
Technical Report
Number 620

Computer Laboratory

UCAM-CL-TR-620
ISSN 1476-2986

Middleware support for
context-awareness in

distributed sensor-driven systems

Eleftheria Katsiri

February 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Eleftheria Katsiri

This technical report is based on a dissertation submitted
January 2005 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Clare College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

Context-awareness concerns the ability of computing devices to detect, interpret and respond to aspects
of the user’s local environment. Sentient Computing is a sensor-driven programming paradigm which
maintains an event-based, dynamic model of the environment which can be used by applications in or-
der to drive changes in their behaviour, thus achieving context-awareness. However, primitive events,
especially those arising from sensors, e.g., that a user is at position (x, y, z), are too low-level to be
meaningful to applications. Existing models for creating higher-level, more meaningful events, from
low-level events, are insufficient to capture the user’s intuition about abstract system state. Furthermore,
there is a strong need for user-centred application development, without undue programming overhead.
Applications need to be created dynamically and remain functional independently of the distributed na-
ture and heterogeneity of sensor-driven systems, even while the user is mobile. Both issues combined
necessitate an alternative model for developing applications in a real-time, distributed sensor-driven en-
vironment such as Sentient Computing.

This dissertation describes the design and implementation of the SCAFOS framework. SCAFOS has
two novel aspects. Firstly, it provides powerful tools for inferring abstract knowledge from low-level,
concrete knowledge, verifying its correctness and estimating its likelihood. Such tools include Hid-
den Markov Models, a Bayesian Classifier, Temporal First-Order Logic, the theorem prover SPASS and
the production system CLIPS. Secondly, SCAFOS provides support for simple application development
through the XML-based SCALA language. By introducing the new concept of a generalised event, an
abstract event, defined as a notification of changes in abstract system state, expressiveness compatible
with human intuition is achieved when using SCALA. The applications that are created through SCALA
are automatically integrated and operate seamlessly in the various heterogeneous components of the
context-aware environment even while the user is mobile or when new entities or other applications are
added or removed in SCAFOS.

3

4

To my parents Nick and Alex and my brother Dimitris, for a lifetime of love and support.

5

6

Acknowledgements

I am indebted to Professor Andy Hopper who has made it possible for me to pursue a PhD degree and
provided invaluable mentoring and overall guidance, yet promoted the freedom to explore.

I am deeply grateful to Dr. Alan Mycroft without whom this thesis would not have materialised for
his sterling performance as my supervisor and for shaping my research and education in the field.

I would like to offer my sincere thanks to Professor Mike Gordon and Dr. Jean Bacon for some enduring
guidance and hearty encouragement. Many thanks go also to Dr. Wassel, for encouragement and support.

Many thanks to Clare College for their rigorous support and tutoring throughout this effort.

I would like to thank all my friends in the LCE past and present, and in particularly Pablo, Hani, Ernst,
Kasim, Jenni, John, Jamie, Wez, Karen and Inaki who make working in the LCE so enjoyable. Special
thanks to Jamie, Wez, Karen and Jenny for proof-reading my thesis.

This work has been made possible through the generous support of the University of Cambridge, Clare
College and AT&T Research (Cambridge) through a Domestic Research Studentship, a Steel Pressed
Award and a CASE award respectively. I would also like to thank the Engineering Department for addi-
tional funding.

7

8

Publications

This dissertation is based in part on work included in the following publications:

E. Katsiri, J. Bacon and A. Mycroft. An Extended Publish/Subscribe Protocol for Transparent Sub-
scriptions to Distributed Abstract State in Sensor-Driven Systems using Abstract Events. In Proceedings
of the 3rd International Workshop on Distributed Event-Based Systems (DEBS04), Edinburgh, UK, May
2004.

E. Katsiri and A. Mycroft. Knowledge Representation and Scalable Abstract Reasoning for Sentient
Computing Using First-Order Logic. In Proceedings of the 1st Workshop on Challenges and Novel Ap-
plications for Automated Reasoning, in conjunction with CADE-19, Miami Beach, FL, July 2003.

E. Katsiri. Principles of Context Inferences. In Ubicomp2002 Adjunct Proceedings, Gothenbugh, Swe-
den, Sept. 2002.

E. Katsiri. A Context-Aware Notification Service. In Proceedings of the 1st European Workshop of
Location Based Services, London, UK, Sept. 2002.

D. Lopez de Ipina and E. Katsiri. An ECA Rule-Matching Service for Simpler Development of Re-
active Applications. In Middleware 2001 Adjunct Proceedings, published at IEEE Distributed Systems
Online, Nov. 2001.

9

10

Contents

1 Introduction 21
1.1 Vision . 22
1.2 A Philosophical View on Context, Knowledge and Events 23
1.3 Sentient Computing and Sensor-Driven Systems . 25
1.4 A Conceptual Framework . 26
1.5 Contribution of the Thesis . 28
1.6 Relation to Database and Enterprise Resource Planning Systems 30
1.7 Research Limitations . 31
1.8 Logic . 31
1.9 Nomenclature . 32
1.10 An Interdisciplinary Approach . 33
1.11 Hidden Markov Models . 33
1.12 The Naı̈ve Bayes Classifier . 34
1.13 SCALA vs. SQL . 34
1.14 Thesis Overview . 35

2 Background and Related Work 37
2.1 Location Technologies . 37
2.2 Sensor-Driven Paradigms . 39
2.3 Application Areas . 41
2.4 Development Platforms . 43
2.5 Sensor-Driven Systems . 45
2.6 Statistical Inferencing . 46

2.6.1 Hidden Markov Models (HMM) . 46
2.7 Logic . 47
2.8 Production Systems . 49

2.8.1 The Rete Algorithm . 50
2.9 Distribution . 51
2.10 The Object Management Group (OMG) . 52

2.10.1 The Object Management Architecture (OMA) 52
2.10.2 The Common Object Request Broker (CORBA) 52

2.11 Knowledge Integration Systems . 53
2.12 Security . 53

3 Inferring Abstract State Using HMMs. 55
3.1 Introduction . 55
3.2 Achievements . 55
3.3 Justification . 56

3.3.1 Phonemes . 57

11

12 CONTENTS

3.4 The Movement Recognition Problem . 57
3.5 Building Phoneme Models . 60

3.5.1 Sit Down . 61
3.5.2 Stand Up . 62
3.5.3 Sitting . 63
3.5.4 Walking . 64
3.5.5 Still . 65
3.5.6 Open Door Outwards . 66
3.5.7 Walking-Still-Sit Down-Stand Up . 67

3.6 Identifying an Appropriate Sampling Process . 68
3.6.1 Movement Calibration . 68
3.6.2 Supervised Learning . 70
3.6.3 Real-Time Windowed Sampling . 70
3.6.4 Implementation . 71
3.6.5 Recognition Scores . 71

3.7 The Discrimination Problem: User Recognition . 75
3.8 Technical Background . 75
3.9 Conclusions . 78
3.10 Future Work . 79
3.11 Applications . 79

4 Prediction 83
4.1 Prediction . 83

4.1.1 The Naı̈ve Bayes Classifier . 84
4.1.2 Bayesian Networks . 84
4.1.3 Bayesian Networks that Correspond to the Naı̈ve Bayes Classifier 85
4.1.4 Using the Naı̈ve Bayes Classifier to Predict Knowledge Predicates 86
4.1.5 Prototype Implementation . 88
4.1.6 Experiments . 89

4.2 Confidence Levels . 93
4.2.1 Evaluating Rule-based Inference through Prediction 93
4.2.2 Discrete vs. Continuous Variables . 96
4.2.3 Network Optimisation . 96

4.3 Conclusions . 96

5 A Conceptual Framework 99
5.1 Requirements of Context-Awareness in Sentient Computing. 99

5.1.1 Chapter Layout . 100
5.2 Transparency . 100
5.3 State-Based vs. Event-Based Modelling . 100
5.4 State-Based Modelling . 101
5.5 Event-Based Modelling . 101

5.5.1 Deficiencies of Current Event Models . 101
5.6 Deficiencies of FSMs . 102

5.6.1 Parametric FOL Expressions . 102
5.6.2 Partial Knowledge . 103
5.6.3 General FOL Expressions with Free Variables 104
5.6.4 Size . 104
5.6.5 Conclusions . 106

5.7 A Model in First-Order Logic . 106

CONTENTS 13

5.7.1 Model Life-Cycle . 107
5.8 Model Definitions . 107

5.8.1 Locatables . 108
5.8.2 Spatial Abstractions . 108
5.8.3 Functions . 109

5.9 Conclusions . 110

6 Knowledge-Representation and Scalable Abstract Reasoning 111
6.1 Scalable Abstract Reasoning . 111

6.1.1 Layered Interfaces . 112
6.2 Knowledge Representation . 113

6.2.1 The SAL-DAL API . 113
6.2.2 Scalability Concerns . 114

6.3 Formal Definition . 116
6.3.1 First-Order Logic . 116
6.3.2 Naming Convention for Predicates . 116
6.3.3 Sensor Abstract Layer (SAL) . 116
6.3.4 Deductive Abstract Layer (DAL) . 117
6.3.5 User-Defined DAL Predicates . 119

6.4 Queries . 119
6.4.1 Recurring Queries . 121

6.5 Analysis . 121
6.6 Prototype Implementation . 122

6.6.1 Sensor Abstract Layer. 122
6.6.2 Deductive Abstract Layer . 124

6.7 Conclusions . 124

7 Query Analysis and Optimisation 127
7.1 The Effect of Query Assertion on the Computational Complexity 127

7.1.1 The Effect of the Event Rate on the Computational Complexity 130
7.2 Query Optimisation . 132

7.2.1 Analysis of Rule 9 . 135
7.2.2 Analysis of Rule 10 . 135
7.2.3 Conclusions and Further Work . 136

8 An Extended Publish/Subscribe Protocol Using Abstract Events 137
8.1 The Publish/Subscribe Protocol . 137
8.2 An Abstract Event Model . 139
8.3 Abstract Event Specification and Filtering . 139

8.3.1 Abstract Event Detectors . 140
8.3.2 Properties of Abstract Event Detectors . 141

8.4 The Extended Publish/Subscribe Protocol . 142
8.4.1 Dynamic Retraction of Unused Abstract Event Types 143
8.4.2 Satisfiability Checking . 144
8.4.3 Resource Discovery . 144

8.5 Distributed Abstract Event Detection . 144
8.6 Analysis . 145

8.6.1 Extended Publish/Subscribe . 145
8.6.2 Traditional Publish/Subscribe . 146
8.6.3 Comparison . 147

14 CONTENTS

8.7 Related Work . 147
8.8 Conclusions . 149

9 Model Checking for Sentient Computing 151
9.1 Introduction . 151
9.2 Factors that Affect Modelling . 152
9.3 Specifications . 152

9.3.1 First-Order Logic Description of a Sentient Model 153
9.3.2 Spatial and Logical Specifications . 153
9.3.3 Model Specifications . 154
9.3.4 Abstract Knowledge Definitions (AESL Definitions) 155

9.4 Proof by Resolution and Satisfiability . 155
9.4.1 The Theorem Prover SPASS . 155
9.4.2 Example . 156

9.5 Conclusions and Further Work . 156

10 SCAFOS 159
10.1 SCAFOS . 159

10.1.1 Distribution and Transparency . 160
10.1.2 Concurrency . 161
10.1.3 Maximum Integrability . 161

10.2 The Deductive KB component . 161
10.3 Conclusions . 165

11 Applications 167
11.1 Experimental Setup . 167
11.2 Applications . 168

11.2.1 Single-Layer Architecture . 169
11.2.2 Dual-Layer Architecture . 170
11.2.3 Discussion . 170

11.3 Examples . 171
11.4 Conclusions . 172

12 SCALA 173
12.1 The Anatomy of SCALA . 173
12.2 Design Principles . 174
12.3 Abstract Event Definition Language (AESL) . 174

12.3.1 Temporal Reasoning. 175
12.3.2 BNF . 176
12.3.3 Abstract Event Filter Definition Language . 177
12.3.4 Filters . 177
12.3.5 BNF . 178
12.3.6 AESL and AEFSL Design Principles . 179
12.3.7 Temporal Operators . 181

12.4 Event-Condition-Action Application Specification Language 181
12.4.1 SCALA DTD . 184

12.5 SCALA SCAFOS Support . 184

CONTENTS 15

13 Conclusions and Further Work 187
13.1 Contributions . 187
13.2 Future Work . 189

A Finite Automata 191
A.1 Definitions . 191
A.2 Limitation of FSMs in Reasoning with Negation as Lack of Information 192
A.3 The Closed World Assumption . 193
A.4 Technical Background on FSMs with Free Variables . 194

A.4.1 Counterexample 1 . 195
A.4.2 Counterexample 2 . 196

B SCALA Modules 199
B.0.3 The Deductive Knowledge Base Module . 199
B.0.4 The SCALA Statistical Inference Service Module 199
B.0.5 The SCALA Satisfiability Service Module . 202
B.0.6 The SCALA AED Service Module . 202
B.0.7 The SCALA Context-Aware Application Module 203
B.0.8 The SCALA SPIRIT Module . 203
B.0.9 SCALA Support for the SPIRIT Module . 203
B.0.10 The SCALA QoSDREAM Module . 203
B.0.11 The SCALA Generic Module . 203

Bibliography . 205

16 CONTENTS

List of Figures

1.1 The SCAFOS conceptual framework. 26

2.1 The Rete algorithm for productions MB15 and MB16. 51

3.1 The Markov generation model . 58
3.2 Phoneme recognition . 59
3.3 A Sit Down sample 3D (a), z coordinate only (b). 61
3.4 A Stand Up sample 3D (a), z coordinate only (b). 62
3.5 A Sitting sample 3D (a) z coordinate only (b) x coordinate only (c) y coordinate only (d). 63
3.6 A Walking sample 3D (a) z coordinate only (b). 64
3.7 A Still sample 3D (a) z coordinate only (b) x coordinate only (c) y coordinate only (d). . 65
3.8 A sample of movement patterns entering doors that open outwards. 66
3.9 All phonemes. 67
3.10 Three selected samples of variable length. 69
3.11 Supervised learning for Sit Down traning samples (x, y coordinates). 70
3.12 Supervised learning for Still training samples (x, y coordinates). 71
3.13 Phoneme delimiting. 72
3.14 The word network for movement phonemes. 72
3.15 Three selected training samples of the Sit Down phoneme with sample size 4. 73
3.16 Two selected Stand Up training samples. 74
3.17 User recognition from their different Sit Down patterns. 76
3.18 A sample of a user sitting on various chairs (z coordinate only) 77
3.19 A sample of a user remaining still (a) and walking (b) (z coordinate only) 78
3.20 Spinning track (a) x coordinate (b) y coordinate (c) z coordinate (d). 80
3.21 Layered recognition. 80
3.22 Two Sitting samples (LCE couch) . 81
3.23 Two Sitting samples (LCE chair) . 82

4.1 Bayesian network for the naı̈ve Bayes classifier. 86
4.2 A Bayesian network for classifying uid . 86
4.3 A Bayesian network for classifying rid . 87
4.4 Probability density of Mike’s locations from 3 am to 11 pm. 88
4.5 Probability density of Professor A’s locations (3am–9am) 88
4.6 Probability density of Professor A’s locations (10am–4pm) 89
4.7 Probability density of Professor A’s locations (5pm–11pm) 90
4.8 Probability density of David’s locations at any time. 90
4.9 Location probability density irrespective of user between 3 am and 9 am. 91
4.10 Location probability density irrespective of user between 10 am and 4 pm. 91
4.11 Location probability density irrespective of user between 5 pm and 11 pm. 92
4.12 User probability density in the meeting room between 10 am and 4 pm. 92

17

18 LIST OF FIGURES

4.13 The classification score and the reliability estimate for the network of Figure 4.2. 94
4.14 The classification score and the reliability estimate for the network of Figure 4.3. 95

5.1 “Any two users are co-located”. 105
5.2 “Everybody is in r2” with 2 users. 105
5.3 “Everybody is in r2” with 3 users. 106
5.4 Sensor-driven system model cycle. 107

6.1 The Sentient applications layered architecture and its API. 112
6.2 SAL-DAL . 115
6.3 The Rete network for the Return All Co-Located Users query (SAL) 123
6.4 The Rete network for the Return All Co-Located Users query (DAL) 124

7.1 A worst-case query (SAL). 129
7.2 A worst-case query (DAL). 131
7.3 The effect of the event rate on the worst-case query of Figure 7.1. 132
7.4 Implications. 134
7.5 Conjunction. 135

8.1 The publish/subscribe protocol . 138
8.2 An abstract event detector for Equation (8.1). 140
8.3 Filter combination. 142
8.4 Abstract Event Detection (AED) Service. 143
8.5 The interfaces of the distributed Abstract Event Detection Service component. 144
8.6 Hierarchical distributed AED Service architecture. 145

9.1 The Satisfiability Service and its API. 156

10.1 The SCAFOS conceptual framework. 160
10.2 Deductive KB distribution . 161
10.3 Software components architecture. 162

12.1 An abstract event detector for Equation (12.1). 175
12.2 A filter. 177
12.3 Filter combination. 178
12.4 Unrestricted vs. restricted abstract predicates in terms of their attribute values. 179
12.5 Replication of computational resources with restricted predicates. 180
12.6 Avoiding replication of computation by using un-restricted predicates. 181
12.7 Temporal Rete network operators. 182
12.8 |UL(uid, role, rid, rattr); UL(uid, role, rid, ratrr)|T=t 182
12.9 H UserInEmptyLocation(Ek236, role,rid,Meeting Room). 184
12.10The SCALA language architecture . 185

A.1 User A is Nowhere . 193
A.2 FSM implementations for domains D1 (a) and D2 (b) for Expression A.3 194
A.3 Parametric FSMs (non-concurrent processing approach) 196
A.4 Parametric FSMs (multi-bead method) . 197
A.5 A Complex Example . 197

B.1 The Statistical Inference Service module . 200
B.2 The Probability Estimation Service architecture . 202

List of Tables

1.1 Most common predicates and their abbreviation. 33
1.2 SCALA SQL analogies . 35

2.1 Temporal operators in SCAFOS. 48

3.1 Size of the training set. 70
3.2 Recognition scores. 75

4.1 Conditional probability table for P (Rid|Uid) . 85

5.1 Functions . 109

6.1 Naming convention for logical predicates. 117
6.2 Pattern matching costs. 124

7.1 Cost analysis of the Rete algorithm. 127

11.1 Abstract event notifications per application in the single-layer architecture. 169
11.2 Abstract event notifications per application in the dual-layer architecture. 170
11.3 Performance results. 170

12.1 AESL temporal operators. 176
12.2 Filter algebra operators. 177
12.3 LCE action predicates. 181
12.4 SCALA Modules . 185

19

20 LIST OF TABLES

Chapter 1

Introduction

έπιστ ήµη εστ ί δóξα µετά λóγoυ αληθές .
(Knowledge is true belief plus an account of Logos1) — Plato (Theaetetus 201d)

Context-awareness [96] concerns the ability of computing devices to detect, interpret and respond to
aspects of the user’s local environment. Its goal is to enhance computer systems with a sense of the real
world and make them know as much as the user about the aspects of the environment relevant to their
application. We refer to environments enhanced with context-awareness as context-aware environments
and to the applications that operate in such environments as context-aware applications.

Context-awareness is orthogonal to programming paradigms such as Ubiquitous Computing [108]
and Sentient Computing [44], which aim to optimise the service offered to the user through applications.
Such applications follow a common modus operandi: the user specifies a set of requirements in terms of
abstract, high-level context as well as the service to be delivered, once the specified context has occurred.
The application receives notifications from the Sentient system whenever the specified context happens,
and it executes accordingly the specified action. For example, the user may ask to be reminded to return
John’s book when located in the same room as John.

Although sensor-driven systems are physically distributed and employ events for acquiring and com-
municating awareness of their surrounding environments, they bear significant differences to traditional
event-based distributed systems. The events that are produced by sensors are too low-level to be mean-
ingful to the applications. For example, the event that a user is at position (x, y, z) is not directly usable
by an application that is interested in determining when a user is in close proximity to a PC. Furthermore,
sensor-derived events do not convey negative information, i.e., information that something has not hap-
pened. For example, although an event that notifies of a fire can be easily produced by a fire alarm, unless
such an event occurs, there is no information about the absence of fire. Another issue of sensor-driven
systems is that these typically consist of several heterogeneous components that differ significantly in
terms of the properties of the instrumenting technology, e.g., the accuracy of the location system, the
number of users that are known in the domain and the specific topology of the domain. This has a huge
impact on application development. A user that moves between domains may need to be able to locate
the closest, empty meeting room in each of the visited domains, without recompiling the application that
delivers this information with each transition to a new domain. Furthermore, users may need to develop
new applications ad hoc, and similarly cancel their operation in real-time. This means that application

1The Greek word Logos (traditionally meaning word, thought, principle, or speech) has been used among both philosophers
and theologians. In most of its usages, Logos is marked by two main distinctions - the first dealing with human reason and the
second with universal intelligence i.e., the Divine. The word was used by Heraclitus, one of the pre-eminent Pre-Socratic Greek
philosophers, to describe human knowledge and the inherent order in the universe, a background to the essential change which
characterises day-to-day life. By the time of Socrates, Plato, and Aristotle, Logos was the term used to describe the faculty of
human reason and the knowledge men had of the world and of each other. The Stoics understood Logos as the animating power
of the universe, which further influenced how this word was associated with the Divine.

21

22 Chapter 1. Introduction

development needs to be dynamic and without undue programming effort. Lastly, Ubiquitous Comput-
ing advocates that the computing infrastructure that enables awareness should be invisible from the user.
This necessitates a separation of concerns between the way users define contextual situations in order to
build applications and the way context is managed by the sensor-driven system.

Existing techniques for modelling distributed, event-based systems, such as event composition, are
not adequate for modelling context-aware systems, as they cannot capture certain human intuition in-
volving state. Furthermore, these techniques do not cater for transparency, i.e., hiding the effect of the
heterogeneity of sensor-driven components from the modelling mechanism. On the other hand, existing
models for context-awareness such as SPIRIT [41] are not programmable. As far as applications are
concerned, context-aware application development has been ad hoc, often overwhelming to the user, de-
priving him of any control over the desired application behaviour. This introduces an imperative need for
tools that aid context-aware application development in a way that the desired application functionality is
determined by the user, dynamically, while being mobile. All the above reasons necessitate an alternative
model for context-awareness in sensor-driven systems.

This dissertation describes the design and implementation of the SCAFOS framework. SCAFOS
achieves two principal goals. Firstly, it implements a model for context-awareness for sensor-driven
systems, which satisfies the above modelling requirements. The proposed model is standardised, user-
centred, distributable, portable, dynamically extensible and provides an invisible separation of concerns
between knowledge acquisition, integrated knowledge management and knowledge usage by applica-
tions, thus ensuring a natural interface to the users, abiding by the principles of Ubiquitous Comput-
ing. Secondly, SCAFOS promotes application development without undue programming overhead by
providing a set of tools and services for the creation, deployment and operation of context-aware appli-
cations in distributed, dynamic, extensible, heterogeneous, context-aware environments. The language
part of SCAFOS is called SCALA; it is XML-based, and it allows for top-down, user-controlled appli-
cation development. Applications operating within this framework are created automatically from user
specifications, and benefit from automatic integration with little development overhead; their seamless
operation is guaranteed as the user moves, even when the model is extended dynamically.

1.1 Vision

The user in the near future is perceived to be mobile and to move through several heterogeneous indoor
and outdoor context-aware environments. The user carries with him a Personal Digital Assistant (PDA),
through which it is possible to interact directly with the physical environment, specifying the action that
is to take place whenever a situation of interest occurs. Such situations of interest can have the form of
queries, e.g., querying the location of the closest wireless hot spot that guarantees a connection speed
over a certain threshold. The user can also define applications that remain functional for a specific period
of time. For example, the user may ask to be notified whenever the closest system administrator becomes
available within the next 10 minutes, or he may request that all personal messages be withheld whenever
he is talking with colleagues with whom he spends on average less than 5% of his weekly time, and that
this application be effective for the rest of the working day and no longer than that.

Apart from the predefined set of requirements, ad hoc requirements can also be issued during the
user’s daily routine, such as notify me by SMS when the boss arrives in the office or even show me a map
to the closest cinema that shows the latest movie by Almodovar. Such requests are generated by typing
a command on a Personal Digital Assistant (PDA), and they take effect immediately, unless otherwise
specified.

A user’s environment typically involves a home, an office with various departments, a car, malls,
recreational areas such as cinemas, etc. Such environments are dynamic, and even their topology may
evolve continually. For example, a multi-departmental institution may expand by modifying a closed-
space topology to a rent-a-desk open space topology. By analysing what is required to materialise this

Chapter 1. Introduction 23

vision, the following requirements for context-awareness have been defined.

Formal Modelling. A model that encompasses the envisioned behaviour of context-aware systems and
their users is necessary. Such a model promotes the understanding of the issues involved in the context-
aware paradigm, unveils the capabilities and potential of each existing solution, and offers a platform
where development efforts can be standardised and replicated effort can be avoided. Although several
models already exist for traditional event-based distributed systems, there is no adequate model available
for context-aware systems.

User-Centred Model and Application Development. In a model for context-aware behaviour such
as the one envisioned above, users need to be able to determine which actions will take place under which
conditions and what effect such actions will have on their interruptibility - i.e., when it is appropriate to
disturb them. This means that context-aware application development should be simple enough to be
undertaken by the user, and applications should become effective (and similarly ineffective) in real-time.
Such applications need to operate seamlessly as the user moves from one context-aware environment to
another. They also need to remain operational under the specified temporal constraints, even when other
users develop other applications dynamically or when the entities (users, topology) in the surrounding
environment change.

Invisibility and Transparency. The sensor and computing infrastructure that enables context-awareness
needs to be invisible to the user, thus providing a natural interface for developing applications. Invisibil-
ity advocates that the application logic is compatible with human intuition. Transparency guarantees that
the application logic will be functional in all distributed components of a context-aware environment,
independent of the entities (users, objects, topology) that exist in that component.

Expressiveness. In order to reason with the model and develop application logic, there needs to be
available language support. Expressiveness guarantees that such a language is powerful enough for
expressing all human intuition.

Real-Time Constraints. As mentioned before, applications are developed dynamically, while the sys-
tem is running and without additional recompilation. This introduces real-time constraints that need to
be adhered to.

1.2 A Philosophical View on Context, Knowledge and Events

This section aims to give a brief philosophical background of some of the key concepts in the conceptual
framework described in this dissertation. This is meant to demonstrate the historical continuity in the
intellectual challenge that such concepts raise, as well as the similarities and the differences between
the philosophical approach and the approach advocated by the current trends in computer science and
adopted in this thesis. The references given here are indicative, and are really only used as an index into
the wider literature.

Context. Context is a term which is widely used in computer science, and various definitions for con-
text exist in the literature. Various areas of computer science, such as natural language processing, have
investigated this concept over the last 40 years to relate information processing and communication to
aspects of the situations in which such processing occurs. Schmidt et al [98] have given the following
definition for context: “Context is what surrounds us and gives meaning to something else.” Dey talks
about a different definition of context [29]. “Context is any information that can be used to characterise

24 Chapter 1. Introduction

the situation of an entity. An entity is a person, a place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications themselves.” This
definition is more appropriate for describing interactions in context-aware applications.

This thesis takes a step back and identifies the similarities that exist between the above definitions
of context and the concept of knowledge as this has been used in computer science and particularly in
Artificial Intelligence. It argues that context is knowledge of the state of entities in the surrounding world
and it considers events to be changes of such state. But what exactly is knowledge?

Knowledge. According to the Dictionary of Philosophy [35], knowledge is a combination the fol-
lowing: (i) knowledge that (factual knowledge), (ii) knowledge how (practical knowledge), and (iii)
knowledge of people, places, and things (knowledge by acquaintance).

Plato in Meno [83] offers a distinction between true belief and knowledge (97d-98b). Knowledge,
Plato says, is tethered in a way that true belief is not. This view, which seems to suggest that knowledge
is justified true belief, is taken up again in the Theaetetus [85], where Plato suggests that knowledge
is true belief plus an account of logos (201d). In the Republic [84], Plato identifies knowledge with
infallibility or certainty by claiming that, knowledge is infallible, while belief is fallible (Republic 477e).
In the Republic Book V, Plato addresses a version of the question pertaining to the extent of knowledge.
There he distinguishes between knowledge at one extreme and ignorance at the other, and he roughly
identifies an intermediate state as belief. Each of these states of mind, Plato says, has an object. The
object of knowledge is what is or exists; the object of ignorance is what does not exist; and the object of
belief is some intermediate entity, often taken as the sensible physical world of objects and their qualities
(Republic 508d-e; Cratylus [82] 440a-d). What truly exists for Plato are unchanging Forms, and it is
these which he indicates as the true objects of knowledge.

Aristotle elaborates on the Platonic view of knowledge by distinguishing between perceptual and
propositional knowledge. The former is perceived by the senses and the latter is knowledge of facts.
Perceptual knowledge is discussed in De Anima [2], as knowledge that is perceived through the senses
and therefore is subject to error. However, in the Posterior Analytics [3], Aristotle takes this view of
knowledge even further and discusses a special form of knowledge, scientific knowledge as a form of
logical deduction. A science, as Aristotle understands it, is to be thought of as a group of theorems
each of which is proved in a demonstrative syllogism. In the first instance, a demonstrative syllogism
in science S is a syllogistic argument whose premises are first principles of S. These first principles, in
turn, must be true, primary, immediate, better known than and prior to the conclusion, which is further
related to them as effect to cause (Posterior Analytics 71b21-22). Knowledge of the conclusion requires
knowledge of the first principles, but not conversely. The science can be extended by taking theorems
proved from first principles as premises in additional demonstrative syllogisms for further conclusions.
A person who carries through all these syllogisms with relevant understanding has knowledge of all of
the theorems.

Events. Events form an apparently distinct kind, different from things like people, planets and books.
Many events are changes, for example, human bodies being first alive and then dead or things being
first hot and then cold. But this may not define events fully. Events can be used in order to distinguish
intrinsic changes, like dying, from some relational ones, like being orphaned. Second, events that begin
or end things, like the Big Bang and other explosions, cannot be changes in themselves and may not,
if nothing precedes or survives them, be changes in anything else. The difference between things and
events, whether changes or not, may be that things keep a full identity over time, which events lack. First,
some events may be instantaneous and lack any identity over time. Second, temporally extended events
are deprived of full identity over time by their temporal parts, like a speech’s spoken words, which stop
them ever being wholly present at an instant; whereas people and other things have no temporal parts
and are wholly present at every instant of their lives. This full identity over time will then distinguish

Chapter 1. Introduction 25

one thing changing from successive things having different properties, thus explaining why only things
can change and why changes, being events, are not things.

The Interpretation of this Dissertation. The model proposed in this dissertation abides by both the
above Platonic and Aristotelian views about knowledge through the following interpretation: knowledge
is factual (predicate) and it is considered as the state of logical entities, which is either perceived, logically
deduced or inferred from perceived or other deduced or inferred knowledge. Perceptual knowledge
is a key component of sensor-driven systems, where perception can be seen as sensing, carried out
by sensors. Perceptual knowledge is fallible. Indeed, the certainty of knowledge that is produced by
sensors depends on the reliability of the sensor technology, thus sensed knowledge is in fact belief.
Although this is not directly addressed in this thesis, there is active research attempting to model sensing
accuracy with confidence levels, thus modelling the degree of belief. The modelling approach taken in
this thesis employs similar principles (confidence levels and likelihood estimation) in order to model
higher-level belief. It is worth noting that except for sections of the dissertation in which uncertainty is
explicitly discussed, it can be assumed that uncertainty is small enough to be ignored. In this case the
term knowledge will be used to mean both knowledge and belief, unless otherwise stated.

Knowledge in this thesis is deduced from perceived knowledge (sensor data) using temporal first-
order logic (TFOL) and inferred using statistical probabilistic methodologies such as Hidden Markov
Models and Bayesian Prediction. Perceived knowledge is referred to as concrete and deduced or inferred
knowledge as abstract. Abstract knowledge is encapsulated as instances (in the Prolog sense) of abstract
predicates. Lack of knowledge is considered as ignorance. Ignorance is a key issue in this dissertation,
as it is not addressable by existing distributed system models. Uncertainty is another key issue which
is inherent in context-aware systems. Wherever uncertainty plays an important role (Chapters 3 and 4),
knowledge is equivalent to belief. Otherwise, the term knowledge will be used to mean both knowledge
and belief, concrete and abstract, unless otherwise stated. Furthermore, these concepts are considered in
the present, the past and the future, through current, historical and predicted data.

1.3 Sentient Computing and Sensor-Driven Systems

The research described in this dissertation is based on the Sentient Computing paradigm. Sentient Com-
puting is a programming paradigm for context-awareness, which employs sensors, distributed through
the environment, in order to create and maintain a detailed model of the real world and make it avail-
able to applications. This section elaborates on the requirements of Section 1.1 and focuses on their
satisfiability in the context of Sentient Computing. Sensor-driven systems bear similarities with sensor
networks, which are an emerging area of research.

A key characteristic of such systems is that events in Sentient Computing are not meaningful. Rather,
they are instances of the state of an entity, as this is captured by the sensor technology. Furthermore,
events in sensor-driven systems only convey positive knowledge. They cannot represent knowledge about
something that has not occurred or has stopped occurring. Furthermore, the semantic mapping between
concrete knowledge produced by sensors and abstract knowledge that is queried by the application layer
is incomplete. Uncertainty is also an issue that affects the degree of abstract belief that is maintained
by the system and queries by applications. Uncertainty can be introduced by various factors. Sensor
occlusion may prevent an event from being generated. Statistical error in the location technology may
cause the generation of events that are only approximations of the actual monitored entity property. Node
failure is a common failure, especially in sensor networks.

Another key issue is that of scalability. Scalable computation and communication is crucial in pro-
cessing the high update rate that is involved when reasoning with sensor updates, while maintaining a
near real-time response. When scaling context-aware systems to a large number of physically distributed

26 Chapter 1. Introduction

components, which contain a large number of users that issue a large number of application requirements,
maintaining an acceptable response time becomes significantly harder.

Finally, the heterogeneity of the technology and the entities involved in each distributed sensor-driven
component, along with the dynamic evolution of such systems, often hinders the dynamic creation and
the continuous, seamless operability of created applications. This is only aggravated by user mobility.

The satisfiability of the requirements of Section 1.1, given the above issues, is investigated and ad-
dressed in this dissertation.

1.4 A Conceptual Framework

This section describes the conceptual framework proposed in this dissertation and discusses the key deci-
sions involved in its design and implementation. The main components are portrayed in Figure 1.1. The
main application programmable interfaces (APIs) between the conceptual components will be discussed
in detail in the following chapters and are only outlined here.

Deductive KB
Abstract Event

Detection Service

MovementUpdate()

ExportFOLModel()

CreateECAApp()UserUpdate()
LoadFOLModel()

CheckSatisfiable()

TriggerAction()

Context Aware
Application Service

Subscribe()

Subscribe()

Publish()

LocationUpdate()

PublishAEDSEvent()ExportFOLModel()

Inference Service
Statistical

Publish()Fact()

FactLikelihoodUpdate()

SensorUpdate()

AssertUpdate()

UserQuery()

UserQuery()

TriggerResponse()

Satisfiability Service

Figure 1.1. The SCAFOS conceptual framework.

The framework promotes user-driven context-aware application development. The user creates a
specification for a context-aware application using an XML-based high-level language called SCALA.
This is modelled by the CreateECAApp() interface. SCALA is discussed extensively in Chapter 12. Each
SCALA definition consists of three components. An ECAAS specification (an application definition), an
AESL definition (a definition of the abstract predicate and the rules by which this will be generated from
primitive events) and an AEFSL definition (filter) (an assignment of constant values to the attributes of the
abstract predicate of the AESL definition). The ECAAS specification defines the desired functionality of
the context-aware application in an enhanced Event-Condition-Action (ECA) format, which defines that
a particular system action (A) will be triggered whenever it is determined through the reception of an ab-
stract event (E) that a condition (C) has been satisfied in the context-aware environment. Abstract Events
are discussed in Chapter 8. This format is enhanced with else and scope statements. The else statement
defines alternative actions to be triggered when the condition does not hold. The scope statement defines

Chapter 1. Introduction 27

temporal constraints on the application functionality, i.e., the length of time it remains in effect. Both the
else and scope statements are discussed in Chapter 12.

Abstract knowledge can be inferred from concrete knowledge by means of Hidden Markov Models
(HMMs) and Temporal First-Order Logic (TFOL). Chapter 4 presents a movement recognition method-
ology, based on HMMs. This process is undertaken by the Statistical Inferencing Service component of
Figure 1.1. The algorithm for deducing the abstract knowledge predicates from concrete ones is defined
by the user using an AESL definition and a filter, defined in the languages AESL and AEFSL respectively.
Both languages are based on TFOL and are designed with computational efficiency in mind. Chapter 12
discusses the design principles behind them.

The AESL definition is checked for correctness and semantic compatibility with the various hetero-
geneous distributed components of the sensor-driven systems, using the Satisfiability Service through
the CheckSatisfiable() interface (Chapter 9). Each component model is loaded in the Service through the
LoadFOLModel() interface. This service will raise an exception if the AESL definition is not logically
satisfiable. This may be due to incorrect usage of the underlying model, missing predicates, incorrect
syntax or a mismatch between the application requirements and the technological properties such as
location-sensing precision. This service also detects errors that can occur from violating logical con-
straints such as those derived from the functional operation of location predicates. For example, the
situation where the C expert is typing while at the same time the system administrator is having a coffee
is impossible if the system administrator and the C expert are the same person.

The combined AESL and AEFSL definitions are compiled into an implementation process similar
to an execution thread, which uses the event-driven paradigm in order to communicate with the loosely
coupled components of the framework that implement the reasoning required for creating the applica-
tion. Although the event-driven paradigm is appropriate for this process, basic events, especially those
arising from sensors, may be too low-level to be meaningful to users. For this reason, substantial re-
search into event composition [6, 7, 63, 81, 102], i.e., the combination of primitive events into composite
events by applying a set of composition operators, has been pursued by several groups. This bottom-up
approach, although valuable, is insufficient to satisfy all the queries users might wish to make. In particu-
lar, composition using finite state machines cannot capture the user’s intuition about abstract system state
or express concepts that involve negation, such as ”empty room”. This means that they cannot model
ignorance as discussed in Section 1.2. At the same time, event composition is dependent on the specific
implementation domain, which hinders semantic transparency. This necessitates an alternative model
for querying, and subscribing transparently to, distributed state in a real-time, ubiquitous, sensor-driven
environment such as is found in Sentient Computing. Such a model is discussed in Chapter 4.

Chapter 4 first presents an analysis of the deficiencies of existing event models that are based on
finite state-machines, when applied to sensor-driven, context-aware systems. It concludes that these
impair the expressiveness of the user requirements language. Instead, it proposes a state representation
of the knowledge about the context-aware environment in temporal first-order logic (TFOL). Instead
of traditional events, our model uses a generalised notion of an event, an abstract event, which we
define as a notification of transparent changes in distributed state. Abstract Events are discussed in
detail in Chapter 8. Referring to the Event-Condition-Action model discussed earlier in this section, a
higher-order service (Abstract Event Detection Service) accepts a subscription through the Subscribe()
interface containing an abstract event definition (C) as an argument and, in return, publishes an interface
to a further service, an abstract event detector. Abstract Event detectors are structured as Deductive
Knowledge Base components and are responsible for determining whether the knowledge defined by the
user has been acquired on not. Upon successful detection, an abstract event (E) is published through the
Publish() interface that notifies the Context-Aware Application Service that the defined system response
(A) can now be triggered.

Abstract Event detection is undertaken by the Deductive Knowledge Base component and is dis-
cussed in detail in Chapters 8 and 12. Abstract Event Detectors are implemented as Rete networks [38],

28 Chapter 1. Introduction

and they consist of nodes and arcs. Every time a sensor creates a primitive event, this is translated into a
token, which is propagated through the arcs to the nodes. Each node checks whether the received tokens
correspond to a particular condition, e.g., if they are of class H UserInLocation. It then forwards the
tokens that satisfy the check on to the the child nodes. When a token is forwarded to the final node, an
instance of the abstract predicate that is being defined is created or deleted accordingly, and an “activa-
tion” or “de-activation” abstract event is triggered, respectively. Rete networks, as used in this thesis, can
perform reasoning that is equivalent to TFOL.

Chapter 6 focuses on scalability, as in order to deduce the abstract predicates of interest, the Deduc-
tive KB component needs to process a vast number of sensor updates per second (SensorUpdate() inter-
face). The user can also provide an AESL definition manually through the UserUpdate()/UserQuery()
interfaces. Scalability is achieved by maintaining a dual-layer knowledge representation mechanism for
reasoning about the Sentient Environment that functions in a similar way to a two-level cache. The lower
layer maintains knowledge about the current state of the Sentient Environment at sensor level by contin-
ually processing a high rate of events produced by environmental sensors, e.g., it knows of the position
of a user in space, in terms of his coordinates x,y,z. The higher layer maintains easily retrievable, user-
defined abstract knowledge about current and historical states of the Sentient Environment along with
temporal properties such as the time of occurrence and their duration, e.g., it knows of the room a user is
in and for how long he has been there. Such abstract knowledge has the property that it is updated much
less frequently than knowledge in the lower layer, namely only when certain threshold-events happen.
Knowledge is retrieved mainly by accessing the higher layer, which entails a significantly lower com-
putational cost than accessing the lower layer, thus ensuring that the lower-level can be replicated for
distribution reasons, maintaining the overall system scalability.

The framework described in this dissertation also supports probabilistic reasoning, not only for infer-
ring richer context such as user movements but also for estimating the likelihood that concrete or abstract
knowledge will be acquired in the future. This is undertaken by the Statistical Inferencing Service and it
is based on the Naı̈ve Bayes Classifier discussed in Chapter 4. Through the Fact() interface the Statisti-
cal Inference Service receives both updates on concrete knowledge (sensor updates) as well as abstract
events from the Deductive KB component’s Publish() interface and stores these persistently. Unlike the
movement updates, which are asserted into the knowledge base at the same rate as the location updates,
likelihood estimation facts are created on demand, through the AESL definitions. The service subscribes
to AESL definitions that contain likelihood function predicates (Chapter 4). The latter are compiled
into Bayesian Discriminant analysis processes that estimate the likelihood of the predicate of interest,
with the parameters given in the statement. The deduced facts are treated as additional, abstract context
sources and are published using the FactLikelihoodUpdate() interface to the appropriate knowledge base
components, where they are included in the reasoning.

1.5 Contribution of the Thesis

The thesis of this dissertation is that it is both feasible and beneficial to provide a framework for context-
awareness in sensor-driven systems. In particular, it emphasises the following:

• Existing distributed systems models are unsustainable for sensor-driven, context-aware systems.
The framework that is described in this dissertation constitutes an alternative solution for modelling
context-awareness in sensor-driven systems.

• This framework is most efficient when it is oriented towards the user and the user’s applications;
this means that context-aware application development is undertaken by the user, and therefore,
it needs to be feasible without undue programming effort. Applications need to be created and
removed without stopping or recompiling the system. Whenever appropriate, applications need to
remain effective as the user moves from one domain to another.

Chapter 1. Introduction 29

• For each distributed sensor-driven component, a dynamic model needs to be maintained which
integrates knowledge about the entities in the sensor-driven component and the surrounding en-
vironment. A language for reasoning about the model is necessary. The language needs to be
powerful enough to express human intuition about the state of the physical world, in a way that the
instrumenting and processing technology as well as the semantic differences in each distributed
model component are invisible to the user. Powerful tools for extending the model with abstract
knowledge are necessary.

• The framework described in this dissertation, which uses both computer science and engineering
methodologies, is a plausible and useful approach to modelling context-awareness and context-
aware application development in sensor-driven systems.

In the process of arguing the above thesis, the work described in this dissertation has resulted to the
following artifacts:

• A framework called SCAFOS, which bears the following features:

– It implements a state-based, formal model for context-awareness in sensor-driven systems,
that integrates knowledge while maintaining knowledge integrity. For each sensor-driven
component, a separate model is maintained. A state-based representation is a novel way of
modelling distributed systems and it is used instead of traditional-event based models, that
are insufficient for sensor driven systems.

– Knowledge in each model is maintained in a dual-layer knowledge base. The lower layer
maintains concrete knowledge predicates, e.g., it knows of the position of a user in space,
in terms of his coordinates x,y,z. The higher layer maintains abstract knowledge predicates
about current and historical states of the Sentient Environment along with temporal prop-
erties such as the time of occurrence and their duration, e.g., it knows of the room a user
is in and for how long he has been there. Abstract predicates change much less frequently
than concrete predicates, namely only when certain threshold events happen. Knowledge is
retrieved mainly by accessing the higher layer, which entails a significantly lower computa-
tional cost than accessing the lower layer. In this way, this scheme acts as a dual-layer cache
for knowledge predicates.

– SCAFOS introduces the concept of abstract events. An abstract event is a novel concept
of a generalised event defined as a change in the value (or a reminder) of an abstract state
predicate. SCAFOS introduces the AESL language for defining new abstract events from
concrete and abstract knowledge predicates. AESL is a TFOL-based language. Phrases in
this language can capture human intuition about system state that was not definable before.
Such phrases involve negation (e.g., empty room) and semantically transparent reasoning
with global state (e.g., locate the closest empty meeting room) even when this refers to more
than one model with different entities. Furthermore, the AESL language is designed with im-
plementation efficiency in mind. AESL phrases are compiled into reasoning structures called
abstract event detectors, which are optimised for computational efficiency. Abstract event de-
tectors are implemented as Rete networks. AESL is complemented by the filtering language
AEFSL. The combined use of AESL and AEFSL avoids duplication of computation.

– SCAFOS contains the SCALA language for using the SCAFOS framework. SCALA is an
XML wrapping of the following three sublanguages: The AESL language, the AEFSL lan-
guage and the ECAAS language. The ECAAS language is an extended ECA language for
building applications easily, by binding AESL definitions to action predicates that represent
actions available in the environment. It also contains else statements and statements for con-
trolling the life-cycle of the created application.

30 Chapter 1. Introduction

– SCAFOS contains powerful tools for extending the model with abstract knowledge by means
of probabilistic statistical inference, using Hidden Markov Models (HMMs) and Bayesian
prediction. More specifically, SCAFOS contains an HMM-based scheme for detecting and
recognising human movements from position streams. This system is independent of user
and domain. SCAFOS also contains a scheme for estimating the likelihood of future concrete
or abstract predicates holding. This has a number of benefits such as that it enables decision
making in the absence of knowledge sources.

– SCAFOS is dynamically extensible. Dynamic extensibility refers to the ability to modify the
modelled physical entities and create or remove applications without taking the sensor-driven
system offline and without having to recompile existing applications.

– SCAFOS contains tools for checking the correctness of user requirements and their compat-
ibility with the models of the distributed components.

• An implementation of SCAFOS, based on CORBA [21], consisting of the following services:

– A Context-Aware Application Service, which enables the simple development of context-
aware applications with little programming overhead.

– A Statistical Inference Service, which detects human movement from location data and esti-
mates the likelihood that an instance of either concrete or abstract knowledge will hold in the
future.

– An Abstract Event Deduction Service, which publishes state changes into abstract events.

– A set of Deductive Knowledge Base (KB) components that detect abstract events that are
published by the Abstract Event Detection Service. Deductive KB components are capable
of scalable abstract reasoning.

– A Satisfiability Service that proves the correctness of user requirements and their semantic
compatibility with the sensor-driven system components of the distributed infrastructure.

1.6 Relation to Database and Enterprise Resource Planning Systems

This thesis takes the approach that the design of context-aware applications can be facilitated and au-
tomated if it is built on a framework that integrates knowledge about context-aware environments. One
result of this is that application development is equivalent to defining a high-level specification and letting
the system compile this into a process that creates a new application from the user specification.

This approach in unifying knowledge in context-aware systems is inspired by a similar unification
in the modelling of enterprise data that led to the development of relational databases and Enterprise
Resource Planning (ERP) systems. These systems replaced of previous ad hoc data management efforts
that suffered from data redundancy and replication of computation. A brief background on these systems
follows.

A relational database integrates the data used in an organisation under centralised control. Appli-
cations sharing the integrated data do not need to know how the data is organised and how it can be
accessed. Knowledge is stored once, thus avoiding redundancy and the integrity of such knowledge is
maintained. ERP systems aim to integrate not only data but also all functions across a company into a
single system that can serve all the different departments’ particular needs. The ERP system is an inte-
grated software program that runs off a single database so that the various departments can more easily
share information and communicate with each other. For example, the processing of a customer order
causes the creation of a new process that is executed by a pipeline of system components. The change
introduced by the processing of the new order will be propagated to the warehouse management system
which will subtract the sold item from the stock, to the company’s material planning system which will

Chapter 1. Introduction 31

calculate new estimates in purchasing raw materials that are caused by the sale. While executing this
process, the system maintains integrity constraints between the components.

The most important benefits introduced by relational databases and ERP systems are reduction of
redundancy, avoidance of inconsistency, standardisation and data independence.

The methodology by which software for ERP systems is developed has been followed during the
implementation described in this dissertation. ERP systems, such as SAP [105], offer middleware sup-
port for building the components of the ERP system and integrating legacy systems to the integrated
knowledge. Chapter 12 presents similar language-based middleware support that supports maximised,
scalable integration. Similarly to the model presented in this dissertation, ERP systems reflect an in-
terdisciplinary development effort. They consist of conceptual building blocks that relate to Business
Management Practice, Information Technology and the Specific Business Objectives of the corporation.
Similarly, the model presented in this dissertation uses computer science ideas and engineering princi-
ples to model and improve context-awareness. The specific context-aware services are independent of
the nature of the modelled environments, whether these are academic, corporate or, ideally, mixed.

1.7 Research Limitations

Significant to this research, but not addressed directly in this dissertation, are security and systems net-
working research, routing protocols such as multicasting, peer-to-peer routing etc. Mobility in terms of
portable code as in mobile agents is also complementary, and it is the subject of parallel research. Grid
Computing is complementary to this thesis in terms of scalability in computational resources and can
be seen from a context-aware point of view. Sensor networks is an emerging paradigm of sensor-driven
systems, where each sensor or sensor cluster forms a network node. Sensor networks are by their nature
distributed, and the research described in this thesis is highly applicable to sensor networks as well.

