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Abstract

This report concerns the development of a language called Fresh Objective Caml, which is
an extension of the Objective Caml language providing facilities for the manipulation of data
structures representing syntax involving α-convertible names and binding operations.

After an introductory chapter which includes a survey of related work, we describe the
Fresh Objective Caml language in detail. Next, we proceed to formalise a small core language
which captures the essence of Fresh Objective Caml; we call this Mini-FreshML. We provide
two varieties of operational semantics for this language and prove them equivalent. Then in
order to prove correctness properties of representations of syntax in the language we introduce
a new variety of domain theory called FM-domain theory, based on the permutation model of
name binding from Pitts and Gabbay. We show how classical domain-theoretic constructions—
including those for the solution of recursive domain equations—fall naturally into this setting,
where they are augmented by new constructions to handle name-binding.

After developing the necessary domain theory, we demonstrate how it may be exploited
to give a monadic denotational semantics to Mini-FreshML. This semantics in itself is quite
novel and demonstrates how a simple monad of continuations is sufficient to model dynamic
allocation of names. We prove that our denotational semantics is computationally adequate
with respect to the operational semantics—in other words, equality of denotation implies
observational equivalence. After this, we show how the denotational semantics may be used
to prove our desired correctness properties.

In the penultimate chapter, we examine the implementation of Fresh Objective Caml,
describing detailed issues in the compiler and runtime systems. Then in the final chapter
we close the report with a discussion of future avenues of research and an assessment of the
work completed so far.
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1 Introduction

‘Imagination is more important

than knowledge.’ —Einstein

THIS REPORT is about two things: names and metaprogramming.

Names are ubiquitous in the field of computer science and throughout today’s networked
world. Important elements of computer systems such as files, disks, machines and networks
are all identified by names. Programs and machines often communicate over virtual ‘channels’
which are identified by names[34]. When writing programs, use is made of variables, file
handles, process identifiers and many other sorts of name in disguise.

All of these names may be divided[39, 35] into two varieties: pure names and impure

names. A name which is said to be pure is just a handle on something. Given a pure name,
we can inspect what it is referring to and check to see if it is the same name as another.
However, usually that is all and no further operations are permitted. In contrast, an impure
name has some structure actually within the name which we can examine. An example might
be the electronic mail address mrs30@cam.ac.uk or the Internet address of a computer, say
131.111.8.42. In each of these cases, there is some user-visible structure to the name—in
these examples, the structure is defined by international standards. The names justify their
designation because they still refer to something: a mailbox and a computer respectively.

This report deals with the use of pure names in metaprogramming systems. Metaprogram-
ming is the art of constructing software which manipulates the syntactic structures of other
programs. There are many large-scale examples in common use today: compilers, interpreters
and theorem provers being good examples. Metaprogramming can be homogenous, meaning
that the metaprogram is written in the same language as the program being manipulated; or
heterogeneous, meaning that these languages may differ. Sheard[58] provides a good survey
of these and other issues in metaprogramming.

We shall be particularly interested in possibly-heterogeneous metaprogramming in func-

tional languages such as Haskell, Standard ML, Objective Caml and so forth. These languages
are particularly good for metaprogramming due to a few salient features, of which the follow-
ing two are arguably the most important.

I User-defined datatypes and pattern-matching. It is straightforward to represent the syntax
of some target language (known as the object language) by defining a datatype to represent the
various shapes of syntactic structure which occur in that language. Values of such datatypes are
created by parsing a program’s concrete syntax into abstract syntax[30]. A portion of abstract
syntax will likely be tagged to say what it is (a variable, a conditional statement, etc.) and it
may well contain smaller syntactic entities within it. Functional programming languages make
it easy to construct values representing abstract syntax and then pick them apart again using
pattern-matching. These features tend to save a large amount of tedious coding and help with
the readability of metaprograms.

I Definition by structural recursion. Functional languages permit functions over syntax to
be defined by structural recursion[8]. Typically a program will make use of such recursion to
manipulate abstract syntax trees by traversing through the various structures and performing
different actions depending on the type of entity encountered along the way. Many such
transformations can be captured using the idea of a catamorphism[31], a generalisation of the
traditional foldl and foldr functions over lists.

The writing of program-manipulating programs entails the writing of name-manipulating
programs. Otherwise, we would have to restrict our attention to singularly uninteresting
languages involving no notion of ‘name’ whatsoever. A prime concern in metalanguage design
should therefore be the provision of suitable facilities for manipulating names. On the surface
this might not seem a difficult problem: after all, names at first sight do not appear to be

7



8 1. Introduction

particularly complicated things. In fact, they are not—it is the operations in which they are
involved which give rise to the complexities.

The specific complications which we shall deal with in this report are those arising from
the binding of names by language constructs. Here are three short examples—one from math-
ematics, one from Objective Caml and one from the λ-calculus[5]—which illustrate binding
operations.

∫ 1

0

f(x, y) dx an integral

let x = 42 in x ∗ x local declaration
λx. λy. x y function abstraction

Name binding is as ubiquitous as names are themselves and poses significant problems for
the representation of object language syntax. The nub of the problem is that in pencil-and-
paper practice—when designing syntax-manipulating algorithms in the object language or
maybe proving theorems about them—we often identify bound names up to α-conversion. For
example, λx. λy. x y is α-convertible to both λx. λz. x z and λy. λx. y x. This process of
renaming variables to produce α-variants of terms is often essential during the manipulation
of syntax where terms may be substituted into each other, or in other scenarios where there is a
possibility of name clashes. A classic example is the algorithm of capture-avoiding substitution

which is used in the definition of β-reduction for the λ-calculus. Free-and-easy application of
α-conversion during pencil-and-paper work captures the idea that the particular bound names
used should not somehow matter, so long as they are kept suitably distinct from each other.
This convention that free and bound names should always be kept disjoint and distinct from
each other is often known as the ‘Barendregt variable convention’[5].

The mechanisation of algorithms which involve the manipulation of syntax with binders
is made difficult and time-consuming by the necessity to incorporate code to handle these
scenarios. In this report, we are concerned with extending a functional programming language
(Objective Caml) with core features which assist these metaprogramming tasks. The resulting
language, Fresh O’Caml, provides for the generation of fresh names which we can use to
represent object language names which may be involved in binding operations: such names
will be referred to as bindable names. It also assists us with the representation of object
language binding constructs by providing facilities to package up syntax trees using abstraction

expressions. When deconstructing the values of such expressions, the runtime system ensures
that names inside are freshened up accordingly to avoid clashes. Additionally, some extra
utility constructs are provided to increase the expressiveness of the language.

Fresh O’Caml is the successor to the FreshML language[63, 49, 18]—a design which yielded
an interpretive system accepting a syntax based on the Core language of Standard ML with
added features for manipulating names. Early versions of the language, now referred to as
FreshML-2000, used a complicated static type system[49] which was thought to be necessary
to enforce certain correctness properties. (We give a detailed discussion of this type system
in §6.8.) Later versions used a much-simplified type system, which gave rise to more ex-
pressive versions of the language and finally led onto the development of Fresh O’Caml and
the subsequent deprecation of the FreshML system. The FreshML interpretive system is now
unsupported.

What properties are desirable of a name-manipulating solution for a metaprogramming
language? We believe the following aspects are important. For each, we give a brief description
of how Fresh O’Caml addresses the issue.

I Simplicity. The solution should provide the essential functionality—the generation of fresh
names together with the construction and deconstruction of representations of object language
syntax with binding—in the most straightforward way possible. This assists the programmer
who has to use the facilities and the theorist who wishes to prove properties about them. In
Fresh Objective Caml we provide fairly general, first order support for representing binding
operations. The new facilities are straightforward to understand and to use.

I Correctness. The additional facilities should have a solid mathematical foundation, together
with the necessary proofs, to make it convincing to a user that the representations of syntax
which they are using are in some sense correct. In this report, we present a full proof of some
correctness properties of a core language Mini-FreshML which captures the essence of Fresh
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O’Caml—showing how contextual equivalence classes1 of values and expressions correspond
in a certain way to α-equivalence classes of object language syntax.

I Readability. Programs written using the new solution should bear a good correspondence
to the underlying algorithms. Firstly, there are the usual software engineering arguments
which we shall not delve into here. Secondly, the sort of algorithms often encoded as metapro-
grams are typically developed on paper, often with some good theoretical foundation. It
is a desirable property of a metalanguage to be able to encode such algorithmics so that
the resulting metaprogram bears a good correspondence to the original statement of the
algorithm. As will be seen in the next chapter, Fresh O’Caml programs encoding syntax-
manipulating algorithms often bear a close resemblance to descriptions of the algorithms
themselves.

I Integration. New language constructs introduced by the solution should integrate well with
the existing language features, for example unbounded fixpoint recursion. It is also desirable
that the new language constructs should fit into the existing typing system of the programming
language in order to ease implementation.

I Efficiency. The solution should be designed in such a way as to permit efficient implemen-
tation. At the current time, the Fresh O’Caml implementation is at a sufficiently early stage to
still be lacking in this area: however, later on in this report we discuss the next avenues to be
taken in order to improve this.

This report provides detailed description and discussion of Fresh O’Caml, along the way
encompassing a whole spectrum of computer science. For the pragmatist there is detailed
discussion of the language itself—ranging from a user’s perspective through to nitty-gritty
details of the runtime system implemented in C. For the theorist, we present a variety of
domain theory which is good for reasoning about names and name binding. This forms
the basis for a denotational semantics that is sufficiently powerful to establish some strong
correctness results about our language—and is also interesting in its own right. But we must
emphasise that we are strictly concentrating on functional programming: whilst our work may
well be of use in other areas such as logic programming, we do not wish to embark on a moral
crusade suggesting that our approach to name binding is universally applicable.

1.1 Other approaches to handle binding

Approaches to the problem of name binding in metaprogramming languages may be parti-
tioned into two: first-order and higher-order. These designations correspond to the varieties
of metalanguage constructs which are used to represent object language binding constructs.
The Fresh approach described in this report is first-order: object language binding constructs
are not represented by higher-order functions. Other first-order schemes include both simple
ones using textual representations of names and those based on de Bruijn indices. In contrast,
we have the various approaches based on higher-order abstract syntax which all exploit the
function abstraction constructs of the metalanguage in order to represent object-level binding.
Let us examine these differing approaches in more detail.

1.1.1 de Bruijn indices

An oft-cited means of tackling the problems of name binding is the use of de Bruijn indices[11,
12, 17] in abstract syntax trees. This is a ‘nameless’ way of representing object-level syntax via
the use of numbered binders: rather than a language extended wholesale with new constructs,
it is simply a scheme of representation which can be used with a standard metaprogramming
language. It concentrates on the shape of the binding structure rather than on particular
names. Instead of placing a bound name in a syntax tree, we place an integer which identifies
how many levels of binders we should skip back over in order to find the one which binds at
the point of interest. For example, we could represent the term λx. λy. y x by the nameless
term λ. λ. 0 1. Note how names on the binders themselves become redundant.

Whilst de Bruijn indices do indeed capture the idea that ‘actual names of bound variables
should not matter’, they are inconvenient in practice. Code which manipulates nameless
representations is likely to be difficult to understand and maintain. One particular problem is

1Two expressions are said to be contextually equivalent if they may be freely exchanged within the source text of
some enclosing program without affecting the program’s observable results.



10 1. Other approaches to handle binding

that replacing one subterm with another inside some larger term may in general result in the
de Bruijn indices having to be adjusted. Consider for example the following code fragment,
where the ellipsis stands for some large function body.

let f = fun x -> ... in let g = fun y -> y + (f y) in fun z -> (f, g)

We might wish to perform a transformation on this code fragment to inline the function g,
yielding the following.

let f = fun x -> ... in fun z -> (f, fun y -> y + (f y))

Let us consider using de Bruijn indices to represent these pieces of syntax. Assuming that ‘let’
is a non-recursive binding construct, then a representation of the first fragment above could
look like the following.

let _ = fun _ -> ... in let _ = fun _ -> 0 + (1 0) in fun _ -> (2, 1)

Applying the inlining transformation, we then obtain the following.

let _ = fun _ -> ... in fun _ -> (1, fun _ -> 0 + (2 0))

Note that two extra things have had to happen here: firstly, the removal of the binding for g
means that the first component of the pair needs a de Bruijn index adjusting. A similar thing
happens in the second component, where the inlining of the body of g has caused it to be in a
different place with respect to the various binders.

This simple example shows how a ‘nameless’ style of programming can be difficult to
work with. Fresh O’Caml provides a ‘nameful’ style, where the programmer can gain access
to concrete names whilst still having the reassurances provided by capture-avoidance and
freshness properties.

1.1.2 Threading of name states

Peyton-Jones and Marlow[41] present a good overview of the problems surrounding name
binding in the Glasgow Haskell Compiler inliner. Early versions of that compiler blindly
renamed every bound variable to a fresh one in order to avoid problems of name capture.
However, not only is this inefficient due to the gratuitous ‘churning’ of names, as those authors
put it, but also cumbersome due to the lack of side-effecting constructs in Haskell: some kind
of name state must be threaded through all algorithms dealing with the generation of fresh
names. The authors describe how more modern versions of the compiler cope with this by
adapting algorithms such as those for capture-avoiding substitution so they take note of all
names currently in scope. This enables the generation of fresh names to be minimised and
there is no gratuitous renaming. When a fresh name is required, a probabilistic approach is
used to (hopefully rapidly) find a suitable one.

1.1.3 Higher-order abstract syntax

Unlike Fresh O’Caml, higher-order abstract syntax (HOAS)[43, 24] exploits the function ab-
straction constructs of the metalanguage to represent object-level binding, yielding another
‘nameless’ style of representation. As an example, a HOAS representation of abstract syntax
trees of the λ-calculus could be written as

type lam = Lam of lam -> lam | App of lam * lam;;

Whilst such an embedding at first seems to be rather elegant, it does not fit well in the
framework of a general-purpose functional programming language. The good points about it
are that capture-avoidance—and indeed object-level substitution—come for free, by virtue of
the properties of meta-level function application. (Having said that, an argument that ‘object-
level substitution for free’ is highly desirable does not really hold its ground for a language
such as Fresh O’Caml, where such operations are easily defined. See for example our code for
capture-avoiding substitution in §2.2.3: it is straightforward and fast to write.)

The serious concern about such declarations, however, is the contravariant occurrence of
the type lam. This means that the datatype is a mixed-variance inductive definition, pre-
cluding the construction of functions over it by the usual recursive techniques. For example,
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when specifying a transformation over such a datatype using a catamorphism (say to pretty-
print terms using a function of type lam -> string) then one must also provide the inverse
anamorphism (in this case a function of type string -> lam, which amounts to writing a
parser).

Moreover there are sufficiently many elements of the function space lam -> lam that many
of them, when encapsulated inside lam’s constructors, do not correspond to legal abstract
syntax trees of the object language. The ones that do not are the so-called ‘exotic terms’, for
example:

let exotic =

Lam (fun t -> match t with Lam _ -> t | App _ -> App (t, t));;

Whilst this is a typeable expression of type lam, it does not correspond to the abstract syntax
of any λ-term.

Another unfortunate property of HOAS representations is that since a value representing
a term may contain computations at the binding points, side effects will be delayed until the
term is deconstructed via function applications. This may not be in keeping with a strict
metalanguage such as Objective Caml.

In an attempt to deal with the problem of exotic terms there are type systems[15] to restrict
the values which may be passed as the arguments to constructors such as Lam. These work
by using the observation that so long as the types of such constructors only admit suitably
parametric functions[69], then no exotic terms arise. However, such restrictions produce a
technically-complex framework which still has inadequacies—as seen in the conclusion of [15]
where the authors note that an algorithm implementing a simple structural equality test is not
definable in their system.

Another alternative[14] is to adopt a ‘weak’ rather than the ‘strong’ HOAS embedding
which we saw above. This yields type declarations such as the following:

type lam = Lam of var -> lam | App of lam * lam;;

for some type var of object language identifiers. This produces normal, positive inductive def-
initions at the expense of doing away with object-level substitution for free. We do, however,
still retain the capture avoidance properties which we desire. All begins to look rosy, but there
is a further difficulty: how does one define the type var? This needs to be suitably abstract, in
some sense, so that exotic terms (involving functions of type var -> lam) cannot be created
by case distinction on values of type var. Suitable types for var can be defined, but this means
that one cannot define the algorithm for capture-avoiding substitution, for example.

It still seems to be the case that there exists no single, integrated solution based on higher-
order abstract syntax that provides a full-scale name-manipulating metalanguage along the
lines of Fresh O’Caml. Previous work by Miller[33] on an ML-style language MLλ equipped
with function types τ => τ ′ goes some way to remedy the situation, but again becomes
somewhat clumsy when it comes to defining functions by structural induction over abstract
syntax. Bindlib[53] provides a framework for manipulating abstract syntax with binders
in O’Caml, but it is not fully automatic since user-defined functions must be written for
term construction. Another take on the subject is the more recent work of Washburn and
Weirich[70], who (in addition to a nice survey of some of these problems) have shown how
one can enforce parametricity restrictions equivalent to those of [15] by just using first-class
polymorphism in Haskell. However, as those authors identify, their approach still fails to
provide any direct access to concrete names.

So whilst HOAS has had nice applications, for example in the areas of logic programming
and theorem proving, the first-order approach presented in this report does appear to be more
suited for our target application area.

1.2 Other related work

In this section we provide a brief summary of some other work which is related in one way or
another to that of our own. Much of this revolves around the underlying permutation model
of name binding in FM-set theory[20, 18] upon which the FM-domain theory of Chapter 4 is
based. This is not an exhaustive list: other related work is cited later in the report where it fits
into the main flow of the text.
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I Trees with hidden labels. The work by Cardelli et al.[9] on manipulating trees with hidden
labels must be singled out as having directly affected the course of the FreshML (and thereafter
Fresh O’Caml) language design. For it was this work which led to the realisation that it was
not necessary to worry about certain side-effects of name generation which arise during the
deconstruction of values representing object language binding constructs. This led to the
deprecation of a complicated system of static analysis (discussed at length in §6.8).
I Nominal unification. As we discussed in §1.1.3, there is a distinct split between Fresh

O’Caml and HOAS-based approaches by virtue of Fresh O’Caml representing binding using
first-order constructs. This same division between first-order and higher-order approaches is
apparent in the work[67] by Urban et al. on nominal unification. In that setting, the problem
is to take two object-level terms involving binding and determine whether there exists some
substitution of terms for variables which makes the two original terms α-equivalent. Those
authors’ work is again based on the permutation model of name binding, involving access
to concrete names rather than using higher-order representations, and therefore draws on
much of the same theory as ourselves. The work shows how to produce a decidable, most-
general unification algorithm which operates on object-level terms involving binding—and this
is done without much of the awkwardness associated with traditional higher-order unification
problems.
I Logic programming. The work on nominal unification has led to a series of papers on
α-Prolog[10], an evolving variant of Prolog which draws on the permutation model of name
binding in order to manipulate abstract syntax. It will be interesting to see in the future if that
model can be made to fit a logic programming setting as well as it fits a functional one.
I Theorem-proving. The implementation of theorem-proving technologies is an important

application of metaprogramming. The doctoral thesis of Gabbay[18], which presents the full
details of FM-set theory together with a discussion of an early version of FreshML, includes a
formalisation of FM-set theory inside the Isabelle proof checker. Further discussion is available
elsewhere[19].
I Game semantics using FM-sets. Abramsky et al. have produced recent work[2] which

describes a fully-abstract model of the nu-calculus[65, 50, 66], based in a setting of game
semantics. They exploit one of the key properties of FM-set theory just as we do in this report:
it enables all dependencies on parameterising name sets to be made implicit. The work is
of particular interest since the nu-calculus is closely related to Mini-FreshML (described in
Chapter 3), albeit lacking in recursion.
I Term rewriting systems. Work by Gabbay et al.[16] has shown how both first-order and

higher-order term rewriting systems may be reformulated into a first-order approach based on
FM-set theory. As for Fresh O’Caml and the work on nominal unification, a ‘nameful’ approach
is adopted where bound entities are explicitly named; the resulting rewriting systems respect
α-conversion of terms in the correct manner.
I Name management calculi. Recent work by Moggi and Ancona[4] presents a monadic

calculus for name management using ideas from FM-set theory.

1.3 Report structure

This report consists of seven chapters, of which this is the first. In the next chapter, we describe
the extensions to Objective Caml which constitute the Fresh O’Caml language. Chapter 3 then
proceeds to formalise a small language which provides the core features of Fresh O’Caml.
Two styles of operational semantics, which we prove equivalent, are provided to explain the
evaluation strategy of the language. In Chapter 4, we lay the groundwork for a theoretical
treatment by providing a variant of classical domain theory specially designed for modelling
names. Chapter 5 presents a denotational semantics using this domain theory. It then proceeds
to derive observational equivalence results to show in what sense the representations of object
language terms are correct. In Chapter 6, we discuss implementation details. Finally in
Chapter 7 we survey future work and draw conclusions.



2 Fresh Objective Caml

‘A programming language is a tool

that has profound influence on

our thinking habits.’ —Dijkstra

WE NOW BEGIN to describe the Fresh Objective Caml language in detail, using examples along
the way to illustrate the new language constructs. From this point onwards we assume that
the reader is familiar with the standard O’Caml language, from whose distribution the Fresh
Objective Caml system1 is derived. In order to comply with the licence terms of O’Caml,
the modifications are distributed as a patch bundled together with a modified configure

script which silently applies the patch when the distribution is built for the first time. The
modifications to the system which form the patch are distributed under a BSD-style licence.

2.1 Representation of object language names

The first aspect which we examine is the typing and dynamic creation of values which repre-
sent object language bindable names.

2.1.1 Bindable names: typing

So what types should be assigned to identifiers representing object language bindable names?
An initial attempt might be to have a single metalanguage type, perhaps called name, for this
purpose. However, this is not particularly satisfactory since it would be nice to be able to
distinguish between different varieties of names which may occur in object language syntax.
For example, when representing types and terms of the polymorphic lambda calculus[22, 54,
23, 55] (PLC) we will need to represent type variables and term variables—both of which may
take part in binding operations at the object level. If we can distinguish between these varieties
of names at the meta level (that is, in the source text of some Fresh O’Caml program), then the
compiler will be able to enforce stronger static checks on our source text during type-checking.

Given multiple varieties of names it is desirable to have polymorphism over these varieties.
For example, we shall see later that there exists a Fresh O’Caml construct swap a and a′ in e,
where a and a′ must be of the same type of names and e is some expression. If we wish to
construct a function such as

let map_swap a b = map (fun x -> swap a and b in x);;

then we should be able to assign polymorphic types to the function parameters in such a way
as to constrain them to be of a type of names—and furthermore, of the same type of names.

The best solution to this problem would be to declare some variety of type class whose
members are those types which represent bindable names. However, since neither Standard
ML nor O’Caml provide such Haskell-style type classes[42] we were forced to adopt an alter-
native strategy.

The first attempt at a solution was implemented in the FreshML interpretive system based
on Standard ML. This provided for multiple types of bindable names using the bindable type

declaration. For example,

bindable_type var;

introduced a new type constructor of zero arity called var which could be used to represent
a certain variety of bindable names. Multiple such declarations could be issued within the

1Available from http://www.fresh-ocaml.org/, together with example programs by the author and others.
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source text. Then, a subclass of the equality type variables2 was created known as the bindable

type variables. These were named ’@a, ’@b etc. and provided polymorphism in the desired
manner. For example, the FreshML equivalent of the above function map swap would be typed
as follows.

map swap : ’@a -> ’@a -> ’b list -> ’b list

During the transition to the newer Fresh O’Caml system a rethink was required, for Objective
Caml does not provide the notion of classes of type variables. Instead, we use a single
polymorphic type ’a name and subsume polymorphism over the different kinds of name under
the usual mechanisms for polymorphic types. In order to produce types corresponding to
specific varieties of name, for example names of variables and names of type variables in PLC,
we use generative type declarations as follows.

type t and var = t name;;

type t and tyvar = t name;;

In Fresh O’Caml, map swap now receives the following type.

map_swap : ’a name -> ’a name -> ’b list -> ’b list

2.1.2 Bindable names: creation

Initially, there exist no values of any bindable type. To create them, one simply uses the fresh

expression:

# let x = fresh;;

val x : ’a name = name_0

This declares a new identifier x and assigns a fresh atom to it. We shall learn rather more about
atoms later in this thesis, but for the moment let us just observe that they are the semantic
values corresponding to bindable names. No matter what type of bindable names is involved,
the atoms are drawn from the same global set at runtime3.

Values of bindable type are printed as name 0, name 1 etc.; this numbering is on a ‘per-
response’ basis in the same manner as the usual method for renaming type variables to start
from ’a on each response. The actual atoms which are assigned to identifiers of bindable
type are completely concealed from the programmer (rather like the way in which the actual
addresses of reference cells are concealed in O’Caml).

Having made the above declaration, we could use the identifier x to represent an object
language bindable name. If no explicit type annotations are provided by the programmer then
the name is assigned a polymorphic type, in this case ’a name.

In the following fragment of an interactive session we specify an explicit type annotation
for the new name.

# let (x:var) = fresh;;

val x : var = name_0

From the programmer’s point of view, the only thing which may be done with an atom after
creation is to test whether it is the same as another. In particular, there is no ordering on

atoms to be consistent with the underlying FM-set theory[20]. Problems which arise as a
consequence of this restriction are discussed in §7.1.2.

2.2 Representation of object language binding

In order to represent object language binding constructs Fresh O’Caml uses abstraction values,
written <<v>>v′ for values v, v′. Such values are assigned abstraction types <<τ>>τ ′ (for types
τ , τ ′) and may be constructed using the abstraction-former <<e>>e′ (for expressions e, e′). The
type τ will usually be a type of bindable names, but it may in fact be any type whose values
are comparable (such as an algebraic datatype).

2Another example of the poor-man’s type class.

3Writing
�

for the countably infinite set of atoms and
�

τ for the set of values of type τ name, what we are
effectively doing is setting up an isomorphism between

�
and the disjoint union of the

�
τ , as τ ranges over the Fresh

O’Caml type expressions.
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# let alpha, x, y = fresh, fresh, fresh;;

val alpha : ’a name = name_0

val x : ’a name = name_0

val y : ’a name = name_0

# let t1 = Tgen(<<alpha>>(Tlam(TYvar alpha,

<<x>>(Tlam(TYvar alpha, <<y>>(Tvar x))))));;

val t1 : term = Tgen <<name_0>>(Tlam (TYvar name_0,

<<name_1>>(Tlam (TYvar name_0,

<<name_2>>(Tvar name_1)))))

# let t2 = Tgen(<<alpha>>(Tlam(TYvar alpha,

<<x>>(Tlam(TYvar alpha, <<x>>(Tvar x))))));;

val t2 : term = Tgen <<name_0>>(Tlam (TYvar name_0,

<<name_2>>(Tlam (TYvar name_0,

<<name_1>>(Tvar name_1)))))

# let t3 = Tgen(<<alpha>>(Tlam(TYvar alpha,

<<x>>(Tlam(TYvar alpha, <<y>>(Tvar y))))));;

val t3 : term = Tgen <<name_0>>(Tlam (TYvar name_0,

<<name_2>>(Tlam (TYvar name_0,

<<name_1>>(Tvar name_1)))))

Figure 2.1: Encoding some PLC terms in Fresh O’Caml.

2.2.1 Abstraction values: construction

When we write an abstraction expression <<e>>e′ in a piece of Fresh O’Caml code, we are
telling the compiler that we wish to represent a piece of object language binding. We say
that the expression between the double angle brackets is in binding position and use the same
convention for abstraction values and abstraction types. At runtime, evaluation of e′ yields
the value representing the body of the abstraction whereas evaluation of e yields that which
corresponds to the bound identifier(s). (Often, e will just evaluate to a single atom, but
expressions of more complicated types are permitted in binding position as we noted above.)
The evaluation of e must yield a value that is comparable (in the Standard ML setting this
corresponds to e having an equality type). Failure to adhere to this condition raises a runtime
Invalid argument exception. We say a little more about this in §2.2.5.

In a programmer’s Fresh O’Caml source code, abstraction types are most likely to arise
within type declarations corresponding to object language syntax trees. Here we shall con-
tinue our running example of the polymorphic lambda calculus (PLC) by providing a suitable
declaration to represent syntax trees corresponding to types and terms of that calculus:

type typ = TYvar of tyvar

| TYfn of typ * typ

| TYforall of <<tyvar>>typ;;

type term = Tvar of var

| Tlam of typ * (<<var>>term)

| Tgen of <<tyvar>>term

| Tapp of term * term

| Tspec of term * typ;;

We can see that abstraction types have been used in those places where we wish to represent
some object-level binding. It is now a straightforward matter to create some syntax trees. For
example, consider the PLC terms

t1
def
= Λα. λx : α. λy : α. x

t2
def
= Λα. λx : α. λx : α. x

t3
def
= Λα. λx : α. λy : α. y.

We can encode the terms in a Fresh O’Caml interactive session as shown in Figure 2.2.1. Note
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how straightforward it is to encode the binding in the object language terms: abstraction type-
formers are tightly integrated with the other type constructors used in algebraic datatypes and
the corresponding values are structurally similar to the original PLC terms. It is in fact the
case that a Fresh O’Caml datatype is still said to be algebraic just when it does not involve any
occurrences of the function space constructor ->: it therefore does include those datatypes
involving abstraction types in their construction.

Also, observe how the system numbers the bindable names on a ‘per-response’ basis as
mentioned in §2.1.2. We can see from this example that the numbering is particularly useful
to highlight the object-level binding inside each term.

In case the reader is wondering, we take the time now to identify that the abstraction-
forming expression <<–>>– is not a binding construct—unlike in an approach based on higher-
order abstract syntax where function abstraction is used to represent object-level binding.
Similarly, abstraction values do not bind atoms. We can illustrate that <<–>>– is not a binder
by considering the Fresh O’Caml expressions

<<x>>z and <<y>>z

where x, y and z are distinct value identifiers of bindable type. The two expressions would be
contextually equivalent if the abstraction-former were a binding construct. However, we can
see that it is not by distinguishing the two expressions using the following context:

let x = fresh in let y = fresh in let z = x in [–].

At runtime x will be assigned some fresh atom, a1 say. The same happens for y: call the
corresponding atom a2. Then, z will be mapped to a1 in the current environment and thus
the two semantic values to which <<x>>z and <<y>>z evaluate are <<a1>>a1 and <<a2>>a1

respectively, which are clearly not contextually equivalent.
The important correctness property of Fresh O’Caml expressions4 and values of datatypes

such as term is that

their contextual equivalence classes are in bijection with the α-equivalence classes

of the object language terms.

After some work, we shall formally state and prove such a result for a small language Mini-

FreshML later in this thesis. Later in this chapter we shall see how this result enables the
testing of object level α-equivalence to be subsumed under the usual mechanisms for structural
equality testing in Fresh O’Caml.

How much support for specific patterns of binding should the language provide? The
current version of Fresh O’Caml described here takes a rather ‘hands-off’ approach, in the
sense that it provides a single construct (the abstraction expression) which can be used in
many different situations. But suppose we were dealing with an object language providing
let-expressions which may bind multiple identifiers at once, as illustrated in the following
code skeleton. The let-bindings may be mutually recursive if marked with rec; if not, the
bindings are non-recursive.

let rec x1 = ...

x2 = ...

in

foo (x1, x2);;

Let us think about the binding forms we have here. If the let is to be non-recursive, then the
relevant fragment of a Fresh O’Caml type declaration called term to represent such syntax
would be something like:

Elet of term list * (<<var list>>term)

for some type of bindable names var corresponding to object language identifiers. Note how
we use a more complicated abstraction type in order to signify that we want to represent the
simultaneous binding of multiple identifiers. The term list part corresponds to the right-
hand side of the various let-bindings and the scope of the object-level binding is therefore

4Not involving side-effects from references, exceptions and the like.
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reflected in the type of the constructor argument. More specifically, the various identifiers
introduced in the let are not bound within the first component of the pair.

If the binding is recursive, however, this scheme is somewhat unsatisfactory. For in this
case, the scope of the identifiers must include the let-bindings themselves. In this case, the
constructor declaration should look like this:

Elet of <<var list>>(term list * term)

Now, whilst this could be used to produce a correct (in some sense) representation of the
above object language syntax, the question arises as to whether Fresh O’Caml should provide
a more specific binding form which could be useful here. For there is nothing currently to
stop the programmer erroneously constructing a value where the lengths of the var list and
term list parts are different. One solution, of course, would be to use a dependently-typed
language: alternatively, we could introduce further binding forms into Fresh O’Caml to cope
with such a situation.

Our view is that whilst more specific forms would be desirable in certain situations in
order to increase the potential for stronger static checks, the aim of Fresh O’Caml should be
to provide a general framework for handling name binding. As we noted in Chapter 1, there
is something pleasing about keeping new constructs simple and straightforward from both a
user’s and a compiler writer’s point of view. Once one starts down the road of incorporat-
ing somewhat ‘subsidiary’ features into the language, there is a danger that it will become
over-complicated. For example, if we were to incorporate specific constructs to handle the
above situations then how about one which allows mixed recursive/non-recursive bindings
too? Finally, it should not be forgotten that our extensions to O’Caml are based on a solid
mathematical foundation: multitudinous language constructs do not help to keep the theory
and the implementation in step and often just work to obscure the real crux of the matter in
the mathematics.

2.2.2 Abstraction values: typing

Given expressions e and e′ of types τ and τ ′ respectively then the abstraction expression
<<e>>e′ simply has type <<τ>>τ ′. In other words, the type inference algorithm functions in
exactly the same way as for pair types.

2.2.3 Abstraction values: deconstruction

So what can we actually do with an abstraction value after creation? Such a value can be
thought of as a ‘black box’ whose innards may only be examined via one specific means of
deconstruction: matching against an abstraction pattern. The lack of any other means of
inspecting abstraction values ensures that they may only be deconstructed in such a way as to
maintain the Barendregt variable convention. As a result, the programmer can write syntax-
manipulating code without having to worry about possible name clashes5.

Let us see some concrete examples. Here is a function, defined by structural recursion in
the usual manner, which performs capture-avoiding substitution of the term t for the variable
x throughout the PLC term t’.

let rec subst t x t’ =

match t’ with

Tvar y -> if x = y then t else t’

| Tlam (ty, <<y>>t’’) -> Tlam (ty, <<y>>(subst t x t’’))

| Tgen (<<a>>t’’) -> Tgen (<<a>>(subst t x t’’))

| Tapp (t1, t2) -> Tapp (subst t x t1, subst t x t2)

| Tspec (t’’, ty) -> Tspec (subst t x t’’, ty);;

We can see the abstraction pattern-matches in the Tlam and Tgen cases: they are written
<<pat>>pat ′ for sub-patterns pat and pat ′. But what are these magic patterns actually doing,
and why should this function implement capture-avoiding substitution? To understand this,
first suppose that the function subst is presented with arguments arising from the following
function application:

5Really atom clashes, in fact.
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subst (Tvar y) x (Tlam (TYvar alpha, <<y>>(Tapp (Tvar x, Tvar y))));;

The result of this should correspond to the open term (λy : α. x y)[y/x], that is λz : α. y z.
The Fresh O’Caml system responds as follows, which provides sufficient information to check
that no variable capture has occurred.

Tlam (TYvar name_0, <<name_2>>(Tapp (Tvar name_1, Tvar name_2)))

We now explain how the system has come up with this answer. When the function subst

is invoked as above, the second clause of the pattern-match succeeds (against a data value
with constructor Tlam). However, before the body of the match clause is invoked then the
system ensures that the atom in binding position (mapped to by the identifier x and occurring
throughout t’’) is sufficiently fresh for the current environment. In the current implementa-
tion6, an unused atom is chosen every time such a match is taken. This will be assigned to the
identifier x and then the term t’’ will be constructed from the original body of the abstraction
value (contained within t’) in such a way that the new atom (call it a′) appears in all of the
positions where the original atom (call it a) did.

In order to perform the change of atoms we use an operation of swapping, otherwise known
as transposition, to exchange a and a′. Later in this thesis we will see why swapping, rather
than just renaming, is used.

The upshot of all of this is that the Barendregt variable convention is enforced across
abstraction pattern-matches: when the programmer gets hold of the innards of an abstraction
value after such a match then it is guaranteed that any atoms in binding position inside will be
suitably fresh. This in turn implies that name clashes will not occur, so long as the programmer
has correctly indicated object-level binding in their type declarations.

Another illuminating example is to consider two functions which attempt (somewhat inef-
ficiently!) to calculate the free and bound variables of a PLC term. We assume the presence of
a function

remove : ’a -> ’a list -> ’a list

which removes an element from a list.

let rec free_vars t =

match t with

Tvar x -> [x]

| Tlam (ty, <<x>>t’) -> remove x (free_vars t’)

| Tgen (<<a>>t’) -> free_vars t’

| Tapp (t1, t2) -> (free_vars t1) @ (free_vars t2)

| Tspec (t’, ty) -> free_vars t’;;

let rec bound_vars t =

match t with

Tvar x -> []

| Tlam (ty, <<x>>t’) -> x :: (bound_vars t’)

| Tgen (<<a>>t’) -> bound_vars t’

| Tapp (t1, t2) -> (bound_vars t1) @ (bound_vars t2)

| Tspec (t’, ty) -> bound_vars t’;;

Both of these functions are typeable in Fresh O’Caml, and the first is indeed a bona-fide
function to calculate the free variables of a term. However, the second function should
make the astute reader slightly uneasy. Indeed, we claim that it should be impossible to
write a function which really does ‘calculate the bound variables of a PLC term’. This should
not be possible because Fresh O’Caml’s correctness property (viz. §2.2.1) prevents us from
distinguishing between the encodings of representatives from the same α-equivalence class of
PLC terms. The function bound vars is well-defined, however, because Fresh O’Caml provides
fresh atoms upon each successful abstraction pattern-match. Therefore successive applications
of the bound vars function (even on the same terms) will always return distinct lists of atoms,
whereas applications of the free vars function on the same term will always return the same
list of atoms.

6See §6.6.1 for possible optimisations in this area.
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# (bound_vars (Tlam(TYvar alpha, <<x>>(Tvar x)))) =

(bound_vars (Tlam(TYvar alpha, <<x>>(Tvar x))));;

- : bool = false

This example clearly illustrates how the procedure of matching against abstraction patterns
has observable side-effects (in a manner analogous to the evaluation of ref expressions, which
create new cells in Objective Caml). The older FreshML-2000 language included strict typing
constraints which meant that programs such as bound vars—which allow the user to observe
such effects—would be ruled out. However, this system was found to be too restrictive: we
explain why in §6.8. Luckily, the old belief that these restrictions were needed to enforce the
desired correctness properties turned out (after some time!) to be incorrect.

Given that Fresh O’Caml permits more general abstraction types than <<name>>τ , we
should say a few words about pattern-matching on such values. To do this we must introduce
the notion of the algebraic support of a value, which captures the idea of ‘the atoms involved
in the value’s construction’. Formally, it is an approximation to the least finite support of
the denotation of the value—a notion we will introduce in Chapter 4. Indeed, the algebraic
support of some value and the least finite support of its denotation will coincide so long as the
value is comparable. If it is not, the algebraic support will be no smaller than the least finite
support of the value’s denotation.

Intuitively, the algebraic support of some value will correspond to the free variables of the
object language term which is encodes. It is calculated by a simple structural recursion: for
example, the algebraic support of an atom a is just the singleton set {a} whilst the algebraic
support of a pair (v, v′) is the union of the algebraic supports of v and v′. Given an
abstraction value <<v>>v′ then the algebraic support is calculated as the algebraic support
of v′ minus the algebraic support of v. In the case of function values, we have to make
an approximation since the least finite support of the denotation of such a value is formally
undecidable7: it suffices to take the union of the algebraic supports of the free variables of the
function. Note that even though there is contravariance present when calculating the algebraic
support of an abstraction value, this preserves the approximation since only comparable values
are permitted in binding position.

Returning to the pattern-matching algorithm, consider a value <<v>>v′ of type <<τ>>τ ′

which we wish to match against a pattern <<x>>x′. The identifier x′ should be assigned the
value produced from v′ by freshening up any atoms therein which also occur in the algebraic
support of v. Having generated sufficiently many fresh atoms, this new value is generated by a
simple structural recursion over the structure of v′, assigning fresh atoms at the correct points
by means of swappings. The same swappings are used throughout the value v to generate the
value mapped to x.

Fresh O’Caml also allowes nested abstraction patterns. For example, we could match
against a value of type <<name>>(<<name>>τ) using a pattern of the form <<x>>(<<x′>>x′′).
We shall not delve here into the exact algorithm used to decompose such complex matches,
but defer the discussion until §6.5. From the programmer’s point of view, the results are as
expected: each abstraction is freshened up accordingly.

We can now understand the important property8 that abstraction values are easy to con-

struct, but harder to deconstruct. From an implementation point of view, we may also read
‘fast’ for ‘easy’ as we shall see later in this thesis (Chapter 6).

2.2.4 Abstraction values: two sides of the same coin

We have now seen that abstraction values do indeed provide a form of encapsulation and
prevent potentially unsafe deconstruction. However at the same time they do have concrete-

ness properties. For when we pattern-match against an abstraction value, we obtain value
identifiers mapping to specific (carefully-chosen!) atoms with which to work. From practical
experience, this delicate combination of abstractness and concreteness provides the best of
both sides of the coin.

7We state exactly why in §6.8.1, where we also hit the same problem.

8For the purposes of this statement, equality testing on abstraction values classes as a deconstruction. We discuss
this in §2.2.5.
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This is exemplified by the fact that the evaluation of an abstraction expression <<e>>e′

follows exactly the same pattern as a pair expression (e, e′). Both e and e′ are evaluated in
the current environment and simply paired together to form the corresponding value.

2.2.5 Abstraction values: equality testing

Given two abstraction values <<v1>>v2 and <<v′1>>v
′
2, we need to be able to determine when

these two values are (structurally) equal. This is not an entirely trivial question to answer so
we start with an example and some motivation.

We have already seen that the contextual equivalence classes of the values of types such as
term can be proved to coincide with the α-equivalence classes of object level terms. It follows
that given the values t 1 through t 3 from §2.2.1 then we can check whether they represent
α-equivalent PLC terms just by testing them for equality in Fresh O’Caml:

# t1 = t2;;

- : bool = false

# t1 = t3;;

- : bool = false

# t2 = t3;;

- : bool = true

Very neat. However, what we are really seeing is an illusion which Fresh O’Caml presents to
the programmer. At some particular point in time, a particular abstraction value will be some
particular representative of the corresponding α-equivalence class (of values identified up to
renaming of atoms in binding position). However, which particular representative exists at
any point in time may only be determined by the runtime system and not by the programmer.
It is thus necessary to take great care in this discussion between meta-level equivalence as
exposed to the programmer and ‘identity’ of values as seen by the runtime system. After all,
here we are defining how to manufacture the test for meta-level equivalence given the lower-
level operation of a simple structural comparison9 on values. Therefore, during the following
discussion we reserve use of the word equality for that operation invoked by = in Fresh O’Caml.
We shall use the word identity for no-frills structural identity on values—the testing of values
for equivalence when not working up to renaming of atoms in binding position. In particular,
a value <<v1>>v2 is identical to another <<v′1>>v

′
2 just when v1 is identical to v′1 and v2 is

identical to v′2.
The process of testing two abstraction values for equality attempts to determine if the two

values belong to the same equivalence class of values modulo α-conversion of atoms in binding
position. In order to do this, we determine if there exists a pair of swappings of these atoms
with fresh ones which respectively map the bodies of each abstraction onto two structurally
identical values. Which representative of the equivalence class we end up with is irrelevant:
what matters is whether such mappings exist or not. The problem is rather reminiscent of
unification.

To see the algorithm in full detail, let us consider the case where the value in binding
position is a single atom. Say the abstraction values to be compared are <<a1>>v1 and
<<a2>>v2, where a1 and a2 are atoms and v1 and v2 are values of the same type. In order to test
for equality, the types of the two abstraction values should match: indeed these two values are
both of type <<name>>τ , for some type of bindable names name and where v1 and v2 are both of
type τ . Choosing a fresh atom a3, we can produce two swappings (permutations) of atoms: π1

will swap a1 and a3; π2 will swap a2 and a3. Then, the original two abstraction values will be
equal iff the value obtained by recursively applying the permutation π1 throughout the value
v1 is structurally identical to that produced by applying π2 throughout v2. Morally speaking,
we are comparing the whole of the values minus the positions in which bound atoms occur:
since in practice we have to compare the whole values then we force comparisons to succeed
at these points by ensuring that the same (fresh) atoms occur at such positions in both values.

So far we have only considered abstraction values binding a single atom. Suppose instead
we wish to test two values <<v1>>v2 and <<v′1>>v

′
2 for equality, where v1 and v′1 are of the same

complicated type. In this case, we traverse the structure of the values v1 and v′1 in the same

order for each to yield their algebraic supports as lists [a1, . . . , an] and [a′1, . . . , a
′
n] respectively.

9Think memcmp if you like C.
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We then require the lengths of these lists to be equal. Then we allocate as many fresh atoms
as a list [c1, . . . , cn] as there are in the support of v1. Next, we swap each ai with ci throughout
v1 and see if the resulting value is identical to that obtained by swapping each a′i with ci
throughout v′1. Assuming this is the case, the abstraction values are deemed equal if swapping
each ai with ci throughout v2 yields a value identical to that obtained by swapping each a′i
with ci throughout v′2.

