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Abstract

This thesis studies the problem of reducing code size produced by an optimizing compiler. We
develop the Value State Dependence Graph (VSDG) as a powerful intermediate form. Nodes
represent computation, and edges represent value (data) and state (control) dependencies be-
tween nodes. The edges specify a partial ordering of the nodes—sufficient ordering to maintain
the I/O semantics of the source program, while allowing optimizers greater freedom to move
nodes within the program to achieve better (smaller) code. Optimizations, both classical and
new, transform the graph through graph rewriting rules prior to code generation. Additional
(semantically inessential) state edges are added to transform the VSDG into a Control Flow
Graph, from which target code is generated.

We show how procedural abstraction can be advantageously applied to the VSDG. Graph
patterns are extracted from a program’s VSDG. We then select repeated patterns giving the
greatest size reduction, generate new functions from these patterns, and replace all occurrences
of the patterns in the original VSDG with calls to these abstracted functions. Several embedded
processors have load- and store-multiple instructions, representing several loads (or stores) as
one instruction. We present a method, benefiting from the VSDG form, for using these instruc-
tions to reduce code size by provisionally combining loads and stores before code generation.
The final contribution of this thesis is a combined register allocation and code motion (RACM)
algorithm. We show that our RACM algorithm formulates these two previously antagonis-
tic phases as one combined pass over the VSDG, transforming the graph (moving or cloning
nodes, or spilling edges) to fit within the physical resources of the target processor.

We have implemented our ideas within a prototype C compiler and suite of VSDG opti-
mizers, generating code for the Thumb 32-bit processor. Our results show improvements for
each optimization and that we can achieve code sizes comparable to, and in some cases bet-
ter than, that produced by commercial compilers with significant investments in optimization
technology.
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CHAPTER 1

Introduction

We are at the very beginning of time for the human race.
It is not unreasonable that we grapple with problems.
But there are tens of thousands of years in the future.

Our responsibility is to do what we can, learn what we can,
improve the solutions, and pass them on.

RICHARD FEYNMAN (1918–1988)

Computers are everywhere. Beyond the desktop PC, embedded computers dominate our
lives: from the moment our electronic alarm clock wakes us up; as we drive to work sur-

rounded by micro-controllers in the engine, the lights, the radio, the heating, ensuring our safety
through automatic braking systems and monitoring road conditions; to the workplace, where
every modern appliance comes with at least one micro-controller; and when we relax in the
evening, watching a film on our digital television, perhaps from a set-top box, or recorded ear-
lier on a digital video recorder. And all the while, we have been carrying micro-controllers in
our credit cards, watches, mobile phones, and electronic organisers.

Vital to this growth of ubiquitous computing is the embedded processor—a computer system
hidden away inside a device that we would not otherwise call a computer, but perhaps mobile
phone, washing machine, or camera. Characteristics of their design include compactness, ability
to run on a battery for weeks, months or even years, and robustness 1.

Central to all embedded systems is the software that instructs the processor how to behave.
Whereas the modern PC is equipped with many megabytes (or even gigabytes) of memory,
embedded systems must fit inside ever-shrinking envelopes, limiting the amount of memory

1While it is rare to see a kernel panic in a washing machine, it is a telling fact that software failures in embedded
systems are now becoming more and more commonplace. This is a worrying trend as embedded processors take
control of increasingly important systems, such as automotive engine control and braking systems.
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available to the system designer. Together with the increasing push for more features, the need
for storage space for programs is at an increasing premium.

In this thesis, we tackle the code size issue from within the compiler. We examine the
current state of the art in code size optimization, and present a new dependence-based program
graph, together with three optimizations for reducing code size.

We begin this introductory chapter with a look at the rôle of the compiler, and introduce our
three optimization strategies—pattern-based procedural abstraction, multiple-memory access
optimization, and combined register allocation and code motion.

1.1 Compilation and Optimization
Earlier we made mention of what is called a compiler, and in particular an optimizing compiler.
In this section we develop these terms into a description of what a compiler is and does, and
what we mean by optimizing.

1.1.1 What is a Compiler?
In the sense of a compiler being a person who compiles, then the term compiler has been known
since the 1300’s. Our more usual notion of a compiler—a software tool that translates a program
from one form to another form—has existed for little over half a century. For a definition of
what a compiler is, we refer to Aho et al [6]:

A compiler is a program that reads a program written in one language—the source
language—and translates it into an equivalent program in another language—the
target language.

Early compilers were simple machines, that did little more than macro expansion or direct trans-
lation; these exist today as assemblers, translating assembly language (e.g., “add r3,r1,r2”)
into machine code (“0xE0813002” in ARM code).

Over time, the capabilities of compilers have grown to match the size of programs being
written. However, Proebsting [90] suggests that while processors may be getting faster at the
rate originally proposed by Moore [79], compilers are not keeping pace with them, and in-
deed seem to be an order of magnitude behind. When we say “not keeping pace” we mean
that, where processors have been doubling in capability every eighteen months or so, the same
doubling of capability in compilers seems to take around eighteen years!

Which then leads to the question of what we mean by the capability of a compiler. Specifi-
cally, it is a measure of the power of the compiler to analyse the source program, and translate it
into a target program that has the same meaning (does the same thing) but does it in fewer pro-
cessor clock cycles (is faster) or in fewer target instructions (is smaller) than a naı̈ve compiler.

Improving the power of an optimizing compiler has many attractions:

Increase performance without changing the system Ideally, we would like to see an improve-
ment in the performance of a system just by changing the compiler for a better one, with-
out upgrading the processor or adding more memory, both of which incur some cost either
in the hardware itself, or indirectly through, for example, higher power consumption.

More features at zero cost We would like to add more features (i.e., software) to an embedded
program. But this extra software will require more memory to store it. If we can reduce
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the target code size by upgrading our compiler, we can squeeze more functionality into
the same space as was used before.

Good programmers know their worth The continual drive for more software, sooner, drives
the need for more programmers to design and implement the software. But the number
of good programmers who are able to produce fast or compact code is limited, leading
technology companies to employ average-grade programmers and rely on compilers to
bridge (or at the very least, reduce) this ability gap.

Same code, smaller/faster code One mainstay of software engineering is code reuse, for two
good reasons. Firstly, it takes time to develop and test code, so re-using existing compo-
nents that have proven reliable reduces the time necessary for modular testing. Secondly,
the time-to-market pressures mean there just is not the time to start from scratch on every
project, so reusing software components can help to reduce the development time, and
also reduce the development risk. The problem with this approach is that the reused code
may not achieve the desired time or space requirements of the project. So it becomes the
compiler’s task to transform the code into a form that meets the requirements.

CASE in point Much of today’s embedded software is automatically generated by computer-
aided software engineering (CASE) tools, widely used in the automotive and aerospace
industries, and becoming more popular in commercial software companies. They are able
to abstract low-level details away from the programmers, allowing them to concentrate
on the product functionality rather than the minutiæ of coding loops, state machines,
message passing, and so on. In order to make these tools as generic as possible, they
typically emit C or C++ code as their output. Since these tools are primarily concerned
with simplifying the development process rather than producing fast or small code, their
output can be large, slow, and look nothing like any software that a programmer might
produce.

In some senses the name optimizing compiler is misleading, in that the optimal solution is
rarely achieved on a global scale simply due to the complexity of analysis. A simplified model
of optimization is:

Optimization = Analysis + Transformation.

Analysis identifies opportunities for changes to be made (to instructions, to variables, to the
structure of the program, etc); transformation then changes the program as directed by the
results of the analysis.

