in the previous outcome.

In all three outcomes, λ can either be based on any history about the pas-
senger stored in the trust model, or statistically determined if the person is
unknown. In either case the system would take into account contextual infor-
mation such as time-of-day.

3A dishonest passenger could attempt to persistently avoid paying the fare by always
having too little e-cash in their e-purse, but an intelligent adversary would arrange to always
pay small but random amounts to avoid creating too much suspicion.
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benefit (£) cost (£)
b c

f(cost)

Figure 4.3: The family of cost probability density functions for the outcome
that the passenger has insufficient funds to pay the fare. Both b and c are
Poisson-distributed by the length of the journey.

Integration with SECURE Trust Model

An example event structure for the e-purse scenario is given in [CDKN04] and
expanded in figure 4.4 to include the additional outcomes considered in this
example. The following outcomes are possible:

• Nothing may have been observed (∅);

• reject may have been observed;

• accept may have been observed, but it is not yet known whether this is
of subtype forged, insufficient funds, or paid in full ;

• forged may have been observed (implying observation of accept as well);

• insufficient funds may have been observed (implying observation of ac-
cept);

• paid in full may have been observed (implying observation of accept);

insufficient
funds

0

reject accept

forgedpaid in full

Figure 4.4: Example of an event structure of outcomes for the e-purse scenario.

The SECURE trust-engine can compute a trust-value of the form, (s, i, c) for
each of the possible outcomes, where s is the number of supporting observations,
i is the number of inconclusive observations and c is the number of contradictory
observations. Given this information, it is trivial to compute a probability for
each of the possible outcomes, as required by this risk model.
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4.3.2 Spam Filtering

A second on-going example application used in the SECURE project is that
of detecting unwanted email (“spam”). This uses a simpler risk model than
the e-purse scenario, thereby making it easier to evaluate other aspects of the
SECURE framework. The SECURE project has developed a number of different
applications for detecting spam; the risk model used in all of them is described
below.4

Requests and Responses: There is one possible request, namely to accept
an email. The decision-maker can either “pass” or “mark” messages.
Passed messages are delivered normally. Marked messages are taken out of
the normal stream, for example they may be placed in a special “suspected
spam” folder, which is checked less frequently.

Outcomes: The message might be real or it might be spam, so there are two
outcomes. The user of the system will eventually discover which occurred
in either case, thereby providing feedback. The event structure of these
outcomes is shown in figure 4.5. There are two cost-PDFs representing
the two possible outcomes, Spam and NotSpam, and each must be able
to encode the possibility of the email being marked or passed, as shown
in figure 4.6. Note that since the costs chosen below are easy to model us-
ing discrete values, cost-probability-functions have been used here, rather
than probability density functions.

Mark

NotSpam

Pass

SpamNotSpam Spam

0

Figure 4.5: Event Structure for
spam filtering.

mark

pass

cost

Outcome: NotSpam

cost

mark

pass

pp

−1 0 0 E
Outcome: Spam

Figure 4.6: Probability cost-functions
for spam filtering.

Costs

Costs are expressed relative to what would be incurred without the spam filter
in place since this avoids difficulties in assessing exactly how much email is
“worth.” Table 4.1 is the cost matrix for the two outcomes with respect to each
of the two members of the decision set.

Note that passing a message always costs zero, since that is what would
happen without the filter in place. Marking a message provides a benefit (cost

4This application example risk model was developed in collaboration with David Ingram
and published in [DM04] and [DBE+03].
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Pass Mark

Spam message 0 -1
Real message 0 E

Table 4.1: Outcome cost matrix for the spam filtering application

of -1) if it is spam, equivalent to the time saved and the value of not interrupting
the user. This is arbitrarily set to be the unit of cost in this application.
Marking a real message has a positive cost of E (the false-positive error cost).
E is likely to be considerably more than 1, and is configured by the user based
on the average severity of the consequences of missing a valid email relative to
the cost of their time.

Trust Values and Outcome Likelihoods

There are a number of ways to determine the likelihood of the outcomes in this
scenario. The simplest method is based on the identity of the sender of the
email — effectively asking the trust engine how much the sender is trusted not
to be a spammer. An event structure for this is shown in figure 4.5. However,
a lack of authentication in the Simple Mail Transfer Protocol (SMTP) [Kle01]
means that this approach is not particularly effective in practice and alternative
methods will be discussed in chapter 7.

4.4 The SECURE Architecture

Figure 2.2 gave an outline of the SECURE framework. The interaction between
trust and risk within the framework was shown in more detail in figure 4.1; how
this integrates with the rest of the framework is shown in figure 4.7.

Interactions are initiated by a request relating to a principal p being submit-
ted to the Request Analyser. The entity recognition module then determines
whether p has been seen before, and how much trust there is in the recognition
process used to authenticate p, therefore translating p into a Recognised Princi-
pal (RP). The request is then submitted to the Access Control Manager, which
invokes the trust and risk components to determine the trustworthiness of RP
and the risk associated with the request. The Trust Calculator computes the
trustworthiness (Tv) of RP according to the trust policy [CNS03] and returns
that value to the Access Control Manager. The Risk Evaluator determines the
appropriate family of cost-PDFs for the request (a “risk metric”), as described
earlier in this chapter.

The Access Control Manager combines the trust value and risk metric
(shown as ⋆ in figure 4.1) and evaluates the user’s risk-based security policy
to determine whether the request should be granted — the ⊕ function in fig-
ure 4.1. A key benefit of the SECURE approach is that the explicit modelling
of uncertainty is carried all the way through the decision-making process, fa-
cilitating the making of decisions based on metrics of the quantity and quality
of information available, rather than just the information itself. In chapter 3
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Figure 4.7: A Software Architecture for SECURE

it was shown that, as a result of this uncertainty, a richer set of possible re-
sponses was required than simply “yes” or “no” and therefore a requirement
of the SECURE security policy language is that it must be possible to return
a set of possible responses. For example, one of these responses may be that
more information is required, perhaps in the form of additional credentials that
might lead to a phase of credential discovery or negotiation by the Request
Analyser. For a variety of reasons, such as privacy or the principle of least
privilege, p may not have submitted all of the credentials he or she holds in
the initial request, but may be willing to do so if the the decision-maker can
produce some verification of their own authenticity. To ensure the generality
of the architecture, all decisions can be mapped to a binary yes/no value in
the event that the calling application does not understand the semantics of the
actual decision.

Once an interaction has completed, the Interaction Monitor observes the
outcome and gathers any other relevant feedback before submitting it to the
Evidence Manager (the function represented by ⋄ in figure 4.1). The Evidence
Manager is responsible for the collection, aggregation and storage of evidence
concerning other principals, in the form of direct observations or recommen-
dations from others. The Evidence Manager may also issue recommendations
about principals for use by others, but since there are also privacy implications
in doing so, access is controlled using SECURE. A request from another prin-
cipal for trust information about a third party is evaluated using the Access
Control manager in the same way as any other request, and the Request Anal-
yser then only retrieves the requested evidence from the Evidence Manager if
the decision is positive. Access control to the evidence store will be discussed
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further in section 6.7.2.
There are two other major components in figure 4.7, Risk Configurator and

Trust Formation, that have not yet been described. These are not normally
invoked while evaluating a request, but perform background processing on the
evidence to provide pre-computed information which the other components then
use during evaluation. The Risk Configurator performs data mining on the
evidence store to update the risk information, as described in section 4.2.3.
The Trust Formation component (also known as the Trust Life-cycle Manager)
is responsible for instantiating and updating trust policy. Where a trust policy
contains a reference to a principal who is currently unreachable, the Trust
Formation module may also be able to provide a cached value. The Trust
Formation module may be invoked at a variety of times, for example when
sufficient new evidence has accumulated in the evidence store, when access
control policy calls for trust values more recent than those cached in the trust
policy, or as a background process whenever the system has resources available.

4.5 Conclusions

This chapter has reviewed the concept of risk in a variety of fields, including
computer science and the insurance industry. The results of this review lead to
the development of a formal and explicit model of risk for use in securing global
computing applications which was subsequently illustrated using the examples
of spam detection and an e-purse scenario. A software architecture for the
SECURE framework was then presented, based on, and extending, the work of
the SECURE project consortium.

The next chapter will build upon the risk model by considering the re-
quirements for specifying and enforcing security policy in the SECURE Access
Control manager.
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CHAPTER 5

Policy Languages for Trust-Based

Access Control

The previous chapter defined a model of risk for use in global computing, and
in particular trust-based access control. In contrast to trust, which may be
considered to be globally computed, risk evaluation is a local process in which
a principal must determine their personal exposure that will result from trusting
another principal. In this way, a principal may make a local evaluation of global
information (“trust”) to ensure that the views of others cannot contravene
their own security policy, or force them to take a decision that they would not
otherwise wish to make.

This chapter will study the problem of writing and evaluating security poli-
cies incorporating reasoning about trust and risk; that is, the rôle of the Access
Control (AC) manager in the SECURE architecture (figure 4.7).

5.1 Making Trust-based Decisions

Intuitively a high-risk action requires greater trust in its participants, and the
lower the risk the less worthwhile it is to expend resources to establish a high
level of trust. The majority of computational trust systems, such as [ARH00]
and [AD01], concentrate on aspects relating to assigning a trust-value to a
principal; they do not consider policy-driven decision-making using trust.

[YS02] and [XL02] make use of thresholding in their policy languages — the
former checks that the trust-value is greater than a scalar, while in the latter
a principal must have performed at least a certain number of interactions as
well as having a trust value greater than a predefined level. However, all of
these thresholds are statically determined by the policy author and there is no
run-time evaluation of risk.

71
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In SECURE, an explicit cost-benefit analysis is used to determine how much
trust is required to offset any given risk. This can take two possible forms:

Risk-based thresholding: the AC manager checks rules that compare a
trust-value to a cost-metric. This is similar to [YS02], except that the
threshold is dynamically set by the level of risk, so the greater the risk,
the greater the trust required. This was also the approach taken by the
application in chapter 3.

Risk metrics: the AC manager checks that the risk of the request does not
exceed thresholds determined by the policy author. As noted in sec-
tion 4.1, risk can be measured by a number of statistical measures such
as expectation, variance and minimum/maximum.

Another requirement for the policy language is the ability to choose from a
number of possible responses, such as request additional credentials, or (in an
interactive system) ask the user for guidance. These responses must be param-
eterisable to allow the system to communicate, for instance, what additional
credentials are required.

5.2 Trust-reasoning in the OASIS Policy Language

Both OASIS and the SECURE AC manager have the concept of principals
making requests which are then granted or denied. A logical starting point
for a policy language was therefore to investigate the use of the OASIS system
as the SECURE AC Manager. This would also facilitate the incorporation
of trust-based reasoning into existing applications that use rôle-based access
control.1

In OASIS, authorisation rules are evaluated to determine whether a prin-
cipal has the right to use a particular service. SECURE’s semantics are much
richer, allowing a principal to make a request for which there can be a number
of responses. This could be encapsulated into OASIS by making each possible
response the subject of an authorisation rule:

r, e1, ..., ene ⊢ response1(params, ...)

r′, e′1, ..., e
′
ne

⊢ response2(params, ...)

r′′, e′′1, ..., e
′′
ne

⊢ response3(params, ...)

However, this requires additional logic in the request analyser to split the re-
quest into separate invocations of the AC manager, one for each possible re-
sponse. By using the OASIS type system to encapsulate requests as an action
type, submitted as a parameter to a generic request privilege, the logic can be

1The OASIS-based TBAC model described in this section was developed in collabora-
tion with Jean Bacon, András Belokosztolszki, David Eyers and Ken Moody, and published
in a paper at the Ninth Symposium on Access Control Models and Technologies (SAC-
MAT04) [DBE+04].
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kept entirely within the OASIS model. The template for an authorisation rule
would then be:

r, e1, ..., ene ⊢ request(principal : String, act : Action, resp? : Response)

Sub-types are used to distinguish between different sorts of action, as shown
in figure 5.1. Actions are in turn parameterised with request-specific informa-
tion, for example, filename for a “get file” action. Depending on the action
type, OASIS will use different functions to access these parameters. In this
section capitalised subwords are used to denote types (for example, “FileAc-
tion”) and lower case words separated with underscores for parameter names
(e.g. “file action”).

Figure 5.1: The Action type and its sub-types.

The following predicates can be used to access parameters of the subtypes
shown in figure 5.1:

getActionName(act : Action, action name? : String)

getF ileActionOwner(act : FileAction, owner? : String)

getF ileActionFilename(act : FileAction, file name? : String)

5.2.1 OASIS Environmental Predicate Interfaces to SECURE

Due to the openness of the OASIS environmental predicate call-out mecha-
nism, it is straightforward to define the interfaces required to allow trust and
cost/benefit computations to be included within OASIS policy rules. How
an OASIS-based Access Control manager would integrate with the SECURE
framework is shown in figure 5.2. Initial investigations suggested that three
main predicates were required:

Trust retrieval: The first predicate uses the contexts2 associated with the
action to retrieve relevant trust values into rule parameters for a named
principal:

trust(principal : String, context : String, value? : TrustV alue)

2NB: The model in this section predates, and to some extent motivated, the unification of
outcomes and contexts as event structures.
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Cost retrieval: The second predicate is one which retrieves the set of outcome
costs into rule parameters for a named action:

cost(action : String, outcome : String, cost? : Number)

Risk thresholding: This third type of predicate fails if the trust is too low for
the outcome’s cost. This failure is in the same sense as any other OASIS
rule predicate returning false — if using OASIS semantics in which all
routes are explored to reach the potential target rôle or privilege, such
failure will cause backtracking to attempt other potential activation or
authorisation rules. Further details of these “risk” predicates are given
below.

5.2.2 Risk Thresholding Predicates

Although the OASIS policy language is not sufficiently expressive to encode
all the policies required in SECURE, the ability to call external services via
environmental predicates can be used to extend the OASIS model to provide
the required functionality. Initially it was thought to try and support both the
risk-based thresholding and the risk metric style policies described in section 5.1.
Therefore the following grammar for writing risk predicates was proposed:

PREDICATE ::= CONDITION

| if CONDITION then PREDICATE else PREDICATE endif

CONDITION ::= CONDITION CONDOP COND2

COND2 ::= EXPR | COND2 CONDOP2 EXPR

EXPR ::= true | false | (CONDITION)

| ARITHEX EXPROP ARITHEX

ARITHEX ::= ARITHEX2 | ARITHEX ARITHOP ARITHEX2

ARITHEX2 ::= ARITHEX3 | ARITHEX2 ARITHOP2 ARITHEX3

ARITHEX3 ::= VALUE | exp(ARITHEX) | (ARITHEX)

VALUE ::= tval | cost | id | NUM | -VALUE

CONDOP ::= ||

CONDOP2 ::= &&

EXPROP ::= == | != | > | < | =< | >=

ARITHOP ::= + | -

ARITHOP2 ::= * | /

NUM ::= int | float

The standard definitions of the numeric datatypes int and float are assumed.
id is an identifier (variable name) and exp(ARITHEX) is the exponential func-
tion ex where x may be another arithmetic expression. Operator binding and
precedence is based on ANSI C [ISO99].

5.2.3 Policies for Spam Detection

This model of access control will now be illustrated using the application of
spam detection. Based on the risk analysis described in the previous chap-
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Figure 5.2: Using OASIS as the SECURE Access Control manager.

ter (section 4.3.2), the expected cost of marking the message as spam is:

P × E + (−1)(1 − P ) = P × (E + 1) − 1

where P is the probability that the message is spam. In this application, P
might be determined as follows.

