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Abstract

This thesis investigates how business transactions are enhanced through competing
strategies for economically motivated cooperation. To this end, it focuses on the setting
of a distributed, bilateral allocation protocol for electronic services and resources. Coop-
erative efforts like these are often threatened by transaction parties who aim to exploit
their competitors by deviating from so-called cooperative goals. We analyse this conflict
between cooperation and deviation by presenting the case of two novel market systems
which use economic incentives to solve the complications that arise from cooperation.

The first of the two systems is a pricing model which is designed to address the prob-
lematic resource market situation, where supply exceeds demand and perfect competition
can make prices collapse to level zero. This pricing model uses supply functions to deter-
mine the optimal Nash-Equilibrium price. Moreover, in this model the providers’ market
estimations are updated with information about each of their own transactions. Here, we
implement the protocol in a discrete event simulation, to show that the equilibrium prices
are above competitive levels, and to demonstrate that deviations from the pricing model
are not profitable.

The second of the two systems is a reputation aggregation model, which seeks the sub-
group of raters that (1) contains the largest degree of overall agreement and (2) derives the
resulting reputation scores from their comments. In order to seek agreement, this model
assumes that not all raters in the system are equally able to foster an agreement. Based
on the variances of the raters’ comments, the system derives a notion of the reputation
for each rater, which is in turn fed back into the model’s recursive scoring algorithm. We
demonstrate the convergence of this algorithm, and show the effectiveness of the model’s
ability to discriminate between poor and strong raters. Then with a series of threat
models, we show how resilient this model is in terms of finding agreement, despite large
collectives of malicious raters. Finally, in a practical example, we apply the model to the
academic peer review process in order to show its versatility at establishing a ranking of
rated objects.
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Chapter 1

Introduction

This thesis investigates how business transactions in the environment of electronic services
can be enhanced through different kinds of cooperation. In this chapter we first motivate
why we work on the general problem (section 1.1), then we introduce the pricing model
(section 1.2) and reputation aggregation model (section 1.3). Following, we discuss the
methodology (section 1.4) and simulation technology (section 1.5) that we apply to analyse
the models. Finally, we present the layout of the thesis (section 1.7) and conclude by
stating the claims we make with regards to its contributions (section 1.8).

1.1 Motivation and Problem Statement

Just as much as competition is a fundamental concept of market economics, so is coopera-
tion a fundamental concept that is necessary to develop effective markets. We can observe
cooperation in economic markets at many levels and in very different forms and usually
to the benefit of all participants. The purpose of cooperation in a market economy is to
achieve better resource allocations and to allow for specialisation of the players, both of
which lead to gains in market efficiency and rewards for all involved players. The main
difficulty for cooperative arrangements is that these can be exploited by an individual
party who furthers his own welfare at the expense of the cheated cooperation partners.
Even worse, some parties could form their own cooperative subgroup, resembling a cartel
that beats the rest of the market.

These “games”, that are being played amongst businesses, are well known to economists
and are a well accepted and researched topic.1 When we build computer-based systems for
open market allocation of resources and services, we need to take these business behaviours
into account, since they are a fundamental aspect of what powers the efficiency of market
economics.

It has often been stated in the popular press that electronic markets, “Information
Markets”, follow different rules from the traditional “brick-and-mortar” economies. This
is true in as much as the “Information Revolution” changes the way goods are produced,

1See for example chapters 28 and 29 in Varian [92] as a starting point.
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distributed and consumed - incidentally this is analogous to the scope of change during the
industrial revolution. At a fundamental level though, Information Markets will follow the
same theoretical behaviours, because the incentives for behaviours remain the same, and as
Hal Varian has put it in his introduction to information economics: “After all, economics
is primarily about people not goods.” (Chapter 34 in [92]). However, the parameters for
these business games have changed with the advent of electronically automated business
functions.

Among the parameters that are specific to information economics is: (1) The almost
non-existent marginal cost (the cost to produce another copy of the product); Less exclu-
sive to information economics, but very characteristic for it are (2) network effects (the
more people use a certain product, the more valuable it becomes, e.g. e-mail); (3) Com-
plimentary products (the output of one product is able to work as input to the next, e.g.
Office documents); and (4) Product lock-in (one loses access to some data when changing
a software product). The latter three properties rely on information technology’s need for
standard software and the inertia of legacy data.

There are some more information economy specific parameters, all of the following will
play a role in chapter 3, where we develop a pricing model for a resource reservation proto-
col: (5) Low transaction overhead; (6) Automated product comparison incurs practically
zero-level search cost; if one solves aspects (2-4) through open standards, we also obtain
(7) highly substitutable products; and (8) Practically no switching cost. The latter three
aspects lead to a very intense, theoretically perfect level of competition.

For the second part of this thesis we develop another economically motivated model,
this time for a reputation system. This model, which we present in chapter 5 pays par-
ticular attention to a further set of information economic aspects: (9) Parties remain
relatively anonymous, if most of the transaction is performed through virtual contact; if
aspects (6-8) are present, we are facing (10) large numbers of transient business relation-
ships. The last two aspects make it difficult for business parties to develop meaningful
reputation knowledge and ease the way for manipulation, when one aggregates reputation
information.

The two economically incentivated systems that we develop and analyse in this the-
sis - pricing and reputation - are linked through the central transaction of this thesis,
namely: the market-based allocation of resources. Both systems are implemented in the
same simulation that captures a market of resource providers and clients who allocate
the providers’ services. To facilitate this market we develop a protocol that allows for
competition between providers as well as clients. Both systems use economic models to
alleviate the novel Information Market problems and both of these economic models use
cooperation to achieve their aim. While in both cases, the cooperation is induced through
economic incentives, they differ greatly in the level where within the models these incen-
tives are placed. In the case of the pricing system, the incentives are indirect, not visible,
and need to be discovered through careful economic analysis. The incentives in the reputa-
tion system are explicit and very visible, since reputation is a public aspect of economics.
Conversely, the threats for each of the systems are working the opposite way. The pricing
model is at direct economic threat from a participant who tries to exploit the economic
benefits directly by cutting out the competition. The threats for the reputation system
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are indirect, such as a participant who attempts to achieve undue reputation standings,
to then, in a secondary step, benefit from this economically in the market place.

In the following sections we introduce the general functionality of the two market
systems that we will develop, the pricing system and the reputation system.

1.2 Resource Pricing

The pricing model (see chapter 3 for its formal description) was developed for the al-
location protocol that we mentioned above, where the clients simultaneously negotiate
with all suitable resource providers, and the providers independently decide on the price
they offer to each client. This model assumes that resources are any kind of non-storable
service, such as computer processing time or network communication capacity.

Since all these negotiations are independent and possibly concurrent, providers have to
compete for clients when supply exceeds the demand, and conversely if demand exceeds
supply the clients have to compete for provider services. Our model’s contribution focuses
on the case when supply exceeds demand. We assigned this focus, because first of all, the
pricing situation is straightforward for the providers when demand exceeds supply, since
in this case they simply have to calculate the market clearing price for the aggregated
demand and supply. Secondly, a situation where some of the demand is denied services is
undesirable, because economically it is a loss that calls for new market entrants who will
serve this unsatisfied demand, and technically it is a loss for business operations if a client
intends to perform some operations that then are being blocked. However if supply exceeds
demand, and we consider competition to be perfect, namely search and transaction cost
to be zero, then traditional economic theory suggests that prices will drop to zero. While
some observations of international communication bandwidth markets suggest that these
assumptions hold up in the real world, such a result is undesirable, because it means that
the relative level of supply will drop, by means of providers going out of business, until
sufficient periods of supply shortages allow for sufficient profits.

When looking at a situation with excess resource supply, one solution to avoid prices
falling to zero, is for all providers to equally withhold some of their supply. However, if
only one or a minority of providers withhold some supply, the competition will sell even
more and this withholding strategy would turn out to be economically irrational. Any
attempt by the providers to establish this equal withholding cooperation by means of
explicit communication would be considered cartel behaviour and therefore illegal. Since
all providers benefit equally from this withholding strategy, it is conceivable that each of
them individually decides to choose this strategy. Ideally, we reach a situation whereby all
providers choose the withholding strategy and are all content with this choice. Content
in this context means, that in retrospect when they know the supply decisions of their
competitors, they recognise that a different choice would not have made them any better
off. In microeconomic terms, such a solution forms a Nash-Equilibrium (NE). In order
to model such a solution correctly, the providers need to have a model that contains a
function for the supply of each of the providers, dependent on the demand, and be able to
continuously update the model’s assumptions about the market situation’s parameters.
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We will develop a model for our allocation protocol under the described constraints,
where we use supply-functions to calculate the market clearing price at the corresponding
Nash-Equilibrium. Since supply-function theory was originally developed for centralised
market exchanges, we had to extend the model to the distributed bilateral negotiation
case. In order to enable the providers to adapt to their competitors strategic decisions,
the model continuously updates its assumptions with the actual realised numbers of client
requests and the successful sales. In this way, the pricing model avoids any form of explicit
cooperation with the competitors that could be considered illegal.

A general question is whether this supply-function model is technically able to achieve
the equilibrium price levels that were intended, and if so, under what market conditions?
Further, an important question is whether providers can beat their competitors if they
know about the competitions’ strategies, namely to calculate prices through this supply-
function model? Would it be possible for one or more providers to do better by employing
a “deviant” strategy of their own, for example by undercutting the competitors? We
will have to show that the model can be adjusted, such that the choice for providers
to cooperate with the supply-function model dominates the choice to deviate with an
undercutting strategy. To this end, we will analyse in chapter 4 various threat conditions
and how high we have to set the parameter that determines the model’s responsiveness
to deviators in order to diminish the threat’s profitability.

1.3 Reputation Aggregation

Reputations are the aggregation of past transaction experiences. In real life reputations
are used to predict the future behaviour of a potential transaction partner. Reputations
are particularly important where one party has to commit at the beginning of a series
of transactions to a partner. In this case, we use reputations to allow ourselves to enter
transactions that carry a higher risk. For example, to buy fruit from a market stall
does not require much reputation, since the produce can be inspected very well before
committing to the purchase. This is different if one is about to choose the doctor for
a medical procedure, or if one were to order the fruit unseen over the telephone or the
Internet.

For some business domains it is perfectly sufficient for each transaction party to build
their own memory of experiences and reputation implications, since a market stall does
not survive for long without return customers, when they have sold foul lemons. However,
if most of transactions in a business domain are one-off relationships, then it is necessary
to aggregate the experiences of many parties to build meaningful reputations. An example
is signing up for a medical procedure like heart surgery, or a purchase from an Internet
trader, where a multitude of suppliers and their easy discovery allows for transient business
relationships. One would probably not enter such transactions without any indication that
our transaction partner has done well in past transactions.

The reputation model we build in chapter 5 will focus on the aggregation function of a
reputation system that collects transaction experiences. The aggregation function derives
a common ordering for the preference of the rated parties. Obtaining such an common
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ordering is useful when one seeks to make recommendations about the performance of a
party. A further useful effect of publishing the aggregated scores is to mask the individual
comments a rater has provided. This is helpful when one finds it necessary to protect the
rater from the response of the rated party, while still leaving the incentives for the rated
parties to aim for a good rating in place.

Raters will inevitably give different comments for the same rating aspect, and it is
an interesting question for the rating aggregation function how to treat these variances.
The design choice for this rating aggregation policy depends on the assumptions we make
about the sources for these variances, and we might find some of these possible sources to
be unacceptable or avoidable. In an ideal case, these variances reflect the different levels
of service that the provider actually managed to deliver to the different clients. However,
in some cases the service is identical for all the raters, and then it still is possible that
some raters perceive the rating level differently to others, possibly because some are not
as able to assess performance as other are. Or, some raters might be biased in general,
and in the worst case a rater could have external reasons to attempt to influence the
outcome of the aggregated scores in a favourable way. To solve this problem, we assume
that not all raters are “equally” able to provide comments that generate agreement with
the other raters’ preferences. Therefore, in the aggregation function that we develop, we
assign raters who contribute more than others to a consensus solution, a higher influence
on the final outcome of the recommendations.

The goal of our aggregation function is to maximise the level of agreement within the
comments at hand. In order to achieve this goal, the model penalises deviation (actually:
variance) from the consensus. This approach has its analogies in finance, where risk
management weighs down titles with a high deviation.

Questions that arise from the design approach of our reputation aggregation model fall
into two categories, (1) technical and (2) pragmatic. The technical category is addressed
in chapter 6 and discusses questions such as the convergence of the iterative aggregation
algorithm. There, we also verify if the model output actually follows the stipulated the-
ory, and analyse the algorithmic properties, such as different possible convergence points.
We address the pragmatic questions in chapters 7 and 8, with questions regarding the
recommendations that the reputation model produces in response to particular scenarios
of rater behaviour. In chapter 7 we develop threat scenarios with statistically modelled
raters, where a subset of the raters applies a “deviant” behaviour. These deviant be-
haviours address questions such as: (1) What can our aggregation model achieve, if some
raters give less accurate comments? (2) What if some raters are biased and attempt to
influence the scoring outcome? (3) Or what can be done if a service provider delivers
differing qualities of service to different clients who then rate this provider? In chapter 8
we apply our reputation model to the academic peer review process, placing reviewers in
the spot of the raters, the submitted papers being the rated entities. There, we discuss
how to arrange this process, such that it is effective for numeric review comments, and
further on compare an actual conference review’s outcome with the recommendations our
model produces.
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1.4 Analytical Methodology: Simulations of Synthetic

Threat Models

The theme of this thesis about cooperation and deviation is carried in our analysis. Both of
the systems we build, pricing and reputation, promote cooperation among independently
operating parties. In the analysis we need to “stress test” our models for the potential
breakdown of this cooperation. The cooperation may break down if some of the parties
deviate from the cooperation in order to advance their own interests.

Throughout the majority of our analysis in this thesis we use simulations of synthetic
threat scenarios to analyse the viability of the pricing and reputation model. Synthetic
threat scenarios are best suited to present the models with challenging deviation sit-
uations. A common scepticism against synthetic scenarios is that they might not be
sufficiently realistic and critics then demand the use of real data to verify the practical
utility of this model. And indeed, it would be interesting to run the models presented in
this thesis on real-world data, since it would allow for an evaluation of the practical ben-
efits when employing such a model. However, in the analysis done in this thesis, we focus
on the model’s abilities to respond to a lack of cooperation down to outright deviation.
Real-world data might contain such scenarios, but would be unlikely to present a similar
challenge, unless some of the real-world participants actually have an agenda similar to
the deviators in the synthetic scenarios. Furthermore, the models we present are entirely
novel, and then to use demand profiles, or supply strategies, that are derived from present
real-world data, would lead to misrepresentations, since all market participants will adapt
their demand/strategy to the presence of the new model, as well as the behaviour of the
other participants.

Alternatively, it could be possible to use formal analysis to reason about the stipulated
properties of the two systems. However, the complexity of both systems makes it nearly
impossible to reason at a formal theoretical level about the more interesting scenarios
that we will analyse.

1.5 Simulation Technology

In order to examine the resource allocation protocol, the pricing system, the reputation
system and the threat models, we implement a discrete event simulator to bind all these
modules together. It was necessary to build a time-based simulation to be able to sim-
ulate the allocation protocol and the pricing model with its updating mechanism. A
discrete event simulation is most suitable to capture the asynchronous behaviour of our
concurrently interacting parties.

Appendix A describes the discrete event simulator that we implement in Java to suit
the requirements of our simulation. We decided against using existing packages, because
they either did not allow for dynamic allocations, or did not provide the most desirable
programming model, or else simply performed poorly. We simulate the interacting parties
through a model of “communicating processors”, which makes time and state transparent
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for the simulated parties, they can be implemented as one would do in a real application.
Using the simulator base we also build a framework for servers (service providers) and
clients that implement the allocation protocol. In order to increase the efficiency of our
simulation, we optimised the thread switching by using low-level thread control. The other
performance critical function in a discrete event simulator is the event queue, where we
implement a Qheap structure that has near optimal scalability, and involves low overhead.
Finally, we demonstrate the performance of this simulator in terms of its core speed and
scalability.

1.6 Protocol Environment

We describe, in appendix B, the protocol environment for market-based resource allo-
cations at different layers of abstraction and discuss the implications of the available
technologies for our allocation protocol. There, we give examples of the different types of
clients and their applications, who might seek resources and services. We continue with
a description of applicable types of resources and then move on to the technical interface
between clients and providers. We describe how clients could discover the providers and
the negotiation language they could use to implement the steps of our allocation protocol
of chapter 3. We further elaborate on the strategies clients and providers are allowed
to apply in their allocations, the scope for complex allocations with price bundles, and
security issues around such a protocol in an open environment.

1.7 Thesis Layout

Chapter 2 introduces the background to this thesis, and, for readers who are not familiar
with game theory, it starts out with a basic introduction to microeconomics and how its
principles are applied in this thesis. It continues with a discussion of the relevant literature
for market-based pricing systems and the reputation system. Chapter 3 describes the
resource allocation protocol and the formal model of the pricing system we introduced
previously in section 1.2. Chapter 4 then analyses the effectiveness and resilience of
the pricing system. In chapter 5, we present the formal model of our consensus seeking
reputation aggregation system, and following evaluate its technical properties in chapter 6.
Then, in chapter 7, we put the reputation model’s applicability to the test with a suite
of challenging threat models. To show the versatility and practical applicability of the
reputation model, we formulate in chapter 8 how it can be applied to the academic peer
review process and analyse an actual conference review with our reputation model. We
conclude in chapter 9 with a summary of this thesis’s contributions to the discussion of
cooperation and deviation in market-based resource allocation.

In appendix A we present the discrete event simulator we implemented to perform the
analysis of the models, and in appendix B we illustrate the larger technical environment
that enables an open market-based allocation protocol.
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1.8 Claims

Here we summarise the contributions of this thesis, broken down by the research domains:

Pricing System

• We develop a resource pricing system that successfully solves the problem of im-
ploding resource price during times of supply exceeding demand.

• This pricing model is innovative because of its application of supply functions to a
distributed, bilateral market protocol.

• We implement this pricing system in a discrete event simulation and show that it is
able to raise prices above competitive levels.

• We evaluate the resilience of the pricing system against undercutting and demon-
strate the effectiveness of its response measures.

Reputation Aggregation

• We develop a reputation aggregation system that is able to discern between strong
and weak raters, based on their contribution to a common consensus.

• This reputation system contains a novel aggregation algorithm that is inspired by
search engines’ transfer of endorsement and risk analysis’s view of statistical varia-
tions.

• We evaluate the technical properties of the iterative aggregation algorithm and
demonstrate that it scales well, even to low numbers of raters.

• With a simulation of threat models we show how the reputation system is able to
recognise large proportions of weak raters, and that it is able to adjust the scores
accordingly.

• As a case example we apply this reputation system to the academic peer review
process. We use an actual workshop’s review comments as input to the system to
evaluate its scoring/ranking method.

Synthetic Threat Model Simulations

• We develop a suite of threat models that challenge the limits of the pricing and
reputation systems. These synthetic threat models resemble an insightful evaluation,
since they are designed to maximise the threat.

• We implement an efficient discrete event simulator that outperforms several similar
tools.

Cooperation and Deviation

• We show that both the pricing and reputation systems promote cooperation that
yields benefits for all the contributors.

• Through the suite of threat models we show that both systems are able to place dis-
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incentives on strategies that deviate in an exploitative fashion from the cooperation
strategy that the systems seek to promote.

Economic Factors in Computer Systems

It is our intention that this dissertation contributes to the computer science commu-
nity’s understanding about the type of decisions that economically rational agents would
make. In open market systems, the resource allocation decisions fundamentally depend
on economic factors. If one intends to optimise the resource utilisation, such as it is
usually done in computer science research, one needs to take into account a model of
the economic behaviour of the market’s agents. In computer science, one of the most
popular questions start with the words: “but what if agent A does behaviour B...”, and
additionally implies“... for whatever irrational reason”. Traditional system design then
amends the design such that it is impossible for A to do B. However, for many scenarios,
we do not need to adhere to such stringent standards. In this dissertation’s scenarios, we
allow agents to engage in any behaviour, but then limit the damage this can do to the
utility of our system, and make sure that any unwelcome behaviour is not rewarded.

1.9 Collaboration in this Thesis

Since the main thrust of this thesis is to argue the case for cooperation, it should come as
no surprise that parts of its inception are products of collaboration. This collaboration
is limited to chapters 3 and 4 where the author was working with Karsten Neuhoff, a
PhD student at the Department of Applied Economics at Cambridge University. While
it was the author’s part to draw up the problem scenario, it was Karsten Neuhoff’s idea
to use Supply-Functions to address the problem. We jointly developed the model that
adjusts the Supply-Functions to a decentralised market of resources and drew up the
threat models for the analysis. It was the authors sole responsibility to implement all of
the discrete event simulation that hosts the model and to develop all the data analysis.
This joint work, as it is contained in chapters 3 and 4, was presented and published at a
conference [59]. Subsequently it was also published in a Journal [60].





Chapter 2

Background and Related Work

In this chapter, we introduce the background material and the related research for the
systems and models we develop in the following chapters. First, however, we start out in
section 2.1 with an introduction to Microeconomics and Game Theory. While this basic
text book style introduction is mainly intended for computer scientists, it also points out
how and where in our thesis we make use of the corresponding microeconomic reasoning.
We then continue in section 2.2 with a review of the related research for resource pricing,
which sets the background for chapters 3 and 4. Finally, in section 2.3, we cover various
research on reputation systems that can be contrasted with our work on this topic in
chapters 5-8.

2.1 Introduction to a Microeconomic Perspective of

Cooperation

We start with a brief introduction into Microeconomics and Game Theory to illustrate
the rationale we will apply in the development and analysis of our thesis. The examples
are based on Hal Varian’s book on Microeconomics [92], and readers who are familiar
with game theory and microeconomics might want to skip this section.

2.1.1 Incentives for Cooperation

Cooperation is a prevalent element in the business world and usually benefits all partic-
ipants. Cooperation starts at the point where two players agree on a contract (or one
transaction) and leads up to more intricate forms with market places where competing
players come together at the same venue to attract a larger number of clients. All players
participate in the cooperation to increase their own individual benefit. Since the coop-
eration achieves better resource allocations and allows for specialised players, the whole
market becomes more efficient and thereby is able to reward all the cooperating players.
Cooperation can also take up forms that do not benefit all players, or the overall market,
as for example where a group of competitors forms a cartel. In any developed economy,
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cooperation is prevalent in all its mechanisms and has been researched well.1 Here we
focus on the theoretical foundation for the economic mechanisms that lead to cooperation.

Game Theory

Game theory is the subarea of microeconomics that captures strategic interaction and
the incentives for players to make a choice in one or another way. By comparing the
individual payoffs in a matrix for the individual players and their combination of choices
one can compare the benefits of applying one or another decision strategy. A strategy in
this context can be one choice a player makes, which is called a pure strategy, or can be a
more complex construct in a repeated game that involves a series of decisions that depend
on the behaviour of the other players, which is called a mixed strategy. Throughout this
thesis, but particularly intensively in chapters 3 and 4, we will rely on microeconomics to
build founded models for the scenarios we discuss.

Rational Agents

Economics assumes that the players make rational decisions and choose the strategy that
yields for them the highest payoff. To clarify what economic rationality is, consider for
example the payoff matrix shown in figure 2.1 for a one-off game, where player A has the
choice between playing top or bottom and player B has the choice between going left or
right. Depending on both players’ choice each player receives his payoff, player A the first
tuple entry and player B, the second one.

Player A

Player B

Top

Bottom

Left Right

1, 2 0, 1

2, 1 1, 0

Figure 2.1: A game with a dominant strategy equilibrium.

In this example player A obtains a higher payoff from going bottom, regardless what
player B does and player B reaches his higher payoff by choosing left, independent of
player A’s decision. This is where economic rationality comes in and dictates that each of
the players will make the choice that yields the higher payoff for themselves. Any different
choice would be considered irrational according to the strategic possibilities of this game.
Since the players were able to reach this conclusion independent of the other’s choice, we
call such a clear-cut decision the dominant strategy. The combination of the two strategies,

1In order to keep this thesis concise, we decided against including a more detailed exposition of the
various forms of cooperation in economics. If the reader would like to know more about the theoretical
background of this area, we recommend Hal Varian’s book on Microeconomics [92].
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bottom/left, yield what is called the dominant strategy equilibrium. Note that in real life
there may well be reasons for player A or B to make a different choice; however, in the
case of this example we chose not to include these reasons in the model and these therefore
remain external to the strategic considerations to be made. When developing our models
throughout this thesis, we will assume that the players make rational decisions.

Nash-Equilibrium

Dominant strategy equilibria make for an easy strategic choice, since we require that
player A’s choice has to be optimal for all choices of player B. However, in many cases
such an equilibrium may not exist. A less demanding equilibrium is the Nash-Equilibrium,
where we only require that A’s choice is optimal for the optimal choice of B. A Nash-
Equilibrium exists for a pair of strategies if A’s choice is optimal, given B’s choice, and
B’s choice is optimal given A’s choice. Consider for example the matrix in figure 2.2,
which has two Nash-Equilibria: Top/Left and Bottom/Right. In this thesis we will use
the Nash-Equilibrium to motivate strategies in the pricing model of chapter 3, where the
players have an incentive to implicitly cooperate.

Player A

Player B

Top

Bottom

Left Right

2, 1 0, 0

0, 0 1, 2

Figure 2.2: A game with a Nash-Equilibrium.

Collusion

However, there are also some fundamental problems with the Nash-Equilibrium. Consider
for example the case of the well-known “Prisoner’s Dilemma” - see figure 2.3 for the payoff
matrix. It is a Nash-Equilibrium for both players to choose to confess, since given each
other’s choice it would be beneficial for the other one to confess. But this is not the
optimal outcome either, both players could be better off, if both of them would choose
to deny. Microeconomics describes such an undesirable situation as pareto-inefficient.2

To reach this more beneficial strategic outcome, where both players choose to deny, the
players would need to alter the rules of the game and coordinate in some way so that
they reach an agreement that binds both of them to their strategic choice. This could be
achieved by adding a penalty to the payoff matrix that punishes the player who does not
uphold the agreement.

2A given solution is called pareto-efficient if no player can be made better off without making another
player worse off.
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Player A

Player B

Confess

Deny

Confess Deny

-3, -3 0, -6

-6, 0 -1, -1

Figure 2.3: The prisoner’s dilemma in a payoff matrix.

Unsurprisingly, the real business world provides sufficient examples, where businesses
would benefit from such explicit coordination by means of setting up an agreement. Con-
sider for example the case of two airlines who compete for the same flight route. If they
enter a price war, they are likely to achieve less revenue than if they both would agree
to set the prices at the level that they would choose if they were monopolists on this
route. Monopolistic prices are determined such that they maximise the total industry
profits, and neither airline could do better than splitting this monopoly profit without
making the other one worse off. Such an explicitly coordinated practise of price-setting is
called collusion and the participating firms form a cartel. Since such price fixing practise
counteracts the benefits of competition, it tends to draw attention of law enforcement
authorities in most developed economies.

Contrary to collusion, the implicit cooperation that we obtain from a Nash-Equilibrium
is not illegal. As we have seen, it also is less effective in terms of profit maximisation than
collusion, and therefore does not stifle competition. Some markets where competition
is more fragile receive regulatory attention to safeguard the behaviour of the firms (i.e.
telecommunications and electricity). The price model we will develop in chapter 3 does not
assume any collusion or punishment strategies. However, in our analysis of the theoretical
models, in chapters 4, 6 and 7, we will build threat models that consider “defection” as a
potential strategy and evaluate if such a strategy can break down our model equilibrium.

Dynamics in Sequential Games

If games are played repeatedly, many times over, the players can use mixed strategies.
In a mixed strategy, a player makes a choice with a certain probability, and since both
players can choose the probabilities they assign for this decision, we can obtain a range of
new payoff matrices. With mixed strategies it is always possible to find a pareto efficient
outcome.

With repeated games, we also can come up with a satisfactory solution to the prisoner’s
dilemma. The most successful strategy in a repeated prisoner’s dilemmas appears to
be a very simple one that is called “tit-for-tat”. With this strategy, the player initially
cooperates and chooses to “deny”. Subsequently, on every round you mirror the behaviour
of the opponent player’s behaviour of the previous round. So, if the other player has chosen
to “confess”, then we will punish him in the next round by doing the same. And if the
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other player changes his mind to cooperate again, this strategy is forgiving and we will
cooperate in the next round again.

Another variant of playing games are sequential games. In a sequential game, player
A makes his decision first, player B can see the result and then make his own choice.
Consider for example the case where a customer brings his car for repair to a garage and
for the time of the repair gets a rental car. Mid way through the repair the mechanics
discover that an additional part needs replacing. The garage phones up the customer
and informs him about this need and quotes a price for this additional replacement. At
this point the garage can choose between charging exactly the cost of the replacement, or
this plus an additional amount of extortion. The client knows that the garage is quoting
an inflated price, but now he has to make a choice. He can decline the extra repair and
pay the garage for the original task only. In that case he would have to go into the
effort of finding a new garage and then hire again a rental car for the days of this second
replacement. Alternatively, he can simply pay the extra bit of extortion that will amount
to less in money and hassle than the rental car and arranging with an alternate garage.
The rational choice in this game would be to agree to the additional replacement with the
original garage and to keep in mind not to return to this garage for future services. This
is also the solution to this kind of problem - reputations - are an incentive for a garage
not to make the choice of charging the extortion in the first place.

In the case of the garage, it may be sufficient if every customer acquires his own experi-
ences and shares his knowledge only locally, such as the neighbours, since the garage and
the customer are likely to be confined to a local area that depends on repeat customers.
This is not the case for many other situations where business relationships are more
transient. In such situations, it is helpful to aggregate reputation information through
services, such as a better business bureau. However, when one seeks to collect the expe-
riences that individual customers report from their business interactions, one has to be
aware of customers who might have other incentives and strategies than to altruistically
supply a correct account of their observations. Therefore, we seek to develop in chap-
ter 5 reputation aggregation model that is resilient towards individual customers’ rating
agendas.

2.2 Resource Pricing

In this section, we survey the range of research on pricing of resources, which has been
often recognised in connection with QoS admission systems. Further, a large body of
work on various forms of E-Commerce transactions exists.

The classic work on resource pricing is Spawn [94], which explores issues of using
currency to achieve fairness, priority, distribution and scalability. Contrary to most of
the other research, this work uses prototypical applications instead of simulations for the
evaluations. However, while Spawn is using currency mainly as a control variable and
show its use as such, it does not make proper use of market forces and mechanisms.
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2.2.1 Pricing of QoS Allocations

Market-based methods have been widely used for the control and management of dis-
tributed systems as a means of providing a fair allocation of priorities to clients. Previous
research on QoS-network allocations has considered the effects of dynamics in bandwidth
allocations. The simple bundling of network and server resources can be found in [28, 57].

Danielson [20] provides a taxonomy of admission rules for different auction schemes and
used auctions for admission control and pricing for RSVP [10] connections. Further work
on QoS-network allocations, effects of dynamics of bandwidth allocations and primitive
bundling of network and server resources can be found in [50, 4].

Several statistical models for advance reservations for admission of networked calls are
developed in [96, 29, 39]. These differ in their approach to probability distributions and
assumptions on call duration.

Reiniger [77] describes a market of QoS network bandwidth containing consumers,
retailers and wholesalers using cost-benefit (utility) functions to derive pricing on MPEG
video streams. However, his focus is on clients adapting their demand depending on the
current load-based resource price, and therefore expediting traffic without congestion.

2.2.2 Pricing, Bundling and Markets

Looking at Internet pricing, Fishburn, et al. [30] and Sairamesh, et al. [80] provide models
for charging network users and enabling differential services based on the willingness to
pay as well as on passing network congestion feedback on to the user of the network. The
research differs from ours, as it does not model competition between resource providers;
or, as in the case of Kelly [51], works on the basis of congestible connections; or, as in the
case of Kuwabara [69], assumes cooperative price adjustments, which would be inhibited
by competition authorities.

To compare centralised and decentralised market designs, Kirchsteiger, Niederle and
Potters [53] studied public versus private exchange markets on the Internet. They con-
cluded that many of the public exchange markets failed to obtain trading volume. Traders
individually prefer to hide information from their competitors, although they might, ac-
cording to auction theory, collectively profit from a public exchange market, which could
facilitate collusion.

Much of the research on pricing for competitive markets has focused on sales of elec-
tronic information products using autonomous agents for negotiation [42, 52]. The area
of market mechanism research also applies to negotiations and agent bidding strategies,
but does not address limited capacities and time dependency.