1.8 Logic

Temporal first-order logic (TFOL) is used in this dissertation as a tool for modelling and reasoning
about knowledge in sensor-driven systems. Chapter 5 discusses a model for defining knowledge using
TFOL predicates in sensor-driven systems. Chapters 6 (Knowledge Representation and Scalable Abstract
Reasoning), 7 (Query Analysis and Optimisation), 8 (An Extended Publish/Subscribe Protocol Using
Abstract Events) and 12 (Sentient Computing Applications Language: SCALA) all look at the model
from different perspectives. Chapter 6 focuses on scalable representation and reasoning with knowledge
through queries. Chapter 7 discusses an optimisation process for the queries of Chapter 6. Chapter 8
looks at extending the model with new abstract predicates, in an event-based asynchronous interaction.
Following Chapter 5, arguing that existing event-based models are not adequate for sensor-driven sys-
tems, a new concept, that of an abstract event, is introduced in Chapter 8. New abstract predicates are
defined by applications through a set of rules. A language for creating applications that operate in the
model is presented in Chapter 12.

There are two types of TFOL formulae in this dissertation, queries and rules. Rules are added to
the system through the Subscribe() interface in Figure 1.1. Queries are added by the user through the
UserQuery() interface. Queries are discussed in Chapters 6 and 7 and Rules in Chapters 8 and 12.

Rules are TFOL wffs (well-formed-formulae) that resemble Horn Clauses in that there is a single
conclusion and a single implication. Rules contain negation, existential quantification and universal
quantification, which is a significant part of the contribution of this thesis, as existing event models,
such as event composition, have limitations in implementing these operators in a way that is appropriate
for the application logic in sensor-driven systems. The right-hand side (RHS) of each rule is an atomic
formula defining the abstract predicate that is created by the rule. Queries are syntactically identical to
the left-hand-side (LHS) of a rule and they return a set of selected values of the predicate instances to

32 Chapter 1. Introduction

which they apply, or the answer “no” if the instance defined by the query does not exist. In both queries
and rules, universal quantification is implicit. As a convention, constants in TFOL formulae have the
first letter capitalised and variables are in lower-case.

Both queries and rules are implemented by Rete networks. Rete networks that implement queries
are discussed in Chapters 6 and 7. Rete Networks that implement rules are referred to as abstract event
detectors, whenever such rules are used in order to define abstract events (Chapter 8 and 12). The
efficiency of different architectures of Rete networks is discussed in Chapter 7. The findings of that
chapter apply, therefore, to both queries and rules.

The temporal notation used in this dissertation is discussed in Section 2.7 where some background on
temporal logic is given, as well. Belief is also modelled in the TFOL framework, by extended predicates
that include uncertainty in their semantics, e.g., Probability(args), Likelihood(args) and with confidence
levels, e.g.,

Prob(85%, 80%,H UserInLocation(uid, Supervisor, rid, Supervisor’s-office), T oday)

where 85% is the value of the probability estimation and 80% the confidence level that reflects the success
rate of the estimation. Belief is modelled as above for simplicity and ease of reasoning. The alternative
would be a logic that supports partial truth such as fuzzy logic [109]. The decision making is not part of
the logic. The user is presented with knowledge predicates that are perceived or inferred by the Statistical
Inferencing Service of Figure 1.1 associated with a confidence level that reflects the inherent uncertainty
in that predicate. The user can make decisions based on such predicate instances.

1.9 Nomenclature

This section gives some definitions of the most common terms described in this dissertation and it dis-
cusses the adopted nomenclature. More detailed definitions are included in Appendix B.

A large part of this dissertation (Chapter 7 and Appendix B) investigates finite state machines. These
are often referred to as FSMs. A knowledge base K is a system that stores knowledge about the context-
aware environment. A knowledge base represents predicates that are true by storing an instance of each
of these predicates. We refer to this instance as a fact. The assertion of a fact in the knowledge base is
equivalent to it being stored in the knowledge base as a true statement. A fact being retracted from the
knowledge base results in the removal of the fact from the knowledge base. In fact, the assert command
is similar to a database ADD, whereas the retract command is equivalent to a database DELETE. When
a fact is asserted in the knowledge base, this signifies that the predicate that the fact’s predicate has the
value TRUE. When the fact is retracted from the knowledge base, this signifies that the corresponding
predicate has the value FALSE. This nomenclature is taken from logic programming.

For the description of the predicates, wherever these are used in the context of the implementation,
a named parameter notation is used, which is based on the CLIPS [19, 20] syntax. Table 1.1 uses po-
sitional parameter notation for the description of the predicates e.g., L InRegion(X ,Y ,Z ,Rid ,Rattr)
as opposed to the CLIPS notation e.g, (L InRegion(x X)(y Y)(z Z)(rid Rid)(rattr Rattr)). Pred-
icates are also often referred to by an appropriate abbreviation. Furthermore, an appropriate prefix is
used to differentiate low-level (L) from high-level (H) predicates. Low-level (concrete) predicates and
high-level (abstract predicates) are discussed in detail in Chapter 6.

The predicate L UserAtPosition(uid, role, x, y, z) represents the position of user with identification
uid and role role, in terms of the coordinates x, y, z. The predicate
H UserInLocation(uid, role, rid, rattr, timestamp) represents the region with identifier rid and prop-
erty rattr, that contains the user uid with role role at the point of local time denoted with timestamp
timestamp. The predicate L AtomicLocation(rid, rattr, polygon) represents the region with identifier
rid and property rattr that is bound by the polygon polygon, in a given coordinate system. The predi-

Chapter 1. Introduction 33

Predicate Abbreviation
L UserAtPosition(uid, role, x, y, z) UP
H UserInLocation(uid, role, rid, rattr, timestamp) UL
H UserColocation(uid-list, role-list, rid, rattr, timestamp) UC
L AtomicLocation(rid, rattr, polygon) AL
L InRegion(x, y, z, rid, rattr) IR
H EmptyLocation(rid, rattr, timestamp) EL
H ClosestLocation(uid, role, rid, rattr, timestamp) CL
H ClosestEmptyLocation(uid, role, rid, rattr, timestamp) CEL
H ClosestNonEmptyLocation(uid, role, rid, rattr, timestamp) CNEL

Table 1.1. Most common predicates and their abbreviation.

cate H UserColocation(uid-list, role-list, rid, rattr, timestamp) represents the fact that a list of users
(uid-list) are co-located inside a region with identifier rid and property rattr at a given point in local
time denoted by the timestamp timestamp. The predicate L InRegion(x, y, z, rid, rattr) represents the
fact that a position (x, y, z) is contained within a region with identifier rid and attribute rattr. The last
four predicates represent an empty location, the closest location and the closest non-empty location to
a user. Note that when constants are assigned to predicate attributes, the first letter is capitalised. For
example, Room 10 is modelled by the predicate instance L AtomicLocation(Room10, Office,Polygon10).

A model in this dissertation (except when used in the context of HMM and Bayesian inferencing
schemes, where it refers to the respective techniques) is a logical interpretation [65] that satisfies the
set of TFOL predicates presented in Chapter 4. The word model is also used in this dissertation in
connection with the terms state-based vs. event-based modelling to mean providing a representation
of the behaviour of a distributed system using the formalism of state or event respectively. The term
framework is used in this dissertation to mean an implementation of a model and a set of tools used for a
particular goal, i.e., a language for application development. SCAFOS, the framework proposed in this
dissertation, is summarised in Section 1.5 and discussed in more detail in Chapter 10. The name of the
proposed framework, “SCAFOS”, is a Greek word for “vessel”, and it is appropriate here as it represents
the structure that contains the tools for creating context-aware applications. The name of the proposed
language, “SCALA”, has the meaning of escalation in Greek. This is also appropriate, as SCALA is
used in order to synthesise rich context from concrete context. A lot of examples are implemented in the
Laboratory for Communication Engineering of the University of Cambridge, abbreviated as LCE.

1.10 An Interdisciplinary Approach

The approach of this thesis has been to investigate the applicability of the findings of related research
areas in computer science and engineering in modelling context-awareness in Sentient Computing. El-
ements of computer science disciplines such as automated deduction, programming language design
and distributed systems, as well as engineering disciplines such as statistical probabilistic reasoning and
software engineering have been essential and successful in supporting the thesis of this dissertation. The
most important modelling techniques presented in this dissertation are summarised next.

1.11 Hidden Markov Models

A Hidden Markov Model (HMM) [32, 88] is a stochastic model with an underlying stochastic pro-
cess that is not observable (it is hidden) but it can only be observable through another set of stochastic
processes that produce the sequence of observations.

34 Chapter 1. Introduction

Processes inferred from position data, such as human movements, are good candidates for HMM-
based modelling because they have a number of interesting properties. As users are free to move into
space, a position is only dependent on a previous position. HMMs are appropriate for modelling pro-
cesses with inherent temporality that unfold in time, where a state at time t is influenced only by the
state at t-1. The constraints of physical space and human movement introduce invariances that can be
used as the underlying hidden stochastic process. HMMs are particularly efficient for models that are
based on data that is missing or incomplete. Location data belongs to this category. Location samples
are often of variable length as the sampling frequency of the location system varies, as the user moves
around at different speeds and as some of the sampled sightings are discarded, due to errors during a sta-
tistical filtering process, internal to the location system. For all the above reasons, HMMs are considered
appropriate tools for modelling inferred knowledge such as human movements in Sentient Computing.

1.12 The Naı̈ve Bayes Classifier

The naı̈ve Bayes classifier is a widely used practical learning method, similar in efficiency to neural
networks. It applies to problems of classification where each instance x is described by a conjunction of
attribute values where the target function f(x) is unknown but it can take any value from a finite set V .
A set of training examples of the target function is provided, and a new instance is presented, described
by the tuple of attribute values 〈a1, a2 · · · an〉. The Bayes classifier is used in order to predict the target
value for the new instance. The target value for this instance is assigned the most probable conditional
probability value uMAP , given the attribute values 〈a1, a2 · · · an〉 that describe the instance.

UMAP = arg max
uj∈V

P (uj |a1, a2 · · · an) (1.1)

This thesis uses the above classifier in order to estimate the likelihood that a predicate instance will
occur. For example, considering the predicate

H UserInLocation(uid , rid , role, rattr , timetamp),

the naı̈ve Bayes classifier can be used in order to classify any of the attributes uid,rid, role,rattr,timestamp
to the most probable value of another attribute, given that the values, of some or all of the other attributes,
are given. For example, the uid can be classified into the region with the highest probability of being
associated with a given uid, based on historic location data, at a given time. This is equivalent to esti-
mating the most probable location that a user with identifier uid will be “seen” by the location system at
a given time. Similarly, the predicate2

H ClosestEmptyLocation(John,Sysadmin, rid ,Kitchen, 9am),

can be used to classify the most probable closest, empty room of type rattr = Kitchen in respect to
user with uid = John and property role = Sysadmin. This is equivalent to estimating the likelihood
that John will be seen in any kitchen at 9 am.

1.13 SCALA vs. SQL

Because of its strong links with the deductive knowledge base component in SCAFOS, SCALA bears
strong similarities to languages such as SQL that are used in relational databases for Data Manipulation
(DML) and Data Definition (DDL). SCALA also contains support for Data Definition and two Data

2As a convention constants such as “John” have the first letter capitalised while variables such as “rid” are in low-case.

Chapter 1. Introduction 35

SCALA SQL
CL(uid, role, rid, rattr) CREATE VIEW CEL(uid,role,rid,rattr)
∧EL(rid, rattr) AS SELECT EL.rid, EL.rattr, CL.uid, CL.role
⇒ CEL(uid, role, rid, rattr) FROM EL, CL

WHERE CL.rid=EL.rid
AND CL.rattr=EL.rattr;

rattr=Meeting Room SELECT * FROM CEL
WHERE rattr=Meeting Room;

< AbsPredDef > EL CREATE TABLE EL
< parameter > rid string < /parameter > rid (CHAR 20) NOT NULL,
< parameter > rattr string < /parameter > rattr (CHAR 20);
< /AbsPredDef >

Table 1.2. SCALA SQL analogies

Manipulation languages AESL and AEFSL. The core entity of the data structure in SCALA is the state
predicate, which can be compared to a view in a relational database. Predicate instances can be seen as
rows in the table that represents the predicate. Concrete predicates can be regarded as tables. Table 1.2
relates SCALA statements to SQL statements.

SCALA and SQL also have a number of key differences: SCALA is far more expressive than SQL in
terms of data manipulation, as it can reason with data using FOL operators such as existential quantifiers
and negation, thus creating arbitrarily complex views. SQL on the other hand is restricted to operations
on sets, in order to create views. Although the SQL CREATE VIEW statement does not contain a
definition of the types of the predicates of the view, as those have been already defined in the tables
from which they are selected, through a CREATE TABLE statement, in SCALA, the type of the abstract
predicate of interest must be defined explicitly. For this reason, Table 1.2 relates type definitions to SQL
CREATE TABLE statements. Finally, SQL does not support temporal reasoning. Type definitions are
discussed in Section 12.3.

1.14 Thesis Overview

Chapter 2 surveys the most important related literature.

Chapter 3 surveys literature related to existing knowledge inference techniques and demonstrates a
movement recognition system that uses HMMs.

Chapter 4 discusses likelihood estimation using the Naı̈ve Bayes Classifier.

Chapter 5 discusses the deficiencies of existing event-based models based on finite-state machines and
presents an alternative, state-based conceptual framework in temporal first-order logic.

Chapter 6 presents a scheme for scalable and abstract reasoning for the model presented in Chapter 5.

Chapter 7 discusses query optimisation for the queries of Chapter 6.

Chapter 8 introduces the need for abstract events as notifications of changes in the generated abstract
knowledge, and focuses on an extension of the traditional publish/subscribe protocol for abstract events.

36 Chapter 1. Introduction

Chapter 9 discusses a service that checks the correctness of abstract-event definitions and their com-
patibility with the integrated knowledge models of distributed, sensor-driven components.

Chapter 10 discusses the implementation of the SCAFOS framework, which provides a complete
infrastructure for the dynamic creation and deployment of context aware applications in heterogeneous,
distributed sensor-driven components.

Chapter 11 discusses an evaluation of SCAFOS using four example applications.

Chapter 12 discusses the SCALA language for creating, deploying and using SCAFOS in order to
create context-aware applications with little programming overhead.

Chapter 13 concludes and discusses interesting extensions to SCAFOS. More specific further work is
discussed in the end of each chapter, wherever this is appropriate.

Appendix A contains additional definitions of the model entities of Chapter 5 and illustrates the defi-
ciencies of FSMs discussed in Chapter 5 with examples.

Appendix B summarises SCALA support in terms of Application Programmable Interfaces (APIs) for
constructing SCAFOS.

Chapter 2

Background and Related Work

SCAFOS must naturally leverage off the work that preceded it. The purpose of this chapter is to describe
previous work in the field of context-aware computing. This chapter looks at context-aware applica-
tion development from the perspective of how well, if at all, it satisfies the requirements discussed in
Section 1.1. Because of the interdisciplinary nature of this dissertation, this chapter also discusses exist-
ing work in other areas of computer science and engineering that are relevant to this dissertation, such
as automated deduction and statistical inferencing. Although this chapter contains the main volume of
the related work, more specific literature is also surveyed inside the relevant chapters. In Chapter 3,
after presenting statistical inferencing, existing inferencing techniques that appear in the literature are
discussed. Chapter 4, after having introduced the requirements of context-aware applications in sensor-
driven systems, surveys literature related to existing event-based models that are based on finite-state
machines. Chapter 8, after having introduced abstract events, discusses in detail existing work in the
area of asynchronous, event-based communication.

2.1 Location Technologies

Location has been one of the most important and widely used sources of context in context-aware sys-
tems. In Chapter 3, location data is used in order to infer user movements and estimate the likelihood that
abstract knowledge will be acquired. Location data differ greatly from one implementation to another,
and their properties depend on the technology that is used to produce the data. Such technologies employ
infrared, radio, ultrasonic or optical sensing techniques. They provide information about the proximity
of an object to a sensor, or they give coordinates of the object to some degree of precision. Some also
provide information about the orientation of the object that is to be located. Some of the systems can be
operated indoors only, outdoors only and some in both. Some key examples are summarised next.

PARCTAB. The Xerox Palo Alto Research Center’s Ubiquitous Research program is one of the sem-
inal projects in context-aware computing [97]. The PARCTAB is a personal digital assistant (PDA) that
communicates via infrared (IR) data-packets to a network of IR transceivers. The infrared network is de-
signed for in-building use where each room becomes a communication cell. In contrast to the approach
used by other PDAs, most PARCTAB applications run on remote hosts and therefore depend on reliable
communication through the IR network. The infrastructure provides reliability as well as uninterrupted
service when a PARCTAB moves from cell to cell. Each PARCTAB has a pressure sensitive screen on
top of the display, three buttons underneath the natural finger positions and the ability to sense its position
within a building.

The Active Badge. The Active Badge system [106] was the first indoor badge sensing system; It was
developed at Olivetti Research Laboratory. It consists of a cellular proximity system that uses infrared

37

38 Chapter 2. Background and Related Work

technology. Each locatable person wears a badge which emits a globally unique identifier every 10
seconds or on demand. A central server collects the data from fixed infrared sensors in the building,
aggregates it, and provides an application programmable interface for using the data.

The Active BAT. The Active BAT [41] uses an ultrasound time-of-flight trilateration1 technique to
provide more accurate physical positioning than the Active Badge. Users and objects carry Active BAT
tags. In response to a request that the controller sends via short-range radio, a BAT emits an ultrasonic
pulse to a grid of ceiling-mounted receivers. At the same time the controller sends the radio frequency
request packet, it also sends a synchronised reset signal to the ceiling sensors using a wired serial net-
work. Each ceiling sensor measures the time interval from reset to ultrasonic pulse arrival and computes
its distance from the BAT. The local controller then forwards the distance measurements to a central
controller which performs the trilateration computation. Statistical pruning eliminates erroneous sensor
measurements caused by a ceiling sensor hearing a reflected ultrasound pulse instead of one that travelled
along the direct path from the BAT to the sensor. The system can locate BATs to within 3 cm of their
true position for 95 percent of the measurements. It can also compute orientation information.

Cricket. The Cricket System [86] is also based on ultrasound technology. In contrast to the BAT, it
uses ultrasound emitters to create the infrastructure and embeds receivers in the object being located.
This approach forces the mobile objects to perform all their own triangulation2 computations. Cricket
uses the radio frequency signal not only for synchronisation of the time measurement but also to delineate
the time region during which the receiver should consider the sounds it receives. Like the Active BAT,
Cricket uses ultrasonic time-of-flight data and a radio frequency control signal but this system does not
require a grid of ceiling sensors. Cricket in its currently implemented form is less precise than the
Active BAT in that it can delineate 4x4 square foot regions while the Active BAT is accurate to 9 cm.
However, the fundamental limit of range estimation accuracy used in Cricket should be the same as the
Active BAT. Its advantages include privacy and decentralised scalability while its disadvantages include
a lack of centralised management or monitoring and the computational burden that processing both the
ultrasound pulses and RF data places on the mobile receivers.

RADAR. RADAR [9] is Microsoft’s building-wide tracking system based on the IEEE 802.11 Wave-
LAN wireless networking technology. RADAR measures at the base station the strength and signal-
to-noise ratio properties of signals that wireless devices send, then it uses this data to compute the 2D
positions within a building. Microsoft has developed two RADAR implementations: one using scene
analysis and the other using triangulation. RADAR requires only a few base stations and it uses the same
infrastructure that provides the building’s general purpose wireless networking; however, it is limited to
two dimensions and it can offer a resolution of 2 to 3 meters, which is too low for the needs of most
context-aware applications.

TRIP. Several groups have explored using computer vision technology to determine object locations.
TRIP [59] (Target Recognition using Image Processing) is a vision-based sensor system that uses a
combination of 2-D circular barcode tags or ringcodes and inexpensive CCD cameras in order to identify
and locate tagged objects in the camera’s field of view. Optimised image processing and computer
vision algorithms are applied to obtain in real-time the identifier and pose of the moving target with
respect to the viewing camera. The advantages of TRIP are that it is low cost and easily deployable.

1Trilateration is a method of surveying analogous to triangulation, in which each triangle is determined by the measurement
of all three sides.

2Triangulation is defined as the measurement of a series or network of triangles in order to survey and map out a territory
or region, by measuring the angles and one side of each triangle.

Chapter 2. Background and Related Work 39

The disadvantages are that the location of the viewing camera needs to be known, and the processing
overhead for analysing and optimising the image. Tags can be identified within a 3 m distance from the
camera. This renders TRIP appropriate for specific applications that use tags to control the application
flow e.g. controlling a power-point presentation with the tags.

GPS. The Global Positioning System (GPS) [26] is a satellite-based navigation system developed and
operated by the US Department of Defence. GPS permits land, sea and airborne users to determine their
three-dimensional position, velocity and time. GPS uses a constellation of 21 operational NAVSTAR
satellites and 3 active spares. The GPS satellite signal contains information used to identify the satellite
and provide position, timing, ranging data, satellite status and the updated ephemeris (orbital parame-
ters). A minimum of 4 satellites allows the GPS client to compute latitude, longitude, altitude (with
reference to mean sea level) and GPS system time, through a process of triangulation. The satellites
receive periodic updates with accurate information on their exact orbits. Differential GPS (DGPS) is
regular GPS with an additional correction signal added. DGPS uses a reference station at a known point
(also called a ’base station’) to calculate and correct bias errors. The reference station computes correc-
tions for each satellite signal and broadcasts these corrections to the remote, or field, GPS receiver. The
remote receiver then applies the corrections to each satellite used to compute its fix.

Ultra Wideband. Ultra Wideband (UWB) [34] is a radio technology that opens up new capabilities
in radio communications. A wireless technology transmits digital data at very high rates over a wide
spectrum of frequency. Within the power limits allowed under current FCC regulations, not only can
UWB carry huge amounts of data over a short distance at very low power, but it also has the ability to
carry signals through doors and other obstacles that reflect signals at more limited bandwidths and higher
power. In addition to its uses in wireless communications products and applications, UWB can also be
used for very high-resolution radars and precision (sub-centimeter) location and tracking systems.

UWB radiation has unique advantages: transceivers and antennas can be made very small (i.e., coin
size), low power and low cost because the electronics can be completely integrated in CMOS without any
inductive components. Ultra Wideband signals form a shadow spectrum that can coexist and does not
interfere with the sinewave spectrum. The transmitted power is spread over such a large bandwidth that
the amount of power in any narrow frequency band is very small. The advantages of spread spectrum are
shared, including multipath immunity, tolerance of interference from other radio sources and inherent
privacy from eavesdropping (low probability of intercept). Ultra Wideband / non-sinusoidal signals have
very good penetrating capabilities, and they support centimetre-level location accuracy without needing
extremely accurate clocks to synchronise multiple receivers.

2.2 Sensor-Driven Paradigms

Taking advantage of sensing technologies such as the ones described above, a number of computing
paradigms have been developed, all of which aim to provide awareness of the physical world to their
applications. Awareness is used to achieve three particular goals: personalisation of their behaviour to
their current user, adaptation of their behaviour according to their location, or reaction to the surround-
ings. All three actions are undertaken by all of the main context-aware programming paradigms which
are summarised below, starting from the seminal principle of Ubiquitous Computing.

Ubiquitous Computing. Ubiquitous computing [108] was proposed by Weiser in 1993, as a method
of enhancing computer use by making many computers available throughout the physical environment,

40 Chapter 2. Background and Related Work

but making them effectively invisible to the user. This approach can be seen as opposing the tendency
of the computing industry that prevailed at the time, namely, to maximise the integration of processing
power and software tools into the Personal Computer, while at the same time, reducing its size as much as
possible. On the contrary, Ubiquitous computing followed the development trends that resulted in using
a three tier architecture (that pushes the computational load onto a powerful server machine, minimising
the computational load on the client), and extended these trends even further. Ubiquitous computing
adopted the vision that computational power would not be restricted to dedicated pieces of equipment
such as laptops and PDAs but would be distributed in objects of everyday life. Furthermore, computers
would stop being the focus of user efforts and would serve as tools that provide a service. In other words,
computers would be invisible to the user.

Pervasive Computing. Pervasive Computing shares the vision of Ubiquitous computing, i.e., that com-
puting technology should be embodied into real world objects like furniture, clothing, crafts, rooms, etc.
Furthermore it advocates that those artefacts also become the interface to ”invisible” services and medi-
ate between the physical and digital (or virtual) world via natural interaction. It, therefore, extends and
complements Ubiquitous computing with the concepts of minimal technical expertise, reliability and
more intuitive interaction.

Sentient Computing. Sentient computing [44] is a paradigm that focuses on sensing the environment.
This is achieved through a sensor infrastructure (Figure 6.1), distributed in the environment, which
provides information about the spatial properties of users and objects, i.e., their position in space, their
containment within a region such as a room or their proximity to a known physical location. Sentient
Applications make it possible for the user to easily perform complex computations involving spatial
and temporal notions of a dynamic, changing environment. For example, when a user walks into his
study at home, it is possible for his PC to automatically and seamlessly display the desktop from his
office environment. Or, whenever two people are co-located in a single space, the system can make this
information graphically available to an Active Map or deliver a relevant reminder. For example, “You
asked me to remind you to give Tom his book back the next time you meet him.”

Sentient Computing, as is implemented today, abides by the principles of Ubiquitous and Pervasive
computing. Although it does not distribute computation to everyday objects, it removes all the burden
of computation from the user who interacts with the physical environment through using a small object,
such as an Active BAT. The user can click on specific areas in the physical space, e.g., presented as posters
in order to invoke an available service, such as, the forwarding of a scanned document to somebody’s
email account, or requesting a notification before leaving the lab.

An obvious limitation to this interaction scheme is that the user can only select an already existing
application, but cannot create additional requirements. This is discussed in more detail in Section 2.4,
where SPIRIT [41] is discussed. The realisation of this need inspired the thesis of this dissertation,
namely to provide programming support that would allow users to easily create applications for such an
environment. Sentient Computing in its current implementations can be made more pervasive by allow-
ing more natural, intuitive interaction; it can also be made more ubiquitous by distributing interaction to
physical objects.

Wearable Computing. Wearable Computing [62] is a programming paradigm that uses wearable com-
puters. A wearable computer is a computer that is subsumed into the personal space of the user, con-
trolled by the user, and has both operational and interactional constancy, i.e., is always on and always
accessible. Most notably, it is a device that is always with the user, and into which the user can always
enter commands and execute a set of such entered commands, even while walking around or doing other
activities. The most salient aspect of computers, in general, is their reconfigurability and their generality,
e.g., that their function can be made to vary widely depending on the instructions provided for program

Chapter 2. Background and Related Work 41

execution. With the wearable computer (WearComp) this is no exception, e.g., the wearable computer
is more than just a wristwatch or regular eyeglasses: it has the full functionality of a computer system;
but, in addition to being a fully featured computer, it is also inextricably intertwined with the wearer.
This is what sets the wearable computer apart from other wearable devices such as wristwatches, regular
spectacles, wearable radios, etc. Unlike these other wearable devices that are not programmable (recon-
figurable), the wearable computer is as reconfigurable as the familiar desktop or mainframe computer.

Several other theories have recently emerged focusing on different aspects of context-aware comput-
ing. It is beyond the scope of this dissertation to do more than mention them by name here: Proactive
Computing, Calm Computing, Planetary Computing.

2.3 Application Areas

A number of context-aware applications have been designed over the years ranging from augmenting the
human to helping manage every day tasks. A taxonomy presented in [96] classifies applications accord-
ing to the type of system response that is invoked as a result of detecting the appropriate context. These
categories are: selecting the most proximate service, automatic reconfiguration, contextual commands or
context-triggered actions. A taxonomy that is more focused on the nature of the provided applications
and the social context on which is it provided can be found in [89].

This section investigates application development from a human perspective aiming to determine to
what extent such applications improve task handling without introducing additional overhead, such as
a high rate of untimely interruptions. First, interruption management is discussed, and it is concluded
that a user-centered model is essential for providing an effective service. Next, the most relevant and
interesting applications and the degree to which interruptions can be handled are discussed.

Up to now, there has been little progress in the area of managing interruptions. Dey et al. [30] refer
to determining interruptibility as an “enormous unresolved research problem” and express interest in
including interruption management in the CyberMinder tool which is intended to deliver context-aware
reminders. An outline of the key interruptibility issues still to be solved is presented in [104]. The key
issue that prevents us from managing interruptions is the fact that we don’t know if the interruption will
be useful to the user at the instant that it is generated. An obvious mistake to make would be to assume
that all interruptions are undesirable. Indeed, a study has shown that a high percentage of the interruptions
that occur in an office environment are useful rather than disruptive [110]. An illustrating example
is included in [104] and demonstrates a second issue, i.e., that applying a general rule concerning
interruption management at one time is not good enough. For example, an application withholding all
interruptions while a user is in meeting may shield a call that contains vital information on the deal in
progress. A third issue concerns the way decisions are made as to when is a good time to interrupt. For
example, a period that a user is absorbed in an important though informal conversation just before or after
a meeting takes place might be the worst moment to interrupt. Another study has shown that the nature
of the individual task and the experience of the subject can greatly influence the effect that interruptions
have on performance [76]. These results advocate strongly the need to associate the user personally with
determining when interruptions are desirable and when not. This realisation has inspired the focusing of
the work described in this dissertation towards designing a user-centered model for context awareness.

Look Out. The need to determine the status of user attention while designing automated User Inter-
faces is discussed in [45]. LookOut, an assistant to Microsoft’s Outlook mailing program, identifies new
messages that are opened and attempts to assist users with reviewing their calendar and with composing
appointments. In order to determine when to present the user with an action-options menu without dis-
tracting him, e.g., while he is still reading his email, the time between when a message is opened and

42 Chapter 2. Background and Related Work

user action is taken is measured by the system and a model of attention is constructed from this timing
study.

CyberMinder. A context-aware system for supporting reminders has been proposed in [30]. The tool
aims to support users in sending and receiving reminders that can be associated with situations involving
time, place and more sophisticated pieces of context so that reminders can be delivered at the appropriate
time. For example, a reminder is sent to a user to remind him not to forget his umbrella as he approaches
his front door while leaving the house in the morning. Cyber Minder delivers a reminder when the asso-
ciated situation has been realized, and chooses the delivery mechanism/context based on the recipient’s
current context. However, it does not take into account how interruptible the user is. Another disadvan-
tage is that it does not handle synchronous communication at all, e.g., it cannot route telephone calls over
IP, according to the user’s context. Lastly, complex situations can be composed from sub-situations by a
set of operators and operands, but it does not support a generic language for specifying situations.

comMotion. comMotion is a GPS-based system [64] that uses location and time information in order
to deliver location-related information, such as a grocery list, when the user is close to a super-market.
When a reminder message is created, a location is associated with it. Then, when the recipient arrives
at the specified location, the messages associated with that location are delivered via speech synthesis.
As with CyberMinder, comMotion does not handle synchronous communication and does not take the
recipient’s interruptibility into account.

Nomadic Radio. Nomadic Radio [95] is a system developed by MIT that aims to handle asynchronous
message delivery based on message priority, content, usage level and environmental noise. The system
attempts to tackle interruptibility issues by adapting the way it notifies the recipient based on the level
of the ambient noise in the environment. For example, if the conversation level in a room is high, the
auditory notification is discreet and the user can choose to suppress the summary which will follow.
Interruption filtering is done based on priorities, and high priority calls are put through no matter what
context the recipient is in. However, Nomadic Radio does not handle any richer context than noise level
and only has 2 modes. Busy and non busy. For these modes it only makes exceptions for high priority
calls. In fact it pays no heed to the content of each interruption.

Proem. Proem [54] is a wearable computer-based system that supports profile based cooperation.
Wearers can write simple rules that indicate their interests in other people. When someone physically
close to the wearer has a profile that matches one or more of his interests, Proem can alert him. Interests
are limited to names, personal interests and hobbies. Although Proem uses user profiles to define the
personal details of a user, it only contains limited fields and a restricted grammar. As far as context is
concerned, it only takes into account co-location between 2 users.

Memory Glasses. Memory Glasses is a wearable, context-aware, reminder system [28]. It deals with
activity/location/time-based reminders, but only handles limited context and has limited options for users
to specify their own rules. It also takes no heed of user interruptibility.

Remembrance. In 1996, Rhodes [90] at the MIT Media Lab developed a wearable Remembrance
agent. It is a continuously running proactive memory aid that uses the physical context of a wearable
computer to provide notes that might be relevant in the user’s current context. It displays one-line sum-
maries of note-files, old email, papers and other text information that might be relevant to the user’s
current context. The summaries are listed in the bottom few-lines of a heads-up display. The Remem-
brance agent uses five kinds of context: the wearer’s physical location, people who are currently around,
subject field, date and time-stamp and the body of the note.

Chapter 2. Background and Related Work 43

Teleporting. The Teleporting System [91], developed at Olivetti Research Laboratory, is a tool for
creating mobile X sessions. It provides a familiar, personalised way of making temporary use of X
displays as the user moves from place to place.

2.4 Development Platforms

In Chapter 1, a set of features was introduced that are considered essential for modelling the building and
execution of context-aware applications. In this section, existing architectures built to support context-
awareness are discussed, focusing on the level of support (existing or proposed) for the above mentioned
features. It will be noted that none of these architectures provides the required support. This realisation
validates the need for the new conceptual framework for application development that is presented in this
dissertation.

Stick-e Notes. The Stick-e Notes system [13] is a general framework for supporting a certain class
of context-aware applications. More specifically, it aims to support application designers in actually
using context to perform context-aware behaviours. It provides a general mechanism for indicating
which context an application designer wants to use and provides simple semantics for writing rules that
specify what actions to take when a particular combination of context is realised. This approach, while
it shares some of the goals of this thesis, appears to be quite limited. The semantics for writing rules is
quite limited, and there is no support for high-level knowledge. The only supported actions seem to be
document creation. It provides a separation of concerns between the way knowledge is sensed and the
way it is used. The knowledge aggregation is centralised without enabling scalability. There does not
seem to be any scope for distributed reasoning that is independent of the implementation.

CoolTown. CoolTown [17] is an infrastructure that supports context-aware applications by represent-
ing each real world object, including people, places and devices, with a Web page. Each Web page
dynamically updates itself as it gathers new information about the entity it represents. This process is
similar to aggregating knowledge for that entity. CoolTown is primarily aimed at supporting applications
that display context and services to end-users. For example, as a user moves throughout an environment,
a list of available services for this environment is presented. Cooltown does not support other context-
aware features, such as automatically executing a service based on context. Its knowledge aggregation
mechanism is not scalable, and it is not clear how reasoning about knowledge about more than one entity
can take place. It is not designed to support storage of context.

The Context Toolkit. The Context Toolkit [31, 94] is the implementation platform of a software ar-
chitecture for the development of context-aware applications. It supports modular design that consists
of context widgets, context interpreters, context aggregators and context services. It also offers a set of
libraries with a number of pre-constructed such components.

The Context Toolkit is quite sophisticated in terms of the architectural requirements for supporting
the building of context-aware applications and shares some of the design principles of this dissertation.
It provides context widgets which are abstractions of concrete context that abstract away the details of
context acquisition. This implements a separation of concerns between the way context was acquired
and the way it can be used. Context widgets have an inbuilt degree of scalability in the spatial properties
of entities. I.e., a number of widgets can be used in order to accommodate a large number of context
sources. The location context widget can filter through only changes in user locations that signify a
change of room, however, there appears to be no support for generalising this feature in different contexts.
Context interpreters offer some abstraction over spatial properties such as converting room locations
into building locations, however, the implementation of the abstractions is up to the developer of these

44 Chapter 2. Background and Related Work

components and it cannot be done dynamically. Context aggregators aggregate context sensed for a
single entity from a variety of sources. However, it appears to be infeasible to reason about the state
of multiple entities. In fact the aggregators seem to be designed so that they only aggregate context
for a single entity. Furthermore, there does not seem to be any checking for whether the accuracy of
the source is acceptable to the application. Context services are concerned with actions rather than
context acquisition and offer simple development of actions that are to be triggered as a result of the
context aggregator. The communication between the platform components is distributed and event-based.
However, it is not transparent as each component publishes its own events. There is also no support for
semantic interoperability between heterogeneous components that would allow reasoning transparently
about distributed state.

SPIRIT. The SPIRIT project (SPatially Indexed Resource Identification and Tracking)[41, 1] is a so-
phisticated platform that integrates configuration data for heterogeneous networked hardware and soft-
ware with fine-grained location data for users and equipment, allowing software to dynamically configure
and reconfigure itself as users move around the networked environment. The ultimate goal of the project
is to make it seem to users as though an application knows as much about the physical environment as
they do. To achieve this goal, information is gathered from a variety of sensor sources, including the
Active Badge, the Active BAT and telemetry software monitors (for keyboard, CPU, disk and network
traffic).

In order to achieve the above, SPIRIT provides a platform for maintaining spatial context based on
raw location information derived from the Active BAT location system. SPIRIT has a similar goal to our
proposed architecture in that it offers applications the ability to express relative spatial statements in terms
of geometric containment statements. It is inherently scalable both in terms of sensor data acquisition and
management as well as software components. Its approach towards both data-modelling and scalability
is quite different from the one adopted in this thesis. SPIRIT models the physical world in a bottom-
up manner, translating absolute location events for objects into relative location events, associating a
set of spaces with a given object and calculating containment and overlap relationships among such
spaces, by means of a scalable spatial indexing algorithm. However, this bottom-up approach is not as
powerful in expressing contextual situations as the top-down approach presented in this dissertation, as
is established in Chapter 4. Although SPIRIT supports parallelism at the level of the storage of world
model objects [103], the scalability of the above mentioned spatial indexing algorithm is unclear. In
fact, calculating relationships between spaces that are not stored on the same computer suggests a high
communication overhead between the distributed elements that may affect significantly the response time
of the algorithm.

SPIRIT provides support for some inferencing based on location information, such as whether a
user is sitting or standing. It also supports adaptability in the sensor update rate, based on the produced
inferences, e.g., the monitoring rate is adapted according to the user’s speed.

SPIRIT does not support application development with knowledge other than that which pre-exists
in the system, which is, for the most part, directly produced by sensors. Writing applications in SPIRIT
requires writing code in C++, using event types that already exist in the system.

Active Badge. The Active Badge has been used also for providing mobility to applications. The Tele-
porting application [91] uses the location information provided by the Active Badge, and the control
signal generated when users press the buttons situated on their Active Badges, to relocate a user’s X
sessions to a new desktop.

QoSDREAM. QoSDREAM [87] is a research platform and framework for the construction and man-
agement of context-aware and multimedia applications. QoSDREAM simplifies the task of building

Chapter 2. Background and Related Work 45

applications by integrating the underlying device technologies and raising the level at which they are han-
dled in applications. More specifically, QoSDREAM was initiated in order to integrate an event-based
architecture derived from the Cambridge Event Architecture (CEA) with a multimedia framework called
Djinn [23]. The integration enables the construction of applications such as follow-me, multimedia-based
communications. Such an application for a hospital environment is described in [66].

The platform is highly configurable, allowing researchers to experiment with different location tech-
nologies and algorithms used to handle the information being generated by these technologies [71].
FLAME (Framework for Location-Aware ModElling) is an open source framework for location-aware
applications released by the QoSDREAM project. FLAME is fully distributed, providing services to
application programs through CORBA interfaces. The framework is written largely in Java, but applica-
tions can be written in any CORBA-compatible language.

QoSDREAM/FLAME separates concerns between knowledge acquisition and use. However it does
not offer support for performing abstractions of knowledge. Furthermore, there is no separation of con-
cerns between storing dynamic and static data, which makes the model dependent on the specific domain.
Its event mechanism offers asynchronous transparent communication, but no interoperability over het-
erogeneous environments and no reasoning about state. Lastly, it is not dynamically extensible with new
context or applications.

LIME. A platform called LIME for programming reactive, location-aware applications using data
stored in a shared, distributed tuple space called Linda is presented in [68]. LIME stores knowledge
(for the most part location information) about the distributed environment using a state-based temporal
representation. It provides interfaces for storing, deleting and reading knowlege out of the shared tuple
space, but does not offer any support for abstracting knowledge from other, already available knowledge,
nor does it scale in the presence of a large number of updates.

Realms and States. Realms and States [72] is a model for location-awareness that supports logical
contexts. The idea of logical location contexts is presented, which provides enhanced privacy and sup-
ports specialised notions of distance, and offers a paradigm that unifies location with other types of
context. This is developed in the form of a framework consisting of realms, which are collections of
spatial states with realm-maps providing mappings between realms.

2.5 Sensor-Driven Systems

A number of significant projects already exist in the area of sensor-driven systems that deal with data
produced by sensors in streams, along with a storage and a query model for such data.

Cougar. A database for sensor data along with a scheme where queries over data are expressed in SQL
is presented in [12] as part of the Cougar project. In that work, streams are represented as persistent,
virtual relations and sensor functions are modelled as abstract data types. Queries are seen as SQL
SELECT statements over both stored and sensor data. Stored data are modelled as relations and sensor
data are modelled as timeseries. Queries in that scheme are enhanced with support for defining how long
the queries last and how often they are applied. Queries can aggregate sensor data over a time period
and they can correlate data from multiple sensors, however, it is not clear from the paper how distributed
query processing is achieved, as it is not implemented in the original version of Cougar. This makes the
notion of simultaneity (e.g., that two sensor readings hold simultaneously) unclear. The scheme does
not focus on system issues involved with efficiently executing queries. It does not cater for scalability,
which is a significant problem with sensor data, nor does it support queries on abstract event types that
are deduced rather than provided directly from sensor data.

46 Chapter 2. Background and Related Work

Fjords. An architectural construct called Fjords for creating queries over sensor streams is discussed
in [60]. Queries in this scheme consist of a set of selections to be applied via the selection operator, a list
of join predicates and an optional aggregation and grouping expression such as average, maximum etc.
By linking operators with queues, a combination of both push and pull operations is possible. Sensor
proxies constitute mediators between sensors and queries. An example is given where the sensor rate is
controlled from the Fjords. In this example, only events that have a significance are transmitted, rather
than low-level events, leading to a reduction in the communication cost. However, this seems to be done,
in an ad hoc way, and no programmable support for determining the desired significance that determines
the event rate is discussed.

Gator Networks. Rete networks for condition evaluation in active databases were proposed in [40].
In that work, Gator networks are introduced, which are seen as generalisations of Rete networks where
nodes that perform conjunction are allowed more than two inputs. Thus, Gator networks can be optimised
using randomised state-space search strategies. This approach is compatible with the one presented in
this dissertation, although applied to the context of active databases without considering distribution
issues.

2.6 Statistical Inferencing

This section discusses existing work that has also used or attempted to use similar techniques for context
awareness or related areas, and it demonstrates that the selected methodologies have produced indis-
putably significant results in related areas while pursuing sufficiently different or complementary goals
from the ones pursued in this dissertation.

2.6.1 Hidden Markov Models (HMM)

Hidden Markov Models [32, 88] have been used traditionally with great success in the fields of protein
sequence analysis, speech recognition [88] and natural language processing. Here we discuss three
related uses.

Learning Significant Locations and Predicting User Movements with GPS. In this work [4], HMMs
are used with location data mainly with a goal to predict the user’s destination based on statistical data
from his movement patterns. The presented system learns from monitoring user tracks which are the
most frequent points where the user stops, and classifies these as significant locations. It then uses
HMMs to predict a user’s destination, aiming to proactively send that user a reminder relevant to his final
destination or to arrange a serendipitous meeting.

SmartMoveX on a Graph - An Inexpensive Active Badge Tracker. In this work [55], a low-cost
location system is described. Receivers placed in the building’s existing offices connected to existing
PCs transmit signal strength readings to a central PC using the building’s existing computer network.
Combined with the low cost of the hardware, using the existing network makes this active badge system
much less expensive than many others. To compute locations based on signal strength, signal strength
readings from predefined location nodes in the building were gathered. A graph on these nodes was
defined which allowed for enforcing constraints on computed movements between nodes (e.g., cannot
pass through walls) and to probabilistically enforce expectations on transitions between connected nodes.
Modelling the data with a Hidden Markov Model, optimal paths were computed based on signal strengths
over the node graph.

Chapter 2. Background and Related Work 47

Movement Awareness in Sentient Computing. A system that can observe, recognise and analyse hu-
man movements in order to provide this awareness to context-aware applications is presented in [42].
The system uses the ground reaction force to classify and analyse movements in a non-clinical envi-
ronment. The signal is classified using statistical pattern recognition. Equipped with knowledge of the
movement, characterisation is achieved by analysing the ground reaction force to extract parameters of
the movement.

Although movement characterisation is also addressed in this dissertation, a different approach is
adopted. In the work described in [42], ground force is measured by sensors underneath the floor, requir-
ing enhanced infrastructure. Movement awareness in this thesis utilises a location sensing technology of
similar accuracy to the Active BAT. Furthermore, the focus of movement characterisation is different, as
[42] characterises a single step whereas this thesis characterises walking samples, independent of how
many steps they comprise. The recogniser described in [42] does not seem to be tested with different
individuals nor is it able to perform user recognition.

2.7 Logic

Using logic to support reasoning about knowledge in sensor-driven systems is one of the fundamental
principles of this dissertation. This section presents background work on logic, focuses on temporal
first-order logic (TFOL) and justifies the assumptions made when TFOL is used as a modelling tool.

First-Order Logic (FOL). First-order predicate calculus or first-order logic (FOL) [65] is a theory in
symbolic logic that states quantified statements such as ”there exists an object such that...” or ”for all
objects, it is the case that...”. First-order logic is distinguished from higher-order logic in that it does not
allow statements such as ”for every property, it is the case that...” or ”there exists a set of objects such
that...”. Nevertheless, first-order logic is strong enough to formalise all of set theory and thereby virtually
all of mathematics. It is the classical logical theory underlying mathematics. It is a stronger theory than
sentential logic, but a weaker theory than arithmetic, set theory, or second-order logic.

Like any logical theory, first-order predicate calculus consists of

• A specification of how to construct syntactically correct statements (the well-formed formulae),

• a set of axioms, each axiom being a well-formed formula itself,

• a set of inference rules which allow one to prove theorems from axioms or earlier proven theorems.

There are two types of axioms: the logical axioms which embody the general truths about proper reason-
ing involving quantified statements, and the axioms describing the subject matter at hand, for instance
axioms describing sets in set theory or axioms describing numbers in arithmetic. While the set of in-
ference rules in first-order calculus is finite, the set of axioms may very well be and often is infinite.
However, a general algorithm is required that can decide for a given well-formed formula whether it is
an axiom or not. Furthermore, there should be an algorithm that can decide whether a given application
of an inference rule is correct or not.

Temporal First-Order Logic (TFOL). Temporal first-order logic is an extension of first-order logic
that includes notation for reasoning about temporal durations during which statements are true. There are
various sorts of temporal first-order logic. Some common sorts include three prefix operators represented
by a circle ◦, square 2 and diamond 3 which mean ”is true at the next time instant”, ”is true from now on”
and ”is eventually true”. An additional operator, the “Until” operator is often available. The expression
xUy means x is true until y is true. However, in this dissertation a different approach is adopted. The
method of temporal arguments is selected as a temporal notation that is appropriate for the application

48 Chapter 2. Background and Related Work

Operator Description
e1; e2 e1 before e2

e1; e2!e3 e1 before e2 without e3 in between
|e1, e2|T=t1 e2 happened within time t1 from e1.
now (implicit) At the current instant.
timestamp At time t.

Table 2.1. Temporal operators in SCAFOS.

logic in sensor-driven systems. Chapter 6 discusses a scheme for representing and reasoning about two
levels of knowledge. Sensor-level predicate instances naturally reflect the current instance, however,
there is often a need to reason about past (historic) instances that were active within a certain duration
or with other high-level knowledge which is deduced from the sensor data. In the adopted notation, the
temporal dimension is captured by augmenting each current high-level predicate instance with an extra
argument to be filled by a timestamp, according to a local clock, e.g., H UserInLocation(John,PhD,Room
10,Office,12:34). Current sensor-level predicates do not have timestamps and the concept of now is
implicit. Historic predicate instances are augmented with two timestamps, the first denoting the point in
time when they started holding and the second denoting the point in time when they stopped holding.
For example,
H UserInLocationHistoric(John, PhD, Room 10,Office,12:34,12:37).

Temporal Operators in SCAFOS. Apart from atomic predicates, this dissertation uses TFOL for
more complex formulae such as queries and rules. Rules are TFOL wffs (well-formed-formulae) that
resemble Horn Clauses in that there is a single conclusion and a single implication. The right-hand-side
(RHS) of each rule is the abstract predicate that is created by the rule. Queries correspond to the left-
hand-side (LHS) of a rule and they return a set of selected values of the predicate instances to which they
apply, or the answer “no” if the instance defined by the query does not exist. In both queries and rules,
universal quantification is implicit.

A set of temporal operators has been designed and implemented in this dissertation, which operate
on FOL predicates. These operators are more specific than the four general operators of TFOL and they
are tailored to the application logic of sensor-driven systems. Their design has been influenced by the
work presented in [63, 81]. For example, the term |e1, e2|t>300 denotes the fact that event e2 follows e1

by at least 5 minutes. The operators proposed in this thesis are shown in Table 2.1 and are discussed in
more detail in Chapter 12.

Description Logics. Description Logics [73] are logic-based approaches for knowledge-representation
systems. Description logics represent entities using a “UML”-like language called DL Language. The
logic used for reasoning about such entities is derived from first-order logic but is much less powerful
and expressive than first-order logic. Description Logics have the advantage that they allow for the spec-
ification of logical constraints. Any potential contribution of Description Logics to Sentient Computing
is yet to be determined.

SPASS. SPASS [107] is a theorem prover for FOL with equality. Given a theorem in FOL and a set of
axioms, it finds a proof if the theorem can be proven from the axioms. SPASS is a powerful tool because
it has an online interface, whereby theorems can be submitted and tested for satisfiability, as well as tools
for translating FOL to Clause Normal Form (CNF) which can then be converted to propositional logic
such that it can be used by other satisfiability tools. In this dissertation, SPASS is used in a novel way,
namely, as the core of the Satisfiability Service of Figure 1.1. More specifically, a formula in FOL that
defines an abstract event (AESL definition) is asserted in the prover, which treats it as a theorem that

Chapter 2. Background and Related Work 49

needs to be tested for satisfiability given some appropriate axioms. Chapter 7 discusses this in detail.

Fuzzy Logic. Fuzzy Logic [109] is a superset of Boolean logic dealing with the concept of partial
truth. Whereas classical logic holds that everything can be expressed in binary terms (0 or 1, black or
white, yes or no), fuzzy logic replaces Boolean truth values with degrees of truth which are very similar
to probabilities (except that they need not sum to one). This allows for values between 0 and 1, shades
of gray and maybe; it allows partial membership in a set. It is highly related to fuzzy sets and probability
theory. It was introduced in the 1960s by Dr. Lotfi Zadeh of UC Berkeley.

2.8 Production Systems

A production system is a programming language that does not require the programmer to specify how the
various parts of the program will interact. A production system interpreter is a computer which contains
two separate memories called production memory and working memory. Production memory holds the
expressions (productions) to be executed by the processor and working memory holds the data operated
on by the program.