It is necessary to traverse the values v1 and v′1 in the same order and to then use a list
(rather than a set) to store the result so that we correctly capture the positions of the various
atoms throughout the syntax trees. For example, consider testing <<[a, b]>>(a, b) against
<<[b, a]>>(b, a). These values are indeed equal. The algebraic supports of the two values in
binding position must be enumerated and stored in order as [a, b] and [b, a] (rather than say
[a, b] and [a, b]) so that the swappings correctly lead to equal values.

As we noted before, a consequence of this algorithm is that any type in binding posi-
tion (inside an abstraction type <<τ>>τ ′) must be one whose values are comparable. For
example, attempting to test equality on values of type <<τ → τ ′>>τ ′′ will fail with a runtime
Invalid argument exception.

2.3 Explicit atom-swapping

The linearity constraint on O’Caml patterns which forbids multiple occurrences of the same
variable within a single pattern means that it is not possible to write a match of the form
match t with (<<a>>x, <<a>>y) -> ... where multiple abstractions are deconstructed
using the same fresh atoms. Not only are such pattern-matches required in order to en-
code certain bijections which hold in the underlying FM-set theory (for example between
<<’a name>>’b * <<’a name>>’c and <<’a name>>(’b * ’c)), but they have been found to
be necessary during practical work[21] with the language. To simulate the effect of such non-
linear patterns, Fresh O’Caml provides an expression which explicitly swaps all occurrences of
two atoms inside a given value. This allows the simulation of a non-linear matching as follows,
using the above isomorphism as an example:

let f t = match t with (<<a>>x, <<b>>y) -> <<a>>(x, swap a and b in y);;

2.4 Fresh-for test

The boolean-valued language construct e freshfor e′ is true iff e is of a type of names and
evaluates to an atom which does not occur in the algebraic support of the value to which e′

evaluates. Recalling that the algebraic support of a Fresh O’Caml representation of some object
language term corresponds to the set of free names in that term, we see that the fresh-for test
provides a built-in function to calculate such free names.

2.5 Something missing?

Readers who are familiar with previous work using permutation models of name binding[49,
20, 18] may be wondering where the notion of concretion has got to. Concretion is the action
of taking an abstraction value10 together with an atom fresh for the body and returning the
body with this atom replacing the existing atom in binding position throughout. (This will be
formalised in due course—see Lemma 4.2.28.) We write v @ a to mean the concretion of the
value v at the atom a.

For example, the abstraction value <<a>>(a, b) (where a, b are atoms) may be concreted
at an atom c 6= a, b to yield the result (c, b). The atom which we pick must not occur in
the body in order to guarantee that no name clashes will occur. It is in fact the case that the
concretion v @ a of an abstraction v = <<a′>>v′ (with a single atom abstracted) at the atom
a is given by the result of swapping all occurrences of a and a′ throughout v′. It is therefore
superfluous to incorporate both concretion and explicit atom-swapping; we have chosen the
more general explicit swapping.

10For simplicity, we consider this to have only a single atom abstracted.
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2.6 Reference cells

The interactions between reference cells and the model of name binding employed by Fresh
O’Caml may be surprising to the reader. For the address of a reference cell is treated as
being pure—that is to say, it is treated as containing no atoms. It follows that any swapping
operations on the address of the cell will not have any effect—in particular, the contents of the

cell are unchanged.

We can illustrate the semantics with the following code fragment, which always produces
the result false11:

let a = fresh;;

let x = <<a>>(ref a);;

match x with <<a’>>a’’ -> a’ = !a’’;;

Compare this to the following fragment, which always produces true:

let a = fresh;;

let x = <<a>>a;;

match x with <<a’>>a’’ -> a’ = a’’;;

This semantics for swapping operations on reference cells is theoretically straightforward, but
perhaps pragmatically unsatisfactory. In particular, it is likely to hinder the implementation
of efficient algorithms based on the use of mutable cells. For even if a data structure only
employs references for efficiency (as opposed to creating cyclic graphs, for example) then we
will still hit the problem that abstraction values do not appear to ‘bind’ through the references.
A specific example which could hit this problem would be the usual techniques of destructive
unification which are employed when implementing efficient type inference algorithms. (Here,
we might implement type variables as reference cells which may either contain a pointer to
the type unified with that variable, or alternatively a bona-fide type variable identifier.) Whilst
one could argue that the current treatment of references is morally the correct one12, we feel
that from a pragmatic perspective it is not the best thing to be doing. However, any solution is
not straightforward: as we shall see in §7.1.4 it would not be correct just to allow abstractions
to bind unchecked through reference cells.

2.7 A full example

As a more complete example of the use of Fresh O’Caml, Figure 2.2 presents a complete type-
checker for the polymorphic lambda calculus. We hope that the reader agrees that the code
has a certain elegance about it.

2.8 Pretty-printing

We have seen how Fresh O’Caml allows access to concrete names. This gives rise to the
problem that a very limited set of operations are provided to manipulate such names. In
particular, there appears to be no straightforward way to somehow tag a name with a textual
string—as one would want to do in order to pretty-print syntax trees or to report error
messages, for example. Many potential applications of Fresh O’Caml (compilers, theorem
provers, etc.) receive user input and it is obviously desirable to maintain as many of the user’s
textual names as possible. (We might extend them with numeric tags: this might be necessary
if fresh atoms representing the name have been generated to prevent a capture.)

At first it might seem that the correct way forward is to represent object language names
by (atom, string) pairs. However this soon breaks down because the string is unaffected by
any swappings applied to the pair, meaning that the correspondence can become garbled.
James Leifer at INRIA Rocquencourt pointed out to us that the solution is to instead tag the
binding points in the object language syntax trees with the original textual names. These will
correspond to those nodes in the syntax trees where abstraction types feature. When such a

11As of the time of writing (February 2005), there is a bug in the released versions of the Fresh O’Caml system
which causes incorrect results when using reference cells. This will be fixed in the near future.

12References are, after all, part of the ‘awkward squad’ as Peyton-Jones puts it[40].
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type t and var = t name;;

type t and tyvar = t name;;

type typ = TYvar of tyvar

| TYfn of typ * typ

| TYforall of <<tyvar>>typ;;

type term = Tvar of var

| Tlam of typ * (<<var>>term)

| Tgen of <<tyvar>>term

| Tapp of term * term

| Tspec of term * typ;;

exception Arg_type_mismatch;;

exception Bad_application;;

exception Bad_specialisation;;

exception Not_typeable;;

exception Unbound_var;;

let rec lookup_env env x =

match env with

[] -> raise Unbound_var

| ((x’, ty)::_) when x = x’ -> ty

| (_::env’) -> lookup_env env’ x;;

let rec extend_env env x ty = (x, ty) :: env;;

let rec ty_subst ty’ a ty =

match ty with

TYvar a’ when a = a’ -> ty’

| TYvar _ -> ty

| TYfn (ty1, ty2) -> TYfn (ty_subst ty’ a ty1, ty_subst ty’ a ty2)

| TYforall (<<a’>>ty’’) -> TYforall (<<a’>>(ty_subst ty’ a ty’’));;

let rec typecheck’ env t =

match t with

Tvar x -> lookup_env env x

| Tlam (ty, <<x>>t’) -> TYfn (ty, typecheck’ (extend_env env x ty) t’)

| Tgen (<<a>>t’) -> TYforall (<<a>>(typecheck’ env t’))

| Tapp (t1, t2) ->

begin match (typecheck’ env t1, typecheck’ env t2) with

(TYfn (arg_ty, res_ty), ty) ->

if arg_ty = ty then res_ty else raise Arg_type_mismatch

| _ -> raise Bad_application

end

| Tspec (Tgen (<<a>>t’), ty) -> ty_subst ty a (typecheck’ env t’)

| Tspec _ -> raise Bad_specialisation;;

let typecheck = typecheck’ [];;

Figure 2.2: Typechecker for PLC.

syntax tree node is deconstructed at runtime we obtain a fresh atom and can then pick a textual
name for it based on the original user’s name. (Names which were free in the first place may
simply use the technique described in the previous paragraph, as they will be unaffected by the
side-effects arising from the deconstruction of abstraction values.) We now present a further
enhancement to this technique. For this example we keep the object language simple and just
use the terms of the untyped λ-calculus, inductively defined by the following grammar:

t::=x | λx. t | t t.
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type t and var = t name;;

type lam = Var of var | Lam of string * <<var>>lam | App of lam * lam;;

let rec lookup_atom varmap a =

match varmap with

[] -> raise Not_found

| (a’, s) :: xs -> if a = a’ then s else lookup_atom xs a;;

let rec name_used varmap s =

match varmap with

[] -> false

| (_, s’) :: xs -> if s = s’ then true else name_used xs s;;

let allocate_name varmap a s =

if name_used varmap s then let s’ = s ^ "’" in (s’, (a, s’) :: varmap)

else (s, (a, s) :: varmap);;

let rec print_lam varmap t =

match t with

Var a -> lookup_atom varmap a

| Lam (s, <<a>>t’) ->

let cont = function (var_text, new_varmap) ->

"fn " ^ var_text ^ " => " ^ (print_lam new_varmap t’)

in

(* if the atom a never occurs in t’, then we don’t need to

record the use of the textual name s *)

cont (if a freshfor t’ then (s, varmap) else allocate_name varmap a s)

| App (t1, t2) -> "(" ^ (print_lam varmap t1) ^ ") " ^

"(" ^ (print_lam varmap t2) ^ ")";;

let print = print_lam [];;

let x, y = fresh, fresh;;

let test1 = Lam ("x", <<x>>(Lam ("x", <<x>>(Var x))));;

let test2 = Lam ("y", <<y>>(App(Lam ("x", <<x>>(Lam ("y",

<<y>>(App (Var x, Var y))))), Var y)));;

# print test1;;

- : string = "fn x => fn x => x"

# print test2;;

- : string = "fn y => (fn x => fn y’ => (x) (y’)) (y)"

Figure 2.3: Sample pretty-printing code, tests and output.

If the program receives input (encoded in some indicative textual format) fun x -> fun x ->

x and subsequently manipulates the parsed term (indeed, even if it just parses it to a syntax
tree and then pretty-prints it) then we would hope that only one textual name appears in the
output. This ought to be x, of course. No second name should be chosen since the second
binding of x shadows the first and there are no uses of the outermost x. How do we adapt our
algorithm to cope with this? Our answer presents an elegant use of the freshfor construct.
When encountering a binding point in the syntax tree, we take the atom which the abstraction
pattern-match has provided us with and check if it is fresh for the body using freshfor. If it
is, we know that the variable is actually unused and therefore its (newly-generated) textual
name may be re-used later.

Figure 2.3 presents a sample pretty-printer for closed λ-terms incorporating these tech-
niques, together with its output. For simplicity, we omit code to prevent superfluous parenthe-
ses arising in the output; also, we use deeply-inefficient routines for handling maps keyed on
atoms. Why do we not use the standard library? The answer is that ways of incorporating
names into data structures such as hash tables and balanced binary trees are still under
investigation as we will eventually see in §7.1.2.



3 Mini-FreshML, operationally

‘Inside every large language is

a small language struggling to

get out.’ —Igarashi et al.[25]

IN THIS CHAPTER we turn our attention to the formalisation of the new constructs seen in Fresh
O’Caml with a view to proving some observational equivalence results. We do this by defining
a small language Mini-FreshML which provides for the key features:

• the dynamic allocation of fresh atoms;

• the creation and deconstruction of atom-abstractions;

• the process of atom-swapping;

• user-defined datatypes involving atom-abstractions.

After introducing the syntax and static semantics of Mini-FreshML, we will give a traditional
‘big-step’ operational semantics to describe its evaluation behaviour. This will then be aug-
mented via an operational semantics based on frame stacks[48]—a particular representation
of the familiar evaluation, or reduction contexts[29, 71]. We shall need this alternative formu-
lation in Chapter 5 where we give a denotational semantics to Mini-FreshML. It is by using
this denotational semantics that we will prove results about certain notions of observational
equivalence of Mini-FreshML expressions.

3.1 Syntax

We assume a countably infinite set VId of value identifiers (typical element x) and a countably
infinite set

�
of atoms (typical element a) disjoint from VId. The expressions and canonical

forms of Mini-FreshML are then the abstract syntax trees generated by the grammars in Figure

3.1. The unusual language constructs have been highlighted like this . Since we will be
working with a ‘substituted-in’ style of semantics (as opposed to ‘environment style’, such as in
[36, 63] and discussed in §3.5) then the canonical forms (also known as values) are a subset
of the expressions.

Write Expτ and Valτ for the closed expressions and canonical forms of type τ respectively.
Write Val for the set of all closed canonical forms.

An important point to note is that expressions are to be identified up to α-conversion of bound

value identifiers. The binding forms are as follows, with the binding positions underlined.

fun x(x) = [–] match e with

let x = e in [–] C1(x1) -> [–]
let (x, x) = e in [–] | · · ·
let <<x>>x = e in [–] | CK(xK) -> [–]

Note that the atom-abstraction expression- and value-former <<–>>– is not a binder. However,
properties of Mini-FreshML observational equivalence will turn out to have the following
consequences:

• For distinct atoms a, a′ then the value <<a>>a is observationally equivalent to <<a′>>a′.

• For distinct value identifiers x, x′ the value <<x>>x is observationally equivalent to
<<x′>>x′.

• For distinct value identifiers x, y and z the value <<y>>x is not observationally equivalent
to <<z>>x.

25
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3.2 Static semantics

Mini-FreshML is a strongly-typed language, although we use a monomorphic type system in
order to keep the presentation as simple as possible. (Therefore, in particular, let-expressions
do not introduce polymorphism unlike in Fresh O’Caml). Expressions are assigned types
generated by the grammar in Figure 3.2; let us write Typ for the set of all such types and
assume the presence of a single top-level type δ. Values of this type may be built using the data
constructors C1, · · · , CK , which have argument types σ1, · · · , σK respectively. The σk are built
from the same grammar as types τ (and hence may contain occurrences of δ, in particular).
Therefore δ corresponds to a Fresh O’Caml type declaration of the form:

type δ = C1 of σ1 | · · · | CK of σK .

The theory which follows could be easily extended to cope with multiple, possibly mutually-
recursive top-level datatype declarations. We write Γ for finite maps from value identifiers
to types, thought of as typing contexts; expressions may be assigned types in such contexts
using the typing relation `. This is a set of triples (Γ, e, τ) where Γ is a typing context, e is an
expression and τ is a type. We write Γ ` e : τ iff (Γ, e, τ) is in the relation, which is defined
by structural recursion on e according to the axioms and rules in Figure 3.3. Write Γ, x : τ
to indicate that typing context mapping x to τ and otherwise acting as Γ. In the event that
Γ is empty (and hence e is closed), we abbreviate the notation and write ` e : τ . Since the
canonical forms are a subset of the expressions, then they are also assigned types according to
Figure 3.3.

Definition 3.2.1 (Atom sets and atom swapping). Given an expression e, let atms(e) be the
finite set of all atoms occurring within e. Given atoms a, a′, write (a a′) · e for that expression
formed by recursively exchanging all occurrences of a and a′ throughout the expression e.

e ::= x value identifier
| () unit
| a atom
| Ck(e) data construction
| (e, e) pairing

| fresh fresh name creation

| <<e>>e abstraction

| swap e, e in e atom-swapping

| fun x(x) = e recursive function
| e e function application
| if e = e then e else e conditional
| let x = e in e value binding
| let (x, x) = e in e pair deconstruction

| let <<x>>x = e in e abstraction deconstruction
| match e with

C1(x1) -> e1
| · · ·
| CK(xK) -> eK

data value deconstruction

v ::= x value identifier
| () unit
| a atom
| Ck(v) data construction
| (v, v) pairing

| <<v>>v abstraction
| fun x(x) = e recursive function

Figure 3.1: Expressions and canonical forms of Mini-FreshML.
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τ ::= unit unit type
| name name type
| δ data type
| τ × τ pair type
| <<name>>τ abstraction type
| τ → τ function type

Figure 3.2: Types of Mini-FreshML.

Given a permutation π, write π · e for that expression formed by recursively applying the
permutation π to the atoms throughout e. �

Definition 3.2.2 (Substitutions). Let substitutions ψ be finite maps from value identifiers to
closed canonical forms. Write e[ψ] for that expression formed from another expression e by
the capture-avoiding application of the substitution ψ. Given a typing context Γ, write ` ψ : Γ
just when dom(ψ) = dom(Γ) and for each x ∈ dom(ψ), ` ψ(x) : Γ(x). Write ψ, x 7→ v for that
substitution mapping x to v and otherwise behaving as ψ. Occasionally for clarity we will use
the notation ψ[x 7→ v] instead of ψ, x 7→ v. �

The construction of the typing rules immediately gives the following two lemmata, whose
proof follows by simple inspection.

Lemma 3.2.3 (Substitutivity). For substitutions ψ, typing contexts Γ and expressions e then

` ψ : Γ implies that Γ ` e : τ ⇔ ` e[ψ] : τ . �

Lemma 3.2.4 (Equivariance for typing judgements). For any expression e in context Γ and

atoms a, a′ then Γ ` e : τ ⇔ Γ ` (a a′) · e : τ . �

The simplicity of the typing rules may be surprising (especially to those familiar with [49]),
but no further complication is required. This means that production of a Hindley-Milner style
type inference algorithm1 for inferring the types of our language constructs is straightforward.
For example, note the similarity between the rules for abstraction and pair expressions. This
is in contrast with the original FreshML-2000 design which made use of a complicated static
type system (discussed at length in §6.8). The lack of such a type system is particularly helpful
when considering how to modify existing compilers in order to support our features, such as
we have done for Objective Caml.

Let us now move on and consider the evaluation behaviour of Mini-FreshML, which presents
more novelties than the static semantics.

3.3 Dynamic semantics via big-step

In this section we provide a big-step operational semantics which defines how expressions
evaluate to canonical forms. Overall the evaluation strategy agrees with that of Fresh O’Caml
because Mini-FreshML is also a strict call-by-value language. The main point to bear in mind
is that during the evaluation of expressions we may have the computational effects arising
from the allocation of fresh atoms. This happens not only via the fresh expression but also by
pattern-matching against abstraction patterns by using let <<x>>x′ = e in e′.

In order to cope with this, we provide an evaluation relation on 4-tuples (a, e, v, a′) where
a and a′ are finite sets of atoms, e is a closed expression and v a closed canonical form. We
write a, e ⇓ v, a′ iff (a, e, v, a′) is in the relation. Such a judgement is read as

In the state where the atoms a have been allocated, the expression e evaluates to the

value v and allocates the atoms a′ \ a.

The evaluation relation is inductively defined by the axioms and rules in Figure 3.4, but
restricted to those judgements a, e ⇓ v, a′ when a′ ⊇ a. From inspection of that Figure, we
obtain the following three lemmata and then a subject reduction result.

1Whose roots may lie as far back as the work of Curry in the 1930s, or possibly even Tarski in the 1920s.
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vid
Γ ` x : τ

x ∈ dom(Γ) and τ = Γ(x)

atom
Γ ` a : name

a ∈ � unit
Γ ` () : unit

con
Γ ` e : σk

Γ ` Ck(e) : δ
fresh

Γ ` fresh : name

pair
Γ ` e : τ Γ ` e′ : τ ′

Γ ` (e, e′) : τ × τ ′
abst

Γ ` e : name Γ ` e′ : τ

Γ ` <<e>>e′ : <<name>>τ

swap
Γ ` e1 : name Γ ` e2 : name Γ ` e3 : τ

Γ ` swap e1, e2 in e3 : τ

fun
Γ, f : τ → τ ′, x : τ ` e : τ ′

Γ ` fun f(x) = e : τ → τ ′
app

Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

let
Γ ` e : τ ′ Γ, x : τ ′ ` e′ : τ

Γ ` let x = e in e′ : τ

let-pair
Γ ` e : τ1 × τ2 Γ, x : τ1, x

′ : τ2 ` e′ : τ

Γ ` let (x, x′) = e in e′ : τ

let-abst
Γ ` e : <<name>>τ ′ Γ, x : name, x′ : τ ′ ` e′ : τ

Γ ` let <<x>>x′ = e in e′ : τ

if
Γ ` e : name Γ ` e′ : name Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e = e′ then e1 else e2 : τ

match
Γ ` e : δ for all 1 ≤ k ≤ K, Γ, xk : σk ` ek : τ

Γ ` match e with · · · | Ck(xk) -> ek | · · · : τ

Figure 3.3: Typing rules for expressions.

Lemma 3.3.1 (State growth during evaluation). Given an expression e and a set of atoms a
containing the atoms of e, then a, e ⇓ v, a′ implies that a′ ⊇ a and atms(v) ⊆ a′. �

Lemma 3.3.2 (Equivariance for the big-step relation). For any atoms a, a′ then a, e ⇓ v, a′

implies that (a a′) · a, (a a′) · e⇓ (a a′) · v, (a a′) · a′, where (a a′) · – acting on a finite set of atoms

a is that finite set given by exchanging all occurrences of a and a′ throughout a. �

Lemma 3.3.3 (Determinacy). If a, e ⇓ v, a′ and a, e ⇓ v′, a′′ then there exists a permutation

π : (a′ \ a) ∼= (a′′ \ a) such that v′ = π · v. �

Lemma 3.3.4 (Subject reduction). Take a substitution ψ, a typing context Γ such that ` ψ : Γ
and an expression e with Γ ` e : τ . Then for all a′ ⊇ a ⊇ atms(e, ψ), whenever there exists a

derivable judgement a, e[ψ] ⇓ v, a′ then ` v : τ .

Proof. By the substitutivity property of the typing relation (Lemma 3.2.3), it suffices to prove
that for all ψ with ` ψ : Γ and any a ⊇ atms(e, ψ),

∀v, a′ ⊇ a. (` e[ψ] : τ ∧ a, e[ψ] ⇓ v, a′) ⇒ ` v : τ

by induction over the axioms and rules defining the evaluation relation ⇓. We give just those
cases which are specific to Mini-FreshML.
I Case (fresh). Since fresh[ψ] = fresh then the result follows immediately by observing the

(fresh) rule and noting that for any a ∈ � , ` a : name.
I Case (abst). First note that (<<e>>e′)[ψ] = <<e[ψ]>>e′[ψ]. Without loss of generality we

have that ` <<e[ψ]>>e′[ψ] : <<name>>τ ; the typing rules then tell us that ` e[ψ] : name

and ` e′[ψ] : τ . Take any a ⊇ atms(<<e[ψ]>>e′[ψ]) and a′′ ⊇ a; then atms(e[ψ]) ⊆ a and
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atom
a, a ⇓ a, a

a ∈ a unit
a, () ⇓ (), a

con
a, e ⇓ v, a′

a, Ck(e) ⇓ Ck(v), a
′

fresh
a, fresh ⇓ a, a ] {a}

a ∈ � \ a

pair
a, e ⇓ v, a′ a′, e′ ⇓ v′, a′′

a, (e, e′) ⇓ (v, v′), a′′
abst

a, e ⇓ v, a′ a′, e′ ⇓ v′, a′′

a, <<e>>e′ ⇓ <<v>>v′, a′′

swap
a, e ⇓ a, a′ a′, e′ ⇓ a′, a′′ a′′, e′′ ⇓ v, a′′′

a, swap e, e′ in e′′ ⇓ (a a′) · v, a′′′

fun
a, fun f(x) = e ⇓ fun f(x) = e, a

app

a, e ⇓ fun f(x) = e′′, a′ a′, e′ ⇓ v′, a′′

a′′, e′′[fun f(x) = e′′/f, v′/x] ⇓ v, a′′′

a, e e′ ⇓ v, a′′′

let
a, e ⇓ v′, a′ a′, e′[v′/x] ⇓ v, a′′

a, let x = e in e′ ⇓ v, a′′

let-pair
a, e ⇓ (v′, v′′), a′ a′, e′[v′/x, v′′/x′] ⇓ v, a′′

a, let (x, x′) = e in e′ ⇓ v, a′′

let-abst
a, e ⇓ <<a>>v′, a′ a′ ] {a′}, e′[a′/x, (a a′) · v′/x′] ⇓ v, a′′

a, let <<x>>x′ = e in e′ ⇓ v, a′′
a′ ∈ � \ a′

if

a, e ⇓ a, a′ a′, e′ ⇓ a′, a′′

a = a′ ⇒ a′′, e1 ⇓ v, a′′′ a 6= a′ ⇒ a′′, e2 ⇓ v, a′′′

a, if e = e′ then e1 else e2 ⇓ v, a′′′

match
a, e ⇓ Cj(vj), a

′ ∧ a′, ej [vj/xj ] ⇓ v, a′′

a, match e with · · · | Ck(xk) -> ek | · · · ⇓ v, a′′

Figure 3.4: Big-step semantics.

atms(e′[ψ]) ⊆ a. Now if a, <<e[ψ]>>e′[ψ] ⇓ <<v>>v′, a′′, then by Lemma 3.3.1 there exists a′

with a′′ ⊇ a′ ⊇ a such that a, e[ψ] ⇓ v, a′ and a′, e′[ψ] ⇓ v′, a′′. Therefore, atms(e′[ψ]) ⊆ a′. By
applying the induction hypotheses we can then deduce that ` v : name and ` v′ : τ . It follows
that ` <<v>>v′ : <<name>>τ .

I Case (swap). Take atom-sets a′′′ ⊇ a ⊇ atms(swap e[ψ], e′[ψ] in e′′[ψ]); now assume that
` swap e[ψ], e′[ψ] in e′′[ψ] : τ and a, swap e[ψ], e′[ψ] in e′′[ψ]⇓v, a′′′. Then Lemma 3.3.1
implies that there exist further sets of atoms a′, a′′ satisfying the properties a ⊆ a′ ⊆ a′′ ⊆ a′′′,
atms(e[ψ]) ⊆ a, atms(e′[ψ]) ⊆ a′ and atms(e′′[ψ]) ⊆ a′′. By the induction hypotheses, these
come along with values a, a′ and v satisfying ` a : name, ` a′ : name and ` v : τ . Now we
apply Lemma 3.2.4 to get that ` (a a′) · v : τ .

I Case (let-abst). Consider a′′ ⊇ a ⊇ atms(let <<x>>x′ = e[ψ] in e′[ψ]). Assume that we
have the judgements ` let <<x>>x′ = e[ψ] in e′[ψ] : τ and let <<x>>x′ = e[ψ] in e′[ψ]⇓
v, a′′. Then the typing rules together with Lemma 3.2.3 give us that ` e[ψ] : <<name>>τ ′

and ` e′[ψ, x 7→ a′, x′ 7→ v′] : τ , for any atom a′ and a closed v′ of type τ ′. One induction
hypothesis together with Lemma 3.3.1 now tells us that there exists a set of atoms a′ with
a′ ⊇ a, a, e[ψ]⇓<<a>>v′, a′ and ` v′ : τ ′. Taking any a′ ∈ � \a′, Lemma 3.2.4 then tells us that
` (a a′) · v′ : τ . From earlier we now deduce that ` e′[ψ, x 7→ a′, x′ 7→ (a a′) · v′] : τ . Since
atms(e′[a′/x, (a a′) · v′/x′]) ⊆ a′ ] {a′} then ` ψ, x 7→ a′ : Γ, x 7→ name, x′ 7→ τ ′. Therefore the
second induction hypothesis together with Lemma 3.3.1 tells us that there exists a′′ ⊇ a′]{a′}
with a′ ] {a′}, e′[a′/x, (a a′) · v′/x′] ⇓ v, a′′ and furthermore ` v : τ . �



30 3. Dynamic semantics via frame stacks

Ck([–]) if v = [–] then e else e
([–], e) [–] e
(v, [–]) v [–]
<<[–]>>e let x = [–] in e
<<v>>[–] let (x, x′) = [–] in e
swap [–], e in e let <<x>>x′ = [–] in e
swap v, [–] in e match [–] with

swap v, v in [–] · · · | Ck(xk) -> ek | · · ·
if [–] = e then e else e

Figure 3.5: Evaluation frames F .

3.4 Dynamic semantics via frame stacks

In this section we introduce an operational semantics for Mini-FreshML which draws on the
theory of frame stack semantics[48]. This has two distinct advantages over the previous big-
step semantics:

• it provides a structurally-inductive definition of what it means for the evaluation of an
expression to terminate;

• it enables reasoning about evaluation properties without using explicit name sets.

For our application, the second of these properties turns out to be the important one. For when
developing a denotational semantics for Mini-FreshML, it is much easier to work in a world
where the dynamically-allocated names are kept implicit. The domain theory developed in
Chapter 4 will enable us to do this in the denotational semantics, which will match up well
with this new operational model.

3.4.1 A termination relation

What we are going to do is consider the termination behaviour of expressions e in a frame

stack S, defined as follows.

Definition 3.4.1 (Frames and frame stacks). Let an evaluation frame F be as in Figure 3.5.
A frame stack S consists of a possibly-empty list of frames like so: S ::= [] | S ◦ F . Write S @ S ′

for the frame stack consisting of S′ appended to S. �

Each evaluation frame acts like a fragment of an evaluation context; we can think of a
frame stack as representing one whole context. Frame stacks are assigned types using a typing
relation `s. This is a set of 4-tuples (Γ, S, τ, τ ′) where Γ is a typing context, S is a frame
stack and τ, τ ′ are types. We write Γ `s S : τ ( τ ′ iff (Γ, S, τ, τ ′) is in the relation, which
is inductively defined by the axiom and rules in Figure 3.6. Informally, a frame stack of type
τ ( τ ′ accepts an argument of type τ in the hole and evaluates to a value of type τ ′. Often we
will not concern ourselves with the result type, simply writing types such as τ ( instead.

In Figure 3.7 we give a set of axioms and rules which define a binary relation between
frame stacks and expressions known as the termination relation2. In those Figures, e, e′, . . .
stand for expressions, v, v′, . . . stand for canonical forms and a, a′, . . . stand for atoms. The
definition is split into two parts according to whether we are currently considering a canonical
form or a non-canonical expression. For clarity, write 〈S, e〉 ↓ iff the pair (S, e) lies in the
relation. In this case, we say that ‘e terminates when evaluated in stack S’.

Note how the definition of the termination relation is both structurally inductive and also
free of explicit atom-sets: the frame stacks encapsulate all the necessary information about

2We could consider an abstract machine to interpret Mini-FreshML terms which evaluates using frame stacks in
a way corresponding to the termination relation 〈S, e〉↓. However, the semantics which we give here is not directly
suitable for this purpose since, in order to make transitions deterministic, it would require runtime tests to determine
if arbitrary expressions were in canonical form. A possible solution to this problem would be to use a CK/VK machine
in the style of Levy[28] and we refer the reader to this work for details.
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empty
Γ `s [] : τ ( τ

con
Γ `s S : δ ( τ

Γ `s S ◦ Ck([–]) : σk ( τ

pair-l
Γ `s S : τ1 × τ2 ( τ Γ ` e : τ2

Γ `s S ◦ ([–], e) : τ1 ( τ

pair-r
Γ `s S : τ1 × τ2 ( τ Γ ` v : τ1

Γ `s S ◦ (v, [–]) : τ2 ( τ

abst-l
Γ `s S : <<name>>τ ( τ ′ Γ ` e : τ

Γ `s S ◦ <<[–]>>e : name ( τ ′

abst-r
Γ `s S : <<name>>τ ( τ ′ Γ ` v : name

Γ `s S ◦ <<v>>[–] : τ ( τ ′

swap-1
Γ `s S : τ ( τ ′ Γ ` e′ : name Γ ` e′′ : τ

Γ `s S ◦ swap [–], e′ in e′′ : name ( τ ′

swap-2
Γ `s S : τ ( τ ′ Γ ` v : name Γ ` e′′ : τ

Γ `s S ◦ swap v, [–] in e′′ : name ( τ ′

swap-3
Γ `s S : τ ( τ ′ Γ ` v : name Γ ` v′ : name

Γ `s S ◦ swap v, v′ in [–] : τ ( τ ′

app-l
Γ `s S : τ ′

( τ ′′ Γ ` e : τ

Γ `s S ◦ [–] e : (τ → τ ′) ( τ ′′
app-r

Γ `s : τ ′
( τ ′′

Γ ` v : τ → τ ′

Γ `s S ◦ v [–] : τ ( τ ′′

if-l
Γ `s S : τ ′

( τ Γ ` e : name Γ ` e′ : τ ′ Γ ` e′′ : τ ′

Γ `s S ◦ if [–] = e then e′ else e′′ : name ( τ

if-r
Γ `s S : τ ′

( τ Γ ` v : name Γ ` e′ : τ ′ Γ ` e′′ : τ ′

Γ `s S ◦ if v = [–] then e′ else e′′ : name ( τ

let
Γ `s S : τ ′

( τ ′′ Γ, x : τ ` e : τ ′

Γ `s S ◦ let x = [–] in e : τ ( τ ′′

let-pair
Γ `s S : τ ( τ ′ Γ, x : τ1, x

′ : τ2 ` e : τ

Γ `s S ◦ let (x, x′) = [–] in e : τ1 × τ2 ( τ ′

let-abst
Γ `s : τ ′

( τ ′′ Γ, x : name, x′ : τ ` e : τ ′

Γ `s S ◦ let <<x>>x′ = [–] in e : <<name>>τ ( τ ′′

match
Γ `s S : τ ( τ ′ for all 1 ≤ i ≤ K, Γ, xi : σi ` ei : τ

Γ `s S ◦ match [–] with · · · | Ck(xk) -> ek | · · · : δ ( τ ′

Figure 3.6: Typing rules for frame stacks.

the finitely many atoms previously generated. When we need to generate a new atom, we
always know that there will be cofinitely many left; and furthermore, by the next lemma then
we know that any such one will do. This is an example of the ‘some/any’ duality expressed by
use of the � quantifier in FM-set theory[20, 18].

Lemma 3.4.2 (Equivariance for the termination relation). For atoms a, a′ then 〈S, e〉 ↓
implies 〈(a a′) ·S, (a a′) · e〉↓, where (a a′) ·S is that frame stack obtained by recursively swapping

all occurrences of a and a′ in S. �

Lemma 3.4.3 (Splitting frame stacks). If 〈S @ S ′, e〉↓ then 〈S′, e〉↓. Therefore in particular,

〈S, e〉↓ implies that 〈[], e〉↓. �



32 3. Dynamic semantics via frame stacks

As an example of Lemma 3.4.2, suppose that we wish to determine whether the fresh

expression terminates in some frame stack S of type name ( . We see from the definition of
the termination relation that this holds just when 〈S, a〉↓ does, for some a not occurring in the
atoms of S. Therefore by Lemma 3.4.2 it follows that for any other such a′, 〈(a a′)·S, (a a′)·a〉↓
holds; so 〈S, a′〉↓ does also.

3.4.2 Relationship to the big-step semantics

We now wish to establish a link between the frame stack semantics and the big-step semantics.

Lemma 3.4.4. Let e be a closed expression of type τ . Then a, e ⇓ v, a′ implies that for all frame

stacks S of type τ ( , atms(S) ⊆ a ∧ 〈S, v〉↓ implies that 〈S, e〉↓.

Proof. By showing that the property

Φ(a, e, v, a′)
def
= ∀S : τ ( . ` e : τ ∧ atms(S) ⊆ a ∧ 〈S, v〉↓ ⇒ 〈S, e〉↓

is closed under the axioms and rules inductively defining the evaluation relation ⇓. Note that
Lemma 3.3.1 implies that we can always take a′ ⊇ a and atms(v) ⊆ a′; moreover, we always
have that atms(e) ⊆ a since ⇓ is only defined in the cases when this holds.

Let us now give the two interesting cases: those for fresh name creation and deconstruction
of abstraction values. The remaining ones are routine.

I Case (fresh). For some finite set of atoms a and some a ∈ � \ a we want Φ(a, fresh, a, a ]
{a}). The assumption atms(S) ⊆ a implies that a /∈ atms(S); combining this with the other
assumption that 〈S, a〉↓ gives us 〈S, fresh〉↓.

I Case (let-abst). We wish to show that Φ(a, let <<x>>x′ = e in e′, v, a′′) holds, for finite
sets of atoms a ⊆ a′ ⊆ a′′. As induction hypotheses we have that Φ(a, e, <<a>>v′, a′) and
Φ(a′, e′[a′/x, (a a′) · v′/x′], v, a′′) for a ∈ � and any a′ ∈ � \ a′. Expanding these we obtain as
assumptions that

∀S1. atms(S1) ⊆ a ∧ 〈S1, <<a>>v
′〉↓ ⇒ 〈S1, e〉↓; and (3.1)

∀S2. atms(S2) ⊆ a′ ∧ 〈S2, v〉↓ ⇒ 〈S2, e
′[a′/x, (a a′) · v′/x′]〉↓ . (3.2)

For S with atms(S) ⊆ a we wish to show that 〈S, let <<x>>x′ = e in e′〉↓ under the assump-
tion that 〈S, v〉↓. It therefore suffices to show that 〈S ◦ let <<x>>x′ = [–] in e′, e〉↓ holds.
This follows from (3.1) if we can show

atms(S ◦ let <<x>>x′ = [–] in e′) ⊆ a; and (3.3)
〈S ◦ let <<x>>x′ = [–] in e′, <<a>>v′〉↓ . (3.4)

We have atms(let <<x>>x′ = e in e′) ⊆ a (from the earlier observation before the first proof
case), which shows (3.3) since atms(S) ⊆ a holds by assumption. To see (3.4) it suffices to
show that

〈S, e′[a′′/x, (a a′′) · v′/x′]〉↓ (3.5)

holds, where a′′ ∈ � \ atms(S, a, v′, e′). Since a′ ⊇ a then atms(S) ⊆ a′. But atms(<<a>>v′) ⊆
a′ (again from the earlier observations) and therefore atms(a, v′) ⊆ a′. However, since we
have that atms(let <<x>>x′ = e in e′) ⊆ a then atms(e′) ⊆ a′. Therefore it is certainly the
case that a′′ ∈ � \a′ implies a′′ ∈ � \atms(S, a, v′, e′). We may therefore choose any a′′ ∈ � \a′

and attempt to apply (3.2) (using this a′′ as the a′ in that hypothesis) to conclude (3.5). It
therefore remains to show that firstly, atms(S) ⊆ a′ and secondly, 〈S, v〉↓. However the first of
these is satisfied since a′ ⊇ a and the second of these follows by earlier assumption. �

Lemma 3.4.5. Let e be a closed expression of type τ and let S be a closed frame stack of type

τ ( . Then 〈S, e〉↓ implies that for all a ⊇ atms(e) there exists a value v and some a′ ⊇ a such

that a, e ⇓ v, a′ ∧ 〈S, v〉↓.

Proof. By showing that the property

Φ(S, e)
def
= ` e : τ ∧ `s S : τ ( ∧ 〈S, e〉↓ ⇒

∀a. a ⊇ atms(e) ⇒ ∃v, a′. a′ ⊇ a ∧ a, e ⇓ v, a′ ∧ 〈S, v〉↓
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empty
〈[], v〉↓

con
〈S, Ck(v)〉↓

〈S ◦ Ck([–]), v〉↓
pair-l

〈S ◦ (v, [–]), e〉↓

〈S ◦ ([–], e), v〉↓
pair-r

〈S, (v′, v)〉↓

〈S ◦ (v′, [–]), v〉↓

abst-l
〈S ◦ <<v>>[–], e〉↓

〈S ◦ <<[–]>>e, v〉↓
abst-r

〈S, <<v>>v′〉↓

〈S ◦ <<v>>[–], v′〉↓

swap-1
〈S ◦ swap a, [–] in e′′, e′〉↓

〈S ◦ swap [–], e′ in e′′, a〉↓

swap-2
〈S ◦ swap a, a′ in [–], e′′〉↓

〈S ◦ swap a, [–] in e′′, a′〉↓
swap-3

〈S, (a a′) · v〉↓

〈S ◦ swap a, a′ in [–], v〉↓

app-l
〈S ◦ v [–], e〉↓

〈S ◦ [–] e, v〉↓
app-r

〈S, e[v/f, v′/x]〉↓

〈S ◦ v [–], v′〉↓
if v = fun f(x) = e

let
〈S, e[v/x]〉↓

〈S ◦ let x = [–] in e, v〉↓
let-pair

〈S, e[v/x, v′/x′]〉↓

〈S ◦ let (x, x′) = [–] in e, (v, v′)〉↓

let-abst
〈S, e[a′/x, ((a a′) · v)/x′]〉↓

〈S ◦ let <<x>>x′ = [–] in e, <<a>>v〉↓
a′ ∈ � \ atms(S, a, v, e)

if-l
〈S ◦ if a = [–] then e1 else e2, e

′〉↓

〈S ◦ if [–] = e′ then e1 else e2, a〉↓

if-r-1
〈S, e1〉↓

〈S ◦ if a = [–] then e1 else e2, a
′〉↓

if a = a′

if-r-2
〈S, e2〉↓

〈S ◦ if a = [–] then e1 else e2, a
′〉↓

if a 6= a′

match
v = Ck(vk) ∧ 〈S, ek[vk/xk]〉↓

〈S ◦ match [–] with C1(x1) -> e1| · · · | CK(xK) -> eK , v〉↓

nc-con
〈S ◦ Ck([–]), e〉↓

〈S, Ck(e)〉↓
nc-fresh

〈S, a〉↓

〈S, fresh〉↓
a ∈ � \ atms(S) nc-pair

〈S ◦ ([–], e′), e〉↓

〈S, (e, e′)〉↓

nc-abst
〈S ◦ <<[–]>>e′, e〉↓

〈S, <<e>>e′〉↓
nc-swap

〈S ◦ swap [–], e′ in e′′, e〉↓

〈S, swap e, e′ in e′′〉↓

nc-app
〈S ◦ [–] e′, e〉↓

〈S, e e′〉↓
nc-let

〈S ◦ let x = [–] in e′, e〉↓

〈S, let x = e in e′〉↓

nc-let-pair
〈S ◦ let (x, x′) = [–] in e′, e〉↓

〈S, let (x, x′) = e in e′〉↓

nc-let-abst
〈S ◦ let <<x>>x′ = [–] in e′, e〉↓

〈S, let <<x>>x′ = e in e′〉↓

nc-if
〈S ◦ if [–] = e′ then e1 else e2, e〉↓

〈S, if e = e′ then e1 else e2〉↓

nc-match
〈S ◦ match [–] with C1(x1) -> e1| · · · | CK(xK) -> eK , e〉↓

〈S, match e with C1(x1) -> e1| · · · | CK(xK) -> eK 〉↓

Figure 3.7: Termination relation.
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is closed under the axioms and rules inductively defining the termination relation. The proof
splits into two parts, depending on whether or not e is a canonical form. It is easily seen that in
the case where e is indeed canonical, then Φ(S, e) holds trivially. When e is not canonical, we
must examine individual cases. Here we give the same two cases as we did for Lemma 3.4.4;
the others are again routine. The two cases we pick highlight how the equivariance property
of the termination relation (viz. Lemma 3.4.2) must be exploited during calculations.

I Case (nc-fresh). Assume 〈S, fresh〉 ↓ and take any finite set of atoms a. Then a ⊇
atms(fresh) and for any a /∈ atms(S), 〈S, a〉↓ holds. Now take any a′ ∈ 	 \ atms(S) \ a \ {a}.
Then (a a′) · S = S and by Lemma 3.4.2, 〈S, a′〉 ↓ holds. Since a /∈ a it also follows that
a, fresh ⇓ a′, a ] {a′} as required.

I Case (nc-let-abst). Make the assumptions that 〈S, let <<x>>x′ = e in e′〉 ↓ and a ⊇
atms(let <<x>>x′ = e in e′). The termination judgement must have been derived by know-
ing 〈S ◦ let <<x>>x′ = [–] in e′, e〉 ↓; since a ⊇ atms(e) it follows (by the first induction
hypothesis) that there exists a value v′′ and some a′ ⊇ a with a, e ⇓ v′′, a′ and a termina-
tion judgement 〈S ◦ let <<x>>x′ = [–] in e′, v′′〉↓; Lemma 3.3.4 tells us that we can write
v′′ as <<a>>v′. This termination judgement must in turn have been derived by knowing
that 〈S, e′[a′/x, (a a′) · v′]〉 ↓, for some a′ ∈ 	 \ atms(S, e′, a, v′). Taking any a′′ ∈ 	 \
atms(S, e′, a, a′, v′) \ a′, Lemma 3.4.2 tells us that 〈S, e′[a′′/x, (a a′′) · v′]〉↓. It follows (by the
second induction hypothesis) that there exists a v and some a′′ ⊇ a′ with a′, e′[a′′/x, (a a′′)·v′]⇓
v, a′′ and 〈S, v〉↓. It follows that the evaluation judgement a, let <<x>>x′ = e in e′ ⇓ v, a′′

holds since a′′ /∈ a′. �

The following theorem, with associated corollary, now follows immediately by combining
Lemmata 3.4.4 and 3.4.5.

Theorem 3.4.6 (Equivalence of dynamic semantics). Let S be a frame stack of type τ (

and e be a closed expression of type τ . Then 〈S, e〉↓ holds iff there exists a ⊇ atms(S, e) with

a, e ⇓ v, a′ and 〈S, v〉↓, for some value v and a finite set of atoms a′ ⊇ a. �

Corollary 3.4.7. Let e be a closed expression of type τ . Then 〈[], e〉↓ holds just when there exists

a′ ⊇ a ⊇ atms(e) and a value v with a, e ⇓ v, a′. �

3.5 Environment style semantics

In this section, we very briefly review another variety of semantics: that given in environment

style. Such a semantics involves the propagation of what we shall call a value environment:
a finite map from value identifiers to values. The space of values may be disjoint from the
space of expressions and the environments are used to look up values of previously-introduced
identifiers.