Various uses of auctions have been explored in the context of electronic commerce
systems [55, 99, 67, 3]. In addition, the hard problem of bundling auctions has been
investigated [81, 73].
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2.2.3 Resource Economy Systems

Various systems have been developed to centralise buying and selling CPU cycles in
online peer-to-peer markets. POPCORN [76] evaluates a number of centralised auction
methods for matching buyers and sellers, in contrast to our decentralised bilateral model.
Challenger [14] evaluates load-balancing effects when CPU cycles are offered in a peer-to-
peer system without remuneration; therefore, there are no distortions due to the exercise
of market power. A practical attempt at implementing such a market system in a peer-to-
peer content distribution system has been implemented, with the Mojonation [44] project.
However, it did not succeed in real life, because it ran out of funding.

2.2.4 Ogino’s Protocol for Competitive Bandwidth Allocations

Ogino [71] presents a protocol for mutual selection that allows for simultaneous requests
and provides an example of utility functions that are adopted by users and providers to
drive this selection. Our allocation protocol that we present in chapter 3 (section 3.2) is
based on the one presented by Ogino. Our protocol differs inasmuch as it is not limited
to bandwidth allocation, and it also is able to discriminate between users. In Ogino’s
protocol, users with a high valuation may not be given preference.

In the analysis, Ogino focused on bilateral interaction and developed a negotiation
protocol between clients and network bandwidth providers. Users randomly make requests
to providers. Providers have a fixed price schedule for each service level and only decide
whether to provide bandwidth or whether to wait for more lucrative requests. Ogino
shows that, if clients are price sensitive, providers who are given a lower price schedule
increase their market share and profits. In contrast, we allow providers to charge prices
according to market conditions; providers continuously assess demand and competitors’
behaviour to determine the optimal price for their bids. The equilibrium prices stay above
competitive levels.

2.3 Reputation Systems

Reputation systems have been developed for various different target applications and
follow different aggregation concepts. Here we describe the relevant research, grouped by
context.

2.3.1 Transfer of Endorsement

The idea to introduce reputations for raters into our reputation aggregation algorithm was
inspired by page ranking calculations in search engines, such as Google, and its transitive
concept of transfer of endorsement [72, 12].

Transfer of endorsement has been picked up previously by other researchers for their
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development of reputation systems, most notably Chen and Singh [15]. Their kernel for
the rating aggregation system involves building reputations for raters. Their system is
versatile and is able to handle uni as well as bi-directional ratings and clusters ratings
into groups. These groups have different levels of endorsement for the other groups’
ratings and thereby the concept of the transfer of endorsement gets established, through
a recursive computation that iterates over the importance each group obtains from the
other groups’ endorsements. The importance provides the weight of a group for their
endorsements and for the compilation of resulting object scores. In order to make use of
the rater reputations, the user’s reputation is decomposed in a hierarchy of knowledge
domains and the user’s rating comments are assigned to the leaf categories, which contain
objective, subjective and even text based comments. They analyse the commenting data
of Ebay, Amazon and Epinions by applying their statistical reputation model and find
several desirable properties. They are able to categorise raters in “Good” and “Bad” ones,
and show that the good raters are more consistent with their comments, as well as being
better able to finely differentiate items. Further they are able to establish a correlation
between the rating experience of a rater and his resulting reputation as a rater (in the
form of his reputation rank versus the other raters). In comparison with our model, which
we present in chapter 5, Chen and Singh’s work is using a very similar approach yet is
applicable to a broader range of rating situations, since ours focuses on numeric comments
only. Therefore, their results are able to draw conclusions on more general effects, such
as people’s view on privacy versus reliability of comments. However, due to its focus on
working with an objective scale, our model and analysis (in chapters 6-8) is better able
to establish a consensus on the score and ranking of a rated object. Further, it is able to
visualise any clusters of agreement, where these exist, and otherwise has a parameter for
balancing inclusiveness versus discrimination of rating influences.

2.3.2 Collaborative Filtering

Collaborative filtering systems are recommender systems that use similarity-based ap-
proaches to provide a statistical function which aggregates other users’ recommendations
on the basis of a specific user’s preferences. With collaborative filtering methods it is
possible to investigate similar questions as we have set forth in our analysis of such dis-
criminatory comments aggregation.

Serjantov and Anderson [83] present a broad survey of the applicability of Social Choice
theory to voting, recommender systems, collaborative filtering and other mechanisms
that address the problem of how to deal with adverse minorities in open systems. They
introduce voting theory, the axioms of Social Choice theory (Arrow’s Theorem [7]) and
discuss winner selection under these constraints and other market mechanisms. With
this methodology, they criticise Dellarocas’s Collaborative Filtering methods [22] and
suggest a better approach. Further they evaluate research on reputation system metrics
and real reputation systems (i.e. eBay) as well as research on Peer-to-Peer reputation
aggregation. These observations lead them to a number of observations and conclusions
about desirable properties of Peer-to-Peer preference aggregation systems. This research
is a useful resource for the methodology to apply when making critical design decisions
and what effects to take into account therein.
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Dellarocas [22] presents a cluster filtering algorithm, which has the main aim to remove
the effects of raters who appear to submit “unfair” comments. This set of mechanisms
eliminates ratings that stem from “conspiracy” scenarios, such as “ballot stuffing”, “bad-
mouthing”, seller discrimination and “flooding” with unfair ratings, such as in the case
of a user who creates many fake identities in order to “rig” the rating score of a rated
object. While our reputation system could be used to achieve similar effects, the strength
of our system comes to play when raters supply comments on different objects, which this
statistical approach would not specifically exploit. Further, a criticism voiced by Serjantov
and Anderson [83] on Dellarocas’s cluster filtering, is that from a viewpoint of social choice
research, it is undesirable to simply ignore “outliers”, since this violates the basic idea that
“everyone’s preferences count” and social choice research frowns upon such interpersonal
comparisons in general. By contrast, the reputation aggregation function that we will
develop in chapter 5, allows for gradual adjustment between dictatorial and egalitarian
aggregation of each raters’s comments. Additionally, in our system, the question whether
a rater is considered to be an outlier, is a gradual process, proportional to the distance
from the overall consensus.

Pennock, et al. [74] analyse the theoretical foundations of collaborative filtering (CF)
systems under the aspect of social choice theory. They define four axiomatic properties
for a CF function that Social Choice theorists have found to be desirable. In their analysis
of different collaborative filtering functions they find that the first property, “universal
domain”, is universally accepted by all CF functions, the second, “unanimity”, is common
and accepted by most CF functions, the third, “independence of irrelevant alternatives”,
is obeyed by similarity-based CF functions, however the fourth, “scale invariance” can be
obeyed by some similarity-based CF functions, if these then violate the third property
in some cases. The authors propose a nearest neighbour CF function and prove that
only this one can satisfy all four properties. This research approach is interesting, not
only because Social Choice theory provides useful methodology to formulate desirable
properties for the analysis of CF functions and recommender systems, but also aids the
development of new functions and systems that satisfy the desired properties.

2.3.3 General Reputation Aggregation Systems

From a practical perspective it is important to mention eBay, since its reputation system
is vital to the success of this trading platform. This centralised reputation system allows
buyers and sellers to supply comments about each other after a completed transaction.
Ebay’s reputation system has several obvious weaknesses, for example it invites free-riding
and consequently a comment is provided only half of the time, and then the comments
are nearly always positive, because of the threat of retaliation with a bad rating supplied
by the other transaction party. The properties have been well discussed (e.g. [79]) and
Resnick finds that despite all the shortcomings, scores are predictive of future performance,
and that good ratings did not let sellers boost their prices [78]. In comparison with the
reputation system we present in this thesis, eBay’s reputation aggregation function is very
simplistic, since it only calculates average scores, regardless of the conditions in which the
comments were made. Amazon employs a similar reputation system for the private resale
of used books and articles.
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Mui, et al. [66] decompose reputation in a context and relation dependent typology.
Doing so allows them to describe different notions of reputation in terms of strategies ap-
plied by the agents. With an experimental simulation of these strategies they are able to
quantitatively compare notions such as “Encounter-derived individual reputation”, “Ob-
served individual reputation”, “Group-derived reputation” and “Propagated reputation”.
This is an interesting approach to making an quantitative comparison, where normally
qualitative assessment is applied. Given the parameters for their reputation aware pris-
oner’s dilemma game, they are able to determine which kind of reputation notion supports
a particular agent strategy.

Following, we list a number of publications about reputation systems that are re-
lated to our work, though their research effort addresses different aspects from ours:
XenoTrust [27, 26] is a repository platform that allows XenoServer clients to deposit trust
and reputation information. Client applications then can access this information in a flex-
ible fashion that allows the clients to specify their own query rules. This research is mainly
concerned with architectural questions of deploying such a flexible platform. Cosley et
al. [17] build a recommender system for ResearchIndex, a huge online digital library of
computer science research papers. This database is ideal to evaluate recommenders that
combine information and collaborative filtering techniques. Dellarocas and Resnick sum-
marise the current research that was presented at a symposium on reputation systems [23]
and attach a roadmap with the different directions for opportunities for future research on
reputation systems. Wang et al. [95] develop an game theoretic model for agents to make
strategic decisions taking reputation into account. Braynov and Sandholm [11] attempt to
construct a mechanism that incites agents to reveal their true trustworthiness in terms of
upholding contractual agreements. Dingledine et al. [24] describe Free Haven’s approach
for using reputations in order to enhance the trustworthiness of anonymous publishing on
a pseudonymous distributed publishing system.

2.3.4 Peer-to-Peer Systems

Peer-to-Peer systems have been an obvious target platform for reputation systems, due to
their inherent problems with freeloading and cheating agents. Much of these efforts ad-
dress Peer-to-Peer specific problems that arise from peers being anonymous and transient,
as well as distributed.

Of this body of research, most relevant to ours is Kamvar’s EigenTrust algorithm [49].
The interesting point in this algorithm is that trust values are stored locally, but then are
synchronised among a set of peers who had prior interaction (and thereby trust) through
an iterative exchange process that yields global agreement on the trust values. This Eigen-
Trust algorithm relies on transfer of endorsement to achieve rapid convergence, which is
vital for the scalability of the distributed algorithm. In their analysis they show how the
reputation aggregation algorithm is able to cut down the vast majority of downloads of
an inauthentic file, that originates from a malicious collective that resembles up to 40%
of the population. If the malicious peers do not form a collective, but apply individual
strategies, then even a set of 70% malicious peers can be neutralised by EigenTrust. How-
ever, if no cost is attached to creating new identities, the system is at threat from a Sybil
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attack. Compared to our reputation system that we present in chapter 5, both systems
use a similar trust propagation concept, transfer of endorsement, for the aggregation of
scores. Given that EigenTrust has been designed to suit a more specific application than
our reputation system, it is interesting to note that when analysing both with various dif-
ferent threat models (see chapters 6-8), both are able to identify similar sized proportions
of malicious peers.

Aberer and Despotovic present a reputation aggregation system [1], that is concerned
with the problem that global trust values might originate from untrustworthy peers and
therefore they multiply the complaints made against one peer by the number of complaints
this peer has made. This approach creates other problems and is only able to deal with
low proportion of cheating peers (up to 25%).

Gupta, et al. developed a reputation computation agent [41] that controls credits
and debits for uploads and downloads in a Gnutella-like Peer-to-Peer system. Further,
Damiani, et al. propose a polling algorithm [19] that allows peers to test the credibility
of other peers. In so doing, a peer polls a number of other peers for their vote on a peer
and then uses cluster algorithms to aggregate these votes. While they have not evaluated
the maximal size of a malicious collective that this system could withstand, it is our guess
that it would be significantly lower than EigenTrust’s or anything else that is similar to
the reputation system presented in this thesis.

2.3.5 Agent Misbehaviour in Networks

Buchegger develops in her PhD dissertation [13] a routing protocol for mobile ad-hoc net-
works called CONFIDANT, which copes with misbehaviour of routing nodes by means
of a reputation system. The reputation system isolates misbehaving nodes and to this
end feeds the reputation system with first-hand and second-hand information. In order
to eliminate false information among the second-hand reputation information, CONFI-
DANT uses a modified Bayesian estimation and classification procedure. When nodes
exchange first-hand reputation information, this information is only accepted as second-
hand reputation information if it is compatible with the current reputation rating. The
protocol is sophisticated enough to allow for node redemption and yet prevent sudden
change in agent behaviour that attempts to exploit good reputation acquired over time.
The protocol simulation demonstrates the performance and effectiveness of the reputa-
tion system in being able to ensure an operational network even with up to 50% of the
network population misbehaving. This research is interesting from the perspective of our
research since it uses a different approach to address the problem of untrusted reputation
information. The main difference between both approaches is that CONFIDANT is cal-
culating the reputation aggregation from the viewpoint of an individual node, where our
approach is the one of a service that does not use first-hand information. Being able to
use first-hand information strengthens the filtering of misinformation, but it always makes
the resulting recommendations partial to the collector of the first-hand information. Our
service-suitable approach therefore can claim to be impartial about the collection of the
reputation data.
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2.3.6 Trust Systems

Trust modelling is borne out of the traditional concept for resource access control, where
a system of contracts enforces compliant client behaviour. In such a system, both parties
state their requirements and constraints and then apply usage accounting to monitor if
the party is complying with the contract. Compliant parties are being “trusted” and
the trust systems are concerned with issues such as propagation and revocation of trust.
Shand describes in his PhD thesis [84] such a system of contracts and trust for resource
allocations (as well as all the relevant research).

Ideally, trust/contract systems and reputation systems should complement each other.
A system of contracts with a basic notion about authentication and settling of transaction
terms is a prerequisite for market-based resource allocations. The allocation system that
we present in chapter 3, including its syntactical details in appendix B, involves settling
of contractual terms, even though this functionality could be serviced through a separate
contract settling protocol. Further, both the pricing as well as the reputation system
assume that parties are being securely authenticated. However, the purpose of trust
and reputations differ conceptionally. Trust concerns itself with establishing compliant
behaviour, and ultimately aims at a the boolean question whether trust is satisfied. In
contrast, reputations capture all the shades of grey within the full range of possible
compliant behaviours. One implication arising from this difference is that, since trust
is transitive, trust is more difficult to transfer and aggregate, and therefore reputation
systems are more suited for such operations.

2.4 Conclusions

In this chapter we surveyed the research context for the pricing of allocation systems
and reputation systems. For the context of our reputation aggregation model, which we
will introduce in chapter 5, we were able to describe and criticise several research efforts
that relate to, but differ from our model. The target application makes for the biggest
difference between the architectures of these reputation systems, and ours will take a
different approach in terms of its definition of the notions of reputation, comments and
agreement in the model. Some of these prior reputation systems have demonstrated high
levels of effectiveness, and we will aim to reach similar levels of success with our model,
in the threat scenario analysis, in chapter 7.

The prior work that relates to our pricing model is more dispersed, since all of these
papers address different questions from ours, namely the implications of perfect compe-
tition on online resource selling. Some of this research resembles system building efforts
that use price as a unified allocation signal, although they do not use it in an market
economic sense. Other research efforts use economic theory, especially game theory, in an
intricate way, but then, in order to solve too large of a problem, make market modelling
assumptions that are unlikely to be accepted by actual markets. In general, it appears to
be difficult to unify economic and computer scientific modelling approaches with a level
of rigour that does justice to both disciplines equally. In order to demonstrate a contribu-
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tion to the one or the other discipline, it becomes all too easy to cut corners in the other
discipline, i.e. building an auction trading system with certain economic properties, when
actually the markets for the targeted goods are unlikely to entertain at all an auction
for these goods. It is our aim to improve on the interdisciplinary aspect of economics in
computing systems with the pricing model presented in the next chapter.





Chapter 3

The Supply Function Pricing Model

In this chapter we develop a pricing model for the dynamic allocation of electronic services.
In its introduction (section 3.1) we motivate this allocation situation with the example of
network communication resources, but this model is actually able to address any kind of
non-storable service, such as computer processing time.

This pricing model assumes that practically all the time there is more supply of re-
sources than demand. In such a scenario, if one considers the competition to be perfect,
traditional economic theory suggests that prices will drop to zero.1 Such a result would
be very undesirable, because it would imply that over time providers would continue to
go out of business until sufficient time periods of supply shortfall yield sufficient profits.
Depending on the variance of the market demand and the economic loss from unsatisfied
demand (which may incur external effects), such a result may be economically disastrous
for some markets. In the long term, such a situation drives competitors out of the market
and leads to market concentration. And even in the short term, in a market where sup-
pliers are unable to recover their costs, we obtain a market that lacks further investment
and innovation. To prevent such a result, the providers need collectively to withhold some
of their supply, such that prices do not fall to zero for too much of the time. If, due to a
lack of cooperation, only a minority of providers would withhold supply, these providers
would stand to lose out in the competition, and the elevation of market prices would be
insignificant.

In order to be able collectively to withhold supply, the providers need to establish
some form of cooperation. A naive approach could be to form a cartel with explicit
exchange of signals to form and enforce this cooperation. However, anything of this kind
would be illegal in most places. Moreover, if a market gets too concentrated, it can even
be brought under government regulation and investigators would then even look out for
hidden cooperation signals, such as price patterns that are used for dynamic price strategy
games.

1In the case of the long-distance telephony market one can observe such a situation practically. Prices
for phone calls all the way around the globe to rural parts of Australia or Mongolia are now the same as
for a local call down the street. This is in part due to the “fiber-glut”, that was funded by the Internet
stock market bubble of the late ’90-ies, and has lead to an abundance of excess communication capacity.
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One possible solution to facilitate this cooperation would be to form a centralised
market exchange, which still obeys legal and regulatory limits, such as it is done in
electricity markets. Practically, however, one can neglect centralised markets as an option
for such electronically accessible services, since the centralised exchange would require
all participants to agree on standardised contracts. Contrary to bilateral negotiation,
standardised contracts would not allow sufficient flexibility for both parties to exploit
a large variety of innovative resource utilisation optimisations, which makes for a more
efficient economy.

Out of this consideration, we develop in section 3.2 a bilateral allocation protocol as a
base for the pricing model. In this allocation protocol, the clients send their requests for
resources to all possible providers, collect the replies and settle the transaction with the
provider whose offer they choose. In appendix B we present a realistic environment for
clients and providers, including potential applications, resources, protocol platform tech-
nology and an allocation language. In appendix A we further describe the technicalities
and performance aspects of the discrete event simulation that we have built to implement
the protocol and pricing model.

In order to solve the need for cooperation in our bilateral pricing model and under
these conditions without collusion, we use economic game theory. In so doing, we seek
to form an economic pricing model that allows for a Nash-Equilibrium (NE). This NE is
reachable if all providers choose a strategy whereby they withhold a minor part of their
supply. Therefore, in section 3.3 we develop a supply-function based pricing model, where
each provider simulates the market situation and updates the simulation continuously
with information collected from (1) their own bilateral trades and (2) the requests for
price quotes they receive from clients. Since such a pricing model does not even involve
observation of competitors’ prices, it would be considered legal.

3.1 Introduction

Future QoS networking will not only provide services with assured quality and charges for
these services, but will also allow clients to choose ‘just in time’ between different network
providers. Users benefit from renting variable amounts of a dedicated resource to satisfy
their varying demand requirements. For example software by the company ‘Invisible
Hand’ enables web hosting applications to allocate output bandwidth through flexible
reservation and dynamic pricing from their web hosting provider.2 If, in future a hosting
application is able to obtain offers for services from more than one provider3, we will
observe continuous competition between providers for consumers, like the web hosting
applications. In periods of high demand, providers can increase prices until demand
matches supply. In times of low demand, providers’ aggregate capacity exceeds demand
and providers will under-cut each others’ offers until prices drop to marginal costs, which
are zero. Such a business model apparently results in long periods of low revenues, which

2This software is employed by the web hosting provider Streaming Hand, serving about 40 commercial
web sites.

3In this example, this is the case if a customer employs two web hosting companies such as Stream-
ingHand, and balances the services between both, to his economic benefit.
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do not allow cost recovery, followed by times of insufficient supply and high prices. If
these prices are not passed on to final consumers, the prices will not allow for efficient
rationing, and shortages can result in undesirable unavailability of networks.

We ask whether it would be possible for resource providers to cover a larger share of
their fixed costs even in times of low demand. Is there a mechanism that would result in
positive prices if aggregate supply exceeded demand? To answer this question, we antici-
pate bilateral trading and provide a general protocol which facilitates the corresponding
negotiations. We model the prices offered by resource providers, given their market power,
and run a simulation to verify whether we found equilibrium. We do not allow for collu-
sive agreements, which are maintained by threatening low prices to parties who deviate
from the agreement.

Klemperer and Mayer [54] proposed to model market power in commodity markets with
supply functions. In the supply function model, market participants submit price-quantity
functions to a central auctioneer who then determines the market-clearing price. In a
supply-function equilibrium, no market participant would prefer to deviate and submit
another function. This approach is traditionally applied to centralised auctions, and would
have been appropriate to model initial B2B sites which wanted to provide such auction
places. However, “only few public exchanges are remaining ... and action in B2B turned
elsewhere” (Economist 17.5.2001), because companies seem to prefer bilateral trade, which
allows for price discrimination and which facilitates customer-specific product offerings.

We therefore assume that computing resources will be allocated in bilateral negotia-
tions, and we extend our modelling approach from a central auctioneer to decentralised
trading. Decentralised trading allows for continuous interaction and therefore lacks the
commitment device previously set by the auctioneer. Therefore, providers can sell ca-
pacity at random times, and neither buyers nor competitors are ever certain whether the
provider might not sell additional or cheaper capacity at a later stage. Allaz and Vila [2]
showed that repeated selling opportunities eliminate market power in a Cournot market
and result in a competitive outcome.

Our model differs in that demand is stochastic, both in total number of interested
users and in their individual marginal value; supply is capacity constrained; and bilateral
trade restricts information flows. A further difference from most other markets is that
negotiations can be automated and therefore the costs of searching for the best offer are
eliminated. We extend a communication protocol by Ogino [71] for automated resource
reservation and implement it in a simulation. The protocol builds on existing support
infrastructure and standards under development, including a directory of services, service
descriptions and service interactions. It defines the message exchanges between providers
and clients wanting to reserve resource units. The protocol is simulated with several
providers offering resources and clients seeking access to these. Clients make requests to all
providers, specifying the time of their usage and desired parameters, such as performance
or the Quality of Service level. In order to allow clients to compare offers of different
providers, it is not necessary for all providers employ the same negotiation protocol, as
long as it also contains the message parts of our protocol. The protocol is simple enough
to be an inclusive model for bilateral negotiation. On receiving the request, a provider
calculates whether his capacity suffices to satisfy the request and decides on the price at
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which to offer the resource.

Contracts and prices are confidential. Therefore, resource providers only know the total
number of quotes requested from them and the number of times a user has booked their
resource. They use this information to continuously update their beliefs about demand.
Based on these beliefs, the resource providers estimate prices which would evolve in a
supply function equilibrium, and would offer this price as a quote to consumers. In the
absence of any publicly available price information, we will refer to this price as estimated
market-clearing price.

We use the simulation to assess whether it is profitable for a resource provider to
deviate from this strategy and to offer a price below the estimated market-clearing price.
The resource provider can capture a larger market share by offering slightly lower prices.
Fellow resource providers make fewer sales, correct their demand expectation downward
and subsequently make cheaper price quotes. Therefore, the deviating provider receives
less revenue per reservation, although he obtains more reservations. The net effect must
be simulated by comparing the revenue achieved from selling more slots at a lower price
with the revenue obtained when no provider deviates. In the analysis of the next chapter,
we ask under what circumstances the increased market share compensates for lower prices.
We only assess simple deviation strategies and show that, for some combinations of the
number of users, number of resource providers and the capacity per resource provider,
deviation is not profitable. For the remaining parameter combinations, deviation can be
made unprofitable. Resource providers anticipate the possibility of deviation and therefore
put more weight on their observation of their own, successful, reservations when updating
the supply function for quoting the next price.

The analysis suggests that the supply-function equilibrium can be transferred to a
scenario with bilateral trade and no search costs, by using all available information to
continuously observe the market.

3.2 The Allocation Protocol

Here we describe the message sequence at a transactional level for resource allocations
between client applications and resource providers. In appendix B we give more details
about the scenario of this protocol, potential client applications, the kind of resources on
offer and how it can be implemented with the use of Web services technology and an allo-
cation description language. This protocol is a modification of an existing protocol that
works well for competition between resource providers, and is good for load balancing (see
section 2.2). But here we have an open environment with potential contention between
clients. Therefore, this protocol is extended to enable client competition for contended
resources. Figure 3.1 shows the message sequence of the protocol.

1. The client application sends a service-request message to the list of possible resource
providers including the attributes of the resource usage (type of service (e.g. Linux
V6.2), estimated time for the contract, QoS-level, etc.). Also, with the request, the
client sends his maximum valuation for the contract.
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Client Application

Phase 1:
Request for bids

Resource Providers

Phase 2:
Offers + Conditions

Phase 3:
Awarding Contract
to the winner

Phase 4:
Contract Acceptance
+ electronic ticket

Wait for Offers until Timeout

Validity of Offer

Phase 5:
Electronic Payment
+ Ack of electronic ticket

Timeout

TimeoutTimeout

Provider now activates 
the ticket on resource

Figure 3.1: The Communication Protocol

2. The resource provider calculates his cost for performing the requested service. The
provider can ask any price he wants, but will try to keep his price competitively
low, since the user will select the cheapest satisfying offer. Along with the calcu-
lated price, the provider sends a bid message to the user including information on
additional options, i.e. service-level, duration and volume.

3. The client collects the bids he receives and calculates correspondingly how valuable
each bid is for him. Sometimes a cheap offer may not be performing well enough
or be too far away. The client selects the resource provider who is maximising this
utility and sends an award message to the winning resource provider.

4. The provider generates an electronic ticket and sends it to the client, since he will
need it to gain access to the resource.

5. The client sends the electronic payment to the resource provider, acknowledging
the receipt of the electronic ticket. The resource provider then activates the issued
ticket and sends it to the actual resource. In case of a dispute, the client can verify
the receipt of this last acknowledgement by checking whether the resource provider
has accepted the electronic payment.

In an effort to discriminate between clients, the broker determines the price for a
resource using the current usage of the resource and the applications’ willingness to pay
(their maximal valuations). In an ideal situation an auction is expected to yield a fair
allocation. However, for immediate allocations, the broker cannot run a real auction,
rather he has to determine the price empirically, based on the last awarded contracts and
the state of system resources. But for advance reservations, in cases where the waiting
time between allocation decisions is long enough to collect a larger number of requests,
the resource providers could have the opportunity to launch an auction.

Bilateral negotiation protocols have a practical advantage over centralised designs. A
centralised market mechanism, like an auction, would require the market participants to
agree on essential service parameters, where bilateral negotiation can be individualised.
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Further, as pointed out in the previous chapter (section 2.2), economic comparison of pub-
lic versus private exchanges [53] indicates the preference of sellers for private exchanges.

3.3 Economic Framework

Investment in computer resources depends on the expected market price for such resources.
In a long-term equilibrium, the average price equals total cost of providing the service.
Higher prices result in capacity expansion or entry of additional providers to offer the
service, whilst lower prices would result in reduced investment. In the short term, prices
can differ from total cost, as telecommunication bandwidth providers discovered in 2002
when low revenues prevented recovery of fixed costs. Investment costs in the network are
irreversible and therefore sunk when short term sales are made. The objective in short
term sales decisions is therefore to maximise revenue, independent of initial investment
cost. We simulate prices which would evolve in short-term markets. Collusion could
enforce higher prices by punishing deviations in subsequent periods, but is illegal and not
part of the model.

In a perfectly competitive world which is characterised by a large number of resource
providers and supply exceeding demand, providers make their offer at marginal cost which,
for electronic services, is close to ∅. If one of hundreds of resource providers withheld
capacity, it would have no effect on the market price and therefore would not increase
profits on his remaining capacity. If demand exceeds total capacity, the price will rise until
demand and capacity once again match each other. The resulting allocation is efficient
because consumers who are willing to pay the most obtain the resources, and resources
are only unused if no further demand exists, even at price zero.

However, if the number of resource providers is small, they can exercise market power
and profitably maintain prices above competitive levels by restricting output below com-
petitive levels. Typically, Cournot-Nash models are used to model market power. They
define an equilibrium by a set of output choices of all generators such that, given other
providers’ output, each generator chooses its own profit-maximising output. In the con-
tinuous bilateral negotiations model, the assumption that providers take the output of
other providers as fixed is no longer appropriate. Therefore, we model the strategy space
of providers based on a supply function model introduced by Klemperer and Mayer [54]
and subsequently applied to the electricity market by Green and Newbery [38]. Supply
function equilibria are based on a setting of producers bidding a supply function into a
wholesale market, which specifies how much output the producer is willing to provide
at any given price. The auctioneer aggregates all supply functions and matches demand
with supply, thereby determining the market-clearing price as well as the output of all
providers. Klemperer showed that market equilibria exist if providers specify their sup-
ply function to maximise profits, whilst taking other providers’ supply functions as fixed.
These traditional supply function equilibria require that providers commit to the supply
functions they have submitted. Decentralised reservation mechanisms do not have such
a commitment device. Providers continuously receive requests for resources and can de-
viate from a suggested price at any time. Instead of the commitment achieved through
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a centralised auction place in a traditional supply function equilibrium, we introduce
continuous updating about market demand. If a provider reduces prices below the price
suggested by the supply function, other providers receive fewer contracts. When updating
their beliefs the other providers assume lower overall demand and respond by reducing
their price. Total price level falls and profits of all providers are reduced.

We define a supply function equilibrium in a bilateral trade setting by two criteria.
First, given competitors’ supply functions and assuming that competitors bid according
to their supply function, the provider’s supply function is profit-maximising. Second,
given the supply functions and the mechanisms which providers use to update their be-
liefs about demand, it is most profitable for a provider to bid according to his supply
function. Therefore, we must analyse whether it suffices to update beliefs about total
market demand in order to prevent deviations. The analysis of the next chapter will show
that, for small numbers of providers and higher demand, faithful updating suffices to
make deviations unprofitable. For other parameter choices, providers must be suspicious
and put excessive weight on the number of reservations they count, in order to ensure
deviations from the supply function equilibrium are unprofitable.

We first present the model and assumptions about the demand and, in a second step,
apply the supply function equilibrium to the model. In a third step, the updating process
is presented.

3.4 Clients

We assume a point market of N symmetric clients.4 Demand is stochastic, with two
random components for the request probability and a maximum price the client is willing
to pay. The reservation time on a resource is divided into uniform size time slots. One
time slot is associated with a fixed size share of the total resource capacity a provider can
supply.

Clients request computational resources with probability R. In equilibrium, prices does
not change over the bidding period; therefore, the time when clients ask for quotes for
resources is independent of the strategies of resource providers and, without loss of gener-
ality, can be assumed to be uniformly distributed on an interval [0, T ].5 The reservation
price of any client requesting computational resources is uniformly distributed between 0
and P . Therefore, demand expected at the beginning of the bidding period at price p is
N ·R · (1− p

P
) with p ∈ [0, P ].

4Such a perspective is appropriate for computational applications. Effects of transmission + processing
latencies and network locality turn out to be negligible with the reservation granularity simulated in our
model.

5Any distribution of requests on a closed interval can be brought in such a shape by a strictly monotonic
transformation.
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3.5 Strategy of Resource Providers

All M symmetric resource providers develop a strategy q(p) which determines the capacity
q they provide at a given market price p. Each resource provider subsequently calculates
the estimated market clearing price, balancing demand and supply, based on his own
strategy, the strategy he believes other resource providers follow and his beliefs about
demand parameter r.

A resource provider chooses his strategy so as to maximise expected profits. Profits
equal the product of price and capacity sold. Capacity sold equals total demand at price
p, minus the capacity provided by the M − 1 other resource providers at that price. The
short term profit function contains no cost term, because we assume that all costs are
fixed in the short term, irrespective of utilisation level:

max
p
Er

[(
N r (1− p

P
)− (M − 1) q(p)

)
p

]
. (3.1)

When determining their supply function, resource providers assume that demand func-
tion and supply function q(p) of other resource providers are given. Demand decreases
with price and supply functions increase in price; therefore, a one-to-one mapping exists
between price p and the residual capacity to be provided. We differentiate equation (3.1)
with respect to p in order to determine the optimal price-quantity pair for a given demand
parameter r:

N r (1− 2p

P
)− (M − 1)

d q(p)

d p
p−M q(p) + q(p) = 0 (3.2)

Assuming all M suppliers are symmetric in equilibrium, each will produce the same
share of total demand. This gives us the market clearing condition, where the index e in
pe denotes that this condition represents equilibrium situations:

M q(pe) = N r (1− pe
P

). (3.3)

Now we apply the market clearing condition (3.3) to the differentiated profit function
from equation (3.2). Since the market clearing condition relies on an equilibrium situation,
we cannot apply it to the the profit function (3.1) directly, because the first difference of
the demand function N r (1− p

P
) is different from the first difference of the supply function

of individual providers q(p). Therefore we apply this substitution of the market clearing
condition (3.3) to the differentiated profit function, which represents an equilibrium in
the form that it is represented by equation (3.2):

(
−N r

P
− (M − 1)

d q(pe)

d pe

)
pe + q(pe) = 0. (3.4)

The general solution for q(p) to satisfy equation (3.4) is:
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q(pe) = Ap
1

M−1
e −N r

P (M − 2)
pe. (3.5)

For analytic simplicity, we assume the number of providers is M ≥ 3. To determine
the free parameter A in this supply function, we follow Klemperer. He showed that the
supply schedule q(p) must be, for all feasible prices, between the competitive schedule as a
lower bound, and between the Cournot oligopoly schedule as an upper bound. Providers
can choose any schedule within this range. Subsequent deviations will not be profitable.
Therefore, we assume that the providers choose the most profitable schedule. This is
the schedule which crosses the Cournot schedule for individual providers’ output at the
capacity K of each provider. Such a Cournot schedule for each of the n providers is
given by maximising the profit function of any provider who takes the output q not, as
previously, the supply function q(p), of other providers as given:

max
p
Er

[(
N r (1− p

P
)− (M − 1) q

)
p

]
. (3.6)

The first order condition with respect to p is N r − (M − 1) q − 2N r
P

p = 0.

