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An heuristic analysis of the classification of bivariate subdivision

schemes

Neil A. Dodgson

Abstract

Alexa [1] and Ivrissimtzis et al [13] have proposed
a classification mechanism for bivariate subdivi-
sion schemes. Alexa considers triangular primal
schemes, Ivrissimtzis et al generalise this both to
quadrilateral and hexagonal meshes and to dual
and mixed schemes. I summarise this classification
and then proceed to analyse it in order to deter-
mine which classes of subdivision scheme are likely
to contain useful members. My aim is to ascer-
tain whether there are any potentially useful classes
which have not yet been investigated or whether we
can say, with reasonable confidence, that all of the
useful classes have already been considered.

I apply heuristics related to the mappings of el-
ement types (vertices, face centres, and mid-edges)
to one another, to the preservation of symmetries,
to the alignment of meshes at different subdivision
levels, and to the size of the overall subdivision
mask. My conclusion is that there are only a small
number of useful classes and that most of these have
already been investigated in terms of linear, sta-
tionary subdivision schemes. There is some space
for further work, particularly in the investigation
of whether there are useful ternary linear, station-
ary subdivision schemes, but it appears that future
advances are more likely to lie elsewhere.

1 Introduction

Alexa [1] and Ivrissimtzis et al [13] propose a clas-
sification of subdivision schemes. Alexa classifies
all triangular primal schemes. Ivrissimtzis et al ex-
tend this both to quadrilateral and hexagonal base
meshes and to dual and mixed schemes (this termi-
nology is explained later in this Section). The ex-
tension to quadrilateral meshes is based on Sloan’s
work on 2D lattices [29].

While this classification tells of the existence of
many classes of subdivision scheme, it does not
give any indication as to which classes are likely to
contain useful schemes. This report analyses Ivris-
simtzis et al’s classification with the intention of de-
termining which classes are likely to contain useful
(stationary, linear) subdivision schemes and which
classes are unlikely to contain useful schemes. I
expect that there will be an indeterminate region
between those classes which clearly contain useful
schemes and those classes which clearly do not. I
assume that the reader is familiar with subdivi-
sion [33].

Subdivision schemes may be classified in a vari-
ety of ways. Ivrissimtzis, Sabin and I use a hierar-
chy of detail, where the top level classes encompass
many subdivision schemes, while the lowest level
precisely specifies a single scheme. The hierarchy
has the following levels (this is an expanded form
of the list given by Ivrissimtzis et al [13]).

Base mesh type. This is the base mesh in the
regular case. Most subdivision schemes are
based on either a quadrilateral or a triangular
mesh. It is also possible to base a scheme on
an hexagonal mesh, this being the only other
regular monohedral tiling of the plane [21], or
on one of the semi-regular tilings of the plane.

Mapping. This concerns how vertices, face cen-
tres and mid-edges map to one another from
one level of subdivision to the next. Face cen-
tres and mid-edges refer to these points in a
regular tiling of the plane. If one applies sub-
division to a regular tiling of the plane, the
mapping is exact. In the case of a general mesh
in 3D space, it is not usually exact, but it does
provide a useful way of thinking about what
is happening. Ivrissimtzis et al [13] classify
schemes based on whether vertices map to ver-
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Figure 1: Open circles are source vertices; black
dots are subdivided vertices. The solid lines are
the source mesh; the dashed lines are the subdi-
vided mesh. At left is a visualisation of QP (1, 1)
subdivision as we usually think of it: a new vertex
is introduced at the centre of each quadrilateral,
the old vertices are adjusted, and the new grid is
constructed as shown. At right is an equivalent
visualisation, this time with the subdivided grid
aligned horizontally and vertically. If the edges of
the subdivided mesh are assigned unit length then
this is the coordinate system used by Ivrissimtzis
et al [13], which is used throughout this report.

tices or to face centres. In this report I extend
this to consider what elements are mapped to
by face centres and to consider also the map-
pings of mid-edges.

Arity. This describes how the source grid maps
to the subdivided grid in the regular case. It
can be represented either as a scalar, repre-
senting the ratio of the lengths of edges in the
source and subdivided grids, or as an ordered
pair, (n,m), giving the relative position, in the
coordinate system of the subdivided grid, of
one source vertex with respect to an adjacent
source vertex (see Figure 1); in the case of the
hexagonal grid, of the position of one source
face centre with respect to an adjacent one
(see Figure 2). Without loss of generality we
can take n > 0 and 0 ≤ m ≤ n. Thus (2, 0)
represents binary subdivision (e.g. Catmull-
Clark [2], Doo-Sabin [6], Loop [18]), while
(1, 1) represents the

√
2 class for quadrilateral

grids (e.g. simplest [26], Velho [31, 32]) and
the
√

3 class for triangular and hexagonal grids
(e.g. Kobbelt’s

√
3 [16], hexagon-by-three [3]).

Examples are shown in Figure 3.

Footprint. Having chosen values for the above
three, the next level is to specify which new
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Figure 2: The coordinate systems of the three mesh
types. The quadrilateral mesh has the conventional
coordinate system. Each edge is of unit length. The
triangular mesh has axes at an angle π/3 to one
another, with all edges of unit length. The hexag-
onal mesh is more complex. As with the triangular
mesh, the axes are at an angle π/3 to one another,
but it is the face centres which are at integer coor-
dinates; edges are of length one-third, and vertices
are at

(
x+ 1

3 , y + 1
3

)
,
(
x+ 2

3 , y + 2
3

)
, x, y ∈ Z.

This makes the hexagonal mesh a precise dual of
the triangular mesh, as illustrated in the figure. See
Appendix A for more on this coordinate system.

vertices are affected by a given source ver-
tex in the regular case. This corresponds to
specifying which coefficients in the subdivi-
sion mask are non-zero. A larger footprint
gives greater freedom in choice of coefficients
but also greater computation and increased
difficulties in handling extraordinary points.
Of the well-known published schemes, sim-
plest [26] has the smallest footprint (4 ver-
tices) while Catmull-Clark [2], butterfly [7],
and Kobbelt [15] have the largest (25 vertices
in each case). Amongst more recent schemes,
ternary Loop [19] has 61 non-zero coefficients
and interpolating ternary triangular [5] has up
to 85. I note that the terminology is not con-
sistent in the literature, so it is worth saying
that I am using Sabin’s definition of the term
mask [28].

