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Abstract

In this thesis we compare the effectiveness of different syntactic features and syntactic represen-
tations for prosodic boundary prediction, setting out to clarify which representations are most
suitable for this task. The results of a series of experiments show that it is not possible to
conclude that a single representation is superior to all others. Three representations give rise to
similar experimental results. One of these representations is composed only of shallow features,
which were originally thought to have less predictive power than deep features. Conversely, one
of the deep representations that seemed to be best suited for our purposes (syntactic chunks)
turns out not to be among the three best.
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Chapter 1

Introduction

Prosodic, or intonational, phrasing divides utterances up into meaningful “chunks” of informa-
tion that aid understanding. These prosodic chunks are formed when the speaker pauses at the
junctures between words. Such a pause is known as a prosodic phrase break, and the juncture
is known as a boundary site. For example, in the sentence

I wanted to go for a drive in the country.

a good place to insert a pause could be at the juncture between “drive” and “in”. On the
other hand, a break placed between “to” and “go” would sound strange ([9]). For longer, more
complex sentences there is usually more than one acceptable arrangement of phrase breaks,
often depending upon the meaning of the utterance. Consider two possible intonational phrase
arrangements for the sentence “Bill doesn’t drink because he’s unhappy” (example due to [29]):

1. Bill doesn’t drink because he’s unhappy.

2. Bill doesn’t drink, because he’s unhappy.

Without the comma, which here signifies a prosodic phrase break, the reader may conclude
that Bill drinks, but not from unhappiness. The second alternative, which places a pause af-
ter the comma, may be understood as if Bill avoids drinking when he is unhappy. Thus, the
assignment of appropriate phrase break boundaries is crucial to conveying meaning and is conse-
quently an important part of the generation of prosody in Text-to-Speech (TTS) systems. The
resulting prosodic phrase structure is vital in T'TS for improving intelligibility and naturalness,
in particular with longer texts.

Prosodic boundary prediction is thought to require both shallow information, like the pres-
ence of punctuation, and deep information, such as syntactic relationships between constituents,
discourse-level knowledge and semantic knowledge. However, extracting all the information
that could be potentially useful is currently infeasible for real-time systems. Past research has
therefore focused on exploring alternative methods and representations for the placement of
breaks. These approaches include manually written rules that employ detailed human knowl-
edge [5, 6, 7], machine learning methods [22, 29] and probabilistic methods [9]. In general we
distinguish between two types of phrase breaks, intonational phrase breaks which mark strong
prosodic boundaries such as the ends of sentences, and intermediate phrase breaks which are
used for relatively weak boundaries. Some studies do not distinguish between these two types
of phrase breaks, and only differentiate between breaks and non-breaks. There is also variation
between the methods in which features are used to make the predictions. The simplest features
are extracted from information given directly in the text, such as the type of punctuation and the

7



8 CHAPTER 1. INTRODUCTION

number of words, while the more complex features, such as syntactic and syllable information,
require a degree of analysis.

Unfortunately, there is also considerable variation in the data used to evaluate the methods.
Two common corpora available for research in universities are the MARSEC database of spoken
British English and the Boston University Radio News Corpus (BURNC), but a variety of other
data sets, of different sizes, have also been used. Many of these data sets have been prepared
for internal use in companies and universities and are not generally available. Making it even
more difficult to compare the different methods, researchers have also used dissimilar evaluation
metrics. Because of these disparities, it is difficult to determine from the existing literature how
effective various feature types and syntactic representations are for prosodic boundary prediction,
and how much rich representations contribute to performance. In this project we address these
issues with a series of experiments.
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1.1 Project aims
The primary goal of this work is to

Compare the effectiveness of different syntactic features and syntactic representations for
prosodic boundary prediction.

We design and implement a series of experiments to predict the placement of prosodic phrase
boundaries from a selection of syntactic representations. The experiments are based upon pre-
vious research, apart from one, which is designed from scratch (see section 4.5). Using the
prosodically annotated BURNC corpus we evaluate all the experiments using common measures,
which enables a fair comparison between the representations. The experiments are based on ma-
chine learning using TIMBL, a machine learning package which is described in section 3.2. The
programs for feature extraction have been written by the author of this dissertation. Some of
the tools needed to conduct the trials have been written by others, such as parsers and machine
learning scripts, as explained in section 3.4.



Chapter 2

Theory and representations

2.1 Brief theory of phrase breaks

The simplest classification of junctures between words is that of a break (i.e. prosodic boundary)
versus a non-break. Thus we can imagine a simplified TTS system having a prosody module that
makes only two decisions at the junctures between words. This simplified strategy, which we call
the N/B prediction level in the later experiments, is common in the literature. A finer gradation
divides the junctures into three classes rather than just two: non-breaks, and two classes for
the breaks (e.g. intermediate and intonational breaks). For example, the corpus utilised in
[7] distinguished between “secondary” phrase boundaries, associated with pitch changes, and
“primary” boundaries, which were commonly accompanied by a pause.

ToBi (Tones and Break Indices, [19]) is a system for describing aspects of prosody that is
frequently employed for intonational annotation'. It contains a break tier level which is useful for
characterising the structure of an utterance’s prosodic phrases, based upon both the pitch curve
of an utterance and a listener’s subjective opinion. This form of labelling consists of five levels,
numbered 0—4. Levels 0 and 1 are by far the most common break levels, signifying words that are
closely bound together. Level 2 is assigned to junctures that exhibit some form of contradiction
between the pitch pattern and subjective cues like preboundary lengthening that support the
subjective sense of boundary strength. Break indices 3 and 4 form a more natural progression
from 0 and 1. Index 3 is commonly assigned to junctures that exhibit a relatively weak, but
clear break (intermediate phrase break) while 4 signals the strongest breaks (intonational phrase
break). In practice, break index 4 occurs at the end of an utterance, between sentences and in
the presence of punctuation, while level 3 breaks can occur both with and without punctuation.
Usually, level 3 and level 4 junctures are considered phrase breaks, while levels 0-2 denote non-
breaks. In the literature a distinction is sometimes made between level 3 and level 4 breaks,
while all the other values are classified in the non-break category. We call this prediction level
3/4/N in the experiments. Thus there are two common levels of prediction that a prosodic
phrasing module for TTS can employ, N/B and 3/4/N.

2.2 Syntactic phrasing versus prosodic phrasing
Adding more complications to the task of predicting phrase breaks are differences in syntactic

and prosodic phrasing. While there is general agreement in the literature that there is some
relationship between the two, there is no direct mapping from one to the other, as intonational

!See http://www.ling.ohio-state.edu/research/phonetics/E_ToBI/singer_tobi.html for annotation
guidelines.

10



2.3. PREDICTING PROSODIC PHRASING 11

phrasing may disregard major syntactic boundaries in order to satisfy constraints on the phrase
length ([7]).

[7] lays out a theoretical study of the relationship. First, they present the factors said
to contribute to prosodic phrasing. A difference in syntactic category tends to affect phonetic
quality, exemplified by the word “live”, which is pronounced differently depending upon whether
it is used as a verb or an adjective. Knowing which category a word belongs to is usually
necessary to produce the correct stress pattern in the sentence. On the phrasing level, [7] notes
that misalignments between syntactic and prosodic structure occur frequently. Sentence 1 is an
example of this, in which the prosodic boundaries corresponding to the most common phrasing
appear as vertical bars in sentence 22:

1. This is [yp the cat that caught [p the rat that stole [p the cheese |||

2. This is the cat || that caught || the rat that stole || the cheese

Because prosodic structure is normally flatter than syntactic structure, there have been at-
tempts at devising rules to readjust the syntax to better fit the prosodic phrasing. However,
[7] claims that such rules are problematic since prosodic structure is heavily influenced by syn-
tactically unrelated issues. Semantics clearly has prosodic effects, but it is usually infeasible
to include semantic knowledge in a traditional Text-to-Speech system (although Concept-to-
Speech generation may benefit from semantic understanding). Mismatches between syntactic
and prosodic structure occur systematically and are often related to non-syntactic factors like
prosodic phrase length, which frequently overrides syntactic constituent length to generate a flat-
ter prosodic arrangement. Thus, while syntactic information is certainly an important source of
information for the TTS system’s prosody generation module, more shallow features are equally
useful. It is this apparent dilemma that gives rise to the many different representations that
have been employed for predicting prosodic phrase boundaries.

2.3 Predicting prosodic phrasing

There is a great variety in both the syntactic representations used to derive features and the
methods for predicting prosodic boundary locations found in the literature. The complexity
of representations range from punctuation and Part-of-Speech (POS) [9] via supertags [16] and
syntactic chunks [14] to link grammar [17], dependency trees [16] and syntactic constituents [18].
These varying levels of syntactic analysis can be predicted with different degrees of accuracy.
Information derived directly from the text, such as punctuation, is easily extracted. POS, the
next step up on the ladder of complexity, typically requires a tagger. Taggers nowadays perform
with very high accuracy, so POS can be predicted with higher accuracy than chunks, which
in turn are both easier and faster to predict than a full syntactic parse. Also, the accuracy of
the low-level representation affects the accuracy of the high-level representation since chunking
(“shallow parsing”) and parsing rely on POS tagging. Thus, the choice of representation for
prosodic boundary prediction has consequences for the TTS system’s size and speed. The ex-
tra time taken to compute a full parse, say, must be traded off with the potential benefits of
increased accuracy in the prosodic boundary prediction module. As shown above, the consider-
able variation in corpora and evaluation methods employed in previous research causes difficulty
in determining which representation is best suited for the purposes of TTS generation. Com-
monly, three different methods are employed with the representations: probabilistic methods
[9], machine learning methods [10, 29] and manually written rules [5, 6, 7].

*We always consider the end of a sentence to be a phrase break, although it is not marked as such here.
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2.3.1 Machine learning methods

In this work, we are primarily concerned with the machine learning approaches, since they
allow us to compare a number of different representations more easily than manually written
rules, which require a much more time-consuming implementation. In recent years, the machine
learning approach has become the most popular. Using such methods, one extracts certain
features, which are thought to have a positive effect on the resulting classifier’s predictive power,
from the text and syntactic representations. Typical features include the identity of punctuation
at a juncture and a POS N-gram. One set of features is derived for each juncture. The data is
generally divided into a training set and a smaller test set for evaluation. The machine learning
approach has the advantage that it is flexible, as new features can easily be added to the existing
feature set, allowing for quick experimentation. In this section we review some of the studies
into machine learning techniques for prosodic boundary prediction.