We combine the first order condition with the market clearing condition (3.3) and solve
for the case when the output of each resource provider equals capacity q = K and obtain
the following equilibrium values:

p =
P

M + 1
, q = K, r = K

M + 1

N
. (3.7)

Supply function and Cournot output are the same at this point; therefore, we can
substitute p, q and r from equation (3.7) into supply function (3.5) to determine A:

A = K
M − 1

M − 2

(M + 1

P

) 1
M−1

. (3.8)

With a given A, the supply function (3.5) is complete, and market participants can
use it to solve for the equilibrium price p ∈ [0;P ], where demand equals supply M q(p) =
N r(1− p

P
), based on their estimation of r:

M Ap
1

M−1 − 2N r

P (M − 2)
p−N r = 0. (3.9)

We could not obtain a general analytic solution for p in equation (3.9). The left-hand
side is negative for p = 0, steadily increasing for p > 0, and is positive for p towards P .
Therefore, there exists a unique solution for p > 0, which we solve numerically.
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3.6 Updating

Providers use three types of information to update beliefs about r at any time t ∈ [0, T ] in
the bidding period. Two types are identical for all providers, namely the externally-known
probability R and the number of requests for quotes sent out by clients. Each provider,
furthermore, privately counts how many of his offers have been accepted by time t.

All three information types are weighted with the inverse of their variance to form the
updated r. To simplify the calculation, the calculation of variances is based on R, not on
r. To deter deviation, additional weight can be put on the number of successfully booked
resources. This is implemented by scaling down the variance of resources booked.

3.6.1 Initial Request Probability

The expectation of r deduced from R is:

E(r|R) = R. (3.10)

The variance of r deduced from R is given by the binomial distribution of N indepen-
dent clients requesting a quote with probability R. The variance of the number of clients

requesting bids equals N R (1 − R), creating a variance for σ2(N r) = σ2
(∑

iRi

)
=

σ2(R)N or:

σ2(r) =
σ2(R)

N
= R

1−R
N

. (3.11)

3.6.2 Received Quotes

The second approach to estimating r is based on the number of requests for quotes received
until time t. As the probability that clients request a quote is constant over the bidding
period, a linear extrapolation is unbiased.

E
(
r|#Bidobsv, t

)
=

#Bidobsv
N

T

t
. (3.12)

The variance of r is due to events in the interval [t, T ]. Clients will ask for quotes with
reduced probability R T−t

T
. Therefore, the variance due to the binomial distribution is

σ2(r′|t) = 1
N
RT−t

T
(1−R T−t

T
).6

A second contribution to the difference between extrapolated r and final r is caused
by #Bidobsv being itself a random variable. The expected variance of #Bidobsv based on

6For simplicity, we assume that N is great enough that the correlation between realised events is [0, t]
and potential events in [t, T ] can be ignored.
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R is given by σ2
(

#Bidobsv|t
)

= R t
T

1−R t
T

N
. The variance of the extrapolated r is

(
T−t
t

)2

times this value. Adding both of the independent effects gives:

σ2
(
r|t,#Bidobsv

)
= R

T − t
T

1−R T−t
T

N
+R

t

T

1−R t
T

N

(
T − t
t

)2

. (3.13)

3.6.3 Accepted Offers

A third source of information to update beliefs about demand parameter r is the number
of offers which has been accepted by clients until time t. The linear demand function
allows us to apply the theorem of intersecting lines (Figure 3.2). The proportion of offers
accepted #Bidacpt to the total number of quotes requested is equal to the proportion of

δp to P , where δp is the difference between P and the average offer price pav =
∑
bid p

#Bidobsv
charged during the bidding period. All resource providers believe that fellow resource
providers have offered the same price and have sold the same number of slots at time t.

Average Price

P

Quotes
Accepted

δp

Quotes
Requested

Figure 3.2: Relationship between average price and demand

The r following from this calculation is:

E(r|#Bidacpt, pav) =
M ·#Bidacpt · P

P − pav
T

tN
. (3.14)

The variance of r is mainly caused by the volatile number of bids accepted by clients
#Bidacpt. According to the binomial distribution, the variance of the number of accepted

bids is: σ2(#Bidacpt) = N
(
P−pav
P

)
t

MT

(
1 −

(
P−pav
P

)
t

M ·T

)
. This gives for the variance

of r:7

σ2
r(#Bidacpt) ∼

P
P−pav M

T
t
− 1

N
. (3.15)

The updating of the beliefs that providers maintain to calculate their supply-function
market prices concludes the pricing model.

7If deviation were profitable, providers would put additional weight on the number of observed offers,
which we represent in the simulation by reducing σr by a constant factor w : σr → σr/w.
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3.7 Conclusions

In this chapter we were able to develop a pricing model for allocations in the e-services
market, based on a protocol that arranges for competition among providers as well as
clients, and under the assumption of supply exceeding demand. Neither do we require
collusion based on punishment strategies, nor do we use prices in other periods with higher
resource demand to maintain prices above competitive levels. The model calculates an
equilibrium for the supply-functions and in so doing generates prices above zero level. The
equilibrium assumes that all providers choose the same strategy and relies on continuous
updates of the model beliefs to adjust this equilibrium to the current market demand.

The interesting question at this point is whether the providers are able to gain suffi-
cient information from the trading to actually reap the supply-function model’s benefits?
Further, what happens if not all providers choose to apply this supply-function strategy?
If the supply-function strategy is supposed to lead to a Nash-Equilibrium, then is it re-
ally impossible for a provider to adopt a different strategy and profit from doing so? Is
deviation able to break the cooperation? We will examine these questions in the next
chapter.



Chapter 4

Effectiveness and Resilience of the
Pricing Model

Having developed in the previous chapter a pricing model, which relies on all the providers
to cooperate by choosing the same strategy in order to find a Nash-Equilibrium, we need
to analyse whether the information the providers are able to collect is sufficient to adjust
to the market situation, and if this kind of cooperation does allow for prices above zero-
level. In this chapter, in section 4.1, we show the results of a simulation of the pricing
model in the bilateral negotiation protocol and demonstrate that the equilibrium prices
are able to stay above perfectly competitive levels.

Beyond achieving the equilibrium prices, the main challenge for this Nash-Equilibrium-
based pricing model comes from providers who do not join in this cooperation that relies
on all of them choosing the same strategy. Such providers could simply continue to follow a
perfect competition style pricing scheme, or even more effectively, assume that all the other
providers will follow the same Nash-Equilibrium’s pricing model and then deviate from the
cooperation by undercutting the projected prices marginally. The strongest challenge of
this kind is, if there is only one provider attempting to beat the pricing model and profits
from doing so. However, if the supply-function model is working correctly in accordance
with its theory, then the deviator should not stand to gain from his behaviour. If the
deviator can make more profit with his strategy than with the supply function model, then
we do not have a Nash-Equilibrium. Our supply-function model allows us to increase a
weight on how strongly our model responds to any kind of deviation, this is the Weight
on the Undercutting Sensitivity. Adjusting this weight to the potential threat level allows
us to balance the model’s vigilance with its efficiency in times without deviators present.
In section 4.2 we will show, that the deviator makes less profits with his strategy, than if
he were to follow the supply-function equilibrium strategy, even if he is able to outsell his
peers and earns more revenue than them at this moment.

In section 4.2.2, we analyse a range of market conditions, by comparing the neces-
sary level for the weight on the undercutting sensitivity, to achieve the required Nash-
Equilibrium criteria. With such a map of market conditions, we assess whether the pricing
model is able to thwart a deviator’s challenge in all situations, or if there are limits to the
market conditions it is able to work with.
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4.1 Competition With Symmetric Pricing Functions

We start our analysis by evaluating the prices that the supply function model yields under
various market conditions, if all the providers apply the same strategy and adhere to the
model developed in the previous chapter. Since an important element of our model is
the updating of the market assumptions (see section 3.6), we show a series of trading
periods over time and show how the model responds to random variations of demand
timing and volume. Further, we plot the relative gain in elevated prices depending on
different combinations of market supply and demand situations.

M servers offer the resource and have ten identical slots to satisfy client requests. N
clients have a random valuation between ∅ and 300 for each of these slots. We abstract
from intertemporal dependencies and only analyse the allocation for one time slot. Users
ask for price quotes at randomly chosen points during the reservation period. Scaling to
any other period or to a non-uniform distribution of expected bid probability would not
influence the results. Users ask for price quotes at randomly chosen points during the
reservation period. We assume any client is interested in the resource with probability
R = 0.5.

4.1.1 Trading over Example Periods

Figure 4.1 shows the prices quoted by three providers A,B and C over ten independent
bidding periods. Figure 4.2 is a closer look at figure 4.1, showing the development of
prices over the last bidding period. Clients make requests at random times, prompting
the provider to reply immediately with a quote based on the conditions at the current
time. Providers continuously update their assumptions about the realised demand r (as
described in Section 3.6); therefore, quoted prices fluctuate between high and low areas
within a bidding period, as can be seen in figures 4.1 and 4.2. The clients collect all replies
and select the cheapest offer.

Each of the three servers makes a sale about every third time. These round robin sales
are due to the updating of the number of accepted offers by this server, as explained in
section 3.6.3. A server keeps lowering its prices if its offers are not accepted. However,
a close observation of figure 4.2 reveals that, in the period of [33100 − 33300]s, provider
C wins all three sales. This is possible because C lost the first two sales (by chance,
as all start equally), but then has the lowest offer with his number of accepted offers
#Bidacpt = ∅ (equation 3.14). Subsequent offers are lower, because his average offer price

pav =
∑
bid p

#Bidobsv
is lower than his competitors’ pav.

4.1.2 Scale of Competition

Now we will evaluate how prices are influenced by the number of competitors. Fig-
ure 4.3 displays the average price quoted by providers for different numbers of competing
providers dependent on demand, as given by the number of clients per provider. The
market-clearing price under perfect competition would be ∅ for fewer than 20 clients per
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Figure 4.1: Price quotes of three providers and 15 clients per provider over one example
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server. The fewer servers competing, the more market power they exercise, raising the
price. Equation (3.9) is in equilibrium for higher p, if M is bigger. If the number of clients
per server is above 25, then the Cournot output choice, which gives the upper limit of
exercise of market power (section 3.5), is above the available capacity. Providers offer all
capacity and return to the competitive price.

When the Cournot output choice is below the available capacity of each provider (in
figure 4.3, in the regions of less than 22 clients per server), results depend on the market
structure. Providers can still maintain prices above the competitive level, but for the
same number of clients per server, prices are lower for a larger number of servers due to
increasing competition.

4.2 Competition with Undercutting

We test the robustness of this set of bidding strategies against deviation of a resource
provider. The bidding strategy is not robust if deviation is profitable. The deviating
resource provider calculates which price other providers will quote by keeping the counter
for successful bids at ∅ (#Bidacpt := ∅). Then he slightly reduces the price to undercut
all offers.

Is this undercutting strategy profitable? Figure 4.4 shows the same bidding period as
in Figure 4.2, with resource seller A applying the undercutting strategy. A is selling all
its resource capacity before any other provider makes the first sale.

The prices drop with the undercutting because all sellers assume that sales are evenly
distributed among them. If a server is not selling his predicted share of the demand, this
server drops the price according to equation (3.15). This is the danger with the undercut-
ting strategy: if the undercutting seller makes less profit than by not undercutting, the
supply function is an equilibrium strategy.1

In the example, price only fell slowly; therefore, undercutting was profitable. To pre-
vent deviations, resource providers put additional weight on the observation of accepted
bids, by scaling σ2

r in equation (3.15): σ2
r → (σr/wr)

2. Figure 4.5 shows the price de-
velopment for the same hour as in Figure 4.4, this time with A undercutting and all
servers applying the weight wv3 = 5. Now, prices drop very quickly to low levels. The
undercutting seller makes, on average, about 20% less profit than if not deviating.2

1There seems to be a second threat to the stability of the bidding strategies. If a server undercuts
on the last offer at the end of the bidding period, he will not feel the negative impact of lower prices on
subsequent bids. However, as clients bid at random times, servers never know how many more requests
they will receive. Future work will focus on evaluating such deviation strategies.

2We chose a simple undercutting strategy and can therefore not guarantee that a complex strategy
of undercutting might not be more profitable and require a higher factor of sensitivity w to prevent
deviations.
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Figure 4.6: Profitability of Undercutting (red) as a function of weight on successful book-
ings.

4.2.1 Negative Effects of Increasing the Weight on the Under-
cutting Sensitivity

The disadvantage of increasing the weight w is that it reduces the profit for all sellers,
even if there is no undercutting seller present. For very high values of w > 7, this loss due
to increased weight amounts to about 10%. However, it suffices for providers to decrease
the profits of the undercutter such that they are below the profits he would make if
he were following the supply function strategy. The example in Figure 4.6 shows that
undercutting becomes unprofitable for any w > 3.3. The lost profits due to the increased
weight amounts in this case to about 3− 5%. One would not expect an unbiased random
effect to have a net impact on the average price. However, as only the lowest bid is
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accepted, the selection bias reduces the average price. Furthermore, expected revenue is
concave in the bid price; therefore, the revenue at the average price is higher than the
average of revenues at different prices.

4.2.2 The Weight Level Under Different Market Configurations

In the above examples, we assessed one specific parameterisation of proportions of clients
and sellers. Now we investigate the appropriate weight to react to undercutting for a
larger range of competition scenarios.

Figure 4.7 maps the weight w at the breaking point when undercutting becomes un-
profitable as a function of number of clients and resource providers. The number of clients
per server is an indicator of total demand. The weight w must be high in cases of low
demand. Conversely, deviating is unprofitable with high demand because lowered prices
reduce revenue more than can be gained by a small increase in capacity utilisation.

By analysing the market situation, providers are able to choose appropriate parameters
for our decentralised supply-function model and ensure that staying with the model is
economically the best choice. We are therefore able to maintain prices above perfect
competition.

Figure 4.7 illustrates a further phenomenon. In the case of low demand, a scenario
with more servers requires greater weight w than in a scenario with fewer servers. On
the other hand, in the case of higher demand - just short of exceeding resources - fewer
servers require higher steering weight w than more servers. This difference is due to two
factors.

First, in the case of higher demand, the prices with fewer servers are higher, because
the resource providers shorten the supply, as described in section 4.1. Higher prices and a
shortened supply imply that undercutting becomes more profitable. Therefore, the other
resource sellers need to react more strongly in order to prevent undercutting.

Second, in the case of low demand, the limits of preventing undercutting from being
successful are reached. The more resource sellers are participating in the market, the
longer it takes for the participants to detect undercutting because they are not getting
their share of the market.

4.3 Conclusions

In this chapter, first of all, we were able to establish that, with the use of the supply-
function model, providers are able to maintain prices above marginal variable costs, and
these allow for recovery of fixed costs in times of excess capacity. The model also behaves
very much in accordance with the expectations, when in correlation with the relative
demand being higher, it is able to raise prices higher. Less intuitive, but also expected,
is that the pricing model is able to raise higher prices for fewer numbers of competitors,
even if the relative demand is the same.
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Secondly, we demonstrated that the model is able to make the “deviation” strategy
unprofitable. This means that due to the pricing model’s response, the provider who
applied the “deviant” strategy would have made more profits, if he had followed the
supply-function equilibrium strategy instead. The model is able to achieve this result
even if only one deviator is present, whereas any more deviators would only bring down
the prices faster, and partition the deviators’ collective profits further. By setting the
undercutting sensitivity to a sufficiently high level, the model was able to reduce the de-
viators profits in any of the analysed market configurations. The deviator, when applying
his strategy, can be allowed to make more profits than his peers, as long as he would be
better off to join the supply-function strategy, since in this case we have the necessary
conditions for a Nash-Equilibrium. Thus, while the model may not enforce cooperation
from market participants, it does however provide an incentive to join the cooperation.

Further, it turned out that the necessary level of the undercutting sensitivity, to achieve
the required Nash-Equilibrium criteria, resembles an useful indicator that shows the ef-
fectiveness of this pricing model in the present market conditions. The higher we have
to set the undercutting sensitivity, the more difficult it is to achieve the pricing model’s
goals in the present market conditions. Using this indicator, in section 4.2.2 we compared
a range of market conditions in terms of how difficult it is for the supply-function model
to thwart the deviator’s attempts to exploit the cooperation in this market model, and
we could explain in detail why the model works well for fewer numbers of providers, as
well as conditions with demand being closer to supply.

In the next chapter we will turn to a different type of cooperation and deviation from
the one we analysed in the past two chapters. While the supply-function pricing model
relies on an implicit kind of cooperation, by contrast, the recommendation aggregation
model, which we will present in the next chapter, is explicitly concerned with finding
consensus. The cooperation in the supply-function pricing model is implicit because it
only gives an incentive to cooperate, and the providers then are free to choose their
strategy. The recommendation aggregation function in the next chapter will prioritise
some recommendations over others and explicitly redistribute the influence of the raters
to meet its objectives.



Chapter 5

Consensus Seeking Recommendation
Aggregation

In this chapter, we present a recommendation/reputation model that is trying to find the
set of comments that maximises the consensus among the raters.

Reputations are important for businesses that try to increase the reliability of their
contracts and supply chains, since these businesses rely on reputations to predict whether
potential business transaction partners will behave as expected. The most credible source
of reputation information is past experience. Other possible sources of reputation signals
are formal certifications or less direct signals, such as impressive offices that indicate
previous success. These indirect reputation signals are less relevant in the anonymity of
the e-services world. Moreover, formal certifications often fall short, since they tend to
state specific qualities that have to be met, and do not allow for much differentiation
in the assessment. This leaves past experience as the most useful reputation signal for
e-services.

In markets with a low turnover of transaction parties, it is appropriate to assume that
each party gathers their own experience of reputation information about the possible set of
contractors. In a more transient setting however, this would be a dangerous assumption,
because it would potentially allow faulty parties a long lifetime until they have conned
all other parties. The market we are working with, namely the on-line e-services market,
relies on a very high turnover with many new players and fast-changing products. If
such a market cannot do better than to rely on market participants to make their own
experiences, then this market is likely to lose a lot of efficiency, since the participants would
not exploit the innovative high turnover that one could potentially achieve, and instead
stay with business partners about whom they have sufficient historic performance data.
This situation, as we further describe it in section 5.1, therefore mandates cooperation
between the market’s participants in the form of a reputation system that collects and
aggregates the experiences from these participants as an information service.

While the technicalities of implementing a reputation system might contain some inter-
esting points for research, here we focus on the aggregation function that such a reputation
system employs. The challenge in the design of such an aggregation function lies in the
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conflicting interests of the commenting parties. If one rater’s ordering of preferences dif-
fers substantially from another’s, one can quickly find a situation whereby the conflicts
between the orderings cannot be resolved to one meaningful common ordering. Arrow [7]
formalised this inherent conflict within Social Welfare Functions, and with his impossibil-
ity theorem proved general limitations for any such aggregation functions. Yet another
common problem for comment aggregation functions is that every rater naturally has an
individual rating bias. Worse, a rater may even have a deviant agenda, whereby he unduly
attempts to alter the outcome of a recommendation in his favour.

The individuality of rating biases can be solved through normalisation, and in our ap-
proach we will assume that the rating scales are objectively observable by all participants.
This allows us to treat comments as a numeric value and aggregate it as such. While this
assumption excludes irrational and less conscious reputation aspects and draws criticism
for ignoring individual peculiarities, it is a meaningful approach when the ultimate goal is
to achieve consensus in a larger community. In a nutshell, if the raters cannot accept and
work with a common objective scale, then why should they accept the resulting common
ordering of ratings and the performance scores of the rated entities? While requiring this
precondition reduces the range of aspects the ratings can be applied to, it does strengthen
the resulting output.

With regard to the questions that arise in the light of the Arrow impossibility theorem,
we took a different approach into what denotes a useful aggregation method. Later on,
in section 7.9 we will discuss the relationship between our approach and Social Choice
Theory. However, the goal of our aggregation function is not to maximise its acceptabil-
ity from an angle of social welfare, but to maximise the level of agreement within the
comments at hand. Therefore, we take our approach in a more “dictatorial”1 direction.
We assume that not all raters are equally able to provide comments that are in agree-
ment with the other raters’ preferences, and moreover we assume that some raters might
have an uncooperative agenda whereby they deviate with comments that attempt to rig
the outcome. Therefore, in the aggregation function that we develop, we assign raters,
who contribute more than others to a consensus solution, a higher influence on the final
outcome of the recommendations.

An additional benefit of our reputation system’s approach is that this kind of an
aggregation method allows us to integrate into its system design incentives for raters to
behave cooperatively. One common purpose of reputation systems is to pass incentive
signals to the rated entities, pressuring them into improving their performance. Since our
approach of the aggregation function also differentiates between the abilities of the raters,
we are able to generate incentive signals geared to the raters as well. By publishing in an
appropriate way the rater’s reputation as a rater, the reputation system gives an incentive
to the raters to be cooperative raters and to obtain a high reputation as raters, since the
rated service provider will be able to see this rater’s reputation and presumably deliver
good service to an influential rater.

In section 5.1 of this chapter we start by explaining why reputation systems are nec-
essary for the e-services market and raise some questions about the challenges for such a

1A dictatorial Social Welfare Function exists when one voter’s set of preferences singly determines the
aggregated outcome.
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system. We continue in section 5.2 with an exposition of the philosophy of our approach
to the design of the rating system. In section 5.3 we show how our design approach lends
itself well to integrate with economic incentives for cooperation, to enhance the pragmatic
value of the reputation system and to secure its funding. Finally, in section 5.4 we present
the iterative calculations of the aggregation function, including criteria for its convergence
points and a confidence value for the results.

5.1 Motivation for the Recommendation Aggregation

Service

Clients choose a service provider on the basis of (1) price versus promised performance
aspects such as, for example, a provider’s contractual terms in an SLA and (2) the client’s
confidence in how well this provider will deliver on the negotiated performance. Aggregat-
ing the confidence of many clients resembles the reputation of a provider. The importance
of reputation in the clients’ decisions often is underestimated in the designs of electronic
market places. This has been the case in, for example, Giovanetti and Ristuccia’s [34]
analysis on the band-x backbone bandwidth market, where the researchers found that
clients did not rely much on the reported performance numbers, but more so on the rep-
utations of large, well-known providers. This result is a bit surprising, since the main
purpose of establishing the band-x trading platform was to eliminate switching cost and
therefore to remove any possible lock-in.

Reputations are very important to the clients, because it is one of the main factors
that ensures that they are able to get the business accomplished. One of the many
threats to thriving e-service business are malicious servers, for example when a client
has handed over his application to a Hosting Server, and the Server could modify the
code intentionally. Spotting such deviant providers on the basis of their reputation is
problematic in the anonymity of e-services and the absence of reputation systems. As
establishing a widely accepted reputation system entails many pitfalls, researchers sought
for alternate technical assurances on enforcing quality in service delivery. For example,
researchers developed verification algorithms containing checksums on the computations,
ensuring that the hosting server cannot modify the client’s code undetected. Generally
though, the more complex a hosting application becomes, the less likely one will be able
to ensure correct verification all times. Another threat to e-services is independent of
such solutions, as a service provider can fail entirely for reasons of poor maintenance
or performance planning. For such cases frameworks were suggested in which contracts
are enforced by policing all terms and conditions of an SLA at a detailed level, and
possibly also by applying contract penalties for failed delivery. However, even in this
case, businesses are not interested in running operations by collecting contract penalties
where they could engage with suppliers who they expect would deliver well. Consequently,
even if many such technical safeguards are available, we expect clients to seek a provider
with an accepted “good” reputation, because such a provider would be more likely to
fulfil the contract satisfactorily. Specifically, Bakos and Dellarocas [8] showed that online
reputation mechanisms can (in many cases) outperform litigation in terms of maximising
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the resulting social welfare.

Introducing widely accepted reputation systems for e-services requires addressing a
collection of pitfalls that are inherent to them. Most of these pitfalls are not of a technical
nature. For technical policies such as “we want to keep commentators anonymous”, we
are able to devise technical solutions. The questions that are difficult to address are in
the nature of the design philosophy.

For once, one needs a definition of the scales by which to measure the reputation of a
provider - a definition which includes the understanding of the pragmatic meaning of these
scales. The reputation model we are presenting makes only one assumption about the
choice of the reputation valuation function, namely that the reputation system operator
has chosen an appropriate function. One can define in many practical ways such a valu-
ation function that maps a notion of reputations to formal numerical metrics. However,
it is accepted knowledge among economists that every individual has a different utility
function, and therefore every user of a reputation system will have different requirements
towards this valuation function (see Arrow [7] and Sen [82] on elections). Thus, in order
to achieve wide acceptance, one needs to satisfy as many users as possible. This may turn
out to be difficult to achieve, if not impossible, depending on the extent to which different
users’ requirements conflict with one another.

The question, then, arises: Can we trust the rating submissions from all raters? Should
we give more weight to those raters who are seemingly more trustworthy than those who
might be less well-informed? To address these questions, our model has the ability to
redistribute the influence it assigns to a rater on the aggregated scores, and to do so in
favour of certain better informed raters. In addition, we are able to produce different
views of the reputation results, depending on which rater, or set of raters, we ex ante
trust more.

A separate threat model category exists on the side of the providers: Do they treat
all their clients equally? Can we recognise provider discrimination? Can we distinguish
discrimination behaviour from biased client behaviour? We address these different threat
models by simulating them in challenging rating scenarios.

Finally, do clients have some incentive to submit ratings at all? Do they have a tangi-
ble incentive to state their experiences truthfully? We create these incentives by listing
the clients as contributors to the reputation system and adapt policies that discourage
undesired behaviour.

5.2 Reputation System Design

5.2.1 Reputation System Philosophy

The first significant characteristic feature of this reputation system is that it distinguishes
between raters and rated entities, and allows only for uni-directional ratings. Our design
requires this distinction because our market model assumes a regular business-style sce-
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Figure 5.1: Structure of the Reputation System.

nario with separate clients and providers. Figure 5.1 shows the relationship between
clients, providers and the rating system. In this market model, clients are usually not
providers for the same service, as in peer-to-peer networks or eBay-style trading trans-
actions. This distinction has significant drawbacks, because it is easier to assess the
credibility of raters when judging their rating behaviour alongside their performance. For
example, in peer-to-peer systems, I can distrust both the ratings submitted by a peer who
has a poor provision performance, and also all the peers who rated this peer highly. In a
client-server market model, we lack such a high degree of interaction and rating connec-
tivity. Nevertheless, we want to use such a model to calibrate raters’ comments by the
quality of comments they are submitting.

The second characteristic feature of our reputation model is that we require all users of
the system to agree on the scale and assigned meaning of the reputation variable, which
together characterise the recommended ordering of preferred providers. This means that
the reputation variable has to be an objectively measurable, numeric value ∈ R which
can be observed by all users in the same way. This R-reputation variable may be a
technically measurable metric, such as the fact that the service has a response latency of
a few seconds. But the metric could also be a percentage variable which notes providers’
performances in the form of “90% of all transactions with this service were successful”.
With transformation functions like this, one can adapt many real world metrics, including
binary ones, to a numeric R-variable. However, anyone has to agree and be able to observe
this variable in the same way.

The main reason for demanding objectively measurable reputation parameters is that
our rating model is not able to adjust for to generally biased raters, i.e. a rater who judges
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all entities in the same way as other raters, but throughout would assign one full grade
lower than the other raters. In fact, such behaviour would be one of the conditions the
model recognises as a “poor rating”, and will reduce the influence such a rater will have
on the final scores.

On a more general level though, as pointed out by Pennock [74], a recommender system
needs to be invariant to scales. This means that the choice of a particular scale should
not make a difference on the recommendations that yield from the recommender system.
Economists in general believe that the absolute magnitude of one user’s scale cannot be
compared to another user’s (see Arrow [7] and Sen [82]). This is due to users’ having
a certain bias as mentioned previously, and implies that user’s utilities cannot be added
up because these are invariant under linear transformations. Therefore it is necessary to
require agreement among all the users on the scale of the reputation values. This still
allows for clients to have a certain variance in terms of the technical application of this
metric.

In the case of measuring a technical parameter, one could wonder why a reputation
system is necessary at all to gain agreement on assessing a providers performance. Could
we not simply install some performance probing and report system? However, why should
we trust whoever is undertaking these measurements? But more generally, having one
central, constraint benchmarking point leads to providers trying to figure out how to
look good with respect to this benchmark. It is much harder to cut corners when one is
trying to satisfy a large collection of raters, who might pay attention to different aspects
of a transaction in order to be satisfied, and therefore resemble a large collection of
benchmarking entities.

5.2.2 Rating Commentators

The reputation system calculates the performance scores of the services by averaging
the comments submitted by the rating-clients. After collecting the divergences between
all the comments given by a rater and the overall scored obtained, we derive a quality
rating about the rater. Then the rater’s quality variable is fed back into the rating of the
performance scores, as a weight on his comments.

In order to avoid distortions we require a sufficient confidence value derived from the
number of submitted comments before factoring in these results.

5.3 Economic Incentives

5.3.1 Truth Revelation Incentives

Given the uni-directional rating design of the system, we need explicit incentives which will
entice clients to submit comments about their experiences with the services, and moreover,
to report on these truthfully. We create this incentive for each client by publishing, as a
part of the reputation system, a list of clients who contributed comments and the number
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of comments they did present. We expect that a client who is listed as a rater can expect
to be treated well by the service providers, because his listing is a signal to them that in
future he also will submit reports on their performance. The number of comments that
a client has submitted reveals whether a client, relative to his activity level, has supplied
more than just a token commentary.

To entice truth revelation from the clients, we have to apply another measure to our
reputation system. We considered the possibility of publishing the rater reputation that
our system calculates in the process of aggregating scores. There, a rater’s reputation
reflects his rating accuracy and the influence assigned to his comments by the reputation
system. Making this rater reputation public would increase the rater’s incentive to provide
high ranking commentary, because this would send a stronger signal to the providers.
However, the rater reputation should be kept undisclosed by the reputation system, since
knowing this would also create an incentive for the clients to modify or even fabricate
their comments in a targeted way. They could do so by submitting comments that reflect
the currently published scores for the services. So actually, in order to promote truthful
comment submissions, the reputation system adopts a policy of striking clients off its
list of raters if they submit erratic or modified comments. We can recognise such clients
from their particularly low rating reputations. We should point out that the clients’
reputations and their influence on the ratings will decline and remain unnoticed outside
of the reputation system before we strike them off the rater register. We strike them
off once the coherency of their ratings falls below a certain low standard. For example,
in chapter 7, we will show in figure 7.4 how inaccurate raters can be identified through
the reputation system. With this policy, raters have no incentive to submit untruthful
comments. Instead, they have an incentive against this, particularly because they are not
able to gauge how high their own rating reputation is. Rating reputations depend on all
the other comments and thus are only known by the reputation system.

Another advantage in adopting this policy of striking off random or malicious raters is
that doing so reassures providers that the reputation system is meaningful and that they
should accept the published rankings. This acceptance should increase their willingness
to improve their service quality where necessary. Service quality improvements should
actually be self-evident if the reputation system creates competition over quality aspects.

5.3.2 Financing the Operations of the Reputation System

Operating such a reputation system needs to be funded in some way. However, the way
we choose to fund the reputation system has implications for the incentives put forth by
the reputation system. With a reputation system, we aim to resolve some of the market
inefficiencies, which presumably would yield benefits that could be tapped for refinance.
Clients benefit directly from the higher reliability of services from better providers, and
the providers benefit from the market’s ability to drive “lemon”-providers out of business
and the therefore generally higher confidence by the clients in the services market. Some
providers may benefit by charging a premium for delivering service with higher reliability.