A production system incorporates no concept of sequential control flow through the program. The
flow control in a production system is determined by the order in which the condition parts of the pro-
ductions become true. The interpreter repeatedly executes the following steps:

1. Determine which productions have true condition parts.

2. If there is no production with true condition parts, halt the system. Otherwise, select a production
from those that do.

3. Perform the actions specified by the chosen production.

4. Go to step 1.

This sequence is called the recognise-act cycle. Step 1 of the cycle is called the match. Step 2 is
called conflict-resolution and step 3 is called act.

A production is a list that may contain a condition part followed by a right pointing arrow. For
example, consider a production system that is interested in Greek tragedy. Its working memory would
contain the following data elements:

Agenor is-father-of Cadmus.

Cadmus is-father-of Polydorus.

Polydorus is-father-of Labdacus.

Labdacus is-father-of Laius.

The objects contained in production memory are condition-action pairs called productions: “If there is
a man whose father is Laius, then assert that the man killed Laius.” This can be symbolised with the
following phrase:

(Laius is-father-of ?X) ⇒ (assert (?X killer-of Laius)) (2.1)

In order for the production to be triggered, the working memory needs to contain the element: Laius
is-father-of Oedipus.

The condition part of the production is also a list which may contain several condition elements in
the form of patterns. The match tries to find instances of the class defined by the pattern among the

50 Chapter 2. Background and Related Work

lists in working memory, a process called instantiating the pattern. A production is ready to be executed
when all its non-negated condition elements are instantiated and none of the negated ones. The ordered
pair of a production name and the collection of data elements that instantiate the production’s condition
elements is called an instantiation. The set of all legal instantiations is called the conflict set.

2.8.1 The Rete Algorithm for the Many Pattern to Many Object Pattern Match Problem

The Rete algorithm [37, 38] is a powerful and efficient algorithm for pattern matching as it exploits prop-
erties such as temporal redundancy in the working memory and structural similarity in the production
memory in order to avoid examining the whole of these memories in each cycle. Temporal redundancy
expresses the fact that not all elements in working memory change in each cycle and that any production
that becomes instantiated was close to being instantiated in the previous cycle. Structural similarity ex-
presses the fact that many productions have many conditional elements in common in their LHS. Based
on these two properties, the Rete algorithm, instead of examining the working memory directly, moni-
tors the changes made to working memory and maintains internal information that is equivalent to the
working memory. At the beginning of a cycle the match routine computes whether any changes need
to be made to the conflict set. If there are changes to be made, it sends these changes to the interpreter
where the conflict set is being maintained.

The interpreter consists of a fixed part that deals with the conflict set and a variable part that is
generated by the compilation of the LHS of the productions into Rete networks. These networks perform
the actual match. Structural similarity is achieved in them by combining nodes that test for the same
LHS conditional elements.

For each working memory element, a token is created for the pair of the working memory element and
a tag. The tag is used in order to determine whether the working memory element is added or removed
from the working memory. Tokens are processed by the nodes in the network in order to determine
whether the overall pattern is matched or not.

Example. The following productions contain two identical condition elements:

MB15 ((Want (Monkey On ?O))(?O Near ?X) ⇒ (Want (Monkey Near ?X)))

MB16 ((Want (Monkey On ?O))(?O Near ?X)(Monkey Near ?X) ⇒

(Want (EmptyHanded Monkey)))

When these two productions are compiled together most of the nodes in the network are shared. Fig-
ure 2.1 describes the Rete algorithm for the two productions above.

Jess. Jess [51] is a java shell that is based on CLIPS [19] which has been developed by the Technology
Branch (STB) of NASA. CLIPS implements a forward chaining rule interpreter that cycles through a
match-execute cycle. During the matching phase, all rules are scanned to determine whose condition
part is matched by the current state of the environment, i.e., contents of working memory. During the
execute phase the operation specified by the action part of the rule that has been found to match is
executed. This cycle continues until either no rule matches or the system is explicitly stopped by the
action part of a rule. A conflict resolution strategy is applied if more than one rule is found to match.
The environment is modelled through a set of “facts” which are kept in a list in memory.

Planning Systems. Planning systems [74] are systems that given a formula that represents a goal γ they
attempt to find a sequence of actions that produces a world state described by some state description S
such that S |= γ. We say then that the state description satisfies the goal. Although the state-space

Chapter 2. Background and Related Work 51

Is the element a list of two subelements?

Is the first subelement Want?

Is the second subelement a list of three subelements?

Is the first subelement of the second subelement Monkey?

Is the second subelement of the second subelement On?

Join those tokens that allow ?O to be bound consistently?

Report that production MB15 is satisfied Join those tokens that allow ?X to be bound consistently.

Report that production MB16 is satisfied.

Is the element a list of three subelements?

Is the second subelement Near? Is the first subelement
 Monkey?

Is the second subelement
Near?

Distribute descriptions of working memory changes

Figure 2.1. The Rete algorithm for productions MB15 and MB16.

approach of planning systems looks promising for Sentient Computing, the goals pursued by planning
systems are different, and a lot of work needs to be done in this direction to determine any potential
contributions in this area.

2.9 Distribution

This section discusses the current principles in designing distributed systems that are used as guidelines
in this dissertation.

ITU. The ITU-T Recommendation for Open Distributed Processing [47] is a set of standards according
to which distributed systems should be designed. ODP proposes an object modelling approach to system
specification and defines a framework for building distributed systems that abides by the principles of
transparency and conformance.

The ODP model is composed of objects. Objects are representations of entities in the real-world. A
system is composed of interacting objects. The state of an object is determined by a set of actions it can
take part in. A subset of actions defines the object’s interaction with other objects.

The ODP framework, as part of its event-based model provides an event notification function [49] that
coordinates interaction between the framework entities. The event notification function specifies event
histories as objects that represent significant actions and therefore object states. Event producers interact
with the event notification function to create event histories. The event notification function notifies
event consumer objects of the availability of event histories. The event notification function supports one
or more event history types and has an event notification policy which determines the behaviour of the
function, in particular,

52 Chapter 2. Background and Related Work

• which objects can create event histories,

• which objects are notified of the creation of a new event history,

• the means by which such notifications occur,

• persistence and stability requirements for event histories.

An event consumer interacts with the event notification function to register for notification of new
event histories. Depending upon the event notification policy, the interaction can

• establish bindings to currently available event histories.

• enable communication about event histories created subsequent to the interaction.

2.10 The Object Management Group (OMG)

The Object Management Group is a non-profit consortium created in 1989 with the purpose of promoting
the theory and practice of object technology in distributed computing systems. In particular, it aims to
reduce the complexity, lower the costs, and hasten the introduction of new software applications. Origi-
nally formed by 13 companies, OMG membership has grown to over 500 software vendors, developers
and users.

OMG realizes its goals through creating standards that allow interoperability and portability of dis-
tributed object oriented applications. They produce specifications that are put together using contribu-
tions of OMG members who respond to Requests For Information (RFI) and Requests For Proposals
(RFP). The strength of this approach comes from the fact that most of the major software companies
interested in distributed object oriented development are OMG members.

2.10.1 The Object Management Architecture (OMA)

OMA is a high-level vision of a complete distributed environment. It consists of system-oriented compo-
nents (Object Request Brokers and Object Services) and application-oriented components (Application
Objects and Common Facilities). The Object Request Broker constitutes the foundation of OMA. It
allows objects to interact in a heterogeneous, distributed environment, independent of the platforms on
which these objects reside and techniques used to implement them. In performing its task, it relies on
Object Services, which are responsible for general object management such as creating objects, access
control, keeping track of relocated objects, etc. Common Facilities and Application Objects are the com-
ponents closest to the end user, and in their functions they invoke services of the system components.

2.10.2 The Common Object Request Broker (CORBA)

CORBA specifies a system that provides interoperability between objects in a heterogeneous, distributed
environment and in a way transparent to the programmer. Its design is based on the OMG Object Model.
The OMG Object Model defines common object semantics for specifying the externally visible char-
acteristics of objects in a standard and implementation-independent way. In this model, clients request
services from objects (which will also be called servers) through a well-defined interface. This interface
is specified in OMG IDL (Interface Definition Language). A client accesses an object by issuing a re-
quest to the object. The request is an event, and it carries information including an operation, the object
reference of the service provider, and actual parameters (if any). The object reference is an object name
that defines an object reliably.

Chapter 2. Background and Related Work 53

2.11 Knowledge Integration Systems

This section aims to illustrate the conceptual similarities between the modelling approach presented in
this dissertation and the ERP design model. SAP [105] is the most influential ERP system. Though
specific to corporate knowledge integration, SAP is based on a design that is platform independent,
scalable, highly customisable and integratable. SAP has achieved notable success.

SAP. SAP the company was founded in Germany in 1972 by five ex-IBM engineers. SAP stands
for Systeme, Andwendungen, Produkte in der Datenverarbeitung which - translated to English - means
Systems, Applications, Products in Data Processing. In 1979, SAP released SAP R/2 (which runs on
mainframes) into the German market. SAP R/2 was the first integrated, enterprise wide package and
was an immediate success. For years SAP stayed within the German borders until it had penetrated
practically every large German company. Looking for more growth, SAP expanded into the remainder
of Europe during the 80’s. Towards the end of the 80’s, client-server architecture became popular and
SAP responded with the release of SAP R/3 (in 1992). This turned out to be a “killer application” for
SAP, especially in the North American region into which SAP expanded in 1988.

SAP R/3 is a highly integrated, highly scalable system that models corporate processes that extend
through various departments. It is built on robust databases, and it supports different database technolo-
gies and operating system platforms. This makes it open. It offers support for knowledge persistence,
archiving and report production. SAP is delivered to a customer with selected standard processes turned
on and many other optional processes and features turned off. This makes it highly customisable and
portable. At the heart of SAP R/3 are about 10,000 tables that control the way the processes are exe-
cuted. Configuration is the process of adjusting the settings of these tables to get SAP to run the way
you want it to. Functionality included is enterprise-wide including: Financial Accounting (e.g., general
ledger, accounts receivable etc), Management Accounting (e.g., cost centres, profitability analysis etc.
), Sales, Distribution, Manufacturing, Production Planning, Purchasing, Human Resources, Payroll, etc.
All of these modules are tightly integrated.

SAP are maintaining and increasing their dominance over their competitors through a secure, per-
sonalisable and customisable entry point in the knowledge system (an Internet portal), which allows
different privileges for different users. Furthermore, it embraces legacy systems such as mainframes by
offering generic middleware wrappers that offer seamless integration. The Business Connector is such a
component.

2.12 Security

Finally, related work has been carried out in the area of security for context-aware systems. Two efforts
that have had a significant impact in the area of context-aware computing are discussed here.

Spatial Policies for Mobile Agents in a Sentient Computing Environment. The work presented in
[99] discusses a simple location-based mechanism for the creation of security policies to control mobile
agents. It simplifies the task of producing applications for a pervasive computing environment through
the constrained use of mobile agents. The novelty of this work lies in the fact that it demonstrates the
applicability of recent theoretical work using ambients [14] to model mobility.

This work can be integrated with the model presented in this dissertation as an additional service to
control the behaviour of mobile agents according to the defined spatial policies.

Location Privacy in Sentient Computing. The work presented in [11] discusses the issue of main-
taining user privacy and particularly user anonymity in Sentient Computing. In such an environment, a
user’s anonymity can be breached and his identity be inferred by a number of factors, such as the fact

54 Chapter 2. Background and Related Work

that he spends most of his time at his desk. This is addressed by applying the principle of a mixed zone
which is an area where none of the users has registered an application callback and therefore is anony-
mous. In a mixed zone, a previously identifiable user is dispersed among the rest of the users. Assuming
that users change to a new, unused pseudonym whenever they enter a mixed zone, applications that see a
user emerge from the mixed zone cannot distinguish that user from any other who was in the mixed zone
and cannot link people going into the mixed zone with those coming out of it.

This work complements directly the work described in Chapter 3 of this dissertation where a number
of possible inferencing mechanisms based on location are discussed and which demonstrate a clear threat
to user anonymity. This gives good grounds for the findings of [11] to be applied.

Chapter 3

Inferring Abstract State from Concrete
State using Hidden Markov Models
(HMMs)

This chapter discusses a methodology for modelling high-level abstract knowledge that is inferred from
low-level concrete knowledge such as location data. The inference process is based on Hidden Markov
Models (HMMs) [32, 88]. This chapter uses this methodology in order to build a recognition system
for movement models, here referred to as movement phonemes. The recognition system is used as a
middleware component in SCAFOS and movement phonemes are used by the user in order to create
application specifications.

3.1 Introduction

The specific aim of SCAFOS is to create models of abstract knowledge. Such models are to be made
available to the user who can use them in order to create application specifications using SCAFOS.
Because the user is mobile and the world consists of several heterogeneous distributed domains which
may change dynamically, the abstract models should be valid independent of the topology of the physical
environment and independent of the user. The benefits of having models of abstract knowledge with the
above properties can be summarised below:

• Models of abstract state that are independent of the specifics of each sensor-driven component
(e.g., with respect to the number of users and the topology of the environment) can be applied to
heterogeneous sensor-driven systems and still remain valid.

• The validity and accuracy of such models in different sensor-driven environments can be used to
evaluate the properties of the sensor technology that produces the model data, such as its accu-
racy. For example, two different location technologies can be evaluated based on how well they
recognise human movements, such as the ones described in this chapter.

• Movement models are potentially capable of letting us learn a great deal about the real-world
process that produced the location events without having the source available, i.e., by simulation.

3.2 Achievements

Section 3.1 discusses the motivation of this thesis in creating models for statistical inferencing. In this
section, the specific achievements that stem from applying HMMs to the Sentient Computing environ-
ment are presented. This chapter achieves the following:

55

56 Chapter 3. Inferring Abstract State Using HMMs.

• The design and implementation of a system that automatically infers high-level knowledge from
time-series location data (such as those produced by the Active BAT) when it has been appropri-
ately trained. Such a system behaves similarly to a speech recogniser that recognises words from
processing speech signals. More specifically:

– HMMs are shown to be appropriate for characterising location-based inferences.

– A set of semantics that is appropriate to the Sentient Computing Environment and detectable
by HMMs in real-time is determined.

– Event models that represent the identified semantics are discussed. These models are referred
to as phonemes.

– The design of an appropriate sampling process for the training and the observation data
streams is discussed.

– The design and implementation of a system that performs recognition for the above phonemes
is discussed.

• The inverse problem to phoneme recognition is investigated, i.e., the differences in the environment
that cause differentiations in the patterns that correspond to the same phoneme are identified. More
specifically:

– The design and implementation of a user recognition system is discussed that is based on
samples of users sitting down.

• Both recognition systems are evaluated against existing related work.

3.3 Justification

The choice of the models to be recognised was based on the following criteria:

• The models reflect invariant properties that are common among different users and are recognisable
independently from the user.

• The chosen invariant properties are reliably and accurately recognisable independently of the user’s
speed of motion. For example, a walking movement should be recognisable whether a user is walk-
ing slowly, with medium speed or quickly. This is not straightforward. In the case of SPIRIT [41],
the speed with which a user is moving determines the sampling rate of SPIRIT. This has a direct
effect on the sampling method. If samples of equal duration are taken, then samples that represent
the same phoneme but which have been produced by users moving at different speeds will have
a different number of data points and therefore will be different (see Section 3.6). This issue has
been addressed successfully, and it is discussed later on in this chapter.

• The models are transparent to the environment, i.e., they are re-applicable to any sensor-driven
environment.

• The models are used in order to produce a characterisation of each location event. The charac-
terisation is meaningful in the general case forming a complete set of recognisable phonemes. In
some cases, further or different inferencing could also be appropriate. For example, the movement
of a user opening a door inwards and entering a room is currently recognisable when compared to
walking in a straight line; however, it is not easily distinguishable from turning right or turning left
movements. Therefore, a model for opening a door inwards is not made part of a general-purpose
recognition system, as it is not recognisable against the complete set of phonemes (see Section 3.10
for discussion).

Chapter 3. Inferring Abstract State Using HMMs. 57

3.3.1 Phonemes

The following models were constructed as characterising certain 3-D space movements:

• Sit Down

• Stand Up

• Sitting

• Walking

• Still

The pattern in each phoneme reflects the gravity and the displacement of the human body in 3-D space.
These are mutually exclusive and comprise a complete set of movements, in the sense that if a user
performs a movement that is identified as belonging to one of the above models, this movement describes
fully the user’s state in terms of moving. Although previous attempts have been made in the area of
movement recognition, these have been case-specific and limited. Section 3.8 demonstrates the efficiency
of the modelling approach over existing methodologies.

3.4 The Movement Recognition Problem

A Hidden Markov Model (HMM) is a stochastic model where an underlying process that is not observable
can be observed through another set of stochastic processes that produce the sequence of observations.

An HMM can be seen as a finite state machine that consists of N states denoted as X = x1, x2, · · · , xN

and the state at time t as qt. An HMM is characterised by the following:

• S, the number of distinct observation symbols per state, i.e., the discrete alphabet size. The ob-
servation symbols correspond to the physical output of the system being modelled. We denote the
individual symbols as V = v1, v2, · · · , vS .

• The state transition probability distribution A = aij where

aij = P [qt+1 = xj |qt = xi], 1 ≤ i, j ≤ N

• The observation symbol probability distribution in state j, B = bj(k), for a fixed time t, where

bj(k) = P [vk at t|qt = xj], 1 ≤ j ≤ N

1 ≤ k ≤ S

• The initial state distribution π = {πi}, i.e.,/ the probability that each state xi is the first state

πi = P [q1 = xi], 1 ≤ i ≤ N

Each time that a state j is entered at time t, an observation vector Ot is generated from the probability
density bj(Ot). After the HMM has moved from the initial state x0 to a final state xT+1 for this sequence,
a sequence of observations has been generated: O = O1O2 · · ·OT , where each observation Ot is one of
the symbols from V and T is the number of observations in the sequence (it is assumed that states x0

and xT+1 do not produce any observations).
Figure 3.1 shows an example of this process where a six state model moves through the state sequence

X = 1, 2, 2, 3, 4, 4, 5, 6 in order to generate the sequence O1 to O6 (States 1 and 6 are the initial and
final states and they do not generate any observations).

58 Chapter 3. Inferring Abstract State Using HMMs.

1 2 3 4 5 6
a12

a22

a23

a33

a34

a44 a55

a45 a56

a24 a35

O1 O2 O3 O4 O5 O6

Figure 3.1. The Markov generation model

The general recognition problem can be seen as classifying an observation sequence OT to the HMM
that represents the hidden underlying process that generated the observation sequence. This problem en-
tails three more specific problems: the first is that when trying to create HMM models for each movement
phoneme, the values of the state transition probabilities aij and output probabilities bj of each model are
not known and need to be estimated by training data. The better the estimation, the more accurate the
model. The second problem arises when trying to uncover the hidden part of the model. As the process
to be modelled (movement phoneme) is unknown, the state sequence that generated an observation is
not known either. The third problem is a problem of evaluation: how is the most appropriate model that
generated the observation sequence defined, out of a set of possible models?

Assuming a vocabulary that consists of words wi that represent the phonemes of interest, i.e., wi ∈
{SitDown, StandUp, Walking, Still, Sitting}, let each movement be represented by a sequence of
position vectors of three dimensions (x, y, z) or observations O, defined as

O = 〈O1, O2, · · · , OT 〉 (3.1)

where Ot is the position1 observed at time t. The phoneme recognition problem can then be regarded
as that of computing the model wi with the maximum probability of having generated the observation
sequence O.

arg max
i

P (wi|O) (3.2)

where wi is the ith phoneme in the vocabulary.
This probability is not computable directly, but using Bayes’ rule gives

P (wi|O) =
P (O|wi)P (wi)

P (O)
. (3.3)

Equation (3.2) is solved using (3.3) if P (O|wi) can be estimated. The general problem of the direct
estimation of the joint conditional probability P (O1, O2, ...OT |wi) from examples of location samples,
given the dimensionality of the observation sequence O, is not practicable. However, if a parametric
model of word production such as a Markov model is used, then estimation from data is possible since
the problem of estimating the class conditional observation densities P (O|wi) is replaced by the mathe-

1Ot is a vector of three variables x, y, z that represent the coordinates.

Chapter 3. Inferring Abstract State Using HMMs. 59

matically much simpler problem of estimating the Markov model parameters, which entails significantly
smaller computational effort. Given an HMM model, the joint probability that O is generated by the
model M moving through the state sequence X of Figure 3.1 is calculated simply as the product of the
transition probabilities and the output probabilities:

P (O, X|M) = a12b2(O1)a22b2(O2)a23b3(O3) · · · (3.4)

Given that X is unknown, the required likelihood is computed by summing over all possible state se-
quences X = x(1), x(2), x(3), · · · , x(T), that is

P (O|M) =
∑

x

ax(0)x(1)

T
∏

t=1

bx(t)(Ot)ax(t)x(t+1) (3.5)

where x(0) is the model’s entry state and x(T + 1) is the model exit state.

Recognition

location data (x,y,z) transcription

Training

labelled training samples

Sampling

Figure 3.2. Phoneme recognition

As an alternative to Equation 3.4, the likelihood can be approximated by only considering the most
likely state sequence that is

P̂ (O|M) = maxx{ax(0)x(1)

T
∏

t=1

bx(t)(Ot)ax(t)x(t+1)} (3.6)

This assumes that the parameters aij and bj are known. Although this is not generally the case,
HMMs allow for the above parameters to be estimated using training data. This process is called training
(Figure 3.2).

Training. Given a set of training examples corresponding to a particular model, the parameters of that
model can be determined automatically by a statistically robust and efficient re-estimation procedure
(Baum-Welch re-estimation. This procedure has the following steps:

A set of prototype models are created, in which the output distribution for each state j is Gaussian

60 Chapter 3. Inferring Abstract State Using HMMs.

with mean vector µj and covariance matrix Σj ; that is, bj(Ot) satisfies:

bj(Ot) = N(Ot; µj , Σj)

If Lj(t) denotes the probability of being in state j at time t, then the maximum likelihood estimates of
µj and Σj can be calculated as shown below

µ̂j =

∑T
t=1 Lj(t)Ot

∑T
t=1 Lj(t)

, (3.7)

Σ̂j =

∑T
t=1 Lj(t)(Ot − µj)(Ot − µj)

′

∑T
t=1 Lj(t)

, (3.8)

where prime denotes vector transpose. To apply the above equations, the probability Lj(t) must be cal-
culated. This is done efficiently using the Forward-Backward algorithm. Executing the above produces
a set of models, which are optimised according to the training data.

Recognition. Recognition of an unknown data sample of size s is based on building an HMM network
and finding a path of size s that has the maximum likelihood (Viterbi algorithm). That path corresponds
to the HMM model that corresponds to the correct phoneme. The model with the highest maximum
likelihood is selected for each observation sequence under consideration (Token Passing Algorithm).

3.5 Building Phoneme Models

This section portrays a representation of the phoneme models discussed in Section 3.3.1 in terms of their
observations being 3-D position vectors (x, y, z). The coordinate system is arbitrarily set in order to
depict user positions in the LCE [36] and is currently being used in SPIRIT [41] and its applications.
The horizontal axis in most of the graphs that follow is the x axis and the vertical axis is the y axis in
this coordinate system. The z coordinate signifies the distance from the user’s Active BAT to the floor.
On the graphs that portray only one coordinate on the vertical axis, the horizontal axis always portrays
the number of sampling points since the beginning of the sampling process.

The models presented next are based on a number of experiments that took place in the LCE. The
samples for the Sit Down phoneme were produced by a user sitting down and getting up from a couch.
The height when standing up (z coordinate) is approximately 1.2 m. Several other experiments took
place and the results are discussed in Section 3.9.

Chapter 3. Inferring Abstract State Using HMMs. 61

3.5.1 Sit Down

The sit down movement is characterised by the fact that the user bends his knees, lowering his body onto
the seat. During this movement, the user leans slightly forward and then backwards onto the seat.

−16

−15.5

−15
−14.5

−14
−13.5

−6.7−6.6−6.5

0.8

1

1.2

X coordinate

Sit Down

Y coordinate

Z
co

or
di

na
te

(a)

1 2 3 4 5 6 7 8 9
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4 Sit Down (z coordinate)

BAT Samples

H
ei

gh
t

(b)

Figure 3.3. A Sit Down sample 3D (a), z coordinate only (b).

A sample of a sit down movement (on the LCE’s couch) is portrayed in Figure 3.3. The characteristic
sample (b) is produced by the z coordinate as captured by the Active BAT which is portrayed on the
abscissa of Figure 3.3(b).

62 Chapter 3. Inferring Abstract State Using HMMs.

3.5.2 Stand Up

A stand up movement is characterised by the fact that the user drags his body slightly forwards, until
the feet are placed strongly on the floor, bends the knees lowering his body forward and straightens the
knees gradually, thus lifting the body upwards.

−16.5

−16

−15.5

−15

−14.5

−14

−13.5

−6.7
−6.6

−6.5

0.8

1

1.2

Stand Up

Y coordinate

Z
co

or
di

na
te

X coordinate

(a)

1 2 3 4 55 6
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Stand Up (Z coordinate)

BAT Samples

H
ei

gh
t

(b)

Figure 3.4. A Stand Up sample 3D (a), z coordinate only (b).

Figure 3.4 shows a Stand Up sample, as monitored by the Active BAT.

Chapter 3. Inferring Abstract State Using HMMs. 63

3.5.3 Sitting

The sitting state is characterised by the fact that the user remains still with the body closer to the ground
than when standing up.

−16.5

−16

−15.5
−15

−14.5
−14

−13.5

−6.6−6.5−6.4

0.8

1

1.2

Sitting

Y coordinate

Z coordinate

X coordinate

(a)

0 2 4 6 8 10 12 14

0.76

0.78

0.8

0.82

0.84

0.86

0.88

BAT Samples

H
ei

gh
t

Sitting (Z coordinate only)

(b)

0 2 4 6 8 10 12 14
−16.68

−16.67

−16.66

−16.65

−16.64

−16.63

−16.62

−16.61

−16.6 Sitting (X coordinate)

BAT Samples

X
 c

oo
rd

in
at

e

(c)

0 2 4 6 8 10 12 14
−6.6

−6.59

−6.58

−6.57

−6.56

−6.55

−6.54

−6.53

−6.52
Sitting (Y coordinate)

BAT Samples

Y
 c

oo
rd

in
at

e

(d)

Figure 3.5. A Sitting sample 3D (a) z coordinate only (b) x coordinate only (c) y coordinate only (d).

A sitting sample is portrayed in Figure 3.5. The characteristic sample (b) is produced by monitoring
the z coordinate. Although during the experiment the user was still, there is a small displacement in the
sample points. This is due to the statistical error of the sampling process, and it is obvious also in plots
(b), (c) and (d), which portray each coordinate separately vs. the sample number.

64 Chapter 3. Inferring Abstract State Using HMMs.

3.5.4 Walking

The walking movement is characterised by a fluctuation in the user’s height. As he lifts each leg and
lowers it again his whole body is displaced slightly up and down.

−20.5

−20

−19.5
−19

−18.5
−18

−5.45−5.35−5.25

0.8

1

1.2

X coordinate

Walking

Ycoordinate

Z
co

or
di

na
te

(a)

2 4 6 8 10 12 14 16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32 Walking (z coordinate noise)

BAT Samples

H
ei

gh
t

(b)

Figure 3.6. A Walking sample 3D (a) z coordinate only (b).

A sample of a user walking is portrayed in Figure 3.6. The characteristic sample (b) is produced by
monitoring the z coordinate. Although there is a similar displacement in the x and y coordinates as well,
this is not always obvious as this displacement may be due to the user turning, or walking in a curve. For
this reason, the plots of the x and y coordinate are not considered characteristic for this phoneme and are
not portrayed here.

Chapter 3. Inferring Abstract State Using HMMs. 65

3.5.5 Still

The still state is characterised by the fact that the position of the user remains the same in all three
coordinates.

−15

−14.5

−14

−13.5

−13

−12.5

−12

−9.5
−9.4

−9.3

0.8

1

1.2

X coordinate

Still

Y coordinate

Z
co

or
di

na
te

(a)

0 5 10 15
1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32
Still (Z coordinate)

BAT Samples

H
ei

gh
t

(b)

0 2 4 6 8 10 12 14
−15.28

−15.27

−15.26

−15.25

−15.24

−15.23

−15.22

−15.21

−15.2 Still (X coordinate)

BAT Samples

X
 c

oo
rd

in
at

e

(c)

0 2 4 6 8 10 12 14

−9.44

−9.43

−9.42

−9.41

−9.4

−9.39

−9.38

−9.37 Still (Y coordinate)

BAT Samples

Y
 c

oo
rd

in
at

e

(d)

Figure 3.7. A Still sample 3D (a) z coordinate only (b) x coordinate only (c) y coordinate only (d).

A sample of a user who is still is portrayed in Figure 3.7. Also in this case, there is an obvious
displacement in all coordinates that is caused by the error in the measurements. The shape of the z
coordinate in the sample in Figure 3.7(b) bears similarities to the sample of Figure 3.6(b). However,
the latter has a more distinguishable shape and the displacements are on average larger than the ones
of Figure 3.7(b). This similarity in shape creates ambiguity between the two phonemes when trying to
recognise them with traditional methodologies. The HMM-based solution does not suffer from the same
deficiency. This is discussed in detail in Section 3.8.

66 Chapter 3. Inferring Abstract State Using HMMs.

3.5.6 Open Door Outwards

The Open Door Outwards phoneme is characterised by the fact that the user pulls the door outwards
walks around it in a curve and enters the opening inwards.

−21.5
−21.4

−21.3
−21.2

−21.1
−21

−20.9

−5.5

−5.4

−5.3

0.7

0.8

0.9

1

1.1

1.2

1.3

X coordinate

Z
co

or
di

na
te

Y coordinate

Figure 3.8. A sample of movement patterns entering doors that open outwards.

Although this phoneme was not selected to form part of the final recogniser, it is discussed here in
order to illustrate the potential of using HMMs to discover aspects of the physical environment.

Chapter 3. Inferring Abstract State Using HMMs. 67

3.5.7 Walking-Still-Sit Down-Stand Up

A user walks to the couch, sits down, remains seated for a while, stands up and remains still.

−21

−20

−19

−5.7−5.5−5.3

0.8

0.9

1

1.1

1.2

1.3

X coordinate
Y coordinate

Z
co

or
di

na
te

Sit Down−Stand Up
Walking
Still

Figure 3.9. All phonemes.

Figure 3.9 portrays a sequence of movements. This aims to give an illustrations of a movement that
consists of multiple samples.

68 Chapter 3. Inferring Abstract State Using HMMs.

3.6 Identifying an Appropriate Sampling Process

The samples used for the phonemes in Section 3.5 are position vectors (x, y, z) of variable length, and
they are portrayed as produced by the experiment. This section deals with identifying an appropriate
sampling process that can be undertaken automatically by a sampling service in real-time.

Two factors need to be taken into consideration. The first one is the speed of the executed movement.
The second is the sampling rate of the location technology. As far as the first factor is concerned, it is
desirable that movements should be recognised independently of the speed with which they are executed,
i.e., quick movements should be as reliably recognisable as slow ones. The second factor affects the
sampling decision only when the rate at which positions are sampled by the sensor infrastructure depends
on the user speed. SPIRIT is such a system that employs the principle of a variable sampling rate for
sampling efficiency. Wherever it is determined from the location samples that an object is increasing its
speed, SPIRIT increases the Active BAT’s sampling rate too. On the contrary, if an object slows down,
SPIRIT decreases the Active BAT’s sampling rate.

In order to decide the best sampling process, samples of both fixed duration (6 seconds) and fixed
length (6 observations and 4 observations) were considered. Samples of fixed duration contained a
variable number of data points, and in order to be used as training sequences and be recognised by the
HMMs, an interpolation process was used where the missing data points were replaced with a copy of
the value of the last observation in the sample. Although the recognition was similar in accuracy to that
achieved using fixed-length samples (see Section 3.6.4), it was decided to use fixed-length samples for
simplicity reasons, in order to avoid the interpolation overhead. Section 3.6.3 discusses how samples are
distinguished and recognised under this sampling scheme.

The following section proposes a different calibration process, appropriate for movement recognition,
so that SPIRIT’s variable sampling rate does not affect the accuracy of the recogniser.

3.6.1 Movement Calibration

Given SPIRIT’s variable sampling rate, it is obvious that the worst-case sample to be recognised is one
where the user’s speed is high and the sampling rate of the location system is low. It was decided that
the calibration should be performed using the Sit Down and Stand Up movements, as these have a more
distinctive shape to the human eye than the Walking and Still patterns, and the beginning and end of the
movement can be simulated easily. In order to perform this calibration, the following experiment was
carried out.

First a user performed twenty sit down and stand up movements on the couch in the lab, at different
speeds. The fastest sit down movement produced a sample consisting of 4 events (data points) and lasted
1.032 sec in total. The fastest stand up movement consisted also of 4 data points. All other samples
consisted of more data points. An appropriate technique in HMMs is that the sampling window is set
to 4. Larger samples are processed as a series of samples of size 4 (e.g., one sample of size 15 is seens
as 12 samples of size 4.) Figure 3.10 portrays some representative samples of duration 20 sec of sitting
on the couch at different speeds. Note that because the fast samples were taken at the beginning of the
experiment and after the user has been standing still for a while, SPIRIT is sampling with low frequency,
which explains why the first sample has only 6 data points. Already at the second fast movement, SPIRIT
is sampling at high rate (13 data points). The third sample at medium speed has the most number of data
points for the same duration (19 data points), because SPIRIT has adjusted the sampling rate and the
movement is slower, so more points are captured per movement.

Samples of similar size are often encountered in problems of classifying discrete data and are classi-
fied very accurately. For example, the samples that correspond to trips between significant locations [4]
often consist of observations of length three and dimensionality one, i.e., 3 consecutive GPS readings.
An HMM-based system that calculates user locations based on signal strength measurements is based on

Chapter 3. Inferring Abstract State Using HMMs. 69

−16.5

−16

−15.5
−15

−7.5

−7

−6.5

−6

0.8
1

1.2

X coordinate

Sit Down Stand Up fast

Y coordinate

Z coordinate

(a)

−16.5

−16

−15.5
−15

−8

−7.5

−7

−6.5

−6

0.8
1

1.2

Sit Down Stand Up medium speed

Y coordinate

X coordinate

Z coordinate

(b)

−16.5

−16

−15.5
−15

−8

−7.5

−7

−6.5

−6

0.8
1

1.2

X coordinate

Sit Down Stand Up slowly

Y coordinate

Z
co

or
di

na
te

(c)

Figure 3.10. Three selected samples of variable length of (a) sitting on couch fast (6 points) (b) at medium speed
(13 data points) (c) slowly (19 data points).

70 Chapter 3. Inferring Abstract State Using HMMs.

Phonemes Training Samples
Stand Up 6
Sit Down 8
Sitting 22
Walking 43
Still 44
Total 123

Table 3.1. Size of the training set.

observation sequences of length one and dimensionality four, i.e., each location is modelled by a single
signal strength reading from 4 sensors that correspond to that location.

3.6.2 Supervised Learning

The training phase requires a set of representative training samples. For this reason a number of samples
were collected by means of supervised learning. Figure 3.11 portrays a supervised learning process
whereby samples were gathered from a user sitting down on different chairs in the LCE meeting room.
Figure 3.12 portrays a supervised learning process for Still samples. Table 3.1 portrays the overall
number of training samples for all phonemes.

(a)

Figure 3.11. Supervised learning for Sit Down traning samples (x, y coordinates).

3.6.3 Real-Time Windowed Sampling

Having determined the sample size to be four, a windowing system with a window size of four that
produces samples from the stream of positions was required. In this system, the window acts as a

Chapter 3. Inferring Abstract State Using HMMs. 71

Figure 3.12. Supervised learning for Still training samples (x, y coordinates).

buffer of three data points. Each new event produced by the location system is tested against the three
previous ones, which are buffered until the movement is detected, and, by means of the word network
of Figure 3.14, it is decided to which phoneme the data point belongs. Figure 3.13 illustrates how the
phonemes Walking, Sit Down, Sitting and Stand Up are delimited with the help of the window. The
phoneme Still is delimited from Walking, Stand Up and Sit Down in a similar manner.

Figure 3.15 portrays three training samples of sitting down. The training data was carefully chosen
in order to train the recogniser regarding how phonemes should be delimited. For example, it can be
seen from Figure 3.11 which samples are characterised as Sit Down with respect to the pattern formed
by the data points of the z coordinate. Note that because the Sit Down phoneme may consist of more
than 4 data points, more than one consecutive sample can be characterised as Sit Down. For example,
the sample portrayed in 3.15(d) can be sampled immediately after 3.15(b) or 3.15(f). This means that as
long as one of the three consecutive samples (b), (d) or (f) is recognised correctly, the information about
the user sitting down will not be lost. Similarly, Figure 3.16 portrays two selected training samples for
the Stand Up phoneme.

3.6.4 Implementation

The recognition problem presented in Section 3.4 was implemented by building a recogniser for move-
ment phonemes, based on HMMs. The HTK toolkit was used for this purpose. The following solutions
were implemented:

• Distinguish between Walking, Still, Sitting, Sit Down and Stand Up for the same user.

• Distinguish between Walking, Still, Sitting, Sit Down and Stand Up for different users while the
models have been trained only for one.

3.6.5 Recognition Scores

The results file from the recogniser has then been compared against a reference file where the same
samples were correctly labelled and a recognition score is assigned to the recognition as a percentage of
correct labels over the overall number of labels.

72 Chapter 3. Inferring Abstract State Using HMMs.

Walking

Walking

(a)

Sit Down Stand Up

(b)

Sitting

(c)

Figure 3.13. Phoneme delimiting.

Sit Down

Stand Up

Walking

Still

Sitting

Figure 3.14. The word network for movement phonemes.

Chapter 3. Inferring Abstract State Using HMMs. 73

−15.92
−15.9

−6.59
−6.57

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

X coordinateY coordinate

Z
co

or
di

na
te

(a)

1 2 3 4
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

BAT Samples
H

ei
gh

t

(b)

−16.1
−16.05

−16
−15.95

−6.965−6.95

0.95

1

1.05

1.1

1.15

1.2

X coordinate

Y coordinate

Z
co

or
di

na
te

(c)

1 2 3 4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

BAT Samples

H
ei

gh
t

(d)

−16.05−16−15.95−15.9

−7.4

−7.3
−7.2

−7.1
−7

−6.9
−6.8

−6.7

1

1.1

1.2

X coordinate

Y coordinate

Z
co

or
di

na
te

(e)

1 2 3 4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

BAT Samples

H
ei

gh
t

(f)

Figure 3.15. Three selected training samples of the Sit Down phoneme with sample size 4.

74 Chapter 3. Inferring Abstract State Using HMMs.

−16.5

−16

−15.5

−15

−6.8

−6.6

−6.4
−6.2

−6
−5.8

−5.6

0.7
0.8
0.9

1
1.1

X coordinates

Y coordinates

(a)

1 1.5 2 2.5 3 3.5 4
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

BAT Samples

H
ei

gh
t

(b)

−16.6
−16.5

−16.4
−16.3

−16.2
−16.1

−16
−15.9

−6.7

−6.6

−6.5

−6.4

0.7

0.8

0.9

1

1.1

1.2

X coordinates
Y coordinates

Z
co

or
di

na
te

s

(c)

1 2 3 4
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

BAT Samples

H
ei

gh
t

(d)

Figure 3.16. Two selected Stand Up training samples.

Chapter 3. Inferring Abstract State Using HMMs. 75

Phonemes Training Samples Test Samples Correct Recognition score
Walking-Still-Sitting-Sit Down-Stand Up 123 46 43 93.18%
(same user)
Walking-Still-Sitting-Sit Down-Stand Up 123 45 41 91.11%
(two users)
Open Door Outwards - Walking 21 9 7 77.78%
(same user)
User Recognition 31 8 8 100%
(two users)

Table 3.2. Recognition scores.

Table 3.2 contains the recognition score for the movement phonemes tested for the same user that pro-
duced the training samples as well as an additional user. The recognition score is 93% of the phonemes
identified correctly. If recognition is performed for a different set of phonemes, namely, only patterns of
doors opening outwards as opposed to walking straight, the recognition score is 77.78%.

3.7 The Discrimination Problem: User Recognition

This section investigates the inverse problem to movement recognition, that is user recognition. The drive
behind this goal has been the observation that a user sitting down on seats with different heights causes
the production of different tracks by the monitoring system; the question is whether the differences were
significant enough in order to identify the chair from the differences in track (Figure 3.18). This can be
seen as a discrimination problem.

A user recognition problem, which consists of distinguishing a user by the patterns produced while
sitting down and standing up again, was implemented using the recogniser of Section 3.6.4. The results
were very encouraging. Figure 3.17 portrays the tracks of two users of significant differences in height
that are used as training samples to a user recogniser. The recognition score for this experiment was
100% (see Table 3.2).

3.8 Technical Background

This section discusses HMMs with respect to existing methodologies in the area of movement recogni-
tion. Prior work in the SPIRIT [41] system has looked into initial stages of movement recognition in
trying to identify when the user is sitting rather than standing by height calibration, and when the user is
walking by means of step detection. The emphasis in this thesis is a toolkit in which users/applications
can program models for movements that are recognised independently of domain and user, rather than
use hard-coded solutions that are only applicable under specific circumstances.

The most important deficiency of other techniques is that they do not work independently of the user
and the implementation domain. On the contrary, they are closely tailored to specific cases and often
cannot recognise a movement that is executed under different circumstances.

Height Calibration. Height calibration is based on a threshold that is calculated according to each
user’s height. When a position is calculated by SPIRIT where the z coordinate falls below this threshold,
the user is assumed to be sitting, and above this threshold to be standing. This method has the disadvan-
tage that any action that causes the BAT to drop below a certain threshold is translated as a Sit Down
event. In fact the user might be squatting momentarily or sitting on a tall stool or may have adjusted
the cord of his BAT to a different height. This is not distinguishable in SPIRIT. Figure 3.18 portrays the

76 Chapter 3. Inferring Abstract State Using HMMs.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

05101520253035

B
A

T
S

am
pl

es

BAT Height (m)

Eli
Stavros

(a)

−17
−16.5

−16
−15.5

−15
−14.5

−14

−7.5

−7

−6.5

−6

−5.5
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

X coordinateY coordinate

Z
co

or
di

na
te

Eli
Stavros

(b)

−16.8
−16.6

−16.4
−16.2

−16
−15.8

−15.6

−18
−16

−14
−12

−10
−8

−6
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

X coordinate

Sit Down

Y coordinate

Eli
stavros

(c)

−17
−16.5

−16
−15.5

−15
−14.5

−14

−8

−7.5

−7

−6.5

−6

−5.5
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

X coordinateZ coordinate

Z
co

or
di

na
te

Stavros
Eli

(d)

Figure 3.17. User recognition from their different Sit Down patterns.

Chapter 3. Inferring Abstract State Using HMMs. 77

changes in the z coordinate of a user sitting on different chairs including a couch. An obvious problem
that stems from this figure is where should the threshold be that identifies a user who is sitting down?
For example, if the threshold is set to 1 m, then a user sitting on the meeting room table (see right-hand-
side sample of Figure 3.18) is not detectable by the Active BAT. On the other hand, the Active BAT is
not fixed on the user’s body and can be carried at different heights hanging from the neck by a cord of
adjustable length or attached to the waist. This affects the choice of threshold, as does the variability of
user height. Finally, the height threshold depends also on the position of the sensors on the ceiling, and
this, in general, varies from room to room and from building to building. All the above reasons make it
impossible to chose a single threshold that can be used to recognise the Sit Down and Stand Up move-
ment under all circumstances. Lastly, using height calibration, it is impossible to discriminate between
different sitting tracks and thus recognise users or the object upon which they are sitting. Indeed, using
HMMs, the height at which a badge is worn by a particular user can be calibrated by recognising the end
of a Stand Up phoneme.

Figure 3.18. A sample of a user sitting on various chairs (z coordinate only)

Step Detection. The second approach, step detection, looks for turning points on the z axis that in-
dicate a step. However this method does not behave well in the general case as standing still often has
a similar pattern in the z coordinate as the walking sample, which is due to the error introduced in the
measurements. The threshold method could be used in order to introduce a threshold in the size of the
step that differentiates walking from being still, based on the size of the step. For example, Figure 3.19
portrays a Still and a Walking sample. These samples cannot be recognised by SPIRIT using step de-
tection as the same problem as with height calibration arises again, i.e., there is no fixed threshold that
can differentiate Walking samples from Still samples. Indeed, the displacement in Figure 3.19(b) is 0.07
cm vs. 0.008 cm displacement in Figure 3.19(a). If a threshold of 0.01 cm is set, where anything with
a displacement above this value is a walking sample; the sample of Figure 3.7(b) that represents a Still
sample portrays a height displacement of 0.03 that would classify it together with the walking sample of
Figure 3.19. Thus, there is no obvious way of performing reliable recognition using step detection and
thresholding (height calibration).

78 Chapter 3. Inferring Abstract State Using HMMs.

(a) (b)

Figure 3.19. A sample of a user remaining still (a) and walking (b) (z coordinate only)

3.9 Conclusions

• The most general conclusion is that HMMs are an appropriate methodology for creating middle-
ware components as abstract models that represent movements such as the ones described in this
chapter. The models that are created by HMMs are capable of recognition with high accuracy
independently of the user and the specific topology of the implementation domain. They can be
applied to different users and to different Sentient domains. Therefore, they are an appropriate
methodology for the distributed nature of Sentient Computing.

• Recognition based on HMMs enable the creation of abstractions that were not recognisable before
either due to a lack of an efficient method or due to noise. Also, the proposed recognition method-
ology resolves ambiguity in the Sit Down and Stand Up phonemes, which are directly dependent
on the way a user carries a BAT and the specifics of the user and the physical environment.

• Because the set of recognisable phonemes is exclusive, the movement phonemes can be used in
order to characterise each location sample with the movement it belongs to. This allows for “re-
minder events” to be created for each sample, which can then be used for communicating this
information to remote nodes over unreliable protocols such as UDP. Reminder events are confir-
mations of the same abstract state, and therefore some loss can be tolerated.

• HMMs allow users to be recognised by their Sit Down and Stand Up phonemes. This can be quite
useful in creating digital signatures, determining whether everybody has left the building in case of
a security alert, etc. User recognition seems to work extremely well. The results advocate that the
Sit Down phoneme is appropriate for such recognition, however, further experiments using a larger
sample should be carried out in order to identify the system’s behaviour when many users are of
similar height. The influence of speed on the samples should be investigated as well. Section 3.11
describes a scenario where the Stand Up phoneme is used as a digital signature to ensure the
successful evacuation of a building in case of an emergency. The success of the user recognition
problem leaves scope for further recognition problems, including discovering the topology of the
physical environment as is advocated by the Open Door Inwards phoneme.

Chapter 3. Inferring Abstract State Using HMMs. 79

• Lastly, a number of movements cannot be recognised by the Active BAT system, due to the dis-
placement that is introduced in the measurement as well as the sampling rate being too low to
capture enough information about the movement. The spinning movement is such a case and its
track is portrayed in Figure 3.20.

3.10 Future Work

As future work, constraints can be built into the HMM network to identify legal sequences of movements.
For example, a user cannot be seated and walking at the next instance. A Stand Up movement should be
inferred. Specific-case recognition can be scheduled as a second layer after general-case recognition (see
Figure 3.21). For example, if it is determined that the user has sat down, then specific case recognition
can be performed on the samples that represented the sitting state and identify the object the user is sitting
on. Or, when it is determined that the user is walking, a second recognition layer can take place which
tries to infer doors being opened, thus indicating that the user has turned into a specific room.

Some Sitting samples are portrayed in Figures 3.22 and 3.23. Note that in the samples that correspond
to sitting on the couch, the error in the y coordinate seems to be much smaller than the error in the x
coordinate. This is believed to be due to the position of the couch that is placed against the wall and
therefore it is visible to a smaller set of sensors than the chair that is placed in the middle of the room.
This can be verified with further tests.

Finally, it is worth investigating whether movements that are not currently detectable by HMMs using
data from the Active BAT, such as spinning and directional walk, can be sampled more frequently with
alternative technologies of at least similar accuracy to the Active BAT.

3.11 Applications

On Demand Dynamic Memory Management. An area where the proposed recogniser can be directly
applied is optimising the page-loading scheme in a location middleware system such as SPIRIT. By
knowing the state of the user in terms of his movements, the system can make decisions as to whether
the user should be monitored or not. In a system such as SPIRIT, which is object-oriented, users are
represented by objects. If the system decides that the user should not be monitored for some interval,
then the object that corresponds to that user is a good candidate for being replaced in the system cache.
That can improve the performance of the middleware component.

Distribution. One of the main advantages of the proposed model is that it is independent of the under-
lying topology of the physical environment. This enables it to be trained once and be subsequently ported
into any other environment that supports location services, as well. In fact, it can be used to discover the
topology of the environment.

Digital Signatures. The Stand Up phoneme can be used as a digital signature after an alarm occurs in
a building signalling an evacuation. By monitoring all users getting up and performing user recognition
on all the samples, the system can determine if everybody has left the building or not.

80 Chapter 3. Inferring Abstract State Using HMMs.

−13.3
−13.25

−13.2
−13.15

−13.1
−13.05

−7.1

−7.05

−7

−6.95

−6.9

−6.85
0.91

0.915

0.92

0.925

0.93

X coordinate

Spinning

Y coordinate

Z
co

or
di

na
te

(a)

0 5 10 15 20 25 30 35 40 45 50
−13.3

−13.25

−13.2

−13.15

−13.1

−13.05

BAT samples

X
 c

oo
rd

in
at

e

(b)

0 5 10 15 20 25 30 35 40 45 50
−7.1

−7.05

−7

−6.95

−6.9

−6.85

BAT samples

Y
 c

oo
rd

in
at

e

(c)

0 5 10 15 20 25 30 35 40 45 50

0.915

0.92

0.925

0.93

BAT samples

H
ei

gh
t(m

)

(d)

Figure 3.20. Spinning track (a) x coordinate (b) y coordinate (c) z coordinate (d).

General Case Recognition

Discrimination Specific case recognition

location data

movement phonememovement phoneme

specific inferencespecific inference

Figure 3.21. Layered recognition.