Some analyses are undecidable in some respect; e.g., optimal register allocation via graph
colouring [25] is NP-Complete for three or more physical registers (it is reducible to the 3-SAT
problem [46]). In practice heuristics (often tuned to a particular target processor) are employed
to produce near-optimal solutions. Other analyses exhibit too high a complexity and thus either
less-powerful analyses must be used, or those that only exhibit locally-high globally-low cost.

1.1.2 Intermediate Code Optimization
Optimizations applied at the intermediate code level are appealing for three reasons:

1. Intermediate code statements are semantically simpler than source program statements,
thus simplifying analysis.
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2. Intermediate code has a normalizing effect on programs: different source code produces
the same, or similar, intermediate code.

3. Intermediate code tends to be uniform across a number of target architectures, so the same
optimization algorithm can be applied to a number of targets.

This thesis introduces the Value State Dependence Graph (VSDG). It is a graph-based inter-
mediate language building on the ideas presented in the Value Dependence Graph [112]. Our
implementation is based on a human-readable text-based graph description language, on which
a variety of optimizers can be applied.

1.1.3 The Phase Order Problem
One important question that remains to be solved is the so-called Phase Order Problem, which
can be stated as “In which order do we apply a number of optimizations to the program to
achieve the greatest benefit?”. The problem extends to consider such transformations as register
allocation and instruction scheduling. The effect of this problem is illustrated in the following
code:

a := b;
c := d;

ld r1, b
st r1, a
ld r1, d
st r1, c

ld r1, b
ld r2, d
st r1, a
st r2, c

(i) (ii) (iii)

The original code (i) makes two reads (of variables b and d) and two writes (to a and c).
If we do minimal register allocation first the result is sequence (ii), needing only one target
register, r1. The problem with this code sequence is that there is a data dependency between
the first and the second instructions, and between the third and the fourth instructions. On a
typical pipelined processor this will result in pipeline stalls, with a corresponding reduction in
throughput.

However, if we reverse the phase order, so that instruction scheduling comes before register
allocation, then schedule (iii) is the result. Now there are no data dependencies between pairs
of instructions, so the program will run faster, but the register allocator has used two registers
(r1 and r2) for this sequence. However, this sequence might force the register allocator to
introduce spill code2 in other parts of the program if there were insufficient registers available
at this point in the program.

1.2 Size Reducing Optimizations
This thesis presents three optimizations for compacting embedded systems target code: pattern-
based procedural abstraction, multiple-memory access optimization, and combined code motion
and register allocation. All three are presented as applied to programs in VSDG form.

2Load and store instructions inserted by the compiler that spill registers to memory, and then reloads them when
the program needs to use the previously spilled values. This has two undesirable effects: it increases the size of
the program by introducing extra instructions, and it increases the register-memory traffic, with a corresponding
reduction in execution speed.
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1.2.1 Compaction and Compression
It is worth highlighting the differences between compaction and compression of program code.
Compaction transforms a program, P , into another program, P ′, where |P ′| < |P |. Note that
P ′ is still directly executable by the target processor—no preprocessing is required to execute
P ′. We say that the ratio of |P | and |P ′| is the Compaction Ratio:

Compaction Ratio =
|P ′|
|P | × 100%.

Compression, on the other hand, transforms P into one or more blocks of non-executable
data, Q. This then requires runtime decompression to turn Q back into P (or a part of P ) before
the target processor can execute it. This additional step requires both time (to run the decom-
presser) and space (to store the decompressed code). Hardware decompression schemes, such
as used by ARM’s Thumb processor, reduce the process of decompression to a simple transla-
tion function (e.g., table look-up). This has predictable performance, but fixes the granularity of
(de)compression to individual instructions or functions (e.g., the ARM Thumb executes either
16-bit Thumb instructions or 32-bit ARM instructions, specified on a per-function basis).

1.2.2 Procedural Abstraction
Procedural abstraction reduces a program’s size by placing common code patterns into compiler-
generated functions, and replacing all occurrences of the patterns with calls to these functions
(see Figure 1.1). Clearly, the more occurrences of a given pattern can be found and replaced
with function calls, the greater will be the reduction in code size.

However, the cost model for procedural abstraction is not simple. As defined by a given tar-
get’s procedure calling standard, functions can modify some registers, while preserving others
across the call3. Thus at each point in the program where a function call is inserted there can be
greater pressure on the register allocator, with a potential increase in spill code.

There are two significant advantages to applying procedural abstraction on VSDG inter-
mediate code. Firstly, the normalizing effect the VSDG has on common program structures
increases the number of occurrences of a given pattern that can be found within a program.
Secondly, operating at the intermediate level rather than the lower target code levels avoids
much of the “noise” (i.e., trivial variations) introduced by later phases in the compiler chain,
especially with respect to register assignment and instruction selection and scheduling, which
can reduce the number of occurrences of a pattern.

1.2.3 Multiple Memory Access Optimization
Many microprocessors have instructions which load or store two or more registers. These mul-
tiple memory access (MMA) instructions can replace several memory access instructions with
a single MMA instruction. Some forms of these instructions encode the working registers as a
bit pattern within the instruction; others define a range of contiguous registers, specifying the
start and end registers.

A typical example is the ARM7 processor: it has ‘LDM’ load-multiple and ‘STM’ store-
multiple instructions which, together with a variety of pre- and post-increment and -decrement

3For example, the ARM procedure calling standard defines R0-R3 as argument registers and R4-R11 must
be preserved across calls.
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call

call

call

Figure 1.1: Original program (left) has common code sequences (shown in dashed boxes).
After abstraction, the resulting program (right) has fewer instructions.

addressing modes, can load or store one or more of its sixteen registers. The working registers
are encoded as a bitmap within the instruction, scanning the bitmap from the lowest bit (repre-
senting R0) to the highest bit (R15). Effective use of this instruction can save up to 480 bits of
code space4.

This thesis describes the SOLVEMMA algorithm as a way of using MMA instructions to
reduce code size. MMA optimization can be applied to both source-defined loads and stores
(e.g., array or struct accesses), or spill code inserted by the compiler during register allocation.

In the first case, the algorithm is constrained by the programmer’s expectation of treating
global memory as a large struct, with each global variable at a known offset from its schematic
neighbour5. The algorithm can only combine loads from, or stores to, contiguous blocks where
the variables appear in order. In addition, the register allocator can bias allocations which
promote combined loads and stores.

The second case—local variables and compiler-generated temporaries—provides a greater
degree of flexibility. The algorithm defines the order of temporary variables on the stack to
maximise the use of MMA instructions. This is beneficial for two reasons: many load and
store instructions are generated from register spills, so giving the algorithm a greater degree of
freedom will have a greater benefit; and as spills are invisible to the programmer the compiler
can infer a greater degree of information about the use of spill code (e.g., its address is never

4Sixteen separate loads (or stores) would require 512 bits, but only 32 bits for a single LDM or STM.
5One could argue that since such behaviour is not specified in the language then the compiler should be free to

do what it likes with the layout of global variables. Sadly, such expectation does exist, and programmers complain
if the compiler does not honour this expectation.
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taken outside the enclosing function).

1.2.4 Combined Code Motion and Register Allocation

The third technique presented in this thesis for compacting code is a method of combining two
traditionally antagonistic compiler phases: code motion and register allocation. We distinguish
between register allocation—transforming the program such that at every point of execution
there are guaranteed to be sufficient registers to ensure assignment—and register assignment—
the process of assigning physical registers to the virtual registers in the intermediate graph.