Shallow representations

[9] was an influential study that utilised a probabilistic model with a POS N-gram. The first
observation they made is that while a model that simply inserts phrase breaks after punctuation
is rarely wrong in assignment, it underpredicts and allows overly long phrases in the absence
of punctuation. To improve this simple model, the researchers turned to POS information, and
focused in particular on the need for estimating the probability of a break using not only the
words immediately surrounding each juncture, but also some knowledge of the overall context.
This would presumably lead to a classifier that optimises the break assignment across the entire
utterance rather than locally. For example, in sentence 1 it is argued that a break between
“drive” and “in” would work well, whereas in sentence 2 such an assignment would be unsuitable.

1. I wanted to go for a drive in the country.

2. I wanted to go for a drive in.

In order to give the classifier some sense of context, the authors employed a Markov model
to predict probabilities of POS sequences for utterances, where each state represented either a
break or a non-break and the transitions between states represented the likelihood of particu-
lar sequences of breaks and non-breaks occurring. Each state had an observation probability
distribution giving how likely that state was to have produced a particular sequence of POS
tags. The window around each juncture consisted of the two words before and the word after
the juncture, and the model represented the sequence

P(ck—1, ¢k, Cht1ldk)

where j is the current juncture and cj is the POS tag immediately preceding it. Using Bayes
rule, one can then combine the transition probability (P(j)) with the emission probability of
each state (P(C|j)). In order to take more context into account, [9] then used an N-gram of
junctures, giving the probability of a juncture type (break or non-break) given the previous N-1
junctures:

P(jk|jk—17jk?—27 e 7jk—N+1)

Training was accomplished straightforwardly by counting occurrences of junctures in all contexts.
The MARSEC corpus of spoken British English was used, consisting of a training set of 31707
words and a test set of 7662 words.
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Model B correct | Overall | NB incorrect
Punctuation 54.27% 90.76% 0.85%
C/F 84.40% | 71.29% 31.73%
POS N-gram, full tagset (37) 74.22% 90.26% 6.04%
POS N-gram, best tagset (23) 79.27% 91.60% 5.57%

Table 2.1: Results obtained by [9] for the N/B task. The column labelled “Overall” gives
the overall accuracy for breaks and non-breaks combined. See section 3.3 for definitions of
performance measures.

In [9] two simple baselines were used, one deterministically inserting a phrase break following
all punctuation and the other inserting a break after all content words followed by a function
word, as used for example by [20]. The results for the N/B task are shown in table 2.1 (the
distinction between different types of breaks received little attention). In summary, the punctua-
tion model was conservative, assigning phrase breaks at positions that are almost always correct,
but missing many other breaks. The content/function word model predicted many more breaks
correctly at the cost of overinsertion. A great increase in performance was achieved using the
POS N-gram. The latest version of the Penn Treebank tagset was employed, which consists of
37 tags. By reducing the size of the tagset, the researchers gained good improvement. They
also varied the size of the N-gram, but concluded that the number of words in the window is
not very important as long as more than two are used.

In [26], a method for optimising the tagset was investigated. It is computationally infeasible
to generate all the possible arrangements of POS tags and then evaluate the performance of each,
so “best-first search” was employed instead. Best-first search is a classic artificial intelligence
technique that aims to find the best possible solution for a specified problem given a particular
heuristic. The heuristic is employed to make the choice between several possible solutions. The
search algorithm then tries to find the solution that will optimise the heuristic. In [26], best-first
search was tested with a number of heuristics including the number of junctures correct, the
number of non-breaks correct and the number of breaks correct. The best heuristic, junctures
correct, increased the accuracy (junctures correct) by 2% and reduced the false insertion rate
by 1%.

Another improvement over the original POS model was suggested in [10]. This study added
two new feature types to the POS window, the CFP value and the expanded tag. The CFP
value distinguishes between content words, function words and punctuation. The choice between
content word or function word is based upon POS tags. The expanded tag takes the value of
the word itself if it is a function word and the POS tag otherwise (see section 4.3 and table
4.5). In addition to these two new features, the word itself was also added to the feature
set. All the feature types were employed in a window of the same size as the POS window,
and the researchers then experimented with different window sizes, feature combinations and
machine learning parameters to find the optimal combination. Their best experiment yielded an
increase of 2.5% in F-Score compared to [9]. Despite this result however, the authors were not
satisfied, concluding that they had not been able to show that adding more complex information
sources to the very general POS N-grams improves accuracy. In view of this conclusion, the
main contribution of [10] was probably the application of Memory-Based Learning (MBL) to
the phrase break prediction task. MBL is a classification-based, supervised learning approach in
which the classifier keeps all training data in memory and only abstracts at classification time
by extrapolating a class from the most similar item(s) in memory. Refer to section 3.2.1 for
more details on MBL.
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[29] employed another commonly used machine learning technique, classification and regres-
sion trees (CART). This study, conducted well before [9], took inspiration from [4] and [24]. [4]
proposed an algorithm for finding prosodic phrasing and pitch accent location, requiring both
discourse-level and syntactic information. [24] presented a method utilising a Hidden Markov
Model (HMM) for computing break indices from observed relative durations of phonetic seg-
ments. Noting that [4] assumes input not available from parsers, and that [24] made use of a
very small corpus for training and testing (35 sentence pairs), [29] carried out a series of experi-
ments using both shallow and deep features. The medium-size ATIS database was employed for
training and testing®. Numerous feature and information types were employed in their study:

e The length of the utterance, both in words and seconds. Utterance length was thought
useful since long utterances may tend to contain more boundaries than short utterances.

e The distance of the juncture from the beginning and end of the utterance, measured both
in seconds and in words. The intuition behind this feature was that boundary placement
may be affected by the position of the potential boundary site in question.

e The distance from the last phrase break location to the current juncture, which is poten-
tially useful since consecutive prosodic phrases often have approximately equal lengths.

e The sentence type, as it was considered possible that certain sentence classes contain more
phrase breaks than others. The sentences that were questions were thus divided into three
categories: wh-questions, direct yes/no questions and indirect yes/no questions.

e A POS N-gram, which was assumed useful since breaks were believed to be rare after
function words. A four-word window was used.

e The class of the lowest node in the parse tree to dominate the word to the left of the phrase
break but not dominating the right word, and vice versa. This constituency information
was included to test the hypothesis that some constituents may be more likely to be
separated by intonational boundaries than others.

e The pitch accent values of the words surrounding the juncture, as phrase breaks were
thought to occur less frequently between two deaccented words than between two accented
words. Both predicted accent values, obtained by text analysis, and observed accent values,
which were retrievable directly from the annotated corpus, were employed.

With different combinations of these feature types, the study proceeded with a series of ex-
periments. The first trial included all the features listed above. The experiment, using prediction
level N/B, was first carried out with the observed accent values and then with the predicted
values, and the results were very nearly the same for both trials. The overall accuracy was
deemed very high: 90% of junctures were correctly classified. One of the advantages of decision
trees is that the tree can be manually inspected after training to find which information sources
are most predictive. In this way, it was found that the prosodic phrase length was of great im-
portance. Syntactic constituency, which indicated that noun phrases form a tightly bound unit,
and accent information were also given great weight by the trained tree. When the actual accent
information was replaced by the predicted accent values, the tree compensated well, although
the predictions were sometimes incorrect.

In subsequent experiments, the amount of information presented to the machine learner was
gradually reduced. First, the phrase length was removed while keeping the observed accent

3See http://wave.1ldc.upenn.edu/Catalog/readme files/atis/sspcrd/corpus.html
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values, and then the predicted accent values were employed rather than the observed ones. This
resulted in only a small decrease in performance, to about 89%. Analysing the decision tree,
it became apparent that the learner had adapted to give higher weights to other information
sources than those originally weighted highest when all the feature types were in use. The
conclusion of the study was therefore that there was considerable redundancy in the features
used and that the CART technique was well suited to the task since linguistic insight was gained
by examining the tree’s nodes.

In a similar study ([15]), the development of the prosodic phrasing module in the Bell Lab-
oratories TTS system is described. Again employing decision trees, the feature set from [29]
was extended to include syllable information. While this new information did not appear to
be crucial for the classifier, the results provided very useful insights. The performance of the
decision tree was measured by comparing its break predictions against those of a manually an-
notated corpus. Inspecting the errors, it was found that only 101 out of 1072 mispredictions
actually produced phrasings that were unacceptable to a listener. Most of the apparent mispre-
dictions turned out to be acceptable, and a few were due to mistakes in the human annotation
of the corpus. It was also noted in [15] that the majority of the unacceptable phrasings were
due to the lack of deep features. Higher level constituency information was lacking, and this
led to predictions that were wrong when there was no disambiguating punctuation but the sen-
tence contained syntactic or semantic ambiguities. The obvious solution was to add syntactic
information to the feature set.

Deep representations

The work of [15] was therefore extended by adding features derived from a parse tree to the
feature set, as described in [18]. These new features included the sizes of the syntactic phrases
surrounding the juncture, in addition to boolean features denoting whether or not the phrases
were of a major type (NP, VP, PP, ADVP, ADJP) or labelled SBAR. The enlarged feature set
improved the F-Score by almost 2%, again using the N/B prediction level.

Following from ideas set out in [1], [14] explored a different syntactic representation, syntactic
chunks. The argument is that a syntactic chunk representation is better suited to prosodic
boundary prediction because it corresponds more closely to prosodic structure than standard
constituency-based grammars. The chunks are tree fragments where “problematic” segments
(for example prepositional phrases) are left unattached, as shown in figure 2.1.

NP PP VP NP PP

v S S S e

The professor from Milwaukee was reading about a biography of Marcel Proust

Figure 2.1: Chunk representation, showing how some phrases are not attached to the parse tree.
(figure taken from [3]).
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A chunk parser described in [11] was employed, which encoded the chunk tree structure with
brackets, for example:

[[ the device | | is attached || to a plastic wristband ] |

It can be seen that this structure is close to a possible prosodic structure (with prosodic bound-
aries between “device” and “is” and between “attached” and “to0”), and the study treated the
rightmost terminals in each chunk as carriers of phrase breaks. Thus a single boolean feature,
true if the word preceding the break is the last in its chunk, was employed to predict phrase
breaks, with reasonable results. It was found that performance could be improved by ignoring
the one-word chunks, and only treat the final words in chunks containing two words or more as
carriers of phrase breaks.