Chapter 3. Inferring Abstract State Using HMMs. 81

0 2 4 6 8 10 12 14
−16.66

−16.64

−16.62

−16.6

−16.58

−16.56

−16.54

Sitting on couch

BAT Samples

X
 c

oo
rd

in
at

e

(a)

0 2 4 6 8 10 12 14

−6.64

−6.62

−6.6

−6.58

−6.56

−6.54

−6.52

Sitting on couch

BAT Samples

Y
 c

oo
rd

in
at

e

Sitting on couch

(b)

0 2 4 6 8 10 12 14
−16.69

−16.68

−16.67

−16.66

−16.65

−16.64

−16.63

−16.62

−16.61
Sitting on couch

BAT Samples

X
 c

oo
rd

in
at

e

(c)

0 2 4 6 8 10 12 14
−6.6

−6.59

−6.58

−6.57

−6.56

−6.55

−6.54

−6.53

−6.52

Sitting on couch

BAT Samples

Y
 c

oo
rd

in
at

e

(d)

Figure 3.22. Two Sitting samples (LCE couch)

82 Chapter 3. Inferring Abstract State Using HMMs.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−13.08

−13.06

−13.04

−13.02

−13

−12.98

−12.96

−12.94

−12.92

−12.9

−12.88
Sitting on chair

BAT Samples

X
 c

oo
rd

in
at

e

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

−9.1

−9.08

−9.06

−9.04

−9.02

−9

−8.98

−8.96

−8.94

−8.92

Sitting on chair

BAT Samples

Y
 c

oo
rd

in
at

e

(b)

1 2 3 4 5 6

−13.02

−13

−12.98

−12.96

−12.94

−12.92

−12.9

Sitting on chair

BAT Samples

X
 c

oo
rd

in
at

e

(c)

1 2 3 4 5 6

−7.3

−7.28

−7.26

−7.24

−7.22

−7.2

−7.18
Sitting on chair

BAT Samples

Y
 c

oo
rd

in
at

e

(d)

Figure 3.23. Two Sitting samples (LCE chair)

Chapter 4

Prediction

This chapter investigates the possibility of estimating the likelihood that a future instance of a knowledge
predicate will be generated (either produced directly by the sensors or deduced from other predicates) in
a knowledge base component in the sensor-driven system. More specifically, this work focuses on in-
vestigating the applicability of Bayesian Prediction for modelling the likelihood for holding knowledge
predicates. These models form part of SCAFOS and are generic enough to be applicable to a large num-
ber of sensor-driven components. The results of this investigation are used in order to build a prediction
system. Prediction is very important for Sentient Computing, as it increases the potential for decision
making, even in cases where data sources are unavailable. Prediction also enables a trade-off between
certainty and cost, as is demonstrated in this chapter.

4.1 Prediction

Chapter 3 focused on inferring abstract knowledge, such as user movements, from concrete predicates,
such as user positions. This chapter discusses prediction as a methodology that is applicable to both
concrete and abstract knowledge predicates (discussed in more detail in Chapter 5), such as

H UserInLocation(uid, rid, role, rattr, timestamp)

and aims to define a probability model that estimates the probability that a particular predicate instance
will be generated in the system (in the knowledge base of a Deductive KB component in Figure 1.1)
in the future. The methodology used for the prediction is based on the naı̈ve Bayes classifier [67] seen
as an equivalent Bayesian network [67]. Using the naı̈ve Bayes classifier, a user’s next location can be
predicted from historical data. The same methodology can be applied to any knowledge predicate for
which historical data is available. A prediction system such as the one postulated in this chapter provides
an estimation of the likelihood that an instance of a knowledge predicate of interest will be generated in
the future. The predicted instance can be derived directly from sensors, or deduced from other predicates.
Such a system has the following benefits:

• It enables decision making about future knowledge. For example, a user may decide to create an
application which will notify him when the coffee is ready only if the probability that somebody
will make coffee in the next two hours is more than 50%.

• It can be used when the location system is unavailable or in order to reduce the monitoring cost.
For example, using a prediction system it is possible for the system to return an answer such as
“John’s position is unavailable at the moment but possible locations are Room 10 and the Meeting
Room” when John’s position is queried and estimates are tolerated by the querying application.

83

84 Chapter 4. Prediction

4.1.1 The Naı̈ve Bayes Classifier

The naı̈ve Bayes classifier is a widely used practical learning method that can be used to address the
problem of supervised learning. A set of training instances x1, · · · , xk is provided as well as a target
function f(x) which can take on any value from V . Each training instance xi is a pair of a tuple of
attribute values ~ai = 〈ai1, · · · , ain〉 and the value of the target function for this instance c = f(xi) that
acts as a label for that instance.

x1 = a11, · · · , a1n, c1

x2 = a21, · · · , a2n, c2

...
...

xk = ak1, · · · , akn, ck

A new instance x0 is presented, described by the tuple of attribute values 〈a1, a2, · · · , an〉. A classifier
needs to be constructed that can predict the target value c0 = f(x0) for that instance. In order to classify
the new instance, the naı̈ve Bayes classifier assigns the target value with the maximum a posteriori (MAP)
probability vMAP given the attribute values 〈a1, a2, · · · , an〉 that describe the new instance. The notation
arg maxc0 |Θ(c0) is used in order to denote the value of v0 that maximises the term Θ(v0).

vMAP = arg max
c0∈V

P (c0|a1, a2, · · · , an) (4.1)

Using Bayes theorem this expression becomes

vMAP = arg max
c0∈V

P (a1, a2, · · · , an|c0)P (c0)

P (a1, a2, · · · , an)

= arg max
c0∈V

P (a1, a2, · · · , an|c0)P (c0) (4.2)

Note that the denominator P (a1, a2, · · · , an) is dropped because it is a constant, independent of c0. The
two terms in (4.2) can be estimated from the training data. P (c0) is the relative frequency with which
each target value c0 occurs. The term P (a1, a2, · · · , an|c0) can be estimated by counting the number of
times with which each target value c0 occurs in the subset of the training data for which f(x) = c0. The
naı̈ve Bayes classifier is based on the simplifying assumption that the attribute values are conditionally
independent given the target value. In other words, the assumption is that given the target value of the
instance, the probability of observing the tuple 〈a1, a2, · · · , an〉, namely P (a1, a2, · · · , an), is just the
product of the probabilities for the individual attributes and so: P (a1, a2, · · · , an|c0) =

∏

i P (ai|c0).
Substituting this into (4.2), we have the approach used by the naı̈ve Bayes classifier, where vNB denotes
the target value output by the naı̈ve Bayes classifier.

vNB = arg max
c0∈V

P (c0)
∏

i

P (ai|c0) (4.3)

4.1.2 Bayesian Networks

Recall the notation and nomenclature used in Directed Acyclic Graphs (DAGs). A DAG is a pair (X, E),
where X = {X1, · · · , Xn+1} is a set of vertices, and E is a set of edges between the vertices. The graph
is acyclic, i.e., no path starts and ends at the same vertex. The graph is also directed.

Using statistical nomenclature, U1, · · · , Un+1 are random variables. A Bayesian Network is an
efficient representation of the joint probability distribution over a set U . The joint probability distribution

Chapter 4. Prediction 85

Alastair Andy Alan
Room 1 0.6 0.3 0.2
Room 2 0.3 0.3 0.3
Room 3 0.1 0.4 0.5

Table 4.1. Conditional probability table for P (Rid|Uid)

specifies the probability for each of the possible variable bindings for the tuple U = 〈U1, · · · , Un+1〉.
Formally, a Bayesian network for U is a directed acyclic graph G whose nodes X correspond to the
random variables in U and whose edges represent direct dependencies between the variables according
to the following dependency assumptions: each node Xi is independent of its non-descendants, given its
parents in G. X is a descendant of Y if there is a directed path from Y to X . The set of the immediate
predecessor (parent) nodes of Xi is denoted by the term Parents(Xi). A conditional probability table is
given for each variable Xi describing the probability distribution for that variable given its parents. The
joint probability for any desired assignment of values 〈x1, · · · , xn+1〉 to the tuple of network variables
〈X1, · · · , Xn+1〉 can be computed by the formula:

P (x1, · · · , xn) =
n

∏

i=1

P (xi|Parents(Xi)) (4.4)

The values of P (xi|Parents(Xi)) are stored in a conditional probability table associated with node Xi.

Example. To illustrate, consider a node X = Rid which is dependent on the node Y = Uid . The node
X = Rid represents the names of the rooms in an office and takes a value from the set of possible values
Room 1, Room 2, Room 3. The node Y = Uid represents the names of the people that work in that office
and can take any value from the set Alastair, Andy, Alan . The conditional probability table for Rid given
Uid reflects the probability that the location of a user in Alastair, Andy, Alan will be one of the values
of the set Room 1, Room 2, Room 3 and is given in Table 4.1. For example, the conditional probability
that an instance of the predicate H UserInLocation(uid, rid)1 where uid=Alastair will contain the
constant Room 1 as the value of rid is 0.6. That is interpreted as follows: The probability that Alastair
will be located in Room 1 is 0.6.

4.1.3 Bayesian Networks that Correspond to the Naı̈ve Bayes Classifier

The naı̈ve Bayes classifier can be equivalently viewed as a simple Bayesian network of the structure
depicted in Figure 4.1. In this network, every leaf is an attribute of the classification and it is independent
from the rest of the attributes, given the state of the class variable, namely the root of the network.
Each node therefore has only one parent, the root node. The equivalence of the Bayes classifier and the
network of Figure 4.1 can be drawn from Equation (4.4) as follows: Let U = {A1, · · · , An, C}, where
the random variables A1, · · · , An are the attributes and the random variable C is the class variable. In
the network of Figure 4.1 the class variable is the root, i.e., Parents(C) = {}, and the only parent for
each attribute is the class variable, i.e, Parents(Ai) = {C}, for all 1 ≤ i ≤ n. Using (4.4), it can be
deduced that P (A1, · · · , An, C) = P (C)

∏n
i=1 P (Ai|C). The value that maximises P (A1, · · · , An, C)

is given by naı̈ve Bayes definition (Equation (4.1)).

1For simplicity reasons the values role and rattr are ignored in this example.

86 Chapter 4. Prediction

A1 A2 An

C

Figure 4.1. Bayesian network for the naı̈ve Bayes classifier.

4.1.4 Using the Naı̈ve Bayes Classifier to Predict Knowledge Predicates

Considering the predicate

H UserInLocation(uid , rid , role, rattr , timetamp),

any of the variables uid, rid, role, rattr, timestamp can be seen as the class variable, and the rest of
the attributes can be seen as the attribute variables, according to which the most probable value for the
class variable can be computed, given a new instance. The Bayesian network of Figure 4.2 represents
the naı̈ve Bayes classifier for the predicate H UserInLocation(uid , role, rid , rattr , timestamp) where
the class variable is uid and the attribute variables are role,rattr,timestamp, according to equation:

uidMAP = arg max
uid∈Users

P (uid, role, rid, rattr, timestamp) (4.5)

TimestampRattrRole

Uid

Rid

Figure 4.2. A Bayesian network for classifying uid according to rid,role,rattr,timestamp for the H UserInLocation

predicate.

Using this network, the joint probability distribution for the variables uid, rid, role, rattr, timestamp
can be calculated by using the following equation:

P(uid , role, rid , rattr , timestamp) = P(uid)P(role|uid)P(rid |uid)P(rattr |uid)P(timestamp|uid)
(4.6)

The probability density for class Uid i.e., the probability of all values of the attribute uid that correspond
to users who are PhD students and are located inside Room 10, which is an office, between 3 am and

Chapter 4. Prediction 87

9 am in the morning can be calculated from Equation 4.6:

P (uid, Phd, Room 10,Office, 3-9) = (4.7)

P(uid)P(Room10 |uid)P (Office|uid)P (Phd |uid)P (Timestamp|uid)

The most probable Phd student to be found in Room-10 between 3 and 9 is the one for whose identifier
uid, the term P(uid ,Phd , Room 10,Office, 3-9) has the maximum value.

uidMAP = arg max
uid∈Users

P (uid, Phd, Room 10,Office, 3-9) (4.8)

Note that Users is a finite set of user identifiers (Chapter 5). In order to predict a user’s location at a
given point in time, a different Bayesian network needs to be employed, that of Figure 4.3 where the
class variable is rid instead of uid. This network can be used in order to calculate the value ridMAP ,
given a new instance H UserInLocation(John, Phd, rid, rattr, timestamp).

ridMAP = arg max
rid∈Regions

P(rid)P(John|rid)P(PhD |rid)P(rattr |rid)

= arg max
rid∈Regions

P(rid)P(John|rid)P(PhD |rid) (4.9)

This is equivalent to calculating the most probable location where John will be sighted by the location
system. Regions is the finite set of all regions (rooms) known to the system (Chapter 5). Similarly, the
predicate

H ClosestEmptyLocation(uid ,Sysadmin, rid ,Kitchen, timestamp),

can be used to predict the most probable value that identifies the closest, empty location of type rattr = Kitchen

with respect to any user with the property role = Sysadmin:

ridMAP = arg max
rid∈Regions

P(rid)P(Sysadmin|rid)P(uid |rid)P(Kitchen|rid)P(timestamp|rid))

(4.10)

Rid

TimestampRattrRoleUid

Figure 4.3. A Bayesian network for classifying rid according to uid,role,rattr,timestamp for the predicate
H UserInLocation.

88 Chapter 4. Prediction

Alcove Coffee area CorridorMeeting room Room 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.4. Probability density of Mike’s locations from 3 am to 11 pm.

4.1.5 Prototype Implementation

A set of experiments were carried out in the LCE using the Bayesian networks of Figures 4.2 and 4.3.
The networks were trained using of a set of location data (instances of the H UserInLocation predicate),
which was produced by monitoring the movements of nine users (Alastair, Professor A (Andy), Dave,
David, James, Jamie, Kieran, Mike, Robert) by means of the Active BAT location system [41]. The
monitoring was restricted to the top floor of the LCE, which consists of the following locations: Alcove,
Coffee area, Corridor, Meeting room, Room 10, Room 11, Room 9. An analysis of all the sightings
of the above users over a period of 72 hours using an implementation of the naı̈ve Bayes classifier as a
Bayesian network (B-Course tool [69]) produced the results that are discussed here. For each experiment
the outcome of the classifier is the probability density of the class variable. The size of the training set is
22,280 instances (location sightings).

Alcove Coffee area Corridor Meeting room Room 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.5. Probability density of Professor A’s locations (3am–9am)

Chapter 4. Prediction 89

4.1.6 Experiments

Experiment 1. Where is Mike likely to be seen?

Alcove Coffee area Corridor Meeting room Room 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.6. Probability density of Professor A’s locations (10am–4pm)

Figure 4.4 portrays the probability density for the LCE locations where Mike may be seen, based on
his past movements, as captured by the training data. Room 10, which is Mike’s office, appears as the
most probable location. This is the expected result.

Experiment 2. When can I meet Professor A ?

In order for Professor A’s assistant to arrange appointments with undergraduate students, Figures 4.5, 4.6
and 4.7 suggest the probability density of the LCE locations where Professor A can be seen during the
day, based on his past movements. The most probable location is Room 7, which is Professor A’s office.
Rooms 7, 8 and 9 are adjacent and Professor A often has informal meetings in these adjacent rooms; this
is clearly visible in Figures 4.5, 4.6 and 4.7, as Rooms 8 and 9 appear to have higher probability than the
rest. The meeting room is also used by Professor A during the day, as is verified by the same figures.

Experiment 3. Where shall I look for David first?

This is an example of calculating the maximum likelihood for a user’s location. Figure 4.8 shows
that David’s sightings are classifiable to Room 10 with the highest probability. This is an expected result,
as David works in Room 10. David also spends time in Room 9 as he collaborates with someone who
works there. This is clearly visible in Figure 4.8.

Experiment 4. Which is the most probable location irrespective of user?

The probability distribution for all LCE locations, irrespective of user, for the period between 3 am and
9 am, 10 am and 4 pm, and 5 pm to 11 pm is portrayed in Figures 4.9, 4.10 and 4.11, respectively.

Experiment 5. Who is the most likely person to be in the meeting room between 10 am and 4 pm?

The most probable person to be in the meeting room is the one whose who has been classified with the
highest probability to the class that corresponds to the meeting room in Figure 4.12.

90 Chapter 4. Prediction

Alcove Coffee area Corridor Meeting room Room 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.7. Probability density of Professor A’s locations (5pm–11pm)

Alcove Coffee area Corridor Meeting room Room 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.8. Probability density of David’s locations at any time.

Chapter 4. Prediction 91

Alcove Coffee Area Corridor Meeting room Room 10 Room 11 Room 7 Room 8 Room 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 4.9. Location probability density irrespective of user between 3 am and 9 am.

Alcove Coffee Corridor Meeting Room 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.10. Location probability density irrespective of user between 10 am and 4 pm.

92 Chapter 4. Prediction

Alcove Coffee area Corridor Meeting room Room 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.11. Location probability density irrespective of user between 5 pm and 11 pm.

Alastair Andy Dave David James Jamie Kieran Mike Robert
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4.12. User probability density in the meeting room between 10 am and 4 pm.

Chapter 4. Prediction 93

4.2 Confidence Levels

A Bayesian network which is used for classification, such as the ones portrayed in Figures 4.2 and 4.3,
can be associated with a measure of how successful the classification has been. This measure is called
the classification success score or classification accuracy, or prediction accuracy, and is calculated using
the Leave-one-out cross-validation method [67].

Leave-one-out cross-validation is a method for estimating the predictive accuracy of the classifier.
In this method, out of N training instances of the data set, N − 1 instances are used in order to train the
classifier and the remaining instance is used as a test instance for which the value of the class variable is
to be calculated. This is repeated N times, each time, removing a different instance from the data set and
using the rest N − 1 instances as training data. The overall classification success score is calculated as
the percentage of correct classifications over the overall classification attempts and it amounts to 55.24%
for the network of Figure 4.2 and to 82.50% for the network of Figure 4.3.

The classification success score for each class is calculated as the percentage of correct classifications
for that class. The reliability of the classification success score can be rated by the percentage of the
training data that represents that class. The classification success score and the reliability of the estimate
in terms of absolute sizes for the network of Figures 4.2 and 4.3 is shown in Figures 4.13 and 4.14,
respectively. Both figures show that the classification success score depends on the size of the sample
that corresponds to that class. The larger the size of the class, the larger the classification success score
for that class. In Figure 4.13 the class Andy is more easily classifiable than Alastair, although the sample
sizes for both classes are similar. This suggests that Alastair’s sightings are dispersed into more rooms
than Andy’s sightings.

The classification success score and the reliability estimate can be combined in order to form a
confidence level for evaluating the predictive classification. The combined result, consisting of the clas-
sification success score and the confidence level, is used in order to characterise the predicates of the
model of Chapter 5.

Inference Confidence Level = {classification success score, reliability estimate}. (4.11)

4.2.1 Evaluating Rule-based Inference through Prediction

Likelihood estimation can be used in order to evaluate other forms of inferencing for the same predicate
instance, such as the one based on logical deduction (Chapter 6). For example, a rule-based inference can
be built based on the following assumption: in order to make coffee in the Laboratory for Communication
Engineering, one must perform the following steps:

• Approach the coffee machine and remove the jar, which is either empty or contains the dregs of
the previous coffee-batch.

• Approach the sink, empty the jar of its contents and fill it with fresh water from the tap.

• Re-approach the coffee machine, fill the coffee machine with the water, grind coffee, fill the coffee
machine with coffee and press the start button.

• Perform these steps within 2 minutes and without leaving the coffee-area in between.

The outcome of this experiment was four inferences, all of them correct. Three people were detected
to be making coffee a total 4 times in 72 hours: Mike, Alastair and Eli. To evaluate this result, the
locations of various LCE users in the coffee-area were analysed by means of Bayesian reasoning. The
most probable people to be in the coffee-area in the morning are David, Mike and Alastair. Two of
these people are regular coffee makers, as can be inferred by the predictability of their movements in the
coffee-area in the morning, when coffee is usually prepared. David, although regularly seen in the coffee

94 Chapter 4. Prediction

Alastair Andy Dave David James Jamie Kieran Mike Robert
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
su

ce
ss

 s
co

re

(a)

Alastair Andy Dave David James Jamie Kieran Mike Robert
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
bi

lit
y

es
tim

at
e

(b)

Figure 4.13. The classification score and the reliability estimate for the network of Figure 4.2.

Chapter 4. Prediction 95

Alcove Coffee area CorridorMeeting roomRoom 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
su

ce
ss

 s
co

re

(a)

Alcove Coffee area CorridorMeeting roomRoom 10 Room 11 Room 7 Room 8 Room 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
bi

lit
y

es
tim

at
e

(b)

Figure 4.14. The classification score and the reliability estimate for the network of Figure 4.3.

96 Chapter 4. Prediction

area in the morning, does not drink coffee and was, therefore, making tea. Eli made coffee once during
the experiment, too.

4.2.2 Discrete vs. Continuous Variables

The instances to be predicted can be discrete by nature, e.g., containment within a room, or of a contin-
uous nature, e.g., position streams and timestamp sequences; in this case, they need to be appropriately
discretised. In the implementation described in this chapter, the timestamp variable was discretised into
fixed length intervals. The choice of these intervals is not optimal, as it would be more useful to consider
the intervals 11pm-7am (night) 7am-1pm (morning) and 1pm-11pm (afternoon-evening). Discretisa-
tion can also be achieved by means of the k-means clustering algorithm [4] or the nearest neighbour
algorithm [55].

4.2.3 Network Optimisation

The networks of Figures 4.2 and 4.3 contain all the classification variables. However, some of the
variables are more important than others, and choosing only a subset of important variables can improve
the classification accuracy. For example, when classifying the variable uid according to the features
rid, rattr, role, timestamp it is better to omit the attribute rattr from the classification, as each region
with identifier rid may have more than one regional attribute and the same regional attribute (e.g., Office)
can characterise more than one location. The network structure can therefore be optimised by selecting
the subset of attributes that gives the best classification accuracy.

Several algorithms exist for selecting the subset of variables that produces the best classification
success score. Greedy search is an algorithm in which models are created for all possible subsets of
attribute variables and their classification accuracies are compared one by one, until all models have been
exhausted. This method is clearly inefficient when the number of models is large. Other solutions include
searching using the Hill Climbing algorithm, the tabu search algorithm or even genetic algorithms.

The network of Figure 4.2 has an overall classification success score of 55.24%. When optimised
by removing the variable rattr its classification accuracy becomes 56.20%. Similarly, the overall clas-
sification accuracy of the network of Figure 4.3 is improved from 82.50% to 85.19% when the attribute
role is removed from the attribute set.

4.3 Conclusions

The results indicate that the naı̈ve Bayes classifier is an appropriate method for predicting the likelihood
that a future predicate instance will be generated in the system. The naı̈ve Bayes classifier is powerful,
and, although it assumes that all the predictor variables are conditionally independent, it has impressive
results even for the cases where there are dependencies between the variables, such as the pairs role-uid
and rid-rattr.

The classification accuracy is a measure of the predictive power of the classifier. The reliability of the
likelihood estimation depends on the size of each class, which is a percentage of the size of the test set.
Although prediction was demonstrated for a location (H UserInLocation) predicate, it can be re-applied
to other high-level knowledge predicates too, e.g., H ClosestEmptyLocation, H UserCoLocation .

Bayesian prediction can be used in SCAFOS in order to enable decision making, even when data
sources that provide the data for the decision making are unavailable, e.g., in case the location system
fails. The estimated likelihood for a predicate instance can be used to form application specifications us-
ing SCALA (Chapter 12), thus enhancing expressiveness. For example, an application may be interested
in knowing the probability that meetings between at least 20 people will take place during the day, and
if the probability is more than 50%, a new batch order for cookies should be issued. The user may query

Chapter 4. Prediction 97

the probability of an event in order to decide to respond differently to a very likely situation rather than
an unlikely one; e.g., he may decide not to register for notifications for an unlikely situation. In general,
prediction is very important for Sentient Computing because it constitutes an acceptable solution when
trading information certainty for resource savings (such as computational cost and a user’s time), or when
certainty is compromised by a failure. For example, instead of a user’s position, an estimation of where
the user may be is given as the answer to a query (Chapter 5) or published as an event (Chapter 8). This
does not require the location system to monitor that user, thus saving on computation and communication
cost. A quantification scheme, where a user’s time is treated as a resource that is associated with a cost,
is discussed in [100].

As future work, it will be interesting to look at other models that take dependencies into account,
such as full Bayesian networks, and compare their performance to the naı̈ve Bayes classifier.

98 Chapter 4. Prediction

Chapter 5

A Conceptual Framework

Chapter 1 discusses the importance of context-awareness. Chapter 2 discusses sensor-driven systems
and context aware applications in an attempt to understand what features are common and useful across
context-aware applications in such systems. This chapter explains why traditional event-based mod-
els are not appropriate for sensor-driven systems and presents a conceptual framework that provides
the required features for building applications, as well as a programming model that makes application
development easier.

5.1 Requirements of Context-Awareness in Sentient Computing.

As mentioned earlier, Sentient Computing systems monitor the stimuli provided by environmental sen-
sors in order to notify applications of changes that are relevant to the changing context of the user; for
example, his identity, location or current activity. Sentient Computing applications follow a common
modus operandum: the user specifies his requirements in terms of abstract, high-level context as well as
the service to be delivered, once the specified context has occurred. The application receives notifica-
tions from the Sentient system whenever the specified context happens, and it executes accordingly the
specified action. For example, the user may ask to be reminded to return John’s book, when he is in the
same room as John.

Current trends in programming paradigms in the area of context-awareness, such as ubiquitous and
pervasive computing, advocate a separation of concerns between the way the user perceives knowledge
about the physical world and the way knowledge is produced and maintained within Sentient Computing
systems. The user’s view is abstract and state-based, i.e., events are perceived as changes of state. The
user’s view should be transparent, i.e., the required application functionality should be available irre-
spectively of the heterogeneity of the underlying distributed modelling (in terms of the physical entities
it contains) and the heterogeneity should be concealed, even when the user is mobile. For example, locat-
ing the closest, empty, meeting room should be feasible, both when the user is walking in the Computer
Laboratory and within the LCE. Furthermore, to accommodate user requirements, Sentient Computing
environments need to be dynamically extensible in real-time. New user requirements need to be satisfi-
able without taking the system offline or recompiling existing applications, even when entities are added
or removed from the underlying model.

Summarising the above, the following requirements have been identified for modelling context-
awareness:

1. Transparency in reasoning with distributed state in heterogeneous sensor-driven components.

2. Dynamic extensibility.

3. State-based, integrated knowledge modelling.

99

100 Chapter 5. A Conceptual Framework

4. Separation of concerns between knowledge management and knowledge usage in applications.

5.1.1 Chapter Layout

This chapter identifies the deficiencies of current event-based knowledge for satisfying the above require-
ments and proposes an alternative model. First, it defines transparency for context-aware sensor-driven
systems. Next, it compares state-based to event-based modelling approaches and demonstrates that state-
based modelling satisfies the above requirements while event-based modelling does not. The final part of
this chapter presents a state-based model for context-awareness in Sentient Computing that is compatible
with the above requirements.

5.2 Transparency

We extend the ODP [48] definition by defining Context-Aware Application Transparency (CAAT) to
signify the concealment from the user of the differences in the models of sensor-driven distributed com-
ponents. CAAT is very important in sensor-driven systems because it advocates that specifications of
user requirements, in terms of knowledge (see Section 5.1), are compiled into a generic implementa-
tion which is, in turn, irrespective of the underlying sensor-driven system. Without CAAT, the same
subscription specification would have to be implemented differently in each publisher domain.

Dynamic Model Extensibility. Transparency is crucial to dynamic extensibility, i.e., the extension of
the sensor-driven model by new entities such as regions or users. In fact, when a new region or a new
user is added to the model, the mapping between the language expression (that is implemented by the
FSMs) and the domain changes, rendering the existing implementation inadequate (see Appendix A)
and requiring re-compilation. Transparency, in this case, advocates that the implementation need not be
recompiled after the sensor-driven model is modified in such a way.

Application-driven Dynamic Extensibility. Application-driven dynamic extensibility refers to the ex-
tension of the model with new abstract knowledge predicates, as specified by the user. Transparency is
crucial in this case, as well, as each new abstract predicate needs to be abstracted from existing knowl-
edge in the same way, in each implementation domain of each distributed component. The reasoning
mechanism for abstracting knowledge from a systems’ perspective is described in Chapter 6 and from a
distributed systems’ perspective in Chapter 8.

Context-Aware Application Roaming. Another case when the heterogeneity of each domain needs to
be masked is the case of follow-me applications and mobile agents. A follow-me application needs to
work as the user moves from domain to domain. For example, a follow-me assistant may be interested in
locating the closest empty room to the user it belongs to, as that user moves from one domain to another.
We refer to this particular case of transparency as Context-Aware Application Roaming (CAAR).

5.3 State-Based vs. Event-Based Modelling

A state based-approach is a novel way of looking at sensor-driven systems, since all approaches so far
have been event-based. In many systems, event-based and state-based modelling have been considered
as equivalent approaches. State-based modelling for context-awareness in sensor-driven systems satisfies
the requirements of Section 5.1, while, as is demonstrated in this chapter, event-based approaches violate
dynamic extensibility, semantic transparency and separation of concerns between knowledge manage-
ment and knowledge use.

Chapter 5. A Conceptual Framework 101

5.4 State-Based Modelling

State-based modelling for sensor-driven systems means that the state of an entity is modelled by means
of a set of logical predicates (state predicates). State is extracted from each event and is made persistent
in memory. If the next event that arrives contains the same state, it is ignored. If not, state for that entity
is updated and a higher-order event is fired.

This is appropriate for sensor-driven systems for the following reasons:

• Events in sensor-driven systems are not always characteristic or semantically important. Instead,
they can be seen as snapshots of the state of a physical entity at a given point in time. For exam-
ple, events are produced by a location system according to its sampling rate, even when the user
remains idle. This is different from, say, a game of squash where each event is modelled to signify
the point where the ball hits the wall, which is the basis by which the score is calculated.

• Events in sensor-driven systems do not convey the fact that something didn’t happen or no longer
happens. This needs to be deduced by the system based on the received events or lack of them.

• State-based representations are more natural for the user than event-based representations. For
example, the phrase “notify me when user A enters the meeting room and then user B enters the
meeting room without user A having left the meeting room first” is intuitively more complex than
the equivalent state expression “notify me when users A and B are in the same room”.

• A state representation is, therefore, compatible with the statistical inferencing methodologies of
Chapter 3. The latter produces, by default, descriptions of object state.

• A state-based modelling approach is more appropriate for distributed systems which are charac-
terised by unreliable communications such as packet loss and node failure. In the case of node
failures, the state is stored and can be re-instated. In the case of packet loss, reminder events can
be added so that transmission can be done over unreliable transport protocols, such as UDP.

5.5 Event-Based Modelling

In event-based modelling, the state of an entity is represented by means of an event history entity. Having
an event-based approach to modelling sensor-driven systems means that each publisher in a sensor-driven
network sends on to the subscribers all the generated events from the sensors of a particular context
through a notification service. More sophisticated solutions exist for filtering notifications and creating
event compositions [6, 7, 63, 81, 102].

5.5.1 Deficiencies of Current Event Models

• As these approaches are implemented with FSMs, no persistent storage is normally available.
This is a problem when a node is restarted; in such a case, uncertainty and partial knowledge is
introduced. This is discussed in detail in Section 5.6.

• Because primitive events correspond to samples of user tracks and users move freely around, a
state such as “an empty room” can be reached in many random ways. Using an event model, a
subscription to a composite event needs to be created for each possible way in which a meeting
room can become empty.

• Another issue arises from the fact that a user may decide to dynamically change a sensor-driven
system model by adding a new region to be monitored or a new user. Current event models based
on parametric finite state machines do not offer this possibility as a new finite state machine would

102 Chapter 5. A Conceptual Framework

need to be created in place of the old one for implementing the same phrase. This is discussed in
detail in Section 5.6.3.

• FSMs are dependent on the implementation domain and therefore cannot reason transparently with
state in a distributed environment. This means that user requirements that define knowledge of
interest cannot be mapped to a single, generic implementation that applies to each implementation
domain in each component.

5.6 Deficiencies of Finite State Machines in Terms of Reasoning with Ab-
stract State.

This section looks at FSM-based implementations of TFOL expressions with state predicates. We
demonstrate that finite state machines have many shortcomings when reasoning with state that are due to
three main underlying reasons: the first is that finite automata cannot deal with negated predicates when
these do not exist in the system, which is an inherent process in reasoning with state. The second reason
is that finite automata lack memory structures that allow them to store information about their alphabet,
which introduces partial knowledge. The third reason is that the structure of an FSM is dependent on the
domain of implementation. On the other hand, transparent reasoning with state requires both reasoning
with negative (missing) abstract knowledge as well as concealing the details of the universe of discourse
from the reasoning tool. Both issues are discussed in detail in the following section.

5.6.1 Implementing FOL Expressions with Negated Free Variables that Imply Lack of
Information

In this category belong FOL phrases that signify lack of information, such as the ones that contain the
operators¬ and 6 ∃. Such expressions are not directly computable by a FSM. In fact, whenever negation
occurs in an FOL expression signifying that the semantic mapping between the domain and the language
is incomplete or missing, finite state machines cannot be used. As an example, the expression “User A is
nowhere” is not satisfiable by a finite state machine (see Section B.2). This is due to an inherent inability
of FSMs to deal with negation when this signifies lack of information.

There doesn’t exist a finite-state machine which can accept the expression ¬P , when there is no in-
stance of the predicate ¬P stored in the knowledge base of the domain as a fact.

This means that a symbol that corresponds to either P or ¬P must be explicitly generated for an FSM
to be able to process it. However, in sensor-driven systems negative information is absent by default.
Sensors only produce positive knowledge. The information that is produced by the sensors is in the form
of a tuple:

〈entity, state, timestamp〉

For example, monitoring user u1 produces the following time-series:

H UserInLocation(U1 ,Room 1 ,T1)

H UserInLocation(U1 ,Room 1 ,T2)

H UserInLocation(U1 ,Room 2 ,T3) (5.1)

Chapter 5. A Conceptual Framework 103

The knowledge that must be deduced from that is:

H UserInLocation(U1 ,Room 1 ,T1)

H UserInLocation(U1 ,Room 1 ,T2)

¬H UserInLocation(U1 ,Room 1 ,T3) (5.2)

H UserInLocation(U1 ,Room 2 ,T3) (5.3)

Assuming that user U1 was co-located with user U2 when he was in Room 1, and that user U2 remained
in Room 1 when U1 moved to Room 2 , then the following knowledge must also be deduced.

H UserCoLocation(U1 ,U2 ,Room 1 ,T1)

H UserCoLocation(U1 ,U2 ,Room 1 ,T2)

¬H UserCoLocation(U1 ,U2 ,Room 1 ,T3) (5.4)

(5.5)

The above example demonstrates that as high-level state changes in response to primitive state changes,
e.g., user movements, there are no language symbols generated that represent such changes. That makes
an FSM-based implementation infeasible.

State semantics that belong to this category include not exists, nobody, nowhere, not seen, absent,
empty, idle, etc. In general, all language elements that negate knowledge from a source of context, in the
model belong here.

Uncertainty Semantics. The Closed World Assumption can be introduced to provide a partial solution
to this problem, in absence of a better solution. The Closed World Assumption advocates that if you
cannot prove P or ¬P from a knowledge base KB add ¬P to the knowledge base KB, or in other words,
assume that P is false. If the Closed Word Assumption is used to assume that lack of a predicate P means
that the predicate is false, then often an inconsistent view of the physical world is obtained. Consider
the case where an Active BAT is occluded from the sensors, and therefore the system has temporarily
no information for this user. The Closed World Assumption can be used in order to create fail-safe
systems, such as a fire-protection system that assumes there is a fire when a “heart-beat” event that
notifies the system of the opposite case is missing. However, in sensor-driven systems using the Closed
World Assumption, the system may assume that the user is absent which is false, because the user is
actually only temporarily hidden. This introduces a degree of uncertainty. Event-based techniques do not
offer semantics that can differentiate, e.g., between a real absence and absence that is due to temporary
occlusion, i.e., they do not inform on the degree of uncertainty.

5.6.2 Partial Knowledge

A dual problem to the above is that of partial knowledge that is caused by the fact that FSMs lack
memory structures in which previous state for the world can be stored. The state of a physical entity is
only known to the FSM, only when the respective symbol that corresponds to a sensor reading for that
state of the entity occurs for the first time in a string and is read by the FSM. This means that until a
symbol occurs, the FSM has no knowledge about the predicate it represents. This means that only partial
knowledge is maintained in the system at that time; however, there are no semantics to express partial
knowledge, as the FSM can be in an accepting or a non-accepting state (see Appendix A). This often
occurs after a startup or a reboot of the FSM. FSM reboots can be assumed to occur after a node that has
failed reconnects to the network, after its own failure, or some network failure on its connecting link.
Partial knowledge is illustrated in Appendix A with an example.

104 Chapter 5. A Conceptual Framework

5.6.3 General FOL Expressions with Free Variables

The FSMs’ inability to deal effectively with negation has a direct effect on transparent reasoning with
state. State differs from events in that state may hold at the current instant and may not hold at a next
instant while an event happens and cannot be undone. Thus, when reasoning with state before each
transition from an FSM state to another, a test needs to take place in order to ensure that the system state
which is represented by the FSM state still holds and hasn’t been invalidated with respect to a sensor
update. For example, when evaluating whether two users are co-located, the individual movements of
each user may lead to the invalidation of the co-location, e.g., the second user may enter the common
area after the first one has already left, in which case, there is no co-location.

On the other hand, transparency (see Section 5.2) advocates that what would constitute an acceptable
solution would be finite state machines that accept expressions with free variables that would be bound
only when applied to each model separately. This section demonstrates that known methodologies for
parametric FSM-based reasoning [5, 39] are not directly applicable here. In those methods, a parametric
expression is modelled with an FSM with free variables and for each free variable in the initial parametric
FSM, an identical, non-parametric FSM is spawned whenever a symbol that instantiates the free variable
occurs at a given state. In the spawned FSM, all instances of the parameter that corresponds to the
symbol which has been encountered are substituted with the actual symbol. However, in contrast to an
event that occurs in a deterministic way, a state can be activated and de-activated, in response to any
received event. Therefore, each state S of the parametric FSM that models P needs to have a transition
to a state S′ that models ¬P and which cancels the execution. Unless ¬P can be directly extracted from
a primitive event, ¬P does not exist as a symbol in the system. The Closed World Assumption can be
used to determine a set of states {Qi, i = 1, 2, · · · } where ¬P can be assumed to hold. This is possible
only if {Qi, i = 1, 2, · · · } is a set of states that represent concrete or deduced knowledge. Even so,
creating the transitions from S to {Qi, i = 1, 2, · · · } requires knowledge of the underlying universe of
discourse, which makes the reasoning non transparent. Figure 5.1 illustrates this with an example. In
Figure 5.1(a), if an event occurs that corresponds to user a1 being inside region r1, then the automaton
of Figure 5.1(b) will be spawned from the one in (a). In this automaton, the transitions from s1 to s3

must represent all events that report user a1 exiting from region r1. This means that there must exist one
transition for each region in the universe which is different from r1. If instead user a1 had moved into
r2, the automaton that would need to be constructed, as a result, would be that of Figure 5.1(c).

Appendix A.4 contains a detailed illustration of this issue, using examples. Phrases that belong to this
category include semantics with the meaning of somebody, somewhere, anybody, anywhere, everybody
everywhere, exists that correspond to universal and existential quantification, with the exception of neg-
ative existential quantification (6 ∃) that leads to lack of information and cannot be directly implemented
with FSMs.

Dynamic Extensibility. The Closed World Assumption often leads to state explosion. For example, a
co-location of 2 users in a room can be caused by either the sequence: user A is in the room and then
user B is in the room and user A hasn’t left the room before user B has entered the room, or the other
way round (Figure 5.2). As the size of the physical world grows, the FSM grows exponentially. For
example, assuming that user a3 is added to the previous closed world, the FSM of Figure 5.2 would need
to be re-compiled to that of Figure 5.3.

5.6.4 Size

Finite state machines are generally very large, as they need to take into consideration all the possible
ways that a state can be reached. Figures 5.2 and 5.3 illustrate this.

Chapter 5. A Conceptual Framework 105

s1

s0

s2

s3

s0

s2

s1

s0

s2

s3

s0

s2

s1

s0

s2

s3

(x,!y)

(z,y)

 (x,y)

 (a1,r1)

 (a1, ! r1)
 (a1, ! r2)

 (a1, ! r2)

a1,ri , ri in {Regions−r2}

 (a1,r1)

 (z, r1)

 (z, r1)

(a1,r2)

(a1,r2)
 (z, r2)

(z, r2)

(a)

(b) (c)

s1 s1

a1,ri , ri in {Regions−r1}

Figure 5.1. “Any two users are co-located”.

a1,!a2

a1,I a1,a2
(a1,r2)

(a1,r2)
(a2,r1)

(a2,r1)

(a1,r2)

!a1,a2

(a2,r1)
I,!a2

(a2,r1)

I,a2

!a1,I

(a2,r1)

(a1,r1)

(a1,r1)

(a2,r2) (a2,r2)

(a2,r2)

(a1,r2)

(a2,r2)

(a1,r2)

(a1,r1)

(a2,r2)

(a1,r2)

(a1,r1)

(a2,r2)

(a2,r1)
(a1,r1)

(a1,r2)

I,I
(a2,r1)
(a1,r2)

(a2,r2)

(a1,r2)

(a2,r1)

(a1,r1)

(a2,r1)

(a1,r1)
(a1,r1)

(a2,r2)

(a2,r2)
(a1,r2)

!a1,!a2

Figure 5.2. “Everybody is in r2” with 2 users.

106 Chapter 5. A Conceptual Framework

s0

UL(a1,r2)

UL(a3,r2)
a1,a2,Ia1,I,I a1,a2,a3

UL(a1,r2)
UL(a2,r2)

a1,a2,!a3

I,I

!a1,a2,!a3

a1,!a2,!a3

!a1,!a2,!a3

(a1,r2)

(a1,r2)

(a2,r2)

(a1,r1)

(a2,r1)

(a2,r2)

(a1,r1)

(a1,r2)
(a2,r2)

(a3,r2)

(a2,r2)

(a2,r1)

(a2,r1)
(a1,r2)

(a1,r1)
(a2,r1)

(a1,r2)

(a1,r2)

(a2,r2)

(a2,r2)

(a2,r2)

(a2,r1)

(a3,r1)

(a3,r2)

(a1,r2)

(a1,r1)

(a2,r1)

(a2,r2) (a2,r1)

(a1,r2)
(a3,r1)

(a1,r1)

(a2,r2)

(a3,r1)

(a2,r1)
(a1,r1)

I,a2,a3

a1,I,a3

(a1,r1)
(a2,r1)

I,!a2,a3 I,!a2,!a3

(a1,r2)
(a3,r1)
(a2,r2)

(a1,r1)
(a3,r1)

(a2,r2)

!a1,!a2,a3

a1,!a2,a3
(a1,r1)

(a2,r2)

(a2,r1)

I,a2,!a3
a1,I,!a3

I,I,a3

!a1,a2,I

I,a2 ,I

I,!a2,I

!a1,!a2,I

a1,!a2,I

(a2,r1)

(a3,r2)

... ...

Figure 5.3. “Everybody is in r2” with 3 users.

5.6.5 Conclusions

As can be concluded from the above analysis, event-based approaches are not sufficient for modelling
context-awareness in sensor-driven systems in a way that the requirements of Section 5.1 are satisfied.
The rest of this chapter presents a formally defined alternative model that satisfies the specified require-
ments. The proposed model is state-based and it integrates knowledge in the form of TFOL predicates.
It is also compatible with the statistical model presented in Chapter 3. Temporal issues are discussed in
Chapters 8 and 12.

5.7 A Model in First-Order Logic

In this section we present a formally defined model based on first-order logic for sensor-driven systems.
We have adopted a state approach in modelling Sentient Computing systems. The model is compatible
with the requirements of Section 5.1 by demonstrating the following properties:

• It stores aggregated knowledge about the state of the physical world in a deductive knowledge
base. Knowledge is in the form of TFOL predicate instances (facts).

• It is compatible with the inferencing methodologies of Chapters 3 and 4. This is achieved by pro-
viding predicates for the movement phonemes and semantics to express and reason with likelihood.
It also offers support for modelling confidence levels that evaluate the statistical inferencing.

• It is scalable. Scalability is achieved by distinguishing between concrete and abstract knowledge.
It is dynamically extensible. Dynamic extensibility is achieved by supporting application-driven
deduction of abstract state from concrete state using TFOL as a reasoning language. Chapter 6
discusses scalable, abstract reasoning.

Chapter 5. A Conceptual Framework 107

• It supports asynchronous communication through the interface discussed in Chapter 8.

• It is generic enough to be independent of the sensor technology and the specific topology and
consistency in terms of contained objects of the physical environment. It can be transported to
different physical environments.

5.7.1 Model Life-Cycle

A sensor-driven system model [65] consists of three elements P, Q, D. P is the set of primitive state
predicates that represent a sensor-driven domain. Q is the set of all instances of the primitive state
predicate types of P . D is the universe of discourse of the domain.

P, D, Q P, D, Q’ P’, D’, Q ’’

AssertAbstractStatePredicate()UserUpdate()

SensorUpdate() Query()

Figure 5.4. Sensor-driven system model cycle.

Figure 5.4 shows the stages the model goes through as it receives updates from the sensor infrastruc-
ture (SensorUpdate() interface) and the user (UserUpdate() interface). Such updates add new instances of
the predicates in P to the model, thus modifying Q. Let Q′ be the current new, modified set of instances
of P , after an update. The interface AssertAbstractStatePredicate()1 causes the creation of an abstract
state predicate in P . P ′ is the extended set of predicates that results.

5.8 Model Definitions

Temporal first-order logic (TFOL) was chosen as being appropriate and sufficient for the description of
the model. We assume that the physical world contains N individual values that represent autonomously
mobile objects such as people that work in a building. We also assume that the physical environment
contains K individual values which represent known physical locations of interest. Locations can be
classified into atomic locations and nested locations. Atomic locations will typically be polyhedral named
regions such as “the coffee-area”, “mike’s desk”and rooms. Via a process of nesting we produce a set of
aggregated polyhedral regions such as floors and buildings (each floor may contain a specific set of rooms
and each building a particular set of floors) as well as logically aggregated spaces such as departments
(each department may contain a number of floors, or buildings).

We define a set P of first-order logic predicate sets that represent a generic sensor-driven spatial
domain.

P = {SelfMobileLocatable,NonSelfMobileLocatable,AtomicLocation,

NestedLocation, InRegion,UserMovement ,

{Functions}, {Higher -Order Functions}}. (5.6)

1The interface AssertAbstractStatePredicate(AESL definition, filter, type definition) corresponds to the interface Subscribe()
of Figure 1.1. It is invoked automatically by the SCAFOS framework, in response to a user creating a new context-aware
application using SCALA, and it contains the required high-level specifications (AESL definition, filter, type definition) that
will be used by SCAFOS in order to generate the abstract predicate that is of interest to the newly created application. This is
discussed in detail in Chapters 8 and 12.

108 Chapter 5. A Conceptual Framework

The above predicates are explained in detail in Section 5.8.1. Furthermore, we define a TFOL model
[65] M of P that consists of a logical domain D of the following subsets, as well as a mapping of
P to D. Furthermore, we assume that in a distributed architecture that consists of more than a single
sensor-driven component, there is one logical domain for each spatial sensor-driven component.

D = {Sensors,SelfMobileLocatables,NonSelfMobileLocatables,Positions,Regions,

Roles,RegionalAttributes}.

The subset Sensors contains all the known sensor entities in the spatial domain of interest. Similarly, the
subset SelfMobileLocatables contains all humans in this domain, and the subset NonSelfMobileLocata-
bles contains all inanimate objects in the domain. The subset Regions contains all known regions in the
domain such as rooms, regions within a room and larger regions such as floors, labs and buildings. The
subset Roles contains all known roles that a user can be associated with in that domain, e.g., System Ad-
ministrator, Supervisor, Phd (student), etc. The subset RegionalAttributes contains a number of keywords
that are used to characterise several properties of regions, such as their functionality/ownership, etc. This
allows for the specification of semantic queries. For example, semantic queries can be specified that
locate all known meeting rooms or the closest system administrator. Queries are discussed in Chapter 6.
The mapping between P and D is achieved through the predicates of P .

5.8.1 Locatables

SelfMobileLocatable is a predicate on the set {SelfMobileLocatables × Roles} and it represent objects
that can be located and that can move on their own, such as humans. Its format is depicted below:

SelfMobileLocatable(id , role),

id ∈ SelfMobileLocatables, role ∈ Roles.

NonSelfMobileLocatable is a predicate on the set { NonSelfMobileLocatables × Roles}, which rep-
resents objects. Its format is described below:

NonSelfMobileLocatable(id , role),

id ∈ NonSelfMobileLocatables, role ∈ Roles.

5.8.2 Spatial Abstractions

Spatial abstractions are represented by means of the predicates AtomicLocation and NestedLocation.
An AtomicLocation predicate is a ternary predicate on the set RegionalAttributes ×Positionsm},

with the following variables:

AtomicLocation(rid , rattr , polygon),

rid ∈ Strings, rattr ∈ RegionalAttributes,

polygon = {〈x1, y1, z1〉 · · · , 〈xm, ym, zm〉}, 〈xi, yi, zi〉 ∈ Positions.

A NestedLocation predicate is a ternary predicate on the set {RegionalAttributes × Locationsm}
with the following format:

NestedLocation(rid, rattr, list-of -contained -locations),

rid ∈ Strings, rattr ∈ RegionalAttributes,

list-of -contained -locations = 〈l1, · · · , lk〉, li ∈ Regions.

Chapter 5. A Conceptual Framework 109

Function name Description
Probability Prob(value, confidence level , predicate, time reference)
Speed Speed(value, uid , time reference)
Distance Distance(value, uid , role, rid , rattr)
User-Distance UDistance(value, uid1 , role1 , uid2 , role2)
MostProbable MostProbable(value, confidence level, class variable, predicate, time reference)

Table 5.1. Functions

5.8.3 Functions

A set of first-order logic function predicates are predefined in the model. A function predicate Pf is
an internal representation of a function f from a set {A × B} to a set C with a predicate Pf on the
set {A × B × C}, like Prolog. As a convention, the first argument (value) represents the result of the
function.

Function predicates take as arguments both primitive and abstract predicates. The most representative
are seen in Table 5.1.

The Probability function predicate represents likelihood estimations, such as the ones that are gener-
ated by Bayesian prediction (see Chapter 4). As the analysis can be applied to any predicate in the model,
this function takes as arguments the predicate of interest (predicate). The variable value holds the value
of the estimated likelihood for this predicate instance and the variable confidence level holds the value
of the confidence level for that estimation (see Chapter 4). The variable time reference is of type string
and is used to hold the value of the temporal reference against which the probability is estimated. For
example, if it is estimated that the likelihood that the assumption that the supervisor will be at his office
today is 85%, and the confidence level for this probability estimation is 80%, this can be expressed as:

Prob(85%, 80%,H UserInLocation(uid, Supervisor, rid, Supervisor’s-office), T oday).