We present our Register Allocation and Code Motion (RACM) algorithm, which aims to
reduce register pressure (i.e., the number of live values at any given point) firstly by moving
code (code motion), secondly by live-range splitting (code cloning), and thirdly by spilling.

This optimization is applied to the VSDG intermediate code, which greatly simplifies the
task of code motion. Data (value) dependencies are explicit within the graph, and so moving
an operation node within the graph ensures that all relationships with dependent nodes are
maintained. Also, it is trivial to compute the live range of variables (edges) within the graph;
computing register requirements at any given point (called a cut) within the graph is a matter of
enumerating all of the edges (live variables) that are intersected by that cut.

1.3 Experimental Framework
The VSDG Experimental C Compiler (VECC) is outlined in Figure 1.2 on page 22. Source
files are compiled into VSDG form by our experimental C compiler, based on the LCC [42]
compiler. We use the front-end components, replacing LCC’s intermediate language generation
functions with code to emit VSDGs. The only optimizations performed by the front end are
those mandated by the C standard (e.g., folding of constant expressions) and trivial strength
reduction and address arithmetic optimizations.

The VSDG graph description language provides module-level and function-level scoping,
such that linking together separate compilation units is reduced to concatenating multiple VSDG
files. A variety of optimizers are then applied to the program whilst in the VSDG intermediate
form. The final stage translates the optimized VSDGs into target code, which in this thesis is
for ARM’s Thumb processor.

Optimizers read in a VSDG file, perform some transformation on the VSDGs, and write
the modified program as another VSDG file. Using UNIX pipes we are able to construct any
sequence of optimizers directly from the command line, providing similar power as CoSy’s
ACE [4] but without its complexity.

1.4 Thesis Outline
The remainder of this thesis is organized into the following chapters. Chapter 2 looks at the
many and varied approaches to reducing code size that have been proposed in the last thirty-
odd years, examines their strengths and weaknesses, and considers how they might interact with
each other either supportively or antagonistically.

Chapter 3 formally introduces the VSDG. Initially developed as an exploratory tool, the
VSDG has become a useful and powerful intermediate representation. It is based on a func-
tional data-dependence paradigm (rather than control-flow) with explicit state edges represent-
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C Source
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Target Code
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Figure 1.2: Block diagram of the experimental framework, VECC, showing C compiler, stan-
dard libraries (pre-compiled source), optimizer sequence (dependent on experiment) and target
code generator.
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ing the monadic-like system state. It has several important properties, most notably a powerful
normalizing effect, and is somewhat simpler than prior representations in that it under-specifies
the program structure, while retaining sufficient structure to maintain the I/O semantics. We
also present CCS-style pull semantics and show, through an informal bisimulation, equivalence
to traditional push semantics6.

Chapter 4 examines the application of pattern matching techniques to the VSDG for pro-
cedural abstraction. We make a clear distinction between procedural abstraction, as applied to
the VSDG, and other code factoring techniques (tail merging, cross-linking, etc).

Chapter 5 describes the use of multiple-load and -store instructions for reducing code size.
We show that systematic use of MMA instructions can reduce target code by combining loads or
stores into single MMA instructions, and show that our SOLVEMMA algorithm never increases
code size.

In Chapter 6 we show how combining register allocation and instruction scheduling as a
single pass over the VSDG both reduces the effects of the phase-ordering problem, and re-
sults in a simpler algorithm for resource allocation (where we define resources as both time—
instruction scheduling—and space—register allocation).

Chapter 7 presents experimental evidence of the effectiveness of the work presented in
this thesis, by applying the VSDG-based optimizers to benchmark code. The results of these
experiments show that the VSDG is a powerful and effective data structure, and provides a
framework in which to explore code space optimizations.

Chapter 8 discusses future directions and applications of the VSDG to both software and
hardware compilation. Finally, Chapter 9 concludes.

6Think of values as represented by tokens: push semantics describes producers pushing the tokens around the
graph, while pull semantics describes tokens being pulled (demanded) by consumers.
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CHAPTER 2

Prior Art

To acquire knowledge, one must study;
but to acquire wisdom, one must observe.

MARILYN VOS SAVANT (1946–)

Interest in compact representations of programs has been the subject of much research, be it
target code for direct execution on a processor or high-level intermediate code for execution

on a virtual machine. Most of this research can be split into two areas: the development of
intermediate program graphs, and analyses and transformations on these graphs1.

This chapter examines both areas of research. We begin with a review of the more popu-
lar program representation graphs, and for four areas of optimization we choose among those
presented. For the same four optimizations we briefly describe how they are supported in
our new Value State Dependence Graph. We then compare the three techniques developed
in this thesis—procedural abstraction, multiple memory access optimization, and combined
register allocation and code motion—with comparable approaches proposed by other compiler
researchers. Finally, we present a selection of favourable optimization algorithms that either
directly or indirectly produce compact code.

1It should be noted that considerably more effort has been put into making programs faster rather than smaller.
Fortunately, many of these optimizations also benefit code size, such as fitting inner loops into instruction caches.
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2.1 A Cornucopia of Program Graphs
There have been many program graphs presented in the literature. Here we review the more
prominent ones, and consider their individual strengths and weaknesses.

2.1.1 Control Flow Graph

The Control Flow Graph (CFG) [6] is perhaps the oldest program graph. The basis of the
traditional flowchart, each node in the CFG corresponds to a linear block of instructions such
that if one instruction executes then all execute, with a unique initial instruction, and with the
last instruction in the block being a (possibly predicated) jump to one or more successor blocks.
Edges represent the flow of control between blocks. A CFG represents a single function with a
unique entry node, and zero or more exit nodes.

The CFG has no means of representing inter-procedural control flow. Such information
is separately described by a Call Graph. This is a directed graph with nodes representing
functions, and an edge (p, q) if function p can call function q, and cycles are permitted. Note
that there is no notion of sequence in the call graph, only that on any given trace of execution
function p may call function q zero or more times.

The CFG is a very simple graph, presenting an almost mechanical view of the program.
It is trivial to compute the set of next instructions which may be executed after any given
instruction—in a single block the next instruction is that which follows the current instruc-
tion; after a predicate the set of next instructions is given by the first instruction of the blocks at
the tails of the predicated edges.

Being so simple, the CFG is an excellent graph for both control-flow-based optimizations
(e.g., unreachable code elimination [6] or cross-linking [114]) and for generating target code,
whose structure is almost an exact duplicate of the CFG. However, other than the progress of
the the program counter, the CFG says nothing about what the program is computing.

2.1.2 Data Flow Graph

The Data Flow Graph (DFG) is the companion to the CFG: nodes still represent instructions,
but with edges now indicating the flow of data from the output of one data operation to the
input of another. A partial order on the instructions is such that an instruction can only execute
once all its input data values have been consumed. The instruction computes a new value which
propagates along the outward edges to other nodes in the DFG.

The DFG is state-less: it says nothing about what the next instruction to be executed is
(there is no concept of the program counter as there is in the CFG). In practice, both the CFG
and the DFG can be computed together to support a wider range of optimizations: the DFG is
used for dead code elimination (DCE) [94], constant folding, common subexpression elimina-
tion (CSE) [7], etc. Together with the CFG, live range analysis [6] determines when a variable
becomes live and where it is last used, with this information being used during register alloca-
tion [25].

