
Technical Report
Number 619

Computer Laboratory

UCAM-CL-TR-619
ISSN 1476-2986

Operating system support for
simultaneous multithreaded processors

James R. Bulpin

February 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 James R. Bulpin

This technical report is based on a dissertation submitted
September 2004 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, King’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Summary

Simultaneous multithreaded (SMT) processors are able to execute multiple application threads in
parallel in order to improve the utilisation of the processor’s execution resources. The improved
utilisation provides a higher processor-wide throughput at the expense of the performance of each
individual thread.

Simultaneous multithreading has recently been incorporated into the Intel Pentium 4 processor
family as “Hyper-Threading”. While there is already basic support for it in popular operating
systems, that support does not take advantage of any knowledge about the characteristics of
SMT, and therefore does not fully exploit the processor.

SMT presents a number of challenges to operating system designers. The threads’ dynamic
sharing of processor resources means that there are complex performance interactions between
threads. These interactions are often unknown, poorly understood, or hard to avoid. As a result
such interactions tend to be ignored leading to a lower processor throughput.

In this dissertation I start by describing simultaneous multithreading and the hardware implemen-
tations of it. I discuss areas of operating system support that are either necessary or desirable.

I present a detailed study of a real SMT processor, the Intel Hyper-Threaded Pentium 4, and
describe the performance interactions between threads. I analyse the results using information
from the processor’s performance monitoring hardware.

Building on the understanding of the processor’s operation gained from the analysis, I present a
design for an operating system process scheduler that takes into account the characteristics of the
processor and the workloads in order to improve the system-wide throughput. I evaluate designs
exploiting various levels of processor-specific knowledge.

I finish by discussing alternative ways to exploit SMT processors. These include the partitioning
onto separate simultaneous threads of applications and hardware interrupt handling. I present
preliminary experiments to evaluate the effectiveness of this technique.

3

4

Acknowledgements

I would like to thank my supervisor, Ian Pratt, for his advice and guidance. I am also grateful
to my colleagues in the Systems Research Group and local research labs for their friendship,
support and many interesting discussions. In particular thanks are due to Jon Crowcroft, Tim
Deegan, Keir Fraser, Steve Hand, James Hall, Tim Harris, Richard Mortier, Rolf Neugebauer,
Dave Stewart and Andrew Warfield.

I would like to thank Keir Fraser, Ian Pratt and Tim Harris for proof reading earlier copies of this
dissertation. Any errors that remain are my own.

I spent a summer as an intern at Microsoft Research Cambridge. I would like to thank my
mentor, Rebecca Isaacs, and the others involved with the “Magpie” project for an interesting and
enjoyable break from my own research.

Thanks are due to Intel Research Cambridge for their kind donation of a “Prescott” based com-
puter which I used for some of the experiments in Chapter 3.

My funding was from a CASE award from Marconi Corporation plc. and the Engineering and
Physical Sciences Research Council. I would also like to thank my current employers for their
patience and support while I finished writing this dissertation.

5

6

Table of contents

Glossary 11

1 Introduction 13
1.1 Motivation . 13
1.2 Terminology . 14
1.3 Contribution . 15
1.4 Outline . 15

2 Background 17
2.1 Simultaneous Multithreading . 17

2.1.1 Multithreading . 19
2.1.2 Research Background of SMT . 20

2.2 Commercial SMT Processors . 21
2.2.1 Alpha 21464 . 21
2.2.2 Intel Hyper-Threading . 21
2.2.3 IBM Power5 . 24

2.3 Operating System Support . 26
2.3.1 An Extra Level of Hierarchy . 26
2.3.2 Simultaneous Execution . 27
2.3.3 Cache Considerations . 31
2.3.4 Energy Considerations . 34

2.4 Summary . 35

3 Measuring SMT 37
3.1 Related Work . 37

3.1.1 Simulated Systems . 37
3.1.2 Real Hardware . 38

3.2 Experimental Configurations . 39
3.2.1 Performance Counters . 39
3.2.2 Test Platforms . 40
3.2.3 Workloads . 41
3.2.4 Performance Metrics . 43

3.3 Thread Interactions . 44
3.3.1 Experimental Method . 45
3.3.2 Results . 46
3.3.3 Desktop Applications . 56

7

3.3.4 Summary . 58
3.4 Phases of Execution . 59

3.4.1 Performance Counter Correlation . 66
3.5 Asymmetry . 67
3.6 Summary . 69

4 A Process Scheduler for SMT Processors 71
4.1 The Context . 71

4.1.1 Problems with Traditional Schedulers . 72
4.1.2 Scheduling for Multithreading and Multiprocessing Systems 72

4.2 Related Work . 73
4.2.1 Hardware Support . 73
4.2.2 SMT-Aware Scheduling . 74

4.3 Practical SMT-Aware Scheduling . 75
4.3.1 Design Space . 76

4.4 Implementation . 76
4.4.1 The Linux Scheduler . 77
4.4.2 Extensible Scheduler Modifications . 77
4.4.3 Performance Estimation . 78
4.4.4 SMT-Aware Schedulers . 79

4.5 Evaluation . 82
4.5.1 Method . 82
4.5.2 Throughput . 83
4.5.3 Fairness . 87

4.6 Applicability to Other Operating Systems . 92
4.7 Applicability to Other Processors . 93
4.8 Summary . 94

5 Alternatives to Multiprogramming 95
5.1 A Multithreaded Processor as a Single Resource 95

5.1.1 Program Parallelisation . 96
5.2 Threads for Speculation and Prefetching . 96

5.2.1 Data Speculation . 96
5.2.2 Pre-execution . 98
5.2.3 Multiple Path Execution . 100

5.3 Threads for Management and Monitoring . 100
5.3.1 Mini-Threads . 101
5.3.2 Subordinate Threads . 101

5.4 Fault Tolerance . 104
5.5 Operating System Functions . 105

5.5.1 Exception Handling . 105
5.5.2 Privilege Level Partitioning . 106
5.5.3 Interrupt Handling Partitioning on Linux 106

5.6 Summary . 113

8

6 Conclusions 115
6.1 Summary . 115
6.2 Further Research . 116

References 119

A Monochrome Figures 129

9

10

Glossary

ALU Arithmetic-Logic Unit
CMP Chip Multiprocessor/Multiprocessing
DEC Digital Equipment Corporation
D-TLB Data Translation Lookaside Buffer
FP Floating Point
HMT Hardware Multithreading
IA32 Intel Architecture 32 bit
IBM International Business Machines
ILP Instruction Level Parallelism
I/O Input/Output
IPC Instructions per Cycle
IQR Inter-Quartile Range (of a distribution)
IRQ Interrupt Request
ISA Instruction Set Architecture
ISR Interrupt Service Routine
I-TLB Instruction Translation Lookaside Buffer
HP Hewlett-Packard (bought Compaq who bought DEC)
HT Hyper-Threading
L1/L2 Level1/Level2 cache
LKM Linux/Loadable Kernel Module
MP Multiprocessor/Multiprocessing
MSR Model Specific Register (Intel)
NUMA Non-uniform Memory Architecture
OoO Out of Order (superscalar processor)
OS Operating System
P4 Intel Pentium 4
PID Process Identifier
RISC Reduced Instruction Set Computer
ROM Read-only Memory
SMP Symmetric Multiprocessing
SMT Simultaneous Multithreaded/Multithreading
TC Trace-cache
TLB Translation Lookaside Buffer
TLP Thread Level Parallelism
TLS Thread Level Speculation

11

UP Uniprocessor/Uniprocessing
VM Virtual Memory

12

Chapter 1

Introduction

This dissertation is concerned with the interaction of software, particularly operating systems,
and simultaneous multithreaded (SMT) processors. I measure how a selection of workloads
perform on SMT processors and show how the scheduling of processes onto SMT threads can
cause the performance to change. I demonstrate how improved knowledge of the characteristics
of the processor can improve the way the operating system schedules tasks to run.

In this chapter I outline the ideas behind SMT processors and the difficulties they create. I state
the contributions that are described in this dissertation. The chapter finishes with a brief summary
of later chapters.

Motivation1.1

The difference in the rate of growth between processor speed and memory latency has led to an
increasing delay (relative to processor cycles) to access memory. This is a well known problem
and there are a number of techniques in common use to work around it. While caches are very
effective, the cost of a level 1 cache miss causing an access to a lower level cache can cost many
processor cycles. To try to minimise the effect of a cache miss on program execution, dynamic
issue superscalar (or out-of-order, OoO) processors attempt to execute other instructions not de-
pendent on the cache access while waiting for it to complete. Moreover, these processors have
multiple execution units enabling multiple independent instructions to be executed in parallel.
The efficacy of this approach depends on the amount of instruction level parallelism (ILP) avail-
able in the code being executed. If code exhibits low ILP then there are few opportunities for
parallel execution and for finding sufficient work to perform while waiting for a cache miss.

Simultaneous multithreading (SMT) is an extension of dynamic issue superscalar processing. The
aim is to increase the pool of instructions which the processor can choose to execute. An SMT
processor will fetch instructions from more than one thread at a time. Since there will be no
data dependency between instructions from different threads (ignoring higher-level, infrequent
occurrences with shared data), the number of independent instructions the processor can choose
between will generally be greater than in the non-SMT processor. An added benefit is the greater
diversity of instructions making it more likely that there will be executable instructions available
for an idle functional unit. Completed instructions are extracted separately for each thread so
that architectural state can be updated in original program order, a process called retirement. The

13

execution core of the processor need not be aware that instructions come from different threads
as it is only concerned with executing instructions whose operands are ready.

SMT aims to provide a system speedup at the expense of per-thread performance. A thread
running on an SMT processor will generally run slower than it would have done on a non-
SMT processor because it has to share processor resources (including the caches). However, the
combined throughput of simultaneously running threads should be higher than that of a single
thread on a non-SMT processor due to the higher core utilisation. Therefore the time to execute
a batch of programs using SMT should be less than running them sequentially on a non-SMT
processor.

SMT can cause a number of problem for software:

• SMT threads have to share processor resources so will proceed at a speed that depends on
the level and mix of demands placed on those resources by all the simultaneously running
threads. This makes predicting and measuring processor allocation (such as in a real-time
system) hard.

• The processor-wide performance depends on how well the threads share the processor re-
sources. Typically it would be expected that a homogeneous mixture of threads would have
a poor performance and a heterogeneous mixture would do better. In order to get the best
from the processor it is necessary to be careful when selecting threads to run simultaneously.

• The processor cache(s) are shared by all threads. Sets of threads with large data footprints
risk thrashing the cache and reducing their simultaneous throughput to less than their non-
SMT sequential throughput.

SMT processors are becoming common. The most widespread implementation is Intel’s “Hyper-
Threading” available on all variants of the Pentium 4 processor. IBM’s latest addition to the
“Power” family, the Power5, is an SMT processor. The increasing ubiquity of SMT hardware
has not been matched by changes in software. Most operating systems exploit the backwards
compatible interfaces provided by Hyper-Threading creating a “virtual multiprocessor” system.
Current operating system support is limited to the minimum needed to be able to use SMT pro-
cessors without suffering major performance problems.

Intel’s implementation of SMT, “Hyper-Threading”, presents the two logical processors in a phys-
ical processor package as separate, independent processors which, although easing the job of the
operating system developer, can have unwelcome effects on performance.

Terminology1.2

Current SMT implementations all present the simultaneous threads as logical processors. A logi-
cal processor appears to the applications and, to a certain degree, to the operating system much
like a physical processor in a multiprocessor system. In this dissertation I use the terms logical
processor, thread and Hyper-Thread (when specifically discussing Intel Hyper-Threading) inter-
changeably.

14

I use the terms physical processor or package to describe the physical processor package which
presents itself as a set of logical processors.

Each logical processor can execute a thread in its own address space in the same way as multiple
processors would (unlike some specialist multithreaded hardware where all threads must share
an address space). The running threads are therefore heavyweight threads, or processes. Note
that the term thread can be used to describe both an operating system thread and a hardware
simultaneous thread; where the intended meaning is not clear from the context a more descriptive
term is used.

Contribution1.3

The thesis of this dissertation is that simultaneous multithreaded processors can be used more
effectively with an operating system that is aware of their characteristics.

As there has only recently been an implementation of an SMT processor available, there have
been very few studies of the practical issues in the use of SMT. I present a series of measurements
of applications running on Intel’s Hyper-Threaded processor, looking at the mutual effects of
concurrent execution. The main contributions from this work are:

• A detailed measurement study of a real simultaneous multithreaded processor.

• An examination of the fairness and mutual performance degradation of simultaneously
executing threads as well as the total speedup obtained.

• The use of processor hardware performance counters to examine the causes of the perfor-
mance interactions observed and to estimate performance.

I describe how operating system functions, particularly the process scheduler, can be made aware
of the characteristics of SMT processors in order to improve system performance. I propose,
implement and evaluate a number of SMT-aware scheduling algorithms and measure their per-
formance. This work contributes the following:

• A technique to estimate thread performance on an SMT processor using data from proces-
sor hardware performance counters.

• Process scheduling algorithms that are able to improve throughout and/or fairness for sets
of threads executing on an SMT processor.

• Techniques to utilise SMT-specific knowledge while still respecting existing scheduler func-
tions such as priorities and starvation avoidance.

Outline1.4

The remainder of this dissertation is structured as follows.

In Chapter 2 I describe simultaneous multithreading in more detail and describe current and

15

proposed implementations, including Intel Hyper-Threading, the first commercially available im-
plementation of SMT and the platform used for the experiments described in this dissertation. I
introduce and discuss areas of operating system support important for SMT processors.

Chapter 3 describes experimental work performed to assess the realised performance of the Intel
Hyper-Threaded processor. The results are presented and discussed.

In Chapter 4 I describe a new scheduler suitable for use with SMT processors that is able to
monitor the performance of running threads and improve the system throughput by making
intelligent decisions about what to run on the same processor. I measure the performance of the
scheduler and compare it to traditional schedulers.

In Chapter 5 I discuss other ways in which SMT processors may be used beside the quasi-SMP
model discussed in the earlier chapters. I discuss the advantages and limitations of allocating
a multithreaded processor as a single resource. I describe ways in which threads could be used
non-symmetrically.

Finally Chapter 6 summarises and concludes the dissertation and highlights areas of further re-
search.

Related work is described in the relevant chapters.

16

Chapter 2

Background

In this chapter I elaborate on the description of simultaneous multithreading in the previous chap-
ter and describe research work on SMT hardware design. I describe commercial implementations
of, and proposals for, SMT processors including Intel’s Pentium 4 with Hyper-Threading and
IBM’s Power5. I go on to introduce and discuss those areas of operating system support that are
important for SMT.

Simultaneous Multithreading2.1

In this section I describe the basic architecture of a simultaneous multithreaded processor based
on a dynamic issue superscalar processor.

Modern dynamic issue superscalar (or out-of-order, OoO) processors such as the Intel Pentium 4,
AMD K7 and modern Sun SPARC and IBM Power processors are able to execute instructions in a
data-flow manner, where an instruction is a candidate for execution once all of its operand register
values are available. This technique allows for parallel execution of non-dependent instructions.
Superscalar processors have multiple execution units such as arithmetic logic units (ALUs) and
memory access units. The out-of-order nature means that non-dependent instructions beyond a
memory load can be executed while that memory load completes. It is this mechanism that makes
OoO processors more tolerant to level 1 cache misses and structural and data hazards, than in-
order processors. Figure 2.1(a) shows a simplified example of the operation of a 4-execution
unit OoO processor. Each column represents a successive clock cycle; a blue square denotes an
instruction occupying the execution unit for that cycle. There are completely empty columns
because an earlier instruction has not completed (e.g. a memory load). Gaps elsewhere tend to
be caused by insufficient parallelism in the code.

The processor keeps a pool, or window, of instructions from which it finds those instructions
with satisfied dependencies for execution. The pool is filled by the fetch and decode stages of
the pipeline and instructions are removed (retired) from the pool in the original program order
once they have been executed. To be able to execute out-of-order and ahead into the instruction
stream requires that the processor can execute beyond branches. A branch predictor is used to
decide on which direction to follow and execution proceeds speculatively from there with the
predictions being checked once the outcome is known. Instructions are only retired when it is
known they were on a correctly predicted path. Incorrectly speculated instructions are discarded

17

Time (cycles)

}Execution
Units

� � �� � �� � �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
	 		 		 	

� �� �� �

� � �� � �� � �

� � �� � �� � �
� �� �� �

� � �� � �� � �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
� �� �� �

(a) OoO Superscalar

Time (cycles)

}Execution
Units

� � �� � �� � �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
� �� �� �

! !! !! !

" " "" " "" " "
#

$ $ $$ $ $$ $ $
% %% %% %

& & && & && & &
' '' '' '

(((((((((
))))))

* ** ** *
+ ++ ++ +

, ,, ,, ,
- -- -- -

.
/ // // /

0 0 00 0 00 0 0
1 11 11 1

2 22 22 2
3 33 33 3

4 44 44 4
5 55 55 5
6 6 66 6 66 6 6
7 7 77 7 77 7 7
8 8 88 8 88 8 8
9 9 99 9 99 9 9

: :: :: :
; ;; ;; ;

< << << <
= == == =

> >> >> >
? ?? ?? ?

@ @@ @@ @
A AA AA A

(b) SMT

Figure 2.1: An illustration of the operation of out-of-order superscalar, and SMT processors. Squares of
each colour represent instructions from different threads occupying execution units.

and their results are not committed to the architectural state. The window can extend deep into
the instruction stream of the program so will contain multiple, independent uses of the same
numbered register. In order to disambiguate these different uses, the registers specified in the
fetched instructions are renamed to be (temporally locally) unique [Tomasulo67,Hennessy03].

The modifications required to make this architecture simultaneously multithreaded are fairly mi-
nor: because the processor execution core is only concerned with instructions and data depen-
dencies between them it is possible to feed instructions from more than one thread into it. A
dynamic-issue SMT processor will fetch instructions from multiple threads and rename the reg-
isters in each such that at any point in time the threads are using non-overlapped sets of phys-
ical processor registers. By doing this the core sees more non-dependent instructions which can
increase the amount of parallelism that can be exploited. The fetching, decoding and register re-
naming of instructions can be implemented in per-thread hardware or can use the same hardware
in an interleaved manner. The processor needs to keep architectural state, including the program

18

BB
BB
B
CC
CC
C

DEDDED
DEDDED
FEFFEF
FEFFEF

GG
GG
HH
HH

II
II
I
JJ
JJ
J

KK
KK
LL
LL

MM
MM
NN
NN

OO
OO
PP
PP

QQ
QQ
Q
RR
RR
R

SS
SS
S
TT
TT
T

UU
UU
VV
VV

WW
WW
W
XX
XX
X

YY
YY
Y
ZZ
ZZ
Z

[E[[E[
[E[[E[
\E\\E\
\E\\E\

]]
]]
^^
^^

__
__
_
``
``
`

aEaaEabEbbEb cEccEc
cEc
dEddEd
dEd
eEeeEefEffEfgEggEghEhhEh iEiiEijEjjEjkEkkEk
kEk
lEllEl
lEl mEmEmmEmEmmEmEmmEmEmmEmEmmEmEmmEmEmmEmEmmEmEmmEmEm

nEnEnnEnEnnEnEnnEnEnnEnEnnEnEnnEnEnnEnEnnEnEnnEnEnoEooEo
oEooEo
oEo
pEppEp
pEppEp
pEp

qq
qq
q
rr
rr
r
ss
ss
s
tt
tt
t

uu
uu
vv
vv
ww
ww
xx
xx

yy
yy
zz
zz

{{
{{
||
||
}E}}E}
}E}}E}
~E~~E~
~E~~E~

��
��
��
��

��
��
�
��
��
�

��
��
�
��
��
� �E��E�

�E��E��E�
�E��E�
�E��E��E� �E��E��E��E�
�E��E��E��E� �E��E�
�E�
�E��E�
�E�

�E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E�

�E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E��E�E�

Instruction Queues

Register File

Units
Execution

Schedule
Decode,

Fetch,

Memory
Instruction Cache,

Counters
Program

PC1

Thread 1

Retirement

PC2
Thread 2

Figure 2.2: A simplified 2-thread dynamic SMT architecture.

counter, for each thread. This state is commonly referred to as a context. Figure 2.2 shows a
simplified architecture for a dynamic-issue SMT processor.

Figure 2.1(b) shows how the modified OoO architecture can execute instructions from two
threads simultaneously. Note that the instructions from the second thread are filling gaps in
the first thread’s execution caused by both pipeline stalls (due to long latency instructions) and
lack of instruction parallelism.

The execution resources of the processor are shared dynamically with a variable number from
each thread (possibly including none) being issued in each cycle.

The processor caches, including the branch prediction cache and memory management unit trans-
lation lookaside buffers (TLBs), are shared by all threads. The method of sharing could be a
purely dynamic scheme where the identity of the related thread is irrelevant to the cache location
or eviction policy. The sharing of the data caches would be a typical example of this scheme. Al-
ternatively a cache could be statically partitioned between threads. This scheme limits the amount
of statistical multiplexing of demands to available resource but stops any one thread hogging the
resource. A branch prediction cache or TLB could use such a scheme.

Multithreading2.1.1

Simultaneous multithreading is just one of a number of different kinds of hardware multithread-
ing. Traditionally, hardware multithreaded (HMT) processors have been able to execute multiple
threads “concurrently” from the operating system and user point of view. HMT processors gen-
erally alternate between threads per cycle (interleaved multithreading - IMT) or context switch
between threads on some event, such as a cache miss (blocked multithreading - BMT). SMT
processors are able to execute instructions from multiple threads within each cycle and are able
to share the execution resources dynamically. There has also been a design for a mulithreaded
dataflow processor [Moore96].

There are a number of common characteristics between the different forms of multithreading,
the sharing of the cache hierarchy being the most notable. SMT and IMT will place similar
demands on the caches as they both share execution resource in a fine-grained manner so the
stream of memory references will contain references from all threads. BMT architectures that

19

context switch on (L2) cache misses will present the caches with a reference stream with a more
coarse-grained thread alternation. The different techniques vary in their predictability: IMT’s
alternating execution is fairly predictable but BMT’s event-induced context switching is less so.
The dynamic nature of SMT’s sharing of execution resource makes it harder to predict each
thread’s throughput making it more like BMT in this respect. A full survey of the issues of non-
SMT multithreaded processors is beyond the scope of this dissertation, however ideas from this
field are discussed where they are relevant to SMT. A detailed survey of hardware multithreaded
processors is presented by Ungerer et al [Ungerer03].

Existent forms of non-SMT hardware multithreading tend to be confined to the supercom-
puter/mainframe field (such as the Cray/Tera MTA [Alverson90]) or to specialised processors
such as network processors. SMT is the first form of multithreading to become common on
commodity desktop and server computers. Since desktop computers usually run different work-
loads to supercomputers and network processors, they present their own set of issues. Network
processing is usually easy to parallelise with threads working on different packets or on different
parts of a processing pipeline. Additionally, code is generally written specifically for a particular
network processor, with knowledge of its characteristics. Programmers targeting supercomputers
put a lot of effort into making their programs highly parallel. On the desktop, the diversity of
hardware and uses means that the workloads are also diverse with a mix of single-threaded and
multi-threaded applications, the latter not generally being written with the constraints of SMT in
mind. Multithreaded desktop workloads often possess a single dominant thread [Lee98].

Research Background of SMT2.1.2

The history of SMT research can be broken into two distinct areas: architectures based on dy-
namic superscalars and those based on other architectures such as VLIW. The earliest work was
in the non-superscalar field; the “MARS-M” system [Dorozhevets92] and the “Matsushita Media
Research Laboratory processor” [Hirata92] are examples. The move towards superscalar based
designs started with the “Multistreamed superscalar processor” [Serrano94,Yamamoto95].

The model of SMT widely used in recent years [Tullsen98] is based on work carried out at the
University of Washington. The Washington design was originally based on a static superscalar
architecture [Tullsen95]. The design was evaluated against a single-threaded dynamic superscalar
with the same issue width (number of instructions that can be executed per cycle) and found to
outperform the dynamic superscalar (which itself outperformed an IMT-style design).

The Washington work moved towards a dynamic, out-of-order, superscalar design when it
was found that such an architecture could be made to be multithreaded with only a small
cost [Tullsen96b, Eggers97, Lo97b]. The design started with a high-performance out-of-order
superscalar design similar in spirit to the MIPS R10000. To support multiple threads multiple
program counters were added; these were fetched from on an interleaved basis. Structures that
needed to be per-thread, such as retirement and the trap mechanism, were duplicated. Thread
tagging support was added to shared data structures, such as the branch target buffer, where the
ownership of an entry was not made clear by the renaming of registers. The design supported
eight threads which placed a large demand on physical registers therefore they opted to increase
the size of the register file and pipeline its access.

20

At around the same time Loikkanen and Bagherzadeh presented results of simulation studies of a
fine-grain multithreading processor [Loikkanen96]. Whilst not described as SMT their design had
many of the characteristics of subsequent SMT processors including a shared (but partitioned)
register file and dynamically shared reorder buffer and execution units.

Commercial SMT Processors2.2

In this section I describe current and proposed commercial realisations of simultaneous multi-
threaded processors. I concentrate on Intel Hyper-Threading as this is the most widely available
and forms the basis for the work in the subsequent chapters of this dissertation. I describe the
IBM Power5 with a focus on its microarchitectural differences from Hyper-Threading where these
affect the interaction with software and the operating system. For completeness I briefly describe
the proposed, but never built, Alpha 21464.

Alpha 214642.2.1

The University of Washington’s SMT work was developed commercially in collaboration with
the Alpha processor group at Digital Equipment Corporation. This union ultimately led Compaq
(who had bought DEC by the time) to include SMT in their forthcoming Alpha 21464 (EV8)
processor [Diefendorff99], which was cancelled before production.

The processor would have provided a 4-thread core with shared caches. Each thread was to
be abstracted as a logically independent processor called a “thread processing unit”. Almost
all processor resources would have been dynamically shared with only the register allocation
tables being duplicated per-thread. Compaq had planned to provide a multiple channel direct
interface to RAMBUS memory in order to satisfy a 4-way SMT’s significant memory bandwidth
requirement. In his Microprocessor Report article, Diefendorff speculates that the processor
could have had more than 3MB of on-chip L2 cache.

The extra hardware needed for SMT would have added 6% to the processor’s die size [Preston02].

Intel Hyper-Threading2.2.2

Intel introduced SMT into the Pentium 4 [Hinton01] processor as “Hyper-Threading” [In-
tel01c, Marr02, Koufaty03]. Intel state that adding Hyper-Threading to the Xeon increased the
chip size and peak power usage by approximately 5%. In common with the proposed Alpha,
Hyper-Threading presents the threads as logically independent processors. In traditional Intel
style, backwards compatibility was maintained by allowing operating systems to detect and use
the logical processors in the same way as physical processors in a multiprocessor system thereby
allowing immediate use of the hardware by standard multiprocessor-capable operating systems.
The first processor family to implement Hyper-Threading was the Pentium 4 Xeon, aimed at the
workstation and server market. Later the technology was also incorporated into the desktop
Pentium 4 [Krewell02] and subsequently the mobile version of the processor. The core processor
in each of these variants is essentially the same; the main differences are with the non-core com-

21

ponents such as caches. The following description uses the term “Pentium 4” in the general sense
to cover all variants.

The core microarchitecture of the Hyper-Threaded Pentium 4 is based on the Intel “NetBurst”
microarchitecture of the original Pentium 4. In common with recent generations of Intel IA32
processors the Pentium 4 dynamically translates program instructions into RISC-like micro-
operations (“uops”) which are natively executed by the processor core. A problem with the
IA32 instruction set is that it contains variable length instructions. This means that successive
instruction address are dependent - it is impossible to tell where the next instruction starts until
some way in to the decoding of the current instruction. Decoding is a stateful operation and
sharing of the decoding resource is difficult without expensive duplication of state. For this rea-
son Intel chose to multiplex the use of the decoding stages of the pipeline between threads at a
several-instruction granularity. The decode bandwidth need not be shared evenly; if one thread
is idle or stalled, the other thread can utilise the full bandwidth.

Decoded uops are cached in the trace cache (TC) which is used instead of a level 1 instruction
cache. The set-associative TC is dynamically shared by threads with each line tagged with its
thread. Uops are fetched from the TC (or microcode ROM for particularly complex instructions)
one thread at a time, alternating each cycle as necessary. Once again, an idle or stalled thread
will allow the other thread to use the full uop fetch bandwidth available. The fetched uops are
fed into a queue partitioned to give each thread half of the entries.

The out-of-order superscalar core takes uops from the queue. An allocator chooses instructions
from the queue and allocates buffers to them. Fairness is provided by limiting the number of
each buffer type (re-order, load and store buffers) that a thread can have to half of the number of
buffers available. Additionally if both threads have instructions in the queue then the allocator
will alternate between threads’ uops each cycle. If a thread is stalled then the other thread will be
given full allocate bandwidth but will still be limited to its share of buffers.

The architectural registers are then renamed to internal physical registers. Since each thread has
a separate architectural register set, the register alias table tracking the architectural to physical
register mappings needs to be duplicated for each thread.

The dataflow execution core need not be aware of which thread each instruction belongs to.
However to ensure fairness the processor limits the number of entries in each scheduler queue that
each thread may have. The Pentium 4 can issue up to six uops per cycle to the seven execution
units (two integer ALUs, a floating-point move unit, an integer shift/rotate unit, a floating point
unit, a load unit and a store unit). Completed uops are placed in the re-order buffer and are
retired in program order. Retirement, like fetching, will alternate between threads but give all of
its bandwidth to a thread if the other thread has no instructions to retire at that time.

The cache hierarchy is essentially physically addressed so can be used by both threads with no
explicit tagging or partitioning. The data TLB is dynamically shared and each entry is tagged by
logical processor. The instruction TLB is replicated for each thread but is small.

The way resources are shared: dynamically, statically partitioned or duplicated, is summarised in
Table 2.1.

The IA32 HLT instruction is used on single-threaded processors to put the processor into a low-

22

Area Duplicated Dynamically Tagged or
Shared Partitioned

Fetch ITLB Microcode ROM Trace cache

Streaming buffers

Branch Return stack buffer Global history array

prediction Branch history buffer

Decode State Logic uop queue

(partitioned)

Execute Register rename Instruction schedulers Retirement

Reorder buffer

(≤ 50% per thread)

Memory Caches DTLB

Table 2.1: Resource division on Hyper-Threaded P4 processors.

Feature Northwood Xeon Prescott

Pipeline stages 20 31

Store buffers 24 32

L1 data cache 8kB 4-way 16kB 8-way

L2 cache 512kB 8-way 1MB 8-way

Table 2.2: Northwood and Prescott Pentium 4 differences [Glaskowsky04].

power dormant mode which is exited on reception of an interrupt. This instruction is typically
used in operating system idle tasks. With Hyper-Threading both logical processors need to be
HLTed in order for the physical processor to go into a low power mode but a single HLTed logical
processor will go into the logical dormant state. In this scenario the processor will recombine
partitioned resources so that the non-HLTed processor can use all available fetch, decode and
execution bandwidth. The performance of the active thread should be the same as if Hyper-
Threading was disabled or even non-existent.