The MostProbable function predicate stores the value of the classification score for the prediction
class, the predicate on which the Bayesian network that performs the prediction is based as well as a set
of predictor variables (see Chapter 4). For example, “the most probable location where a user will be
seen today” is expressed as follows:

MostProbable(value, confidence level,H UserInLocation(uid , rid , role, rattr , T oday).

The Distance function is a function on the set SelfMobileLocatables × Positions × Regions . It con-
tains a value parameter which stores the value of the distance of a user’s position from the centre of
a given region. The UserDistance function behaves similarly to Distance but calculates the distance
between two users instead of a user and the centre of a region. The mathematical representation for
this function predicate2 given two points A(x1, y1, z1), B(x2, y2, z2), where point A represents a user
position and B represents a reference point (the centre of a region), is:

Distance(a, b) =
√

(y2 − y1)2 + (x2 − x1)2.

The Speed function predicate is a function predicate on the set SelfMobileLocatables and the set
of Positions . The user’s speed is calculated by two successive sightings and is held in the variable
value. The mathematical representation of this function predicate3 given two successive user sightings

2In practice, most context-aware applications only need a 2-D distance representation and for this reason the z coordinate
has been omitted from this implementation.

3In practice, most context-aware applications only need a 2-D speed representation and for this reason the z coordinate has

110 Chapter 5. A Conceptual Framework

A(x1, y1, z1, t1), B(x2, y2, z2, t2) where t2 > t1 and δt = t2 − t1, is:

Speed(t2) =
2

√

(x2 − x1)2 + (y2 − y1)2

δt
.

5.9 Conclusions

A state-based model in TFOL was presented in this chapter. State-based modelling was demonstrated
to be both essential and beneficial for context-awareness in real-time, distributed, sensor-driven systems.
The model is well-defined, uncertainty is included in the predicate semantics and it offers powerful tools
for mathematical and statistical reasoning.

been omitted from this implementation.

Chapter 6

Knowledge-Representation and Scalable
Abstract Reasoning for Sentient
Computing using First-Order Logic

The previous chapters introduced a state-based conceptual framework for aggregating knowledge in Sen-
tient Computing. This chapter presents a dynamic knowledge base maintenance system for representing
and reasoning with knowledge about the Sentient Computing environment based on the model of Chapter
4. Sentient Computing has the property that it constantly monitors a rapidly changing environment, thus
introducing the need for abstract modelling of the physical world that is at the same time computation-
ally efficient. The approach in this chapter uses deductive systems in a relatively unusual way, namely, in
order to allow applications to register inference rules that generate abstract knowledge from low-level,
sensor-derived knowledge. Scalability is achieved by maintaining a dual-layer knowledge representation
mechanism for reasoning about the Sentient Environment that functions in a similar way to a two-level
cache. The lower layer maintains knowledge about the current state of the Sentient Environment at sensor
level by continually processing a high rate of events produced by environmental sensors, e.g., it knows of
the position of a user in space in terms of his coordinates x,y,z. The higher layer maintains easily retriev-
able, user-defined, abstract knowledge about current and historical states of the Sentient Environment
along with temporal properties such as the time of occurrence and their duration. For example, it knows
of the room a user is in and how long he has been there. Such abstract knowledge has the property that it
is updated much less frequently than knowledge in the lower layer, namely, only when certain threshold
events happen. Knowledge is retrieved mainly by accessing the higher layer, which entails a significantly
lower computational cost than accessing the lower layer, thus maintaining the overall system scalability.
This is demonstrated through a prototype implementation.

6.1 Scalable Abstract Reasoning

Chapter 5 proposes a model for sensor-driven systems that supports both concrete and abstract knowl-
edge. Abstract knowledge is used by Sentient Computing applications, that can be viewed as a logical
layer, namely, the Application Layer in the Sentient Applications layered architecture (Figure 6.1). Con-
crete knowledge is produced by the Sensor Infrastructure Layer. As discussed in Chapter 5, there is a
significant gap between the level of abstraction in the knowledge about the Sentient World that Sentient
Computing applications require for their functionality and the actual low-level data that are produced by
the sensors and which constitute a low-level, precise, knowledge layer. For example, an application that
displays the user’s screen in response to his proximity to his PC needs to know when a more abstract sit-
uation has occurred, that is, when the user is close to his PC. The information about the user’s proximity

111

112 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

to his PC is a logical abstraction of his position in space, and it is expressed in relation to the position of
another physical object, namely, his PC. To make matters worse, the above system will need to monitor
a large number of users distributed among a number of distinct locations at the same time. Even so, it
needs to react to the perceived changes with no perceptible delay.

This chapter proposes that the gap between the application-layer abstraction and the sensor-derived
precision be bridged by using a deductive component that reasons with low-level, sensor-derived knowl-
edge in order to deduce high-level, abstract knowledge that can, in turn, be used easily by the application
layer. Furthermore, the proposed deductive reasoning does not compromise computational efficiency
and performance. For very large distributed environments, there is scope for further research.

Application Layer

Deductive Abstract Layer

Sensor Abstract Layer

callback

Deductive Knowledge Base Layer

Sensor Infrastructure Layer

RegisterRecurringQuery()
RunQuery()
DefineDALPredicate()

Notify()

monitor

Figure 6.1. The Sentient applications layered architecture and its API.

This chapter tackles the above issue of scalable, system-level, computationally efficient abstract mod-
elling of the physical world. Its contributions are a formal definition of a knowledge representation as
well as a mechanism for reasoning with such knowledge using logical deduction that combines expres-
siveness, scalability and performance. The proposed approach generalises previous efforts to abstract
knowledge from sensor data that have resulted in limited, case-specific abstractions, such as the ones
supported by SPIRIT. SPIRIT’s world model contains the notion of abstracting regions from Active BAT
positions. QosDREAM supports abstractions for entering and leaving a region.

6.1.1 Layered Interfaces

For the abstract model of the Sentient world, a dual-layer knowledge representation architecture was
designed. This design approach is inspired by the OSI paradigm [77] for layered network architecture,

Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning 113

where each layer incorporates a set of similar functions and hides lower-level details from the layer above
it, thus achieving simplicity, abstraction and ease of implementation.

6.2 Knowledge Representation

This section describes the architecture of the two logically distinct layers of knowledge representation
and discusses their functionality as a two-layered cache for the Sentient Application Layer.

For the needs of this section, a definition introduced by Samani and Sloman in [63] is used, according
to which an event is a happening of interest that occurs instantaneously at a specific time1. Furthermore,
the Sentient environment is defined as the physical environment, and the current logical state of the
Sentient environment is defined to be the set of all known facts about the Sentient environment between
an initial event and a terminal event. Initial and terminal events can be any events that are of interest to
the Sentient application layer. Based on the above, we can say that the Sensor Abstract Layer maintains
a low-level but precise view of the current logical state of the Sentient environment, as produced by
sensors that are distributed throughout the environment and continually updated through events. Equally,
we can say that the Deductive Abstract Layer maintains an abstract view of the current logical state of
the Sentient environment.

Particularly interesting sources of events are those that characterise the location of an object. These
are generated by a location system such as the Active BAT [41], where the positions of users in 3-D
space are tracked, typically once per second, by means of an ultrasonic transmitter called BAT. The
Sensor Abstract Layer processes all the generated events, and thus knows of the last position of all users
in the system in terms of their coordinates.

A more abstract view about the state of the Sentient environment can easily be inferred from the
knowledge stored in the Sensor Abstract Layer. For example, from a user’s position (x , y , z) and from
a set of known polyhedra that represent regions, the room the user is in follows logically. Furthermore,
from a known set of nested polyhedra, additional locations in which the user is present can also be
inferred2.

The Deductive Abstract Layer (DAL), through its interaction with the Sensor Abstract Layer (SAL),
maintains such abstract knowledge about the current and past states of the Sentient Environment together
with temporal information about the initial events that triggered them, and the duration of each state.
Such data can be used by statistical models in order to generate a likelihood estimation of situations that
may occur in the future, based on their past occurrences [52].

The two layers interact through a monitor-callback communication scheme with the help of a TFOL
formula that is used as a specification (see Chapter 12, AESL definition). A monitor call, initiated by
the Application Layer, causes the Sensor Abstract layer to filter through to DAL only those low-level
changes that affect the abstract knowledge stored in the Deductive Abstract Layer, thus relieving the
Deductive Abstract Layer from the cost of continually monitoring all the data that are produced by the
sensors. Consequently, knowledge in DAL is updated at a significantly lower rate than it does in SAL,
ensuring that large amounts of physical data can be processed by replicated SALs, maintaining at the
same time the overall system scalability.

6.2.1 The SAL-DAL API

The application Layer communicates with the dual Deductive Knowledge Base Layer via an API consist-
ing of DefineDALPredicate(), RunQuery() and RegisterRecurringQuery() interfaces (see Figure 6.1).

1Chapter 8 introduces a general concept of an event, an abstract event.
2The query: “Is user X in Cambridge?” needs to answer positively even if User X is in FC15, which is in the William Gates

Building in Cambridge.’

114 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

The DefineDALPredicate() interface takes as arguments the predicate name along with its parameters,
and creates the necessary representation in the Distributed Abstract Layer (DAL) for this piece of knowl-
edge. This is equivalent to a type definition in Chapter 12. The RegisterRecurringQuery(), RunQuery()
and Notify() interfaces are discussed next.

Application-Driven Deduction

The RegisterRecurringQuery() command is used by the Application Layer in order to register interest
in a particular, recurring situation in a way that the application layer is notified whenever the situation
occurs, starting with its next occurrence. The RegisterRecurringQuery() command, together with the
Notify() command, behave similarly to a publish-subscribe protocol. Chapter 8 discusses an extended
publish/subscribe protocol for sensor-driven systems.

The interface between the two layers, used by both API commands, is based on a monitor-callback
mechanism similar to an asynchronous invocation between a consumer and a publisher. Nomenclature
here is taken from the theory of Distributed Systems [22]. The monitor mechanism in the Sensor Ab-
stract Layer watches all changes in the environment reported by the Sensor Infrastructure for certain
threshold events, as specified in the RunQuery() and RegisterRecurringQuery() statements. The callback
mechanism ensures that such threshold events, when they occur, trigger a corresponding update in the
Deductive Abstract Layer, creating instances of the predicates that hold and destroying any that are no
longer true.

Example. In order to illustrate the functionality of the dual-layer architecture in more detail, consider
the case where the Application layer is interested in receiving a notification whenever two or more users
are co-located. Through a RunQuery() or RegisterRecurringQuery() statement initiated by the Sentient
Application Layer, unless it already knows about co-located users, DAL will register a monitor() call to
SAL in order for the latter to start monitoring the sensor data that signify co-location occurrences, as
specified in the recurring query. As a result, the Sensor Abstract Layer monitors the incoming events
in order to determine (from the users’ positions) whether two or more users are contained in the same
room. When this occurs, the respective knowledge about the users co-location will be generated in the
Deductive Abstract Layer through a callback() call. All further changes in the position of these users in
the Sensor Abstract Layer are monitored in order to determine whether the two users remain co-located.
If any of the co-located users exit the containing region, the change in the users’ location in combination
with the co-location predicate instance in the current, abstract state (DAL), signals an inconsistency. As
a result, another callback() call is triggered from SAL to DAL, invalidating the current state, logging it
as a historical state and generating a new current state. In practice, only a fragment of the global state of
the Sentient Environment is changed, as most abstract knowledge remains unaltered.

6.2.2 Scalability Concerns

The main benefit of the proposed architecture is that it maintains a consistent, abstract state of the Sentient
environment in the Deductive Abstract Layer that can be made available to the application layer at a
significantly lower cost than if it were generated directly from the Sensor Abstract Layer. The availability
of the abstract knowledge in DAL, and the fact that this knowledge changes at a lower rate than it does in
SAL, make DAL more computationally efficient at keeping its stored knowledge consistent. Figure 6.2
depicts the different rates with which knowledge is updated in each layer for two predicates P1 and P2.
Section 6.5 discusses, in more detail, computational concerns associated with the functionality of the two
layers. Note that λL is considerably greater than the rates λH1 and λH2 .

Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning 115

 event rate λL

rate λrate λ

Sensor Abstract Layer

Deductive Abstract Layer

API

H H1 2

monitor P1 monitor P2

1 P 2P

Figure 6.2. SAL-DAL

116 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

6.3 Formal Definition

This section presents a formal definition of the proposed scalable knowledge representation architecture
for Sentient Computing. The concepts of the dual-layer architecture that were discussed in the previous
section are now formally defined using first-order logic.

6.3.1 First-Order Logic

First-order logic [65], or predicate calculus, was chosen as being appropriate and sufficient for the de-
scription of the two knowledge layers, as they both maintain either current knowledge only (Sensor
Abstract Layer) or a combination of current and historical knowledge (Deductive Abstract Layer) about
the Sentient Environment. Time is implicit in SAL and explicit in DAL. However, when describing the
monitoring mechanism that establishes the links between the two layers, temporal aspects of the de-
scribed predicates are addressed by realising that as the Sensor Abstract Layer is updated first, until the
changes are updated to the Deductive Abstract Layer, this will contain the last known abstract state of
the world.

Concepts and Definitions A knowledge base KB is a system that stores knowledge about the Sentient
environment. A knowledge base represents predicates that are true by storing an instance of each of
these predicates. We refer to each such instance as a fact. The assertion of a fact in the knowledge base
is equivalent to it being stored in the knowledge base as a true statement. A fact being retracted from the
knowledge base results in the removal of the fact from the knowledge base. In fact, the assert command
is similar to a database ADD whereas the retract command is equivalent to a database DELETE. When a
fact is asserted in the knowledge base, this signifies that the predicate that the fact corresponds to has the
value TRUE. When the fact is retracted from the knowledge base, this signifies that the corresponding
predicate has the value FALSE. This nomenclature is taken from logic programming.

6.3.2 Naming Convention for Predicates

For reasons of clarity and simplicity, the following naming convention was adopted for logical predicates
throughout this document:

L 〈SAL predicate name〉 ((argument name ?argument value)· · · (argument name ?argument value))
H 〈DAL predicate name〉 ((argument name ?argument value)· · · (argument name ?argument value))

The main difference is that DAL predicates have additional time parameters that represent the beginning
and, wherever appropriate, the end of the temporal situations to which they refer. For the description of
the predicates, a named parameter notation was used based on the CLIPS [19, 20] syntax. Table 6.1 por-
trays some significant predicates. Each predicate argument has an associated value, which is denoted by
?argument-value. The predicates and their arguments are discussed in detail in sections 6.3.3 and 6.3.4.

6.3.3 Sensor Abstract Layer (SAL)

The knowledge base of this layer contains up to N facts of type L UserAtPosition(uid,role,x,y,z) 3 that
represent an object’s last known position in 3-D space in terms of its Cartesian coordinates x , y , z .
L UserAtPosition is the most precise location known to the system for each user. The variable ?uid

3The positional parameters notation L UserAtPosition(uid,role,x,y,z) is used interchangeably with the named parameter no-
tation L UserAtPosition(uid ?uid)(role ?role)(x ?x)(y ?y) (z ?z)). The former is used mainly for clarity in predicate description;
the latter is used mainly to describe the implementation.

Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning 117

Current Predicates Historical Predicates
DAL (H UserInLocation(uid ?uid)(role ?role) (H UserInLocationHistoric(uid ?uid)

(rid ?rid)(rattr ?rattr) (role ?role) (x ?x)(y ?y) (z ?z)(rattr ?rattr)
(start-time ?time-value)) (start-time ?time-value)(end-time ?time-value))
(H UserColocation(uid-list ?uid1 · · ·?uidn) (H UserColocationHistoric(uid-list ?uid1 · · ·?uidn)
(rid ?rid)(role-list ?role1 · · ·?rolen) (role-list ?role1 · · ·?rolen) (rid ?rid) (rattr ?rattr)
(rattr ?rattr)(start-time ?time-value)) (start-time ?time-value) (end-time ?time-value))
(H UserIsPresent(uid ?uid)(role ?role) (H UserIsPresentHistoric(uid ?uid)(role ?role)
(start-time ?time-value)) (start-time ?time-value)(end-time ?time-value))

SAL (L UserAtPosition(uid ?uid)(role ?role) -
(x ?x)(y ?y)(z ?z))

Table 6.1. Naming convention for logical predicates.

represents the unique user identification for that particular user. In examples in this chapter, first names of
users are used as identifiers. The variable ?role represents the user’s role, e.g., Supervisor. The variables
x,y,z represent the user’s last known coordinates. In this way, each user is associated with a position in
space.

Apart from these positions, the knowledge base also contains M1 facts of type L AtomicLocation to
the M1 known atomic regions of physical space, (e.g., rooms and polygonal areas of space). The KB
also contains M2 facts of type L NestedLocation, each corresponding to M2 nested regions (floors, larger
areas, buildings, neighbourhoods). There are, therefore, four distinct type of predicates represented in
this layer.

(L UserAtPosition (uid ?uid)(role ?role)(x ?x)(y ?y) (z ?z))
(L AtomicLocation (rid ?rid)(rattr ?rattr) (polygon ?n1?n2 · · ·?nj))
(L NestedLocation (rid ?rid) (site-list ?site1 · · ·?sitek))
(L InRegion (x ?x)(y ?y)(z ?z)(rid ?rid)(rattr ?rattr))

As the people move in space, a location system generates, on average, λL L UserAtPosition facts/sec
per mobile user and asserts them in the knowledge base. For each new fact of type L UserAtPosition, the
fact that represented the previous known position for that user is retracted, so that the knowledge base
only contains the most recent known location for that user.

The predicate L AtomicLocation associates a named location such as “Room 5” characterised by
a unique identifier (the rid), with a set of j points, n1 · · ·nj , which form the nodes of a polyhedral
region that defines that area.4 The predicate L NestedLocation associates a nested location such as “The
Computer Laboratory” with a list of nested and atomic locations that are directly contained in it. The
predicate L InRegion is created as a result of a spatial indexing algorithm that determines the smallest
region that contains the given coordinates, as expressed in the L UserAtPosition predicate.

6.3.4 Deductive Abstract Layer (DAL)

The higher level is logically distinct from the lower level in that it maintains a complete view of the
Sentient world. Although it lacks knowledge of the accuracy of the exact user position (as this is only
known to the Sensor Abstract Layer), it knows of high-level situations seen from a user-perspective as
well as their temporal properties, i.e., whether they hold at the current instant, or whether they happened
in the past, when they first occurred and what was their duration. Such dynamic knowledge is modelled
in the form of current and historic predicates. Current predicates represent a dynamic situation that still

4A coordinate system is assumed that assigns a set of coordinate values x,y,z to each position in space.

118 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

holds. Historic predicates represent a situation that occurred for a certain interval, beginning at a certain
point in time and ending at a later point in time. As a consequence of the above modelling technique,
the Deductive Abstract Layer has the important property that it gradually accumulates information about
what has happened in the Sentient world. The format of the DAL predicates is discussed in detail below.

The DAL Current Predicates. DAL current predicates describe a situation that occurred at an instant
t0 and that still holds at the current instant, (which is represented by the value now). Such predicates
have the following general format:

(predicate name (arg1 ?arg1)· · · (argn ?argn) (start-time ?time-value))

Arguments arg1 to argn represent the parameters of the situation that is described by the predicate,
and the variables ?arg1 to ?argn their respective values. The argument named “start-time” represents
the time when the situation described by the above predicate became first known to the system.

An important current predicate is the one used to describe a high-level location, e.g., Mary being in
the proximity of the coffee-machine, or James being on floor 4.

(H UserInLocation(uid Mary) (role PhD)(rid Coffee Area) (rattr Coffee Area) (start-time 11:02))

(H UserInLocation(uid James) (role PhD)(rid Floor 4)(rattr Upper Floor) (start-time 13:05))

where ?uid represents the user’s unique identification and ?rid is the value of the named parameter rid,
which represents the name of the smallest region that contains the user.

Similarly, applications can request through the API for SAL to register their interest in situations
where two or more users are co-located in the same high-level region by using the predicate H UserCoLocation.

(H UserCoLocation(uid-list ?uid1 · · ·?uidn)(role-list ?role1 · · ·?rolen)(rid ?rid)(rattr ?rattr)

(start-time ?time-value))

This process is explained in more detail in section 6.5. In the above formula, uid-list is the list of
users that are co-located in a region with name rid . The variables ?uid1 to ?uidn represent the unique
identification of these users.

The DAL Historical Predicates. The DAL historical predicates describe a situation that occurred at a
time instant t0

5 , was true for a duration d and ceased to be true at a time instant t1. Such predicates are
expressed in the following general format:

(predicate name (arg1 ?arg1)· · · (argn ?argn) (start-time ?time-value) (end-time ?time-value))

The argument “start-time” represents the time when the situation described by the above predicate
became first known to the system. The argument “end-time” represents the time when the situation
stopped being true, e.g., when the user left the room. For example, the DAL historical predicate that
describes the situation where Jane and Mike move into the meeting room in their office building at 12:46
pm, remain in the same room for 9 minutes and Jane leaves the meeting room at 12:55, is expressed

5The time is set according to the local clock of the Deductive KB component. Temporal issues are discussed, in detail, in
Section 12.3.1.

Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning 119

below: It is worth noting that there can be multiple instances of historic predicates for the same user.

(H UserLocationHistoric (uid-list Jane)(role-list PhD)(rid Room 9)(rattr Meeting Room) (6.1)

(start-time 12:46) (end-time 12:55))

(H UserCoLocationHistoric (uid-list Mike Jane)(role-list PhD)(rid Room 9)(rattr Meeting Room)

(start-time 12:46) (end-time 12:55))

6.3.5 User-Defined DAL Predicates

It is worth noting that whereas all SAL predicates are predefined, all predicates in DAL are user-defined.
This means that in the initial state, DAL contains no predicates. The structure of DAL predicates is de-
fined through the DefineDALPredicate() API call (see section 6.2.1), which is similar to a type definition
in the nomenclature of programming languages. Instances of these predicates (facts) are generated from
the Sensor Abstract Layer by the monitor() and callback() calls (see Section 6.2.1).

6.4 Queries

Queries are used by the application layer in order to capture and return the current instance of stored
knowledge about the Sentient World. Queries are similar to SQL [27] SELECT statements in the theory
of relational databases. A query can be viewed as a first-order logical expression f(c1, c2, · · · , cn)
that has the property that upon the satisfaction of a set of atomic formulae c1, c2, · · · , cn, an answer is
triggered.

f(c1, c2, · · · , cn) ⇒ Answer

where f is any first-order formula involving the formulae (c1, c2, · · · , cn).
Answer can have a value of “yes”, “no”, “I don’t know” or a value extracted from a stored fact such

as the user id. The | operator is used in order to define the arguments whose values are to be returned
and it is conceptually similar to an SQL SELECT operator. The interface through which the answer is
returned to the user is subject to the application layer and can be implemented in various ways, e.g., by
using a print function, by publishing a structured event or through an API. A structured event approach,
where the answer is encoded as a structured event and is returned to the application layer via a Notify()
call (see Section 6.2.1), is adopted. Event-based asynchronous communication of changes in knowledge
predicates is discussed in Chapter 8.

Examples of logical queries are “Who is present in the building now?” and “Which users are co-
located now?” The first query may be useful in the case of an application that delivers reminders to
anybody who is present in the building late in the evening, in order to remind them to lock their door
on the way out. The second query may be useful for the same application, delivering a reminder to one
party which is semantically associated with the second, e.g., the reminder: “Remember to ask Jane to
return your book” will be delivered when the user is in the same room with Jane [30]. Equally interesting
as an example is the case where a user enters a conference site and is interested to know if there is
anyone present from the University of Cambridge. If the above mentioned query “Who is present in the
building?” was to be executed at a knowledge base with a single layer of knowledge, (i.e., the Sensor
Abstract Layer), it could then be written as a query of the following form:

Query 1. Return All Present Users (Sensor Abstract Layer).

120 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

uid|(L UserAtPosition(uid ?uid)(role ?role) (x ?x) (y ?y) (z ?z))∧
(L AtomicLocation(rid ?rid)(rattr ?rattr)(polygon ?n1?n2 · · ·?nj))∧
(L InRegion(x ?x) (y ?y)(z ?z) (rid ?rid)(rattr ?rattr))

In this case, uid represents the information that will be returned in the answer. Query 1 expresses
the logical statement that in order for a user to be present in the building, three conditions need to hold
simultaneously:

• He or she needs to be seen by the location system at a position that can be characterised by the
coordinates x, y, z.

• The system must know of at least one region with id rid that can be characterised by a known
polyhedral shape.

• The system is able to determine that the coordinates of the user’s position belong to a known region
such as the one described above.

If all of the above hold simultaneously, than the user is deduced to be present.
The same query, should it be applied on DAL, would assume a simpler form:

Query 2. Return All Present Users (Deductive Abstract Layer).

uid|(H UserIsPresent(uid ?uid) (role ?role)(start-time ?time-value))

Similarly, the query “Which users are co-located now?” can be viewed as:

Query 3. Return All Co-Located Users (Sensor Abstract Layer).

(uid1, uid2)| (L UserAtPosition(uid ?uid1)(role ?role1)(x ?x1)(y ?y1) (z ?z1))∧
(L UserAtPosition(uid ?uid2)(role ?role2)(x ?x2)(y ?y2) (z ?z2))∧
(L AtomicLocation(rid ?rid)(rattr ?rattr) (polygon ?n1?n2 · · ·?nj))∧
(L InRegion(x ?x1)(y ?y1)(z ?z1) (rid ?rid)(rattr ?rattr))∧
(L InRegion(x ?x2)(y ?y2)(z ?z2)(rid ?rid)(rattr ?rattr))∧
(uid1 6= uid2)

The same query, should it be applied on the Deductive Abstract Layer instead of the Sensor Abstract
Layer, assumes a simpler form.

Query 4. Return All Co-Located Users (Deductive Abstract Layer).

(uid1, uid2)|(H UserCoLocation(uid-list ?uid1?uid2)(role-list ?role1?role2)
(rid ?rid)(rattr ?rattr)(start-time ?time-value))

Queries 1 and 3 are defined by the application layer to be equivalent to Queries 2 and 4, respectively
(see AESL definitions, Chapter 12). However, Queries 2 and 4 have, on average, fewer conditions than
their equivalent Queries 1 and 3. This is due to the fact that the information of the users’ presence and co-
location is available in the Deductive Abstract layer in the form of the logical predicates H UserIsPresent
and H UserCoLocation, respectively. Section 6.6 discusses in detail the effect of the above observation
on the computational complexity involved in the execution of queries in the proposed reasoning system,
demonstrating that queries executed in the Deductive Abstract Layer, such as Queries 2 and 4, entail the
use of significantly fewer computational resources than queries executed in the Sensor Abstract Layer
(Queries 1 and 3).

Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning 121

6.4.1 Recurring Queries

A second approach for the application layer to derive information from the knowledge base is by reg-
istering interest in a recurring situation that is triggered by periodic timing events. Whenever such a
situation occurs, a Notify() call returns a structured event that represents the predicate of interest to the
application layer. Contrary to queries, recurring queries do not examine the current state of the Sentient
World in order to establish whether the situation of interest holds at the current instance. Rather, they act
similarly to a subscribe call in a publish-subscribe protocol for distributed systems, in registering interest
in receiving information about future occurrences of the situation in question. Event-based asynchronous
communication of changes in knowledge predicates is discussed in Chapter 8.

For example, an application may be interested in a regularly recurring event such as “Whenever any
two people are co-located, update the GUI so that co-located people are portrayed as being enclosed in
a rectangular area.” A recurring query can be viewed as a first-order logical expression f(c1, c2 · · · cn)
that has the property that upon the satisfaction of a set of atomic formulae c1, c2 · · · cn , a set of actions
are triggered.

f(c1, c2 · · · cn) ⇒ Notify(event)

The Notify (event) call passes on to the application layer a structured event that contains the queried
information. Chapter 8 introduces abstract events as changes of abstract state. For example, such an
event can be a “Supervisor Alert” event which is defined elsewhere in the system. When such an event is
received by the application, the latter sends an appropriate e-mail message to the user. In fact, a particular
case of recurring queries, is that upon satisfaction of the query, a notification action is performed. For
example, “Whenever my supervisor enters the lab, notify me.” Recurring queries can be expressed as
logical implications where the left-hand-side is a simple query and the right-hand-side is a Notify(event)
predicate.

Query 5. Whenever my supervisor enters the lab, notify me by email.(Deductive Abstract Layer)

uid|(H UserIsPresent(uid Andy) ⇒ Notify(Supervisor Alert))

The application layer, on receipt of the Supervisor Alert event, is responsible for issuing an appropri-
ate e-mail notification. Note that this is equivalent to a high-level query, as it assumes that the predicate
H UserIsPresent is already available in the knowledge base.

6.5 Analysis

Having discussed queries and recurring queries, this section illustrates how the two-layer knowledge
scheme ensures scalability. A prototype implementation was constructed, where queries and recurring
queries are implemented in each layer by means of a CLIPS [19] inference engine. Each query is mapped
to one or more CLIPS rules. CLIPS implements a forward chaining rule interpreter that, given a set of
rules applied to a set of stored facts, cycles through a process of matching rules to available facts, thus
determining which queries are satisfied by the stored state of the Sentient environment. The process by
which CLIPS determines which facts satisfy the conditions of each query or recurring query is called
pattern matching, and the Rete algorithm [38] is used for this purpose.

The advantage of the proposed architecture is due to three important factors:

• First, as can be seen from Sections 6.4 and 6.4.1, queries that are executed in the Deductive Ab-
stract Layer such as Query 2, assume a much simpler form than those executed in the Sensor

122 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

Abstract Layer (Query 1), as the latter have more conditions on average, and therefore require
more computational resources for pattern matching.

• Secondly, pattern matching is triggered repeatedly every time the stored knowledge changes by
an assert or retract command. Therefore, the lower the rate of knowledge updates, the lower the
computational load required (see figure 6.2). Since the knowledge update rate in DAL is signifi-
cantly lower than the one in SAL (produced by the regular updates of the sensor infrastructure),
DAL is computationally more efficient.

• Finally, it can be logically inferred from the above that as long as DAL is updated at a lower rate
than SAL, the machine that hosts DAL has fewer real-time constraints that are introduced by the
interruptions caused by the assert and retract statements that control knowledge updates.

The next session discusses the computational complexity associated with queries, in more detail, by
analysing the Rete algorithm.

6.6 Prototype Implementation

This section aims to give a quantitative evaluation of the proposed scheme and its algorithm by dis-
cussing an implementation of the proposed system and by comparing Query 3 (see Section 6.4), which
is executed at the Sensor Abstract Layer, to the same query (Query 4), which is executed at the Deductive
Abstract Layer, and demonstrate that the latter entails a significantly smaller number of computational
steps.

The proposed architecture was implemented using the Jess [51] production system. Jess is a java-
based implementation of CLIPS. For the acquisition of real-time location information, a middleware
component was built [46] that interfaces the Active BAT system using CORBA structured events and
translates them into Jess facts.

6.6.1 Sensor Abstract Layer.

A model was created in Jess for the LCE based on location data produced by the Active BAT. The ex-
periment involved 15 members of the lab moving around 21 known locations in the LCE. The following
query “Return All Co-Located Users” was executed in the Sensor Abstract Layer.

Query 6. Return All Co-Located Users (Sensor Abstract Layer).

(uid1, uid2)| (L UserInLocation(uid ?uid1)(role ?role1)(rid ?rid)(rattr ?rattr))∧
(L UserInLocation(uid ?uid2)(role ?role2)(rid ?rid)(rattr ?rattr))∧
(L AtomicLocation(rid ?rid)(rattr ?rattr)(polygon ?n1?n2 · · ·?nj))∧
(uid1 6= uid2)

The Rete Algorithm. This implementation uses the Rete Algorithm [38] for pattern matching. In the
Rete algorithm, the pattern compiler creates a network by linking together nodes that test query elements.
This network functions similarly to a finite state machine whenever a query is added to the knowledge
base, or whenever a new fact is asserted or retracted. Portrayed in salmon is the root node of the network,
n0. For each predicate included in the query, the network creates a one-input node, portrayed in red in
Fig 6.3. Node n2 corresponds to the predicate L AtomicLocation. Node n3 corresponds to the predicate

Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning 123

L UserInLocation. Node n4 is an auxiliary, memory node that helps implement a loop. A two-input
(green) node is created for each conjunction of predicates. Node n5 corresponds to the conjunction:

(L UserInLocation(uid ?uid1)(role ?role1)(rid ?rid)(rattr ?rattr)) ∧

(L UserInLocation(uid ?uid2)(role ?role2)(rid ?rid)(rattr ?rattr))

Node n6 corresponds to the conjunction:

(L UserInLocation(uid ?uid1)(role ?role1)(rid ?rid)(rattr ?rattr))∧
(L UserInLocation(uid ?uid2)(role ?role2)(rid ?rid)(rattr ?rattr))∧
(L AtomicLocation(rid ?rid)(rattr ?rattr)(polygon ?n1 · · ·?nj))

Node n1 is an auxiliary node that helps implement node n7 that represents the condition (uid1 6= uid2).
Finally, node n8 is a terminal node that determines whether the query is satisfied or not.

������������������������������
������������
������

������������������������������
������������������������������

n0

n1

n2

n3

n4

n5 n6 n7 n8

NOTAND AND

none

Figure 6.3. The Rete network for the Return All Co-Located Users query (SAL)

The Rete algorithm proceeds as follows: when the query is added to the Sensor Abstract Layer, for
each stored fact, a token is created. Each token is an ordered pair of a tag (that in this case has the value
“UPDATE”) and a description of the stored fact. All these tokens are passed to node n0, which is the
root node in the network. Node n0 passes all the generated tokens to each of its successor nodes. Node
n3 checks whether any of the received tokens correspond to facts of type L UserAtLocation6 and passes
all such tokens to node n4. Node n5 checks all L UserAtLocation tokens against each other, in order to
determine which pairs satisfy the conjunction:

(L UserInLocation(uid ?uid1)(role ?role)(rid ?rid)(rattr ?rattr) ∧

(L UserInLocation(uid ?uid2)(role ?role)(rid ?rid)(rattr ?rattr))

For each of the pairs that satisfy the conjunction, it creates a new token and forwards this on to node n6.
Node n2 tests for tokens that are of type L AtomicLocation and passes these on to node n6, too. Node
n6 joins the pairs that represent the conjunction:

(L UserInLocation(uid ?uid1)(role ?role1)(rid ?rid)(rattr ?rattr)) ∧

(L UserInLocation(uid ?uid2)(role ?role2)(rid ?rid)(rattr ?rattr)) ∧

(L AtomicLocation(rid ?rid)(rattr ?rattr)(polygon ?n1 · · ·?nj))

6In this prototype implementation, the SPIRIT system was used to provide L UserAtPosition predicates from the Active
BAT positions.

124 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

Sensor Abstract Layer (SAL) Deductive Abstract Layer (DAL)
total node activations 317 200
total tests on nodes 1611 0

Table 6.2. Pattern matching costs.

into bigger tokens and forwards them on to n7. Node n7 tests that uid1 6= uid2 thus excluding trivial
co-locations of the same person. It forwards the eligible tokens to n8, the success node. These tokens
satisfy the whole query. For each token, n8 creates an instantiation of the query.

In order to obtain a measure of the computational complexity that the implemented scheme entails,
the number of node activations and the number of tests performed in total by the nodes on the network
was investigated. Both Queries 3 and 4 were asserted in the prototype implementation of Chapter 10.
The results are shown in Table 6.2 (SAL).

6.6.2 Deductive Abstract Layer

The previous experiment was repeated for Query 4 (see Section 6.4) which is executed in the Deductive
Abstract Layer. The network for this query is portrayed in Figure 6.4.

n2n1 n3 n4n0

Figure 6.4. The Rete network for the Return All Co-Located Users query (DAL)

Node n0 is the root node. Node n1 tests whether the received token is of type H UserCoLocation.
Node n2 passes on the tokens with the correct number of arguments and n4 creates an instantiation of
the query and adds it to the conflict set.

Performing the same analysis as before, the results are presented in Table 6.2. It is worth noting that
the number of computational steps executed by the Rete algorithm for pattern matching each query is
lower for the DAL query by a factor of two. Taking into consideration that both networks (see Figure 6.3,
Figure 6.4) behave similarly to acyclic finite automata that are triggered repeatedly each time a fact
is asserted or retracted in each knowledge layer respectively, it can be easily inferred that the overall
number of computational steps required for DAL is smaller than that required for SAL as knowledge in
DAL changes much less frequently. Finally, SAL is continually interrupted by a very high event rate
which has an immediate effect on the machine that hosts that layer.

6.7 Conclusions

A scalable knowledge representation and abstract reasoning system for Sentient Computing was pre-
sented where knowledge was modelled formally using first-order logic. First-order logic is suitable for
Sentient Computing, especially in the context of the proposed architecture that is based on a cache-
like, dual-layer scheme that maintains abstract knowledge in the Deductive Abstract Layer as opposed
to rapidly changing low-level knowledge in the lower, Sensor Abstract layer. Abstract knowledge re-
mains consistent with the rapidly changing state of the Sentient world by closely monitoring associated,
low-level predicates as requested by the application layer through an API. Such predicates are contained
in the Sensor Abstract Layer and by having only threshold changes reflected at DAL. Maintaining ab-
stract knowledge is a requirement of the Sentient Application layer, and it is made available to Sentient

Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning 125

Applications through a mechanism of queries that are mainly executed at the Deductive Abstract layer.
Experiments with a prototype implementation (see Section 6.6) confirm that the two-layered architecture
is more efficient than a single-layered one.

126 Chapter 6. Knowledge-Representation and Scalable Abstract Reasoning

Chapter 7

Query Analysis and Optimisation

This chapter describes a worst-case analysis of how the computational efficiency of the previously de-
scribed model is affected whenever a new query is inserted in the knowledge base. It also analyses the
effect of the event rate on the computational efficiency of SCAFOS’ deductive knowledge base compo-
nent for the same worst-case scenario. The findings of this analysis are combined in order to optimise
queries. Query optimisation has an immediate effect on the design of the AESL language presented in
Chapter 12, as its statements are mapped onto optimised queries.

7.1 The Effect of Query Assertion on the Computational Complexity

Having established in Chapter 6 that pattern matching is key to the computational load involved in ex-
ecuting a query, this section introduces a complexity metric for queries based on the concept of query
response time.

Def. 1. The response time of a query is the time that passes from the moment a query is asserted until an
answer is available.

The response time for any query can be calculated in terms of the number of node activations and the
number of tests that are performed in the nodes of the Rete network that implements that query. Table 7.1
describes the most important metrics of interest. Every time a sensor creates a new instance of a concrete
state predicate, corresponding tokens are created and propagated through the arcs to the nodes.

Tq Is the total time required to assert a query.
N1 Is the number of activations of one-input nodes.
a Is the cost of activating a one-input node (including the cost of the test performed by the node).
N2 Is the number of activations of two-input nodes, including the number of activations of

memory nodes and the number of updates performed in the memory nodes.
γ Is the combined cost of activating a two-input node, the cost of activating the two memory nodes

that form its right and left memory and the cost of performing a test on these memory nodes.
T2 Is the number of tests performed by the two-input nodes.
c Is the cost of performing one test at a two-input node.
Np Is the number of activations of &P nodes.
f Is the cost of activating a &P node.

Table 7.1. Cost analysis of the Rete algorithm.

127

128 Chapter 7. Query Analysis and Optimisation

Node Types

Five types of Rete network nodes are discussed in this chapter. One-input nodes, two-input nodes,
memory nodes, &P nodes and TQ nodes1. Two more node types are discussed in Section 8.3.1, Store
nodes and NOT nodes.

Each one-input node checks whether the received tokens correspond to a particular condition, e.g.,
if they are of class H UserInLocation. These nodes are portrayed in red. One-input nodes also check
whether a value is assigned correctly to an attribute. Such nodes are portrayed in brown and they are
discussed in more detail in Chapter 12. Each one-input node forwards the tokens that satisfy the check
on to its child nodes.

Two-input nodes represent conjunctions. They contain two memory nodes called the left and right
memory node. They concatenate the tokens that are stored in their right and left memory and they
perform a test to determine whether shared variables are bound correctly. Such nodes are portrayed in
green and they are labelled “AND”.

Trigger-Query (TQ) nodes are nodes that trigger a JESS query that selects all instances of a partic-
ular predicate from the knowledge base, for each token that is received at that node. Each (TQ) node
is portrayed as a pair of identical nodes connected with a curvy line. TQ nodes are integral to the im-
plementation of Rete Networks that implement functions such as those that calculate the maximum or
minimum value of an attribute of all stored instances of a predicate. They are often used in this disser-
tation for calculating the location with the smallest distance to one of the users. Each of the two nodes
that form a TQ node is labelled “TQ (predicate)”.

Finally, &P nodes are final nodes. There is one &P node for each query. When a token is for-
warded to the final node, an instance of the abstract predicate that is being defined is created or deleted
accordingly.

Table 7.1 describes some metrics of interest. According to [37], the response time of a query can be
estimated as:

Tq = aN1 + γN2 + cT2 + fNp. (7.1)

Sensor Abstract Layer: Worst-Case Scenario

Let’s assume a query that selects any n users that are contained within m regions. The query is executed
at the Sensor Abstract Layer, which contains N facts in total. Out of these N facts, n facts are of type
L UserAtPosition, m facts are of type L AtomicLocation and n facts are of type L InRegion,
because we assume that for each L UserAtPosition predicate there is an equivalent L InRegion
fact, which associates this position with a region. Therefore, N = m + 2n. The worst case query
is one where each condition introduces as few constraints as possible, while a large number of differ-
ent conditions are conjoined. The following query (Query 7) has C1 = n conditions about facts of type
L UserAtPosition, C2 = m conditions about facts of type L AtomicLocation and C3 = n conditions
about facts of type L InRegion, all conjoined.

1The nomenclature and notation for these nodes is the one found in [37].

Chapter 7. Query Analysis and Optimisation 129

��

����������������������������	�	�		�	�		�	�		�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����������������������������������

�����������������������������������
���������������

��

��

��

��

��

��

�����������������������������������
�������������������������

��

 � � � � � � � � � � � � !�!�!�!!�!�!�!!�!�!�!!�!�!�!

N

N

N

N

N

N

N

N

N

N

N

N

N

N
N

N
2

N

N

N

N

3

4

5

6

N
7

N

N

N

N
N

N

N

N

8

9

10

11

13

14

15

12

root node

Figure 7.1. A worst-case query (SAL).

Query 7. A Worst Case Query (Sensor Abstract Layer).

H UserInLocation(uid1 , role1 , rid1 , rattr1) ∧

H UserInLocation(uid2 , role2 , rid2 , rattr2)

...

H UserInLocation(uidn , rolen , ridm , rattrm) ∧

L AtomicLocation(rid1 , rattr1) ∧

...

L AtomicLocation(ridm , rattrm) ∧

L InRegion(x1 , y1 , z1 , rid1) ∧

...

L InRegion(xn , yn , zn , ridm)∧

Figure 7.1 depicts the Rete network for the above query where 7 users are located inside 3 out of 5
rooms2 C1 = 7, C2 = 5, C3 = 3, C = 15. In this query, each one-input node passes all the tokens
that activated it to its successors. In each case, the number of the tokens that have activated the one-
input node is smaller than N , so N is the worst-case value for number of activating tokens for each
one-input node. Each two-input node at level k receives a maximum of N tokens from the right input
and Nk−1 tokens from the left input and performs N · N k−1 tests. In the worst case, all these tests will
be successful, and they will produce N k new tokens. Each two-input node maintains two memory nodes,
which correspond to the right and left memory for that node. There are C − 1 levels of two-input nodes

2It is assumed that the rest of the 7 − 3 = 4 positions cannot be mapped into any room in the environment.

130 Chapter 7. Query Analysis and Optimisation

where C = C1 + C2 + C3 is the total number of conditions in the query.
The total number of node activations and node tests are given by the following equations.

N1 = 3N (7.2)

N2 = 2N + N + N2 + N + N3 + N + · · · + NC−1 + N

= CN + N2 + · · · + NC−1 (7.3)

Np = NC (7.4)

T2 = N2 + N3 + · · · + NC (7.5)

(7.6)

Therefore, it follows from Equation 7.1:

Tq = (3a + γC) N + (γ + c)N 2 + · · · + (γ + c)N3 + · · · + (γ + c)NC−1 + (γ + f)NC

= O
(

NC
)

(7.7)

Deductive Abstract Layer: Worst-Case Scenario.

The equivalent, worst case, single query for the Deductive Abstract Layer would have one condition
that depends on the high-level predicate of interest. The previous query in the Deductive Abstract Layer
would be represented by the predicate H n Users In m Locations (nUImL):

Query 8. The H n Users In m Locations Query (Deductive Abstract Layer).

H n Users In m Locations(uid1 , . . . , uidn , role1 , . . . , rolen , rid1 , . . . , ridm , rattr1 , . . . , rattrm)

The variables uid1 to uidn represent the n users with roles role1 to rolen that are contained in the m
locations rid1 to ridm with attributes rattr1 to rattrm. Figure 7.2 portrays the Rete network that cor-
responds to the above query without constants. An estimate for the maximum number of computational
steps involved in this case can be calculated from Equation 7.1, noting that because of the lack of any
two-input nodes, N2 = T2 = 0.

Tq = N + fN

= (1 + f)N

= O(N) (7.8)

7.1.1 The Effect of the Event Rate on the Computational Complexity of the Worst-Case
Scenario Query

This section investigates the computational load involved in the reception of an event that causes the
queries that are already stored in the knowledge base to be re-evaluated against the modified set of facts
in the knowledge base. In order to introduce an estimate for the maximum number of computational steps
that are triggered from receiving an event, the pattern matching process is investigated and analysed next.

Assuming that Query 7 has already been matched against the previous N elements, the contents
of the memory of the nodes are depicted in Figure 7.3. Upon the assertion of each L UserAtPosition
fact, the new fact activates all three one-input nodes, but only the left one, which tests whether it is of
type L UserAtPosition will pass it on. The first two-input node will test the new fact against its right

Chapter 7. Query Analysis and Optimisation 131

&P

root node

nUimL

Figure 7.2. A worst-case query (DAL).

memory, which already contains N +1 facts, and it will, therefore, perform N +1 tests. It will also pass
N +1 tokens in the worst case to its successor node. This node will perform (N +1)(N +1) = (N +1)2

tests, and it will pass (N + 1)2 tokens on. Without affecting the computational complexity, N + 1 can
be approximated by N . Because the reception of a new L UserAtPosition fact entails the retraction of
its old instance, the retracted fact is also pattern-matched against the Rete network in order to determine
which rules no longer hold, and to remove their instantiations from the conflict set. Therefore, in total,
for each new L UserAtPosition fact, two traversals of the Rete network are required and, as follows
from Equation 7.1, the total time cost that is incurred by the reception of each event is Tf , as can be
derived from the equation below:

Tf = 2Tq

= 2[aN1 + γN2 + cT2 + fNp] (7.9)

where Tq is the time required for the pattern matching of one fact.

Sensor Abstract Layer: Worst-Case Scenario

N1 = 3 (7.10)

N2 = 2 + N + 1 + N2 + 1 + · · · + NC−2

= N + N2 + · · · + NC−2 + C1 (7.11)

Np = NC−1 (7.12)

T2 = N + N2 + N3 + · · · + NC−1 (7.13)

Taking into account that events are received and asserted in the Sensor Abstract Layer as facts with rate
b, then it follows from Equation 7.9:

T = bTf

= 2b
(

a + γN + (γ + c) N2 + (γ + c) NC−2 + γC1 + (c + f) NC−1
)

= O
(

NC−1
)

(7.14)

132 Chapter 7. Query Analysis and Optimisation

"#"#""#"#""#"#""#"#"
$#$#$$#$#$$#$#$$#$#$

%#%#%#%%#%#%#%%#%#%#%%#%#%#%%#%#%#%
&#&#&&#&#&&#&#&&#&#&&#&#&

'#'#''#'#''#'#''#'#'
(#(#((#(#((#(#((#(#(

)#)#))#)#))#)#))#)#)
##**#*#**#*#**#*#*

+#+#++#+#++#+#++#+#++#+#+
,#,#,,#,#,,#,#,,#,#,,#,#,

-#-#-#--#-#-#--#-#-#--#-#-#-
.#.#.#..#.#.#..#.#.#..#.#.#.

/#/#/#//#/#/#//#/#/#//#/#/#//#/#/#/
0#0#0#00#0#0#00#0#0#00#0#0#00#0#0#01#1#11#1#11#1#11#1#11#1#1

2#2#22#2#22#2#22#2#22#2#2

3#3#33#3#33#3#33#3#3
4#4#44#4#44#4#44#4#4

5#5#5#55#5#5#55#5#5#55#5#5#5
6#6#66#6#66#6#66#6#6

7#7#77#7#77#7#77#7#77#7#7
8#8#88#8#88#8#88#8#88#8#8

9#9#9#99#9#9#99#9#9#99#9#9#9
:#:#:#::#:#:#::#:#:#::#:#:#:

;#;#;#;;#;#;#;;#;#;#;;#;#;#;
<#<#<<#<#<<#<#<<#<#<

=#=#=#==#=#=#==#=#=#==#=#=#=
>#>#>>#>#>>#>#>>#>#>

N

N

N

N
N

N

N

N

root node

1

1

N
2

N
3 2

N
4 3

N5 4

N

1

1

1

1

1

1

N N

 N

 N

 N

 N

6 N

N
7

N

N
8

N

N
9

N

N
10

N

N
11

N

NN
12

N
13

N

N
14

N

14

13

12

11
10

9

8

7

N6

N5

N
4

N
3

N2

N

Figure 7.3. The effect of the event rate on the worst-case query of Figure 7.1.

As can be seen from the above, the computational complexity involved in each event reception depends
on the rate with which the predicate changes, the size of the Sentient world (number of monitored people)
as well as the architecture of the query in terms of the number of nodes to which it compiles.

Deductive Abstract Layer

Let b′ be the rate with which instances of the predicate nUImL change in DAL. Calculating the event
rate in the network of Figure 7.2 when a fact of type L UserAtPosition is asserted in the knowledge
base:

N1 = N + N

N2 = 0

T2 = 0

Np = N

(7.15)

From Equation 7.9, it follows that T = O(N).

7.2 Query Optimisation

The above analysis is instrumental in determining the nature of the Rete networks into which AESL
definitions of Chapters 8 and 12 are compiled. In fact, the design of the AESL definitions should be such

Chapter 7. Query Analysis and Optimisation 133

that the worst-case Rete network is avoided. Chapter 12 discusses the syntax of AESL definitions, here
referred to for simplicity as rules (see Section 1.8).

The worst-case Rete network for a given rule occurs by conjoining all the conditions. Instead, con-
ditions can be written as separate implications that result in intermediate abstract facts being asserted in
SAL. We demonstrate that Rule 9 is computationally more efficient than Rule 10.