Another alternative to the standard constituent-based syntax, link grammar, was employed
in [17]. As shown in figure 4.7 in section 4.6, link grammar is based on the fact that links can
be drawn between syntactically related words without the links crossing. The idea underlying
the use of link grammar for the purpose of prosodic phrase break prediction is the similarity
between link grammar and break indices. A break index reflects the prosodic coupling between
words, while link grammar structures reflect the explicit syntactic coupling between words.
Assuming that there is a correspondence between these two types of coupling, [17] derived eight
features (described in section 4.6) that were extracted from link grammar parses and utilised
by a machine learner for predicting phrase breaks. While the results reported by [17] were
encouraging, a weakness of this study is that training and testing was done on a small corpus
of just 100 sentences. Furthermore, manual intervention was needed to select the correct parse
among the possibilities returned by the parser, which suggests that the method may not be
suitable for automation, at least with the parser in question*. More details on the different deep
representations mentioned in this chapter are given in chapter 4.

2.3.2 Rule-based methods

In contrast to machine learning methods, rule-based approaches to prosodic boundary prediction
utilise linguistic knowledge and require no training data [5, 6, 7]. The disadvantage of such
methods is that they are difficult to maintain and implement, lacking the flexibility of the
machine learning algorithms. While we are only concerned with machine learning approaches in
this dissertation, it is useful to briefly address one of the rule mechanisms that have been tried
in the past.

The authors in [7] has followed up on the theoretical analysis of prosodic phrasing with a
set of rules for predicting such phrases. Two types of rules are presented, one for predicting
the location of breaks and one focusing on the relative break strength. The location rules
first form phonological words from the lexical items in a parse tree and subsequently group
the phonological words into phrases. The resulting phonological phrases consist of elements
that cohere so strongly that they cannot be broken up with phrase breaks without changing
the semantics of the utterance, so phrase breaks can then be placed between the phonological
phrases. The phonological phrases are then combined with the parse tree, and the resulting
structure is processed by the boundary salience rules, which merge some of the phonological
phrases into larger ones (intonational phrases), creating a final phrase hierarchy. In this way,
breaks between phrases are diminished and strengthened such as to create a rhythm of phrases
of roughly equal lengths. The evaluation of this method was weak, with a corpus of only 35
sentences, so it is difficult to determine how effective the method is.

4See http://www.link.cs.cmu.edu/link/



Chapter 3

Experimental setup

To achieve the goal of comparing syntactic representations for their effectiveness for prosodic
boundary prediction, we reimplement in experiments some of the approaches described in chapter
2 within a single machine learning framework. In order to enable comparison among the results of
the experiments, we use a single corpus with the same machine learning software and evaluation
methods throughout. This setup is described in detail in the following sections.

3.1 The corpus

In the experiments we employ the Boston University Radio News Corpus (BURNC) [23], which is
based on speech from seven radio news announcers. The radio newscasting style is regarded as
particularly appropriate for Text-to-Speech applications and prosody modelling for several rea-
sons. The professional radio announcers tend to use clear and consistent indications of prosody,
which facilitate modelling and analysis of the style. Also, the task facing the newsreaders is
similar to that of a TTS system in that text should be read out in a pleasant and prosodically
correct way by choosing a prosodic pattern that reduces the risk of ambiguity.

The BURNC is divided up into two portions, radio news and a smaller lab news portion.
The radio news was recorded in the radio studio during broadcast, while the lab news part was
recorded in a laboratory. Since some of the radio news data contain background noise, it is of
inferior signal quality to the lab news, but as we do not work directly with the speech signal
itself, this is unlikely to have a drastic effect on our results.

3.1.1 Annotation

The two news portions consist of radio news stories forming paragraphs of a few sentences
per utterance. In addition to the actual speech, the corpus database contains orthographic
transcriptions, POS tags, prosodic labels and phonetic alignments for each utterance, stored in
separate files. The orthographic transcriptions were generated by hand, as were the prosodic
labels. A tagger was employed to automatically tag the corpus, with the oldest version of the
Penn Treebank tagset. For the lab news data, the POS tags were hand-corrected, and the
tagger’s error rate was found to be 2%. A speech recogniser provided phonetic alignments, and
these were employed to assist in prosodic annotation.

The ToBi labelling system was used to annotate the utterances prosodically. In addition to
the break index tier described in section 2.1, ToBi also consists of a tone tier for labelling accents
and phrase tones. We only utilised the phrase break annotation, however. Unfortunately, using
the corpus was not as straightforward as hoped.

17
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3.1.2 Inconsistencies

The BURNC has been widely used since its inception about ten years ago, and it was therefore
somewhat surprising to find a number of inconsistencies in the corpus. As a result, some of the
data files had to be excluded from the training and test set.

The inconsistencies are made up of quite subtle errors. For our purposes, only the phrase
break files, POS files and phonetic alignment files were required, all of which have a single
entry per word. Words such as “school-based” are sometimes split and sometimes not, but
unfortunately there are cases in which one of the file types contains a split and the others do
not, leading to misalignments. In addition, there are examples of phrase break files which have
extra entries that cannot correspond to any of the words in the text. Many of the problems were
quite easy to repair, and we manually edited some of the files to make them usable. However,
a large number of files had to be excluded from use because they suffered from errors that
were difficult to correct. We were unable to find any documentation describing these problems,
and the inconsistencies led to a smaller training and test set than would otherwise have been
employed.

3.1.3 Training and test data

We divided the usable data in the BURNC such that a little over 90% of the words were used for
training and a little less than 10% for testing, with 24462 words in the training set and 1895
in the test set. For the purposes of testing, the speech from two speakers, one male and one
female (respectively labelled “m3b” and “f3a”) was employed, while for training all but speaker
“m3b” were included. The choice of speakers for the training and test set was made to ensure
that no single speaker should dominate either set, so that the quality of the training and test
data should be roughly similar. The training and test files are listed in appendix A. This split
was used for training and testing in all of the experiments.

3.2 TiMBL

Two machine learning packages were considered in this work: the decision tree learner c4.5!
and the memory-based learner TIMBL? (Tilburg Memory-Based Learner) [13]. Both have been
successfully employed for prosodic phrase break prediction, although decision trees are more
frequently used.

3.2.1 Memory-based learning versus decision trees

In memory-based learning, all training data is kept in memory and abstraction is only per-
formed at classification time by extrapolating a class from the most similar items. This is in
contrast to decision trees, where rules are extracted from training data and subsequently used
for classification. The proponents of memory-based learning argue that the lack of abstraction is
an advantage for natural language processing tasks, since the approach remembers exceptional,
low-frequency items which are useful to extrapolate from. Decision trees, they claim, forget
such useful knowledge because of their frequency-based abstraction-methods and pruning. In
[10] and [22], TIMBL was found to perform well for predicting phrase breaks. Nevertheless,
decision trees can be manually inspected after training, which is very useful for understanding
which information types provide discrimination.

!See http://www2.cs.uregina.ca/ hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial .html
2See http://pi0657.kub.nl/software.html
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In the end, TIMBL was chosen for practical reasons. One of the supervisors Sabine Buch-
holz, is a TIMBL expert, and we benefited greatly from consultation with her. We employed
the memory-based learner throughout, using the IB1 metric. IB1 classifies on the basis of the
distance between a test item and each memory item (neighbour). In TIMBL this measure is im-
plemented by summing the differences between the feature values. Having chosen the algorithm,
there remained several settings that could be set to optimise the classifier’s performance, such
as how neighbours should be weighted and how many neighbours should be used in measuring
the distance. There are a great number of potential settings that could be used for any given
prediction task, but fortunately an algorithm for finding the best learner settings was made
available by the TIMBL development team.

3.2.2 TIterative deepening

To improve the experimental performance, iterative deepening was applied. This process op-
timises the parameters of the learner given an algorithm (IB1 in our case) and training data,
beginning with a large pool of parameter settings. The first step applies each setting to a small
amount of training data and tests it on a held-out portion of the training data. Only the best
settings are kept, and the others discarded in the next round. This is repeated in a loop, expo-
nentially reducing the number of settings while exponentially increasing the size of the training
material, such that the time taken for each step is kept almost constant. The process terminates
when only the single best setting is left, or the best score is attained by several settings, in which
case a random parameter combination is chosen among the best ones. Iterative deepening was
applied in all our experiments.

3.3 Evaluation

To assess the performance of the machine learning methods, appropriate evaluation measures
were required. Other than precision and recall, common measures of performance for prosodic
phrase break prediction are percentage of junctures correct (accuracy)?, non-breaks correct and
breaks correct. Some authors give results where breaks and non-breaks are grouped together (e.g.
[29]). Grouping predicted breaks and non-breaks together artificially increases the performance
measures since non-breaks are much more frequent than breaks and easier to predict. For
example, in our data 72.6% of the junctures were non-breaks, so a classifier which predicts
non-breaks everywhere would yield a 72.6% accuracy.

The variation in evaluation methods causes confusion and makes results difficult to com-
pare [10]. In this study, we therefore employ three well-known, accepted evaluation measures:
precision (P), recall (R) and F-Score. We use the following definitions:

Number of breaks correctly predicted by classifier

Precision = 3.1
recision Number of breaks predicted by classifier (3:-1)
Number of breaks correctly predicted by classifier
Recall = - (3.2)
Total number of breaks in corpus
2-P-R
F-S = — 3.3
core = ——— (3.3)

Number of breaks and non-breaks predicted correctly by the classifier
Total number of breaks and non-breaks in corpus

3Note that junctures correct =
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Since non-breaks are far more common than breaks, the task of predicting non-breaks is relatively
easy. We are therefore not concerned with measuring performance on the predicted non-breaks,
and all results pertain to the prediction of phrase breaks.

3.4 Implementation

This dissertation focuses on comparing syntactic representations for prosodic phrase break pre-
diction, rather than production of software. Therefore, we do not discuss the details of the
implementation. Nevertheless, a significant programming effort has been invested. The major
part of the implementation has involved writing scripts and programs for extracting features
from the BURNC files and the output of parsers. In total, roughly 1000 lines of shell scripts,
1500 lines of Java and 9000 lines of C++ were written, and are included in the separate code
appendix.

While the actual feature extraction programs were written by the author, we employed
several programs written by others. The TIMBL package, the script for iterative deepening and
the MBSP chunker were all created at Tilburg University. In addition, Collins’ parser ([12]) and
Dan Bikel’s parser ([8]) were employed for the experiments that required deep features, as well as
a script written by Sabine Buchholz for converting the output of Collins’ parser to dependency
grammar. The lines of Java referred to above pertain to additions made by the author of this
dissertation to Dan Bikel’s parser.