• trust is the probability the sender is a spammer, based on past interac-
tions, or reported by discounted recommendations.

• history is the number of pieces of evidence (observations and recommen-
dations) the trust value is based on.

• conf = ER confidence; a value in the interval [0, 1) based on <from,
route>.

• bayes = content-based real email probability; based on <subject, body>.

A straightforward way to combine two probability values is with a weighting,
as follows:

• estimated probability(real email) = q.trust+ (1 − q).bayes;

• q depends on history, conf, and possibly a user-specified weighting.

The required characteristics are as follows:

As history → 0, q → 0

As conf → 0, q → 0

As (history → ∞ and conf → 1), q → 1

The most natural way to achieve this is to make q proportional to conf, and
also to some negative exponential function of history, for example:

q = conf .(1 − e−history/H)

The table below shows the relationship between history and q/conf , and
the effect of the scaling constant H:
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history q/conf

0 0
H 1 − 1/e ≈ 0.63
2H 1 − 1/e2 ≈ 0.86
∞ 1

Therefore, H is the number of pieces of evidence for the trust engine to
represent 63% of the weighting relative to content-based analysis and assuming
perfect entity recognition (proportionally less otherwise). This can be tuned by
a system administrator and informal analysis suggests that a value of two or
three would be appropriate in this scenario since few emails need to be received
to determine whether the sender is a spammer or not.

The Bayesian analysis has the greatest effect when we have absolutely no
trust information or if the entity recognition confidence is not very high (quite
likely since email headers can be forged easily). Hence:

P = estimated probability(real mail)

= trust.conf .(1 − e−history/H) + bayes.(1 − conf .(1 − e−history/H))

Access control policy

Suppose the policy is to mark the message if the expected cost is negative, that
is, if P × (E + 1) < 1. The email is presented to the Access Control manager
as:

request(sender, email action, response)

The following rule is then used to determine whether to mark it as spam:

trust(sender, ‘prob’, prob),

trust(sender, ‘history’, history),

trust(sender, ‘identification’, conf ),

bayes analysis(email, bayes),

cost(email, ‘mark real msg’, E),

risk mark(prob, history, conf , bayes, E) ⊢ request(sender, email action, ‘mark’)

If request is granted then the email is marked as spam. The bayes analysis
predicate is just an environmental predicate call to an external Bayesian analysis
service; the risk mark predicate is defined as:

( prob*conf*(1-exp(-history/H))

+ bayes*(1-conf*(1-exp(-history/H))) ) * (E+1) < 1

5.2.4 More Complex Policies: The Grid

While recent years have seen tremendous performance advances in micro-
computers, there are still some science, engineering and business applications
that require specialised resources. Such specialised resources are usually beyond
the means of infrequent users of these applications. One solution has been to
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attempt to create something akin to a “power grid” of computational resources
— the user “plugging-in” to this grid may access a whole range of services not
available at their current location, possibly in return for a fee [App02].

As the Internet has shown, exposing computers to the entire world makes
for some tricky problems — how does a user know which server to trust with
their computation, or which server has the correct version of the document
they want to retrieve. Likewise, the server must decide whether this user is a
genuine customer, if they are likely to pay for the work carried out, or if their
program will use more resources than the server is willing to allocate. Linking
the user to a credit card account may mitigate some of these problems, but this
is inappropriate for small transactions or pro-bono agreements (for example,
where there exist reciprocal agreements between organisations to allow them to
use each others’ computing resources).

A file-storage and publication service for the Grid

To further demonstrate the utility of this model, it has been applied to a Grid
file-storage and publication service. There are a number of possible use-cases.

• Alice is going on a long research trip, and wishes to ensure some data she
needs is widely available, not only for herself, but to potential collabora-
tors she may meet along the way.

• Bob has a very large data set he needs processed by a grid computation
server. To save network cost, he wants to host the data as close to the
compute server as he can.

• Charlie has written a very controversial paper he is expecting many people
will wish to download. His local sysadmin has told him that their web-
server is likely to be overwhelmed, and Charlie is also worried that people
who object to his paper may try to block its distribution.

Each server offering this service has different properties. Apart from their
fee, they differ in bandwidth available, uptime guarantee, storage integrity and
the strictness with which they check access control credentials. These are all
represented in the trust framework via contexts. Correspondingly, the user
must specify the importance of the file in each of these categories. Alice will
wish to use several servers that are geographically distributed with average
availability and integrity, but are known to be very trustworthy when it comes
to not allowing unauthorised people to access stored files. In contrast, Bob
needs only one server (so can pay a little more for it), but he needs very good
availability and storage integrity. Finally, Charlie wants to publish his paper
widely on a large number of cheap servers which are trusted for their high level
of integrity.

The Grid hosts also use SECURE to make decisions about which clients
they can trust. Since there is a certain amount of anonymity on the Internet,
there is always the danger that a service vendor will not receive payment, or
that they will publish a file that results in the server being overwhelmed or
leading to legal difficulties. Of course, there are also services that may want
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very popular files (if they have a good connections and an appropriate charging
scheme in place) and even ones that actively look to host information that has
been censored in other legal jurisdictions (for example, http://cryptome.org).

The advantage of SECURE here is that while a Grid host may have never
personally dealt with a potential client before, the trust framework allows the
decision-maker to consider the reported experiences of its peers. This nicely
models human communities in which persons who repeatedly act in an anti-
social manner are eventually rejected by the community, thus giving principals
an incentive to behave well.

File retrieval and deletion

Trust-based reasoning may also be used for determining who should be able
to retrieve or delete the shared files. During her travels, Alice meets David
at a conference and wants to give him access to a copy of her slides. Rather
than having to log into all the servers where the files are stored to update the
access control policy, she gives him a signed recommendation that any Grid
host containing her files should permit him to download the file, slides.pdf.

David returns home from the conference and contacts a server that Alice told
him contains the file. Retrieving files does not require payment, so he submits a
request to read Alice’s file, along with the recommendation she gave him. The
server weighs up the strength of Alice’s recommendation and its confidence in
David’s authenticity against the importance Alice has indicated she places in
the confidentiality of the file. For a public presentation, only a low confidence
in David’s authentication as being the David referred to in the recommendation
is needed. In contrast, for a presentation intended only for project partners,
the server may decide the file is sufficiently important to expend resources on
further authentication, such as a challenge-response exchange.

A similar process is used when a server is asked to delete a file, but in
addition to checking the authorisation and identity of the requester, it also
examines their carefulness trust-context to check how much the user themselves
can be trusted when issuing commands of serious consequence, such as delete!
This models the concept of trust in oneself.

Full details of the possible actions, their outcomes, relevant trust-contexts
and format of trust-values are shown in table 5.1. Most of the trust-values used
are self-explanatory, but for some contexts (belief, disbelief) pairs are used which
summarise the weight of evidence for and against a particular trust-assignment,
with belief + disbelief ≤ 1. This is similar to the format of trust-values used
in the application in chapter 3. A further complication of the honesty trust-
context is that it was observed that a person’s ability and willingness to pay
might be dependent on the amount of money involved. For example, a user
might be known to be willing to pay small amounts but tends to renege on
the deal if the amount is large, or a credit-card company might recommend
that someone is able to pay up to £100, but no more. To model this, the
space of possible payments is divided into intervals and a (belief, disbelief) pair
computed for the relevant one. For example, in the prototype implementation
(see section 5.2.5) the intervals [0, 10), [10, 30), [30, 60), [60,∞) are used.
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A publish-file policy in OASIS

For each server which offers a publication service within her budget, Alice sub-
mits the request:

request(server id,file action, response)

The file action object (of type “FileAction”) is parameterised with the name
of the file to be published, and Alice’s name. Alice has specified in the file’s
meta-data that high file availability is important to her, but she intends to
achieve that via replication, so she only attributes medium importance to the
individual servers’ uptime and integrity. The file does not contain highly con-
fidential data so Alice is able to assign a low importance to the server giving
the file away indiscriminately. Further, she needs to be able to retrieve the file
easily and so she is anxious not to host it with servers that are over-zealous
in enforcing access control policy therefore assigning low importance to the en-
forcement aspect. All of this information is made available to the AC manager
via the SECURE cost analyser.

The OASIS policy is then used to determine whether this server is a suitable
host for her files as shown in figure 5.3, where the costs are computed from the
information supplied by Alice as to the importance of her file.

trust(server id, ‘availability’, t1),

trust(server id, ‘confidentiality’, t2),

trust(server id, ‘integrity’, t3),

cost(file action, ‘unavailable’, cost1),

cost(file action, ‘ignore AC’, cost2),

cost(file action, ‘too strict’, cost3),

cost(file action, ‘lost’, cost4),

risk unavailable(t1, cost1),

risk ignoreAC(t2, cost2),

risk tooStrict(t2, cost3),

risk lost(t3, cost4) ⊢ request(server id,file action, ‘host’)

Figure 5.3: The OASIS policy used to determine whether server id is a suitable
server for hosting Alice’s files.

A retrieve-file policy in OASIS

To retrieve the file Alice has given him permission to download, David submits
the following request where the read file action is parameterised with (Alice,
slides.pdf). The OASIS policy the server uses to determine whether he may
read the file is shown in figures 5.4 and 5.5.

request(David, read file action)



5.2. Trust-reasoning in the OASIS Policy Language 81

The costs Alice assigned to her file are given in section 5.2.4, from which we
can deduce that provided the server is over 60% confident that is it “David” it
is interacting with, since cost1 is “low”, the server must just have more belief
than disbelief that David is authorised to read the file in order to grant him
access to it. Since David has supplied a recommendation from Alice strongly
recommending that he be able to read the file, unless the server has further
information to the contrary (perhaps another recommendation from Alice with
a later time-stamp revoking that authorisation) it will therefore allow him to
read the file.

trust(principal, ‘authorised’, t1),

trust(principal, ‘identification’, tid),

getF ileActionName(read file action, file name),

cost(file name, ‘authorised’, cost1),

cost(file name, ‘unauthorised’, cost2),

read file risk(t1, tid, cost1, cost2) ⊢ request(principal, read file action)

Figure 5.4: The OASIS policy used by the server to determine whether a prin-
cipal may access a file.

if trust_id < 0.6 then

false

else

if cost1 == low then

t1.belief - t1.disbelief > 0

else

if cost1 == high then

if cost2 == high then

t1.belief - t1.disbelief > 0.6

else

t1.belief - t1.disbelief > 0.7

endif

else

if cost2 == high then

t1.belief - t1.disbelief > 0.5

else

t1.belief - t1.disbelief > 0.6

endif

endif

endif

endif

Figure 5.5: Definition of the read file risk predicate.
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Trust reasoning in rôle-activation

The ability for Alice to make recommendations about rôles, as well as individu-
als demonstrates the expressiveness gained by using the OASIS infrastructure.
For instance, she might recommend that all members of the University of Cam-
bridge Computer Laboratory can retrieve her presentation, but members of the
University of Oxford may not read any of her files. Example policies using rôles
more extensively are given in section 5.3.5.

5.2.5 Implementation

To check the viability of these ideas, the SECURE trust predicate interface was
integrated into the Prolog OASIS implementation. For example, translating
OASIS XML policy to check whether a user is willing to store a given file on a
particular server, the following Prolog OASIS is obtained:

privilegeRequest(fileAction_store,[ServerID,FileName]):-

% check policy parameter modes

nonvar(ServerID),nonvar(FileName),

% check prerequisites

trust(ServerID,availability,T_1),

trust(ServerID,confidentiality,T_2),

trust(ServerID,integrity,T_3),

trust(ServerID,reliability,T_4),

cost(FileName,unavailable,Cost_1),

cost(FileName,ignore_AC,Cost_2),

cost(FileName,too_strict,Cost_3),

cost(FileName,lost,Cost_4),

risk(unavailable,T_1,Cost_1),

risk(ignoreAC,T_2,Cost_2),

risk(tooStrict,T_3,Cost_3),

risk(lost,T_4,Cost_4).

Note that the above is a particular instance of a FileAction, with a set
parameter structure (server ID followed by the filename) — this is a consequence
of the Prolog translation; in fact the XML policy format allows more flexibility
than this when specifying the binding of parameters within rules.

The risk predicates are encoded into Prolog from the risk expression syntax
given on page 74. This translation is done using the Definite Clause Grammar
(DCG) extensions of SWI-Prolog (DCGs are not part of ISO Prolog, but com-
monly appear nonetheless).

A number of manual privilege requests were issued to check that the frame-
work was producing the expected results. Advancing beyond this proof of con-
cept level requires the completion of the SECURE framework, which was revised
before this took place. The development of an AC manager for use with the
revised SECURE trust model is discussed below.
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5.3 Trust-reasoning using the Revised SECURE
Model

As a result of attempting to permit both forms of risk-policy — dynamic-
thresholding and metric-based — the interface between OASIS and SECURE
components described in the previous section is quite convoluted. The two
approaches are also not particularly complementary, with most policies exclu-
sively using the one form or the other. As demonstrated in section 5.2.4, the
policies produced are also complex and therefore rather unsuitable for pervasive
computing applications where it is likely that the end-user will be involved in
the setting of policy.

The revision of the SECURE trust model to use event structures for trust-
contexts [CDKN04] meant that the interface needed to be redefined to account
for this. Since an extension to the OASIS language was in any case required to
support the full amount of reasoning required by SECURE, it was also decided
to initially define a generic policy language that could be integrated into any
suitable policy engine instead of an OASIS-specific extension.

5.3.1 A Generic Policy Language

With the goal of simpler, more user-friendly language in mind, the second ver-
sion of the policy language will implement only the risk-metric form of policies.
As section 4.1 demonstrates, although risk is understood in many different ways
by various groups, all definitions centre around two simple concepts (risk and
detriment) that are easily understood. Therefore by developing policies solely
around the concept of risk, without muddying the waters with abstractions
such as trust, it should be much easier for end users to comprehend and write
policies. The revision of the SECURE trust model to standardise on (s, i, c)
triples as trust values also makes dynamic thresholding the less interesting of
the two paradigms.

With this in mind, for each outcome, oi, the following policy atoms are
defined that, when combined with standard arithmetic operations, provide to
the reasoning engine all the major risk metrics discussed in section 4.1.

• area(oi, c1, c2) – the probability that the cost of oi lies between c1 and c2.

• µ(oi) – the expected (mean) cost of oi.

• σ(oi) – the standard deviation of the cost distribution of oi.

To reason about risk, it is then necessary to perform standard comparison
operations (such as < and ≥) on these atoms, and combine expressions using
boolean operators AND, OR and NOT. Rather than developing a new gram-
mar from scratch it is more efficient to extend an existing one to incorporate
the atoms described above. The grammar of the Python language [vRD04]
was chosen as it has fairly standard expression semantics and, being an inter-
preted language, extensions are easy to incorporate because all expressions are
evaluated at run-time.
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Since a request may have multiple parameterised responses, request-specific
rules of the following form are evaluated in order, until one succeeds or the list
is exhausted. EXPR is a standard Python expression (as defined in [vRD04])
with the addition of the area(), µ() and σ() atoms defined above3 and \n is a
newline character.