Mask coefficients. The next step is to decide
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QP(1,1)

(0,0)

(1,1)

QP(2,0)

(0,0) (2,0)

QP(2,1)

(0,0)

(2,1)

QD(1,1) TP(1,1) QM( / , / )3 2 12

Figure 3: Some example classes. Open circles are
source vertices; black dots are subdivided vertices.
The solid lines are the source mesh; the dashed
lines are the subdivided mesh. Note how the (n,m)
notation gives the coordinates, in the coordinate
system of the subdivided grid, of an adjacent source
vertex with respect to an arbitrary origin source
vertex; to illustrate this, the top line of examples
has an origin and the appropriate adjacent source
vertex explicitly labelled with their coordinates.

what values the coefficients should have. For
B-spline based and box-spline based schemes,
there is no freedom beyond choosing the par-
ticular spline basis, as the coefficients must
be derived from the spline on which they are
based. Other schemes have more freedom
(e.g. butterfly [7], Kobbelt [15], interpolating
ternary triangular [5]). Amongst other things,
the choice of coefficients determines whether
the scheme is interpolating or approximating.
Interpolating schemes (e.g. butterfly [7]) are
those where the limit surface is constrained to
pass through the source vertices. Approximat-
ing schemes (e.g. Loop [18]) do not have this
constraint.

Extraordinary cases, edges, and creases.
The final step is to handle the extraordinary
cases. This is the step which requires a
significant amount of careful thought and
analysis. Some schemes have more than one
proposed method for handling extraordinary
cases. For example, the schemes based on the
bivariate quadratic and cubic B-splines are
commonly known as Doo-Sabin and Catmull-

Clark subdivision respectively but, in fact,
each of them has two variant mechanisms for
handling extraordinary cases: one proposed
by Catmull and Clark [2] and one proposed
by Doo and Sabin [6]. Edges of the mesh
must also be handled as special cases as must
creases in the mesh at which a designer wants
reduced continuity across an internal edge of
the mesh.

Alexa [1] and Ivrissimtzis et al [13] consider the
top three levels of this hierarchy. This report anal-
yses that classification in order to ascertain which
classes are likely to contain useful schemes.

2 Summary of the classifica-
tion notation

Ivrissimtzis et al [13] use notation of the form
AB(n,m), where A is the base mesh type, B the
mapping, and (n,m) the arity. Occasionally it is
convenient to use A(n,m) as a shorthand for all
classes with the same base mesh type and arity.
The coordinate systems are illustrated in Figure 2
and example classes are shown in Figure 3.
A can be Q (quadrilateral), T (triangular) or

H (hexagonal). The right-triangle based schemes
(e.g. Velho’s 4-8 scheme [31, 32]) are regarded as
Q schemes, because the vertices lie on the quadri-
lateral grid in the regular case. The right-triangle
tiling, its dual (the octagon-square semi-regular
tiling), and other semi-regular tilings, could be con-
sidered as primitive base mesh types in their own
right, but Ivrissimtzis et al [13] limit the classifica-
tion to the three regular base tilings.
B can be P (primal), D (dual) or M (mixed)

where primal means that all vertices map to ver-
tices, dual that all vertices map to face centres, and
mixed that vertices map to a combination of ver-
tices and face centres. This classification as ‘primal’
and ‘dual’ arises from the (2, 0) classes for which the
terminology is well known [34] and where it is re-
lated to the concept of the dual graph. Sabin [28]
points out that the classification as ‘primal’ and
‘dual’ is not necessarily particularly satisfactory for
the general case. For example, in Q(2, 0) classes it
is related to the concept of face-splitting (primal)
or vertex-splitting (dual), but this face- or vertex-
splitting relationship fails for most other arities. In
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particular, Oswald and Schröder note that it fails
for (1, 1) classes [25]. The limitations of this classi-
fication are explored further in Section 3.3.

(n,m) is the arity, as described in Section 1.
There are certain quirks in the specification of ar-
ity for the TM and HM (triangular mixed and
hexagonal mixed) classes, which I will gloss over
here as they have no impact on the conclusions of
this report (for details see Ivrissimtzis et al [13]).
The term arity can refer to either (n,m) or to the
length of the vector, which is

√
n2 +m2 for Q and√

(n+m/2)2 + (
√

3n/2)2 for T and H.

The classes of arity (1, 0) represent schemes
which do not subdivide. These can be identity
schemes, where the mesh does not change at all,
or other point-processing schemes comparable with
filters used in image processing. The simplest ap-
plication of these would be mesh smoothing.

There is an interesting case with the lowest pos-
sible arity class considered by Ivrissimtzis et al [13],
which is the class of QM

(
1
2 ,

1
2

)
schemes. The arity

(length of the (n,m) vector) is 1√
2
, which is less

than unity, and therefore this class represents dec-
imation schemes, rather than subdivision schemes.

3 Heuristic analysis

This classification allows for a large number of po-
tential subdivision schemes. This report asks which
of these classes are likely to contain useful schemes
and thus reward further investigation and, con-
versely, which are likely to have unresolvable prob-
lems. To facilitate a partition into usable and
unusable classes, I sequentially introduce heuris-
tics, each providing more stringent requirements on
what is meant by “usable”.

An heuristic is a rule of thumb, a guideline which
helps us to consider only the useful alternatives.
In subdivision, one early heuristic appears to have
been “only binary schemes are worth considering.”
This heuristic has been seriously challenged by the
discovery and development of

√
2 [26, 31, 32, 11,

12],
√

3 [16, 17] and ternary [19, 10, 5] schemes.
They have not, however, completely invalidated it
because all commercial systems are based on binary
schemes. An up-to-date version of this example
heuristic would therefore seem to be something like
“only schemes based on Catmull-Clark or Loop are

worth considering in a commercial context.”

This report sets out a number of heuristics which
are designed to reduce the enormous number of po-
tential schemes which are allowed for by the classifi-
cation mechanism. None of the heuristics is a hard
and fast rule, nor are they particularly amenable
to formal mathematical proof. Nevertheless, I be-
lieve that they are rules of which all practitioners of
subdivision become aware, whether consciously or
not. It may well be that, as with the “only binary
schemes are useful” heuristic, some of these heuris-
tics will prove to be false guides. The commentary
following each heuristic therefore incorporates dis-
cussion of those situations in which the heuristic
appears to be a less than perfect guide.