The logical processor abstraction extends to the handling of interrupts. Each logical processor
has its own interrupt controller and interrupts can be sent to each logical processor in exactly the
same manner as in traditional multiprocessor systems.

Prescott2.2.2.1

The “Prescott” Pentium 4 processor from Intel is the second implementation of Hyper-Threading.
Table 2.2 summarises the key architectural differences from “Northwood”, the first instantiation
of a Hyper-Threaded processor described above. A number of the differences between the two
cores suggest that the Prescott may be better suited to simultaneous multithreading than its pre-
decessor. In particular the Prescott’s larger, more associative L1 cache is likely to perform better
than the smaller Northwood cache when the two threads are making many memory accesses. In-
tel also claim to have improved the control logic associated with Hyper-Threading. In Chapter 3
I measure both versions of the processor to evaluate the effectiveness of the Prescott changes.

23

Several microarchitectural enhancements have been made to the Prescott core [Boggs04]. Several
entries have been added to the floating-point schedulers to improve floating-point performance
under Hyper-Threading. The number of outstanding L1 data cache accesses has been doubled to
8. This has negligible effect on single-threaded performance but is useful for Hyper-Threading.
Extra write-combining buffers were also added to complement the extra store buffers. These
changes reduce the chance of a thread stalling when both threads are making a significant number
of memory writes.

Intel have increased the available parallelism in the memory access circuits. The Northwood
core serialised page table walks initiated by both threads. This is problematic if one thread’s
walk causes a cache miss and the other thread requires a page table walk. The Prescott core can
perform both walks in parallel.

The problem of one thread stalling in the core causing performance loss to the other thread, or
resource wastage, is tackled by reducing the time for the trace cache to react and dedicate all of
its resources to the non-stalled thread.

A number of new instructions have been added to the Prescott processor [Intel03]. Of particular
interest is the MONITOR/MWAIT pair. In summary, MONITOR allows a region of memory of sized
fixed by the implementation (believed to be a cache line) to be marked for use by subsequent
issues of the MWAIT instruction. MWAIT causes the processor to block until the specified region
of memory has been written to. The actual operation is a little more detailed. For example,
MWAIT enters an “implementation-dependent optimized state” until one of a list of events occurs,
including writes to the region of memory and interrupts. MONITOR and a loop containing MWAIT
can be used as a reasonably light weight inter-thread synchronisation mechanism.

IBM Power52.2.3

IBM’s Power5 processor contains two processor cores each of which is capable of running two
SMT threads [Kalla04]. Up to 32 packages can be built into a symmetric multiprocessing system.
IBM claim that providing more than two threads per core is not justified due to the extra com-
plexity outweighing the diminishing returns from the additional threads, particularly with cache
thrashing.

In common with Intel’s Hyper-Threading the Power5 fetches from only one thread in a clock cycle
with the instruction fetch stage alternating between the threads. The threads share the instruction
cache and instruction TLB.

As with Hyper-Threading, the Power5 has per-thread call return prediction stacks as a shared
stack would be of no value. The branch prediction state is entirely shared in the Power5 whereas
Intel choose to share the main global history table (with thread-tagged entries) but give each
thread its own branch history buffer.

Both the Power5 and Hyper-Threading have dedicated per-thread instruction fetch queues (called
“streaming buffers” with Hyper-Threading). These queues hold instructions awaiting decode.

One of IBM’s major advances over Intel’s initial Hyper-Threading offering is the ability to assign
priorities to threads. This function is implemented in the choice of which thread to decode

24

instructions from in a given cycle. This particular location in the pipeline is appropriate because
it is the last stage where the threads have little interference with each other before instructions
enter the shared core. If the throttling of threads to implement thread priority was to have been
performed at the fetch stage then very little would be gained as the subsequent instruction queues
are duplicated and building a shared one would save only a small amount of silicon. By allowing
both threads to fetch as much as they can fit into the instruction queues allows instruction cache
misses to be tolerated. The back pressure from the throttled decoding will have the desired effect
and limit the fetch rate for the lower priority thread. Having instructions from a low priority
thread ready to be decoded reduces the amount of time the execution units are idle if the high
priority thread stalls.

Once a group of instructions from one of the threads has been chosen and routed through the
decoding and register renaming stages the instructions feed into issue queues for the eight execu-
tion units. The instructions are now independent of their threads therefore the entire execution
core is dynamically shared by the threads.

The main difference between Power5 and Intel Hyper-Threading in the decode and execute areas
of the pipeline is that the Power5 uses decode for thread resource usage balancing while Intel
places limits on access to shared execution resources such as the re-order buffer and the number
of instructions from each thread that may be scheduled per cycle. The Intel approach is much
more of a static partitioning of resource while the Power5 is more faithful to the dynamic model
of the University of Washington.

The global completion table (GCT), records the completion of instructions in groups of up to 5
instructions from each thread. The GCT has 20 slots for such groups, shared between threads.
The Power5 can commit one group from each thread per cycle.

In common with Intel, IBM made some improvements to the caches when introducing multi-
threading. Compared to the non-SMT Power4 the Power5 has doubled associativity on both
level 1 caches (although they remain the same size at 64kB I and 32kB D) and introduces a fully
associative D-TLB (still 128 entries).

To provide a good level of fairness between threads, something Hyper-Threading can have diffi-
culty doing, the Power5 implements dynamic resource balancing. The logic monitors the GCT
and load miss queues to determine if a thread is “hogging resources”. A particular problem is
a blocked dependency chain due to an L2 miss; this can cause instructions to back up in the
issue queues preventing further dispatch thereby slowing the other thread. The processor has a
threshold of L2 misses which if reached causes the thread to be throttled. The mechanisms used
for throttling depend upon the situation:

• reduce the thread’s priority (used if there are too many GCT entries),

• inhibit the thread’s decoding until congestion clears (used if more than the threshold number
of L2 misses), and

• flush the thread’s instructions that are waiting for dispatch, and suspend decoding for that
thread until congestion clears (used if the thread is executing a long latency instruction such
as a SYNCH memory barrier).

25

Idle occupation of buffer slots by instructions from a thread stalled on L2 misses has been shown
to be a problem in research work [Limousin01].

The adjustable thread priority implemented in the decode stage is used to vary the share of execu-
tion resources given to each thread. Eight levels are defined; 0 stopping the thread completely and
1 to 7 being used for low to high priorities. The difference between the priorities of each thread
determines the degree of bias given to the decode rates and therefore the use of the execution
resources. If both threads have a priority of 1 then the processor throttles back the decode rate
in order to conserve power. Some priorities can be set by privileged instructions only, some from
all levels.

The processor can be run in a single-threaded mode in which all physical resources are given to
the one thread. This mode can be entered either disabling the second thread entirely (using the
system BIOS) or by the operating system putting one thread into a dormant state. Intel Hyper-
Threading supports equivalents of both scenarios.

Operating System Support2.3

In this section I describe the various possible interactions between simultaneous multithreaded
(SMT) processors and operating systems. I begin by describing the main differences between a
uniprocessor (UP) or symmetric multiprocessor (SMP) system and an SMT system. I explain how
features are abstracted to avoid the need to provide SMT-specific OS support but how the OS
could improve performance if it is aware of the differences.

An Extra Level of Hierarchy2.3.1

Abstracting threads in an SMT processor as logical processors is a convenient way to provide
instant backwards compatibility; however, it introduces complications into the otherwise simple
action of counting processors.

Many commercial operating systems are licensed for a particular number of processors. An
interesting problem with building logical processors on top of physical processors is which level
of the hierarchy should be counted for the license. If it is decided to count logical processors then
a further complication is caused by the ability to disable threads. Should the licensing count be
based on the number of threads enabled, or the total number possible? An argument for the latter
case is that a check could be carried out at boot time and the threads re-enabled later. Hyper-
Threading is now a standard feature on all new high-end Pentium 4 processors so if a system
without SMT is required then the second logical processor on each package must be disabled. A
license using the logical processor count is likely to be unfair in such a situation.

The two obvious choices for numbering the logical processors are:

1. number first by package and then by logical processor within each package,

2. number through the first logical processor in each package then through the second and so
on.

26

The second method is useful in situations where the operating system is licensed for a particular
number of processors and runs on the lowest numbers processors, ignoring the remainder. In
the first numbering system this would cause entire physical packages to be ignored while logical
processors compete on the active packages. The enumeration of processors can be performed by
the OS or BIOS. In the latter case it is important that the OS knows how the BIOS performed the
enumeration.

When the Intel Pentium 4 Xeon with Hyper-Threading first came out Microsoft Windows Server
2000 was unaware of the logical/physical processor distinction so used the BIOS enumeration for
licensing purposes [Borozan02]. If the BIOS enumerated processors according to Intel specifica-
tions, with the first logical processor in each package counted first, then a 4 physical processor
(each of two logical processors) machine running a copy of Windows 2000 licensed for 4 pro-
cessors would use the first logical processor on each package and leave the other ones idle. This
is effectively the same as running on a 4-way non-Hyper-Threaded machine so no harm is done
although the extra benefit of the Hyper-Threading is not gained. A BIOS enumerating using the
alternative method would cause Windows 2000 to use both logical processors on the first two
packages leaving two physical packages completely idle in the machine described above. The suc-
cessor Windows version, .NET Server 2003, was able to distinguish between logical and physical
processors and was licensed based on the physical package count.

The Linux kernel was made aware of Hyper-Threading from version 2.4.17. It enumerates the
processors itself and uses the first method outlined above, numbering through all the logical
processors in the first package then all in the second and so on. Later versions extended this
support further by recording the hierarchy as a specific case of the OS’s generic NUMA support.

Knowledge of the difference between logical and physical processors is useful for load-balancing
and scheduling. In a scenario where a system has two physical packages each of two logical
processors, and has two runnable processes, the scheduler has to decide which processors to
use and which to leave idle. A scheduler unaware of the processor hierarchy may assign the
tasks to the lowest numbered processors; using the Linux enumeration method these would be
the two logical processors of the first package. The entire second package would be idle which
would not give the highest system throughput. Although Linux 2.4.17 was “Hyper-Threaded
aware” it exhibited this problem; later versions were able to support the logical/physical processor
distinction.

A further problem of the logical processor abstraction is when accessing per-package state such
as when updating microcode and setting the memory type range registers (MTRRs) which are
used to control caching for physical memory ranges. An operating system treating two logical
processors as SMP may run into concurrency problems1. Linux now serialises these accesses.

Simultaneous Execution2.3.2

The threads, or logical processors, of an SMT processor dynamically share and compete for pro-
cessor execution resources. As I show in Chapter 3 one thread always slows down the other
(compared to it running alone on the physical processor) and the mutual effect of the threads on

1Current usage should not be a problem as Intel require all processors in an SMP system to have the MTRRs set
identically [Intel01b], their initialisation is write-only and their writing is idempotent.

27

each other can be quite detrimental. Therefore care has to be taken to avoid situations where
threads execute instructions which perform no useful computation, such as busy-waiting. The
variable effect of threads on each other is important to scheduler design, particularly where fair-
ness, quality of service or priorities are being used. I address the problem of fair and efficient
scheduling for SMT in Chapter 4; in this section I describe the issues surrounding thread priori-
ties.

Redstone considered a number of aspects of operating system-SMT interaction [Redstone02]. He
used a full-system simulator to evaluate the performance of operating system functions on an
SMT processor. Unlike earlier work, the experiments were designed to take into account those
periods of an application’s execution which are executing inside the kernel. Redstone found that
the greater level of data and code sharing within the kernel (compared to the user-space code) is
beneficial to IO-bound applications such as the Apache web server. He noted that such workloads
suffer on non-SMT systems because of the constant crossing of privilege boundaries and changes
of control-flow. Whilst these negative effects are still present on SMT processors the positive
sharing effects go some way to countering them. Additionally the latency-hiding ability of SMT
makes up for the remaining performance shortfall giving such workloads a good net speedup
over a non-SMT processor.

Unproductive Execution2.3.2.1

There are a number of circumstances where instructions are executed but no useful computation
is performed. These include spin locks, idle loops and timing loops.

A spin lock is a simple mechanism for a thread to wait for a resource held by another thread
to be released. Spin locks are typically implemented as a loop around code that tests the lock’s
status. Spin locks are commonly used due to their simplicity but have undesirable performance
effects in many scenarios as they cause processing resource to be used with no useful work being
done. Spin locks are an attractive implementation choice when the chance of the contention for
a lock is low. In this situation the common case of the lock being available entails a single test
and a not-taken branch; a lock found to be held will entail costly spinning but if this is rare then
over-all performance will be good.

On an SMT processor where one thread is holding a lock while another thread is spinning on
it the shared execution resources of the processor mean that the spinning thread will have a
performance impact on the lock-holding thread. Spinning is particularly resource hungry as the
loop closing branch is easy for the processor to predict allowing the loop to be unrolled multiple
times creating a large number of instructions to compete with the other thread(s) for execution
resources.

There are a number of ways to avoid this problem.

• Avoid using spin locks; there exist a number of lock-free techniques [Greenwald96] most
of which would be very beneficial in an SMT environment.

• Yield the processor while waiting on a lock; this would involve a costly entry to the sched-
uler but would prevent wasted processor time. Since most locks are only held for a short
time a compromise is to spin for a limited time and then yield.

28

• Implement locks as a processor primitive. Tullsen et al describe hardware locks with explicit
acquire and release instructions [Tullsen99]. When a thread tries to acquire a locked lock
then the processor will cause all resources being used by that thread to be freed for use by
the other threads. The thread is allowed to continue when the lock is released.

• Implement hardware support to reduce the performance cost of spinning. The Intel PAUSE
instruction [Intel01a] can be inserted into the body of the spin lock loop. PAUSE is logically
a no-operation instruction but causes an architecturally dependent delay in the issue of in-
structions (believed to correspond to the pipeline latency). Whilst this does not eliminate
the cost of spinning it does reduce it. Intel’s second generation Hyper-Threaded proces-
sor core, Prescott, introduced a new pair of instructions, MONITOR and MWAIT [Intel03].
MWAIT causes the thread to enter an “implementation-dependent optimized state” (which
for a Hyper-Threaded processor should involve releasing held resources) until a region of
memory specified with MONITOR has been written to by another thread. This mechanism
can be used to build locks2.

• Use unmodified spin-locks but provide hardware/OS support to limit their impact by low-
ering the (hardware) priority of the spinning thread. This is the method suggested by IBM
for use on the Power5 processor [Kalla04].

A further application of spinning is the idle loop for processors that currently have no processes
scheduled on them. The idle loop repeatedly checks for any new or migrated processes which
will cause control to be handed to the scheduler. Clearly such behaviour on a logical processor
on an SMT physical processor will consume execution resource thereby slowing the other logical
processors. “Busy-waiting” idle loops are also problematic for non-SMT processors because the
unnecessary use of resources consumes power and therefore generates heat and reduces battery
life. An alternative to busy-waiting is to force the processor to enter a native idle state until
such time as there is something to do. An example is Intel’s HLT instruction which causes the
processor to run in a reduced power (on post-386 processors) dormant state until an interrupt
is received. On a Hyper-Threaded processor HLT causes the logical processor to enter the same
dormant state and all partitioned and shared resources used by that logical processor are given to
the other logical processor [Marr02]. If the second logical processor also executes HLT then the
processor enters a lower power state.

Linux 2.6 makes use of the Prescott MWAIT instruction for the idle loop. The idle task waits on a
part of the operating system data structure for that logical processor that is written to by scheduler
functions executing on other logical processors. If the scheduler wishes to execute a process on
a currently idle logical processor then it writes to this data structure which the idling thread will
notice. This mechanism suffers less overhead than a traditional inter-processor interrupt but still
allows the yielding of resources that using HLT would provide.

In early operating systems and applications it was common to use “timing loops” to cause a
short delay. Timing loops are still found in modern operating systems but tend to be restricted
to initialisation functions. A timing loop is a simple loop, or set of nested loops, that performs
no useful work. The number of iterations is chosen to cause the loop to take a particular length

2At present the use of these instructions is limited to kernel mode, however it was intended to make them available
to user level threads and it is likely that future revisions of the processor will allow this.

29

of time to execute. A typical operating system use of timing loops would be to insert a delay
between sending a command to, and reading a response from a hardware device. Applications
may use them to provide delay between frames in an animation. Timing loops are undesirable in
modern systems for a number of reasons.

• Knowledge of the clock speed is required to calculate the number of iterations. Different
clocks on different and newer systems will change the loop timing.

• Modern superscalar systems execute multiple instructions per cycle. This must be taken
into account when deciding the number of iterations.

• Timing loops waste processor time. This is particularly important in multitasking systems
where that time could be more usefully given to another task.

• Timing loops in device drivers where interrupts are disabled are problematic since other
interrupts may be arriving and awaiting servicing.

The first two problems can be avoided by calibrating the loop against a known time period at
runtime (or boot time) on the actual processor. This technique is used by Linux for processors
such as the Intel 386 and 486 that do not support more efficient delays.

Timing loops on SMT processors suffer the same problem as spin locks - they cause detriment
to other threads’ performance while doing no useful computation. Additionally the delay for a
given number of iterations of the loop will vary depending on the resources being used by the
other thread(s). In a similar manner to spin-locks, processor facilities, such as the Intel PAUSE
instruction can be used to reduce the impact of a timing loop.

Redstone performs a detailed analysis of the effect of spinning on a simulated SMT system [Red-
stone02]. He notes that one thread spinning uses resources that the other thread(s) could have
used. In the particular microarchitecture simulated, the spinning thread uses more than its fair
share of resources; in particular, the architecture favours threads that make better progress which
is what the spinning thread appears to do. He compares spinning with Tullsen’s SMT locks and
observes slowdowns of up to three times when using spinning compared to SMT locks.

Priorities2.3.2.2

Operating systems generally support process priorities to influence scheduling. A common scheme
is to assign a process some form of static base priority which is varied dynamically during execu-
tion to avoid starvation.

Take the scenario of a high priority single-threaded process H and a low priority background
process L, which are both compute-bound. The desired behaviour is that H gets the largest share
of the processor time with L being scheduled around it. L will always end up with some fraction
of the processor time due to the starvation-avoiding dynamic priority change. A uniprocessor
system being preemptively timeshared between the processes will exhibit the desired behaviour
because the scheduler will bias the ratio of processor time given to the processes. A multiproces-
sor system will provide an entire processor for each of H and L; this does not differentiate the
priorities but mostly fulfils the requirements of allowing H to continue unhindered while L uses
the remaining resources (the processes do compete for access to memory so L could still hinder

30

H if the processes have high memory bandwidth requirements or are causing cache invalidations
due to sharing memory). A single package, two thread SMT processor being used as two logical
processors will have each of H and L executing on its two logical processors. The problem here
is that both processes are dynamically sharing and competing for the processor resources. In an
idealised SMT processor each would be eligible to get 50% of the processor resources. In practice
it is possible that either process, regardless of its priority, would make better progress than the
other due to the imperfect nature of resource sharing (see Chapter 3). The process priority is
not taken into account since the multiprocessor scheduler given two runnable processes and two
logical processors will always chose to run each process on an available processor.

The problem of extending the process priority into the SMT processor can be addressed in hard-
ware or software. If the processor was to support a form of priority for the SMT threads (logical
processors) then the above scenario could be easily accommodated. Hardware thread priorities
can be implemented by imposing a ratio between threads of the number of instructions fetched
(or decoded in the case of IBM’s Power5 [Kalla04]) in some small time window. The current
implementations of Intel Hyper-Threading (the Northwood and Prescott cores) do not have any
support for explicit thread priorities.

In the absence of hardware support the operating system scheduler can try to provide the desired
effect while still utilising the simultaneous nature of the processor. Lower priority tasks could be
limited to only a fraction of the processor time forcing one of the logical processors to be idle
even if there is a runnable low priority process. Assuming that one logical processor being idle
allows all processor resources to be used by the other logical processor, this method would allow
the high priority process to run unimpeded for much of the time, only suffering a slowdown for
the fraction of the time the low priority process was running. In general this scheme provide
a worse system-wide performance than constantly using both logical processors but does give
the high priority task a better individual performance. An extension to this technique would
have all low priority processes being scheduled on one logical processor while the fewer number
of high priority processes share the other. A modification to these schemes would be to use
processor performance counters to monitor the consumption of resources by low priority tasks,
perhaps biased by their actual dynamic priority, and use this to limit their scheduling. The use of
performance counters to assist and improve scheduling for SMT processors is discussed further
in Chapter 3.

Cache Considerations2.3.3

Threads executing on SMT processors, as with other multithreaded processors, share the cache
hierarchy. One of the original motivations for SMT was to provide the processor with more work
to do while waiting on a cache miss. However, the extra thread(s) with their own memory access
requirements cause a greater demand on the caches often leading to more contention and capacity
misses. The performance of the processor will be heavily influenced by the opposing effects of
increased cache misses and greater miss tolerance. I show this trade-off occurring in practice in
Chapter 3.

A particular problem occurred with Linux when Intel Hyper-Threaded processors first became
available. The user stacks in Linux were allocated on 64kB boundaries which meant that they

31

started from the same location within the processor’s 8kB (2kB x 4 way) level 1 data cache. Most
applications only use a small amount of the stack which leads to cache conflict due to the limited
associativity of the cache. For single-processor context switching this is not a problem as the
overhead of refilling the cache after a context switch is very small compared to the scheduling
quantum. With SMT the continual contention greatly increases the level 1 cache miss rate. Stack
aliasing was avoided in later versions of Linux by offsetting the start address of each process’
stack to increase the likelihood of the simultaneous threads accessing disjoint areas of the cache.

The Intel Pentium 4 processor uses a partial virtual tagging scheme for its level 1 cache. Accesses
from different threads that map to the same partial tag will cause contention. To reduce this Intel
introduced into the Prescott processor a context identifier bit for each logical processor, kept
with the partial tag [Boggs04]. These bits are set or cleared depending on whether the logical
processors share a common address space; if they do the bits are the same, if not they differ.
Threads executing in different address spaces are guaranteed to have different partial tags and
therefore to not contend in this way

In their work on the performance of database systems on SMT processors, Lo et al describe some
of the cache issues that must be considered in order to best use an SMT processor [Lo98]. The
paper describes cache interference, data sharing effects and page placement schemes.

Constructive interference is where the threads can benefit from shared cache contents. This is
most likely to be seen when a true multithreaded workload is running where code and data are
likely to be shared. The effect may exist, to a smaller degree, where multiprogrammed task sets
share common library code.

SMT has an additional benefit over multiple physical processors; if one thread is writing to a
cache line, the other thread(s) can read or write the same line without the invalidation penalty
that would happen in a conventional multiprocessor system.

When threads compete for space in the cache then the system experiences destructive interference.
The situation is worst when the threads have a high degree of homogeneity in their memory
layout and access patterns. Lo et al studied a multithreaded database system and found that
each thread had a number of hot spots in its per-thread local data. Each of these hot spots was
located at the same virtual address in each thread’s address space. The simulated processor in
this study used a virtually-indexed, physically-tagged level 1 (L1) cache and a physically-indexed,
physically-tagged level 2 (L2) cache. There are two main effects on the cache performance:

• virtual address space layout; having hot spots at the same virtual addresses means they have
the same L1 indexes and therefore will lead to conflicts within the relevant cache line sets.

• virtual page placement in physical memory; an unfortunate mapping of virtual to physical
pages could cause hot spots to map to the same indexes, and hence the same set, in the L2
cache.

Lo et al describe two software mechanisms to deal with these two effects: page placement pol-
icy to reduce L2 conflicts and application-level offsetting to reduce L1 conflicts. Most oper-
ating systems already use a page placement policy to try to reduce cache contention between
context-switching processes. This policy is obviously more important for simultaneous executing
threads. Kessler and Hill describe a scheme based on giving each physical frame a colour (or

32

“bin”) [Kessler92]. Two pages with the same colour index to the same L2 cache line set. The
operating system can use the colours to help decide which physical frames to map logical pages
to using one of the following schemes:

• Page colouring; consecutive virtual pages of a process are mapped to consecutive colours.
This mainly prevents contention within a process but can still lead to inter-process con-
tention. Some operating systems randomise the start colour by hashing the process ID, for
example.

• Bin (colour) hopping; when a new virtual page is allocated, the mapped physical page is
chosen from the next colour in a round robin fashion. This means that pages allocated at
the same time will have different colours.

Lo et al find that non-randomised page colouring is less effective in the case of their database
on SMT because the layout will be the same for each thread and therefore reintroduces aliasing.
They found that adding randomisation helps but bin hopping was best because it is most likely
to assign the same hot spots in different threads to pages mapping to different areas in the cache.

Page placement only affects the L2 cache since it is only the physical addresses which are changed.
A virtually-indexed L1 cache will still see hot spots with the same virtual addresses indexing into
the same line set. The technique of application-level offsetting can be used to cause the hot
spots to appear at different virtual addresses in each thread’s address space. The starting virtual
address can be offset (by the loader or the application) by some number of pages determined by
the process ID. This technique also helps with page colouring’s effect on the L2 cache since it
introduces more randomisation and heterogeneity.

False sharing is a cache consistency problem experienced by shared memory multiprocessor sys-
tems. Two threads executing on different processors both access disjoint data that happen to be
adjacent in memory and appear on the same cache line. Because the processors provide cache
consistency on a per-line granularity the disjoint nature of this access pattern is ignored and it
appears that both threads are trying to use the same data. The result is a constant “ping-pong”
of that cache line between the processors. The same scenario applied to SMT should be less of a
problem as the cache is shared. It has been suggested that false sharing on SMT systems is benefi-
cial because less space is used in the cache compared to forcing the threads’ data to be on different
lines; additionally one thread will effectively prefetch the shared line for the other [Lo97a, Mc-
Dowell03]. In practice this may not be the case due to the per-line granularity of metadata being
extended further into the processor. The Intel Pentium 4 “NetBurst” microarchitecture allows the
reordering of load and store instructions. If a store to a location followed by a load from that lo-
cation are reordered then the processor will detect the memory ordering violation and replay the
load using the correct value - a fairly expensive operation that disrupts execution of both Hyper-
Threads. The load and store buffers that support this functionality are of cache line size. If a line
is written to temporally after it is read by a store instruction that was earlier in the program than
the load, a violation is assumed even if the actual location was different. This implementation is
safe and allows for the complex variable length and non-aligned references common in the Intel
architecture. The effect on a Hyper-Threaded processor in the presence of false sharing is that
a disjoint write by one thread to a line that has been speculatively read by the other thread will
cause a memory ordering violation to be assumed. The impact of this behaviour will depend on

33

the frequency of occurrence but in the worst case could cause a six times slowdown over a more
careful memory allocation3. It is therefore wise to use the same techniques for memory alignment
for Hyper-Threaded processors as for multiprocessors.

Energy Considerations2.3.4

In Chapter 3 I describe experiments measuring the difference in performance between SMT and
SMP systems. I show that a two processor SMP system always outperforms a two-thread SMT
system as would be expected. However, in some situations the difference between the two is not
great. The processing performance per unit cost (financial or energy consumption and dissipation)
is a useful metric. SMT will generally have a higher performance per unit cost than SMP. This
suggests that an SMT system may be a suitable alternative to an SMP system in situations were
financial cost or energy consumption are more important than raw throughput. Typical examples
include laptop computers, where energy consumption matters, and high density data centres,
where heat extraction is often a limiting factor.

Chip multiprocessors (CMP) would come somewhere between SMP and SMT; the degree of
resource sharing of a CMP system is less than SMT so the statistical multiplexing of demands
onto resources is limited and would generally yield a lower processing performance per unit cost.
CMP systems typically share a level 2 cache so will generally benefit from better cache utilisation
(so long as pathological aliasing problems are avoided) and therefore will be more cost (energy)
efficient than a multichip SMP system. Both CMP and SMT, compared to SMP, contain multiple
logical processors (SMT threads or cores) in a single package; this will reduce the amount of
ancillary support required, such as external interface circuits, and therefore reduce the energy
cost of a system.

In reality the situation is somewhat more complex with the “cost” including other components
of the system which would be similar for SMT, SMP and CMP systems.

In Section 2.3.1 I described how a naı̈ve scheduler could load-balance incorrectly by running
two processes on the two logical processors of a single physical processor while leaving the other
physical processor idle. While this would give a lower system throughput than could be achieved,
it has benefits (perhaps unintentionally) for energy consumption. Two physical processors each
with only one active logical processor will consume two processors worth of energy - Intel and
IBM’s SMT processors dedicate all resources to the single running thread leaving no scope for
powering down areas of the chip. If the two processes were to be running on the two logical
processors of one package then the other package would have two idle threads and could there-
fore put itself into a low power state. The result is a substantial energy reduction at the expense
of throughput. The correct action depends on the relative importance of throughput and energy
consumption of a particular system at a particular time.

A further consideration is that of processor clock reduction to reduce energy consumption. Many
processors, particularly those aimed at the mobile market, can be instructed to reduce their clock
frequency by the operating system. The clock of an SMT processor is common to the physical
package rather than the logical processors. Any clock reduction will affect all logical processors

3“Avoiding False Sharing on Hyper-Threading Technology-Enabled Processors” by Phil Kerly. Available at
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/19980.htm

34

in the same package. To avoid unexpected performance loss, Intel suggest that the BIOS or OS
set the package clock rate to be the highest requested for both logical processors. This behaviour
further supports the use of the “incorrect” process allocation described above because an entire
physical package can be idled and have its clock rate slowed. CMP systems will not suffer this
problem if the clocks on each core can be independently controlled.

SMT processors were designed to increase the processor throughput. However, if a fixed through-
put is required then an SMT implementation may be more energy efficient than a single-threaded
processor. Seng et al suggest that for a given level of instruction throughput, an SMT proces-
sor uses less energy per instruction than a single-threaded superscalar processor [Seng00]. This
is because it is easier to extract parallelism from multiple threads than from a single-thread us-
ing aggressive speculation. Furthermore, it has been shown that SMT is preferable to multicore
architectures for typical fixed-throughput workloads [Kaxiras01,Chen02].

Summary2.4

In this chapter I have described simultaneous multithreading (SMT) and have introduced the
hardware realisations of the technology. These include Intel’s Hyper-Threading technology intro-
duced into the Pentium 4 processor. I use this processor in the analysis studies in Chapter 3. I
have introduced and discussed areas of operating system support important for SMT processors
and highlighted areas where current support is lacking. In Chapter 4 I develop an SMT-aware
process scheduler that is sensitive to the performance characteristics of SMT.

35

36

Chapter 3

Measuring SMT

Intel’s Hyper-Threading technology is the first commercial implementation of simultaneous mul-
tithreading (SMT). The availability of systems based on this technology presents an opportunity
to measure their realised performance and compare the results to the original research designs
for SMT architectures. This chapter describes a series of experiments performed on a Pentium 4
Hyper-Threaded processor in order to assess the impact of threads upon each other. The results
from these measurements are used in Chapter 4 to develop a scheduler sensitive to the character-
istics of SMT processors.