134 Chapter 7. Query Analysis and Optimisation

Rule 9. Locate the closest, non-empty room to each user.

H UserInLocation(uid , rid , role, rattr)

⇒ H NonEmptyLocation(rid , rattr)

H Distance(v1 , uid , role, rid2 , rattr2) > H Distance(v2 , uid , role, rid1 , rattr1)

⇒ H ClosestLocation(uid , role, rid1 , rattr1)

H ClosestLocation(uid , role, rid , rattr) ∧ H NonEmptyLocation(rid , rattr)

⇒ H ClosestNonEmptyLocation(uid , role, rid , rattr)

Rule 10. Locate the closest, non-empty room to each user.

H UserInLocation(uidk), rid1 , role, rattr1)

∧H Distance(v1 , uid , role, rid2 , rattr2) > H Distance(v2 , uid , role, rid1 , rattr1)

⇒ H ClosestNonEmptyLocation(uid , role, rid1 , rattr)

The Rete networks for the above rules can be seen in Figure 7.4 and Figure 7.5, respectively.
CNEL stands for H ClosestNonEmptyLocation, NEL stands for H NonEmptyLocation and CL

for H ClosestLocation. Each token of type D(v , uid , role, rid , rattr) that is received by the node
TQ(D(v , uid , role, rid , rattr)) is tested against all tokens of the same type that are stored in the knowl-
edge base. For example, node TQ(D(v , uid , role, rid , rattr)) receives mn tokens of type D(v , uid , role, rid , rattr)
and performs (m2n2) tests.

?@??@??@?
?@??@??@?
?@?
A@AA@AA@A
A@AA@AA@A
A@A

B@B@BB@B@BB@B@BB@B@BB@B@BB@B@B
C@CC@CC@C
C@CC@CC@C

D@DD@DD@D
D@DD@DD@D
D@D
E@EE@EE@E
E@EE@EE@E
E@E

root node

AL(rid,rattr)

AND

AND

CL(u,role,rid,rattr)

UL(u,rid,role,rattr)

NEL(rid,rattr)

CNEL(u,role,rid,rattr)

D(u,role,rid,rattr,v)

AND

TQ(D(u,role,rid,attr,v))

TQ(D(u,role,rid,attr,v))

Figure 7.4. Implications.

Chapter 7. Query Analysis and Optimisation 135

F@F@FF@F@FF@F@FF@F@FF@F@FF@F@F
G@G@GG@G@GG@G@GG@G@GG@G@GG@G@G

H@H@HH@H@HH@H@HH@H@HH@H@HH@H@H
I@II@II@I
I@II@II@I

J@J@JJ@J@JJ@J@JJ@J@JJ@J@JJ@J@J
K@KK@KK@K
K@KK@KK@K

root node

AL(rid,rattr)

D(u,role,rid,rattr,v)

AND

AND

AND

CNEL(rid,rattr)

UL(u,role,rid,rattr)
NEL(rid,rattr)

TQ(UL(u,role,rid,rattr))

TQ(D(u,role,rid,rattr,v))

TQ(D(u,role,rid,rattr,v))

TQ(UL(u,role,rid,rattr,v))

Figure 7.5. Conjunction.

7.2.1 Analysis of Rule 9

We assume n H UserInLocation facts, m L AtomicLocation facts, nm H Distance facts.

N1 = 3N + mn + mn + n + n

N2 = m + n + 2mn + m + n

T2 = mn + m2n2 + mn

Np = m

The computational complexity from asserting this rule into the knowledge base is given by Equation 7.1.
Because the total number of stored facts in the knowledge base is N , the total cost amounts to O(N 4).

7.2.2 Analysis of Rule 10

N1 = 3N

N2 = mn + mn + m3n2 + mn + m4n+m

T2 = m2n + m4n3 + m5n4

Np = N

The computational complexity from asserting this rule into the knowledge base is given by Equation 7.1
and it amounts to O(N 9).

136 Chapter 7. Query Analysis and Optimisation

7.2.3 Conclusions and Further Work

• From Equations 7.7 and 7.14 it follows that, for worst-case queries, the computational complexity
that is involved in their evaluation is NC every time the query is asserted or NC−1 everytime a
new primitive event is received. C denotes the number of conditions of the query and N denotes
the number of facts in the knowledge base.

• Worst-case Rete networks are those that correspond to rules that are conjunctions of conditions.
The above complexity is significantly reduced when rules are written as a set of implications that
are correlated by the inference engine. This advocates that the design of AESL Definitions should
contain implications.

• Care needs to be taken to prevent the number of facts that are generated by the implications of
AESL definitions from becoming too large.

Chapter 8

An Extended Publish/Subscribe Protocol
Using Abstract Events

Most distributed systems research assumes that events are primitive, and various studies have, therefore,
concentrated on composite events. However, Chapter 5 demonstrated that event-based systems, such as
those using finite state machines, are insufficient for querying and subscribing transparently to distributed
state. This is due to the fact that the mapping between the subscription language and the implementa-
tion domain is incomplete, which makes computation by finite automata limited. This necessitates an
alternative model for ubiquitous sensor-driven systems.

This chapter proposes the notion of an abstract event as a notification of transparent changes in
distributed state. This is implemented as an extension to the publish/subscribe protocol in which a higher-
order service (Abstract Event Detection Service) publishes its interface; this service takes an abstract
event specification as an argument and in return publishes an interface to a further service (an abstract
event detector), which notifies transitions between the values true and false of the formula, thus providing
a natural interface to applications.

8.1 The Publish/Subscribe Protocol

Contemporary large-scale distributed systems tend to be designed as assemblies of loosely coupled
components communicating by means of the publish/subscribe model for event interaction. The pub-
lish/subscribe event-interaction scheme is widely used in order to provide the loosely coupled form of
interaction required in such large-scale settings. It provides a subscriber with the ability to express their
interest in an event or a pattern of events in order to be notified afterwards of any event, generated by a
publisher, matching the registered interest.

In the basic system model for publish/subscribe interaction, the publisher publishes its interface
(SListener), including the events it will notify. A subscriber registers interest in events indicating, where
appropriate, constraints on the event parameters. The publisher notifies the subscriber of event occur-
rences that match the subscriber’s registration. An event service, such as the CORBA notification ser-
vice, can act as a mediator between the publisher and the subscriber decoupling the subscriber and the
publisher in space, flow and time, undertaking event filtering and event storage and, at the same time,
providing services such as message buffering and message forwarding to disconnected subscribers [7].
In this scheme, subscribers register their interest in events by typically calling a Subscribe() operation on
the event service without knowing the publishers of these events. A symmetric operation Unsubscribe()
terminates a subscription. To generate an event, a publisher calls a Notify() operation on the event ser-
vice. The event service directs the call to all relevant subscribers so that every subscriber receives a
notification for every event conforming to its registration.

137

138 Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events

EventListener()

Event Publisher

Event Notifications

Registration + Filters
Subscribe()

Unsubscribe()

Event Subscriber

SListener()

UListener()

Notify()

(a)

Event Publisher

Event Notifications

Registration + Event Filters

Subscribe()

Unsubscribe()

Notify()
Notify()

Event Subscriber Event Service

EventListener()

SListener()

UListener()

EventListener()

(b)

Figure 8.1. The publish/subscribe protocol. Direct publisher-subscriber interaction (a). Publisher-subscriber inter-
action through an Event Service (b).

Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events 139

8.2 An Abstract Event Model

In this section, the model of Chapter 5 is summarised in order to provide a definition for abstract events.
It is assumed that a system consists of several physical domains such as an office domain. Each domain
contains a set of physical objects, such as users and equipment, that are mobile and can move freely in
space. Each object has a state which is implemented in our model through a list of state predicates that
can be either true or false. State predicates can be either concrete or abstract. Concrete state predicates
represent state that is directly derived from the sensors; in this dissertation, such predicates are always
prefixed with “L ”(Low-level). Examples of concrete state predicates are the states that represent a
user’s position in terms of his coordinates, rooms in a building and nested locations such as floors.
These are modelled with the first-order logic (FOL) predicates L UserAtPosition , L AtomicLocation

and L NestedLocation, respectively. For example, L UserAtPosition(John, 13.45, 5.76, 1.75, 13:56),
AtomicLocation(Room-7, Meeting Room, Polygon), L NestedLocation(Floor4, Room 1,Room 2, Room
3, Room 4).

Abstract state predicates represent high-level state that is derived from concrete state by means of
abstractions on properties of interest; for example, a user’s high-level location in terms of the region
that contains that user, a user’s presence or absence and the fact that one or more people are co-located.
Initially, when the system is started up, only concrete state predicates exist. Abstract state predicates in
this paper are always prefixed with “H ”(High-level).

Definition 1. An abstract event is detected when an instance of an abstract state predicate which initially
evaluates to true next evaluates to false and vice versa.

8.3 Abstract Event Specification and Filtering

The Abstract Event Specification Language (AESL)1 for creating abstract event definitions is a subset of
TFOL that corresponds to Horn Clause Logic. An abstract event definition (AESL def) consists of one or
more implications (Horn clauses). In case of only one implication, the RHS is the abstract predicate of
interest. In case of more than one implication, the RHS of the last rule is the abstract predicate of interest
while the RHS of each intermediate rule is an intermediate abstract predicate.2 The AESL language is
discussed in detail in Chapter 12. An example is given here for illustration purposes.

Example 1. Locate the closest location to each user.

Writing for brevity UL for H UserInLocation , AL for L AtomicLocation , EL for H EmptyLocation ,
CL forH ClosestLocation, CEL for H ClosestEmptyLocation and D for H Distance:

(6 ∃u UL(u, rid, role, rattr) ∧ AL(rid , rattr , polygon)

⇒ EL(rid, rattr))

D(v1, u, role, rid2, rattr2) > D(v2, u, role, rid1, rattr1)

⇒ CL(u, role, rid1, rattr1)

CL(u, role, rid, rattr) ∧ EL(rid, rattr)

⇒ CEL(u, role, rid, rattr) (8.1)

1AESL is a typed language, however types are ignored in this chapter. The AESL language is discussed extensively in
Chapter 12.

2As usual with these clauses, all free variables are presumed to be implicitly universally quantified.

140 Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events

Filtering. Horn Clause logic is used for defining filters during client subscription. Filtering is equiv-
alent to selecting a subset of instances of a specific predicate by specifying a set of constraints on its
attributes. A filter that selects only the instances in (8.1) that correspond to meeting rooms and system
administrators is shown in (8.2). Note that we encourage AESL definitions to use variables as arguments
for predicates rather than constants. This facilitates implementation optimisation, and it ensures that the
deduction of the abstract predicate, which is computationally expensive, is performed once, and multiple
instances of the predicate are subsequently selected using filters. Section 8.3.1 discusses the implemen-
tation of AESL definitions and filters in more detail. The syntax of the AEFSL language that is used in
SCAFOS for filtering is discussed in detail in Chapter 12.

(rattr = Meeting Room) ∧ (role = Sysadm) (8.2)

8.3.1 Abstract Event Detectors

LMLMLLMLMLLMLMLLMLMLLMLMLLMLML
NMNMNNMNMNNMNMNNMNMNNMNMNNMNMN

OMOMOOMOMOOMOMOOMOMOOMOMOOMOMO
PMPPMPPMP
PMPPMPPMP

QMQQMQQMQ
QMQQMQQMQ
RMRRMRRMR
RMRRMRRMR S SS SS S

T TT TT T

UMUUMUUMU
UMUUMUUMU
VMVVMVVMV
VMVVMVVMV W WW WW W

X XX XX X

root node

AL(rid,rattr)

AND

NOT

UL(u,rid,role,rattr)

none AND

>

CL(u,role,rid,rattr)

EL(rid,rattr)

(uid,role,rid,context)

CEL(u,role,rid,rattr)

v1>v2TQ(

TQ(D(v,u,role,rid,rattr) D(v,u,role,rid,rattr))

D(v,u,role,rid,rattr))

AND

TEMP

Figure 8.2. An abstract event detector for Equation (8.1).

Each AESL definition is compiled into one or more abstract event (AE) detectors that are structured
as a deductive knowledge base, and that can perform semantic operations on instances of knowledge
predicates that are defined in terms of TFOL formulae. They are implemented as Rete networks [38],
and they consist of nodes and arcs. Every time a sensor creates a new instance of a concrete state
predicate, corresponding tokens are created and propagated through the arcs to the nodes, eventually
modifying appropriately the value of the abstract predicate.

Node Types

This section outlines the type of nodes that are found in Rete Networks. It extends the definitions of
Section 7.1 by two additional node types - i.e., Store nodes and NOT nodes.

Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events 141

One-input nodes check whether the received tokens correspond to a particular condition, e.g., if they
are of class H UserInLocation. These nodes are portrayed in red. One-input nodes also check whether a
value is assigned correctly to an attribute. Such nodes are portrayed in brown, and they are discussed in
more detail in Chapter 12. Each one-input node forwards the tokens that satisfy the check on to its child
nodes.

Two-input nodes represent conjunctions. They concatenate the tokens that are stored in their right
and left memory, and they perform a test to determine whether shared variables are bound correctly. Such
nodes are portrayed in green and are labelled “AND”.

Store nodes act as buffers for the current and historical instances of a predicate type and forward all
stored instances on to the child nodes. This allows for temporal reasoning.

Trigger-Query (TQ) nodes are nodes that trigger a CLIPS query that selects all instances of a par-
ticular predicate from the knowledge base for each token that is received at that node. Each (TQ) node
is portrayed as a pair of identical nodes connected with a curvy line. TQ nodes are integral in Rete
Networks that implement functions such as those that calculate the maximum or minimum value of an
attribute of all stored instances of a predicate. They are often used in this dissertation for calculating the
location with the smallest distance to one of the users. Each of the two nodes that form a TQ node is
labelled “TQ(predicate)”.

NOT nodes are satisfied when there is no token in their right memory. They are two-input nodes that
use a special, auxiliary token (“none”) in their left memory.

Test nodes perform a mathematical or logical operation such as equality or inequality on the values
of the attributes of the tokens they receive.

Finally, &P nodes are final nodes. When a token is forwarded to the final node, an instance of
the abstract predicate that is being defined is created or deleted accordingly and an “activation” or “de-
activation” abstract event is triggered, respectively. An abstract event detector for (8.1) is portrayed in
Figure 8.2. Each match in the network will cause the detection of the following abstract event:

〈H ClosestEmptyLocation〈uid , role, rid , Meeting Room, activation, timestamp〉〉

Each time an instance of the abstract predicate H ClosestEmptyLocation(uid, role, rid, Meeting
Room) that was previously true is evaluated to false, the following event will be detected:

〈H ClosestEmptyLocation〈uid , role, rid , Meeting Room, de-activation, timestamp〉〉

Abstract event detection can be distributed so that each implication in an AESL definition is imple-
mented by a separate detector, forming a hierarchical topology similar to SIENA [15] and HERMES [78].
The optimal placement of the detectors in the system can be determined as appropriate [81].

A filter is implemented as an AE detector with linear complexity. Filters can be combined whenever
there is a shared condition. For example, the filter of (8.2) can be combined with the filter of (8.3) as
shown in Figure 8.3.

(rattr = Meeting Room) ∧ (role = Ceo) (8.3)

8.3.2 Properties of Abstract Event Detectors

Negation. The proposed Rete-network-based implementation handles negation efficiently by using the
deductive knowledge base component in order to generate the missing negated abstract predicates from
concrete predicates, whenever this is possible. This is achieved by forcing concrete predicates that are
negated to be retracted from the knowledge base. Indeed, for each fact asserted by a sensor, the previous
instance of the same predicate is retracted from the knowledge base. If this predicate is modelled with
the symbol P , the retraction is equivalent to the assertion of an instance of the ¬P predicate. The change
caused by the ¬P predicate is propagated towards the abstract instances by means of the Rete networks,

142 Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events

rattr=Meeting
 Room

CEL

role=Ceo

role=Sysadm

Figure 8.3. Filter combination.

and all abstract predicates that depend on P are forced to be re-evaluated. The abstract (deduced) pred-
icates Qi that no longer hold, as a result of the propagation of ¬P , are in turn retracted, which causes
the assertion of the negative predicates ¬Qi to be deduced. In this way, the mapping between the FOL
expressions and the domain becomes complete. This ensures that negation in FOL expressions with state
is handled sufficiently.

Partial Knowledge. Because all asserted facts are maintained in the knowledge base, Rete networks
have access to all of the available knowledge. So partial knowledge in the sense of finite-state machine
implementations (see Chapter 5) does not exist here.

Dynamic Extensibility. One of the key advantages of this approach is that facts can be asserted and
retracted from the system dynamically, and the set of deduced facts that represents abstract, deduced state
is kept consistent with the change. This is due to the fact that each assertion or retraction is propagated
to the set of deduced facts by the Rete networks, and all deduced facts are re-evaluated accordingly.

Maintaining Transparency. The key enabler of CAAT (see Section 5.2) is that Rete networks are
higher-order and deal with free variables by default. Each node in the Rete network operates according to
an algorithm that undertakes the testing of all relevant facts in memory that satisfy the node variables and
its conditions. Therefore, the same Rete network can be used for the evaluation of the same expression
in any domain, as long as the naming of predicate types is standard.

8.4 The Extended Publish/Subscribe Protocol

The proposed extension to the publish/subscribe protocol is equivalent to a high-order service (which
is called Abstract Event Detection (AED) Service) where subscribers do not just subscribe to event
notifications as in the traditional form of this protocol, but to the establishment and configuration of
an abstract event detector (Section 8.3.1) for a new abstract event of interest. The AED Service acts
as a mediator between the subscriber and the publisher, and is responsible for detecting abstract events
from primitive events. It interacts with publishers and subscribers using the publish/subscribe primitives
(Subscribe(), Notify()) according to the following extension to the traditional publish/subscribe protocol:
the AED Service publishes its interface, using an event service such as the CORBA Notification Service
to all the subscribers and publishers of primitive events. Subscribers register their interest in subscribing
to abstract event types of interest by subscribing to a dedicated “AbstractEventSubscriptionListener”
(AESListener()) interface, at the AED Service. Each subscription carries the subscriber identification, an

Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events 143

AESL definition, and a filter3.

AESListener.subscribe(subscriberId , AESL def ,filter)

The AED Service uses the AESListener to listen for subscriptions of the above type. For each received
subscription, it checks in the abstract event repository whether an event type with the same name or
AESL definition exists, and if so, adds the subscriber to the list of subscribers for this event type. If it
doesn’t already exist, the AED Service registers the new event type with the underlying event service,
so that the abstract event is available for filtering. The AESL definition is made available to the abstract
event repository along with the new abstract event type. Next, the AESL definition and filter are extracted
in order to construct an abstract event detector that detects an abstract event of the requested type, as
explained in Section 8.3.1. Using the AESL definition, the primitive events of interest are selected and
the underlying notification service is used for subscribing to the primitive events which are then translated
appropriately and forwarded as inputs to the abstract event detector.

Each time an abstract event is detected, Notify() is invoked in order to publish the abstract event.
Notify() publishes both the abstract event and its AESL definition. This protects the service from malev-
olent event subscription in case of duplicate subscriptions to the same abstract event type with incorrect
AESL definitions. The AEUListener() listens for Unsubscribe() requests and removes the client that
corresponds to the unsubscribe event from the notification list for that abstract event type.

Abstract
Event Notifications

Primitive Event
Notifications

Primitive Event Publisher

Notify()

Notify()

Event Subscriber

DeleteAE()

EventListener()
Subscribe()

Unsubscribe()

EventListener()

Abstract Event Detection Service

AESListener()

AEUListener()

Figure 8.4. Abstract Event Detection (AED) Service.

The following call allows a subscriber to register interest in the events of type H ClosestEmptyLocation

(8.1). The filter of (8.2) is applied during subscription.

AESListener.subscribe(appIOR, Φ1 , Φ2 ,type def)

It is assumed that the application is a CORBA object known to the system by its remote object reference
(IOR). Φ1 and Φ2 correspond to (8.1) and (8.2) respectively.

8.4.1 Dynamic Retraction of Unused Abstract Event Types

When no subscribers are interested in a specific abstract event type, the detection of that abstract event
type stops and any instances of the abstract predicate are garbage-collected from the knowledge base.

3This interface also contains as an argument an AESL type definition that is required by the underlying knowledge base
implementation. Actually, the Subscribe() call is as follows: Subscribe(subscriberId, AESL def, filter, type def). Although
AESL is a typed language, type definitions are ignored in this chapter, but are discussed in Chapter 12.

144 Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events

This functionality is implemented by the DeleteAE() interface, which deletes the abstract event detector
that corresponds to the abstract event type of interest from the AED Service knowledge base. The
detector is re-created the next time a subscriber exists for that event-type.

8.4.2 Satisfiability Checking

As AESL definitions are used as specifications for abstract event detection, it is desirable that they are
checked for satisfiability, i.e., that there exists a state in the sensor-driven domain for which the binding
definition is true. The opposite case, that there exists at least one state for which the binding definition is
false, is also checked. Breaching of satisfiability can be caused by a user defining an abstract event that
corresponds to a situation that is impossible, e.g., the request “ Whenever the system administrator is at a
different room from the health and security officer, notify me” is impossible if the system administrator
is the same person as the health and security officer.

A prototype Satisfiability checking component was implemented using the theorem prover SPASS
[101]. This service is discussed in Chapter 9.

8.4.3 Resource Discovery

A subscription log enables the AED Service to keep track of the availability or not of subscribers and
publishers. If a publisher is unavailable, the AED Service can seek redundant sources for that context
type. Furthermore, failure of the AED Service will cause the notification of subscribers and a global
CORBA name service allows them to locate redundant services that provide the same functionality.

8.5 Distributed Abstract Event Detection

AERListener()

Notify()

AEDRListener()
Unsubscribe()

DeleteAE()

Abstract Event Detection Service

EventListener()

Subscribe()

Figure 8.5. The interfaces of the distributed Abstract Event Detection Service component.

The AED Service was discussed in the previous section as a central entity, serving a number of event
publishers and subscribers. In a large-scale distributed sensor-driven application, event publishers are
situated in different physical domains which can be distributed in a wide-area setting. In such a case,
a centralised AED Service will become a single point of failure. Instead, the AED Service is designed
as a distributed component that is placed as close to primitive event publishers as possible. Note that
this type of load balancing differs from the traditional concept, as the aim is not to define the optimal

Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events 145

server configuration for sharing the processing load, but rather the optimal places in the network where
the event processing should take place in order to promote scalability.

Furthermore, AED Service distributed components can be combined hierarchically, sharing some
of the processing. The interface of the distributed AED Service component is seen in Figure 8.5. The
Subscribe() and Unsubscribe() interfaces are used in order for the component to subscribe to other AED
Service components. The distribution of the AED Service component is made possible by the structure of
the AESL definition statements. Because AESL definitions are structured as sets of rules, they are easily
implementable hierarchically. For example, the AESL definition of Example 1 can be implemented with
a network of AED Service distributed components as in Figure 8.6. AED1 detects abstract events of
type H EmptyLocation (ae1), AED2 detects abstract events of type H ClosestLocation (ae2) and AED3

events of type H ClosestEmptyLocation (ae3).

P1

P2

S2

S3

S1

AED 3

AED 1

AED 2

Figure 8.6. Hierarchical distributed AED Service architecture.

8.6 Analysis

This section describes a prototype scalability analysis of the extended publish/subscribe protocol, in
terms of the number of events exchanged as well as the number of computational steps involved in the
creation and dispatching of events. It is demonstrated that the overall event cost is significantly lower than
that of a traditional publish/subscribe protocol. It is also demonstrated that the computational complexity
cost is similar to that of traditional publish/subscribe. However, in the extended version, computation is
not replicated unnecessarily and it can be easily accommodated on an appropriate server.

For simplicity reasons, a central architecture is assumed for the Abstract Event Detection service.
The architecture consists of k domains, each containing on average n users and m rooms. It is assumed
that instances of the concrete state predicates L AtomicLocation, H UserInLocation4 and H Distance are
available directly as primitive events in each domain, by publishers p1, p2, p3, respectively. These events
are referred to as AtomicLocation, UserInLocation and Distance events, respectively.

8.6.1 Extended Publish/Subscribe

A subscriber application is interested in locating the closest empty room to each user in each domain
(Example 1), and so it issues a subscription to the AED Service (see Section 8.4). The AED Service
extracts the AESL definition from the subscription and uses it as a specification for generating the Rete
network that corresponds to this abstract event. The Rete network is portrayed in Figure 8.2.

It is assumed that each user is moving at an event rate of 1 location event per second (which is a
conservative average event rate produced by the Active BAT system). The AED Service subscribes to p1

for AtomicLocation events that represent the topology of the domain in terms of the physical locations.

4Note that for simplicity reasons, it is assumed that location events that contain the region the user is in, e.g.,
H UserInLocation(Alan, Supervisor,FS15,Office), are available in the system.

146 Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events

AtomicLocation events will be published only once (m primitive events) as long as no new regions are
added dynamically in the system5 The AED Service subscribes to p2 for UserInLocation events and
receives, as a result, n notifications/sec that convey the changes to the location of each user so that the
emptiness property can be determined. The application subscribes to p3 for Distance events and thus
receives m · n notifications/sec, which help determine the proximity property of each user to each room.
The overall number of notifications from the publishers to the AED Service component is:

bandwidthp−>AED = k(n + mn) notifications/sec. (8.4)

The AED Service maps the received notifications to instances of the corresponding predicates and prop-
agates the changes inside the abstract event detector of Figure 8.2. Calculating the computational com-
plexity of the Rete network of Figure 8.2, as in Chapter 7, the overall number of computational steps
performed by this network are O

(

m2n2
)

/sec [53]. A maximum of n tokens that describe the closest
empty location for each of the n users are detected by the network and published by the AED Service as
abstract event notifications.6

Event Bandwidth. The worst case estimate for the total event bandwidth required from the AED Ser-
vice component to each subscriber amounts to:

bandwidthAED−>s = O(kn) notifications/sec (overall)

= O (n)notifications/sec (per domain) (8.5)

From Equations 8.4, 8.5, it can be inferred that as long as the AED Service is placed close to the primitive
event sources, the event bandwidth from the sources to the AED Service will only contribute to the local
network traffic. For the rest of the network, from the AED Service to the subscribers, the event bandwidth
generated from the above scenario is O(n).

bandwidthoverall = O (n)notifications/sec (per domain) (8.6)

Computational Complexity. The maximum number of computational steps required at the server that
accommodates the knowledge base at each domain is:

computational complexity = O(n2m2) computational steps/sec (per domain)

Assuming that the number of users can grow rapidly and significantly exceeds the number of rooms, it is
worth calculating the above complexity in terms of n only:

computational complexity = O(n4) computational steps/sec (per domain) (8.7)

8.6.2 Traditional Publish/Subscribe

Event bandwidth. In this case, it is the subscribing application itself that subscribes to sources p1, p2

and p3, and therefore the overall notification rate that traverses the network from the sources to the

5For example, in the case of SPIRIT [41], a user can define a region in space which will cause his Bat to enter an energy-
saving mode when placed in that region.

6In practice, this model uses two separate knowledge base layers, one for concrete state predicates and one for abstract
ones, which together act as a two-layer state predicate cache (Chapter 6). This is ignored in this analysis. In a two-layer
knowledge base, there are in average n + 2 events/second used for the communication between the two layers and O(n)
additional computational steps/second in the higher layer. These numbers do not affect the overall estimates.

Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events 147

subscriber is:

bandwidthoverall = k(n + mn) notifications/sec (overall)

= O (n + nm) notifications/sec (per domain) (8.8)

Assuming that there are more users on average than rooms, then:

bandwidthoverall = O
(

n2
)

notifications/sec (per domain) (8.9)

Computational Complexity. However, at the application side, additional computations are required
in order to calculate the emptiness property and all subscribers need to perform these calculations per
second. Assuming that calculations are done using the Rete algorithm, so that we can have a basis for
comparison, then at least 0(m2n2) computations are replicated at each subscriber. Assuming that m is
bounded by n, the above complexity becomes O(n4).

computational complexity = O
(

m2n2
)

computational steps/sec (per subscriber)

= O
(

n4
)

computational steps/sec (per subscriber) (8.10)

8.6.3 Comparison

The overall event bandwidth in the case of the extended publish/subscribe (Equation 8.6) is significantly
lower than that of the traditional one (Equation 8.9). Note that while the worst-case estimate of the
computational cost in the traditional publish/subscribe (Equation 8.10) is similar to the extended one
(Equation 8.7), the computation in the traditional case needs to be undertaken by each subscriber, whereas
in the extended publish/subscribe computation takes place once, at the AED Service.

8.7 Related Work

Two other uses of abstract events have been proposed in the literature: Abstract events for distributed
program execution [56, 57] and abstract events for representing processor states in a parallel-processing
environment [24]. Both these uses are unrelated to the current effort.

A significant amount of effort has been expended already in the area of large-scale event-interaction
based on the publish-subscribe paradigm. Most of this effort is focused on six design issues:

• Whether the event processing is performed in one central unit or in a set of distributed servers and
in what configuration the servers should be connected.

• The message routing algorithm.

• The selection process that separates events of interest from all other available events.

• A processing strategy that determines the optimal places in the network that message data should
be processed in order to optimise message traffic.

• Event composition.

• Middleware support.

As far as the first point is concerned, alternatives include a centralised approach, a distributed ap-
proach and a distributed network of servers approach [33]. In a centralised approach, (Oracle Advanced

148 Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events

Queueing and IBM MQSeries) a central entity called an event service is responsible for storing and
forwarding messages, exchanged by subscribers and publishers. Applications based on such systems
(banking, electronic commerce applications) have strong requirements in terms of reliability, data con-
sistency and transactional support but do not need high data throughput. In a distributed approach such
as the one used by TIBCO, producers communicate directly with consumers through a store and for-
ward mechanism which is efficient for applications such as financial stock exchange. Lastly, Siena [15]
and Hermes [79] use an intermediate approach, namely, a distributed network of event brokers, thus
combining loose-coupling with persistent and reliable management of notifications.

As far as the second design strategy is concerned, different solutions deal with a trade-off between the
complexity of the routing algorithm and the processing power of the distributed servers. Alternatives here
include broadcasting [15] and multicasting [25, 93]. Scribe [93] uses an efficient peer-to-peer routing
method [92] for the design of a scalable notification-dissemination platform using rendezvous nodes.

Thirdly, because subscribers are usually interested in particular events or event patterns, and not in
all events that are being published, filtering can be used in order to identify the notifications of interest
for a given subscriber. As a consequence, filtering leads to the reduction of the overall event bandwidth.
This is implemented by the OMG group in their Event Notification Specification [61].

Fourthly, several filtering techniques can be used in order to further reduce the number of delivered
events. Siena proposes a novel processing strategy which reduces the number of exchanged notifications,
by using a mechanism that observes similarities between subscription filters and forwards through the
event architecture only those subscriptions that are not included in a previous, more general subscription
pattern. Hermes implements a similar mechanism. Furthermore, Siena abides by the principle that
filtering should be applied as close as possible to the sources of notifications, whereas a notification
should be routed in one copy as far as possible and should be replicated as close as possible to the parties
that are interested in it. This is similar in concept to the combining filters in SCAFOS, used to avoid
replication of computation (see Chapters 8 and 12).

Significant work has also been done in the area of event composition [6, 7, 63, 102] , i.e., the combi-
nation of primitive events into composite events by applying a set of composition operators. However,
event composition does not offer sufficient expressiveness for the requirements of many applications,
such as the ones in Sentient Computing, nor does it hide the complexity of the event architecture from
the application layer. Using event composition, in order for an application to register interest in an ab-
stract situation, it would have to register for all compositions that lead to the abstract state of interest.
For example, consider an application that is interested in receiving notification about the closest, empty
meeting room to a mobile user. Using event composition, the application would have to register for all
combinations of events that would lead to the above situation, e.g., it would have to include events that
lead to all the possible ways that people have moved in order for a meeting room to be empty, e.g., even
for people who have previously moved into the meeting room and out of it again.

Hermes appears to take event interaction a step further and looks at the publish/subscribe protocol
as the basis for an event-based middleware architecture, providing support similar to traditional mid-
dleware systems (CORBA, Java RMI) in order to address issues such as fault-tolerance, type-checking
of invocations and reliability. Furthermore, Hermes aims to improve the efficiency of the delivery of
event notifications by using peer-to-peer routing techniques for creating overlay broker networks [80].
Role-based access control for publish/subscribe middleware architectures is the objective of [10] which
discusses an integration of the Hermes middleware and the OASIS [8, 43] framework.

A generic middleware component that undertakes the process of correlating and aggregating events
is presented in [46]. The contribution of this work is that it provides a fast, computationally efficient way
for the subscriber to determine when a situation of interest is satisfied, which is at the same time generic
and independent of the type of situation of interest.

The seminal notion of abstract events in sensor-driven systems appears to have originated in [7] and
it is mentioned again later in [6]. However, this early intuition is case-specific, static and not directly

Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events 149

applicable to loosely coupled systems. In both publications [7, 6], point to point communication between
the event source and the event client via an event mediator is assumed, forcing close coupling between
the event source and the event client. These efforts do not discuss the semantics of programmable support
for the dynamic creation of abstract events in an asynchronous manner.

In conclusion, existing efforts are not directly applicable to sensor-driven systems because they lack
the ability to deal with very large-scale event interaction, dynamic extensibility and a natural interface
that hides the underlying event implementation.

8.8 Conclusions

This chapter extends the work presented in Chapter 5, which advocates state-based modelling for context-
awareness in sensor-driven systems by demonstrating that subscribing to changes in system state is more
appropriate for sensor-driven systems than subscribing to event sequences that lead to such state. It
proposes an extension to the publish/subscribe protocol that allows transparency in subscribing to dis-
tributed state. Chapter 5 demonstrated that current event models have limitations in this respect, which
are due to the incomplete mapping between the subscription language (FOL) and the elements of the
implementation domain, as well as the insufficiency of finite automata to deal with negation and quan-
tification. In order to address these limitations, a state model was presented in Chapter 5. The proposed
model is implemented using a deductive knowledge base, which deduces the predicates that complete
the above-mentioned mapping. In this chapter, the concept of abstract events as changes of abstract state
is introduced and a higher-order service is described. This service takes as an argument an abstract event
specification and, in return, publishes an interface to a further service, an abstract event detector, which
notifies transitions between true and false values of the specification. In this way, scalability is promoted,
and the computation is placed closer to the publishers, avoiding unnecessary replication.

Although the scope of this work has been sensor-driven systems, the enhanced publish/subscribe
protocol presented here can be used with all event systems where abstract events make sense.

150 Chapter 8. An Extended Publish/Subscribe Protocol Using Abstract Events

Chapter 9

Model Checking for Sentient Computing:
An Axiomatic Approach

Previous chapters introduced a state based model and a scalable abstract reasoning scheme for context-
aware knowledge in sensor-driven systems. This chapter investigates the correctness of the model that
represents the current state of the dynamically changing world as well as its semantic compatibility and
interoperability with context-aware applications. This model can be seen as a concrete interpretation of
the physical environment and conceptually stands between the physical world and the abstract view of
the applications. A number of factors such as the non-homogeneity of physical space and the precision
of the sensor technology may introduce errors and inconsistencies between the physical world and the
model. On the other hand, the abstract view of the application domain needs to be correct and compatible
with the concrete model, especially in the case of distributed environments where applications need to
interact seamlessly with several different concrete model components.

This chapter proposes a system, similar to a model-checker, that checks the satisfiability of the ap-
plication requirements against the physical environment model, as well as the consistency of the model
with the physical environment, thus promoting distribution. The implementation of the proposed system
is based on a theorem prover.

9.1 Introduction

Chapters 5, 6 and 7 discuss various aspects of a model for sensor-driven systems where abstract knowl-
edge is deduced from concrete knowledge according to AESL definitions. However, this dual abstract
mapping, i.e., from the physical environment to the concrete model and from the concrete model to the
application layer, can be affected by a number of factors in terms of correctness, completeness and con-
sistency of both the model and the application specifications. The most important of these factors are
summarised below:

• Non-homogeneous space and the natural laws of physics. The application specifications may
contain logical fallacies that are caused by ignoring the physical constraints that are introduced
by the spatial topology, i.e., a person cannot be in more than one location simultaneously, and he
cannot move through walls.

• Semantic sufficiency of the model. The application is not aware of the correctness or the granularity
of the model of the physical world that depends directly on the capabilities of the underlying
location system. For example, a model that is updated by Active Badge [106] location sightings
only knows about rooms. Such a model cannot reason with any application requirements that
involve positions or regions smaller than rooms. For example, such a model cannot determine to

151

152 Chapter 9. Model Checking for Sentient Computing

which PC in the room the user is closer, and therefore such an application requirement would be
unsatisfiable by the specific model. However, a model that depends on the Active BAT [41] for
location information knows the exact position of a user and can deduce much more abstract state
in order to satisfy the application requirements.

• Correctness of abstract application specification. The application specification may be incorrect,
in which case it will not be satisfiable by the model even if the model is semantically adequate.
Errors can occur from violating logical constraints, such as the ones that are derived from the
functional operation of location predicates. For example, the situation in which the C expert is
typing at his keyboard while at the same time the systems administrator is having a coffee is
impossible if the system administrator and the C expert are the same person. Feedback should be
returned to the application in such a case.

Model checking [18] was proposed in 1981 by Dr. Edmund Clarck as a method for formally verifying
finite-state concurrent systems, where specifications about the system are expressed as temporal logic
formulas, and efficient symbolic algorithms are used to traverse the model defined by the system and
check if the specification holds or not. We propose a verification technique similar in concept to model
checking that checks abstract knowledge definitions (AESL definitions) for correctness and semantic
compatibility with the models of the sensor-driven domains. Correctness is established against a set of
spatio-temporal constraints and against a set of logical constraints that make sure that logical fallacies are
excluded. The Sentient model is also checked for correctness by checking each sensor update against a set
of spatio-temporal specifications. Whenever a specification is found unsatisfiable, appropriate feedback
can be given to the application that can be used for the selection of a more appropriate model, or an
adaptation in the application’s behaviour.

9.2 Factors that Affect Modelling

The main factors that make the concrete model incomplete or inconsistent with the physical environment
is the combination of the behaviour of the sensor technology that instruments physical space and the non-
homogeneity of physical space itself. The main sensor technology used for physical space modelling is
location technology. Location technologies vary in precision, and an imprecise or an incorrect reading
will introduce an error in the concrete model. Because space can differ so much from one cm3 to another,
such an error can lead to an illegal model state. For example, a user can be seen floating in the air, or
walking inside a wall.

Similarly, the application abstract view can be incomplete or inconsistent compared to the concrete
model. Inconsistencies here can be introduced via incorrect application specifications e.g., an applica-
tion specification may describe an abstract state where the application is interested in paging the first
available C++ expert, while the system administrator is unavailable. This particular abstract state cannot
be reached, as long as the system administrator is the only C++ expert.

Another constraint derives from the situation in which an application interacts with more than one
concrete model at different levels of knowledge precision. For example, the above application specifi-
cation would be unsatisfiable for a model that only knows which room a user is in and therefore cannot
determine whether one is using a PC or not. The proposed system prevents the above problems by
checking the concrete model against a set of specifications that prevent the modelling of illegal states.

9.3 Specifications

Specifications are described in terms of FOL axioms, and can be classified into three sets: Spatial and
logical specs, Model specs and Application specs. Spatial and logical specs are used to check the con-
sistency of the model against the physical environment. They represent physical constraints that apply

Chapter 9. Model Checking for Sentient Computing 153

to all Sentient environments (see Section 9.2). Model specs are used to determine whether the abstract
specifications are compatible with the concrete model or whether the model is semantically sufficient for
the application specification. Application specs 1 are provided by the applications in the form of axioms
and aim to bind concrete state predicates to a high-level, abstract state predicate, referred to in this paper
as the goal theorem. Goal theorems are checked for satisfiability against application specs, model specs
and spatial and logical specs. Moreover, each sensor update is checked for satisfiability against spatial
and logical specs.

Overall Specification

The satisfiability of the overall specification is modelled by the predicate SpecSuccess , which is defined
as equivalent to the conjunction of the predicates that signify the satisfiability of the application model
and spatial specifications, respectively:

AppSuccess ∧ ¬ModelFailure ∧ SpatialSuccess ⇒ SpecSuccess

9.3.1 First-Order Logic Description of a Sentient Model

Consider a Sentient environment with j users (uid) that share m roles (role) and move around n loca-
tions (rid) that can be characterised by u attributes (rattr). Using the model definitions of Chapter 5,
facts are of type L AtomicLocation(rid, rattr, polygon), H UserInLocation(uid, role, rid, rattr), or
H Distance(v, uid, role, rid, rattr).

9.3.2 Spatial and Logical Specifications

Spatial and Logical Specifications aim to represent constraints that derive from the characteristics of
physical space (see Section 9.2). Both application-provided theorems and new facts produced by the
sensor infrastructure are checked against this set of specifications. The following axioms represent such
specifications:

Axiom 1. Each user can be in only one position at a time.

(x1 = x2) ∧ (y1 = y2) ∧ (z1 = z2)

∨¬L UserAtPosition(uid, role1, x1, y1, z1)

∨¬L UserAtPosition(uid, role2, x2, y2, z2)

The above axiom prevents the application from making a specification that implicitly requires the same
user to be in two different positions at the same time, usually under a different role, e.g., a user who is
both a system administrator and a C++ expert. We can also say that L UserAtPosition is a function in
the domain of the concrete model. A direct consequence of the above axiom is the following:

Axiom 2. If an object is contained in more than one region, these are nested.

(L NestedLocation(rid2, site-list2) ∧ InList(rid1, site-list2))

∨ (L NestedLocation(rid1, site-list1) ∧ InList(rid2, site-list1))

∨¬H UserInLocation(uid, role1, rid1, rattr1)

∨¬H UserInLocation(uid, role2, rid2, rattr2)

1Application specs are equivalent to AESL definitions.

154 Chapter 9. Model Checking for Sentient Computing

The above axioms denotes that if a user is known by the system to be inside two different regions then
the regions are nested 2.

Axiom 3. A user cannot be located inside a compact surface such as a wall.

IsOpaque(x1, y1, z1) ⇒6 ∃L UserAtPosition(uid, role, x1, y1, z1)

This axiom can be used to discover an erroneous location system sighting. The predicate SpatialSuccess

is used in order to denote that all axioms in this category are satisfied.

9.3.3 Model Specifications

Model specifications are used in order to determine whether the concrete model is precise enough for the
application specification. Model specifications are provided both by the application and the sensor-driven
model side. The application provides an atomic formula:

RequiredPrecision(x, y)

The pair x, y is a confidence level that characterises the precision of the location modelling. The term
x takes values from the set {region, coordinates} and denotes the type of the location technology, and
y ∈ [1 · · · 10] represents the accuracy of the coordinate system3. The higher the accuracy, the higher y.
The concrete model provides the atomic formula:

ProvidedPrecision(x, y)

The pair x, y is also a confidence level 4 for location modelling precision. Similar predicates can be
invented for other types of information.

Axiom 4. The knowledge precision required by the application should be no greater than the knowledge
precision offered by the underlying model.

RequiredPrecision(region, 0) ∧ ProvidedPrecision(region, 0) ⇒ ¬ModelFailure(x, y)

RequiredPrecision(region, 0) ∧ ProvidedPrecision(coordinates, y) ⇒ ¬ModelFailure(x, y)

RequiredPrecision(coordinates, x) ∧ ProvidedPrecision(coordinates, y)

∧ > (x, y)

⇒ ModelFailure(x, y)

RequiredPrecision(coordinates, x) ∧ ProvidedPrecision(coordinates, y)

∧ > (y, x) ⇒ ¬ModelFailure(x, y) (9.1)

Initially the predicate ModelFailure is set to true. Each axiom which is satisfied sets it to false. If
ModelFailure equals false, the model specifications are satisfied.

2It is assumed that no regions are overlapping.
3If x=”region”then y=0 by default.
4Here, it is assumed either coordinate or containment granularity for the location system, and a confidence level for the

precision of the coordinate system in 95% of the measurements.

Chapter 9. Model Checking for Sentient Computing 155

9.3.4 Abstract Knowledge Definitions (AESL Definitions)

Assume an application that needs to determine the closest empty meeting room to the CTO of a com-
pany so that it can initiate a tele-conference. It is, therefore, interested in knowing when the predicate
ClosestEmptyLocation(uid, CTO, rid,Meeting Room) is true, as well as the value of rid. Because
such a predicate does not exist in the system, the application needs to bind this to a set of facts that the
system knows about in a logical way.

The AESL definitions can be seen below (for reasons of simplicity we assume that the predicate
ClosestLocation is calculated by the system using the predicate Distance).

RequiredPrecision(region, 0)

6 ∃uid H UserInLocation(uid, role, rid, rattr) ⇒ H EmptyLocation(rid, rattr)

H Distance(v1, uid, role, rid2, rattr2) > H Distance(v2, uid, role, rid1, rattr1)

⇒ H ClosestLocation(uid, role, rid1, rattr1)

H ClosestLocation(uid, rid, role, rattr) ∧ H EmptyLocation(rid, rattr)

⇒ H ClosestEmptyLocation(uid, rid, role, rattr) (9.2)

The goal theorem is the theorem that needs to be checked for satisfiability. Satisfiability of the goal
theorem implies the satisfiability of the application specification, i.e., the predicate AppSuccess, which is
initially true, remains true. In this case,

∃rid(H ClosestEmptyLocation(uid, CTO, rid,Meeting Room)) ⇒ AppSuccess (9.3)

9.4 Proof by Resolution and Satisfiability

The contribution of this work is based on using the concept of satisfiability as the foundation for evalu-
ating the conformance of application specifications and sensor updates to the Sentient model.

A satisfiability problem in conjunctive normal form (CNF) consists of the conjunction of a number
of clauses where a clause is a disjunction of a number of variables or their negations. Given a set of
clauses C1, C2, · · ·Cm on the variables x1, x2, · · · , xn, the satisfiability problem is to determine if the
formula

C1 ∧ C2 ∧ · · · ∧ Cm

is satisfiable, that is if there is an assignment of values to the variables so that the above formula evaluates
to true. Clearly, this requires that each Cj evaluates to true.

Automatic theorem provers aim to find a proof for a theorem given a set of axioms that are known
to be true. A common method for finding a proof is by resolution. According to proof by resolution, the
set of axioms and the goal theorem are transformed to conjunctive normal form (CNF), and resolution is
applied to the resulting set of clauses. Existence of proof is equivalent to the satisfiability of the set of
clauses.

9.4.1 The Theorem Prover SPASS

SPASS [107] is a first-order logic theorem prover with support for equality, and it was used in a prototype
implementation of a satisfiability service whose API is shown in Figure 9.1. SPASS also features a Web
interface (Web SPASS) [101], as well as integrated support for transforming FOL formulas into a small
number of conjunctive normal form (CNF) clauses [75] before testing for unsatisfiability.

156 Chapter 9. Model Checking for Sentient Computing

9.4.2 Example

Let us assume that the above application specification needs to be tested against a model which knows
of locations in terms of coordinates, with accuracy of 3 cm, in 95% of the cases, such as the Active BAT.
This can be encoded with the predicate ProvidedPrecision(coordinates, 9). When tested with SPASS,
the goal theorem is found to be correct.

SPASS V 2.0
SPASS beiseite: Proof found.
Problem: /tmp/webspass-webform_2003-09-09_00:40:50_2975l.txt
SPASS derived 2 clauses, backtracked 0 clauses and kept 57 clauses.
SPASS allocated 528 KBytes.
SPASS spent 0:00:00.33 on the problem.

0:00:00.04 for the input.
0:00:00.09 for the FLOTTER CNF translation.
0:00:00.02 for inferences.
0:00:00.00 for the backtracking.
0:00:00.04 for the reduction.

sensor

AddFOLFormula()

AddFOLFormula()

model

LoadFOLModel()

LoadFOLModel()

CheckSatisfiable()

CheckSatisfiable()

Figure 9.1. The Satisfiability Service and its API.

The LoadFOLModel() interface is used for loading SAL facts that denote the specific implementation
of each domain, in terms of the topology, the number of users and the specific requirements of the instru-
mentation technology. The CheckSatisfiable() interface checks the satisfiability of a logical formula that
represents an application definition, as described in this chapter. Such application definitions correspond
to AESL definitions discussed in Chapter 12. Lastly, the AddFOLFormula interface asserts a SAL fact
derived from a sensor and checks this for consistency with the FOL model.

9.5 Conclusions and Further Work

A service that checks Sentient Computing specifications for correctness and semantic compatibility with
Sentient models was presented in this chapter. Three types of correctness specifications have been dis-

Chapter 9. Model Checking for Sentient Computing 157

cussed. The service is based on the theorem prover SPASS, and programming logic has been developed
that ensures that all specifications are satisfied for the overall application specification to hold.

Further work includes:

• Evaluating the satisfiability of the temporal properties of the AESL definitions, in addition to the
logical ones. This requires support in the theorem prover for mathematical evaluation such as
equality, inequality, etc.

• The performance of the Satisfiability Service, when used for evaluating real-time sensor updates,
remains to be tested.

158 Chapter 9. Model Checking for Sentient Computing

Chapter 10

SCAFOS: A Framework for the
Development of Context-Aware
Applications.

This chapter describes an infrastructure that facilitates the creation and deployment of applications that
satisfy the requirements for context-awareness in sensor-driven systems, as stated in Chapter 5. The
user provides a high-level specification of the application to be developed using SCALA (Chapter 12).
SCAFOS undertakes the burden of the end-to-end implementation, from the user to the sensor layer. Dur-
ing the end-to-end processing, SCAFOS checks the correctness of user requirements, decides whether
the specification is feasible given the underlying components, and, if it is, it requests the creation of the
necessary events and subscribes to them. It then monitors the distributed components of interest, and
generates the abstract state that the application is interested in from aggregated, concrete and abstract
state that is available in the model. Once the specification is met, the desired system response is trig-
gered. This chapter discusses the work done in implementing SCAFOS and the insights gained from the
implementation.

10.1 SCAFOS

The SCAFOS framework is a prototype implementation of the model proposed in chapters 5 to 7. For the
most part, the implementation is based on Java, as this is a widely-used language that can be compiled
to different platforms. The detailed SCAFOS architecture is portrayed in Figure 10.1. This architecture
consists of a set of components that provide the functionality described in this thesis. These are outlined
here:

• The ECA Service allows the development of context-aware applications. Its design is inspired by
initial work presented in [59] but it has been extended and thinned down in order to be integrated
with SCAFOS. The functionality of the ECA service is discussed in more detail in Chapter 10.

• The Satisfiability Service implements the service described in Chapter 8. It checks the correct-
ness of the specification in terms of abstract knowledge and addresses any conflicts between the
specification and the implementation.

• The Abstract Event Detection Service component implements the service described in Chapter 7,
i.e., a higher-order service that creates publishers for abstract events according to the specifications.
The AED Service can be distributed to more than one component, as discussed in Chapter 7.