Possibly the easiest route to obtain the funds to run the reputation service would be to
demand subscription fees from the listed providers, as these could afford to write off the
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fees as a form of advertisement for themselves. The other incentive for the providers to
pay for a subscription would be to lock foul competitors out of the market, as they now
would be identifiable through the reputation system. Effectively they would be forming
a guild of “accredited” providers and thereby maintain a clean market for the clients.
However, we would choose against funding the system by the providers, as this would
create the wrong incentives for the operation of the reputation service. The operators
of the reputation system would lack the incentive to promote transparent performance
comparisons between providers and thereby promote competition among them, but would
have an incentive to set a high bar for the level for market entry. Our reputation system
seeks to aid the clients’ choice to make the market in general more efficient, and a provider
funded system would naturally follow different goals.

The economically cleaner solution would be to demand payment from the clients and
thereby provide a direct incentive for the reputation system to cater to the needs of the
clients’ choice. A client funded reputation system does not have an incentive to alter
the objectivity of its provider reputation rankings and if it is subject to competition
itself, where clients choose a reputable reputation system, the reputation system also
has a disincentive to accepting bribes (or advertisements) from the providers. However,
requiring clients to pay is likely to meet with resistance, as it can be expected that some
of the clients would rather not use such an advisory service at all than have to pay for it,
even if such could be shown to pay off in the long run. Moreover, clients could undermine
this revenue model by forwarding or even publicising the reputation system’s ranking lists.
Further, the actual pricing model would be a sensitive issue, as a fixed fee might be too
high for some small one-time client and yet negligible for a high-turnover one. Addressing
this through discriminatory pricing schemes is likely to introduce distortions and using
micro-payments that scale proportionally with the volume of use is likely to introduce
unreasonably high transaction overheads. A specific problem is system startup, as the
value of the reputation system increases along with the number of gathered clients’ review
comments. Therefore, one could not use the client funding to cover the startup phase.
On a general level, it may turn out that the clients’ individual per-transaction-profit from
using the reputation recommendation system is not sufficient to pay for the running cost
of the system, even if their amortised profits over time, due to improvements of the whole
market, would do so. This is not an unlikely case and one common solution is to call for
a government sponsored funding solution.

Where a system’s net benefits need to be amortised either over time or aggregated over
a number of market participants, it is common to seek government sponsorship, as the
system meets the criteria to be considered an infrastructure element. It is our anticipation
that the reputation system would be such a candidate due to all the complications stated
in our discussions about client funding and rejecting provider funding on the ground of
incentive incompatibility.

Another possible solution is the mix of government and client funding. In that case
one would draw on client charges for enquiries about high stakes services that yield client
benefits clearly outweighing the charges and government funds for the remainder, in par-
ticular any startup periods. In the UK’s energy market, the government supports such
price comparisons in order to make the market more dynamic and transparent. Even in
the absence of direct government funding for a reputation system, it may well be neces-
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sary to introduce government regulations that protect the reputation reporting system.
Otherwise, providers not only can lack cooperation with such a reputation system setup,
but could actively obstruct its work, for example by insisting their clients not disclose
their experiences that stem from using the provider’s service. Such obstructions would
most likely be expected from providers who have built their reputations through other
means, such as advertising, or sheer size and now attempt to protect their advantageous
profile.

5.4 The Rating Mechanism

In this section we describe the mechanism for compiling scores and the commentator
ratings as introduced in section 5.2.2.

5.4.1 Definitions

We have a set of k service providers P = {p1, .., pk} and l raters R = {r1, .., rl} who rate
the providers on the performance they experienced as clients. The providers perform at
a certain ‘real’ performance level and this is the value we ideally would like to obtain
as a final score for this provider in the reputation reporting system. However, this ‘real’
level is an unknown variable, possibly even unknown to the provider himself. Every time
a client requests services from this provider, the client experiences a probabilistic value
of this performance. However, these individual ‘experiences’ may be observed slightly
differently by each individual client. The individual differences arise from a number of
reasons such as them applying different measurements, or aggregating their experiences
on different scales.

At a time t, rater rA ∈ R decides to make a comment : ct, rA 7→pB ∈ C, about provider
pB ∈ P , reporting his observations in form of a numerical value: val(c) ∈ R. This model
places no constraints on the point of time at which or frequency with which any rater may
submit a comment. The following calculations are performed for all raters and providers,
however in order to simplify the notation, we will demonstrate the calculations for an
exemplary rater rA and an exemplary provider pB. As the comments are collected at a
central point in the recommendation system, we define all comment time stamps t to be
distinct. Raters can submit more than one comment about a provider and these can be
distinguished by the time the comment was made.

Initialisation

After collecting a sufficient number of comments2 on a provider: |{ct, r∗ 7→pB}|, we can
calculate an initial score for this provider. In our terminology ‘∗’ represents any client or
provider applicable. Before entering the iterative loop, we initialise the provider scores to

2It is possible to develop a confidence value that indicates how many comments are sufficient to achieve
statistical integrity. However, we decided to omit developing and analysing such a variable.
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obtain the initialisation vector s
(0)
p1,..,k . This initialisation simply averages the values of all

the comments:

∀ pB ∈ {p1, .., pk} :

s(0)
pB

=





∑
c∈C′

val(c)

|C ′| , C ′ = {ct, r∗ 7→pB ∈ C}

0, if C ′ = ∅.
(5.1)

C ′ is the set of all comments made by any rater about provider pB and if this set is
empty, we assign a score of nil. The (0) represents the iteration number3, indicating the
initialisation procedure at this point, where we simply average the received comments.

Local Scores

Next, we calculate the score each rater would assign by himself for each provider. For each
provider, we take the collection of raters having submitted comments on this provider and
then for each rater within this set we average his comments on this provider to obtain
a local score local.srA 7→pB . Here, C ′ is the set of all comments made by rater rA at
different times about provider pB and if this set is empty, C ′ = ∅, we assign a score of nil,
local.srA 7→pB = 0:

∀ rA ∈ {r1, .., rl} : ∀ pB ∈ {p1, .., pk} :

local.srA 7→pB =





∑
c∈C′

val(c)

|C ′| , C ′ = {ct, rA 7→pB ∈ C}

0, if C ′ = ∅.
(5.2)

5.4.2 The Iterative Loop

Rater Reputations

After calculating initial and local scores for all providers, we enter the iterative loop and
calculate for all the raters their reputations qrA∈R: The reputation is calculated from

the difference between rater A’s comments and the above calculated initial scores s
(0)
p .

Then we calculate the standard deviation of this difference. Of this difference we take
the norm by dividing it by the number of comments submitted by this client. This yields
our reputation value, except that, as it stands, a good rater with a high rating reputation

3In our notation, where variables (e.g. s) are indexed by the iteration number (e.g. n), such as s(n),
the iteration number is kept in parenthesis in the superscript in order to distinguish these from power
operations.
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would be assigned a smaller value q. In order to correlate good reputations to high
reputation values, we invert this final reputation value. C ′ is the set of all comments
made by rater rA about any provider and if this rater did not submit any comments at
all, he is assigned a rater reputation of nil, qrA = 0:

∀ rA ∈ {r1, .., rl} :

q(n)
rA

=





|C ′|√∑
c∈C′

(
s

(n)
p∗ − val(c)

)2
, C ′ = {ct, rA 7→p∗ ∈ C}

0, if C ′ = ∅.
(5.3)

Influence Shares

Following, we use the raters’ reputation values as a weight on their comments, and there-
fore obtain an updated score for the provider ratings.

This weight each rater obtains is directly proportional to their reputation value q, and
is represented as their share of influence infl on the reputation scores. From the above
collection of all raters {r1, .., rl} of the providers {p1, .., pK}, we take their reputation
values {qr1 , .., qrl}, and divide 100% of available influence into slices {inflr1 , .., inflrl}, pro-
portionally to these reputation values. Additionally we introduce what we will label the
rating model’s selectivity weight variable w, which reinforces the selective effect of the
model for w > 1 and dampens the model effect for 0 < w < 1. For w = 0 the model
effect is entirely disabled and the resulting scores are result of plainly averaging the input
comments. This selective weight variable is essential to the utility of the rating model,
as we need it to adjust the model’s balance between selection and inclusiveness to any
certain market scenario. In case the model was run on an empty input set without any
comments submitted to the system, we assign all influence values to null, inflrA = 0:

∀ rA ∈ {r1, .., rl} :

infl(n)
rA

=





(
q

(n)
rA

)w

l∑
i=1

qwi

, C 6= ∅

0, C = ∅.

(5.4)

Updating Scores

Finally, we compute an updated performance score rating s
(n+1)
pB for the next iteration

n + 1 by summing up the averaged comments from 5.2 multiplied with the influence
shares from the previous equation (5.4). Note that if in the previous equation (5.4) all
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influence values have been set to null, inflrA = 0, the resulting scores automatically also
are all null:

∀ pB ∈ {p1, .., pk} :

s(n+1)
pB

=
l∑

i=1

(
local.sri 7→pB ×

infl(n)
ri∑

j∈R′
infl

(n)
j

)
,

R′ = {r∗ ∈ R | ∃ ct, r∗ 7→pB}. (5.5)

In the sum of the local scores, we divide the influence values infl(n)
ri

by the sum of all
influence values of the raters that made comments about this provider pB. If all raters
commented on this provider, then the sum of influence values will be 1, and if only one
rater rA commented on this provider, this sum will be equal to his influence value and
thus the score for this provider will reflect 100% of this rater’s comment value local.srA 7→pB
on provider pB. This construct is necessary if not all the raters have commented on this
provider, to then translate the influence values into the relative shares of the raters who
did comment on this provider.

5.4.3 Convergence

This concludes iteration n, the next will continue at step (5.3), with these now updated
provider scores and raters’ influence values. This iterative process will continue, until
the updated differences of the calculated performance scores fall below a convergence
threshold:

δ > max
i=1,..,k

‖s(n+1)
pi

− s(n)
pi
‖. (5.6)

Practically, the convergence threshold is satisfied, when the largest update of any
provider score, from one iteration to the next, falls below δ. We considered a more
complex convergence criteria that is proportional to the absolute values of the scores.
However, as we discuss in section 6.4.2 in the next chapter, convergence is usually very
rapid, and we found a fixed threshold of δ = 0.0001 to be practically suitable in most
conceivable scenarios. Further, in section 6.4.1 we prove that this algorithm converges in
all cases. The algorithm is robust such that if one runs this rating algorithm with no or
only one comment as input, the algorithm converges immediately in the first iteration.

Multiple Convergence Points

Note that one could start with a different initial score vector in equation (5.1) and would
in most cases reach the same result. We choose this averaging initialisation vector to
allow for a faster convergence in most cases. The other cases, where the result depends
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on the initialisation vector, have multiple convergence points. If a particular setting of
data and algorithm parameters can yield more than one convergence point, we consider
the resulting reputation scores useless. In such a case the model is not able to make a
reasonable recommendation. In section 6.4.4 of the next chapter we analyse the case of
multiple convergence points further.

5.4.4 Confidence Value

If only a subset of raters has submitted ratings on a particular provider, the resulting score
of the provider is only based on the comments from these raters. This may mean that a
resulting score can be derived from raters who have a low overall rating reputation. There
is little to be done about the score in such a case, since there are no other ratings that we
have more confidence in. However, from equation (5.5) we can calculate the sum influence
values that we used to compile a resulting score and therefore obtain a confidence value
on this score. The confidence value confidencepB is calculated for every provider, after the
algorithm has converged:

∀ pB ∈ {p1, .., pk} :

confidencepB =
∑

j∈R′
inflj,

R′ = {r∗ ∈ R | ∃ ct, r∗ 7→pB}. (5.7)

The confidence value confidencepB ∈ [0, .., 1] is a measure that states how many per
cent of the total accumulated rater reputation participated in deriving the score for this
provider pB.

5.5 Conclusions

In this chapter we started out by giving the motivation for our approach to developing a
reputation/recommendation model, that is based on the idea that some raters’ comments
are more valuable than others’ and in so doing seek to maximise the consensus among the
raters. Due to the adoption of numerical scales for the measure of reputations, we were
able to build a base for our reputation aggregation function that interrelates ratings by
the same rater for different rating aspects. Since the outcome recommendations of our
aggregation function depends on the reputations of the raters, and vice versa, we obtain
an iterative algorithm.

This leaves us to establish whether this algorithm actually converges and how effective
the aggregation function might be. Moreover, is the model actually able to produce
meaningful outcome recommendations when it is discriminating between raters? Further,
as our model introduces the selectivity weight variable, what effect does this variable have
on the model’s outcome recommendations? We address all these questions in the next
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chapter with a set of micro-level experiments, whereby we look at small-scale scenarios
that allow us to manually trace the steps of the rating model from the comments to the
outcome recommendation scores.



Chapter 6

Analysis of the Reputation Model

In this chapter, we analyse the technical capabilities of the rating model that we developed
in the previous chapter. In sections 6.1 to 6.3 we use small-scale scenarios to understand
how the model exactly derives its outcome scores. One of the design intentions of the
model was to be able to identify and discriminate raters, who seem to contribute less to the
overall consensus. Therefore, we integrated the selectivity weight variable into the model,
which adjusts the strength of the model’s focus on discrimination versus inclusiveness. In
these case scenarios we can understand how one can adjust this variable, depending on
the situation, such that the level of outcome scores meet the expectations.

Following, in section 6.4 we focus on the technical feasibility of the model algorithm.
Since this algorithm is iterative, we need to ensure that it converges (section 6.4.1), and
that it does so at a reasonable rate (section 6.4.2). We also explain how different con-
vergence points make for different results, which are reachable through different starting
vectors.

In the next chapter (7) we will discuss application relevant issues of the reputation
model and algorithm.

6.1 First Example

In order to gain understanding of the basic functionality of the reputation model and how
different settings for w affect the scores, we show an example scenario in table 6.1. Each
rater is assumed to have submitted exactly one comment about each provider. The top
half of the table lists the values of the comments c submitted by the raters r[E..K] about
the providers p[A..D]. The lower half of the table shows the scores s(w) obtained from
running our reputation model on these submitted comments, with different settings for
the selectivity weight variable w = [0.1, 0.9, 1.0]. The comment values are chosen such
that three of the raters (rE, rG, rH) share a relatively high degree of agreement on the
ratings (pA = 1.0, pB = 2.0, pC = 3.0, pD = 4.0) of the providers and the other four raters
(rF , rI , rJ , rK) diverge in each different ways. While rF shares the same agreement as
the three coherent raters on three of the four provider ratings, he diverges strongly for
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pA pB pC pD in(w = 0.1) in(w = 0.9) in(w = 1.0)
rE 1.0 2.0 3.0 4.0 15.41 41.69 60.12
rF 1.0 2.0 3.0 1.0 13.44 2.06 1.12
rG 0.9 1.9 2.9 3.9 15.64 30.18 19.60
rH 1.1 2.1 3.1 4.1 15.16 16.93 13.88
rI 0.5 1.5 3.5 4.5 14.25 5.46 3.35
rJ 2.5 4.0 1.0 2.0 12.91 1.63 0.88
rK 0.0 0.0 5.0 4.0 13.17 2.05 1.18

s(w = 0.1) 0.99 1.92 3.08 3.41
s(w = 0.9) 0.96 1.95 3.02 3.92
s(w = 1.0) 0.98 1.97 3.02 3.96

Table 6.1: Example scenario showing comments submitted by raters r, about providers
p, the resulting model scores s and the influence share in, both depending on the chosen
selectivity weight w.
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the fourth provider. Then, rI still follows the ratings of the coherent raters, but with a
much higher variance, but rJ and rK diverge in nearly random fashion. Our expectation
of a meaningful selection of scores by a rating aggregation method would be that the
chosen scores come out to be the ones of the three providers with the high degree of
agreement. We also expect that the influence of rF and rI is rather diminished, but rJ
and rK with their obvious irrelevance to other rater’s comments are removed from the
consensus altogether.

In the part of the table with the scores we can see that for settings of w = (0.9, 1.0),
the scores come out to meet our expectations as they are close to the coherent raters’
comments. In the part about the influence shares of each rater we also can see that
our expectations are roughly met. Figure 6.1 shows in more detail how the scores are
dependent on the settings on w. The example is set up in a way such that rE reflects the
average scores the closest. The scores for providers pA, pB and pC , do not vary greatly with
different settings for w, this is because the differences in the submitted scores cancel each
other out. For pD on the other hand, the average derived from all submitted comments
diverges by about 20% from the score calculated by the model. To explain how the
model yields different values for pD, it is best to look at the influence values in on the
right side of table 6.1 and figure 6.2. With w = 0 the scores end up nearly perfectly
averaged and all raters share the same influence on the scores. Where with w = 1.1 the
scores fall onto the rating submitted by rater rA only, as he obtains 100% of the influence
share. The influence turns in favour of rA because he is the closest to the average of the
majority of the raters. With a less extreme setting for the selectivity weight factor, such
as w = [0.7, .., 1.0], we obtain a balancing between locking out the influence of deviating
raters and the raters who are close to the average. In this case, about three raters
share the majority influence (rE, rG, rH), and four raters are increasingly marginalised
(rF , rI , rJ , rK) with higher settings for w. Correspondingly, with loosing their influence,
the scores approach the average of the other three. This can be seen on the score value
s for pD which depends more on the distribution of influence than the other providers’
scores. Further, even if the setting for w is not yet that high that only one rater counts,
the resulting score sD(w = 1.0) = 3.96 for provider pD is relatively close to the ideal
score as defined in the premise of the scenario and is reached for the selectivity weight
sD(w = 1.1) = 4.00.

From this example, we can see that the rating model is able to discriminate against
deviating rater’s comments and find a rating that is supported by a larger subgroup of
raters with similar comments. We also can see that by adjusting the selectivity weight w
we are able to balance between how many of the raters are discredited and by how much
they are so.

6.2 Two Opposing Groups

In order to understand the properties of the rating model we confront it with some very
divergent rating scenarios. We expect the model to arbitrate between the diverging com-
ments even if these are so contradictory that no meaningful consensus is apparent to an
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pA pB pC pD

rE 1.0 2.0 3.0 4.0
rF 1.5 2.5 3.5 4.5
rG 0.9 1.9 2.9 3.9
rH 1.1 2.9 3.1 3.4
rI 5.0 6.0 7.0 8.0
rJ 5.0 6.0 7.0 8.0
rK 5.0 6.0 7.0 8.0

Table 6.2: Comments Submitted by Two Opposing Groups of Raters

observer. However, by tracing the model behaviour in detail when it is pushed to the
limits and kept in a very constraint setting, allows us further to predict its behaviour for
larger statistical scenario analysis. We investigate the cases of two and four commenting
blocks.

After convincing ourselves that the model can be used to take single raters out of the
rating pool, we are interested in how the model deals with two groups competing with
opposing rating suggestions. Table 6.2 shows the comments submitted by two groups
of raters with the values of their comments falling into two opposing clusters. The first
group with raters r[E,F,G,H] has one more rater than the second group with raters r[I,J,K],
that however have a perfectly low variance, which should again work in their favour.
In the development of scores in figure 6.3, we can see that with an increasing effect of
the selectivity variable, the larger group dominates the resulting model scores. Because
this small three-rater group submitted identical comments, their graphs of the influence
shares show as only one line in figure 6.4. Although the second group displays perfectly low
variance, it is further away from the overall average, which is the most critical parameter
in determining the dominant group. Pushing the selectivity variable to a maximum level
results in rater rF ’s scores to dominate in the larger group. This is due to rF ’s scores
being closer to the overall average, including the second, smaller cluster of raters.

To understand how the iterative process of the rating algorithm works, we look at
the changes from one iteration to the next in this scenario. Figure 6.5 shows the scores
updates during the algorithm’s convergence for this scenario with the selectivity weight
variable chosen to w = 0.85. The progress of the corresponding influence shares is in
figure 6.6. We notice that the algorithm converges after 33 iterations and should point
out that for most other settings of w would converge even faster. Further, the losses of
influence of the minority group are attributed to one rater only in the dominant group.
The losses are not evenly distributed among the dominant group, because rF is overall
with his comments significantly closer to the comments of the minority group than his
other group members. Concluding, we can remark that the rating model when presented
with two opposing rating groups is able to force a decision in favour of what received the
most support. Similarly, if we are more interested in a more inclusive reputation scores,
we can achieve this with varying settings for the selectivity weight variable.
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comments, but algorithm Initialisation Vec-
tor on the smaller group.

6.2.1 One Group Removed From The Two Opposing Ones

In order to verify the effect of the second cluster’s influence, despite being dominated
by the larger cluster of raters, we look at this same example, with the second cluster’s
comments removed. Only comments from raters r[E,F,G,H] from table 6.2 are included, and
in figure 6.7 we can see that rater rE instead of rF now becomes the dominant rater when
the selectivity variable is applied with a high setting. Therefore, we can conclude that,
though the dominated cluster’s comments are neglected in the resulting scores, these do
help to determine which of the raters in the resulting dominant cluster is dominating the
remaining raters of his own cluster when the factor w is set to a higher level. As we see
in the resulting scores for the rated providers, the selection of the dominant rater within
one group of raters is significant for the resulting scores.

6.2.2 Alternate Convergence Point

In this section, we further investigate the impact of the presence of the second, smaller
group of raters. What if we start our algorithm’s computation with an initialisation
vector that favours this second smaller group? We replace the scores of the initialisation
vector s

(0)
p1,..,k from equation (5.1) in section 5.4 by the values of the comments that were

submitted by raters r[I,J,K]. This should in certain cases allow the algorithm to yield
different results. In figure 6.8 we see that for 0 5 w 5 0.68 the algorithm’s converges to
the same output scores as with the original initialisation vector in figure 6.3. Contrary,
for w = 0.69 a second convergence point exists and the scores converge entirely on the
comment values of the smaller group.
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As soon as the second convergence point exists, the results from the reputation model
are questionable. The intuition behind this is, that if for the same comments and selec-
tivity weight, we are able to obtain more than one possible outcome, there is no model-
inherent way to determine which of the outcomes to choose. The motivation for choosing
simple averaging as an initialisation vector in equation (5.1) was to speed up the conver-
gence. If, however, choosing a different starting point leads to a different outcome, this
also casts doubt on the model’s ability to yield any conclusion in this scenario. There-
fore, we suggest limiting the settings of w for this scenario to the range of the unique
solution scores: 0 5 w 5 0.68. And if one is interested in the outcome scores with the
strongest possible application of the rating model, one would choose the selectivity weight
to w = 0.68.

6.3 Many Diverging Rater Groups

Now we examine the case of four groups of raters, each with different offsets in their rating
patterns. While the example with the two opposing groups (section 6.2) was intended to
investigate the effective model outcome where the overall opinion is a contest, in this case
the input comments to the model can be considered overall divergent and erratic. Looking
at the comment values of this table, it is not possible to extract some coherent scores the
providers deserve or any that one would expect this model to find. Although the comment
values within one group are placed fairly close together, there is no overlap between the
groups’ comments for any of the rated providers. Table 6.3 shows these four groups that
contain between two and four raters each. In figure 6.9 we can see that the model output
scores with increasing selectivity factor w = [0, .., 1] stay very close to the plain averaged
scores where w = 0. This development is to be expected, because the model is eliminating
the influence of the groups with the larger offset gaps to the overall average at the same
rate. For settings of w > 1, the model scores fall very sharply onto the comment values
of the one rater, who is closest to the overall average. This sharp turning point at w = 1,
which for example does not occur in the example scenario of section 6.1 (figure 6.1), is
due to the high divergence of the comments submitted by the raters. Effectively, these
output scores, either simply averaging (0 < w < 1) or selecting one rater (w > 1), are
as much meaningful as the input is, given how little common ground the comment values
contain.

In figure 6.10 we evaluate the different convergent points of this scenario. We start
the algorithm with the initialisation vector set to every possible rater’s comment values.
To keep it clear, we show only the scores for provider pA, the other providers are very
similar at for the given offset differences. This comparison shows that there can be as
many convergence points as there are different rater comment sets, given a high enough
setting of w, when the algorithm will rapidly converge on the comment set of this rater.
Nevertheless, for a reasonable range of 0 5 w < 0.7, the model is able to reach a unique
convergence point, independent of the initialisation vector setting, even if this largely is
only an averaging of all received comments.

While the model’s resulting scores of this experimental scenario are neither particularly
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pA pB pC pD

rE 0.0 1.0 2.0 3.0
rF 0.1 1.1 2.1 3.1
rG 1.8 2.8 3.8 4.8
rH 1.9 2.9 3.9 4.9
rI 2.0 3.0 4.0 5.0
rJ 2.1 3.1 4.1 5.1
rK 2.9 3.9 4.9 5.9
rL 3.0 4.0 5.0 6.0
rM 3.1 4.1 5.1 6.1
rN 3.9 4.9 5.9 6.9
rO 4.0 5.0 6.0 7.0
rP 4.1 5.1 6.1 7.1

Table 6.3: Comments Submitted by Four Opposing Groups of Raters

informative nor surprising, it is worth noting that the model responds in a neutral fashion
to very divergent comment input values. This makes the model overall more generally
applicable.

6.4 Algorithm Convergence

In this section, we investigate how well the model algorithm converges. As this algorithm
is an instance of multi-dimensional convergence, any formal analytical analysis would be
extraordinarily difficult, and therefore we use simulations and challenging scenarios to
perform this analysis. First, we argue why the algorithm normally converges, except for
in special deadlock scenarios (section 6.4.1), and secondly, we assess the speed of this
convergence in a challenging setting(section 6.4.2). We continue by explaining the criteria
for convergence (section 6.4.3) and describing the different directions the convergence can
take (section 6.4.4).

6.4.1 Conditions for Algorithm Convergence

In this section we discuss the conditions for the convergence of our iterative algorithm.
We would like to prove that this algorithm converges in all situations, but there may be
some conditions under which it may not converge. Here, we will explore the necessary
conditions for non-convergence of the algorithm, to convince ourselves that most of the
times the algorithm will converge.

First of all, if score updates were monotonic from iteration to iteration, convergence
would be trivial, but, as we can see in figures 6.14, 6.15 and 6.16 from the scenario of
section 6.4.2, score updates are not in all cases monotonic.

What range of values can the scores assume? The scores themselves are limited by
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the range of values of the comments. For any rated provider pB, the outcome scores
spB cannot lie outside of the minimal and maximal comment value ct, r∗ 7→pB given for this
provider: spB ∈ [min(ct, r∗ 7→pB), ..,max(ct, r∗ 7→pB)]. From this observation, the score updat-
ing footprint of our iterative algorithm can either follow a path that leads to eventually
ever smaller update step sizes, or otherwise follow a cyclic path. A third path is not
possible, because of the limited range the scores can assume. In the first case, the ever
smaller update step sizes, our algorithm would consider this to be a case of convergence,
as soon as the update step size underpasses a set threshold. The second case would not
lead to convergence, but instead an infinite loop.

What is necessary for the scores to cycle continuously? First, the comment values
have to be arranged in a circular contradictory fashion, such that the comment values
cancel each other mutually out. This could work as follows: The current iteration’s scores
raise the influence of a particular set of raters, which alters the scores of the subsequent
iterations in such a way that a second set of raters gains influence. This second set of
raters then influence the scores to move into a different direction. Continuing this process
transitively, the scores may end being moved back to the initial point. Such a scenario is
possible and would resemble an instance of the Arrow impossibility theorem.
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How likely is it to reach such an infinite loop? First of all, the comment values have
to cancel each other out perfectly. A slight imbalance will not lead to an infinite loop.
But, actually, constructing such a set of comments is not very difficult. However, the
difficulty then comes in finding the right initialisation vector s

(0)
pB that leads into this

infinite cycles. Without the correct corresponding initialisation vector the algorithm will
converge to an result that is nearest to this initialisation vector. We were not able to
produce such an corresponding initialisation vector for a minimal system of mutually
contradictory comment values leading to infinite cycles. Note that it is less hard to find a
statically stable initialisation vector that supports the contradictory state, but in this case
the algorithm would stop immediately, because the influence would not be redistributed
at all. In conclusion, we find that the iterative algorithm may not converge in all cases,
but practically such cases are rare and hard to find.

6.4.2 Rate of Convergence

In addition to assuring the convergence of the reputation model, the rate of this conver-
gence is important as it might interfere with the scalability of the algorithm if the rate is
too slow. In general, the rate of conversion depends very much on the circumstances of the
rating scenario and in most cases the algorithm will converge after a very few iterations.
The rating algorithm will take more iteration cycles for convergence if the model output
scores are significantly different from the plain average of all comments.

In order to evaluate the convergence rate, we set up the following scenario that is
attempting to challenge the algorithm and is characterised by figures 6.11 and 6.12. The
situation is deliberately set up to be divisive to such a degree that it does not have
any other useful outcome or application. The purpose of this scenario is to explore and
demonstrate the convergence performance of the rating algorithm when the model is
pushed to its technical limits. The scenario is made up of 20 providers, who are rated by
100 normal distribution randomised raters with a high standard deviation of σ = 25.0.
There are two equal size groups of 50 raters, where one of the groups adds an offset of
+100 to all their ratings. As a result we obtain two competing groups of equal commenting
power and the model scores only slowly tip in direction of the comments of one of the
groups. Figure 6.11 shows that depending on further parameters like the selectivity weight
factor w, the resulting model scores swing in favour of one or the other of the two groups.
We observe that for w = [0, .., 1.22] the model scores remain on the plain average between
both groups. For w = [0, .., 1] this should be expected, as in this area the effect of the
model is dampened and geared in direction of plain averages. With w > 1, the selective
effect of the rating model progressively increases and at about w = 1.25, the scores start to
tip in direction of one of the groups. This polarisation continues, except that at w = 1.78,
the conditions under which this randomised scenario is run all of a sudden favour the
other group. Although the initialisation vector is the same, the default starting average,
the scores flip and gravitate in direction of the other group. Note, that the scores that
can be obtained at this point are not particularly useful beyond measuring the rate of
convergence itself. The discussion of the convergence points continues in section 6.4.4.

At this point, we want to analyse the rate of convergence of the algorithm under this
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Figure 6.11: Reputation Model Scores for the
Divergent Rating Scenario Examining the
Convergence Rate.
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Figure 6.12: Influence Shares for the Diver-
gent Rating Scenario Examining the Conver-
gence Rate.

divergent scenario. Figure 6.13 displays how many iterations the rating model requires to
converge, depending on the selectivity weight factor w. It is apparent how the difference
in convergence rates correspond to the different model score outcomes from figure 6.11.
For a setting of w = [0, .., 1.0] we know that the model’s influence is dampened, thus
the scores converge rapidly, as they stay near to the initial averaging of the comments
happening before the first iteration. The rate of convergence then slows down dramatically
to spike at w = 1.22. The scores at that point move away from the average only slightly.
In these conditions, scores are updated by a small amount just above the convergence
threshold for a long time, sliding to a stable point, the model effect is not strong enough
for sharp shifts or to force a decision between the commenting blocks. Beyond this, the
model requires about 30 iterations for w = [2, .., 4], as in this area all the effective scores
diverge much from the average and such requires a considerable number of updates, even
if the model effect is relatively strong at this point. At w = 1.77 we observe a small
moderate reduction in the convergence rate, coinciding with a change in direction, the
model’s outcome scores are taking. We highlight this in figure 6.14, where we show the
largest of all score updates and its direction in a given iteration cycle for different values
of the selectivity weight factor. We notice that the direction flips between w = 1.77 and
w = 1.78 and that with higher values of w the larger model score updates happen sooner
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Figure 6.13: Iteration Cycles Required to
Converge for the Divergent Rating Scenario,
Depending on the Selectivity Weight.
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because of the model effect being more pronounced.

Although the algorithm can in certain cases take several hundred iterations to converge,
this only happens for specific model settings and particularly challenging commenting
scenarios. In the vast majority of cases, the algorithm converges very rapidly and even in
the few cases where it takes some more iterations to converge, progress is steady enough
to ensure predictable timely convergence.

6.4.3 Convergence Threshold

A determining factor in measuring the rate of convergence in the above section is the
criteria by which we determine when to stop the iteration. We chose a simple convergence
threshold, and if the largest iteration step falls below this threshold, we consider the
convergence terminated. We found a threshold of 0.0001 to be adequate, because by our
observations, in this case the iterative approximate result does not differ much from its
theoretical convergence limit for threshold→ 0.

One theoretical limitation remains, if for example the convergence starts out with
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iteration steps that are below the convergence threshold, the algorithm stops, even if sub-
sequent iteration steps would be more significant before approaching the limit. It would
have been possible to consider such cases and develop a convergence criteria that also
takes the gradient of iteration steps into account. One could require that the maximum
iteration step has to having been decreasing over the last few iterations, as well as being
below the convergence threshold. However, as we did not encounter any such cases even
in our contrived scenarios of the above section, which attempts to create such a problem,
we decided to keep the convergence criteria simple. For example, in figures 6.15 one can
see how the iteration steps of the scores remain very small initially, only to gain a visible
magnitude after about 18 iterations and to converge again after another 20 further itera-
tions, in order to finally fall below the convergence threshold after a total of 47 iterations.
If this limitation were a problem it should occur in a case like this, which is set up to
stretch out the iterative process.