As an example, the evaluation rule

a, e ⇓ v′, a′ a′, e′[v′/x] ⇓ v, a′′

a, let x = e in e′ ⇓ v, a′′

from §3.3 could be written in environment style as follows:

a,E ` e ⇓ v′, a′ a′, E[x 7→ v′] ` e′ ⇓ v, a′′

a,E ` let x = e in e′ ⇓ v, a′′

where E stands for a value environment and E[x 7→ v′] is that value environment mapping x
to v′ and otherwise acting as E.

It should be evident that an environment style semantics corresponds more closely to how
an implementation might work. A classic example of such a semantics is that given by Milner
et al.[36] in the definition of the Standard ML language.

For the most part, this thesis uses the familiar ‘substituted-in’ style of semantics which we
have seen earlier in this chapter. (In that setting, the canonical forms must be a subset of the
expressions of the language.) There is no particular reason for choosing one way or the other
for the forthcoming correctness results. However, in Chapter 7 we make use of an environment
style semantics in a setting where it greatly simplifies the presentation.
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C ::= [–] hole
| x value identifier
| () unit
| a atom
| Ck(C) data construction
| (C, C) pairing
| fresh fresh name creation
| <<C>>C abstraction
| swap C, C in C atom-swapping
| fun x(x) = C recursive function
| C C function application
| if C = C then C else C conditional
| let x = C in C value binding
| let (x, x) = C in C pair deconstruction
| let <<x>>x = C in C abstraction deconstruction
| match C with

C1(x1) -> C1

| · · ·
| CK(xK) -> CK

data value deconstruction

Figure 3.8: Contexts.

3.6 Notions of observational equivalence

Soon we will be talking about the observational equivalence of Mini-FreshML expressions: when
does one expression behave the same as another, in some sense? At this stage it is appropriate
to pick a particular notion of equivalence with which to work. We are actually going to use
what is regarded as something of a benchmark for observational equivalence: the notion of
contextual equivalence3. Two expressions are said to be contextually equivalent if they may
be freely exchanged within the source text of some enclosing program without affecting the
program’s observable results.

Definition 3.6.1 (Contexts). A context C consists of an expression containing one or more
‘holes’, as given in Figure 3.8. For contexts C and C ′, write C[C ′] for the context formed by
inserting C ′ into the holes in C. For an expression e, write C[e] for the expression formed by
inserting e into the holes in C. Note that both of these operations4 may involve binders in C
capturing identifiers in C ′ (resp. e); thus, contexts are not identified up to α-conversion. �

Definition 3.6.2. For frame stacks S and frames F then define Ctxt(–) by induction on the
size of S as follows.

Ctxt([])
def
= [–] Ctxt(S ◦ F)

def
= (Ctxt(S))[F ]. �

Lemma 3.6.3. For a closed frame stack S of type τ ( and a closed expression e of type τ ,

〈S, e〉↓⇔ 〈[], (Ctxt(S))[e]〉↓ . (3.6)

Proof. By a monotonous induction on the structure of S, whose details we omit. �

Definition 3.6.4 (Contextual preorder, contextual equivalence). The 4-tuple (Γ, e, e′, τ) is
said to be in the type-respecting relation of contextual preorder iff e and e′ may be assigned
type τ in typing context Γ and for all contexts C such that C[e] and C[e′] are typeable closed
expressions,

(∀a ⊇ atms(C[e]). ∃a′ ⊇ a. ∃v ∈ Valτ . a, C[e] ⇓ v, a′) ⇒

3Specified in a traditional way, no less: for an arguably more modern exposition see [44], for example.

4Such operations are a good example of metaprogramming tasks which are significantly simplified by the presence
of freshness features in the metalanguage.
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(∀a ⊇ atms(C[e′]). ∃a′ ⊇ a. ∃v′ ∈ Valτ . a, C[e′] ⇓ v′, a′).

Write Γ ` e ≺ctx e
′ : τ iff (Γ, e, e′, τ) is in the relation. The relation of contextual equivalence,

denoted by Γ ` e ≈ctx e
′ : τ , is the symmetrisation of contextual preorder. Let us just write

e ≈ctx e
′ iff e and e′ are closed contextually-equivalent expressions. �

It is an immediate consequence of Theorem 3.4.6 that we can characterise contextual
equivalence using frame stack semantics in the following way.

Lemma 3.6.5 (≈ctx in terms of termination). The contextual pre-order Γ` e ≺ctx e
′ : τ holds

just when for all contexts C such that C[e] and C[e′] are typeable closed expressions, 〈[], C[e]〉↓
implies that 〈[], C[e′]〉↓. Therefore Γ` e ≈ctx e

′ : τ just when for all such contexts C, 〈[], C[e]〉↓⇔
〈[], C[e′]〉↓. �

Now whilst contextual equivalence is a powerful notion which is convenient for estab-
lishing further results, it can be difficult to work with due to the necessity to quantify over
all possible contexts. We manage to get around such difficulties by calculating with another
notion of equivalence: Mason and Talcott’s notion of ‘CIU-equivalence’[29]. In §5.5 we will
prove that this coincides with Mini-FreshML contextual equivalence.

Definition 3.6.6 (CIU-preorder, CIU-equivalence). The 4-tuple (Γ, e, e′, τ) is said to be in
the type-respecting relation of CIU-preorder iff Γ ` e : τ , Γ ` e′ : τ and for all substitutions ψ
with ` ψ : Γ and all closed frame stacks S of type τ ( then 〈S, e[ψ]〉↓ ⇒ 〈S, e′[ψ]〉↓. Write
Γ ` e ≺ciu e

′ : τ iff (Γ, e, e′, τ) is in the relation. The symmetrisation is called CIU-equivalence,
written Γ` e ≈ciu e

′ : τ . Write e ≈ciu e
′ iff e and e′ are closed CIU-equivalent expressions. �

3.7 Correctness for Mini-FreshML

In this section we shall examine some desirable Mini-FreshML correctness properties which
will be proved later in Chapter 5. These properties centre around the behaviour of Mini-
FreshML expressions which are being used to represent, or compute, values of some object-
language syntax.

For simplicity, we will consider an object language whose terms t ∈ Λ are those of the
untyped λ-calculus,

t ::= x | λx. t | t t

where x ranges over the countably infinite set of variables VId. Whilst this example is simple,
it captures the essential features of object languages specified by a certain notion of binding

signature[17, 18] to which our theory can be generalised. Providing the operations of the
binding signature do not involve function space constructions then the syntax of such a lan-
guage may be specified by an algebraic datatype5. In this particular case, the suitable datatype
declaration is:

type δ = C1 of name | C2 of <<name>>δ | C3 of δ × δ.

Let us write Var for C1, Lam for C2, App for C3 and lam for δ. Furthermore, write vars(t) for
the finite set of all variables occurring within a term t. Extend this notation to handle multiple
terms in the obvious manner. Given value identifiers x, x′ ∈ VId and a λ-term t then write
(x x′) · t for that term obtained by swapping all occurrences of x and x′ throughout t.

We shall be particularly concerned with the relationships which exist between Mini-FreshML
expressions and α-equivalence classes of object-level terms. We use the characterisation of α-
equivalence given by Gabbay and Pitts[20], which is defined by structural recursion on λ-terms
as follows.

Definition 3.7.1 (α-equivalence).

x ≡α x
x ∈ VId (3.7)

(x x′′) · t ≡α (x′ x′′) · t′

λx. t ≡α λx
′. t′

x′′ ∈ VId \ vars(x, x′, t, t′) (3.8)

5That is, one not involving the function space constructor: note that this notion of ‘algebraic’ differs from the
usual one in the sense that we allow <<name>>τ types to appear.
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t1 ≡α t
′
1 t2 ≡α t

′
2

t1 t2 ≡α t
′
1 t

′
2

. � (3.9)

Note that α-equivalence is closed under swapping: if t ≡α t′ then (x x′) · t ≡α (x x′) · t′

for any value identifiers x, x′ ∈ VId. Such identities do not hold when one uses arbitrary
renamings as opposed to swappings. For example the open terms λx. x y and λz. z y are
α-equivalent, but given a free identifier x we obtain that (λx. x y)[y 7→ x] = λx. x x 6≡α

λz. z x = (λz. z y)[y 7→ x] (writing [y 7→ x] for the non-capture-avoiding substitution of x for
y). However, (x y) · (λx. x y) = λy. y x ≡α λz. z x = (x y) · (λz. z y). Good properties like this
did indeed inspire development of the original permutation model of name binding[20].

Given some λ-term t, we may encode it as a Mini-FreshML expression by using the follow-
ing translation function.

Definition 3.7.2 (Translation to expressions). For each λ-term t, define a Mini-FreshML
expression [t]e ∈ Expδ by induction on the structure of t as follows.

[x]e
def
= Var(x)

[λx. t]e
def
= let x = fresh in Lam(<<x>>[t]e)

[t t′]e
def
= App([t]e, [t′]e)

Recall we identify expressions up to α-equivalence of bound value identifiers. If t is a closed
(resp. open) term, then [t]e is a closed (resp. open) value. �

Lemma 3.7.3. [–]e is equivariant: if x, x′ ∈ VId then (x x′) · [t]e = [(x x′) · t]e. �

Using our denotational semantics we will be able to prove the following facts about Mini-
FreshML. The first of these is the most important result of all, for it shows how contextual
equivalence at the meta-level coincides with α-equivalence at the object level.

Fact 3.7.4 (Correctness for expressions). For λ-terms t, t′ with free variables contained in a

finite set {x0, · · · , xn} ⊆ VId,

t ≡α t
′ ⇔ {x0 : name, · · · , xn : name} ` [t]e ≈ctx [t′]e : lam. �

Fact 3.7.5 (Form of expressions). For a closed Mini-FreshML expression e of type lam and a

divergent term Ω, then either e ≈ctx Ω or there exists a closed value v of type lam with

e ≈ctx let x1 = fresh in · · · let xn = fresh in v,

for value identifiers {x1, . . . , xn}.

These results are neither quick nor straightforward to prove. In order to show their
correctness, we shall develop a new variety of domain theory and then exploit it to obtain
a denotational semantics for Mini-FreshML. By relating this to the operational semantics, we
will be able to derive the desired results at the end of Chapter 5.





4 A domain theory for names

‘There is an infinite set A that is

not too big.’ —von Neumann

IN THIS CHAPTER, we develop a variant of classical domain theory[3, 52] which is good for
reasoning about names and name binding. This theory forms the basis of our denotational
model of Mini-FreshML in Chapter 5. The domain theory centres around the permutation
model of name binding developed by Pitts and Gabbay[20, 18], although there is an important
difference between their presentation and that given here. For those authors take as their foun-
dation an axiomatisation of FM-set theory and develop constructions fully internalised within
that world. In this thesis, we take a somewhat less radical approach and make constructions
in standard ZF-set theory which parallel those in FM-set theory. This enables us to exploit the
novel features offered by FM whilst still retaining a familiar logical foundation.

FM-domain theory provides a relatively uncomplicated setting for reasoning about names
and name binding. In particular, all dependencies on parameterising name sets may be made
implicit—removing any need to index over ‘possible worlds’ as seen so widely in approaches
based on functor category semantics[17, 66]. The various constructions which we make in
FM-domain theory are generally quite straightforward (although occasionally rather subtle)
and benefit from not being complicated by such indexing. Although as we shall observe later,
working in FM-domain theory is equivalent to working in a certain category of functors.

4.1 FM-sets, FM-cpos and FM-cppos

For simplicity, we work with respect to a fixed countably infinite set 
 of atoms. The theory
could, however, be generalised to handle different sorts of atoms rather like one sees in Fresh
O’Caml and in FMS-set theory[20].

Definition 4.1.1 (Permutations and actions). Let a permutation π be a member of the
permutation group perm( 
 ) on 
 . Such a π is therefore a bijection from 
 to itself. Write
id for the identity permutation and π′ ◦ π for that permutation acting as π and then as π′.

An action of the group perm( 
 ) on a set D is specified by a binary operator ·D : perm( 
 )×
D→D satisfying:

id ·D d = d and π ·D (π′ ·D d) = (π ◦ π′) ·D d

for all d ∈ D. Call a set equipped with such an action a perm( 
 )-set and omit the D subscript
of ·D when the meaning is clear. �

For example, the set of atoms 
 has a canonical permutation action (π, a) 7→ π(a). One
particular set may determine various perm( 
 )-sets by varying the action: for example, we
could construct another perm( 
 )-set based on 
 by equipping it with the null action (π, a) 7→
a.

We shall often be concerned with those permutations π which consist of a single transposi-
tion of two atoms. Let us write (a a′) for that permutation exchanging a and a′ and acting as
the identity otherwise. The following lemma then follows immediately.

Lemma 4.1.2. For atoms a, b, c, d then (a b) · (c d) · x = (c d) · ((c d) · a (c d) · b) · x and

(a b) · (c d) · x = ((a b) · c (a b) · d) · (a b) · x. �

Definition 4.1.3. For a finite set a ⊆ 
 and a permutation π, say that π fixes a pointwise iff for
all a ∈ a, π(a) = a. �

39
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Definition 4.1.4 (Finite support). Let D be a perm( � )-set and take some d ∈ D. Say that d
is finitely supported (with respect to the action ·D) iff there exists a finite set a ⊆ � such that
each permutation π fixing a pointwise also fixes d (that is to say, π · d = d).

It is a consequence of this definition that each finitely-supported element d of a perm( � )-
set possesses a least finite support[20, Proposition 3.4]. Let us write supp(d) for this least finite
support. When talking about multiple elements of some perm( � )-set(s) at one time, we write
supp(d, d′) etc. for the union of their supports in the obvious manner. It is in fact possible to
express the support of an element d ∈ D as an exact formula, thus:

supp(d)
def
= {a ∈ � | {b ∈ � | (a b) · d 6= d} is not finite}

although this alternative definition is somewhat difficult to work with.
The support of an element d may be thought of as ‘all of the atoms involved in d’s con-

struction’. This corresponds with the fact that for atoms a, a′ not in the support of d then
(a a′) · d = d. We say that such atoms are fresh for d, sometimes written a � d.

By imposing the condition that each element of a perm( � )-set must be finitely supported,
we arrive at the following definition.

Definition 4.1.5 (FM-sets). Let D be a perm( � )-set. Then D forms an FM-set iff all of its
elements are finitely supported. �

Definition 4.1.6 (Finitely supported and equivariant subsets). Given an FM-set D, say that
S ⊆ D is finitely supported iff there exists a finite set of atoms a such that for all π which fix
a pointwise, {π · s | s ∈ S} = S. Say that S is an equivariant subset if we can take a to be
empty. Write S ⊆eq D just when S is an equivariant subset of D. �

Definition 4.1.7 (Powersets). Given an FM-set D write P(D) for the powerset of D, whose
members are all finitely-supported subsets of D. This becomes an FM-set when equipped with

the action π · S
def
= {π · s | s ∈ S} for all S ⊆ D. �

Remark 4.1.8. Note that given FM-sets S, D with S ⊆ D then we also have that π · S ⊆ π ·D
for any permutation π. �

Definition 4.1.9 (Products). Given FM-sets D and E, we can form their product D×E whose
underlying set is that of the usual Cartesian product. Writing (d, e) for an element of D × E,

the permutation action is given by π · (d, e)
def
= (π ·D d, π ·E e). Each element of D×E is clearly

finitely supported by virtue of the elements of D and E having this property. �

Definition 4.1.10 (FM-relations). Say that a subset R ⊆ D × E is an FM-relation if it is a
finitely-supported subset of D × E in the sense of Definition 4.1.6. �

Lemma 4.1.11. Given some FM-set D and any d ∈ D then for all permutations π, supp(π · d) ⊆
π · supp(d) (where the permutation action on the finite set of atoms supp(d) is as in Definition

4.1.7).

Proof. We show that π · supp(d) is a finite support (but not necessarily the least such) for π · d.

Given any permutation π′ which fixes π · supp(d)
def
= {π(a) | a ∈ supp(d)} pointwise, we have

that for all a ∈ supp(d), π′ ◦ π · a = π · a. Therefore π−1 ◦ π′ ◦ π · a = a. We need to show that
π′ ◦ π · d = π · d, so it suffices to show π−1 ◦ π′ ◦ π · d = d. This follows from above where we
see that π−1 ◦ π′ ◦ π fixes the support of d. �

Lemma 4.1.12. Given some FM-set D and any d ∈ D then for all permutations π, supp(π · d) =
π · supp(d).

Proof. Lemma 4.1.11 tells us that supp(π · d) ⊆ π · supp(d). To get the other direction, we
can instantiate the same Lemma using the permutation π−1 and the element π · d ∈ π · D to
deduce that supp(π−1 · π · d) ⊆ π−1 · supp(π · d). It follows that π · supp(d) ⊆ supp(π · d) by
equivariance of ⊆ (viz. Remark 4.1.8). �

As is usual when giving a denotational semantics to a programming language we shall
require a mathematical object with more structure than a set in order to denote function
types. We use an analogue of the familiar notion of chain-complete partially-ordered set (cpo)
as follows.
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Definition 4.1.13 (FM-cpos). An FM-cpoD is an FM-set equipped with a partial order relation
vD ⊆ D × D, written d vD d′ whenever (d, d′) ∈ vD. We write v instead of vD when the
meaning is clear. The relation v must be reflexive, anti-symmetric, transitive and equivariant,
that is to say ‘must be closed under swapping’:

d v d′ ⇒ ∀π ∈ perm(  ). π · d v π · d′. (4.1)

Furthermore, we require that any countable ascending chain (dn | n < ω) ∈ D which overall

possesses a finite support S (that is to say, supp(dn) ⊆ S for all n < ω) has a least upper bound
⊔

n<ω dn. �

Definition 4.1.14 (FM-complete lattices). An FM-complete lattice is an FM-set D equipped
with an equivariant partial order relation v such that every finitely-supported subset S ⊆ D
has a greatest lower bound (and hence also a least upper bound). �

Notation 4.1.15. Given a finitely-supported chain (dn | n < ω) in some FM-cpo D, write
supp (dn | n < ω) for the least finite support of the chain (so that supp(dn) ⊆ supp (dn | n < ω)
for all n < ω). �

Note that an FM-cpo may not have least upper bounds of all countable ascending chains.
For example, consider the FM-cpo whose underlying set consists of all finite subsets of 
ordered by inclusion. Enumerating1 the elements of  as a0, a1, . . . then we get a chain {a0} v
{a0, a1} v · · · which is clearly not finitely supported and indeed does not possess a least
upper bound. Indeed, any chain in this FM-cpo possesses finite support just when the chain is
eventually constant.

In this thesis we will predominantly work with pointed FM-cpos called FM-cppos, defined
as follows.

Definition 4.1.16 (FM-cppos). An FM-cppo is an FM-cpo D equipped with a distinguished
least element ⊥: for all d ∈ D, ⊥ v d. Condition (4.1) then forces the support of ⊥ to be
empty in order for ⊥ to be unique. �

We have made the choice of using FM-cppos rather than FM-cpos just because the many
and various domain-theoretic constructions seem to work rather more smoothly in this setting.
Morally speaking too, there is something more pleasant about FM-cppos in general. For
example, we shall see shortly how to construct a strict function space D ( D′ between
FM-cppos; by virtue of using pointed sets the unlift of such a construction is immediately
well-defined without having even to consider the pointedness of D′ as one would otherwise.

Lemma 4.1.17. Let D be an FM-cpo. Then for a finitely-supported chain (dn | n < ω) in D, we

have π ·
⊔

n<ω dn =
⊔

n<ω π · dn.

Proof. Follows immediately from (4.1), since this shows that the bijection π preserves vD.
�

Lemma 4.1.18. Take a chain (dn | n < ω) in an FM-cpo D. Then we have supp(
⊔

n<ω dn) ⊆
supp (dn | n < ω).

Proof. We proceed by showing that all π fixing supp (dn | n < ω) pointwise also fix
⊔

n<ω dn,
for then we know that supp (dn | n < ω) is a finite support for

⊔

n<ω dn. For such a π then it
is clear that π · dn = dn. Therefore

⊔

n<ω π · dn =
⊔

n<ω dn and we can conclude by Lemma
4.1.17. �

4.2 Some FM-cpos and their construction

4.2.1 Atoms, lifting, products and sums

Definition 4.2.1 (The FM-cpo of atoms). The set  can be turned into an FM-cpo (also
confusingly named  ) specified as follows.
. Underlying set: the set of atoms  .

. Permutation action: canonical action π · � a def
= π(a) for all a ∈  .

. Partial order: a v � a′
def
⇔ a = a′, for all a, a′ ∈  . �

1Such a construction could not be performed formally inside FM-set theory, as the bijection does not possess finite
support.
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It is a consequence of this definition that supp(a) = {a} for all a ∈ � .

Definition 4.2.2 (Lifting). The lift of an FM-cpo D, written D⊥ is the FM-cppo specified by
the following.
. Underlying set: is given by D ] {⊥} (note that we assume ⊥ 6∈ D).
. Permutation action: is as for D.
. Partial order: { (d, d′) ∈ (D ∪ {⊥}) × (D ∪ {⊥}) | d vD d′ ∨ d = ⊥}.
. Least element: ⊥. �

Definition 4.2.3 (Unlifting). The unlift of an FM-cppo D, written D
↓

is the FM-cpo specified
by the following.
. Underlying set: the underlying set of D with ⊥ removed.
. Permutation action: is as for2 D.
. Partial order: { (d, d′) ∈ D ×D | d vD d′ ∧ d 6= ⊥}. �

It is a consequence of these definitions that the least finite support of a non-bottom element
d ∈ D, for some FM-cppo D, is the same as that of the element d ∈ D

↓
. Similarly, given an

element e of an FM-cpo E then the least finite support of e is equal to that of the element
e ∈ E⊥.

Definition 4.2.4 (Products). The product of FM-cpos D and E, written D × E is the FM-cpo
specified by the following.
. Underlying set: { (d, e) | d ∈ D ∧ e ∈ E}.

. Permutation action: π ·D×E (d, e)
def
= (π ·D d, π ·E e).

. Partial order: (d, e) vD×E (d′, e′)
def
⇔ d vD d′ ∧ e vE e′. �

It follows that given FM-cpos D and E, the least finite support of an element (d, e) ∈ D×E
is given by supp(d)∪ supp(e). Furthermore, if D and E are in fact FM-cppos then so is D×E,
with least element (⊥D,⊥E).

Definition 4.2.5 (Smash products). The smash product of FM-cppos D and E is the FM-cppo

D ⊗ E
def
= (D

↓
× E

↓
)⊥. �

It follows that given FM-cppos D, E the least finite support of a non-bottom element,
written 〈d, e〉 ∈ D ⊗ E, is supp(d) ∪ supp(e).

Definition 4.2.6 (Coalesced sums). The coalesced sumD⊕E of FM-cpposD andE is specified
by the following.
. Underlying set: {⊥D⊕E}∪{ in1(d) | d ∈ D ∧ d 6= ⊥D}∪{ in2(e) | e ∈ E ∧ e 6= ⊥E}, where

⊥D⊕E is a distinguished least element.
. Permutation action: defined as follows for s ∈ D ⊕ E:

π · s
def
=











in1(π ·D d) if s = in1(d);

in2(π ·E e) if s = in2(e);

⊥D⊕E otherwise.

. Partial order: is again defined by case analysis:

⊥D⊕E v d for all d ∈ D ⊕ E;
ini(d) v inj(d

′) iff i = j and d v d′. �

It follows that the least finite support of a non-bottom element s ∈ D ⊕ E is supp(d) if
s = in1(d); and supp(e) if s = in2(e).

4.2.2 Functions and function spaces

Definition 4.2.7 (Permutation action for functions). Take FM-sets X and Y and let f be a
total function from the underlying set of X to that of Y . We can equip f with a permutation
action by defining

(π · f)(x)
def
= π ·Y (f(π−1 ·X x)). � (4.2)

2Since π ·D ⊥ = ⊥ and π is a bijection on D then the action π ·D – does indeed induce a bijection on D
↓

.
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Definition 4.2.8 (Finitely-supported functions). Say that f is a finitely-supported function iff
it possesses a finite support with respect to the permutation action (4.2). Write (X → Y ) for
the FM-set of all functions from X to Y which are finitely supported with respect to the above
permutation action. �

The construction of the FM-set (X→Y ) highlights the main difference between FM-domain
theory and classical domain theory: in the FM world, we must be careful when forming subsets
and function spaces to just ensure that we remain within the world of objects with finite
support.

Definition 4.2.9 (Equivariant functions). For FM-sets X, Y say that f ∈ (X → Y ) is equiv-

ariant iff for all permutations π, π · f = f . �

It is a consequence of this definition that f is equivariant just when for all permutations
π and all x ∈ dom(f), f(π · x) = π · (f(x)). We may also refer to an equivariant function as
‘having empty support’, since clearly f is equivariant just when supp(f) = ∅.

Definition 4.2.10 (Monotone and continuous functions). Take FM-cpos X and Y and a
finitely-supported function f from the underlying FM-set of X to that of Y . Say f is monotone

iff x vX x′ implies that f(x) vY f(x′). Say f is continuous iff it is monotone and for each
finitely-supported chain (xn | n < ω) in X, f(

⊔

n<ω xn) =
⊔

n<ω(f(xn)). �

Definition 4.2.11 (Strict functions). Given FM-cppos X, Y and a finitely-supported function
f from the underlying FM-set of X to that of Y , say that f is strict iff f(⊥X) = ⊥Y . �

Definition 4.2.12 (Strict continuous function spaces). Given FM-cpposX and Y writeX (

Y for that FM-cppo specified as follows.
. Underlying set: all total, finitely-supported functions f ∈ (X→Y ) which are both strict and

continuous.
. Permutation action: is as for (X → Y ).
. Partial order: is pointwise: f vX(Y f ′ iff for all x ∈ X, f(x) vY f ′(x).
. Least element: the constantly-bottom function. �

Remark 4.2.13. It must be remembered that an FM-cppo X ( Y may well contain many
functions which are not equivariant. For example, consider the FM-cppo 1⊥ whose underlying

set consists of {⊥,>} with ⊥ v >, ⊥ v ⊥, > v >, π · ⊥
def
= ⊥ and π · >

def
= >. This may

be used to form the FM-cppo 1⊥ ( � ⊥ whose elements will include functions mapping > to
some a ∈ � . Call such a function f . This function cannot have empty support, because if it
were to then for any permutation π and x ∈ 1⊥ we would have π · (f(x)) = f(π · x) = f(x).
This cannot hold since we could set π to be any permutation exchanging a with some different
atom. �

Definition 4.2.14 (Dependent products). The dependent product of FM-cppos Di indexed
by a set I is the FM-cppo written as

∏

i∈I Di and specified by the following.
. Underlying set: All finitely-supported functions ρ with domain I such that for all i ∈ I, ρ(i)

lies in Di.

. Permutation action: is given by (π · ρ)(i)
def
= π ·Di

(ρ(i)).
. Partial order: is pointwise: ρ v ρ′ iff for all i ∈ I, ρ(i) vDi

ρ′(i).
. Least element: That function mapping each i ∈ I to the least element of Di. �

Definition 4.2.15 (Dependent smash products). The dependent smash product of FM-cppos
Di indexed by a set I is the FM-cppo

⊗

i∈I Di specified as follows:
. Underlying set: All finitely-supported functions ρ with domain I such that for all i ∈ I, ρ(i)

lies in Di \ {⊥}; together with the least element (see below).

. Permutation action: is given by (π · ρ(i))
def
= π ·Di

(ρ(i)).
. Partial order: is pointwise: ρ v ρ′ iff for all i ∈ I, ρ(i) vDi

ρ′(i).
. Least element: That function mapping each i ∈ I to the least element of Di. �

Note that we place no restriction on the cardinality of the index set I when constructing
a dependent product or dependent smash product. One must simply take care to ensure that
each member of such a product is a finitely-supported function out of I.

Two familiar notions which we shall require in §4.5 are those of embeddings and projections,
defined as follows.
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Definition 4.2.16 (Embeddings and projections). An embedding between FM-cppos is a
function e ∈ D ( E for which there exists a (necessarily uniquely-determined) second
function p ∈ E ( D, known as a projection, such that p ◦ e = idD and e ◦ p v idE . �

4.2.3 Abstraction FM-cppos

We now come to the main novel construction of this section, that of abstraction FM-cppos. In
order to perform this construction, we shall first establish some preliminary results.

Definition 4.2.17. For each FM-cppo D, define the relation �D ⊆ ( � × D) × ( � × D) as
follows:

(a, d) �D (a′, d′)
def
⇔ ∃a′′ ∈ � \ supp(a, a′, d, d′). (a a′′) · d vD (a′ a′′) · d′.

We write � rather than �D when the meaning is clear. �

We aim to show that � is a pre-order. To do this, we require a lemma which establishes
another example of the key ‘some/any’ property first seen in §3.4.1.

Lemma 4.2.18. (a, d) � (a′, d′) ⇔ ∀a′′ ∈ � \ supp(a, a′, d, d′). (a a′′) · d vD (a′ a′′) · d′.

Proof. The reverse direction follows immediately, since � \ supp(a, a′, d, d′) is cofinite. For the
forwards direction, since (a, d) � (a′, d′) then there exists some a′′ ∈ � \ supp(a, a′, d, d′) such
that (a a′′) · d vD (a′ a′′) · d′. Now given any a′′′ ∈ � \ supp(a, a′, d, d′) then the equivariance
of vD gives us that (a′′ a′′′) · (a a′′) · d vD (a′′ a′′′) · (a′ a′′) · d′. But by virtue of Lemma 4.1.2
and the way we have selected a′′ and a′′′, this implies that (a a′′′) · d vD (a′ a′′′) · d′. �

Lemma 4.2.19. The relation � is a pre-order.

Proof. It is clear that � is reflexive since vD is too. To see transitivity, suppose (a, d) � (a′, d′)
and (a′, d′) � (a′′, d′′). Then there exist atoms a1, a2 such that (a a1) · d vD (a′ a1) · d

′ and
(a′ a2) · d

′ vD (a′′ a2) · d
′′ with a1 ∈ � \ supp(a, a′, d, d′) and a2 ∈ � \ supp(a′, a′′, d′, d′′). But

by Lemma 4.2.18 we can deduce that for a3 ∈ � \ (a, a′, a′′, d, d′, d′′), (a a3) · d vD (a′ a3) · d
′

and (a′ a3) · d
′ vD (a′′ a3) · d

′′. We can now conclude immediately by transitivity of vD. �

Definition 4.2.20. Given an FM-cppo D, define the relation ∼ ⊆ ( � ×D)×( � ×D) as follows:

(a, d) ∼ (a′, d′)
def
⇔ (a, d) � (a′, d′) ∧ (a′, d′) � (a, d). � (4.3)

It follows from Lemma 4.2.19 that ∼ is an equivalence relation; the pre-order � induces
a partial order on equivalence classes (a, d)/∼. Let us show that such equivalence classes are
closed under permuting atoms.

Lemma 4.2.21 (� is equivariant). (a, d) � (a′, d′) implies that for all permutations π, (π(a), π·D
d) � (π(a′), π ·D d′).

Proof. Assume (a, d) � (a′, d′). That is to say, for some (or indeed any) a′′ ∈ � \supp(a, a′, d, d′)
then (a a′′) · d vD (a′ a′′) · d′. Given any permutation π the equivariance property (4.1) of vD

implies that (π(a) π(a′′)) · (π ·D d) vD (π(a′) π(a′′)) · (π ·D d′). This enables us to conclude
that π · (a, d) � π · (a′, d′) so long as π(a′′) lies in � \ supp(π(a), π(a′), π ·D d, π ·D d′). But this
follows by virtue of the condition on a′′. �

Corollary 4.2.22. The equivalence relation ∼ is equivariant.

Proof. Immediate from Lemma 4.2.21 and (4.3). �

We are now in a position to introduce the following important definition, which forms one
of the main novelties of this chapter.

Definition 4.2.23 (Abstraction FM-cppos). For any FM-cppo D, the atom-abstraction FM-
cppo [ � ]D is specified by the following.

. Underlying set: the set of equivalence classes (a, d)/∼ in � × D. Let us write [a]d for one
such equivalence class.
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. Permutation action: π ·[ � ]D [a]d
def
= [π(a)]π ·DD. This correctly preserves equivalence classes

by virtue of Lemma 4.2.22.

. Partial order: [a]d v[ � ]D [a′]d′
def
⇔ (a, d) � (a′, d′).

. Least element: the equivalence class [a]⊥D, for any a ∈ � . Note that given any other a′ ∈ �
then we have [a]⊥D ∼ [a′]⊥D. �

We can think of elements [a]d ∈ [ � ]D as representing elements of D with one atom
abstracted (bound); furthermore, these are identified up to ‘renaming of the bound atom’.

We must now proceed to verify that the construction in the definition above does indeed
satisfy the requirements for an FM-cppo. To do this, we shall first require some additional
lemmata.

Lemma 4.2.24. [a]d = [a′]d′ in [ � ]D just when3 either a = a′ ∧ d = d′ or a 6= a′ ∧ a /∈
supp(d′) ∧ d = (a a′) · d′.

Proof. In the forwards direction, assume [a]d = [a′]d′. That is to say, for all a′′ ∈ � \
supp(a, a′, d, d′) then (a a′′) · d = (a′ a′′) · d′ in D. Now proceed by case analysis. If a = a′ then
(a a′′) · d = (a′ a′′) · d′ and so d = d′ by equivariance of vD. For the other case, take a 6= a′. To
see that a /∈ supp(d′), take any a′′ /∈ supp(a, a′, d, d′). Then a = (a′ a′′) ·a = (a′ a′′) · (a a′′) ·a′′.
Since a′′ /∈ supp(d), Lemma 4.1.12 implies that (a′ a′′) · (a a′′) · a′′ /∈ supp((a′ a′′) · (a a′′) · d).
But we also have that (a a′′) · d = (a′ a′′) · d′, so a /∈ supp((a′ a′′) · (a′ a′′) · d′) = supp(d′).
Then (a a′′) · d = (a′ a′′) · d′ implies (a a′′) · (a a′′) · d = (a a′′) · (a′ a′′) · d′, so d =
((a a′′) · a′ (a a′′) · a′′) · (a a′′) · d′ = (a′ a) · (a a′′) · d′ = (a a′) · d′ (since a /∈ supp(d′)).

In the reverse direction, take atoms a, a′ and proceed again by case analysis. When a = a′

and d = d′, the result follows easily by equivariance of vD. For the other case, take a 6= a′,
a /∈ supp(d′) and d = (a a′) · d′. Taking any a′′ ∈ � \ (a, a′, d, d′) we have that (a a′′) · d =
(a a′′) · (a a′) · d′ = (a′′ a′) · d′, which implies [a]d = [a′]d′. �

Lemma 4.2.25. d vD d′ holds just when for any atom a, [a]d v[ � ]D [a]d′.

Proof. Given d vD d′ then we can always pick an atom a′ ∈ � \ supp(d, d′). The result then
follows from the equivariance of vD. A similar argument applies in the reverse direction. �

Lemma 4.2.26. For an element [a]d in [ � ]D, then supp([a]d) ⊆ supp(d) \ {a}.

Proof. We show that supp(d) \ {a} is a finite support (but not necessarily the least such) for
[a]d. Take any permutation π which fixes supp(d) \ {a} pointwise. We wish to know that
π · [a]d = [π(a)]π · d = [a]d. By Lemma 4.2.24 it therefore suffices to show that either a =
π(a) ∧ d = π · d; or a 6= π(a) ∧ a /∈ supp(π · d) ∧ d = (a π(a)) · (π · d). If a = π(a), it follows
that π fixes supp(d) pointwise and therefore π · d = d; we have the result since in this case
(a π(a)) is the identity.

In the case where a 6= π(a), we first wish to know that a /∈ supp(π · d). Lemma 4.1.12
tells us that it suffices to prove a /∈ {π(a′) | a′ ∈ supp(d)}. If this did not hold, then we
would have a ∈ {π(a′) | a′ ∈ supp(d)}. Then there would exist some a′ ∈ supp(d) such that
a = π(a′); moreover, since a 6= π(a) (and π is injective) then this implies a 6= a′. It follows
that a′ ∈ supp(d) \ {a} and so π(a′) = a′. But then a = π(a′) = a′, which would contradict our
assumption that a 6= a′.

To complete the proof, we just need to show that in the a 6= π(a) case, d = (a π(a)) · (π · d).
We do this by showing that the permutation (a π(a)) · π fixes all a′ ∈ supp(d) (for if it does
this, it must fix d also). Proceed by case analysis on a′. If a′ = a then the permutation is clearly
the identity. Otherwise, a′ is mapped to π(a′) by the permutation π. Since π fixes all atoms in
supp(d) \ {a}, then π(a′) = a′ (and this is not equal to a). Moreover, π(a) cannot equal π(a′)
since a 6= a′ and π is injective. Therefore (a π(a)) · π maps a′ to itself, as required. �

Lemma 4.2.27 (Supports in [ � ]D). Let [a]d be a member of [ � ]D. Then supp([a]d) = supp(d)\
{a}.

3Do not be fooled into thinking that this lemma generalises to the case of the partial order relation v rather than
just equality, for it does not. We explain why in §4.2.4.
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Proof. By Lemma 4.2.26 it remains to show that supp([a]d) is not less than supp(d) \ {a}.
Without loss of generality suppose that supp(d) \ {a, a′} supports [a]d, for some a′ not equal
to a and occurring in supp(d). Now consider the permutation π which just exchanges a and
a′, thus fixing supp(d) \ {a, a′} pointwise. It follows that π · [a]d = [a′](a a′) · d and because
supp(d) \ {a, a′} supports [a]d, we must have [a′](a a′) · d = [a]d. Applying Lemma 4.2.24, it
follows that a′ /∈ supp(d). But this contradicts the assumption above that a′ occurs in supp(d).
�

Lemma 4.2.28 (Concretion). For each [a]d in [ � ]D and a′ ∈ � \ supp([a]d), then there exists a

unique d′ = (a a′) · d such that [a]d = [a′]d′. We call this d′ the concretion of [a]d at a′ and write

it ([a]d) @ a′.

Proof. Since a′ ∈ � \ supp([a]d) then Lemma 4.2.27 tells us that either a = a′, or a 6= a′

and a′ /∈ supp(d). In the first case, d′ may be specified just by d = (a a′) · d, meaning that
[a]d = [a′]d′. Lemma 4.2.24 tells us that (in this case) the equality only holds for this particular
d′ and so it is unique. In the case where a 6= a′ and a′ /∈ supp(d), we again appeal to Lemma
4.2.24 to deduce that d′ = (a a′) · d is the unique d′ such that [a]d = [a′]d′. �

Lemma 4.2.29 (Supports of concretions). For a′ /∈ supp([a]d) then we have supp(([a]d) @
a′) ⊆ supp([a]d) ∪ {a′}.

Proof. We wish to calculate supp((a a′) · d). Since a′ /∈ supp([a]d) then Lemma 4.2.27 tells us
that either a = a′, or a 6= a′ and a′ /∈ supp(d). If a = a′ then supp((a a′) · d) = supp(d) =
supp([a]d) ∪ {a} as required. If a 6= a′ and a′ /∈ supp(d) then by inspection we see that
supp((a a′) · d) cannot contain a, but may contain a′. Therefore supp((a a′) · d) ⊆ supp(d) \
{a} ∪ {a′} = supp([a]d) ∪ {a′}. �

Lemma 4.2.30 (Concretion order-preserving). If [a]d v[ � ]D [a′]d′ then ([a]d) @ a′′ vD

([a′]d′) @ a′′, for any a′′ ∈ � \ supp([a]d, [a′]d′).

Proof. By Lemma 4.2.28 we know that [a]d = [a′′]([a]d @ a′′) = [a′′](a a′′) · d and [a′]d =
[a′′]([a′]d@a′′) = [a′′](a′ a′′) ·d′. Therefore [a′′](a a′′) ·d v[ � ]D [a′′](a′ a′′) ·d′ and so by Lemma
4.2.25 we have that (a a′′) · d vD (a′ a′′) · d′ as required. �

Lemma 4.2.31. Given [a]d in [ � ]D and a′ 6= a′′ with a′, a′′ /∈ supp([a]d), then (a′ a′′) · (([a]d) @
a′) = ([a]d) @ a′′.

Proof. By Lemma 4.2.28 we need to show that (a′ a′′) · (a a′) · d = (a a′′) · d. But the left-hand
side is equal to (a a′) · ((a a′) ·a′ (a a′) ·a′′) ·d. This can be shown to be equal to the right-hand
side by a tedious case analysis, whose details we omit. �

Lemma 4.2.32. Any finitely-supported chain ([an]dn | n < ω) in [ � ]D possesses a least upper

bound which may be constructed as [a]
⊔

n<ω(([an]dn) @ a), for any a /∈ supp ([an]dn | n < ω).

Proof. For all n < ω, a /∈ supp([an]dn) and therefore we can concrete each element of the
chain at a. By Lemma 4.2.30 this forms another chain in D, namely (([an]dn) @ a | n < ω).
This chain is also finitely supported, since by Lemma 4.2.29 we have that supp([an]dn) @
a) ⊆ supp([an]dn) ∪ {a} for all n < ω. (The new chain is thus finitely supported by the
set supp ([an]dn | n < ω) ∪ {a}.) It follows that this chain has a least upper bound given
by

⊔

n<ω(([an]dn) @ a) and for all n < ω, ([an]dn) @ a vD

⊔

n<ω(([an]dn) @ a). It fol-
lows by Lemma 4.2.25 that [a](([an]dn) @ a) v [a]

⊔

n<ω(([an]dn) @ a) for all n < ω; thus,
[a]

⊔

n<ω(([an]dn) @ a) is an upper bound for the chain in [ � ]D. To see that it is the least
such, suppose that there is some other upper bound [a′]d′ so that [an]dn v [a′]d′ for all
n < ω. We wish to show that [a]

⊔

n<ω(([an]dn) @ a) v [a′]d′, which we can do by choosing
a′′ ∈ � \supp(a, a′, ([an]dn | n < ω)) and showing that (a a′′) ·

⊔

n<ω(([an]dn)@a) v (a′ a′′) ·d′.
The left-hand side of this is equal to

⊔

n<ω((a a′′) · (([an]dn) @ a)) =
⊔

n<ω(([an]dn) @ a′′) by
Lemmata 4.1.17 and 4.2.31. Next, Lemma 4.2.30 together with the assumption that [a′]d′ is
an upper bound tells us that for all n < ω, ([an]dn) @ a′′ vD ([a′]d′) @ a′′. In particular, we
therefore have that

⊔

n<ω(([an]dn) @ a′′) vD ([a′]d′) @ a′′. But Lemma 4.2.28 tells us that the
right-hand side of this is equal to (a′ a′′) · d′ as we require. �

Lemma 4.2.33. [ � ]D is an FM-cppo.
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Proof. This splits into several parts, as follows.
I Finite support property. By Lemma 4.2.27.
I Least upper bounds of finitely-supported chains. By Lemma 4.2.32.
I Equivariance of v[ � ]D. Follows by virtue of its definition and Lemma 4.2.21.
I Pointedness. The FM-cppo D possesses a least element ⊥ which has empty support. It

follows from Lemma 4.2.25 that the least element in [ � ]D is specified by [a]⊥ for any a ∈ � .
[ � ]D therefore satisfies all of the requirements for an FM-cppo. �

4.2.4 Some curiosities

FM-domain theory—and abstraction FM-cppos in particular—contain some deep subtleties.
Here we identify two traps for the unwary.

First, note that given some FM-cpo D and d vD d′ then we do not necessarily have that
supp(d) ⊆ supp(d′). A simple example is given when D is the atom-abstraction FM-cpo [ � ]P ,
where P is the FM-cpo with underlying FM-set P( � ) (viz. Definition 4.1.7) and partially-
ordered by inclusion. Choosing distinct atoms a0, a1, the fact that {a0} ⊆ ( � \ {a1}) means
we can construct a chain in [ � ]P starting as follows:

[a1]a0 v [a1]( � \ {a1}) v · · ·

(This chain has an overall finite support, namely the set {a0}—the crucial observation here
being that the cofiniteness of � \ {a1} implies that it is finitely supported by {a1}.) We now
have that

supp([a1]a0) ⊇ supp([a1]( � \ {a1})) ⊇ · · ·

which shows that the elements’ support is not monotonically-increasing.
Our second example is the following false lemma—a version of Lemma 4.2.24 with v

substituted for =.

Lemma 4.2.34 (False). [a]d v [a′]d′ in [ � ]D just when either a = a′ ∧ d v d′ or a 6= a′ ∧ a /∈
supp(d′) ∧ d v (a a′) · d′. �

To see an example of why this lemma fails to hold, take distinct atoms a1, a2, a3 and
construct the chain in [ � ]P starting as

[a3]{a1} v [a1]( � \ {a2, a3}) v · · ·

We can now see that: a3 6= a1; a3 ∈ supp( � \ {a2, a3}) and moreover, since (a3 a1) · ( � \
{a2, a3}) = � \ {a1, a2} then {a1} 6v (a3 a1) · supp( � \ {a2, a3})—contradicting the False
Lemma.

4.3 Fixed points

As is usual in denotational semantics, we shall require the notion of fixed point to give a
meaning to recursively-defined functions. We will be needing two constructions of fixed points:
that given by continuous functions on finitely-supported chains and that given by monotone
functions on FM-complete lattices.