POLICY ::= RULE | RULE POLICY

RULE ::= EXPR ⊢ response(param1, param2, ...)\n

5.3.2 Example Policies and Validation

In the e-purse scenario described in section 4.3.1 there are three possible out-
comes:

1. The user pays the correct amount.

2. The user has insufficient funds to cover the cost of the service received
(the bus journey).

3. The user pays with forged e-cash that is rejected by the bank when the
payee (the bus company) tries to redeem it.

The payee has three possible responses when a user requests a service: they
can accept the contract and serve the customer; accept the contract in return
for an up-front payment in the form of a deposit; or they can decline to serve
the customer. For example, the payee might have the policy of refusing to serve
any potential customer if the expected cost is greater than 0 (rule 5.1), will
accept the contract if there is a 99% probability of making a profit (rule 5.2)
and will otherwise request a suitable deposit (rule 5.3). This can be represented
in the generic SECURE policy language as:

µ(3) > 0 ⊢ refuse (5.1)

µ(1) + 3 ∗ σ(1) < 0 ⊢ accept (5.2)

True ⊢ deposit(µ(2) − µ(1)) (5.3)

Python has a powerful and expressive grammar. For example, the following
policy states that if the expected costs of either outcome one or two are greater
than five then the response should be to refuse.

filter(lambda x: x > 5, [mu(1), mu(2)]) |- refuse()

To validate the suitability of the Python language for use on mobile plat-
forms, the above example policies were implemented on Pippy,4 the free Python
for Palm implementation. Since no suitable implementation of the e-purse trust
model was available, and to allow deterministic testing, constant likelihoods
were assigned to all outcomes, although the lack of floating point arithmetic

3In the prototype these are implemented as normal Python functions.
4http://pippy.sourceforge.net
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support on the Palm meant this could not be done in a straightforward man-
ner. The solution that was adopted was to use values in the range 0–100 for
probabilities instead of 0–1.0. Square roots were then estimated using Pell’s
equation [Wik04].

Both policies executed without difficulty in under one second5 on the Palm
Tungsten-T device used for testing. The Pippy environment consumes just
430K of memory, the policies and associated test code another 2.9K.

To gauge the accuracy of the integer estimates of the floating point calcu-
lations, the same policies were also implemented on a normal implementation
of Python using floating point calculations. The results, shown in table 5.2,
indicate that, while the estimation of the square root introduces only a very
small error (Pell’s equation has a maximum error of 1), estimating floating point
equations in integer arithmetic introduces a larger error which, when combined
with the error due to estimating the square root, is potentially significant. This
problem can be mitigated with more complex fixed point structures at the cost
of increased programmer time and effort.

µ(1) σ(1) µ(2) σ(2) µ(3) σ(3)

Floating point -13.93 11.404 -2.985 11.401 0.0 0.0
Integer estimation, fp sqrt -13 12.450 -2 11.576 0 0.0
Integer estimation, approx sqrt -13 13 -2 12 0 0

Table 5.2: Comparison of numerical computation methods.

This set of generic extensions for making trust- and risk-based decisions will
now be integrated into the OASIS RBAC policy language.

5.3.3 Integration with the OASIS RBAC System

The previous OASIS-based AC manager performed the risk evaluation inter-
nally (albeit, via calls to external risk predicates), based on information pro-
vided by the SECURE trust framework and cost analysis components. In this
new model for access control, the generic risk language of the previous section
is implemented as an external software component to which the OASIS sys-
tem communicates using its environmental predicate call-out system, as before.
This is illustrated in figure 5.6. The predicates used are:

Trust retrieval: As before, this first predicate retrieves relevant trust values
into a rule parameter for a named principal. However, instead of retriev-
ing named contexts, the name of the action is passed, and all the trust
information associated with that event structure is retrieved into Tv:

trust(principal : String, action : EventStructure, Tv? : TrustValue)

Risk evaluation: This predicate evaluates the risk of the action using the rule
evaluation described in section 5.3, returning a response value if one is

5Unfortunately this was the smallest unit of measurement available.
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needed. In some situations, such as rôle activation, the response parame-
ter is optional since risk evaluation does not need multiple responses, but
instead succeed/fail semantics are sufficient. Tv is the trust values for all
outcomes in the event structure action.

risk(action : EventStructure, Tv : TrustValue[, response? : String])

Figure 5.6: SECURE framework with OASIS-based AC Manager.

5.3.4 Spam Detection Revisited

Using this new model, the spam detection policy of section 5.2.3 becomes:

trust(sender, email action, t),

risk(email action, t, response) ⊢ request(sender, email action, response)

The use of the expectation abstraction also allows the risk predicate to be
greatly simplified, in keeping with the aims of the new model.

µ(‘mark real’ ) + µ(‘mark spam’ ) < 0 ⊢ mark

True ⊢ pass

The implementation of this policy in the Python-based policy language de-
scribed in section 5.3.1 is shown in figure 5.7. Although the complexity of the
policy still exists, it has been moved to the µ() function, thus would be defined
by the application programmer rather than the policy writer.

5.3.5 Rôles and Trust in Grid Policies

Rewriting the grid policies described in section 5.2.4 to use the new model is
more difficult as the change in the trust model requires the application to be
reformulated to use event structures and (s, i, c) triples. Instead the improved
properties of the new model will be demonstrated using the second Grid use-
case outlined in section 5.2.4, that of user Bob who wishes to store a data-set
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on a storage server near to his compute server. The server bills for space used
after-the-fact so it must trust that Bob is a genuine member of the University,
he is authorised to use the service, and the University will pay the bill.

Bob’s university issues rôle certificates of the form:

Professor ⊢ Researcher(Cambridge, 5)

...

Research Asst ⊢ Researcher(Cambridge, 2)

PhD Student ⊢ Researcher(Cambridge, 1)

In order to use any grid services, Bob must enter the rôle of GridUser.
The Grid OASIS server uses the following policy which states that a user can
only enter the GridUser rôle whilst they hold the rôles of a logged in user and
researcher. It also computes its trust in the researcher’s institution to make
good the payments of its grid users, and the risk associated with issuing such
a rôle certificate. If the risk evaluation succeeds then the rôle of GridUser is
granted, parameterised with the user’s institution and research grade.

LoggedInUser∗, Researcher(inst, lvl),

trust(inst, ‘GridUser’, t), risk(‘GridUser’, t) ⊢ GridUser(inst,lvl)

Bob then presents his GridUser certificate to the file server to use the storage
service. The file server evaluates the following policy, which checks that Bob
holds the rôle of GridUser, computes its trust in the institution and checks the
risk of permitting the requested action:

GridUser(inst, lvl),

trust(inst, action, t),

risk(action, t, response) ⊢ request(principal, action, response)

This policy demonstrates the disadvantage of the simpler, cleaner interface be-
tween OASIS and SECURE — the lvl parameter of the GridUser rôle can no
longer be passed to a trust or risk predicate for inclusion in further computa-
tions.

Bob gives the compute server permission to access the files by issuing it with
a FileReader(Bob,filename) rôle certificate. The storage server must trust that
the compute server will behave responsibly, and not consume excess resources
by, for example, using a pathological access pattern.

Therefore the policy the storage server uses to determine the compute
server’s access to Bob’s files is as follows:

ComputeServer(p), F ileReader(p′, filename),

trust(p, read file action, t),

risk(read file action, t, response) ⊢ request(p, read file action, response)
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def entity_recognition():

history = trust[‘spam’][0]+trust[‘spam’][2]

H=1

return (trust[‘conf’][0]/trust[‘conf’][2])*(1-math.exp(-history/H))

def mu(outcome):

P_real = (trust[‘spam’][0]/(trust[‘spam’][0]+trust[‘spam’][2])) \

* entity_recognition() + bayes()*(1-entity_recognition())

if outcome == ‘mark_real’:

return P_real * cost[outcome]

elif outcome == ‘mark_spam’:

return (1 - P_real) * cost[outcome]

else:

return 0

def email_mark():

print "Message marked as spam"

def email_pass():

print "Pass message"

policy = ["mu(‘mark_real’) + mu(‘mark_spam’) < 0 |- email_mark()",

"True |- email_pass()"]

Figure 5.7: The implementation of the spam detection policy in Python.

Figure 5.8: Overview of the rôle certificates used by Bob in his interactions
with the Grid.
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The compute server is required to present rôle certificates claiming that it is a
compute server called p, and an authorised reader of the file filename, owned by
p′. The storage server computes the trustworthiness of p and the risk of allowing
access to that file. An overview of these interactions is shown in figure 5.8.

5.4 Evaluation of the SECURE Risk Model

This chapter has demonstrated that the SECURE risk model provides a pow-
erful and flexible method for modelling risk in a variety of applications. Uncer-
tainty in the cost of outcomes is easy to model, and the ability to parameterise
cost-PDFs with trust-values allows the width of the distribution function to
be adjusted according to the information content of the trust-value (see fig-
ures 5.9(a) and 5.9(b)). However, while this models some situations well, it is
not a suitable approach for situations where the costs are not continuous and
so it does not make any sense to “distribute” the probability across costs that
do not represent any real world outcome, such as in figure 5.9(c).

cost

f(cost)

(a) Low uncertainty in
the cost.

cost

f(cost)

(b) Higher uncertainty
in the cost.

cost

f(cost)

(c) Binary outcomes:
difficult to represent
uncertainty.

Figure 5.9: The width of the cost distribution functions can be adjusted to
model uncertainty, but this is not applicable in all cases.

One of the design aims of this risk model was to allow uncertainty in the trust
assessment to propagate through the decision-making process and be explicitly
reasoned about. However, as the SECURE trust model developed in parallel
with the risk model, it became clear that the information-ordering on trust
values did not measure the accuracy of the trust assessment as first thought, but
instead conveyed a measure as to the quantity of data that the trust assessment
was based upon. Since standard deviation is a measure of uncertainty, a generic
policy language based around the µ and σ operators cannot support reasoning
about information content directly.

A second problem is that, while cost-PDFs are a good general formalisation,
and applicable in scenarios such as the e-purse described in section 4.3.1, in
general, constructing suitable cost-PDFs to model an application is difficult.
Handling continuous functions computationally can be expensive, particularly
when integration is required (for example, for finding the means and standard
deviations needed for the generic policy language of section 5.3.1). While this
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cost may be acceptable on large servers with plenty of processing power, it is
inherently unsuitable for less powerful embedded and handheld computers.

The use of purely monetary costs has also been criticised as being unrealistic
since there are examples, such as human life, to which assigning monetary
value is impossible. The author disagrees, since insurance companies and courts
of law frequently assign arbitrary value to human life, and using a tangible
substance, such as cash, allows the use of a market mechanism to quantify
preference and priorities that may then be distilled into policy. Computers
make decisions according to logical criteria, and some form of quantification is
inevitable. However, it is acknowledged that, from the wide range of application
examples explored subsequently, in systems where money is not a factor such
as the spam example of section 4.3.2, its use can be somewhat artificial and
confusing.

A third drawback of this risk model is that outcomes are considered to be in-
dependent of the server’s response, which leads the model to be slanted towards
yes/no decisions, as found in traditional access control. This also makes for a
poor abstraction in situations where the same outcomes were possible under
different responses by the decision-maker such as the spam example described
in section 4.3.2.

A revised model which aims to address these issues will be described in the
next chapter.



CHAPTER 6

Economic Models of Risk and

Decision Making

The previous chapter concluded with an evaluation that highlighted a number
of weaknesses in the SECURE risk and access control models. This chapter
develops a new model of risk and access control, based on the economic theory
of decision-making.

6.1 Decision-Making under Uncertainty in Eco-
nomics

In chapter 4 it was noted that economists such as Knight [Kni21] characterise
risk as being a quantifiable type of uncertainty. After considering the applica-
tion scenarios described so far in this thesis, it was noted that for the agents
operating in this global computing environment, the uncertainty in the outcome
is usually due to uncertainty as to the future behaviour of the other agents —
the potential for a passenger to pay, not pay or defraud a bus company for
instance. The trust models of evidence and reputation described in chapter 2
ultimately allow this uncertainty about potential actions to be transformed into
risk, and consequently the uncertain situation can be reasoned about as a risky
one, using trust-based decision engines as described in the previous chapter,
and later in this one.

6.1.1 von Neumann-Morgenstern Expected Utility Theory

Economists have been searching for analytical models for making risk-based
decisions for some time. von Neumann and Morgenstern [vNM47] were among
the the first to formally axiomatise an expected utility hypothesis of agents’
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preferences over different ventures with random prospects, usually referred to
as lotteries.

In terms of trust-based access control (TBAC), one could consider the ac-
tions of another principal to be a lottery, with the parameters of the lottery
determined by the response of the TBAC system. However, the von Neumann-
Morgenstern expected utility theory relies upon objective probabilities, that is,
probabilities calculated using only measured past behaviour, with no ability to
encode belief, or the inherent subjectivity of risk noted in section 4.1. In the
objectivist world, for example, two rational agents with equal preferences with
respect to the consequences must make the same decision when presented with
identical information.

For risk and trust-based systems the theory of subjective probabil-
ity [Ram31] seems more applicable. This theory can be illustrated with the
example of a horse race. Spectators have more or less the same (lack of) knowl-
edge about factors such as the horses, track and jockeys, yet while sharing
the same information, different people place different bets on which horse will
win. Thus, the subjective probabilities held by each spectator can be inferred
from observation of their actions, that is, on which horse(s) they place bets.
This was formalised, and developed into a preference function analogous to the
von Neumann-Morgenstern expected utility theory for objective probabilities,
by Savage [Sav72].

Unfortunately the lack of objective uncertainty in Savage’s theory means
that obtaining the required representation is very difficult, and the more
tractable Anscombe-Aumann formulation [FU01] relies upon part of the prob-
lem being analysed using the von Neumann-Morgenstern idea of objective lot-
teries. This can be applied to the problem of TBAC by representing principal
behaviour in the subjective part of the formulation and environmental events
beyond the control of the actors in the objective analysis. However, the later
work of Hirshleifer [HR92], seems a much more natural fit to the problem.

6.1.2 The State-Preference Approach

Hirshleifer’s state-preference approach [HR92] aims to reduce choice under un-
certainty to a conventional choice problem by changing the commodity structure
appropriately. Thus, instead of forming preferences over lotteries, preferences
are formed over state-contingent commodity-bundles or, if it is assumed the
commodity is currency, then state-payoff bundles. To use Hirshleifer’s classic
illustration, “ice cream when it is raining” is a different commodity from “ice
cream when it is sunny”.

Given a suitable formulation of the situation, the von Neumann-
Morgenstern (vNM) expected utility rule can then be applied to choose the
best course of action given the decision-maker’s beliefs about which state is
likely to obtain. Since state-payoff bundles are easier to work with than the ab-
stract lottery formulation, Hirshleifer’s model was chosen as the basis for a new
TBAC model for SECURE which will be described in the next section. Before
that, a brief look is taken at the objections to the expected utility theory.
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6.1.3 Objections to Expected Utility Theory

Extensive experimental research has resulted in many researchers concluding
that the expected utility theory is not an accurate model of how humans make
decisions, and much debate on this subject continues [Mac87]. It is felt that
the psychological side of this debate — such as the supposition that humans do
not meet the criteria for being rational1 agents, and issues of the way in which
the problem is framed [Sim82] — is irrelevant to the SECURE model. The
aim of this thesis, and the SECURE project, is to build autonomous agents, not
artificially intelligent ones. Machina [Mac87] details a number of phenomena
that are not well-modelled by the vNM utility rule, but since no unified model
for all the phenomena described by [Mac87] has yet been found, for simplicity,
initial experiments will be restricted to using the vNM rule.