6.4.4 Multiple Convergence Points

Depending on the setting of the selectivity weight factor w, any given scenario set of com-
ments has one unique or multiple possible sets of scores to converge to. In fact, for w = 0
all scenarios have exactly one convergence point, this being the simple average of all com-
ment values, and for a very high setting of w, as many convergence points exist as there
are raters submitting comments in the system. To reach all these convergence points it
usually is necessary to alter the initialisation vector of equation (5.1). Figure 6.10 demon-
strates how one can reach all the possible different convergence points, by initialising the
rating algorithm with each different rater’s comment values.

If starting from the same averaging initialisation vector, and continuously changing the
setting of the selectivity weight factor w, usually also results in continuous shifts of the
convergence point. Commonly, when changing from one to the next convergence point,
transitions are continuous. However, discontinuous jumps are possible if the two con-
vergence paths are connected by discontinuous gradients. Such dramatic rifts are visible
in the example of the previous section 6.4.2 with the very divisive scenario setup. The
setup of comments provides for two equally influential voting blocks with their coherence
differing only by a minor random statistical amount. For settings of w = [0; ..; 1.22] that
encourage compromising results, the medium between both blocks is chosen, when at
w = 1.22 the first shift happens, although a continuous one, but from this point onwards
the scores converge in direction of one of the voting blocks. The more prominent shift
with a discontinuity occurs at w = 1.78, where the convergence assumes a slightly dif-
ferent slope and therefore moves in the opposite direction. Figure 6.15 for w = 1.77 and
figure 6.16 for w = 1.78 show the different slopes for these two borderline cases. How this
transition comes to be is more clearly visible when comparing the slope of the influence
shares during the iterative convergence for w = 1.77 in figure 6.17 and for w = 1.78 in fig-
ure 6.18. The same colour graphs belong to the same rating clients, thus one can see how
from a very similar initial redistribution of influence shares, the path of convergence takes
opposite directions. The very same clients who dominate in setting A, are marginalised
in setting B and vice versa.
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Figure 6.15: Slope of Convergence of Scores
for Divergent Example with w = 1.77, Con-
verging to Voting Block A.
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Figure 6.16: Slope of Convergence of Scores
for Divergent Example with w = 1.78, Con-
verging to Voting Block B.

Note that this analysis is mainly made for technical illustration purposes, as we will
discuss in the next chapter, how we will discard resulting scores, if more than one conver-
gence point exists for the current setting of w.

6.5 Conclusions

In this chapter we were able to demonstrate that our rating model, as presented in chap-
ter 5, is able to select the scores derived from a majority group (sections 6.1 and 6.2).
When presented in section 6.3 with a more convoluted situation of four groups of opinions,
it is able to select scores that seem to be in line with the one group that might be the
most amenable to all groups. On the same case scenario we show how choosing a different
initialisation vector can be used as a vehicle to gear the outcome scores in the direction
of certain of the rating groups. However, all the outcome scores significantly depend on
the selectivity weight variable, which turns out to be a useful parameter for adjusting the
model’s degree of “discriminatory selection” versus “equalising inclusiveness”.

Further, we demonstrate (1) the technical feasibility of the iterative algorithm, in that
it normally converges (section 6.4.1), show that (2) it does so usually very rapidly (sec-
tion 6.4.2), and (3) explain how the convergence can take different directions to different
convergence points, depending on the starting vector one has chosen to use (section 6.4.4).
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Figure 6.17: Slope of Influence Shares During
Convergence for the Divergent Example with
w = 1.77, Converging to Voting Block A.
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Figure 6.18: Slope of Influence Shares During
Convergence for the Divergent Example with
w = 1.78, Converging to Voting Block B.

In the next chapter we turn to the actual use of the aggregation model and present
a series of scenarios that analyse the model’s contribution when the scenario is too large
for a human observer to readily see the intended solution, as it was possible in the cases
of the first three sections of this chapter. We will use statistical models of scenarios with
one set of raters being “normal” and one “deviant” set of raters with a different agenda.
We are interested to see if the model under adjustment of its selectivity variable is able
to identify the different sets of raters, and if we are able to set the model conditions such
that in all of the scenarios we are able to marginalise the effects of raters who we set out
to be “deviant”. We also discuss further application possibilities without modelling them
explicitly in case studies.





Chapter 7

Applications of the Reputation
Model

After having assessed the technical properties of the reputation aggregation model in the
previous chapter, we turn in this chapter to application-oriented case scenarios with larger
numbers of clients that display statistically modelled behaviour. The challenges for this
reputation aggregation model are raters with “deviant” debilities or agendas, because if
all raters were to be cooperative, an aggregation function with simple averages would be
sufficient. Therefore, we model our threat cases in this chapter with two sets of raters:
One “normal” set that behaves cooperatively and a “deviant” set of raters that resembles
the threat. Since we do not limit the range of what “deviant” behaviour could be, we
arrange a few different types of threat scenarios, and then push the challenge it poses
further to see where the model’s limit is to contain the threats. This approach motivated
our choice to work with synthetic threat models, because these allow us to create threat
models of arbitrary strength.

The threat cases we investigate start with a case where the “deviant” raters on average
agree with the “normal” raters, but have a higher variance in their comments (section 7.2)
and then we increase the numbers of raters with this high variance. In section 7.3 we
raise the challenge of the threat model with two Byzantine style1 manipulation attempts,
where a minority of raters attempts to “rig” the outcome recommendations according
to their own agenda. In section 7.4, we consider a different kind of threat model, in
which the providers do not deliver the same performance to all clients. Does this pose a
general problem for our rating aggregation model, since the raters then report different
levels of performance? The common question for all these threat scenarios is whether the
aggregation model is able to respond equally well when it has to deal with larger numbers
of comments, since in the last chapter we limited ourselves to small-scale scenarios.

Following, we discuss issues that are relevant for the practical operation of the repu-
tation system, beginning with section 7.5, in which we explain how to adjust the crucial
selectivity weight parameter, then in section 7.6, where we describe how the outcome

1We labelled this threat model Byzantine style, because it contains a malicious collective of raters,
analogous to the Byzantine Fault model in computer security, which contains a bribed collective of
generals in a distributed synchronisation problem (see section 6.2.1.1 in Anderson’s book [5]).
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recommendations can be customised for specific users and in section 7.7, where we dis-
cuss the possibility of aging comments over time. Further, in section 7.8 we discuss some
limitations of the reputation aggregation model, and continue with a review of the rep-
utation aggregation function from a point of social choice theory. We conclude with a
section (7.10) that describes a range of potential applications in different areas to show
how versatile the aggregation model’s use could be.

7.1 Statistical Analysis

The scenarios of the following two sections (7.2 and 7.3) contain 100 raters and 20
providers. In these scenarios, the providers are set to perform at a certain average per-
formance level, which is characterised by a numeric value. The goal of our rating model
is to identify these performance levels from the comments submitted by the raters. The
scenario assumes that raters are not able to capture the performance level of a provider
perfectly, because performance is compiled from the quality of interactions over a time
period. But these scenarios assume that the providers will on average perform to a certain
measurable level, therefore comments are drawn from a random variable with a normal
distribution where the mean equals this performance level. While each provider will have
a different performance level to show the figures more clearly, one should note that the
choice of the actual level is irrelevant to the rating model, only the deviations from this
level are relevant.

7.2 Different Rating Accuracy

7.2.1 Few Poor Raters

First, we confirm that the rating model is able to discern raters with a weak rating
consistency, similar to the limited example of section 6.1. Therefore, we set up a scenario
with sets of raters of different rating accuracy. Figures 7.1 and 7.2 show a scenario where
a group of 90 raters has a low standard deviation of σ = 0.25 and a second group of ten
raters has a relatively high standard deviation of σ = 1.0. In figure 7.2 we can identify
the two distinct bunches of graphs, the top bunch corresponding to the group of low
deviation raters and the lower bunch relating to the ten raters with the high deviation.
Starting from a selectivity weight factor w 7→ 0 where all raters have the same influence,
with increasing w, these two bunches separate quickly and for w > 1.5, the high deviation
group’s influence is negligibly low. At the same time this influence is handed to the
more accurate raters of the first group. For the corresponding scores, however, we see in
figure 7.1 that these are very stable and therefore independent of w, because the number
of raters with the high standard deviation (σ = 1.0) is proportionally small. Moreover
these deviating raters’ probability distributions have the same mean as the other raters.
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Figure 7.1: Scores for a Mix of 90 Raters with
σ = 0.25 and Ten Raters at σ = 1.0.
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Figure 7.2: Influence Shares for a Mix of 90
Raters with σ = 0.25 and Ten Raters at σ =
1.0.

7.2.2 A Large Majority of Poor Raters

Next, we want to compare how the rating model responds to a larger number of raters
with a high standard deviation, seeing as the group of such raters in the previous example
made up only 10% of all raters, which is far from dominant. Figures 7.3 and 7.4 show
the results for a scenario where the tables are turned from the previous one, this time
ten of the raters have a standard deviation of σ = 0.25 and the other 90 have the high
deviation of σ = 1.0. Again, we can identify ten graphs that diverge significantly from
a large bunch of 90 other ones, that lose their influence gradually. In this scenario, one
would choose a selectivity factor of about w = [2.5, .., 3.0] in order to put the balance in
favour of the ten raters with a low deviation. In doing so, we would ensure that the scores
are only drawn from raters with the higher accuracy. Just as in the previous example, the
resulting scores in this scenario do not vary much in relation to the selectivity factor and
the corresponding influence distribution. In this case, that is to be explained with these
90 raters collectively not diverging on the rating scores, as they have the same mean as
the others.

Both of the above demonstrations show how raters with inaccurate ratings are marginalised.
While in these demonstrations the scores are not negatively impacted by the presence of
these inaccurate raters, it is a vital aspect of the rating system that such raters are dis-
criminated reliably, because we expect such comments to be misleading and to have an
impact when these inaccurate comments do not cancel each other out in a high number
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Figure 7.3: Scores for a Mix of Ten Raters
with σ = 0.25 and 90 Raters at σ = 1.0.
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Figure 7.4: Influence Shares for a Mix of Ten
Raters with σ = 0.25 and 90 Raters at σ =
1.0.

of rating cases.

7.3 Filtering Deviating Commentators

The most important threat model of “bad” ratings is a malicious collective of raters who
attempt to influence the score outcome in a coordinated and directed fashion. In order to
make this set of deviating raters a strong challenge, these raters will have the same low
deviation (σ = 0.25) as the raters with the “correct” comments.

7.3.1 Malicious Rater Collective Manipulating All Scores

In figures 7.5 and 7.6 we show the effects of a scenario with 40 of the 100 raters applying a
deviating commenting agenda. These 40 raters apply an offset of −2.5 to all their ratings
of all providers2, where the other raters maintain the same rating pattern as in the above
examples. In figure 7.5, we see how the scores are affected by this deviation, because for

2The offset value of −2.5 was chosen such that one could visibly recognise the impact of the deviators
on the scores, with the combined scores effectively lowered by an offset of −1. One could also question
if a lower absolute value for such a deviation would amount to a threat model or would have to consider
such comments valid and rightfully include these in the scores.
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Figure 7.5: Scores for a Scenario with 40
Raters Deviating with a Rating Offset (−2.5)
Applied to All Providers.
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Figure 7.6: Influence Shares for a Scenario
with 40 Raters Deviating with a Rating Off-
set (−2.5) Applied to All Providers.

w 5 w < 0.5 the scores are lowered by one unit from the “correct” values. Increasing w
makes the model more selective and for a value of w > 1.0 the impact of the deviating
raters on the scores and their influence on these is mostly removed.

Evaluating figure 7.6, one could wonder about another effect: While the impact of the
deviators is removed, some raters of the other group are gaining a higher influence share,
which they lose after the influence of the deviators is entirely removed. In this transition
phase, the resulting model scores are shifted and some of the 60 “good” raters happen
to be slightly closer in their rating bias to the deviators. After the deviators are entirely
removed, the resulting scores move toward the average of all of these 60 “better” raters.

At this point, we would like to determine an appropriate setting for w in this scenario,
such that deviators are rightfully disabled, but the other raters form a meaningful aggre-
gation. Similarly to the simple examples in previous chapter (section 6.2.2), we search for
a second convergence point. We replace the initialisation vector in equation (5.1) with
the comment values of the deviators. Running the altered reputation model on the same
scenario yields the scores seen in figure 7.7. For values of 0 5 w 5 1.36, the scores and the
influence distribution (figure 7.8) are identical to the results with the general initialisation
vector (figures 7.5 and 7.6). At w = 1.37, the second convergence point is available, the
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Figure 7.7: Scores for same scenario with
the Initialisation Vector set to the deviators’
comments.
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Figure 7.8: Influence Shares with the Initial-
isation Vector favouring the deviators’ and
their convergence point.

scores follow a discontinuous jump to the scores of the deviator group and the influence
distribution is reversed for both groups. With the existence of the second convergence
point, the solution is not unique and it is debatable which of the convergence points
should be chosen. Therefore we choose to disregard results that offer two convergence
points.3 Within the range of possible unique model solutions, we want to maximise the
rating model’s selectivity effect in order to enable the model to filter out the deviating
raters. Choosing w = 1.36 satisfies both of these criteria and yields us model solution
scores that are practically free of influence taken by the deviators, seeing as collectively
their influence amounts to only 2.79% at this point.
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Figure 7.9: Scores for 40 Raters Deviat-
ing with a Distinct Rating Offset (−2.5) on
Provider pA Only.
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Figure 7.10: Influence Shares for 40 Raters
Deviating with a Distinct Rating Offset
(−2.5) on Provider pA Only.

7.3.2 Malicious Rater Collective Manipulating One Provider
Score

While a threat model with a malicious collective of 40% of the raters applying a rating
bias is large fraction, it is not the most challenging threat case, because in the previous
section the deviators applied this bias to all providers that are to be rated. It is much
harder to identify and deselect these deviators if they attempt to modify the rating of
only one of the providers. In this scenario we again have 40 deviators applying similarly a
rating offset of −2.5, however only to provider pA. In figure 7.11 we see how the scores are
affected by this deviation, because for 0 5 w < 0.5 the score of pA is lowered by one unit
from the “correct” value. Increasing w makes the model more selective and eventually for
w > 2.5 the rating scores reflect the rating pattern of the 60 “good” raters only. From
figure 7.12 we see though, that the gap between the graphs of the 40 deviating raters

3We can choose to take into account results that allow for more than one convergence point, if we
have a method for choosing the desired initialisation vector to reach the desired convergence point. One
such method is to take a client-specific view, and select the convergence point according to this client’s
comments, as discussed in section 7.6.
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Figure 7.11: Scores when algorithm ini-
tialised in favour of second convergence
point, belonging to the deviators.
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Figure 7.12: Influence Shares with Initialisa-
tion Vector favouring deviators’ convergence
point.

(represented by the graphs close to 0 in the range of 2 < w < 2.78) and the 60 other ones
is very narrow. This shows that the rating model is pushed to its limit, although it still
does achieve the goal of removing the effect of the deviators for a selectivity weight value
of about w > 2.5.

Also in this threat scenario, we want to determine the appropriate setting for the
selectivity weight variable w. As in the previous section, we replace the initialisation
vector by the comment values of the deviators to yield figure 7.11. In this case, the
second convergence point is reachable for w > 2.78. Choosing w = 2.78 is a satisfying
result in terms of deselecting the deviators, as the results are mostly free of their influence,
which amounts to only 4.41% at this point.

Summarising, we are able to claim that the rating model performs well in both of the
above threat scenarios. Even for a large deviating group resembling 40% of all raters and
minimising the deviators’ exposure, the model is able to identify the deviators and remove
their impact on the scores.
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7.4 Deliberately Inconsistent Provider Performance

The scenarios we discussed in the previous sections assume that providers display a con-
sistent performance behaviour. This does not imply that they have to deliver identical
performance every time, but we assume that clients base their ratings on a number of
transactions with a service and that statistically the clients experience on average a sim-
ilar performance from a provider and that this average is characteristic for this provider.
Deriving a reputation with the model under such assumptions for a provider who displays
a high variability in his performance would still result in the scores correctly reflecting his
average performance.

However, what happens if a provider does not deliver a varied performance by sta-
tistical chance, but rather has opted to treat a specific set of clients with a specifically
worse or better performance level? For example, provider pA could decide that he de-
livers a guaranteed-level 99.99% of the agreed performance terms to a majority of 75%
of preferred customers and delivers as low as only 50% of the agreed performance terms
to the minority of 25% of the remaining contracting clients, when he needs to use these
clients as a best-effort-serviced buffer for his performance demand variances. With the
clients then submitting their observations as comments, this would result theoretically in
a performance score of 87.49%, if applying a plain average. We would argue that this
does not represent the performance of the provider well at all. Such a result neglects the
good and the bad of this provider’s strategy. In order to make this scenario statistically
more realistic and relevant, the majority group experiences a normal distribution with
no performance above 100% and a very low standard deviation of σ = 0.25, simulating
the guaranteed performance level. The minority group’s normal distribution of comments
on the other hand will never fall below 50% and displays an extremely high standard
deviation of σ = 25.0, reflecting the best effort characteristic of their service experience.
Figure 7.13 compares the model’s score outcomes for the two possible convergence points
of pA’s rating and practically, with the statistical circumstances mitigating pA’s perfor-
mance bias, a plain averaging of comments results in a flattering rating score of 91.4%.
The remainder of this scenario contains again 100 raters, with 25 reporting the lower
performance and a total of 20 providers, where the other 19 all behave consistently and
predictably. While the first convergence point is found from the overall average as the
initialisation vector, the second is derived from an initialisation vector formed from the
comments the minority group is submitting. Similar to the previous scenarios, when we
set the selectivity weight high enough, beyond levels where it mediates between the two
groups, the second convergence point appears, that is for w = 1.85. At that point, we can
clearly identify the two general performance levels (99.99%; 50%) this provider is supply-
ing to the two groups of clients. We can individually identify which of the clients belong to
either of these two groups by observing the exact reversal of the influence shares held by
either group for the different convergence points as we can see for w = 1.85 in figure 7.14.
Ironically though, when increasing the selectivity weight, eventually for w = 2.83 the
resulting scores centre on one of the minority group raters who happens to be very close
again to the plain average which we obtained with w = 0.

From the point of view of the scores, this scenario is identical to a set of clients with
a rating bias, as we described in section 7.3. By analysing the submitted comments it is
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Figure 7.14: Influence distribution with ini-
tialisation vector set on comments of minor-
ity group and revealing the second conver-
gence point from w = 1.35.

not possible to distinguish between a provider actually treating a client differently than
others or a client turning out a different rating than the performance he has received.
The model however is able to reveal these divergences, particularly if these are part of
a general pattern and not random flukes. However, to tell which of the both deviances
we are dealing needs to be resolved externally. Thus, the operator of the rating model
has to anticipate the kind of threats that are possible or likely to occur in his rating
scenario. With knowing which of the two threat cases one is dealing with, one can choose
the appropriate convergence point as the effectively reported scores. Alternatively, if one
were paranoid about both threat cases at once, one could choose to punish both sides. The
affected provider by choosing the disadvantageous convergence point for his reputation
scores and the rating clients by offering them a the lower of the two possible payoffs from
the economic incentives that are part of the framework, as described in section 5.3.

7.5 Choosing the Appropriate Model Selectivity Weight

As we are able to observe in the previous sections, the resulting scores depend very much
on the settings for the model’s selectivity weight w. Assigning a value to w ultimately is
an application specific task and depends on the intentions of the rating model’s operator.
Here we list some general rules as to what effect a certain setting of w will have on the
scores:
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• Settings of w that allow for a second or more convergence points, when supplied
with different initialisation vectors, are not desirable.

• Resulting model scores that allow for alternate convergence points can only be
accepted if one has a method choosing the desired convergence point and the corre-
sponding initialisation vector. The next section (7.6) provides an example for such
an approach.

• If undesirable raters are a critical threat to the rating situation, one will choose
a higher setting for the selectivity weight variable w, as in this way the model’s
discriminatory effect is reinforced. Therefore, commonly one will choose w to be as
high as possible, within the range of unique solutions.

• If the goal is to find a non-compromising solution, effectively electing one all domi-
nant rater, one can set the selectivity weight to an extremely high value.

• If we expect a systemic high variance of the submitted comments, we want to
dampen the discriminatory effect of the model by choosing a lower setting for w,
close to 0.

7.6 Client-Specific Rating Customisation

We are able to produce model scores specifically tailored for one rating client. In doing
so, we assume that this client most of all trusts his own ratings and secondarily the
other raters’ ones. We achieve this customisation by using this client’s comments as
the initialisation vector, instead of s

(0)
p1,..,k in equation (5.1) to enter the iterative loop at

equation (5.3). We expect this to have an effect on the slope of the rating algorithm
and where possible lead to selection of different of the possible convergence points. This
approach however presumes that we (1) chose to obtain model scores with settings of w
that are so selective that more than one convergence point exists and (2) w is not so
selective that the model scores are identical to the comment values of the rating client
who supplied the initialisation vector. Such an approach is mostly useful, if the range of
settings of w with one unique convergence point is deemed not sufficiently selective and
one requires a stronger discrimination.

7.7 Aging Comments

What happens to comments submitted over time and should we emphasise more recently
submitted comments? We are able to extend the reputation model to factor in a decay for
the comments. The aging would be integrated into equation (5.2), where we compile the
local scores local.s. At present the local scores simply take the average of the comment
values one rater has submitted on a particular provider. Taking the time of submission
into account, we can give more relative weight to his more recent comments over the older
ones. A special case would be to expire previous comments altogether as soon as a new
one is submitted about a provider.
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Note that it is not possible to apply aging of comments on a more general level,
particularly aging of comments in relation to those submitted by other raters. This cannot
be done, because the premise of the rating model is, firstly, to determine a reputation for a
rater and the quality of his comments. The rating model must then compile scores based
on these rater reputations. It would be conflicting to base the scores on the reputations
and at the same time the relative age of the comments. Further, we would weaken the
rating model’s notion of the rater reputations.

7.8 Limitations of the Rating Model

In case one uses our reputation model for an ongoing rating board that is continuously
updated as raters submit new comments, a limitation of the model is that a rater could
look up the current model computed performance scores for a provider, and then to
rate and submit exactly this score as a comment value. This strategy would not change
the provider’s score as it stands at the moment. But it will prove problematic if more
comments are added so that the model becomes biased in favour of such previous scores.
More critically though, this rater will earn a higher rater reputation through this strategy,
and hence his other comments on other providers also will be given a greater share of
influence. In order to disable this cheating possibility, in the design of the rating scenario,
it is necessary to decouple any possible bijective relationship between comments and
scores. Other than requiring that all comments have to be received before scores are
calculated, one way to achieve such a one-way functional relationship is by introducing a
temporal decoupling, whereby the scores reflect the situation of a past period. Section 7.7
describes an instance of such a temporal decoupling and updating.

If one considers scenarios such as the Sybil Attack [25]4, most reputation systems
can break down if the attack is just severe enough. If one expects such an attack, our
model can be instrumental in recognising the presence of the attack and partitioning
the agents into clusters of similar rating behaviour. If, however, one were to deploy a
reputation/recommendation model for business purposes and services, we would expect
protection from the worst kinds of fraud through means external to our aggregation
function, such as the authentication of raters.

7.9 Social Choice

Social Choice Theory is a subdiscipline of economics that builds a theory for fairness
of voting schemes. If one proposes a new Social Welfare Function, which aggregates
the preferences of individuals, social choice suggests a number of desirable aggregation
properties, that can either be satisfied or violated by the function. The theory originates
with the dilemma stated by Kenneth Arrow’s impossibility theorem [7]. This impossibility

4In the Sybil Attack the attacker replicates his identity unlimited numbers of times and thereby is able
to undermine defense mechanisms such as replication. Douceur [25] shows that this attack can practically
only be prevented with a trusted agency that certifies identities.
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theorem puts forth four properties for Social Welfare Functions that seem to be reasonable
to be expected and then proves that no Social Welfare Function can satisfy all four for
more than three voters.

If we evaluate our reputation aggregation model with the same theoretical properties as
in Arrow’s problem, our model would be able to satisfy three out of these four properties.
However, there is little value in evaluating our model from a Social Choice perspective at
all, since the premise of our model contradicts the fundamental beliefs of Social Choice
Theory. Social Choice assumes that “everybody’s vote counts”, whereas we assume that
some raters are less able than others to make valuable comments and therefore redistribute
the influence each rater has. This discriminatory approach that we chose implies that our
reputation model cannot be applied to the same problems as Social Welfare Functions.
Our model is better suited for more “dictatorial” applications.

7.10 Further Application Areas of the Reputation

Model

In this section, we present applications of the reputation model beyond electronic services.
One of such further applications is the academic peer review process, which we will discuss
in detail in the next chapter along with a case example.

7.10.1 Stock Market Predictions

Where stock market analysts are assigned the roles of raters, and their ratings take the
form of comments, meta-predictions can be made of future stock prices. The rating model
seeks for a common opinion among the analysts’ ratings, and also displays how much
influence each analyst has on the final rating. Difficulties arise when only a single analyst
is right, and that analyst’s comment is nonetheless refuted by the common opinion. It is
worth pointing out that the application of our rating model to stock market predictions is
only useful where the history of the analysts’ predictions is not available for comparison
with the actual stock value history.

7.10.2 School Grading

In a school system where the exams of students are evaluated by more than one examiner,
and each examiner evaluates more than one set of exams, this rating model yields insights
into the students’ work, and more importantly, their assessors’ ability to examine. Here,
the examiners take the roles of raters and the scores they assign to each exam are com-
ments. One could combine the examiners’ comments by averaging them, as is often done.
Applying this rating system would allow the examination authorities to base their final
results on less deviant gradings. Altogether, this approach would prevent biased grading,
where an examiner applies his own grading scale to the exams, or else just inconsistently
overrates some students and underrates others.
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This application would, for example, be possible in the grading of the final grammar
school exams in the German state of Baden-Würtemberg. There, each exam is indepen-
dently evaluated by two different teachers at different schools. Where the two teachers’
assessments differ by more than one grade point, the Ministry of Education appoints a
third examiner to evaluate an exam and arbitrate its results. Or, if these assessments dif-
fer by less than one point, the average of the two is taken for the final score. By applying
our rating system to this scenario, one allows those teachers who are, in general, more
consistent with their grading to have a stronger influence on the overall score. On top
of this, the Ministry of Education would probably be curious to find out which of their
teachers deliver more consistent grading than others.

7.10.3 User Movie Ratings

Many web sites operate general rating lists such as the Internet Movie Data Base [47].
Users are allowed to submit comments on how high they rate a certain title on a scale of
[1,..,10]. A general problem with simply adding up these kind of comments is that one
has to rely on the vast majority of users actually submitting reasonable comments. One
will, however, often find users submitting deliberately extreme votes in order to promote
or discredit a certain title they favour. Applying our rating model would allow the rating
web site operators to reduce the influence of extreme voting in a controlled fashion. One
would choose a balancing value for the selectivity weight variable, such that credible
raters’ comments are not affected. Alternatively, if not applying our rating model, one
would have to resort to heuristic or other methods of filtering the comments in order to
remove skewing effects from the rating scores. However, the main objection to applying
our rating system to movie reviews is that the purpose of our rating model is to establish
a ranking between the rated entities and to achieve this goal assumes objective reviews
at the expense of subjective opinions. Such a rigourous approach may not be necessary
for movie reviews, unless the outcome is used to award some kind of a prize that is based
on a ranking.

7.11 Conclusions

In this chapter we demonstrated that the rating aggregation model is successfully able
to recognise and filter out various forms of “deviating” rating behaviour. If some of the
raters are having a weak rating accuracy, in the form of a high rating variance, then the
aggregation model is able to gradually recognise and contain these raters (section 7.2),
even if these weak raters resemble 90% of all raters. Next, if a set of raters colludes and
collectively attempts to influence the outcome scores with their biased agenda, the model
is able to recognise and filter out this set of raters (section 7.3), even if this collective
only applies a minor rating bias to one of the providers and otherwise supplies consistent
ratings for the other providers. Moreover, this filtering still works when the malicious
collective makes up almost half of the rating population (40%). In order to achieve these
results we did not apply any special model conditions, such as a tailored starting vector
(see section 7.6), but could achieve these with the regular, unique solutions the model
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is able to generate. In section 7.4 we modelled a situation whereby the raters are well-
behaved, but the providers have a bias towards a set of these client raters and demonstrate
that the aggregation model is equally effective at recognising such a situation.

Comparing the results of these threat scenarios with the small-scale ones of the previous
chapter, it appears that the larger set of comments actually strengthens the model’s ability
to respond to “deviant” rating behaviour, even if the relative proportions of deviance are
similar.

Throughout these experiments, we could see that the necessary level of the selectivity
weight, to counter the presented threat, is an useful indicator of how challenging the
present threat is. For the tricky challenges, we have to set the selectivity much higher to
remove the deviator’s influence, since then the gap between the deviators and the normal
raters in their rating profile is narrow. However, it is not a problem to set the selectivity
weight higher in such cases, since any alternate convergence point does not appear until
the selectivity has reached these high levels, and therefore the results are not ambiguous.
In being useful as an indicator, the selectivity weight is analogous to the “undercutting
sensitivity” variable that we used as an indicator in chapter 4.

To assist any practical use of the rating aggregation model, in section 7.5 we were able
to describe a set of rules on how to set the selectivity weight, since this appears to be
a crucial factor in the aggregation model’s performance. Further to this end, we showed
in section 7.6 how the model can be customised for particular clients, gave account of
the scope for aging comments over time (section 7.7), and listed in section 7.8 the most
relevant limitations for the general use of the model.

Finally, we described in section 7.10 three rating scenarios beyond e-services appli-
cations, where the reputation aggregation model’s properties could make for a useful
evaluation tool. The next chapter will present another application scenario beyond e-
services, the academic peer review process, and we will discuss the merits of applying our
reputation model, as well as evaluating it in a case example.





Chapter 8

Reputations Applied to the
Academic Peer Review Process

In this chapter, we examine the practical conditions of applying the reputation model, as
presented in chapter 5, to an area outside of electronic services, the academic peer review
process. In the first part of this chapter, we discuss the merits of using the reputation
model for this application in general (section 8.1) and describe the ideal conditions for
doing so (section 8.1.1). Further, we elaborate about the general contributions the model
makes (section 8.1.2) and contrast this with the objections one could have in general
(section 8.1.3). In the second part of this chapter, we present a case example (section 8.2)
from an actual workshop’s peer review assessment, where we analyse the acceptance
recommendations (section 8.2.1) with our reputation model (section 8.2.2). Finally, in
section 8.2.3 we contrast the recommendations our reputation model produces with the
workshop’s actual acceptance decisions. Throughout this chapter, we will demonstrate
how one ought to apply the methods developed in the previous chapters, such as mapping
reputation aspects onto an “objective” scale (section 8.1.1) and selecting the appropriate
level for the “trust sharpening variable” (section 8.2.1).

8.1 Theory of Reputations for Peer Reviews

This recommendation/reputation model is a very useful tool to aid the academic peer
review process. Using this model allows insight into the quality of the reviews made,
the common consensus among the reviewers and lends some advice on how to rank the
papers, and therefore which ones to accept or reject. To simplify our further discussion,
we will talk about a journal review process, although this recommendation model could
be used equally well for any other peer reviewed venue, like conferences and workshops,
research grants, or academic positions.

In the academic peer review process, it is common to have between two and four
reviewers for a submission of academic work. Not all reviewers assess all the submissions
in the pool of work to assess, but each work should be reviewed by more than one assessor.
The intention is to reach a common consensus on which submissions are to be accepted
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and which are not.

At this point, it is very common to obtain some very contradictory reviews for the
same submission. One reviewer completely rejects the work and finds many flaws in it,
while another praises the genuine contribution of the work and strongly recommends its
acceptance. Practically every author of academic work has some personal stories to tell
about such scenarios.This situation is rather unsatisfactory for the authors who find their
work in such a dispute, but also does not make it easier for the editor to make the final
call on whether something is acceptable or not.1

Since these divergent commentaries are an inherent feature of the academic peer re-
view process, we think that it would be helpful to formalise some aspects of the process
of finding the consensus on accepting papers. We think that it would be beneficial to
acknowledge that not every reviewer is equally good at assessing the merits of a paper
(some simply know the area better than others), and to use our recommendation model
that assigns quality measures to raters, depending on how good they are at finding a
common consensus.