Chapter 4

Machine learning experiments

To compare the various approaches discussed in the previous sections, we carried out experiments
with six different representations. For the first set of trials, only punctuation information was
employed. The complexity of feature extraction and syntactic representation was then increased
steadily via experiments using shallow features such as content/function word distinctions and
ultimately using features derived from a full parse tree.

All the experiments were carried out using the same training and test data sets (except for
very minor changes, see section 4.4 and 4.6). In addition, the same machine learner, TIMBL,
was used throughout, with iterative deepening. Each of the representations was used for both
the N/B and the 3/4/N prediction tasks. The six sets of experiments are described in detail in
the following sections.

4.1 Punctuation

4.1.1 Feature set and results

The most basic representation we can use to predict prosodic phrasing is punctuation informa-
tion. When speaking, we naturally pause at the end of sentences, and also often do so within
sentences. Since punctuation is used by writers to indicate rhythm and pausing, we intuitively
expect features derived from punctuation to provide strong clues for a machine learner on where
to place phrase breaks. This experiment could easily have been carried out employing a program
that deterministically inserts breaks at every punctuation mark. However, in order to compare
the results to the other trials, the punctuation experiment was executed using TIMBL.

This experiment uses only a single feature for each juncture, the punctuation mark itself, as
shown in figure 4.1. We defined the characters “.”, «”7, .7, 7«7 @7 4?7 4 be punctuation.

The performance results for this experiment are given in tables 4.1 and 4.2.

Experiment | Precision | Recall | F-Score | Prediction level
Punctuation 0.969 0.406 0.572 N/B
Punctuation 0.934 0.391 0.551 3/4/N

Table 4.1: Results for predicting prosodic phrase breaks using punctuation only. The measures
are for breaks only and do not consider non-breaks.
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Sentence But Jay Ash, Deputy Superintendent of the
Hampton County Jail in Springfield says the
surveillance system is not that sinister.

Text Break value

Ash, 4

Deputy 3-
Corpus Superintendent 1

of 2

the 1

Feature Break value

value

\, 4
Representation = 3

= N

= N

= N

Figure 4.1: Punctuation features for the TIMBL machine learning software.

“=" denotes a

word that has no punctuation, while the “\” is necessary to escape TIMBL control characters.
Note how the diacritic on the break value for “Deputy” is ignored. The “Corpus” entry shows
how the text is represented in the BURNC files. This example is for the 3/4/N prediction level.

Experiment | Precision 3 | Precision 4 | Recall 3 | Recall 4
Punctuation - 0.934 - 0.598
Table 4.2: The results of the 3/4/N experiments using punctuation only. “-” means that no

breaks of level 3 were predicted.
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Experiment | Precision | Recall | F-Score | Prediction level
Punctuation 0.969 0.406 0.572 N/B
POS 0.695 0.761 0.726 N/B
Punctuation 0.934 0.391 0.551 3/4/N
POS 0.650 0.537 0.588 3/4/N

Table 4.3: The results of the POS experiments. Punctuation results are also given for compari-
son.

4.1.2 Analysis

We note the high precision and low recall, leading to a low F-Score. Since only a single feature
is used for each juncture, the poor results shown in tables 4.1 and 4.2 are to be expected. The
classifier predicts a break everywhere it sees a punctuation mark, since in the training data
almost every juncture preceded by punctuation is marked as being a break. This conservative
strategy leads to underprediction of breaks. The breaks that are not predicted by the classifier
occur in contexts with no punctuation. In the training data there are overwhelmingly many
more instances of non-breaks in such contexts, so the classifier sets all junctures not preceded by
a punctuation mark to be non-breaks (72.6% of all junctures in the corpus are non-breaks). In
practice, such underprediction means that the classifier allows overly long phrases when there
is no punctuation in the text.

During training, almost all of the level 3 breaks observed by the machine learner are associ-
ated with junctures that have no punctuation. But nearly all of the punctuation-free junctures
are non-breaks, so the classifier decides that all of the junctures without punctuation are non-
breaks. Thus, as expected, predicting three classes rather than just break/non-break is a harder
task.

4.2 Part-of-Speech

4.2.1 Feature set and results

POS information is another readily available source of features, since the text in the BURNC
corpus is tagged. However, even if we employed untagged data, many fast and accurate POS
taggers exist. Another advantage of POS as a feature source is that both tagging and feature
extraction is fast. Thus, following the ideas in [9], we implemented a machine learning experiment
using a POS trigram as the only information source. The trigram was of the familiar form

POS,_3, POS,_1, POSp41

where POS,,_o and POS,,_1 are Parts-of-Speech for the two words preceding the juncture and
POS,, 41 is the Part-of-Speech for the following word. Punctuation is included explicitly in the
POS trigram, as shown in figure 4.2. The results of the two POS experiments are shown in
tables 4.3 and 4.4.

4.2.2 Analysis

When using POS trigrams as training data, the F-Score and recall are clearly better than
when only punctuation is employed. The improvements displayed in tables 4.3 and 4.4 are to
be expected, since the classifier is now trained with three times as many features. For both
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Sentence But Jay Ash, Deputy Superintendent of the
Hampton County Jail in Springfield says the
surveillance system is not that sinister.

Word Tag Break
value
Ash, NP 4
Corpus Deputy NP 3-
Superintendent ~ NP 1
of IN 2
the DT 1
POS,, 5 POS,,_1 POS,, +1 Break
value
\, NP NP B
Representation NP NP NP B
NP NP IN N
NP IN DT N
IN DT NP N

Figure 4.2: Example POS trigram for input to TIMBL. Since “Ash” has a comma after it,
POS,,_3 becomes the comma rather than the POS tag of the previous word. The PO.S,, 11 value
for “the” comes from the tag of the following word “Hampton”. This example illustrates the
break /non-break prediction level.

Experiment | Precision 3 | Precision 4 | Recall 3 | Recall 4
Punctuation - 0.934 - 0.598
POS - 0.650 - 0.821

Table 4.4: The results of the 3/4/N POS experiments.
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prediction levels, precision is lower than for the previous experiments, but recall is much higher,
yielding a better F-Score.

As opposed to the previous experiment with breaks/non-breaks, there is now more over-
prediction, since precision has decreased. With three times as many features per record fed to
the machine learner, many more breaks can easily be distinguished from the non-break cases in
the training data, and this results in many more breaks being predicted. Consequently, recall
is much higher than for the punctuation-based experiment, but precision falls. Punctuation is
still, however, a very important feature in predicting breaks. Manual inspection of the classifier’s
output shows that every instance of sentence-final punctuation (“.”) is predicted to be a break.

There are still problems when predicting break levels 3 and 4 rather than just grouping
these two breaks into one class. Despite tripling the number of features, none of the breaks are
classified as 3. This is essentially due to the same reasons as noted in the punctuation-based
experiment. Most of the breaks in the training data are associated with punctuation. Of these,
almost all the breaks are level 4, so the classifier decides that all junctures with punctuation
should be breaks of level 4. In contrast, the “softer” breaks of level 3 often occur in circumstances
where there is no punctuation. As mentioned in section 4.1.2, there is such an overwhelming
majority of non-breaks in these contexts that the trained classifier predicts non-breaks in every
such instance.

No attempt was made to optimise the tagset. All 37 tags in the BURNC corpus were used,
which is most likely not ideal [9], [26]. For consistency, the same tagset was employed in all the
other experiments that utilised POS features. Although we did not investigate the effects of
varying the window and tagset size, it is obvious that there is a limit to how well a model based
on Parts-of-Speech alone can perform. This shallow model can be extended in two ways, either
by adding further shallow features such as content/function word distinctions or taking a deeper
approach using a parser. Both approaches were implemented, as described in the following
sections.

4.3 CXPOS

4.3.1 Feature set and results

The next set of experiments utilised two additional types of shallow information in addition to
Parts-of-Speech. Based on [10], we augmented the POS trigram with a CFP trigram and an
expanded tag trigram. The CFP-value distinguishes between content words (C), function words
(F) and punctuation (P), taking on one of the three values per word. Table 4.5 lists the POS
tags that together make up the F-tag. The expanded tag trigram contains the word itself if it
is a function word and the POS tag otherwise.

The idea behind adding these features is to change the granularity of the POS tags. The
CFP value brings down the number of tags to three, while the expanded tag removes all open
class words, leaving behind a fixed set of POS tags and closed-class words as values. An example
representation is shown in figure 4.3. The results of the two CXPOS experiments are shown in
table 4.6 and in table 4.7.
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POS tag Function
CC Conjunction
DT Determiner
EX Existential “there”
IN Preposition
MD Modal
POS Possessive
RP Particle
TO “to”
WDT Wh-determiner
WP Wh-pronoun
WRB Wh-adverb
CD Cardinal number
PP Personal pronoun
PP$ Possessive pronoun
UH Interjection
WP$ Possessive wh-pronoun

Table 4.5: The POS-tags making up the function words (F). This table is based on [10].

Sentence But Jay Ash, Deputy Superintendent of the Hampton County Jail
in Springfield says the surveillance system is not that sinister.
Word Tag Break
value
Ash, NP 4
Corpus Deputy NP 3-
Superintendent ~ NP 1
of IN 2
the DT 1
CFP XTAG POS Break
value
Representation © P ¢ \ NP NP, NP NP B
P C C NP NP NP |NP NP NP |B
C C F NP NP of NP NP IN |N
C F F NP  of the | NP IN DT | N
F F C of the NP |IN DT NP |N

Figure 4.3: Example CXPOS representation, as presented to the TIMBL software. The ex-
panded tag also includes the identity of punctuation, in the same way as the POS trigram.

4.3.2 Analysis

It is clear that the CXPOS representation is superior to using punctuation or POS alone. There
is a large increase in all performance measures. The most significant improvement is that we are
now able to predict level 3 phrase breaks, although the precision and recall shown in table 4.7
is very low for this type of prosodic break. Of course, the improvement is not unexpected, since
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Experiment | Precision | Recall | F-Score | Prediction level
Punctuation 0.969 0.406 0.572 N/B
POS 0.695 0.761 0.726 N/B
CXPOS 0.747 0.804 0.774 N/B
Punctuation 0.934 0.391 0.551 3/4/N
POS 0.650 0.537 0.588 3/4/N
CXPOS 0.631 0.621 0.626 3/4/N

Table 4.6: The results of the CXPOS experiments. Punctuation and POS results are also given
for comparison. XTAG stands for expanded tag.