3.1 Heuristics implicit in Ivris-
simtzis et al’s classification

The first two heuristics are implicit in Ivrissimtzis
et al’s [13] classification system. The classification
is thus already making assumptions about which
types of subdivision schemes are likely to prove use-
ful. For comparison, Han has produced a much
more restricted classification system for subdivi-
sion schemes [9] in which he implicitly assumes that
Heuristics 1–6 are true.

Heuristic 1 Only regular monohedral tilings of the
plane are useful as base meshes.

This limits the base mesh in the regular case to
being quadrilateral, triangular, or hexagonal, with
the individual polygons being regular. There are
subdivision schemes which appear to be based on
a right-triangle mesh [31, 32] but these can be
treated as Q schemes, because the vertices lie on
the quadrilateral grid in the regular case; the right-
triangle concept simply serves to make the explana-
tion and implementation of the scheme somewhat
easier in practice. The right-triangle tiling, its dual
(the octagon-square semi-regular tiling), and other
semi-regular tilings, could be considered as primi-
tive base mesh types in their own right. In addition
to semi-regular tilings it may be possible to create
a subdivision scheme based on an aperiodic tiling,
such as a Penrose tiling [24]. In any semi-regular
or aperiodic case there would seem to be some dif-
ficulty in specifying the base mesh for an object
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and in extending the subdivision scheme to han-
dle extraordinary cases. Nevertheless, Claes, Ivris-
simtzis and I undertook some preliminary work on
octagon-square subdivision schemes in 2003. It was
clear from this that some sort of octagon-square
subdivision scheme is possible, although the above
difficulties would have to be faced, and that the ver-
tices do not lie on one of the three regular meshes,
unlike the right-triangle mesh whose vertices lie on
the quadrilateral mesh. There may be some ad-
vantage in investigating such schemes but, for the
purposes of this report, the classification mecha-
nism does not admit such schemes and so I will not
consider them further.

Heuristic 2 Every vertex at one level of subdivi-
sion must map to either a vertex or a face centre
at the next level.

Ivrissimtzis et al’s [13] classification assumes this.
The second letter in the classification indicates
whether the mapping is to vertices (P ), face centres
(D) or a mixture (M). The initial motivation for
this was from consideration of primal and dual bi-
nary schemes which have either a P orD behaviour.
I conjecture that it would be possible to construct
a subdivision scheme where vertices at one level
map to some feature other than a vertex or face
centre at the next level, but that it is likely that
such a scheme would not prove useful because, as
described under Heuristic 3 below, it may well pro-
duce an infinite number of possible limit surfaces
for the same base mesh and, as described under
Heuristic 4 below, it would definitely not maintain
the rotational symmetries of the mesh. This con-
jecture has not been tested but, as with Heuristic 1
and for the purposes of this report, the classifica-
tion mechanism does not admit such schemes and
so I will not consider them further.

3.2 Heuristics from the need for a
single limit surface

The next two heuristics are based on the desire for
a subdivision schemes to produce a single determin-
istic limit surface, rather than an infinite number of
possible limit surfaces. This requires that the limit
surface depend solely on the positions and connec-
tivity of the initial base mesh, not on any arbitrary
labelling of vertices. These two heuristics exclude

those classes which require such an arbitrary la-
belling.

Heuristic 3 All vertices at one level of subdivision
must map to the same new element type at the next
level.

The term element refers to a vertex, face centre,
or mid-edge. It is reasonable to require all vertices
to be treated identically under refinement because
failure to adhere to this heuristic can lead to there
being multiple possible limit surfaces for a single
base mesh. In these cases, the limit surface will, in
general, depend on which particular vertices map to
vertices and which do not. This decision must be
made at every subdivision step (see Figure 4) and
therefore there is a potentially infinite number of
different, equally valid, limit surfaces for any base
mesh. The particular limit surface which is arrived
at thus depends on something more than just the
location and connectivity of the base mesh’s ver-
tices: this is undesirable.

This heuristic eliminates all mixed classes be-
cause, in mixed classes, some vertices map to ver-
tices and some map to face centres. Therefore all
TM , QM and HM classes are unlikely to produce
useful subdivision methods.

It might be sensible to extend this heuristic to
say that all face centres must map to the same
element type and that all mid-edges must map
to the same element type. This would eliminate
most of the TD classes (all except those for which
n + 2m mod 6 = 0). See Table 4 and Appendix A
for the detailed calculations of these restrictions.
However, while I am convinced that this extension
to face centres and mid-edges is sensible, I find it
difficult to see how the above argument regarding
multiple limit surfaces can be extended to these
cases and, furthermore, all classes which would be
excluded by such an extension are excluded by the
next heuristic anyway.

Heuristic 4 All rotational symmetries should be
maintained under refinement.

The requirement is that centres of k-fold rotational
symmetry (k-centres), at one refinement level, have
k-fold rotational symmetry at the next level. k-
centres may, of course, become centres of higher
rotational symmetry provided that the higher sym-
metry preserves k-fold symmetry. This heuristic
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Figure 4: An example of the arbitrary choices
which have to be made in a mixed subdivision
schemes. This isQM

(
3
2 ,

1
2

)
with the rotation direc-

tion alternating on alternate subdivision steps. At
the first level of subdivision, half of the vertices map
to vertices and the other half map to face centres.
At the next level of subdivision half of those vertices
map to face centres, and so on. In the limit, at most
one of the original vertices will map to a vertex and
the choice of this original vertex is arbitrary. There
are at least as many limit surfaces as there are orig-
inal vertices. The mappings for this subdivision

class are: v → f
v , f → e, e → x. In the limit, all

original vertices (but one) map to no feature at all
in the limit surface as they all follow the mapping
sequence v→ v→ · · · → v→ f→ e→ x→ x→ · · ·

seems reasonable because a loss of rotational sym-
metry leads to multiple possible limit surfaces from
the same source mesh. Consider, for example, a
vertex in a triangular mesh (6-fold rotational sym-
metry) which maps to a face centre (3-fold rota-
tional symmetry) under subdivision. There are two
possible ways in which this could happen. In sim-
ple terms, the vertex maps either to an up-pointing
triangle or to a down-pointing triangle. As with
Heuristic 3, the limit surface thus depends on some-
thing other than just the location of vertices and
the connectivity of the mesh. This is undesirable.

Failing to preserve rotational symmetry also
makes it difficult to extend a scheme to handle ir-
regular cases. A particular example of this is con-
sidered by Dodgson et al [4] where the TD(1, 1)
class is explored and a particular TD(1, 1) scheme
demonstrated; both the particular scheme and the
class as a whole are shown to have severe problems.