Related Work3.1

Simulated Systems3.1.1

Early work in the development of SMT relied on simulation [Tullsen95, Tullsen96b, Eggers97].
The results were generally very promising for SMT and motivated its further development. As
the design progressed and interest widened, a simulator, “SMTSIM”, based on the out-of-order
model was released [Tullsen96a]. SMTSIM has been used in much of the incremental develop-
ment work, mainly in evaluating microarchitectural enhancements. The SMTSIM architecture
utilises the Alpha instruction set. SMTSIM differs from Intel Hyper-Threading in both architec-
ture (Intel CISC versus Alpha RISC) and microarchitecture. SMTSIM is able to support up to
eight contexts (simultaneous threads) compared to Hyper-Threading’s two and the microarchite-
cure of the former shares resources in a more dynamic way than Hyper-Threading. Measurement
studies based on SMTSIM are useful in that they give a general indication of the behaviour that
may been seen when running applications on SMT processors but cannot provide the specific
details that will affect execution on real systems based on Hyper-Threaded processors.

Snavely et al. [Snavely99] defined symbiosis as the throughput rate of a batch of programs running
together versus the throughput rate of the longest running program from the batch running alone.
This definition provides an intuitive quantitative measure for batches of processes but does not
fit well with more general loads. The authors investigated how symbiosis changed as different
benchmarks were co-scheduled, noting the bottlenecks in some interesting cases. In later work
on symbiotic scheduling [Snavely00, Snavely02], jobs were characterised by instruction mix and

37

performance data gathered during a sampling phase of execution. The jobs were put together in
“jobmixes” according to various policies in order to achieve good symbiosis.

Redstone et al. investigated the performance of workloads running on a simulated SMT system
with a full operating system [Redstone00]. They concluded that the time spent executing in the
kernel can have a large impact on the speedup measurements compared to a user-mode-only
study. They report that the inclusion of OS effects on a SPECInt95 study has less impact on SMT
performance measurements that it does on non-SMT superscalar results due to the better latency
hiding of SMT being able to mask the poorer IPC of the kernel parts of the execution. This result
is important as it means that a comparison of SMT to superscalar without taking the OS into
account would not do the SMT architecture justice.

Real Hardware3.1.2

Since its release, there have been some performance studies of the Hyper-Threaded Intel Pen-
tium 4. Studies of real hardware are useful as the implementations of SMT processors differ from
the simulated architectures used in the studies described above. When measuring a real system
many more factors are taken into account than can be incorporated into a simulation.

Grunwald and Ghiasi investigated thread interaction effects on the Hyper-Threaded Pen-
tium 4 [Grunwald02]. Using synthetic workloads they demonstrated that the execution rate
of a thread running on one logical processor can drop by as much as 95% (where 50% would
be the worst expected if everything was fair) with a carefully crafted (possibly malicious) process
running on the second logical processor. In particular they find that a process making extensive
use of self-modifying code will cause trace-cache flushes which affect the performance of both
logical processors considerably. They argue that, although possible in software, fairness should
be ensured by the hardware and propose some microarchitectural solutions which generally in-
volve the processor monitoring the frequency of certain events occurring and throttling threads
based on some policy.

The IBM Linux Technology Centre performed a series of microbenchmark and application level
benchmark tests to compare the performance of a processor with Hyper-Threading enabled and
disabled [Vianney03]. They noticed very little difference on most of the microbenchmarks and
single applications but speedups of 20 to 30% on multi-threaded applications. They then exe-
cuted the multi-threaded application benchmarks on a Linux kernel modified with many of the
features described in Section 2.3 of this dissertation. Speedups of up to 60% were observed. The
main contributor to the improvement was the modified scheduler’s knowledge that two logical
processors exist on a physical processor therefore share a cache. This leads to extra flexibility in
scheduling, particularly when waking up a blocked process, as there is no significant penalty in
“migrating” a process to the other logical processor in the same package.

Intel investigated the performance of data-parallel workloads threaded with OpenMP [Magro02].
They observed speedups of between 5% and 28% over a range of compute-intensive applica-
tions when using Hyper-Threading compared to running the threads serially. For comparison the
workloads were run on a dual processor SMP system (without Hyper-Threading) giving speedups
of between 54% and 100% over serial execution. The investigators noted that data-parallel
workloads typically present very similar instruction streams which could compete for processor

38

resources but still gain a benefit from Hyper-Threading. Intel have also measured media applica-
tions running on Hyper-Threaded processors [Chen02]. On average the processor utilisation was
found to increase by around 20% when Hyper-Threading was being used.

Since my work was performed, Tuck and Tullsen have performed a similar study [Tuck03]; their
measurements confirm my own. Where relevant I compare my results to those of Tuck and
Tullsen. They used Intel’s VTune performance analyser to track performance counters in order
to explain a few of the interesting interactions. The results I present in this chapter take the
performance counter measurement further. My experiments look at the bias in performance of
two concurrently running processes and I make more extensive use of performance counter data
to investigate the reasons for the observed effects.

Experimental Configurations3.2

In this section I describe the common tools and infrastructure used in the experiments described
in this chapter. The particular method used in each experiment is described in the relevant section.

Performance Counters3.2.1

The Intel Pentium 4 provides a rich set of hardware performance counters. These count events
ranging from instruction issue, execution and retirement through cache misses to memory bus
activity. The number of event classes that can be counted greatly outnumbers the 18 available
counters and there are restrictions regarding which combinations of events can be simultaneously
counted.

The performance counters are per physical package. Most events can be filtered for either or both
logical processors. This imposes a limitation on what events may be counted simultaneously. For
example, counting instructions retired independently on each logical processor prevents mispre-
dicted branches being counted.

The interface to the performance counter configuration is through the processor “model specific
registers” (MSRs). Access to MSRs can only be performed from the most privileged mode neces-
sitating support within the kernel. There exists software to allow access to the counters, including
per-process virtualisation (achieved through context switching the counter configuration and val-
ues) 1 however this was too heavyweight for my needs. I developed a simple, low overhead inter-
face to configuring and reading the counters using a Linux /proc file. The /proc file system al-
lows quasi-files whose reads and writes are handled by kernel functions. My /proc/perfcntr
file handled writes as commands to configure the performance counters. Reading the file caused
all the performance counters and timestamps for each processor to be returned.

To ease the use of the counters I added a user-space tool to form the counter configuration bit
patterns. The tool, cpuperf, takes a number of command lines describing the counters, event

1The package most popular for the Linux kernel is Mikael Pettersson’s perfctr:
http://user.it.uu.se/ mikpe/linux/perfctr/

39

Metric Counter [Intel01b] Event mask

x87 FP uOps x87 FP uop ALL

Instructions instr ret NBOGUSNTAG, NBOGUSTAG

Retired

Branch mispred branch retired NBOGUS

Mispredictions

Loads Executed front end event NBOGUS, BOGUS

uop type TAGLOADS

Trace Cache Misses BPU fetch request TCMISS

L1 D Misses replay event NBOGUS

1stL cache load miss retired

L2 Misses BSQ cache reference RD 2ndL MISS, WR 2nd MISS

I-TLB Misses ITLB reference MISS

D-TLB Misses page walk type DTMISS

Bus Activity FSB data activity DRDY OWN, DRDY DRV

(Edge triggered)

Table 3.1: Performance counter configurations used in the experiments.

classes and other configuration parameters and creates the appropriate configuration bit patterns
for the various MSRs. These are then communicated to the /proc file.

The counters are 40 bits wide and therefore may overflow during the course of experiments.
It is possible to have the processor generate interrupts when an overflow occurs however this
was unnecessary and, due to the cost and complexity of dealing with the interrupt, undesirable.
Instead the post-experiment analysis detected overflows; the frequency of performance counter
sampling was set such that it would be clear when an overflow had occurred.

Table 3.1 details the performance counter configurations for the counters used in the experiments
described below. These event counters were carefully chosen from the large number available in
order to provide a useful and informative picture of the processor’s behaviour and to allow an
insight into the reasons for the observed performance. Not all of these counters could be used
concurrently.

Test Platforms3.2.2

Most of the experiments were conducted on an system based on two Intel Pentium 4 Xeon Hyper-
Threaded processors. These processors are based on the “Northwood” core (see Section 2.2.2).
Some comparison experiments were performed on a system based on a Pentium 4 processor with
the “Prescott” core; this processor has only recently become available and time limitations have
only allowed a subset of the experiments performed on Northwood to be performed on Prescott.
In all cases the systems used a RedHat Linux distribution with a locally built and modified version
2.4.19 kernel. This version of the kernel contains support for Hyper-Threading at a low level,
including the detection of the logical processors and the avoidance of timing loops during normal

40

Northwood Prescott Tuck and Tullsen

Model Intel SE7501 based Dell Precision 360

CPU 2 x P4 Xeon 1 x P4 1 x P4

2.4GHz HT 2.8E GHz HT 2.5GHz HT

L1 cache 8kB 4 way D 16kB 8 way D 8kB 4 way D

12k-uops trace I 12k-uops trace I 12k-uops trace I

L2 cache 512kB 8 way 1MB 8 way 256kB 8 way

L3 cache none none none

FSB 400MHz 800MHz

Memory 1GB DDR DRAM 1GB DDR DRAM 512MB DRDRAM

OS RedHat 7.3 RedHat 9.0 RedHat 7.3

Kernel Linux 2.4.19 Linux 2.4.19 Linux 2.4.18smp

Table 3.2: Experimental machine details.

operation. The kernel was modified with a variation of the cpus allowed patch2. This patch
provides an interface to the Linux cpus allowed task attribute and allows the specification of
which processor(s) a process can be executed on. This is particularly important as the scheduler
in Linux 2.4.19 is not aware of Hyper-Threading. Use of this patch prevented threads being
migrated to another processor (logical or physical). The /proc/perf file described above was
used to allow lightweight access to the processor performance counters.

Details of the experimental machines are given in Table 3.2. The Northwood machine contained
two physical processors each having two logical processors (Hyper-Threads); the Prescott ma-
chine had a single, two-logical processor, package. Also shown in the table are details given by
Tuck and Tullsen for their experimental machine [Tuck03] to which Intel gave them early access
which would explain the non-standard clock speed and L2 cache combination.

Workloads3.2.3

SPEC CPU20003.2.3.1

Benchmarks from the industry standard SPEC CPU2000 suite [SPEC] were used in most of the
experiments. This suite contains integer and floating-point benchmarks compiled from C, C++
and Fortran. The benchmarks are generally processor- (and sometimes memory-) bound and fit
within the system memory. They perform relatively little I/O or other operating system activity.
Table 3.3 shows the benchmarks used along with a brief description of each.

Experimental runs were run to completion (including successive runs with different input data
where relevant) and used the reference data sets. Much of the simulation-based related work uses
reduced data sets or executes only a fraction of each benchmark. As I will show, the changing
phases of the benchmarks’ execution limit the effectiveness of such an approach. The executables
were compiled with GCC 2.96 using a common set of optimisation flags (mainly -O2). The

2The cpus allowed/launch policy patch was posted to the linux-kernel mailing list by Matthew Dobson in Decem-
ber 2001

41

Fortran-90 benchmarks, 178.galgel, 187.facerec, 189.lucas and 191.fma3d were not used due to
GCC not supporting this language.

Desktop Applications3.2.3.2

Although the SPEC CPU2000 suite provides a varied set of benchmarks and allows controlled,
repeatable experiments, it is not intended to be representative of workloads commonly used on
desktop computers. To address this, the experiments based on the SPEC suite were supplemented
with some using a selection of benchmarks based on desktop applications.

mp3 The command-line music player mpg123 decoded approximately 1 hour of music from 17

Benchmark Description

Integer 164.gzip LZ77 compression

175.vpr FPGA place-and-route based on Dijkstra’s

algorithm

176.gcc GNU C compiler

181.mcf Combinatorial optimisation using much pointer

arithmetic

186.crafty Chess playing using 64 bit arithmetic

197.parser A grammar parser for the English language

252.eon Probabilistic ray tracing

253.perlbmk Perl script interpreter, mainly text processing

254.gap Group theory processing

255.vortex In-memory object-oriented database

256.bzip2 Burrows-Wheeler transform compression

300.twolf Chip layout place-and-route using simulated

annealing

Floating- 168.wupwise Physics: quantum chromodynamics

Point 171.swim Weather prediction/shallow water modelling

172.mgrid Multi-grid solver: 3D potential field

173.applu Computational fluid dynamics using partial

differential equations

177.mesa 3D graphics library similar to OpenGL

179.art Image recognition using neural networks

183.equake Finite element simulation of seismic wave

propagation in large basins

188.ammp Computational chemistry using ordinary

differential equations

200.sixtrack High energy nuclear physics accelerator design

301.apsi Weather prediction: pollutant distribution

Table 3.3: SPEC CPU2000 benchmarks used in the experiments.

42

MP3 format files encoded at 192kbps. The decoded audio was sent to /dev/null and the
decoding was allowed to progress as fast as possible (i.e. not in real time).

compile A build of the Linux kernel was performed. A version 2.6 kernel was used with as many
modules and features as possible included. Both the kernel image and modules were com-
piled.

glx The glxgears application shipped with the XFree86 tools package on Linux systems.
This application animates a set of 3 three-dimensional gears using the OpenGL graphics
library. It records the frames-per-second (FPS) it achieves. Most of the processor time is
spent within the X windows process so both the glxgears and X processes were given
the appropriate logical processor affinity. To bring the performance result of glx into line
with the other benchmarks which record an elapsed time, the frame-count values were
interpolated to estimate a time to render 100,000 frames (approximately 5 minutes when
running alone).

image A shell pipeline of three document processing commands: pdf2ps, pstopnm and ppm-
tojpeg. The sequence turns a large, complex PDF format file into a JPEG format image
using postscript and the PPM raster format as the intermediates. Command line options
were used to avoid the image being shrunk to a paper size.

Performance Metrics3.2.4

The performance ratio (PR) of an individual benchmark running as one of simultaneously exe-
cuting pair is described by its execution time when running alone divided by its execution time
when running in the pair:

PR = standalone runtime/actual runtime

If a non-SMT processor is being timeshared in a theoretical perfect (no context switch penalty)
round-robin fashion with no cache pollution then a performance ratio of 0.5 would be expected
as the benchmark is getting half of the CPU time. A perfect SMP system with each processor
running one of the pair of benchmarks with no performance interactions would give a PR of
1 for each benchmark. It would be expected that benchmarks running under two-thread SMT
would fall somewhere between 0.5 and 1 because they should get at least half of the processor
resources and are unlikely to do better than they would having the entire processor to themselves.
A PR of anything less than 0.5 is an unfortunate loss.

The total system speedup for the pair of benchmarks is the sum of the PR values for the processes
on all logical processors being considered:

system speedup =
∑

i

PRi

This speedup is compared to zero-cost context switching with a single processor so a perfect
SMP system should have a system speedup of 2 while a single Intel Hyper-Threaded processor
should come in somewhere between 1 and 2. Intel suggest that Hyper-Threading provides a 30%
speedup which would correspond to a system speedup of 1.3 in my analysis.

43

A number of other performance metrics have been used in related work. These include weighted
speedup and SMT-speedup from research work and various metrics from Intel.

Snavely et al define weighted speedup (WS) for a group of n simultaneously running threads for
a period t in terms of their realised and stand-alone IPC [Snavely99]:

WS(t) =
n∑

i=1

(realised IPCi/standalone IPCi)

This metric is described as “weighted” because it allows for threads with natively low IPCs which
would otherwise be penalised in simple IPC summation based metrics. WS is directly equivalent
to my system-speedup metric when the IPC is averaged over the complete run of the program (the
number of instructions cancels out).

Sazeides and Juan define a metric for comparing different SMT microarchitectures [Sazeides01].
They argue that simply measuring the total processor IPC is not sufficient because the effect
on different threads may not be balanced and the actual work done may not have increased as
much as the IPC suggests. They define a weight wj for each thread j based on its single-threaded
performance and the total number of instructions executed in the experiment I: wj = Ij /I where Ij
is the number of instructions executed by thread j in the experiment. The metric for SMT-speedup
is given by the processor IPC for the experiment multiplied by the sum of the per-thread weights
each divided by the per-thread IPC from the single-threaded results. This is just a rearrangement
of a more understandable metric in which the sum of times it would have taken to execute the
threads in single threaded mode up to the point that they reached in the SMT experiment is
divided by the time it took running under SMT.

Intel define HT Scaling in the same way as my performance ratio metric: a task’s standalone
execution time divided by its execution time running under Hyper-Threading. The difference is
that Intel’s metric is designed for use with parallel tasks so will yield results comparable to my
system speedup metric. Intel also define a metric HT effectiveness based on Amdahl’s Law which
measures how well a parallel task performs on a Hyper-Threaded processor based on its observed
performance on a dual-processor system and an assumed 30% Hyper-Threading speedup3.

Thread Interactions3.3

Intel Hyper-Threading is aimed both at multithreaded and multiprogrammed workloads. Intel
initially marketed Hyper-Threading as a way to get two processors for the price of one; this
pitch has since been toned down. The current claim, qualified by the usual disclaimers regarding
performance depending on many variables, is:

Built-in Hyper-Threading Technology (HT Technology) provides immediate value
in today’s computing environment by enabling the processor to simultaneously exe-

3“How to Determine the Effectiveness of Hyper-Threading Technology with an Applica-
tion” by Shawn D. Casey. Available at http://www.intel.com/cd/ids/developer/asmo-
na/eng/microprocessors/ia32/pentium4/hyperthreading/20470.htm

44

cute two software program threads. This lets you run two software applications in
parallel without sacrificing performance 4.

In this section I measure the performance of running “two software applications in parallel”.
I use pairs of benchmarks from the industry standard SPEC suite [SPEC]. I perform the same
experiments on both the Northwood and Prescott based systems in order to observe the differ-
ent behaviours caused by the different implementations. The measurements and analysis of the
Northwood core have previously been published [Bulpin04].

Experimental Method3.3.1

The experiments were performed on the two systems described in Section 3.2.2. At the time
of writing, Prescott systems are only beginning to become available and the range of processor
models that are available with this core is limited. Only uniprocessor (in the physical processor
sense) Prescott-based machines have currently been released. Therefore the two machines are not
matched so results from the two machines should not be compared. The trends, however, are of
interest.

The aim of the experiments was to find the performance ratio for each benchmark application
running simultaneously with every other benchmark application. This cross-product of results
provides two data points for benchmarks X and Y running simultaneously: (X, Y) to describe
the performance ratio of X while running in that pair, and (Y, X) to describe the performance
ratio of Y while running in that pair. Note that the two performance ratios will generally be
different because the sharing of resources and the mutual slowing effect is not necessarily equal
for both processes. The number of experiments required was reduced by recording data for both
benchmarks X and Y in a simultaneously executing pair; this provided data points (X, Y) and (Y,
X).

For each pair of benchmarks studied the following procedure was used. Each benchmark was
executed in a continuous loop on one of the logical processors. A random delay was inserted
before entering the loop to give a staggered start. Execution time was ignored until both bench-
mark processes had completed at least one run. The experiment continued until both benchmarks
had accumulated three timed runs each. Note that the benchmark with the shorter runtime will
have completed more than three runs; only the first three timed runs were recorded. This method
guaranteed that there were always two active processes and allowed the caches, including the
operating system buffer cache, to be warmed. Note that successive runs of the one benchmark
would start at different points within the other benchmark’s execution due to the differing run
times for both.

The experiments were run on Hyper-Threading, SMP (in the Northwood case) and single-
processor context switching configurations. On the dual package Northwood the Hyper-
Threading experiments were conducted using the two logical processors on the second physical
processor and the SMP experiments used the first logical processor on each physical processor
with the other processor idle (equivalent to disabling Hyper-Threading). The context switching
experiments were run on the second physical processor and used the round-robin feature (“real

4From http://www.intel.com

45

time” scheduler option) of the Linux scheduler with a modification to allow the quantum to be
specified. In all cases the machine was configured to minimise background system activity since
these experiments were concerned solely with the interaction of the two threads; this was of
particular importance on the single-package Prescott system.

A set of base run times and performance counter values were measured by running benchmarks
alone on a single physical processor. A dummy run of each benchmark was completed before the
timed runs in order to warm the caches. A total of 9 timed runs were made and the median run
time was recorded. This procedure was performed twice; once using a single logical processor
with the second logical processor idle (but still with Hyper-Threading enabled), and once with
Hyper-Threading disabled. The run times for both configurations were almost identical. This
behaviour is expected because the processor recombines partitioned resources when one of the
logical processors is idle through using the HLT instruction [Marr02].

Results3.3.2

For the purposes of the analysis, one process was considered to be the subject process and the
other the background. The experiments were symmetric therefore only one experiment was re-
quired for each pair but the data from each experiment was analysed twice with the two processes
taking the roles of subject and background in turn (except where a benchmark competed against
a copy of itself).

In the following sections I present a summary of results from the Hyper-Threading and SMP
experiments. The single-processor context switching experiments using a quantum of 10ms gen-
erally resulted in a performance ratio (PR) of no worse than 0.48 for each thread, a 4% drop
from the theoretic zero-cost case. As well as the explicit cost of performing the context switch the
cache pollution contributes to the slowdown. The relatively long quantum means that the pro-
cesses have time to build up and benefit from cached information. I do not present detailed results
from these experiments however the impact of the quantum length can be seen in Figure 3.1.

Northwood Hyper-Threading3.3.2.1

Figure 3.2 shows the results for benchmark pairs on the Hyper-Threaded Pentium 4 using the
same format as Tuck and Tullsen [Tuck03] to allow a direct comparison. For each subject bench-
mark a box and whisker plot shows the range of system speedups obtained when running the
benchmark simultaneously with each other benchmark. The box shows the interquartile range
(IQR) of these speedups with the median speedup shown by a line within the box. The whiskers
extend to the most extreme speedup within 1.5 IQR of the 25th and 75th percentile (i.e. the
edges of the box) respectively. Individual speedups outside of this range are shown as crosses.
The gaps on the horizontal axis are where the Fortan-90 benchmarks would fit.

Tuck and Tullsen’s experimental conditions differ from mine in a few ways, mainly the size of
the L2 cache (my 512kB vs. 256kB), the speed of the memory (my 266MHz DDR vs. 800MHz
DRDRAM) and the compiler (my GCC 2.96 vs. the Intel Reference Compiler). The similarities
in the results given these differences show that the effect of the processor microarchitecture is
important and that the lessons that can be learned can be applied to more than just the particular
configuration under test.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000

R
el

at
iv

e
P

er
fo

rm
an

ce

Scheduler quantum (ms)

164.gzip
175.vpr
181.mcf
254.gap

255.vortex

(a) Subject benchmark: 164.gzip

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000

R
el

at
iv

e
P

er
fo

rm
an

ce

Scheduler quantum (ms)

164.gzip
175.vpr
181.mcf
254.gap

255.vortex

(b) Subject benchmark: 175.vpr

Figure 3.1: The effect of quantum length on round-robin context switching of pairs of benchmarks. The
data is for the subject benchmark running against 5 different background benchmarks.

47

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

M
ul

tip
ro

gr
am

m
ed

 s
pe

ed
up

gz
ip vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip
2

tw
ol

f
w

up
w

is
e

sw
im

m
gr

id
ap

pl
u

m
es

a ar
t

eq
ua

ke

am
m

p

si
xt

ra
ck

ap
si

Figure 3.2: Multiprogrammed speedup of pairs of SPEC CPU2000 benchmarks running on a Hyper-
Threaded processor.

I measure an average system speedup across all the benchmarks of 1.20 with best and worst case
speedups of 1.50 (mcf vs. mesa) and 0.86 (swim vs. mgrid).

Figure 3.3(a) shows the individual performance ratio of each benchmark in a multiprogrammed
pair. The figure is organised such that a square describes the PR of the row benchmark when
sharing the processor with the column benchmark. The PR is considered bad when it is less than
0.5, i.e. worse than perfect context switching, and good when above 0.5. The colour of the square
ranges from red for bad to green for good with a range of shades in-between. The first point to
note is the lack of reflective symmetry about the top-left to bottom-right diagonal. In other words,
when two benchmarks are simultaneously executing, the performance ratio of each individual
benchmark (compared to it running alone) is different. This shows that the performance of pairs
of simultaneously executing SPEC2000 benchmarks is not fairly shared. Inspection of the rows
shows that benchmarks such as mesa and apsi always seem to do well regardless of what they
simultaneously execute with. Benchmarks such as mgrid and vortex suffer when running against
almost anything else. Looking at the columns suggests that benchmarks such as sixtrack and
mesa rarely harm the benchmark they share the processor with while swim, art and mcf usually
hurt the performance of the other benchmark.

The results show that a benchmark executing with another copy of itself (using a staggered start)
usually has a lower than average performance ratio demonstrating the processor’s preference for
heterogeneous workloads which is not overcome by benefits in shared code and data. A subset
of the homogeneous experiments was repeated without a staggered start; there was no change in
the results.

The performance counter values recorded from the base runs of each benchmarks allow an insight
into the observed behaviour:

48

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

(a) Northwood

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

(b) Prescott

Figure 3.3: Effect on each SPEC CPU2000 benchmark in a multiprogrammed pair running on a Hyper-
Threaded processor. A green square represents a good performance ratio for the subject bench-
mark and a red square denotes a bad performance ratio. (A monochrome version of this figure
is shown in Appendix A.)

49

mcf has a notably low IPC which can be attributed, at least in part, to its high L2 and L1-D
miss rates. An explanation for why this benchmark rarely suffers when simultaneously executing
with other benchmarks is that it is already performing so poorly that it is difficult to do much
further damage (except with art and swim which have very high L2 miss rates). It might be
expected that a benchmark simultaneously executing with mcf would itself perform well so long
as it made relatively few cache accesses. eon and mesa fall into this category and the latter
does perform well (28% speedup compared to sequential execution) but the former has only
a moderate performance ratio (12% speedup) probably due its very high trace cache miss rate
causing many accesses to the (already busy) L2 cache.

gzip is one of the benchmarks that generally does not detriment the performance of other bench-
marks. It makes a large number of cache accesses and has a moderately high L1 D-cache miss
rate of approximately 10%. It does however have small L2 cache and D-TLB miss rates due to
its small memory footprint.

vortex suffers a reduced performance when running with most other benchmarks. It exhibits a
moderately high number of I-TLB misses and a reasonable number of trace-cache misses although
both figures are well below the highest of each metric. A more detailed examination of this
benchmark’s trace-cache miss rate shows that, although the mean miss rate is only moderate,
there are regular spikes where the miss rate is very high. When running with other benchmarks
the trace-cache miss rate of vortex (ignoring misses from the other thread) is about 30% higher
than when it runs alone. This suggests that vortex’s instruction footprint is on the edge of the
trace-cache capacity and is performance-limited by the hit rate in the trace-cache.

mcf, swim and art have high L1-D and L2 miss rates when running alone and have a low average
IPC. They tend to cause a detriment to the performance of other benchmarks when simultane-
ously executing. art and mcf generally only suffer a performance loss themselves when the other
benchmark also has a high L2 miss rate, swim suffers most when sharing with these benchmarks
but is also more vulnerable to those with moderate miss rates.

mgrid is the benchmark that suffers the most when running under SMT whilst the simultaneously
executing benchmark generally takes only a small performance hit. mgrid is notable in that it
executes more loads per unit time than any other SPEC CPU2000 benchmark and has the highest
L1 D-cache miss rate (per unit time). It has only a moderately high L2 miss rate and a low D-TLB
miss rate. The only benchmarks that do not cause a performance loss to mgrid are those with
low L2 miss rates (per unit time). mgrid’s baseline performance is good (an IPC of 1.44) given its
high L1-D miss rate. The benchmark relies on a good L2 hit rate which makes it vulnerable to
any simultaneously executing thread that pollutes the L2 cache.

sixtrack has a high baseline IPC (with a large part of that being floating point operations) and
a low L1-D miss rate but a fairly high rate of issue of loads. The only benchmark it causes
any significant performance degradation to is another copy of itself; this is most likely due to
competition for floating point execution units. It suffers a moderate performance degradation
when simultaneously running with benchmarks with moderate to high cache miss rates such as art
and swim. The competitor benchmark will increase contention in the caches and harm sixtrack’s
good cache hit rate. Tuck and Tullsen report that sixtrack suffers only minimal interference from
swim and art. I believe the reason for this difference is that the larger L2 cache on my system

50

Best HT system throughput (1.50) 181.mcf 177.mesa

Int/FP Int FP

L1-D/L2 miss rates high low

D-TLB miss rate high low

Trace cache miss rate low high

IPC very low moderate

Worst HT system throughput (0.86) 171.swim 172.mgrid

Int/FP FP FP

L1-D miss rate moderate moderate

L2 miss rate high low

D-TLB miss rate high low

Trace cache miss rate low low

IPC fairly low fairly high

Stereotypical SMP vs HT performance 183.equake 177.mesa

Int/FP FP FP (less FP than equake)

L1-D/L2 miss rate moderate high

Trace cache miss rate low high

IPC moderate moderate

Table 3.4: Performance counter metrics for some interesting benchmark pairs. Metrics are for the bench-
mark running alone.

gives sixtrack a better baseline performance which makes it more vulnerable to performance
degradation from benchmarks with high cache miss rates giving it lower relative speedups.

The best pairing observed in terms of system throughput was mcf vs. mesa (50% system speedup).
Although mcf gets the better share of the performance gains, mesa does fairly well too. The per-
formance counter metrics shown qualitatively in Table 3.4 for this pair show that heterogeneity
is good.

Tuck and Tullsen note that swim appears in both the best and worse pairs. The reason for this is
mainly down to the competitor. mgrid with its high L1-D miss rate is bad; sixtrack and mesa are
good as they only have low L1-D miss rates so do little harm to the other thread.

The performance hit caused by L2 cache misses is not limited to interference with other threads
which place non-trivial demands on the L2 cache. The above results show that L2 cache misses
can hurt almost any other competitor. A particular inter-thread performance problem can occur
on out-of-order (OoO) superscalar based SMT processors when long latency L2 misses occur.
Tullsen and Brown [Tullsen01] and Cazorla et al [Cazorla03] note that this problem can be caused
by the stalled thread consuming resources such as reorder buffer entries or physical registers,
while it is performing no useful work.

A common aggressive OoO technique, used by the Pentium 4, is that the instruction schedulers
assume all loads will hit in the L1 cache. If a load misses, dependent instructions may have already
dispatched and will use incorrect data. Once the load has actually completed, the processor re-

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

System Speedup

Northwood
Prescott

Figure 3.4: Distribution of system speedups for pairs of SPEC CPU2000 benchmarks running on a Hyper-
Threaded processor. A point (x, y) shows that the fraction y of all of the pairs of benchmarks
had system speedups of at most x.

executes the dependent instructions (this is called “replay” for the Pentium 4). For a single-thread
superscalar this data-speculation mechanism works well but for SMT the extra resources used by
the replayed instructions will reduce the resources available to the other thread(s).

Prescott Hyper-Threading3.3.2.2

Figure 3.3(b) shows the performance ratio matrix for the same set of experiments performed on
a machine using the Prescott Pentium 4 processor core. Note that this machine has a faster clock,
larger L2 cache and newer operating system distribution than the Northwood-based machine
used for the above experiments. Therefore direct, absolute comparisons should not be made; it
is the trends that are important. The immediately clear difference from the Northwood results is
the reduction in red and brown squares which denote a suffering benchmark. However, the same
general pattern is evident, albeit less pronounced. The mean system speedup is 1.25 compared
to 1.20 for Northwood. The standard deviation of the performance ratios of the individual
benchmarks is 0.089 for Prescott compared to 0.097 for Northwood. These results suggest that
the microarchitecture of the Prescott core provides a fairer sharing of processor resources than
Northwood.