Experiment | Precision 3 | Precision 4 | Recall 3 | Recall 4
Punctuation - 0.934 - 0.598
POS - 0.650 - 0.821
CXPOS 0.307 0.694 0.142 0.873

Table 4.7: The results of the 3/4/N CXPOS experiments.

we are now using nine features rather than just one or three as in the preceding experiments.

For the break/non-break experiment, the analysis is largely the same as for the correspond-
ing trials with POS trigrams. There is now more information available. Punctuation is still
an important clue for the classifier, particularly since the expanded tag also contains punctua-
tion information. The extra features give rise to roughly 4% increase in all three performance
measures.

It is only at this stage that the trained classifier is able to predict level 3 breaks. There are
now so many features that the level 3 breaks can be distinguished from non-breaks, although
with very low recall and precision. A close inspection of the classifier’s output reveals that the
feature most important for predicting the level 3 breaks is the expanded tag. As mentioned, the
expanded tag is the word itself if it is a function word, and the POS tag otherwise. This feature
is alone responsible for prediction of almost all the level 3 breaks. For the N/B-experiment, it
appears that both new features are equally effective in generating improvement over the POS
experiment. Using both new features together gives an extra boost to the results.

The CFP and expanded tag features that were added to the POS trigram are lexical. The
alternative, which may seem more promising, is to add deeper syntactic features instead, in
order to complement the POS features which themselves are properties of individual words.
This route was explored in the rest of the experiments.

4.4 Parsing

4.4.1 Feature set and results

In order to explore how close the correspondence between standard constituent-based syntax
structures and prosodic structure is, we first carried out an experiment inspired by [18], which
reports improvement when adding information derived from parse trees to shallow features.
Our linguistic intuition is that prosodic phrase breaks are more likely to occur between large
syntactic phrases and after major phrases (NP, VP, PP, ADVP, ADJP). Augmenting Dan Bikel’s
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Experiment Precision | Recall | F-Score | Prediction level
Punctuation 0.969 0.406 0.572 N/B
POS 0.695 0.761 0.726 N/B
CXPOS 0.747 0.804 0.774 N/B
Parser without POS 0.725 0.748 0.737 N/B
Parser and POS 0.717 0.774 0.745 N/B
Punctuation 0.934 0.391 0.551 3/4/N
POS 0.650 0.537 0.588 3/4/N
CXPOS 0.631 0.621 0.626 3/4/N
Parser without POS 0.757 0.499 0.602 3/4/N
Parser and POS 0.688 0.593 0.637 3/4/N

Table 4.8: The results of the experiments with Dan Bikel’s parser, in addition to previous
results. “Parser without POS” and “Parser and POS” denotes that the four parser features
were employed without and with a POS trigram.

Experiment Precision 3 | Precision 4 | Recall 3 | Recall 4
Punctuation - 0.934 - 0.598
POS - 0.650 - 0.821
CXPOS 0.307 0.694 0.142 0.873
Parser without POS - 0.757 - 0.762
Parser and POS 0.333 0.739 0.105 0.850

Table 4.9: The results of the 3/4/N parser experiments.

probabilistic parser [8]' with functions and classes for extracting features from the parse tree,
we implemented experiments using the following features:

F1 A boolean feature indicating whether or not the largest phrase ending with the current
word is a major phrase.

F2 The size of the largest phrase ending with this word.
F3 A binary flag indicating if the next phrase is an SBAR.

F4 The size of the next phrase which is on the same level in the parse tree as the largest phrase
ending with the current word.

If the following phrase is just one word, it is collapsed with the next phrase with regard
to the last feature. The final feature was added since intonational phrase breaks frequently
occur before sub-clauses. The parse tree for the example sentence is displayed in figure 4.4 and
overleaf, and example feature values are shown in figure 4.5. In addition to these features, we
also added a POS trigram (as in the previous experiments) in another set of experiments. Very
minor changes to the training and test set were required, since a few of the sentences did not
parse. One sentence was removed from the corpus, and five sentences needed trivial changes to
the POS tags in order to parse. The results are shown in tables 4.8 and 4.9.

!See http://www.cis.upenn.edu/ dbikel/
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SBAR
|
S
NP VP
DT NN NN  VBZ RB NP
| | | | TN
the  surveillance system 18 not DT JJ

that sinister

Figure 4.4: The SBAR branch of the example parse tree.

Sentence But Jay Ash, Deputy Superintendent of the Hampton
County Jail in Springfield says the surveillance system is
not that sinister.

Text Break
value
Ash, 4
Corpus Deputy 3-
Superintendent 1
of 2
the 1
F1 F2 F3 F4 Break value
Y 2 N 9 B
. N 1 N 2 B
Representation v 9 N . N
N 1 N 6 N
N 1 N 2 N

Figure 4.5: Example representation using Dan Bikel’s parser. The parser uses the latest version
of the Penn Treebank tagset, and since the BURNC is tagged with the old tags, we had to map
from the old to the new tagset manually.
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Experiment | Feature | Precision | Recall | F-Score

Parser and POS 1 0.633 0.552 0.590
Parser and POS 2 0.687 0.565 0.620
Parser and POS 3 0.638 0.561 0.597
Parser and POS 4 0.656 0.542 0.594

Table 4.10: Using only one of the syntactic features in addition to the POS window for the
3/4/N experiments.

4.4.2 Analysis

Tables 4.8 and 4.9 show that only one of the experiments, “Parser and POS” on the 3/4/N task,
improves upon the results from the CXPOS experiment. That “Parser and POS” experiment
also trades off recall for precision, while recall and precision using the CXPOS representation
are better balanced. It is somewhat surprising that this is the only experiment that yields
improvement over CXPOS, since we are now using a combination of shallow and deep features
rather than only shallow features.

Without the POS trigrams, the “coarse” break/non-break experiment yields a slightly better
F-Score than when using POS on its own. When predicting level three and level four phrase
breaks in addition to non-breaks, the parser-derived features also improve upon the F-Score
of the POS trigram. Since the difference between recall and precision is large, with relatively
high precision and low recall, the parser derived features are more conservative than POS alone.
This suggests that the syntactic information could work as a replacement for POS trigrams.
However, due to the possible trade-offs in memory requirements and computational cost, such
a substitution may not be practical.

Comparing the results of the best parser experiment against the CXPOS experiment, it is
evident that the CXPOS approach performs better at predicting level 3 breaks, but worse when
it comes to predicting level 4 breaks. It is difficult to determine why this is the case, but the
difference is so small that it may not be significant, as the absolute number of level 3 predictions
is low (about 70).

Tables 4.10 and 4.11 show the results when using only one of the syntactic features at a time,
in addition to the POS window. Feature 2 is the most effective at predicting level 4 breaks, and
since these breaks are the most numerous, the overall result is improved. Features 3 and 4 are
the only ones that enable the classifier to predict level 3 breaks, but are still not very effective
on their own. The number of predicted level 3 breaks is much higher when all features are used
together.

In summary, the idea that phrase breaks most often occur between large syntactic phrases
and after major phrases is confirmed, as the syntactic representation used in this experiment
outperforms the POS trigram on its own. However, the improvement over the simpler experi-
ments is not great, which was also observed by [18]. It is somewhat surprising that the parse tree
features are only superior to those used in the CXPOS experiments for prediction level 3/4/N
with POS. A possible explanation is that there were more features used in the CXPOS experi-
ments, which may have outweighed any advantages that the parse tree features have in the case
of the break/non-break experiments. In addition, punctuation information was included in two
of the features in the CXPOS experiments. The next experiments employ a larger number of
deep features, with different syntactic representations, and thus give us an opportunity to decide
whether deep feature types, with more information per data point, improve the prediction of
phrase breaks.
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Experiment | Feature | Precision 3 | Precision 4 | Recall 3 | Recall 4
Parser and POS 1 - 0.636 - 0.8436
Parser and POS 2 - 0.687 - 0.863
Parser and POS 3 0.25 0.654 0.025 0.844
Parser and POS 4 0.125 0.679 0.012 0.821

Table 4.11: Using only one of the syntactic features in addition to the POS window. Feature
1 is a boolean value indicating whether or not the phrase ending with the word is a major one
(NP, VP, ADJP, ADVP, PP). Feature 2 is the number of words in the biggest phrase ending
with the word. Feature 3 is a boolean value indicating whether or not the next phrase has the
label SBAR. Feature 4 is the number of words in the next phrase.

4.5 Syntactic chunks

4.5.1 Feature set and results

Shallow parsing, or chunking, is a simpler syntactic representation than a full parse tree. When
reading, we naturally split the text into chunks. Superficially, the chunks are similar to prosodic
phrases, since boundaries usually fall between chunks [3]. Thus an advantage of the chunk
representation, is that it might correspond more directly to prosodic phrasing than the other
syntactic representations investigated here. From a practical perspective, an additional benefit
of syntactic chunks is that they require less computation time than a full parse. Despite these
advantages, the chunk representation has not been extensively employed for predicting prosodic
phrasing. The author of [5] used chunks to obtain ¢-phrases, a kind of phonological phrase
categorised as a low-level prosodic phrase. [22] utilised the identity of chunks together with
other, non-chunk related features, in experiments on prosodic boundaries and pitch accents
in Dutch. Taking inspiration from some of these earlier studies, we designed experiments to
ascertain the effectiveness of features derived from syntactic chunks.

For this purpose, we used MBSP (Memory-Based Shallow Parser)?. The MBSP chunker does
not return a full parse, but rather identifies phrases (NP, VP and so on). The output is a partial
parse, an example of which is depicted in figure 4.6. The following features were extracted:

F1 The identity of the chunk holding each word (NP, PP ...), extracted in a trigram window
in order to take account of context. For words outside of chunks, the value “O” is used.

F2 Distance to end of sentence, measured in words. This feature is not specific to the syntactic
chunks representation, and was only employed in the experiments labelled “FullChunks”
and “FullChunks and POS”.

F3 Length of the current chunk. For words outside chunks this feature is 0.

F4 Length of the previous chunk. If the word before the start of the current chunk is outside
all chunks, this feature is 0.

F'5 Boolean feature indicating whether or not a word is followed by punctuation. This fea-
ture is not specific to the syntactic chunks representation, and was only employed in the
experiments labelled “FullChunks” and “FullChunks and POS”.

F6 Boolean feature indicating whether or not a word is the last in its chunk.

2See http://ilk.kub.nl/cgi-bin/tstchunk/demo.pl
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F7 A symbolic feature, extracted in a trigram window in order to take context into account:

B - The word marks the beginning of a chunk.
E - The word marks the end of a chunk.
I - The word is inside a chunk, but neither first nor last.

O - The word is outside all chunks.