Separating out the control- and data-flow information is not a good thing. Firstly, there are
now two separate data structures to manage within the compiler—changes to the program re-
quire both graphs to be updated, with seemingly trivial changes requiring considerable effort in
regenerating one or both of the graphs (e.g., loop unrolling). Secondly, analysis of the program
must process two data structures, with very little commonality between the two. And thirdly,
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any relationship between control-flow and data-flow is not expressed, but is split across the two
data structures.

2.1.3 Program Dependence Graph

The Program Dependence Graph (PDG) [39] is an attempt to combine the CFG and the DFG.
Again, nodes represent instructions, but now there are edges to represent the essential flow of
control and data within the program. Control dependencies are derived from the usual CFG,
while data dependencies represent the relevant data flow relationships between instructions.

There are several advantages to this combined approach: many optimizations can now be
performed in a single walk of the PDG; there is now only one data structure to maintain within
the compiler; and optimizations that would previously have required complex analysis of the
CFG and DFG are more easily achieved (e.g., vectorization [16]).

But this tighter integration of the two types of flow information comes at a cost. The PDG
(and one has also to say whose version of the PDG one is using: e.g., the original Ferrante et al
PDG [39], Horwitz et al’s PDG [55], or the System Dependence Graph [56] which extends the
PDG to incorporate collections of procedures) is a multigraph, with typically six different types
of edges (control, output, anti, loop-carried, loop-independent, and flow). Merge nodes within
the PDG make some operations dependent on their location within the PDG.

The Hierarchical Task Graph (HTG) [48] is a similar structure to the PDG. It differs from
the PDG in constructing a graph based on a hierarchy of loop structures rather than the gen-
eral control-dependence structure of the PDG. Its main focus is a more general approach to
synchronization between data dependencies, resulting in a potential increase in parallelism.

2.1.4 Program Dependence Web

The Program Dependence Web (PDW) [14] is an augmented PDG. Construction of the PDW
follows on from the construction of the PDG, replacing data dependencies by Gated Single
Assignment form (Section 2.1.8).

PDWs are costly to generate—the original presentation requires fives passes over the PDG
to generate the corresponding PDW, with time complexity of O(N 3) in the size of the program.
The PDW restricts the control-flow structure to reducible flow graphs [58], spending consider-
able effort in determining the control-flow predicates for gated assignments.

2.1.5 Click’s IR

Click and Paleczny’s Intermediate Representation (IR) [27] is an interesting variation of the
PDG. They define a model of execution based on Petri nets, where control tokens move from
node to node as execution proceeds. Their IR can be viewed as two subgraphs—the control
subgraph and the data subgraph—which meet at their PHI-nodes and IF-nodes (comparable to
φ-functions of SSA-form, described below).

The design and implementation of this IR is focused on simplicity and speed of compilation.
Having explicit control edges solves the VDG’s (described below) problem of not preserving
the terminating properties of programs.
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c = 10;
x = 0;
y = 1;
do {

c = c - 1;
x = x + 1;
y = y << 1;

} while (c != 0);
print(c,x,y);

+- <<

γ γ γ

!=

0

c x y

c x y

TF FTTF

call

1 1 1

0

call

call

print

10 1

(a) (b)

Figure 2.1: A Value Dependence Graph for the function (a). Note especially that the loop
is modelled as a recursive call (think of a λ-abstraction). The supposed advantage of treating
loops as functions is that only one mechanism is required to transform both loops and functions.
However, the result is one large and complex mechanism, rather than two simpler mechanisms
for handling loops and functions separately.

2.1.6 Value Dependence Graph

The Value Dependence Graph (VDG) [112] inverts the sense of the dependency graphs pre-
sented so far. In the VDG there is an edge (p, q) if the execution of node p depends on the result
of node q, whereas the previous dependence graphs would say that data flows from q to p.

The VDG uses γ-nodes to represent selection, with an explicit control dependency whose
value determines which of the guarded inputs is evaluated. The VDG uses λ-nodes to represent
both functions and loop bodies, where loop bodies are seen as a call to a tail-recursive function,
thereby representing loops and functions as one abstraction mechanism. Figure 2.1 shows an
example VDG with a loop and function call to illustrate this feature.

A significant issue with the VDG is that of failing to preserve the terminating properties
of a program—“Evaluation of the VDG may terminate even if the original program would
not...” [112]. Another significant issue with the VDG is the process of generating target code
from the VDG. The authors describe converting the VDG into a demand-based Program Depen-
dence Graph (dPDG)—a normal PDG with additional edges representing demand dependence—
then converting that into a traditional CFG before finally generating target code from the CFG.
However, it seems that no further progress was made on this2.

2Discussion with the original authors indicates this was due to changing commercial pressures rather than
insurmountable problems.



Chapter 2. Prior Art 29

(1) c = 10; c1 = 10;
(2) x = 0; x1 = 0;
(3) y = 1; y1 = 1;
(4) do { do {
(5) c2 = φ(c1, c3);
(6) x2 = φ(x1, x3);
(7) y2 = φ(y1, y3);
(8) c = c− 1; c3 = c2 − 1;
(9) x = x + 1; x3 = x2 + 1;
(10) y = y << 1; y3 = y2 << 1;
(11) } while(c ! = 0); } while(c3 ! = 0);
(12) print(c, x, y); print(c3, x3, y3);

(a) (b)

Figure 2.2: (a) Original and (b) SSA-form code for discussion. The φ-functions maintain the
single assignment property of SSA-form. The suffices in (b) make each variable uniquely as-
signed while maintaining a relationship with the original variable name.

2.1.7 Static Single Assignment
A program is said to be in Static Single Assignment form (SSA) [7] if, for each variable in
the program there is exactly one assignment statement for that variable. This is achieved by
replacing each assignment to a variable with an assignment to a new unique variable.

SSA-form is not strictly a program graph in its own right (unlike, say, the PDG). It is a trans-
formation applied to a program graph, changing the names of variables in the graph (usually
by adding a numerical suffix), and inserting φ-functions into the graph at control-flow merge
points3.

SSA-form has properties which aid data-flow analysis of the program. It can be efficiently
computed from the CFG [32] or from the Control Dependence Graph (CDG) [33], and it can be
incrementally maintained [31] during optimization passes.

Many classical optimizations are simplified by SSA-form, due in part to the properties of
SSA-form obviating the need to generate definition-use chains (described below). This greatly
simplifies and enhances optimizations including constant propagation, strength reduction and
partial redundancy elimination [80].

Two important points of SSA-form are shown in Figure 2.2. In order to maintain the sin-
gle assignment property of SSA-form we insert φ-functions [31] into the program at points
where two or more paths in the control-flow graph meet—in Figure 2.2 this is at the top of the
do...while loop. The φ-function returns the argument that corresponds to the edge that was
taken to reach the φ-function; for the variable c the first edge corresponds to c1 and the second
edge to c3.

The second point is that while there is only one assignment to a variable, that assignment
can be executed zero or more times at runtime, i.e., dynamically. For example, there is only one
statement that assigns to variable c3, but that statement is executed ten times.

For a program in SSA-form data-flow analysis becomes trivial. While it would be fair

3Appel [8] refers to this as the ‘magic trick’ of SSA-form.
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to say that SSA-form by itself does not provide any new optimizations, it does make many
optimizations—DCE, CSE, loop-invariant code motion, and so on—far easier. For example,
Alpern et al [7] invented SSA-form to improve on value numbering, a technique used exten-
sively for CSE.