6.2 A Revised Trust-Based Access Control Model

The state-preference model has the following five components:

• a set of acts available to the decision-maker (X);

• a set of (mutually exclusive) states available to Nature (S);

• a consequence function, c(x, ς), showing outcomes under all possible com-
binations of acts and states2;

• a probability function, π(ς), expressing the decision-maker’s beliefs;

• an elementary-utility function (or preference scaling function), v(c) mea-
suring the desirability of the different possible consequences.

The states available to Nature represent any uncertainty relevant to making the
decision. In economics, Nature is said to “choose” the state of the world [HR92];
in global computing Nature shall be taken to be the principal, or aggregation
of the principals, about whom the uncertainty in the decision originates, where
the possible states represent their potential actions.

Provided v(c) is a suitable utility function, as defined below in section 6.2.1,
the von Neumann-Morgenstern theory then gives the utility of each act, x ∈ X
as:

U(x) ≡
∑

ς∈S

πςv(cx,ς)

6.2.1 Defining Preference using Utility

In the original SECURE risk model, preference over outcomes was expressed in
the form of monetary costs and benefits, the advantages and disadvantages of

1that is, will act to maximise their personal utility
2NB: ς is used to denote elements of S to avoid clashing with the existing SECURE

terminology of using s as part of an (s, i, c) trust-triple.
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which were discussed in section 5.4. In this new model the economists’ concept
of utility, an abstract metric that represents money adjusted for time-effects
(such as inflation and interest) and relative wealth, is used instead, thereby
overcoming the drawbacks associated with using an actual currency.

Whilst Savage observes that economists have proved that there is no mean-
ingful universal measure of utility [Sav72], the following definition from page
73 of [Sav72], seems well-suited to this framework:

Definition A real-valued function of consequences, v, is a utility; if
and only if f ≤ g (i.e. g is preferred to f) is equivalent to v(f) ≤ v(g),
provided f and g are both with probability one confined to a finite set
of consequences.

It is noted that the concept of monetary costs and benefits satisfies this defi-
nition, which could be useful in applications where financial considerations are
already present, for example the e-purse scenario outlined in section 4.3.1.

In order to apply the von Neumann-Morgenstern expected utility rule, v(c)
must also be determined using a method termed “the assignment of cardi-
nal utilities to consequences”. von Neumann and Morgenstern showed how
this could be done using the reference-lottery technique, which maps the in-
come received in each state to a probability [HR92]. Thus, v(c) determines
the decision-maker’s risk policy (whether they are risk-averse, risk-neutral or
risk-taking) with respect to the utility of each consequence cx,ς . Experiments
in this thesis are restricted to a risk-neutral (linear) functions of v(c).

6.2.2 Access Control Policy

A simple access control policy would be to choose any act, a ∈ A where:

A =

{

a | a ∈ X ∧ U(a) = max
X

[U(x)]

}

If |A| > 1 then choose the action a′ ∈ A with the smallest variance of utility.
Unfortunately this model does not yet address the problem of reasoning

about the uncertainty and information content of trust-values. Intuitively a
person will not feel confident in taking a course of action based upon a decision
for which they have too little information. The quantity of the information
required to satisfy them that this is the correct course of action will depend on
their risk-aversity, and therefore must be encoded as part of the person’s policy.
Therefore the policy-writer is permitted to set a lower-bound l for the number
of bits of information known about the chosen action a, in order for it to be
executed. If this check fails, then the system may test other actions in the set
A or fall back to a pre-defined, “default” action.

6.2.3 Integration with the SECURE Trust Model

While this model is designed to be used with any suitable trust metric, it will
now be shown how it can be instantiated with the Revised SECURE Trust
Model (section 2.3.2 and [CDKN04]).
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In this trust model observations on the past behaviour of principals are
recorded in an event structure which, when combined with observations from
other principals, can be used to deduce a trust value for that principal. Fig-
ure 2.1 shows an example of an event structure where the following observations
are possible:

• Nothing may have been observed (∅);

• reject may have been observed;

• accept may have been observed, but it is not yet known whether this is
of subtype forged or verified ;

• forged may have been observed (implying observation of accept as well);

• verified may have been observed (implying observation of accept).

The SECURE trust engine [CDKN04] can therefore compute a trust value
of the form, (s, i, c) for each of the possible events, reject, accept, forged and
verified, where s is the number of supporting observations, i is the number of
inconclusive observations and c is the number of contradictory observations.
Given a suitable mapping from the appropriate event structure E to mutually
exclusive states S, conversion of this form of trust value to a probability measure
π, is trivial. A typical mapping from E to S would be to use the leaves of the
structure as these represent the set of possible final outcomes.

Entity Recognition (ER) and Information

As with information, the required level of ER confidence should be determined
by the risk associated with the decision.

Intuitively, if an entity is incorrectly recognised, then the estimates for π(ς)
are likely to be completely invalid. One way of representing this in the model
would be to use the confidence in entity recognition to scale the measure of
information the decision is based upon. The decision to perform act a is known
to be based upon trust-values of the form (s, i, c) and since states are mutually
exclusive,

∑

S π(ς) = 1. Therefore it is possible to compute an information
metric, I = s + i + c, which is a constant for all ς ∈ S. This is then reduced
in magnitude by the probability of incorrect entity recognition, (1− per) before
being compared to the information threshold l, described section 6.2.2.

An alternative method would be to perform a second risk analysis using
the state-preference approach, once the set A has been determined. In this
second analysis there would be just two states, {entity recognised correctly,
entity recognised incorrectly}, and the acts would be A plus a fall back act for
the eventuality that the risk of mis-recognition is too high to take any of the
acts in A.

6.3 Spam Detection Revisited

Initial evaluations of this new model were carried out using the example of spam
filtering. This is a somewhat simpler initial example than the e-purse described
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in section 4.3.1 and large quantities of test data are readily available.
When determining how to handle an email message, the decision-maker

must decide whether to mark a message as spam or allow it to pass into the
inbox. The situation can therefore be modelled as follows:

• The set of acts available to the decision-maker is X = {mark, pass}.

• The set of (mutually exclusive) states available to Nature is S =
{spam, notspam}.

• The consequence function, c(x, ς) with example utilities for each conse-
quence shown (where E is a parameter that allows the sensitivity of the
filter to be adjusted):

X/S spam notspam

mark 1 -E
pass 0 0

• The probability function, π(ς), expressing the decision-maker’s beliefs in
whether the message is spam or not. This uses the same event structure
as previous instantiations of this application in this thesis, and methods
of determining the belief are discussed in chapter 7.

6.4 Selection under Uncertainty as a Decision Prob-
lem

One of the weaknesses of the model described in chapter 4 and 5 is that it
is optimised for yes/no style decisions and making a selection, for example
choosing the best principal (or principals) from which to request a service,
is very inefficient. This new model may be used to make a selection in the
following way:

• The set of acts (X) available to the selector is equal to the set of potential
service providers, P , or the power-set of P if combinations of providers
are to be considered.

• The set of (mutually exclusive) states available to Nature (S). Each state
is whether a particular principal was “good” or “bad”. For example,
ς1 = {p1}, ς2 = {p1, p2} means that only p1 satisfied the selector in state
ς1, while in state ς2, p1 and p2 satisfy the selector, and so on.

• The consequence function, c(x, ς), showing outcomes under all possible
combinations of acts and states — so P × S in the simple case where
X = P . Good consequences, (xi, ςj) are those where pi ∈ ςj .

• The probability function, π(ς), expressing the user’s beliefs.

• The elementary-utility function (or preference scaling function) v(c), mea-
suring the desirability of the different possible consequences — so those
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that are “good” consequences, as mentioned above, have higher utility
than those that are “bad”. This function could also encode constraints
such as a budget.

6.4.1 Choosing a Grid Server: An example of selection under
uncertainty

Recall that in chapter 5 Alice had to choose a suitable set of Grid servers on
which to store her files. For the sake of keeping this example simple, assume
that Alice wants to choose two servers from three possible providers: B, C and
D.

• The set of acts available to Alice isX = {BC,BD,CD}, the set of possible
combinations of choosing two providers from three.

• The set of (mutually exclusive) states available to Nature (S) is the power-
set of the set of possible principals P , where p ∈ ς has the meaning that
the principal p satisfies Alice’s requirements when state ς obtained.

S = {{B}, {C}, {D}, {B,C}, {B,D}, {C,D}, {B,C,D}, ∅}

• The consequence function, c(x, ς), showing outcomes under all possible
combinations of acts and states. For example, assigning a unit of utility
for each of Alice’s chosen servers that perform to requirements gives:

X/S B C D BC BD CD BCD ∅

BC 1 1 0 2 1 1 2 0

BD 1 0 1 1 2 1 2 0

CD 0 1 1 1 1 2 2 0

• The probability function, π(ς), expressing Alice’s beliefs about the like-
lihood of each of the states in S, that is, Alice’s computed beliefs as to
how well each server will perform.

6.5 Using Bayesian Trust Models

Although designed as an access control model for the SECURE framework,
the model described in this chapter should be general enough to interact with
any suitable trust model, not just the one outlined in section 2.3.2. Another
popular form of trust, reputation and evidence model is based on Bayesian
statistics and networks. There are a number of similar such models, although
the model presented by Buchegger and Le Boudec [BB04] appears to be one of
the most formally grounded and clearly explained.

Buchegger and Le Boudec’s model assumes that all potential collaborators
will misbehave with probability θ, and that the outcome is drawn independently
for each interaction. The parameters for θ are themselves unknown, and this is
modelled by assuming θ is itself drawn from a distribution (the prior) that is
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modified by each piece of evidence received. By using a Beta(α, β) distribution
as the prior, the initial case for previously unknown principals is the uniform
distribution. In the limit, as the quantity of evidence tends to infinity, the
distribution tends to the Dirac function at θ.

The benefit of this model over the SECURE (s, i, c) triples is that it it
also allows for more expressive modelling, particularly with respect to time.
The SECURE model stores only raw “event counts” which makes it difficult to
model potentially desirable behaviours such as more recent events being more
important than old history (“reputation-fading” in [BB04]). In contrast the
update functions used in a Bayesian model can easily be modelled to change
the distribution in whatever manner is required.

The disadvantage of Bayesian models is that they revolve around the bi-
nary concepts of “good” and “bad” behaviour, compared to the semantically
rich event-structure of outcomes approach of SECURE. However, Halpern and
Pucella’s logic for reasoning about evidence [HP03], allows the extension of this
basic Bayesian model to a world where a sequence of observations may be used
to determine the likelihood of truth about a set of mutually exclusive and ex-
haustive hypotheses, H. If S = H then Halpern and Pucella’s logic can be used
to determine a belief function π(ς), as required by the access control model.

In general, the SECURE trust model can use any set of trust values, T ,
provided it is possible to define both trust and information (partial) orderings
over it. (The (s, i, c) trust value format is only an example of one such suitable
format.) Suppose, instead of using the set of outcomes as the basis for trust
values, T represents a set of principal models. A simplistic example of this might
be T = {Honest,Dishonest,Incompetent}. If H = T then Halpern and Pucella’s
logic of evidence can be used to determine a probabilistic trust assignment for p;
that is, a probabilistic assessment that principal p is of underlying trust-type t.

The information ordering is determined by the probabilistic assignment of
trust values to the principal. The quantity of information a decision is based
upon can therefore be measured using the variance of the distribution3 v(cx,ς).
In [BB04] unknown principals are modelled using the uniform distribution which
is equivalent to making all trust values equally likely in the model outlined here.
However, this is unsatisfactory as it is then impossible to distinguish between
an unknown principal and a very well known principal who alternates between
different underlying states of behaviour on an equal basis. The significance of
this can be illustrated by considering that if 60% of previously unseen princi-
pals behave maliciously, then a principal who behaves badly just 33% of the
time would be a preferable customer to an unknown one. Therefore the initial
probability distribution used for an unknown principal should be determined
by the behaviour of all previously encountered unknown principals on their first
interaction, effectively the population mean.

This approach also allows for a better abstraction in the SECURE archi-
tecture as the trust life-cycle manager component may then also have a policy
component that specifies how to handle new principals without adding more
complexity to the access control policy with special rules for new principals.

3c.f. the utility of act x is the expectation of this distribution.
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For example, the population mean trust value assigned to a new principal may
depend on the context in which they are encountered, or what static creden-
tials they can present: an unknown principal who can present a “Member of
University of Cambridge” credential may be assigned a different trust value to
an unknown principal who cannot. This idea of a trust formation policy al-
lows the policy-writer to determine for themselves what trust value should be
assigned to an unknown principal before it is possible to compute a population
mean (the “bootstrapping” problem of reputation systems) and also provides
a solution to the situation where malicious users make the population mean of
new users so low that new users are never accepted into the system.

6.5.1 Example: An e-purse

Modelling trust in ability to pay is difficult as there are many possible be-
haviours that the model should capture. For instance, an attack on a näıve
system would be for Eve to build up trust by successfully executing a very
large number of low-value transactions, and then defaulting when she was suf-
ficiently trusted to execute a high value transaction, such as buying a car.

In the Grid application described in section 5.2.4 this was handled by di-
viding the space of possible payment values into intervals and making different
trust assessments for each one. The same method could be used with a Bayesian
model, the two possible states being payment or default, but depending on
the size of the intervals, this provides very coarse granularity on the value of
transactions and is only suitable when the amount to be paid is known to the
decision-maker in advance.

Instead let the set of trust values T be a set of intervals [l, u] where 0 ≤ l ≤
u ≤ maxprice, and maxprice is the price of the most expensive item sold. A
principal with trust value [l, u] is considered to be “good” for amounts up to £l
(perhaps, for example guaranteed by a credit card company), and no good for
amounts over £u. For amounts in the region l < £ ≤ u there is uncertainty as
to whether the principal will pay or not.

For the sake of example, suppose bus tickets are available at a cost of 1,2,3,4
and 5 units (formally, λ ∈ Λ = {1, 2, 3, 4, 5}). A trust value of [0,5] then repre-
sents an “unknown” principal, whilst [0,0] and [5,5] represent fully distrusted
and fully trusted users respectively. Defining the following trust-ordering on
this set of trust values gives the partial ordering required by the SECURE trust
model:

[a, b] � [c, d] ⇔ (a < c ∧ b ≤ d) ∨ (a = c ∧ b < d)

Consequences, Preferences and Access Control

When a person seeks to board a bus the three possible responses available to
the bus company are: Board, Ask for a deposit, and Refuse. Intuitively if the
potential passenger has trust [0,0] then there is maximum utility in refusing
them permission to board, no matter how far they might travel. Similarly
if they have trust value of [5,5] then there is maximum utility in permitting
them to use the bus. Since nothing is known about a new principal, there is
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some utility in allowing them to board (they will hopefully become a valued
customer!) but probably more utility in asking them for a deposit. These
intuitions are illustrated in table 6.1.

In the general case, the utility for each action will depend on how far the
principal is likely to travel. Since the evidence manager stores historical infor-
mation about the journeys taken by each principal for the purposes of comput-
ing a trust value, further data mining is possible to give a probabilistic estimate
of the price of the bus ticket that will be purchased, λ. The set of potential
states of Nature, S, is therefore the cross-product of the set of possible trust
values and the set of possible ticket prices, ([l, u], λ) ∈ T × Λ.

The general policy is then that if λ is less than l then the user should be
allowed to board. Conversely, if λ is greater than u then boarding should be
refused: the utility in each case being equal to the expected value of the journey.
If λ lies between l and u then a deposit should be requested. The utility (to
the bus company) is the ticket price, λ, as shown in the functions in right-
most column of table 6.1. Note that there is also utility in asking for a deposit
if λ < l for the purposes of audit — game theory [Ras94] demonstrates the
effectiveness of such apparently “random” checks, a topic that will be returned
to in section 6.8.