8.1.1 Peer Review Process Parameters

In order to make our recommendation system work for the case of the academic peer
review process, we need to align the steps accordingly, so that the recommendation system
actually produces meaningful suggestions.

Accordingly to the terminology we used in these chapters, the journal editor corre-
sponds to the operator of the recommendation/reputation system, the reviewers of the
papers are represented by the rating clients and the papers are equivalent to the services
on offer by the providers. To be specific, a paper is assessed in terms of several aspects
(i.e. relevance to the journal, contribution, language, overall acceptability) and in such a
case, every one of these aspects is an independently rated entity for the recommendation
system. This means that every aspect is equivalent to what we previously represented as
one provider. While this is the only way to represent such a structure in our system, it
carries the additional benefit that it increases the number of rated variables and therefore
also increases the reliability of its recommendations. Our system benefits from a tighter
coupling between the rating relations, which we achieve with this multiplication of rated
entities.

Further, our model for the recommendation system calls for objective variables. At
first sight, it may seem impossible to bridge this conflict with peer reviews, since every
reviewer is allowed to have his own view on the contributions of the paper, and this view
does not easily relate to a numeric value. However, we would like to contest such an
opinion, since the paper that is to be rated is identical for every reviewer and should
have some kind of inherent “true” value for the public, even if the magnitude may differ
depending on the point of view of the rater. Reviewers may still have some differences in

1Some peer-review venues will only accept submissions that have all the reviewers in agreement with
positive comments. Also in such a case one has to find a ranking of the assessed work, in this case with
the divergences and the line between acceptability at higher levels with more subtle differences.
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judgement, but the whole point of the review process is to come to a consensus on which
of the papers are more deserving than others to be accepted for a journal/conference. We,
then, are faced with the task of assigning numeric values to rating aspects in such a way
that every reviewer has the chance to grade the paper on the same scale. One objective
scale by which the reviewers can rate papers involves describing the paper review aspects
with detailed, transparent levels, as for example with this paper review form below. In
this, we ask the reviewers to complement their descriptive analysis with a numeric rating.
In parentheses we show the values of our rating scale and the reviewers are free to choose
the appropriate value for the paper they are rating. Furthermore, the reviewers can also
choose intermediate numbers if they consider the aspect to fall in between the available
criteria (e.g. a 3.4 on a scale of 7):

• Technical merits of the paper

– Poor — obvious flaws throughout (1.0)

– Mediocre — major parts of the methodology lack merit (2.0)

– Average — parts of the methodology could be improved (3.0)

– Solid research — applying state of the art (4.0)

– Genuine — innovative methodology (5.0)

• Writing quality — orthography and grammar

– Poor — many mistakes throughout (1.0)

– Mediocre — mistakes at regular intervals (2.0)

– Adequate — occasional mistakes (3.0)

– Good — correct orthography, occasional grammar mistakes (4.0)

– Excellent — correct throughout (5.0)

• Writing quality — style

– Poor — stylistic mistakes all over, incoherent arguments (1.0)

– Mediocre — lacking style, difficult to follow arguments (2.0)

– Adequate — plain style, sometimes difficult to follow arguments (3.0)

– Good — adequate style, readable arguments (4.0)

– Excellent — good style, interesting to read (5.0)

• Relevance to the journal

– Irrelevant — irrelevant to the journal (1.0)

– Marginal — marginally relevant to the extended scope of the cfp (2.0)

– Appropriate — relevant only when considering the extended journal scope
beyond the core cfp issues (3.0)

– Relevant — relevant to one or more of the cfp issues (4.0)

– Highly relevant — relevant to one or more the cfp issues and also the theme
at large (5.0)

– Perfectly relevant — perfectly in line with the cfp theme and the its issues
(6.0)

• Contribution to the field of study

– Useless — clearly does not contribute anything — solution to a non-problem
— unclear if anything has been done to improve on existing knowledge (1.0)
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– Repetition — has been done identically before — establishing the fact that
the experiment is repeatable — backing up existing knowledge with new data
(2.0)

– Minimal — minimal incremental improvement on existing knowledge (3.0)

– Small — small but distinct incremental improvement (4.0)

– Average — average incremental improvement (5.0)

– Substantial — above average incremental improvement (6.0)

– Novel — novelty beyond incremental changes (7.0)

• Contribution to academic discussions

– Unworthy — is not worthy any discussion (1.0)

– Minor — could be interesting to be discussed by a small minority group (2.0)

– Average — could yield some discussions in general (3.0)

– General — expect to lead to discussions in general (4.0)

– Controversial — expect this to be a highly debated contribution (5.0)

• Practical relevance

– Inapplicable — solution is not applicable (1.0)

– Far fetched — practical implications would be far fetched (2.0)

– Possible precursor — practical implications could be reached with further
applied research (3.0)

– Limited — touches some current practical issues as it is (4.0)

– Good — provides a solution to a current practical problem (5.0)

– Excellent — solves a whole class of current problems (6.0)

• Overall Rating

– Strong reject — clearly unacceptable (1.0)

– Reject — too many weak points, not enough strengths in this paper (2.0)

– Possible reject — seems to be too weak to accept, but has some strengths
and depends on other submissions (3.0)

– Borderline — the weaknesses and strengths are balanced (4.0)

– Possible accept — the paper has enough strong points, but also some weak
ones (5.0)

– Accept — the paper has enough strong points, weaknesses can be fixed or are
less relevant (6.0)

– Strong Accept — the paper is bursting with strong points (7.0)

With such an explicit description at hand, it is possible to reduce these aspects of
discussions about acceptance to linear scales and numeric values. Note, that these nu-
meric values are not supposed to obliterate any more differentiated comments, but merely
formalise some of the available judgements. More differentiated descriptive comments are
still solicited and are considered by the editor when making his ultimate decisions. Further
to this, a journal editor may decide that not all of the above listed aspects are necessary,
depending on the focus of the journal’s acceptance policy.
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The scales of the rating aspects should be adjusted to suit the particular needs of the
journal; for example, if it has a particular focus, this could be included as a separate
aspect for the ratings. Similarly, if any one particular aspect is considered to be far more
indicative for acceptance by the journal, we can replicate this aspect in the model and
thereby increase the influence of the ratings on this aspect over the influence of the other
aspects.

Further, our model also maintains its full utility, even if the raters do not submit
comments on all the aspects of a paper. Omitting one or more comments on one aspect
may weaken the confidence in the results of this aspect, but it does not impair the general
practicability of the model. Actually, if a rater is uncertain about how to rate a certain
aspect, he should not do so at all. In this case, he does not influence this aspect and
neither is his rater reputation diminished, should his uninformed guess otherwise diverge
much from the common consensus.

Since the recommendation model is potentially able to yield more than one convergence
point for its calculations (see section 6.4.4), we would gauge that it is sufficient to take into
consideration only the results for those cases of settings, that have one unique convergence
point. Alternatively, if these settings do not provide for enough differentiation, but instead
yield too much plain averaging, the editor can use his own review comments as a starting
vector to seed the model’s iterative process. In so doing he can select the convergence
point most closely related to his reviews and trust his own judgement more than those of
the other reviewers.

8.1.2 Contributions of the Recommendation System

The main contribution of this recommendation system for the review process is that it
equips the editor of the journal with a tool that aggregates the opinions of the reviewers,
while anticipating divergences in reviewers’ comments. The strength of the model is that
it both equalises the divergences within the comments for one paper and also equalises
the divergences between the collected comments of one rater and the comment collections
of his peers. The model can thus maximise the agreement on rating aspects as much as
possible, and transfer this convergence configuration on to the less agreeable aspects.

We should point out that this recommendation system is only a support tool for the
editor to make up his own mind, and to make the review process more transparent (in
the first place to himself, and if he decides to publish the results, also for the rest of
the community). He still can, and should, inspect the additional descriptive parts of the
analysis to make his ultimate decisions. In addition, the recommendation model is helpful
to the editor because it produces a confidence value (see section 5.4.4), which states just
how much of the total accumulated rater reputation was employed to assess one particular
paper. With this confidence value at hand, the editor might find that the reviews of one
particular paper have been done on weak grounds and decide to have this paper reviewed
by an additional reviewer with a high reputation value.

One claimed benefit of using this model is that it would be fairer to aggregate the
reviewers’ comments with the model, rather than simply averaging ratings. It would be
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more fair, as every paper is not reviewed by every reviewer and therefore whether a paper
receives sufficiently unbiased attention, or whether it just happened to be unlucky to be
reviewed by some of the less able reviewers is left to chance. Using the model, though, the
editor could recognise review patterns for the individual review board members and group
them into classes (similar to how this is described in section 6.3). We guess that the editor
might find classes, such as the very conscientious reviewers, who pay great attention to
accuracy and detail, and show a high degree of agreement among their comments. On
the other hand, another class the editor might identify could be the self-interested ones,
who see little merit in anything that is not their own work or at least that is related to
their topic.

A further nice point of using our recommendation system is to obtain a value for the
rating reputation of the reviewers. The editor can find out who of his reviewers is more
in line with the common consensus and who is less so. This may be useful for the editor,
who might want to use this for the selection of his future reviewers. Besides this, the
rating reputation value gives us an immediate incentive for reviewers to assess the papers
well. Assessing a paper well in this context means that the reviewer finds the common
consensus on the judgement of a paper (and that might be to decline the acceptance).
At present, the reviewers already have this kind of incentive, since the editor gets to see
and compare their commentaries, but ranking the reviewers makes this incentive more
immediate.

Altogether, using such a tool does not imply invention of new mechanisms, since for
example the editor might already be able to see that one paper’s reviews have been both
weak and diverging and therefore have it reassessed. Mainly, though, the tool makes
the whole process more transparent. The transparency of the review process will be
useful for the editor himself to support his decisions, and it will also allow the editor
to provide authors with both the qualitative feedback that currently is given and also a
methodical assessment to account for why one paper was ranked over others. Making the
review decision process more transparent will improve the confidence in this process of
authors and the community at large, and could possibly also do so for the non-academic
community (e.g. government funding bodies).

8.1.3 Discussion of Possible Objections

We also expect some objections against employing this tool in the academic review pro-
cess. One objection could be that editors claim they are better able to make their decisions
based on the descriptive review analysis that authors provide presently. The idea behind
such a claim would be that the descriptive approach allows for more freedom to express
an opinion and therefore reflects the assessment of a paper more closely than the narrow
numeric scales allow for. Further, an experienced editor will point out that he knows by
experience the rating reputation of his reviewers and can therefore assign higher impor-
tance to the highly reputed reviewers. Our contention with these arguments is that our
model would not take anything away from the descriptive aspects of a review, or force
an editor to ignore more subjective, experience-based elements of the paper assessments.
Our model only seeks to formalise the agreement on those aspects that can be placed on
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linear scales and already in practice are governed by conventions.2

Another contention with the rating model might be that it discourages reviewers from
making bold statements (strong viewed ratings) at the top and bottom of the scale. Since
their influence is diminished if they diverge frequently from the common consensus, they
might feel compelled to always water-down their opinions, resulting in a “middle-of-the-
road-approach”. We contend that this should not be a problem, because if the common
consensus on a paper is that it is “Poor in its technical merit”, then it also lowers the
relative influence of a reviewer, if he rates it “Mediocre” for the sake of avoiding bold
statements. Thus, it always is most influential to have an opinion that the other peers
can agree with. Promoting such strategies is not to the detriment of the peer review
process, but actually strengthens it, because peer-review is the process that seeks academic
consensus. Divisive arguments also have their merit in the academic world, however are
not helpful when it comes to ranking one paper over another.

8.2 Example Peer Review at the PET Workshop

In this section, we present a case study of a peer review process with review comments
from the “Workshop on Privacy Enhancing Technologies” (PET) 2004, Toronto, Canada
26 - 28 May. In their review process, the program committee (PC) was asked to rate each
reviewed paper’s acceptability on a scale from one to six, and the workshop chairs kindly
permitted us to use this data in an anonymised form to run our reputation model on it.

Contrary to the idealised development of peer review parameters, above in section 8.1.1,
this workshop’s review process has only one aspect rated on a numeric scale, namely the
overall acceptability recommendation of a particular paper submission. While we believe
that a greater wealth in rated aspects strengthens the selection of the review process, and
therefore recommend deconstructing the independent review aspects, this does not need
to imply that the reputation model is useless when only one such aspect is available.

8.2.1 Review Data

The raw review comments can be seen in tables 8.1 and 8.2, where the 19 program
committee members, r0-r18, rated 49 paper submissions, p0-p48, on a scale from one to six.
Each of the reviewers assessed between three and eleven papers, altogether 141 comments
were submitted, such that most papers, 39 of them, were assessed by three reviewers, four
papers ended up with four reviewers, and nine were assessed by two reviewers only. While
the average score for all comments is 3.3, in some cases the reviewers took the liberty to
assign a comment value of zero. Since our model does not apply any restrictions on the
scales and we are not concerned with fairness, we will allow these values, as if the full scale

2For example it is a common convention that reviewers will make a recommendation on the acceptance
and in doing so, choose one of a few definitive, conventional statements: ”Reject” - ”Borderline” -
”Accept”, possibly with the combination of weak/strong qualifiers to fine-tune the placement on the
recommendation scale.
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had been zero to six. In these tables, the reviewers are shown in a random order, and the
papers are sorted by the average comment values they received from the reviewers. This
average comment value is shown in table 8.2 in the “Peer Review” section. Left of this
column are asterisks (*) marking those papers that were finally accepted by the program
committee for presentation at the workshop.

Whether a paper actually got accepted was not directly determined by the averages of
the comment values. Instead, very high average comments were accepted, very low ones
rejected, and the large part of the middle ground was debated individually by the whole
program committee.

8.2.2 Reputation Model Analysis

By running our reputation system on this review data, we obtained the graphs in fig-
ures 8.1-8.3. These figures show the results of the reputation system, over the full range
of settings for the trust sharpening factor w = [0, .., 1.1328671], any higher setting thereof
would produce ambiguous results, leaving the range of unique convergence points. The
resulting values at the maximal setting of the trust sharpening factor, wmax = 1.1328671,
were then included as extra columns and rows in tables 8.1 and 8.2. This value for the
trust sharpening factor, wmax = 1.1328671 is as close to the limit of alternate convergence
points appearing, as we were able to obtain numerically. As we can see in figures 8.1-8.3,
some values change at a high rate, when approaching this fault line with the alternate
convergence points, and the convergence of the reputation algorithm slows down.

We obtain a graph of the reputation system scores s for each of the 49 papers over the
range of applicable settings of the trust sharpening factor, and display these graphs in
figures 8.1 and 8.2, in units of sevens graphs in seven separate grids. This is done in an
effort to be able to identify each of the individual colour coded graph. Correspondingly,
underneath the scores, we display the confidence values for each of the score graphs at
the same settings. The confidence values represent the aggregated influence shares of the
reviewers that participated in the review of a particular paper. Unsurprisingly, the graphs
of the confidence values then mirror the slopes of the reviewers’ influence graphs. This is
the first instance in our analyses that we were able to make use of this confidence value,
since in all previous cases, all assessors submitted comments about all rated entities and
this value then had been by default 100%.

For the development of the scores of papers p0-p48 in figures 8.1 and 8.2, we can see
that for w = 0 the papers are sorted by score, since this represents the average of the
comments submitted by the reviewers. By increasing w, the effects of the selectivity of our
reputation system increase and we can observe some changes in the ordering the reputation
would recommend, depending on the actual setting of w. For the graphs of the confidence
values, we can see that they originate in exactly three points for w = 0. These three origin
levels, [0.105, 0.158, 0.211], represent the number of reviews this paper received, namely
whether it was reviewed by two, three, or four reviewers. This correspondence reflects
the fact that, at a point when all reviewers share the identical influence (for the average),
more reviewers assessing a paper increases the confidence in the resulting average score.
These confidence values diverge more for more aggressive settings of the trust sharpening
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factor w, and the slopes can become steep when approaching the fault line that arises
when more than one convergence point is reachable.

In figure 8.3 we show the influences each reviewer reached, for clarity broken down in
three grids, depending on the setting of w. This influence, measured in percent, represents
the reputation a reviewer obtained in our reputation system, in terms of how well his
comments match the overall consensus. Naturally, for w = 0, when all scores are taken
in plain averages, all reviewers reach identical influence. With increasing settings of w,
the influence shares diverge, and at the highest possible setting, the two top reviewers,
r0 and r4, together gather 47.2% of all influence. These two reviewers share only one
paper, p37, that both of them reviewed and both rated it with the same comment value
of 3, which allows for this shared acquisition of influence, since they otherwise would
compete for influence. In general, one can recognise a correlation between the number
of papers reviewed by a program committee member and the influence share he then is
able to obtain in our system. This correlation is a useful property, since it increases the
credibility of the resulting scores obtained from the reputation system.

8.2.3 Discussion of the Results

When analysing the scores in figures 8.1 and 8.2, the most interesting points are the inter-
sections between the score graphs of each paper. Such an intersection resembles a change
in the ranking of the papers, as recommended by our reputation system. Most notably,
among the higher rated papers p0-p20, our reputation system raises the ranking of p8,
p11 and p12 significantly and their graphs traverse several such crossings. Considering
the individual comments, in all three cases, the papers received two very favourable com-
ments and one that would not promote acceptance. It turns out that in these cases, the
reviewers with the less favourable comments gradually lose their influence, and thereby
the score of the paper rises. Curiously, though, of these “rising” papers, only paper p12
was also accepted by the program committee.

Out of this group of rated papers, one stands out by getting downgraded, p7, which
crosses the graphs of three papers that start out lower. Looking at the comments, this
paper loses score ranking, because its highest grade, a 6, which is an exceptional grade,
has been issued by a rater who achieves only little influence (r11). Consequently, the
paper turned out not to be accepted by the program committee, and among the rejected
papers it is the one with the highest average comment values.

The most dramatic change in the ranking through the application of the reputation
system happens outside the range of acceptable papers, for p41. It raises 22 places to
rank 20 and the reputation system’s score rises as high as 3.61, compared to the 2.33
of its averaged comment values. This rise is based on the fact that rater r0, who gains
much influence in our system, gave it a much higher value than the other two raters
that commented this paper. A similar rise for similar reasons happens for p33, which
gains 16 places. In neither case the paper came close to the “acceptable” range, which
is good, since it shows that even the most dramatic changes do not incur unreasonable
consequences. In figure 8.4 we plot the distribution of the maximum changes in the
ranking that our reputation system suggests. Despite the limited size of the data sample,
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r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
p0 5
p1 4 5
p2 5
p3 5 5
p4 6
p5 4
p6 5 4
p7 4 3 6
p8 6 5
p9 5 5

p10 4 4
p11 5 5
p12 4 5 3
p13 4 4.5
p14 5 4 2
p15 3
p16 4 4
p17 3 5 3
p18 3 4
p19 3 4
p20 4 4 2 4
p21 3
p22 2 3
p23 4 6 0
p24 3
p25 3
p26 4
p27 4 3
p28 2 4
p29 2 3
p30 5
p31 3 4 2
p32 2 4
p33 4 4
p34 3
p35 4 1
p36 4 2
p37 3 2 3
p38 3
p39 3.5 2 2
p40 4 1 2
p41 4 1 2
p42 4 0
p43 3 2
p44 2 2
p45 2 2
p46 1 2
p47 1 1
p48 1 1 1

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
infl 21.0% 6.6% 1.8% 3.5% 26.2% 1.8% 3.6% 1.7% 7.0% 3.3% 5.3% 2.3% 1.2%

Rank 2 4 14 8 1 15 7 16 3 9 5 12 18

Table 8.1: Peer review comments (raters r0-r12) and reviewers’ influence for the maximal
trust sharpening factor.

the distribution appears to be reasonably shaped, resembling a bell-curve to a rough
approximation, and the peak of 7 papers represents papers that are assigned the same
ranking with our reputation system as they were in the case of averaged values. Further,
the bulk of ranking changes stays within 8 ranking slots up or down. Thus, on average,
our reputation system suggests a balanced and selective redistribution of the ranking, and
does not produce indiscriminate recommendations. This property is important to increase
the credibility of our system.

One contributing factor for the peak of the distribution of changes in figure 8.4 being at
distance ∅ is, that for some papers the scores are not influenced by the reputation system.
This is the case for p0 and p45, and is due to the fact that for these papers, all reviewers
submitted identical comment values. It is plausible that in such a case, a recommendation
system should not alter the scores. Since it is a case that does not appear often in this
review scenario, it is not a limiting factor here.

When looking at the ranking of actually accepted papers, we see a strong correlation
between this and the average score ranking; however, it is not a direct correlation. The
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Peer Review Reputation System
r13 r14 r15 r16 r17 r18 Accepted Average Score Rank Confidence

p0 5 * 5 5.00 1 8.9%
p1 5 * 4.67 4.54 8 7.6%
p2 5 4 * 4.67 4.96 2 25.0%
p3 4 * 4.67 4.82 4 16.6%
p4 3 * 4.5 4.19 10 4.6%
p5 5 * 4.5 4.55 7 5.1%
p6 4 * 4.33 4.18 11 9.9%
p7 4.33 4.04 13 31.7%
p8 2 4.33 4.95 3 35.6%
p9 3 * 4.33 4.34 9 13.0%

p10 * 4 4.00 14 5.9%
p11 2 4 4.77 5 29.9%
p12 * 4 4.73 6 31.3%
p13 3 3.83 3.56 21 7.8%
p14 4 * 3.75 3.29 27 12.6%
p15 4 4 3.67 3.55 22 11.9%
p16 3 * 3.67 3.91 15 24.9%
p17 3.67 4.09 12 6.6%
p18 4 3.67 3.31 26 30.3%
p19 4.5 3 3.63 3.53 23 13.9%
p20 3.5 3.82 17 38.1%
p21 4 3.5 3.12 29 23.7%
p22 5 3.33 3.11 30 8.6%
p23 3.33 3.87 16 9.5%
p24 2 5 3.33 3.71 19 8.9%
p25 3 4 3.33 3.40 25 10.7%
p26 3 3 3.33 3.45 24 7.6%
p27 3 3.33 3.06 32 30.8%
p28 4 3.33 2.22 41 23.5%
p29 4.5 3.17 3.08 31 11.4%
p30 1 3 2.20 42 6.1%
p31 3 2.76 35 14.1%
p32 3 2.16 44 22.8%
p33 1 3 3.78 18 30.7%
p34 1 5 3 2.50 38 7.5%
p35 3 * 2.67 3.14 28 6.7%
p36 2 2.67 2.61 36 11.3%
p37 2.67 2.88 34 53.7%
p38 3 2 2.67 2.59 37 10.3%
p39 2.50 2.25 40 10.3%
p40 2.33 2.19 43 10.1%
p41 2.33 3.61 20 25.0%
p42 3 2.33 3.01 33 9.0%
p43 2 2.33 2.48 39 14.7%
p44 2.00 2.00 45 10.7%
p45 2 2.00 2.00 45 28.6%
p46 1.50 1.66 47 5.4%
p47 2 1.33 1.10 48 13.8%
p48 1 1.00 49 36.7%

r13 r14 r15 r16 r17 r18
infl 1.4% 2.9% 1.1% 2.8% 2.3% 4.3%

Rank 17 10 19 11 13 6

Table 8.2: Peer review comments (reviewers r13-r18), the outcome and the reputation
system’s scores for the maximal trust sharpening factor.

divergence between both is comparable with the difference between the average scores
ranking and the reputation system’s ranking, as it is shown in table 8.2 for the maximum
trust sharpening value wmax. This suggests, that the magnitude of ranking reordering
due to our reputation system is at an acceptable level. There are some papers that were
accepted by the program committee that also in our system received favourable scores;
however, there are equally many that were accepted, while not being favoured by our
system. This just reinforces the suggestions made previously in section 8.1.2, namely that
this reputation system can be useful to act as a recommendation tool, to give advice on
which papers need further assessment. From the review scores alone, it is not possible to
derive the true value of a paper. Paper p35 for example received poor comment values, but
was accepted by the program committee. This paper stands out in our reputation system,
in as much as it gains 9 places in the ranking with our system. This could be taken as an
indicator by the program chair to scrutinise the paper further by having it assessed again.
Apparently, the paper also did get another chance in the program committee discussion,
since its numeric scores would have been far from acceptable.
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Revisiting the influence shares attained by each reviewer in figure 8.3 shows that r0
and r4 stand out dramatically for w 7→ wmax. It is the nature of this reputation system,
that it is able to produce such sharply selective results. If such an imbalanced influence
distribution is not desirable, it is possible for the committee chair, who sets the parameters
of the reputation model, to choose a more modulating heuristic. Such a modulating
heuristic could be that “the aggregated influence of the top third of the reviewers shall
be equal to the aggregated influence of the rest of the reviewers”. Such a heuristic then
leads to the choice of smaller, more balanced values for the trust sharpening factor w.

While the choice of the value for the trust sharpening variable w is crucial for the
reputation system’s recommendations, some trends can be observed to be independent
of this variable. Notably, reviewer r15 appears to lose a lot of his influence, even for
lower values of w, compared to many other reviewers where most of the losses or gains
happen only for w > 1. The reputation system downgrades the influence of this reviewer,
r15, mainly for two reasons. First, this reviewer’s comments diverge significantly from
the other reviewers’ comments, and secondly he supplied only three paper reviews, which
weakens his position additionally, since he then has a good chance to obtain a relative
high variance.

While reviewers r5, r7, r12, r13 share a similar fate as does r15, in contrast to these r2
shows a different slope for the influence development. Reviewer r2 only loses his influence
for the higher settings of w, not from the onset. In this case, the loss is not due to
a disagreement with many other review comments, but mainly due to one significant
disagreement with reviewer r0 over the rating of paper p32. Since reviewer r0 is one of
the two reviewers who amass a large part of all influence available when w 7→ wmax, then
r2 shares sink correspondingly. This degradation happens because the effective system
scores for p32 move away from r2’s comment value. This effect to some degree taints the
scores we derive for paper p32 with our system, because this paper was assessed by only
two reviewers, who appear to disagree significantly. Since even the higher one of the two
review comments would not be sufficient for acceptance, it would probably not be worth
expending the effort to reassess this paper an additional time.

Reviewer r8 attains a high reputation and influence, but not as high as the two extreme
cases r0 and r4. The reason why r8 does not gain as much as these other two for w 7→ wmax,
is that he competes with r0 over the review of p18. It just happens that r0 overall
maintains more of his influence and therefore “wins” this competition. However, this
effect is limited to the area close to w 7→ wmax.

Finally, we observe that this data set is sufficiently large for our reputation system
to make a useful contribution to the recommendations of the ranking of the papers. A
larger data set, particularly covering more than one assessment aspect per reviewed paper,
would improve the reliability of our reputation system’s output scores. In this review case,
the assessment aspect we were able to look at was about the acceptability of the paper.
This aspect is naturally a controversial one, and it would be beneficial for our system to
also include some less controversial review aspects, such as the readability of the paper.
Adding these less controversial aspects would allow the system to cross-link agreement
(and disagreement) between the controversial and uncontroversial aspects. We expect that
doing so would dampen the overall variance, and hence the resulting influence distribution
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would not be as sharp; possibly more meaningful though. In such a case, the reputation
system would have more justification for downgrading certain reviewers. Effectively, this
also would allow the program chair to operate the reputation model at a higher, less
compromising setting of w, to derive the paper ranking. Concluding, we can say that our
reputation system is able to contribute to an alternate ranking of the papers, but since
the data set is thin, with only one review aspect available, using a mediating setting for
the trust sharpening value in the range of 0.8 < w < 1.05 would be advisable.

8.3 Conclusions

In this chapter we were able to give an extensive exposition and discussion of how our
reputation system can be applied to the academic peer review process. We described what
steps need to be added to the review process to enable the reputation system to contribute
its recommendations. We showed in detail how in the academic peer review process one
could map qualitative assessment criteria onto a linear numeric scale and argued why
doing so is “fair”, since the goal of the process is to reach consensus on a ranking. We
also explained how these recommendations from the reputation system should be used as
an advisory method without detracting from the usual acceptance decision process.

We also were able to analyse the case of an actual workshop’s peer review comments
with our reputation system. We found the reputation system’s recommendations to be
useful, despite the fact that this example contained the data for only one assessment cri-
terion, and were able to explain the system’s behaviour given the comments at hand. Our
analysis yielded insights into questions such as: which paper should be further assessed,
which raters are generally contributing more to a consensus than others, and finally what
value to choose for the trust sharpening factor, in order to generate a new ranking of the
assessed papers.

In the next chapter we will discuss how the results of this and the previous chapter’s
analyses can be seen in combination with the results from all the previous chapters, in
particular the supply-function pricing model analysis in chapter 4.
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Figure 8.1: Reputation system scores and their confidence (papers p0-p20).
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Figure 8.2: Reputation system scores and their confidence (papers p21-p48).
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Figure 8.3: The reputations of the reviewers.
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Chapter 9

Conclusions

In this thesis, we presented and analysed two models, a pricing model and a reputation
aggregation model, that address problematic issues of market-based services allocations.
Our hypothesis from the introduction was that market-based services require cooperation
to flourish fully. Though the two models address very different issues of market-based
services allocations, and are therefore also concerned with very different types of cooper-
ation, both models are successful at promoting cooperation and both successfully apply
enforcement methods to suppress deviation from this cooperation.

In the remainder of this chapter, we reflect on the contributions of (section 9.1) the
pricing model, (section 9.2) the reputation aggregation model, and then in section 9.3
elaborate on the conclusions that can be drawn from the methods used in the analysis of
both models on the general topic of cooperation and deviation.

9.1 Pricing Model

The pricing model we were able to develop in this thesis provides a solution for the problem
with e-services, where perfect competition and excess supply lead to prices at level zero.
To achieve its means, the model uses microeconomic theory to create incentives to make
rational agents cooperate. But we explicitly exclude the possibility of collusion based on
punishment strategies, or using prices in other periods with higher resource demand, in
order to maintain prices above competitive levels.

To model this pricing at a technical level we use supply-functions, which have not
been previously applied to pricing of e-services. Not only have supply-functions not been
used in this context, but also they were previously only used in settings with a central
auctioneer who matches supply and demand to achieve the equilibrium. We extended
this model to our scenario with continuous trading and a decentralised, bilateral market.
This extension relies on continuous updates of the model beliefs about the current market
demand and to respond to the competitive situation.

In our analysis of the pricing model, we investigated a number of questions, which we
will summarise here:
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• Are providers able to maintain prices above marginal variable cost?

We found this to be the case in general, and in particular for a low number of
competing providers the model works reliably well. With large numbers of providers,
the effect of raised prices is present, but less pronounced, since in such a situation,
the effect on the prices from one individual provider withholding some of his supply
is diluted (section 4.1.2, figure 4.3).

• Is the model able to defend against “deviators”, who know about the supply-function
model, but attempt to exploit it? Is deviation able to break the cooperation?

We demonstrated that the model is able to make the worst-case “deviation”, the
undercutting-strategy, unprofitable in all circumstances, by raising the model’s
undercutting-sensitivity parameter (section 4.2, figure 4.5).

• What are the losses due to a high sensitivity to thwart deviators?

The providers stand to loose up to 10% of their profits if the undercutting-sensitivity
is set very high, and no deviator is present. With a deviator present, the prices drop
quickly and losses are high, but this is the intention of the model’s response strategy
(section 4.2.1, figure 4.6).

• Are the providers able to gain sufficient information from the trading to update
the model timely enough in order to respond to changes in demand or competitors’
behaviours?

We found that the information the model obtains from the trading is sufficient
to respond to demand changes and to respond to deviant (undercutting) pricing
competitor providers. Only when the relative numbers of clients per provider become
very few, then any request and sale is a statistically exceptional event, and then
responses of the model become erratic (section 4.1.1, figure 4.1).

• Is the pricing model legal, or would its form of cooperation constitute to being
collusion?

The model would be considered legal, since it does not involve any collusion. One
way to explain how the providers cooperate, is that they all simulate the market and
have chosen the same strategy that gives them the benefits of a Nash-Equilibrium
(section 3.1).

All together, the pricing model is able to satisfy all the proposed challenges and is a
valuable contribution to the make revenue streams for resources more reliable and less
erratic, since providers are not forced to singly derive their revenue from variations in
client demand.

9.2 Reputation Aggregation Model

The reputation aggregation system that we present in this thesis seeks to address the ques-
tion of how to achieve consensus when aggregating comments and it provides a mechanism
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that recognises and diminishes the influence of comments that contribute less to the over-
all consensus. While the model in itself does not attempt to conclusively determine what
“consensus” is, its mechanism is able to provide a continuum of solutions between a per-
fectly equalising aggregation and a dictatorial one, by adjusting the model’s selectivity
parameter. Since the exact notion of “consensus” will always be application-specific, it is
remarkable that the model, through its range of unique solutions (with only one conver-
gence point), is able to supply results that could be considered well founded, independent
of the actual application-specific situation.