Figures 3.4 and 3.5 show respectively the distributions of system speedups and individual bench-
mark performance ratios for both Prescott and Northwood test platforms. As demonstrated
above the Prescott generally performs better than the Northwood. The interquartile range for
system speedups is 0.167 (1.11 to 1.28) for Northwood and 0.145 (1.18 to 1.33) for Prescott
and for the performance ratios 0.125 (0.535 to 0.660) and 0.111 (0.569 to 0.681) respectively.

52

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Subject Benchmark Performance Ratio

Northwood
Prescott

Figure 3.5: Distribution of performances for individual SPEC CPU2000 benchmarks running simultane-
ously under Hyper-Threading. A point (x, y) shows that the fraction y of all of the subject
benchmarks in the cross-product had performance ratios of at most x.

The problem of pathological cases has not been eliminated in the Prescott core. Some notable
observation of the data are:

• The experiments where two copies of the same benchmark compete show a greater range of
behaviour with Prescott than with Northwood; with Prescott there are fewer homogeneous
pairs with small speedups but more with larger speedups or slowdowns. The mean system
speedup for these pairs was 1.08 compared to 1.09 with Northwood. Homogeneous de-
mands for resource is an inherent problem with dynamically shared systems like SMT so is
hard to eliminate.

• 255.vortex still exhibits no, or a small negative, speedup in most cases. Since the Prescott’s
trace-cache is the same size and configuration as that of the Northwood, vortex suffers the
same capacity problem as on the older core.

• 179.art still detriments the performance of many other benchmarks, some considerably, but
its effect is less pronounced on Prescott than Northwood. 181.mcf shows a similar change
but in two cases it slows the subject benchmark more with Prescott than with Northwood
(186.crafty and 183.equake).

Northwood Hyper-Threading vs. SMP3.3.2.3

Figure 3.6 shows the speedups for the benchmark pairs running in a traditional SMP configura-
tion. Also shown for comparison is the Hyper-Threading data as shown above. An interesting ob-
servation is that benchmarks that have a large variation in performance under Hyper-Threading
also have a large variation under SMP. It might be imagined that the performance of a given

53

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

M
ul

tip
ro

gr
am

m
ed

 s
pe

ed
up

gz
ip vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a ar
t

eq
ua

ke

am
m

p

si
xt

ra
ck

ap
si

Figure 3.6: Multiprogrammed speedup of pairs of SPEC2000 benchmarks running on a Northwood
Hyper-Threaded processor and non-Hyper-Threaded SMP. The right (red) of each pair of box
and whiskers is Hyper-Threading and the left (blue) is SMP.

benchmark would be more stable under SMP than under Hyper-Threading since there is much
less interaction between the two processes. The correspondence in variation suggest that compe-
tition for off-chip resources such as the memory bus are as important as on-chip interaction.

The mean speedup for all pairs was 1.20 under Hyper-Threading and 1.77 under SMP. This means
that the performance of an SMP system is 48% better than a corresponding Hyper-Threading
system for SPEC CPU2000.

Figure 3.7 shows the individual performance ratios of the benchmarks in the same style as Fig-
ure 3.3 described in Section 3.3.2.1 above. Unlike Hyper-Threading, SMP does not show any
notable unfairness between the concurrently executing threads. This is clearly due to the vast re-
duction in resource sharing with the main remaining resource being the memory and its bus and
controller. This means that the benchmarks that reduce the performance of the other running
benchmarks are also the ones that suffer themselves. The benchmarks in this category include
mcf, swim, mgrid, art and equake: all ones that exhibit a high L2 miss rate which further identifies
the memory bus as the point of contention.

An example of expected behaviour is equake vs. mesa. This pair exhibits a system speedup of
just under 1 for context switching on a single processor, just under 2 for traditional SMP and a
figure in the middle, 1.42, for Hyper-Threading. As mesa has a low cache miss rate it does not
make much use of the memory bus so it not slowed by equake’s high L2 miss rate when running
under SMP. Similarly for round robin context switching the small data footprint of mesa does not
cause any significant eviction of data belonging to equake. Under Hyper-Threading there is little
contention for the caches and the smaller fraction of floating-point instructions in mesa means

54

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

Figure 3.7: Effect on each SPEC CPU2000 benchmark in a multiprogrammed pair running on an SMP
configuration. A green square represents a good performance ratio for the subject benchmark
and a red square denotes a bad performance ratio (relative to “perfect” SMP). (A monochrome
version of this figure is shown in Appendix A.)

that the workloads are heterogeneous and therefore can better utilise the processor’s execution
units.

art and mcf perform similarly under SMP, Hyper-Threading and round robin context switching.
This is almost certainly due to the very high L1 and L2 cache miss rates and the corresponding
low IPC they both achieve.

When executing under Hyper-Threading, art does better to the detriment of mgrid however under
SMP the roles are reversed. Both have a high L1 miss rate but art’s is the highest of the pair. art
has a high, and mgrid a fairly low L2 miss rate. Under Hyper-Threading art benefits most from
the latency hiding offered by Hyper-Threading and causes harm to mgrid by polluting the L1-D
cache. Under SMP there is no L1 interference so the mgrid outperforms art due to the lower L2
miss rate of the former.

When running against another copy of itself vortex has virtually no speedup running under
Hyper-Threading compared to context switching. Under SMP there is almost no penalty which
is due to the fairly low memory bus utilisation. vortex is punished under Hyper-Threading due
to competition for trace-cache and I-TLB resource - this is not a factor in its performance under
SMP.

vortex and mcf running under SMP take a notable (20% and 15% respectively) performance
hit compared to running alone. This is due to moderate L2 miss rates causing increased bus
utilisation. Performance under Hyper-Threading shows vortex suffering a large performance loss
(20% lower than if it only had half the CPU time) while mcf does particularly well. The latter

55

Config
Physical Processor 0 Physical Processor 1

Hyper-Thread 0 Hyper-Thread 1 Hyper-Thread 0 Hyper-Thread 1

UP Active Disabled Disabled Disabled

SMP Active Disabled Active Disabled

1x2 Active Active Disabled Disabled

2x2 Active Active Active Active

Table 3.5: Configurations used for Linux kernel compilation experiments.

has a low IPC due to its high cache miss rates so benefits from latency hiding. vortex has a fairly
low L1-D miss rate which is harmed by the competing thread.

gzip with its very low L2 and trace cache miss rates, moderate L1-D miss rate and large number
of memory accesses always does well under SMP due to the lack of bus contention but has
a moderate and mixed performance under Hyper-Threading. gzip is vulnerable under Hyper-
Threading due to its high IPC and low L2 miss rate meaning it is already making very good use
of the processor’s resources. Any other thread will take away resource and slow gzip down.

Desktop Applications3.3.3

The desktop application benchmarks described in Section 3.2.3.2 were used in a series of experi-
ments on the Northwood processor.

These benchmarks, particularly compile, involve a lot more disk activity than the SPEC CPU2000
benchmarks. This means that there will be periods when IO requests are being waited on and
the logical processor is idle. During these idle periods the other logical processor will be able to
make use of all of the processor resources. This is an important realistic system effect that was
not present in the above SPEC measurements.

The compile benchmark (Linux kernel build) was first tested to measure the effect of using parallel
build processes. The make system managing the compilation can be instructed to aim for a
specified number of parallel tasks - the -j option. Parallel builds of up to 8-way were performed
on the configurations of logical and physical processors shown in Table 3.5. The results are
shown in Figure 3.8. The results show that there is little to be gained from parallel builds on the
uniprocessor SMP. This contradicts a common belief that a 3-way build of a Linux kernel on a
uniprocessor is usually quicker than a 1-way build. With large memory sizes (and therefore large
buffer-caches) and good disk prefetching, the disk latency hiding offered by the parallel build is
not required

The two physical processor SMP shows a much reduced build time when a 2-way build is per-
formed. This is the expected behaviour as the two build processes can make use of the doubled
processing resource available. The single package, two Hyper-Threaded 1x2 shows a similar but
much less pronounced behaviour with the reduction in build time of a 2-way over a 1-way build
being about 10%. The 1-way build on the Hyper-Threaded configuration is itself about 7%
quicker than a 1-way build on the same processor with Hyper-Threading disabled. This is due
to the limited amount of parallelism available in the 1-way build (pipelined compilation) as well

56

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8

S
ec

on
ds

Number of make processes (-j)

UP Real
UP CPU

SMP Real
SMP CPU

1x2 Real
1x2 CPU
2x2 Real
2x2 CPU

Note increase in CPU time with no
benefit in real (wall-clock) time.

Figure 3.8: Build times (“Real” wall-clock time and CPU time) for two Linux kernels: comparing different
parallel make options. CPU time is the integral of the number of logical processors active over
time; in cases other than UP it can therefore be greater than the real time.

Metric Number of make processes (-j)
1 2 3 4 5 6

Bus activity
14.2M 25.2M 33.2M 36.7M 37.1M 37.1M

events/sec

L2 misses/sec 3.18M 5.72M 7.59M 8.41M 8.49M 8.50M

IPC 0.438 0.623 0.733 0.740 0.742 0.740

Table 3.6: Performance counter data for 2x2 builds of the Linux 2.6.7 kernel. Values are summed across
all logical and physical processors.

as the Hyper-Threaded configuration’s ability to simultaneously execute support and background
tasks such as interrupt handlers and kernel threads. The two package, each of two logical pro-
cessors, configuration 2x2, shows the build time decreasing further as the parallelism is increased
beyond 2. The reduction from 3-way to 4-way is only minor but the increase in CPU time shows
that all four logical processors are being used. The system wide IPC was 0.733 for the 3-way
build and 0.740 for the 4-way.

Processor performance counters were used to investigate the reason for this lack of gain. Bus
activity, level 2 cache misses, and retired instructions were counted and the aggregated results
are shown in Table 3.6. The bus activity appears to saturate at 37.1 million events per second,
a utilisation of approximately 9%. Tests with hdparm shows that the maximum buffer-cache
bandwidth that this machine-kernel combination is able to support is around 310MB/s which
gives a bus activity of 37.7 million events per second. This suggests that buffer-cache bandwidth
is the limiting factor for the kernel builds on 3 or 4 logical processors.

Both Hyper-Threaded configurations show a large increase in CPU time while the the wall-clock

57

mp3 compile glx image

HT mp3 0.605 0.681 0.471 0.829

compile 0.721 0.579 0.436 0.667

glx 0.845 0.743 N/A 0.773

image 0.628 0.565 0.386 0.554

SMP mp3 0.995 0.987 0.981 0.990

compile 0.995 0.884 0.832 0.971

glx 0.995 0.980 N/A 0.982

image 0.994 0.980 0.946 0.986

Table 3.7: Performance ratios of the “desktop” applications running in multiprogrammed pairs on a
Northwood Hyper-Threaded processor. A figure denotes the performance of the row bench-
mark while running with the column benchmark. The performance ratio metric is the same
as that used for the SPEC experiments above where a ratio of 0.5 represents zero-cost context
switching.

time decreases. This is due to the mutual slowing effect the threads have on each other. CPU time
is a figure that has to be treated carefully in SMT systems because the amount of processing that
can be done per unit time will depend upon the degree of sharing and contention between the
threads.

For the purpose of the thread interaction experiments a single logical processor was used for each
workload. Therefore the UP results are of interest. There is a negligible difference in performance
between a 1- and 2-way build so a 1-way build was used for the further experiments.

A cross-product set of experiments was performed in a similar manner to the SPEC CPU2000
experiments above. The only exception was that glx could not be run with a second instance of
the same benchmark because there is only one screen with one X server process. The results for
pairs executed under Hyper-Threading and SMP configurations are shown in Table 3.7 using the
performance ratio described in Section 3.2.4. The mean system speedup for the pairs was 1.33;
this is considerably more than the 1.20 seen above which is due to the less compute-bound nature
of these desktop applications.

The pairs involving glx run under Hyper-Threading show that the graphics benchmark takes
more of the processor resource than the competing application. mp3 coexists well with applica-
tions other than glx. It places a low demand on the cache hierarchy and its compute demand can
easily take advantage of processor resources while its more IO-bound competitor is stalled. com-
pile performs a large amount of file IO; its processor was idle for 3% of its execution time when
running alone or with mp3, and 7% when running against another instance of itself. The bench-
mark’s reduced performance when running against another instance of itself under SMP shows
that the contention is partly system-wide, such as bus activity or disk IO/buffer cache contention.

Summary3.3.4

I have measured the mutual effect of processes simultaneously executing on the Intel Pentium 4
processor with Hyper-Threading. The results show speedups for individual benchmarks of up

58

to 30 to 40% (with a high variance) compared to sequential execution. I have expanded on
these results to consider the bias between the simultaneously executing processes and shown that
some pairings can exhibit a performance bias of up to 70:30. Using performance counters I
have shown that many results can be explained by considering cache miss rates and resource
requirement heterogeneity in general. Examination of performance counter data has shown that
threads with high cache miss rates can have a detrimental effect on simultaneously executing
threads. Those with high L1 miss rates tend to benefit from the latency hiding provided by
Hyper-Threading. In the next section I investigate how the behaviour changes during the course
of the programs’ execution and whether a more formal correlation of performance counter data
to observed performance exists.

Phases of Execution3.4

The experiments described above illustrate a wide range of behaviour when independent pro-
cesses are running on the two logical processors of a Hyper-Threaded processor. The results
describe the behaviour of complete runs of each program. Most programs exhibit changing be-
haviour during their execution, often in a number of distinct phases [Sherwood99]. In order
to see how the mutual effect of concurrently running processes changes as the programs move
through different phases the following analysis was performed.

A subset of the SPEC CPU2000 benchmarks was used. The benchmarks were rank ordered
based on their mean system speedup observed in the earlier experiments. Eight benchmarks
were reasonably uniformly selected with care to maintain a balance of integer and floating point
benchmarks. The benchmarks used were: 164.gzip, 181.mcf, 186.crafty and 255.vortex (integer);
and 171.swim, 177.mesa, 179.art and 200.sixtrack (floating point).

Each benchmark was run alone on the first logical processor of the second physical package. The
other logical processor of that package was idle. The Linux interrupt processor affinity facility
(/proc/irq/*/smp affinity) was used to force interrupts (except timer and inter-processor
interrupts) to be handled by one physical processor while experiments were performed on the
other.

During each run a set of performance counter values, including instructions retired on each log-
ical processor, was collected at intervals of approximately 100ms. The performance counters
were configured to count events from both user and kernel execution modes to allow system call
activity of the benchmarks to be included. This configuration also causes the remaining interrupt
activity to be counted. The activity is mainly the scheduler responding to timer interrupts and
inter-processor interrupts for reading the performance counters; the effect of both are small and
constant.

Interpolation of the performance counter samples was used to find the start and end retired
instruction counts for each benchmark run (taking care to deal with counter overflow). The
performance counter data was then split into 100 windows per benchmark run based on an equal
number of retired instructions per window. The cycle counter and the remaining performance
counters were interpolated from the samples to obtain the increment for each in each window.

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

P
er

fo
rm

an
ce

Instructions Executed

Run 1
Run 2
Run 3

Figure 3.9: Performance ratio (relative to running alone on the processor) of 3 runs of 181.mcf while
competing with 164.gzip.

The same pairwise simultaneous execution of benchmarks as performed in Section 3.3 was re-
peated, the only difference here being the use of the high frequency performance counter sam-
pling. The 100 window data processing described above was performed on each benchmark of
each pair. Because instructions rather than cycles were used to split the execution, the windows
from a simultaneous run of a given benchmark correspond to the windows from its base run.
There will be differences in the number of instructions retired because of nondeterministic ef-
fects and differing interrupt activity however the splitting into a fixed number of windows rather
than a fixed window size minimises any error. It is possible to see the differing slowdowns for
each window. For example, window n in a hypothetical benchmark’s base run may have taken
355,000,000 cycles to execute; the same window from that benchmark while it ran simultane-
ously with a second benchmark may have taken 580,000,000 cycles - the result is a slowdown
of 39% for this benchmark for this window (or a performance ratio of 0.61 using the metrics of
Section 3.2.4). Figure 3.9 shows an example of how the performance ratio of a benchmark can
change over time. The example is 181.mcf running simultaneously with 164.gzip; each plot is a
different run with a different offset from the phase of the competitor’s execution. Note that this
graph says nothing about the competitor’s own performance.

The analysis was originally performed using 1000 windows but a number of co-located peaks
and troughs were seen with peaks showing a performance under Hyper-Threading of more than
twice that when running alone. The co-located troughs suggest that the small localised changes
in performance, such as interrupt handling and differing delays in I/O operations, were not being
“averaged out”. The analysis was repeated with a fresh base run of the subject benchmark. There
were some correlation of the peak-trough pairs however it was clear that transient behaviour was
being observed. The number of windows was reduced to 100 to try to smooth these variations.
The result was much better with the traces based on the two different base runs showing a high
correlation. The smaller number of windows is still sufficient to show the changing behaviour of
the benchmark.

60

Figures 3.10 to 3.17 show the performance ratio (compared to running alone on the processor)
of each of the subject benchmarks. Runs against different background benchmarks are shown in
different colours. There are three runs with each background benchmark, each with a different
offset in the phases of the two benchmarks. These graphs tell two stories: the effect of the
subject benchmark on its own SMT performance, and the effect of the background benchmark
on the SMT performance of the subject. The shape of the line is largely influenced by the subject
benchmark while the amplitude (or vertical shift) is largely influenced by the background. It can
be seen that when the performance ratio is generally good the shapes of the plots are largely
determined by the subject benchmarks but as the effect of the background becomes greater and
the subject performance ratio drops the definition of the shape is reduced.

For any given benchmark pair the graphs show three lines for successive runs of the subject
benchmark. The background benchmark was running in a continuous loop in the background
so will be out of phase with the subject. It is therefore notable that the three lines in most cases
match so closely. In such cases the phase of the background benchmark is having little effect
on the subject benchmark performance ratio. The choice of background does appear to decide
on the average performance of the subject, shown as the vertical placement of the plots. The
exceptions to this behaviour are generally when both benchmarks in a pair exhibit a high level of
variation in their phases. Taking 164.gzip and 255.vortex as examples: both have definite phases
and show less correlation on the subject lines when they compete against each other.

255.vortex exhibits a a periodic spiky pattern. Note that this pattern is evident in all the traces
but is inverted for the traces with a lower over-all performance (when competing with mcf, art
and swim). The reason for this is that vortex has a moderate L2 miss rate which follows the
periodic pattern; while competing against benchmarks with low L2 miss rates the periods where
vortex itself suffers a high L2 miss rate result in it having a low native IPC. During periods of
low L2 miss rate its IPC is better. The result is that a benchmark with a low L2 miss rate, and
therefore with a generally good IPC, can do more damage to vortex during the latter’s periods of
low L2 miss rate. When the competitor places a high demand on the L2 cache the miss rate of
vortex is magnified and results in a slowdown. Since these competitors will have fairly low IPCs
they do little harm to vortex during its low L2 miss rate periods.

The abrupt drops in performance ratio seen independently in the plots for 179.art and 186.crafty
when competing against each other are coincident and occurred during the first of the three timed
runs of the art. After this run of art completed the performance ratio of crafty and of subsequent
runs of art returned to the higher level (0.4 to 0.5 for crafty and 0.8 to 0.9 for art); this appears to
be a rare occurrence. Inspection of Figure 3.16 shows that the position of the abrupt drop with
art’s execution is coincident with lesser, but repeatable, drops in the benchmark’s performance
ratio when executing with 255.vortex.

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
P

er
fo

rm
an

ce

Instructions Executed

186.crafty
181.mcf

255.vortex
171.swim
177.mesa

179.art
200.sixtrack

Figure 3.10: Performance ratio of 164.gzip while running simultaneously with other benchmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

P
er

fo
rm

an
ce

Instructions Executed

164.gzip
186.crafty
255.vortex
171.swim
177.mesa

179.art
200.sixtrack

Periodic pattern visible
in most pairings

Start-up phase generally
better performing than
average of entire run

Figure 3.11: Performance ratio of 181.mcf while running simultaneously with other benchmarks.

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
P

er
fo

rm
an

ce

Instructions Executed

164.gzip
181.mcf

255.vortex
171.swim
177.mesa

179.art
200.sixtrack

Large phase change in
background benchmark

Figure 3.12: Performance ratio of 186.crafty while running simultaneously with other benchmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

P
er

fo
rm

an
ce

Instructions Executed

164.gzip
186.crafty

181.mcf
171.swim
177.mesa

179.art
200.sixtrack

Three phases - become less pronounced as performance
drops due to the competing benchmark...

... although smaller scale patterns are still visible but
inverted (see text).

Figure 3.13: Performance ratio of 255.vortex while running simultaneously with other benchmarks.

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
P

er
fo

rm
an

ce

Instructions Executed

164.gzip
186.crafty

181.mcf
255.vortex
177.mesa

179.art
200.sixtrack

Troughs due to competitor - each of the
three is on a subsequent run of 171.swim

Figure 3.14: Performance ratio of 171.swim while running simultaneously with other benchmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

P
er

fo
rm

an
ce

Instructions Executed

164.gzip
186.crafty

181.mcf
255.vortex
171.swim

179.art
200.sixtrack

Very little variation
Troughs due to

competitor

Figure 3.15: Performance ratio of 177.mesa while running simultaneously with other benchmarks.

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
P

er
fo

rm
an

ce

Instructions Executed

164.gzip
186.crafty

181.mcf
255.vortex
171.swim
177.mesa

200.sixtrack

Figure 3.16: Performance ratio of 179.art while running simultaneously with other benchmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

P
er

fo
rm

an
ce

Instructions Executed

164.gzip
186.crafty

181.mcf
255.vortex
171.swim
177.mesa

179.art

Figure 3.17: Performance ratio of 200.sixtrack while running simultaneously with other benchmarks.

65

Performance Counter Correlation3.4.1

The data collected in these experiments included performance counter increments for each win-
dow for level 1 (L1), level 2 (L2) and trace-cache (TC) misses, floating point (FP) operations and
the total number of retired instructions (Insts). These metrics were counted independently for
each logical processor. For each subject benchmark there were 3 runs with each of 7 background
benchmarks giving a total of 16,800 samples. In order to assess whether there was any correla-
tion between the performance counter increments and the subject benchmark performance ratio
a multiple linear regression analysis was performed with the performance counter increments per
cycle as the explanatory variables and the subject performance ratio as the dependent variable.
The coefficient of determination (the R2 value), an indication of how much of the variability
of the dependent variable can be explained by the explanatory variables, was 66.5%. The co-
efficients for the explanatory variables are shown in Table 3.8 along with the mean number of
counted events per cycle for each variable (shown to put the magnitudes of the variables into
context). The fourth column of the table indicates the importance of each counter in the model
by multiplying the standard deviation of that metric by the coefficient.

Counter Coefficient Mean Events/1000 Cycles Importance
(to 3 S.F.) (to 3 S.F.) (coeff x st.dev.)

(Constant) 0.4010

TC-subj 29.7000 0.554 26.2

L2-subj 55.7000 1.440 87.2

FP-subj 0.3520 52.0 29.8

Insts-subj -0.0220 258 -4.3

L1-subj 2.1900 10.7 15.4

TC-back 32.7000 0.561 29.0

L2-back 1.5200 1.43 2.3

FP-back -0.4180 52.6 -35.3

Insts-back 0.5060 256 99.7

L1-back -3.5400 10.6 -25.3

Table 3.8: Multiple linear regression coefficients for estimating the performance ratio of the subject bench-
mark. The performance counters for the logical processor executing the subject benchmark are
suffixed “subj” and those for the background benchmark’s logical processor, “back”.

The most significant predictor is the IPC of the background task followed by the L2 miss rate of
the subject benchmark. The negative coefficient for the L1 misses of the background task show
that a high miss rate will reduce the performance ratio of the subject benchmark. A higher L1
miss rate for the subject benchmark itself will generally mean it has a better performance ratio.
This apparent discrepancy is due to subject benchmarks having native high L1 miss rates will
lose little when running under Hyper-Threading. The statistical significance of each variable can
be tested by calculating the p-value for that variable. For a 95% confidence, any p-value greater
than 0.05 will mean that the corresponding variable is insignificant. The L2 miss rate of the
background process had a p-value of 0.100 so is insignificant (in practical terms this metric is
covered largely by the IPC of the background process). The IPC of the subject process had a

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
ea

su
re

d
P

er
fo

rm
an

ce

Estimated Performance

Figure 3.18: Testing the MLR estimation model on pairs from 175.vpr, 252.eon, 168.wupwise and
183.equake.

p-value of 0.0369 and has a small weighting on the final result. All other variables had negligible
p-values.

The performance ratio of a benchmark can only be calculated directly when its standalone ex-
ecution time is known; in these experiments each benchmark was run both standalone and in
simultaneous execution competition. In a live system it is not possible to know what the execu-
tion time would have been for a given chunk of an application’s execution. It would be useful
to be able to read performance counters and estimate the current performance ratio. The model
from the regression analysis above was tested on a different set of benchmarks to see how ac-
curately it could estimate performance. The same experiments were performed using 175.vpr,
252.eon, 168.wupwise and 183.equake. The coefficient of correlation between the estimated
and measured values was 0.853. Figure 3.18 shows a scatter plot of estimated and measured
performance ratio figures for the each of the 100 windows for each pair.

Asymmetry3.5

In this section I describe experiments performed to assess the importance of the difference between
physical and logical processors when making scheduling decisions. I show that groups of four
benchmarks scheduled to four logical processors belonging to two physical processors can exhibit
a variety of system-wide performances depending on the particular allocation. The range of
relative performance differences seen was up to 30%.

A subset of the SPEC CPU2000 benchmarks were used. The full set was not used because of
the large number of possible combinations of groups of 4. The benchmarks were rank ordered

67

Run
Physical Processor 0 Physical Processor 1

Hyper-Thread 0 Hyper-Thread 1 Hyper-Thread 0 Hyper-Thread 1

1 A B C D

2 A C B D

3 A D B C

Table 3.9: Allocations of benchmarks A, B, C and D to processors.

based on their mean system speedup observed in the earlier experiments. Eight benchmarks
were reasonably uniformly selected with care to maintain a balance of integer and floating point
benchmarks. The benchmarks used were: 164.gzip, 181.mcf, 186.crafty and 255.vortex (integer);
and 171.swim, 177.mesa, 179.art and 200.sixtrack (floating point). All possible combinations of
4 benchmarks from this set were used in the experiments.

Each experiment consisted of a run for each of the three possible allocations of processes to
processors (ignoring equivalent cases). Table 3.9 shows these allocations. In a similar manner to
the earlier experiments each benchmark was run in a loop on its respective processor and timings
were started after all benchmarks had completed at least one full run. Three timed runs were
used and the per-benchmark performance ratio was calculated as its base run time divided by its
simultaneous runtime. The system speedup in this experiment is the sum of all four benchmark
performances ratios divided by the number of physical processors (2). This provides a speedup
normalised to sequential processing on both physical processors (with no Hyper-Threading).

The Northwood machine used in the earlier experiments and described in Table 3.2 was used for
this set of experiments. The machine had two physical processors each with two Hyper-Threaded
logical processors. As in previous experiments the Linux 2.4.19 kernel was modified with a patch
to allow explicit allocation of processes to processors.

It might be imagined that these experiments could be conducted on paper using the results from
the earlier experiments by simply summing the performance ratio figures from the two pairs of
benchmarks. This however does not take into account the extra system-wide interaction, for
example on the memory bus.

For each group of four benchmarks the relative performance difference is recorded. The range of
relative performances is shown in Figure 3.19. The largest difference is 1.30 and the mean value
is 1.10. In 40% of cases the best schedule resulted in a greater than 10% speedup over the worst
schedule.

These experiments were performed in order to assess the performance gains possible by careful
allocation of processes to processors. The processes remain on the same processor for the entire
experiment. As the benchmarks go through different phases of execution it is likely that there
will be a more optimal allocation of processes to processor than the allocation that yields the
best over-all performance. Furthermore, gains may be had by resorting to time-sharing (and
idling one logical processor) when simultaneous processes interact so badly that their combined
performance is worse than serialising them.

68

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Performance Ratio Difference

Figure 3.19: Cumulative distribution of relative performance differences between the alternative processor
allocations for groups of four benchmarks.

Summary3.6

In this chapter I have presented measurements of workloads running on Intel Hyper-Threaded
processors in real, production systems. I have shown that the system-wide performance is highly
variable and depends on the resource demands and characteristics of the simultaneously execut-
ing processes. I have shown that the share of performance between simultaneous processes is not
always fair. I then showed how the performance of the workloads varied over the course of their
execution and how the different phases of the simultaneously running processes affect the work-
loads. Using data from these experiments I have shown that the performance can be estimated
on-line using data from performance counters with a reasonable confidence; this result is used in
the following chapter to aide scheduling decisions.

I finished the chapter with a study to demonstrate the performance gains possible with SMT-
aware scheduling. I showed that groups of four applications scheduled onto the four logical
processors in a two physical package Hyper-Threaded system could exhibit performance differ-
ences of up to 30% depending on how they were allocated to the processors. The next chapter
expands on this topic by adding SMT awareness to the operating system scheduler.

69

70

Chapter 4

A Process Scheduler for SMT Processors

In this chapter I describe the problems with using a traditional process scheduler with simulta-
neous multithreaded processors. I describe the characteristics of SMT that cause these problems
and discuss techniques that could be used in a scheduler to avoid the problems. I present im-
plementations of schedulers for the Linux 2.4 kernel that are sensitive to the characteristics of
SMT processors and able to exploit them. I go on to evaluate my scheduler against a traditional
scheduler and comment on how the techniques can be applied to other operating systems.

The Context4.1

Intel originally marketed the Pentium 4 with Hyper-Threading as a way to get two processors in
a single package. As described in Chapter 2, the two logical processors are abstracted to make
them appear as two separate processors in an SMP arrangement. The operating system need not
therefore be aware that a Hyper-Threaded processor is being used. Whilst this is sufficient for
correctness, it is not ideal for performance. In Chapter 3 I showed that processes running on dif-
ferent logical processors could affect each other’s performance with a large degree of variability.

There are two ways in which an SMT processor could be allocated by a scheduler:

• The processor could be treated as a set of individual, independent logical processors. This
requires that the hardware threads are heavyweight, i.e. processes. This interface is pro-
vided by Intel’s Hyper-Threaded processors.

• An SMT processor could be used to run true multithreaded workloads. In this scenario
the physical processor is allocated as a single resource rather than separating out the log-
ical processors. A multithreaded workload written or compiled for this particular SMT
processor would be able to exploit its characteristics.

In this Chapter I choose to focus on the first scenario for the following reasons:

• Many common workloads are not written to be multithreaded, those that are tend to have a
dominant main thread [Lee98] with other threads providing occasional support functions.