X/S [0, 0], λ [0, 5], λ [5, 5], λ [l, u], λ

Board 0 1 5 λ > l : 0, λ ≤ l : λ
Deposit 0 2 1 λ > u : 0, λ ≤ l : λ, l < λ ≤ u : λ
Refuse 5 0 0 λ > u : λ, λ ≤ u : 0

Table 6.1: The consequence functions for the e-purse scenario.

6.6 The Risk of Seeking More Information

If the outcome of a decision is that there is insufficient information to make
a correct decision then in many applications there will be the opportunity to
seek some additional trust information about the principal being considered.
For example, in the PDA scenario in chapter 3 the PDA could ask the owner
of the PDA for guidance. Seeking more information is rarely without cost; this
may be monetary in nature, such as paying for a report from a credit bureau,
or in terms of the use of a scarce resource such as battery power to perform the
network query. Whether this expenditure is worthwhile is the risk of seeking
this additional information.

In a data-orientated application, such as the PDA application mentioned
above, the question is easy to answer: if the value of the data involved in the
operation is less than the cost of the query then the expenditure is not worth
it. But what about in applications where the value is less clear cut?

Suppose a query for additional information results in an event b ∈ B. Once
the decision-maker learns that event b has obtained, then there is a new decision
problem to be considered. Savage [Sav72] notes that this new problem is related
to the original one as the acts available to the decision-maker remain the same,
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and that the utility of each one is now U(x|b), the utility of act x given event
b. The original decision problem is called the “basic decision problem” and the
new, related one, the “derived decision problem”.

The original decision problem, f , has (expected) value:

E(f) = max
X

[U(x)]

The derived problem, g, has (expected) value:

E(g) =
∑

B

E(g|b)P (b)

where P (b) is the probability of event b. Rationally the maximum cost that
should be incurred in seeking more information is E(g) − E(f), that is the
increase in utility expected as a result of observing which event in B ob-
tains [Sav72].

6.6.1 Formal Definition

[Sav72] gives the following formal definition, adapted here for the model de-
scribed in section 6.2.

1. There is a set of basic acts, X.

2. The event is a random variable b associating with each state ς an observed
value b(ς) in some set B of possible events.

3. The set of strategy functions is the set of all functions associating an
element of X with each element b ∈ B.

SF = {f(b) : b→ x}

A strategy is a mapping from observations to basic acts, so the number
of strategy functions is |X||B|.

4. Each strategy function f(b) corresponds to a derived act, x′ ∈ X(b) where
X(b) is the set of derived acts. The consequences of the derived acts are
defined by:

c(x′, ς) = c(f(b), ς) ∀ς ∈ S where x′ ≡ f(b)

that is, the consequence of derived act x′ in state ς is equal to the conse-
quence of basic act x in the same state, where the basic act x is given by
the strategy function f corresponding to derived act x′.

5. The value of X given b is:

v(X|b) ≡ sup
x∈X

E(x|b)
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6.6.2 Example – Spam Detection

This table gives the consequences and utilities for the spam application dis-
cussed in section 6.3.

X/S spam notspam

mark 1 -2
pass 0 0

Suppose the trust model determines there is equal probability a mail is
spam and notspam, the resulting expected utility for mark is −1

2 and 0 for pass.
However, the decision-maker has access to a service that scores each message out
of three. The probabilistic relationship between this score (b) and S is shown
in table 6.2. It is now possible to determine the set of strategy functions. Since
there are two possible acts, and three possible messages/observations from the
mail analysing service, there are eight possible strategies of the form x1x2x3

where x1 is chosen if b = 1, x2 is chosen if b = 2 and x3 is chosen if b = 3. The
eight strategies (derived acts) are therefore: MMM, MMP, MPM and MPP,
plus the same again substituting M’s and for P’s and P’s for M’s.

b spam notspam P (b)

1 0 0.25 0.25
2 0.125 0.125 0.25
3 0.375 0.125 0.5

0.5 0.5 1

Table 6.2: P (b ∩ S)

X/B 1 2 3

Mark −2 −0.5 0.25
Pass 0 0 0

Table 6.3: E(X|b)

Table 6.3 shows the expected utility of each basic act given the value of
b, E(X|b).4 This shows that the decision-maker’s best strategy is to choose
“Pass” if b = 1, 2 and “Mark” if b = 3. The expected value of the derived
decision problem is then:

E(X ′) =
∑

b∈B

E(X ′|b)P (b)

= 0 × 0.25 + 0 × 0.25 + 0.25 × 0.5

=
1

8

Since the expected utility of the basic decision problem was 0, the decision-
maker has increased its utility by 1

8 in asking the external service for additional
information. Correspondingly the decision-maker should be prepared to pay up
to 1

8 utiles to use the service.

6.6.3 Events, Trust and Recommendations

The lingua franca for transferring trust-information in the SECURE frame-
work is by passing raw trust values as recommendations. The set of events, B,

4where E(X = x|b) =
∑

s∈S
v(cx,s)P (s|b)
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used in the spam example are clearly not trust values in this sense. In fact,
if the decision-maker is considering whether or not to ask another principal
for a recommendation, B will be the set of possible trust values T it could
receive. Depending on the application, the decision-maker may have to ask for
recommendations from each principal individually, or there may be a broadcast
mechanism that would permit a group request.

For simplicity, this thesis will consider only the former situation: the
decision-maker will evaluate the utility of contacting each principal within
range, where the utility is defined as being the difference between the derived
decision problem and the basic one, minus the cost of making the query. Princi-
pals should then be queried, in order of their expected utility, until one responds.
Once one has responded, there is a decision as to whether to continue seeking
more information, or stop. This is taken in the same manner as the first such
decision, and repeated until there is no longer any expected increase in utility
to be made by contacting more principals.

The computation of P (b ∩ S) depends on the format of the trust values.
How this is done using the two forms so far discussed in this chapter, (s, i, c)
triples and Bayesian, is described below.

SECURE Trust Model

Using the revised SECURE trust model, B is the set of all possible (s, i, c)
triples which, while being countable, is sufficiently large to make computation
of |X||B| strategy functions impractical, though not impossible. In practice, the
quantity of information in a recommendation will be capped to defend against
the attack where a malicious recommender claims to have performed a very
large number of interactions with the subject of the recommendation in order
for their recommendation to carry as much weight as possible [Ing03]. P (b∩S)
is then determined using the normal rules for incorporating recommendations
into the current trust policy — an example is given in section 7.3.4.

Bayesian Trust Model

In the Bayesian trust model described in section 6.5, a principal’s trust value is
computed as a function of a number of pieces of evidence, including personally
made observations and previously received recommendations. Therefore the set
of recommendations that could be received from another principal, B, can be
treated in the normal manner and speculatively processed by the trust value
update function to give P (b ∩ S) as required.

6.7 Access Control Policy for the Evidence Store

The previous section described how to determine the “risk” of seeking more
information when faced with an uncertain situation. This section will discuss
the issues and risks of replying to such requests.

Some of the risks associated with responding to information are similar to
those of requesting it in the first place — the use of the network may incur a
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traffic or power usage cost. However there is also a privacy risk associated with
giving out information as it can reveal with whom a principal has interacted
recently, information that would be valuable to market-place competitors and
malicious users. Giving out recommendations received from other principals
carries further risks as it may, in addition to revealing from whom the prin-
cipal has received information, also compromise the privacy of the originating
principal.

On the other hand, as noted in the PDA scenario described in chapter 3,
there are potential benefits to interacting with peers, such as the opportunity
for the mutual exchange of information or services. In return for Alice rec-
ommending a good supplier of X, Bob will hopefully then look favourably on
Alice’s request for a recommendation about Y. Alternatively, Bob may have a
more recent version of a web page that Alice would like to view, thereby saving
her a costly network connection to the Internet. Depending on the information
exchange protocol, a more tangible benefit may be that if a principal does not
participate then they may be considered to be “freeloading” by other peers and
ejected from the network. Freeloading, the practice of consuming from, but not
contributing to, a community, is a common problem in existing peer-to-peer
networks [AH00]. The anarchic nature of such networks makes it impractical,
if not impossible, to centrally enforce rules concerning the ratio of consump-
tion to contribution. In response researchers are developing community-based
enforcement mechanisms [NWD03], and it is envisioned that trust assessments
could play an important rôle in such systems.

6.7.1 The SECURE Approach

Given the difficulty of enforcing participation in distributed protocols, SE-
CURE takes a laissez-faire approach where each principal may decide arbi-
trarily whether to respond to requests or not. This allows each principal to
implement its own interaction policy, and thus individually punish principals it
views as not participating, but precludes community enforcement. A principal
may however inform other principals of its opinions of others using the usual
SECURE recommendation framework.

The interface for exchanging recommendations is defined as follows: a prin-
cipal, the Judge in SECURE terminology, may make a request of another prin-
cipal for either a recommendation about a specific principal S in a particular
context c, or for a recommendation for the most trustworthy principal known
to the queried principal for a context c. The queried principal may make no re-
sponse, or return at least one recommendation, either with itself as the Witness,
or pass on recommendations from other principals which it has received. The
SECURE architecture defines a recommendation as being a (Witness, Subject,
t) tuple which is cryptographically signed.

Upon receiving a request for a recommendation, a principal makes a two-
stage decision. In the first stage it must decide whether to respond at all to the
request. The set of actions here are “respond” and “ignore”. The set of states,
S, is as usual defined by the potential actions of the other principal.

If the principal decides to respond at all, then at minimum it must send one



6.7. Access Control Policy for the Evidence Store 105

recommendation. Given that there are fewer risks associated with sending a
recommendation based on one’s own observations than other people’s, the first
recommendation to be sent must therefore be the sender’s own. The possibility
of obfuscating, or otherwise perturbing the information to mitigate the risks
in situations where a principal is only partially trusted has been considered,
but there seems little to be gained from it. [JGK03] shows that identities must
be clear for proper analysis of trust chains and adjusting the trustworthiness
component of t will reflect badly on the honesty of the sender. Changing the
information component of t would help to hide the quantity of transactions the
Witness has had with the Subject, but again this reduces the usefulness of the
recommendation and since it could only be changed downwards, the recipient
will always know that the Witness has had at least that many interactions with
the Subject. In light of this it seems the decision to trust or not trust the
requester must be binary: the states of Nature are that the principal is trusted
or distrusted.

π(ς) depends on the principal’s trustworthiness in other areas, static poli-
cies,5 and most importantly, recent behaviour. A typical policy in this regard
might be that a request from a principal who has recently responded to a
request from the target principal should be looked upon favourably, while a
principal who is making unreasonably frequent requests should be ignored for
a while. Clearly a key component of this policy is time, which is something the
evidence-based SECURE trust model is currently insufficiently expressive to
capture. Note that unlike the usual SECURE trust computation, to avoid pos-
sible loops in the protocol, no recommendations will be sought from other prin-
cipals while computing π(ς), although principals may asynchronously “push”
recommendations about principals they consider to be freeloading.

6.7.2 Forwarding Third-Party Recommendations

If a principal decides to send any response at all, then it must also consider
whether to forward any additional recommendations from other (third-party)
principals. If the risk to one’s own privacy is hard to quantify, the risk to
someone else’s is impossible to determine. The problem was made tractable
in chapter 3 through the re-use of an existing information framework to infer
intention and preference; in a general trust-based application, it cannot be
assumed that the information can be re-used out of context in this way. The
sensitivity of recommendations is likely to be application dependent, although
it is also observed that even nonsensitive data can yield intrusive conclusions
under sophisticated processing [Swe02].

On the other hand, restricting data flow is also self-defeating — the full
power of trust-based recommendation networks such SECURE can only be
fully utilised when information is free and open. Therefore, in the SECURE
framework, recommendations are considered to be redistributable at the discre-
tion of the recipient unless marked otherwise, using a binary distribute/do-not-
distribute field. Privacy can further be protected using pseudonymity: the use

5The ability to pre-configure a number of trusted “friends” is useful when bootstrapping
recommendation systems.
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of separate pseudonyms for different activities allows a user to prevent overly
intrusive profiling. Of course a balance is needed here since the greater the
availability of identities, the greater the threat of the Sybil Attack [Dou02].
This attack is discussed further in section 7.1.2.

Privacy risks aside, in practice, there is still variable benefit to passing on all
the relevant recommendations a principal has — each one still incurs a network
cost, for example. A second decision is therefore taken where the set of possible
acts is to send any number of redistributable third-party recommendations,
from zero through to the total number available to send. The states of Nature
remain as in the first decision, that is trusted and distrusted.

6.8 Game Theory for Strategic Policy Development

In the previous section the interaction between principals became very strategic:
decisions became dependent on how the other principal had acted recently, or
how the deciding principal hoped they would act in the future. This suggests
that further work in this area should be based around game theory [vNM47,
Ras94].

Section 4.2 described how the use of monetary costs and benefits to encap-
sulate policy was intended to help solve the problem of refining policy from high
level, often business-orientated, goals to technical implementation. The use of
preference-scaling functions in the models developed in this section provide a
similar benefit, whilst being more tractable in situations where monetary costs
are alien and inappropriate. This process can be taken one step further by
noting that the relationship between the fields of game theory and (economic)
decision theory can be exploited to further develop this process of turning high
level strategy into the technical policy required to use the models developed
here.

The next chapter applies the ideas introduced here to the spam detection
example application.



CHAPTER 7

Implementation and Evaluation

This chapter describes the implementation and evaluation of the risk and access
control aspects of the SECURE framework. A set of evaluation criteria will be
developed which will then be used to review the SECURE framework through
the implementation of a number of prototype applications.

7.1 Evaluation Methodology

As an emerging access control paradigm, there is not yet any established eval-
uation criteria for computational trust systems such as SECURE.1

The high complexity and many inter-connected components of computa-
tional trust systems means that many papers address and evaluate only in-
dividual components, such as the trust metric [FKÖD04] or within the con-
text of a particular application for which the trust system was specifically de-
signed [KSGM03, BLB03]. However, as this thesis has shown, computing a
trust value for a principal is only the first step, and the application-specific
access control decision only the ultimate goal; in between confidence must be
established in the identity or credentials of the requesting principal(s) and the
risk of the various courses of action assessed. Some issues can only be addressed
in the context of the framework as a whole — assuming the use of pseudonyms
to protect privacy cannot be done without considering the Sybil attack, for
example.

7.1.1 System-Level Evaluation Criteria

Clearly the most important criterion for any application is how well it im-
proves on the current situation. In some applications, such as spam filtering,

1This evaluation methodology was developed in collaboration with Ciarán Bryce, Vinny
Cahill and Jean-Marc Seigneur and published in [BDK+05].
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this may be how much better the trust-based solution is compared to existing,
non-trust-based ones. In other applications, such as mobile ad hoc networking,
computational trust may offer unique features that could not otherwise be of-
fered, or the benefit may be more intangible — convenience and ease of use,
such as in the PDA application described in chapter 3.

Beyond that, what is the stated aim of a computational trust system? In
section 2.5 it was noted that:

For a given application domain, a computational trust system should
be able to select an interaction partner (or partners) such that the
risk of interacting with that principal is deemed to be acceptable to
the decision-maker.