Another data structure previously non-trivial to compute is the definition-use (def-use) chain [6].
A def-use chain is a set of uses S of a variable, x say, such that there is no redefinition of x on
any path between the definition of x and any element of S. In SSA-form this is trivial: with ex-
actly one definition of x there can be no redefinition of x (if there were, the program would not
be in SSA-form), and so all uses of x are in the def-use chain for x. For example, in Figure 2.2
variable c3 is defined in line 8 and used in lines 5, 11 and 12.

2.1.8 Gated Single Assignment

Originally formulated as an intermediate step in forming the PDW [14], Gated SSA-form (GSA)
is generated from a CFG in SSA-form, replacing φ-functions with gating (γ-) functions. The
γ-functions turn the non-interpretable SSA-form into the directly interpretable GSA-form. The
gating functions combine SSA-form φ-functions with explicit control flow edges. For example,
in Figure 2.2 the φ-function in line 5, φ(c1, c3), is replaced with γ(c3 ! = 0, c1, c3), the first
argument being the control condition for choosing between c1 and c3.

A refinement of GSA-form was proposed by Havlak: Thinned GSA-form (TGSA) [53].
The thinned form uses fewer γ-functions than the original GSA-form, reducing the amount of
work in maintaining the program graph. The formulation of TGSA-form relies on the input
CFG being reducible [58]. Irreducible CFGs can be converted to reducible ones through code
duplication or additional Boolean variables.

In both GSA- and TGSA-forms, loops are constructed from three nodes: a µ-function to
control when control flow enters a loop body, an η-function (with both true and false variants)
to determine when values leave a loop body, and a non-deterministic merge gate to break cyclic
dependencies between predicates and µ-functions. For example, the GSA-form of the function
of Figure 2.2(b) is shown in Figure 2.3.

The µ-function has three inputs: ρ, vinit and viter . The initial value of the µ-function is
consumed from the vinit input; while the predicate input, ρ, is True the µ-function returns its
value and then consumes its next value from the viter input; when ρ becomes False, the µ-
function does not consume any further inputs, its value being that of the last consumed input
value. Hence values are represented as output ports of nodes, and follow the dataflow model of
being produced and consumed.

There are two kinds of η-function. The ηT (ρ, v) node takes a loop predicate ρ and a value
v, and returns v if the predicate is True, otherwise merely consuming v. The behaviour of the
ηF -function is similar for a False predicate.

Finally, the non-deterministic merge gate, shown as ⊗ in Figure 2.3, breaks the cyclic de-
pendencies between loop predicates and the controlling µ-function. In the example, a True
is merged into the loop predicate, LP, enabling the loop body to execute at least once, with
subsequent iterations computing the next value of LP.

GSA-form inherits the advantages of SSA-form (namely, improving the runtime perfor-
mance of many optimizations), while the addition of explicit control information (transforming
φ-functions to γ-nodes) improves the effectiveness of control-flow-based optimizations (e.g.,
conditional constant propagation and unreachable code elimination).



Chapter 2. Prior Art 31

µ

!= 0

-1

c

c

LP

2

3

c3

µ

+1

x2

x3

0

c1 x1

µ
y2

y3

<<1

y1

x3 y3

LPTLPTLPT

True

LPT

LPT LPT LPT

1 10
CDCDCD

ηF ηFηF

Figure 2.3: A Program Dependence Web for the function of Figure 2.2(a). The initial values
enter the loop through the µ nodes, and after updating are used to compute the next iteration of
the loop. The three inputs to the µ nodes are ρ, vinit and viter respectively. If the predicate LP
is False, the ηF nodes propagate the values of the loop variables out of the loop; the µ nodes
also monitor the predicate, and stop when it is False. The bold arrows to the left of the nodes
indicate the control dependence (CD) of that node. The nodes within the loop body are control
dependent on the predicate LP being True, which is initialised by injecting a True value into LP
through the merge node (⊗).

2.2 Choosing a Program Graph
The previous section outlined the more widely-known program graphs, and there are many more
that have been developed, and doubtless many more yet to come. But when faced with such a
large number of choices, which one is the best? In this section we consider four definitions of
best, and choose one of the graphs from Section 2.1 which best fits that definition. Each choice
is based on the following metrics:

Analysis Cost How much effort is required in analysing the program graph to determine some
property about some statement or value;

Transformation Cost How much effort is required to transform the program graph, based on
the result of the preceding analysis;

Maintenance Cost After transformation, how much extra effort is required in preserving the
properties (maintaining) the program graph.
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The first two metrics are derived from the informal notion that

Optimization = Analysis + Transformation.

The third metric encapsulates the wider context of a program graph within a compiler: not
only must we analyse the program graph to identify the opportunity for, and then perform, a
transformation, we must also maintain the properties (whatever they may be) of the chosen
program graph for subsequent optimization passes.

2.2.1 Best Graph for Control Flow Optimization

The category of control flow optimization includes unreachable code elimination, block re-
ordering, tail merging, cross-linking/jumping, and partial redundancy elimination. All of these
are chiefly concerned with the progress of the Program Counter, i.e., which statement is next to
be executed.

The obvious candidate is, naturally, the CFG. It captures the essential flow of control within
a program, with edges representing potentially non-incremental changes to the Program Counter,
such as might be taken after a conditional test or the backwards branch at the end of a loop.

By not considering data flows or dependencies, the CFG is both fast to analyse and trans-
form, and has low maintenance costs associated with it.

2.2.2 Best Graph for Loop Optimization

There are many optimizations aimed at loops—fusion, peeling, reversal, induction variable
elimination, and unrolling to name a few (see Bacon et al [11] for more details on a range of
loop optimizations)—that choosing one program graph that best supports loop optimization is
difficult. However, the majority of these optimizations require a combination of control- and
data-flow information, which simplifies the choice.

The PDG would be a reasonable choice, combining both control- and data-flow, and having
explicit loop-aware edges. The PDW is also a good choice, with its explicit loop operators (µ, η

and⊗). The VDG treats loops as functions which, on the one hand means that optimizations for
loops are automatically applicable to functions as well, but on the other hand complicates the
design of optimizers, which must now handle loops and functions, with no distinction between
the two.

2.2.3 Best Graph for Expression Optimization

Expression optimizations include algebraic reassociation, common subexpression elimination,
strength reduction, and constant folding. Clearly, a graph that focuses on data (or values) will
provide the best support for these optimizations.

The CFG is certainly not the best graph for expression optimization. The combined graphs
(PDG, PDW and Click’s IR) could be used, but the presence of the control-flow information
(which must also be maintained during optimization) can complicate expression optimization
on these graphs.

The two graphs that would be good for expression optimization are the DFG and the VDG.
Both graphs are primarily concerned with data (values). Excluding γ-nodes, both graphs are
almost identical, save the direction of the edges.
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2.2.4 Best Graph for Whole Program Optimization

There are few graphs which truly reflect the whole program in a single graph. With the exception
of the SDG, all the graphs presented here are intraprocedural, i.e., they describe the behaviour
of single functions, without consideration of other functions within the program.

The best candidate currently is the SDG (the extended form of the PDG with edges to con-
nect caller arguments with callee parameters, and vice versa for return values). By representing
the global flow of control and data within a multi-function program, the SDG supports such
global optimizations as global constant propagation, function inlining, global register alloca-
tion, and global code motion.

2.3 Introducing the Value State Dependence Graph
The previous section chose from the graphs presented in section 2.1 those that would be suitable
for four goals of program optimization. However, the basis of this thesis is the Value State
Dependence Graph (described fully in the next chapter). For the same four optimization goals,
we describe briefly how this new graph is a suitable candidate.