The first round of experiments was completed with a version of MBSP that accepts POS tags
from an external tagger, so that we could use the BURNC tags. However, we discovered subtle
errors in the chunker’s output, when compared to a recent version of MBSP that uses its own
internal tagger. For example, some of the chunks would be very long and obviously erroneous.
This might be because the version of MBSP that accepts tagged input is old and not well trained.
The chunked data from this version was not adequate for our purposes, and we used the current
MBSP implementation, which performs its own POS tagging. We were therefore not able to
employ the POS tags from the BURNC for this experiment, as used in the other experiments, so
we cannot directly compare the results of the chunk-based experiments with the others, without
bearing in mind that their performance might be affected by the accuracy of the MBSP tagger.
Nevertheless, if we assume that the accuracy of the MBSP tagger is high, the results should still
be good enough to let us conclude if the chunk representation is well suited to prosodic phrase
prediction or not.

Sentence But Jay Ash, Deputy Superintendent of the Hampton County Jail in
Springfield says the surveillance system is not that sinister.
Word Tag Break
value
Ash, NP 4
Corpus Deputy NP 3-
Superintendent ~ NP 1
of IN 2
the DT 1
Chunks But/CC [NP Jay/NNP Ash//NNP NP] ,/, [NP Deputy/NNP Superin-

tendent//JJ NP] {PNP [PP of/IN PP] [NP the/DT Hampton//NNP
County /NNP jail/NN NP] PNP} {PNP [PP in/IN PP] [NP Spring-
field/NNP NP] PNP} ,/, [VP says/VBZ VP] [NP the/DT surveillance/NN
system /NN NP] [VP is/VBZ VP] not/RB [ADJP that/RB sinister/JJ
ADJP] /.

F1 trigram F2 F3 F4 F5 Fé6 F7 trigram Break

NP NP NP 17
Representationl NP NP NP 16
NP NP PP 15
NP PP NP 14
PP NP NP 13

IONSECHCEN
CE NN
Zz22 2~
K220
osBeslive R es v
osBlsllcsBve ey
anlivelive R es livy
ZzzwWw®

Figure 4.6: Example showing chunks as produced by MBsP and features presented to TIMBL.
The chunks do not overlap. The chunk label “PNP” groups together a preposition and one
or more NPs that together form a prepositional chunk. The PNP label was ignored in our
experiments, since it sometimes creates overly long phrases and is therefore unlikely to be useful
for prosodic boundary prediction. The chunks inside PNPs were treated as ordinary PPs and
NPs on their own.
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Experiment Precision | Recall | F-Score | Prediction level
Punctuation 0.969 0.406 0.572 N/B
POS 0.695 0.761 0.726 N/B
CXPOS 0.747 0.804 0.774 N/B
Parser without POS 0.737 0.680 0.707 N/B
Parser and POS 0.702 0.785 0.741 N/B
ChunksWindow 0.653 0.418 0.510 N/B
ChunksWindowPOS 0.706 0.778 0.740 N/B
AdvChunksWin 0.629 0.708 0.666 N/B
AdvChunksWinPOS 0.710 0.787 0.746 N/B
Punctuation 0.934 0.391 0.551 3/4/N
POS 0.650 0.537 0.588 3/4/N
CXPOS 0.631 0.621 0.626 3/4/N
Parser without POS 0.741 0.531 0.619 3/4/N
Parser and POS 0.686 0.586 0.632 3/4/N
ChunksWindow 0.491 0.471 0.481 3/4/N
ChunksWindowPOS 0.636 0.552 0.591 3/4/N
AdvChunksWin 0.493 0.482 | 0.488 3/4/N
AdvChunksWinPOS 0.637 0.557 0.594 3/4/N

Table 4.12: The results of the chunk-based experiments. The ChunksWindow experiment only
utilises the trigram of feature 1, the identity of the chunk containing the two preceding words
and the succeeding word. AdvChunksWin employs all the features except 2 and 5.

In all, four sets of experiments were conducted. The first experiment (ChunksWindow) used
the trigram of feature 1 only, while the second experiment added a POS trigram (ChunksWin-
dowPOS). The third experiment used all of the chunk-related features above (features 1, 3, 4, 6

and 7) without POS (AdvChunksWin), while the fourth added a POS trigram (AdvChunksWin-
POS). The results of this series of experiments are shown in tables 4.12 and 4.13.

4.5.2 Analysis

It is natural to compare the ChunksWindow experiment with the POS experiment, since both
employ a basic feature type. The difference between the two is that the features in ChunksWin-
dow are the names of the chunks that hold the preceding and succeeding words, rather than
the individual words’ POS tags. Since the chunks can be regarded as a more natural syntactic
unit to use for prosodic phrase prediction than single words, one might expect the results of
the chunk-based experiments to be similar to that of the POS-based experiments. However, it
is evident from table 4.12 that the ChunksWindow representation is by far inferior to the POS
representation.

In fact, for the break /non-break experiment, the F-Score is more than twenty per cent lower
when using just the chunk identity trigram instead of the POS trigram. Precision is only four
per cent lower, but the recall is so poor that the F-Score is drastically reduced. This is probably
because the POS trigram makes punctuation information explicit, while there is no punctuation
information present in the chunk trigram. When the POS information is added, the trained
classifier only predicts a break if there is punctuation. Although the chunk trigram is different
from the POS trigram in that chunk names are employed instead of POS tags, we conclude
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Experiment Precision 3 | Precision 4 | Recall 3 | Recall 4
Punctuation - 0.934 - 0.598

POS - 0.650 - 0.821

CXPOS 0.307 0.694 0.142 0.873

Parser without POS - 0.741 - 0.811
Parser and POS 0.194 0.734 0.043 0.873
ChunksWindow - 0.494 - 0.736
ChunksWindowPOS 0.207 0.669 0.037 0.824
AdvChunksWin - 0.491 - 0.720
AdvChunksWinPOS 0.195 0.686 0.049 0.824

Table 4.13: The results of the 3/4/N chunk experiments.

that giving the classifier context information on tags or phrase/chunk names without providing
punctuation information is a poor representation.

Of all the syntactic representations we tested, the chunk representation initially appeared to
be the most promising, because it is seemingly closer to the prosodic structure than any of the
other representations. However, tables 4.12 and 4.13 show that adding the other chunk-related
features to the chunk identity trigram does not in general yield good improvements over the
ChunksWindow experiments. When adding more chunk-related features, it is only the N/B
AdvChunksWin experiment that brings about great improvement over ChunksWindow (15.6%
higher F-Score). Therefore, employing all the chunk features on the N/B task is preferable
to using just the chunk identity trigram, but the improvement is much lower than expected
for the 3/4/N experiment. Furthermore, the AdvChunksWinPOS representation does not give
greatly improved results compared to ChunksWindowPOS. It is natural to compare the Ad-
vChunksWin experiments to the parser experiments, since AdvChunksWin represents our best
attempt at utilising syntactic chunks for the purposes of prosodic boundary prediction. The
only AdvChunksWin experiment with better results than the corresponding parser experiment
is the AdvChunksWinPOS N/B experiment, yielding a 0.5% higher F-Score than the Parser
and POS experiment. Given that the AdvChunksWin experiments involve more features than
the parser experiments and the apparent similarity between the syntactic chunks and prosodic
structure, these results are surprising.

In order to further investigate the chunk representation, we executed several more experi-
ments, summarised in tables 4.14 and 4.15 (for clarity, the results for the more detailed prediction
level experiments are omitted). The AdvChunksl and AdvChunks2 experiments were carried
out to investigate the effect of employing features 6 and 7, since the information in feature 6 is
repeated in feature 7. It can be observed that the AdvChunksl and AdvChunks2 experiments
perform similarly, which is not surprising given that a duplicated piece of information is the only
difference between them. The FullChunks experiments were carried out to determine whether
the two additional, non-chunk features 2 and 5 would improve performance. For the N/B ex-
periment, this idea is confirmed, since FullChunks gives a 3.8% increase in F-Score over the
corresponding AdvChunksWin experiment. However, comparing FullChunksWin, AdvChunks1
and AdvChunks2, it is also evident that the trigrams of features 1 and 7 designed to provide
context information are superfluous, since AdvChunksl and AdvChunks2 performs better than
both FullChunksWin and AdvChunksWin (without the POS trigram).

The most interesting result is that ChunksWindowPOS performs so well compared to the
other chunk-based experiments. Although these experiments were being carried out with differ-
ent POS tags than those found in the corpus, if we assume that the MBSP tagger is accurate, we
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Experiment Description

AdvChunksl Uses all the features apart from POS individ-
ually (not employing trigrams for features one
and seven).

AdvChunks2 Same as AdvChunksl, but without feature six.

FullChunks Using all the features apart from POS, with a
trigram for features one and seven.

FullChunks and POS As FullChunks, but including the POS trigram.

Table 4.14: Describing the further chunks experiments.

Experiment Precision | Recall | F-Score | Prediction level
AdvChunksl 0.723 0.695 0.709 N/B
AdvChunks2 0.722 0.691 0.706 N/B
FullChunks 0.714 0.693 0.704 N/B
FullChunks and POS 0.711 0.770 0.739 N/B

Table 4.15: The results of the further chunk-based experiments.

can conclude that the chunk representation is not as well suited to prosodic boundary prediction
as expected. Despite adding many features designed to provide fine-grained information on how
the words are distributed among the chunks, we were generally unable to produce improved
results in comparison with the parser and CXPOS representations (although AdvChunksWin-
POS performs well on the N/B task). Nevertheless, we cannot completely dismiss the syntactic
chunks on the basis of these experiments. It may be that the features we have derived are not
particularly good, and that other features would have yielded a better outcome. Rather than
conducting further investigations into chunks, however, we tested a different syntactic represen-
tation.

4.6 Dependency grammar

4.6.1 Feature set and results

In dependency grammars, phrase-structure rules and constituents do not play any fundamental
role. The structure of a sentence is instead described in terms of words and binary syntactic
or semantic relations between these words. Often, these relations can be depicted in a diagram
consisting of arcs connecting words. There are several implementations of the dependency
grammar formalism. One of these computational grammars is Link Grammar [27]3.