Ease of use is also important. Discussions with the Information Security
group of a large company revealed that they experience significant tension be-
tween security and convenience for end-users: intrusive security measures that
prevent effective working are often circumvented and ignored.

Finally, the computational trust system must perform efficiently on the
platform on which the application is designed to run. For example, in mobile ad
hoc networking where decisions are being made at the network level, efficiency
is of much greater importance than in a server-based application-level access
control system.

7.1.2 Component-Level Evaluation

Using the system-level evaluation criteria outlined above, an evaluation method-
ology for each major component in the SECURE framework will now be devel-
oped. The approach used is a threat-based analysis: for each component the
possible attacks will be enumerated and the correct behaviour that should be
demonstrated to prove correctness described. An attack is defined as follows:

An attack by a principal or group of principals is any behaviour
which aims to influence a decision by another principal in the system
in such a way as to be detrimental to that principal.

Trust Model: Behavioural Attacks

In line with the definition of attack given above, behavioural attacks are pat-
terns of behaviour by a principal with the aim of directly influencing another
principal’s trust in them. One such attack would be oscillating, where a princi-
pal repeats an infinite cycle of building trust through a number of interactions
before turning malicious until their trust value drops again, then appearing to
mend their ways, and repeating.

Many attacks will be application-specific. Therefore to evaluate this compo-
nent it is necessary to define a set of principal types expected to be seen in the
application, regular user, infrequent user, or spammer for example, and specify
what trust value the model is expected to give to principals who have been
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identified as being of one of these types.2 Evaluation is by means of simulated
interactions to measure the time to converge to the required trust value.

Trust Model: Reputation-based attacks

The reputation component of the SECURE trust model is an instantiation of
the main trust model for the action of recommending other principals, hence a
similar approach to evaluation is required. For reputation systems it is observed
that there are the following types of principal:

Honest: Give truthful recommendations, to the best of their knowledge and
ability.

False-Praisers: Give false positive recommendations with the aim of making
the unsuspecting user interact with the wrong principal (perhaps pushing
business towards one of their friends or other identities, for example).

Defamers: Give false negative recommendations with the aim of causing a user
to not interact with a principal they would otherwise have done business
with.

Liars: Give both false-praise and defamatory recommendations.

Randoms: Give out recommendations that have no basis in fact or purpose
other than to mislead and confuse. This may be deliberate or accidental
(for example, a misconfigured client).

The evaluation technique of determining the “correct” trust value for each
principal, then measuring the time to converge in a simulated environment, is
again applicable.

Sybil Attack and Identity Theft

Whilst evaluating entity recognition is beyond the scope of this thesis — all
the example applications used herein rely on public-key cryptography for iden-
tity recognition — it is still necessary to consider other identity-based threats
such as “Sybil Attacks” [Dou02] and identity theft. A Sybil attack is where a
single entity forges multiple identities in order to attack the system. Douceur
demonstrates the practical difficulty of determining whether any two entities
are distinct in protocols, such as recommendation systems, that rely on the
redundancy to enforce particular policies [Dou02].

Defending against identity-based attacks requires an analysis of the trust
metric to determine how many nodes need to be under the control of an at-
tacker in order to be able to perturb or control the trust value of a particular
principal [TD03]. Once the attack analysis has bounded the number of nodes
in the trust network needed to influence trust values, the vulnerability to the
Sybil attack can be considered. [FR01] suggests that the Sybil attack can only

2It is observed that this is much easier in the Bayesian trust models of section 6.5 where
this definition forms part of the trust model.
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be mitigated by limiting each individual to a very small number of lifetime iden-
tities. However, this precludes the ability for users to act pseudonymously, one
of the aims of the SECURE project. Alternatively, if the number of nodes an
attacker must control is known then rate-limiting the attacker’s ability to create
new identities should be sufficient. This could be achieved by using certification
agencies [Ing05] or proof-of-work puzzles [SL03].

Access Control Manager and Risk Evaluator

In the models described in this thesis, the risk components have been mostly
static, effectively forming part of the user’s policy. If SECURE were to use
dynamic risk, that is, risk that evolves over time in response to observations as
postulated in section 4.2.3, then this would need to be evaluated with respect to
the speed of adaptation and how prone is was to manipulation by an external
entity. For example, whether a deliberate pattern of events would allow a
malicious principal to change the risk assessment of a system it was attempting
to attack for its own ends.

To evaluate the static components of policy such as static risk assessments
and access control policy, the principal types used in the evaluation of the trust
model can be re-used. For each request of a given level of risk, the expected
response for each principal type should be defined. The component can then
be tested by inputting the appropriate trust value for that principal type and
comparing the response to the expected one.

Since the end-user is likely to have the most interaction with the policy com-
ponents these should also be evaluated for expressiveness (can the user express
the policies he or she requires?), ease-of-use (how much knowledge and/or train-
ing do they require?) and computational efficiency (can the policy be executed
on the desired platform).

These criteria will now be used to evaluate the SECURE framework in a
number of different application scenarios.

7.2 Using SECURE to Fight Spam

The worldwide cost of unsolicited bulk email (“spam”) has become intolerable,
with reports that since the middle of 2003, spam accounts for over half of all
email sent over the Internet [Gra03]. There are many potential solutions, from
legal remedies and suggestions for changes to the SMTP protocol, to improved
blocking and filtering at the recipient, but none have so far succeeded.

The root cause of spam is ultimately the same property of email that makes
it so attractive and useful: the low cost of communicating with a large number
of people all over the world. Moreover, the near-zero cost of creating and
spoofing an email identity ensures that even when the sending of unsolicited
bulk messages is prohibited by law or ISP policy, tracing and punishing the
offender is not easy, because the underpinnings of the current systems were
not designed with authorisation and secure authentication in mind. Proposed
solutions that attempt to remedy this oversight are infeasible in the short term
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as transitioning all of the world’s email users to a new system is a monumental
task.

Spam is an excellent application scenario with which to experimentally val-
idate the ideas developed in this thesis for the following reasons:

• Email is an Internet-wide application with millions of users, all of whom
are affected by the problem of spam, thereby satisfying the definition of
Global Computing.

• The problem is simple to formulate, yet difficult to solve because the sys-
tem was designed when all principals could be trusted. Similarly, inverting
the default trust position would destroy the advantages of convenience and
ease-of-use that have made email so popular — trust cannot be considered
in black and white terms.

• There is a large supply of readily available test data in the form of the
author’s email archive and publicly available spam corpuses.

Two novel approaches using trust to solve the problem of spam will be
described here. The first method attempts to solve the underlying problem of
trust in the email system by allowing senders to use trust-based authentication
in a manner that is compatible with existing email systems. The second method
aims to improve the accuracy and power of spam detection and filtering using
a collaborative peer-to-peer network.

7.2.1 Event Structure for Spam Applications

Both spam applications use the same event structure for the trust model. The
decision is to mark a particular message as spam or allow it to pass into the
user’s inbox, and the outcomes are that the message is ultimately spam or not
spam. This is shown in figure 7.1.

Mark

NotSpam

Pass

SpamNotSpam Spam

0

Figure 7.1: Event structure for spam filtering.

When used in conjunction with the model developed in the previous chapter,
the “Spam” events contribute evidence to the probability that the state spam
will obtain and the “NotSpam” events contribute evidence to the probability
of the state notspam obtaining.
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7.2.2 Combating Spam with Trustworthy Email Addresses
(TEA)

One of the simplest anti-spam techniques is white-listing.3 In this approach any
legitimate email received has the contents of its From, To and CC fields added to
a list of addresses from which mail is always accepted, therefore bypassing any
other spam filter that may falsely label a real email as spam (a “false-positive”).
In reality this method is one of the least effective for two reasons: firstly, the
lack of authentication in the SMTP protocol [Kle01] means that addresses are
so easy to spoof that many spams appear to come from a legitimate address,
and secondly it makes it very difficult to establish a communications channel
with a new person (or an old person using a new address).

The first problem can be overcome using some form of authentication
method, as will be outlined below. The second is more difficult, but can be
overcome using a recently proposed technique called bankable postage [ABB+03]
which allows the sender of an email to attach a proof that guarantees that a
certain cost has been incurred to obtain this proof.

Unfortunately whilst this is a technically feasible approach to solving the
underlying problem of spam, namely the near zero-cost of sending it, how to set
the minimal fee required to guarantee protection remains an issue. Additionally,
using bankable postage imposes additional burdens on the sender which make
it significantly less attractive to ordinary users than traditional email. This
problem will be revisited later.

Making Email Addresses Trustworthy

The goal of TEA is to provide a sufficient protection against the large-scale
spoofing of email addresses such that whitelists and legal measures may be
employed to render spamming unprofitable. Previous systems to attempt this,
such as PGP [ACGW99] and S/MIME [GMCF95], which are designed to run
over top of the legacy system, have failed to gain large acceptance or solve the
spam problem as they suffer from many usability issues in deployment, use and
management. For example in “web of trust” style systems the users must vali-
date keys out-of-band which is laborious, and while Certificate Authority (CA)
schemes replace the need for individual users to check identities, the charges
imposed by the CA act as a barrier to adoption.

Hence, since establishing the prerequisite binding between a key and real-
world identity is too inconvenient for end-users, the TEA solution retains user-
friendly plain-text email addresses (that are easily remembered and exchanged)
and attempts to prevent spoofing by using a combination of two techniques:
proof-of-knowledge of a shared message history and an automated proxy-based
challenge-response (C-R) system. Both methods were implemented using the
Java-based Claim Took Kit (CTK), developed by Trinity College Dublin as an
implementation of their entity recognition framework [SJ05]. This allows addi-
tional information (a “claim”) to be embedded into an email (like a conventional

3This section summarises work done in collaboration with Jean-Marc Seigneur, Ciarán
Bryce and Christian Damsgaard Jensen, published in [SDBJ04].
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PGP signature) that can then be used by the receiver’s entity recognition pro-
cess to determine the confidence in recognition. The proof-of-knowledge of a
shared history was implemented using the CTK by including cryptographic
hashes of recent (email) exchanges, although like most trust-based techniques
it cannot be perfect as SMTP does not guarantee message delivery.

The second technique is to send a cryptographic challenge to the sender
to confirm that he or she is the real source of the email. C-R systems that
attempt to prove that the sender was human, or impose some “charge” on
the sender (for example, proof-of-work puzzles) are already common tools in
the fight against spam. These are widely (and rightly) criticised, but others
assert that this is due to implementation and usability faults rather than being
fundamental flaws with the principle [Tem]. The most common fault is so-called
collateral spam where a spoofed sender address leads to an innocent third party
being bombarded with challenges (and if the challenges include any part of the
original email, allow the spammer to simultaneously spam the third party).
However, TEA does not use C-R in either of these traditional forms, but is
instead designed to establish a level of trust between the sender and receiver’s
mail clients — since the responses are handled automatically by the program,
a human should never have to interact with a challenge. Challenges are only
sent to users who have signalled their ability to participate in the protocol by
including a claim in their email, thereby preventing collateral spam. Note that
whilst the hashes technique can only be used with principals with whom the
user has previously corresponded, C-R can be used with any TEA user.

TEA also supports asymmetric (public-key) cryptographic signatures as an
additional method of identity assurance. However, unlike traditional methods
such as PGP, there is no need to establish a binding between the key and a real-
world identity, the key need only be bound to an email address for which the user
has already established a trust-relationship. This relationship can be created
in a variety of different ways: out of band, using the SECURE framework (as
described below), or the TEA C-R method as described above.

The three techniques described above differ in strength, although there is
no clear ordering as to which is better. For example, in the case of a valid
signature with a short key length versus the ability to show that the sender is
able to receive emails sent to a specific address, the key may be mathematically
better but this makes many assumptions about the competence of the user
with regards to key management. Keys are also inconvenient when one is away
from one’s home network, and allowing remote access to a key correspondingly
reduces its security. Hence the TEA system allows the sender to choose zero (for
legacy system compatibility), one, two or more combinations of techniques. The
ER module then computes an anti-spoofing (or entity recognition) confidence
level based on the number of techniques used and to what level.

Stopping Spam

Having established a trust level in the (pseudonymous) identity of the email
sender, a trust assessment can then be made as to whether the sending principal
is a spammer or not.
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If the user has interacted with the sender before then simple black- and
white-listing can be used. Otherwise the SECURE framework can be used to
obtain recommendations about the trustworthiness of the principal. In the
current prototype this is done by fully trusting the recommendations of a pre-
defined number of friends, since that part of the framework was not complete
when this work was done. Recommendations are also exchanged using the
SMTP protocol (that is, are sent as special emails that the proxy will hide
from the user) and authentication of their origin performed using TEA. Failing
finding a suitable recommendation, the system falls back to using the bankable
postage scheme mentioned above. The greater the postage paid, the greater the
trust in the message being legitimate. If no bankable postage is attached then
the final fallback is to use a traditional filtering system, such as SpamAssassin.4

Once a trust value for the sender has been established, the access control
manager can make a decision as to whether to mark or pass the message, as
described in earlier chapters.

Evaluation

Since this work concentrated on the entity recognition and risk aspects of the
SECURE project the trust model is very simple, with users being either trusted
or untrusted and only very limited recommendations permitted. The use of
black- and white-lists for actual spam(mer) detection means that “convergence”
takes just one (direct) interaction, although clearly the limitation on recom-
mendations means that the rate of propagation is suboptimal. Sybil attack
protection is provided by the use of bankable postage to cause newcomers who
are not recommended by a user’s friends to pay an entry fee, in line with the
solutions to the problem proposed in [FR01].

The disadvantage of this highly simplified system is that it operates at a very
coarse level of granularity: principals are either spammers, legitimate senders
or unknown, and so the decision to mark or pass the message is an elementary
one. Similarly this means that an attack need only successfully compromise one
user to become trusted (although each successful compromise will only permit
the sending of one spam). On the positive side, this does bring the advantage
that the policy is very easy to use — the user simply has to specify the E
value (see section 4.3.2), perhaps using a slider widget, which determines how
aggressive the filtering should be.

A system level evaluation and further details are given in [SDBJ04].

7.3 Collaborative Spam Detection

Without some form of sender-authentication system like the one proposed
above, it is difficult to make trust assessments about the sender of a mes-
sage. As noted previously, forgery of existing identities and the creation of new
ones is too easy with the current Internet email infrastructure, making trust
assessments unreliable. The difficulty of migrating the millions of email users

4http://spamassassin.org
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in the world to any new system also suggests that a piecemeal transition will be
required, and so spam-filtering by the receiver will remain necessary for some
time yet.

Collaborative spam detection is a new idea that takes the view that since
identifying spam is an AI problem that can never be entirely solved using rule-
based systems, even advanced ones based on Bayesian inference [Gra02], the
best method of identifying spam is still a human. Therefore the first human to
identify a spam publishes a hash of the message to a peer-to-peer (p2p) network
and then each member of that network compares their incoming email with the
published hashes, as shown in figure 7.2. A trust and risk analysis is used to
determine whether to mark the message as spam or allow it to continue into
the user’s inbox, given the opinion of other trusted nodes on the p2p network.
Since spam emails are increasingly obfuscated in an effort to defeat filters,
straightforward hashing techniques will not be effective, a problem which will
be addressed below.5

p1,p3,p10,p12 say "spam"

fingerprint of incoming e−mail

p2p network client

Figure 7.2: Overview of the operation of a Collaborative Spam Detector.

Similar systems are Vipul’s Razor6 and [ZZZ+03]. The former, which pio-
neered the idea of collaborative spam detection, uses a network of servers under
central control and so is not truly distributed in the p2p sense. The latter uses
the Tapestry p2p routing architecture and voting to identify malicious nodes,
but relies on centralised identity management to prevent attacks.