• A multithreaded workload compiled for one implementation of SMT may not work very
well on another due to differing characteristics. This reduces the value of the second allo-
cation strategy.

71

• With Hyper-Threading now available on standard desktop Pentium 4 processors, they will
be used for a greater range of non-scientific workloads which tend not to be multithreaded
or are not compiled for specific processor generations.

Problems with Traditional Schedulers4.1.1

A scheduler that is completely unaware of the hierarchical nature of SMT processors using the
logical processor abstraction will not know that resources are shared between “sibling” proces-
sors. As described in Chapter 2 this can lead to runnable tasks being scheduled on two logical
processors of one package while another package remains idle. In addition, such a scheduler
misses out on some scheduling flexibility: since logical processors on the same package share
much state, particularly caches, a process can be migrated between logical processors with little
loss compared to migrating between physical processors. This flexibility is useful when balancing
load across processors.

Even if a scheduler is aware of the hierarchy and can avoid these problems then it is still not able
to take the thread interactions into account in order to maximise the throughput of the system.
Schedulers generally view all tasks equally in terms of their execution characteristics (with the
exception of priority boosts for IO-bound tasks).

Scheduling for Multithreading and Multiprocessing Systems4.1.2

In this section I present a brief overview of scheduling schemes and terminology used in multi-
threaded and multiprocessor systems.

The term processor affinity is used to describe a given process having a preference to be scheduled
to execute on one or more specified processors. Processor affinity can be influenced by factors
such as soft-state built up on one processor, the suitability of a processor for the task or the
available resources in a heterogeneous system. Most multiprocessor schedulers use processor
affinity in some form.

Cache affinity is a form of processor affinity where the process has an affinity for the soft-state
it has built up in the processor caches. Whilst this may seem to be the same as basic processor
affinity it is actually a dynamic scheme. If a given process it preempted by a second process
that causes data belonging to the first process to be evicted from the cache then the first process’
affinity for that cache (and therefore processor) reduces. The extreme is that all data belonging
to the first process is evicted. In this case the process has no affinity for any cache/processor so
the scheduler can assign it to any processor. Measuring the cache affinity of a process accurately
would need potentially costly hardware support but an approximation can be made by counting
cache line evictions to estimate process cache footprints [Squillante93].

The concept of cache affinity is relevant to SMT architectures because the caches are shared by the
threads. The scheduler need not worry which logical processor within a given physical package
it assigns a process to, the view of the cache will be the same.

When an affinity-based scheme is in use it is possible that the load will be unevenly shared be-
tween processors. There are a number of schemes that are used to re-balance load. A work-

72

sharing scheme is where newly created threads are migrated to a different processor from the one
executing the thread that created them. This differs from the standard behaviour where child
threads inherit the affinity data from the parent thread. Work-stealing is where an under-utilised
processor “steals” threads from busier processors.

NUMA Architectures4.1.2.1

The hierarchical nature of SMT systems places similar demands on a scheduler to non-uniform
memory access (NUMA) systems. A NUMA system is a distributed shared-memory multiproces-
sor system where the latency of access to memory depends upon the location of the data. This is
in contrast to the more familiar uniform symmetric (SMP) systems where the basic memory access
latency is the same regardless of which processor and memory locations are involved. NUMA
systems are structured as a number of processing nodes each containing one or more processors
and a section of the memory. Any processor can access any word of memory but accesses from
nodes other that the processor’s own will take longer. To get the best performance from a NUMA
system the scheduler and OS memory management system must arrange that processes run on
the node hosting the bulk of the data they require. The processes have an affinity for the node.

Although SMT systems are symmetric in terms of memory access latency they draw a number of
parallels with NUMA systems when cache contents are considered. An SMT physical processor
package can be viewed in a similar manner to a processing node in a NUMA system: it has
multiple (logical) processors and some shared storage (caches in the SMT case) equally accessible
to all processors in the node. Processes are package (or node, or cache) affine.

In both SMT and NUMA systems the affinity of processes is more flexible than simple processor
affinity. Schedulers for both types of system can exploit this to give greater scope for more efficient
schedules.

Related Work4.2

In this section I describe related work on hardware support for thread scheduling issues and
scheduler support for SMT processors. The relatively recent availability of SMT systems means
that most of the related work is simulation-based.

Hardware Support4.2.1

Cazorla et al suggested that it is impossible to predict the performance of a given thread running
with other threads on an SMT processor [Cazorla04]. They proposed an operating system inter-
face to the processor to allow a number of high priority threads to be run with a guaranteed IPC.
Lower priority threads could then use any remaining processor resources. The operating system
established each thread’s requirements by using a sampling phase with each thread running alone.
The OS would then change processor parameters controlling the sharing of resources in order to
achieve the promised IPC.

It should be possible to use this design to enable more general operating system control of per-

73

thread resources. Intel’s Hyper-Threaded Pentium 4 could benefit from the technique if it was
to allow the various statically partitioned or duplicated resources to have their partitioning dy-
namically changed by the OS. This would allow the OS to improve the fairness of simultaneously
executing threads by adjusting the amount of resource they each use.

SMT-Aware Scheduling4.2.2

Parekh et al introduced the idea of thread-sensitive scheduling [Parekh00]. They evaluated
scheduling algorithms based on maximising a particular metric for the set of jobs chosen in
each quantum. The metrics included various cache miss rates, data memory access time and in-
structions per cycle (IPC). The algorithm greedily selected jobs with the highest metric; there was
no mechanism to prevent starvation. The work was based on a simulation of up to 100 million
retired instructions from each job. What is not clear from their work is how costly the schedul-
ing algorithm is to run and how they collected and recorded the performance metrics used by it.
The simulator did not model the operating system in detail but instead performed the required
functions directly. The relatively short simulation window would have masked most of the phase
change effects. Their average speedup over a simple round-robin scheme was 11%. They found
that maximising the IPC was the best performing algorithm over all their tests.

Snavely’s work on “symbiotic jobscheduling” [Snavely00,Snavely02] described the “SOS” (sam-
ple, optimise, symbios) scheduler which operates in phases. The sample phase involved the sched-
uler evaluating different combinations of jobs and recording a selection of performance metrics
for each jobmix. With this data in hand, the scheduler chose permutations of jobs giving the best
composite performance which were then used in the “symbios” phase. Snavely noted that as jobs
are started and terminated and as the behaviour of individual jobs changes during execution the
optimal jobmixes will change. To allow for this the scheduler returned back to the sample phase
to collect fresh data. The variables in the algorithm included the length of time to stay in each
phase. Snavely suggested a ratio of 10 to 1 for the time spent in the symbios and sample phases
respectively. The length of the sample phase will depend on the number of possible job combina-
tions and the size of the subset of these desired. The work used simulation and it is not clear how
much, if any, of the operating system was modelled. The scheduler provided an average speedup
relative to naı̈ve scheduling of about 7%.

Both Parekh et al and Snavely focused on scenarios where there were a number of largely
compute-bound batch jobs to be completed. Although both schedulers could deal with jobs com-
ing and going, the effective churn rate associated with a system running interactive, IO-bound
jobs would stretch this ability.

Kumar et al proposed a multi-core processor architecture with a heterogeneous mix of core im-
plementations (but all using the same ISA) [Kumar04]. The example they used was the Alpha
architecture: the newer EV6 (21264) core is 5 times as large as the EV5 (21164) but not 5 times
as fast. They proposed a multi-core design with 3 EV6 and 5 EV5 cores and compared it to a
4 core EV6 design. In addition they considered an SMT version of the EV6. They found that
careful allocation of workloads to processes and SMT threads could give them better system-wide
throughput than the more simple CMP arrangements. They proposed a scheduler in a similar
spirit to Snavely et al (Dean Tullsen is an author on both Snavely and Kumar’s papers). They

74

built on this by adding a trigger mechanism to cause the sampling phase to be re-entered. They
suggested three triggering schemes. Individual-event: if a thread’s IPC changed by more than
50%; global-event: if the sum of all IPCs changed by more than 100%; and bounded-global-
event: as global-event but does not allow a re-sample until at least 50 million cycles have elapsed
and forced a re-sample after 300 million cycles. They found the three mechanisms performed in
the order given above with bounded-global-event being the best.

Nakajima and Pallipadi used data from processor performance counters to change the pack-
age affinity of processes in a two package, each of two Hyper-Threads, system [Nakajima02].
They aimed to balance load, mainly in term of floating point and level 2 cache requirements,
between the two packages. Their “scheduler” was implemented as a user-mode application that
periodically queried performance counters and swapped pairs of processes between packages by
changing the processor affinity masks of the processes. They measured speedups over a standard
scheduler of approximately 3% and 6% on two test sets chosen to exhibit uneven demands for
resources. They only investigated workloads with four active processes, the same number as the
system had logical processors. The technique can extend to scenarios with more processes than
processors however the infrequent performance counter sampling can hide a particularly high or
low load of one of the processes sharing time on a logical processor.

Fedorova et al argued that “chip multithreading” systems (those where the physical processor has
multiple cores each running multiple hardware threads) would benefit from an intelligent sched-
uler [Fedorova04b]. In later work they implemented schedulers based on cache modelling and
working-set techniques to reduce level 2 (L2) cache miss rates [Fedorova04a]. This work assumed
an interleaved style of multithreading. While L2 miss rates are important to SMT scheduling the
dynamic nature of the resource sharing means that other factors need to be taken into account.

Practical SMT-Aware Scheduling4.3

I now describe the design, implementation and evaluation of a number of techniques to incorpo-
rate knowledge of an SMT processor into the scheduler. The common theme is the provision of
heuristics, based on performance counter observations, to a general purpose scheduler.

For a scheduler design or modification to be practical and useful it must fit into the existing model
of scheduler design. Since real schedulers are designed to work on many different systems, with
and without SMT, a scheduler that is too SMT specific will be of little interest. Existing schedulers
are generally of a dynamic priority nature: tasks with the highest priority at any given time are
scheduled to run on the available processors; the priorities change over time to avoid starving a
task of processor time. A sensible place to influence the scheduling decision in an SMT-sensitive
way is in the calculation of dynamic priority. By doing this the existing facilities of static base
priority, priority boosts (temporary increases in priority often given to tasks that have recently
had I/O requests satisfied) and ageing (to avoid starvation) can be retained.

An alternative is to use SMT-specific knowledge to change the processor affinity and allow the
scheduler to operate in the traditional manner. This method has a much longer-term effect than

75

priority modification and makes responding to the different phases of a task’s execution more
difficult.

The SMT specific knowledge useful to scheduling will be of the interactions of processes with
certain characteristics. The scheduler must therefore know about the characteristics of currently
running, or candidate processes. Such knowledge could be acquired by static inspection of pro-
gram text segments (the executable code) or dynamic measurement of the running processes.
Static analysis of the programs is beneficial in its cost (a one time activity) but only provides a
limited amount of information; effects such as mis-speculation and cache hit rates are important.
These effects could only be obtained off-line through simulation/emulation; it would be just as
well to run the code and measure it. Dynamic measurement of the running processes provides
more information, not only on the process itself but on how it is interacting with the processes on
the other logical processor(s). Dynamic measurement will incur an overhead for both sampling
and evaluating the sampled data.

Design Space4.3.1

The level of support for SMT-sensitive scheduling can vary from basic hierarchy awareness (as
now provided in current operating systems) through to an attempt to create an optimal schedule
ensuring the best processor throughput at all times. The cost and complexity of the scheme will
generally increase as the number of features is increased. The increasing awareness of the SMT
characteristics also makes a more complex scheduler less portable to other SMT and non-SMT
systems. I implement a selection of points between SMT-unaware and a scheme fully aware of
the particular characteristics of the SMT processor in use:

“naı̈ve” A traditional multiprocessor scheduler that treats all logical processors across the system as
equals.

“basic” A traditional multiprocessor scheduler modified to understand the logical/physical hierar-
chy.

“tryhard” A scheduler that uses measurement of the processes’ execution to avoid the bad cases and
try to move to better combinations of processes to co-schedule.

“plan” A scheduler that uses measurement of the processes’ execution to try to obtain an optimal
schedule in terms of processor throughput by periodically creating a scheduling plan.

“fair” This scheduler has the primary goal of ensuring fairness between processes. Processes that
are not getting their fair share of resources when running under SMT are compensated with
an extra share of processor time.

Implementation4.4

I chose to implement the SMT-aware scheduler modifications on Linux because of the accessibility
and ease-of-modification of that kernel. The modifications were made to a version 2.4.19 kernel,
the latest stable version at the time the work was started and the same version as used for the

76

measurements in Chapter 3. In Section 4.6 I discuss the applicability of these techniques to other
operating systems and to the subsequent Linux 2.6 kernel.

The Linux Scheduler4.4.1

The Linux scheduler in version 2.4 kernels is based around a single queue of runnable
tasks [Bovet00]. The scheduling algorithm uses dynamic priorities based on static base priori-
ties and a form of ageing to avoid starvation. Processes are preemptable meaning that a new
runnable process with a higher priority than the current runnable process will force a reschedule.
Scheduling decisions are made when a running process exhausts its current time-slice allocation
or a higher priority process is woken up.

Scheduling works in a sequence of epochs. At the start of an epoch each process is given a time-
slice of a number of ticks (a tick is usually 10ms) based on its static priority and the number of
ticks it had left from the previous epoch. An epoch ends when there are no runnable processes,
or all the runnable processes have exhausted their time-slices. The current process’ tick counter
is decremented during each timer interrupt. Each time a scheduling decision is made the dynamic
priority is calculated for each runnable task and the one with the highest is selected to run. The
dynamic priority, or goodness, of a task is zero if it has exhausted its time-slice otherwise it is the
number of ticks remaining of its time-slice added to its static priority. The goodness is further
modified upwards if the candidate task shares an address space with the previously running task.

Multiprocessor scheduling uses the same single queue and per-task time-slices. Each processor
runs the scheduling function and goodness calculations itself. Processor affinity is supported by
increasing the goodness of tasks when calculated by processor which they last ran on. Enforced
processor affinity (such as the cpus allowed feature used in Chapter 3) is implemented by only
considering the goodness of tasks that are allowed to be execute on the processor running the
scheduling function.

Extensible Scheduler Modifications4.4.2

In order to be able to efficiently test scheduler modifications without time consuming machine
reboots, the following modifications were made to the Linux scheduler. Hooks were put into
the kernel to allow important functions to be overridden or callbacks to be received on certain
events. A loadable kernel module (LKM) containing override functions was used to attach to
these hooks. A LKM can be loaded and unloaded at run time facilitating a fast development and
experimental cycle. With the LKM unloaded, the default Linux scheduler functions were used.

The kernel evaluates the “goodness” of each runnable process whenever its schedule() func-
tion is called. The goodness() function is called with the task metadata of the runnable process
being considered and returns a weight value based on the current situation and task properties.
The task with the largest weight value will be scheduled on that processor. The standard Linux
goodness() function returns a weight that is higher for realtime tasks than non-realtime tasks.
Higher priority realtime tasks result in a larger weight. Non-realtime tasks have a weight that
depends on the following factors:

• number of time-slice ticks it has left in the current epoch,

77

• whether it was last run on the CPU that is currently performing the scheduling algorithm,

• whether it has the same address space as the task previously running on this CPU, and

• the “nice” value (static priority) the task has.

The standard goodness() function was modified to add a conditional call to an alternative
function within the LKM.

The time-slice ticks for the currently running process are decremented during the timer inter-
rupt handler’s execution. A similar replacement function hook to the above was added to the
update process times() function. This hook was used for the fractional tick technique de-
scribed below.

Since my schedulers are designed to use data collected from performance counters they require
notification of changes to running tasks so that the counters can be sampled and data attributed
to the correct tasks. To this end, the context switching function, switch to(), was hooked to
provide a callback to the LKM. switch to() is called just before a context switch; the module
function is called with the task metadata of the task being switched out.

Module Features4.4.2.1

The scheduler module is able to read performance counters but their configuration is handled
externally for simplicity. The mechanism described in Section 3.2.1 was used for this.

The LKM provides a monitoring function via the /proc file-system which allows online querying
of certain scheduler parameters. A context switch recording facility was built into the module to
allow the time and details of all context switches to be recorded for debugging purposes. This was
implemented in the switch to() callback and wrote the details into a circular buffer. This
buffer was made available to a user-space graphical visualisation tool through a second /proc
file. On each context switch the cycle-counter, logical processor number and the outgoing PID
were logged along with up to two parameters according to the particular scheduler modification
being used. This facility was only enabled during development of the schedulers and not during
timed experimental runs.

Performance Estimation4.4.3

The proposed scheduling designs require knowledge of each process’ current performance ratio.
The performance ratio of a process is defined in this dissertation as the rate of execution of
the process when running in a given situation (simultaneously with another process in this case)
compared to its rate of execution when running alone on the system. I showed in Chapter 3
how the performance ratio of a process running under SMT can change dramatically during the
process’ execution. In a live system it is not possible to know what the standalone execution rate
of a process should be without actually running it alone for a period. The changing phases of a
process’ execution means that this technique is of limited value. Instead the performance can be
estimated from parameters measured by the hardware performance counters. In Section 3.4.1 I
developed a linear model for this prediction. This model is implemented here.

At a sample point (defined by the particular scheduler design) the performance counters were

78

read. The elapsed cycle count since the last sample can be combined with the differences between
samples of the counter values to provide a performance estimate. The performance counters are
per-package but can be accessed from either logical processor. The code must know which logical
processor it is running on so that it can know which counters refer to the current logical processor
and which to the other logical processor. A record was kept of the previous sample along with
the cycle counter “timestamp”. Counter overflow was detected by observing a counter value as
being less than its previous sample. The frequency of sampling was sufficiently high to allow this
method. For the purpose of calculating the counter differences an overflowed value had its bit 40
set to account for the overflow (the counters are 40 bits wide).

The model from Section 3.4.1 is based on events per cycle, using performance counter events
for trace-cache (TC), level 1 (L1) and level 2 (L2) cache misses and floating-point (FP) and all
(Insts) instructions retired. The events are counted independently for each logical processor; in
the calculation of the estimated performance ratio for one of the logical processors the counters
corresponding to that processor are referred to here as (“subj”) and those of the other logical
processor as (“back”). The model is (note that L2 back is missing because it was shown to be
statistically insignificant):

performance = 0.401 + 29.7 ∗ TC subj + 55.7 ∗ L2 subj +

0.352 ∗ FP subj + −0.022 ∗ Insts subj + 2.19 ∗ L1 subj +

32.7 ∗ TC back + −0.418 ∗ FP back + 0.506 ∗ Insts back +
−3.54 ∗ L1 back

It is desirable to perform the calculations using integer arithmetic because floating point regis-
ters are not saved when entering the kernel. The most effective technique is to use a fixed-point
scheme where the low bits of an integer value are interpreted as the fractional value; the calcu-
lation was performed with 15 bits of fractional value which gives a resolution of approximately
0.00003, the final result was right-shifted by 5 bits giving a resolution of approximately 0.001.
The higher resolution during the calculation was required to prevent the smaller factors from be-
ing discarded. The more compact representation for the result was used to allow 32 bit arithmetic
to be used in subsequent calculations.

The overhead of performing frequent performance estimates will depend upon how often the
particular scheduler implementation calls the function. The evaluation of the schedulers measures
this overhead as well as the gain since the entire system is being measured. An indication of the
overhead was be obtained by causing estimates to be performed without any other scheduler
modifications in place; system speedups suffered approximately a 2% reduction when estimates
for each logical processor were made during each timer interrupt. Determining the sensitivity of
the frequency of calculating performance estimates is left to future work.

SMT-Aware Schedulers4.4.4

In this section I describe the implementation of the different SMT aware scheduler designs intro-
duced in Section 4.3.1.

Scheduler: “basic”4.4.4.1

79

The only change required for the basic scheduler is the affinity of processes for physical packages
rather than logical processors. This was implemented by changing the own-processor test when
increasing the goodness. The logical processor numbering scheme and the number of logical
processors per package means that simply ignoring the least significant bit in the comparison of
the processor running the goodness function and the process’ previous processor allocation is
sufficient. Newer Linux kernels incorporate this modification as a more general (and elaborate)
“sibling map”.

if (PHYSICAL PACKAGE(p→processor) = PHYSICAL PACKAGE(this cpu))
weight += PROC CHANGE PENALTY;

Scheduler: “tryhard”4.4.4.2

The tryhard scheduler aims to schedule a task on a logical processor that will provide the best
total package performance when running with the task on the other logical processor in that
package. To do this a matrix of task pair performances needs to be kept.

Performance estimates were calculated using the technique described in Section 4.4.3 each time
one of the logical processors on a package performed a context switch. The sampling was initiated
from the switch to() hook. Having obtained performance estimates for the two simultane-
ously running processes a rolling average for that pair’s combined performance was kept. It is not
feasible to store averages for every possible process pairing so a hash-table style scheme was used.
This table needs to be fast to access for both updates and queries therefore an array indexed by a
hash of the two PIDs was used. The array contained 64 entries and had a hash function designed
to minimise the number of collisions in the common case of closely spaced PIDs:

((pid2 & 7) << 3 | (pid2 & 0x38) >> 3) ⊕ (pid1 & 0x3f)

where the PIDs were numerically ordered as pid1 and pid2. Collisions were ignored since the
data is used only as a heuristic.

The scheduler used the recorded performance data to influence the choice of processes to schedule
by adjusting the goodness of a process depending on the recorded performance data for that
process when simultaneously executing with the process currently on the other logical processor
of the package. The result was that processes that would give a higher system speedup were
favoured but the time-slice and other components of the standard dynamic priority were still
respected.

Initially the time-slice (the dynamic part of the priority) was factored by the performance value.
However, the limited range of possible values restricted the effect of the modification. Instead a
value based on the performance sample was added to the dynamic priority. This value was the
performance sample divided by 64 to give a value normalised to 16; this conforms to the order
of magnitude of the other factors in the goodness calculation and achieved the desired effect.

Scheduler: “plan”4.4.4.3

The plan scheduler attempts to produce an optimal schedule by choosing pairs of processes to
simultaneously execute. It differs from tryhard in that it plans ahead what to execute rather than
reacting to what the other logical processor is doing.

80

This “gang scheduling” based approach is common in related work which, being simulation
based, has the luxury of tasks that are always runnable and the ability to easily perform the
scheduling function for all processor at once. In a real system it will often be the case that one or
more tasks are blocked, even if they are nominally compute-bound. Additionally the scheduling
decisions are not made simultaneously on all logical processors because of unsynchronised timer
interrupts and reschedules performed on the return from system calls.

There are three parts to the implementation: data recording, schedule planning and schedule
realisation. These are described in turn.

Each time a context switch was performed the summed performance ratios for the two processes
on that physical processor (called the “package performance”) were used to update a record of
“best partners”. These recorded, for each process p, the PID of the process q that gave the best
physical package performance when simultaneously running with p. The idle task was excluded
because its use of the HLT instruction allowed the simultaneously executing process to utilise
all the processor resources; this would give a false indication of the performance. The package
performance was stored so that successive updates could check whether an improved pairing has
been found. To allow for changes in phase and the termination of processes the recorded values
were decayed over time. The best partner record was stored as an extra field in the task descriptor
structure (task struct) for the process p. This allowed quick and direct access when an update
was performed. To avoid including inactive processes in scheduling plans a per-process activity
counter was incremented during the update process times() callback; only processes with
a non-zero counter were including in the plan, the counter was reset at each planning cycle.

A new scheduling plan was created periodically by a user-mode tool that read the recorded per-
formance data from the LKM /proc interface. This data contained a record for each active
process consisting of the best partner PID and the estimated package performance. The schedule
planning program sorted the records by the package performance values and selected pairs of
processes greedily, bypassing records containing processes already selected. This operation was
performed at a relatively low frequency so the cost of the sort and search was acceptable. The
plan was written back to the /proc interface for the scheduler to use.

The plan was realised by an approximation to round-robin gang scheduling of the pairs. The
goodness function heavily biased the goodness of a process if it was a member of the current
gang. It was not desirable to completely suppress other processes since one of the gang may block
or terminate. Additionally the choice of pairs to schedule was based on samples from different
pairings. By allowing other pairs to occasionally execute, these samples could be updated. This
technique also allows for processes that were blocked during the last round of sample gathering
and hence not in the plan.

The correct implementation of the plan was verified using the context switch recording function
of the LKM.

Scheduler: “fair”4.4.4.4

This scheduler attempts to bias processes’ CPU time allocations by their performance under SMT.
A thread that suffers a poor performance when simultaneously executing is given a greater share
of CPU time. The Linux scheduler normally provides even sharing of processor time by allocating

81

each process a time-slice (as a number of ticks) at the start of each scheduling epoch. Ticks
are consumed as the process uses CPU time. This scheme was modified for the fair scheduler
by scaling the magnitude of the time-slice decrement by a factor proportional to the ratio of
the estimated performance to an assumed average performance. The average performance was
declared to be 0.6 based on the measurements in Chapter 3. For an estimated performance of p
the tick decrement was p/0.6. The magnitude was bounded in both directions to avoid problems
with wildly inaccurate performance estimates.

Tick counters are integers with a scale of 1 tick per quantum (usually 10ms). In order to allow
fractional decrements (without resorting to using floating point values which is not advisable in
the kernel) the counter values were scaled by 256 (essentially a fixed-point representation).

The hook in the timer interrupt driven update process times() function was used to provide
this alternative tick decrementing. The performance counter samples were used to estimate the
current performance using the method described in Section 4.4.3.

This implementation allows static priorities to be used in the normal way because the per-process
time-slice is still initialised by the static priority.

Evaluation4.5

The effectiveness of the scheduler can be determined according to a number of metrics:

• the system throughput of a set of tasks,

• fairness across a set of tasks, and

• respect of static priorities.

In addition to evaluating my scheduling algorithms against a traditional scheduler, an algorithm
from related work was implemented and measured.

The algorithm is based on Parekh et al’s “G IPC” scheduling algorithm which they found to have
the best all-round performance in their experiments [Parekh00]. At the start of each quantum
G IPC greedily schedules the set of threads with the highest individual IPCs. Parekh et al used a
simulated system with no provision for starvation avoidance. Processes in their system did not
block. My implementation, “ipc”, approximates G IPC by heavily biasing the goodness value
of a process based on its rolling-average IPC: a higher IPC translates a higher dynamic priority.
For the bulk of the Linux scheduling epoch this implementation provides the same outcome as
G IPC. However, my method avoids starvation of processes with natively low IPC.

Method4.5.1

The method used to evaluate the schedulers was similar to the pairwise and asymmetry exper-
iments in Chapter 3 except that the scheduler was given the freedom to migrate tasks between
logical processors. Sets of tasks were defined and each task in the set was executed in an infi-
nite loop with the duration of each run recorded. The SMT-aware schedulers reference processes

82

by their PIDs so there is no memory of performance data between successive runs of the same
benchmark or even of different instantiations of the same program with different data sets (such
as 164.gzip).

The tasks were started with a random staggered start. After all the tasks were started a nominal
start time was declared. After a specified time the experiment ended. Only task runs which
were entirely within the start-end window were included in the results although all tasks were
running throughout the window. The execution time of each included task run was compared to
its stand-alone run time to get a performance ratio for that task (as described in Section 3.2.4).
The performance ratios were summed to give a system speedup. As with the experiments in
Chapter 3 the system speedup is relative to zero-cost context switching on a single processor.
This scheme is preferable to a purely IPC based scheme because it takes account of the varying
baseline characteristics of the tasks. It is similar in spirit to Snavely et al’s weighted speedup.
Each experiment was run three times and the mean speedups reported.

One problem with running many benchmarks simultaneously is the high memory usage. Pages
having to be swapped to disk complicates the system behaviour by causing tasks to block on page
faults, increasing the kernel activity by reading and writing pages and potentially reducing the
performance of intended disk accesses by the benchmark tasks. While these effects are interesting
in a full-system study it is important to be able to understand different effects in isolation before
considering their combined effect. The experiments were performed with swap space disabled.
In the event of the system running out of memory the Linux kernel kills a task according to an
algorithm that considers the task’s virtual memory size, CPU time and system importance (i.e.
superuser or user processes). The test harness monitored the system for this behaviour to prevent
it causing invalid test runs.

The sets of benchmarks were chosen such that their total maximum memory requirement could
be accommodated by the system taking into account memory used by the operating system and
necessary support processes. Memory footprint sizes were obtained from Henning’s descriptions
of the SPEC 2000 benchmark suite [Henning00] and verified on the experimental machine. A
budget of 750MB was allowed for each set.

The sets of benchmarks used were taken from those used in Chapter 3 and are shown in Table 4.1.
These were chosen to provide a diverse range of workloads including integer, floating-point and
memory intensive tasks and different number of processes.

The duration of the start-end window was chosen to allow all benchmarks to complete a sufficient
number of times but without being so long as to be impractical. Times ranging from 2 to 6 hours
were used. All tasks were given the same static priority (the default “nice” value of 0).

Throughput4.5.2

The system throughput can be measured by the rate at which a given set of tasks progresses. A
true measure of throughput can be obtained only while all of the tasks are running. The results
presented here use the system speedup measure described above.

Figure 4.1 shows the system throughput for each test set running under each scheduler. Improve-
ments over naı̈ve scheduling of up to 3.2% are seen. To put this speedup into context, Nakajima

83

Set Benchmarks

A 164.gzip, 186.crafty, 171.swim, 179.art

B 164.gzip, 181.mcf, 252.eon, 179.art, 177.mesa

C 164.gzip, 186.crafty, 197.parser, 255.vortex,

300.twolf, 172.mgrid, 173.applu, 179.art,

183.equake, 200.sixtrack

D mp3, compile, image, glx

Table 4.1: Benchmark sets for evaluating scheduler designs.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

DCBA

S
ys

te
m

 S
pe

ed
up

Benchmark Set

naive
basic

tryhard
plan

ipc
fair

Figure 4.1: System speedups for the schedulers on the single package (1x2) configuration. Note the non-
zero start for the y-axis.

and Pallipadi measured speedups of 3% and 6% on two task sets chosen to exhibit resource
requirements that their scheduler could exploit.

The tryhard scheduler does reasonably well on benchmark sets B and C but results in a small
slowdown (compared to naı̈ve) on A and D. plan provides a speedup on sets A, B and C sets; its
lack of an apparent speedup on set D is partly due to a false indication of high throughput when
using the naı̈ve scheduler (see below). The performance loss experienced by the fair scheduler is
almost all due to the overhead of calculating the estimated performance ratio each time a tick
counter is decremented. This algorithm is aimed solely at being fair; it makes no attempt to
improve throughput.

Set A

This set consists of 4 processes which run on 2 logical processors. The system gets itself into a
steady state where two processes on each logical processor get scheduled in a round-robin fashion,

84

being preempted when they exhaust their time-slice. For naı̈ve this steady state behaviour means
that there is little chance of the simultaneous pairings changing so the system speedups obtained
depend largely on the initial allocation of processes to logical processors. The high variance in
the system speedups seen for these algorithms is because of the relatively large difference between
performance ratios for the different possible pairings. The steady state reached in the experiments
that gave the better throughput had 164.gzip and 186.crafty executing on one logical processor
and 171.swim and 179.art on the other. In both cases the interaction effects of the two processes
on a logical processor were similar (they have similar rows and columns in Figure 3.3(a)) so
changing their relative phase has little effect.

tryhard provides little gain because it is hard for it to break the steady state cycle. The overhead
of estimating performance causes a small net slowdown. plan does provide a speedup (compared
to naı̈ve) because it can cause migrations to occur and find better pairings. Set A under ipc causes
the higher IPC benchmarks 164.gzip and 186.crafty to run together at the start of a scheduling
epoch because they were greedily selected. When they exhaust their time-slices 171.swim and
179.art run together which results in a poor performance, particularly for 171.swim. The result
is a low average throughput.