Element Q T H
vertex (v) 4 6 3

face centre (f) 4 3 6
mid-edge (e) 2 2 2

Table 1: The rotational symmetries of the different
elements.

Q
v→ v
v→ f
f→ v
f→ f
e→ v
e→ f
e→ e

T
v→ v

f→ v
f→ f
e→ v

e→ e

H
v→ v
v→ f

f→ f

e→ f
e→ e

Table 2: The allowable mappings under the restric-
tions of Heuristic 4.

I conjecture that similar problems with irregular
cases will arise in any scheme which fails to preserve
rotational symmetry. A proof of this conjecture is
beyond the scope of this report because the “mul-
tiple limit surface” argument, above, is sufficient
justification for this heuristic.

Ivrissimtzis et al [13] suggest that symmetry con-
siderations would be an alternative way to ap-
proach the classification problem and it is clear that
symmetry considerations are important in subdivi-
sion. Han explicitly uses symmetry considerations
in his alternative classification mechanism for QP
and TP subdivision schemes [9].

The centres of rotational symmetry are the ver-
tices, face centres, and mid-edges of the lattice. I
will denote these elements as v, f, and e respec-
tively. The rotational symmetry of each element is
shown in Table 1.

I use→ to indicate a mapping of an element from
one level of refinement to the next and, in partic-
ular, k → k′ to indicate a mapping from k-fold ro-
tational symmetry to k′-fold rotational symmetry.
Under this heuristic, allowable symmetry mappings
between values of k and k′ are, for Q, 2→ 2, 4→ 4,
and 2 → 4; for T and H, 2 → 2, 3 → 3, 6 → 6,
2→ 6, and 3→ 6. Note that 2→ 3 is not allowed
because a 3-centre is not also a 2-centre. The map-
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pings in Table 2 are thus the only ones which are
permitted.

From this we see that triangular dual (TD)
classes are not allowed because they map vertices
to face centres. Alexa’s concentration on the pri-
mal classes (TP , v → v) for triangular subdivision
is therefore vindicated as neither dual nor mixed
schemes are useful in the triangular case.

We can also see that any hexagonal scheme which
maps face centres to vertices is not allowed, which
excludes some of the hexagonal primal HP classes
(those for which (n −m) mod 3 = 0, see Table 5).
Thus, of the hexagonal classes, only HD classes
and a subset of HP classes are considered useful.

In both triangular and hexagonal cases, the only
cases in which edges do not map to an appropri-
ate element are already excluded by considering
those cases where vertices or face centres do not
map to an appropriate element. Therefore it is a
moot point whether we need consider the mapping
of the rotational symmetries of mid-edges as they
are never called into play as a criterion for exclu-
sion.

3.3 The limitations of the pri-
mal/dual notation

Details of how the above mappings are calculated
can be found in Tables 3–5 and Appendix A. The
fact that the calculations for HD and TP and for
HP and TD are not exact duals of one another
shows up a subtle bias in the classification. The
classification is vertex-centric: it explicitly tells us
whether a vertex maps to a vertex or a face centre.
Arguably of equal significance is whether a face cen-
tre maps to a vertex or a face centre. Fortunately
this information can be derived directly from the
notation. There are four cases:

vv vertex preserving v→ v, f→ v
ff face preserving v→ f, f→ f
vf preserves both v→ v, f→ f
fv preserves neither v→ f, f→ v

The notation, ab, at left above is shorthand for
v → a, f → b. This provides a more explicit rep-
resentation of the mappings which occur than does
the simple P and D labelling used by Ivrissimtzis et
al [13]. Note that fv is something of a special case
because a subdivision scheme which is of type fv is
of type vf if one considers two steps of subdivision.

QP (n,m) ⇒ v→ v

(n−m) mod 2 = 0 ⇒ f→ v
(n−m) mod 2 = 1 ⇒ f→ f

n mod 2 = m mod 2 = 0 ⇒ e→ v
n mod 2 = m mod 2 = 1 ⇒ e→ f
n mod 2 6= m mod 2 ⇒ e→ e

Possible scheme types are: vvv, vvf, and vfe.

QD(n,m) ⇒ v→ f

(n−m) mod 2 = 0 ⇒ f→ f
(n−m) mod 2 = 1 ⇒ f→ v

n mod 2 = m mod 2 = 0 ⇒ e→ f
n mod 2 = m mod 2 = 1 ⇒ e→ v
n mod 2 6= m mod 2 ⇒ e→ e

Possible scheme types are: fff, ffv, and fve.

Table 3: Calculation of the vfe coding for the
quadrilateral QP andQD. Details of the derivation
of these formulæ can be found in Appendix A.

Heuristic 4 restricts us to eight useful classes of
subdivision scheme. A Q scheme can be any of vv,
ff, vf, or fv; while a T scheme can only be vv or vf;
and an H scheme can only be ff or vf.

In addition to vertices and face centres, the map-
pings of mid-edges can also be considered, for com-
pleteness. Tables 3–5 show how the mappings can
be derived directly from the notation. We see that
there are a limited set of valid mappings. I use the
notation vfe → abc to indicate v → a, f → b, and
e→ c, extending the notation above to include edge
mappings. Where context is clear I use just abc to
indicate the same thing. Note that TD classes
allow the possibility that an edge can map to a
point with no rotational symmetry (indicated by
x) and that half of the face centres can map to face
centres while the other half map to vertices (indi-

cated by f
v ). These possibilities are a consequence

of allowing the v → f mapping which reduces a
6-centre to a 3-centre, and provides further justifi-
cation for Heuristic 4. A similar observation about
edges mapping to points with no rotational sym-
metry can be made about some of the HP classes.
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QP(2,0)

vvv

QP(1,1)

vvf

QP(2,1)

vfe

QP(2,2)

vvv

QP(3,0)

vfe

QD(2,0)

fff

QD(1,1)

ffv

QD(2,1)

fve

QD(2,2)

fff

QD(3,0)

fve
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vfv

TP(1,1)

vve
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vfe

TP(2,2)

vvv

TP(3,0)

vve

HP(2,0)

vff

HD(1,1)

ffe

HP(2,1)

vfe

HD(2,2)

fff

HD(3,0)

ffe

Figure 5: Illustrations of the low arity QP , QD, TP and H classes. Open circles are source vertices; black
dots are subdivided vertices. The solid lines are the source mesh; the dashed lines are the subdivided
mesh. The (2, 1) schemes have been included for completeness, although excluded by Heuristic 5.
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TP (n,m) ⇒ v→ v

(n−m) mod 3 = 0 ⇒ f→ v
otherwise ⇒ f→ f

n mod 2 = m mod 2 = 0 ⇒ e→ v
otherwise ⇒ e→ e

Possible scheme types are: vvv, vve, vfv, and vfe.