7.3.1 Objectives and System Architecture

In order to evaluate the effectiveness of the application as a whole, the following
objectives were decided upon:

Privacy and obfuscation: Collaborating with others requires the sharing of
information, but the contents of a user’s email must not be revealed. In
addition, the system must overcome attempts by spammers to obfuscate
the content of their message.

Efficient network usage: In order for people to contribute to the network it
must generate a minimal amount of traffic and avoid consuming a large
proportion of the user’s available bandwidth.

5This collaborative spam detection application extends earlier work with Ian Maddison
and David Ingram, published in the ACM Crossroads magazine [DM04] and at the iTrust
2005 conference [DBIM05].

6http://razor.sourceforge.net
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Trust: The Internet is an untrusted environment, but information provided by
others is the primary tool a collaborative system uses to filter messages.
The reliability of this information must be considered.

Security: Spammers must not be able to subvert the p2p network as that
would permit them to render the whole system ineffective.

Interface: The system must work with as many existing email clients as pos-
sible. A system requiring a custom mail client is not acceptable as that
would represent a significant barrier to its adoption by the Internet com-
munity.

On a p2p network all nodes are equal and must act as both client and server.
In this system, the client:

1. collects and parses email messages from the mail server;

2. searches the network, querying nodes for their conclusions on similar mes-
sages;

3. receives responses from these nodes and collates them;

4. invokes the SECURE framework to determine whether to mark the mes-
sage as spam or not;

5. redelivers analysed email messages to the user’s normal email client.

The server listens for queries from other nodes and answers them with con-
clusions it has reached on similar messages. When analysis is complete and a
conclusion is reached, it must be published so the server can answer queries.
If a user disagrees with this conclusion the published information will then be
updated.

Both client and server were implemented in Java, using the Javamail and
Apache XML-RPC libraries. An overview of the system architecture is given
in figure 7.3

7.3.2 De-obfuscating Messages

Automated comparison of spam messages is made difficult due to the obfusca-
tion techniques spammers use to evade existing filters. A detailed examination
of spam messages received over a one week period showed the following common
obfuscation techniques:

• appending a collection of nonsensical, but actual English words at the
end of messages (e.g., “coco divisive stutter epilogue cloister dividend
knapsack elfin ambidextrous lombard renegotiable”);

• inserting random spaces, characters, punctuation, and new lines (e.g.,
Mor tg age, via-gra);

• substituting alphabet characters for similar visual representations such as
accented characters, numbers or HTML entities (e.g., pi11);
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Figure 7.3: The System Architecture for the P2P Collaborative Spam Detector.

• inserting invalid HTML tags into words that will not be displayed by the
majority of email clients;

• embedding an image which includes the actual content of the message.

Therefore, to find whether the same spam message has been received by
other users, the system must search for messages that are the same but have
been obfuscated differently. The most straightforward method for achieving this
is to search for similar (not just identical) messages, thus making the problem
one of approximate matching rather than de-obfuscation.
Two main techniques for approximate matching were identified:

1. Fuzzy hashing algorithms such as nilsimsa [cme04]. Unlike “secure” hash
functions, these produce similar hashes for similar input. The similarity
of two inputs is then given by the hamming distance between the two
nilsimsa hashes.

2. Digest or feature vector approaches such as [ZZZ+03]. These find all pos-
sible consecutive substrings of fixed length L (“fingerprints” or “digests”)
from a document and use these as the feature vector of the document to
be published or located in the p2p network.

Both techniques were evaluated for their viability. Using the nilsimsa ap-
proach, for 2259 real messages and 92300 spam messages (100 variants of each
of 923 original messages) the average hamming distances were as follows:

Between two variants of the same spam: 51 bits
Between two different spams: 104 bits
Between two real emails: 102 bits
Between a real email and a spam: 112 bits
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This seems promising, but in practice each message must be compared with
all nilsimsa hashes found on the p2p network. This makes the problem much
harder as a hamming distance that achieved a 75% detection rate also caused
3% of false positives, which is unacceptable.

[ZZZ+03] uses the feature vector approach, claiming a 97% success rate
with no false positives. Accordingly this was the technique chosen for this
application.

7.3.3 Networking

The bandwidth-usage of the system will primarily be determined by the im-
plementation of the peer-to-peer network. The network must also be robust to
ensure that a node unexpectedly leaving the network does not produce errors
or lead to network fragmentation. There must also be no single point of failure
that could be attacked by the spammers. Three possible network topologies
were considered.

Flat: The simplest form of topology is an unstructured network. All nodes are
considered equal, so organisation is easy, but load-balancing and tolerance
to nodes leaving the network is harder to achieve. Searching is also highly
inefficient and scales poorly with the size of the network since without
any structure queries must be performed using brute-force flooding.

Hierarchical: A more complex topology involves having a number of levels,
for example the two-tier FastTrack system used in popular p2p file-sharing
clients, or a more traditional tree structure. Organising the structure is
more difficult (for example, who decides which nodes go in which tier),
although load-balancing and fault-tolerance are easier to manage. Search-
ing also becomes more efficient and, depending on the structure chosen,
can be made scalable.

Distributed Hash Tables: DHTs are a distributed form of the hash table
data structure, where data can be looked-up directly by computing a
key value from the data, which is then used to locate the node respon-
sible for that data. This allows the creation of scalable, self-organising,
load-balanced, and fault-tolerant structured overlay networks that permit
efficient and scalable searching. Removing information from current sys-
tems, such as Chord [DBK+01] and Pastry [RD01], is more difficult, but
that is not a problem in this application.

The Approximate Text Matching algorithm used in [ZZZ+03] is based on the
Tapestry overlay network. Tapestry is not a DHT but a Decentralised Object
Location and Routing system — essentially a decentralised directory service
abstraction [DZD+04]. Chord provides both the DHT and DOLR abstraction
and it was therefore decided to use that in this implementation.

7.3.4 Trust and Identity

As discussed in chapter 2, the simplest form of entity recognition is to represent
each principal by a public/private key-pair. This was the method chosen for
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this application in order to make evaluation of the other parts of the framework
more straightforward. The key-pair is generated the first time a node joins
the network. The private key is used to cryptographically sign published email
fingerprints; other nodes can then confirm the authenticity of the publisher
using the widely-known public key.7

The revised SECURE trust and access control models described in chapter 6
were used for this application. Each client locally stores a (sj , ij , cj) triple for
each principal, pj , indicating how much they trust their judgement. sj is the
number of times they have given a correct opinion on whether an email is spam
or not, cj is the number of times they have incorrectly described an email and
ij is the number of opinions received that have yet to be confirmed by the user
as correct or incorrect.

The probability that a mail is spam given that pj says it is spam is then
given by:

ρj = p(spam|pj) =
sj

sj + cj

The probability that a mail is spam given that pj says it is not spam is given
by:

ρj = p(spam|pj) =
cj

sj + cj

The information from each principal is then weighted based upon the number
of previous interactions the decision-maker has had with them, and a weighted-
mean used to determine an overall probability of whether a message is spam or
not:

p(spam) =
w1ρ1 + w2ρ2 + ...+ wjρj

∑

wj

where wj = sj + cj .

Information from principals with wj below the information threshold, l, is
ignored.

Recommendations

If there is insufficient information in the local trust database about principal
Alice, who offers an opinion on a particular email, then the trust engine may
also query the p2p network for recommendations from other principals about
their experiences with Alice. “Insufficient information” is determined by the
information threshold, l. To avoid problems with second-hand information and
loops, only information from direct experiences is published, in the form of
(s, i, c) triples.

Clearly, näıvely trusting recommendations from other p2p users is danger-
ous. In order to incorporate these recommendations into the probability calcu-
lation, they are first discounted [Jø01], using the belief in the principal’s recom-
mendation integrity ; they are then averaged over all principals who supplied a
recommendation, before being added to any local trust information.

7A note on terminology: To avoid any confusion, in this section all principals are nodes
of the p2p network, where a principal is defined as the holder of a particular public key.
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Recommendation integrity (also known as “meta-trust”) is calculated us-
ing the concept of semantic distance [ARH00]. Received recommendations are
stored in a cache and then, after a certain number of interactions with the sub-
ject of the recommendation have taken place (arbitrarily chosen as five in the
initial prototype), the value of the (newly obtained) local observed trust value
is compared with the received trust value. The main difficulty here is that the
information content of the received value is likely to be far higher than the
experience value. The two trust values are therefore normalised, giving (where
info = s+ i+ c):

(

so
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The recommendation integrity, RI, is then given by the ratio:

so

infoo
:
sr

infor

It is observed that if RI < 1 then the recommendations tend to be better
than the behaviour experienced, and so any recommendation should be scaled
down accordingly. In contrast, if RI > 1 then the recommendations are more
negative than observations indicate. Note, scaling-up does not occur in this
instance as it would break monotonicity and allow an attacker to manipulate
trust values by giving negative recommendations about those it wished to make
appear more trustworthy. Instead it is asserted that anyone who is guilty of
“bad-mouthing” another principal is unlikely to be very trustworthy at all and
thus all recommendations from principals for whom RI > 2 are ignored.

The RI for a recommender is calculated at most once per recommendation
received, to ensure that principals are not overly penalised if the principal they
recommend subsequently changes their behaviour. Since principals are likely to
make many recommendations, the RI value for a principal is an average over
all the recommendations that it makes.

7.3.5 User Interface and Feedback

Most of the time, the p2p client program runs unobtrusively in the background,
acting as a proxy between the user’s mail client and their mail server, collecting
the user’s email and delivering it to their inbox or spam folder as appropriate.
However, if the system makes a mistake then the user requires a mechanism
through which they can provide feedback. A footer, like the one shown in
figure 7.4, is appended to each message. Since the majority of email clients
load clicked URLs in the user’s web browser, the p2p client also acts as a small
webserver running on the user’s machine and listens for such page requests —
requesting a page associated with a recently processed email is taken to mean
that the user disagreed with the decision that was made. Since the software
runs as a proxy that may be used in conjunction with any mail client it thus
meets the interface objective set out in section 7.3.1.

For each message that is processed, a cache is maintained of:

(fingerprint, timestamp, key id, opinion)
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Figure 7.4: Example email which has not been marked as spam.

tuples for each key id (principal) that published an opinion to the network.
The timestamp records the date and time when the message was received and
processed by the p2p client.

Since feedback is only received when a wrong decision is made, and there
is no method of discovering when a user has seen a particular email to confirm
its correct classification, classification is assumed correct after a fixed time
period (configurable by user). When feedback is received, the appropriate tuple
is removed from the cache, any trust updates that have already taken place
reversed, new trust values computed and the email fingerprint published to
the network, along with the user’s opinion. In this way, only users who found
the existing information on the network incorrect publish an opinion, thereby
minimising the number of updates.

7.3.6 Evaluation

The SECURE framework elements were evaluated independently of the remain-
der of the application and implemented in the Python language, shown in fig-
ure 7.5. An abstract class was provided to allow the TBAC components to
interface with a number of different DHT implementations, including a “null”
implementation that was used for the tests described here.

Behavioural Attacks

Three main classes of principal have been identified.

Honest: Always give accurate reports. Required trust-value is any (s, i, c)
triple where s > c.

Näıve Spammer: This principal classifies all mail as spam. Since reports
indicate over 50% of email on the Internet is spam, this means they will
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Figure 7.5: UML overview of the collaborative spam detector implementation.

be accurate 50% of the time, and therefore able to leverage that reputation
to misclassify real mail as spam. Required trust-value is any (s, i, c) triple
where s < c.

Clever Spammer: This principal accurately classifies mail from other spam-
mers (to increase their reputation), but labels spam they send out as
legitimate email. Required trust-value is any (s, i, c) triple where s < c.

Random: This principal indiscriminately marks mail as spam or not spam.
This represents an attacker attempting to reduce the quality of the infor-
mation in the network to the point where the system is useless. Required
trust-value is any (s, i, c) triple where s < c.

For n emails, analysis shows that the honest principal will obtain the desired
trust value of (n, 0, 0). The näıve spammer will obtain (αn, 0, (1 − α)n) where
α is the proportion of emails that are spam. If α > 1

2 , which as noted earlier is
now thought be to the case for Internet email, then clearly this will not meet the
s < c requirement. The clever spammer will obtain a similar trust value where
α is the proportion of emails that are not their own spam. Whilst correctly
classifying arbitrary emails is difficult, the system can be used against itself by
echoing the opinion of other principals. Therefore this principal type will also
be assigned the wrong trust-value. Finally the random principal will, for large
values of n, be assigned a trust-value of approximately (1

2n, 0,
1
2n) which is also

not what is required.

Reputation-based Attacks

The potential principal types are as described in section 7.1.2, namely:

Honest: Give truthful recommendations. RI ≈ 1.
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False-Praisers: Give false positive recommendations. RI ≈ 0.

Defamers: Give false negative recommendations. RI > 2.

Liars: Give both false-praise and defamatory recommendations. RI < 1 or
RI > 2.

Randoms: Give out randomly generated recommendations. RI ≈ 0 or
RI > 2.

The required RI for the final two principal types is difficult to determine.
Randoms are slightly easier since it may be assumed that randomly generated
recommendations will be so far from the truth that RI will converge to either
zero or greater than two, but there is no guarantee of that. It is supposed
that liars are different from randoms in that they exhibit intelligence in their
choice of recommendations, for instance by issuing recommendations that are
the inverse of the true state. Analysis suggests that a resourceful attacker
would be able to give out recommendations such that the averages of their
incorrectness would cancel, and their RI would tend to one — clearly a highly
undesirable outcome.

The fact that this model for recommendation integrity proves to be vul-
nerable to the resourceful attacker successfully demonstrates the inadequacy of
trust metrics consisting of a simple scalar value.

Improving the Trust Model

The analysis described above demonstrates the weakness of the revised SE-
CURE trust model in its default form. Defence against the behavioural attacks
can be improved by making a number of simple changes.

1. Changing the trust update function so that c increases at a faster rate
than s. For example, every wrong decision causes c to be increased by +2
instead of +1.

2. Only taking the opinion of those principals for whom (s− c) > l where l
is the information threshold.

3. Introducing an upper limit on the number of incorrect decisions a princi-
pal can make before being ejected from the network, that is introduce a
threshold, cmax and ignoring all principals for whom c > cmax.

These measures aim to make it more difficult for an attacker to maintain
its positive trust value without contributing useful information to the network.
For instance, the first and second measures combined mean that in addition to
having to perform l correct transactions in order to become established in the
network, the attacker must continue to correctly identity two pieces of spam
for every one it claims is legitimate. The third improvement ensures that an
attacker using this strategy is eventually removed from consideration, and that
the l correct identifications must occur sufficiently early that simply publishing
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random responses carries a significant risk of being permanently ejected from
the network.

Note that the second and third changes suggested here are actually changes
to the policy rather than the trust metric, which demonstrates the value of
evaluating the system in an end-to-end fashion rather than just by component.

Sybil Attack

The improvements to the trust model outlined above already provide a fairly
robust defence against a Sybil attack, since over the lifetime of an identity, every
principal is constrained to provide more useful information than bad. Further,
if a principal exceeds cmax then the attacker has to generate a new identity and
start again, publishing l correct entries.