Definition 4.3.1. Given some FM-cppo D and a monotone function f ∈ (D→D), say that an
element d ∈ D is a pre-fixed point for f iff f(d) v d. Say d is a fixed point for f iff f(d) = d. �

Definition 4.3.2. Given an FM-cppo D and a function f ∈ (D→D), define fn(d) by induction
on n as follows:

f0(d)
def
= d fn+1(d)

def
= f(fn(d)). �

Lemma 4.3.3 (Fixed points on chains). For an FM-cppo D, each continuous function f ∈
(D → D) possesses a least fixed point fix(f) which may be constructed as

⊔

n<ω f
n(⊥), with

supp(fix(f)) ⊆ supp(f).

Proof. We must first show that (fn(⊥) | n < ω) is a finitely-supported chain in D in order for a
least upper bound to exist. To do this, let us prove by induction that supp(fn(⊥)) ⊆ supp(f)
for arbitrary n < ω. We always have supp(⊥) ⊆ supp(f). Assuming that supp(fn(⊥)) ⊆
supp(f), we can prove supp(fn+1(⊥)) ⊆ supp(f) by showing that every permutation which
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fixes supp(f) pointwise also fixes fn+1(⊥). Taking such a permutation π, observe that the
assumption gives us that π · fn(⊥) = fn(⊥); therefore fn(⊥) = π−1 · fn(⊥). We also know
that π · f = f . It follows (using Definition 4.2.7) that π · f(fn(⊥)) = (π · f)(π−1 · fn(⊥)) =
f(fn(⊥)) = fn+1(⊥) as required. Therefore (fn(⊥) | n < ω) is finitely supported and indeed
supp(fix(f)) ⊆ supp(f). That fix(f) is a least fixed point is a standard proof and we omit the
remaining details. �

The following lemma is an adaptation of the famous Tarski-Knäster fixed point theorem to
the setting of FM-domain theory.

Lemma 4.3.4 (Fixed points on lattices). Given an FM-complete lattice D, each monotone func-

tion f ∈ (D→D) possesses a least fixed point fix(f) which may be given as

⊔

{d ∈ D | f(d) v d}
(we use

⊔

to indicate a greatest lower bound).

Proof. The proof is standard and we omit the details, save for one crucial point. In order for

the set S
def
= {d ∈ D | f(d) v d} to have a greatest lower bound in the FM-complete lattice, it

is necessary for it to be finitely supported. That this is so follows from the fact that supp(S) ⊆
supp(f). To see this, take any permutation π which fixes supp(f) pointwise. We need to show
that for all s ∈ S then π · s ∈ S. If s ∈ S then f(s) v s and therefore π · f(s) v π · s, which is
equivalent to stating (π · f)(π · s) v π · s. Since π fixes f , then we have f(π · s) v π · s in D;
thus, π · s ∈ S. of S. �

It is interesting to note that we can derive equivariance properties of fixed points without
considering their explicit construction: the important property is that they are indeed fixed
points. The following lemma highlights this: the result can be obtained not only by the proof
given but also as a corollary of the proof of Lemma 4.3.4 above. We give this specific example
since it is used in the next chapter to reason about an FM-complete lattice of relations.

Lemma 4.3.5. Given an FM-complete lattice D and a monotone function f ∈ (D → D) with

supp(f) = ∅, then supp(fix(f)) = ∅.

Proof. Take any atoms a, a′ and observe (a a′) · fix(f) = (a a′) · (f(fix(f))) = f((a a′) · fix(f)).
Therefore (a a′) · fix(f) is a fixed point of f . It is also equal to fix(f), because (a a′) · fix(f) v
fix(f) holds just when fix(f) v (a a′) · fix(f) by equivariance of v. �

4.4 Categorical constructions

Whilst we do not provide a categorical presentation of our denotational semantics, a modicum
of category theory will be required in the next chapter. In order to do this, we now make
several definitions which consist of transferring familiar categorical concepts into the FM
setting.

Definition 4.4.1 (The category FM-Cpo). We take FM-cpos as the objects of the category;
the morphisms f : X −→ Y are equivariant functions f ∈ (X → Y ). �

Definition 4.4.2 (The category FM-Cpo⊥). We take FM-cppos as the objects of the category;
the morphisms f : X ◦−→ Y are strict, equivariant functions f ∈ (X → Y ). �

It is in fact the case that working in FM-Cpo is equivalent to working in the functor category
CpoI, where I is the category of finite sets of � and injections between them. Elements of
FM-Cpo correspond to elements of CpoI which preserve pullbacks.

Definition 4.4.3 (LFC-functors). A locally FM-continuous functor (known as an LFC-functor)
F : FM-Cpo⊥ −→ FM-Cpo⊥ is specified by the following information: for each FM-cppo D,
another FM-cppo F (D); and for each function f ∈ D ( E, a function F (f) ∈ F (D) ( F (E)
preserving identities and composition such that the following conditions are satisfied. Given
f v f ′ ∈ D ( E then we must have F (f) v F (f ′) ∈ F (D) ( F (E). For any finitely-
supported chain (fn | n < ω) in D ( E, F (

⊔

n<ω fn) must equal
⊔

n<ω(F (fn)). Finally for all
permutations π then π · F must equal F—that is to say, for each function f ∈ D ( E then
π · (F (f)) = F (π · f). �
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Definition 4.4.4 (Mixed-variance LFC-functors). We specify a mixed-variance LFC-functor
F : FM-Cpoop

⊥ × FM-Cpo⊥ −→ FM-Cpo⊥ by the following information: for each pair of
FM-cppos (D,E), another FM-cppo F (D,E); and for each pair of functions (f, g) ∈ (E (

D) × (D ( E), a function F (f, g) ∈ F (D,D) ( F (E,E) such that: F (idD, idD) = idF (D,D);
and for additional functions f ′ ∈ E′ ( E and g′ ∈ E ( E′, then F (f ′, g′) ◦ F (f, g) =
F (f◦f ′, g′◦g). These actions must also satisfy the following conditions. Given f v f ′ ∈ E ( D
and g v g′ ∈ D ( E then we require F (f, g) v F (f ′, g′) ∈ F (D,D) ( F (E,E). For any
finitely-supported chain ((fn, gn) | n < ω) in (E ( D)× (D ( E), then F (

⊔

n<ω fn,
⊔

n<ω gn)
must equal

⊔

n<ω(F (fn, gn)). Finally, for all permutations π and functions (f, g) ∈ (E (

D) × (D ( E) then we must have π · F (f, g) = F (π · f, π · g). �

Notation 4.4.5. Write λx. t for that function which acts as λx. t except that (λx. t)(⊥)
def
= ⊥.

Extend this notation in the obvious way to write λ〈d1, d2〉. t for strict functions inD1⊗D2 ( D
and λ[a]d. t for strict functions in [ � ]D ( D′. Note that this notation imposes no conditions as
to which particular representative in [ � ]D is chosen. Recall that we write 〈d1, d2〉 to indicate

the construction of a smash pair (such that 〈d1, d2〉
def
= ⊥D1⊗D2

when either of d1 ∈ D1 and
d2 ∈ D2 are bottom). �

Lemma 4.4.6. The following operations, here expressed in terms of their actions on objects and

morphisms, determine LFC-functors.

lifting (–)⊥ FM-Cpo⊥ −→ FM-Cpo⊥

D 7→ D⊥ f 7→ λx. f(x).

atom-abstraction [ � ](–) FM-Cpo⊥ −→ FM-Cpo⊥

D 7→ [ � ]D
f 7→ λd. [a]f(d@ a) where a ∈ � \ supp(d, f).

smash product (–) ⊗ (–) FM-Cpo⊥ × FM-Cpo⊥ −→ FM-Cpo⊥

(D,E) 7→ D ⊗ E (f, g) 7→ λ〈d, e〉. 〈f(d), g(e)〉.

coalesced sum (–) ⊕ (–) FM-Cpo⊥ × FM-Cpo⊥ −→ FM-Cpo⊥

(D,E) 7→ D ⊕ E

(f, g) 7→ λs.

{

f(d) if s = in1(d);

g(e) if s = in2(e).

strict function space (–) ( (–) FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥

(D,E) 7→ D ( E (f, g) 7→ λh. g ◦ h ◦ f.

Proof. We provide the only case which differs significantly from classical domain theory, that
for atom-abstraction.
I Preservation of identities. Observe that

([ � ]idD)([a]d) = [a′](([a]d) @ a′) by definition of [ � ]–, with a′ ∈ � \ supp(a, d)
= [a′](a a′) · d by definition of @
= [a]d by Lemma 4.2.28.

I Preservation of composition. Take f ∈ D ( D′ and g ∈ D′ ( E, so4:

[ � ](g ◦ f)([a]d) =
= [a′]((g ◦ f)(([a]d) @ a′)) by definition of [ � ]–, with a′ ∈ � \ supp(a, d, f, g)
= [a′]((g ◦ f)((a a′) · d)) by definition of @
= [a′]((a′ a′) · ((g ◦ f)((a a′) · d))) (a′ a′) is the identity
= ([ � ]g ◦ [ � ]f)([a]d) as a′ /∈ supp([a′]f((a a′) · d), g).

We now check that [ � ]– is a continuous equivariant operator on finitely-supported chains
(fn ∈ D ( E | n < ω).

4Note that when we need to satisfy the condition a′ ∈ � \ supp([a]d, f) (arising from the action of [ � ]– on
morphisms) at the second proof step, we impose a stronger condition to ensure that a′ is fresh for g (and indeed a) as
well. This a′ then automatically satisfies the same side condition which arises in connection with g. That we are able
to do this is another example of the ‘some/any’ property of choosing fresh atoms which runs throughout FM-domain
theory. It is also evident in the Continuity and Equivariance proof cases.
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I Monotonicity. Take f v f ′ ∈ D ( E. We wish to know that [ � ]f v [ � ]f ′; that is to say
for all [a]d ∈ [ � ]D then ([ � ]f)([a]d) v ([ � ]f ′)([a]d). Take any a′ ∈ � \ supp([a]d, f, f ′). Then
([ � ]f)([a]d) = [a′]f((a a′) · d) and ([ � ]f ′)([a]d) = [a′]f ′((a a′) · d). By Lemma 4.2.25 it now
suffices to show f((a a′) · d) v f ′((a a′) · d) to get the result. But this follows since f v f ′.

I Continuity. We wish to know that [ � ]
⊔

n<ω fn =
⊔

n<ω[ � ]fn. That is to say, for all [a]d
then ([ � ]

⊔

n<ω fn)([a]d) = (
⊔

n<ω[ � ]fn)([a]d). Taking the left-hand side together with some
a′ ∈ � \ supp (fn | n < ω) \ supp([a]d) we obtain

([ � ]
⊔

n<ω

fn)([a]d) = [a′](
⊔

n<ω

fn)((a a′) · d) by definition of [ � ]–, as
a′ /∈ supp(

⊔

n<ω fn, [a]d)

= [a′]
⊔

n<ω

fn((a a′) · d) lubs in D ( E

=
⊔

n<ω

[a′]fn((a a′) · d) by Lemma 4.2.32

=
⊔

n<ω

([ � ]fn)([a]d) by definition of [ � ]–, as
∀n, a′ /∈ supp(fn, [a]d)

= (
⊔

n<ω

[ � ]fn)([a]d) lubs in [ � ]D ( [ � ]E.

I Equivariance. We wish to know that for all permutations π and functions f ∈ D ( E,
π · [ � ]f = [ � ]π · f . This holds when π · ([ � ]f([π−1 · a]π−1 · d)) = [ � ](π · f)([a]d) for any
[a]d ∈ [ � ]D. Taking any a′ ∈ � \ supp([π−1(a)]π−1 · d, f) then the definition of [ � ]– implies
that the left-hand side of this is equal to π · [a′]f((π−1(a) a′) · π−1 · d). This is equivalent to
[π(a′)]π · (f((π−1(a) a′) · π−1 · d)) by virtue of the permutation action on [ � ]D. Recalling that
π · f(π−1 · x) = (π · f)(x) then we can simplify this to [π(a′)](π · f)((a π(a′)) · d). Next, Lemma
4.1.12 tells us that a′ ∈ � \supp([π−1(a)]π−1 ·d, f) holds just when π(a′) ∈ � \supp([a]d, π ·f).
We are now done since we can calculate that [π(a′)](π · f)((a π(a′)) · d) = [ � ](π · f)([a]d) (we
use π(a′) to satisfy the side-condition on [ � ]–). �

4.5 Solution of recursive equations on FM-cppos

Perhaps the most important technique in the application of domain theory to the semantics
of programming languages is the solution of recursive domain equations[64]. This technique
enables us to construct domains whose elements are the denotations of values of user-defined
recursive datatypes. The seminal example is the discovery by Scott of a non-trivial solution to
the recursive domain equation D ∼= (D→D) in order to represent terms of the λ-calculus.

In the next chapter we will need to solve recursive equations on FM-cppos. In general,
such an equation takes the form Φ(D) ∼= D, where Φ is built up from the constructors (–)⊥
(lifting), [ � ](–) (atom-abstraction), (–) ⊗ (–) (smash product), (–) ⊕ (–) (coalesced sum) and
(–) ( (–) (strict continuous function space) together with occurrences of the variableD. What
we would like is for Φ to determine an LFC-functor in itself; however, this may not be the case
since D might occur in both covariant and contravariant positions. In order to get around this
problem, we follow Pitts[46] and rewrite Φ to an LFC-functor F (D−, D+) : FM-Cpoop

⊥ ×
FM-Cpo⊥ −→ FM-Cpo⊥ by replacing all occurrences of D in contravariant position with
D− and all occurrences of D in covariant position with D+. The resulting F is then indeed
functorial and it suffices to find an FM-cppoD equipped with an isomorphism i : F (D,D) ∼= D.

The question, of course, is which solution to choose if there is more than one: we wish for
one which it is canonical in some sense. The following notion of minimal invariants captures
this idea of canonicity.

Definition 4.5.1 (Minimal invariant property). The solution (i,D) to the recursive equation
F (D,D) ∼= D has the minimal invariant property if the least fixed point fix(φ) of the strict

continuous function φ ∈ (D ( D) ( (D ( D) defined by φ(f)
def
= i ◦ F (f, f) ◦ i−1 is the

identity on D. �

We now prove the following theorem in full. Whilst the proof is arguably standard, we
believe that our presentation is elegant in the sense that it cuts down to the bare minimum
required to establish the result.
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Theorem 4.5.2. Let F : FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥ be an LFC-functor. Then there

exists a solution (i,D) satisfying the minimal invariant property with i : F (D,D) ∼= D and

which is unique up to isomorphism.

Proof. By virtue of F being an LFC-functor, it is a continuous operator on chains of morphisms
and therefore given any embedding-projection pair (e : D ◦−→ E, p : E ◦−→ D) we can
form another such pair (F (p, e) : F (D,D) ◦−→ F (E,E), F (e, p) : F (E,E) ◦−→ F (D,D))
with F (p, e) ◦ F (e, p) v idF (D,D) and F (e, p) ◦ F (p, e) = idF (E,E). Since the one-element
FM-cppo {⊥} is initial for embeddings (the unique morphism being given by the least element
of {⊥} ( D for each FM-cppo D), we can build a chain of embedding-projection pairs as
follows:

D0

e0 //
D1

e1 //

p0

oo D2

e2 //

p1

oo · · ·
p2

oo (4.4)

where D0
def
= {⊥}, Dn+1

def
= F (Dn, Dn), e0 is the unique element of {⊥} ( D, p0 is the

unique element of D1 ( {⊥}, en+1
def
= F (pn, en) and pn+1

def
= F (en, pn). Now define functions

pnm : Dn ◦−→ Dm and enm : Dn ◦−→ Dm as follows.

pnm
def
=

{

idDn
if m = n;

p(n−1)m ◦ pn if m < n.
enm

def
=

{

idDn
if m = n;

e(n+1)m ◦ en if m > n.

This enables us to form an FM-cppo with underlying set

D
def
=

{

d ∈
∏

n<ω

Dn

∣

∣

∣

∣

∣

d has finite support
and for all m ≤ n < ω, πm(d) = pnm(πn(d))

}

(4.5)

where the πn (n < ω) are the usual projections out of a member of the dependent product
(and the ordering together with the permutation action is inherited from Definition 4.2.14).
Even though this is a subset of an infinitely-indexed product, it is a legal construction because
every element is finitely supported.

Next define a second set of embeddings e′n : Dn ◦−→ D and their associated projections
p′n : D ◦−→ Dn as follows:

e′n(dn)
def
= (xm |m < ω), given xm

def
=

{

pnm(dn) if m 6 n

enm(dn) if m > n;

p′n(d)
def
= πn(d)

where we write (xm |m < ω) for the tuple (x0, x1, . . .). A consequence of these definitions is
that

e′n(p′n(d))
def
= (xn

m |m < ω), given xn
m

def
=











pnm(πn(d)) if m < n

πn(d) if m = n

enm(πn(d)) if m > n.

Recalling that the least upper bound of a chain is unaffected by removing finitely many
elements from the start of the chain, calculate as follows.

(
⊔

n<ω

(e′n ◦ p′n))(d) =
⊔

n<ω

(e′n ◦ p′n)(d) =
⊔

n<ω

(xn
m |m < ω)

= (
⊔

n<ω

xn
m |m < ω) = (

⊔

m<n<ω

xn
m |m < ω)

= (
⊔

m<n<ω

(pnm ◦ πn)(d) |m < ω)

= (
⊔

m<n<ω

πm(d) |m < ω)

= (πm(d) |m < ω) = d.

We now have the important results that

p′n ◦ e′n = idDn
(4.6)
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⊔

n<ω

e′n ◦ p′n = idD. (4.7)

The equality (4.7) is the crux. Define the strict continuous functions i : F (D,D) ◦−→ D and
j : D ◦−→ F (D,D) as follows:

i =
⊔

n<ω

e′n+1 ◦ F (e′n, p
′
n) and j =

⊔

n<ω

F (p′n, e
′
n) ◦ p′n+1.

Now using (4.7) we have

i ◦ j =
⊔

n<ω

e′n+1 ◦ F (e′n, p
′
n) ◦ F (p′n, e

′
n) ◦ p′n+1

=
⊔

n<ω

e′n+1 ◦ idF (Dn,Dn) ◦ p
′
n+1

=
⊔

n<ω

e′n+1 ◦ p
′
n+1 = idD.

Composing i and j around the other way and using (4.7) together with the local continuity
and functorality of F , we have

j ◦ i =
⊔

n<ω

F (p′n, e
′
n) ◦ p′n+1 ◦ e

′
n+1 ◦ F (e′n, p

′
n)

=
⊔

n<ω

F (p′n, e
′
n) ◦ idD ◦ F (e′n, p

′
n)

=
⊔

n<ω

F (p′n, e
′
n) ◦ F (e′n, p

′
n)

=
⊔

n<ω

F (e′n ◦ p′n, e
′
n ◦ p′n)

= F (
⊔

n<ω

e′n ◦ p′n,
⊔

n<ω

e′n ◦ p′n)

= F (idD, idD) = idF (D,D).

Therefore i is an isomorphism; from now on let us write i−1 instead of j. Now note that since
pmn = pn ◦ · · · ◦ pm−1 and enm = em−1 ◦ · · · ◦ en, we have F (pmn, enm) = F (pm−1, em−1) ◦ · · · ◦
F(pn, en) = em◦· · ·◦en+1. Similarly, F (enm, pmn) = pn+1◦· · ·◦pm. Furthermore, for k 6 n 6 m
one can show by expansion of function compositions that pmk ◦ enm = pk ◦ · · · ◦ pn−1 = pnk.
Similarly, if n < k 6 m or n 6 m < k then pmk ◦ enm = enk. Combining all of these facts
yields that e′m ◦ enm = e′n when n 6 m. In a similar vein, (4.5) immediately gives us that
pmn ◦p

′
m = p′n when n 6 m. We can use this and the previous results to calculate as follows.

i ◦ F (p′n, e
′
n) =

⊔

m<ω

e′m+1 ◦ F (e′m, p
′
m) ◦ F (p′n, e

′
n)

=
⊔

n6m<ω

e′m+1 ◦ F (p′n ◦ e′m, p
′
m ◦ e′n)

=
⊔

n6m<ω

e′m+1 ◦ F (pmn, enm)

=
⊔

n6m<ω

e′m+1 ◦ em ◦ · · · ◦ en+1

=
⊔

n6m<ω

e′m+1 ◦ e(n+1)(m+1)

=
⊔

n6m<ω

e′n+1 = e′n+1.

Symmetrically, we can also calculate the following.

F (e′n, p
′
n) ◦ i−1 =

⊔

m<ω

F (e′n, p
′
n) ◦ F (p′m, e

′
m) ◦ p′m+1

=
⊔

n6m<ω

F (p′m ◦ e′n, p
′
n ◦ e′m) ◦ p′m+1

=
⊔

n6m<ω

F (enm, pmn) ◦ p′m+1
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=
⊔

n6m<ω

pn+1 ◦ · · · ◦ pm ◦ p′m+1

=
⊔

n6m<ω

p(m+1)(n+1) ◦ p
′
m+1

=
⊔

n6m<ω

p′n+1 = p′n+1.

We are now in a position to see that (D, i) has the minimal invariant property. It suffices to
show that for all n < ω then e′n ◦ p′n = φn(⊥D(D) since we can then use (4.7) to deduce that
idD =

⊔

n<ω e
′
n ◦p′n =

⊔

n<ω φ
n(⊥D(D) = fix(φ) as required. By the functorality of F and the

results above,

e′n+1 ◦ p
′
n+1 = i ◦ F (p′n, e

′
n) ◦ F (e′n, p

′
n) ◦ i−1

= i ◦ F (e′n ◦ p′n, e
′
n ◦ p′n) ◦ i−1.

We can now proceed by induction on n to show that φn(⊥) equals i ◦ F (e′n ◦ p′n, e
′
n ◦ p′n) ◦ i−1.

The base case (n = 0) follows immediately by observing that for any d ∈ D then p′0(d) = ⊥
and thus e′0 ◦p

′
0 = ⊥D(D by strictness of e′0. For the inductive step, assume φn(⊥) = i◦F (e′n ◦

p′n, e
′
n ◦ p′n) ◦ i−1. From above, we know that the right-hand side of this is equal to e′n+1 ◦ p

′
n+1.

Therefore

φn+1(⊥) = i ◦ F (φn(⊥), φn(⊥)) ◦ i−1

= i ◦ F (e′n+1 ◦ p
′
n+1, e

′
n+1 ◦ p

′
n+1) ◦ i

−1

which gives the desired result. To see that the solution (i,D) is unique up to isomorphism,
suppose there is another solution (i′, E) with the minimal invariant property and consider the
following diagram

(E ( D) × (D ( E)
ε //

m

��

(E ( E) × (D ( D)

n

��
(E ( D) × (D ( E)

ε // (E ( E) × (D ( D)

where the maps ε, m and n are defined as follows.

ε : (f−, f+) 7→ (f+ ◦ f−, f− ◦ f+)
m : (f−, f+) 7→ (i ◦ F (f+, f−) ◦ i′−1, i′ ◦ F (f−, f+) ◦ i−1)
n : (f−, f+) 7→ (i′ ◦ F (f−, f−) ◦ i′−1, i ◦ F (f+, f+) ◦ i−1)

Given these definitions it is easy to see that the diagram commutes. Now recall Plotkin’s
uniformity principle which states that for functions d ∈ (D→D), e ∈ (E→E) and f ∈ D ( E
such that e ◦ f = f ◦ d, then fix(e) = f ◦ fix(d). Since ε is clearly strict whilst m and n are
continuous (as the isomorphisms i, i′ are also and the functor F is an LFC-functor) then we can
apply this principle to the diagram above to deduce that ε(fix(m)) = fix(n). Writing (g−, g+)
for fix(m), observe that ε(fix(m)) = (g+ ◦ g−, g− ◦ g+) = fix(n) = (idE , idD) since (i,D) and
(i′, D′) both have the minimal invariant property. Moreover since fix(m) = m(fix(m)) we have
that (g−, g+) = (i ◦ F (g+, g−) ◦ i′−1, i′ ◦ F (g−, g+) ◦ i−1), meaning that the following diagram
commutes.

F (D,D)
i //

F (g+◦g−,g−◦g+)

��

D

(g−,g+)

��
F (E,E)

i′ // E

(g+,g−)

OO

We therefore have a mediating isomorphism between D and E. �
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4.6 FM-sets of syntax

So far in this chapter we have considered FM-sets of domain-theoretic objects. However, it
is important to remember that we can also form FM-sets of syntactic entities. In particular, the
expressions of Mini-FreshML form an FM-set Exp: the permutation action is given simply by
recursively traversing the structure of the expression in question and applying the permutation
to any atoms encountered. With respect to this action, it is easy to see that each expression is
finitely supported. Since there are no constructs which bind atoms in Mini-FreshML, then the
support supp(e) of some e ∈ Exp is equal to the atoms atms(e) of e. In a similar manner, we
can form an FM-set consisting of the frame stacks of Chapter 3.

In the next chapter, we will see how our denotational semantics does in fact determine
equivariant functions on FM-sets of syntax. There, we will use the notation a � e to indicate
that a /∈ supp(e) (and similarly for frame stacks and expressions).



5 Mini-FreshML, denotationally

‘A mathematician is a

machine for turning coffee

into theorems.’ —Erdös

In the previous chapter we developed a variety of domain theory which we claimed was good
for reasoning about names and name binding. In this chapter we support this claim by using it
to give a denotational semantics to Mini-FreshML. Our semantics is computationally adequate,
meaning that equality of denotation implies observational equivalence. This property will
enable us to use the denotational semantics to derive operational equivalence results of the
type conjectured in Chapter 3.

The major contributions of this chapter are twofold. Firstly, we demonstrate how a stan-
dard monad of continuations may be used[61] to provide a model of dynamic allocation.
Secondly, we demonstrate how expressions and values in the Mini-FreshML metalanguage
correspond to α-equivalence classes of object language terms which we aim to manipulate.

5.1 An overview

In order to model the computational effect of generating fresh names, our denotational se-
mantics is monadic in the sense of Moggi[38]. This means that we distinguish between values

and computations. Values of some type τ correspond to elements of an FM-cppo [[τ ]], whilst
computations of type τ correspond to elements of an FM-cppo T[[τ ]], where T is a standard
monad of continuations.

Given that we are attempting to model the dynamic allocation of names, it may come as a
surprise to the reader that we are not using a traditional dynamic allocation monad[37] which
keeps track of the names generated during some computation. The reason we do not have to
do this is that the finite support properties exhibited by objects in FM-domain theory enable
us to keep the allocated names implicit. This fits well with the operational semantics based on
frame-stacks of §3.4. Furthermore, FM-domain theory has so far resisted attempts to construct
standard dynamic allocation monads within it, as we shall see in §5.1.1.

Let us consider in more detail how we can denote values, expressions and frame stacks. To
each Mini-FreshML type τ let us assign an FM-cppo [[τ ]]. (We provide the exact definition of
this map in due course.) Then we can define the denotation [[Γ]] of a typing context Γ as the
dependent smash product

[[Γ]]
def
=

⊗

x∈dom(Γ)

[[Γ(x)]].

We treat a non-bottom ρ ∈ [[Γ]] as a finitely supported function mapping each x ∈ dom(Γ) to
an element ρ(x) 6= ⊥ of the FM-cppo [[Γ(x)]]. Then for values v, frame stacks S and expressions
e satisfying Γ` v : τ , Γ`s S : τ ( and Γ` e : τ respectively we provide finitely supported
functions of the following kinds:

V[[Γ ` v : τ ]] ∈ [[Γ]] ( [[τ ]]

S[[Γ `s S : τ ( ]] ∈ [[Γ]] ( [[τ ]]
⊥

E [[Γ ` e : τ ]] ∈ [[Γ]] ( [[τ ]]
⊥⊥

where we define D⊥ def
= D ( 1⊥ for each FM-cppo D. FM-cppos [[τ ]] are the domains of values

of type τ whilst FM-cppos [[τ ]]
⊥⊥

are the domains of computations of type τ .
Intuitively, a non-bottom element d ∈ [[τ ]] corresponds to a value of type τ . An element

σ ∈ [[τ ]]
⊥

corresponds to a stack accepting a value of type τ and returning > for termination,
or ⊥ for divergence. Since the behaviour of expressions is determined by the enclosing frame
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stack, the denotation ε ∈ [[τ ]]
⊥⊥

of some expression in context is a function that accepts the
denotation of a frame stack in context and returns either > or ⊥. Thus, the denotations of
expressions in context lie in the underlying set of a continuation monad (D ( R) ( R,
where the ‘result’ set R is 1⊥.

Although we shall not use them explicitly when giving our semantics1, we do of course
have the following standard monad operations.

I Unit. For d ∈ D, return d
def
= λσ ∈ D⊥. σ(d).

I Kleisli lift. For e ∈ D⊥⊥, f ∈ D ( E⊥⊥ then

let x⇐ e in f x
def
= λε ∈ E⊥. e(λd ∈ D. f d ε)

such that (let x⇐ e in f x) ∈ E⊥⊥.

We noted earlier that the continuation monad is sufficient to model the dynamic allocation
of names—which, as in the operational semantics, will be modelled by atoms a ∈ � . This may
only be done thanks to the finite support property of FM-cppos, namely given some FM-cppo
D and any d ∈ D then we can always find some ‘fresh’ atom a which does not occur in the

support of d. In particular, given the denotation of some frame stack in context σ ∈ [[τ ]]
⊥

then
we can always pick some a /∈ supp(σ). The ‘operational’ intuition behind this specific case is
that such an a corresponds to some atom not yet allocated during the evaluation process. In a
nutshell,

the denotation of the frame stack encapsulates, via its support, all of the necessary

information about ‘generated’ names at runtime.

Writing [[name]] for the FM-cppo of atoms, constructed as [[name]] = � ⊥, define an element

new ∈ [[name]]
⊥⊥

such that new(σ ∈ [[name]]
⊥

)
def
= σ(a) for any a /∈ supp(σ). We may always

pick such an a because for any σ, supp(σ) is finite and thus � \ supp(σ) is cofinite. Moreover,

given some σ ∈ [[name]]
⊥

then the result σ(a) is the same no matter which representative
a /∈ supp(σ) is chosen. For given any a′ /∈ supp(σ) not equal to a, then

σ(a) = ((a a′) · σ)(a) since a /∈ supp(σ)
= (a a′) · (σ((a a′) · a)) permutation action on functions
= (a a′) · (σ(a′)) by definition of transposition
= σ(a′) since > and ⊥ have empty support.

We have that new is monotone and continuous by virtue of elements of [[name]]
⊥

having these

properties. It is strict because the least element of [[name]]
⊥

is the constantly-bottom function.

Having defined the morphism new, we immediately obtain the denotation of the fresh

expression:

E [[Γ ` fresh : name]](ρ)
def
= new.

5.1.1 Dynamic allocation monads

Previous work[63] attempted to make use of a traditional dynamic allocation monad on FM-
cppos, but this turned out to have problematic order-theoretic completeness properties. Here,
for the record, we briefly review the details of this problem.

Write � fin( � ) for the FM-set of all finite subsets of � , with permutation action as for
Definition 4.1.7. Then for each FM-cppo D let us attempt to construct an FM-cppo T(D)
whose underlying set is the quotient of D × � fin( � ) by the equivariant equivalence relation

(d,X) ∼ (d′, X ′)
def
⇔ ∃π ∈ perm( � ). supp(d) \X = supp(d′) \X ′ ∧

(∀a ∈ supp(d) \X. π(a) = a) ∧ π(d) = d′

and partially-ordered by

(d,X) v (d′, X ′)
def
⇔ ∃X ′′ ∈ � fin( � ), e, e′. (d,X) ∼ (e,X ′′) ∧ (d′, X ′) ∼ (e′, X ′′) ∧ e v e′.

1Only since when calculating in proofs, we have found it necessary to work with the ‘macro-expanded’ version of
these: our definitions reflect this as we shall see in due course. Simply a ‘design decision’ as they say in the industry.
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Funit(−,+) Fname(−,+) Fδ(−,+)
(D,E) 7→ 1⊥ (D,E) 7→ � ⊥ (D,E) 7→ E
(f−, f+) 7→ id1⊥

(f−, f+) 7→ id  
⊥

(f−, f+) 7→ idE

F<<name>>τ (−,+)
(D,E) 7→ [ � ]Fτ (D,E)
(f− ∈ D′ ( D, f+ ∈ E ( E′) 7→ λd ∈ [ � ]Fτ (D,E). [a′]Fτ (f−, f+)(d@ a′)

for some/any a′ ∈ � \ supp(d, f−, f+)

Fτ×τ ′(−,+)
(D,E) 7→ Fτ (D,E) ⊗ Fτ ′(D,E)
(f− ∈ D′ ( D, f+ ∈ E ( E′) 7→

λ〈d, d′〉 ∈ Fτ (D,E) ⊗ Fτ ′(D,E). 〈Fτ (f−, f+)(d), Fτ ′(f−, f+)(d′)〉.

Fτ→τ ′(−,+)
(D,E) 7→ Fτ (E,D) ( (Fτ ′(D,E))⊥⊥

(f− ∈ D′ ( D, f+ ∈ E ( E′) 7→
λf ∈ Fτ (E,D) ( (Fτ ′(D,E) ( 1⊥) ( 1⊥.
λd ∈ Fτ (E′, D′). λf ′ ∈ Fτ ′(D′, E′) ( 1⊥. f(Fτ (f+, f−)(d))(f ′ ◦ Fτ ′(f−, f+)).

Figure 5.1: Actions of functors Fτ : FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥.

(The permutation action is inherited from the product FM-cppo.) Write d r X for the equiv-
alence class of (d,X) under ∼. Elements d r X would correspond to denotations of values d
whose computation has involved the generation of the atoms in X.

Pitts has shown[unpublished note] that whilst ∼ is indeed an equivariant equivalence
relation and v is likewise an equivariant partial order, T(D) is unfortunately not an FM-cppo
since it does not possess least upper bounds of all finitely-supported chains. To see this, take
as D the FM-cppo P from §4.2.4 and let A0 ⊂ A1 ⊂ · · · be a strictly increasing chain of finite
subsets of atoms. Then the following forms a finitely-supported chain in T(D):

A0 rA0 v A1 rA1 v · · · .

The result of Pitts shows that if ArA′ v A′′
rA′′′ in T(D) then |A∩A′| 6 |A′′∩A′′′|. Therefore

if A r A′ were to be an upper bound for this chain, then |A ∩ A′| > |An ∩ An| = |An| must
hold for all n. But this contradicts the finiteness of A ∩A′.

Rather than investigate further along this route to determine a correct construction of such
a monad T we decided to change tack and use the familiar continuation monad instead. That
in itself is arguably far more interesting, as we will see in this chapter.

5.2 Definition of the denotational semantics

5.2.1 Denotation of types

Recall that for each Mini-FreshML type τ then [[τ ]] will be an FM-cppo whose non-⊥ el-
ements correspond to closed values of type τ . To construct these, define an LFC-functor
F : FM-Cpoop

⊥ × FM-Cpo⊥ −→ FM-Cpo⊥:

F (−,+)
def
= Fσ1

(−,+) ⊕ · · · ⊕ FσK
(−,+)

where the family of LFC-functors Fτ is defined by induction on the structure of τ as shown
in Figure 5.1. Now we apply Theorem 4.5.2 to deduce the existence of a minimal invariant
solution (i,D) to the recursive domain equation F (D,D) ∼= D. Thus i is an isomorphism from
F (D,D) to D and the identity on D is fix(φ), where φ is the function in Definition 4.5.1.

We may now define the denotation [[τ ]] of a type τ as [[τ ]]
def
= Fτ (D,D). It follows that the

isomorphism i : [[σ1]] ⊕ · · · ⊕ [[σK ]] ∼= [[δ]] serves, along with the ink, to mediate between [[δ]]
and elements of each [[σk]].
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5.2.2 Denotation of expressions and frame stacks

Each of the maps
V[[Γ ` v : τ ]] ∈ [[Γ]] ( [[τ ]]

S[[Γ `s S : τ ( ]] ∈ [[Γ]] ( [[τ ]]
⊥

E [[Γ ` e : τ ]] ∈ [[Γ]] ( [[τ ]]
⊥⊥

sends ⊥ to itself and is otherwise defined as given in Figures 5.2 and 5.3, using the continuous
equivariant function if defined as follows:

if a, a′, d, d′
def
=

{

d if a = a′;

d′ otherwise.

The ‘continuation-passing style’ of the definitions is self-evident. For convenience, when
talking about closed values, frame stacks and expressions we often abbreviate V[[∅ ` v : τ ]](∅)
to V[[v]], etc. Note that each canonical form v has a denotation qua value, V[[Γ ` v : τ ]] ∈

[[Γ]] ( [[τ ]], and also qua expression, E [[Γ ` v : τ ]] ∈ [[Γ]] ( [[τ ]]
⊥⊥

. These two denotations are
related by the following lemma.

Lemma 5.2.1. For a canonical form v such that Γ ` v : τ , then E [[Γ ` v : τ ]] = return ◦
V[[Γ ` v : τ ]].

Proof. By induction on the structure of v.
I Cases (var), (unit), (name) and (fun) are trivial.
I Case (con). The induction hypothesis tells us E [[Γ ` v : τ ]] = return ◦ V[[Γ ` v : τ ]]. There-

fore for ρ ∈ [[Γ]],

E [[Γ ` Ck(v) : δ]](ρ)

= λσ ∈ [[δ]]
⊥
. E [[Γ ` v : σk]](ρ)(λd ∈ [[σk]]. σ((i ◦ ink)(d)))

= λσ ∈ [[δ]]
⊥
. return(V[[Γ ` v : σk]](ρ))(λd ∈ [[σk]]. σ((i ◦ ink)(d)))

= λσ ∈ [[δ]]
⊥
. σ((i ◦ ink)(V[[Γ ` v : σk]](ρ)))

= (return ◦ V[[Γ ` Ck(v) : δ]])(ρ).

I Case (pair). The induction hypothesis tells us E [[Γ ` v : τ ]] = return ◦ V[[Γ ` v : τ ]] and
E [[Γ ` v′ : τ ]] = return ◦ V[[Γ ` v′ : τ ]]. So for ρ ∈ [[Γ]],

E [[Γ ` (v, v′) : τ ]](ρ)

= λσ ∈ [[τ × τ ′]]
⊥
. E [[Γ ` v : τ ]](ρ)(λd ∈ [[τ ]]. E [[Γ ` v′ : τ ′]](ρ)(λd′ ∈ [[τ ′]]. σ〈d, d′〉))

= λσ ∈ [[τ × τ ′]]
⊥
.

return(V[[Γ ` v : τ ]](ρ))(λd ∈ [[τ ]]. return(V[[Γ ` v′ : τ ′]](ρ))(λd′ ∈ [[τ ′]]. σ〈d, d′〉))

= λσ ∈ [[τ × τ ′]]
⊥
. return(V[[Γ ` v′ : τ ′]](ρ))(λd′ ∈ [[τ ′]]. σ〈V[[Γ ` v : τ ]](ρ), d′〉)

= λσ ∈ [[τ × τ ′]]
⊥
. σ〈V[[Γ ` v : τ ]](ρ),V[[Γ ` v′ : τ ′]](ρ)〉

= return〈V[[Γ ` v : τ ]](ρ),V[[Γ ` v′ : τ ′]](ρ)〉
= (return ◦ V[[Γ ` (v, v′) : τ × τ ′]])(ρ).

I Case (abst). As for the pair case: we omit the details. �

Now that we have stated the full definitions of V[[–]], S[[–]] and E [[–]] we are in a position to
discuss the denotations of the other non-standard constructs, namely abstraction expressions,
expressions which deconstruct abstraction values, and atom-swapping expressions.

We now consider each of these in turn, starting with abstraction expressions. To understand
their denotation, we first need to consider the denotation of a canonical form <<a>>v, say
of type <<name>>τ . (For simplicity, take v to be closed.) This is represented simply as
the equivalence class [a]V[[v]] in [ ! ][[τ ]]. Then the denotation of a non-canonical abstraction
expression <<e>>e′ such that Γ ` <<e>>e′ : <<name>>τ is given by

E [[Γ ` <<e>>e′ : <<name>>τ ]](ρ)
def
= λσ ∈ [[<<name>>τ ]]

⊥
.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]]. E [[Γ ` e′ : τ ]](ρ)(λd ∈ [[τ ]]. σ([a]d))).

This somewhat complicated-looking clause provides us with a good chance to examine the
continuation-passing style of the semantics. Intuitively, the denotation of an abstraction ex-
pression acts in such a way as to parallel the following evaluation procedure.
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E [[Γ ` x : τ ]](ρ)
def
= λσ ∈ [[Γ(x)]]⊥. σ(ρ(x)).

E [[Γ ` () : unit]](ρ)
def
= λσ ∈ [[unit]]⊥. σ(>).

E [[Γ ` a : name]](ρ)
def
= λσ ∈ [[name]]⊥. σ(a).

E [[Γ ` Ck(e) : δ]](ρ)
def
= λσ ∈ [[δ]]⊥. E [[Γ ` e : σk]](ρ)(λd ∈ [[σk]]. σ((i ◦ ink)(d))).

E [[Γ ` (e, e′) : τ × τ ′]](ρ)
def
= λσ ∈ [[τ × τ ′]]

⊥
.

E [[Γ ` e : τ ]](ρ)(λd ∈ [[τ ]]. E [[Γ ` e′ : τ ′]](ρ)(λd′ ∈ [[τ ′]]. σ〈d, d′〉)).

E [[Γ ` fresh : name]](ρ)
def
= new

def
= λσ ∈ [[name]]⊥. σ(a) (any a ∈ " \ supp(σ)).

E [[Γ ` <<e>>e′ : <<name>>τ ]](ρ)
def
= λσ ∈ [[<<name>>τ ]]⊥.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]]. E [[Γ ` e′ : τ ]](ρ)(λd ∈ [[τ ]]. σ([a]d))).

E [[Γ ` swap e, e′ in e′′ : τ ]](ρ)
def
= λσ ∈ [[τ ]]⊥.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]].
E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]]. E [[Γ ` e′′ : τ ]](ρ)(λd ∈ [[τ ]]. σ((a a′) · d)))).

E [[Γ ` fun f(x) = e : τ → τ ′]](ρ)
def
=

λσ ∈ [[τ → τ ′]]
⊥

. σ(fix(λd ∈ [[τ → τ ′]]. λd′ ∈ [[τ ]].
E [[Γ, f : τ → τ ′, x : τ ` e : τ ′]](ρ[f 7→ d, x 7→ d′]))).

E [[Γ ` e e′ : τ ]](ρ)
def
= λσ ∈ [[τ ]]⊥.

E [[Γ ` e : τ → τ ′]](ρ)(λd ∈ [[τ → τ ′]]. E [[Γ ` e′ : τ ]](ρ)(λd′ ∈ [[τ ]]. (d d′)(σ))).

E [[Γ ` let x = e in e′ : τ ]](ρ)
def
= λσ ∈ [[τ ]]⊥.

E [[Γ ` e : τ ′]](ρ)(λd′ ∈ [[τ ′]]. E [[Γ, x : τ ′ ` e′ : τ ]](ρ[x 7→ d′])(σ)).

E [[Γ ` let (x, x′
) = e in e′ : τ ]](ρ)

def
= λσ ∈ [[τ ]]⊥.

E [[Γ ` e : τ1 × τ2]](ρ)(λ〈d1, d2〉 ∈ [[τ1 × τ2]].
E [[Γ, x : τ1, x

′ : τ2 ` e′ : τ ]](ρ[x 7→ d1, x
′ 7→ d2])(σ)).

E [[Γ ` let <<x>>x′
= e in e′ : τ ]](ρ)

def
= λσ ∈ [[τ ]]⊥.

E [[Γ ` e : <<name>>τ ′]](ρ)(λ[a]d′ ∈ [[<<name>>τ ′]].
E [[Γ, x : name, x′ : τ ′ ` e′ : τ ]](ρ[x 7→ a′, x′ 7→ (a a′) · d′])(σ)
(any a′ ∈ " \ supp(σ, a, d, e, e′, ρ)).

E [[Γ ` if e = e′ then e1 else e2 : τ ]](ρ)
def
=

λσ ∈ [[τ ]]⊥. [[Γ ` e : name]](ρ)(λa ∈ [[name]]. [[Γ ` e′ : name]](ρ)
(λa′ ∈ [[name]]. if a, a′, E [[Γ ` e1 : τ ]](ρ)(σ), E [[Γ ` e2 : τ ]](ρ)(σ))).

E [[Γ ` match e with · · · | Ck(xk) -> ek | · · · : τ ]]
def
=

λσ ∈ [[τ ]]⊥. E [[Γ ` e : δ]](ρ)(λd′ ∈ [[δ]].
E [[Γ, xk : σk ` ek : τ ]](ρ[xk 7→ dk])(σ))
for the unique k and dk such that d′ = (i ◦ ink)(dk) when d′ 6= ⊥.

V[[Γ ` x : τ ]](ρ)
def
= ρ(x).

V[[Γ ` () : unit]](ρ)
def
= >.

V[[Γ ` a : name]](ρ)
def
= a.

V[[Γ ` Ck(v) : δ]](ρ)
def
= (i ◦ ink)(V[[Γ ` v : σk]](ρ)).