TD(n,m) ⇒ v→ f

(n−m) mod 3 = 0 ⇒ f→ f

otherwise ⇒ f→ f
v

n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ x

Possible scheme types are: fff, ffx, f f
v f, and f f

v x.

Table 4: Calculation of the vfe coding for the trian-
gular TP and TD classes. Details of the derivation
of these formulæ can be found in Appendix A.

Figure 5 illustrates the low arity classes. It shows
at least one class of each of the mapping types for
QP , QD and TP .

3.4 Heuristics based on observation
of current practice

While the previous two heuristics are based on a
desire to have a single deterministic limit surface,
the following heuristics are much less clear-cut and
I therefore address their limitations as well as their
merits in the discussion.

Heuristic 5 Allow only schemes which align the
mesh at one level of refinement with the mesh at
some higher level of refinement.

This heuristic was explored by Alexa [1] for the TP
classes. It says that a scheme needs to produce a
mesh which is in the same rotational orientation as
the base mesh after a finite number of steps. For
all three types of base mesh, this heuristic permits
only (n, 0) and (n, n) classes. Alexa [1] proves this
for T classes, so it is true for H classes by geometric
duality. It is also true for Q classes because it is

HP (n,m) ⇒ v→ v

v5 → v4 ⇒ c = 1
v5 → v5 ⇒ c = 2

(n−m) mod 3 = 0 ⇒ f→ v
(n−m) mod 3 = 3− c ⇒ f→ f
(n−m) mod 3 = c ⇒ HM, not HP

(n−m) mod 3 = 0 and
n mod 2 = m mod 2 = 0 ⇒ e→ v
otherwise ⇒ e→ x

(n−m) mod 3 = 3− c and
n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ e

Possible scheme types are: vvv, vvx, vff, and vfe.

HD(n,m) ⇒ v→ f

(n−m) mod 3 = 0 ⇒ f→ f
otherwise ⇒ HM, not HD

n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ e

Possible scheme types are: fff and ffe.

Table 5: Calculation of the vfe coding for the hexag-
onal HP and HD classes. Details of the derivation
of these formulæ can be found in Appendix A.

true by inspection for (n, 0) and, for (n,m), m > 0
it requires:

tan
2π

p
∈ Q, p ∈ Z+, 0 <

2π

p
≤ π

4

whose only solution [23] is p = 8 and therefore
m = n. In Han’s classification of TP and QP
schemes [9], his symmetry conditions force this
heuristic to be true and his Theorem 2 proves the
equivalence of this restriction to (n, 0) and (n, n)
classes.

This heuristic seems reasonable because the base
mesh is often constructed with important linear
features of the object aligned with the mesh, so
rotating away from this alignment is a bad thing.
Of course, the (n, n) classes also rotate away from
the desired alignment, but they do it symmetrically
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and, after two subdivision steps, they are realigned.
However, it is arguable that this heuristic is not

strictly necessary. In particular, it is always pos-
sible to get the subdivision meshes to realign after
every two subdivision steps by performing the ro-
tation one way on even numbered steps and the op-
posite way on odd numbered steps (an example can
be seen in Figure 4). One way to check the validity
of the heuristic would be to perform an investiga-
tion (similar to that undertaken for TD(1, 1) [4]) on
either of the lowest arity classes which are excluded
by this heuristic: QP (2, 1) or QD(2, 1). QP (2, 1) is
specifically mentioned by Sloan [29] as useful in the
context of numerical integration and Ivrissimtzis et
al [14] have recently undertaken an initial investi-
gation of QP (2, 1) schemes. While they do produce
a valid subdivision scheme, it is unclear whether it
is of practical use.

Heuristic 6 Triangular and quadrilateral schemes
are generally useful but hexagonal schemes are
more limited in their applications.

As mentioned above, it is frequently useful to have
important linear features in the model, such as
edges, run along an edge in the base mesh in order
to preserve the linear feature from one level of sub-
division to the next. Hexagonal meshes do not have
any straight edges which will run between multiple
polygons. This would seem to limit to the appli-
cability of hexagonal schemes because they are not
useful for objects in which such linear features need
to be preserved. However, Claes et al [3] claim that
this is one of the advantages of hexagonal schemes:
that they can be used situations where one does not
want linear features to be preserved. Furthermore,
hexagonal dual schemes are useful as the dual of
triangular primal schemes [25].

Heuristic 7 Low arity is preferable to high arity.

Low arity has one key advantage over high arity:
it provides a smaller increase in the number of ver-
tices, which has the desirable effect of allowing for
many levels of resolution close to one another. This
is one of Kobbelt’s [16] justifications for the useful-
ness of the

√
3 scheme.

Low arity is therefore important. The question
then arises, what is the maximum arity that is
worth considering. There seems to have been no

serious investigation of any class with arity higher
than three. For the purposes of this report, I con-
sider classes of arity less than four. Four is a some-
what arbitrary cut-off point and I make only one,
weak, claim for it to be the cut-off, rather than any
other value, which is that any arity two (binary)
scheme also describes an arity four scheme by sim-
ply taking two subdivision steps of the arity two
scheme. While an arity four scheme offers greater
freedom than that offered by an arity two scheme
in terms of choice of coefficients, it is unclear that
there would be significant advantage in providing
this greater freedom as it comes at the cost of re-
ducing the number of levels of resolution available
to the users.

Between arity three and arity four lie the T and
H classes of arity (2, 2) (≡

√
12) and the Q classes

of arity (3, 1) (≡
√

10) and (3, 2) (≡
√

13). The
latter two classes would be excluded by Heuristic 5
but TP (2, 2) and HD(2, 2) would not be excluded
by that heuristic and may be interesting as they
are the lowest arity classes with mapping types vvv
(triangular) and fff (hexagonal).