2.3.1 Control Flow Optimization

The VSDG does not explicitly identify the flow of control within a function. Instead, it describes
essential sequential dependencies between I/O nodes, loops, and the enclosing function, and all
other information is solely concerned with the flow of data. In essence, there are no explicit
basic blocks within the VSDG.

Of the optimizations listed in section 2.2.1, block re-ordering, tail merging and cross-linking
have no direct equivalents in the VSDG. Unreachable code is readily computed by walking the
value and state edges in the VSDG from the function exit node, marking all reachable nodes,
and then deleting all the unmarked nodes. Partial redundancy elimination requires additional
analysis to identify partially redundant expressions, and this can be incorporated into CSE op-
timization on the VSDG.

2.3.2 Loop Optimization

The VSDG distinguishes between functions and loops, unlike the VDG. Also, like the PDW,
loops are explicitly identified with loop entry and exit nodes. The VSDG is different to many
program graphs in that, initially, it does not specify whether loop-invariant nodes are placed
inside or outside loops; this decision is left to later phases to decide, based on specific optimiza-
tion goals (e.g., putting loop-invariant code inside a loop can reduce register pressure over the
loop body, potentially reducing spill code, but may increase its execution time).

2.3.3 Expression Optimization

As its name suggests, the VSDG is derived from the VDG. The addition of the state edges to de-
scribe the essential control flow information frees the graph from overly constraining the order
of subexpressions within the graph. This leads to greater freedom and simplicity in optimizing
the expressions described in VSDG form, for optimizations such as CSE, strength reduction,
reassociation, etc. The graph properties of the VSDG even simplify the task of transforming
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and maintaining the data structure.

2.3.4 Whole Program Optimization
The VSDG is not a whole-program graph like the SDG. However, the structure of the VSDG
can be readily extended in the same way as the SDG is an extension of the PDG. Then all
the usual whole-program optimizations—function inlining, cloning and specialization, global
constant propagation, etc—can be supported, with all the inherent benefits of the VSDG.

2.4 Our Approaches to Code Compaction
The previous sections described the major program graph representations that have been pre-
sented in the literature. In this section we discuss the three main approaches that are developed
in this thesis.

2.4.1 Procedural Abstraction
Procedural abstraction takes a whole-program view of code compaction. Common sequences
of instructions from any of the procedures (including library code) within the program can be
extracted, and replaced by one abstract procedure and a corresponding number of calls to that
abstract procedure. The potential costs of procedural abstraction are register marshalling before
and after the procedure call, and the extra processing overhead associated with the procedure
call and return.

2.4.1.1 Transforming Intermediate Code

Runeson applied procedural abstraction to intermediate code prior to register allocation [95].
Their implementation, based on a commercial C compiler, achieved up to 30% reduction in
code size4.

Fraser and Proebsting [44] analysed common intermediate instruction patterns derived from
a C program to generate a customized interpretive code and compact interpreter. They achieved
up to 50% reduction in code size, but at considerable runtime penalty due to the interpretive
model of execution (reportedly 20 times slower than native code).

2.4.1.2 Transforming Target Code

A significant advantage of transforming target code is that the optimizer can be developed either
independently from the compiler, or as a later addition to the compiler chain, even from a
different vendor (e.g., aiPop [3], which can reduce Siemens C16x5 native code by 4–20%).

De Sutter et al’s Squeeze++ [34] achieved an impressive 33% reduction on C++ bench-
mark code through aggressive post-link optimization, including procedural abstraction. In one
case (the gtl test program from the Graph Template Library) procedural abstraction reduced
the size of the original code by more than half. Its predecessor, Alto [84], achieved a reduction
of 4.2% due to factoring (procedural abstraction) alone. In both cases the target architecture was
the Alpha RISC processor.

4In private communication with the authors this figure was later revised to 12% due to errors in their imple-
mentation.

5A 16-bit embedded microcontroller, used in mobile phones and automotive engine control units.
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Cooper and McIntosh [29] developed techniques to compress target code for embedded
RISC processors through cross-linking and procedural abstraction. But, as for Squeeze++
and Alto, transforming target code requires care in ensuring variations in register colouring
between similar code blocks do not reduce the effectiveness of their algorithms. As they noted:
“[register] Renaming can sometimes fail to make two fragments equivalent, since the compiler
must work within the constraints imposed by the existing register allocation.”

In Liao’s thesis [74], two methods were developed—one purely in software, the other requir-
ing some (albeit minimal) hardware support. In the software-only approach, where the search
for repeating patterns was restricted to basic blocks, Liao achieved a reduction of approximately
15% for TMS320C256 target code.

Fraser, Myers and Wendt [43] used suffix trees and normalization on VAX assembler code
to reduce code size by 7% on average, and also noted that while the CPU time of compressed
programs was slightly higher (1-5%) they found that programs actually ran faster overall, which
they attributed to shorter load times. A similar scheme [69], using illegal processor instructions
to indicate tokens, achieved compression ratios of between 52-70% of the original size over a
range of large applications. For the same set of programs, the Unix utility compress—using
LZW coding—achieved a compression ratio of only about 5% better. However, it could be
argued that compress’s encoding scheme may not be optimal because of the differing statistical
distributions of opcodes and operands [9, 93].

An early form of procedural abstraction, due to Marks [76], is related to table-based com-
pression, where common instruction sequences were placed in a table, and pseudo-instructions
inserted into the instruction stream in place of the original instruction sequences (tailored inter-
pretation). On the IBM System/370, this method achieved a typical saving of 15% at a runtime
cost of 15% in execution speed. Storer and Szymanski [102] formulated this as the external
pointer macro, where the pointers into the dictionary were implemented as calls to abstracted
procedures.

2.4.1.3 Parameterized Procedural Abstraction

The power of procedural abstraction is enhanced yet further by parameterizing the abstract pro-
cedures [115]. This allows a degree of approximate-matching [12, 13] between the code blocks;
the differences are parameterized, and each call site specifies, through additional parameters,
the required behaviour of the abstract procedure.

The area of parameterized procedural abstraction has concentrated mainly on the use of
suffix trees [77, 47] to highlight sections of similar code. Finding a degree of equivalence be-
tween two code blocks allows parameterization of the mismatch between blocks. For instance,
block B1 may differ from block B2 in one instruction; this difference can be parameterized
with an if...then...else placed around both instructions, and a selection parameter passed to
the abstract procedure to control which of the two instructions is to be executed. Other near-
equivalences can be merged into abstract procedures in a similar way, the limit being when
there is no further code size reduction benefit in mapping any additional code sequences onto
an abstract procedure.

6A popular 16-bit fixed-point digital signal processor developed and sold by Texas Instruments.
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2.4.1.4 Pattern Fingerprinting

Identifying isomorphic regions of a program efficiently is very important, both for speed of
compilation in finding matching blocks of code, and in compact representations of code blocks
for later matching. The general approach is that of fingerprinting—computing some fingerprint
for a given block of code which can be compared with other fingerprints very quickly.

Several fingerprinting algorithms have been proposed. Debray et al [36] computed a finger-
print by concatenating the 4-bit encoded opcodes of the first sixteen instructions in a code block.
The question of which opcodes are encoded in these four bits was determined at compile-time
by choosing the fifteen most common instructions in a static instruction count, with the spe-
cial code 0000 representing all other instructions. Uniqueness was not guaranteed, for which
they implemented a hashing scheme on top of their fingerprinting to minimize the number of
pairwise comparisons.