V[[Γ ` (v, v′
) : τ × τ ′]](ρ)

def
= 〈V[[Γ ` v : τ ]](ρ),V[[Γ ` v′ : τ ′]](ρ)〉.

V[[Γ ` <<a>>v : <<name>>τ ]](ρ)
def
= [a](V[[Γ ` v : τ ]](ρ)).

V[[Γ ` fun f(x) = e : τ → τ ′]](ρ)
def
= fix(λf ′ ∈ [[τ → τ ′]].

λx′ ∈ [[τ ]]. E [[Γ, f : τ → τ ′, x : τ ` e : τ ′]](ρ[f 7→ f ′, x 7→ x′])).

Figure 5.2: Denotation of expressions and canonical forms.

1. Accept a frame stack S expecting an an abstraction value.

2. Evaluate the expression in binding position to yield an atom a.

3. Evaluate the remaining expression to yield a value v.

4. Continue evaluation, having filled the hole in frame stack S with the abstraction value
<<a>>v.

The sequentiality of this process is encoded in the denotational semantics by identifying the
first computation to be performed and then passing that a continuation which encodes the next
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S[[Γ `s [] : τ ( ]](ρ)
def
= λx ∈ [[τ ]]. >.

S[[Γ `s S ◦ Ck([–]) : σk ( ]](ρ)
def
= λv ∈ [[σk]]. S[[Γ `s S : δ ( ]](ρ)((i ◦ ink)(v)).

S[[Γ `s S ◦ ([–], e) : τ ( ]](ρ)
def
= λd ∈ [[τ ]].

E [[Γ ` e : τ ′]](ρ)(λd′ ∈ [[τ ′]]. S[[Γ `s S : τ × τ ′]](ρ)〈d, d′〉).

S[[Γ `s S ◦ (v, [–]) : τ ′
( ]](ρ)

def
= λd ∈ [[τ ′]]. S[[Γ `s S : τ × τ ′]](ρ)〈V[[Γ ` v : τ ]](ρ), d〉.

S[[Γ `s S ◦ <<[–]>>e : name ( ]](ρ)
def
= λa ∈ [[name]].

E [[Γ ` e : τ ]](ρ)(λd ∈ [[τ ]]. S[[Γ `s S : <<name>>τ ]](ρ)([a]d)).

S[[Γ `s S ◦ <<v>>[–] : τ ( ]](ρ)
def
= λd ∈ [[τ ]].

S[[Γ `s S : <<name>>τ ]](ρ)([V[[Γ ` v : name]](ρ)]d).

S[[Γ `s S ◦ swap [–], e′ in e′′ : name ( ]](ρ)
def
= λa ∈ [[name]].

E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]]. E [[Γ ` e′′ : τ ]](ρ)
(λd ∈ [[τ ]]. S[[Γ `s S : τ ( ]](ρ)((a a′) · d))).

S[[Γ `s S ◦ swap v, [–] in e′′ : name ( ]](ρ)
def
= λa′ ∈ [[name]].

E [[Γ ` e′′ : τ ]](ρ)(λd ∈ [[τ ]]. S[[Γ `s S : τ ( ]](ρ)(((V[[Γ ` v : name]](ρ)) a′) · d)).

S[[Γ `s S ◦ swap v, v′
in [–] : τ ( ]](ρ)

def
= λd ∈ [[τ ]].

S[[Γ `s S : τ ( ]](ρ)(((V[[Γ ` v : name]](ρ)) (V[[Γ ` v′ : name]](ρ))) · d).

S[[Γ `s S ◦ [–] e : (τ → τ ′) ( ]](ρ)
def
= λd ∈ [[τ → τ ′]].

E [[Γ ` e : τ ]](ρ)(λd′ ∈ [[τ ]]. (d d′)(S[[Γ `s S : τ ′
( ]](ρ))).

S[[Γ `s S ◦ v [–] : τ ( ]](ρ)
def
= λd ∈ [[τ ]]. ((V[[Γ ` v : τ → τ ′]](ρ)) d)(S[[Γ `s S : τ ′

( ]](ρ)).

S[[Γ `s S ◦ let x = [–] in e : τ ( ]](ρ)
def
=

λd ∈ [[τ ]]. E [[Γ, x : τ ` e : τ ′]](ρ[x 7→ d])(S[[Γ `s S : τ ′
( ]](ρ)).

S[[Γ `s S ◦ let (x, x′
) = [–] in e : τ × τ ′

( ]](ρ)
def
= λ〈d1, d2〉 ∈ [[τ × τ ′]].

E [[Γ, x : τ, x′ : τ ′ ` e : τ ′′]](ρ[x 7→ d1, x
′ 7→ d2])(S[[Γ `s S : τ ′′

( ]](ρ)).

S[[Γ `s S ◦ let <<x>>x′
= [–] in e : <<name>>τ ( ]](ρ)

def
=

λ[a]d ∈ [[<<name>>τ ]].
E [[Γ, x : name, x′ : τ ` e : τ ′]](ρ[x 7→ a′, x′ 7→ (a a′) · d])
(S[[Γ `s S : τ ′

( ]](ρ)) (a′ ∈ # \ supp(S, a, d, e, ρ)).

S[[Γ `s S ◦ if [–] = e′ then e1 else e2 : τ ( ]](ρ)
def
= λa ∈ [[name]].

E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]].
if a, a′, E [[Γ ` e1 : τ ]](ρ)(S[[Γ `s S : τ ( ]](ρ)),

E [[Γ ` e2 : τ ]](ρ)(S[[Γ `s S : τ ( ]](ρ)))

S[[Γ `s S ◦ if v = [–] then e1 else e2 : τ ( ]](ρ)
def
= λa′ ∈ [[name]].

if V[[Γ ` v : name]](ρ), a′, E [[Γ ` e1 : τ ]](ρ)(S[[Γ `s S : τ ( ]](ρ)),
E [[Γ ` e2 : τ ]](ρ)(S[[Γ `s S : τ ( ]](ρ)).

S[[Γ `s S ◦ match [–] with · · · | Ck(xk) -> ek | · · · : δ ( ]]
def
=

λd ∈ [[δ]]. E [[Γ, xk : σk ` ek : τ ]](ρ[xk 7→ dk])(S[[Γ `s S : τ ( ]](ρ))
for the unique k and dk such that d = (i ◦ ink)(dk).

Figure 5.3: Denotation of frame stacks.

computation to be performed. In the above definition we are constructing two continuations,
which are easily seen to correspond to stages 3 and 4 of the above evaluation procedure:

• λa ∈ [[name]]. E [[Γ ` e′ : τ ]](ρ)(λd ∈ [[τ ]]. σ([a]d)); and

• λd ∈ [[τ ]]. σ([a]d).

By virtue of their denotations we would expect abstraction values to share the good properties
endowed to members of abstraction FM-cppos. A nice example is the algorithm used for testing
abstraction values for equality described in §2.2.5. For suppose that we have a closed value
<<a>>v as above together with another such value <<a′>>v′. Let us say that the denotations of
v and v′ are d and d′ respectively so that the denotations of the two abstraction values are [a]d
and [a′]d′ respectively. Now according to the properties of the partial order v on abstraction
FM-cppos we have that

[a]d = [a′]d′ ⇔ (a a′′) · d = (a′ a′′) · d′
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for some/any fresh a ∈ $ \ supp(a, a′, d, d′). This exactly parallels the construction of the
equality test2 for such values in the language. There, we choose a fresh atom a′′ and then just
compare the values (a a′′) · v and (a′ a′′) · v.

Pattern-matching on abstraction values is provided by the let <<x>>x′ = e in e′ con-
struct. The denotation of such an expression is as follows:

E [[Γ ` let <<x>>x′ = e in e′ : τ ]](ρ)
def
= λσ ∈ [[τ ]]

⊥
.

E [[Γ ` e : <<name>>τ ′]](ρ)(λ[a]d′ ∈ [[<<name>>τ ′]].
E [[Γ, x : name, x′ : τ ′ ` e′ : τ ]](ρ[x 7→ a′, x′ 7→ (a a′) · d′])(σ)

(any a′ ∈ $ \ supp(σ, a, d, e, e′, ρ)).

Again whilst this looks complicated, careful inspection will reveal that the construction of the
function exactly parallels the procedure for deconstructing abstraction values given in Chapter
2.

Finally, we consider explicit atom-swapping operations. Denotationally, performing such
an operation just comes down to exploiting the permutation action of the particular FM-cppo
in question as follows.

E [[Γ ` swap e, e′ in e′′ : τ ]](ρ)
def
= λσ ∈ [[τ ]]

⊥
.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]]. E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]].
E [[Γ ` e′′ : τ ]](ρ)(λd ∈ [[τ ]]. σ((a a′) · d)))).

If only implementing swapping in the actual Fresh O’Caml runtime system were so straight-
forward: we will see in §6.6.2 why it is not.

5.3 Some properties of the semantics

5.3.1 Support and equivariance properties

Recall §4.6 where we introduced the notion of FM-sets of syntax. Here we refine the FM-set
Exp of that section to that of an FM-set of terms in context, denoted by E and defined as follows.
The underlying set is

{ (Γ, e, τ, ρ) | Γ ` e : τ ∧ ρ ∈ [[Γ]]}

and the permutation action is given by π · (Γ, e, τ, ρ)
def
= (Γ, π · e, τ, π · ρ). With respect to this

action, each element is indeed finitely supported. The maps E [[–]] can now be thought of as
elements of the dependent product

∏

(Γ,e,τ,ρ)∈E

[[τ ]]
⊥⊥
.

Now we can see that each of these elements is indeed equivariant, since the following lemma
tells us that

E [[Γ ` π · e : τ ]](π · ρ) = π · E [[Γ ` e : τ ]](ρ).

Similar results hold for V[[–]] and S[[–]]. However it must be noted that the functions denoting
values, frame stacks and expressions do not necessarily have empty support by themselves,
since atoms may occur throughout values and expressions. As a consequence they are not
necessarily morphisms in the category FM-Cpo⊥ (as one might expect in a categorical se-
mantics, for example). This is easily seen by taking any a ∈ $ and considering the function
V[[` a : name]](∅), which has a finite support of just {a}.

Lemma 5.3.1 (Equivariance). For atoms a, a′, values v, frame stacks S and expressions e then



















Γ ` v : τ ⇒ ∀ρ ∈ [[Γ]]. π · (V[[Γ ` v : τ ]](ρ)) = V[[Γ ` π · v : τ ]](π · ρ);

Γ `s S : τ ( ⇒ ∀ρ ∈ [[Γ]].

π · (S[[Γ `s S : τ ( ]](ρ)) = S[[Γ `s π · S : τ ( ]](π · ρ);

Γ ` e : τ ⇒ ∀ρ ∈ [[Γ]]. π · (E [[Γ ` e : τ ]](ρ)) = E [[Γ ` π · e : τ ]](π · ρ).

2Of course, in Fresh O’Caml we have more general abstraction types than <<name>>τ , but the similarity still holds.
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Proof. By induction over the axioms and rules defining the typing relations ` and `s. �

Corollary 5.3.2. For values v, frame stacks S, expressions e and atoms a,











Γ ` v : τ ⇒ ∀ρ ∈ [[Γ]]. a % v, ρ⇒ a % V[[Γ ` v : τ ]](ρ);

Γ `s S : τ ( ⇒ ∀ρ ∈ [[Γ]]. a % S, ρ⇒ a % S[[Γ `s S : τ ( ]](ρ);

Γ ` e : τ ⇒ ∀ρ ∈ [[Γ]]. a % e, ρ⇒ a % E [[Γ ` e : τ ]](ρ).

Therefore supp(V[[Γ ` v : τ ]](ρ)) ⊆ supp(v) ∪ supp(ρ); and similarly for frame stacks S and

expressions e.

Proof. The second sentence follows from the first just because a % v holds iff a /∈ supp(v)
(similarly for S and e). For the first part, recall that a % v holds just when (a a′) · v = v for all
a′ ∈ & \ supp(v). We wish to show that (a a′) · (V[[Γ ` v : τ ]](ρ)) = V[[Γ ` v : τ ]](ρ), which by
the previous Lemma is equivalent to asking V[[Γ ` (a a′) · v : τ ]]((a a′) · ρ) = V[[Γ ` v : τ ]](ρ).
However, we already have (a a′) · v = v and (a a′) · ρ = ρ. �

5.3.2 Substitutivity properties

Notation 5.3.3. Write V[[ψ]] for the element of [[Γ]] such that for all x ∈ dom(Γ), V[[ψ]](x)
def
=

V[[ψ(x)]]. �

Lemma 5.3.4 (Substitutivity). For typing contexts Γ, values v, frame stacks S and expressions

e then






Γ ` v : τ ⇒ ∀ψ ∈ SubstΓ. V[[e[ψ]]] = V[[Γ ` v : τ ]]V[[ψ]];
Γ `s S : τ ⇒ ∀ψ ∈ SubstΓ. S[[S[ψ]]] = S[[Γ `s S : τ ( ]]V[[ψ]];
Γ ` e : τ ⇒ ∀ψ ∈ SubstΓ. E [[e[ψ]]] = E [[Γ ` e : τ ]]V[[ψ]].

Proof. By induction over the structures of v, S and e. �

5.4 Computational adequacy

In this section we prove a computational adequacy result which provides an important bridge
between the operational and denotational semantics: it states that expressions with equal
denotations are observationally equivalent. The adequacy result is not easy to prove, so at this
juncture we simply state the theorem and then postpone its proof until we have developed
some further theory.

Theorem 5.4.1 (Adequacy). Given a typing context Γ and a typeable expression e such that

Γ ` e : τ , then for all closed frame stacks S of type τ ( and substitutions3 ψ ∈ SubstΓ

E [[Γ ` e : τ ]]V[[ψ]]S[[S]] = > ⇔ 〈S, e[ψ]〉↓ .

Thus if e is a closed expression we have that E [[e]]S[[S]] = > ⇔ 〈S, e〉↓. �

As far as proof is concerned, the forwards direction of the theorem is the difficult case.
We adopt the standard technique of using type-indexed logical relations which relate domain
elements to pieces of syntax.

5.4.1 Construction of the logical relations

We construct three families of relations4 in the style of [51]:

C
val
τ ⊆eq [[τ ]] × Valτ C

stk
τ ⊆eq [[τ ]]

⊥ × Stackτ C
exp
τ ⊆eq [[τ ]]

⊥⊥ × Expτ

which must satisfy the following properties. Firstly, for each v ∈ Valτ then
{

d | d Cval
τ v

}

must
contain ⊥ and be closed under least upper bounds of countable, finitely-supported chains.
Furthermore we ask the following:

d C
val
unit () (5.1)

3Recall that ψ maps value identifiers to closed values; thus, e[ψ] must be a closed expression since e is typeable
in context Γ.

4Note the use of ⊆eq to indicate an equivariant subset, in the sense of Definition 4.1.6.
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d C
val
name v ⇔ d 6= ⊥ ⇒ d = v (5.2)

d C
val
δ Ck(vk) ⇔ ∃dk ∈ [[σk]]. d = (i ◦ ink)(dk) ∧ dk C

val
σk

vk (5.3)

[a1]d C
val
<<name>>τ <<a2>>v ⇔ (a1 a) · d Cval

τ (a2 a) · v
for any a ∈ ' \ supp(a1, a2, d, v)

(5.4)

〈d1, d2〉 C
val
τ×τ ′ (v1, v2) ⇔ d1 C

val
τ v1 ∧ d2 C

val
τ ′ v2 (5.5)

d C
val
τ→τ ′ v ⇔ ∀d′ C

val
τ v′. d(d′) C

exp
τ ′ v v′ (5.6)

The families of auxiliary relations Cstk
τ ⊆eq [[τ ]]

⊥ × Stackτ (relating domain elements σ to

frame stacks S of argument type τ) and Cexp
τ ⊆eq [[τ ]]

⊥⊥ × Expτ (relating domain elements ε
to expressions e to be evaluated in a frame stack of argument type τ) are defined in terms of
Cval

τ as follows.

σ C
stk
τ S

def
⇔ ∀d C

val
τ v. σ(d) = > ⇒ 〈S, v〉↓ (5.7)

ε C
exp
τ e

def
⇔ ∀σ C

stk
τ S. ε(σ) = > ⇒ 〈S, e〉↓ (5.8)

The meta-notation ∀d Cval
τ v expresses universal quantification over all d ∈ [[τ ]] and v ∈ Valτ

such that d Cval
τ v. We read ∀σ Cstk

τ S in a similar manner.

The clauses above define the logical relation Cval
τ in terms of a logical relation Cval

δ that
is the fixed point of a certain operator acting on relations which we define below. However
we cannot simply appeal to Tarski’s fixed point theorem to construct this, as the negative
occurrence of Cval

τ in clause (5.6) means that this operator is not necessarily monotonic5. We
thus adapt the ‘relational structures’ of Pitts[46] in order to proceed.

5.4.2 Relational structures

Definition 5.4.2 (Relational structure). A relational structure R on the category FM-Cpo⊥ is
specified by the following: for each FM-cppo D, an FM-set R(D) of ‘R-relations on D’ and an
equivariant FM-relation ⊂R ⊆ (D ( E) ×R(D) ×R(E). We write f : R ⊂ S iff f ∈ D ( E
and (f,R ∈ R(D), S ∈ R(E)) is in ⊂R (abbreviating ⊂R to ⊂ when the meaning is clear). The
relations ⊂ must satisfy: for every R ∈ R(D) then idD : R ⊂ R and given a second morphism
g ∈ E ( E′ with g : S ⊂ T , for T ∈ R(E′), then g ◦ f : R ⊂ T . When idD : R ⊂ R′ and
idD : R′ ⊂ R imply that R = R′ then the relational structure is said to be normal. �

The particular (normal) relational structure R which we shall use is defined as follows.
For each FM-cppo D, let R(D) consist of all finitely supported subsets of D × Valτ which
contain {⊥} × Valτ . Write (d, v : τ) for a member of one of these subsets to make the typing
annotation explicit. Since each of these subsets is finitely supported, then R(D) is indeed an

FM-set when equipped with the permutation action π ·R
def
= { (π · d, π · v : τ) | (d, v : τ) ∈ R}

for R ∈ R(D). For a morphism f ∈ D ( E, R ∈ R(D) and S ∈ R(E) then say that f : R ⊂ S
holds iff (d, v : τ) ∈ R ⇒ (f(d), v : τ) ∈ S. The relation ⊂ has the following important
properties.

. Equivariance. It is easy to see that ⊂ is supported by the empty set, the permutation action
being given by that in Definition 4.1.9.

. Inverse images. For all f ∈ D ( E and each S ∈ R(E) there exists a unique f ∗S
def
=

{ (d, v : τ) | (f(d), v : τ) ∈ S} such that for all g ∈ D ( D and R ∈ R(D), g : R ⊂ f ∗S ⇔
f ◦ g : R ⊂ S.

. Intersections. Given any finitely-supported subset of relations S ⊆ R(E) there exists a
unique relation

⋂

S ∈ R(E) (given by set-theoretic intersection of the relations in S) such
that for each g : R ⊂

⋂

S then g : R ⊂ S for each S ∈ S.

Lemma 5.4.3. If i ∈ E ( D is an isomorphism then for R ∈ R(D) and S ∈ R(E), idE : S ⊂
i∗R⇔ idD : (i−1)∗S ⊂ R.

Proof. We give the forwards direction, for the reverse is similar. As assumptions we have that
(d, v : τ) ∈ S ⇒ (i(d), v : τ) ∈ R and that (d, v : τ) ∈ (i−1)∗S. It follows from the second
of these that (i−1(d), v : τ) ∈ S by definition of the inverse image operator (–)∗. However the
first assumption then tells us that ((i ◦ i−1)(d), v : τ) ∈ R; we conclude since i is iso. �

5See [45, 47] for further discussion of such problems.
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Funit(R
−, R+)

def
= { (d, () : unit) | d ∈ 1⊥}

Fname(R
−, R+)

def
= { (⊥, a : name) | a ∈ ( } ∪ { (a, a : name) | a ∈ ( }

Fδ(R
−, R+)

def
= R+

F<<name>>τ (R−, R+)
def
= {([a]d, <<a′>>v : <<name>>τ) |

∃a′′ ∈ ( \ supp(R−, R+, a, a′, d, v).
((a a′′) · d, (a′ a′′) · v : τ) ∈ Fτ (R−, R+)}

Fτ×τ ′(R−, R+)
def
= {(〈d, d′〉, (v, v′) : τ × τ ′) |

(d, v : τ) ∈ Fτ (R−, R+) ∧ (d′, v′ : τ ′) ∈ Fτ ′(R−, R+)}

Fτ→τ ′(R−, R+)
def
= {(d ∈ F und

τ (R+, R−) ( (F und
τ ′ (R−, R+))⊥⊥,

fun f(x) = e : τ → τ ′) |
∀(d′, v′) ∈ Fτ (R+, R−), σ ∈ F und

τ ′ (R−, R+) ( 1⊥, S : τ ′ ( .
(∀(d′′, v′′) ∈ Fτ ′(R−, R+). σ(d′′) = > ⇒ 〈S, v′′〉↓) ⇒
(d(d′)(σ) = > ⇒ 〈S, (fun f(x) = e) v′〉↓)}.

F (R−, R+)
def
= {(ink(dk), Ck(vk) : δ) |

1 6 k 6 K ∧ (dk, vk : σk) ∈ Fσk
(R−, R+)}.

Figure 5.4: Actions on R-relations for F and the Fτ .

Definition 5.4.4 (Admissible relations). Call a relation R ∈ R(D) admissible iff for each
closed canonical form v of type τ , the subset of D given by {d ∈ D | (d, v : τ) ∈ R} contains
⊥ and is closed under least upper bounds of countable, finitely-supported chains in D. �

Lemma 5.4.5. The FM-set of admissible relations R ∈ R(D), with permutation action inherited

from R(D), forms an FM-complete lattice with greatest lower bounds being given by intersections.

Proof. Follows from the Intersections property above. �

In §5.2.1 we built up FM-cppos [[τ ]] using mixed-variance LFC-functors {F, Fτ} : FM-Cpoop
⊥ ×

FM-Cpo⊥ −→ FM-Cpo⊥. We are now going to equip each such functor with an equivariant

action on R-relations as shown in Figure 5.4. In that Figure, we use the notation F und
τ (R−, R+)

to stand for the FM-cppo Fτ (D−, D+), where D− and D+ are the ‘underlying’ FM-cppos such
that R− ∈ R(D−) and R+ ∈ R(D+). The equivariant actions are maps on relations which are
order-reversing in their first argument and order-preserving in their second argument, written
as R−, R+ 7→ F (R−, R+). They build new relations out of old in a way analogous to the way
that the functors F and the Fτ construct the FM-cppos used to denote types. We require the
actions to satisfy the following properties which we are now going to prove. For f− : R−

2 ⊂ R−
1

and f+ : R+
1 ⊂ R+

2 then

• if R+ is admissible then F (R−, R+) must be also;

• F (f−, f+) : F (R−
1 , R

+
1 ) ⊂ F (R−

2 , R
+
2 );

and ditto for the Fτ . To proceed, we need the following technical lemma which establishes a
now-familiar ‘some/any’ property.

Lemma 5.4.6. If ([a]d, <<a′>>v : <<name>>τ) ∈ F<<name>>τ (R−, R+) then for all a′′ ∈ ( \
supp(R−, R+, a, a′, d, v), ((a a′′) · d, (a′ a′′) · v : τ) ∈ Fτ (R−, R+).

Proof. Given ([a]d, <<a′>>v : <<name>>τ) ∈ F<<name>>τ (R−, R+) then there exists some a′′ ∈
( \ supp(R−, R+, a, a′, d, v) such that ((a a′′) · d, (a′ a′′) · v : τ) ∈ Fτ (R−, R+). Given any
other a′′′ ∈ ( \ supp(R−, R+, a, a′, d, v), then ((a′′ a′′′) · (a a′′) · d, (a′′ a′′′) · (a′ a′′) · v :
τ) ∈ (a′′ a′′′) · Fτ (R−, R+). Since a′′, a′′′ /∈ supp(R−, R+) then this and the equivariance
of the Fτ implies ((a′′ a′′′) · (a a′′) · d, (a′′ a′′′) · (a′ a′′) · v : τ) ∈ Fτ (R−, R+). Therefore
((a a′′′) · d, (a′ a′′′) · v : τ) ∈ Fτ (R−, R+) as required. �
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Lemma 5.4.7 (Actions on relations preserve admissibility). For each type τ and R-relations

R−, R+ ∈ R(D) then if R+ is admissible, Fτ (R−, R+) ∈ R(Fτ (D,D)) is also (and respectively

for the functor F ).

Proof. The case for the functor F is trivial by virtue of the continuity of the injection functions
ink into the smash sum. For the other cases, we proceed by induction on the structure of τ . All
of these except the following two are straightforward and we omit them.
I Case (abst). We need to show that when R+ and Fτ (R−, R+) satisfy the admissibility

property then so does F<<name>>τ (R−, R+), i.e. that the FM-set

{

[a]d | ([a]d, <<a′>>v′ : <<name>>τ) ∈ F<<name>>τ (R−, R+)
}

partially ordered as for F<<name>>τ (D,D) contains [a]⊥ (for any a ∈ ) ) and has least up-
per bounds of finitely-supported chains ([an]dn | n < ω) ∈ F<<name>>τ (D,D) for some fixed
<<a′>>v′. It is easy to see that it contains the aforementioned least element. Moreover, Lemma
4.2.32 tells us that for any a /∈ supp ([an]dn | n < ω) such a finitely-supported chain has a least
upper bound [a]

⊔

n<ω(([an]dn)@a), which is equal to [a]
⊔

n<ω(a an)·dn; we can calculate that
this lies in the FM-set {d | (d, v : τ) ∈ Fτ (R−, R+)} by virtue of the induction hypothesis.
I Case (fn). This case is straightforward, save for the crucial observation that for a chain

((dn, fun f(x) = e : τ → τ ′) | n < ω) ∈ Fτ→τ ′(R−, R+) and d′, σ as in Figure 5.4, then the
fact that (

⊔

n<ω dn)(d′)(σ) =
⊔

n<ω(dn(d′)(σ)) = > implies there exists some n such that
dn(d′)(σ) = >. �

Lemma 5.4.8 (Actions on relations preserve ⊂). For each Mini-FreshML type τ , R-relations

R−
1 ∈ R(D−

1 ), R−
2 ∈ R(D−

2 ), R+
1 ∈ R(D+

1 ), R+
2 ∈ R(D+

2 ) and elements f− ∈ D−
2 ( D−

1 ,

f+ ∈ D+
1 ( D+

2 such that f− : R−
2 ⊂ R−

1 and f+ : R+
1 ⊂ R+

2 then

(d, v : τ) ∈ Fτ (R−
1 , R

+
1 ) ⇒ (Fτ (f−, f+)(d), v : τ) ∈ Fτ (R−

2 , R
+
2 )

and similarly for the functor F .

Proof. For the first part we proceed by induction on the structure of τ . When considering
elements (d, v : τ) of each Fτ (R−

1 , R
+
1 ) in turn, we omit the d = ⊥ cases since these go

through immediately (by virtue of the admissibility of Fτ (R−
2 , R

+
2 )).

I Cases (unit)–(data) are straightforward, by virtue of Funit, Fname and Fδ being constant
functors.
I Case (abst). Take ([a]d, <<a′>>v : <<name>>τ) ∈ F<<name>>τ (R−

1 , R
+
1 ). For any a′′ ∈ ) \

supp(R−
1 , R

+
1 , R

−
2 , R

+
2 , a, d, a

′, v′), Lemma 5.4.6 tells us that ((a a′′) · d, (a′ a′′) · v : τ) ∈
Fτ (R−

1 , R
+
1 ). The induction hypothesis then implies that (Fτ (f−, f+)((a a′′)·d), (a′ a′′)·v : τ) ∈

Fτ (R−
2 , R

+
2 ) and moreover by equivariance of Fτ , ((a a′′) · Fτ (f−, f+)(d), (a′ a′′) · v : τ) ∈

Fτ (R−
2 , R

+
2 ). Since Fτ (f−, f+) has empty support, this implies ([a](Fτ (f−, f+)(d)), <<a′>>v :

τ) ∈ F<<name>>τ (R−
2 , R

+
2 ) and thus, (F<<name>>τ (f−, f+)([a]d), <<a′>>v : τ) ∈ F<<name>>τ (R−

2 , R
+
2 ).

I Case (pair). Consider an element (d, v : τ × τ ′) of Fτ×τ ′(R−
1 , R

+
1 ). By the induction

hypothesis we have that for all (d1, v1 : τ) ∈ Fτ (R−
1 , R

+
1 ) and (d2, v2 : τ ′) ∈ Fτ ′(R−

1 , R
+
1 )

then

(Fτ (f−, f+)(d1), v1 : τ) ∈ Fτ (R−
2 , R

+
2 ) and (5.9)

(Fτ ′(f−, f+)(d2), v2 : τ ′) ∈ Fτ ′(R−
2 , R

+
2 ). (5.10)

Writing d as 〈d′1, d
′
2〉, v as (v1, v2) and observing the action of the functor Fτ1×τ2

in Figure
5.4 we see that (d′1, v1 : τ) ∈ Fτ (R−, R+) and (d′2, v2 : τ ′) ∈ Fτ ′(R−, R+); thus, we can apply
(5.9) and (5.10) to deduce that (Fτ (f−, f+)(d′1), v1) ∈ Fτ (R−

2 , R
+
2 ) ∧ (Fτ ′(f−, f+)(d′2), v2) ∈

Fτ ′(R−
2 , R

+
2 ). We then conclude by observing the action of Fτ×τ ′ given in Figure 5.4.

I Case (fn). Consider an element (d, fun f(x) = e) of Fτ→τ ′(R−
1 , R

+
1 ). Thus we have that

for all (dτ
1 , v

τ
1 ) ∈ Fτ (R+

1 , R
−
1 ), σ ∈ Fτ ′(D−

1 , D
+
1 ) ( 1⊥ and S : τ ′ (

(∀(dτ ′

1 , v
τ ′

1 ) ∈ Fτ ′(R−
1 , R

+
1 ). σ(dτ ′

1 ) = > ⇒ 〈S, vτ ′

1 〉↓) ⇒
(d(dτ

1)(σ) = > ⇒ 〈S, (fun f(x) = e) v′〉↓)}. (5.11)

The actions of the Fτ and Fτ ′ provide maps Fτ (f+, f−) ∈ Fτ (D+
2 , D

−
2 ) ( Fτ (D+

1 , D
−
1 ) and

Fτ ′(f−, f+) ∈ Fτ ′(D−
1 , D

+
1 ) ( Fτ ′(D−

2 , D
+
2 ). Thus by the induction hypothesis we have that

(dτ
2 , v

τ
2 : τ) ∈ Fτ (R+

2 , R
−
2 ) ⇒ (Fτ (f+, f−)(dτ

2), vτ
2 : τ) ∈ Fτ (R+

1 , R
−
1 ), (5.12)
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(dτ ′

1 , v
τ ′

1 : τ ′) ∈ Fτ ′(R−
1 , R

+
1 ) ⇒ (Fτ ′(f−, f+)(dτ ′

1 ), vτ ′

1 : τ ′) ∈ Fτ ′(R−
2 , R

+
2 ). (5.13)

We need for all such (dτ
2 , v

τ
2 ), σ′ ∈ Fτ ′(D−

2 , D
+
2 ) ( 1⊥ and S : τ ′ ( ,

Fτ→τ ′(f−, f+)(d)(dτ
2)(σ′) = > ⇒ 〈S, (fun f(x) = e) vτ

2 〉↓ (5.14)

under the assumption that:

∀(dτ ′

2 , v
τ ′

2 ) ∈ Fτ ′(R−
2 , R

+
2 ). σ′(dτ ′

2 ) = > ⇒ 〈S, vτ ′

2 〉↓ . (5.15)

We can unpack the functorial action6 in (5.14) to see that we must prove

d(Fτ (f+, f−)(dτ
2))(σ′ ◦ Fτ ′(f−, f+)) = > ⇒ 〈S, (fun f(x) = e) vτ

2 〉↓ . (5.16)

Given any (dτ ′

1 , v
τ ′

1 ) ∈ Fτ ′(R−
1 , R

+
1 ) then we can combine (5.13) with (5.15) to deduce (σ′ ◦

Fτ ′(f−, f+))(dτ ′

1 ) = > ⇒ 〈S, vτ ′

1 〉↓. We do a sanity check that σ′ ◦ Fτ ′(f−, f+) does indeed
map from Fτ ′(D+

1 , D
−
1 ) to 1⊥. Then from (5.11) we have that for all (dτ

1 , v
τ
1 ) ∈ Fτ (R+

1 , R
−
1 ),

d(dτ
1)(σ′ ◦ Fτ ′(f−, f+)) = > ⇒ 〈S, (fun f(x) = e) vτ

1 〉↓ . (5.17)

Now, (5.12) tells us that (Fτ (f+, f−)(dτ
2), vτ

2 ) lies in Fτ (R+
1 , R

−
1 ). Using this pair as the (dτ

1 , v
τ
1 )

in (5.17) then yields (5.16) as required.
Considering now the functor F , take an element (d, Ck(vk) : δ) ∈ F (R−

1 , R
+
1 ) such that 1 6

k 6 K. We may write any such d as ink(dk). Then we have that (dk, vk : σk) ∈ Fσk
(R−

1 , R
+
1 ).

We need to show that (F (f−, f+)(ink(dk)), Ck(vk) : δ) ∈ F (R−
2 , R

+
2 ). Using the earlier parts

of this lemma and the assumption (dk, vk : σk) ∈ Fσk
(R−

1 , R
+
1 ) we now deduce

(Fσk
(f−, f+)(dk), vk : σk) ∈ Fσk

(R−
2 , R

+
2 )

Thus (ink(Fσk
(f−, f+)(dk)), Ck(vk) : δ) lies in Fδ(R

−
2 , R

+
2 ). But by the action of the functor

F this is just (F (f−, f+)(ink(dk)), Ck(vk) : δ). �

What we are ultimately interested in showing is that a certain invariant relation exists as
stated in the following Lemma, whose proof we defer for just a moment.

Lemma 5.4.9 (Existence of invariant relations). There exists an invariant relation ∆ satisfy-

ing the following properties:

i : F (∆,∆) ⊂ ∆ and i−1 : ∆ ⊂ F (∆,∆),

where i is the isomorphism part of the minimal invariant solution to the recursive equation on

FM-cppos given in §5.2.1. �

As we shall see, the very fact that the solution to the recursive equation on FM-cppos
satisfies the minimal invariant property is crucial to deducing the existence of ∆. Now it turns
out that the relation ∆ is in fact the crux of the matter, because we will define

C
val
τ

def
= Fτ (∆,∆)

for each type τ and the game is over. Let us now give the proof.

Proof. Observe that

i−1 : ∆ ⊂ F (∆,∆)
⇔ i−1 ◦ idD : ∆ ⊂ F (∆,∆)
⇔ idD : ∆ ⊂ (i−1)∗F (∆,∆) by inverse images

⇔ ∆ ⊆ (i−1)∗F (∆,∆) by definition of – ⊂ –

and moreover

i : F (∆,∆) ⊂ ∆
⇔ i ◦ idF (D,D) : F (∆,∆) ⊂ ∆

6See Figure 5.1 for the definition.
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⇔ idF (D,D) : F (∆,∆) ⊂ i∗∆ by inverse images

⇔ idD : (i−1)∗F (∆,∆) ⊂ ∆ by Lemma 5.4.3

⇔ (i−1)∗F (∆,∆) ⊆ ∆ by definition of – ⊂ –.

Thus in order to deduce the existence of the invariant relation ∆ it suffices to obtain a fixed
point solution to the equation ∆ = Φ(∆), where Φ(R)

def
= (i−1)∗F (R,R). We can see that Φ is

an equivariant operator on the FM-complete lattice L of admissible relations R ∈ R(D). But
whilst Φ is equivariant, it is not necessarily monotonic due to the possible mixed-variance of
F . Thus, we define a second operator

Ψ(R−, R+)
def
= (i−1)∗F (R−, R+)

which we claim is a monotone, equivariant function from the FM-complete lattice Lop × L to
L. Let us check its monotonicity, for the equivariance is easy to see. Given admissible relations
R−

1 , R
−
2 , R

+
1 , R

+
2 in L such that idD : R−

2 ⊂ R−
1 and idD : R+

1 ⊂ R+
2 , then we have that

F (idD, idD) : F (R−
1 , R

+
1 ) ⊂ F (R−

2 , R
+
2 )

by virtue of the admissible actions of the functor F . Since F (idD, idD) = idF (D,D) then this

yields that F (R−
1 , R

+
1 ) ⊆ F (R−

2 , R
+
2 ); the monotonicity of Ψ then arises since the inverse

image operator (i−1)∗ is monotone. It follows that the operator

Ψ′(R−, R+)
def
= (Ψ(R+, R−),Ψ(R−, R+))

is a monotone, equivariant function from the FM-complete lattice Lop × L to itself. This now
‘type-checks’ correctly in order that we can appeal to Tarski (Lemma 4.3.4) to obtain the least
fixed point of Ψ′. Let us denote this by (∆−,∆+). Since Ψ′ is an equivariant function then we
can apply Lemma 4.5 to deduce that ∆− and ∆+ possess empty support. Observe further that
if we can prove that ∆− = ∆+ = ∆ then

(∆,∆) = Ψ′(∆,∆) = (Ψ(∆,∆),Ψ(∆,∆)) = (Φ(∆),Φ(∆))

and thus ∆ = Φ(∆) as we desire. Given that (∆−,∆+) is a fixed point of Ψ′, we calculate that

∆− = Ψ(∆+,∆−) and ∆+ = Ψ(∆−,∆+); (5.18)

moreover, since it is the least fixed point we also have that for any admissible relations
(R−, R+) ∈ Lop × L,

(idD : R− ⊂ Ψ(R+, R−) ∧ idD : Ψ(R−, R+) ⊂ R+) ⇒
idD : R− ⊂ ∆− ∧ idD : ∆+ ⊂ R+. (5.19)

To prove that ∆− = ∆+ then we just need to show that idD : ∆+ ⊂ ∆− and idD : ∆− ⊂ ∆+.
We have the first of these straight away, for setting R− = ∆+ and R+ = ∆− in (5.19) yields

(idD : ∆+ ⊂ Ψ(∆−,∆+) ∧ idD : Ψ(∆+,∆−) ⊂ ∆−) ⇒ idD : ∆+ ⊂ ∆−,

the left-hand side of which holds by virtue of (5.18).
The reverse inclusion (idD : ∆− ⊂ ∆+) is the more interesting case as its proof is critically

dependent on the minimal invariance property of the FM-cppo D, namely that the identity on

D is the least fixed point of the function φ(f)
def
= i ◦ F (f, f) ◦ i−1. For consider the FM-cppo of

functions
S

def
=

{

f ∈ D ( D | f : ∆− ⊂ ∆+
}

,

which contains the least element in D ( D (by admissibility of ∆+) and has least upper
bounds for all finitely supported chains. Observe that it suffices to prove that f ∈ S ⇒ φ(f) ∈
S, for then we can appeal to Scott induction to get idD = fix(φ) ∈ S which yields idD : ∆− ⊂
∆+ as desired. Now given such an f we can calculate that F (f, f) : F (∆+,∆−) ⊂ F (∆−,∆+).
Secondly, by virtue of inverse images and Lemma 5.4.3 once again it is easy to see that the
equations (5.18) imply i−1 : ∆− ⊂ F (∆+,∆−) and i : F (∆−,∆+) ⊂ ∆+. Thus by transitivity
of – ⊂ –, i ◦ F (f, f) ◦ i−1 : ∆− ⊂ ∆+, showing that φ(f) does indeed lie in S. Therefore
∆− = ∆+ = ∆, meaning that i : F (∆,∆) ⊂ ∆ and i−1 : ∆ ⊂ F (∆,∆). �
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Since Cstk
τ and Cexp

τ are defined in terms of Cval
τ , then the following theorem suffices (at

last!) to establish the existence of the logical relations.

Theorem 5.4.10 (Existence of each Cval
τ relation). Each logical relation for values may be

constructed as Cval
τ

def
= Fτ (∆,∆).

Proof. Since ∆ ∈ R(D), then Fτ (∆,∆) lies in R(Fτ (D,D)), which is in turn equal to R[[τ ]].
Thus, Cval

τ ⊆ Fτ (∆,∆) ⊆ [[τ ]] × Valτ . Moreover, since ∆ and Fτ both have empty support then
we indeed have that Cval

τ ⊆eq [[τ ]]×Valτ . By virtue of the admissibility properties of ∆, then for
some typeable canonical form v of type τ we have that {d | d Cval

τ v} contains ⊥ and is closed
under least upper bounds of finitely-supported chains. Properties (5.1), (5.2), (5.4), (5.5) and
(5.6) follow immediately from the definitions of Funit, Fname, F<<name>>τ , Fτ1×τ2

and Fτ1→τ2

respectively, together with Lemma 5.4.6. Property (5.3) follows by first observing that Cval
δ =

Fδ(∆,∆) = ∆; then, if (d, v) ∈ ∆ we have (i−1(d), v) ∈ F (∆,∆) (since i−1 : ∆ ⊂ F (∆,∆)).
Therefore v is of the form Ck(vk) and there exists dk with i−1(d) = ink(dk). It follows that
d = (i ◦ ink)(dk) and (dk, vk) ∈ Fσk

(∆,∆) as required. �

5.4.3 Properties of the logical relations

Theorem 5.4.11 (Fundamental theorem of the logical relations). For typing contexts Γ,

values v, frame stacks S and expressions e then











Γ ` v : τ ⇒ ∀ρ CΓ ψ. V[[Γ ` v : τ ]](ρ) Cval
τ v[ψ];

Γ `s S : τ ( τ ′ ⇒ ∀ρ CΓ ψ. S[[Γ `s S : τ ( τ ′]](ρ) Cstk
τ S[ψ];

Γ ` e : τ ⇒ ∀ρ CΓ ψ. E [[Γ ` e : τ ]](ρ) Cexp
τ e[ψ]

where ρ CΓ ψ holds iff the domains of Γ, ρ and ψ are equal, ` ψ : Γ and for each x ∈ dom(ρ),
ρ(x) Cval

Γ(x) ψ[x]. We write ∀ρ CΓ ψ to indicate universal quantification over all such (ρ ∈ [[Γ]], ψ ∈

SubstΓ)-pairs for some particular Γ.

Proof. It is straightforward to see that the theorem holds when ρ = ⊥. In the other cases, we
proceed by induction over the axioms and rules defining `s and `. There are many cases to
consider, the vast majority of which follow the same pattern. We now provide a good selection
of them.

The first part of the proof concerns the cases for values.
I Case (val-vid). Follows by virtue of the assumption that ρ CΓ ψ.
I Cases (val-unit) and (val-atom) follow immediately from properties (5.1) and (5.2) respec-

tively.
I Case (val-con). Given a judgement Γ ` Ck(vk) : δ, which must have been derived by

knowing Γ ` vk : σk, we require (i ◦ ink)(V[[Γ ` vk : σk]](ρ)) Cval
δ (Ck(vk))[ψ]. That is to

say, ∃dk ∈ [[σk]]. (i ◦ ink)(V[[Γ ` vk : σk]](ρ)) = (i ◦ ink)(dk) ∧ dk Cval
σk

vk[ψ] and we can see
immediately that this follows from the induction hypothesis.
I Case (val-pair). Straightforward to deduce from the induction hypothesis and the property

(5.5) of Cval
τ×τ ′ .

I Case (val-abst). Given a valid typing judgement Γ ` <<a>>v : <<name>>τ , which must
have been derived by knowing Γ ` a : name and Γ ` v : τ , then the induction hypothesis
tells us that V[[Γ ` v : τ ]](ρ) Cval

τ v[ψ]. Thus by the equivariance of Cval
τ we obtain that for any

a′ /∈ supp(V[[Γ ` v : τ ]](ρ), v[ψ]),

(a a′) · V[[Γ ` v : τ ]](ρ) C
val
τ (a a′) · (v[ψ]).

By property (5.4) we thus obtain [a]V[[Γ ` v : τ ]](ρ) Cval
<<name>>τ <<a>>(v[ψ]). It follows that

V[[Γ ` <<a>>v : <<name>>τ ]] Cval
<<name>>τ (<<a>>v)[ψ] as required.

I Case (val-fn). Under the assumption that Γ ` fun f(x) = e : τ → τ ′, which must have
been derived by knowing Γ, f : τ → τ ′, x : τ ` e : τ ′, it is necessary to show that

V[[Γ ` fun f(x) = e : τ → τ ′]](ρ) C
val
τ→τ ′ (fun f(x) = e)[ψ].