159

160 Chapter 10. SCAFOS

Deductive KB
Abstract Event

Detection Service

MovementUpdate()

ExportFOLModel()

CreateECAApp()UserUpdate()
LoadFOLModel()

CheckSatisfiable()

TriggerAction()

Context Aware
Application Service

Subscribe()

Subscribe()

Publish()

LocationUpdate()

PublishAEDSEvent()ExportFOLModel()

Inference Service
Statistical

Publish()Fact()

FactLikelihoodUpdate()

SensorUpdate()

AssertUpdate()

UserQuery()

UserQuery()

TriggerResponse()

Satisfiability Service

Figure 10.1. The SCAFOS conceptual framework.

• The Deductive Knowledge Base (KB) component implements the model for abstract and scalable
reasoning of Chapter 6. More than one Deductive Knowledge Base component may operate in the
infrastructure for reasons of distribution (see Section 10.1.1).

• The Statistical Inference Service supports movement recognition and likelihood estimation, as
discussed in Chapters 3 and 4.

10.1.1 Distribution and Transparency

Transparency in distributed communication is ensured by using CORBA technology in order to imple-
ment the components of the architecture. Resource discovery of the SCAFOS services is enabled by
using a global CORBA name service. The AED Service maintains a subscription log that allows it to
check for the availability of publishers and subscribers via the name service. Subscribers can also check
the availability of the AED Service and seek redundant resources.

The Deductive KB component in Figure 10.1 is implemented as a CORBA object, which makes it
accessible transparently via multiple remote clients, such as the Abstract Event Detection Service, the
Statistical Inference Service, the Satisfiability Service and the user interfaces Subscribe(), UserQuery()
and UserUpdate(). Communication between the Deductive Knowledge Base component and the rest of
the components is asynchronous using the CORBA notification service. However, inside the Deductive
KB component, communication is achieved asynchronously by passing strings as remote invocations.
Figure 10.2 illustrates the use of the interfaces Subscribe(), UserQuery() and UserUpdate(). These inter-
faces are exported to a central SCAFOS interface, which, whenever it is invoked, triggers the invocation
of the appropriate interfaces in each component. For example, when the SCAFOS interface UserQuery()
is invoked by the query locate an empty room which is closest to the CEO, all the respective UserQuery()
interfaces in all the relevant Deductive KB components will be invoked.

Chapter 10. SCAFOS 161

user

UserQuery()

UserUpdate() CreateECAApp()

domain A

domain D

domain B

domain E

domain C

domain F

Subscribe()

Figure 10.2. Deductive KB distribution

10.1.2 Concurrency

The Deductive KB component has been implemented with concurrency in mind. The Interfaces User-
Query(), CreateAESLDef() and UserUpdate() use Read and Write locks to ensure that integrity similar
to the Multiple Readers - Single Writer problem is achieved. SCAFOS runs independently of the life-
cycle of the applications that are created in the framework. Context acquisition, application creation,
subscription and queries are constantly available. This is made possible because the Deductive KB com-
ponent is threaded. A new listener thread is spawned that listens for CreateAESLDef(), UserUpdate()
and UserQuery() calls, every time such a call is processed by the Deductive Knowledge Base component.
The same applies to the Subscribe() interface of the AED Service component and the CreateECAApp()
interface of the ECA Service component.

10.1.3 Maximum Integrability

The implementation of SCAFOS is based on Java which is a highly integrable platform. The knowledge
base component is written in Jess [51], which is a Java shell for the expert system CLIPS [19]. Com-
munication between Jess and Java is achieved by passing string-based events. Data is extracted from the
sensor readings and an appropriate string is constructed. Appropriate listeners and event publishers can
be written for any sensor technology. CORBA events produced by the Active BAT and Active Badge
sensor readings have been used in this scheme.

10.2 The Deductive KB component

The prototype implementation of SCAFOS is described in more detail here. It consists of the following
logical components. (Figure 10.3):

162 Chapter 10. SCAFOS

Event Adaptor

Event Listener DB

KB

listener thread

Rete Manager

GUI/SCALA

Client

Parser

sensor

ExecuteReteCommand()

ExecuteReteCommand()

DeductiveKB

SensorUpdate()

UserQuery()
UserUpdate()

ExportFOLModel()

Figure 10.3. Software components architecture.

A Knowledge Base Component. A knowledge base is implemented in Jess [51].

A Database Component. The database component holds the predicate definitions of the model of
Chapter 5, as well as a set of initial facts that describe the entities in the local domain such as its topol-
ogy (SAL predicates L AtomicLocation, L NestedLocation, L InRegion). As static knowledge held in
the database is separated from the dynamic knowledge that is also held in the knowledge base, a single
database component can be used in order to load the model and initial configuration into more than one
knowledge base component, thus achieving load-balance. If persistence is required, the database can be
used to store snapshots of the dynamic knowledge stored in the knowledge base. In the prototype imple-
mentation, the database is implemented in mySQL [70], which is an open source database technology.
An object-wrapper, implemented in Castor [16], operates above this, providing an object interface to the
underlying database.

A Rete Manager Object. The Rete Manager is implemented as a CORBA object. This object man-
ages all accesses to the knowledge base by means of remote invocations. The Rete Manager exports an
IDL interface that consists of two methods: ExecuteReteCommand(string command) and ExecuteRead-
ReteCommand(string command). The ExecuteReadReteCommand(string command) method contains
a Read lock so that multiple threads can access the same knowledge base concurrently. The Exe-
cuteReteCommand(string command) contains a write lock so that multiple threads can access the same
resource exclusively. Both methods take a string which represents the command as an argument and pass
it to Jess where the command is asserted in the knowledge base. Jess raises a number of exceptions that
are captured by the Rete Manager if the assertion is unsuccessful. Referring to Figure 10.1, it is worth
noting that the interfaces UserQuery(), Subscribe() and UserUpdate() are only implemented through the
IDL interface ExecuteReteCommand().

Inside the Deductive Knowledge Base component, multiple knowledge base components and, con-
sequently, Rete Manager objects (Figure 10.3) can be created, initialised and used. This enables the

Chapter 10. SCAFOS 163

layering of the knowledge base (see Chapter 6) and allows for efficient load-balancing algorithms to be
used.

An Event Adaptor Object. An Event Adaptor object translates sensor-derived events (from SPIRIT
and QoSDREAM) to Jess facts, and asserts these in the knowledge base.

A Listener Thread. The listener thread consists of the entities EventListener and EventAdaptor. The
Event Listener listens for location events produced by the Active BAT and the Active Badge (using
QoSDREAM). It has filtering capabilities on event type and event attributes. Once an event is received,
it extracts the object attributes from the event. It then passes the object and the location data to the
Event Adaptor. The Event Adaptor is a CORBA client object that performs the translation between
the received event and a string and performs a remote invocation on the Rete Manager. It reports any
exceptions raised. Two Event Listener components have been built that listen for Active BAT and Active
Badge events, respectively. Several such threads may operate concurrently.

class EventListener extends EventClient
{

public EventListener(EventDescriptor eventDes) throws Exception
{

super(eventDes,null);
}

public void push_structured_event(StructuredEvent event)
{

System.out.println("Got an event!");
Vtimer++;
System.out.println("Vtimer= " + Vtimer);
Person next=null;

try {
org.omg.CosNotification.Property[] values=event.filterable_data;

int locatableId = values[0].value.extract_long();
int regionId = values[1].value.extract_long();
int oldOverlap = values[2].value.extract_long();
int newOverlap = values[3].value.extract_long();

}

A User Interface. A prototype user interface has been built which allows users to assert rules (AESL
definitions) into the knowledge base, through the Rete Manager object. Two different approaches have
been implemented. In the first approach, the user asserts a string in SCALA that is parsed into a set of
CLIPS rules, which are asserted through the ExecuteReteCommand() interface into the knowledge base
component. In the second approach, an object-oriented representation is used for the model of Chapter 5.
In this scheme, each predicate is modelled by a Java Bean [50] class, and an instance of this class is
generated for each predicate instance. Because Beans can be easily portrayed graphically, this approach
has the advantage that a GUI can easily be constructed directly from the model. The implementation of
the UserLocationBean is shown below for illustration.

public class UserLocationBean extends JPanel implements ActionListener,
Serializable

public String b_name="UserLocationBean";
public int bid=0;
private String type = "Movement";
private int u_id= 0
private String name="" ;
private String surname="";
private String username="";
private Region office= null;
private String phone="";
private String email="";

164 Chapter 10. SCAFOS

private String imageFilePath= "/home/ek236/photos/";
private String imageFileName;
private String ulocation= " " ;

private String role=" ";
private float timestamp=0 ;
protected ImageIcon image;
public UserLocationBean(){
}
public UserLocationBean(String icon) {
this.setImageFileName(icon);
image = new ImageIcon(icon);
}
public String getName() {return name; }
public String getSurname() {return surname;}
public String getUlocation() {return ulocation;}
public void setName(String s) { name = s; }
public void setSurname(String s) {surname = s;}
public void setRole(String r){role=r;}
public void setUlocation(float z){uz=z;}

}}

A Messaging Client. A client that delivers messages via an email server and SMS messages via an
email-sms gateway has been developed using the Userfunction interface of Jess. The client is triggered
from the knowledge base as a result of the firing of a rule. The Java interface jess.Userfunction represents
a single function in the Jess language. The developer can add new functions to the Jess language simply
by writing a class that implements the jess.Userfunction interface, creating a single instance of this
class and installing it into a jess.Rete object using Rete.addUserfunction(). The Userfunction classes
can maintain state; therefore a Userfunction can cache results across invocations, maintain complex data
structures, or keep references to external Java objects for callbacks. A single Userfunction can be a
gateway into a complex Java subsystem. For the implementation of the interruptibility manager using
JESS, the jess.Userfunction interface has been used to integrate JESS with the rest of the Java code
responsible for event reception (Event manager) and action execution (Notification Execution). The
following example illustrates how the jess.Userfunction interface has been implemented to integrate Jess
with the notification server.

import java.io.*;
import jess.*;
import java.net.*;
import java.io.*;
import java.util.*;
import Smtp;
import Mail;

public class SendEmail implements Userfunction
{

//The name method returns the name by which the function will appear in Jess.

public String getName()
{

return "sendmail" ;
}

public Value call (ValueVector vv, Context context) throws JessException
{
try{

Smtp smtp = new Smtp("wrench.eng.cam.ac.uk");
String addr = vv.get(1).stringValue(context);

String sub = vv.get(2).stringValue(context);
Mail email= new Mail("ek236","Prof. Hopper has entered the LCE");
email.start();
} catch (Exception e){

System.err.println(e.getMessage());

Chapter 10. SCAFOS 165

}
return new Value ("mail sent!", RU.STRING);

}
}

The call() method is the core of the Userfunction. When call() is invoked, the first argument will be a
ValueVector representation of the Jess code that invoked the function. For example, when the following
Jess function calls are made,

Jess> (load-function SendEmail)
Jess> (sendmail ek236 ‘‘Prof. Hopper has entered the LCE.’’)

an email is sent to user ek236 with the subject: “Prof. Hopper has entered the LCE.”

10.3 Conclusions

The SCAFOS framework, which implements the model of Chapters 5 to 7, has been described. SCAFOS
has the following properties:

• It facilitates the creation and deployment of context-aware applications in sensor-driven systems.
Context-aware applications that operate in SCAFOS are automatically integratable with existing
context-aware services, and they satisfy all the requirements of Chapter 5.

• It is threaded, so it guarantees constant context acquisition and constant availability of the Cre-
ateECAApp(), UserQuery(), Subscribe(), UserUpdate() interfaces.

• It promotes scalability, portability, extensibility and an easily constructible user interface. It is
easily integrable with heterogeneous software technologies.

166 Chapter 10. SCAFOS

Chapter 11

Applications

This chapter presents an evaluation of SCAFOS by discussing the implementation of four example ap-
plications.

11.1 Experimental Setup

In order to evaluate SCAFOS, the following experiment was carried out: the movements of 20 users in the
old LCE were monitored using the Active BAT location system for a period of 40 hours and 48 minutes,
starting at 21:20 on day one and finishing approximately at 14:08 on day three of the experiment. During
that time, a total of 30, 612 events were received. These events were published directly by SPIRIT, and
therefore they correspond to the L UserInLocation predicate rather than the L UserAtPosition predicate,
i.e., they contain the user’s location in terms of a room, rather than the user’s position in terms of co-
ordinates. For example, a “sighting” of the user Dave Scott in Room 10 at 13:45 is modelled by the
event

L UserInLocation(Dave Scott, Room 10, 13:45).

The L InRegion predicate (Chapter 6) is implemented internally in SPIRIT. The UserInLocation pred-
icate is used both with the prefix L and H depending on whether it is seen as a high-level predicate
deduced from the L UserAtPosition predicate or a low-level predicate received directly from SPIRIT as
is the case in this experiment.

A set of libraries were loaded in SCAFOS’ deductive knowledge base component in order to generate
the system’s desired behaviour. Two of these libraries were used for modelling the old LCE environment
(a total of 29 Jess rules). The first library contained rules to define the old LCE’s spatial topology. These
rules generate instances of the SAL predicates L AtomicLocation and L NestedLocation. These define
the available rooms, floors and laboratories (Old-LCE, Fallside, GRO), etc., and the attributes associated
with them. For example, Room 7 is associated with the attributes Andy’s Office, Office, Supervision
Area. Room 7 is also contained within Floor 5 which is in turn contained within Old-LCE, Engineering

167

168 Chapter 11. Applications

Department and Central Cambridge.

L AtomicLocation(Room 7, (Andy’s office, Supervision Area, Office))

L NestedLocation(Floor 5, (Meeting Room, Room 7, Room 8, Room 9, Room 10,

Room 11, Alcove, Coffee Area, Corridor))

L NestedLocation(Old-LCE, (Floor 4, Floor 5))

L NestedLocation(Engineering, (Old-LCE, Fallside, GRO))

L NestedLocation(Central Cambridge, (Engineering, Chemistry,

Chemical Engineering))

The second library that was used in this experiment contained rules that generate abstract event type def-
initions, both for the SAL predicates and for the abstract predicates that are used in the example applica-
tions; these define the predicates H UserIsPresent, H UserCoLocation and H UserInDeducedLocation.
All abstract predicate type definitions can be generated from the AESL definitions of the applications of
interest (Chapter 12). The third library used contained rules that generate in SCAFOS the mathematical
and logical functions of Chapter 5. A fourth library contained rules that create trigger-query nodes such
as the ones that are discussed in Chapter 8. This library can be automatically generated by definitions
of the applications of interest using the SCALA language (Chapter 12). Finally, a fifth library was used
in order to generate the behaviours of both the single-layer and dual-layer knowledge base components
(Chapter 6).

11.2 Applications

This section discusses four applications that were written using SCAFOS. Each application defines an
abstract event type of interest by providing an AESL definition for that event type through the Subscribe()
interface of Chapter 8. SCAFOS publishes event instances for that event type. Event correlation is
undertaken by SCAFOS’ deductive knowledge base component.

Example 1. “Notify me by email whenever any user moves from one room to another.” This application
sends an e-mail notification to a requesting user every time any user moves from one room to another
in the old LCE. The application subscribes to abstract events of type H UserInLocation through the
Subscribe() interface by providing the following AESL definition:

L UserAtPosition(uid, role, (x, y, z))

∧L AtomicLocation(rid, rattr, polygon)

∧L InRegion((x, y, z), rid, rattr)

⇒ H UserInLocation(uid, role, rid, rattr)

Example 2. “Notify me by email whenever two users are co-located.” This application sends an e-mail
notification to a requesting user every time any two users are co-located inside a room in the old LCE. The
application subscribes to abstract events of type H UserCoLocation through the Subscribe() interface by
providing the following AESL definition:

Chapter 11. Applications 169

Application Abstract Events
Example 1 30, 612
Example 2 92, 870
Example 3 30, 612
Example 4 122, 448

Table 11.1. Abstract event notifications per application in the single-layer architecture.

L UserAtPosition(uid1, role1, (x1, y1, z1))

∧L UserAtPosition(uid2, role2, (x2, y2, z2))

∧L AtomicLocation(rid, rattr, polygon)

∧L InRegion((x1, y1, z1), rid, rattr)

∧L InRegion((x2, y2, z2), rid, rattr)

⇒ H UserCoLocation(uid1, uid2, role1, role2, rid, rattr)

Example 3. “Notify me whenever a user is present in any region.” This application sends an e-mail
notification to a requesting user, whenever any user is present anywhere, irrespective of region. The
application subscribes to abstract events of type H UserIsPresent through the Subscribe() interface by
providing the following AESL definition:

L UserInLocation(uid, role, rid, rattr)

⇒ H UserIsPresent(uid, role)

Example 4. “Notify me whenever a user is located in Central Cambridge.” Whenever a user is “seen”
by the location system anywhere in Central Cambridge, SCAFOS undertakes the deduction that the user
is contained in all (nested) regions that contain the user’s current position. This is denoted through the
creation of abstract events of type H UserInDeducedLocation as defined by the AESL definition that is
provided by this example application, as in the previous examples.

L UserInLocation(uid, role, rid1, rattr1)

∧L NestedLocation(rid2, rattr2, site-list2)

∧L InList(rid1, site-list2)

⇒ H UserInDeducedLocation(uid, role, rid2, rattr2)

11.2.1 Single-Layer Architecture

The above rules were tested in the prototype implementation of SCAFOS discussed in Chapter 10 in
a single-layer deductive knowledge base architecture. The behaviour of the deductive knowledge base
component is described as follows: for each input event, all facts that were deduced from the user’s pre-
vious location are retracted and new facts are deduced according to the logic of the example applications
discussed above.

The number of abstract event instances that were published by SCAFOS in response to the subscrip-
tions of the applications are presented in Table 11.1. In this case, for the total of the 30, 612 location
events received by the Active BAT system, 92, 870 co-locations of pairs of users were calculated, it was
deduced 30, 612 times that a user was present and 122, 448 times a higher level containment was deduced
from a user’s location (all positions within Old-LCE also belong to Central Cambridge).

170 Chapter 11. Applications

Application Abstract Events
Example 1 425
Example 2 354
Example 3 20
Example 4 80

Table 11.2. Abstract event notifications per application in the dual-layer architecture.

Architecture Total Abstract Events Total Processing Time Average Response Time/ Notification
Dual-layer 879 142sec/60 2.367 min/30612

= 2.367 min = 7.732 ∗ 10−5 min
= 0.00464 sec

Single-layer 276542 1417 sec/60 23.617 min/30612
= 23.617 min = 7.714 ∗ 10−4 min

= 0.0463 sec

Table 11.3. Performance results.

11.2.2 Dual-Layer Architecture

In the dual-layer knowledge base architecture, only threshold changes in the above predicates trig-
ger the publishing of abstract events. For the application of Example 1, an abstract event of type
H UserInLocation is published only when a user moves from one room to another. For the applica-
tion of Example 2, only the facts that denote changes in a co-location for that user are updated. As a
result, if a user changes position within a room where he is co-located with another user without any
of the users leaving the room, no additional H UserCoLocation notifications will be generated. For the
application of Example 3, the H UserIsPresent predicate will be instantiated once for each user.1 Simi-
larly, H UserInDeducedLocation abstract event notifications are not generated as long as the user moves
within the same floor.

The number of abstract event instances that were generated by SCAFOS using the dual-layer knowl-
edge base architecture are summarised in Table 11.2. This means that during the experiment, 20 users
were found to be present, 425 times a user moved from one room to another, 354 pairs of co-located
people were observed and since all users moved within a single floor (Floor 5) nested locations were
deduced only once (four levels of nesting) for each user.

11.2.3 Discussion

The above results provide an indication of SCAFOS’ performance. The single-layer application repre-
sents the case where all input events are considered as threshold events and therefore need to be processed
individually by SCAFOS’ deductive knowledge base. This corresponds to a heavy processing load for the
given application set. The dual-layer architecture represents the case where a relatively small number of
input events are considered to be important (threshold events) and therefore contribute to the publication
of new abstract event instances.

SCAFOS’ behaviour is evaluated with the help of two metrics: the number of published abstract
event instances and the average response time per notification. The latter denotes the average time
needed by SCAFOS for processing each input event (see Table 11.3). The average response time is

1Although it is possible to denote the absence of the user, e.g., by the fact that there are no sightings of that user for a long
period of time, this was not a requirement of this experiment. Hence, the H UserIsPresent predicate is not retracted when a
user leaves the old LCE.

Chapter 11. Applications 171

calculated from the total processing time, averaged over the number of input events (30612). The total
processing time is calculated as the amount of time required by SCAFOS’ deductive component for
pattern-matching all the input events. Note that the total processing time does not include the cost
associated with tasks related to event publishing such as marshalling arguments for transmission over the
network. Both architectures are compared on the basis of these metrics. The overall performance results
for the applications discussed in this chapter confirm the theoretical analysis presented in this dissertation
by demonstrating the following:

• The dual-layer knowledge base architecture is 10 times more efficient than the single-layer archi-
tecture in terms of processing time and approximately 300 times more efficient in terms of the
number of published abstract events (Table 11.3).

• For the worst-case scenario of the single-layer architecture, the average response time per pub-
lished event is still small enough to accommodate the measured upper bound on the event rate
generated by SPIRIT, 0.12 sec. These results are satisfactory for the office scenario; however, for
very large-scale implementations, there is scope for further testing. Such testing will investigate
any event loss that may occur if the input rate exceeds SCAFOS’ processing rate. It is worth not-
ing that losing low-level input events can be tolerated as long as these are redundant - i.e., mere
confirmations of the same abstract state.

11.3 Examples

This section presents a set of applications that use multiple integrated SCAFOS components. These are
given here for illustration purposes.

• Whenever I am in the same room as Pablo, remind me to return his book.

• If I am walking, teleport my desktop to the closest empty meeting room. If I am sitting down,
teleport my desktop to the closest PC.

• If I am walking, forward my email on my phone by SMS. If I am sitting at a PC, forward any
notifications to my email account. If I am located within any meeting-room, withhold any notifi-
cations.

• Notify me by email when a systems administrator or a C++ expert is in the kitchen.

• Set up a conference call among the locations that correspond to a meeting room that is the closest
meeting room to each director of each department in the University of Cambridge, among those
that have been empty for at least ten minutes.

• If any user approaches the coffee-machine, then approaches the sink and then approaches the
coffee-machine again without leaving the room in the interim, notify all subscribers for coffee
notifications that fresh coffee is being brewed.

Decision-Making Applications

• If the probability that someone will make coffee in the next hour is higher than 50%, subscribe me
for notifications about the status of the coffee.

• Calculate the requirements in food supplies for meetings for the coming week (assuming a given
quantity of coffee and cookies per meeting) only considering meetings that may happen with a
probability higher than 60% and confidence level higher than 80%.

172 Chapter 11. Applications

System Configuration Applications

• Whenever a user is walking in the corridor, stop monitoring this user until the user has exited the
corridor.

Queries

• Where is my supervisor most likely to be between 10 am and 11 am today?

• When is the meeting room most likely to be empty?

SCAFOS’ current prototype implementation supports most of the above applications (see Chapter 10).
The above queries and decision-making applications are implemented using real historical data, origi-
nally derived from SPIRIT. System configuration applications are not currently implemented, but their
implementation should be straightforward using SCAFOS and standard engineering practice.

11.4 Conclusions

This chapter discusses an evaluation of SCAFOS’ performance in a real scenario. Four applications were
run for a period of over 40 hours during which SCAFOS’ performance was tested. Two different archi-
tectures of the deductive knowledge base component were tested and compared. The results demonstrate
that the single-layer architecture is sufficient for the given application set when evaluated in the old LCE
environment. Furthermore, the dual-layer architecture is substantially more efficient than the single-layer
architecture, both in terms of the processing load as well as in terms of the number of published event
instances.

Chapter 12

Sentient Computing Applications
LAnguage: SCALA

This chapter describes the Sentient Computing Applications LAnguage (SCALA). The SCALA language
is an XML-based language that has two principal goals.

• To create specifications for context-aware applications by binding representations of available ac-
tions to abstract event definitions. Phrases in SCALA are compiled into an implementation process
similar to an execution thread that undertakes the end-to-end development of context-aware appli-
cations using SCAFOS.

• To create and deploy SCAFOS and its components. This includes creating the SCAFOS compo-
nents (Chapter 10) as well as creating specifications of the adaptive behaviour of components of
the programmable infrastructure including the location system and its middleware components.

12.1 The Anatomy of SCALA

SCALA consists of three sublanguages and an API that are used to implement the above scheme:

1. The Abstract Event Specification Language (AESL).

2. The Abstract Event Filter Specification Language (AEFSL).

3. The ECA Application Specification Language (ECAAS).

4. The SCAFOS support API.

AESL is a language for creating definitions for abstract predicates and subscribing to changes in
the values of these predicates - in other words, abstract events. The filtering language AEFSL is used
alongside AESL to restrict the selection of the instances of a specific abstract predicate according to the
conditions of the filter. ECAAS is a language for creating context-aware application specifications by
binding abstract predicates to specific action predicates that represent actions available in the environ-
ment.

AESL and AEFSL are based on temporal first-order logic (TFOL), and they implement a subset of
its operators. We refer to these as separate languages because each offers different functionality and are
therefore restricted in terms of what the user can do with them. ECAAS is an ECA-based language,
i.e., its statements consist of a conditional LHS part and an action (RHS) part. The language support for
building the SCAFOS framework and controlling the adaptive behaviour of its components consists of a
set of interfaces (API) and is organised in modules (libraries). This is discussed in detail in Section 12.5.

173

174 Chapter 12. SCALA

Using the above languages, the creation of context-aware applications using SCALA entails the following
steps.

1. Create an ECAAS statement.

2. Create an AESL definition (including a type definition).

3. Create a filter (AEFSL definition).

The ECAAS statement is compiled into a context-aware application that subscribes to the AED Service
by providing the AESL definition and the filter. It then listens for notifications of abstract events of
interest. On receipt of such an event, the action specified in the RHS of the ECAAS statement is triggered
by SCAFOS.

12.2 Design Principles

• Phrases in AESL and AEFSL are translated into a thread that invokes SCAFOS APIs and executes
deductive knowledge base queries. For this reason, the underlying driver behind SCALA’s design
principles has been implementation efficiency and query optimisation (see Chapter 7). This is
discussed in more detail in the section where each language is presented.

• SCALA has been implemented as an XML language as XML is an open, widely used, powerful
schema for distributed systems. Since SCALA is inherently heterogeneous and comprises of three
sublanguages, XML’s semantic tagging provides a natural separation between these languages,
thus facilitating parsing.

• SCALA, “ladder” in greek, is an appropriate representation of the synthetic approach taken in
AESL, where each abstract predicate is synthesised from other abstract and concrete predicates.

12.3 Abstract Event Definition Language (AESL)

AESL is a language for making abstract event definitions using rules. Rules contain negation, existential
quantification and universal quantification. AESL uses a specific syntax: an abstract event definition
(AESL def.) consists of one or more implications with all their variables free and a single conclusion.
In case of only one implication, the LHS is an AESL formula and the RHS is the abstract predicate of
interest. In case of more than one rule the RHS of the last rule is the abstract predicate of interest (target
predicate), while the RHS of each intermediate rule is an intermediate abstract predicate.

Example 1. Locate the closest location to each user among the locations that have been empty for at
least 5 min.

(6 ∃u UL(u, rid, role, rattr) ∧ AL(rid , rattr , polygon)

⇒ EL(rid, rattr, t1))

D(v1, u, role, rid2, rattr2) > D(v2, u, role, rid1, rattr1)

⇒ CL(u, role, rid1, rattr1, t2)

CL(u, role, rid1, rattr1, t2) ∧ EL(u, role, rid, rattr, t1)

∧|EL,CL|t>300

⇒ CEL(u, role, rid, rattr, t3) (12.1)

Note that t1, t2 and t3 is the time of generation for EL, CL and CEL respectively. The abstract event
detector for (12.1) is portrayed in Figure 12.1.

Chapter 12. SCALA 175

YZYZYYZYZYYZYZYYZYZYYZYZY
[Z[Z[[Z[Z[[Z[Z[[Z[Z[[Z[Z[\Z\\Z\\Z\\Z\

\Z\
]Z]]Z]]Z]]Z]
]Z]

^_^_^^_^_^^_^_^^_^_^
`_`_``_`_``_`_``_`_`

aZaZaaZaZaaZaZaaZaZaaZaZa
bZbZbbZbZbbZbZbbZbZbbZbZb

c_c_cc_c_cc_c_c
d_d_dd_d_dd_d_d

eZeZeeZeZeeZeZeeZeZeeZeZe
fZffZffZffZf
fZf

Store

Store

Store

TQ(D(v,u,role,rid,rattr))

AND

AND

AND

CL(u,role,rid,rattr)
TQ(D(v,u,role,rid,rattr))

root node

>

AL(rid,rattr)

NOT

UL(u,rid,role,rattr)

EL(rid,rattr)

none

EL(rid,rattr,t1)

CL(u,role,rid,rattr)
CL(u,role,rid,rattr)

CEL(u,role,rid,rattr)

v1>v2

TEMP

Figure 12.1. An abstract event detector for Equation (12.1).

Type Definition. AESL is a typed language. Type definitions are therefore necessary whenever a new
abstract predicate is defined. Data definition statements are compiled into deftemplate statements in the
deductive knowledge base component. Until a type definition has been provided for an abstract predicate,
this predicate will not be usable in an AESL specification. If a prior definition for the predicate of interest
already exists in the knowledge base, a type definition statement that attempts to redefine the template is
ignored, and an error is returned to the user.

For example, the following type definition statement can be used to define the abstract predicate
H EmptyLocation(EL):

H EmptyLocation(rid string)(rattr string)

12.3.1 Temporal Reasoning.

Local “now”. In each deductive knowledge base component, the instant when a primitive event (pro-
duced by the sensor infrastructure) is asserted into SAL defines the current moment in time, locally, in
that sensor-driven component. As the reception of each event causes the re-calculation of all the con-
straints in the knowledge base, the global state for that component is updated accordingly. If we assume
that the propagation takes time dt, then “now” is t + dt.

This means that the publisher’s local “now” depends on the following three factors:

• The latency between the actual occurence of the event, (e.g., user movement) and the generation
of the primitive event that reflects this.

• The latency between the generation of events and the reception of those events by the Deductive
KB component.

• The latency between the reception of an event by the Deductive KB component and the update
of all the abstract predicates that depend on this event, i.e., the creation of the abstract event of
interest.

The first factor depends directly on the sampling efficiency of the sensor technology. The Active BAT
is very efficient in this aspect, as it supports very high sampling rates that are variable and can adapt to
the speed of the physical object. Such rates allow the classification and recognition of human movements

176 Chapter 12. SCALA

Operator Description
e1; e2 e1 before e2

e1; e2!e3 e1 before e2 without e3 in between
|e1, e2|T=t1 e2 happened within time t1 from e1.
now (implicit) At the current instant.
timestamp At time t.

Table 12.1. AESL temporal operators.

based on a small sample of location data. So this latency is, in reality, very small and can be ignored.
The second latency is also very small, as the event sources and the deductive knowledge base component
are local. A high-speed local network can be used. Furthermore, SPIRIT is inherently scalable, using
zone manager entities to gather sightings from the sensors locally. The third latency is addressed by the
proposed layered architecture of the deductive KB component, which is restricted only by the amount of
memory; aggressive garbage collection of historical data can be used to maximize the available memory.
A fast machine can be used to increase processing speed, and pattern matching is inherently fast and
efficient based on the Rete algorithm.

Temporal Operators. AESL supports the temporal operators of Table 12.1, which have been inspired
by the results presented in [63, 81]. The operators can be combined to form expressions. The operator
“now” is implicit. The variables e1, e2, e3 are instances of the state predicates in the model, e.g., UL.

In a distributed sensor-driven system there is no global time nor can an upper bound be guaranteed on
event transmission delays. Because of factors like clock skew, it is sometimes impossible to say whether
e1; e2 is true or false. An ordering convention may be imposed, based naı̈vely on locally generated
event timestamps. This may be appropriate for some applications. However, this is not sufficient for
the needs of context-aware applications that depend on the correct causal order of the abstract events
that synthesise the abstract knowledge of interest. If an application requires strictly correct sequencing
and can afford to discard ambiguous cases, then interval timestamps can be used for events as proposed
in [58] and used in [81]. In the latter, the application is made aware of the cases where partial order is
ambiguous, and it is offered weak or strong sequencing in order to handle the ambiguity. For cases where
ambiguity cannot be tolerated, alternative methodologies need to be adopted.

12.3.2 BNF

The AESL syntax is described next using the Backus Naur Form (BNF).

AESLDef := [Rule];

Rule := Sentence ⇒ Abstract Predicate | Binding ;

Binding := pred var < −Predicate (Term);

Sentence := Atomic Sentence | Temp Sentence | Sentence Conn Sentence |

Quantifier V arlist Sentence | ¬Sentence | (Sentence)

Temp Sentence := pred var TempOp pred var | pred var | pred var timestamp

| Temp Sentence TempOp temp Sentence;

TempOp := ; |!;

Term := Function (Termlist) | mathitConst | Var ;

Conn := ∧ | ∨ |=|<|>;

Chapter 12. SCALA 177

Operator Description
c1 ∧ c2 F1 ∩ F2

c1 ∨ c2 F1 ∪ F2

¬c1 E − F1

(c1 ∨ c2) ∧ c3 ⇔ (c1 ∧ c3) ∨ (c2 ∧ c3) (F1 ∩ F3) ∪ (F2 ∩ F3)
c1 ∨ c2 ∧ c3 ⇔ c1 ∨ (c2 ∧ c3) F1 ∪ (F2 ∩ F3)

Table 12.2. Filter algebra operators.

12.3.3 Abstract Event Filter Definition Language

As mentioned in the previous section, AESL definitions do not contain constants. Therefore, each AESL
definition, when compiled, leads to the generation of an abstract event detector that detects changes to all
instances of an abstract predicate. In addition to the AESL definitions, it is possible for the user to restrict
even further the selection of the instances of the abstract predicates of interest by using filtering. Filtering
is equivalent to selecting a subset of instances of a specific predicate by specifying a set of attributes and
constraints on these attributes. Each attribute constraint is a tuple specifying a name, a binary predicate
operator and a value for an attribute. An attribute a = (namea, valuea) matches an attribute constraint
φ = (nameφ, operatorφ, valueφ) if and only if namea = nameφ ∧ operatorφ(valueα, valueφ). We
say that an attribute α satisfies or matches an attribute constraint φ with the notation α ≺ φ.

We define the Abstract Event Filter Definition Language (AEFSL) as a language for specifying filters.
Attribute constraints can be connected with OR, NOT and AND operators. When a filter is used in a
subscription, all conjoined constraints must be matched. Disjunction is equivalent to applying multiple
filters, one for each disjoined condition. A negated constraint is equivalent to selecting all attributes
whose values do not match the one specified in the constraint.

A filter can also be defined as a set of predicate instances whose attributes ai match the filter con-
straints as explained above. In this way, the conjunction, disjunction and negation of attribute constraints
can be defined in terms of set algebra. Table 12.2 summarises this. In Table 12.2 c1, c2 are conditions of
the filter and F1, F2 are the sets that the conditions correspond to, respectively. Finally E is the set of all
predicates.

12.3.4 Filters

Filters are linear abstract event detectors. Filters are restricted to one-input nodes, which makes them
economical; in particular, they do not have any two-input nodes. Each attribute constraint contained
in the AEFSL definition is compiled into a query node. A filter for selecting only the instances of
the H UserInLocation(Ek236 , role,Room 5 , rattr) predicate that correspond to user ek236 being in
Room 5 is portrayed in Figure 12.2. Node n2 selects the instances where the user id equals Ek236 and
node n3 selects the instances where the region id equals Room 5.

UL uid=Ek235

n0 n1 n2 n3 n4

UL(Ek236, role, Room 5, rattr)

rid=Room 5

Figure 12.2. A filter.

Filters have the property that they do not replicate computation. Attribute constraints that are com-

178 Chapter 12. SCALA

mon between filters are compiled into a single query node that is shared between the filters. Fig-
ure 12.3(b) portrays the combination of the filters of Equation 12.2. Filters that do not share nodes
((12.5) and (12.7)) are guaranteed to have different attribute constraints and therefore no replication is
possible in that case (Figure 12.3(a)).

uid=Andreas ∧ role=Sysadmin ∧ rid=Room 8 ∧ rattr= Kitchen

uid=Andreas ∧ role=Sysadmin ∧ rid=Room 9 ∧ rattr=Meeting Room

(12.2)

Andreas
UL(uid,role,rid,rattr)

Sysadm Room 8 Kitchen UL(Andreas,Sysadm,Room 8, Kitchen)

UL(Eli,Phd, Room 9, Meeting Room)Meeting RoomRoom 9PhdEli

(a)

Andreas
UL(uid,role,rid,rattr)

Sysadm Room 8 Kitchen UL(Andreas,Sysadm,Room 8,Kitchen)

UL(Andreas, Sysadm, Room 9, Meeting Room)Room 9 Meeting Room

(b)

Figure 12.3. Filter combination.

12.3.5 BNF

Filter := Atomic Sentence|Filter Conn Filter |¬Filter |(Filter)

Atomic Sentence := Term = Term|Term > Term|Term < Term;

Term := Constant |Variable;

Conn := ∧|∨;

Const := Str ;

Var := Str ;

Chapter 12. SCALA 179

12.3.6 AESL and AEFSL Design Principles

Query Optimisation. Because Abstract Event Detectors are implemented as Rete networks, which
constitute the reasoning structures in a deductive knowledge base, they can be regarded as knowledge
base queries (Chapter 6). Similarly to database queries, abstract event detectors can be optimised with
respect to the computational complexity required for abstract event detection. The syntax of the AESL
definitions (in successive TFOL implications, each synthesising the goal abstract predicate) leads to the
generation of abstract event detectors that are computationally optimised. An alternative structure, which
would consist of a single implication, leads to a worst-case abstract-event detector (Chapter 7).

Avoiding Duplication of Computations. Although filtering could be integrated into AESL by regard-
ing filter constraints as additional TFOL conditions, abstract event definition and filtering has been kept
separate. This has been done for implementation efficiency, so that overlapping or duplicate event def-
initions and filters do not cause replication of computation. Two principles were adopted, firstly, each
AESL definition leads to the creation of a single abstract predicate. This requires that any filters that are
applied subsequently contain constraints on the attributes of a single predicate and therefore have linear
computational complexity and are, in this way, relatively inexpensive with regard to the computational
cost associated with the detection. Secondly, users are encouraged to write AESL definitions that use
variables as arguments for predicates rather than constants. This ensures that the deduction of all in-
stances of the abstract predicate, which is computationally expensive, is performed once, and a subset of
instances of the predicate are selected later on, by filters. Because filters can be combined, they do not
replicate computation.

g#gg#gg#gg#g
g#gg#g
h#hh#hh#hh#h
h#hh#h
AND

IR

role=Sysadm rattr=Kitchen

rid=Room 8uid=Andreas

UL(uid,role,rid,rattr)

UL(Andreas,Sysadm,Room 8, Kitchen)

(x,y,z,rid,rattr)

L_UL(uid,role,x,y,z)

(a)

i@ii@ii@i
i@ii@ii@i
j@jj@jj@j
j@jj@jj@j

IR

uid=Andreas

role=Sysadm

rid=Room 8

rattr=Kitchen

UL(Andreas, Sysadm,Room 8, Kitchen)

(x,y,z,rid,rattr)

L_UL(uid,role,x,y,z)

(b)

Figure 12.4. Unrestricted vs. restricted abstract predicates in terms of their attribute values.

180 Chapter 12. SCALA

Example. The query that corresponds to the phrase “Somebody is somewhere” is mapped to the fol-
lowing AESL specification:

L UL(uid, role, x, y, z) ∧ IR(x, y, z, rid, rattr) ⇒ UL(uid, role, rid, rattr) (12.3)

The predicate UL(Andreas,Sysadm,Room 8 ,Kitchen) which corresponds to “Andreas, the system
administrator is in Room 8 which is a kitchen” can be generated either directly by the specification:

L UL(Andreas, Sysadm, x, y, z) ∧ IR(x, y, z, Room 8, Kitchen) ⇒

UL(Andreas, Sysadm, Room 8, Kitchen) (12.4)

or it can be derived from (12.3) by applying a filter:

uid = Andreas ∧ role = Sysadm ∧ rid = Room 8 ∧ rattr = Kitchen (12.5)

Equation (12.3) combined with (12.5) is implemented as shown in Figure 12.4(a), while (12.4) is
implemented as portrayed in Fig. 12.4(b). Figure 12.5 portrays the combination of (12.4) with a query
that corresponds to the phrase ”Eli, who is a PhD student, is in Room 9, which is a meeting room”, as
defined in (12.6).

L UL(Eli, Phd, x, y, z) ∧ IR(x, y, z, Room 9, Meeting Room) ⇒

UL(Eli, Phd, Room 9, Meeting Room) (12.6)

If the filter of (12.7) was used instead, combined with Equation (12.3) and the filter of (12.2), then the
structure of Figure 12.6 would be generated as a result. It is easy to see that the structure in Figure 12.5
calculates overlapping sets of predicate instances whereas the structure in Figure 12.6 does not.

uid = Eli ∧ role = Phd ∧ rid = Room 9 ∧ rattr = Meeting Room (12.7)

klkklkklkklk
klk
mlmmlmmlmmlm
mlmnln
nlnnlnnlnnlnoloolooloolo
olo
plpplpplpplp
plp
qlqqlqqlqqlq
qlq

root
node

Eli

AndreasUL(uid,x,y,z)

n1

n2

n3

UL(uid,rid,role,rattr)

UL(Eli,Phd,Room 9, Meeting Room)

UL(Andreas,Sysadm,Room 8,Kitchen)KitchenRoom 8

Meeting RoomRoom 9

Sysadm

Phd

IR (x,y,z,rid,rattr)

Figure 12.5. Replication of computational resources with restricted predicates.

Chapter 12. SCALA 181

rsrrsrrsrrsr
rsrrsrrsr
tsttsttsttst
tsttsttst

Andreas

Eli

root node

UL(uid,role,x,y,z)

Phd

Sysadm Kitchen UL(Andreas,Sysadm,Room 8,Kitchen)

UL(Eli,Phd, Room 9,Meeting Room)

UL(uid,role,rid,rattr)

Meeting RoomRoom 9

Room 8

IR(x,y,z,rid,rattr)

Figure 12.6. Avoiding replication of computation by using un-restricted predicates.

LCE Action Predicates Description
RemoteDesktop(userID, hostname) Transfer the user’s virtual desktop to a remote host.
SubscribeToCoffeeNotifications(ActiveBATId) The user receives an audible notification

whenever a fresh pot of coffee is available.
SMS(addresss) Send an sms mesage to the specified address.
ScanToEmail(address) Send a scanned image to an email address.
BATSleep(ActiveBATId) Put BAT in quiet mode.
KillAgent(AgentId) Kill agent that has violated a security rule.
SetMonitoringRate(ActiveBATId,value) Set the sampling rate for a BAT to the specified value.
DigitalPhotoToBroadbandPhone(ActiveBATId) Send a digital image to a user’s broadband phone.
Load/Unload OUIJA object Loads/Unloads OUIJA objects from the cache,

according to the context of the entities that correspond
to these objects.

Table 12.3. LCE action predicates.

12.3.7 Temporal Operators

Figures 12.7 and 12.8 portray the implementation of three common AESL temporal operators. As can
be seen from these graphs, their implementation is straightforward.

12.4 Event-Condition-Action Application Specification Language

The ECAAS language is an ECA-like language for writing specifications of context-aware applications
based on FOL. Each context-aware application is written as an ECA statement consisting of a conditional
(LHS) and an action part (RHS) part. The conditional part is compiled into an abstract predicate name.
The RHS is compiled into a set of Jess Userfunction calls. Actions are specific to each sensor-driven
component, and they are determined by the available applications. For example, in the LCE, the actions
to be used in ECAAS statements belong to three broad categories: actions that offer context-aware
functionality, actions that are taken in response to security violations (e.g., agent “killing”) and those
that involve system actions, such as modifying the Active BAT monitoring rate and changing the page
replacement algorithm in SPIRIT’s object cache [103]. Table 12.3 summarises some of the available
action predicates in the LCE.

Two tags, the AdminSpec and Else tags, are used in order to control the newly developed application.
The AdminSpec tag controls the scope of the created context-aware applications and the period for which
historical data is kept. The Else tag is used to determine the desired action while the conditions do not
hold.

Example. Consider the following context-aware application. “Whenever I am in an empty meeting
room. teleport my desktop to the PC in that room. Else, teleport my desktop to my workstation (Bud-
weiser.eng.cam.ac.uk).” The full XML definition for this application is shown below. UEL stands for

182 Chapter 12. SCALA

uvuuvuuvu
uvuuvu
wvwwvwwvw
wvwwvwroot node

auxiliary node

Store node

UL(uid,role,rid,rattr) UL(uid,role,rid,rattr) ;UL(uid,role,rid,rattr)

(a) UL(uid, role, rid, rattr); UL(uid, role, rid, rattr)

xyxyxxyxyxxyxyxxyxyxxyxyx
zyzyzzyzyzzyzyzzyzyzzyzyz

{y{y{{y{y{{y{y{{y{y{{y{y{
|y|y||y|y||y|y||y|y||y|y|root node

auxiliary node

Test node
Constraint

Constraint
Test node

UL(uid,role,rid,rattr)

UL(uid,role,rid,rattr)

UL(uid,role,rid,rattr) !

UL(uid,role,rid,rattr) ;

(b) UL(uid, role, rid, rattr); UL(uid, role, rid, rattr)!UL(uid, role, rid, rattr)

Figure 12.7. Temporal Rete network operators.

}~}}~}}~}
}~}}~}}~}
�~��~��~�
�~��~��~�

auxiliary node

Constraint
Test noderoot node

UL(uid,role,rid.rattr) | UL(uid,role,rid,rattr);UL(uid,role,rid,rattr) | T=t1

Figure 12.8. |UL(uid, role, rid, rattr); UL(uid, role, rid, ratrr)|T=t

Chapter 12. SCALA 183

H UserInEmptyLocation(uid , role, rid , rattr).

< CreateECAApp >

< ECAAppSpec >

< RuleExp >

< AbsPredicate > UEL(Ek236, role, rid, Meeting Room) < /AbsPredicate >

< ActionPredicate > RemoteDesktop(Ek236, rid) < /ActionPredicate >

< Else >

< ActionPredicate > RemoteDesktop(Ek236, Budweiser.eng.cam.ac.uk)

< /ActionPredicate >

< /Else >

< /RuleExp >

< AbsPredDef > EL

< Param > room name string < /Param >

< Param > rattr string < /Param >

< /AbsPredDef >

< AdminSpec >

< Scope > forever < /Scope >

< /AdminSpec >

< /ECAAppSpec >

< AESLDef >

< Sentence > 6 ∃uid UL(uid, rid, role, rattr)

⇒ EL(rid, rattr)

∀EL(rid, rattr); UL(uid, rid, rattr, role)

⇒ UEL(uid, rid, role, rattr)

< /Sentence >

< /AESLDef >

< /AEFSLDef > rattr = Meeting Room and uid = Ek236 < /AEFSLDef >

< /CreateECAApp >

The above XML definition is passed into the AED Service and compiled into the abstract event detector
of Figure 12.9, which is placed at each sensor-driven component. Whenever an abstract event of type
UEL(Ek236 , role, rid ,MeetingRoom, activate) is detected, the remote desktop of user Ek236 is tele-
ported into the Meeting Room that matches the specification. Else, the remote desktop is transported to
Budweiser.eng.cam.ac.uk.

184 Chapter 12. SCALA

EL(rid,rattr)

EL(rid,rattr) ; UL(uid,role,rid,rattr) UEL(uid,role,rid,rattr)

���������
������
���������
������

���������
������
���������
������

���������
������
���������
������root node NOT

node
auxiliary

UL(uid,role,rid,rattr)

UEL(Ek236, role,rid,Meeting Room)

uid=Ek236 rattr=Meeting Room

UEL(uid,role,rid,rattr)

Figure 12.9. H UserInEmptyLocation(Ek236, role,rid,Meeting Room).

12.4.1 SCALA DTD
The DTD for SCALA is portrayed below. The elements AESLDef and AEFSLDef , are defined ac-
cording to the respective BNF syntax in Section 12.3.2 and Section 12.3.5 respectively.

CreateECAApp(ECAAppSpec,AESLDef ,AEFSLDef)

ECAAppSpec(RuleExp+,AbsPredDef ,AdminSpec∗)

RuleExp(AbsPredicateActionPredicate+, Else)

AbsPredicate(#PCDATA)

ActionPredicate(#PCDATA)

Else(ActionPredicate+)

AbsPredDef (#PCDATA, paramlist∗)

paramlist(“(“ Param, #PCDATA, “)”+)

AdminSpec(history∗, Scope∗)

History(#PCDATA)

Scope(“once”|”forever”|time)

time(#PCDATA)

(12.8)

The AESLDef and AEFSLDef statements are defined according to the BNF notation of Section 12.3.2
and Section 12.3.5, respectively.

12.5 SCALA SCAFOS Support

The SCALA statements for creating the infrastructure are contained in libraries (modules). SCALA
supports the modules of Table 12.4. This includes two specialised modules for connecting with the
SPIRIT and QoSDREAM systems, using them as primitive context sources. Each module is described
in more detail in Appendix B. The overall functionality of SCALA is shown in Figure 12.10.

Chapter 12. SCALA 185

SCALA Sampling service
Service

Satisfiability

Satisfiability Service

QosDream

The SPIRIT SystemSPIRITmodule

Generic module

DKB module

Abstract Event
Detection
Service

Knowledge Base
Component

Deductive

The

System

QoSDream module

module
AED Service

SIS module

Statistical
Inference
Service

Application
module

Context−aware

module

user

Figure 12.10. The SCALA language architecture

Module name Description
Context-Aware Application Module APIs for developing applications.
Deductive Knowledge Base Module (DKB) APIs for creating and controlling Deductive

Knowledge Base components.
Abstract Event Detection (AED) Service Module APIs for creating and controlling the AED ser-

vice.
SPIRIT and Active BAT Module APIs for linking the infrastructure with an exist-

ing SPIRIT system.
APIs for controlling the performance of the
SPIRIT object model.
APIs for controlling the ActiveBAT system.

Satisfiability Service Module APIs for creating and controlling the Satisfiability
Service.

Statistical Inference Service (SIS) Module APIs for creating and controlling the Statistical
Inference Service Module

QosDREAM Module[87] APIs for linking the infrastructure to an existing
QoSDREAM system.

Generic Module APIs for linking legacy sensor technologies with
the SCAFOS framework.