It is arguable that we should consider nothing
higher than arity three; this would exclude the T
and H classes of arity (2, 2) but not the Q(2, 2)
classes (≡

√
8). As intimated the start of Section 3,

it has been suggested that nothing higher than ar-
ity two is worth considering, which would exclude
the ternary classes (arity (3, 0)) as well the Q(2, 2)
classes. Recent work [19, 10, 5] appears to contra-
dict this extreme view and ternary classes certainly
allow a range of different behaviour to that permit-
ted by binary classes.

In contradiction of this estimate that arity four
is some sort of rough cut-off point, consider the
work of Maillot and Stam [20], who provide subdi-
vision of arbitrary integer arity. Their work, how-
ever, simply does a single step of subdivision, of
appropriate arity, to get from the base mesh to the
final mesh, which is not quite in the spirit of sub-
division.

Heuristic 8 Interpolating schemes should be pri-
mal.

All classes can accommodate approximating
schemes. Any class with the v → v mapping can
also accommodate interpolating schemes. Classes
with the v → f mapping are also able to produce
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Example Schemes
Class vfe→ Approximating Interpolating Excluded by

QP (1, 1) vvf Velho [31, 32] interpolating
√

2 [11, 12]
QP (2, 0) vvv Catmull-Clark [2] Kobbelt [15]

QP (2, 1) vfe
√

5 [14] [interpolating
√

5] Heuristic 5

QP (2, 2) vvv [
√

8] [interpolating
√

8]
QP (3, 0) vfe [ternary] [interpolating ternary]
QD(1, 1) ffv simplest [26] —
QD(2, 0) fff Doo-Sabin [6] —

QD(2, 1) fve [dual
√

5] — Heuristic 5

QD(2, 2) fff [dual
√

8] —
QD(3, 0) fve [dual ternary] —

TP (1, 1) vve
√

3 [16] interpolatory
√

3 [17]
TP (2, 0) vfv Loop [18] butterfly [7]

TP (2, 1) vfe [
√

7] [interpolating
√

7] Heuristic 5
TP (3, 0) vve Loop ternary [19] interpolating ternary [5]

TP (2, 2) vvv [
√

12] [interpolating
√

12] Heuristic 7(?)
HD(1, 1) ffe hexagon-by-three [3] — Heuristic 6
HP (2, 0) vff hex binary [8](?) [interpolating hex binary] Heuristic 6

HP (2, 1) vfe [hex
√

7] [interpolating hex
√

7] Heuristics 5 and 6
HD(3, 0) ffe [hex ternary] — Heuristic 6

HD(2, 2) fff [hex dual
√

12] — Heuristics 6 and 7(?)

Table 6: The low arity classes which may be useful. They are listed in order of increasing arity within
the four classifications QP , QD, TP , H. I have included some which are excluded by later heuristics and
the right hand column shows which heuristics would cause them to be excluded. Each class is subdivided
into approximating and interpolating sub-classes. Interpolating versions of dual schemes are difficult to
construct (Heuristic 8) and have therefore been omitted. Sub-classes which have been investigated in
the literature are given their common names and an appropriate citation. Those which have not, to my
knowledge, been investigated are given a descriptive name in square brackets.

interpolating schemes but the derivations required
are complicated and it is not clear that the advan-
tages outweigh the complications.

4 Discussion

Taking all these heuristics into account, the arites
which will most reward further investigation are
(1, 1), (2, 0), (3, 0) and (2, 2), producing twelve sub-
division classes (eight Q, four T ) or eleven if we dis-
count the TP (2, 2) class with the rather high arity√

12. Including the equivalent H classes would add
three or four classes to be considered (depending
on whether or not one includes HD(2, 2)). Table 6
lists the low arity classes classes, along with the

name of the most well-known published schemes in
each class. I have included the (2, 1) classes (ex-
cluded by Heuristic 5) for completeness because it
may be that something useful could be done with
them. Figure 5 shows the layout of a single refine-
ment step for each. Table 6 can be considered a
much extended version of Zorin and Schröder’s [34]
Table 1. It is worth noting that, in addition to the
schemes named in Table 6, Zorin and Schröder [34]
have developed a whole family of QP (2, 0) and
QD(2, 0) schemes and Oswald and Schröder [25]
a whole family of TP (1, 1) and HD(1, 1) schemes,
all based on up-sampling followed by repeated av-
eraging.

The classification allows description of a wide
range of possible subdivision schemes ranging from
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those which are currently used through those which
may be useful to those which are almost cer-
tainly unusable. The heuristics are a mechanism
for paring away the unusable classes in order to
clearly identify the useful ones. While the classi-
fication system is a clean mathematical construct,
the heuristics are less well-defined. The first four
heuristics have strong justifications, but the latter
four are open to contradiction as demonstrated in
the discussion following each heuristic. Note that
Ivrissimtzis et al [13] implicitely assume the first
two heuristics, while Han [9] assumes the first six.
This report indicates that, in contrast to both of
those assumptions, the first four are reasonably
straightforward to justify. One useful next step
would be to ascertain whether there are formal
mathematical proofs which either support or shat-
ter each heuristic.

In addition there are open questions pertain-
ing to classes which are identified as useful by the
heuristics but which have not yet been investigated:

• Is there any advantage to be gained from using
a quadrilateral ternary (Q(3, 0)) scheme? (c.f.
Hassan’s [10] univariate ternary scheme and
the triangular ternary schemes investigated by
Loop [19] and Dodgson et al [5]).

• Is there any advantage in developing a
TP (2, 2) scheme? TP (2, 2) is the lowest arity
triangular class where all three element types
map to vertices (i.e. it is of mapping type vvv).
By contrast, the simplest quadrilateral class
with this mapping is the thoroughly investi-
gated QP (2, 0) class.

• Are there useful interpolating QP (1, 1) and
TP (3, 0) schemes? While Ivrissimtzis et al [11,
12] have calculated appropriate mask coeffi-
cients for the QP (1, 1) class and Dodgson et
al [5] have undertaken initial work on TP (3, 0),
it remains to perform detailed analysis and to
modify the schemes to handle the extraordi-
nary cases.

It is possible to add further heuristics to the list
relating to details further down the classification
hierarchy (Section 1). As an example, the next
heuristic which I would propose is the rather obvi-
ous:

Heuristic 9 A small footprint is preferable.