By property (5.6) it therefore suffices to show that Φ(fix(g)) holds, where

Φ(F )
def
⇔ ∀d C

val
τ v. F (d) C

exp
τ ′ (fun f(x) = e[ψ])(v)
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and g
def
= λf ′ ∈ [[τ → τ ′]]. λx′ ∈ [[τ ]]. E [[Γ, f 7→ τ → τ ′, x 7→ τ ` e : τ ′]](ρ[f 7→ f ′, x 7→ x′]). Since

Φ(F ) holds just in case F Cval
τ→τ ′ fun f(x) = e[ψ], then {F | Φ(F )} is an admissible subset

of [[τ → τ ′]] (by virtue of the admissibility property of Cval
τ→τ ′). Thus by Scott induction we can

conclude Φ(fix(g)) by proving that for any F ∈ [[τ → τ ′]], Φ(F ) ⇒ Φ(g(F )). Write Γ′ for Γ, f 7→
τ → τ ′, x 7→ τ and take any d Cval

τ v. By assumption we have that F Cval
τ→τ ′ fun f(x) = e[ψ],

so ρ[f 7→ F, x 7→ d] CΓ′ ψ[fun f(x) = e[ψ]/f, v/x]. Since the induction hypothesis of the
fundamental theorem tells us that for all σ′ Cstk

τ ′ S′ and ρ′ CΓ′ ψ′, E [[Γ′ ` e : τ ′]](ρ′)(σ′) =
> ⇒ 〈S′, e[ψ′]〉↓, then we know that for all σ′ Cstk

τ ′ S′, E [[Γ′ ` e : τ ′]](ρ[f 7→ F, x 7→ d])(σ′) =
> ⇒ 〈S′, e[ψ, fun f(x) = e[ψ]/f, v/x]〉 ↓. But combining this with the definition of the
termination relation implies that Φ(g(F )) holds.

The next part of the proof concerns the cases for frame stacks.
I Case (stk-abst-left). Given a valid typing judgement Γ `s S ◦ <<[–]>>e : name ( , which

must have been derived from Γ`s S : <<name>>τ ( and Γ` e : τ , then we have for ρ CΓ ψ
that

S[[Γ `s S : <<name>>τ ( ]](ρ) C
stk
<<name>>τ S[ψ]; and (5.20)

E [[Γ ` e : τ ]](ρ) C
exp
τ e[ψ] (5.21)

by the induction hypotheses. We can calculate that we must prove 〈S[ψ]◦<<[–]>>e[ψ], a〉↓, and
therefore it suffices to show

〈S[ψ] ◦ <<a>>[–], e[ψ]〉↓ (5.22)

under the assumption that

S[[Γ `s S ◦ <<[–]>>e : name ( ]](ρ)(a) = > (5.23)

for any a ∈ * . Expanding (5.20)–(5.23) and making use of the definition of the termination
relation we obtain that for any [a′]d′ Cval

<<name>>τ <<a′′>>v′ and any σ′ Cstk
τ S′,

S[[Γ `s S : <<name>>τ ( ]](ρ)([a′]d′) = > ⇒ 〈S[ψ] ◦ <<a′′>>[–], v′〉↓; (5.24)
E [[Γ ` e : τ ]](ρ)(σ′) = > ⇒ 〈S′, e[ψ]〉↓; (5.25)
E [[Γ ` e : τ ]](ρ)(λd ∈ [[τ ]]. S[[Γ `s S : <<name>>τ ( ]](ρ)([a]d)) = >. (5.26)

Now, observe that it is sufficient to set

σ′ = λd ∈ [[τ ]]. S[[Γ `s S : <<name>>τ ( ]](ρ)([a]d)

and S′ = S[ψ] ◦ <<a>>[–]. For then, we can combine (5.25) and (5.26) to conclude (5.22) so
long as σ′ Cstk

τ S′. To see this, recall that given any d Cval
τ v and any a′ ∈ * then (a a′) · d Cval

τ

(a a′) · v. Therefore [a]d Cval
<<name>>τ <<a>>v which enables us to conclude by using (5.24).

I Case (stk-abst-right). Given a valid typing judgement Γ`sS◦<<a>>[–] : τ ( , which must
have been derived by knowing Γ `s S : <<name>>τ and Γ `s S ◦ <<a>>[–] : τ ( , consider
some ρ CΓ ψ. Then we have by the induction hypothesis and the remaining assumption that
for [a′]d′ Cval

<<name>>τ <<a′′>>v′ and d′′ Cval
τ v′′,

S[[Γ `s S : <<name>>τ ]](ρ)([a′]d′) = > ⇒ 〈S[ψ], <<a′′>>v′〉↓; (5.27)
S[[Γ `s S ◦ <<a>>[–] : τ ( ]](ρ)(d′′) = >. (5.28)

We need to show that 〈S[ψ] ◦ <<a>>[–], v′′〉↓ and so it suffices to prove:

〈S[ψ], <<a>>v′′〉↓ . (5.29)

Now, by definition of S[[–]] then (5.28) is equivalent to

S[[Γ `s S : <<name>>τ ]](ρ)([a]d′′) = >. (5.30)

Since d′′ Cval
τ v′′ then [a]d′′ Cval

<<name>>τ <<a>>v′′ (by a similar argument to that in the previous
case). Thus we have (5.29) by virtue of (5.27).
I Case (stk-swap-1). Given a judgement Γ `s S ◦ swap [–], e′ in e′′ : name ( , which

must have been derived by knowing that Γ`sS : τ ( , Γ`e′ : name and Γ`e′′ : τ , consider
some ρ CΓ ψ. Then we have by the induction hypothesis that

∀d C
val
τ v, S[[Γ `s S : τ ( ]](ρ)(d) = > ⇒ 〈S[ψ], v〉↓; (5.31)
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∀σ′
C

stk
name S

′, E [[Γ ` e′ : name]](ρ)(σ′) = > ⇒ 〈S′, e′[ψ]〉↓; (5.32)

∀σ′′
C

stk
τ S′′, E [[Γ ` e′′ : τ ]](ρ)(σ′′) = > ⇒ 〈S′′, e′′[ψ]〉↓ . (5.33)

By assumption we also have

S[[Γ `s S ◦ swap [–], e′ in e′′ : name ( ]](ρ)(a) = > (5.34)

and we wish to show that 〈(S ◦ swap [–], e′ in e′′)[ψ], a〉↓. It therefore suffices to prove

〈S[ψ] ◦ swap a, [–] in e′′[ψ], e′[ψ]〉↓ (5.35)

by virtue of the definition of the termination relation. Expanding (5.34) we have that

E [[Γ ` e′ : name]](ρ)(σ′) = > (5.36)

where σ′ def
= λa′ ∈ [[name]]. E [[Γ ` e′′ : τ ]](ρ)(λd ∈ [[τ ]]. S[[Γ `s S : τ ( ]](ρ)((a a′) · d)). We

now see that proving
σ′

C
stk
name S[ψ] ◦ swap a, [–] in e′′[ψ] (5.37)

will allow us to conclude (5.35) by virtue of (5.32). So we take any d Cval
name v and prove that

σ′(d) = > implies 〈S[ψ] ◦ swap a, [–] in e′′[ψ], v〉↓. If d = ⊥ then this is trivial. Otherwise,
write a′ for d (which must equal v by property (5.2)) and assume that

E [[Γ ` e′′ : τ ]](ρ)(λd ∈ [[τ ]]. S[[Γ `s S : τ ( ]](ρ)((a a′) · d)) = >.

We need to show that 〈S[ψ] ◦ swap a, [–] in e′′[ψ], a′〉↓ holds and thus it suffices to prove
that

〈S[ψ] ◦ swap a, a′ in [–], e′′[ψ]〉↓ . (5.38)

Now, observe that this holds from (5.33) if

λd ∈ [[τ ]]. S[[Γ `s S : τ ( ]](ρ)((a a′) · d) C
stk
τ S[ψ] ◦ swap a, a′ in [–]. (5.39)

Thus we require that for any d Cval
τ v then

S[[Γ `s S : τ ( ]](ρ)((a a′) · d) = > ⇒ 〈S[ψ] ◦ swap a, a′ in [–], v〉↓ .

Therefore using the definition of the termination relation it suffices to show that

S[[Γ `s S : τ ( ]](ρ)((a a′) · d) = > ⇒ 〈S[ψ], (a a′) · v〉↓

and this follows from (5.31) by equivariance of Cval
τ . Thus we have (5.39) which implies

(5.38), which in turn implies (5.37). Then we have (5.35) as required.
I Case (stk-swap-2). Given a typing judgement Γ `s swap a, [–] in e′′ : name ( , which

must have been derived from Γ `s S : τ ( and Γ ` e′′ : τ , consider some ρ CΓ ψ. We have
by the induction hypothesis that

∀d C
val
τ v. S[[Γ `s S : τ ( ]](ρ)(d) = > ⇒ 〈S[ψ], v〉↓; (5.40)

∀σ′
C

stk
τ S′. E [[Γ ` e′′ : τ ]](ρ)(σ′) = > ⇒ 〈S′, e′′[ψ]〉↓ . (5.41)

We also have by assumption that for any a′ ∈ + ⊥,

S[[Γ `s S ◦ swap a, [–] in e′′ : name ( ]](ρ)(a′) = > (5.42)

(which implies that a′ 6= ⊥) and we want 〈S[ψ] ◦ swap a, [–] in e′′, a′〉↓. It therefore suffices
to show that

〈S[ψ] ◦ swap a, a′ in [–], e′′[ψ]〉↓ . (5.43)

Expanding (5.42) yields that

E [[Γ ` e′′ : τ ]](ρ)(λd ∈ [[τ ]]. S[[Γ `s S : τ ( ]](ρ)((a a′) · d)) = >. (5.44)

We can thus obtain (5.43) from (5.41) if we can show that

λd ∈ [[τ ]]. S[[Γ `s S : τ ( ]](ρ)((a a′) · d) C
stk
τ S[ψ] ◦ swap a, a′ in [–]. (5.45)
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So take any d Cval
τ v. From (5.40) and equivariance of Cval

τ we know that

S[[Γ `s S : τ ( ]](ρ)((a a′) · d) = > ⇒ 〈S[ψ], (a a′) · v〉↓

But we can see from the definitions of Cstk
τ and the termination relation that this is just (5.45).

Thus we have (5.43) and can conclude.
I Case (stk-swap-3). Given a typing judgement Γ `s S ◦ swap a, a′ in [–] : τ ( , which

must have been derived by knowing Γ` a : name, Γ` a′ : name and Γ`s S : τ ( , consider
ρ CΓ ψ. Then the only non-trivial statement provided by the induction hypothesis is that for
all d Cval

τ v,
S[[Γ `s S : τ ( ]](ρ)(d) = > ⇒ 〈S[ψ], v〉↓ . (5.46)

We also have the assumption that for all such d and v,

S[[Γ `s S ◦ swap a, a′ in [–] : τ ( ]](ρ)(d) = >

and expanding this yields that

S[[Γ `s S : τ ( ]](ρ)((a a′) · d) = >. (5.47)

We need to show that 〈S[ψ]◦swap a, a′ in [–], v〉↓ holds. It thus suffices to prove 〈S[ψ], (a a′)·
v〉↓, which does indeed follow by combining (5.46) with (5.47) and using the equivariance
property of Cval

τ .
I Case (stk-let-abst). Given a judgement Γ`sS ◦let <<x>>x′ = [–] in e : <<name>>τ ( ,

which must have been derived by knowing Γ `s S : τ ′ ( and Γ, x 7→ name, x′ 7→ τ ` e :
τ ′, consider ρ CΓ ψ. Then we can use the definitions of S[[–]] and the termination relation
together with the equivariance property of the latter to calculate that we must prove for all
[a1]d Cval

<<name>>τ <<a2>>v and any a ∈ , \ supp(S, a1, d, a2, v, e, ρ) that

E [[Γ, x 7→ name, x′ 7→ τ ` e : τ ′]](ρ[x 7→ a, x′ 7→ (a a1) · d])
(S[[Γ `s S : τ ′ ( ]](ρ)) = > ⇒

〈S[ψ], e[ψ[a/x, (a a2) · v/x
′]]〉↓ . (5.48)

Since [a1]d Cval
<<name>>τ <<a2>>v then by virtue of property (5.4) we know that (a a1) · d Cval

τ

(a a2) · v. Thus for any ρ CΓ ψ then

ρ[x 7→ a, x′ 7→ (a a1) · d] CΓ,x7→name,x′ 7→τ ψ[a/x, (a a2) · v/x
′]. (5.49)

The induction hypothesis gives us the following.

Γ `s S : τ ′ ( ⇒ ∀ρ CΓ ψ. S[[Γ `s S : τ ′ ( ]](ρ) C
stk
τ S[ψ] (5.50)

Γ, x 7→ name, x′ 7→ τ ` e : τ ′ ⇒
∀ρ CΓ ψ. E [[Γ, x 7→ name, x′ 7→ τ ` e : τ ′]](ρ) C

exp
τ e[ψ] (5.51)

Proceeding in a similar manner to previous cases, we can now use (5.49) to satisfy the
universal quantification in (5.50) so that we can combine (5.48) and (5.51) to get the result.

The final part of the proof concerns the cases for expressions which are not necessarily in
canonical form. We give the three most interesting cases.
I Case (exp-val). Given some canonical form v and a valid typing judgement Γ ` v : τ , we

wish to know that for all ρ CΓ ψ, E [[Γ ` v : τ ]](ρ) Cexp
τ v[ψ]. That is to say, for all σ Cstk

τ S,
E [[Γ ` v : τ ]](ρ)(σ) = > ⇒ 〈S, v[ψ]〉↓ . Expanding the definition of E [[–]] this is equivalent to

σ(V[[Γ ` v : τ ]](ρ)) = > ⇒ 〈S, v[ψ]〉↓ . (5.52)

Since σ Cstk
τ S then for all v′ Cval

τ d′, σ(d′) = > ⇒ 〈S, v′〉↓ and so by the induction hypothesis
we can set d′ = V[[Γ ` v : τ ]](ρ) and v′ = v[ψ] to yield (5.52).
I Case (exp-fresh). Given the typing judgement Γ ` fresh : name then we require new Cexp

τ

fresh. That is to say for all σ Cstk
name S, we need σ(a) = > ⇒ 〈S, a′〉↓ for a ∈ , \ supp(σ) and

a′ ∈ , \ supp(S). Let us set a = a′ and take a ∈ , \ supp(σ, S). Then σ(a) = > ⇒ 〈S, a〉↓⇔
〈S, fresh〉↓ since σ Cstk

name S.
I Case (exp-abst). Given a valid typing judgement Γ ` <<e>>e′ : <<name>>τ , which must

have been derived by knowing Γ ` e : name and Γ ` e′ : τ , consider ρ CΓ ψ. We calculate that
we must prove

E [[Γ ` <<e>>e′ : <<name>>τ ]](ρ)(σ) = > ⇒ 〈S ◦ <<[–]>>e′[ψ], e[ψ]〉↓
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for all σ Cstk
<<name>>τ S and all ρ CΓ ψ. Expanding the definition of E [[–]] this is:

E [[Γ ` e : name]](ρ)(λa ∈ [[name]]. E [[Γ ` e′ : τ ]](ρ)(λd ∈ [[τ ]]. σ([a]d))) = > ⇒
〈S ◦ <<[–]>>e′[ψ], e[ψ]〉↓ . (5.53)

The induction hypothesis tells us that for all σ1 Cstk
name S1 and all σ2 Cstk

τ S2,

E [[Γ ` e : name]](ρ)(σ1) = > ⇒ 〈S1, e[ψ]〉↓ ; and (5.54)
E [[Γ ` e′ : τ ]](ρ)(σ2) = > ⇒ 〈S2, e

′[ψ]〉↓ . (5.55)

Using (5.53) and (5.54) we see that it suffices to show

λa ∈ [[name]]. E [[Γ ` e′ : τ ]](ρ)(λd ∈ [[τ ]]. σ([a]d)) C
stk
τ S ◦ <<[–]>>e′[ψ].

Take some d Cval
name v. If d = ⊥ then the implication is trivial. Otherwise, write a for d (so a = v

also). Then using the definitions of the termination relation and Cstk
τ we deduce that we must

prove

E [[Γ ` e′ : τ ]](ρ)(λd ∈ [[τ ]]. σ([a]d)) = > ⇒ 〈S ◦ <<a>>[–], e′[ψ]〉↓

which can be concluded from (5.55) if λd ∈ [[τ ]]. σ([a]d) Cstk
τ S ◦ <<a>>[–] holds. Taking some

d Cval
τ v we therefore need σ([a]d) = > ⇒ 〈S, <<a>>v〉↓. Let us take d 6= ⊥, for if it is bottom

then the implication is trivial. This holds since σ Cstk
<<name>>τ S and we can calculate7 that

d Cval
τ v ⇒ [a]d Cval

<<name>>τ <<a>>v. �

Corollary 5.4.12. For typeable closed values v, frame stacks S and expressions e of type τ , τ (

and τ respectively then

V[[v]] C
val
τ v and S[[S]] C

stk
τ S and E [[e]] C

exp
τ e.

Proof. Immediate from Theorem 5.4.11. �

Lemma 5.4.13. For a closed value v of type δ and d ∈ [[δ]], return(d) C
exp
δ v implies that

d = (i ◦ ink)(dk) and v = Ck(vk) for some 1 6 vk 6 K, closed vk of type σk and dk ∈ [[σk]].

Proof. By virtue of i being an isomorphism, each d ∈ [[δ]] may be expressed as (i ◦ ink)(dk).
The typing rules of Mini-FreshML mean that each v of type δ must be of the form Ck′(vk′). It
remains to show that k = k′.

For each 1 6 k 6 K, construct the frame stack Sk : δ ( as follows:

Sk
def
= [] ◦ match [–] with · · · | Cj(xj) -> t(j, k, xj) | · · ·

where t(–, –, –) is defined like so, for some divergent term Ω:

t(j, k, xj)
def
=

{

Cj(xj) if j = k;

Ω otherwise.

Corollary 5.4.12 tells us that S[[Sk]] Cstk
δ Sk. But since return(d) C

exp
δ v then

∀σ C
stk
δ S. σ((i ◦ ink)(dk)) = > ⇒ 〈S, Ck′(vk′)〉↓

and therefore S[[Sk]]((i ◦ ink)(dk)) = > ⇒ 〈Sk, Ck′(vk′)〉↓. The left-hand side of this may be
seen to hold always by expanding the definition of S[[–]]; therefore 〈Sk, Ck′(vk′)〉↓ holds. But
this can only hold if k = k′. �

The following lemma is needed to derive some extensionality properties of Mini-FreshML
which we shall come to in due course. It tells us about the relationship between Cexp

τ and Cval
τ

when only canonical forms are involved.

Lemma 5.4.14 (Canonical forms in Cexp
τ ). For a closed value v of type τ and d ∈ [[τ ]],

return(d) Cexp
τ v implies that d Cval

τ v.

7In a similar manner to the (val-abst) case.
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Proof. In the case where d = ⊥, the lemma is trivial. Otherwise, we assume d 6= ⊥ and proceed
by induction on the structure of the value v. A tricky proof, whose multiple nested implications
demand great care.

I Cases (unit)–(name) are trivial by virtue of simple properties of Cval
τ .

I Case (data). Assume return(d) C
exp
δ v. Lemma 5.4.13 then tells us that d must be of the

form (i ◦ ink)(dk) and v must be of the form Ck(vk). Therefore

∀σ C
stk
δ S. σ((i ◦ ink)(dk)) = > ⇒ 〈S, Ck(vk)〉↓ . (5.56)

The induction hypothesis tells us that return(dk) Cexp
σk

vk ⇒ dk Cval
σk

vk. Since we wish to know

that d Cval
δ v then by expanding the definition of Cexp

τ we can see that it suffices to show for all
σ′ Cstk

σk
S′, σ′(dk) = > ⇒ 〈S′, vk〉↓. Taking any such σ′ Cstk

σk
S′ and assuming that σ′(dk) = >,

construct the frame stack S : δ ( and element σ ∈ [[δ]]
⊥

as follows:

S
def
= S′ ◦ match [–] with · · · | Ck(xk) -> xk | · · ·

σ
def
= λd ∈ [[δ]]. σ′((i ◦ ink)−1(d)).

Calculating that σ Cstk
δ S, we can deduce from (5.56) that 〈S, Ck(vk)〉↓. But this must have

been derived by knowing that 〈S′, vk〉↓ as required.

I Case (abst). Assume return(d) C
exp
<<name>>τ v. Since d 6= ⊥, it is of the form [a]d′ with d′ 6= ⊥

and v is of the form <<a′>>v′. Therefore,

∀σ C
stk
<<name>>τ S. σ([a]d′) = > ⇒ 〈S, <<a′>>v′〉↓ . (5.57)

We need to show that [a]d′ Cval
<<name>>τ <<a′>>v′. That is to say, for any a′′ /∈ supp(a, a′, d′, v′)

then (a a′′) · d′ Cval
τ (a′ a′′) · v′. This can be done by applying the induction hypothesis in the

form: return((a a′′) · d′) Cexp
τ (a′ a′′) · v′ ⇒ (a a′′) · d′ Cval

τ (a′ a′′) · v′ (since swapping does not
affect the size of the value v′). Then by expanding the definition of Cexp

τ we can see it suffices
to show that the following implication holds: for any σ′ Cstk

τ S′, then σ′((a a′′) · d′) = > ⇒
〈S′, (a′ a′′) · v′〉↓.

Assume σ′(d′) = > and construct the stack S : <<name>>τ ( together with the element

σ ∈ [[<<name>>τ ]]
⊥

as follows8:

S
def
= S′ ◦ let <<x>>x′ = [–] in x′

σ
def
= λ[a]d′ ∈ [[<<name>>τ ]]. σ′((a a′′) · d′) ( a′′ /∈ supp(σ, a, a′, d′, v′)).

One can calculate that σ Cstk
<<name>>τ S. Since σ′((a a′′) · d′) = >, then we have σ([a]d′) =

σ′((a a′′) · d′) = >. Therefore we can apply (5.57) to deduce that 〈S, <<a′>>v′〉↓; that is to
say, 〈S′ ◦let <<x>>x′ = [–] in x′, <<a′>>v′〉↓. This must have been deduced by knowing that
〈S′, (a′ a′′) · v′〉↓ (note that we can use the same a′′ here by virtue of the conditions which we
have placed upon it), which is just what we require.

I Case (pair). Assume return(d) C
exp
τ×τ ′ v. Since d 6= ⊥, it must be of the form 〈d1, d2〉 with

d1, d2 6= ⊥ and v must be of the form (v1, v2); we therefore have

∀σ C
stk
τ×τ ′ S. σ(〈d1, d2〉) = > ⇒ 〈S, (v1, v2)〉↓ . (5.58)

The induction hypothesis tells us that return(d1) Cexp
τ v1 ⇒ d1 Cval

τ v1 and return(d2) C
exp
τ ′

v2 ⇒ d2 Cval
τ ′ v2. We need to show that d Cval

τ×τ ′ v; that is to say, d1 Cval
τ v1 and d2 Cval

τ ′ v2.

The definition of Cexp
τ implies that it suffices to show that for all σ1 Cstk

τ S1 and σ2 Cstk
τ ′ S2,

σ1(d1) = > ⇒ 〈S1, v1〉↓ and σ2(d2) = > ⇒ 〈S2, v2〉↓.

So assume that for σ1 Cstk
τ S1 and σ2 Cstk

τ ′ S2, σ1(d1) = > and σ2(d2) = >. Now construct

the following stacks S, S′ : τ × τ ′ ( and elements σ, σ′ ∈ [[τ × τ ]]
⊥

:

S
def
= S1 ◦ let (x, x′) = [–] in x

S′ def
= S2 ◦ let (x, x′) = [–] in x′

σ
def
= λ〈d1, d2〉 ∈ [[τ × τ ′]]. d1

8σ is well-defined for the same reasons as new (p.56).
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σ′ def
= λ〈d1, d2〉 ∈ [[τ × τ ′]]. d2.

One can calculate from these definitions that σ Cstk
τ×τ ′ S and σ′ Cstk

τ×τ ′ S′. Since d2 6= ⊥ then
σ〈d1, d2〉 = σ1(d1) = >. It follows from (5.58) that 〈S, (v1, v2)〉↓. But this must have been
derived by knowing that 〈S1, v1〉↓. A similar argument applies with σ′ and S′ to deduce that
〈S2, v2〉↓ as required.
I Case (fun). Assume return(d) C

exp
τ→τ ′ v. Then v must be of the form fun f(x) = e. We

therefore have
∀σ C

stk
τ→τ ′ S. σ(d) = > ⇒ 〈S, fun f(x) = e〉↓ . (5.59)

We wish to know that d Cval
τ→τ ′ v; that is to say, for all d′ Cval

τ v′ then d(d′) C
exp
τ ′ v v′. This in

turn holds just when for all σ′ Cstk
τ ′ S′, d(d′)(σ′) = > ⇒ 〈S′, v v′〉↓. Choosing any d′ Cval

τ v′

and σ′ Cstk
τ ′ S′ then define the stack S : (τ → τ ′) ( and the element σ ∈ [[τ → τ ′]]

⊥
as

follows:

S
def
= S′ ◦ [–] v′

σ
def
= λd ∈ [[τ → τ ′]]. d(d′)(σ′).

We calculate that σ Cstk
τ→τ ′ S. Since we assumed d(d′)(σ′) = > then σ(d) = >; thus (5.59)

gives 〈S′ ◦ [–] v′, fun f(x) = e〉↓. This implies that 〈S ′, v v′〉↓ as required. �

Definition 5.4.15 (The relations 6v and 6e). The type-respecting relation 6e, written Γ `
e 6e e

′ : τ , holds iff the expressions e and e′ may both be assigned type τ in typing context
Γ and for all ρ CΓ ψ, E [[Γ ` e : τ ]](ρ) Cexp

τ e′[ψ]. We write e 6e e
′ iff e and e′ are closed

expressions in the relation.
The type-respecting relation 6v, written Γ ` v 6v v′ : τ , holds iff the expressions in

canonical form v and v′ may both be assigned type τ in typing context Γ and for all ρ CΓ ψ
then V[[Γ ` v : τ ]](ρ) Cval

τ v′[ψ]. We write v 6v v′ iff v and v′ are closed expressions in the
relation. �

Lemma 5.4.16 (6v contained within 6e). For expressions in canonical form v and v′ which

may be assigned type τ in typing context Γ then

Γ ` v 6v v
′ : τ ⇒ Γ ` v 6e v

′ : τ.

Proof. It suffices to show that for all ρ CΓ ψ,

V[[Γ ` v : τ ]](ρ) C
val
τ v′[ψ] ⇒ λσ ∈ [[τ ]]

⊥
. σ(V[[Γ ` v : τ ]](ρ)) C

exp
τ v′[ψ].

By definition of Cexp
τ this is equivalent to asking that

V[[Γ ` v : τ ]](ρ) C
val
τ v′[ψ] ⇒ ∀σ C

stk
τ S. σ(V[[Γ ` v : τ ]](ρ)) = > ⇒ 〈S, v′[ψ]〉↓

which holds by virtue of the definition of Cstk
τ . �

Lemma 5.4.17 (Compositionality). For typeable expressions e, e′ and contexts C such that C[e]
and C[e′] are also typeable then

Γ ` e 6e e
′ : τ ⇒ Γ ` C[e] 6e C[e′] : τ ′.

Proof. The lemma is proved by induction on the structure of the context C. We give just a
single case here to illustrate the logic behind the proof.
I Case (abst). For contexts C and C ′ we wish to show that Γ ` e 6e e′ : τ ⇒ Γ `

(<<C>>C ′)[e] 6e (<<C>>C ′)[e′] : <<name>>τ ′. That is to say, Γ ` e 6e e′ : τ ⇒ Γ `
<<C[e]>>C ′[e] 6e <<C[e′]>>C ′[e′] : <<name>>τ ′. As induction hypotheses we have

Γ ` e 6e e
′ : τ ⇒ Γ ` C[e] 6e C[e′] : name; (5.60)

Γ ` e 6e e
′ : τ ⇒ Γ ` C ′[e] 6e C

′[e′] : τ ′ (5.61)

and as further assumptions we have that for all ρ CΓ ψ and σ Cstk
<<name>>τ ′ S,

Γ ` e 6e e
′ : τ ; (5.62)

E [[Γ ` <<C[e]>>C ′[e] : <<name>>τ ′]](ρ)(σ) = >. (5.63)
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Expanding (5.63) then we obtain

E [[Γ ` C[e] : name]](ρ)(λa ∈ [[name]]. E [[Γ ` C ′[e] : τ ′]](ρ)(λd ∈ [[τ ′]]. σ([a]d))) = >.

We need to show that 〈S, (<<C[e′]>>C ′[e′])[ψ]〉 ↓. It therefore suffices to show that 〈S ◦
<<[–]>>(C ′[e′])[ψ], (C[e′])[ψ]〉 ↓. This follows from (5.60), (5.62) and 5.64 so long as λa ∈
[[name]]. E [[Γ ` C ′[e] : τ ′]](ρ)(λd ∈ [[τ ′]]. σ([a]d)) Cstk

name S ◦ <<[–]>>C ′[e′][ψ]. To see this, we use
the definition of Cstk

name: take any a ∈ - (for the bottom case is trivial) and assume

E [[Γ ` C ′[e] : τ ′]](ρ)(λd ∈ [[τ ′]]. σ([a]d)) = >. (5.64)

We need to prove that 〈S ◦ <<[–]>>C ′[e′][ψ], a〉 ↓. It therefore suffices to show that 〈S ◦
<<a>>[–], C ′[e′][ψ]〉↓ holds. We can prove this from (5.61), (5.62) and (5.64) by showing that
λd ∈ [[τ ′]]. σ([a]d) Cstk

τ S◦<<[–]>>C ′[e′][ψ]. Taking any d Cval
τ ′ v and expanding the definition of

Cstk
τ , we have to show that 〈S ◦<<a>>[–], v〉↓ holds given that σ([a]d) = >. It therefore suffices

to show that 〈S, <<a>>v〉↓, which holds since σ Cstk
τ S and [a]d Cval

<<name>>τ ′ <<a>>v. �

5.4.4 Completing the proof

We are now in a position to state the proof of the ‘computational adequacy’ result, which we
recall was as follows:

Given a typing context Γ and a typeable expression e such that Γ` e : τ , then for all closed frame

stacks S of type τ ( and substitutions9 ψ ∈ SubstΓ

E [[Γ ` e : τ ]]V[[ψ]]S[[S]] = > ⇔ 〈S, e[ψ]〉↓ . (5.65)

Thus if e is a closed expression we have that

E [[e]]S[[S]] = > ⇔ 〈S, e〉↓ . � (5.66)

Proof. We start by proving (5.66), for having established this then we can deduce that for
expressions e and substitutions ψ as above, E [[e[ψ]]]S[[S]] = > ⇔ 〈S, e[ψ]〉↓. Then we can apply
Lemma 5.3.4 to obtain (5.65).

Now the forwards direction of (5.66) follows immediately by combining Corollary 5.4.12
first with (5.7) and secondly with (5.8). For the reverse direction (the ‘soundness’ property of
the denotational semantics) we show that the property

Φ(S, e)
def
= 〈S, e〉↓⇒ E [[e]]S[[S]] = >

is closed under the axiom and rules defining the termination relation (Figure 3.7). The induc-
tion splits into two halves, paralleling the construction of the termination relation. For the first
part, we take e to be a canonical form (which we call v for clarity) and consider the possible
cases for S: here we give the interesting cases.

I Case (empty). In this case, 〈[], v〉↓ always holds; moreover, E [[v]]S[[[]]] is equal to S[[[]]]V[[v]]
which in turn is always >.

I Case (con). We wish to show Φ(S ◦ Ck([–]), v). By the induction hypothesis we know
〈S, Ck(v)〉↓⇒ E [[Ck(v)]]S[[S]] = > and by assumption we have that 〈S ◦ Ck([–]), v〉↓. Con-
sidering the derivation of this, we must have that E [[Ck(v)]]S[[S]] = > and therefore (by
definition) S[[S]]((i ◦ ink)(V[[v]])) = >. However this is just S[[S ◦ Ck([–])]](v) by definition
of S[[–]]; therefore, E [[v]]S[[S ◦ Ck([–])]] = >.

I Case (pair-l). We wish to show Φ(S ◦ ([–], e), v). The induction hypothesis tells us
that 〈S ◦ (v, [–]), e〉 ↓⇒ E [[e]]S[[S ◦ (v, [–])]] = > and we have by assumption that 〈S ◦
([–], e), v〉 ↓. This must have been derived by knowing that 〈S ◦ (v, [–]), e〉 ↓. We need
that E [[v]]S[[S ◦ ([–], e)]] = >, i.e. E [[e]](λd′ ∈ [[τ ′]]. S[[S]]〈V[[v]], d′〉) = >. But this is just
E [[e]]S[[S ◦ (v, [–])]] and so we are done.

I Case (pair-r). We wish to show Φ(S ◦ (v, [–]), v′). By the induction hypothesis we
have that 〈S, (v, v′)〉↓⇒ E [[(v, v′)]]S[[S]] = >. The right-hand side of this holds by virtue
of the assumption (in a similar manner to the previous case); expanding this yields that

9Recall that ψ maps value identifiers to closed values; thus, e[ψ] must be a closed expression since e is typeable
in context Γ.



76 5. Computational adequacy

S[[S]]〈V[[v]],V[[v′]]〉 = >. We wish to show that V[[v′]]S[[S ◦ (v, [–])]] = >, i.e. S[[S]]〈V[[v]],V[[v′]]〉 =
>. But we already have this from above.
I Cases (abst-l) and (abst-r) argue in the same way as for (pair-l) and (pair-r), mutatis

mutandis.
I Case (swap-1). We wish to show that Φ(S ◦ swap [–], e′ in e′′, v) holds. Proceed-

ing in a similar manner to the previous case, we obtain from the induction hypothesis that
E [[e′]]S[[S ◦ swap v, [–] in e′′]] = >. We need to show that E [[v]]S[[S ◦ swap [–], e′ in e′′]] =
>, the left-hand side of which is just E [[e′]]S[[S ◦ swap v, [–] in e′′]]. This is equal to > from
above.
I Case (swap-2). Proceeds in a similar manner to the previous case; we omit the details.
I Case (app-l). We wish to show that Φ(S ◦ [–] e′, v) holds; we thus require that under the

assumption 〈S ◦ [–] e′, v〉↓ then E [[v]]S[[S ◦ [–] e′]] = >. This is just E [[e′]]S[[S ◦ v [–]]] = > which
again holds by virtue of the induction hypothesis.
I Case (app-r). A more interesting case to break the monotony. We wish to show that Φ(S ◦
v [–], v′) holds. We assume that 〈S◦v [–], v′〉↓, where v is of the form fun f(x) = e and of type
τ → τ ′. By considering how this must have been derived, the induction hypothesis yields that
E [[e[v/f, v′/x]]]S[[S]] = >. We need to prove that E [[v′]]S[[S ◦ v [–]]] = >, i.e. (V[[v]] V[[v′]])S[[S]] =
>. By expanding the definition of V[[–]] this is

E [[{f : τ → τ ′, x : τ} ` e : τ ′]]{f 7→ V[[v]], x 7→ V[[v′]]}S[[S]] = >.

Now we can apply the substitutivity property of the denotational semantics (Lemma 5.3.4)
to deduce that this equivalent to E [[e[v/f, v′/x]]]S[[S]] = >, which holds from the induction
hypothesis.
I Case (let). We wish to prove that Φ(S ◦ let x = [–] in e′, v), where ` v : τ ′ and {x :
τ ′} ` e′ : τ . We assume that 〈S ◦ let x = [–] in e′, v〉↓ holds; this must have been derived
by knowing that 〈S, e′[v/x]〉 ↓. We can then apply the induction hypothesis to deduce that
E [[e′]]S[[S]] = >. We need to prove that E [[v]]S[[S ◦ let x = [–] in e′]] = >. Expanding the
left-hand side of this yields E [[{x : τ ′} ` e′ : τ ]]V[[v]]. Applying Lemma 5.3.4 once again, we
see that this is equivalent to E [[e′[v/x]]]. This is equal to > from the induction hypothesis.
I Case (let-pair). As for (let-abst), mutatis mutandis.
I Case (let-abst). Given ` v : <<name>>τ ′ and {x : name, x′ : τ ′} ` e′ : τ then we

wish to prove that Φ(S ◦ let <<x>>x′ = [–] in e′, v). We therefore have the assumption 〈S ◦
let <<x>>x′ = [–] in e′, v〉↓ which must have been derived by knowing that 〈S, e′[a/x, ((a a′)·
v′)/x′]〉↓, where v = <<a>>v′ and a′ ∈ . \ supp(S, a, v, e′). We can thus apply the induction
hypothesis to deduce that

E [[e′[a/x, ((a a′) · v′)/x′]]]S[[S]] = >. (5.67)

What we want to know is E [[<<a>>v′]]S[[S ◦ let <<x>>x′ = [–] in e′]] = >. Expanding the
left-hand side of this yields

E [[{x : name, x′ : τ ′} ` e′ : τ ]]{x 7→ a′′, x′ 7→ (a a′′) · V[[v′]]}S[[S]]

for any atom a′′ ∈ . \ supp(S, a, v′, e′). Applying Lemma 5.3.4 once again, we see that this
is equivalent to E [[e′[a′′/x, (a a′′) · v′]]]S[[S]]. Now, we can always choose a′ to be the same as
a′′ (by selecting one which lies in . \ supp(S, a, v, v′, e′))—meaning that we can conclude by
virtue of (5.67).
I Case (match). We wish to show

Φ(S ◦ match [–] with · · · | Ck(xk) -> ek | · · · , v)

holds. By the induction hypothesis we know that there exists some 1 6 k 6 K such that

〈S, ek[vk/xk]〉↓⇒ E [[ek[vk/xk]]]S[[S]] = >, (5.68)

where v is of the form Ck(vk). Now, given the assumption

〈S ◦ match [–] with · · · | Ck(xk) -> ek | · · · , v〉↓

then the left-hand side of (5.68) must hold in the derivation from the termination relation. It
therefore suffices to prove that E [[ek[vk/xk]]]S[[S]] = > implies

E [[v]]S[[S ◦ match [–] with · · · | Ck(xk) -> ek | · · · ]] = >.
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Expanding the definitions of E [[–]] and S[[–]], this is equivalent to

E [[{xk : σk} ` ek : τ ]]{xk 7→ dk}S[[S]] = > (5.69)

for the unique dk such that (i ◦ ink)(dk) = V[[v]]. But since v is of the form Ck(vk), then
(i ◦ ink)(dk) = V[[Ck(vk)]] = (i ◦ ink)V[[vk]]. Thus dk = V[[vk]] and so we can apply Lemma 5.3.4
to deduce that (5.69) is equivalent to E [[ek[vk/xk]]]S[[S]] = >, which holds by assumption.

For the second part of the proof, we take e to be non-canonical. These cases are more
straightforward10 and we only provide some salient ones.
I Case (nc-con). We wish to show Φ(S, Ck(e)). Calculate from the induction hypothesis

and our assumption 〈S, Ck(e)〉 ↓ that E [[e]]S[[S ◦ Ck([–])]] = >. It is necessary to show that
E [[Ck(e)]]S[[S]] = >; this follows immediately from the previous sentence and the definition of
E [[–]].
I Case (nc-fresh). We wish to show that Φ(S, fresh) holds. Consequently we have the

assumption that 〈S, fresh〉↓; this must have been derived by knowing that 〈S, a〉↓ for some a
not in the support of S. We need that E [[fresh]]S[[S]] = >, i.e. S[[S]](a) = > for similar a. But
the induction hypothesis tells us that E [[a]]S[[S]] = >, which is just S[[S]](a) = > as required.
I Cases (nc-pair) and (nc-app) are as for case (abst), mutatis mutandis.
I Case (nc-abst). We wish to show that Φ(S, <<e>>e′) holds. Assuming that 〈S, <<e>>e′〉↓ then

the induction hypothesis yields E [[e]]S[[S ◦ <<[–]>>e′]] = >. We wish to know E [[<<e>>e′]]S[[S]] =
>, which immediately expands to this equality.
I Case (nc-swap). We need that Φ(S, swap e, e′ in e′′). Assume 〈S, swap e, e′ in e′′〉↓.

The induction hypothesis gives that

E [[e]]S[[swap [–], e′ in e′′]] = >.

We need E [[swap e, e′ in e′′]]S[[S]] = >; however, this is equivalent to the previous statement
just by expanding the definitions of E [[–]] and S[[–]]. �

5.5 The road to equivalence

In this section we are going to derive some properties of the denotational semantics which will
enable us to connect with the notions of observational equivalence from Chapter 3. The first
task is to show that CIU-equivalence and contextual equivalence coincide for Mini-FreshML.
In order to do this, we go via the families of logical relations.

Lemma 5.5.1 (CIU-preorder coincides with 6e). For expressions e, e′ then Γ`e ≺ciu e
′ : τ ⇔

Γ ` e 6e e
′ : τ .

Proof. For the forwards direction, by definition of ≺ciu and Cexp
τ we have as assumptions that

∀S : τ ( , ψ ∈ SubstΓ. 〈S, e[ψ]〉↓ ⇒ 〈S, e′[ψ]〉↓ ; (5.70)

for all σ C
stk
τ S′, E [[e]](σ) = >. (5.71)

By Corollary 5.4.12 we have that S[[S]] Cstk
τ S for each S of type τ ( . The result then

follows immediately from (5.70), (5.71) and the computational adequacy result (Theorem
5.4.1). The reverse direction is similarly straightforward. �

Lemma 5.5.2 (≈ciu contained within ≈ctx). The relation ≺ciu is contained within ≺ctx, so

each CIU-equivalence is also a contextual equivalence.

Proof. It obviously suffices to consider the pre-orders. Take expressions e, e′ such that Γ`e ≺ciu

e′ : τ . By Lemma 5.5.1 we then deduce Γ` e 6e e
′ : τ . Given any closing context C such that

C[e] and C[e′] are well-typed then we wish to show that 〈[], C[e]〉↓ implies 〈[], C[e′]〉↓. Assuming
〈[], C[e]〉↓ holds, we know by adequacy (Theorem 5.4.1) that E [[C[e]]]S[[[]]] = >. Since 6e is a
congruence (Lemma 5.4.17) we also have that C[e] 6e C[e′]. Combining these two facts with
property (5.8) yields that 〈[], C[e′]〉↓ as required. �

10Basically because if viewing the termination relation from an ‘abstract machine’ perspective, the actions taken
upon encountering a non-canonical form do not vary a great deal. The vast majority of them consist of simply picking
the first sub-expression to be evaluated and considering the termination of that in a frame stack directly derived from
the original expression.
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We aim to show that ≺ctx is contained within ≺ciu to enable us to deduce that the two
relations coincide. To do this we must make use of Lemma 5.5.2 to prove the following
substitutivity property of contextual equivalence.

Lemma 5.5.3. For a typing context Γ, an identifier x /∈ dom(Γ), a value v (not containing x)

such that for some τ , ` v : τ and expressions e, e′ then

Γ, x : τ ` e ≺ctx e
′ : τ ′ ⇒ Γ ` e[v/x] ≺ctx e

′[v/x] : τ ′.

Thus for substitutions φ with domain X = {x1, . . . , xn}, a typing context Γ (with X chosen

suitably so that dom(Γ) ∩X = ∅) and expressions e, e′ then

Γ, x1 : τ1, · · · , xn : τn ` e ≺ctx e
′ : τ ′ ⇒ Γ ` e[ψ] ≺ctx e

′[ψ] : τ ′.

where for all 1 6 k 6 n we have that ` ψ(xk) : τk.

Proof. It is straightforward to see that the second sentence follows from the first. For the latter,
first note that for a fresh identifier f not occurring in e or v, then Γ ` (fun f(x) = e)(v) ≈ciu

e[v/x] : τ ′ holds by virtue of the definition of 〈–, –〉↓. Since we have established that every
CIU-equivalence is also a contextual equivalence, then we also have

Γ ` (fun f(x) = e)(v) ≈ctx e[v/x] : τ ′. (5.72)

Now given Γ, x : τ ` e ≺ctx e′ : τ ′ then for any context C binding x, Γ ` C[e] ≺ctx

C[e′] : τ since ≺ctx is a congruence. Setting C to be the context (fun f(x) = [–])(v),
Γ ` (fun f(x) = e)(v) ≺ctx (fun f(x) = e′)(v) : τ . But from (5.72) this implies that
Γ ` e[v/x] ≺ctx e

′[v/x] : τ . �

Lemma 5.5.4 (≈ctx contained within ≈ciu). The relation ≺ctx is contained within ≺ciu and

thus each contextual equivalence is also a CIU-equivalence.

Proof. Recalling the definition of Ctxt(–) from §3.4, consider two expressions e, e′ related by
the contextual pre-order, Γ ` e ≺ctx e

′ : τ . Therefore for any context C, 〈[], C[e]〉↓ implies
that 〈[], C[e′]〉↓. We need to show that Γ ` e ≺ciu e′ : τ , so we assume that for any frame
stack S of type τ ( and closing substitution ψ then 〈S, e[ψ]〉↓. But if this holds then the
forwards direction of Lemma 3.6.3 tells us that 〈[], (Ctxt(S))[e[ψ]]〉↓ does also. This implies
that 〈[], (Ctxt(S))[e′[ψ]]〉↓ (since e and e′ are related by ≺ctx). Therefore 〈S, e′[ψ]〉↓ does indeed
hold by the reverse direction of Lemma 3.6.3. �

Lemmata 5.5.2 and 5.5.4 immediately give us the following.

Theorem 5.5.5 (Coincidence). The relations of ≈ciu and ≈ctx coincide. �

We are shortly going to derive some extensionality properties of Mini-FreshML contextual
equivalence. These will enable us to take two values which are contextually equivalent and
deduce properties about the contextual equivalence of their innards; or indeed the converse. In
order to prove these properties, we shall require the following lemma which relates contextual
preorder to the logical relations.

Lemma 5.5.6. Given expressions e, e′ and canonical forms v, v′ then Γ`e ≺ctx e
′ : τ ⇔ Γ`e 6e

e′ : τ ; also, Γ ` v ≺ctx v
′ : τ ⇔ Γ ` v 6v v

′ : τ .