The fact that information is published to a DHT gives some more protection
from Sybil. If users contacted principals directly for information then an at-
tacker could tailor their responses to manipulate their trust value, for instance
by providing correct information the first l times and then changing their iden-
tity after cmax interactions. However, because information is published globally
to the network, every requester will be served the same response and the at-
tacker cannot control the order in which responses are seen.

This still leaves the related problem that attackers could attempt to subvert
the network by publishing large numbers of opinions (under different identities)
in the hope that some of them will prove sufficiently accurate to obtain a positive
trust value. Since legitimate users should publish infrequently (only when their
spam detector makes an incorrect decision as described in section 7.3.5), limiting
the rate at which nodes can publish to the p2p network is required.

Since an attacker may easily create a large number of principals but can
only control a finite amount of computing resource, this rate limiting can be
achieved using a proof-of-work algorithm or puzzle. These come in two main
forms: “Turing tests” to confirm that the operator is human, and computational
puzzles that require the expenditure of a certain quantity of resource such as
CPU cycles, memory or bandwidth [SL03]. Use of the former would limit the
publication rate of an attacker to the rate at which its employees could solve
the puzzles; the latter would limit the number of principals an attacker could
run on each machine under its control.

Risk and Access Control Evaluation

The risk and access control components were evaluated using a 1000 message
simulation (with 50% of messages being spam) and 100 principals. A principal
is introduced into the current round with probability 100

1000 = 1
10 . Spam messages

were sent to all principals currently in the network, non-spam messages were
sent only to the user being simulated. No trust information (recommendations)
is shared between principals in this initial test.

Three parameters were varied: the percentage of malicious principals, the
number of collectives controlling the malicious principals and the information
threshold l. The collectives model the clever spammer attacker-type described
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above: a malicious principal will mark spam messages from their own collective
as real whilst correctly identifying spam messages from other collectives. The
averaged results from three simulation runs are shown in figure 7.6.

Figure 7.6: Graphs showing the effectiveness of the spam detector (score out
of 1000) depending on the percentage of malicious principals, the number of
collectives into which the bad principals are organised and the information
threshold l.

As expected, the system performs better when the attackers form a minority
of the p2p nodes. However, even with three-quarters of the principals being
malicious, the system is still effective, especially when there are many competing
collectives of principals. A more surprising result is that higher information
thresholds actually decrease the performance of the filter. It is hypothesised
that this is because the information threshold is a double-edged sword: it takes
longer for malicious principals to gain sufficient trust to be listened-to, but it
also takes good principals who are giving accurate information longer to become
trusted. This suggests that the dynamics of trust must be asymmetric with a
slow-increase and fast-decrease, to which the SECURE trust model conforms
when using the extensions described above.

Another interesting observation is that an attacker’s best strategy is to
cooperate as a single collective rather than trying to bolster their own trust
rating by identifying rival’s spam. It would seem that the other collectives,
using the same strategy, cancel out the effect of any positive trust rating the
attacker might have.

Figure 7.7 shows when in the course of the simulation the errors are made
— namely during the early rounds before a network of trusted peers has been
identified. This graph only shows a sample of results, the simulations where
fewer errors were made did not produce interesting traces, but the lines shown
confirm the conclusions drawn from figure 7.6.

Access Control Evaluation Using Recommendations

The evaluation simulator was then modified to allow the good principals to
share information between themselves using recommendations. In this appli-
cation recommendations from others are only sought if the information about
a particular principal is below the information threshold, l. There is also an
update threshold (ut) which specifies how frequently (that is, after how many
interactions with the subject of a recommendation) should witnesses’ recom-
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Figure 7.7: Cumulative number of errors made by the spam detector over time
(since messages are received sequentially).

mendation integrity be updated.
To clearly illustrate the effect, the percentage of malicious principals and

number of collectives were chosen from the previous results to give the most er-
rors (that is, 75% bad guys and one collective). The update threshold was added
as an additional parameter, with values of 1, 5 and 10. The DHT was popu-
lated with recommendations by running the first 500 messages of the simulation
before initialising the test client. A number of defamatory recommendations
were also inserted into the DHT.

Since the test client was joining an established network it was observed that
the number of errors it made was limited to l — effectively the number of spams
it had to see before learning which nodes to trust. Figure 7.8 shows how the
use of recommendations can be used to reduce the number of errors to less than
the information threshold l. An interesting feature of this graph is that smaller
update thresholds do not necessarily lead to fewer errors. It is hypothesised
that this is because RI is calculated as a moving average and therefore less
frequent updates means larger changes that cause quicker convergence.

Security Threat Analysis, Ease of Use and Expressiveness

Having evaluated the trust components of the application, it is important to
put this into the context of the traditional security problems computational
trust systems are trying to solve.
Potential threats to this system are:

• impersonation of other principals;

• deliberate return of invalid or incorrect data as a response to a query;
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Figure 7.8: Effect of recommendations on number of errors.

• attempts to disrupt the network/denial of service attacks.

As described earlier, impersonation attacks were defended against using
public/private keys and digital signatures. Likewise, deliberate propagation of
misinformation is defeated through the use of SECURE for trust-based collab-
oration and decision-making.

By distributing the database of spam information using a peer-to-peer model
such as Chord, denial of service attacks against the network as a whole are much
more difficult than when the information is concentrated in a small number of
well-known servers. However, denial of service attacks involving packet flooding
directed against a particular node cannot be prevented at the application level
as this is a security flaw to which all Internet applications are susceptible.

As noted earlier, ease of use and expressiveness are also important aspects
of any system, and often impact on the overall security of the system. The
risk model used in this application is very easy to use, requiring the user to
specify just one parameter, E, the relative cost of false positives compared with
identifying spam. The system allows for more expressiveness if required: the
number of acts could be extended to prioritise messages depending on how
likely they are to be spam, and the user could be allowed to configure the full
preference-scaling function if they desired.

7.3.7 Conclusions from the Collaborative Spam Detection Ap-
plication

The development and evaluation of the collaborative spam detection application
has highlighted a number of important results for the SECURE project and
trust-based decision making systems. Firstly, the analysis of the evidence-
based trust model demonstrated the need for asymmetric trust dynamics, and
the importance of a point of no redemption, or history-fading. Without these,
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principals may initially perform a small number of positive interactions and then
use the “credit” obtained to behave badly. A second result concerning the trust
model is the need for a better method of representing recommendation integrity
than a single scalar. Although it proved difficult to exploit the weakness in this
metric in practice, it is still theoretically a vulnerability of the system.

Overall this application also demonstrated the utility of a trust- and risk-
based decision-making engine for collaborative applications. The particular
model used here is applicable to a number of variations of this application
where it is possible to evaluate the quality of all the information given by
principals. For example determining the quality of files in p2p file sharing
networks, or entries in a collaborative database of compact disc meta-data such
as freedb.org. In the latter case, a trust-based system would allow users to
favour entries written by authors they had previously found to be sources of
accurate and consistently formatted entries.

In contrast, the instantiation of the model used here would not be appli-
cable to scenarios such as choosing a service provider since it is impossible to
observe the results of those principals that were not chosen. Accordingly, al-
though it reduced the number of interactions needed to find trustworthy peers
in this application, the exchange of trust information was determined to be
only marginally useful. Conversely, it is expected that such exchanges via rec-
ommendations would have a larger rôle to play in applications of this other
type.



CHAPTER 8

Conclusions and Future Work

Global Computing is the vision of a massively networked infrastructure support-
ing a large population of diverse but cooperating entities. Similar to ubiquitous
computing, entities of global computing will operate in environments that are
dynamic and unpredictable, requiring them to be capable of dealing with un-
expected interactions and previously unknown principals using an unreliable
infrastructure.

These properties lead to new security challenges that are not adequately
addressed by existing security models and mechanisms. The size of the global
computing infrastructure means that security policy must encompass billions
of potential collaborators and enemies. Mobility, and the possibility for discon-
nection from one’s home network, requires the ability to make security decisions
autonomously in an environment where identity conveys no a priori informa-
tion about the likely behaviour of the principal, precluding the use of many
existing access control systems.

The essential challenge of access control in these environments is to balance
trust against risk: enabling access to resources for authorised principals is as
important as providing protection from unauthorised ones. Previous research
has shown how to quantify and model trust, yet the relationship between trust
and privilege is unexplored. What does it mean to trust Alice to the nth-degree?
It is the thesis of this dissertation that the relationship between trust and
privilege must be moderated using risk; in a dynamic environment, contextual
risk information can transform the question of trust to the nth-degree to one of
whether the risk of trusting is beneficial to the entity taking the decision.

This dissertation proposes a model for quantifying and reasoning about risk
in global computing. It then shows how this risk model can be integrated with
trust and privilege to provide trust-based access control. To recap from
chapter 2, the aim of TBAC is:

For a given application domain, a computational trust system (such

129
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as SECURE), should be able to select an interaction partner (or
partners) such that the risk of interacting with that principal is
deemed to be acceptable to the decision-maker.

To meet this aim it is necessary to consider the trustworthiness of the prin-
cipal(s) involved and the risk of entering into the interaction. In determining
these factors there will be other risks: using scarce resources (such as network,
CPU, energy or actual money) to establish trust (or distrust) may not alter the
risk assessment sufficiently to justify the use of those resources. This disserta-
tion shows how policies can be constructed to allow agents to make decisions
autonomously based on these risk factors.

8.1 Summary of Research Contributions and Results

PDA Information Sharing: This dissertation began by developing a simple,
but novel, access control model for information sharing between Personal
Digital Assistants (PDAs) using trust and risk.

Risk Modelling: The work on information sharing in a ubiquitous computing
scenario led to the analysis of risk in a variety of fields, including com-
puter science, the social sciences, economics, and the insurance industry.
This research produced a quantified formal model of risk for use in global
computing.

Extending RBAC: It was then shown how trust and risk modelling could be
incorporated into existing rôle-based access control (RBAC) models, such
as OASIS.

Trust-Based Access Control: A general model of trust- and risk-based ac-
cess control was then proposed and implemented, based on the previously
developed risk model and using the economic theory of decision mak-
ing. Although designed principally for use with the SECURE framework,
it was also demonstrated how it may be used with trust models other
than SECURE. A key benefit to the SECURE approach is that explicit
modelling of uncertainty and information is carried all the way through
the decision-making process, enabling the access control policy to reason
about metrics of quantity and quality of the information, as well as the
information itself.

TBAC Architecture: The SECURE project provides a general framework
for reasoning about trust and risk. This thesis shows how this framework
can be instantiated into a more concrete architecture, demonstrating how
the trust, risk, entity recognition and evidence management components
would interoperate to allow the fulfilment of the stated aim of this the-
sis and permit trust- and risk-based decision making. It also explores a
number of issues such as the risk of establishing trust through recommen-
dations, and the risk of providing trust information to other principals.
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Evaluation Methodology for Computational Trust Systems:
Langheinrich noted that [Lan03]:

The currently developed solutions [using trust for access con-
trol in ubiquitous computing] make validation seem impossible,
simply because authors never describe what constitutes a suc-
cessful operation of the system.

This concern was echoed by the SECURE project’s Industrial Advisory
Board and project reviewers. This thesis addresses the problem by de-
veloping a comprehensive methodology that permits the evaluation of
SECURE, and the work of this thesis, with respect to the aim outlined
in section 2.5 and recapped above. Crucial to this is the definition of
what it means to attack the system and thus what is considered malicious
behaviour.

A prototype implementation of a peer-to-peer collaborative spam detection
application allowed the detailed validation of the TBAC architecture using the
developed evaluation methodology. This led to a number of results concerning
the work described herein, and other aspects of the SECURE framework.

• The utility of trust-based systems in a global computing environment was
established, since without trust the collaborative spam detection network
could be subverted by peers operating on behalf of the spammers.

• Analysis of the dynamics of the SECURE trust model with respect to
various behaviour patterns demonstrated the need for trust to change
asymmetrically, that is, decrease faster than it increases. Without this
condition an attacker can retain privileges, gained as a result of previously
acting in a trustworthy manner, while misbehaving.

• It was further observed that (good) behaviour a long time in the past
was not an accurate indicator for the current disposition of a principal,
and therefore there was a need for “reputation fading” or some point of
distrust beyond which redemption was impossible.

• Analysis of the recommendation integrity system used in the collabora-
tive spam detection system confirmed the inadequacy of simple scalar
trust metrics and the need for the more expressive formal models of trust
described in chapter 2.

• Despite the weakness in the recommendation integrity metric, it was suc-
cessfully demonstrated how the conveyance of trust information using
recommendations can be used to bootstrap trust systems and facilitate
the establishment of trust.

• Finally, the benefit of an end-to-end, threat-based evaluation was high-
lighted by the way it was possible to counter threats to, and vulnerabilities
in, one component (such as trust or privacy) by applying suitable policies
to another.
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8.2 Further Work

This thesis, and the SECURE project in general, have developed a powerful
framework for enabling trust-based secure collaboration and decision-making
in global computing. However, the use of computational trust systems in this
manner is a new field, and thus this initial framework represents an excellent
basis for further research in the area. A number of potential extensions to the
framework and avenues for further research are outlined below.

One area that the framework does not currently address in great detail is
the notion of time. One of the results of the validation in chapter 7 was the
need for “reputation fading”, and thus it is hypothesised that trust models
could be improved further by the ability to take time into account. It was also
noted in section 6.7.1 that some forms of untrustworthy behaviour can only
be deduced by taking the timing of events into account when analysing the
evidence. Other researchers have already begun extending the SECURE risk
model to incorporate the notion of time [CM05].

Explicit modelling of time in the trust and risk frameworks will mean ad-
ditional factors that must be reasoned about in the access control manager.
Attaching a notion of age or freshness to information will also require either
extending the existing system, or developing new and more complex methods
for handling the information quality and uncertainty metrics.

The current SECURE framework caters for policy evolution through the
notion of dynamic trust and risk assessments that change in response to the
difference between the expected outcome of an interaction and the actual out-
come(s). A further extension would be the ability to measure the effectiveness
of current low-level policy at implementing higher levels of requirements, and
automatically evolving it accordingly to better implement the higher level poli-
cies. This would be a significant step towards self-managing security systems.

Another possible avenue of research would be the application of the SE-
CURE framework to the problem of security usability. Chapter 1 described
how greater security always has a cost, and anecdotally it seems that the cost
is often in the form of a lower system functionality and usability. The model
presented in chapter 3 showed how, for a limited application, security could be
transparent and pervasive by being built around a user’s habits and practices,
instead of being bolted-on later and therefore becoming an obstruction to ex-
isting practices. If computers are to become pervasive tools that may be used
by everyone, in the same way that anyone may learn to drive a car without
understanding how an internal combustion engine works, then security must
also become pervasive.

A major problem in this area is the use of software downloaded from the
Internet: currently proposed schemes for eradicating spy-ware and other “mal-
wares” often include the notion that code must be signed by a trusted software
provider before it may be installed. However, like the hierarchical public-key
infrastructure schemes of chapter 2, the need to obtain a certificate from an
agency that can perform suitable verification checks requires resources that will
deter smaller companies and individuals from providing free or low-cost soft-
ware. There is also the question of risk : an individual may be happy to give
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up some privacy in return for being able to use a piece of software he or she
otherwise could not — but the same user may also have another machine they
use for financial and other personal data that they wish to be “secure”. The
ability to convey trust information about software packages downloaded from
the Internet, for instance recommendations from friends or colleagues consid-
ered to be “computer experts”, and the ability to have the computer determine
whether a package’s request for administrator access is an acceptable risk, could
be an important step towards making computer security usable and pervasive.
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