The approach taken by Fraser, Myers and Wendt [43] was to construct a suffix tree [111],
comparing instructions based on their hash address (derived from the hashing of the assembly
code). Thus comparable code sequences are rooted at the same node of the suffix tree. Branch
instructions require special handling, as do variations in register colourings.

2.4.2 Multiple Memory Access Optimization

Multiple Memory Access (MMA) optimization is a new idea, with very little directly related
work for comparison. However, one related area is that of optimizing address computation code
for Digital Signal Processors (DSPs).

For architectures with no register-plus-offset addressing modes, such as many DSPs, over
half of the instructions in a typical program are spent computing addresses and accessing mem-
ory [107]. The problem of generating optimal address-computing code has been formulated as
the Simple Offset Assignment (SOA) problem, first studied by Bartley [15] and Liao et al [72],
the latter formulating the SOA problem for a single address register, and then extending it to
the General Offset Assignment (GOA) problem for k address registers. Liao et al showed that
SOA (and GOA) are NP-hard, reducing the problem to the Hamiltonian path problem. Their
approximating heuristic is similar to Kruskal’s maximum spanning tree algorithm.

Rao and Pande [91] generalized the SOA problem for optimizing expression trees [99] to
minimize address computation code. Their formulation of the problem—Least Cost Access
Sequence—is also NP-Complete, but achieved a gain of 2% over Liao et al’s earlier work [72].
This approach reordered a sequence of loads without consideration of the store of the result.
However, breaking big expression trees into smaller sub-trees can reduce optimization possibil-
ities if the stores are seen as fixed.

Leupers and Marwedel [70] adopted a tie-breaking heuristic for SOA and a variable parti-
tioning strategy for GOA. Later, Liao, together with Sudarsanam and Devadas [103] extended
k-register GOA by considering auto-increment/decrement over the range −l . . . + l. Both SOA
and GOA optimize target code in the absence of register-plus-offset addressing modes, which
would otherwise render trivial the SOA problem.

Lim, Kim and Choi [75] took a more general approach to reordering code to improve the
effectiveness of SOA optimization. Their algorithm was implemented at the medium-level in-
termediate representation within the SPAM compiler, and achieved an improvement of 3.6%
over fixed-schedule SOA, when generating code for the TMS320C25 DSP. This was a more
general approach to that taken by Rao and Pande, with their most favourable algorithm being a
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hybrid of a greedy list scheduling algorithm and an exhaustive search algorithm.
DSP-enhanced architectures (e.g., Intel MMX [57], PowerPC AltiVec [81] and Sun VIS [104])

include MMA-like block loads and stores. However, these instructions are limited to fixed block
loads and stores to special data or vector registers, not general purpose registers. This restric-
tion limits the use of these MMA instructions to specific data processing code, not to general
purpose code (e.g., spilling code).

A related area to MMA optimization is that of SIMD Within A Register (SWAR) [40]. The
research presented in this thesis considers only word-sized variables; applying the same algo-
rithm to sub-word-sized variables could achieve additional reductions in code size (e.g., com-
bining four byte-sized loads into a single word load).

SOA was recently applied by Sharma and Gupta [100] to GCC’s intermediate language.
They achieved an average code size reduction of 3.5% over a range of benchmarks for the
TMS320C25. Interestingly, while for most benchmarks there was a reduction in code size, for
a few benchmarks there was a measurable increase. The authors attributed this to deficiencies
in later phases in the GCC compiler chain.

All of the above approaches have been applied to the Control Flow Graph [6], which pre-
cisely specifies the sequence of memory access instructions. Koseki et al considered the prob-
lem of colouring a CFG (where the order of instructions is fixed) in the presence of instructions
which have particular preferences for register assignment [66]. They suggested using these
preferences to guide register assignment to enable the use of MMA instructions. The work pre-
sented in Chapter 5 differs from their work in two ways: (1) because the VSDG underspecifies
the ordering of instructions in a graph7 we can consider combining loads and stores that are
not adjacent to each other in the CFG into provisional MMA nodes; and (2) we use the Access
Graph to bias the layout of the stack frame for spilled and local variables during target code
generation.

2.4.3 Combining Register Allocation and Code Motion

Formulating register allocation as a graph colouring problem was originally proposed by Chaitin [25].
The intermediate code is analysed to determine live variable ranges [6], producing a clash
graph, G(N,E), where each node n ∈ N represents a single live range, and there is an edge
e(p, q) ∈ E if the two live ranges p and q clash (are live at the same time) within the program.

Colouring proceeds by assigning (colouring) physical registers to nodes whose degree is less
than the number of physical registers, and removing them from the clash graph. This process
repeats until either there are no more nodes in the clash graph to colour (in which case the
process is complete), or there are nodes that cannot be coloured. Uncoloured nodes are split in
two, with a partitioning of the incident clash edges, together with the insertion of spill code into
the intermediate code. Colouring then continues as before, splitting nodes where necessary.

This is a formulation of the k-register graph colouring problem, which is NP-Complete
in the number of registers (colours) available to colour the graph: for k >= 3 the colouring
problem is reducible to the 3-SAT problem [45]. However, carefully-designed heuristics can
produce near-optimal results in the majority of cases, and with acceptable performance even in
pathological cases.

Chow and Hennessey [26] proposed a modification of Chaitin’s original graph colouring

7We show in Chapter 6 that the special case of a VSDG with enough serializing edges to enforce a linear order
corresponds to a CFG.
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algorithm. They split the uncolourable nodes into two separate live ranges [26], and tailor
heuristics to favour more frequently-accessed nodes (e.g., inner loop variables).

Goodwin and Wilken [50] formulated global register allocation (including all possible spill
placements) as a 0-1 integer programming problem. While they did achieve quite impressive
results, the cost was very high: the complexity of their algorithm is O(n3), and for a given time
period their allocator did not guarantee to allocate all functions.

All of the register allocation approaches described so far are applied to fixed-order blocks of
instructions. The only transformation possible is to insert spill code to reduce register pressure;
the goal being to minimize the amount of spill code inserted into the program. Another way
to reduce register pressure, and hence reduce spill code, is to move code in a way that reduces
register pressure.

Code motion as an optimization is not new (e.g., Partial Redundancy Elimination [80]).
Perhaps the work closest in spirit to that presented in Chapter 6 is that of Rüthing et al [96]
who presented algorithms for optimal placement of expressions and sub-expressions, combining
both raising and lowering of code within basic blocks.

The CRAIG framework [20], implemented within the ROCKET compiler [105], took a
brute force approach:

1. Attempt register allocation after instruction scheduling.

2. If the schedule cost is not acceptable (by some defined metric) attempt register allocation
before scheduling.

3. While the cost is acceptable (i.e., there is some better schedule) add back in information
from the first pass until the schedule just becomes too costly.

Brasier et al’s experience with an instance of CRAIG (CRAIG0) defined the metric as the exis-
tence of spill code (a schedule is considered unacceptable in the presence of spill code). Their
experimental results showed improvements in execution time, but did not document the change
in code size. Rao [92] improved on CRAIG0 with additional heuristics to allow some spilling,
where it could be shown that spilling had a beneficial effect.

Touati’s thesis [106] argued that register allocation is the primary determinant of perfor-
mance, not scheduling. The goal of his thesis was again to minimize the insertion of spill code,
both through careful analysis of register pressure, and by adding serializing edges to each basic
block’s data dependency DAG. By using integer linear programming (cf. Goodwin and Wilken)
Touati achieved optimal solutions for cyclic register allocation (where the output register map-
ping of one loop iteration is the input register mapping for the next loop iteration, thus avoiding
register copies at loop iteration boundaries), allowing for a trade-off between ILP efficiency and
register usage.