Set B

Set B contains benchmarks with a generally good combined performance although 181.mcf and
179.art have both been shown to cause harm to 164.gzip but not to 252.eon or 177.mesa. The
odd number of processes in the set will cause frequent migrations of processes between the logical
processors because there will always be a 60:40 split in load using the current affinity. This, and
the changing number of processes affine to a logical processor, mean that there is no steady state
as was observed with set A. With naı̈ve all pairings will occur at some point so it would be ex-
pected that the bad pairings will occur reasonable often and hence reduce the average throughput.
tryhard does well because it is able to reduce the number of times a bad pair is simultaneously
executed. This algorithm reduces the goodness of a process that has been observed to yield a low
performance when running with the process currently active on the other logical processor. The
availability of many good pairings means that tryhard can usually find a better process to run.

Set C

The large number of benchmarks in set C gives a better choice for tryhard leading to an increase
in performance compared to naı̈ve. ipc performs poorly for benchmark set C because, as with
set A, the pairs that have the highest IPC do not necessarily yield the best performance ratios.

plan shows a smaller speedup; this is due to a limitation of the planning algorithm: take a
benchmark P that gives a good performance with other benchmarks Q, R and S; P will appear as
“best partner” for those three benchmarks. When the planner greedily selects pairs it disregards
pairs containing processes already selected, therefore it will select perhaps (Q, P) but will then
have to disregard (R, P) and (S, P) because P has already been included in the plan. R and S
will only be included in the plan if they appear as a “best partner” to some other process (a
process not in the plan will still be run, usually towards the end of the epoch once the processes
in the plan have exhausted their time-slices). An alternative behaviour would be to select pairs
regardless of whether their members have already been selected. This method is not as unfair
as it may seem because the time-slice of each process will still be respected; the disadvantage is

85

that pairs containing the common process will lose the ability to be gang scheduled when the
common process exhausts its time-slice, the remaining process in each pair will gain an arbitrary
partner for the remainder of the epoch. A slightly more costly option would be to record a
sequence of preferences1 rather than just “best partners” (e.g. “second best”, “third best” etc.).
These two modifications were tried on this benchmark set: allowing pairs to contain processes
already selected resulted in a system speedup of 1.183 (only marginally better than the original
plan algorithm at 1.181); maintaining data on the “best three partners” gave 1.161 (slower than
naı̈ve at 1.173).

Set D

The compile benchmark consists of a series of many short-lived compiler and linker processes.
These are hard for most of the SMT-aware schedulers to deal with; plan periodically samples
data on “best partners” and calculates a sequence of pairs to gang schedule. The churn rate of
processes means that this plan is almost always out-of-date and results in very little gain. tryhard
and ipc work on a finer granularity but the very short lives of the processes limit the amount of
useful characterisation that can be performed. A possible modification to these algorithms would
be to maintain performance data across successive instances of the same program, perhaps by
considering the program name (argv[0] in C).

The naı̈ve scheduler appears to perform better than any of the other algorithms. However, this is
at the expense of fairness — compile gets a small fraction of the total processor time with glx and
mp3 taking the bulk of the former’s share (see Section 4.5.3 below). The latter two benchmarks
general experience a better performance under Hyper-Threading than compile so cause the system
speedup to be inflated. The other algorithms provide a much fairer share of processor time to
compile which causes the system speedup to lose the artificial inflation it had from glx and mp3.

Summary

The tryhard scheduler yielded the best results over-all. It failed to produce an improvement on
set A because it was unable to break a steady state pattern of execution. A combination of tryhard
and some form of SMT-aware migration would be likely to perform well.

plan performed well in cases where processes were long-lived enough for their characteristics the
be learned and a scheduling plan created and realised. Modification of this algorithm to store
performance data between instances of the same program would be likely to provide a better
performance. plan outperformed tryhard when the ability of the former to break a steady state
schedule allowed optimal pairings to be found.

ipc generally performed poorly. This algorithm is based on related work. It favours processes
with high IPC; this does not necessarily equate with high performance.

The naı̈ve baseline scheduler is sometimes able to perform well but often the increased perfor-
mance is down to a fortunate (but accidental) allocation of processes to logical processors. My
SMT-aware scheduling algorithms generally provide a more reliable system throughput.

1Three “best partners” were recorded but not held in order; the periodic planning run performed the sorting.

86

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

ipcfairplantryhardbasicnaive

In
di

vi
du

al
 P

er
fo

rm
an

ce

Scheduler

164.gzip
171.swim

179.art
186.crafty

Figure 4.2: Individual performances of the benchmarks of set A running on the single package configura-
tion (1x2)

Fairness4.5.3

The throughput measurements described above give a speedup for the entire system. However,
the goal of the scheduler is to provide a good speedup alongside fairness. All tasks were given the
same static priority (“nice” value) so should exhibit similar individual performances. However,
as seen in Chapter 3, having an equal allocation of processor time on a Hyper-Threaded pro-
cessor does not guarantee an equal share of processor resources. The variation in the individual
performances that were summed to give the system speedup can be used to gauge fairness.

Figures 4.2 through 4.5 show the individual performances of each benchmark running in the sets
under each scheduler. A smaller spread of individual performances indicates a fairer schedule.

Set A

Figure 3.3(a) in Chapter 3 showed that 179.art generally detriments the performance of the task
it runs simultaneously with but rarely suffers a reduced performance itself. It is for this reason
that naı̈ve and some of the SMT-aware schedulers show this benchmark achieving such a good
individual performance.

171.swim usually exhibits a periodic change approximating a sine function in its performance
ratio when running simultaneously. Its estimated performance follows the same basic shape and
predicts the peaks very well but over-estimates the troughs. The net result is an over-estimation
of the benchmark’s performance which causes the fair scheduler to over-penalise its tick counter.
This effect is observable in the results as a lower then average performance ratio for 171.swim.

ipc, which greedily schedules tasks with high IPCs, causes a reduction in performance for the

87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

ipcfairplantryhardbasicnaive

In
di

vi
du

al
 P

er
fo

rm
an

ce

Scheduler

164.gzip
177.mesa

179.art
181.mcf
252.eon

Figure 4.3: Individual performances of the benchmarks of set B running on the single package configura-
tion (1x2)

low-IPC benchmarks 181.mcf and 179.art and an increase for 164.gzip and 186.crafty which
both have high IPCs.

Set B

As with set A, 179.art achieves a relatively high performance. 181.mcf has a similar, although
slightly less pronounced, thread interaction behaviour so shows a similar bias here. ipc’s prefer-
ence for high-IPC tasks is shown clearly with 181.mcf getting little processor time and therefore
a poor over-all performance.

Set C

The previously seen effect of 179.art is clearly visible again in set C. This set also contains
172.mgrid which Figure 3.3(a) shows as having opposite properties to 179.art: it gets hurt by
many competing workloads but rarely causes a performance detriment to others. This effect is
seen here as a generally low individual performance for this benchmark.

Set D

In most cases glx yields a better performance than the other benchmarks. In a similar manner
to 179.art in the other benchmark sets, Table 3.7 in Chapter 3 shows how the benchmark does
harm to others but is not harmed itself.

naı̈ve shows a particularly unfair spread of performance with glx having an individual perfor-
mance ten times higher than compile. This is due to the combination of compile’s frequent fork-
ing and glx’s (and mp3’s to a limited extent) compute-bound nature. When a process forks the
time-slice of the parent process is divided equally between the parent and child (although each get

88

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

ipcfairplantryhardbasicnaive

In
di

vi
du

al
 P

er
fo

rm
an

ce

Scheduler

164.gzip
172.mgrid
173.applu

179.art
183.equake

186.crafty
197.parser

200.sixtrack
255.vortex

300.twolf

Figure 4.4: Individual performances of the benchmarks of set C running on the single package configura-
tion (1x2)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

ipcfairplantryhardbasicnaive

In
di

vi
du

al
 P

er
fo

rm
an

ce

Scheduler

mp3
glx

image
compile

Figure 4.5: Individual performances of the benchmarks of set D running on the single package configura-
tion (1x2)

89

Time-slice
Benchmark “Nice” value milliseconds

252.eon 0 60

179.art 3 50

181.mcf 7 40

177.mesa 11 30

164.gzip 15 20

Table 4.2: Static priorities given to the benchmarks of set B.

a full allocation at the start of the next epoch); the current processor number is inherited by the
child so it maintains the same affinity as the parent. When a family of processes, such as compile,
is time-sharing a logical processor with a compute-bound task such as the X-server associated
with glx, the recently forked processes, which now have low goodness, will often be waiting
for the compute-bound process to exhaust its time-slice. The large amount of I/O performed by
compile means that it often yields the processor back to the compute-bound process. The other
logical processor is also busy so there will be very little migration of tasks between the logical
processors. The effect of changing affinity to physical package rather than logical processor is
clearly seen with basic; the processes making up compile are now able to freely migrate to the
other logical processor so can take advantage of blocking-induced reschedules on that processor.

Summary

My SMT-aware schedulers generally provide fairness between threads that is as good as, or bet-
ter than, that provided by a traditional scheduler. The algorithms that attempt to optimise for
throughput respect the processes’ time-slices so should provide an approximately equal allocation
of processor time to the processes. Programs that generally perform well under Hyper-Threading
will still show a higher individual performance in many cases.

The scheduler based on related work, ipc, usually provides an unfair share of performance. This
is because it favours processes with high IPC. The original algorithm would have completely
starved low-IPC programs such as 181.mcf; my implementation prevents this by utilising the
Linux scheduler’s own starvation avoidance functionality.

The fair scheduler, which allows a poorly performing process more processor time, can improve
the fairness in some cases but it limited by the accuracy of the performance estimation model.

Static Priorities4.5.3.1

The scheduling algorithms were designed to adjust the dynamic priority of processes in order
to improve throughput or fairness. By doing this the static priority of the processes should be
respected. To check this behaviour a benchmark set was run with the benchmarks each given
a different priority. The benchmarks of set B were given static priorities as shown in Table 4.2.
The ordering of the benchmarks was chosen to give the longest running benchmarks the higher
priorities in order to keep the experiment duration reasonably short.

Figure 4.6 shows the individual performance of each benchmark in the set running under each
scheduler. The bars are ordered such that the highest priority is on the left and lowest on the

90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

ipcfairplantryhardbasicnaive

In
di

vi
du

al
 P

er
fo

rm
an

ce

Scheduler

164.gzip
177.mesa

179.art
181.mcf
252.eon

Figure 4.6: Individual performances of the benchmarks of set B running on the single package configura-
tion (1x2). The benchmarks are given static priories resulting in time-slices of 60, 50, 40, 30
and 20ms in order left to right.

right. It can be seen that naı̈ve, basic, tryhard and plan all allow 179.art to achieve a performance
greater than its priority would suggest. This is due to the benchmark generally performing well
while always harming the simultaneously executing process. The apparent incorrect behaviour of
these scheduling algorithms is therefore an artifact of the workloads involved. The fair algorithm
attempts to correct this type of behaviour and the results show clearly how the ratios of achieved
performances match the ratios of time-slices well. 181.mcf suffers under the ipc scheduler because
of the benchmark’s low native IPC.

A second experiment representing a more common use of static priorities was performed. Bench-
mark set D contains an application that makes use of the X server. The default behaviour for the
system under test is to start the X server with a higher static priority than most other applications.
This was altered for the throughput experiments above but retained here. Figure 4.7 shows the
individual performance data for the benchmarks of set D running under each scheduler with the
X process (represented by the result for glx) having a higher static priority (by 5 “nice” units)
than the other tasks. This can be compared to Figure 4.5 above where all processes were given
equal static priorities.

As described above, glx generally gets a better individual performance in the equal-priority ex-
periments. However, the impact of the static priority increase on the X server is clearly visible.
The time-slice given to each task at the start of each scheduling epoch is based on the task’s static
priority added to half of any remaining time-slice from the last epoch. For the system under
test the base time-slice for the X server was 6 ticks (60ms) and 4 ticks (40ms) for the other pro-
cesses; this should result in a ratio of 3:2 of the individual performances of glx to each of the

91

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

ipcfairplantryhardbasicnaive

In
di

vi
du

al
 P

er
fo

rm
an

ce

Scheduler

mp3
glx

image
compile

Figure 4.7: Individual performances of the benchmarks of set D running on the single package configura-
tion (1x2). The X server process, the main part of the glx benchmark, has an increased static
priority.

other benchmarks. The ratio is higher than this for all the schedulers which is due to the better
Hyper-Threaded performance of glx.

These results show that the proposed scheduling algorithms are respecting static priorities.

Applicability to Other Operating Systems4.6

The scheduling algorithms presented in this chapter were based around modifications to the cal-
culation of dynamic priority. Many general-purpose operating system schedulers use some form
of dynamic priority therefore it should be possibly to incorporate SMT-aware heuristics. The
monitoring functions were based on callbacks from the context switch and timer interrupt func-
tions; these are features found in general-purpose operating systems.

The use of processor hardware performance counters is a potential barrier to common acceptance
of a scheduler of the type described here. The processor has only one set of performance counters
and there may be many potential users of the counters. For application use there are counter
virtualisation packages available that can “context switch” the counter configurations and values.
For kernel use this is not sufficient and my schedulers require constant measurements of realised
performance.

Linux 2.6 has a new implementation of the process scheduler. It differs from the scheduler in
the 2.4 (used for my experiments) and 2.2 kernels mainly in its allocation of the time-slice for a
process being per-processor rather than system-wide. In addition the run-queues are maintained

92

independently for each processor. The result is that processor affinity has more of an impact and
migration becomes a more explicit operation. Since there is no common run-queue, there is no
need for a system-wide lock; processors can perform context switches in parallel. The goodness
function has been removed, its functionality being replaced by the ordering of the run-queue and
the implied affinity. It would still be possible to incorporate SMT-aware scheduling into this
model. For example, careful modification of the run-queues would permit more reliable gang
scheduling than was possible in the 2.4 kernel.

The scheduler in recent versions of the Windows operating system uses a single-queue preemptive
scheme [Solomon00]2. Static priorities are used with temporary priority boosts for starvation
avoidance. Boosts are also given to threads associated with the foreground window and threads
that have recently had a wait operation complete. Multiprocessor scheduling utilises soft-affinity
data for each thread; when picking a task for a processor the scheduler searches the run-queue
and executes the first (highest priority) thread that either ran last on that processor, has a static
affinity for that processor, is experiencing starvation or is of a very high priority. There is ample
scope for adjusting priorities and affinities to implement the various SMT-aware schedulers.

Applicability to Other Processors4.7

The scheduling algorithms presented here relied on processor hardware performance counters.
Only a small set of the available event types were counted: cache miss rates and instruction
throughput. These event types are often found on other processors with less sophisticated coun-
ters than the Pentium 4.

The performance estimation function in Section 4.4.3 is specific to the particular system. The
coefficients will differ with different processor cores (such as Prescott instead of Northwood) and
cache arrangements. It is likely, however, that the relative magnitudes of the coefficients would
be similar across similar processors. The coefficients were produced by performing a multiple
linear regression analysis on data from test runs of a set of benchmarks. This is a mechanical
(albeit time consuming) process which could be used to tune the model for different systems or
even different workloads. Further investigation of this model is left for future work.

My work was performed using a “Northwood” version of the Pentium 4 processor. As shown
in Chapter 3 the recently released “Prescott” version experiences fewer cases where the thread
interactions cause a significant loss of performance. This suggests that the software techniques
presented here are not as important on the newer processor. However, there are still a number of
poorly performing simultaneous pairings which it would be advantageous to avoid. There is also
scope for simplifying the microarchitecture of future SMT processors by dealing with resource
allocation fairness in software, including scheduling techniques similar to those presented here,
rather than hardware. This strategy could allow the processor to run faster, consume less energy
or use less silicon.

It is likely that future SMT processors will support more threads, with four-thread units rumoured
to be coming in the near future. The techniques presented here are likely to become more useful in

2See also Microsoft Developer Network: Platform SDK: DLLs, Processes, and Threads.

93

these processors as they may benefit from the possibility of disabling one or more threads during
periods of poor performance due to unfortunate thread interactions.

Summary4.8

I have presented a number of different scheduler implementations that are aware, to different de-
grees, of the characteristics of the SMT processor and try to improve throughput and/or fairness.
Unlike much previous work in the area these schedulers have to deal with the complexity of a
real scheduler, such as processes blocking, and preserve existing facilities such as starvation avoid-
ance. The speedups obtained, up to 3.2%, are similar to speedups reported in related work which
uses a less flexible scheme with workloads chosen to benefit from that scheme. My scheduling
algorithms generally outperform an IPC-based scheme (found to be the best all-round performing
scheme studied) from the simulation-based literature modified to work within the constraints of
a practical general-purpose operating system scheduler.

94

Chapter 5

Alternatives to Multiprogramming

In the previous chapters I have focused on the scenario where a simultaneous multithreaded
(SMT) processor is presented as a set of distinct logical processors which can be allocated inde-
pendently. I have shown how a naı̈ve use of this abstraction can cause a loss of performance. I
have presented a design and evaluation of a range of process scheduling algorithms that try to
avoid this performance loss. In this chapter I discuss alternative ways of using SMT processors
which expose and exploit their multithreaded nature rather than trying to hide it. I present some
preliminary experiments to assess the value of dedicating a hardware thread to system functions
such as interrupt handling — a technique possible using current SMT hardware.

The techniques described here fall into two broad categories. Firstly those that present the pro-
cessor as a multithreaded processor and secondly those that use the threads to improve the per-
formance of the main thread therefore presenting the processor as a traditional uniprocessor.
Some work possesses elements of both categories by using multiple processor threads to work on
a single software thread but having more than one of these groups existing on the same multi-
threaded processor. The second category is motivated by the desire to improve the performance
of an individual thread, something that SMT in a multiprogramming context is very unlikely
to do. The speedups must be considered alongside the system-wide improvements offered by
multiprogramming on SMT.

A Multithreaded Processor as a Single Resource5.1

To avoid the operating system having to be concerned with the thread interactions experienced on
an SMT process the problem could be given to the applications by allocating the entire processor
as a single resource rather than trying to allocate threads independently. It would be up to the
application to make best use of the available hardware threads. Applications would be better
placed to know their own demands and, given enough information about the processor, should
be able to make a more informed decision about what to simultaneously execute.

Modern compilers are able to optimise code for different models of processors implementing the
same instruction set. This is done by building knowledge of the operation of the processor into
the compiler. This scheme could be extended to parallelising compilers; the compiler would be
designed with knowledge of the thread interactions. As with existing machine-specific optimisa-

95

tions, the benefits are limited or lost when the compiled code is executed on a different processor
(of the same instruction set).

A possible middle-ground is to locate the processor-specific knowledge in a thread package. This
software typically sits between the operating system and the application code and provides a com-
mon abstraction for threads. For example, the POSIX threads standard specifies an interface for
applications to create multiple threads [IEEE04]. The threads package implements this standard
by mapping the application p-threads to kernel or user (or a combination of the two) threads.
During a scheduling quantum the operating system could allocate the entire SMT processor to
the thread package and allow the package to decide on the optimal allocation of p-threads to
simultaneous threads.

Capriccio is a user-level thread package aimed at highly concurrent network servers [von Behren03].
The application threads are scheduled onto operating system threads using a resource-aware
scheduler; the package monitors resources such as memory and file descriptor usage and attempts
to balance load over time. Adding processor resources and SMT-awareness to this package has
the potential to increase throughput; the large choice of threads to run increases the chance of an
optimal schedule.

Program Parallelisation5.1.1

Any multiprocessor or multithreading system on which it is desired to run a single workload will
benefit from that workload being multithreaded. Single-threaded workloads can sometimes be
parallelised by a compiler. On SMT processors extra threads do not always mean better perfor-
mance so the nature and extent of the parallelisation need to be chosen carefully. Puppin and
Tullsen investigate the parallelisation of Livermore loops on a simulated SMT processor [Pup-
pin01]. They note that traditional parallelisation techniques work well for SMT processors but
the optimal number of hardware threads to use may not be the processor full complement. They
develop a model to predict the best number of threads to use based on the contention for func-
tional unit types and the length of dependent chains of instructions.

Threads for Speculation and Prefetching5.2

In this section I describe proposed mechanisms that use simultaneous threads for speculation of
data and control-flow. The closely related topic of pre-execution is also described, where a thread
executes ahead of the main thread in order to prefetch data or precompute branch directions.

Data Speculation5.2.1

Programs written in a single-threaded manner can sometimes be successfully parallelised by a
compiler. Numeric applications tend to be the easiest to auto-parallelise because it is straight-
forward to track the data dependencies. Programs that are more reliant on memory accesses
are harder to parallelise due to the potentially much larger number of dependencies through the
memory locations. Superscalar processors can extract instruction level parallelism from such

96

programs by hoisting and speculatively executing loads and checking for subsequent writes to
the locations referenced. This mechanism is instruction-level data speculation. A natural ex-
tension to this is thread-level data speculation where various parts of a program, particularly
loop iterations, can be executed in parallel based on speculative use of loaded values. As with
instruction-level speculation, speculative threads have to be replayed if the data values used turn
out to be incorrect. The main difference from instruction-level speculation is the greater degree of
parallelism than can be extracted but at the expense of a higher cost in replaying incorrect execu-
tions. Thread-level speculation has also been proposed as a tool to assist manual parallelisation
of programs [Prabhu03].

Multiscalar processors use a combination of hardware and software to split a single-threaded
process into multiple “tasks” which are farmed out to a set of processing units within the pro-
cessor [Sohi95]. Each unit fetches and executes independently and keeps a copy of the global
register file. Register values are routed between units to keep the copies consistent. Implicit-
Multithreading (IMT) [Park03] applies the Multiscalar concept to SMT. The authors found that
a simple replacement of the Multiscalar execution units with SMT threads gained little advan-
tage over single-threaded superscalar. They proposed some microarchitectural optimisations to
improve the performance:

• a fetch policy biased towards threads processing earlier tasks,

• task threads multiplexed onto SMT contexts, and

• a faster thread start-up mechanism to support the large number of thread start-ups.

The result was a 20 to 30% speedup over superscalar.

Thread-level data speculation (TLDS) as proposed by Steffan and Mowry speculatively breaks
a single-threaded process into “epochs” which are similar to Multiscalar’s tasks [Steffan98, Stef-
fan00]. TLDS relies on the compiler to identify regions of the code that are suitable for specula-
tion and to perform the parallelisation. The multithreaded processor (traditional or simultaneous)
is responsible for forwarding data values between threads (which can cause epochs to execute in
an overlapped fashion) and to check for data violations when an epoch is completed and attempts
to commit its work. Any data dependency violating epoch has to be executed again.

Marcuello and González proposed to use a modified SMT processor to provide a similar facility
to that provided by implicit-multithreading described above but without the need to modify appli-
cation binaries [Marcuello98, Marcuello99]. They focus particularly on having different threads
executing different iterations of loops. Loop closing branches are highly predictable which allows
the hardware to perform the decomposition into threads. They speculate on register values by
looking at the difference in live register values over successive iterations of the loop. They report
a 25% speedup for integer codes.

Akkary and Driscoll describe dynamic multithreading (DMT) in which the processor specula-
tively spawns threads on procedure and loop boundaries [Akkary98]. The goals of this work
and some of the microarchitectural mechanisms are similar to Marcuello et al’s speculative mul-
tithreading but Akkary and Driscoll focus on spawning at procedure boundaries.

97

Thread-level speculation (TLS) has been used as the basis for other work. Zhou et al’s iWatcher
is a an extension to traditional “watchpoints” (memory locations that when referenced cause the
processor to trap into an exception for debugging purposes) [Zhou04]. The authors noted that
watchpoints are generally used to check constraints on a set of variables. In normal operation
with no bugs existing, the check will always succeed and execution will resume following an
expensive exception. iWatcher’s main contribution is the use of TLS to allow the main thread to
continue speculatively while the watchpoint handler runs in another thread context. The original
thread is only allowed to become non-speculative when and if the handler declares the check
successful. As well as the reduced impact on the throughput of the main thread, this design
avoids expensive privilege level changes in a similar manner to Zilles’ work described below.

Pre-execution5.2.2

Pre-execution and precomputation are similar techniques used to reduce the latency of load in-
structions or find the outcome of a branch in advance of where it would normally be known.
This is done by a second computation proceeding alongside the main thread speculatively exe-
cuting some subset of instructions. The effect is either that the value to be loaded is available
in the cache for when the main thread executes the load, or the branch outcome is known when
the main thread comes to predict that branch. Mechanisms have been proposed to use dedi-
cated hardware, such as a “precomputation engine”, for the secondary computation. Combining
pre-execution and SMT should yield good results; spare thread contexts can be used to run the
speculative secondary computations(s) which can share the contents of the cache and enjoy fast
register sharing or copying. Pre-execution differs from data speculation described above in that
the actual architecturally important execution is carried out by a thread in the traditional way
with that thread being itself speculative at the thread level.

Collins et al use precomputation to prefetch “delinquent” loads (the small number of static loads
that generate the majority of cache misses) [Collins01b]. The compiler identifies the delinquent
loads and for each, generates a sequence of instructions called a “p-slice” which is able to com-
pute the address and prefetch the data. The processor spawns the p-slice when it encounters a
designated trigger instruction in the main thread. They base their simulation on an SMT imple-
mentation of the Intel IA64 instruction set. In later work Collins et al remove the reliance on
the compiler by moving the identification of delinquent loads and the construction of p-slices to
hardware to allow unmodified binaries to benefit from the technique [Collins01a]. They also
move architecture to the Alpha-based SMTSIM. The authors report a wide range of speedups
in both papers with about 30% being the most reasonable figure in both and up to 169% in
the compiler-assisted version when speculative threads are allowed to spawn further speculative
threads.

Intel implemented a version of precomputation on a pre-production Pentium 4 Xeon with Hyper-
Threading. Since this processor has no hardware support for speculative precomputation a sepa-
rate heavyweight operating system thread was forked at initialisation of the main thread and the
Windows XP event mechanism was used for the main thread to communicate trigger events to the
speculative thread [Wang02]. The program binary was statically modified based on performance
data obtained using Intel’s VTune Performance Analyser. Speedups of up to 45% were observed
on pointer-chasing synthetic benchmarks and between 7% and 40% on a selection of application

98

benchmarks expected to benefit from precomputation. Perhaps the most interesting aspect of this
work is the demonstration that the techniques of precomputation can be employed without any
hardware modifications.

Speculative slices as proposed by Zilles and Sohi [Zilles01] are similar to p-slices. They are created
manually in order to prefetch loads or precompute hard-to-predict branches. Speculative slices
differ from p-slices in that each execution of a slice is tied to a particular dynamic branch/load
(i.e. a particular instance of the instruction). The authors argue that this is necessary, particularly
for branches, as the behaviour will change between dynamic instances.

In follow-up work to their Hyper-Threaded study described above, Intel use some of the tech-
niques of Zilles and Sohi’s work in order to provide a prefetching helper thread [Kim04]. They
discuss the problem of dynamic runtime tuning of the helper threads including how to remove
unnecessary prefetches causing wasted processing. They note that the Intel Hyper-Threaded pro-
cessors do not currently have sufficiently fine-grained and lightweight synchronisation to allow
such tuning.

Software-controlled pre-execution differs from Collin et al’s precomputation in that it executes a
copy of the original code spawned from compiler/profiler or programmer inserted points [Luk01].
The pre-execution thread proceeds without changing any global state, other than causing data
to be prefetched into the cache, by not committing stores or generating exceptions. This thread
continues for a determined number of instructions or until a determined point in the code. The
author reports an average speedup of 24% across a set of “irregular” applications (those that
would most benefit from this technique).

Speculative Data-Driven Multithreading uses spawned speculative threads to work ahead in the
program code to execute “critical computations” [Roth01]. The data-driven thread executes only
those instructions from the main program that are required to perform the particular computation
therefore allowing it to proceed quicker than the main thread. The result and input used are
recorded in an “integration table” to allow the main thread to use the generated result if the
speculation was correct thereby saving on duplicate work. Simulation on an 8-way Alpha based
SMT architecture yielded execution time savings of up to 45%.

Slipstream processors run a shortened copy of the application speculatively. This shortened
copy contains only the instructions that the processor believes are required for correct forward
progress [Sundaramoorthy00]. The design is based on the observation that there is redundancy in
program code which includes unreferenced writes, non-modifying writes and correctly predicted
branches. A full execution (the “R-stream”) of the program runs in chase with the shortened
version (the “A-stream”) passing control-flow and dataflow outcomes back to it for checking.
The A-stream is functioning as a prefetch thread for the R-stream with the latter executing all
instructions and producing the definitive results. The design was originally evaluated on a simu-
lated chip multiprocessor (CMP) and later work considered the use of SMT [Purser00]. A 2-core
CMP design was shown to give an average improvement of 12% over a single core and SMT
provided a speedup of 10 to 20% compared to an equivalant non-SMT architecture.

A good example of a use of pre-computation that would be applicable to the SMT-based designed
described above is Roth et al’s virtual function call (“v-call”) target prediction [Roth99]. V-
calls are typically used in object oriented programs to dynamically select the function to call

99

at runtime based on type information. Unlike static calls, the jump target is hard to predict
using conventional mechanisms but easy to predict using the pre-computation methods described
above.

Multiple Path Execution5.2.3

The technique of multiple path execution involves the processor proceeding along both possible
execution paths from a branch until the outcome of that branch is known. This reduces the
cost of a mispredicted branch at the expense of wasted execution effort. The technique was
used, to a limited extent, in the IBM System/360 Model 91 where the first few instructions from
both branch paths were fetched (but not decoded) [Anderson67]. The hardware cost of multiple
path execution can be high; the use of spare processing capacity in a multithreaded processor
would allow some of the benefit of multiple path execution to be obtained without the hardware
overhead.

Wallace et al propose a technique for making use of spare thread contexts within an SMT pro-
cessor, Threaded Multiple Path Execution [Wallace98]. When the execution of a thread reaches a
hard-to-predict branch the processor performs an internal “fork” operation with the two threads
following the different paths from the branch. Once the outcome of the branch is known, the
wrong-path thread can be squashed and the thread context reused for further speculation. Clearly
the processor must be careful about when it chooses to fork to prevent an exponential increase in
the number of required contexts very quickly consuming the fixed number of available contexts.
Wallace et al denote one path from each fork as the primary path and only allow further forks
from that path. This not only removes the problem of exponential growth but also simplifies
the implementation. They also limit forks to branches with a low confidence by using a branch
confidence predictor which tracks how well prediction is working.