A smaller footprint makes for more efficient calcu-
lation and is easier to modify to handle the extraor-
dinary cases. A larger footprint gives more freedom
in choice of coefficients. Loop’s motivation for in-
vestigating a ternary version (TP (3, 0)) [19] of his
binary scheme (TP (2, 0)) [18] was that the ternary
version gave more degrees of freedom. As a second
example, the higher degree QP (2, 0) and QD(2, 0)
schemes generated by Zorin and Schröder [34] have
large footprints and clearly require more calcula-
tion than the lower degree schemes which seems
to be a contra-indication. However, the mecha-
nism of repeated averaging which they use provides
a straightforward way of handling the extraordi-
nary cases at the expense of losing the extra free-
doms gained by having a larger footprint and at the
expense of severe distortion around extraordinary
points.

5 Conclusion

By applying heuristics to the classification, I con-
clude that the most useful linear, stationary subdi-
vision classes have been investigated and schemes
developed for them. There is some scope for fur-
ther work, principally in looking at ternary sub-
division [19, 5]. However the future development
of new subdivision schemes seem to lie elsewhere,
for example in the development of non-linear or
non-stationary versions of schemes for classes which
have already been investigated [22] or in combining
schemes from more than one class into a single co-
herent mechanism [30, 27].
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A Details of the formulæ in
Tables 3–5

A.1 Quadrilateral mesh

In the coordinate system of the subdivided mesh,
vertices are at (x, y), x, y ∈ Z, face centres
at
(
x+ 1

2 , y + 1
2

)
, x, y ∈ Z, and mid-edges at(

x+ 1
2 , y
)
,
(
x, y + 1

2

)
, x, y ∈ Z.

For the primal classes, QP (n,m), the origin of
the source grid is a source vertex at (0, 0), with an
adjacent source vertex at (n,m), n,m ∈ Z, 0 <
n, 0 ≤ m ≤ n.

A source quadrilateral adjacent to the origin
has vertices at (0, 0), (n,m), (−m,n), and (n −
m,n + m). Its face centre is at the arithmetic
mean of these four points:

(
n−m

2 , n+m
2

)
. This co-

incides with a vertex of the subdivided mesh if
n−m mod 2 = 0. If the alternative, n−m mod 2 =
1, is true then a face centre maps to a face centre.

The source edge from (0, 0) to (n,m) has its mid-
point at

(
n
2 ,

m
2

)
. Therefore, if n mod 2 = m mod

2 = 0 we have e → v, if n mod 2 = m mod 2 = 1,
we have e→ f, and otherwise we have e→ e.

For the dual classes, QD(n,m), everything shifts
by
(

1
2 ,

1
2

)
. The net result is that we can simply

exchange the rôles of face centres and vertices in
subdivided mesh in the QP (n,m) case. Thus, n−
m mod 2 = 0 ⇒ f → f and n − m mod 2 = 1 ⇒
f → v for the QD case and, likewise, n mod 2 =
m mod 2 = 0⇒ e→ f; n mod 2 = m mod 2 = 1⇒
e→ v; otherwise e→ e.

A.2 Triangular mesh

In the coordinate system of the subdivided mesh,
vertices are at (x, y), x, y ∈ Z, face cen-
tres at

(
x+ 1

3 , y + 1
3

)
,
(
x+ 2

3 , y + 2
3

)
, x, y ∈

Z, and mid-edges at
(
x+ 1

2 , y
)
,
(
x, y + 1

2

)
,(

x+ 1
2 , y + 1

2

)
, x, y ∈ Z. Note that there are two

types of face centre: the centres of up-pointing tri-
angles (4) and the centres of down-pointing trian-
gles (5). The ramifications of this are discussed in
detail by Ivrissimtzis et al [13]. We will annotate
the f notation with a subscript, f4 and f5, where
necessary.

For a TP (n,m) class, without loss of general-
ity, we will take the origin of the source grid to be
a source vertex at (0, 0), with an adjacent source

vertex at (n,m), n,m ∈ Z, 0 < n, 0 ≤ m ≤ n, and
with an up-pointing triangle to the left of the line
as one moves from (0, 0) to (n,m).

The up-pointing source triangle to the left of
this line has source vertices at (0, 0), (n,m) and
(−m,n +m). The face centre of this source trian-
gle is at the arithmetic mean of these three points:(
n−m

3 , n+2m
3

)
. Thus we have three possible map-

pings:

n+ 2m mod 3 = 0 ⇒ f4 → v f5 → v
n+ 2m mod 3 = 1 ⇒ f4 → f4 f5 → f5
n+ 2m mod 3 = 2 ⇒ f4 → f5 f5 → f4

It is not clear that there is a need to distinguish
between up- and down-pointing triangles and so,
in the interests of clarity, Table 4 does not do so.
The reader will note, however, that the most widely
used triangular schemes (the TP (2, 0) schemes
Loop [18] and butterfly [7]) map up-pointing tri-
angles to down-pointing triangles and vice-versa.

The source edge from (0, 0) to (n,m) has its
midpoint at

(
n
2 ,

m
2

)
. Therefore, if n mod 2 =

m mod 2 = 0 we have e → v. In all other cases,
e→ e.

For the TD(n,m) classes, the origin of the source
grid is a source vertex at the centre of a face. Its
coordinates will thus be:

(
c
3 ,

c
3

)
c ∈ {1, 2} where

c = 1 if the face is an up-pointing triangle and c = 2
if the face is a down-pointing triangle. Ivrissimtzis
et al [13] show that n,m ∈ Z in the TD case.

The up-pointing source triangle to the left
of the line from the origin to the adjacent
source vertex,

(
n+ c

3 ,m+ c
3

)
, has vertices at(

c
3 ,

c
3

)
,
(
n+ c

3 ,m+ c
3

)
and

(
−m+ c

3 , n+m+ c
3

)
.

The face centre of this source triangle is at
the arithmetic mean of these three points:(
n−m

3 + c
3 ,

n+2m
3 + c

3

)
. Thus we have three possi-

ble mappings for each of the values of c. For c = 1:

n+ 2m mod 3 = 0 ⇒ f4 → f4 f5 → f4
n+ 2m mod 3 = 1 ⇒ f4 → f5 f5 → v
n+ 2m mod 3 = 2 ⇒ f4 → v f5 → f5

For c = 2:

n+ 2m mod 3 = 0 ⇒ f4 → f5 f5 → f5
n+ 2m mod 3 = 1 ⇒ f4 → v f5 → f4
n+ 2m mod 3 = 2 ⇒ f4 → f4 f5 → v

In the TD cases, unless n + 2m mod 3 = 0, then
half of the face centres map to face centres and half
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map to vertices, which is forbidden by Heuristic 3.
However, the situation is rather messy as Heuris-
tic 3 excludes only some of the TD classes, provid-
ing further evidence that there are deeper things
going on than revealed by the simple classification
into ‘primal’ and ‘dual’.