The main contribution of this reputation aggregation model is that it provides, through
the introduction of “rater reputations”, a straight-forward way to determine priorities for
some comments over others, and derive a rater’s reputation singly from the proximity of
this rater’s comments vis-a-vis all the other comments. In so doing, the model derives
outcome scores that are based on the comments from the largest subgroup of raters with
the highest degree of consensus.

Similar to the pricing model, in the course of our analysis of the reputation aggregation
model, we posed a number of questions where we collect the answers here:

• Can the model produce meaningful outcome recommendations when it discriminates
between raters?

The rating model is able to select the scores derived from a majority group and
selects scores that seem to be in line with the one group that might be the most
amenable to all groups (sections 6.1 and 6.2).

• Does the iterative algorithm of the reputation aggregation function actually converge
reliably and how fast is it doing so?

The iterative algorithm normally converges and it does so usually very rapidly (ex-
cept for special conditions, section 6.4).

• Is the reputation model able work meaningfully with few or many comments avail-
able?

The reputation aggregation function is very scalable in that it is able to produce
meaningful results for just a handful of comments, while also being able to produce
more stable results when hundreds of comments are available (sections 6.1-6.2 and
sections 7.2-7.4).

• Is the rating model able to deal with coordinated “deviant” rating behaviour?

The rating aggregation model is able to recognise and filter out various forms of
“deviating” rating behaviour:

Raters with a weak rating accuracy, even up to 90% of the rating population (sec-
tion 7.2).

A Byzantine-style rating collective with a deviant agenda of applying a minor rating
bias, even if this is nearly half of the rating population (40%, section 7.3).

A set of providers with a bias towards certain clients (section 7.4).
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• How does the selectivity parameter of the model influence the results, and how to
choose its setting?

When set to zero, the selectivity parameter leads to one unique solution where all
comments are simply averaged, and for a high enough setting the model will produce
as many dictatorial solutions, derived from one user’s comments, as there are raters
present. In between these extremes the parameter yields a continuum of results that
mediate between “discriminatory selection” versus “equalising inclusiveness”.

If one seeks to maximise the kind of consensus that it is intended by the model, we
would recommend the selectivity parameter to be set at highest possible setting, that
still is within the range unique solutions (section 7.5). If one seeks for higher settings
of the parameter and more selectivity than available with the unique solutions then
one can choose one of the application-specific or client-oriented approaches, which
describe how to select the initialisation vector and conversely the convergence point
(section 7.6).

• Is it possible to assume that raters are sharing the same “objective” view of the
rated aspect and use a numerical scale to represent reputations?

We showed how one could map qualitative assessment criteria onto a linear numeric
scale and explained that for the goal of reaching consensus on a ranking, this is a
“fair approach” (section 8.1.1).

We conclude that the reputation model is able to handle all the presented threat models
and is a valuable tool for the aggregation of comments, when one is seeking consensus on
establishing a ranking of the rated aspects.

9.3 Cooperation and Deviation

Throughout this thesis we worked on two models that aim to incite cooperation in the
e-services market. The means used to achieve the cooperation are very different in both
models, since the problems each model aims to solve are equally different. The pricing
model seeks cooperation on price levels among the providers through the choice of pricing
strategy, whereas the reputation model is a service that explicitly facilitates cooperation
among clients, to aggregate their experiences and filter out poor performers.

Both models use incentives to achieve cooperation, but do so in different ways. The
pricing model gives direct micro-economic incentives by promising additional revenues.
In contrast, the reputation model only indirectly gives the incentive to report truthfully.
The incentive comes almost as an afterthought, not without first scrutinising the com-
ments. This filtering within the reputation model is necessary because the players are not
immediately affected on their revenue part.

The threats for both models are players who deviate from the cooperation that the
models are trying to achieve. Both models have a mechanism with which they respond
to a threat, in the pricing model the challenged players change their strategy to match
the perfectly competitive strategy of the deviator and in the reputation model outliers’
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comments are eliminated. Both models have a variable parameter that moderates the
strength of this response to a threat. These model parameters turned out to be essential
to achieve the effectiveness that we did, since the threat cases require application-specific
analysis and responses. Moreover, in both cases the level of this response parameter that
is necessary to counter a threat, turned out to be a useful indicator for the severity of
the threat in the present situation. With this indicator we can quantitatively compare
different market situations and threat cases.

Finally we conclude, that it is possible to develop appropriate models for market-based
services allocation, that promote cooperation, by constructing systems of incentives that
reward cooperation. In order to complete the system of incentives, one needs to provide for
the ability to respond to deviation threats with balanced, application-specific measures.





Appendix A

Protocol Simulation

This appendix describes the simulator we built to implement the service request protocol,
that was introduced in the previous chapter. First we explain discrete event simulations
and further particular design choices we made, followed by a description of its technical
implementation and finally we analyse its performance. Two elements in the implemen-
tation of a non-parallel discrete event simulator are particularly relevant for speeding up
its performance, (1) the thread switching and (2) the event queue implementation. Both
are discussed in detail and are the focus of the performance evaluation.

This simulator is used to implement the pricing scenario of chapter 3 and yields the
data analysis that we discuss in chapter 4. Further, it provides the framework for the
reputation model presented in chapter 5 and its analysis in chapters 6 and 7.

A.1 Approach

A.1.1 Application or Simulation?

In order to analyse the service request protocol we chose to implement it in a simulation.
Alternatively, we could have implemented it in the form of a prototype application and
then run many clients and servers, executing the protocol in order to analyse its capabili-
ties. However, our goal of this research was to focus on the effects of scenarios with large
sets of clients and servers. While it would not be impossible to set up a testbed with such
dimensions, it is much harder to observe and extract the overall market properties of such
a scenario, than it is when being confined to one simulation.

A.1.2 Discrete Event Simulation

In the design of our simulation it was our intention to be able to model technical elements
of the request protocol and the applications involved and therefore decided to use discrete
events to implement the simulation. A discrete event simulation [58] normally simulates
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many objects, which frequently map to real world objects. These simulation participants 1

contain some state and all interactions between these participants occur through time-
tagged events, where the events reflect the proceedings as these would happen in wall-
clock-time.2

Figure A.1 shows the structural elements of a discrete event simulation, which contains
besides the events also objects that participate in the simulation. An event contains a
time and a procedure that is associated with this event. The simulation works by placing
all existing events in an queue, the event-queue ordered by the time of the events. Note
that this time can and usually will reflect some measure of wall-time, but it might as well
just be some counter that is used to note the precedence of events.

The simulation then proceeds by taking the first event from the queue and advancing
simulation time to the time associated with this event. The simulator then executes the
procedure that belongs to this event, with the just adjusted time. While this procedure
could also be a generic independent function, it will normally be one of the methods of
one of the simulation objects. This object method operates on its data sets, given the
current simulation time and data effected from previous event-procedure invocations from
other objects. The object methods also can generate new events that are being inserted
by the simulation into the event queue and will invoke some object’s method at a specific
time in the future. Causality prevents the simulator from accepting events into the queue
that occurred in the past. The simulation will normally continue until the event queue is
empty.

A.2 Core Simulator Implementation

A.2.1 Discrete Event Simulation Packages

As there are many existing implementations of discrete event simulators available, we
first evaluated if we could make use of one such simulator instead of implementing one
from scratch ourselves. For this evaluation we tested two very different simulators with a
simple micro-benchmark.

GTW

We first evaluated GTW 3 [32], a high performance parallel discrete event simulation
package developed by Richard Fujimoto, because of its excellent performance properties.
It uses a time-warp algorithm to achieve optimistic parallel execution. Parallel execution
of any sort requires synchronising the shared data, which however limits the scalability
of any parallel application. For discrete event simulations this is particularly challenging

1In order to be able to better distinguish between software objects and simulation objects we call the
latter simulation participants.

2Simulation researchers use the term wall-clock-time to refer to the “real time” when meaning the
time that we can see on the clock that is hanging at the wall in the room.

3Georgia Tech T ime W arp.
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Figure A.1: The structure of a discrete event simulator.

due to their high degree of interaction between processors, where conservative approaches,
that rely on strict synchronisation, cause delays at a high rate. Time-warp fares better, as
it optimistically continues executing processors, even if these might execute events out of
order. When it detects that events were executed out of order and these events are causally
related, then it undoes the execution of these events by rolling back to the previously
correct state. This allows for high performance, particularly when running the simulation
on a parallel distributed machine such as a cluster with commodity SMPs, as opposed to
using one large symmetric shared memory parallel machine only. The execution of our
micro-benchmark on GTW turned out to be very fast, but we decided against GTW for
practical application implementation reasons. GTW’s rollback implementation implies
that dynamic memory allocation cannot be automatically rolled back, but has to be
carefully considered separately, or better substituted by using entirely static application
implementations. We did not want to limit our simulation implementation a priori with
such a paramount constraint.

JavaSim

We then turned to the abundance of discrete event simulators implemented in Java, as
we favoured this language for its ease of implementation. One of the more promising
candidates appeared to be JavaSim [61]. We implemented our micro-benchmark to find
out that it required somewhat tedious semantics for activation of the simulated process-
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ing entities. But we finally decided against using it because of its extraordinarily low
performance. It is our speculation that this lack of performance stems from the way it
implements its synchronisation and context switching between simulation participants.

A.2.2 DES Implementation Approach

Due to the experiences made with the micro-benchmarks in the previous section A.2.1, we
decided to implement our own simulator from scratch and name it DES. In doing so we
are able to modify the simulation’s functionality like the event queue and the semantics
of the simulated processing entities. We chose Java for implementing DES, because of its
portability and its popularity for distributed protocols. We also decided against parallelis-
ing the simulator as this would increase the implementation efforts dramatically and the
lack of locally available parallel machines would not have rewarded such a development.

A.2.3 Communicating Processors

DES uses Java threads to model simulated objects and then executes the events that be-
long to this object in the context of this object’s thread. Instead of this approach we could
also have implemented the simulator without a separate thread for each object, but use a
functional event-state-machine model. Such an approach has performance advantages, as
it can be implemented without the overhead of context switches between the threads, and
simply use a function call to enter a separate object’s event procedure. However, as we
intended to implement the protocol simulation in the form of communicating processors,
threads lend themselves better to this implementation model. Communicating processors
not only contain state in the form of associated data, but also the program counter point-
ing to the current position of the execution thread. Using thread objects in the simulator
facilitates this current position pointer. Figure A.2 illustrates an exemplary conversation
between a client and a server. Both are following a linear execution path and whenever
they issue a blocking receive message call, the scheduler will hold the execution of this
thread. When time progresses to the point where the party that is waiting for a message
is supposed to receive this message event, the scheduler will resume this party’s thread at
the very point where it was halted. This is not withstanding the fact that one can model
communicating processors with the event-state-model, but when doing so one would also
have to integrate the thread’s current state into the model or implement such through a
separate simulation model layer.

A.2.4 Coroutines

The most suitable way to implement communicating processers is to use coroutines, as
they are found implemented for example in BCPL [64]. BCPL-style Coroutines are con-
trolled through the primitives “callco”, “resumeco” and “cowait” that transfer execution
to other coroutines. A related concept to coroutines are continuations, as it is possible to
implement coroutines using continuations [43]. One can also implement oneself coroutines
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Figure A.2: Simulation of communicating processors.
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for a thread supported language such as Java or C++ [85]. However, due to performance
related reasons explicated in section A.3.4 we decided on a more low-level thread control
using direct primitives.

A.2.5 Random Number Generator

A crucial module in a simulator is the pseudo random number generator. Its efficiency
may effect the execution speed, but most of all its pseudo random properties are pivotal
to the simulation and whether its results are meaningful. A good pseudo random number
generator must be efficient and generate a neatly uniform distribution with a very long
cycle before it yields the same numbers again. We adopted a Java implementation of the
Mersenne Twister, developed by M. Matsumoto and T. Nishimura [62], which is proven
to perform very well and is available under the GNU license.

A.3 Thread Switching

A.3.1 General Principle

After fetching a new event from the queue, the simulator usually has to switch to a
different thread. This is the case most of the time, unless two subsequent events are
associated with the same simulation object. Figure A.3 illustrates the sequence of steps
involved in switching from Object A’s thread to Object B’s, which is halted at present:

1. Object A’s thread is running.

2. A’s thread invokes the receive_message() function.

3. The function enters the scheduler in the discrete event simulator module.

4. The scheduler retrieves the next event from the event queue.

5. The scheduler adjusts the current time to the time of the new event.

6. The scheduler then schedules the thread of the object B, belonging to the new event,
by setting the thread from on hold to resume().

7. The last action taken in the context of object A’s thread is to suspend() itself.

8. Now the Java scheduler takes action and switches context and control to the only
thread that can be run, object B.

At the start of the simulation we limit the number of concurrently running threads
explicitly to one, so that we can control the scheduling in the simulator explicitly and
disable Java’s multitasking. We also have to prevent the Java scheduler from switching
control to object B’s thread already at step (6), as this would lead to race conditions and
unpredictable thread execution sequences, because it were possible for object A’s thread
to be rescheduled later and immediately then executes the left-over suspend() command.
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Figure A.3: Switching execution threads.

A.3.2 Synchronisation Through Locks

We can facilitate the control transfer between the Java threads with different methods.
An elegant way is the use of conditional variables and critical regions where all but one
of the threads are made to wait on a conditional variable. Activating this conditional
variable transfers control to the selected thread. The use of a critical region then ensures
that steps (6) and (7) are executed atomically.

A.3.3 Explicit Thread Scheduling

An alternative thread control method is to explicitly use Thread.resume() to reactivate
the next object and to halt the current one, even though the method is deprecated. Fig-
ure A.4 shows the procedure implementing the thread switching using the explicit Thread
directive. First, if the next simulation process we want to switch to is identical to this one
we simply return to this thread’s execution. In order to ensure in our implementation,
that steps (6) and (7) are executed in combination, we add a Thread.yield() after the
Thread.suspend(). In doing so, we ensure that control is handed back to the previously
running thread, in case the Java thread scheduler in the mean time already had got active
and had started running the newly woken up thread while the previously running thread
is still able to run. One would expect this case to occur only rarely, but if so, at this
point we resolve the potential race condition and the previously running thread will at



138

public static Event Schedule(SimulationProcess Receiver) {

PrepareNextEvent();

if (EventToSchedule.EventRecipient != Receiver) {

EventToSchedule.EventRecipient.resume();

Thread.currentThread().suspend();

Thread.yield();

}

return EventToSchedule;

}

Figure A.4: Context switching implementation.

this point run into the Thread.suspend(). We should point out that this construct is not
safely portable between different Java implementations, as the actual scheduling effects of
the above commands are not specified in the Java standard. Especially Thread.yield()

may be interpreted as a suggestion rather than an imperative and a construct relying on
it is bound to run into race conditions in different Java runtime environments.

A.3.4 Implementation

Despite the warnings we just presented, we chose to implement the thread synchronisation
in our simulator using the direct Thread.resume()/.suspend()/.yield() directives.
We verified that the Java runtime environments we used actually complied with our
assumptions on the thread scheduler behaviour and that our simulation would run reliably
without race conditions. Our motivation for favouring this less elegant and less robust
implementation was to maximise performance. This higher performance is related to the
thread handling implementation of the Java runtime system.

A.3.5 Java Threads

We gain orders of a magnitude faster simulation execution when using a Java runtime
environment that does not implement threads through mapping them onto operating
system supported threads. Operating system threads, or sometimes also called kernel
threads, involve significantly higher context switching overheads compared to application
library threads. Threads that are implemented by an application extension, such as the
Java runtime environment, which sometimes are also called green threads, require only
few instructions and no operating system call for a context switch. The main advan-
tage of using kernel threads is to have these scheduled independently of each other and
signalled by the operating system. In doing so one can built more robust multitasking
applications. However, our simulator seeks to achieve the opposite, not external operating
system scheduling, but rather explicit execution control within the application, which is
our simulation.
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A well performing alternative to threads managed in the programming language as
opposed to kernel threads is to have so called lightweight threads, semi-managed by the
system in an application library. Sun’s Solaris provides such lightweight threads, called
LT s [88], which are supported by the operating system and are listed and scheduled in an
application library. For operating system scheduling, LWPs (LightW eight Process) are
used and the LTs are scheduled on top of these. A Java runtime system that uses LTs
to mange their threads would be very suited to our discrete event simulation. Windows
(NT |2000|XP |etc.) has a similar lightweight thread facility called fibers [65]. However,
by our experience, these are less accessible and more intricate to employ than Solaris LTs.

We found Kaffe [48] to be a very efficient Java runtime environment with low over-
heads for thread handling and other operations, and also not using kernel threads. Also
for performance reasons we avoided the use of critical regions, as these slow down the
execution of the Java program.

A.4 Event Queue

A.4.1 Performance Critical Functions

The second performance critical element in the simulator is the implementation of the
event queue. The elements, namely the events, in this priority queue are ordered by
their invocation time. The two operations that have to be fast for the operation of this
priority queue are (1) Extract-Min, to obtain and remove the event with the “nearest”
time, and (2) Insert to place a new event into the correct time position. For our initial
implementation we used a simple flat list, but it was obvious that while Extract-Min (1)
would be instantaneously fast, a linear-time operation for Insert (2) would not scale well
for large simulation scenarios.

A.4.2 Priority Queue Theory

Using a binary tree with log-time behaviour on average for the element retrieval/inserting
operations would be a first improvement, but to increase scalability significantly we con-
sidered using heap structures. With a binary or a binomial heap we would obtain log-
time behaviour on average for the retrieval and inserting operations. Better though,
implementing a Fibonacci heap (see chapter 20 in Introduction to Algorithms [16]) would
provide log-time performance for Extract-Min and constant time for Insert. Fibonacci
heaps achieve this performance only amortised over a larger number of invocations. The
Extract-Min operation also triggers the Consolidate procedure that reduces the total
number of trees in the heap and re-links the trees that each root in the root list has a dis-
tinct value. As a result, the amortised constant time is achieved at a high level. Further
to this, from experience implementing fibonacci heaps [46], we know how complicated the
implementation and verification is. The fact that fibonacci heaps require amortisation
for their performance is not an impediment to using them in a discrete event simulation,
as the total simulation runtime is significant, not a response time for certain function
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invocations. However, the implementation complications and its high constant running
cost lead us to decide against using fibonacci heaps.

A.4.3 Event Horizon

Concept

The event horizon is the state-of-the-art in any good discrete event simulator. When new
events are scheduled, instead of feeding these into the main priority queue, we add them to
an unsorted temporary holding queue. We also track the time of the earliest event in this
temporary queue. When the next event to be processed happens to be in this temporary
queue we say that the event horizon has been crossed and sort this queue before merging
it now into the main priority queue.

Advantages

The main advantage is that inserting a new event into this temporary queue is a constant
time operation and depending on the implementation of the main priority queue, doing
a collective insertion of the new elements can be much more efficient. How advantageous
this approach is depends on the time distribution of the newly arriving events. Practi-
cally though, in most simulation scenarios, the majority of new events are not inserted in
the very near future and it is worthwhile to build this event horizon. Our implementa-
tion contains an event horizon temporary queue that is sorted with mergesort, as this is
particularly efficient for linked lists.

A.4.4 Qheap

Among the different suggestions for binary heaps for priority queues, we chose to adapt
Qheap, suggested by Steinman [86]. Instead of using binary trees to describe heaps, this
structure only uses linked lists and benefits from low overheads.

Fundamentally, Qheap is a sorted linked list with a fixed maximum number of elements.
The fixed length limit is kept short enough, to the point where a straight insertion into
a sorted list is faster than the overheads of heap operations.4 A meta-item is a construct
that lets a list of items appear as one item in the list. Meta-items can also be nested.
When the sorted temporary list is inserted into this Qheap, the whole list is inserted into
the heap as one meta-item which derives its sorting key value from the smallest key in its
list of elements. If the inserted list is longer than the fixed length limit, it is broken into
maximum length pieces. By meta-sizing sublists and nests of lists into meta-items, we
ensure that each of the lists themselves are sorted. In this manner, the Qheap is actually
a recursively linked list data structure that closely relates to the heap property.

4Practically, the limit is set to 40 elements and only minor performance differences show in the range
between 20 and 80 elements.
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The only drawback of this construction is that when items are to be removed, and
the top item is a meta-item, this requires untangling, which however is fairly simple. It
involves removing the top item from the meta-item, remetasising the rest of the list and
inserting the new meta-item into the Qheap at the correct position. Because heaps are
known to have worst case log2(n) amortised behaviour, this data structure should never
break down. As shown in section A.8.2 this heap construction is efficient and scalable.

A.4.5 Events

Event Creation

In order to ensure that events are unique and conform to correct formatting in the queue,
we chose to allow only the simulator part to create events that are inserted into the
queue. A simulation participant makes a call to the simulator’s function SendEvent with
parameters for the destination participant, the time the event is to set to be delivered,
the event type and a message object pointer to contain anything the participants wishes
to signal to the other participant. The simulator then verifies the applicability of these
parameters, and if so creates an event containing these. When the event is triggered,
the destination participant is handed this object while it is deleted from the simulator’s
queue.

Efficiency versus Safety

It might have been more performance efficient if the simulation participants were allowed
to create and format their own events, as they could reuse an existing old object and just
reformat it. This would save some activity of the Java runtime system, particularly at
the side of the garbage collector. However, we decided against this, as it would allow for
corruption of queued events from misbehaving simulation participants. We could check
the correctness of the event object at the point of its submission to SendEvent, but sub-
sequently the participant still holding a reference to this object could cause corruptions,
possibly by attempting to reuse an object that he considers available, where actually it is
in use. One could create a list with available events and then maintain a list of free events
and the ones in use, but this would require more explicit discipline by the programmer
making use of the simulator.

A.5 Reservation Protocol Implementation

A.5.1 Simulation Startup

When the simulation is starting up, the simulation description and launching module in
its initiation launches all the simulation participants, in our case the clients and servers.
These clients and servers inherit their thread properties and simulation functionality from
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the simulation package and are created in a halted state. In the initiation, all other
simulation parameters are set and files for post-simulation-analysis are created. After
the initiation, the launching module sends a special wake-up event to all the simulation
participants. At the end, the launcher hands control to the simulation scheduler, which
now works trough the event queue, that contains all the wake-up events. One by one, the
simulation participants start up and work trough their initial processing that happens
before wall-time is started. In their initial processing, the participants set up relevant
parameters and set themselves up for future behaviour by sending themselves events for
a specific wall-time. After all participants are done with preprocessing, simulation time
starts to advance as the event queue feeds wall-time relevant events to the participants
who continue with their simulation behaviour by communicating with other participants
and themselves through creating new events. The simulation continues until either a set
simulation end time is reached, or the simulation runs out of events to process.

A.5.2 Simulation Message Communication

In general, the participants act out the protocol as specified in chapter B. Clients repeat-
edly request for some resources and in so doing, go through the five phases of the request
protocol. Participants send messages to themselves to simulate timeouts associated with
the protocol communication. Clients initiate the request on a set-up timeout and at any
point in the negotiation message exchange, both parties wait for replies within a set time-
out window. To make the timing of the protocol communication realistic, we simulate
message transmissions with randomised delays. Within the format of protocol execution,
we individualise the behaviour of the simulation participants, by having different classes
of them, by deriving subtypes with modified behaviour and by passing them different
parameters that trigger different action.

A.6 Simulation of Clients

The resource seeking clients have a function that simulates their demand input, which
is usually drawn from a probability distribution matching a suitable application de-
mand. This demand input feeds into the client activating its resource request procedure
MakeRequest, which is printed in figure A.5. MakeRequest first waits for the time set up
by the demand, to then send one request to all servers. After collecting their replies that
came back within the timeout period, the client selects what it considers the best offer -
in the simplest form it chooses the cheapest price for the resource request. If the selected
and notified winning server accepts as well, and issues a contract ticket, the client is able
to make use of the resource.

We implemented the clients to run MakeRequest synchronously, as we did not see
the need for a client to make independent requests concurrently. In order to handle
asynchronous messages and also to filter out obsolete events, the requests for particular
events are made by calling through the FetchNextEvent(ExpectedEventType) function.
FetchNextEvent discards events of an unexpected type and if it receives a connection
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protected void MakeRequest() {

AwaitRequestTime();

SendRequests();

CollectReplies();

if (NoOffersRcved > 0) {

if (AcceptBestOffer()) {

if (RequestSuccessful = ReceiveTicket()) {

PrepareConnection();

}

}

} else {

WinningBid = null;

RequestSuccessful = false;

}

}

Figure A.5: The clients’ resource request procedure.

close event, it aborts the whole request procedure.

A.7 Simulation of Servers

A.7.1 The Processing Loop

At startup, the servers are initiated with descriptors of the resources they are managing
and from then on wait for requests from clients. Upon receiving a request, the server
enqueues this request to process it as soon as it is on top of its processing queue. This
construct allows us to simulate a certain processing time for the servers and thereby
reflect the load on the server from processing these queries. In processing a query, the
server verifies the resource availability for the requested time to then generate an offer to
the client with the corresponding negotiation details. At this point the server holds the
resource for the client until a certain timeout and if the client accepts, the server finally
books the respective time slots in the resource roster.

Figure A.6 prints the code of the servers’ ProcessingLoop, which is waiting for requests
from clients and processes them immediately if possible, or enqueues these if more than one
request is received concurrently. We obtain the simulated processing time for processing
a request from the procedure GetProcessingTime. This loop continues to process the
requests it has enqueued previously until it is idle again.
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public void ProcessingLoop () {

Event current = FetchNextEvent();

while (true) {

double ProcessingTime = CurrentTime + GetProcessingTime();

while (ProcessingQueue.length > 0 || null != current) {

Event EnqueueThis = Hold (ProcessingTime);

while (ProcessingTime > CurrentTime) {

ProcessingQueue.PutEnd(EnqueueThis);

EnqueueThis = FetchNextEvent();

}

ProcessRequest (current);

if (ProcessingQueue.length > 0) {

current = ProcessingQueue.GetFront();

ProcessingTime = CurrentTime + GetProcessingTime();

} else {

current = null;

}

}

current = FetchNextEvent();

}

}

Figure A.6: The servers’ processing loop.

A.7.2 Processing an Event

The processing of a request itself is shown in figure A.7. We first check if we missed
the deadline of the request set by the client, as this could happen if the server’s request
queuing got backlogged too far. Then we check for available resource capacities, and in a
first step of loading the resources more efficiently, we locate the highest loaded resource
that is able to satisfy the request. If we find such a resource, we decide to make an offer
to the client with the conditions formulated by a separate function. Otherwise, we send
a declining message to the client.

A.7.3 Message Handling

The server also contains a function called FetchNextEvent, which similar to the clients’
version filters out outdated or otherwise unexpected event messages. It also multiplexes
between the different client sessions that the server is concurrently connected to. It passes
the different protocol message events to the appropriate server handler functions.
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protected void ProcessRequest (Event Request) {

MsgRequest MReq = (MsgRequest) Request.Content;

if (MReq.RequestTimeout <= CurrentTime) {

return;

}

boolean AnyOffer = false;

for (int i = 0; i < NoResources; i++) {

if (ResArr[i].ResTypeClass == MReq.ResTypeClass) {

double avail = ResArr[i].Capacity - ResArr[i].MaxLoad(MReq);

if (avail >= MReq.ResShare && avail < Minavail) {

AnyOffer = true;

OfferRes = ResArr[i];

Minavail = avail;

}

}

}

if (AnyOffer) {

OfferConditions OCond = MyPrice.CalcOffer(...);

Booking NewBooking = OffeRes.CreateNewBooking(Request, OCond);

MsgOffer MOffer = FormatOffer(MReq, NewBooking, OCond);

SendEvent(Event.OFFER, MsgLatency(), Request.Source, MOffer);

MsgSrvTout MTout = FormatTimout(NewBooking);

SendEvent(Event.SRV_TOUT, CurrentTime + OfferTOut, this, MTout);

} else {

MsgOffer MOffer = EmptyOffer(MReq);

SendEvent(Event.OFFER, MsgLatency(), Request.Source, MOffer);

}

}

Figure A.7: Processing a Request.

A.7.4 Resource Management

Resources belong to the server, but are managed in a separate class and contain functions
for adding and removing of bookings of the resource at a particular time interval. These
booking sheets are flexible, as they treat time a continuous variable with no requirements
to slotting of time. The resource also contains functions to handle certain events, like
a server’s offer reservation timing out, a client connecting to the resource, maintaining
statistics about usage and checking availability.
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A.8 Performance Evaluation

In this section we investigate the performance of the our implementation with regard to
the two most performance relevant aspects of a discrete event simulator, the event queue
and the thread switching.

A.8.1 The Micro-Benchmark

Event Ping-Pong

For both performance evaluations, we set up a minimal benchmark application that oper-
ates the simulator with limited parameters. Our benchmark application has the parame-
ters p for the number of simulation participants, i for the number of initial events and n
for the number of events to be processed. The benchmark first creates all the simulation
participants, then fills the event queue with the initial events. The event times are chosen
from a uniformly distributed random number distribution with a fixed maximum value of
T , the events are assigned to randomly chosen simulation participants. Then the timed
benchmark starts, and the simulation participants process these initially inserted events.
For every retrieved event, they send out a new event, again randomly assigned to one of
the simulation participants with uniformly distributed time and the same maximum time
T . The benchmark comes to an end, when a simulation participant recognises that it
processes the nth event and signals the benchmark to interrupt execution and to stop the
timing clock.

Memory Activity

The benchmark code itself avoids any calls for memory allocation during its timed run
and reuses the old message objects. However, implicitly there are new objects created,
because every call to SendEvent leads to the simulator allocating memory for the new
event. Thus, it is unavoidable that during the timed run of the benchmark the Java
garbage collector might get active to collect the orphan event objects. This might lead to
performance variances that can only be amortised over a larger number of function calls
and an extended timing period.

Simulation Phases

Due to its simplicity, this benchmark ensures that its execution time is mostly spent in
the simulation module itself, not the benchmark code. Further, it ensures that events are
retrieved from the heap at an average depth, as this would occur in a practical simulation,
not at extreme cases, such as the top or bottom of the heap.5 Another aspect in which

5A more detailed study would apply several different event time density distributions, ranging from
balanced ones to differing front and tail heavy ones. For the purpose of our analysis we considered the
most common case to be sufficient.
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the benchmark is realistic is that for every retrieved event we insert a new one. Usually
a discrete event simulation contains three phases, a buildup, during which the event
queue increases, the main processing phase in which it is more or less constant, and a
wind-down phase during which the event queue is getting shorter until the simulation
completes with no further events to process. With our set up of the time measurement,
we only measure the second phase. However, our benchmark measures an equal number of
insertion and event extraction operations, as is done during the course of a usual discrete
event simulation. We could have chosen to simulate the buildup and wind-down phases
of the simulation too, but for the performance most critical is the middle phase with the
long event queue, which is why we focus on this part for the event queue performance.
Moreover, with this construct we keep the length of the event queue constant after its
initiation, which makes the performance measurements more transparent.

Hardware Equipment

The numbers of events to be process was chosen to be high enough to ensure a benchmark
runtime of at least a minute for every measurement taken. Taking longer measurements
minimises variation in operating system behaviour and time measurement inaccuracies.
These performance numbers were obtained on a Toshiba laptop with a 2.2 GHz pentium4
CPU, 512 MB RAM, running Windows XP, using Microsoft’s J++ compiler and JView
as the Java runtime environment and promoting the executing process to real-time in the
operating system’s scheduling.

A.8.2 Event Queue

Figure A.8 shows the rate of events processed by the benchmark, dependent on the length
of the event queue. In order to isolate the performance of the event queue, we set this
benchmark to run with only one simulation participant. In so doing, we have only one
executing thread and no thread switches in the measurement. The performance of the
graphs uses the metric “events per second”. This actually includes two event queue
operations for every processed event, namely Extract-Min and Insert. We chose not
to measure either of these operations in isolation, as they both are dependent on the
length of the queue and it is then not possible to measure a large number of operations
successively, average the time taken, and measure the operation’s speed relative to a
certain queue length.

We can see that the performance of the event queue scales very well, even for long queue
cases. As the scale on the x-axis is displayed in log-scale, and the graph’s performance
degradation can be approximated linearly, we can conclude that the performance of this
benchmark follows in the average case log-time. In our implementation, Extract-Min

is on average a constant-time operation and Insert is on average a log-time operation.
Therefore, the observed log-time behaviour of the benchmark executing both operations in
combination satisfies our expectations. With larger numbers of events in the event queue,
our performance measurements are influenced by runtime and operating system activities.
For more than one million events in the queue, the operating system extends the available
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Figure A.8: Event queue processing benchmark.

RAM through swapping. For seven million events in the queue, the benchmark runs out
of RAM altogether and slows down by more than an order of a magnitude (30000 Events

s

to 1205 Events
s

) due to constant swapping. It is our expectation, that given a larger RAM,
the event queue’s performance would scale up to larger queues with continued log-time
behaviour.