The architectural to physical register mapping used by SMT lends itself to lightweight forking
making the rollback of the register state of a wrong-path thread easy due to only having to
discard mappings and update the physical register free list. As with instruction level speculation,
it is memory accesses that complicate the rollback. Wallace et al propose two elaborate schemes
to track load-store dependencies using a combination of store buffers and tagging of speculative
stores.

Threaded multiple path execution could be applied to other forms of hardware multithreading
processors but SMT is particularly suitable as the speculative paths are using spare capacity rather
than dedicated resources.

Threads for Management and Monitoring5.3

In this section I describe proposals to use simultaneous threads, executed at a lower hardware
priority, for purposes other than application threads. Uses include monitoring for optimisation
and error-checking.

100

Mini-Threads5.3.1

Redstone notes that a multi-context SMT processor would require a large number of regis-
ters [Redstone02]. With a large instruction window and a large register set (such as the Alpha),
the size of the register file would cause either a long cycle time or an increase in the pipeline depth.
Redstone proposes to extend SMT to support mini-threads [Redstone03]. In this architecture the
thread context is split into the architectural registers and the remaining (mainly control-flow)
state such as the program counter, return stack, store buffers and so on. A mini-thread has its
own control-flow state but it shares the architectural registers with the other mini-threads within
the context. This approach reduces the number of physical registers required and provides a
cheap inter-mini-thread communication mechanism. The disadvantage of the reduced number of
architectural registers per mini-thread is generally outweighed by the increase in throughput due
to the extra thread-level parallelism. The allocation of architectural registers to mini-threads is
left to the compiler which could choose to partition the threads statically or dynamically or to
share registers where appropriate.

A problem with this design is that calls to the kernel could be made by any mini-thread and in
the general case the kernel would not know which registers were being used by that mini-thread
at that time so would not know which registers could be saved for its own use. A reasonably
straight-forward fix described by Redstone is to force static partitioning of registers and have
the instruction decode stage rewrite the register numbers for the particular mini-context being
fetched (i.e. for a two mini-thread scenario the second mini-thread has the top bit of each register
number set by the decode stage). This rewriting also applies to kernel code so an unmodified
kernel can be used. Redstone suggests an alternative for when static partitioning is not in use;
when a mini-thread enters the kernel, all other mini-threads are blocked and all registers are saved
and restored when the control returns to the user-mode code.

Redstone evaluated the architecture using parallel benchmarks and applications and showed a
mean speedup of 38% on a 2-context SMT processor. Processors with higher numbers of con-
texts yielded less speedup but are the ones that are is most need of a smaller register file. A
use not considered was executing subordinate threads such as profiling or monitoring functions.
This would be a suitable application for mini-threads as they can be written to use only a small
number of the registers and would benefit from being able to read (and maybe write in some
circumstances) the registers of the main thread.

Subordinate Threads5.3.2

Subordinate (helper) threads utilise simultaneous execution in a biased manner to provide some
form of support to the main thread. The main thread is generally allowed to use all the proces-
sor resources it needs while the subordinate threads use whatever remains. Subordinate threads
can perform functions such as profiling, optimisation and prefetching. Subordinate threads dif-
fer from pre-computation in that they are explicitly provided by either the application or the
operating system rather than being automatically extracted from a program.

Dubois and Song propose nanothreads as a mechanism to assist the execution of the main
thread [Dubois98]. Nanothreads share all the resources, including most of the registers, of the

101

main thread. Additionally, each nanothread has its own small number of architectural registers.
Nanothreads can be spawned explicitly by the main thread to provide facilities such as prefetch-
ing. Alternatively a nanotrap, a lightweight trap based on selectable hardware events such as
a cache miss or invalidation, can spawn a nanothread. The authors suggest that this mecha-
nism may be useful in circumstances where an exception would traditionally be the only suitable
mechanism but too expensive for high frequency events. A nanotrap can be asynchronous (the
main thread continues) or synchronous (the main thread blocks until the nanothread servicing
the nanotrap completes).

Chappell et al note that SMT is of little use to single-threaded programs [Chappell99]. To pro-
vide a benefit to an individual thread they propose Simultaneous Subordinate Microthreading
(SSMT) in which an SMT-like processor hosts a single program thread and a number of lower
priority subordinate microthreads used to perform hardware optimisations on behalf of the pro-
gram thread. The microthreads are spawned either explicitly by the program thread using a
new processor instruction or automatically by certain events taking place within the processor.
The microthreads’ instructions are stored in a “MicroRAM” within the processor which reduces
interference with the main thread’s instruction fetching. Chappell et al suggest possible uses for
these microthreads which include branch prediction optimisation, prefetching and software cache
management. They suggest that such software based schemes can outperform purely hardware
based equivalents because more sophisticated algorithms can be implemented in software than in
hardware and there is greater flexibility with the ability to tune the microthread implementations
for different applications. Microthreads are preferable to normal system threads for the optimi-
sation purpose because they do not contribute to cache utilisation and can be given greater access
to processor internals without being constrained to the processor’s instruction set architecture.

Chappell et al focus on increasing the performance of a single program. An SSMT system wishing
to execute more than one program would have to context switch between them (which would
also involve context switching the microthreads) whereas an SMT system with sufficient thread
contexts would be able to simultaneously execute the programs. The performance tradeoff be-
tween SSMT and SMT is therefore individual programs running faster but only having a share
of the processor time each, versus individual benchmarks running continuously but slower due
to sharing the processor. The SSMT designers do not address this issue. It is likely that some
implementations and workloads would benefit more from SSMT and some more from SMT.

Chappell et al’s work requires specific hardware. It is worth exploring the feasibility of using
some kind of subordinate threads for optimisation and system functions on current hardware.
The main disadvantage of Intel’s Hyper-Threading in this context is the lack of any form of pri-
oritisation. This means that a “subordinate” helper thread could very easily cause a performance
loss to the main program thread while trying to optimise it or perform some other service. The
design of such a thread would have to be very careful and would have to avoid actions that are
known to affect the performance of the other thread. A major problem would be instruction and
data cache interference, including cache flushing due to self modifying code (something an optimi-
sation thread may well want to do). In order to provide any optimisation service the subordinate
thread would have to have suitable access to appropriate processor internal information. The
current processor performance counters could be useful but a richer, lower level of access would
be required to be able to replicate the work of Chappell et al. A further complication is forking

102

and joining. Hyper-Threading originally had no support for any form of inter-thread communi-
cation other than the use of shared memory as would be used by multiple processors. The Intel
“Prescott” core, the second implementation of Hyper-Threading, introduces the MONITOR and
MWAIT instructions as described in Chapter 2. These instructions provide a mechanism to syn-
chronise threads.

Dorai et al’s Transparent Threads are a general purpose variation of subordinate threading. Var-
ious priority mechanisms are added to an SMT processor to allow background (“transparent”)
threads to run without affecting the performance of the foreground thread [Dorai02]. The prior-
ity is implemented by a collection of mechanisms. Instruction fetch and issue slots are prioritised;
in each cycle, a slot is only allocated to a background thread once the foreground thread has taken
all the slots it can. The instruction buffers (reorder buffer and pre-issue instruction queues) are
difficult to allocate according to priority because the effect on resource contention is delayed. The
paper describes a technique called “background thread instruction window partitioning” which
imposes an ICOUNT (hardware rate-limiting of each thread’s fetching) limit on the background
threads’ fetching in order to limit their population of the instruction buffers. This technique
does not completely prevent the foreground thread from suffering resource contention but does
limit the damage that a background thread can do. The authors also describe “background
thread flushing” where the most recently fetched instructions from the background threads can
be flushed from the reorder buffer and the program counters wound back. This action will be
carried out when the foreground thread is unable to obtain a slot in the reorder buffer. The
work focuses on pipeline resources but suggest that access to caches could be biased by limiting
the amount of each cache that a background thread can use by modifying the address hashing
function in use.

Dorai et al suggest the following uses for transparent threads.

• Downgrading the priority of non-interactive threads when an interactive thread on that
processor is receiving an event. The interactive thread gets all of the resources it needs
while the other threads can continue in the background using any available resources.

• Subordinate multithreading, in a manner similar to SSMT described above or for prefetch-
ing and pre-execution.

• Performance monitoring for profiling the foreground thread, without the need to introduce
invasive instrumentation code.

In their simulated prototype the authors found that the average performance degradation to
foreground tasks while running some transparent prefetching threads was only 3%. They suggest
that two-thirds of this value is due to cache effects which their design does not deal with. The
background prefetching thread ran at 77% of the speed it would have done with an equal priority
scheme and its prefetching functionality gave the main thread a speedup in the region of 10%, a
net gain.

Oplinger and Lam propose using an SMT-based architecture to allow programmers to write code
monitoring and recovery functions that can be speculatively executed in parallel with the main
thread [Oplinger02]. Examples of these functions include profiling and run-time error checking
such as checking the stack for buffer overruns. The design supports efficient transactions. A

103

transaction can be implemented by the processor making a local copy of the register state before
speculatively proceeding with the thread. If the thread decides to commit then the buffered
stores are performed and execution continues, otherwise the registers are restored and execution
continues from the specified address.

Fault Tolerance5.4

In recent years a body of research has focused on techniques to support hardware that may
contain or experience faults. Traditionally digital hardware is assumed to perform perfectly if
operated with specifications. With modern processors having very tight margins on voltage levels,
feature sizes and noise, the risk of a transient fault, caused by random effects such as cosmic rays,
is becoming greater (albeit very small at the moment). Research on how to handle this potential
future problem generally uses redundancy in some form to check the results of executed code.
Space redundancy (the use of replicated hardware) has obvious financial and energy costs, time
redundancy (re-executing again on the same hardware) takes longer, and data redundancy (the
use of check bits, CRCs, etc.) introduces extra complexity.

Rotenberg [Rotenberg99] proposes a modification of SMT called AR-SMT which allows two
copies of a program to be run approximately at the same time. There is a notion of an active
thread, the “A-stream”, followed shortly by the redundant thread, the “R-stream”. The R-stream
lags the A-stream in time providing time redundancy. A delay buffer is used to feed results from
the A-stream to the R-stream for comparison — this technique is similar to slipstreaming de-
scribed above. The R-stream can enjoy perfect control and dataflow prediction because it uses
these details as passed back by the A-stream (this does not reduce any of the redundancy as the
instructions are still executed). This design is aimed at general purpose processors where tradi-
tional fault tolerant systems are too costly or inefficient. The technique would suffer somewhat
on a processor using the Intel Hyper-Threading style of multithreading where homogeneity can
cause a notable reduction in the combined throughput of the threads (see Chapter 3).

The technique is further refined by Reinhardt and Mukherjee’s simultaneously and redundantly
threaded (SRT) processor by considering where redundancy needs to be provided in more detail
and allowing more slack in the fetch rates of the two threads [Reinhardt00]. SRT is only a
detection mechanism; software checkpointing must be used alongside it in order to be able to
backtrack to a point before the fault. Vijaykumar et al modify SRT to build in the recovery
functionality [Vijaykumar02]. SRTR (SRT with recovery) will prevent a faulty operation from
changing global state by ensuring that instructions from the leading thread can only commit
when the trailing redundant thread agrees on the correct result. This method avoids the need for
software checkpointing which improves performance when the rate of faults is low and allows
unmodified software to be used.

104

Operating System Functions5.5

In this section I describe related work and present some preliminary investigations into using
simultaneous threads to improve the performance of operating system functions. The particular
theme is the avoidance of changing privilege levels, a mechanism known to be expensive on
modern processors.

Exception Handling5.5.1

Zilles et al propose the use of multithreading, using SMT as the particular example, for exception
handling [Zillies99]. When executing on a speculative superscalar processor a thread experienc-
ing a recoverable exception, such as a software translation look-aside buffer (TLB) miss, will
undergo a sequence of operations similar to the following.

• Instructions up to and beyond the faulting instruction will be fetched.

• Some non-dependent instructions beyond the faulting instruction may have been specula-
tively executed.

• The faulting instruction is executed and the exception noted to be raised when the instruc-
tion is retired.

• On retirement of the faulting instruction the exception is raised by changing the control
flow to the exception handler and flushing the fetched, and possibly speculatively executed,
instructions that followed the faulting instruction.

• The exception handler executes and its return-from-exception instruction again causes a
control flow change back to the originally faulting instruction.

• Fetching continues from the originally faulting instruction and execution continues.

Note that there is duplicated work in that instructions following the faulting instruction are
fetched and some speculatively executed twice. During the two control flow changes there will
be periods of idleness for the core execution units while the new instruction sequences propagate
through the fetch, decode and rename stages.

Zilles et al suggest that, for software TLB miss exceptions at least, the non-dependent instructions
beyond the faulting memory access could proceed and instructions dependent upon the memory
access could wait in the normal dataflow manner. If the exception was to be handled in an out-
of-band manner then on the handler’s completion the faulting instruction would be allowed to
proceed. The execution would then carry on as normal with the originally faulting instruction’s
completion allowing the dependent instructions to be scheduled. Zilles et al propose the use of
a new hardware thread context for the exception handler with a small amount of extra hard-
ware to communicate completion of the handler back to faulting instruction. This mechanism
removes the duplicate work described above and allows the main thread to continue with any
non-dependent work.

Should the exception be non-recoverable then the handler communicates the fact back to the
faulting instruction which then causes the thread to terminate when the faulting exception is

105

retired. As with control flow misprediction any speculatively executed instructions beyond the
faulting instruction are not retired so no architectural state is incorrectly affected.

Privilege Level Partitioning5.5.2

Interrupts can be quite disruptive to applications running on aggressive out-of-order superscalar
processors. This is due in part to the high cost of (re)filling the instruction windows for both the
interrupt handler and the user mode application. The time spent in the interrupt handler is of
course taken away from the application’s CPU time allocation. The net effect is that providing
any sort of quality-of-service guarantee to an application is difficult or impossible.

Muir describes an alternative arrangement as part of his Piglet architecture [Muir00] One pro-
cessor in a two way SMP system is dedicated to operating system functions including interrupts
handling. Applications execute on the other processor. Whilst this mechanism provides a speedup
to individual applications it comes with a high hardware and energy consumption cost. The
same technique applied to the two logical processors of a Hyper-Threaded processor would be
less costly to implement as no extra physical processor or other hardware would be needed. A
Hyper-Threaded implementation would not provide as much isolation as Muir’s SMP implemen-
tation because of the dynamic sharing of resources by the interrupt handler and the user level
application. When not servicing an interrupt the system Hyper-Threaded must sleep using the
HLT instruction in order to give all shared resources to the application Hyper-Thread.

Piglet also provided for asynchronous system calls. The user level process running on one pro-
cessor would used shared memory message passing to cause the system call to be executed on the
OS processor.

In his design for a multithreaded processor Moore proposes the use of a remote procedure call
interface for user threads to communicate with the operating system [Moore96].

The Xen virtualisation infrastructure [Barham03] divides a computer between multiple “guest”
operating systems (OSs). Xen abstracts the hardware interfaces by providing virtual interfaces
to guest OSs and hosting device drivers within the hypervisor or a per-machine device driver
domain. Interrupts taken by the hypervisor or device driver domain while a guest OS is scheduled
will consume CPU time allocated to the guest OS. In an effort to reduce this effect Fraser et al
propose that interrupts are handled by one logical Hyper-Threaded processor while the guest
runs on the other logical processor [Fraser04].

Interrupt Handling Partitioning on Linux5.5.3

In order to assess the impact of the interrupt handling partitioning technique on a commodity
operating system I performed some preliminary experiments using the Linux kernel.

Every process metadata structure contains two useful bitmasks, cpus allowed, denoting pro-
cessors it is allowed to be executed on, and launch policywhich initialises the cpus allowed
field for child processes. The “init” process was given a launch policy specifying only the
first logical processor of each physical package. As all other processes as descendants of init,
all were created with this restriction. The scheduler is able to migrate processes between allowed

106

Config
Physical Processor 0 Physical Processor 1

Hyper-Thread 0 Hyper-Thread 1 Hyper-Thread 0 Hyper-Thread 1

UP Both Disabled Disabled Disabled

SMP Both Disabled Both Disabled

1x2 Both Both Disabled Disabled

2x2 Both Both Both Both

PGLT User app. Disabled IRQ Disabled

1xHTP User app. IRQ Disabled Disabled

2xHTP User app. IRQ User app. IRQ

Table 5.1: Configurations for interrupt/application separation experiments. “Both” denotes the traditional
arrangement of a processor serving both user level processes and interrupt handlers; “user app.”
and “IRQ” denote processors dedicated to the task of running user-level processes and handling
interrupts respectively.

processors (i.e. the first logical processor on each package in a multi-package system). Linux also
supports IRQ affinity (subject to a cooperative IRQ controller) using a similar bitmask arrange-
ment for each IRQ number. IRQ handling was limited to the second logical processor on each
package by setting the smp affinity bitmask for each interrupt through the /proc/irq/ tree.
The round-robin allocation of interrupts to allowed processors is still able take place but only to
the second logical processor in each package. Since no user-level process were allowed to exe-
cute on the second logical processors these processors executed the idle task when not handling
interrupts. Linux uses the HLT instruction for idling which causes the process to dedicate all
previously shared and partitioned resources to the active thread.

A series of workloads were executed on seven machine configurations as shown in Table 5.1. UP
is a baseline traditional uniprocessor configuration. SMP, 1x2 and 2x2 represent the useful com-
binations of SMP and Hyper-Threading. PGLT, 1xHTP and 2xHTP apply application/interrupt
separation to SMP, 1x2 and 2x2 respectively. PGLT represents the original Piglet configuration.

Linux Kernel Compilation5.5.3.1

A commonly used application benchmark is a build of the Linux (or BSD) kernel. A large com-
pilation like this contains compute, memory and disk-bound elements so is a good all-round test.
Unlike standardised benchmarks such as the SPEC suite [SPEC], the variation in build and kernel
configurations means that the results are only meaningful as trend indicators on the actual system
and configuration tested.

Two different kernels were built. The first was the Linux 2.4.19 kernel and its modules as used on
the test machine. This kernel was configured with only the facilities and drivers needed for that
particular machine therefore was fairly small. Each experimental run of this build was performed
with warm caches. The second kernel was Linux 2.6.7, the newest Linux kernel at the time of
the experiment. This kernel was configured with almost all of the available facilities and drivers
and the experiments were performed with cold caches. The two different configurations were
used to provide different example workloads, one more processor and memory bound and the

107

other more disk bound. It was not intended to compare the performance of the two different
configurations against each other.

For each kernel a build of the kernel itself and the modules was performed on each processor
configuration. Each test was performed with single-process and parallel builds (-j option to
make). For the 2.4.19 build the caches were initially warmed with a build and each subsequent
experiment was separated by a make clean. The build of the 2.6.7 kernel was large enough
that it flushed the processor and OS block caches by itself. Each experiment was separated by a
make mrproper (and a reinstatement of the kernel configuration file) to provide a clean build
tree.

The results of the experiments can be interpreted from three points of view, relating to the in-
variant parameter: the effect of using parallel builds, the effect of removing interrupt processing
from the application processor(s), and the tradeoff between using a given number of processors
for multiprogramming or for partitioned application and interrupt processing. The first of these
was described earlier, in Section 3.3.3.

The second interpretation of the data fixes the number of processors that are used to execute
applications and adds a logical or physical processor to handle interrupts. Figure 5.1(a) shows
the build times for the larger Linux 2.6.7 kernel for the basic uniprocessor UP and for two con-
figurations where there is a single processor for applications with interrupt processing partitioned
to another physical processor (PGLT) and to another logical processor on the same package as
the application processor (1xHTP). These results show that there is little difference between the
configurations although the Hyper-Threaded partitioned configuration does slightly better than
the uniprocessor configuration and the multiprocessor partitioned configuration does slightly bet-
ter than the Hyper-Threaded partitioned configuration. The differences are only in the order of
1%. Figure 5.1(b) shows the comparison of a dual processor system (SMP) with a dual processor,
each of two logical processors system with interrupts and applications partitioned on each phys-
ical processor (2xHTP). This graph shows almost no different between the build times of each
configuration.

These results do not take into account the cost of providing the partitioning (which would be
considerable in the multiprocessor PGLT case) or the loss of any multiprocessing benefit by
not using the other logical/physical processors for application processing. This second aspect
is considered next.

The final view of the data uses the invariant of the number of logical and physical processors. This
view allows a comparison of the performance of partitioning compared to using the processors
for multiprogramming. Figure 5.2 shows comparisons of the build times for Linux 2.6.7 for three
different processor counts: two physical processors, two logical processors on a single physical
processor, and two logical processors on each of two physical processors. All three scenarios
show multiprogramming winning over partitioning. Therefore, for this particular workload, the
gain from multiprogramming is greater than that from partitioning. The two physical processor
case unsurprisingly shows the largest difference. The two Hyper-Threaded scenarios, particularly
the two package 2xHTP, show less of a difference. This is due to the fairly similar speedups seen
for each technique independently.

These results suggest that the form of interrupt/application partitioning being investigated is not

108

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8

S
ec

on
ds

Number of make processes (-j)

UP Real
UP CPU

PGLT Real
PGLT CPU

1xHTP Real
1xHTP CPU

(a) Single application processor.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8

S
ec

on
ds

Number of make processes (-j)

SMP Real
SMP CPU

2xHTP Real
2xHTP CPU

(b) Two application processors.

Figure 5.1: Build times (“Real” wall-clock time and CPU time) for the Linux 2.6.7 kernel: the effect of
partitioning interrupt processing to other logical or physical processors.

109

SPEC Run time TCP rate
Config seconds MB/second

UP 10165 99.0

PGLT 8507 92.2

1xHTP 8842 90.4

Table 5.2: Results for the SPEC CPU2000 runs while sinking a high bandwidth TCP stream.

worthwhile for this workload but would not cause much of a performance loss if partitioning
was found to be useful for other workloads. Although a reasonable amount of time is spent
executing in the kernel most of this is “top-down” rather than in the interrupt context. The latter
is mainly restricted to notifications of the completion of direct-memory-access (DMA) transfers
— a relatively low cost.

Compute and Network Workloads5.5.3.2

The partitioning of interrupt and application processing should be most effective when the system
is running mixed workloads of compute bound processes and interrupt-heavy I/O. To demon-
strate this the SPEC CPU2000 benchmark suite was run while receiving data over a TCP stream
with ttcp. The SPEC run consisted of running each benchmark once (with cold caches) in
sequence (the Fortran-90 programs were not used due to the lack of an available compiler).

ttcp is a utility that can source or sink TCP streams. A receiver was run on the test machine and
a transmitter on an identical machine, both connected by gigabit Ethernet to the same switch.
Default parameters were used with the exception of the number of buffers to be transmitted
which was set to a large value to ensure traffic flowed for the entirety of the SPEC run. The trans-
mitter was forcefully stopped when the SPEC run completed. The ttcp receiver was executed
on the same application processor as the SPEC benchmarks. In the partitioned configurations
the kernel-mode I/O processing would have been split between the processors with “top-down”
system call context processing occurring on the application processor and “bottom-up” interrupt
context processing on the interrupt processor. This highlights the main difference between these
experiments and Muir’s Piglet — the latter uses asynchronous message passing between the pro-
cessors to perform system calls. Linux aims to minimise the amount of work performed by a
non-preemptable interrupt handler. Instead work is deferred to a bottom-half handler (“tasklet”
or “soft IRQ”). Tasklets are scheduled on the processor that executed the (interrupt handler)
code that created them. The result is that soft IRQs are executed on the interrupt processor in
Piglet-style configurations.

To assess the impact of application/interrupt partitioning on the single-threaded SPEC run con-
figurations with one application processor were tested. These are UP, the basic uniprocessor
configuration, PGLT, the Piglet-style configuration and 1xHTP, the Hyper-Threaded version of
Piglet. The results for the SPEC run time and TCP transfer rate are shown in Table 5.2.

The results show that partitioning improves the performance of the SPEC execution. For PGLT
this improvement is primarily due to the significant amount of CPU time used for TCP reception
being moved to the other physical processor therefore giving the SPEC programs a greater share
of their processor. This configuration shows a reduced rate of TCP transfer than UP; this is most

110

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8

S
ec

on
ds

Number of make processes (-j)

SMP Real
SMP CPU

PGLT Real
PGLT CPU

(a) Two physical processors.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8

S
ec

on
ds

Number of make processes (-j)

1x2 Real
1x2 CPU

1xHTP Real
1xHTP CPU

(b) Two logical processors on a single physical processor.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8

S
ec

on
ds

Number of make processes (-j)

2x2 Real
2x2 CPU

2xHTP Real
2xHTP CPU

(c) Two logical processors on each of two physical physical processors.

Figure 5.2: Build times (“Real” wall-clock time and CPU time) for the Linux 2.6.7 kernel: comparing the
performance of a given set of processors used in multiprogrammed and partitioned configura-
tions.

111

httperf SPECweb99
Response time Transfer time Throughput

Config milliseconds milliseconds kbits/sec

UP 1.20 ±0.10 44.8 ±1.8 348.8

SMP 1.00 ±0.00 37.0 ±1.4 396.7

1x2 1.10 ±0.00 35.1 ±0.3 378.2

2x2 1.00 ±0.00 34.4 ±0.5 395.5

PGLT 0.90 ±0.00 41.2 ±0.6 355.2

1xHTP 0.95 ±0.05 36.5 ±0.6 352.7

2xHTP 0.90 ±0.00 35.1 ±0.5 396.9

Table 5.3: Response and transfer times for fetches of a 1MB file using HTTP.

likely due to ttcp and its associated I/O processing being spread over two processors and there-
fore suffering cache-line ping-pong. The Hyper-Threaded 1xHTP also shows an improvement
over the basic uniprocessor case. The improvement is less than that achieved by the dual package
PGLT because the interaction between the interrupt processing and the SPEC execution reduces
the effective processor throughput for each Hyper-Thread. 1xHTP shows a lower TCP transfer
rate. This is caused by ttcp suffering the same thread interaction performance reduction.

HTTP Serving5.5.3.3

The httperf-0.8 tool [Mosberger98] was used to measure the performance of the Apache web
server version 1.3.27 running on the test machine. A 1 megabyte file was repeatedly requested
at a rate found to saturate the gigabit network connection between the identical client and server
test machines. The request rate was 112 requests per second giving a network throughput of
939 megabits per second. Each test was performed with 2000 HTTP connections made to the
server at a fixed rate of 112 requests per second.

Table 5.3 shows the initial response and total transfer times for the 1 megabyte file with the
server running on each machine configuration. The results show that any hardware parallelism
improves both times. The response time benefits from all Piglet-style configurations although
the magnitude of this gain is very small compared to the total transfer time. Both PGLT and
1xHTP configurations show a reduction in transfer time over UP: 8.0% and 18.5% respec-
tively. The Hyper-Threaded version performs better than the original Piglet version because of
the shared caches. Comparing the performance of configurations using one physical processor
shows the multiprogrammed 1x2 slightly outperforming the Hyper-Threaded Piglet-style 1xHTP,
both being much better than UP. With two physical processors multiprogramming again per-
forms marginally better than the equivalent Hyper-Threaded Piglet 2xHTP. The traditional SMP
arrangement performs better that the wasteful PGLT configuration.

Throughput was tested using the SPECweb99 benchmark [SPEC]. This benchmark tests the
performance of the web server hardware and software. It consists of a generated set of files to
be served statically and a CGI script to be used dynamically for both GET and POST HTTP
methods. The benchmark provides the client software which chooses the type of requests made
according to a prescribed distribution. SPECweb99 results are normally presented as the number

112

of simultaneous HTTP connections that the server was able to maintain with at least 95% of the
connections having an average bit-rate of at least 320 kbits/sec. Time constraints did not permit
a full evaluation therefore tests were performed using 60 simultaneous connections (a number
found to provide good bit-rates) and the achieved bit-rate reported. The full test is left for future
work.

The bit-rates achieved are shown in Table 5.3. It can be seen for the single physical processor
configurations that a small increase in throughput is possible with both PGLT and 1xHTP over
the uniprocessor UP. The multiprogrammed 1x2 configuration provides the highest bit-rate — the
dynamic content generation used by SPECweb99 means that there is plently of work to keep both
logical processors busy. The two physical processor configurations all show a similar throughput
because they are constrained by system-wide resources such as disk IO and the buffer-cache.

Both sets of results show interrupt/application partitioning provides an advantage over traditional
uniprocessor or SMP configurations but does not outperform the Hyper-Threaded processor be-
ing used in a multiprogrammed (or “virtual multiprocessor”) configuration.

Summary5.6

I have described various ways to use SMT processors other than as a virtual multiprocessor.
Treating an SMT processor as a single resource avoids the problem of non-cooperating threads
detrimenting each others’ performance. This approach allows the programmer and/or compiler to
choose the threads that will run best together. The difficulty is that a multithreaded application
optimised for a particular SMT processor may not be optimal for another SMT processor of
the same architecture but with a different number of threads or a different microarchitecture.
Techniques such as precomputation and multi-path execution utilise the extra threads to speed
up a single thread. Subordinate threads are a promising technique but are limited by the currently
available hardware, particularly the lack of thread priority and inter-thread synchronisation.

I have described preliminary experiments to assess the value of partitioning application and in-
terrupt handler processing across different logical processor (threads) of an SMT processor. The
results suggest that the technique is useful for some workloads and warrants further investigation.

113

114

Chapter 6

Conclusions

In this dissertation I have described experiments performed to analyse the behaviour of a simulta-
neous multithreaded processor, the Intel Pentium 4 with Hyper-Threading. The dynamic sharing
of processor resources causes a wide variety of interactions between simultaneously executing
processes often resulting in poor per-thread, or system-wide performance. I presented a series
of process scheduling algorithms that are sensitive to the characteristics of the Hyper-Threaded
processor and showed that they can improve the system throughput and/or fairness compared
to using a traditional scheduler. In this chapter I summarise the work and my contributions and
describe some directions for further research.

Summary6.1

In Chapter 1 I described the motivation for studying the performance of SMT processors, partic-
ularly the effect of the mutual interaction of simultaneously executing threads. The current use
of SMT processors, “virtual multiprocessors”, provides a simple interface for operating systems
but hides the performance effect of threads sharing the processor. I presented my thesis, that
SMT processors can be used more effectively with an operating system that is aware of their
characteristics.

In Chapter 2 I described simultaneous multithreading and the commercial implementations of it.
I described areas of operating system support that are necessary or desirable for SMT processors.
I highlighted the process scheduler as an area that currently lacks detailed support.

In Chapter 3 I presented a series of experiments measuring the performance of Hyper-Threading. I
showed how pairs of processes simultaneously executing can exhibit a wide range of performance.
The experiments used processor hardware performance counters to investigate and explain the
observed behaviour and develop a model to estimate the current performance based on those
counters. I demonstrated how the performance of processes can change dramatically during their
lifetime as they move through different phases of execution. I ended the chapter with a study
that showed how different allocations of processes to logical processors in a two-package system
could result in quite different system throughputs.

In Chapter 4 I presented a number of process scheduling algorithms that are able to take SMT
thread performance interactions into account in order to improve the throughput and/or fairness

115

of the system. I demonstrated how these techniques could be incorporated into a traditional
scheduler so as to maintain the existing facilities of priority and starvation avoidance. The sched-
ulers yielded improvements of up to 3.2% over a traditional scheduler; this figure is comparable
with related work.