The edge from
(
c
3 ,

c
3

)
to
(
n+ c

3 ,m+ c
3

)
has its

midpoint at
(
n
2 + c

3 ,
m
2 + c

3

)
. Therefore, if n mod

2 = m mod 2 = 0 we have e→ f. In all other cases,
e → x, i.e. an edge maps either to a face centre or
it maps to no element at all.

Only if both n + 2m mod 3 = 0 and n mod
2 = m mod 2 = 0 do we get a sensible map-
ping. Combining these two gives the condition
n + 2m mod 6 = 0 which is mentioned in the dis-
cussion of Heuristic 3.

A.3 Hexagonal mesh

The hexagonal case is somewhat more involved
than the triangular case because, in the hexago-
nal case, we can distinguish two different types of
vertex. This means that we must check that both
types of vertex map to the same new element type
(face or vertex) in order for the class to be either
HD or HP . Otherwise, the class is HM .

In the coordinate system of the subdivided
mesh, face centres are at (x, y), x, y ∈ Z, ver-
tices at

(
x+ 1

3 , y + 1
3

)
,
(
x+ 2

3 , y + 2
3

)
, x, y ∈

Z, and mid-edges at
(
x+ 1

2 , y
)
,
(
x, y + 1

2

)
,(

x+ 1
2 , y + 1

2

)
, x, y ∈ Z. We need to anno-

tate the v notation in order to distinguish the
two types of vertex. Where necessary, vertices at(
x+ 1

3 , y + 1
3

)
, x, y ∈ Z will be denoted v4 and

those at
(
x+ 2

3 , y + 2
3

)
, x, y ∈ Z, v5. v4 is a

Y-shaped vertex while v5 is an inverted Y. The
orientation of the triangle is the dual of the config-
uration of the vertex.

In the hexagonal case, the (n,m) notation does
not refer to the distance between two adjacent ver-
tices but between two vertices of the same type or,
equivalently, between two face centres. This en-
sures that the hexagonal cases with classification
(n,m) are duals of the triangular cases with classi-
fication (n,m).

For anHD(n,m) class, without loss of generality,
we will take the origin of the source grid to be a
source vertex at (0, 0), with the next source vertex
of the same type at (n,m), n,m ∈ Z, 0 < n, 0 ≤

m ≤ n, and with the vertex at the origin being of
type v5.

The hexagon has source vertices of type v5
at (0, 0), (n,m), and (−m,n + m), with in-
tervening vertices of type v4 at

(
2n+m

3 , −n+m
3

)
,(

2n−2m
3 , 2n+4m

3

)
, and

(−n−2m
3 , 2n+m

3

)
. The face

centre of this source hexagon is at the arithmetic
mean of these six points:

(
n−m

3 , n+2m
3

)
. From

these, we can determine that v5 → f always (by
definition) and that:

n+ 2m mod 3 = 0 ⇒ v4 → f f→ f
n+ 2m mod 3 = 1 ⇒ v4 → v5 f→ v4
n+ 2m mod 3 = 2 ⇒ v4 → v4 f→ v5

Thus, if n+ 2m mod 3 6= 0, we do not have an HD
class because vertices of type v4 do not map to
face centres, and therefore we have an HM class.
Thus, for all HD classes, n + 2m mod 3 = 0, by
definition, and f→ f.

Analysis of the edges show that there are only
two possible edge mappings. If n mod 2 = m mod
2 = 0 we have e→ f. In all other cases, e→ e.

For theHP (n,m) classes let us take, as the origin
of the source grid, a source vertex of type v5 at(
c
3 ,

c
3

)
c ∈ {1, 2} where the value of c determines

the type of destination vertex (v4 or v5). The next
source vertex of type v5 is at

(
n+ c

3 ,m+ c
3

)
.

The hexagon has source vertices of type v5 at(
c
3 ,

c
3

)
,
(
n+ c

3 ,m+ c
3

)
, and

(
−m+ c

3 , n+m+ c
3

)
,

with intervening vertices of type v4 at(
2n+m+c

3 , −n+m+c
3

)
,
(

2n−2m+c
3 , 2n+4m+c

3

)
, and(−n−2m+c

3 , 2n+m+c
3

)
. The face centre of this

source hexagon is at the arithmetic mean of these
six points:

(
n−m+c

3 , n+2m+c
3

)
. By definition, if

c = 1 then v5 → v4 and if c = 2 then v5 → v5.
We need to consider the mappings for v4 and f for
each value of c.

For c = 1 :
n+ 2m mod 3 = 0 ⇒ v4 → v4 f→ v4
n+ 2m mod 3 = 1 ⇒ v4 → f f→ v5
n+ 2m mod 3 = 2 ⇒ v4 → v5 f→ f

For c = 2 :
n+ 2m mod 3 = 0 ⇒ v4 → v5 f→ v5
n+ 2m mod 3 = 1 ⇒ v4 → v4 f→ f
n+ 2m mod 3 = 2 ⇒ v4 → f f→ v4
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Thus, we have HM classes if n + 2m mod 3 = c
because, in these cases, v5 → v but v4 → f. For
HP schemes we can summarise our results as:

n+ 2m mod 3 = 0 ⇒ v→ v f→ v
n+ 2m mod 3 = 3− c ⇒ v→ v f→ f
n+ 2m mod 3 = c ⇒ HM not HP

It now remains to determine the edge mappings.
There are three types of edge to consider, which
can be characterised by one example of each. These
are the first three edges round the source hexagon
starting at the origin vertex and they are at(

2n+m
6 + c

3 ,
−n+m

6 + c
3

)
,
(

5n+m
6 + c

3 ,
−n+4m

6 + c
3

)
,

and
(

5n−2m
6 + c

3 ,
2n+7m

6 + c
3

)
. We thus need to

know the values of n and m which place these
coordinates at destinations vertices, face centres
or edges, which means that we need to consider
the values of 2n + m mod 6, 5n + m mod 6 and
5n+4m mod 6. Some basic analysis of these shows
that the following results hold:

(n−m) mod 3 = 0 and
n mod 2 = m mod 2 = 0 ⇒ e→ v
otherwise ⇒ e→ x

(n−m) mod 3 = 3− c and
n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ e
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