Proof. The first bi-implication holds by Theorem 5.5.5 and Lemma 5.5.1. For the forwards
direction of the second we have that Γ`v ≺ctx v

′ : τ , which by the same Theorem and Lemma
is equivalent to stating Γ ` v ≺ciu v

′ : τ . This in turn implies Γ ` v 6e v
′ : τ by Lemma 5.5.1.

Lemma 5.4.14 then enables us to deduce that in fact Γ ` v 6v v
′ : τ . In the reverse direction,

Lemma 5.4.16 tells us that Γ ` v 6v v′ : τ implies Γ ` v 6e v
′ : τ , which in turn implies

Γ ` v ≺ctx v
′ : τ as previously. �

Corollary 5.5.7 (Extensionality). For closed values v, v′, etc. we have the following extension-

ality results.

. For unit values: ` v ≈ctx v
′ : unit ⇔ v = v′ = ().

. For names: For all a, a′ ∈ / , ` a ≈ctx a
′ : name ⇔ a = a′.

. For data values: For 1 6 k 6 K, ` Ck(v) ≈ctx Ck(v
′) : δ ⇔ ` v ≈ctx v

′ : σk.
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. For pair values: ` (v1, v2) ≈ctx (v′1, v′2) : τ1 × τ2 iff

` v1 ≈ctx v
′
1 : τ1 ∧ ` v2 ≈ctx v

′
2 : τ2.

. For abstraction values: For all a, a′ ∈ 0 and any a′′ ∈ 0 \ supp(a, a′, v, v′),

` <<a>>v ≈ctx <<a′>>v′ : <<name>>τ ⇔ ` (a a′′) · v ≈ctx (a′ a′′) · v′ : τ.

. For function values: For closed values f , f ′,

` f ≈ctx f
′ : τ → τ ′ ⇔ ∀v ∈ Valτ . ` f v ≈ctx f

′ v : τ ′.

Proof. Observing the properties (5.2)–(5.6) required of the logical relation Cval
τ then the re-

sults follow by combining Lemma 5.5.6 with the definitions of E [[–]] and V[[–]]. The most
complicated case is that for function values, which we give here.
I Case (fun). Given f ≈ctx f

′ then f ≺ctx f
′ and f ′ ≺ctx f . Without loss of generality we

may just consider the first case and show that f ≺ctx f
′ ⇔ ∀v ∈ Valτ . f v ≺ctx f

′ v. By Lemma
5.5.6 it suffices to prove f 6v f

′ ⇔ ∀v ∈ Valτ . f v ≺ctx f
′ v. Observe that for closed values

f of type τ → τ ′ and v of type τ , then E [[f v]] = V[[f ]]V[[v]]. So if f 6v f
′ then V[[f ]] Cval

τ→τ ′ f ′;
hence for all v ∈ Valτ it follows (by the fundamental theorem and property (5.6) of the logical
relation) that V[[f ]]V[[v]] C

exp
τ ′ f ′ v. Therefore E [[f v]] C

exp
τ ′ f ′ v and so f v 6e f

′ v. It follows
that ` f v ≺ctx f

′ v : τ ′; the reverse direction is similarly straightforward. �

Our final theorem and corollary in this section show what we can deduce when we know
that two expressions, or canonical forms, have the same denotation.

Theorem 5.5.8 (Equality of denotation). For expressions e, e′ and a type τ such that Γ` e : τ
and Γ ` e′ : τ then

E [[Γ ` e : τ ]] = E [[Γ ` e′ : τ ]] ⇒ Γ ` e ≈ctx e
′ : τ. (5.73)

Proof. Assume E [[Γ ` e : τ ]] = E [[Γ ` e′ : τ ]]. That is to say, for ρ ∈ [[Γ]] then E [[Γ ` e : τ ]](ρ) =
E [[Γ ` e′ : τ ]](ρ). In particular given any closing substitution ψ ∈ SubstΓ, E [[Γ ` e : τ ]]V[[ψ]] =
E [[Γ ` e′ : τ ]]V[[ψ]]. Thus we can apply the computational adequacy result (Theorem 5.4.1) to
deduce that the left-hand side of (5.73) implies 〈S, e[ψ]〉↓⇔ 〈S, e′[ψ]〉↓ for all frame stacks S
of argument type τ . Therefore Γ ` e ≈ciu e

′ : τ , so Theorem 5.5.5 may be applied to deduce
that Γ ` e ≈ctx e

′ : τ . �

Corollary 5.5.9 (Denotation of closed canonical forms). If τ and δ do not involve any

occurrences of the function space constructor → (making them ‘equality types’ in the Standard

ML terminology) and v, v′ are closed values of type τ , then we have full abstraction: V[[v]] =
V[[v′]] ⇔ v ≈ctx v

′. Thus E [[v]] = E [[v′]] ⇔ v ≈ctx v
′.

Proof. The two bi-implications are clearly equivalent by virtue of Lemma 5.2.1. The forwards
directions hold by virtue of Theorem 5.5.8. Considering the first, in the reverse direction we
proceed by induction on the typing derivation of τ making use of the extensionality properties
of Corollary 5.5.7. If τ = unit then v and v′ must be (); thus V[[v]] = V[[v′]]. Similarly, if
τ = name then v and v′ must both be the same atom and so we are done. If τ is the data
type δ, then v and v′ are of the form Ck(vk) and Ck(v

′
k) respectively (for some 1 6 k 6

K), with V[[vk]] = V[[v′k]] by the induction hypothesis. It thus follows that V[[v]] = V[[v′]] by
definition of V[[–]]. A similar argument applies at pair types. At abstraction types, where v and
v′ are of the form <<a1>>v1 and <<a2>>v2 respectively then the induction hypothesis tells us
that V[[(a1 a) · v1]] = V[[(a2 a) · v2]] for any a ∈ 0 \ supp(a1, a2, v1, v2). Thus <<a1>>V[[v1]] =
<<a2>>V[[v2]], which by definition of V[[–]] is V[[<<a1>>v1]] = V[[<<a2>>v2]] as required. Finally,
the function type case is excluded by the conditions we impose above. �

5.6 Algebraic identities

We are now in a position to use our denotational semantics to verify algebraic identities. For
example, we can show that the semantics correctly handles ‘garbage collection’ of fresh names
by proving

e ≈ctx let x = fresh in e
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when x is not free in e. This is done as follows.

E [[Γ ` let x = fresh in e : τ ]](ρ)

= λσ ∈ [[τ ]]
⊥
. E [[Γ ` fresh : name]](ρ)

(λa ∈ [[name]]. E [[Γ, x : name ` e : τ ]] by definition of E [[–]]
(ρ[x 7→ a])(σ)

= λσ ∈ [[τ ]]
⊥
. E [[Γ, x : name ` e : τ ]](ρ[x 7→ a])(σ) ditto, for a /∈ supp(e, σ, ρ)

= λσ ∈ [[τ ]]
⊥
. E [[Γ ` e : τ ]](ρ)(σ) by Lemma 3.2.3, since x not free in e

= E [[Γ ` e : τ ]](ρ) by η-reduction
⇒ e ≈ctx let x = fresh in e by Theorem 5.5.8.

Whilst we do claim that our semantics is good for verifying certain correctness results of Mini-
FreshML, we do not claim that it is the be-all-and-end-all. For there are certainly equivalences
which we might wish to verify that are not provable in our current system. We take as an
example the Mini-FreshML equivalent of an example presented by Stark[65, page 24, equation
12]. This considers the two terms

let n = fresh in fun f(x) = if x = n then () else Ω

and fun g(x) = Ω, for a divergent term Ω of type unit. These two terms are indeed con-
textually equivalent, by virtue of the fact that the name (bound to n) encapsulated inside the
support of the function f cannot be determined externally. However, if we attempt to prove
the contextual equivalence of these two expressions via our denotational semantics then we
get stuck. The problem is that we need to deduce that the following are equal:

λσ ∈ [[name→ unit]]
⊥
. σ(λd ∈ [[name]]. λσ′ ∈ [[unit]]

⊥
. if a, d, σ′(>), σ′(⊥))

(for some a /∈ supp(σ)); and

λσ ∈ [[name→ unit]]
⊥
. σ(⊥).

So Corollary 5.5.9 notwithstanding, we believe (as would be expected) that our semantics is in
general not fully abstract. It seems likely that this is the case not only for the usual sequentiality
reasons (à la PCF) but also due to the presence of the computational effects of generating fresh
names. Unfortunately, examples such as the above do not appear to give a definite answer
either way. However, recent work by Benton et al.[6] which uses a continuation-based model
based on ours to reason about mutable store does support the view that the semantics is not
fully abstract.

5.7 Correctness of representation

5.7.1 Background theory

In the previous sections we have established key properties of the denotational semantics and
shown how these may be used to prove results concerning the operational behaviour of Mini-
FreshML expressions. We now put this machinery into operation and turn to the issue of
proving the correctness results from §3.7.

Recall the use of the untyped λ-calculus from that Section as an example object language.
In order to model λ-terms we can simply setK = 3, σ1 = name, σ2 = <<name>>δ and σ3 = δ×δ.
Then writing Var to stand for C1, Lam to stand for C2 and App to stand for C3, the type δ
corresponds to the Fresh O’Caml declaration

type δ = Var of name | Lam of <<name>>δ | App of δ * δ.

The FM-cppo [[δ]] is the minimal invariant solution D to the recursive domain equation i :
F (D) ∼= D, where

F (D)
def
= 1 ⊕ ([ 1 ]D) ⊕ (D ⊗D). (5.74)

Note that the description in §4.5 provides for a more general method of solution than is
required here, due to the lack of contravariant occurrences of the variable D.

Definition 5.7.1 (Translation to values). For each λ-term t, define a Mini-FreshML value
[t]v ∈ Valδ by induction on the structure of t as follows.

[x]v
def
= Var(x)
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[λx. t]v
def
= Lam(<<x>>[t]v)

[t t′]v
def
= App([t]v, [t′]v).

Thus if t is a closed (resp. open) term, [t]v is a closed (resp. open) value. �

Lemma 5.7.2. [–]v is equivariant: if x, x′ ∈ VId then (x x′) · [t]v = [(x x′) · t]v. �

Lemma 5.7.3. For all λ-terms t, t′ whose variables (free and bound) are contained within a set

of identifiers x = {x1, · · · , xn} and an injective value substitution ψ : VId→ 2 with dom(ψ) ⊆ x,

[t]v[ψ] ≈ctx [t′]v[ψ] ⇔ t ≡α t
′.

Proof. By induction on the structure of t. Note that at each stage we can assume that the
structure of t′ is the same as t, for in the forwards direction this follows from the extensionality
properties of Lemma 5.5.7 and in the reverse direction this follows from the axiom and rules
inductively defining the relation ≡α (Definition 3.7.1).
I Case (var). For variables x, x′ (which must lie in the domain of ψ) then we wish to know

Var(ψ(x)) ≈ctx Var(ψ(x′)) ⇔ x ≡α x
′.

In the forwards direction, the extensionality properties of Corollary 5.5.7 tell us that ψ(x) and
ψ(x′) must be the same atom. Since ψ is injective then x = x′ and therefore x ≡α x′. In the
reverse direction, we must have x = x′ and conclude by reflexivity of ≈ctx.
I Case (abst). We wish to know that

Lam(<<ψ(x)>>([t]v[ψ])) ≈ctx Lam(<<ψ(x′)>>([t]v[ψ])) ⇔ λx. t ≡α λx
′. t′

for terms t, t′ and variables x, x′ in the domain of ψ. The extensionality properties tell us that
the left-hand side holds iff <<ψ(x)>>([t]v[ψ]) ≈ctx <<ψ(x′)>>([t′]v[ψ]) and therefore just when

(ψ(x) a) · ([t]v[ψ]) ≈ctx (ψ(x′) a) · ([t′]v[ψ]) (5.75)

for some/any a ∈ 2 \ supp(ψ(x), ψ(x′), [t]v[ψ], [t′]v[ψ]). By the induction hypothesis we have
that [t]v[ψ] ≈ctx [t′]v[ψ] ⇔ t ≡α t′, since all the variables occurring in t and t′ are mapped by
ψ. Moreover, we also have [t]v[ψ

′] ≈ctx [t′]v[ψ
′] ⇔ t ≡α t′, where ψ′ is that substitution ψ′

mapping a fresh variable x′′ to a and acting as ψ otherwise. Since swapping does not affect
the size of the subterms t and t′ we can therefore deduce that

[(x x′′) · t]v[ψ
′] ≈ctx [(x′ x′′) · t′]v[ψ

′] ⇔ (x x′′) · t ≡α (x′ x′′) · t′.

Lemma 5.7.2 now tells us that (x x′′) · t ≡α (x′ x′′) · t′ iff (ψ′(x) ψ′(x′′)) · ([t]v[ψ
′]) ≈ctx

(ψ′(x′) ψ′(x′′))·([t′]v[ψ
′]). Now observe that: ψ′(x) = ψ(x) (and similarly for x′); and [t]v[ψ

′] =
[t]v[ψ] (similarly for t′) since x′′ is fresh for both t and t′. These facts together with the rule
(3.8) enable us to deduce

(ψ(x) a) · ([t]v[ψ]) ≈ctx (ψ(x′) a) · ([t′]v[ψ]) ⇔ λx. t ≡α λx
′. t′.

However, the left-hand side of this holds by (5.75).
I Case (app). We wish to deduce that

[t1 t2]v[ψ] ≈ctx [t′1 t
′
2]v[ψ] ⇔ t1 t2 ≡α t

′
1 t

′
2 (5.76)

using the induction hypotheses: [t1]v[ψ] ≈ctx [t1]v[ψ] ⇔ t1 ≡α t′1 (and similarly for t2,
t′2). However, using the extensionality properties and the rule (3.9) it is immediate that the
conjunction of these two statements holds just when (5.76) does also. �

In order to derive correctness results pertaining to expressions which are not in canonical
form we shall adopt a method due to Pitts (unpublished manuscript). This identifies λ-terms
in a certain way so as to make distinct and disjoint the free and bound variables of each
term—effectively enforcing the Barendregt variable convention. For disjoint subsets x, x′ of
VId, define the subset Λ(x;x′) ⊆ Λ inductively by the following rules:

x ∈ x
x ∈ Λ(x, ∅)

t ∈ Λ({x} ] x, x′)

λx. t ∈ Λ(x, {x} ∪ x′)
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t ∈ Λ(x, x′1) t′ ∈ Λ(x, x′2) x′1 ∩ x
′
2 = ∅

t t′ ∈ Λ(x, x′1 ∪ x
′
2)

.

If t ∈ Λ(x, x′) then: the free variables of t are contained within x; the bound variables of t
are mutually distinct and are contained within x′; the sets of free and bound variables of t are
disjoint; and vars(t) ⊆ x∪ x′. Each term t ∈ Λ is α-equivalent to a term in Λ(x, x′) for some x,
x′.

Lemma 5.7.4. For t ∈ Λ(x, x′) and an injective substitution ψ : VId→ 3 with dom(ψ) ⊆ x∪x′

then [t]e[ψ] ≈ctx [t]v[ψ] : lam.

Proof. Either a ‘denotational’ or ‘operational’11 approach may be taken; we choose the former.

By Theorem 5.5.8 it suffices to show that for all σ ∈ [[lam]]
⊥

,

E [[` [t]e[ψ] : lam]](∅)(σ) = σ(V[[` [t]v[ψ] : lam]](∅)).

That this is so follows by induction on the derivation of t ∈ Λ(x, x′).
I Case (var). Follows immediately from Lemma 5.2.1, since [x]e is a canonical form.
I Case (abst). Under the assumption that E [[[t]e[ψ]]](σ) = σ(V[[[t]v[ψ]]]), where t ∈ Λ({x} ]
x, x′) and dom(ψ) ⊆ {x} ] x ] x′, we wish to show that

E [[[λx. t]e[ψ]]](σ) = σ(V[[[λx. t]v[ψ]]]) (5.77)

where λx. t ∈ Λ(x, x′ ] {x}). Completely expanding the definition of E [[–]] on the left-hand
side we obtain

E [[[t]e[ψ|x]x′ ]]]{x 7→ a′}(λd ∈ [[lam]]. σ((i ◦ in2)[a
′]d)) (5.78)

for some a′ ∈ 3 \ supp([t]v[ψ], [t]e[ψ], ψ(x), σ) and where ψ|x]x′ is the restriction of ψ to map
only from x and x′. Observing that we have x /∈ x and x /∈ x′, extend ψ|x]x′ to form a
new substitution ψ′ behaving as ψ|x]x′ but also mapping x to a′. This ψ′ is also injective and
therefore we can make use of the fact (Lemma 5.3.4) that E [[e]]{x 7→ a′} = E [[e[a′/x]]](∅) for
any expression e with a single free value identifier x of type name to deduce that (5.78) is
equivalent to

E [[[t]e[ψ
′]]](λd ∈ [[lam]]. σ((i ◦ in2)[a

′]d))

which, via an application of the induction hypothesis contracts to

σ((i ◦ in2)[a
′]V[[[t]v[ψ

′]]]). (5.79)

Write a for the atom ψ(x). It remains to show that (5.79) is equal to σ((i◦ in2)[a]V[[[t]v[ψ]]]), at
which point we can apply the definition of V[[–]] to conclude (5.77). By Lemma 4.2.24, since
a 6= a′ and a /∈ supp([t]v[ψ]) then it suffices to show that (a a′) · V[[[t]v[ψ]]] = V[[[t]v[ψ

′]]]. The
left-hand side of this is equal to V[[(a a′) · ([t]v[ψ])]] by Lemma 5.3.1 and then we are done,
since it is easy to see that (a a′) · ([t]v[ψ]) = [t]v[ψ

′].
I Case (app). We take as assumptions that E [[[t]e[ψ1]]](σ) = σ(V[[[t]v[ψ1]]]) and E [[[t′]e[ψ2]]](σ) =
σ(V[[[t′]v[ψ2]]]) where t ∈ Λ(x, x′1), t

′ ∈ Λ(x, x′2) and x′1 ∩ x
′
2 = ∅. Let us take the substitutions

ψ1, ψ2 to be ψ|x∪x′
1

and ψ|x∪x′
2

respectively (these are still injective since ψ is). Carefully
observing the domains of these substitutions we see that we need to prove

E [[[t t′]e[ψ]]](σ) = σ(V[[[t t′]v[ψ]]]) = σ(V[[App([t]v[ψ1], V[[[t′]v[ψ2])]]]]).

We proceed as in the previous case by fully expanding the left-hand side to obtain

E [[[t]e[ψ1]]](λd ∈ [[lam]]. E [[[t′]e[ψ2]]](λd
′ ∈ [[lam]]. σ((i ◦ in3)〈d, d

′〉)))

which from the assumptions is σ((i ◦ in3)(V[[[t]v[ψ1]]],V[[[t′]v[ψ2]]]))). �

Lemma 5.7.5 (Divergent terms). For a typeable closed expression e of type lam and the diver-

gent term Ω
def
= (fun f(x) = f(x))(()) then

e ≈ctx Ω ⇔ ∀S : lam ( . E [[e]]S[[S]] = ⊥ ⇔ ∀S : lam ( . 〈S, e〉↓.

where we write 〈S, e〉↓. to indicate that 〈S, e〉↓ does not hold.

11Such a proof argues along the same lines, but mainly by making observations relating to the termination relation.
Morally speaking, we feel that the ‘denotational’ approach is more in line with the style of semantics presented here.
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Proof. e ≈ctx Ω holds iff e ≈ciu Ω, i.e. for all S of type lam ( , 〈S, e〉↓ holds just in case
〈S,Ω〉↓. From the definition of the termination relation, we have that 〈S,Ω〉↓ never holds; thus,
〈S, e〉↓.. Combining this with the computational adequacy result (Theorem 5.4.1) concludes the
proof. �

5.7.2 Correctness results

Theorem 5.7.6 (Correctness for values). The contextual equivalence classes of closed values of

type lam are in bijection with the α-equivalence classes of λ-terms with variables in VId.

Proof. Fix any bijection12 ψ : VId ∼= 4 . Then given any two α-equivalent terms t, t′, Lemma
5.7.3 tells us that [t]v[ψ] ≈ctx [t′]v[ψ]. In the reverse direction, we need to show that any two
contextually-equivalent values v, v′ of type lam arise from α-equivalent terms t, t′ such that
v = [t]v[ψ] and v′ = [t′]v[ψ], for then we can apply the same Lemma in the other direction to
get the desired result. However, given any value v of type lam then the typing rules tell us that
it can only be of the form Var(a) for some atom a, Lam(<<a>>v′) for some value v′ of type
lam, or App(v1, v2) for some values v1 and v2 of type lam. It is thus straightforward to see
that every value of type lam corresponds to a value [t]v[ψ]. �

Corollary 5.7.7 (Equality of denotation at type lam). Given any two λ-terms t, t′ with

variables in VId and an injective substitution ψ : VId → 4 then

V[[[t]v[ψ]]] = V[[[t]v[ψ]]] ⇔ t ≡α t
′.

Proof. Follows immediately from Corollary 5.5.9 and Theorem 5.7.6. �

The previous theorem tells us something about the relation between elements of [[lam]] and
terms of the λ-calculus. What it does not however tell us is that the v 7→ V[[v]] map is surjective
onto [[lam]]↓. The following Theorem establishes this useful ‘no junk’ property.

Theorem 5.7.8 (No junk in [[lam]]). The non-bottom elements of [[lam]] are in bijection with the

α-equivalence classes of λ-terms with variables in VId.

Proof. Pitts and Gabbay establish in previous work[20] that the elements of the inductively-

defined FM-set Λ/≡α
def
= µX. 4 + ([ 4 ]X) + (X × X) are in bijection with the α-equivalence

classes of λ-terms with variables in 4 . Since such λ-terms are in bijection with those containing
variables in VId, it suffices to establish that the lifted FM-set (Λ/≡α)⊥ is in bijection with [[lam]],
provided that the least elements of these are mapped to each other. This may be done neatly
by exhibiting an isomorphism j : F ((Λ/≡α)⊥, (Λ/≡α)⊥) ∼= (Λ/≡α)⊥ such that the pair
((Λ/≡α)⊥, j) has the minimal invariant property for the functor F of §5.2.1. Since such pairs
are unique up to isomorphism (by Theorem 4.5.2), we can deduce that [[lam]] is isomorphic to
(Λ/≡α)⊥ so long as the least elements are correctly mapped. We must therefore exhibit some

j with j(⊥) = ⊥, j−1(⊥) = ⊥ and fix(Φ) = id (Λ/≡α)⊥ , where Φ
def
= λf ∈ (Λ/≡α)⊥ ( (Λ/≡α

)⊥. j ◦ F (f, f) ◦ j−1. A suitable equivariant j is as follows:

j(⊥)
def
= ⊥ j(in1(a ∈ 4 ))

def
= a j(in2([a]t))

def
= λa. t j(in3(t, t

′))
def
= t t′

where the functions ink are the usual injections into a coalesced sum. Observe that since

Φn+1(⊥)(t)
def
= Φ(Φn(⊥))(t) then

Φn+1(⊥)(t) =































⊥ if t = ⊥;

a if t = a ∈ 4 ;

λa′. (Φn)(⊥)((a a′) · t′) if t = λa. t′, with

a′ ∈ 4 \ supp(Φn(⊥), a, t′);

(Φn(⊥)(t1)) (Φn(⊥)(t2)) if t = t1 t2.

We are first going to show that Φn(⊥) has empty support for any n. Proceed by induction on

n. For the base case, Φ0(⊥)(t)
def
= ⊥ which has empty support. Then under the assumption

12If working formally inside FM-set theory, we would have to do this differently since this construction is not
finitely-supported.
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that π · (Φn(⊥)(t)) = Φn(⊥)(π · t) we wish to know π · (Φn+1(⊥)(t)) = Φn+1(⊥)(π · t). This
is straightforward to see in all cases except where t is a λ-abstraction, say λa. t′. Then for
a′ ∈ 5 \ supp(Φn(⊥), a, t′) we have

π · (Φn+1(⊥)(t))
= π · λa′. Φn(⊥)((a a′) · t′) by definition
= λπ(a′). π · (Φn(⊥)((a a′) · t′)) swapping on the syntax tree
= λπ(a′). Φn(⊥)((π(a) π(a′)) · π · t′) by the induction hypothesis
= λa′′. Φn(⊥)((a′′ π(a′)) · π · t′) writing a′′ = π(a)
= Φn+1(⊥)(π · t′) since π(a′) /∈ supp(π · t′).

Given this equivariance result the previous definition may be simplified to

Φn+1(⊥)(t) =



















⊥ if t = ⊥;

a if t = a ∈ 5 ;

λa. (Φn)(⊥)(t′) if t = λa. t′;

(Φn(⊥)(t1)) (Φn(⊥)(t2)) if t = t1 t2.

We can now see by induction on n that Φn(⊥) is the identity on terms of height at most n
(where ⊥ is the only term of height zero). Therefore fix(Φ) = id (Λ/≡α)⊥ . �

Theorem 5.7.9 (Correctness for expressions). For λ-terms t, t′ with free variables contained

in the finite set {x0, · · · , xn} ⊆ VId,

t ≡α t⇔ {x0 : name, · · · , xn : name} ` [t]e ≈ctx [t′]e : lam.

Proof. For the forwards direction we proceed by induction on the derivation of t ≡α t
′ to show

that
t ≡α t

′ ⇒ [t]e = [t′]e, (5.80)

where – = – is equality of Mini-FreshML expressions, identified up to α-conversion of bound
value identifiers.
I Case (var). The terms t and t′ must both be the same value identifier x ∈ VId and so we

are done.
I Case (lam). We have that λx. t ≡α λx

′. t′ and wish to know that

let x = fresh in Lam(<<x>>[t]e) = (5.81)
let x′ = fresh in Lam(<<x′>>[t′]e).

The ≡α judgement must have been derived by knowing that (x x′′) · t ≡α (x′ x′′) · t′ for
some x′′ ∈ 5 \ supp(t, t′). Therefore, Lemma 3.7.3 and the induction hypothesis give us that
(x x′′) · [t]e = (x′ x′′) · [t′]e and hence

let x′′ = fresh in Lam(<<x′′>>(x x′′) · [t]e) =
let x′′ = fresh in Lam(<<x′′>>(x′ x′′) · [t′]e).

However since x′′ does not occur in t or t′ (and therefore not in [t]e or [t′]e) then the ex-
pression let x′′ = fresh in Lam(<<x′′>>(x x′′) · [t]e) is in the same α-equivalence class as
let x = fresh in Lam(<<x>>[t]e). A similar argument applies for the t′ side of the equality.
We thus have (5.81) as required.
I Case (app). We have that t1 t2 ≡α t′1 t

′
2 and want App([t1]e, [t2]e) = App([t′1]e, [t′2]e).

However the induction hypotheses tell us that t1 ≡α t
′
1 ⇒ [t1]e = [t′1]e and similarly for t2, t′2.

For the reverse direction of the theorem, by renaming variables we can find a finite set x′

and terms tΛ, t
′
Λ ∈ Λ(x, x′) such that tΛ ≡α t and t′Λ ≡α t′. Applying (5.80) then yields that

[tΛ]e ≈ctx [t′Λ]e : name. Choosing some injective substitution ψ : VId→ 5 with domain x∪ x′,
we can apply Lemma 5.7.4 to conclude that [tΛ]v[ψ] ≈ctx [t′Λ]v[ψ] : lam. Finally, we apply
Lemma 5.7.3 to obtain t ≡α tΛ ≡α t

′
Λ ≡α t

′. �

Theorem 5.7.10 (Form of expressions). For a closed Mini-FreshML expression e of type lam

and a divergent term Ω, then either e ≈ctx Ω or there exists a closed value v of type lam with

e ≈ctx let x1 = fresh in · · · let xn = fresh in v,

for value identifiers {x1, . . . , xn}.
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Proof. Using Lemma 5.7.5 we see that if ` e ≈ctx Ω does not hold, then there exists some frame
stack S such that 〈S, e〉↓. Therefore by Lemma 3.4.3 we know that 〈[], e〉↓. We can now apply
the forwards direction of Theorem 3.4.6 to deduce that there exists some closed value v′ of
type lam and finite sets of atoms a′ ⊇ a ⊇ atms(e) such that: a, e⇓v′, a′ with atms(v′) ⊆ a′ and
〈[], v′〉↓. Pick a finite set X ⊆ VId with cardinality |a′ \ a| and let ψ be a bijection X ∼= (a′ \ a).
Then we can write v′ as v[ψ], where v is that value formed from v′ by replacing each atom
a ∈ a′ \a which occurs in v′ with a value identifier ψ−1(a). Enumerating X as {x1, . . . , xn} we
now show that

e ≈ciu let x1 = fresh in · · · let xn = fresh in v,

so we can conclude by Theorem 5.5.5. Call the right-hand side of this conjectured equivalence
e′.

In the forwards direction, assume 〈S, e〉↓. Theorem 3.4.6 then tells us that there exist sets
of atoms a′1 ⊇ a1 ⊇ atms(S, e) such that: a1, e ⇓ v

′
1, a

′
1 with atms(v′1) ⊆ a′1 and 〈S, v′1〉↓. Then

by Lemma 3.3.3 there exists a bijection13 π : (a′1 \a1) ∼= (a′ \a) with π ·v′1 = v′. Since π−1 fixes
atms(e) pointwise then 〈S, v[π−1 · ψ]〉↓, where π−1 · ψ maps each x ∈ dom(ψ) to π−1(ψ(x)). It
now follows that

e ≺ciu let x1 = π−1(ψ(x1)) in · · · let xn = π−1(ψ(xn)) in v.

However for each 1 6 i 6 n, a = π−1(ψ(xi)) ∈ (a′1 \ a1) and therefore a /∈ atms(S). We
therefore have e ≺ciu e

′.
In the reverse direction, assume 〈S, e′〉 ↓. It suffices to show 〈S, v[ψ]〉 ↓, since then we

can conclude by Theorem 3.4.6 (for we already have that a, e ⇓ v[ψ], a′ from above). Pick

a finite set of atoms a2 ⊇ supp(S, e) together with n distinct atoms {a1, . . . , an}; let a′2
def
=

a2 ∪ {a1, . . . , an}. Fix a bijection π : (a′ \ a) ∼= (a′2 \ a2) and observe that 〈S, e′〉↓ implies
〈S, v[π · ψ]〉↓ (since each atom in a′2 \ a2 is not in the support of S). Since π fixes all atoms
in v, we know that 〈S, π · (v[ψ])〉↓; it follows by the equivariance property of the termination
relation (and indeed that π−1 fixes the support of S pointwise) that 〈S, v[ψ]〉↓ as required. �

This final theorem concludes our work on the denotational semantics of Mini-FreshML.
We have shown how a novel monadic semantics can provide a straightforward setting for
modelling dynamic allocation. Using the semantics, we have shown how object language
terms may be translated into Mini-FreshML expressions and proved how such expressions
correspond to the α-equivalence classes of the original terms. Such formal proof, long though
it may be, is technically satisfying and provides good evidence that our syntax-manipulating
paradigm is sound.

In the next chapter then, we shall exchange the art of mathematics for the art of program-
ming. We will discuss the innards of the Fresh O’Caml compiler together with some of the past
and future issues surrounding the implementation.

13Thought of as a permutation, which fixes all atoms not in its domain.





6 Implementation

‘Theory attracts practice as the

magnet attracts iron.’ —Gauss

IN THIS CHAPTER we describe the implementation of the freshness features in Fresh O’Caml.
The text here corresponds to the current version of the implementation[60, 62], but since
this is still in its infancy we also discuss technologies which are not yet incorporated into that
system.

6.1 Library, or bespoke system?

At the start of Fresh O’Caml’s development, it was necessary to decide how the new features
would be integrated into the existing language system. In such a scenario there are two basic
options1:

• implementation as a standard library module, leaving the main compiler and runtime
systems unchanged;

• wholesale extension of the compiler and runtime systems themselves.

The first of these corresponds to an embedding of the freshness features within the target
language whilst the second corresponds to a fundamental extension of the language. Fresh
O’Caml falls into the second category: a decision which was reached after consideration of the
following issues.
I The necessity of swapping. Theoretically speaking, Fresh O’Caml code could be source-

to-source translated into standard O’Caml code whose only non-standard dependency is that
of a swapping operation on names. (An example of how this can be done for FreshML may
be found in previous work[63, §3] by the author and others.) The provision for this in the
language runtime system is thus essential. Some ML systems (O’Caml and Moscow ML, for
example) permit the inspection and modification of the ML heap at runtime from within an ML
program by using unsafe primitives and it has been shown that this can be used to implement
a swapping ‘primitive’ without too much difficulty2. However, the solution is somewhat clumsy
and prohibits the use of certain optimisations as we identify in Efficiency below.
I Syntactic sugar. If implementing freshness as a library it is highly desirable to have some

pre-processing of language source text in order to provide idioms such as pattern-matching
on abstraction values. These idioms in themselves are one of the distinguishing features of
our approach: syntax-manipulating programs may be written concisely and elegantly using
them. The source-to-source translations which one requires in order to expand out such
constructs could possibly be implemented in a pre-processor such as camlp4[13]. However,
past experience implementing (very) early versions of the FreshML system[59] showed that
such transformations can be far from straightforward. This is particularly the case when
dealing with the expansion of nested abstraction pattern-matches. Additionally, an upshot
of such transformations can be the undue obfuscation of compiler error messages.
I Efficiency. In order to implement optimisations such the scheme of delayed permutations

which will be introduced in §7.1.1, it is necessary to make fundamental changes to the struc-
ture of values on the heap. This obviously necessitates modification of the existing compiler
and runtime system, rather than just adding a library module.
I The moral stance. Morally speaking, we feel that constructs for declaring and manipulating

syntax modulo α-equivalence are so fundamental that they ought to be directly incorporated

1Miller[33, §1] presents a similar pair of options.

2Such a solution was first implemented by Claudio Russo in Moscow ML (private communication).
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88 6. Creation of fresh names

into the target language. Why should abstraction types be on any different a level from the
other type constructions which we regularly use when declaring recursive datatypes?

I The learning curve. Wholesale extension of an existing language and compiler requires
a significant amount of work, not just in understanding the semantics of the programming
language but also in familiarisation with voluminous quantities of compiler code. In the case
of the initial versions of Fresh O’Caml the lack of freshness inference meant that most of the
modifications to the existing compiler code were relatively straightforward. The freshness-
specific runtime code is fairly orthogonal to the rest of the runtime system and thus could be
inserted into the system without undue difficulty. However as we shall see in this and the next
chapter, the implementation is earmarked to become more refined with a view to improving
efficiency. This will certainly involve more far-reaching changes affecting large volumes of
compiler and runtime system code.

I Accessibility. The library solution has the great advantage that freshness features can be
incorporated into some existing language on a relatively short timescale (even if only as a
quick inefficient hack). It is therefore an attractive proposition for demonstrating the benefits
of our approach to users of these languages. Such projects would hopefully increase general
awareness and adoption of the new constructs.

6.2 System overview

The patch to Objective Caml is broadly composed of the following parts.

1. Modifications to the front-end of the compiler (lexer, parser and type-checker) to accom-
modate the new constructs. Whilst there are multitudinous changes, most are relatively
minor. The major exception is the code which compiles abstraction pattern-matches,
whose underlying algorithm is explained in §6.5.

2. A new module in the runtime system implementing low-level functionality (sources
byterun/freshness.c and byterun/freshness.h).

3. Minor modifications throughout the runtime system and standard library to cope with
the addition of new varieties of heap blocks (to represent abstraction values, for exam-
ple) and primitive operations (for example atom-swapping).

The majority of the extensions are therefore in the runtime system which is implemented
in C[26]; the remainder are written in O’Caml. The system remains a bootstrapping compiler
and emits both bytecode and native code.

For readers unfamiliar with the internals of the O’Caml system, we must say a few words
about how values are stored in memory during the execution of an O’Caml program. Values
are partitioned into two varieties: those which are allocated on the heap (boxed) and those
which are stored as immediate (unboxed) integer values.

Any particular allocated value will consist of one or more heap blocks. Each block has
an integer tag which stores information about what is inside. For example, tag number zero
specifies a tuple. Blocks may be linked together via pointers and may be aliased (shared) in
order to save memory. They are garbage-collected when they are no longer referenced.

Immediate values are used to store values such as integers. On a machine whose native
processor integer width is n bits, an O’Caml immediate value will have n− 1 bits available for
actual data—the final bit being taken up with the flag which specifies whether or not the value
is boxed.

6.3 Creation of fresh names

An object language name is represented by a block with tag Atom tag. Such a block contains
a single extra field containing an atom identifier, which is a 31-bit integer produced when the
atom is created (corresponding to a fresh expression, for example). The integers are gener-
ated using a pseudo-random number generator3 whose parameters are chosen to give a very
low risk of collision. The reason for using such a linear congruential generator rather than just
an incrementing counter is to attempt to ensure the uniqueness of identifiers across multiple

3Thanks to Keith Wansbrough for suggesting this.
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instances of the O’Caml runtime, for there is currently no specific support for marshalling
atoms. Future versions will likely use a simple counter and be equipped with such marshalling
support. So currently, a heap block representing an object language name looks like4:

Atom tag a

In order to minimise the risk of collisions (in the current implementation) or ‘running out of
atoms’ (in future versions), it is highly desirable that atom identifiers should have a range5 of
63 bits. In order to approximate this, on a 32-bit machine the heap layout could be changed to:

Atom tag a1 a2

where a1 (resp. a2) is the most (resp. least) significant part of the atom identifier, or vice-
versa. These fields may accommodate at most 31 bits each, so we obtain a 62-bit range. On a
64-bit machine, heap block fields are 64 bits wide by default so no change is needed. This will
allow a 63-bit range for the atom identifiers.

6.4 Creation of abstraction values

As we noted in Chapter 2, creation of abstraction values is fast whereas deconstruction is
slower. In the implementation, the creation of an abstraction value <<u>>v involves just two
steps:

1. the allocation of a heap block with a distinguished tag (Abst tag);

2. the placing of u and v inside as if for a pair.

Note that either of u and v may be immediate values, or pointers to boxed values. An
abstraction heap block therefore looks like this:

Abst tag u v

6.5 Pattern-matching on abstraction values

It is well-known that the efficient compilation of pattern-matching[68] in functional languages
is a non-trivial problem. In Fresh O’Caml we have extended the compiler to accommodate
matches against abstraction values as described in §2.2.3. This poses a significant imple-
mentation hurdle—especially since the existing code to compile matches in O’Caml is highly
optimised[27].

Early in the development of Fresh O’Caml, efficiency was completely put aside in order
to get a working system as fast as possible. As a consequence, a temporary pattern-matching
scheme was put in place which required only minimal modifications to the compiler code. We
shall review this first and then describe more efficient implementation strategies.

Suppose we have a function which takes an arbitrary O’Caml value and determines whether
there are any abstraction values present within it. Then, whenever compiling a match we emit
code to intercept the value to be matched against and pass it through this function. If the
value may possibly contain abstractions, then we completely freshen the value such that every
abstraction value therein contains fresh atoms corresponding to those in binding position. The
match may then be correctly compiled by recursively changing the abstraction patterns to pair
patterns and passing the rewritten match to the normal pattern-match compilation code.

Now this scheme is obviously quite inefficient but it suffices for a first attempt. To improve
upon this requires more substantial compiler modifications. When considering such modifica-
tions, we have aimed to minimise the amount of modifications to the central O’Caml pattern-
matching code itself. To this end, current versions of Fresh O’Caml use what is effectively

4In case the reader is wondering, the tag field is indeed drawn disproportionately large.

5In the current implementation they are still restricted to 31 bits.
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a source-to-source translation performed just before matches are compiled. It operates as
follows.

Define a function pat 7→ [[pat ]] which rewrites a Fresh O’Caml pattern pat such that each
abstraction pattern <<p1>>p2 is replaced by the corresponding pair pattern (p1, p2). Similarly,
define a function pat 7→ [[pat ]]w which rewrites a pattern pat such that every pattern variable
within it is replaced by a wildcard. Then we transform a (top-level) pattern match of the form

<<pat>>pat ′ -> exp

into the following code fragment6, for a fresh pattern variable x:

[[<<pat>>pat ′]]w as x ->

match freshen x with [[<<pat>>pat ′]] -> exp.

The function freshen performs the ‘complete freshening’ operation on a value as described
above. We must note that this operation is potentially very expensive—especially if a term is
subjected to repeated matches down through its structure, where O(n2) time complexity may
occur as a result of the swapping process. The scheme of delayed permutations which we shall
examine in both the next section and in full detail in §7.1.1 will, however, alleviate this.

The obvious thing to note about our current scheme is that it is somewhat eager, in the
sense that a single abstraction pattern-match causes the whole of the corresponding abstrac-
tion body to be freshened. A more incremental approach could be considered, whereby
only the parts of the value being matched against using abstraction patterns get freshened.
This saves the computational cost of the freshen function. For example, for atoms a, b then
we could consider matching the value <<a>>(a, <<b>>b) against the pattern <<p>>(q, r).
In the current scheme, the innermost abstraction (bound to r) would be fully freshened—
even though to actually look inside it will require another abstraction pattern-match. In an
incremental scheme, this innermost abstraction would not be freshened (or even copied) in
the first instance.

An incremental scheme requires significantly more implementation effort, either via a com-
plex source-to-source translation or via serious modification of the existing O’Caml pattern-
matching compiler code. Future work should conduct some experiments on large-scale sys-
tems to determine whether the potential increases in efficiency offered by the incremental
approach are worth the extra complexity inside the compiler.

6.6 Implementation of swapping

The crux of our implementation is the runtime swapping of atoms throughout arbitrary values.
Even excepting use of the explicit atom-swapping construct swap e and e′ in e′′, there will
likely be a very high number of transpositions required during the execution of the average
syntax-manipulating program written in Fresh O’Caml. The majority (or even all) of these will
arise from the deconstruction of abstraction values.

We can subdivide the general problem of efficient implementation of swapping into two
separate, but related problems:

• how do we know when we must perform a swap; and

• if a swap is essential, how do we make that operation fast?

The following two sections consider these issues in turn.

6.6.1 When to swap?

It is more difficult than it might at first seem to give a good answer to the question of when to
swap, especially when that answer must be reflected in compiler code! Let us just consider the
case of abstraction pattern-matches, which is the main area of concern. Here are some partial
code fragments which exhibit some possible situations, for a data constructor C and a function
F. In fragments 1 through 3, no freshening needs to be performed on the value arriving to
be matched. In fragments 4 and 5, freshening needs to be performed but at different times
during evaluation.

6The astute reader will note that the transformation is slightly evil—the resulting code does indeed only work
successfully because the heap layout of abstraction values coincides (modulo the tag) with that for pairs.
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1. The right-hand side of an abstraction match does not contain occurrences of the pattern
variables.

let f1 t = match t with

... | C (<<a>>x) -> true | ...

Such situations can be identified by a simple static analysis and the compiler can omit
the emission of freshening code.

2. An abstraction pattern contains a wildcard.

let f2 t = match t with

... | C (<<a>>_) -> ... | ...

In this situation, we may still have to choose as many fresh atoms as there are atoms in
the algebraic support of the value in binding position (here corresponding to the pattern
variable a), even if we can avoid swapping. There are two possible cases:

• A ‘binding position only’ pattern of the form <<a>> . Here, the programmer does
not have access to the body so we will never need to perform any transpositions on
that part of the incoming value. However, since a could potentially be used by the
programmer7, it may be necessary to pick fresh atoms and perform some swaps in
order to freshen the binding part of the incoming value.

• A ‘body position only’ pattern of the form << >>x. In this case, the wildcard might
as well not be there as the programmer may still make use of x in a situation where
it needs freshening. Thus such patterns can be treated by picking a fresh pattern
variable for the binding position and proceeding as normal.

3. The right-hand side of an abstraction match is such that no freshening of the incoming
value needs to occur. For simplicity we consider a to be of bindable type.

let f3 t = match t with

... | C (<<a>>x) -> (<<a>>x, <<a>>x) | ...

Informally speaking, the reason why we do not need to freshen in this specific case is
because the result of the computation on the right-hand side of the match (the pairing
operation) is well-defined no matter which atom is bound to a. Formally speaking, we
do not need to freshen because the atom bound to a will never occur in the support of
the denotation of the value obtained by evaluating the right-hand side of the match. This
means that we do not have to allocate any fresh atoms upon the match—thus reducing
turnover of atoms.

We approximate8 such a judgement by a freshness judgement a 6 (<<a>>x, <<a>>x),
where the 6 is read as ‘fresh for’. In the FreshML-2000 design[49], such judgements
were an integral part of the static type system as it was thought that they were needed
in order to ensure correctness properties such as those proved in Chapter 5. However,
this turns out not to be the case.

Section §6.8 examines freshness inference in detail. For now let us observe that it is a
technology not currently exploited inside the Fresh O’Caml compiler but which could be
potentially useful for this optimisation.

4. An abstraction match whose incoming value must always be freshened, but not neces-
sarily straight away.

let f4 t = match t with

... | C (<<a>>x) -> F x | ...

7This can be used to obtain the same effect as a fresh expression.

8We are running into problems of undecidability here, as we will discuss shortly.
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Here, we may not be able to guarantee that F never uses its argument. However, the act
of just invoking the function F does not require access to the innards of x. Therefore, it
would suffice to mark the value bound to x as having a pending permutation of atoms
attached to it. When (and if) F uses the value, the permutation must actually be applied
through the value as far as necessary to ensure all used parts are freshened.