The basis of link grammar is the observation that for sentences in most languages we can
draw non-crossing undirected arcs between syntactically related words. Link parsers produce a
link diagram, showing the syntactic links between words, each link labelled with a type [27]. We
considered using the link grammar formalism as an alternative to standard constituent-based
grammars, since the diagrams show explicit syntactic coupling between words. Because the break
indices in the BURNC reflect the prosodic coupling between words, there is a similarity between
the two representations on the abstract level. The initial goal was therefore to reimplement an
experiment from [17]. Unfortunately, it turned out that the Link Grammar parser employed by

3See http://www.link.cs.cmu.edu/link/
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[17] is not robust, as it is only able to parse a little less than half of the sentences of the BURNC.
In addition, it usually returned more than one parse per sentence, such that the correct parse
for each sentence would have to be manually selected. Therefore, utilising Link Grammar for
predicting prosodic phrasing was deemed infeasible for these experiments. Instead, we carried
out a series of experiments with the same features as suggested in [17], using a dependency
grammar structure extracted from the textual output of Collins’ parser [12]. Collins’ parser
is a robust, statistical parser and parses all (but one) of the sentences in the corpus. The
dependencies produced by Collins’ parser are not unlike those found by the Link Grammar
parser, but differ in that the arcs are directed.
The features employed in [17] were

F1 (label) - The label on the most immediate link crossing a word juncture.
F2 (cover) - The number of links above the most immediate link.

F3 (to_left) - The number of words from the word to the left of the juncture to the left end
of the most immediate link.

F4 (to_right) - The number of words from the word to the right of the juncture to the right
end of the most immediate link.

F5 (prev_nlc) - The number of links from the word on the left of the juncture to its left.
F6 (prev_nrc) - The number of links from the word on the left of the juncture to its right.
F7 (next_nlc) - The number of links from the word on the right of the juncture to its left.

F8 (next_nrc) - The number of links from the word on the right of the juncture to its right.

The assumptions behind these features are that links between words couple them more tightly
prosodically than if no links exist between the words. Also, shorter links will provide tighter
coupling than long links, and if there is an increase in the coupling of a word in one direction
there will be a corresponding decrease in the other direction. Thus, as the value of cover rises,
the coupling across the juncture should increase and the more likely it will be that there is no
break between the words. Likewise, as the value of to_left increases, we expect the strength of
coupling over the current juncture to decrease, thus making the juncture more likely to be a
break.

Figure 4.7 shows the conversion from the textual output of Collins’ parser through to the
features presented to the machine learner. One of the training sentences had to be removed
from the data set because it could not be parsed. The results of the experiments we carried out
with the features F1-F8 are shown in table 4.16 and table 4.17.

4The dependencies were extracted employing a script written by Sabine Buchholz of Toshiba Research Europe.
See http://www.ai.mit.edu/people/mcollins/ for more information on the parser.
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Sentence Again, Department of Public Works Commissioner Jane Garvey:
Parser output (TOP Department 1 1 (FRAG Department 2 2 (ADVP Again 1 1
Again/RB ,/PUNC, ) (NP Department 2 1 (NPB Department 1 1
Department/NNP ) (PP of 2 1 of/IN (NPB Garvey 5 5 Public/NNP
Works/NNP Commissioner/NNP Jane/NNP Garvey /NNP :/PUNC: ) )
)))
Word Tag Punc. Dependency Distance
Again RB ,/PUNC, ADVP_FRAG 1
Department ~ NNP - TOP_ROOT 0
of IN - PP_NP -1
Extracted Public NNP - chunk NPB 4
Works NNP - chunk_NPB 3
Commissioner NNP - chunk_NPB 2
Jane NNP - chunk_NPB 1
Garvey NNP :/PUNC: NPB_PP -5
NPB_PP
chunk_NPB
chunk_NPB
ADVP_FRAG PP_NP chunk-NPB
hunk NP
Dependency Again, Department of Public Works Commissioner Jane Garvey:
diagram
F1 F2 F3 F4 F5 F6 F7 F8 Break value
ADVP_FRAG 0 0 0 0 1 0 0 3
PP_NP 0 0 0 0 0 1 0 1
Features NPB_PP 0 0 4 1 0 0 1 1
chunk_NPB 1 0 3 0 1 0 1 1
chunk_NPB 2 0 2 0 1 0 1 3
chunk_NPB 3 0 1 0 1 0 1 4
chunk_NPB 4 0 0 0 1 1 0 1
chunk_NPB 0 5 0 1 0 = = 4

Figure 4.7: Deriving features for the dependency grammar experiment from the output of Collins’
parser. The values of next_nlc and next_nrc (features 7 and 8) are set to “=" for the last
word, to denote end of sentence.

4.6.2 Analysis

Tables 4.16 and 4.17 show that the dependency grammar representation is the most promising
of the deeper representations. Both with and without the POS trigram it yields the best results
for both prediction levels compared to the parser and chunk representations.

Based on the tables, it is natural to compare the dependency representation to CXPOS, since
they have similar F-Scores. While the dependency grammar features are clearly better than the
CXPOS features for the detailed prediction level (comparing the F-Scores of Dependency and
POS experiment with the CXPOS experiment), the difference between recall and precision is
much higher when using dependency grammar. The dependency features allow the classifer to
retain a high precision for predicting breaks at the cost of recall. In practice, this means that
the breaks predicted by the classifer are often correct, but that too few of the phrase breaks are
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Experiment Precision | Recall | F-Score | Prediction level
Punctuation 0.969 0.406 0.572 N/B
POS 0.695 0.761 0.726 N/B
CXPOS 0.747 0.804 0.774 N/B
Parser without POS 0.737 0.680 0.707 N/B
Parser and POS 0.702 0.785 0.741 N/B
ChunksWindow 0.653 0.418 0.510 N/B
ChunksWindowPOS 0.706 0.778 0.740 N/B
AdvChunksWin 0.629 0.708 0.666 N/B
AdvChunksWinPOS 0.710 0.787 0.746 N/B
Dependency 0.779 0.667 0.719 N/B
Dependency and POS 0.740 0.821 0.779 N/B
Punctuation 0.934 | 0391 | 0.551 3/4/N
POS 0.650 | 0.537 | 0.588 3/4/N
CXPOS 0.631 0.621 | 0.626 3/4/N
Parser without POS 0.741 0.531 0.619 3/4/N
Parser and POS 0.686 0.586 0.632 3/4/N
ChunksWindow 0.491 0.471 0.481 3/4/N
ChunksWindowPOS 0.636 0.552 0.591 3/4/N
AdvChunksWin 0.493 0.482 0.488 3/4/N
AdvChunksWinPOS 0.637 0.557 0.594 3/4/N
Dependency 0.729 0.529 0.613 3/4/N
Dependency and POS 0.732 0.571 0.642 3/4/N

Table 4.16: Results of the dependency grammar experiments, including previous experimental
results for comparison.

Experiment Precision 3 | Precision 4 | Recall 3 | Recall 4
Punctuation - 0.934 - 0.598
POS - 0.650 - 0.821
CXPOS 0.307 0.694 0.142 0.873
Parser without POS - 0.741 - 0.811
Parser and POS 0.194 0.734 0.043 0.873
ChunksWindow - 0.494 - 0.736
ChunksWindowPOS 0.207 0.669 0.037 0.824
AdvChunksWin - 0.491 - 0.720
AdvChunksWinPOS 0.195 0.686 0.049 0.824
Dependency 0.429 0.749 0.056 0.779
Dependency and POS 0.375 0.749 0.037 0.853

Table 4.17: The results of the 3/4/N dependency grammar experiments.
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predicted. The F-Score is a means of weighing the precision and recall into an average measure,
and thus the dependency grammar representation scores highly. It is not clear if in practice
either precision or recall is most important, or whether they should be roughly the same. The
only way to answer this question would be to carry out perceptual experiments in which subjects
listen to speech produced using CXPOS features and dependency grammar features.



Chapter 5

Conclusions

5.1 Summary and conclusion

5.1.1 Overall results

We have implemented and evaluated six of the most important syntactic representations for
predicting prosodic phrase breaks. Three of these, CXPOS, constituency-based parsing and
dependency grammar, stand out as superior to the rest. The differences in performance between
these three representations are not so great, however, that we can safely pick a “winner”. While
both the parser and dependency grammar experiments show improvements in F-Score over CX-
POS when predicting level 3 and level 4 phrase breaks rather than breaks/non-breaks, there is
still a large difference between precision and recall. As mentioned, we do not know which of
precision and recall to prioritise, so without perceptual evaluation it is not feasible to claim that
either the parser or the dependency grammar representation is more suited to break prediction
than the other. It is quite surprising that the shallow CXPOS representation performs so well
compared to the deeper chunk-based, parser-based and dependency grammar-based representa-
tions. This indicates that it may not be worth the extra time taken to extract features from the
more advanced syntactic representations. While there are certainly fast, robust parsers around,
none can match the speed of the extraction of CXPOS features, which is based only on the
words and POS tags of the text.

The most surprising result, however, is the relatively poor performance of the syntactic
chunks, as produced by a shallow parser. On a superficial level, it seems that the syntactic
chunks structure is much closer to the flat structure of prosody, so we expected the chunk-based
features to yield very good performance. Given the use of external tagging, we cannot rule out
that the results would have been better if we had employed a more suitable shallow parser. It
would have been useful to employ the CASS chunker! for comparison, or even vary the features,
if time had permitted [2].

5.1.2 Predicting level 3 and level 4 phrase breaks

In general, the task of predicting a level 3 phrase break is much more difficult than predicting
a level 4 break. From inspection of the training and test data sets, we would intuitively expect
this result, since there are more than twice as many level 4 breaks as level 3 breaks. Moreover,
the level 3 breaks often occur in contexts without punctuation. As shown, punctuation is often
taken by the machine learner as a strong indicator of a level 4 phrase break. But where there is
no punctuation, a non-break is much more likely than a break. The non-break instances are so

!See http://www.vinartus.net/spa/

41
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numerous in these cases that the classifier almost always chooses non-break.

Scrutinising the classifier’s output for the various experiments in detail, it is clear that using
punctuation alone does not provide enough information for the classifier to discriminate the two
break levels. Almost all the level 3 breaks occur in contexts without punctuation, and where
there is no punctuation, the classifier most often decides non-break. The level 4 breaks are more
numerous than the level 3 breaks where punctuation exists, so no breaks of type 3 are predicted
here either. It appears that the classifier is able to predict that there should be a break but not
which type the break should be. Many of the breaks correctly predicted in the N/B-experiments
are level 3, but the classifier often gets the same level 3 breaks wrong when carrying out the
3/4/N task. There are also confusions between level 3 and 4 breaks, usually in cases where there
are several examples in the training data of the same feature values for both levels. Since break
level 4 is more common than 3, 4 is often predicted in these cases.