Finally, in Chapter 5 I discussed ways to exploit SMT processors other than the “virtual mul-
tiprocessor” model studied in the earlier chapters of this dissertation. Many of the alternative
uses for simultaneous multithreading try to use the extra thread(s) to improve the throughput of
a single thread. I presented preliminary experiments to assess the value of using two threads to
process application and interrupt handling code separately. These initial results are encouraging
and suggest the technique warrants further research.

In conclusion, my thesis — that SMT processors can be used more effectively with an operating
system that is aware of their characteristics — is justified as follows. I showed in Chapter 3
that there is a large variability in thread and system performance when different workloads are
executed simultaneously on a real SMT processor. I showed how rearranging the assignment of
processes to logical processors could improve performance by up to 30%. An operating system
without any knowledge of SMT processors would not be able to perform such a rearrangement
and would not be able to tell that a given arrangement was yielding poor performance. Secondly
I presented SMT-aware process scheduling algorithms in Chapter 4 that were able to improve the
throughput and/or fairness, compared to a scheduler unaware of the characteristics of an SMT
processor, of a set of processes.

Further Research6.2

The work presented in this dissertation could be taken further in a number of ways.

The performance estimation model developed in Chapter 3 was useful and accurate enough to
provide scheduler heuristics. However, there is scope for further refinement by considering more
performance counter metrics. A similar study on other SMT processors would allow models to
be compared with the possibility of a parameterisable general model.

The thread interaction study in Chapter 3 showed how some workloads regularly caused the si-
multaneously executing thread to experience a low performance. There were workloads whose
performance was difficult to impact and some that experienced a reduced performance when run-
ning with almost any other workload. Analysis of the hardware performance counters allowed
many of these effects to be explained. A more formal classification model would be useful, per-
haps based on Bayesian Classification. Being able to classify a running process in terms of the
harm it can do to other processes and the degree to which it suffers itself would enable a sim-
pler algorithm with the sole aim of avoiding simultaneous execution of processes that have been
classified as likely to reduce performance.

The SMT-aware scheduling algorithms presented in Chapter 4 used dynamic measurement of
running processes to provide feedback for scheduling. Processes were referenced by their iden-
tifiers (PIDs) with subsequent, or forked, instances of the same program having different PIDs
and therefore being treated separately from the previous, or parent, process. It is likely that

116

these subsequent instantiations would perform similarly to their predecessors so investigating the
incorporation of data from the predecessor would be worthwhile.

In common with many scheduling algorithms, my SMT-aware algorithms have a number of tune-
able parameters. Tuning these parameters could yield further speedups. The parameters include:

• the frequency of the performance estimate calculation,

• the scaling of the dynamic priority increases,

• the frequency of the plan offline planner’s execution, and

• the size of the tryhard performance matrix.

The experiments described in Chapter 5 showed how a system configured to partition applica-
tion and interrupt processing on to different Hyper-Threads could yield speedups over traditional
configurations. The performances observed were similar to those obtained when using Hyper-
Threading as a “virtual multiprocessor” but without the hard-to-predict interaction between
application threads. A scheme such as this would be useful in situations were predictability is
important such system providing quality-of-service or resource accounting.

This topic could be taken further with a study of more workloads, such as file or database servers.
Additionally the Piglet concept of asynchronous system calls could be implemented using SMT.
This would have the advantage of avoiding expensive privilege level changes but without the
potentially costly problem of inter-cache traffic of the original Piglet system. The current gen-
eration of Intel Hyper-Threaded processors provide a lightweight inter-thread synchronisation
mechanism (the MONITOR and MWAIT) instructions which could be used for this. However, cur-
rent implementations only allow use of this facility in kernel-mode; this permits a user-mode
program to asynchronously signal the kernel but the user-mode program is not able to use the
same lightweight mechanism to wait on a reply. An evaluation of the technique could be per-
formed by executing programs in kernel mode. It is certain that future processors will extend this
synchronisation mechanism to user-mode.

SMT processors are likely to be commonplace for a good while. SMT provides an effective way
to extract more throughput from a processor without incurring a high implementation overhead.
With Intel now producing SMT processors as standard and IBM starting to produce their SMT
Power5 processor, the use of SMT will become more widespread. It is likely that future SMT pro-
cessor will support more threads than current implementations because the overhead of adding
the extra state to the processor is fairly low. However, although early SMT research described
processors with up to 8 threads and hinted at even larger numbers, practical considerations such
as the size and complexity of the register file limit the scalability of SMT. Multicore processors,
which have now been available for a few years, with a shared level 2 cache are likely to have their
scalability limited by the connection and bandwidth between the cores and the cache. Both IBM
and Sun Microsystems have announced processors which combine multithreading and multiple
cores. It is likely that this combination will become more common in the future.

One problem with extra threads is the increased demand for bottleneck resources such as the
caches. This problem is compounded on multicore systems where the cores share a level 2 cache.
A suitable schedule of software threads to hardware threads is likely to become more important.

117

Further study of scheduling and processor allocation would be useful. Additionally, the use of
hardware threads for system purposes, such as optimisation and performance monitoring, would
be useful as the threads can be designed to minimise their load on bottleneck resources.

A focus of this dissertation has been the evaluation of performance and investigation of tech-
niques on real commodity systems. At the time of writing, multicore processors (chip multipro-
cessors – CMP) and multicore-multithreaded processors (often referred to as chip multithreading
– CMT) are only beginning to appear in commodity systems. Many of the areas covered in this
dissertation are relevant to multicore processors. CMP systems often have a shared level 2 cache
and per-core level 1 caches. The sharing of the level 2 cache was found to be a major contributor
to the performance interactions between Hyper-Threads, it will be the main cause of performance
interactions for CMP systems. CMT systems introduce a three level hierarchy of processors: mul-
tiple packages, each of multiple cores, each of multiple logical processors (threads). The varying
degrees of sharing at the different levels presents an interesting challenge to efficiently utilise the
processors without losing performance through resource contention. The techniques of feedback-
directed scheduling explored in this dissertation could be extended to CMT systems.

118

Bibliography

[Akkary98] H. Akkary and M. A. Driscoll. A Dynamic Multithreaded Processor. In
Proceedings of the 31st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-31), pages 226–236. IEEE Computer Society,
December 1998. (p 97)

[Alverson90] R. Alverson, D Callahan, D. Cummings, D. Koblenz A. Porterfield, and
B. J. Smith. The Tera Computer System. In Proceedings of the 4th Interna-
tional Conference on Supercomputing, pages 1–6. ACM Press, June 1990.
(p 20)

[Anderson67] D. W. Anderson, F. J. Sparacio, and F. M. Tomasulo. The IBM System/36O
Model 91: Machine Philosophy and Instruction-Handling. IBM Journal,
11:8–24, January 1967. (p 100)

[Barham03] P. R. Barham, B. Dragovic, K. A. Fraser S. M. Hand, T. L. Harris, A. C.
Ho R. Neugebauer, I. A. Pratt, and A. K. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), pages 164–177. ACM Press, October 2003.
(p 106)

[Boggs04] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr J. A. Miller, P. Roussel,
R. Singhal, B. Toll and K. S. Venkatraman. The Microarchitecture of the
Intel Pentium 4 Processor on 90nm Technology. Intel Technology Journal,
8(1):1–17, February 2004. (pp 24, 32)

[Borozan02] H. Borozan. Microsoft Windows-Based Servers and Intel Hyper-Threading
Technology. Technical Article, Microsoft Corporation, April 2002. (p 27)

[Bovet00] D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly and
Associates, October 2000. (p 77)

[Bulpin04] J. R. Bulpin and I. A. Pratt. Multiprogramming Performance of the Pen-
tium 4 with Hyper-Threading. In Third Annual Workshop on Duplicat-
ing, Deconstruction and Debunking (at ISCA’04), pages 53–62, June 2004.
(p 45)

[Cazorla03] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. Improving
Memory Latency Aware Fetch Policies for SMT Processors. In Proceed-

119

ings of the 5th International Symposium on High Performance Computing
(ISHPC), pages 70–85. Springer-Verlag, October 2003. (p 51)

[Cazorla04] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou E. Fernandez,
A. Ramirez, and M. Valero. Predictable Performance in SMT Processors.
In Proceedings of the first ACM International Conference on Computing
Frontiers (CF04), pages 433–443. ACM Press, April 2004. (p 73)

[Chappell99] R. S. Chappell, J. Stark, S. P. Kim S. K. Reinhardt, and Y. N. Patt. Simulta-
neous subordinate microthreading (SSMT). In Proceedings of the 26th In-
ternational Symposium on Computer Architecture (ISCA ’99), pages 186–
195. IEEE Computer Society, May 1999. (p 102)

[Chen02] Y-K. Chen, M. Holliman, E. Debes, S. Zheltov A. Knyazev, S. Bratanov,
R. Belenov, and I. Santos. Media Applications on Hyper-Threading Tech-
nology. Intel Technology Journal, 6(2):47–57, February 2002. (pp 35, 39)

[Collins01a] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic Speculative
Precomputation. In Proceedings of the 34th Annual International Sympo-
sium on Microarchitecture (MICRO-34), pages 306–317. IEEE Computer
Society, December 2001. (p 98)

[Collins01b] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes Y-F. Lee, D. Lavery, and
J. P. Shen. Speculative Precomputation: Long-range Prefetching of Delin-
quent Loads. In Proceedings of the 28th Annual International Symposium
on Computer Architecture (ISCA ’01), pages 14–25. IEEE Computer Soci-
ety, July 2001. (p 98)

[Diefendorff99] K. Diefendorff. Compaq Chooses SMT for Alpha. Microprocessor Report,
13(16), December 1999. (p 21)

[Dorai02] G. K. Dorai and D. Yeung. Transparent Threads: Resource Sharing in
SMT Processsors for High Single-Threaded Performance. In Proceedings
of the 11th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT ’2002), pages 30–41. IEEE Computer Society,
September 2002. (p 103)

[Dorozhevets92] M. Dorozhevets and P. Wolcott. The El’brus-3 and MARS-M: recent ad-
vances in Russian high-performance computing. The Journal of Supercom-
puting, 6(1):5–48, March 1992. (p 20)

[Dubois98] M. Dubois and Y. H. Song. Assisted Execution. Technical Report 98-25,
University of Southern California, October 1998. (p 101)

[Eggers97] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo R. L. Stamm, and D. M.
Tullsen. Simultaneous Multithreading: A Platform for Next-Generation
Processors. IEEE Micro, 17(5):12–19, October 1997. (pp 20, 37)

[Fedorova04a] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Throughput-

120

Oriented Scheduling on Chip Multithreading Systems. Technical Report
TR-17-04, Harvard University, August 2004. (p 75)

[Fedorova04b] A. Fedorova, C. Small, D. Nussbaum, and M. Seltzer. Chip Multithreading
Systems Need a New Operating System Scheduler. In 11th ACM SIGOPS
European Workshop, September 2004. (p 75)

[Fraser04] K. A. Fraser, S. M. Hand, R. Neugebauer, I. A. Pratt A. K. Warfield, and
M. A. Williamson. Reconstructing I/O. Technical Report UCAM-CL-TR-
596, University of Cambridge Computer Laboratory, August 2004. (p 106)

[Glaskowsky04] P. N. Glaskowsky. Prescott Pushes Pipelining Limits. Microprocessor Re-
port, February 2004. (p 23)

[Greenwald96] M. Greenwald and D. Cheriton. The Synergy Between Non-blocking
Synchronization and Operating System Structure. In Proceedings of the
USENIX 2nd Symposium on Operating Systems Design and Implementa-
tion (OSDI ’96), pages 123–136. The USENIX Association, October 1996.
(p 28)

[Grunwald02] D. Grunwald and S. Ghiasi. Microarchitectural Denial of Service: Insur-
ing Microarchitectural Fairness. In Proceedings of the 35th Annual Inter-
national Symposium on Microarchitecture (MICRO-35), pages 409–418.
IEEE Computer Society, November 2002. (p 38)

[Hennessy03] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan-Kaufman, third edition, 2003. (p 18)

[Henning00] J. L. Henning. SPEC CPU2000: Measuring CPU Performance in the New
Millenium. IEEE Computer, 33(7):28–35, July 2000. (p 83)

[Hinton01] G. Hinton, D. Sager, M. Upton, D. Boggs D. Carmean, A. Kyker, and
P. Roussel. The Microarchitecture of the Pentium 4 Processor. Intel Tech-
nology Journal, 5(1):1–13, February 2001. (p 21)

[Hirata92] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki A. Nishimura,
Y. Nakase, and T. Nishizawa. An Elementary Processor Architecture with
Simultaneous Instruction Issuing from Multiple Threads. In Proceedings of
the 19th International Symposium on Computer Architecture (ISCA ’92),
pages 136–145. IEEE Computer Society, May 1992. (p 20)

[IEEE04] IEEE. IEEE 1003.1-2004: Standard for Information Technology —
Portable Operating System Interfaces (POSIX). IEEE Computer Society,
2004. (p 96)

[Intel01a] Intel Corporation. Intel Architecture Software Developer’s Manual. Vol-
ume 2: Instruction Set Reference, 2001. (p 29)

[Intel01b] Intel Corporation. Intel Architecture Software Developer’s Manual. Vol-
ume 3: System Programming Guide, 2001. (pp 27, 40)

121

[Intel01c] Intel Corporation. Introduction to Hyper-Threading Technology, 2001.
(p 21)

[Intel03] Intel Corporation. Prescott New Instructions Software Developer’s Guide,
June 2003. (pp 24, 29)

[Kalla04] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip: a Dual-Core
Multithreaded Processor. IEEE Micro, 24(2):40–47, March 2004. (pp 24,

29, 31)

[Kaxiras01] S. Kaxiras, G. Narlikar, A. D. Berenbaum, and Z. Hu. Comparing Power
Consumption of an SMT and a CMP DSP for Mobile Phone Workloads.
In Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES ’01), pages 211–220. ACM
Press, November 2001. (p 35)

[Kessler92] R. E. Kessler and M. D. Hill. Page Placement Algorithms for Large Real-
Indexed Caches. ACM Transactions on Computer Systems, 10(4):338–
359, November 1992. (p 33)

[Kim04] D. Kim, S. S. Liao, P. H. Wang, J. del Cuvillo X. Tian, X. Zou, D. Ye-
ung, M. Girkar and J. P. Shen. Physical Experimentation with Prefetching
Helper Threads on Intel’s Hyper-Threaded Processors. In Proceedings of
the 2004 International Symposium on Code Generation and Optimization
(CGO ’04), pages 27–38. IEEE Computer Society, March 2004. (p 99)

[Koufaty03] D. Koufaty and D. T. Marr. Hyperthreading Technology in the Netburst
Microarchitecture. IEEE Micro, 23(2):56–64, 2003. (p 21)

[Krewell02] K. Krewell. Intel’s Hyper-Threading Takes Off. Microprocessor Report,
December 2002. (p 21)

[Kumar04] R. Kumar, D. M. Tullsen, P. Ranganathan N. P. Jouppi, and K. I. Farkas.
Single-ISA Heterogeneous Multi-Core Architectures for Multi-Threaded
Workload Performance. In Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA ’04), pages 64–75. IEEE
Computer Society, June 2004. (p 74)

[Lee98] D. C. Lee, P. J. Crowley, J-L. Baer, T. E. Anderson and B. N. Bershad.
Execution Characteristics of Desktop Applications on Windows NT. In
Proceedings of the 25th International Symposium on Computer Architec-
ture (ISCA ’98), pages 27–38. IEEE Computer Society, June 1998. (pp 20,

71)

[Limousin01] C. Limousin, J. Sebot, A. Vartanian, and N. Drach-Temam. Improving
3D Geometry Transformations on a Simultaneous Multithreaded SIMD
Processor. In Proceedings of the 15th International Conference on Super-
computing, pages 236–245, May 2001. (p 26)

[Lo97a] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh and D. M. Tullsen. Tuning

122

Compiler Optimizations for Simultaneous Multithreading. In Proceedings
of the 30th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-30), pages 114–124. IEEE Computer Society, December
1997. (p 33)

[Lo97b] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm D. M. Tullsen, and S. J.
Eggers. Converting Thread-Level Parallelism to Instruction-Level Paral-
lelism via Simultaneous Multithreading. ACM Transactions on Computer
Systems, 15(3):322–354, August 1997. (p 20)

[Lo98] J. L. Lo, L. A. Barroso, S. J. Eggers K. Gharachorloo, H. M. Levy, and S. S.
Parekh. An Analysis of Database Workload Performance on Simultaneous
Multithreaded Processors. In Proceedings of the 25th International Sympo-
sium on Computer Architecture (ISCA ’98), pages 39–50. IEEE Computer
Society, June 1998. (p 32)

[Loikkanen96] M. Loikkanen and N. Bagherzadeh. A Fine-Grain Multithreading Super-
scalar Architecture. In Proceedings of the 1996 Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT ’96), pages 163–168. IEEE
Computer Society, October 1996. (p 21)

[Luk01] C-K. Luk. Tolerating Memory Latency through Software-Controller Pre-
Execution in Simultaneous Multithreading Processors. In Proceedings
of the 28th Annual International Symposium on Computer Architecture
(ISCA ’01), pages 40–51. IEEE Computer Society, July 2001. (p 99)

[Magro02] W. Magro, P. Peterson, and S. Shah. Hyper-Threading Technology: Impact
on Compute-Intensive Workloads. Intel Technology Journal, 6(2):58–66,
February 2002. (p 38)

[Marcuello98] P. Marcuello, A. González, and J. Tubella. Speculative Multithreaded Pro-
cessors. In Proceedings of the 12th International Conference on Supercom-
puting, pages 77–84. ACM Press, July 1998. (p 97)

[Marcuello99] P. Marcuello and A. González. Exploiting Speculative Thread-Level Paral-
lelism on a SMT Processor. In Proceedings of the 7th International Con-
ference on High Performance Computing and Networking Europe 1999,
pages 141–150. Springer-Verlag, April 1999. (p 97)

[Marr02] D. T. Marr, F. Binns, D. L. Hill, G. Hinton D. A. Koufaty, J. A. Miller,
and M. Upton. Hyper-Threading Technology Architecture and Microar-
chitecture. Intel Technology Journal, 6(2):1–12, February 2002. (pp 21, 29,

46)

[McDowell03] L. K. McDowell, S. J. Eggers, and S. D. Gribble. Improving Server Software
Support for Simultaneous Multithreaded Processors. In Proceedings of the
ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’03), pages 37–48. ACM Press, June 2003. (p 33)

123

[Moore96] S. W. Moore. Multithreaded Processor Design. Kluwer Academic Publish-
ers, 1996. (pp 19, 106)

[Mosberger98] David Mosberger and Tai Jin. httperf: A Tool for Measuring Web Server
Performance. In First Workshop on Internet Server Performance, pages
59–67, June 1998. (p 112)

[Muir00] S. J. Muir and J. M. Smith. Piglet: A Low-Intrusion Vertical Operating
System. Technical Report MS-CIS-00-04, University of Pennsylvania, Jan-
uary 2000. (p 106)

[Nakajima02] J. Nakajima and V. Pallipadi. Enhancements for Hyper-Threading Tech-
nology in the Operating System — Seeking the Optimal Scheduling. In
Proceedings of the 2nd Workshop on Industrial Experiences with Systems
Software. The USENIX Association, December 2002. (p 75)

[Oplinger02] J. Oplinger and M. S. Lam. Enhancing Software Reliability with Specu-
lative Threads. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’02), pages 184–196. ACM Press, October 2002. (p 103)

[Parekh00] S. S. Parekh, S. J. Eggers, H. M. Levy, and J. L. Lo. Thread-Sensitive
Scheduling for SMT Processors. Technical Report 2000-04-02, University
of Washington, June 2000. (pp 74, 82)

[Park03] I. Park, B. Falsafi, and T. N. Vijaykumar. Implicitly-Multithreaded Pro-
cessors. In Proceedings of the 30th Annual International Symposium on
Computer Architecture (ISCA ’03), pages 39–50. IEEE Computer Society,
June 2003. (p 97)

[Prabhu03] M. K. Prabhu and K. Olukotun. Using Thread-Level Speculation to
Simplify Manual Parallelization. In Proceedings of the ninth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’03), pages 1–12. ACM Press, June 2003. (p 97)

[Preston02] R. P. Preston, R. W. Badeau, D. W. Bailey, S. L. Bell L. L. Biro, W. J.
Bowhill, D. E. Dever, S. Felix R. Gammack, V. Germini, M. K. Gowan,
P. Gronowski D. B. Jackson, S. Mehta, S. V. Morton J. D. Pickholt, M. H.
Reilly, and M. J. Smith˙ Design of an 8-wide Superscalar RISC Micropro-
cessor with Simultaneous Multithreading. In Proceedings of the 2002 IEEE
Solid-State Circuits Conference (ISSCC 2002), pages 334–335. IEEE Solid-
State Circuits Society, February 2002. (p 21)

[Puppin01] D. Puppin and D. M. Tullsen. Maximizing TLP with loop-parallelization
on SMT. In Workshop on Multi-Threaded Execution, Architectures and
Compilers (MTEAC-5), December 2001. (p 96)

[Purser00] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A Study of Slipstream
Processors. In Proceedings of the 33rd Annual International Symposium on

124

Microarchitecture (MICRO-33), pages 269–280. IEEE Computer Society,
December 2000. (p 99)

[Redstone00] J. A. Redstone, S. J. Eggers, and H. M. Levy. An Analysis of Operat-
ing System Behaviour on a Simultaneous Multithreaded Architecture. In
Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’00), pages
245–256. ACM Press, November 2000. (p 38)

[Redstone02] J. A. Redstone. An Analysis of Software Interface Issues for SMT Proces-
sors. PhD thesis, University of Washington, December 2002. (pp 28, 30,

101)

[Redstone03] J. A. Redstone, S. J. Eggers, and H. M. Levy. Mini-Threads: Increasing TLP
on Small-Scale SMT Processors. In Proceedings of the nineth International
Symposium on High Performance Computer Architecture (HPCA-9), pages
19–30. IEEE Computer Society, February 2003. (p 101)

[Reinhardt00] S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via Si-
multaneous Multithreading. In Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’00), pages 25–36.
IEEE Computer Society, June 2000. (p 104)

[Rotenberg99] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance
in Microprocessors. In Proceedings of the 29th International Symposium
on Fault-Tolerant Computing (1999), pages 84–91. IEEE Computer Soci-
ety, June 1999. (p 104)

[Roth01] A. Roth and G. S. Sohi. Speculative Data-Driven Multithreading. In Pro-
ceedings of the seventh International Symposium on High Performance
Computer Architecture (HPCA-7), pages 37–48. IEEE Computer Society,
January 2001. (p 99)

[Roth99] A. Roth, A. Moshovos, and G. S. Sohi. Improving Virtual Function Call
Target Prediction via Dependence-Based Pre-Computation. In Proceedings
of the 13th International Conference on Supercomputing, pages 356–364.
ACM Press, May 1999. (p 99)

[Sazeides01] Y. Sazeides and T. Juan. How to Compare the Performance of Two SMT
Microarchitectures. In Proceedings of the 2001 IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pages 180–183,
November 2001. (p 44)

[Seng00] J. S. Seng, D. M. Tullsen, and G. Z. N. Cai. Power-Sensitive Multithreaded
Architecture. In Proceedings of the 2000 IEEE International Conference
on Computer Design, pages 199–206. IEEE Computer Society, September
2000. (p 35)

[Serrano94] M. J. Serrano, W. Yamamoto, R. C. Wood and M. D. Nemirovsky. A
Model for Performance Estimation in a Multistreamed Superscalar Pro-

125

cessor. In Proceedings of the 7th International Conference on Computer
Performance Evaluation, Modelling Techniques and Tools, volume 794 of
Lecture Notes in Computer Science, pages 213–230. Springer-Verlag, May
1994. (p 20)

[Sherwood99] T. Sherwood and B. Calder. Time Varying Behaviour of Programs. Tech-
nical Report CS99-630, University of California, San Diego, August 1999.
(p 59)

[Snavely00] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreading Processor. In Proceedings of the 9th International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’00), pages 234–244. ACM Press, November 2000.
(pp 37, 74)

[Snavely02] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic Jobscheduling with
Priorities for a Simultaneous Multithreading Processor. In Proceedings
of the 2002 International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’02), pages 66–76. ACM Press, June
2002. (pp 37, 74)

[Snavely99] A. Snavely, N. Mitchell, L. Carter, J. Ferrante and D. M. Tullsen. Ex-
plorations in Symbiosis on two Multithreaded Architectures. In Workshop
on Multi-Threaded Execution, Architectures and Compilers (MTEAC ’99),
January 1999. (pp 37, 44)

[Sohi95] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar Processors. In
Proceedings of the 22th International Symposium on Computer Architec-
ture (ISCA ’95), pages 414–425. IEEE Computer Society, June 1995. (p 97)

[Solomon00] D. A. Solomon and M. E. Russinovich. Inside Windows 2000. Microsoft
Press, third edition, June 2000. (p 93)

[SPEC] The Standard Performance Evaluation Corporation, http://www.spec.org/.
(pp 41, 45, 107, 112)

[Squillante93] M. S. Squillante and E. D. Lazowska. Using Processor-Cache Affinity In-
formation in Shared-Memory Multiprocessor Scheduling. IEEE Transac-
tions on Parallel and Distributed Systems, 4(2):131–143, February 1993.
(p 72)

[Steffan00] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable Ap-
proach to Thread-Level Speculation. In Proceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA ’00), pages 1–
12. IEEE Computer Society, June 2000. (p 97)

[Steffan98] J. G. Steffan and T. C. Mowry. The Potential for Using Thread-Level Data
Speculation to Facilitate Automatic Parallelization. In Proceedings of the
fourth International Symposium on High Performance Computer Architec-
ture (HPCA-4), pages 2–13. IEEE Computer Society, February 1998. (p 97)

126

[Sundaramoorthy00] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors:
Improving both Performance and Fault Tolerance. In Proceedings of the
9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’00), pages 257–268. ACM
Press, November 2000. (p 99)

[Tomasulo67] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arith-
metic Units. IBM Journal of Research and Development, 11(1):25–33,
January 1967. (p 18)

[Tuck03] N. Tuck and D. M. Tullsen. Initial Observations of the Simultaneous
Multithreading Pentium 4 Processor. In Proceedings of the 12th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT ’2003), pages 26–34. IEEE Computer Society, September 2003.
(pp 39, 41, 46)

[Tullsen01] D. M. Tullsen and J. A. Brown. Handling Long-latency Loads in a Si-
multaneous Multithreading Processor. In Proceedings of the 34th Annual
International Symposium on Microarchitecture (MICRO-34), pages 318–
327. IEEE Computer Society, December 2001. (p 51)

[Tullsen95] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. In Proceedings of the 22th International
Symposium on Computer Architecture (ISCA ’95), pages 392–403. IEEE
Computer Society, June 1995. (pp 20, 37)

[Tullsen96a] D. M. Tullsen. Simulation and Modeling of a Simultaneous Multithreading
Processor. In 22nd Annual Computer Measurement Group Conference,
pages 819–828. Computer Measurement Group, December 1996. (p 37)

[Tullsen96b] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M. Levy. Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous
Multithreading Processor. In Proceedings of the 23th International Sym-
posium on Computer Architecture (ISCA ’96), pages 191–202. IEEE Com-
puter Society, May 1996. (pp 20, 37)

[Tullsen98] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Retrospective: Simultane-
ous Multithreading: Maximizing On-Chip Parallelism. In 25 Years of the
International Symposia on Computer Architecture (Selected Papers), pages
115–116. ACM Press, August 1998. (p 20)

[Tullsen99] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy. Supporting Fine-
Grained Synchronization on a Simultaneous Multithreading Processor. In
Proceedings of the fifth International Symposium on High Performance
Computer Architecture (HPCA-5), pages 54–58. IEEE Computer Society,
January 1999. (p 29)

[Ungerer03] T. Ungerer, B. Robič, and J. Šilc. A Survey of Processors with Explicit Mul-
tithreading. ACM Computing Surveys, 35(1):29–63, March 2003. (p 20)

127

[Vianney03] D. Vianney. Hyper-Threading speeds Linux. IBM developerWorks, Jan-
uary 2003. (p 38)

[Vijaykumar02] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-Fault Recovery
Using Simultaneous Multithreading. In Proceedings of the 29th Annual
International Symposium on Computer Architecture (ISCA ’02), pages 87–
98. IEEE Computer Society, May 2002. (p 104)

[von Behren03] R. von Behren, J. Condit, F. Zhou, G. C. Necula and E. Brewer. Capriccio:
Scalable Threads for Internet Services. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pages 268–281.
ACM Press, October 2003. (p 96)

[Wallace98] S. Wallace, B. Calder, and D. M. Tullsen. Threaded Multiple Path Execu-
tion. In Proceedings of the 25th International Symposium on Computer Ar-
chitecture (ISCA ’98), pages 238–249. IEEE Computer Society, June 1998.
(p 100)

[Wang02] H. Wang, P. H. Wang, R. D. Weldon, S. M. Ettinger H. Saito, M. Girkar,
S. S. Liao, and J. P. Shen. Speculative Precomputation: Exploring the Use of
Multithreading for Latency. Intel Technology Journal, 6(2):22–35, Febru-
ary 2002. (p 98)

[Yamamoto95] W. Yamamoto and M. D. Nemirovsky. Increasing Superscalar Performance
Through Multistreaming. In Proceedings of the 1995 Conference on Par-
allel Architectures and Compilation Techniques (PACT ’95), pages 49–58.
IEEE Computer Society, June 1995. (p 20)

[Zhou04] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient
Architectural Support for Software Debugging. In Proceedings of the 31st
Annual International Symposium on Computer Architecture (ISCA ’04),
pages 224–235. IEEE Computer Society, June 2004. (p 98)

[Zilles01] C. B. Zilles and G. S. Sohi. Execution-based Prediction using Speculative
Slices. In Proceedings of the 28th Annual International Symposium on
Computer Architecture (ISCA ’01), pages 2–13. IEEE Computer Society,
July 2001. (p 99)

[Zillies99] C. B. Zillies, J. S. Emer, and G. S. Sohi. The Use of Multithreading for Ex-
ception Handling. In Proceedings of the 32nd Annual International Sympo-
sium on Microarchitecture (MICRO-32), pages 219–229. IEEE Computer
Society, November 1999. (p 105)

128

Appendix A

Monochrome Figures

This appendix contains monochrome versions of colour figures which when rendered in black
and white are not easily understandable.

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

Figure A.1: Monochrome version of Figure 3.7. Effect on each SPEC CPU2000 benchmark in a multipro-
grammed pair running on an SMP configuration. A black square represents a good perfor-
mance ratio for the subject benchmark and a white square denotes a bad performance ratio
(relative to “perfect” SMP).

129

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

(a) Northwood

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

(b) Prescott

Figure A.2: Monochrome version of Figure 3.3. Effect on each SPEC CPU2000 benchmark in a multi-
programmed pair running on a Hyper-Threaded processor. A black square represents a good
performance ratio for the subject benchmark and a white square denotes a bad performance
ratio.

130