Situations like this are very common and theory has been developed—starting with an
idea by Mark Shields (private communication)—to reason about such pending permuta-
tions. We shall examine this further in §7.1.1.

5. An abstraction match whose incoming value requires immediate freshening: there is no
option.

let f5 t = match t with

... | C (<<a>>a’) -> a = a’ | ...

This code fragment could be rewritten using the O’Caml when qualification: another
simple example of when the ‘immediate freshening’ situation could occur.

let f5 t = match t with

... | C (<<a>>a’) when a = a’ -> true | ...

Apart from abstraction pattern-matches, the only other construct whose evaluation in-
volves swapping of atoms is swap e and e′ in e′′. In this case, the permutation may be able
to be delayed depending on the surrounding context. Again, an optimisation can be made if
the value to which e′′ evaluates does not in fact contain any atoms.

6.6.2 How to swap?

Having discussed when a swapping operation needs to be performed, we now turn to the
issue of actually performing such an operation. Here, we assume the absence of pending
permutations: see §7.1.1 for evaluation strategies in that setting.

In general, we will have two lists of atoms S = {a1, . . . , an}, S′ = {b1, . . . , bn} of equal
length whose elements are to be exchanged simultaneously (in the sense that for each 1 6

k 6 n, ak is to be exchanged with bk) throughout some value v. At runtime, each atom will
correspond to a heap block (viz. §6.3) containing an atom identifier. We thus traverse through
the value v, copying the structure as we go9, looking out for atom blocks whose identifiers
which correspond to any in S or S′. Upon finding a match (say the atom ak), we change the
particular atom pointer in v to point at the new atom (in this case bk). Note that we are only
changing pointers to atoms, not performing in-place rewriting of atom identifiers.

A possible optimisation is to observe that in many cases, one of the lists (say S ′) may in
fact solely consist of atoms which are fresh for the current environment. (This usually occurs
as a result of abstraction pattern-matching where it has been determined that fresh atoms
must be allocated.) In this case the swapping is actually only a ‘fresh renaming’. Thus, upon
encountering an atom in v we only need to look through the other list (in this case S) to
determine if a swap must be performed upon a particular atom.

It may also be worth considering methods of simplifying lists of atom-swappings into
smaller ones—although it is not clear whether this will give any significant improvement in
efficiency. Future benchmarking will be required on this front.

So everything about doing swapping sounds fairly straightforward so far. Unfortunately,
there is a thorn: (immutable) values on the O’Caml heap may be cyclic. Here is a fragment of
an interactive session as a somewhat contrived, but illuminating example.

# let x = fresh;;

val x : ’a name = name_0

# let rec xs = x :: xs;;

val xs : ’a name list =

[name_0; name_0; name_0; name_0; name_0; name_0; name_0;

name_0; name_0; ...]

9Potentially highly inefficient: we say some words about this in §6.7.
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The heap structure of the value xs would be as shown in the diagram below, where a is the
atom identifier bound to the value identifier x. (The tag 1 corresponds to the list cons data
constructor.)

1

?

?

Atom tag a

In order to cope with atom-swapping throughout such values, we could attempt to use a
hash table. Upon encountering a block as we traverse the heap, we check to see if its address k
exists as a key in the hash table. If it does not, then it is a previously-unseen block; we perform
the swapping operation upon it and record the address of the resulting value10 v in the hash
table, k 7→ v. Conversely, if the address k was found in the hash table then we just use the
corresponding value v in the hash table as the new value (without delving any deeper into the
block k). Note that it is essential to use a data structure with O(1) lookup, such as a hashtable,
to prevent massive performance degredation.

Unfortunately, the actual C implementation of this algorithm is far from straightforward.
This is because during the process of swapping we are very likely to allocate new values on
the O’Caml heap. Each such allocation triggers a minor garbage collection, which may cause
heap blocks to be moved. This is problematic since we are attempting to key a hashtable on
the addresses of such blocks. Even if we can determine which blocks have been moved, then
we need to re-shuffle the hash table as the particular invariant mapping keys to entry positions
in the table will have been broken.

Instead of performing such operations (which are not only costly but also tricky to imple-
ment), we adopt an alternative multi-pass solution. In the first pass, we scan the value under
question and determine precisely which heap allocations will need to be performed. This is
the only stage which actually requires the hash table in order to prevent looping. After the
first stage, we have an array which not only gives the sizes of the allocations required but
also indicates which blocks should be shared. In the second stage, we perform the allocations.
Then in the third stage we traverse the value in exactly the same order as the first stage, at
the same time iterating through the array to determine what to do with the next block which
we encounter. At this point, we can perform the actual permutation—or if the block is shared
with one encountered previously then we just use the previously-computed permutation of
that block.

This procedure ensures that the swapping algorithm does not loop on cyclic values. Here
is a short continuation of the previous session.

# let y = fresh;;

val y : ’a name = name_0

# match (swap x and y in xs) with b::bs -> (b = x, b = y);;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

- : bool * bool = (false, true)

6.7 Preservation of sharing

An important concept in the implementation of functional languages is that of sharing: the
re-use, possibly multiple times, of existing heap blocks to prevent unnecessary duplication.
For example, the expression

10One would hope that this address would be equal to that of k if there are in fact no atoms occurring inside the
block k.
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let a = fresh in let x = <<a>>a in (x, x)

will likely yield the following heap structure:
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where a1 is the atom identifier bound to the value identifier a. Note how we only use three
instead of seven heap blocks as one might at first imagine.

When manipulating the heap, it is desirable to preserve as much of this sharing as possible.
Therefore when traversing a value in order to perform transpositions we should not copy
unnecessarily. Unfortunately, when performing such a traversal we may have to un-share
blocks (via copying) in order to produce a correct result. For example, if the above value is
to be freshened completely then we must make sure that two atoms are allocated (assuming
that the existing identifier a1 is not sufficiently fresh—if it were to be, we must still allocate
another). Then, each component of the pair value must point to a different abstraction block
like so:
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where a2 and a3 are fresh atom identifiers. Note how despite the freshening some sharing has
still been preserved. However at the time of writing the Fresh O’Caml system does not imple-
ment such a scheme: it is a matter for later implementation work. With delayed permutations
of course, necessary un-sharing will only happen at the last minute—thus helping further with
memory efficiency.

6.8 Freshness inference

6.8.1 The motivation for a static analysis

In §6.6.1 we saw an example of a freshness judgement; we postulated that this could be
exploited in order to perform an optimisation. Such freshness judgements can be produced
using a certain static analysis known as freshness inference which is performed in parallel with
type-checking. In this section we shall examine this analysis in detail, mostly recalling earlier
work[49] but adding some extra discussion and insights gained from implementing a system11

which made use of the analysis. When designing that system, it was thought that freshness

11The FreshML-2000 interpretive system.
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inference was necessary in order to obtain correctness properties such as those in Chapter 5.
It was only the work of Cardelli et al.[9] which caused the first doubts to be raised about
it—leading to its subsequent deprecation.

As we noted in Chapter 1, we often use the Barendregt variable convention to reason about
programs operating on α-equivalence classes of object language syntax: we simply choose
‘suitably fresh’ names at runtime when necessary. Informally speaking, the result of such a
computation appears to be independent of which particular bound names have been chosen
just because the denotation of the final value does not include those names in its support.
When computing in Fresh O’Caml, these ‘bound names’ are atoms in binding position and
so we should be interested in whether results of computations include certain atoms in the
denotation of their supports. If the denotation of a result contains an atom in its support which
has been dynamically generated at runtime (say by evaluation of fresh), then that effect will
be visible to any surrounding context. If the atom is not in the support of the denotation of
the result, then no side-effects arising from the generation of the atom will be visible.

The aim of freshness inference is to build up a sound approximation to this notion of ‘not in
the support of’ by performing a static analysis which yields a relation between value identifiers
and expressions. A freshness judgement such as x 7 e (read ‘x fresh for e’) is intended to mean
that e will always evaluate to a value v such that a /∈ supp(V[[v]]), where a is the atom bound
to the value identifier x at runtime and V[[v]] is the denotation of the value v.

The upshot of this analysis is that those program phrases which have observable effects of
creating fresh atoms may be rejected at compile-time, thus making the dynamic allocation of
atoms referentially transparent. (A convenient upshot of this is that reasoning about programs
becomes more straightforward due to the lack of these side-effects.) For example, take once
again the untyped λ-calculus with the corresponding Mini-FreshML datatype declaration from
§5.7 and consider the expressions

let x = fresh in Lam(<<x>>x) and let x = fresh in Var(x).

The result of evaluating the first expression is a value <<a>>a (for some a ∈ 8 ) which clearly
corresponds to the closed object language term λx. x. The dynamic allocation of the atom
a has no visible external effect, as no matter which a is chosen then the same value is
obtained. However, the second expression simply evaluates to the representation of ‘a fresh
object language variable’: which particular atom has been allocated may be determined from
the outside. Writing ¬ 7 to mean ‘not fresh for’, the procedure of freshness inference would
yield the judgements that

x 7 let x = fresh in Lam(<<x>>x)

x ¬ 7 let x = fresh in Var(x)

which would cause the type-checker to reject the second expression.
Another good example of the lack of referential transparency in Fresh O’Caml is the func-

tion bound vars of §2.2.3, whose FreshML-2000 equivalent would have been rejected at
compile time.

6.8.2 Static semantics with freshness inference

How is freshness inference actually performed? From a ‘logical’ rather than an ‘inference’ point
of view, we can express the algorithm as a set of axioms and rules as illustrated in Figure 6.1.
In that Figure, we see that the normal system of typing judgements for a language similar to
Mini-FreshML has been extended with freshness judgements. In the new system, the standard
typing relation ` on 3-tuples (Γ, e, τ) is transformed to another on 5-tuples (Γ,∇, e, τ,X)
where ∇ is a freshness context and X is a finite set of value identifiers. Freshness contexts
are finite binary relations on value identifiers, typical element x 7 x′. The intention here is
to carry along with us some information about the freshness of one value identifier relative to
another in order that we can use it at the top of the rule trees (at axiom (vid) in particular).
The ‘ ’ symbol corresponds to a ‘don’t care’.

Before identifying the other notation used in the rules, note that the first component of
each member of a freshness context (here x) must be of type name. For otherwise it makes no
sense to consider whether the atom assigned to it at runtime may occur in the support of the
denotation of the value assigned to x′. Furthermore, if we have x 7 x′ contained within some
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vid
Γ;∇ ` x : τ 9 ∇(x)

x ∈ dom(Γ) and τ = Γ(x)

con
Γ;∇ ` e : σk 9 X

Γ;∇ ` Ck(e) : δ 9 X
pair

Γ;∇ ` e : τ 9 X Γ;∇ ` e′ : τ ′ 9 X

Γ;∇ ` (e, e′) : τ × τ ′ 9 X

abst
Γ;∇ ` x : name 9 Γ;∇ ` e : τ 9 X

Γ;∇ ` <<x>>e : <<name>>τ 9 X ∪ {x}

swap
Γ;∇ ` e1 : name 9 X Γ;∇ ` e2 : name 9 X Γ;∇ ` e3 : τ 9 X

Γ;∇ ` swap e1, e2 in e3 : τ 9 X

fun

Γ, f : τ → τ ′, x : τ ;∇ ` e : τ ′ 9
for all free variables v of e, v 6= f ∧ v 6= x ⇒ Γ;∇ ` v : 9 X

Γ;∇ ` fun f(x) = e : τ → τ ′ 9 X

app
Γ;∇ ` e : τ ′ → τ 9 X Γ;∇ ` e′ : τ ′ 9 X

Γ;∇ ` e e′ : τ 9 X

let
Γ;∇ ` e : τ ′ 9 X ′ Γ, x : τ ′;∇, x 9 Γ X ′ ` e′ : τ 9 X

Γ;∇ ` let x = e in e′ : τ 9 X \ {x}

let-fresh
Γ, x : name;∇, x 9 Γ ` e : τ 9 X

Γ;∇ ` let x = fresh in e : τ 9 X \ {x}

let-pair

Γ;∇ ` e : τ1 × τ2 9 X ′

Γ, x : τ1, x
′ : τ2;∇, x 9 Γ X ′, x′ 9 Γ X ′ ` e′ : τ 9 X

Γ;∇ ` let (x, x′) = e in e′ : τ 9 X \ {x, x′}

let-abst

Γ;∇ ` e : <<name>>τ ′ 9 X ′

Γ, x : name, x′ : τ ′;∇, x 9 Γ, x′ 9 Γ X ′ ` e′ : τ 9 X

Γ;∇ ` let <<x>>x′ = e in e′ : τ 9 X \ {x, x′}

match

Γ;∇ ` e : δ 9 X ′

for all 1 ≤ k ≤ K, Γ, xk : σk;∇, xk 9 Γ X ′ ` ek : τ 9 X

Γ;∇ ` match e with · · · | Ck(xk) -> ek | · · · : τ 9 X \ {x1, . . . , xK}

Figure 6.1: Static semantics with freshness inference.

freshness context ∇ then we may well be interested in whether x′ : x. This of course only
makes sense if x′ is of type name—but this is perfectly possible. Therefore, we must ensure that
the freshness contexts are always ‘symmetrised’ after they are extended in order to expediate
lookups. To do this we employ the following notation, which is used in the Figure.

• Given a finite set of value identifiers X we write ∇, x :
Γ X (where the identifier x of

type name occurs neither in X nor ∇) to indicate that freshness context judging x : y
for each y ∈ X, y : x for each y ∈ X such that Γ(y) = name and acting as ∇ otherwise.

• For clarity we write ∇, x : Γ to mean ∇, x :
Γ dom(Γ).

• In rule (vid), we use the notation ∇(x) to indicate the finite set of value identifiers
{x′ | (x, x′) ∈ ∇}.

Note how we have to incorporate let x = fresh in e as a single binding construct rather
than just providing a fresh expression as in Mini-FreshML. The reason for this is because it
is necessary to obtain the exact value identifier which has been declared fresh in order that
freshness judgements relating to that identifier may be produced. Similarly, we must insist
that abstraction expressions must be of the form <<x>>e rather than <<e>>e′.

Having such constraints imposed on the syntax of the language is rather a nuisance.
However in the old FreshML systems this was not so much of a problem, for the ‘declara-
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tion/expression’ split present in the Standard ML language[36] (and not reflected in Mini-
FreshML) fits quite well with freshness inference. In this setting, the fresh construct becomes
a declaration rather than an expression. Such declarations then elaborate to an environment
paired with a set of identifiers which should be treated as fresh throughout the scope of the
declaration.

Let us now run through a few of the rules to see the logic behind them. For value identifiers,
we simply use the current freshness context to determine which other identifiers are fresh
for the one in question. Constructed values are similarly straightforward. However, pair
values are more interesting and indeed better understood from an ‘inference’ point of view.
Thinking in this way, we can re-jig the rules somewhat to better express how a freshness
inference algorithm would work—just as we could when describing a traditional type system.
For example, we could rewrite the rule for pairs as follows:

pair
Γ;∇ ` e : τ ; X1 Γ;∇ ` e′ : τ ′ ; X2

Γ;∇ ` (e, e′) : τ × τ ′ ; X1 ∩X2

This rule tells us that in order to deduce what is fresh for a pair (e, e′), we calculate what is
fresh for each component and then take the intersection of the two. This gives the maximal set
of value identifiers fresh for all sub-expressions (this can be thought of as being analogous to
the concept of ‘most general unifier’).

Such an algorithm inherently provides relatively coarse-grained freshness information,
which could possibly be alleviated by using ‘restricted types’ τ ; X throughout the typing
process. Recent work by Schöpp and Stark[56] presents an intriguing type system which
makes use of such types with inbuilt freshness information, which they call ‘freefrom types’.
This (dependently-typed) system enables them to express abstract syntax both in ‘FM’ style as
used in this thesis and in the style of higher-order abstract syntax.

When dealing with an abstraction expression, we simply type-check the body and then
deem the identifier in binding position (call it x) to be fresh for the whole expression e.
This corresponds to the evaluation strategy: at runtime, this identifier will correspond to a
fresh atom a which occurs in binding position inside an abstraction value (call it <<a>>v) and
therefore never occurs in the support of its denotation.

Finally, let us examine the rule for recursive functions. As one might expect, the decision
of ‘not in the support of’ is undecidable at function types since it relies on extensional equality
of functions (recall that a function f does not contain an atom a in its support just when
for each x ∈ dom(f), (a a′) · (f(x)) = f((a a′) · x) for some/any fresh atom a′). Therefore
when performing freshness inference we need to produce a sound approximation in order to
get a decidable static analysis. Unfortunately, as noted by Pitts and Gabbay[49], freshness is
not a logical relation: just because an atom is fresh for a particular value v and also fresh
for the result f(v) does not mean that it is fresh for the function. This is due to the fact
that functions can contain concealed atoms within their support. For example consider the
function fun f(x) = <<a>>x, where a is some value identifier mapping to an atom a. Whilst
a is always fresh for the result of the function, it is not fresh for the function itself.

So in the procedure of freshness inference, we simply judge that if an identifier is fresh for
all of the function’s free identifiers then it is fresh for the function itself. This is a sound, albeit
over-conservative, approximation which we have to live with.

The difficulty with this particular approximation is that it renders many apparently well-
typed programs untypeable. (Indeed, many programs that really do satisfy the necessary
conditions are not passed by the inference algorithm.) A good example is provided by the
following function which we saw in Chapter 2. It calculates the free variables of a PLC term.

let rec free_vars t =

match t with

Tvar x -> [x]

| Tlam (ty, <<x>>t’) -> remove x (free_vars t’)

| Tgen (<<a>>t’) -> free_vars t’

| Tapp (t1, t2) -> (free_vars t1) @ (free_vars t2)

| Tspec (t’, ty) -> free_vars t’;;

Due to the semantics of remove, any atom assigned to the pattern variable x inside the
Tlam clause will always be fresh for the right-hand side of the match. Unfortunately, the
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freshness inference algorithm cannot deduce this—-which would mean that the FreshML-
2000 version of this function would be rejected. Intuitively, we can see that the function
will be thrown out because it requires evaluation to determine that x is never in the support of
remove x (free vars t’). To get around this problem, one can conceal the atom generated
by the pattern-match on Tlam inside an abstraction, as follows.

let rec free_vars t =

match t with

Tvar x -> [x]

| Tlam (ty, <<x>>t’) -> remove (<<x>>(free_vars t’))

| Tgen (<<a>>t’) -> free_vars t’

| Tapp (t1, t2) -> (free_vars t1) @ (free_vars t2)

| Tspec (t’, ty) -> free_vars t’;;

This of course necessitates the refactoring of the remove function to have type <<’a>>(’a

list) -> ’a list. How grotesque.

6.8.3 Purity analysis

In order to produce anything near a sensible approximation to the notion of ‘not in the support
of’, the freshness inference algorithm must proceed not only on the structure of expressions
but also on the structure of inferred types as well12. As an example consider the following
function, defined for some arbitrary expression e of type unit× unit.

let f p = match p with <<a>>x -> e.

Due to the recursion-theoretic problems which we described in the previous section, there is
no way that a plain freshness inference algorithm can deduce that the atom bound to a is
always fresh for e. The idea of purity checking is to make deductions of the form

no atoms can ever occur in a value of type unit×unit, so I know that x < e for each

identifier x in scope.

We say that types such as unit × unit are pure. With such judgements, we can extend the
freshness inference algorithm to accept more expressions. In order to make this of much use,
however, the procedure of purity checking must also cope when the type in question is a user-
defined, possibly-recursive datatype. How can one deduce whether atoms ever occur inside
a value of such a type? We invented a solution analogous to that used by Standard ML[36]
to compute whether such a type admits equality. We start by asserting that values of each
of the datatypes being (mutually) declared may never contain atoms. Then, one-by-one until
there are no more changes, we remove any such judgement which may be contradicted by
examining the types of the various data constructors. In this way, we converge on a greatest
fixed point.

Since FreshML permits multiple user-defined types of bindable names, we also refine the
judgement a little further so we can deduce that values of some datatype δ may never contain
occurrences of atoms of bindable type τ , but might possibly contain occurrences of atoms of
some other bindable type τ ′. Improvements such as these increase the number of programs
accepted by the compiler and were found to be essential in practice. However, when a program
cannot be accepted it can be difficult for the programmer to understand just why this is
the case: the combination of type inference, freshness inference and purity analysis can be
formidable.

6.8.4 A note on denotational semantics

We should observe that freshness judgements inside a context ∇ may be reflected in a denota-
tional setting by taking subsets of the usual denotations of typing contexts. For we can define
the FM-cppo

[[Γ;∇]]
def
= {ρ ∈ [[Γ]]

↓
| ∀(x, x′) ∈ ∇. ρ(x) /∈ supp(ρ(x′))} ∪ {⊥}

12This causes problems when polymorphic types are present in the language, as they can inhibit the inference of
any purity information at all.
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which is a subset of [[Γ]] (and inherits its permutation action). As an item of possible future
work, we postulate that freshness judgements could be incorporated into our continuation-
based semantics by providing functions

V[[Γ;∇ ` v : τ = X]] ∈ [[Γ;∇]] ( [[τ ]]

S[[Γ;∇ `s S : τ ( = X]] ∈ [[Γ;∇]] ( [[τ ]]
⊥

E [[Γ;∇ ` e : τ = X]] ∈ [[Γ;∇]] ( [[τ ]]
⊥⊥
.

However, it is not clear that such an extended semantics would be particularly useful for
proving correctness properties (unless freshness inference makes it back into the language,
which is very unlikely). A more likely application would be to validate the correctness of any
optimisations which might make use of freshness inference.

6.8.5 An abstraction monad

An interesting stepping-stone along the way to discarding freshness inference was the discov-
ery that a monadic style of programming could be used to conceal the side-effects of generating
fresh names. The original motivation for wanting such a monad was simply to get FreshML-
2000 programs through the type-checker.

The monad may be encoded in Fresh Objective Caml13 in the style of a Kleisli triple, thus:

type (’a,’b) abst = AMunit of ’b | AMabst of <<’a name>>((’a,’b) abst);;

let am_unit v = AMunit v;;

let am_let d f =

match d with

AMunit v -> f v

| AMabst (<<a>>d’) -> AMabst (<<a>>(am_let d’ f));;

An alternative (and, we suggest, more readable) encoding could make use of a more general
abstraction type as follows.

type (’a,’b) abst = AMabst of <<’a name list>>’b;;

let am_let =

function (AMabst (<<xs>>v)) ->

function f ->

match (f v) with AMabst (<<ys>>v’) -> AMabst (<<xs @ ys>>v’);;

The am let function has the following type as would be expected.

am_let : ’a, ’b abst -> (’b -> (’a, ’c abst)) -> (’a, ’c abst)

We can now conceal name generation by using the monad’s data constructors to wrap up
dynamically allocated names, coupled with am let to sequence side-effecting computations.
However, if multiple types of bindable names are involved we have to extend the monad in
order to cope. It is also convenient to add some extra helper functions corresponding to the
monad unit and multiplication. For example:

type (’a,’b,’c) abst = AMabst of <<’a name list * ’b name list>>’c;;

let am_unit v = AMabst (<<[],[]>>v);;

let am_mult (AMabst (<<xs,ys>>(AMabst (<<xs’,ys’>>v)))) =

AMabst (<<xs@xs’,ys@ys’>>v);;

let am_let =

function (AMabst (<<xs,ys>>v)) ->

function f ->

match (f v) with AMabst (<<xs’,ys’>>v’) ->

AMabst (<<xs@xs’,ys@ys’>>v’);;

13Originally, we were working with Standard ML-style syntax—but we stick to Fresh O’Caml syntax here for
consistency with the rest of this thesis.
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Using this extended monad, we can now present a new version of free vars (the original of
which is presented on page 97) which would get through freshness inference.

let rec free_vars t =

match t with

Tvar x -> am_unit [x]

| Tlam (ty, <<x>>t’) ->

am_mult (

AMabst(<<[x],[]>>

(am_let (free_vars t’)

(fun v ->

AMabst (<<[x],[]>>(remove x v))))))

| Tgen (<<a>>t’) ->

am_mult (AMabst (<<[],[a]>>(free_vars t’)))

| Tapp (t1, t2) ->

am_let (free_vars t1) (fun v1 ->

am_let (free_vars t2) (fun v2 ->

am_unit (v1 @ v2)))

| Tspec (t’, ty) -> free_vars t’;;

The type of free vars is now as follows. Note the effect of using generative type declarations
such as those in §2.1.1: the arguments of the type constructor name may be easily confused.

free_vars : term -> (t, t, var list) abst

We leave it to the reader to decide for themselves which is the most attractive gargoyle: this
fragment or the refactored one on page 98.



7 Conclusions and future work

‘We can only see a short distance

ahead, but we can see plenty there

that needs to be done.’ —Turing

It is now time to take a step back and assess the work in this thesis. We believe that our major
contributions have been:

• the development of a full-scale language, Fresh O’Caml, for metaprogramming with
bindable names;

• the development of FM-domain theory, for reasoning about names and name binding;

• a denotational semantics using frame-stack semantics and a monad of continuations to
model name generation;

• a detailed proof of correctness properties for Mini-FreshML.

So far, Fresh O’Caml has proved itself very useful for the rapid prototyping or first imple-
mentation of syntax-manipulating algorithms. However, much remains to be done. The
implementation is not yet in a production-ready state and there are still some significant issues
to be resolved. These include the improvement of efficiency, which we shall address again later
in this chapter, and language enhancements such as a more pragmatic treatment of reference
cells (viz. §2.6).

We believe that the mathematical theory developed in Chapter 4 is more generally-applicable
beyond the scope of a denotational semantics for a Mini-FreshML-like language. There are
already two examples of wider application within the literature: that which we cited in §1.2
by Abramsky et al.[2] which applies FM-domain theory to the world of game semantics; and
that by Benton and Leperchey[6] which applies it to reason about mutable store.

The denotational semantics which we presented in Chapter 5 is, however, is rather more
specialised to our particular setting. Whilst we do claim that it is good for proving properties
such as those we have seen, there are clearly open questions—particularly in the areas of full
abstraction and the validation of certain troublesome equivalences such as those mentioned
in §5.6. However, use of the continuation monad to model name generation is most definitely
a generally-applicable tool to use in conjunction with FM-domain theory—see [6] again for
example.

7.1 Future work

7.1.1 Delayed permutations

We noted in §6.6.1 that a scheme of delayed permutations (somewhat reminiscent of [1]) could
be used to improve efficiency—indeed, this is one of the major speed improvements pending
implementation in Fresh O’Caml. In this section we examine how delayed permutations
could be introduced to Mini-FreshML, working from an idea originally due to Mark Shields
(private communication). The presentation is much simplified by adopting an environment-
style semantics (described in §3.5).

What we are going to do is to partition the canonical forms into two varieties: those
equipped with a pending permutation which is manifest on the outside and those without.
Canonical forms in the second category may still contain pending permutations deeper within

101
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their structure; but they may be immediately examined at the top level without any atom-
swapping being required. So the new grammar of values is as follows:

v ::= () unit
| a atom
| Ck(vp) data construction
| (vp, vp) pairing
| <<a>>vp abstraction
| [E, fun x(x) = e] recursive function closure

vp ::= π ∗ v value with delayed permutation

where π stands for a permutation generated like so:

π ::= [] null permutation
| (a a′) :: π atom-swap

and where E is a finite map from value identifiers to values with delayed permutations vp. We
write π(a) to indicate the bona-fide application of a permutation to an atom. Given a value
with delayed permutation vp = π ∗ v and any permutation π′ we write π′ ∗ vp to be the value
(π′ @ π) ∗ v, where π′ @ π is that permutation whose action first permutes as for π and then as
for π′.

The grammar for (non-canonical) expressions is as in Figure 3.1, with the exception that
naked atoms a no longer appear. (This is a pleasing consequence of using an environment-
style semantics: the canonical forms do not have to be a subset of the expressions. If using
substituted-in style, then the necessity to delay permutations throughout closures means that
the grammar for non-canonical forms needs extending with delayed permutations as well: this
rapidly becomes very difficult to deal with.)

The semantics makes use of an auxiliary function cf(–) which takes a value with delayed
permutation vp and pushes the permutation through the first level of its structure, thus making
the outermost constructor manifest. This transformation is defined as follows:

cf(π ∗ ())
def
= ()

cf(π ∗ a)
def
= π(a)

cf(π ∗ Ck(vp))
def
= Ck(π ∗ vp)

cf(π ∗ (vp, v′p))
def
= (π ∗ vp, π ∗ v′p)

cf(π ∗ <<a>>vp)
def
= <<π(a)>>π ∗ vp

cf(π ∗ [E, fun f(x) = e])
def
= [{ (x, π ∗ vp) | (x, vp) ∈ E} , fun f(x) = e].

Figure 7.1 provides a revised big-step semantics using an evaluation relation ⇓p on 5-tuples
(a,E, e, v, a′), where a, a′ are finite sets of atoms, E is an environment as described above, e
is an expression and v a value with its outermost constructor manifest. We write a,E ` e⇓p v, a

′

iff (a,E, e, v, a′) is in the relation.
Note that the procedure of purity analysis discussed in §6.8.3 could be applied to discard

unnecessary pending permutations. For given a value π ∗ v of type τ then we can simplify it to
[] ∗ v if τ is pure. However, implementation of this will require more type information in the
runtime heap than is present when using current versions of Fresh O’Caml.

We now wish to relate the new scheme of evaluation to the original one used in Chapter 5.
To do this, define the function erase mapping values with their outermost constructor manifest
to canonical forms containing no permutations (in the sense of Figure 3.1) as follows.

erase(())
def
= ()

erase(a)
def
= a

erase(Ck(vp))
def
= Ck(erase(cf(vp)))

erase((vp, v′p))
def
= (erase(cf(vp)), erase(cf(v′p)))

erase(<<π ∗ a>>vp)
def
= <<π(a)>>erase(cf(vp))

erase([E, fun f(x) = e])
def
= [{ (x, erase(cf(vp))) | (x, vp) ∈ E} , fun f(x) = e].

We now claim the following, whose proof is left to future work.
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vid
a, E ` x ⇓p cf(E(x)), a

x ∈ dom(E) unit
a, E ` () ⇓p (), a

con
a, E ` e ⇓p v, a′

a, E ` Ck(e) ⇓p Ck([] ∗ v), a′
fresh

a, E ` fresh ⇓p a, a ] {a}
a ∈ > \ a

pair
a, E ` e ⇓p v, a′ a′, E ` e′ ⇓p v′, a′′

a, E ` (e, e′) ⇓p ([] ∗ v, [] ∗ v′), a′′

abst
a, E ` e ⇓p a, a′ a′, E ` e′ ⇓p v, a′′

a, E ` <<e>>e′ ⇓p <<[] ∗ a>>[] ∗ v, a′′

swap
a, E ` e ⇓p a, a′ a′, E ` e′ ⇓p a′, a′′ a′′, E ` e′′ ⇓p v, a′′′

a, E ` swap e, e′ in e′′ ⇓p cf((a a′) :: [] ∗ v), a′′′
a, a′ ∈ >

fun
a, E ` fun f(x) = e ⇓p [E, fun f(x) = e], a

app

a, E ` e ⇓p [E′, fun f(x) = e′′], a′ a′, E ` e′ ⇓p v′, a′′

a′′, E′[f 7→ [] ∗ [E′, fun f(x) = e′′], x 7→ [] ∗ v′] ⇓p v, a′′′

a, E ` e e′ ⇓p v, a′′′

let
a, E ` e ⇓p v′, a′ a′, E[x 7→ [] ∗ v′] ` e′ ⇓p v, a′′

a, E ` let x = e in e′ ⇓p v, a′′

letpair
a, E ` e ⇓p (vp, v′

p), a
′ a′, E[x 7→ vp, x′ 7→ v′

p] ` e′ ⇓p v, a′′

a, E ` let (x, x′) = e in e′ ⇓p v, a′′

letabst

a, E ` e ⇓p <<a>>v′

p, a′

a′ ] {a′}, E[x 7→ [] ∗ a′, x′ 7→ (a a′) :: [] ∗ v′

p] ` e′ ⇓p v, a′′

a, E ` let <<x>>x′ = e in e′ ⇓p v, a′′
a′ ∈ > \ a′

if

a, E ` e ⇓p a, a′ a′, E ` e′ ⇓p a′, a′′

a = a′ ⇒ a′′, E ` e′′ ⇓p v, a′′′ a 6= a′ ⇒ a′′, E ` e′′′ ⇓p v, a′′′

a, E ` if e = e′ then e′′ else e′′′ ⇓p v, a′′′

match
∃j. (a, E ` e ⇓p Cj(vp), a

′ ∧ a′, E[xj 7→ vp] ` ej ⇓p v, a′′)

a, E ` match e with · · · | Ck(xk) -> ek | · · · ⇓p v, a′′

Figure 7.1: Big-step semantics with delayed permutations.

Conjecture 7.1.1. Given any environment E, write e[E] for that expression formed by substi-

tuting x for E(x) throughout e, for each x ∈ dom(E). Then for any Mini-FreshML evaluation

judgement a, e[E] ⇓ v, a′ there exists at least one judgement a,E ` e ⇓ p, a′ with v = erase(p).
Moreover, given a judgement a,E ` e ⇓p p, a

′ then there exists a unique judgement a ` e[E] ⇓
erase(p), a′. �

Note that the Proposition is carefully worded to take into account the fact that erase(–) is
not injective: there may exist multiple values with delayed permutations which map onto the
same canonical form. (Take for example atoms a, a′ and consider the two values [] · a and
((a a′) · ::[]) · a′.)

7.1.2 Data structures and algorithms

Within the Objective Caml standard library are many useful modules implementing standard
data structures and their associated algorithms. Here we shall single out just two: hash tables
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and finite maps (the latter being implemented using balanced binary trees). These are worthy
of study due to the issues which arise when attempting to store atoms within them. This is a
very common occurrence: for example, we often wish to represent an environment inside an
evaluator using a map from atoms to values.

Unfortunately, the interactions between such data structures and our freshness features are
non-trivial to say the least. In particular, there are two serious problems which arise:

1. There is no ordering on atoms, which inhibits the writing of comparison functions (which
are needed in order to use the Map.Make functor, for example).

2. Data structures such as hash tables and balanced binary trees are not equivariant con-
structions, in some sense: blindly swapping atoms throughout them destroys their in-
variants. In the case of a hash table keyed on atoms, for example, a swapping operation
may require values to switch buckets (in the case where the transpositions affect the keys
in such a way as to make them correspond to alternative buckets).

A corollary of point 1 above is that there is no immediate way to ‘hash atoms’ (say for
calculating hash table bucket numbers).

Recall (§6.3) that atoms inside the runtime system are represented by integers. This can
actually be exposed at the language level1 through the use of the function Hashtbl.hash.
(For example, this could be used as the key for a balanced binary tree mapping from atoms
to pieces of data.) We conjecture that the language still correctly represents α-equivalence
classes of object language terms even in the presence of an atom-hashing primitive (because it
cannot be used to bypass the procedure for deconstructing abstraction values), although this
is still not entirely clear and it remains an item of future work to rigorously prove it.

Now what about the problem of fundamentally non-equivariant constructions? It appears
that outsourcing some of the swapping operations to the user-level may help here. Basi-
cally, the idea is to enable the programmer of one of the offending modules to specify a
function which should be called by the runtime system whenever a swapping operation must
be performed upon such a data structure. The programmer would have to ensure that such a
function satisfied the necessary algebraic identities (viz. those in §4.1). Recent work by Sewell,
Wansbrough et al. on the Acute project[57], which has produced around 25,000 lines of Fresh
O’Caml code, seems to uphold our belief that this proposal would be useful. Using the hash
table example, the programmer could specify a function which ensures that values are moved
between buckets if the swapping affects the keys of the table. Similar transformations could
be effected if balanced binary trees are keyed on atoms. Depending on the particular data
structure in question, the programmer may wish to delay swapping operations until they are
really needed in order to improve efficiency.

At the current time, there is some very experimental support (through an undocumented
language construct known as custom swap) for this user-level swapping. It is likely that this
will be made robust in the near future. Hopefully, this will make the O’Caml standard library
much more useful for Fresh O’Caml programmers.

7.1.3 Objects and modules

Being fundamental parts of the O’Caml language and important tools for structuring programs,
we must say a few words about objects and modules. How do such features interact with our
facilities for handling binding? In the case of objects, the interactions have not been studied:
it is an item of future work which would be worth pursuing. As for modules, we believe
that the system is well-behaved, although no formal correctness results have been proven.
It is however certainly the case that swapping may occur on values of abstract type with no
difficulties, because the values really are concrete when seen by the runtime system.

7.1.4 Reference cells

We saw in §2.6 that the addresses of reference cells are treated as being pure. A major item of
future work is to develop the necessary theory to change this view of references, which comes
down to to formulating a suitable notion of swapping on reference cells. Näıve solutions do not

1Well, in fact they can be exposed using functions inside the Obj module as well. However, such operations are
naughty and enable you to break pretty much any safety property. . .
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. Fragment 1:

let a = fresh in

let r = ref a in

let x = <<a>>r in

match x with <<p>>q -> !r = a;;

. Fragment 2:

let a = fresh in

let x = <<a>>(ref a) in

match x with <<p>>q ->

match x with <<p’>>q’ -> !p’ = !q’;;

Figure 7.2: Examples involving mutable state.

work: if the result of swapping atoms a, a′ on a reference cell containing a were to be the same
reference cell with the contents changed to a′, then highly unpredictable behaviour would
result. Imagine for a few moments that we use this semantics and consider the fragments in
Figure 7.2. The result of evaluating both code fragments would in fact be false. In the first,
the pattern-match causes side-effects not only in the generation of the fresh name to be bound
to p, but also in updating the reference cell. The second example is even more pertinent:
after the first match, the value x will be of the form <<a>>ref a′ for atoms a, a′—the binding
structure has been destroyed. The second match enables us to identify this.

We believe that a sensible approach might view references as presenting particular ‘views’
onto graph structures. Whilst a notion of α-equivalence on such structures should not be
problematic to define, there are difficulties arising from the runtime pointer-chasing which
this could involve.

Discussions with Xavier Leroy identified a possible solution which would exploit the de-
layed permutations discussed in §7.1.1. The idea is that transpositions may be applied to
reference addresses, but remain delayed there until the cell is dereferenced. At that time, a
copy of the reference’s contents will be returned with the pending permutation now attached to
them. This provides multiple ‘views’ onto the graph structure, each of which may be equipped
with different permutations. One difficulty with this scheme, however, is working out how to
formulate a suitable notion of equality on references. At first sight, it seems as if the way to
compare two reference addresses for equality would be to proceed as normal, discarding any
pending permutations. However, then the situation could arise where two reference addresses
are equal but their contents differ (due to different pending permutations being attached to
each address, which are to be applied only at dereference-time).

Future work must establish whether a sound scheme based on this proposal is viable and
how difficult it would be to implement.

7.1.5 Enhanced abstraction types

Another fruit of the work on the Acute system[57] has been some ideas relating to enhanced
abstraction types. The first proposal is to introduce a distinguished type constructor, perhaps
called nobind, which identifies points in syntax trees under which the transpositions intro-
duced by deconstructing abstraction values would be nullified. (One could also consider hav-
ing the opposite situation, where abstraction expressions do not by default represent binding
constructs. To indicate an occurrence of a bound name in the syntax tree, one would have
to tag the corresponding part of the type declaration with a distinguished constructor bind.)
To see how all of this works, consider a grammar for patterns which can contain both pattern
variables and type variables (the latter encapsulated inside explicit type annotations). Both
of these varieties of variable would likely be represented in Fresh O’Caml by different types
of bindable names. The patterns could then occur within a syntax tree representing a match

construct, say, which only binds pattern variables and not type variables. The new scheme
permits an encoding as follows.
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type t and var = t name;;

type t and tyvar = t name;;

type ty = Tvar of tyvar

| ... ;;

type pat = Pvar of var

| Ptyped of pat * (ty nobind)

| ... ;;

type expr = Ematch of expr * ((<<pat>>expr) list)

| ... ;;

Now one can have only the pattern variables freshened up when deconstructing a data value
built with Ematch.

A second proposal relates to improvements in efficiency. In a large-scale system, it is clear
(and has been experimentally verified) that the overhead of atom-swapping throughout syntax
trees is significant. Even if the method of delayed permutations (§7.1.1) were to be imple-
mented, it would still be highly desirable to minimise the amount of swapping required. One
means of doing this would be to allow the programmer to specify that swapping operations
should never look inside certain parts of values.

The particular example cited by Wansbrough (private communication) concerns a type
declaration for abstract syntax trees containing closures. Such a closure is designed to always
have empty support (since it encapsulates all of the free variables of the relevant function
within it). Therefore no swapping operation ever needs to propagate inside. However, there is
currently no way of preventing this. It is thought that a distinguished type constructor could be
used to identify parts of values which are to be bypassed in this way. The nobind constructor
from above may suffice for this purpose. Of course, it is then up to the programmer to ensure
that the special tag is used sensibly—rather than the language ensuring safety—but we do
not believe that incorporating such a feature would be dangerous (in the sense of directly
compromising the correctness properties of Chapter 5).

7.1.6 Standard library enhancements

There is much to be said for minimising the number of language primitives which are hard-
coded into the Fresh O’Caml compiler. This can be done by moving functionality into the
standard library, making it easier to migrate the compiler modifications to new versions of the
O’Caml system. It is not quite clear where the divide between inbuilt and library functionality
should lie, however. One reasonable scenario would be to keep the expressions for generating
fresh names together with those for constructing and deconstructing abstractions as inbuilt
features. The swap and freshfor keywords would then be replaced by functions in the
standard library.

Alongside these modifications, additional library functions could usefully be provided. A
function permitting the application of non-trivial permutations of atoms (rather than just
single swaps) to values could be useful; meanwhile, both this and the normal swapping
function could be specialised to variants which provide ‘fresh renaming’ as a convenience.

It might also be useful to incorporate a function which takes an arbitrary value and returns
its algebraic support. (Such a function already exists inside the runtime system, but is not
available to the programmer.) However, it is not clear what type such a function could be
assigned: the atoms throughout the value may be of different bindable types. It is possible
that a more advanced sorting system for atoms (viz. §2.1.1) would help here.

7.1.7 Denotational semantics

It is clear that our denotational semantics could be of use in order to prove further properties
of Mini-FreshML-like languages. For example, it may be possible to prove Conjecture 7.1.1 via
denotational methods. The denotational semantics could be extended to provide reasoning
principles about other language constructs which might be present in Fresh O’Caml. One
obvious place where the semantics is lacking is in support for abstraction types more com-
plicated than just <<name>>τ . Fresh O’Caml supports such types and provides algorithms
for computing equality between values of such types, but this does not currently have a
justification in our denotational semantics. In order to support this, FM-domain theory needs
to be further developed to allow FM-cppos [D]D′ to be constructed for arbitrary D and D′.
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Whilst one can sketch possible constructions of such an FM-cppo (whose counterparts in FM-
set theory are well-understood) it is not at all clear whether, for example, they are suitably
chain-complete; previous experiences with dynamic allocation monads (§5.1.1) suggest that
such order-theoretic completeness properties may prove troublesome.

It should also be noted that generalised abstraction types <<τ>>τ ′ are very difficult to
incorporate with the procedure of freshness inference. For given an identifier x and an

expression E
def
= <<e>>e′, where e is of some arbitrary type τ , then we can only deduce x ? E

iff the identifier x is definitely not fresh for e, or else if x is certainly fresh for e and also e′. The
difficulty lies in the ‘not fresh’ part, for this necessitates building up sound judgements2 x¬ ? e
as well as the ‘fresh for’ judgements. Despite some (unpublished) work on the subject by the
author, no satisfactory algorithm has yet been found to infer such judgements.

Another interesting thing to note is that we should not necessarily restrict ourselves to
using the continuation monad (D ( R) ( R. There are others, for example:

(D→R) ( R non-strict use of the continuation’s argument
(D ( R) →R non-strict use of the continuation

The choice of which monad to use should be driven by the operational semantics of the
language. For example, a language which permits any form of control flow enabling a program
to abort without examining the current continuation would best be modelled by the (D (

R) → R monad. And although we have not investigated it further, we also note that our
current denotational semantics is an example of linearly-used continuations[7].

A useful extension to the denotational semantics would be a treatment of imperative
features such as references: mutable state can be easily captured by using S ( 1⊥ instead
of just 1⊥ throughout the semantics, given a recursively-defined FM-cppo S of stores. Indeed,
recent work by Benton et al.[6] does indeed develop a theory along these lines with a view to
verifying equivalences such as the famous Meyer-Sieber examples[32].

2 ‘Staleness judgements’ might be a suitable name for such statements, although that name has not found favour
with some!
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in Computer Science, pages 122–141. Springer-Verlag, 1993.

[51] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state. In
A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Techniques in Semantics,
Publications of the Newton Institute, pages 227–273. Cambridge University Press, 1998.



112 BIBLIOGRAPHY

[52] G. D. Plotkin. Pisa notes (on domain theory). Available from
http://homepages.inf.ed.ac.uk/gdp/publications/, 1983.

[53] C. Raffalli. A package for abstract syntax with binder. 1998.

[54] J. C. Reynolds. Towards a theory of type structure. In Paris Colloquium on Programming,
volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer-Verlag, 1974.

[55] J. C. Reynolds. Types, abstraction, and parametric polymorphism. Information Processing,
pages 513–523, 1983.
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