The experiments that give the best results when we predict break/non-break also yield the
best performance for the fine-grained experiments. In particular, the CXPOS experiment is far
superior to all the other experiments when it comes to deciding on level 3 phrase breaks, as
displayed in table 4.17. However, the actual precision and recall for the level 3 breaks is still
low, so that even for the CXPOS experiment we cannot be satisfied with the result.

5.1.3 Summary

In summary, we have compared different syntactic representations for their effectiveness in pre-
dicting prosodic phrase breaks. The results are useful in that they suggest that shallow features
like CXPOS can perform just as well as deep features. Especially in the areas of perceptual
evaluation and the significance of the distinction between different phrase breaks more research
is clearly required if we are to choose a particular representation. Some suggestions for such
work are outlined in the next section.

5.2 Further work

Although we have compared six important syntactic representations, there are still many holes
left to be filled in our knowledge of prosodic phrase break prediction for TTS. One of the most
valuable contributions would be a thorough perceptual study of how the accuracy of phrase
break prediction affects the listener’s experience. Two of the few studies completed on this topic
are [28] and [21]. These two papers concentrate mainly on how to take into account the fact that
there may be more than a single prosodic phrase structure for any given sentence, which affects
performance evaluation. Both publications showed that disagreement between human evaluators
is common when assessing the phrasing produced by prosodic modules in TTS systems. Such
variability in evaluation is so commonplace that it was found that a phrasing could only be rated
as unacceptable if more than half of the evaluators rejected it. This highlights a weakness in our,
and most other authors’, work, implying that simply relying on the corpus annotations is unlikely
to produce results that are useful in practice. It was also observed in the two papers that the
number of sentences that are fully compliant with the prosodic phrasing assigned by annotators
is important. A single misplaced break (or non-break) can render a sentence unacceptable to
human listeners. Hence, if this project were extended, we would recommend that more attention
be paid to human evaluation and sentence-level assessment.

None of the studies reported so far concentrate on the distinction between level three and
level four phrase breaks. Most studies focus on the distinction between breaks and the absence
of breaks rather than examining the finer difference between breaks. But when listening to the
radio speech samples in the BURNC, it is obvious that such a distinction is valid. Nevertheless,
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it has not been proved that distinguishing between the different types of prosodic phrase breaks
improves the performance of a practical TTS system. A study on the use of different types of
phrase breaks as compared with a single type of break would therefore be worthwhile.

Another issue that has not been fully resolved is how one should trade off precision against
recall. [28] goes some way toward answering this when discussing evaluation at the sentence level.
But since no prosodic phrasing module can be expected to correctly identify all the breaks, it
would be of practical value to find out if one should give priority to either precision or recall,
focus on maximising F-Score, or instead try to balance precision and recall as much as possible.

The corpora available for use in universities are not large enough for the purposes of training
machine learners for prosodic boundary prediction. The BURNC contains just over 32000 words
but is full of errors and inconsistencies that limit the number of useful utterances. It would
therefore be of helpful to research if these BURNC problems were corrected. An alternative
corpus (for English) is the MARSEC database of spoken British English [25]. Consisting of
recorded radio stories and totalling about 40000 words, this corpus is somewhat larger than the
BURNC, but compared to the 68000-word corpus employed in [18], it is still not particularly large.
Further work on corpora would therefore be of benefit to university research, but probably not
until more is known about how best to differentiate between different types of breaks.
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Appendix A

flajripl
flajrlp6
flarrlp2
flarrlp7
flas01p3
flas03pl
flas04pl
f1as04p6
f1as05p5
f1as06p5
f1as07p3
f1as08p3
f1as09p3
m1lbjrip2
mlbprlpl
mlbrrlp2
mlbrrlp7
mlbtrlpd
m1bs01p4
m1bs02p4
m1bs03p6
m1bs05p2
m1bs07p9
m1bs08p9
mlbs10p4
mlbsllpb
mlbs12p3

TRAINING SET:

flajrlp2
flaprlp2
flarrlp3
flatrlpb
flasO1p4
flas03p2
flas04p2
flas05p1
flas06p1
f1as06p6
flas07p4
flas08p4
flas09p4
mlbjrlp3
mlbprlp2
mlbrrlp3
mlbtrlpl
m1btrlp6
mlbs01pb
m1bs02p5
m1bs04p3
m1bs05p3
m1bsO7pb
m1bs09pl
mlbs10p5
mlbsl1p6
mlbs12p4

flajrlp3
flaprlp3
flarrlp4
flatrlp7
flas02pl
flas03p3
flas04p3
flas05p2
flas06p2
f1las06p7
f1as07p5
f1as08p5
f1as09p6
m1lbjrlp4
mlbprlp3
m1lbrrlp4
mlbtrlp2
mlbtrlp7
m1bs02pl
m1bs02p7
m1bs04p4
m1bs05p4
m1bs08p5
mlbsl0Opl
m1bs10p6
mlbsllp7
mlbs12p5

47

flajrlp4
flaprlp4
flarrlpb
flasOlpl
flas02p2
flas03p4
flas04p4
f1as05p3
f1as06p3
f1as06p8
flas08pl
flas09p1
flas10p2
mlbjrlp5
mlbprlp4
mlbrrlp)
m1btrlp3
mlbs01p2
m1bs02p2
m1bs03p3
m1bs04p6
m1bs05p5
m1bs08p6
m1bs10p2
mlbsllpl
mlbs12pl
mlbsl13pl

flajrlpb
flarrlpl
flarrlp6
flas01p2
flas02p3
flas03p5
flas04pb
flas05p4
flas06p4
flas07p2
f1as08p2
f1as09p2
mlbjripl
mlbjrlp6
mlbrrlpl
m1brrlp6
mlbtrlp4
m1bs01p3
m1bs02p3
m1bs03p4
m1bs04p8
mlbs07p7
m1bs08p7
m1bs10p3
mlbsllp2
mlbs12p2
mlbsl3p2



APPENDIX A.

TRAINING SET CONTINUED:
mlbsl3p3 mlbsl4dpl mlbsl4p2 mlbsl5pl f2bjropl
f2bjrop2 f2bjrop3 f2bjrop4 f2bjropb f2bjrop6
f2bjrlpl f2bjrlp2 f2bjrlp3 f2bjrlp4 f2bjrlph
f2bjrlp6 f2bpropl  f2bprop2  f2bprop3  f2bprop4
f2bprlpl f2bprlp2 f2bprlp3 f2bprlp4 f2brrlpl
f2brrlp2 f2brrlp3 f2brrlp4 f2brrlps f2brrlp6
f2brrlp7 f2btropl f2btrop2  f2btrop3  f2btrop4
f2btropd  f2btrop6  f2btrop7 = f2btrlpl f2btrlp2
f2btrlp3 f2btrlp4 f2btrlpb f2btrlp6 f2btrlp7
f2bsO1pl  2bs01p2  f2bsO1p3  2bs02p2  f2bs02p3
2bs02p4  2bs02p5  2bs02p6  2bs03pl  2bs03p2
f2bs03p3  2bs03p4  f2bs03p5  2bs04p2  {2bs04p3
f2bsO4p4  f2bs04pb5  f2bs05pl  f2bs05p2  2bs05p3
f2bs05p4  f2bs06pl  f2bs06p2  f2bs06p3  f2bs06p4
f2bs07p4  2bs07p5  2bs08pl  f2bs08p2  2bs08p3
f2bsO8p6  f2bs09pl  f2bs09p2  2bs09p3  2bs09p5
f2bs10pl  2bslOp2  f2bsl0p3  2bslOp4  f2bs10pb
f2bs10p6  f2bsllpl  f2bsllp2  f2bslipd  f2bsllp5
f2bs12pl  f2bs12p4  2bs12p5  f2bsl2p6  2bs12p7
f2bs12p8  f2bs12p9  f2bsl3pl  f2bsl3p2  {2bs13p3
f2bs13p4  f2bs13pb5  2bsldpl  f2bsldp2  2bs14p3
f2bsldpd  f2bsldpb  2bsldp6  2bsldp7  2bsl6pl
f2bs16p2  2bsl6p3  f2bsl6p4d  {2bsl6pd  2bs17p2
2bs17p3  f2bsl7pd  f2bsl7p6  f2bsl7p7  f2bs17p8
f2bs18p2  f2bsl8p3  f2bs18p4d  2bsl8p5  f2bs18p6
f2bs18p8  2bs19pl  2bs19p2  f2bsl9p3  2bs19p4
f2bs20pl  f2bs20p4  f2bs21pl  f2bs21p3  f2bs21pH
f2bs23pl  2bs24pl  f2bs24p2  {2bs25pl  f2bs25p2
f2bs26pl  f2bs27pl  f2bs27p2  f2bs28pl  2bs28p2
2bs29pl  2bs29p2  f2bs29p3  2bs29p4  2bs30pl
f2bs31pl  f2bs31p2  f2bs31p3  f2bs3lpd  f2bs31p5
2bs31p6  2bs32pl  f2bs32p2  {2bs32p3  {2bs32p4
2bs32p5  12bs33pl  2bs33p2  2bs33p3  2bs33p4d
f2bs34pl  f2bs34p2  2bs34p3  f2bs34p4d  m2bjrlp6
m2bprlpl  m2bprlp3 m2bprlp4d m2brrlp2 m2brrlp3
m2brrlp4  m2bs01p3 m2bsO01pd m2bs01lp7 m2bs01p8
m2bs01p9 m2bs02p3 m2bs02p4 m2bs02p5 m2bs02p6
m2bs02p7 m2bs02p8 m2bs02p9 m2bs02pa  m2bs03pl
m2bs03p2 m2bs03p3 m2bs03p4 m2bs03p5 m2bs03p6
m2bs03p7 m2bs03p8 m2bs03p9 m2bs03pa  m2bs04p2
m2bs04p3 m2bs04p4 m2bs04p5 f3ajripl f3ajrlp4
f3ajrlpb f3ajrlp6 f3aprlp2 f3aprip3 f3arrlpl
f3arrlp4 f3arrlp6 f3atrlp2 f3atrlp3



f3atrlp4

f3as04p1
m3bjripl
m3brrlpl
m3brrlp6
m3btrlp6

f3atrlpb
f3as07pl
m3bjrlp3
m3brrlp2
m3btrlpl
m3btrlp7

TEST SET:
f3atrlp7
f3as08p1l
m3bjrlp4
m3brrlp3
m3btrlp2

f3as02p1
f3as09p1
m3bprlp2
m3brrlp4
m3btrip4

f3as03p1l
f3as09p2
m3bprlp3
m3brrlpb
m3btrlp5
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