Table 12.4. SCALA Modules

186 Chapter 12. SCALA

Chapter 13

Conclusions and Further Work

The thesis of this dissertation, stated in Chapter 1, and discussed, expanded and demonstrated through
the body of this dissertation, is that it is both necessary and beneficial to provide a framework for context-
awareness in sensor-driven systems. More specifically, this dissertation described the design and imple-
mentation of the SCAFOS framework. SCAFOS has two novel aspects. Firstly, it provides powerful
tools for inferring abstract knowledge from low-level, concrete knowledge, verifying its correctness and
estimating its likelihood. Such tools include Hidden Markov Models, a Bayesian Classifier, abstract
events defined in terms of Temporal First-Order Logic, the theorem prover SPASS and the production
system CLIPS. Secondly, SCAFOS provides support for simple application development through the
XML-based SCALA language. By introducing the new concept of a generalised event, an abstract
event, defined as a notification of changes in abstract system state, expressiveness compatible with hu-
man intuition is achieved when using SCALA. The applications that are created through SCALA are
automatically integrated and operate seamlessly in the various heterogeneous components of the context-
aware environment even while the user is mobile or when new entities or other applications are added or
removed in SCAFOS.

To the best of the author’s knowledge, SCAFOS represents the first system to model context-awareness
in sensor-driven systems.

13.1 Contributions

This thesis and the resulting SCAFOS framework has made several important contributions in the field
of context-awareness. In summary, this thesis has resulted to the following artifacts:

• A framework called SCAFOS, which provides the following features:

– It implements a state-based, formal model for context-awareness in sensor-driven systems
that integrates knowledge while maintaining knowledge integrity. A state-based representa-
tion is a novel way of modelling distributed systems, and it is used instead of traditional-event
based models that are insufficient for sensor driven systems.

– Knowledge in the model is maintained in a dual-layer knowledge base. The lower layer
maintains concrete knowledge predicates, e.g., it knows of the position of a user in space,
in terms of his coordinates x,y,z. The higher layer maintains abstract knowledge predicates
about current and historical states of the Sentient Environment along with temporal prop-
erties such as the time of occurrence and their duration, e.g., it knows of the room a user
is in and for how long he has been there. Abstract predicates change much less frequently
than concrete predicates, namely, only when certain threshold events happen. Knowledge is

187

188 Chapter 13. Conclusions and Further Work

retrieved mainly by accessing the higher layer, which entails a significantly lower computa-
tional cost than accessing the lower layer. In this way this scheme acts as a dual-layer cache
for knowledge predicates.

– SCAFOS introduces the novel concept of abstract events. An abstract event is a generalised
event defined as a change in the value of an abstract state predicate. SCAFOS introduces
the AESL language for defining new abstract events from concrete and abstract knowledge
predicates. AESL is a TFOL-based language. Phrases in this language can capture human
intuition about systems state that was not definable before. Such phrases involve negation,
(e.g., empty room) and semantically transparent reasoning with global state, (e.g., locate
the closest empty meeting room) even when this refers to multiple distributed sensor-driven
components with different entities. Furthermore, the AESL language is designed with imple-
mentation efficiency in mind. AESL phrases are compiled into reasoning structures called
abstract event detectors, which are optimised for computational efficiency. Abstract event de-
tectors are implemented as Rete networks. AESL is complemented by the filtering language
AEFSL.

– SCAFOS is dynamically extensible. Dynamic extensibility refers to the ability to modify the
modelled physical entities and create or remove applications without taking the sensor-driven
system offline and without having to recompile existing applications.

– SCAFOS contains the SCALA language for using the SCAFOS framework. SCALA is an
XML-based language that contains the following three sublanguages: the AESL language,
the AEFSL language and the ECAAS language. The ECAAS language is an extended ECA
language for building applications easily, by binding AESL definitions to action predicates
that represent actions available in the environment.

– SCAFOS contains powerful tools for extending the model with abstract knowledge by means
of probabilistic statistical inference, using Hidden Markov Models (HMMs) and Bayesian
prediction. More specifically, SCAFOS contains an HMM-based scheme for detecting and
recognising human movements from position streams. This system is independent of user and
domain. SCAFOS also contains a scheme for estimating the likelihood of future concrete or
abstract predicates being true. This has a number of benefits since it enables decision making
in the absence of knowledge sources.

– SCAFOS contains tools for checking the correctness of user requirements and their compat-
ibility with the models of the distributed sensor-driven components.

• An implementation of SCAFOS, based on CORBA, consisting of the following services:

– A Context-Aware Application Service that enables the simple development of context-aware
applications with little programming overhead.

– A Statistical Inference Service that detects human movement from location data and esti-
mates the likelihood that an instance of either concrete or abstract knowledge will hold in the
future.

– An Abstract Event Detection Service that detects changes of state in the entities in the model
and translates them into abstract events.

– Abstract Event Detectors are implemented as Rete networks that are structured as a deductive
knowledge base. The deductive knowledge base can be layered in order to support scalable
abstract reasoning (Deductive Knowledge Base component.)

– A Satisfiability Service that proves the correctness of user requirements and their semantic
compatibility with the model stored in each distributed sensor-driven system component.

Chapter 13. Conclusions and Further Work 189

The results of this thesis have broad implications both for users and the developers of context-aware
applications. By using the SCAFOS framework, a user can easily develop context-aware applications
that are tailored to the user’s needs. Developers of context-aware applications can use the SCAFOS
model in order to develop context-aware applications that are integrated automatically with existing
applications and operate seamlessly with heterogeneous, sensor-driven components. All applications
remain operational even when the underlying framework is extended dynamically with new entities,
such as people and regions. Finally, the SCAFOS model can be seen as a standard against which the pros
and cons of each context-aware platform can be measured. This promotes commercialisation both for
context-aware applications and for supporting platforms.

13.2 Future Work

The work described in this dissertation constitutes a first step into the emerging field of modelling
context-awareness, and, as such, it is open to improvements in order to increase its functionality, ease of
use and to reduce its operating overhead. Interesting directions for extending this work include integrat-
ing SCAFOS with policy-based systems for access control, user authentication and user privileges. A
conflict resolution scheme based on the the work presented in Chapter 9 is essential, in order to resolve
not only possible conflicts between the functionality of different applications but also in the policies that
govern the behaviour of SCAFOS in heterogeneous environments.

Integrating SCAFOS with a distributed, peer-to-peer network architecture and implementing some of
the core operations of SCAFOS such as distributed abstract event detection (Chapter 8) using mobile code
is another promising extension to this work. Using mobile code, such as mobile agents, Abstract Event
Detectors could migrate automatically to nodes in the network where they can be optimally processed,
i.e., closer to the event sources.

Finally, SCAFOS can be applied to modelling sensor-networks.

190 Chapter 13. Conclusions and Further Work

Appendix A

On the Implementation of Transparent
Reasoning with Distributed State using
Finite Automata

A.1 Definitions

Definition 1. By predicate or a Boolean-valued function on a set S we mean a total function P on S
such that for each a ∈ S either

P (a) = true, or P (a) = false

where true and false are a pair of distinct objects called truth values.

We define the predicate P (x1, · · · , xm) as an (m − ary) predicate on Sm.

Definition 2. Let P (t, x1, · · · , xn) be an (n + 1) − ary predicate. Consider the predicate Q(y, x1, · · · , xn)
defined by

Q(y, x1, · · · , xn) ⇔ P (0, x1, · · · , xn) ∨ P (1, x1, · · · , xn) ∨ · · · ∨ P (y, x1, · · · , xn).

Thus the predicate Q(y, x1, · · · , xn) is true only in the case where there exists a value of t ∈ S such that
P (t, x1, · · · , xn) is true. Q can be written as:

(∃t)≤yP (t, x1, · · · , xn).

The expression (∃t)≤y is called a bounded existential quantifier. In the situation where there exists a
value of t ∈ N such that P (t, x1, · · · , xn) is true, we write:

(∃t)P (t, x1, · · · , xn).

The expression (∃t) is called an existential quantifier.

Definition 3. The expression (∀t) is called a universal quantifier.

(∀t) is defined as P (0, x1, · · · , xn) ∧ P (1, x1, · · · , xn) ∧ · · · ∧ P (y, x1, · · · , xn) ∧ · · ·

Definition 4. An n-ary predicate is a well-formed formula (wff) of first-order logic. Any expression
formed out of first-order logic wffs is also a wff. Nothing else is a wff.

191

192 Appendix A . Finite Automata

Definition 5. An interpretation M consists of an non-empty set D, called the domain of the interpreta-
tion, and an assignment to each predicate letter An

j of a function from Dn to the set comprised of two
values true and false (a set of finite sequences of elements in D), to each n-ary function constant f n

j an
n-ary function from Dn to D, and to each individual constant ai of some fixed element (ai)

M of D. A
valuation is the assignment of an element of the domain D to each variable. For a given interpretation,
the truth table of any formula is defined by the following rules:

• The truth tables for propositional connectives apply to evaluate the value of (F AND G), (F OR
G), (F implies G), and (NOT F).

• (”for all x, F ”) is true if F is true for every element x of D. Otherwise, is false.

• (”there exists an x such that F ”) is true if F is true for at least one element x of D. Otherwise, is
false.

Definition 6. An interpretation satisfies a wff if the wff has the value true under this interpretation. An
interpretation that satisfies a set of wffs is a model for this set.

Definition 7. A finite automaton M on the alphabet A = s1, · · · , sn with states Q = q1, · · · , qm, is
given by a function δ which maps each pair (qi, sj), 1 ≤ i ≤ m, 1 ≤ j ≤ n, onto a state qk, together
with a set F ⊆ Q, where F is the set of accepting states. State q1 is called the initial state.

Definition 8. An alphabet is a nonempty set A of objects called symbols. An n-tuple of symbols of A
is called a word or a string on A. For simplicity, a word u is written as u = a1a2 · · · an. n is the length
of u, |u| = n. A unique null word is allowed, 0. The set of all words in the alphabet A is written A∗.
Any subset of A∗ is called a language on A or a language with alphabet A. A word of length 1 which
contains a symbol ai is the same as the symbol itself.

Let M be a finite automaton with transition function δ, initial state q1 and accepting states F . If qi is
any state of M and u ∈ A∗, where A is the alphabet of M , the δ∗(qi, u) is the state which M will enter
if it begins in state qi at the left end of the string u and moves across u until the entire string has been
processed. M accepts a word u provided that δ∗(q1, u) ∈ F. M rejects u means that δ∗(qi, u) ∈ Q − F.
Finally, the language accepted by M , written L(M) is the set of all u ∈ A∗ accepted by M :

L(M) = {u ∈ A∗|δ∗(q1, u) ∈ F}.

Definition 9. A language is called regular if there exists an automaton that accepts it.

It is often very useful to represent the transition function δ graphically. Given a graph where each state
is represented with a vertex, then the fact that δ(qi, sj) = qk is represented by drawing an arrow from
vertex qi to vertex qk and labelling it sj . The diagram thus obtained is called the state transition diagram
for the given automaton.

A.2 Limitation of FSMs in Reasoning with Negation as Lack of Informa-
tion

We assume a predicate X = H UserInLocation(x , rid), x ∈ Users, rid ∈ Locations 1. We assume
that the set of Users consists of symbols {a1, a2} and the set of Locations consists of symbols {r1, r2}.
We assume that for each event of type H UserInLocation , an instance of the H UserInLocation pred-
icate (a state) is created as a symbol that can be passed on to a finite state machine. We refer to this
symbol as UL(x , rid).

1For reasons of simplicity the role and rattr are omitted from the predicate.

Appendix A . Finite Automata 193

User a1 is Nowhere.

The expression:

¬H UserInLocation(a1 , y) (A.1)

is equivalent to “User a1 is nowhere”. This is implemented with the FSM M1 of Figure A.1.

UL(a1,r2)

UL(a1,r1)

UL(a1,r1)
UL(a1,r2)

s0 s1

Figure A.1. ¬H UserInLocation(a1, y)

The alphabet for M1 is the set A = {UL(a1 , r1),UL(a1 , r2),UL(a2 , r1), UL(a2 , r2)}. The set of
states for M1 is Q = {s0, s1}. The set of accepting states F is the empty set. The function δ is defined
as follows: State s0 is the initial state of the FSM. When either the symbol UL(a1 , r1) or UL(a1 , r2) is
passed to state s0, the FSM makes a transition from state s0 to state s1, which is a non-accepting state for
this FSM. From s1, when either of the symbols UL(a1 , r1),UL(a1 , r2) are encountered, M1 remains in
state s1.

As can be easily seen from the above, M1 does not have any accepting states. State s1 is a non-
accepting state that corresponds to the inverse statement to the one of interest, namely that user a1 is
somewhere. State s0 is also a non-accepting state, where the FSM doesn’t know yet whether user a1 is
anywhere or not. Therefore, M1 does not accept any language, including Expression A.1.

It can be assumed from this example that FSMs are not sufficient in dealing with lack of information.
Note that the same problem arises with any FOL operator that signifies lack of information such as 6 ∃, as
is illustrated in the next example.

There Doesn’t Exist any Meeting Room On-Site

The FOL expression:

6 ∃x (AtomicLocation(x , Meeting Room)) (A.2)

is also not directly implementable by a FSM for lack of an accepting state.

A.3 The Closed World Assumption

Assuming a closed world that consists of two regions r1 and r2 and users a1 and a2:

6 ∃x (H UserInLocation(x , r2)) (A.3)

Equation A.3 signifies that there is nobody in room r2 or in other words, that room r2 is empty.
However, this is equivalent to the expression everybody is in room r1:

194 Appendix A . Finite Automata

H UserInLocation(x , r1) (A.4)

a1,!a2

a1,I a1,a2
(a1,r2)

(a1,r2)
(a2,r1)

(a2,r1)

(a1,r2)

!a1,a2

(a2,r1)
I,!a2

(a2,r1)

I,a2

!a1,I

(a2,r1)

(a1,r1)

(a1,r1)

(a2,r2) (a2,r2)

(a2,r2)

(a1,r2)

(a2,r2)

(a1,r2)

(a1,r1)

(a2,r2)

(a1,r2)

(a1,r1)

(a2,r2)

(a2,r1)
(a1,r1)

(a1,r2)

I,I
(a2,r1)
(a1,r2)

(a2,r2)

(a1,r2)

(a2,r1)

(a1,r1)

(a2,r1)

(a1,r1)
(a1,r1)

(a2,r2)

(a2,r2)
(a1,r2)

!a1,!a2

(a)

s0

UL(a1,r2)

UL(a3,r2)
a1,a2,Ia1,I,I a1,a2,a3

UL(a1,r2)
UL(a2,r2)

a1,a2,!a3

I,I

!a1,a2,!a3

a1,!a2,!a3

!a1,!a2,!a3

(a1,r2)

(a1,r2)

(a2,r2)

(a1,r1)

(a2,r1)

(a2,r2)

(a1,r1)

(a1,r2)
(a2,r2)

(a3,r2)

(a2,r2)

(a2,r1)

(a2,r1)
(a1,r2)

(a1,r1)
(a2,r1)

(a1,r2)

(a1,r2)

(a2,r2)

(a2,r2)

(a2,r2)

(a2,r1)

(a3,r1)

(a3,r2)

(a1,r2)

(a1,r1)

(a2,r1)

(a2,r2) (a2,r1)

(a1,r2)
(a3,r1)

(a1,r1)

(a2,r2)

(a3,r1)

(a2,r1)
(a1,r1)

(a2,r2)

(a2,r2)

I,a2,a3

a1,I,a3

(a3,r2)

(a1,r2)
(a2,r2)

(a1,r1)
(a2,r1)

(a1,r2)
(a1,r1)

I,!a2,a3
(a2,r1)(a2,r2)

(a3,r1)

(a3,r2)

(a3,r1)
(a2,r2)

(a2,r1) (a3,r2)

I,!a2,!a3

!a1,I,a3

(a1,r2)
(a3,r1)
(a2,r2)

(a1,r1)
(a3,r1)

(a2,r2)

(a1,r2)
(a3,r2)(a3,r1)

(a1,r1) !a1,I,!a3

(a3,r1)

(a3,r2)

(a3,r2) (a3,r1)

(a3,r1)
(a3,r1)
(a1,r2)

(a1,r1)

(a1,r2)

!a1,!a2,a3

a1,!a2,a3
(a1,r1)(a1,r2)

(a2,r2)

(a2,r1)

I,I,!a3

I,a2,!a3
a1,I,!a3

I,I,a3

!a1,a2,I

I,a2 ,I

I,!a2,I

!a1,!a2,I

a1,!a2,I

(a2,r1)

(a2,r1)

(a3,r2)

(a1,r1)

...I,!a2,I

(b)

Figure A.2. FSM implementations for domains D1 (a) and D2 (b) for Expression A.3

An attempt to model the above expression with the FSM M2, which is portrayed in Figure A.2(a)
is discussed here. M2 accepts the alphabet A = {UL(a1 , r1),UL(a1 , r2),UL(a2 , r1), UL(a2 , r2)}.
States in magenta represent FSM accepting states. States in blue represent partial knowledge of whether
the expression is satisfied or not. This is particularly obvious in the case where the FSM is restarted. Until
all of the symbols {UL(a1 , y),UL(a2 , x), ∀x , y ∈ Locations} have passed through the FSM, there is
no way of knowing whether the expression is true or not. The letter I is used to denote ignorance of the
state of the respective symbol. For example, state s0 is also symbolised as I, I to denote that initially no
knowledge is held for either of users a1, a2.

In fact, quite often in sensor-driven networks, if a user is idle, notification about this user will be
retained until the user starts moving again. If, when the FSM is restarted, user a1 is idle in region r2, the
FSM will be in a state of ignorance for that user until the user moves again.

A.4 Technical Background on FSMs with Free Variables

This section illustrates the shortcomings of current implementations, based on FSMs without constants,
for evaluating FOL expressions of state.

FSMs that implement expressions without constants are referred to as parametric FSMs, and they
have been presented in [5, 39]. Such FSMs evaluate event-histories without constants. With the exception
of [5], these implementations have been used to evaluate event histories which “happen” and cannot be
undone, rather than states that can be activated or de-activated as a result of event occurrences. This
means that for reasoning with state, each model state that is modelled by an FSM state needs to be
checked for whether it still holds, or not with each event occurrence. When the state includes a free

Appendix A . Finite Automata 195

variable, transitions to the negation of the free variable need to be designed. Assuming a closed world,
such transitions are implicit disjunctions over the rest of the mutually exclusive alternatives (except the
symbol that has already occurred) and, as a result, there is no automatic way to create these transitions
with the existing methods, as there is no way of predicting in advance what the value of the free variable
will be. This is illustrated in the following examples that use the two methods from the literature that
deal with FSMs with free variables. We present briefly both methods and illustrate their shortcomings
for the case of state representation of sensor-driven systems by presenting counterexamples that can’t be
implemented directly with either of the two methods.

Spawning Parametric FSMs

We refer to a methodology presented in [39] as the spawning parametric FSMs method. This method
involves spawning, for each free variable in the initial parametric FSM, an identical non-parametric
FSM whenever a symbol that instantiates a parameter occurs at a given state. In the spawned FSM, all
instances of the parameter that corresponds to the symbol that has been encountered are substituted with
the actual symbol in all transitions of the FSM. Similarly to simple FSMs, a parametric FSM in this
method is said to accept an expression that contains free variables, whenever one of the spawned FSMs
reaches an accepting state.

Multi-Bead Parametric FSMs

The second method is proposed in [5], and it constitutes an enhancement of the spawning parametric
FSM method by allowing concurrent processing of alphabet symbols. This is achieved by using symbols
called beads. Each time an alphabet symbol needs to be processed, the corresponding bead is created.
As a bead traverses the states, it records the values of all events which cause it to move in its path. Every
time a symbol arrives at a state that has a transition where a free variable represents that bead, a new
FSM is spawned where a constant is assigned to a variable. Concurrent processing is implemented by
having more than one bead in the FSM at one instant. A parametric-FSM in this method is said to accept
the expression that is logged in the bead’s path when a bead reaches an accepting state.

A.4.1 Counterexample 1

Consider the following parametric expression (Expression A.5):

(H UserInLocation(x1 , y) ∧ H UserInLocation(x2 , y))

This expression signifies that Users x1 and x2 are co-located.

Implementing Expression A.5 with Spawning Parametric FSMs.

Figure A.3 illustrates this with an example. In Figure A.3(a), if an event occurs that corresponds to
user a1 being inside region r1, then the automaton of Figure A.3(b) will be spawned from the one in
(a). In this automaton, the transitions from s1 to s3 must represent all events that report user a1 exiting
from region r1. This means that there must exist one transition for each region in the universe which is
different from r1. If instead user a1 had moved into r2, the automaton that would need to be constructed
as a result would be that of Figure A.3(c).

Implementing Expression A.5 with Multi-Bead Parametric FSMs

.

196 Appendix A . Finite Automata

s1

s0

s2

s3

s0

s2

s1

s0

s2

s3

s0

s2

s1

s0

s2

s3

(x,!y)

(z,y)

 (x,y)

 (a1,r1)

 (a1, ! r1)
 (a1, ! r2)

 (a1, ! r2)

a1,ri , ri in {Regions−r2}

 (a1,r1)

 (z, r1)

 (z, r1)

(a1,r2)

(a1,r2)
 (z, r2)

(z, r2)

(a)

(b) (c)

s1 s1

a1,ri , ri in {Regions−r1}

Figure A.3. H UserInLocation(x , y) ∧ H UserInLocation(z , y)(non-concurrent processing approach)

A detail of a finite state machine with spawning arcs similar to the ones described in [5] is shown
in Figure A.4. At state s1, if it is detected that user A leaves room x, its bead will move to state s2

where it will be destroyed. The same problem arises as in the previous case, namely, that according to
the value of x of the event that makes the automaton to change from state s0 to state s1, a transition for
each value y ∈ {Locations − x} needs to be created to state s2. Another shortcoming of this method is
that whenever a confirmatory event of a user’s position is received, a new bead for this position will be
created from state s0 to state s1, and this is clearly wrong.

A.4.2 Counterexample 2

This counter example considers higher-level state predicates. The following set of FOL expressions
signify a situation where two users x1, x2 are co-located while x2 is walking and a third user x3 is sitting
down.

H UserInLocation(x1 , y) ∧ H UserInLocation(x2 , y) ⇒ UsersAreColocated(x1 , x2 , y)

UsersAreColocated(x1 , x2 , y) ∧ UserMovement(x3 ,Sitting) ⇒

UsersAreColocatedWhileMovement(x1 , x2 , y , x3 ,Sitting)

UsersAreColocatedWhileMovement(x1 , x2 , y , x3 ,Sitting) ∧ UserMovement(x2 ,Walking) ⇒

UsersAreColocatedWhileMovement2 (x1 , x2 , y , x3 ,Sitting , x2 ,Walking)

(A.5)

A detail of an FSM for the above expression is portrayed in Figure A.5(a). Because the predicate

¬UsersAreColocatedWhileMovement(x1 , x2 , y , x3 ,Sitting)

is not by default available in the system, the only way to determine when the transition with this label is

Appendix A . Finite Automata 197

A,x)UL(

UL(B,x)

s0 s2

s1 s3

L_UserAtLocation(A,r2)

!UL(A,x)

(a)

A,x)UL(

UL(B,x)

s1

s2s0

L_UserAtLocation(A,r2)

...
UL(A,ri),ri in {Locations−x}

s3

(b)

Figure A.4. H UserInLocation(x , y) ∧ H UserInLocation(z , y)(multi-bead method)

UL(x2,y)

UL(x1,y)

!UL(x2,y)

!UL(x1,y)

!UM(x3,sitting)

UserMovement(x2,walking)

WhileMovement(x1,x2,y,x3,"sitting")
UsersColocated

WhileMovement(x1,x2,y,x3,sitting)

UA(x3,sitting)

UsersColocated!

(a)

UL(x2,y)

UL(x1,y)

!UL(x2,y)

!UL(x1,y)

!UM(x3,sitting)

UserMovement(x2,walking)

UsersColocated
WhileMovement(x1,x2,x3,"sitting")

UM(x3,sitting)
!UL(x1,y)
OR
!UL(x2,y)
OR
!UM(x3,"sitting")

(b)

Figure A.5. x1, x2 are co-located while x2 is walking and x3 is sitting down.

198 Appendix A . Finite Automata

satisfied is to determine whether the equivalent expression

¬H UserInLocation(x1 , y) ∨ ¬H UserInLocation(x2 , y) ∨ ¬UserMovement(x3 ,Sitting)

is satisfied, as shown in Figure A.5(b). As in the general case, the predicates ¬H UserInLocation(x1 , y),
¬H UserInLocation(x2 , y) and ¬UserMovement(x3 ,Sitting) are not available in the system unless
they have been defined through a binding definition; in order to decide whether they are satisfied or not,
the equivalent expressions involving primitive state predicates need to be evaluated (using the closed
world assumption) which makes the implementation domain-specific. This violates CAAT.

As can be concluded from the above example, the absence of the negative predicates in the model
and the incapability of finite state machines to deal with lack of information do not allow the use of FSMs
for detecting state in a transparent way.

Appendix B

SCALA Modules

This section summarises the SCALA modules (libraries) and the contained application programmable
interfaces by discussing, wherever appropriate, the architecture of the software component that corre-
sponds to each module.

B.0.3 The Deductive Knowledge Base Module

The architecture of the Deductive KB component is discussed in Chapter 10 (Figure 10.3). Based on the
above architecture, SCALA supports the following statements for building and using the Deductive KB
component.

• CreateReteManager()

• CreateEventAdaptor()

• CreateEventListener()

• CreateSPIRITEventListener()

• CreateKnowledgeBase()

• GetKnowledgeBase()

• UserUpdate()

• SensorUpdate()

• UserQuery()

• ExportFOLModel()

• InitKnowledgeBase()

• LoadConfiguration()

• Reset()

• Clear()

B.0.4 The SCALA Statistical Inference Service Module

The Statistical Inference Service module is based on the methodology discussed in Chapters 3 and 4.
It consists of the Statistical Recognition Service (SRS) module and the Probability Estimation Service
(PES) module. The SRS module implements the methodology described in Chapter 3 and the PES
module the methodology described in Chapter 4.

199

200 Appendix B . SCALA Modules

Individual Training data

configuration
files Overall Training Data

Labelled Training Data

Training Module

HMMs

Recognition

Analysis Module

HMM list

Overall Test Data

Dictionary

Network file

HMM prototype definitions

Module

Initialization
Module

(a) SRS

Sampling Module

SPIRIT

The Active BAT

Test Data

SRS Recognition Module

(b) The Sampling module

Figure B.1. The Statistical Inference Service module

Appendix B . SCALA Modules 201

Statistical Recognition Service API

The architecture of the SRS is portrayed in Figure B.1(a) and it consists of a sampling module, an
initialisation module, a training module, a recognition module and an analysis (evaluation) model. The
sampling module (Figure B.0.4) samples streams of position events and produces observation vectors
that are tested using the recognition module. The initialisation and training modules take as input a set
of files (configuration, model prototype definition and training data) and iteratively computes a set of
models that represent the phonemes of Chapter 3.

The recognition module takes as input a network and a dictionary file describing the allowable
phoneme sequences, a set of HMM models and a set of test data. It then performs recognition of the
test data by selecting the HMM model with the highest probability.

Once the recogniser is built, it is necessary to evaluate its performance. This is done by comparing
the output with a set of correct data. This comparison is performed by the analysis module.

SCALA provides support for the online creation of the SRS, as well as for its online usage with
location data (see also Figure 10.1). The CreateSRS-KSLink() statement implements the interface to the
Deductive KB component.

• CreateSamplingModule()

• CreateSRSInitializationModule()

• CreateSRSTrainingModule()

• CreateSRSAnalysisModule()

• DoInitialization()

• DoTraining()

• DoRecognition()

• DoAnalysis()

• AddObservationVector()

• AddObservationList()

• AddConfigurationParameters()

• AddHMMList()

• AddNetworkFile()

• AddDictionary()

• MovementUpdate()

• SensorUpdate()

• CreateSRS-KSLink()

The SCALA Probability Estimation Service Module

The Probability Estimation Service (PES) implements the methodology of Chapter 4. It takes as input
specifically formatted historical data, a set of arguments that define the model’s operation and the predi-
cate for which the probability is to be estimated, and it produces a probability estimate. The CreatePES-
KSLink() statement implements the interface to the Deductive KB component.

SCALA provides the following APIs for creating and using PES.

• CreatePESModule()

• AddPESParameterFile()

• AddDataFile()

202 Appendix B . SCALA Modules

Knowledge
Base Manager

Probability
Estimation
Service

Probability

Parameter
file

Historical Data
file

Figure B.2. The Probability Estimation Service architecture

• Fact()

• FactLikelihoodUpdate()

• CreatePES-KBLink()

B.0.5 The SCALA Satisfiability Service Module

The Satisfiability Service determines whether the user requirements are satisfiable based on the knowl-
edge that is maintained in the knowledge base (see Figure 9.1). SCALA supports the Satisfiability
Service with the following statements.

• CreateSatisfiabilityService()

• CheckSatisfiable()

• LoadFOLModel()

• AddFOLFormula()

B.0.6 The SCALA AED Service Module

The Abstract Event Detection Service is a higher order service for abstract events in sensor-driven sys-
tems described in Chapter 8. SCALA supports the AED Service by providing a set of APIs for the
creation and control of this service. More specifically:

• CreateAEDService()

• Publish()

• Subscribe()

Appendix B . SCALA Modules 203

B.0.7 The SCALA Context-Aware Application Module
The ECA Service is described in Chapter 12. SCALA provides a set of APIs that support the creation
and control of the ECA Service, namely:

• CreateECAApp()

• RemoveECAAPP()

• TriggerAction()

B.0.8 The SCALA SPIRIT Module

The SCALA language provides support for using the SPIRIT system as a source for SPIRIT events. It
also offers object interfaces, i.e., it allows the programmer to manipulate the SPIRIT database objects.

B.0.9 SCALA Support for the SPIRIT Module
• CreateSPIRITListener()

• GetSPIRITObject()

• CreateSPIRITEventsConsumer()

• CreateSPIRIT-KBLink()

B.0.10 The SCALA QoSDREAM Module

The SCALA Language provides support for connecting to the QosDREAM system mainly as an event
source but also offering object interfaces.

• The SCALA support for the QoSDREAM module

• CreateQoSDREAMListener()

• GetQoSDREAMObject()

• CreateQoSDREAMEventsConsumer()

• CreateQoSDREAM-KSLink()

B.0.11 The SCALA Generic Module
This module provides a wrapper over a generic context source which causes it to publish an event in-
terface. This is then linked into the Deductive Knowledge Base component by means of a CORBA
event manager. This is used for legacy systems that can in this way be integrated into the system as
context-sources.

• CreateKBLink()

204 Appendix B . SCALA Modules

Bibliography

[1] N. Adly, P. Steggles, and A. Harter. SPIRIT: A Resource Database for Mobile Users. In CHI ’97:
Proceedings of Conference on Human Factors in Computing Systems, Atlanta, GA, Mar. 1997.
ACM Press.

[2] Aristotle. De Anima. http://psychclassics.yorku.ca/Aristotle/De-anima/de-anima1.htm.

[3] Aristotle. Posterior Analytics. http://classics.mit.edu/Aristotle/posterior.html.

[4] D. Ashbrook and T. Starner. Learning Significant Locations and Predicting User Movements with
GPS. In Proceedings of the 6th International Symposium on Wearable Computers, pages 7–10,
Seattle, WA, Oct. 2002. IEEE Computer Society Press.

[5] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using Events to Build Distributed Applications. In
Proceedings of the 2nd International Workshop on Services in Distributed and Network Environ-
ments, pages 148–155, Whistler, Canada, June 1995. IEEE Computer Society Press.

[6] J. Bacon and K. Moody. Toward Open, Secure, Widely Distributed Services. Communications of
the ACM, 45(6):59–64, 2002.

[7] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri. Generic
Support for Distributed Applications. IEEE Computer, 33(3):68–76, 2000.

[8] J. Bacon, K. Moody, and W. Yao. A Model of OASIS Role-Based Access Control and its Support
for Active Security. ACM Transactions on Information Systems Security, 5(4):492–540, 2002.

[9] P. Bahl and V.N. Padmanabhan. RADAR: An In-Building RF-Based User Location and Tracking
System. In Proceedings of IEEE INFOCOM 2000 (2), pages 775–784, Tel-Aviv, Israel, Mar. 2000.
IEEE Computer Society Press.

[10] A. Belokosztolszki, D. Eyers, P. Pietzuch, J. Bacon, and K. Moody. Role-Based Access Control for
Publish/Subscribe Middleware Architectures. In DEBS ’03: Proceedings of the 2nd International
Workshop on Distributed Event-Based Systems, pages 1–8, San Diego, CA, June 2003. ACM
Press.

[11] A. R. Beresford and F. Stajano. Location Privacy in Pervasive Computing. IEEE Pervasive
Computing, 2(1):46–55, Jan.–Mar. 2003.

[12] P. Bonnet, J. Gehkre, and P. Seshadri. Towards Sensor Database Systems. In Proceedings of the
2nd International Conference on Mobile Data Management, pages 3–14, Hong Kong, China, Jan.
2001. Springer-Verlag.

[13] P. J. Brown. The Stick-e Document: A Framework for Creating Context-Aware applications. In
Proceedings of EP’96, pages 259–272, Palo Alto, CA, Jan. 1996. John Wiley and Sons.

205

206 BIBLIOGRAPHY

[14] L. Cardelli and A. Gordon. Mobile Ambients. In FoSSaCS ’98: Proceedings of the 1st In-
ternational Conference on Foundations of Software Science and Computation Structures, pages
140–155, Lisbon, Portugal, Mar.–Apr. 1998. Springer-Verlag.

[15] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems, 19(3):332–383, 2001.

[16] The Castor Project. http://www.castor.org.

[17] D. Caswell and P. Debaty. Creating Web Representations for Places. In HUC ’00: Proceedings
of the 2nd International Symposium on Handheld and Ubiquitous Computing, pages 114–126,
Bristol, UK, Sep. 2000. Springer-Verlag.

[18] E. M. Clark, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

[19] CLIPS. A Tool for Designing Expert Systems. http://www.ghg.net/clips/CLIPS.html.

[20] CLIPS. User’s Guide version 6.10. http://herzberg.ca.sandia.gov/jess/docs/index.shtm.

[21] CORBA. http://www.CORBA.org.

[22] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems (3rd ed.): Concepts and Design.
Addison-Wesley, 2001.

[23] G. Coulouris, H. Naguib, and S. Mitchell. Middleware Support for Context Aware Multime-
dia Applications. In DAIS ’01: Proceedings of the 3rd IFIP International Working Conference
on Distributed Applications and Interoperable Systems, pages 9–22, Krakov, Poland, Sep. 2001.
Kluwer.

[24] M. E. Crovella and T. J. LeBlanc. Performance Debugging Using Parallel Performance Predi-
cates. In PADD ’93: Proceedings of the 1993 ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 140 – 150, San Diego, CA, May 1993. ACM Press.

[25] J. Crowcroft, J. Bacon, P. Pietzuch, G. Coulouris, and H. Naguib. Channel Islands In A Reflec-
tive Ocean: Large Scale Event Distribution in Heterogeneous Networks. IEEE Communications
Magazine, 40(9):112–115, Sep. 2002.

[26] P. Dana. Global Posioning System Overview.
http://www.colorado.edu/geography/gcraft/notes/gps/gps.htm.

[27] C. J. Date and H. Darwen. A Guide to the SQL Standard (4th ed.): A User’s Guide to the Standard
Database Language SQL. Addison-Wesley, 1997.

[28] R. W. DeVaul, B. Clarkson, and A. S. Pentland. The Memory Glasses, Towards a Wearable
Context-Aware, Situation-Appropriate Reminder System. In Proceedings of Workshop on Situ-
ated Interaction in Ubiquitous Computing at CHI ’00, The Hague, The Netherlands, Apr. 2000.

[29] A. K. Dey. Understanding and Using Context. Personal and Ubiquitous Computing, 5(1):4–7,
2001.

[30] A. K. Dey and G. D. Abowd. CyberMinder: A Context-Aware System for Supporting Reminders.
In HUC ’00: Proceedings of the 2nd International Symposium on Handheld and Ubiquitous Com-
puting, pages 172–186, Bristol, UK, Sep. 2000. Springer-Verlag.

BIBLIOGRAPHY 207

[31] A. K. Dey and G. D. Abowd. Providing Architectural Support for Building Context-Aware Appli-
cations. PhD thesis, Georgia Institute of Technology, 2000.

[32] R. Dugad. A Tutorial on Hidden Markov Models. Technical Report SPANN-96.1, Indian Institute
of Technology, 1996.

[33] P. Th. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[34] R. Fleming and C. Kushner. Low-Power, Miniature, Distributed Position Location and Commu-
nication Devices Using Ultra-Wideband, Non-Sinusoidal Communication Technology. Technical
report, Aether Wire Location, 1995.

[35] A. Flew and S. Priest. A Dictionary of Philosophy. Pan Books, 2002.

[36] Laboratory for Communication Engineering (LCE). http://www-lce.eng.cam.ac.uk.

[37] C. L. Forgy. On the Efficient Implementation of Production Systems. PhD thesis, Carnegie-Mellon
University, 1979.

[38] C. L. Forgy. Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern-Match Problem.
Artificial Intelligence, 19(1):17–37, 1982.

[39] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite Event Specification in Active
Databases: Model and Implementation. In Proceedings of the 18th International Conference
on Very Large Databases, pages 327–338, Vancouver, Canada, Aug. 1992. Morgan Kaufmann.

[40] E. N. Hanson, S. Bodagala, M. Hasan, G. Kulkarni, and J. Rangarajan. Optimized Rule Con-
dition Testing in Ariel Using Gator Networks. Technical Report TR-95-027, CISE Department,
University of Florida, Gainesville, FL, 1995.

[41] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The Anatomy of a Context-Aware Ap-
plication. In MobiCom ’99: Proceedings of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, pages 59–68, Seattle, WA, Aug. 1999. ACM Press.

[42] Robert Headon. Movement Awareness for a Sentient Environment. In PerCom ’03: Proceedings
of the 1st Conference on Pervasive Computing and Communications, pages 99–106, Fort Worth,
TX, Mar. 2003. IEEE Computer Society Press.

[43] J. H. Hine, W. Yao, J. Bacon, and K. Moody. An Architecture for Distributed OASIS Services.
In Middleware ’00: IFIP/ACM International Conference on Distributed systems platforms, pages
104–120, New York, NY, 2000. Springer-Verlag.

[44] A. Hopper. The Clifford Paterson Lecture: Sentient Computing. Philosophical Transactions of
the Royal Society of London, 358(1773):2349–2358, August 1999.

[45] E. Horvitz. Principles of Mixed-Initiative User Interfaces. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 159–166, Pittsburgh, PA, May 1999. ACM
Press.

[46] D. Ipiña and E. Katsiri. A Rule-Matching Service for Simpler Develpment of Reactive Applica-
tions. IEEE Distributed Systems Online, 2(7), 2001.

[47] The Reference Model of Open Distributed Processing, ITU-T Recommendation X901— ISO/IEC
10746-1:Overview, 1998.

208 BIBLIOGRAPHY

[48] The Reference Model of Open Distributed Processing, ITU-T Recommendation X901— ISO/IEC
10746-2:Foundations.

[49] The Reference Model of Open Distributed Processing, ITU-T Recommendation X901— ISO/IEC
10746-3:Architecture.

[50] The Java Beans Technology. http://java.sun.com/products/javabeans/.

[51] Jess: The Rule Engine for the Java Platform. http://herzberg.ca.sandia.gov/jess.

[52] E. Katsiri. Principles of Context Inferences. In Adjunct Proceedings of Ubicomp ’02, pages 33–34,
Gothenburg, Sweden, Oct. 2002.

[53] E. Katsiri and A. Mycroft. Knowledge-Representation and Abstract Reasoning for Sentient Com-
puting. In Proceedings of 1st Workshop on Challenges and Novel Applications of Automated
Reasoning, in conjunction with CADE-19, pages 73–82, Miami Beach, FL, Jul.–Aug. 2003.

[54] G. Kortuem, Z. Segall, and Th. G. Cowan. Close Encounters: Supporting Mobile Collaboration
Through Interchange of User Profiles. Lecture Notes in Computer Science, 1707:171–185, 1999.

[55] J. Krumm, L. Williams, and G. Smith. SmartMoveX on a Graph - An Inexpensive Active Badge
Tracker. In Ubicomp ’02: Proceedings of the 4th International Conference on Ubiquitous Com-
puting, pages 299–307, Gothenburg, Sweden, Sep. 2002. Springer-Verlag.

[56] T. Kunz. An Event Abstraction Tool: Theory, Abstraction and Results. Technical report, Technical
University Darmstat, 1994.

[57] T. Kunz. Visualizing Abstract Events. In CASCON ’94: Proceedings of the 1994 Conference of
the Centre for Advanced Studies on Collaborative Research, pages 334–343, Toronto, Canada,
Nov. 1994. IBM Press.

[58] C. Liebig, M. Cilia, and A. Buchmann. Event Composition in Time-Dependent Distributed Sys-
tems. In CoopIS ’99: Proceedings of the 4th IFCIS International Conference on Cooperative
Information Systems, pages 70–78, Edinburgh, UK, Sep. 1999. IEEE Computer Society Press.

[59] D. Lopez de Ipina. TRIP: A Distributed Vision-Based Sensor System. Technical report, University
of Cambridge, 1999.

[60] S. Madden and M. Franklin. Fjording the Stream: an Architecture for Queries over Streaming
Data. In Proceedings of the ICDE Conference, pages 555–566, San Hose, CA, Feb.–Mar. 2002.
IEEE Computer Society Press.

[61] Object Management Group (OMG). Notification Service Specification, 2000.

[62] S. Mann. Wearable Computing as means for Personal Empowerment. Keynote Address for the
ICWC-98: 1st International Conference on Wearable Computing, May 1998.

[63] M. Mansouri-Samani and M. Sloman. GEM: A Generalised Event Monitoring Language for
Distributed Systems. Distributed Systems Engineering Journal, 4(2):96–108, June 1997.

[64] N. Marmasse. comMotion: A Context-Aware Communication System. In CHI ’99: Proceed-
ings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pages 320–321,
Pittsburg, PA, May 1999. ACM Press.

[65] E. Mendelson. Introduction to Mathematical Logic (3rd ed.). Wadsworth, 1987.

BIBLIOGRAPHY 209

[66] S. Mitchell, M. D. Spiteri, J. Bates, and G. Coulouris. Context-Aware Multimedia Computing in
the Intelligent Hospital. In EW 9: Proceedings of the 9th Workshop on ACM SIGOPS European
Workshop, pages 13–18, Kolding, Denmark, Sep. 2000. ACM Press.

[67] T. M. Mitchell. Machine Learning. Mc Graw-Hill, 1997.

[68] A. L. Murphy, G. P. Picco, and G.-C. Roman. Developing Mobile Computing Applications with
Lime. In ICSE ’00: Proceedings of the 22nd International Conference on Software Engineering,
pages 766–769, Limerick, Ireland, June 2002. ACM Press.

[69] P. Myllymaki, T. Silander, H. Tirri, and P. Uronen. B-Course: A Web-Based Tool for Bayesian
and Causal Data Analysis. International Journal on Artificial Intelligence Tools, 11(3):369–387,
2002.

[70] MySQL: The World’s Most Popular Open Source Database. http://www.mysql.com.

[71] H. Naguib and G. Coulouris. Location Information Management. In UBICOMP ’01: Proceedings
of the 3rd International Conference on Ubiquitous Computing, pages 35–41. Springer-Verlag,
Sep.–Oct. 2001.

[72] A. K. Narayanan. Realms and States: A Framework for Location-Aware Mobile Computing.
In WMC ’01: Proceedings of the 1st International Workshop on Mobile Commerce (MobiCom),
pages 48–54, Rome, Italy, July 2001. ACM Press.

[73] D. Nardi and R. J. Brachman. The Description Logic Handbook, chapter 1:An Introduction to
Description Logics, pages 5–44. Cambridge University Press, 2002.

[74] N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.

[75] A. Nonnengart, G. Rock, and C. Weidenbach. On Generating Small Clause Normal Forms. In
CADE-15: Proceedings of the 15th International Conference on Automated Deduction, pages
397–411, Lindau, Germany, July 1998. Springer-Verlag.

[76] B. O’Conaill and D. Frohlich. Timespace in the Workplace: Dealing with Interruptions. In
CHI ’95: Conference Companion on Human Factors in Computing Systems, pages 262–263,
Denver, CO, May 1995. ACM Press.

[77] OSI 7498: Open System Interconnection Seven-Layer Model.
http://www.acm.org/sigcomm/standards/iso stds/OSI MODEL.

[78] P. Pietzuch and J. Bacon. HERMES: A Distributed Event-Based Middleware Architecture. In
ICDCSW ’02: Proceedings of the 22nd International Conference on Distributed Computing Sys-
tems, pages 611–618, Vienna, Austria, July 2002. IEEE Computer Society Press.

[79] P. Pietzuch and J. Bacon. HERMES: A Distributed Event-Based Middleware Architecture. IEEE
Distributed Systems Online, 2002.

[80] P. Pietzuch and J. Bacon. Peer-to-Peer Overlay Broker Networks in an Event-Based Middleware.
In DEBS ’03: Proceedings of the 2nd International Workshop on Distributed Event-Based Sys-
tems, pages 1–8, San Diego, CA, July 2003. ACM Press.

[81] P. Pietzuch, B. Shand, and J. Bacon. Composite Event Detection as a Generic Middleware Exten-
sion. IEEE Network Magazine, Special Issue on Middleware Technologies for Future Communi-
cation Networks, Jan.-Feb. 2004.

210 BIBLIOGRAPHY

[82] Plato. Cratylus. http://classics.mit.edu/Plato/cratylus.html.

[83] Plato. Meno. http://classics.mit.edu/Plato/meno.htm.

[84] Plato. Republic. http://classics.mit.edu/Plato/republic.html.

[85] Plato. Theaetetus. http://classics.mit.edu/Plato/meno.html.

[86] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket Location-Support System.
In MobiCom ’00: Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking, pages 32–43, Boston, MA, Aug. 2000. ACM Press.

[87] QoSDREAM: Quality of Service for Distributed REconfigurable Adaptive Multimedia.
http://www-lce.eng.cam.ac.uk/qosdream/.

[88] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recog-
nition. Proceedings of the IEEE, 77(2):257–286, 1989.

[89] K. Rehman. 101 Ubiquitous Computing Applications.
http://www-lce.eng.cam.ac.uk/ kr241/html/101 ubicomp.html, 2001.

[90] B. J. Rhodes. The Wearable Remembrance Agent: a System for Augmented Memory. In
ISWC ’97: Proceedings of the 1st IEEE International Symposium on Wearable Computers, pages
123–128, Cambridge, MA, Oct. 1997. IEEE Computer Society Press.

[91] Tristan Richardson. Teleporting: Mobile X Sessions. The X Resource, 13(1):133–140, 1995.

[92] A. Rowstron and P. Druschel. PASTRY: Scalable, Decentralized Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In Middleware ’01: Proceedings of the 18th IFIP/ACM In-
ternational Conference on Distributed Systems Platforms, pages 329–350, Heidelberg, Germany,
Nov. 2001. Springer-Verlag.

[93] A. Rowstron, A. Kermarrec, and M. Castro. SCRIBE: The Design of a Large-Scale Event Notifi-
cation Infrastructure. In NGC 2001: Proceedings of the 3rd International Workshop on Networked
Group Communications, pages 30–43, London, UK, Nov. 2001. Springer-Verlag.

[94] D. Salber, A. K. Dey, and G. D. Abowd. The Context-Toolkit: Aiding the Development of
Context-Enabled Applications. In CHI ’99: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 434–441. ACM Press, 1999.

[95] N. Sawhney and C. Schmandt. Nomadic Radio: Speech and Audio Interaction for Contex-
tual Messaging in Nomadic Environments. ACM Transactions on Computer-Human Interaction,
7(3):353–383, 2000.

[96] B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications. In Proceedings
of Workshop on Mobile Computing Systems and Applications, Santa-Cruz, CA, Dec. 1994. IEEE
Computer Society.

[97] B. N. Schilit, N. Adams, R. Gold, M. Tso, and R. Want. The PARCTAB Mobile Computing
System. Technical Report CSL-93-20, Xerox PARC, Oct. 1993.

[98] A. Schmidt, M. Beigl, and H.W. Gellersen. There is More to Context than Location. Computers
and Graphics, 23(6):893–901, 1999.

BIBLIOGRAPHY 211

[99] D. Scott, A. Beresford, and A. Mycroft. Spatial Security Policies for Mobile Agents in a Sentient
Computing Environment. In Proceedings of the IEEE 4th International Workshop for Policies for
Distributed Systems and Networks, pages 147–157, Lake Como, Italy, June 2003. IEEE Computer
Society Press.

[100] B. N. Shand. Trust for Resource Control: Self-Enforcing, Automatic, Rational Contracts Be-
tween Computers. Technical Report UCAM-CL-TR-600, University of Cambridge, Computer
Laboratory, Aug. 2004. PhD Thesis.

[101] SPASS. An Automated Theorem Prover for First-Order Logic with Equality. http://spass.mpi-
sb.mpg.de/index.html.

[102] M. Spiteri. An Architecture for the Notification, Storage and Retrieval of Events. PhD thesis,
University of Cambridge, 2000.

[103] P. Steggles, P. Webster, and A. Harter. The Implementation of a Distributed Framework to Support
Distributed Applications. In PDPTA ’98: Proceedings of the 1998 International Conference on
Parallel and Distributed Processing Technique and Applications, pages 381–388, Las Vegas, NV,
July 1998. CSREA Press.

[104] M. Stringer, M. Eldridge, and M. Lamming. Towards a Deeper Understanding of Task Interrup-
tion. In Proceedings of Workshop on Situated Interaction in Ubiquitous Computing at CHI ’00,
pages 26–27, The Hague, The Netherlands, Apr. 2000.

[105] SAP: Systeme Andwendungen Produkte in der Datenverarbeitung.
http://www.sap.com:80/company/index.aspx.

[106] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location System. ACM
Transaction on Information Systems, 10(1):91–102, 1992.

[107] C. Weidenbach. The Theory of SPASS version 2.0. Max-Planck-Institut fur Informatik.

[108] M. Weiser. Some Computer Science Problems in Ubiquitous Computing. Communications of the
ACM, 36(7):75–84, 1993.

[109] L. A. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision
Processes. In Man and Computer, Bordeaux, 1972. IEEE Computer Society Press.

[110] F. R. H. Zijlstra, R. A. Roe, A. B. Leonora, and I. Krediet. Temporal Factors in Mental Work:
Effects of Interrupted Activities. Journal of Occupational and Organizational Design., 72(2):163–
185, 1999.

212 BIBLIOGRAPHY