A.8.3 Thread Switching

Here, we measure if our implementation of thread switching, as described in section A.3.4,
is efficient and scalable. In figure A.9 we show the rate of thread switches per second,
depending on the number of treads used by the system, using our micro-benchmark. In
order to isolate the time spent in the thread switching activity, the event queue only ever
holds one event, which makes its operations instantaneous. The rate of thread switching
declines with larger numbers of threads present, because the system also needs to manage
the threads in lists and run queues.

The performance of this way to control the simulation threads scales well. For less than
50 simulation threads the switch time is almost constant and for less than 1000 simulation
threads the degradation is only 35% from the peak. Even for several thousand threads,
the performance does not decline dramatically and at 7000 threads it still maintains 35%
of the peak performance. At this point however, the system is running out of resources
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Figure A.9: Thread switching benchmark.

and it is barely able to create further extra threads.





Appendix B

The Scenario and Language of the
Allocation Protocol

Since the allocation protocol presented in chapter 3.2 is integral to the construction of
the pricing model in that chapter, we present in this appendix the settings and further
possible implementation details for this allocation protocol. First, we give an overview
of the market scenario (section B.1) for this protocol, with its participants being the
providers of resources (section B.3) and clients with their applications (section B.2) who
seek these resources.

Next, we describe the scenario’s participants at different levels of technical abstraction.
We start with the highest level and give some examples for what kind of organisations the
clients could be and what kind of applications these have (section B.2). Correspondingly,
we give some examples for provider companies and what kind of resources they might offer
to the clients (section B.3). At the next level, we briefly discuss how the participants’
objectives are represented by software agents (section B.4). At the most technical level
(section B.6), the providers make themselves accessible through web services technology,
which we introduce in section B.5. This enables the clients to discover (1) the available
resources and (2) the communication format, defines (3) the message formats for the
interaction between the parties involved, and finally binds the parties together to facilitate
(4) the communication for the service transactions between clients and providers.

The remainder of this chapter presents the format of the protocol (section B.7). There,
we describe the framework of transactions between both parties, which sets the contrac-
tual constraints at the level of the interacting software agents. To illustrate how these
transactions might be implemented with greater detail at the communication level of web
services, we include some possible extensions.

The main feature of this allocation protocol is that it enables the clients to negotiate
with all the providers at the same time and to choose the best offer. This facility instigates
competition between providers of services and is a fundamental element for the pricing
model in chapters 3 to 4 and the reputation model in chapters 5 to 7.

A secondary feature of this allocation protocol is that it is able to allocate the services
as a reservation for a specific time period. This is a necessary feature for allocating
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Figure B.1: Example Application Scenario

resources as a service and is essential to the pricing model. The reputation model does
not require this feature and is applicable to any kind of service, not only resources, but
moreover is applicable to any kind of entity that can be rated.

Finally, we discuss how security concerns are addressed through the protocol design
and web services security (section B.9).

B.1 Scenario Overview

Figure B.1 shows a small scenario with some instances of providers and clients. Practically,
there should be hundreds or thousands of different participants, also with more variety
than we show here. On the side of the clients, who demand resources, we might find
organisations such as Internet Services Providers (ISPs), corporate IT departments and
data processing departments, but also government departments and universities that will
benefit from allocating their resources automatically through web services. In section B.2
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we provide some examples for the applications these clients could run to motivate their
resource usage.

Providers are data centres that advertise their services to be accessed by the clients.
Most commonly, these data centres are set up by companies that try to make a profit from
operating this facility. However, some of these data centres may also be set up by other
organisations, such as the government/universities in the case of super-computing centres
and Grid infrastructure [91], or an ISP offering (integrated) networking and processing
services. We also would expect that some providers may in turn be clients of other
resources themselves. Extending such relationships transitively leads us to a supply chain
of services and resources.

Traditionally, Internet traffic is not charged individually, nor is it possible to allocate
the resources to individual streams, therefore we drew the Internet backbone as one large
cloud in our diagram. When client applications use the Internet as a general resource, as a
web server for example would, they have to take into account the performance properties
of the Internet as it is available. However, certain Network connections are being allocated
and charged to individual entities. These are for example the connections from the data
centre to the Internet backbone and also dedicated lines for between data centres.

B.2 Client Applications

Here we list some of the possible applications and their particularly demanding charac-
teristics in their resource usage profile. This list does not claim to be all inclusive or even
representative, but rather is supposed to suggest the existence of potential demand for the
ensuing developments. Moreover, all these applications would require very different levels
of provider cooperation and standardisation in the user communities. Therefore, these
applications would have differing chances to be successfully hosted by an automatically
allocated provider:

1. Http servers require mainly high bandwidth for storage and Internet access and
medium amounts of storage capacity.

2. CGI processing servers work in connection with http servers and require substantial
cpu processing resources as well as low-latency data access bandwidth, since such
applications usually are used to search through databases.

3. Search Engines require low latency for the data access and possibly need to store
large amounts of data for a long time.

4. Cache proxy servers require high bandwidth for the storage data access and Internet
access, as well as large amounts of long term data storage.

5. Media Servers delivering video/audio streams, mainly require high bandwidth with
a guaranteed minimum bandwidth for the Internet access and possibly large amounts
of long term data storage.

6. Distributed game servers require low latency Internet access and medium amounts
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of cpu processing capacity.

7. Supercomputing Applications are mainly simulations and other parameter optimi-
sation applications. Examples include weather simulations, finite element engineer-
ing simulations, fluid dynamics simulations and discrete event simulations used for
strategic decision making (military and economic), or traffic optimisation problems.

The resource needs for supercomputing applications tend to be excessive as it is
always possible to increase the fidelity of the results by expanding the data set, in-
creasing the depth of computation steps, or reducing the granularity of the computa-
tion steps. To increase processing speed, supercomputing applications require many
cpus (typically dozens to hundreds and up to several thousands) and high band-
width with low latency interconnection networks between the computation nodes as
well as sufficient disk storage.

Traditionally, a supercomputer’s computation nodes were interconnected with a spe-
cially designed backplane bus, but today with the cost efficiency of commodity work-
stations clusters, supercomputers use network type high performance interconnects
such as Fiber Channel, Myrinet and Scalable Coherent Interface (SCI). Researchers
adapt the programming model of the applications to tolerate the proportionally
higher communication latency versus cpu processing time.

Temporarily, these applications may require a lot of storage during the processing
time and then require suitable high bandwidth Internet access to transport the input
and output data to the client. Some supercomputing applications work integrated
in combination with several such large scale simulations (i.e. a weather simulation
integrated into a stratospheric chemistry simulation), in which case one needs a high
bandwidth interconnect between the separate simulations, particularly if these are
run at separate locations.

8. Cycle Crunching Applications are exhaustive search applications, i.e. code breaking
or genome sequencing. These seek for endless computing resources, but one of their
main motivations is low cost. Such applications mainly seek for many CPU cycles
and contrary to Supercomputing Applications, such crunching jobs are not interact-
ing tightly. Because of the low demands on interaction latency, these applications
are easy to schedule.

B.2.1 Allocation Strategies

The clients will need individualised strategies to allocate the appropriate resources, and
for our purposes these strategies are unlimited beyond the request protocol and its format.
The request protocol does not put any constraints on the particular needs of individual
applications, since the variation in the actual requirements is rather wide as can be seen
in the differing demand profiles above.
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B.2.2 Platform Independent Applications

For some of the applications presented above, the code could be installed by the provider
and the clients only have to supply the data, such as in the case of a http server. However,
the majority of applications assume that the clients supply their own code to be run by
the hosting providers. In order to make this possible, the providers will be able to cater for
a set of popular platforms, such as Apple, Linux, Solaris, Unix (manufacturers’ flavours),
Windows [NT, 2000, XP]. These platforms depend on the hardware the provider has
available; however, he can choose to offer virtual platforms to gain flexibility with the
assignment of his hardware. Possible virtual platforms include:

• Java [87] is Sun’s development of a virtual machine platform.

• .Net [63] is Microsoft’s development of a virtual machine platform and interoper-
ability technology.

• VMware [93] makes the Intel-based systems virtual and provides (remote) control
tools.

• XenoServers [75, 9] is a research effort that virtualises machine functionality at the
lowest level and allows applications to be sent to the remote host including their
own operating system.

To create portable cluster applications we can virtualise the communication with proto-
col standards such as the Message Passing Interface (MPI) [40] and Java Remote Method
Invocation (RMI).

B.3 Resource Providers

Resources are managed by a broker service, which is run on the site of the resource
providers (i.e. a data centre) in the form of a web service. The allocation/reservation
protocol’s format, or also referred to as the demand description language, recognises
three primary kinds of resources: computation, networks and storage. Any application
will need all three resources, though depending on its characteristics, the particular focus
and combination of resource demand may be shaped very differently, as we have seen
in the above section. The primary types of resources are broken down further in more
detailed categories to match the differing demand profiles by the applications.

1. Computation in the form of server type processing units. At the low end, these
units start with cheap PC-based servers and scale up to more robust technology
from various manufacturers such as Dell, HP, IBM, SUN, etc., containing several
CPUs and can be rack mounted to form larger clusters. These clusters may consist
of tens, hundreds, up to thousands of machines and in order to maintain high
throughput will be interconnected with high bandwidth networking, e.g. ATM [56],
Gigabit Ethernet [33] and Fibre Channel [21].

At the higher end, such clusters can function as supercomputers if they are able to
support low-latency requiring applications (High Performance Computing, Database
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Clusters), and therefore are interconnected with low-latency network interfaces such
as Myrinet [68], Scalable Coherent Interface (SCI) [36] and Scramnet [89]. To meet
demand from certain applications, some servers will be equipped with additional
amounts of memory and storage. High performance for supercomputing application
with strong demands on even tighter communications coupling may then be served
with dedicated symmetric shared memory parallel (SMP) machines from vendors
such as Cray (X1), HP, IBM (SP), NEC, SUN (HPC) and SGI (Origin).

2. Network bandwidth: At present, in the Internet in general we are not able to reserve
bandwidth from end to end. However, in a data centre, a provider is able to allo-
cate specific amounts of access bandwidth to a client and their application. This
access connection links the data centre’s servers to the backbone of the Internet.
Depending on the technical scenario, the Internet provider who is supplying this
access connection, may also be able to grant transmission guarantees within the
limits of his own network. For example, a media server application also needs to
reserve sufficient bandwidth to deliver the streams from the streaming servers to
the backbone of the Internet.

Further, the network providers are able to offer dedicated channels between inter-
connection points their network is linked to. For example, a grid computing appli-
cation could allocate a transatlantic link with special QoS parameters to connect
two supercomputing sites for a meta-computing [31] architecture.

Another potential application for bandwidth reservation is bandwidth trading be-
tween Internet Service Providers engaged in Internet transport. To reserve network
bandwidth, ATM [56] and RSVP [10] are suitable technologies.

3. Storage for longer term data deposit on storage arrays: Applications may need in
connection with their computational requirements additional space to store larger
volumes of data. To serve their purpose the storage arrays are connected to the
servers with high throughput I/O access (e.g. Fibre Channel [21]). Depending
on the kind of expected applications catered for by the computing architecture, the
storage arrays will vary in their access bandwidth, access latency as well as reliability
and redundancy.

B.4 Negotiating Agents and Brokers

In order to facilitate the automated allocation of resources from providers to client appli-
cations, we need several intermediary management software modules. Since these software
modules are autonomous in their operations and are set up to serve the purposes of their
operator, while only being limited by the constraints of the communication protocol (sec-
tion 3.2) that facilitates the platform for negotiation with the other parties, such a module
is often called an agent1. Client applications employ an agent to seek for the resources.

1The motivation for using the term agent is in the personalisation of the software component. This does
not necessarily imply use of concepts like mobile code as sometimes anticipated by artificial intelligence
researchers and similarly feared by security researchers.
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The providers of these resources match this negotiation with a brokering agent.

The allocation and negotiation protocol specifies some constraints on how the client
agents can format their requests, however beyond the formatting, we do not assume
any limitations on the side of the client. In fact, we would expect that clients employ
some methods from artificial intelligence in order to use past experience to decide where
to request services from, which service to choose, which prices are acceptable and which
options to favour. Further, we expect that every client will have different agent technology,
and even if they would employ the same methods and algorithms, we expect them to
parameterise them differently and use individual input data.

Similarly, the brokering agent, responsible for the management of the resource provider’s
services, will be bound by the formatting of the communication protocol and any con-
tractual ties that yield from the negotiation with the client. However, we will not assume
any further constraints on the behaviour of the providers’ agents, such that these are
free to implement methods that maximise their own benefit. With this goal at hand, the
brokers will implement appropriate tools that estimate the market demand at any given
time, implement pricing policies that maximise their profit, given the market demand.
Further, the brokering agent will adjust the resource scheduling policies in accordance
with the economic policies that maximise his profit. For example, this may mean that the
resource broker arranges for overbooking of scheduled slots in anticipation of cancelled
contracts and also with the statistically calculated possibility of having to therefore fail
on contract terms at some time. In this case the provider would have to take into ac-
count the economic impact of the contract penalties from undelivered service versus the
gain from overbooking and additionally the loss in reputation with respect to fulfilling his
contractual promises.

Since an agent’s cost of decision time is negligible compared to a human’s, the rate at
which these negotiations are done can be very high. Hence, the time scale for allocation
periods can be very low.

B.5 Open Services Platform - Web Services Technol-

ogy

We need an enabling technology platform for our protocol (section 3.2). Our protocol
assumes that the following list of operations can be performed through existing technology,
without any human invention and in a secure fashion: (1) Effortless discovery of resource
providers - practically zero search cost. (2) Efficient negotiation with the providers -
automated matching of available items and preferences. (3) Accessing and operating the
controls of the resource autonomously - automated API interaction and resource control.

Many such service platform architectures exist, notably CORBA [70], TINA [90],
ANSA [6] and Web services. While many such platforms would have provided the neces-
sary functionality to enable our protocol’s purpose, we chose to focus on Web services to
describe the potential implementation of our protocol. We favour Web services, because
at present, out of all the service platforms, it appears most likely to achieve standardised
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and broad-reaching adoption.

In the next section we will discuss how the individual building blocks of Web services
facilitate the individual actions of the protocol, where here we introduce the general
functionality of Web services technology and explain the relevance of these functions for
our protocol.

The availability of these operations is a prerequisite for our protocol, but moreover, the
economic assumptions of the pricing model in chapter 3 draw on these technical param-
eters. Without the premise of zero search cost, we could not assume perfect competition
for our scenario, which leads to the economically challenging situation, where providers
potentially do not obtain any revenue, and our pricing model counters this situation. Fur-
ther, an automated reputation aggregation model, as we present in chapter 5, would not
be very necessary if one were to assume that human operators are part of the allocation
decision process, since these might take over such a function involuntarily. Web services,
through the various protocols that encompasses them, provide the technical platform to
solve each of the above business interaction requirements. Many of these Web services
protocols are still under development, either through further standardisation or refining
and adding of features, and need to further evolve to practically solve the above stated re-
quirements. The Web services protocols are based on XML and its derivatives (i.e. XML
schemas), which makes them self-descriptive and human readable. The Web services pro-
tocols are based on XML [35], to make for a self-descriptive human readable format. As a
good introductory example, Gottschalk et. al. describe the practical deployment scenario
of Web services to facilitate an online market of sailboat parts [37]. To give a base for
our exposition of how Web services integrate with the protocol presented in the following
section, we here briefly introduce the main functionality of the three basic Web services
protocols, UDDI, WSDL and SOAP.

B.5.1 UDDI — Universal Description, Discovery, and Integra-
tion

UDDI [18] provides the registry piece in the Web services protocol stack and facilitates
the first one of the three prerequisite operations stated above. It performs thee functions,
namely the (1) publish function, which is concerned with how a Web services provider
registers itself and its services, (2) the find function deals with how a client application
finds and matches the description of a Web service, and (3) bind deals with how a client
application connects to and interacts with the Web service.

In brief, the UDDI Business Registry works as follows: (1) Standards bodies provide
the UDDI registry with descriptions of various kinds of services. (2) Service providers
submit descriptions of their services. (3) The UDDI registry assigns unique identifies to
each service. (4) Clients query the registry to discover services. (5) Clients connect to
the provided Web services.

A UDDI registry stores three kinds of data. White pages contain information such
as the name of the business, contact information and other descriptions. Yellow pages
contain information that classifies the company, based on standard industry classification
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mechanisms, i.e. NAICS, UNSPSC. The green pages contain technical information about
the service, such as information about business processes, service descriptions and binding
information about the services.

A UDDI registry can be deployed in various scenarios, depending on the market in
which it is mediating. The most popular scenario is that of a (1) global business registry,
as found at UDDI.org, which is operated by IBM, Microsoft and HP. Such registries have
a general purpose and are open to serve any kind of market. However, UDDI registries
do not have to be installed only in open markets, but can be employed in a closed (2)
business-to-business marketplace. In such a deployment, both publish and find operations
are restricted to the legitimate businesses registered with the marketplace. The kind of
marketplace then provides value added services like service monitoring, which ensures
firstly, that participants in the registry have been vetted by a rigourous selection proce-
dure and secondly, that the registry entries conform to market standards. Yet another
UDDI deployment is a (3) Portal UDDI, where the publish operation is limited to one
provider, namely the operator, and the find operation is open to external clients. Lastly,
an (4) Intranet deployment of a UDDI registry allows different departments of a single
organisation to integrate their operations. All the private deployment scenarios, numbers
(2-4), have an advantage over the open global registry deployment, number (1), since they
are able to restrict how the service is described and can screen the approved businesses.
In the case of the open global registry, one will have to provide these same assurances
through a set of additional methods, such as reputation services.

B.5.2 WSDL — Web Services Description Language

WSDL [98] is a standardised language, developed to describe Web service interactions. It
provides for a client who wants to send a SOAP message to a provider with a description
of how to format this message. Such a description is achieved through a composition
of definitions. A service is defined by a set of one or more network endpoints, so-called
ports. Each port is associated with a specific binding. It is the binding that defines how
an abstract set of operations and messages are bound to a port, according to a specific
protocol. A binding maps a specific protocol to a port-type. A port-type is composed of
one or more operations. Operations represent an abstract set of things that the service
can “do”. Each operation is composed of a set of abstract messages. Messages represent
the data that is communicated during the operation. Each message contains one or more
pieces of data, which are defined by types.

B.5.3 SOAP — Simple Object Access Protocol

SOAP [97] is the protocol that defines the format of the messages which were described by
the WSDL description. SOAP defines the message syntax, the data payload and types, in
addition to the message purpose. It does all this while providing methods for serialising
data and formalising how these messages should be exchanged over HTTP, even though
its applications could substitute these definition methods for its own. The SOAP design
is modular and extensible, so that it can, for example, allow one to replace the transport
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protocol HTTP with SMTP. With this set of definitions, clients can send messages to a
Web service to invoke one of the service’s operations and receive a reply. SOAP also defines
a model for message exchanges, which can be used to model RPC-style request-response
invocations, or alternatively more sophisticated models with unidirectional message chains
through endpoints and definitions for endpoint processing behaviour.

B.6 Facilitating the Allocations With Web Services

In the previous sections we explained why clients might want to allocate external resources
from providers, what kind of resources these are, and the roles both parties are taking.
In this section we explain how Web services technology builds the technical platform for
clients and providers to communicate with each other. We introduced Web services in
general in the previous section (appendix B.5), here we focus on how its building blocks
fit together with our allocation protocol.

In order to establish the relation between the client and the provider, we install a
third party, which is a well known entity that is recognised by all clients and providers.
To establish such registry services in the web services world, we have UDDI directories
(Universal Description, Discovery and Integration [18]), which the client will turn to
when attempting to allocate a resource. The registry might be a general one, or one that
specialises on the kind of resources the client is seeking for, in either case, the UDDI
will have a standard for the description of resources that the client is looking for. By
searching through the yellow pages of the UDDI directory, the client obtains a list of
providers offering a service that matches his resource requirements. In the white pages of
the directory he can find out more about the provider, for example the location, because
the client’s application might depend on particular network connectivity constraints. In
the green pages, the client can obtain the technical information for every service he is
interested in. There he will find a WSDL (Web Services Description Language [98])
description, or a URL pointing to such a description.

Having obtained this WSDL description from the UDDI, the client is able to start
negotiating with the resource provider. This negotiation will involve message passing on
the base of SOAP (Simple Object Access Protocol [97]) invocations and will yield all the
parameters for the client and provider to actually complete their business transaction.
Here, they will settle the price and other conditions, such as the QoS level if the service
allows for variable performance levels. Likewise, if both parties are not able to agree on
the same terms, they abort their negotiation. If both agree and commit on the service
contract, then the provider will pass a WSDL description to the client that allows the
client to connect to the service and make use of it.

When a client makes use of a web service, he interacts with the service through SOAP
messages. The WSDL description that the client obtained from the previous negotiation
with the provider, describes the operations the client can invoke as part of this web service.
If for example our web service’s function is to run an application on a supercomputer,
then the client uses SOAP’s RPC-style invocations over HTTP to transmit the application
code as well as the corresponding input data. Further SOAP invocations initiate the
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execution of the application and finally also arrange the retrieval of the output data of
the application.

B.7 The Allocation and Negotiation Language

The allocation language describes the message contents of the five phases of the message
protocol (section 3.2). Each of the messages shown in Figure 3.1 have their own language
and possible variants of replies depending on the keys used in the requests.

The messages are encoded through SOAP messages with a variable depth of message
detail. In practical terms this means that a request has a list of primary description
elements, some of which are optional, each of which may have secondary description
elements where some or all may again be optional, and this recurses down to the leafs of
the syntax tree. For illustration purposes we mention some example qualifiers in [brackets].
The listed keys are not meant to be inclusive or representative and in practice, the actual
format of each message would involve several detailed description standards.

Phase 1: Client Sends Requests for Bids to Resource Providers.

1. Resource Description - [E.g. Web Server — Network Connection — CPU Time] -
This is the identifier of a resource or service.

(a) Architecture - [E.g. Apache — Linux x86] - The version of the resource or
service.

(b) Quantity - [E.g. 4 CPU — 10 GByte] - The number or amount of resources
requested.

(c) Performance - [E.g. Web Stone 20 Mbit/s — 850 MHz — 625 Mbit/s] - The
speed of the service.

(d) Quality of Resource Service - [E.g. Max latency = 0.5 s in 99% of transmissions]
- Further desired contract clauses on service performance (There can be a list
of desired performance and QoS keys).

2. Requested Time - The details for the advance reservation.

(a) Start - [E.g. 20 Oct 2000 14:00] - The time for starting the use of the resource.

(b) End - [E.g. 20 Oct 2000 15:00] - The time when the client does not need the
resource anymore (This is optional because a contract can be open ended, e.g.
for allocating storage).

(c) Duration - [E.g. 600 s] - If the resource is only needed for a certain window
in the period given above. In general, clients should allow for a generous end
time and state the estimated duration (e.g. for a large data transfer), since in
this case the resource broker gains flexibility when scheduling this request, and
he may be able to give a more competitive price.
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3. Request Timeout - [E.g. 20 Oct 2000 13:05] - This is how long the client is prepared
to wait to collect offers from resource providers. This period could be a measure in
the order of seconds, hours, or possibly days if the start time is far into the future.
The aim of the design is that the protocol is able to support a wide range of the time
scales of advance notices (i.e. as in [96]). The resource provider is not guaranteed
that the client is waiting until the end of the timeout, but the client has to expect
that most providers will try to make the offer decision as late as possible.

4. Maximum Request Valuation - [E.g. $ 1.50] - This is the maximum in the budget
of the client, indicating how important this service is. If the provider is running an
auction on the service, he will use this figure. The resource provider can make an
offer beyond this valuation and also can use it to speculate on a higher price to be
obtained, but has to expect that he might be out-bid by other resource providers.

Phase 2: Resource Providers send Offers and the Conditions to the Client.

1. Resource Description - [E.g. Web Server — Network Connection — CPU Time] -
This is the description for a resource or service, and should match the requested
description. Here the provider states that actual available configuration details.

(a) Architecture - [E.g. Apache 1.3.12 — Linux RedHat 7] - The actual version of
the service offered.

(b) Quantity - [E.g. 2 CPU — 12 GByte] - The number or amount of resources
offered. This can be more or less than the request, depending on whether the
provider can satisfy the request or not.

(c) Performance - [E.g. Web Stone 23.2 Mbit/s — 1000 MHz — 625 Mbit/s] -
The actual speed of the resource.

(d) Quality of Resource Service - [E.g. Max latency = 1.0 s in 99% of transmissions]
- This states the reply to the qualities as requested by the client. The resource
provider may decide to offer less or more quality than requested depending on
the conditions (e.g. load).

2. Requested Time - The details on when the client can use the service.

(a) Start - [E.g. 20 Oct 2000 14:30] - The time for starting the use of the service.
The broker can offer a different time than requested, in the hope that this also
suits the client.

(b) End - [E.g. 20 Oct 2000 15:45] - The end time of the service allocation. This
can be open ended if a special continuous rental is arranged.

3. Request Timeout - [E.g. 20 Oct 2000 13:05] - This is the time for the offer to be
valid. The client has to decide within this deadline if he wants to accept this offer
as a winning bid. The resource broker needs to keep this deadline small, so that he
can offer the resource to other clients. On the other hand the offer should be valid
until some time after the client’s request is timing out.
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4. Cost - [E.g. $ 1.25] - This is the quote for the client, if he decides to accept this
offer. The resource broker needs to calculate this quote competitively, since there
will be other brokers also making offers.

Phase 3: Client is Selecting the Winning Offer to the Resource Provider.

This is just the indication that the client agrees on the terms of the resource provider.
There is a timeout on this award, which should be insignificant in the general case, because
it is in the interest of the resource provider to settle the negotiation as soon as possible.

Phase 4: Resource Provider Sends Contract Acceptance and is Issuing the
Electronic Ticket to the Client.

The generated electronic ticket ensures that only the client who negotiated the deal can
use the services of the resource. The ticket contains information about the location of
the resource in the form of the corresponding URL of this service. The URL points to
the WSDL [98] description of the corresponding SOAP [97] invocations to operate the
resource. One of these SOAP transactions will demand the electronic ticket.

Phase 5: Client Sends Electronic Payment and Acknowledgement of Electronic
Ticket to the Provider.

On receipt of the payment the resource provider activates the electronic ticket at the
resource.

Phase 6: Client Uses the Resource.

The client uses SOAP messages to connect to the specified resource, transmits the ticket
and uses the resource with the provided parameters to control the resource. At the
same time, the management system of the resource provider will have notified all the
necessary parts of the resource to allow the client’s transaction to continue within the
agreed parameters.

B.8 Complex Allocations

Complex Allocations are extensions of the allocation language, with the objective to de-
scribe the actual resource requirements of the clients in more detail. This detailed de-
scription can be exploited to increase the efficiency of any allocation, and therefore lead
to a maximisation of the welfare of clients and providers. Here, we describe two such allo-
cation language extension, bundling and price functions. While bundling is an important
and fundamental concept, price functions are just one of many kinds of optimisations that
can be implemented to improve allocation efficiency.



164

With bundling requests, clients are able to specify a set of resources that they want
to allocate at a certain price for the whole bundle. A client’s valuation for the bundle of
resources may differ dramatically from his valuation of each of the individual resources.
E.g. the client may ask for time on a supercomputer for his scientific simulation, but only
if he also can get hold of sufficient network bandwidth afterwards to move the data in
a timely manner, because otherwise he might as well use a slower machinery in the first
place. Therefore, it is not possible to derive market mechanisms for the case of allocating
resources individually and achieve the same economic efficiency as bundling does, when
the clients require complementing resources. Further, bundling can be a convenient way
of representing a large range of complex allocation scenarios. For example, we can use
fixed size slots to represent the allocation time of a resource and then request and assign
bundles of these slots. In such an approach it is easy to combine a multitude of complex-
ities, by reducing these to a bundling problem. However, bundling does create serious
computational complexities, since problems such as optimal resource allocation for the
provider and optimal resource demands for the clients become NP-complete problems. In
practice, one would address these complexity problems with the design of efficient approx-
imation algorithms, as has been done by Zurel and Nisan for combinatorial (bundling)
auctions [100].

Another opportunity to increase economic efficiency is to allow clients to specify their
resource per price preferences through functions. Practically, such a function could be
a piecewise linear relation between how much he is willing to pay and the quantity of
resources obtained. For example, a client could ask for a minimum of 10 CPUs, which are
worth to him up to $ 2.00 for the specified time, and for every additional CPU he would
be willing to spend $ 0.10 extra, up to a maximum of $ 4.00. With this more detailed
valuation function, the provider is able to maximize his profit and allocates the resources
accordingly.

B.9 Security

In this section we describe how security is addressed in our protocol on the basis of Web
services security. This description is not exhaustive and does not cover all the necessary
security aspects, but addresses some of the general design implications of Web services
security.

B.9.1 Web Services Security

Web services security is at present still an open research area in itself, a joint white paper
by IBM and Microsoft about a roadmap is the current state-of-the-art [45]. In order to
ensure security properties, such as encryption and signatures, standards such as SOAP-
Security, XML Digital Signature, XML Encryption and SSL are available, due to the
natural extensibility of the core XML-based Web services model. Existing standards for
authentication, such as X.509, public-key certificates, Kerberos and password digests also
can be integrated into Web services security models. It can be assumed that with the
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correct use of these standards, these basic security properties can be met.

However, a more general problem for Web services security is the management of access
control in a web of services and a web of policies that govern the access to the services. In
order to be able to create security formats and access mechanisms for this management
problem, a number of security elements have been introduced:

1. A Security Token, which is a representation of security-related information, i.e. a
X.509 certificate, Kerberos ticket, SIM card token, user name, and it can be signed
by an issuer of the token.

2. Claims are statements about a subject.

3. A Proof-of-Possession might for example be the private key associated with a secu-
rity token that contains a public key.

4. The Web Service Endpoint Policy specifies all the claims that are required in order
to process messages, e.g. proof of user or group identity.

5. The Claim Requirements are tied to a message or action (parts or whole). E.g. a
service may require a requestor to prove authority for purchase amounts greater
than a stated limit.

6. The Intermediaries pass on messages from the initial requesters, for example to
perform actions such as routing the message or adding headers, security tokens and
encryption.

7. An Actor is an intermediary or endpoint and processes a SOAP message.

Combining these security elements, we are able to construct security mechanisms in
which:

1. A Web service can require that an incoming message proves a set of claims (e.g.
name, key, capability). The set of required claims forms a policy.

2. A requester can send messages with proof of the required claims by associating
security tokens with the message.

3. When a requester does not have the required claims, he can try to obtain these by
contacting other Web services. Such other Web services, which are named security
token services, will in turn require their own set of claims. Security token services
broker trust between different trust domains.

The central threat for web services security is that “trust is transitive” and while this
applies not only to web services, it does apply particularly well to these. One of the
big promises of web services is that these form business chains, get combined and reused
in a fluid, dynamic fashion. This collides with the promise that a web service behaves
according to limited, secure behaviour and does not mishandle the trusted data. Will a
service behave as promised? This is a question that might be addressed through penalty
constructions, whereby deviations of any kind incur some form of repercussions. However,
this does not prevent the misbehaviour in the first place. Therefore we advocate the use
of reputation systems to obtain an indicator on how likely a service provider is to fulfil
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the promised security properties and other performance aspects.

B.9.2 Allocation Protocol Security

In order to limit the possibilities for fraud of any kind, we require that all the participants
(providers and clients) are registered at a certificate authority that issues cryptograph-
ically secure PKI-keys. This will prevent the participants from many illegal behaviours
and makes the contracts they negotiate enforceable. For example, if a provider cashes
in on a contract, but then later does not fulfil all the contractually negotiated terms, he
can be legally held liable and possibly be bared from further trading as a resource/service
provider.

B.9.3 Trusting the Client Applications

One concern for the security of the providers is that they do not trust the clients’ applica-
tions. In most of the cases of potential client applications in section B.2, we assume that
the clients supply their own code for the providers to execute on their machines. Without
a thorough inspection, the providers cannot, and should not trust the code supplied by
the clients. The code could misbehave by causing the machine to crash because of faulty
programming, or it could exceed the agreed resource demands and hog the resource, or it
could be malicious and either harm the operations of the provider or other installations.
In any of these cases, the provider will want to guard himself against such potential misbe-
haviour of the client code. This can be done best through visualisation of the access to the
hardware, as we described earlier in section B.2.2. Through visualisation, the providers
are able to explicitly police the resource control of the client applications without having
to inspect the and trust the code. For example, VMware [93] supplies tools that are able
to virtualise an IBM mainframe machine, such that it is able to securely host thousands
of virtual Linux machines. And XenoServers supply low-level mechanisms for isolating
(and accounting) of application resource access [9].
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