An early attempt at combining register allocation with instruction scheduling was proposed
by Pinter [88]. That work was based on an instruction level register-based intermediate code,
and was preceded by a phase to determine data dependencies. This dependence information
then drove the allocator, generating a Parallelizable Interference Graph to suggest possible
register allocations. Further, the Global Scheduling Graph (i.e., global in the sense of crossing
basic block boundaries) was then used to schedule instructions within a region.

Another approach was the region-based algorithm of Janssen and Corporaal [59], which
defined regions as corresponding to the bodies of natural loops. They then used this hierarchy
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of nested regions to focus register allocation, with the inner-most regions being favoured by
better register allocation.

The “Resource Spackling Framework” of Berson et al [18] applied a Measure and Reduce
paradigm to combine both phases—their approach first measured the resource requirements of
a program using a unified representation, and then moved instructions out of excessive sets into
resource holes. This approach was basic-block-based: a local scheduler attempted to satisfy the
target constraints without increasing the execution time of a block, while the more complicated
global scheduler moved instructions between blocks. This approach most closely matches the
approach described in Chapter 6, which by design is a global version of their local scheduler
since the VSDG does not have explicit basic blocks.

2.5 10002 Code Compacting Optimizations
There have been many optimization algorithms discussed in the literature over the last thirty or
forty years. Some are designed to improve the execution speed of a program; some aim to re-
duce the size of a program, either through compaction or compression; and other optimizations
reduce the runtime data storage requirements of programs.

In this section we choose eight8 optimizations which have the effect of reducing a program’s
size. For each optimization, we discuss their merits, their algorithmic complexity, and their
effectiveness at reducing code size. While we do not claim this list to be exhaustive, we believe
the ones presented here to be the most beneficial.

2.5.1 Procedural Abstraction

Procedural abstraction makes significant changes to a whole program. It is a form of code com-
pression, replacing multiple instances of a repeating code block with a single instance (function)
and multiple references (calls) to that instance. As a concrete example of procedural abstrac-
tion, De Sutter et al’s Squeeze++ [34] demonstrates how effective procedural abstraction can
be on modern code.

But why is procedural abstraction so effective, and does it have a future? The answer to
this question lies in modern approaches to software engineering. Large applications are written
by teams of programmers9, and in many cases the problems that the individual teams are to
solve look similar (e.g., walking a list, sorting, iterating over arrays, etc). Additionally, some
of the code will be produced by programmers copying other sections of code (“cut-n-paste
programming”).

As projects are maintained over a period of time, programmers prefer to copy a known,
working, function and make minor changes than risk changing a tested function. Or simply that
a maintenance programmer writes a function to implement some new behaviour, unaware that
a function already exists in another module (perhaps among millions of lines of code).

Use of object-oriented programming languages like C++, Java and C#, further increases the
opportunities for code compaction from procedural abstraction. Software engineering methods
emphasise the use of subclassing, part of which includes overriding methods with specialised
methods particular to the derived class. In many cases, these new methods are very similar to

8Eight being the closest binary number to ten.
9One could even argue that a lone programmer is actually part of a large team if you factor in the operating

system and third-party library developers.
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switch(i) {
case 1: s1;

BigCode1;
break;

case 2: s2;
s3;
break;

case 3: s4;
BigCode1;
break;

case 4: s5;
BigCode2;
break;

case 5: s6;
BigCode2;
break;

default: BigCode1;
break;

}
/* break jumps to here */

switch(i) {
case 1: s1;

break1;

case 2: s2;
s3;
break;

case 3: s4;
break1;

case 4: s5;
break2;

case 5: s6;
break2;

default: break1;
}
/* break1: */
BigCode1;
goto break;

/* break2: */
BigCode2;

/* break: */

Figure 2.4: An example of cross-linking on a switch statement. The original code (a) has two
common code tails for many of the cases (assume that BigCode1 and BigCode2 are non-
trivial code blocks). In the cross-link optimized version (b) the two tails have been factored out,
and now at least three exit labels are generated—one each for BigCode1, BigCode2 and the
normal exit.

those they override, with perhaps a few minor changes. This design methodology produces a
large amount of similar code, which partly explains Squeeze++’s impressive results.

2.5.2 Cross Linking

As a variation on procedural abstraction, both within a function and across functions, cross-
linking similarly benefits from modern software engineering practice. Cross-linking can be very
beneficial for optimizing switch statements when multiple cases have the same tail code. For
example, consider the code in Figure 2.4 where savings have been made in removing two copies
of BigCode1 and one copy of BigCode2.
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int foo(int x,int y,int z)
{

int a, b, c, d,
e, f, g, h, j;

a = x + y;
b = y - z;
c = a + b;
d = b + x;
e = x + a;
f = a + c;
g = c + d;
h = -d;
j = g + h;

return bar(e,f,j);
}

||foo|| PROC
ADD r3,r0,r1
SUB r1,r1,r2
ADD r12,r1,r0
ADD r2,r3,r1
ADD r1,r3,r2
ADD r0,r0,r3
RSB r3,r12,#0
ADD r2,r2,r12
ADD r2,r2,r3
B bar

foo:
str lr, [sp, #-4]!
rsb r2, r2, r1
add r1, r0, r1
add r2, r1, r2
add r0, r0, r1
add r1, r1, r2
ldr lr, [sp], #4
b bar

(a) (b) (c)

Figure 2.5: Reassociation of expression-rich code in (a). The ARM commercial compiler gen-
erates ten instructions (b) which almost exactly mirror the original source code. The GCC com-
piler does better through algebraic manipulation, generating only eight instructions (c), fewer
still if we discount the superfluous link register-preserving instructions. Both compilers were
asked to optimize for code size.

2.5.3 Algebraic Reassociation

Most computer programs process data in one form or another, evaluating expressions given
some input data in order to generate output data. This is especially true of expression-rich func-
tions, such as the one shown in Figure 2.5. Such expressions can be the result of, for example,
naı̈ve implementation, macro expansion, or compiler-generated address offset computation.

The need for effective algebraic optimizations is, like that for procedural abstraction and
cross-linking, a growing need, both as the general size of programs increases, and as the data
processing needs of multimedia applications grows (e.g., speech and image processing, video
compression, games, etc).

2.5.4 Address Code Optimization

In tandem with algebraic reassociation, as the number of data processing expressions increases,
so too does the number of memory access instructions, with a corresponding increase in ad-
dress computation code. While there are gains to be had in optimizing the address expressions
themselves, there are also opportunities in rearranging the layout of data in memory to reduce
or simplify address computations.

Both Simple Offset Assignment and General Offset Assignment reduce address computation
code by rearranging variables in memory. In addition, aggressive use of processor addressing
modes to precompute addresses can also reduce instructions or execution time.
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2.5.5 Leaf Function Optimization
The Call Graph described in section 2.1.1 can identify functions which do not in themselves
call functions. These form the leaves of the call graph, and thus receive special attention such
as aggressive inlining, specialization, and simplified entry and exit code.

Leaf functions can result from the original source code, as well as being generated by pro-
cedural abstraction. Additionally, some functions which initially look like non-leaf functions
can in fact be treated as leaf functions. For example, the functional-programming style factorial
function

int fac(int n, int acc)
{

if (n==0)
return acc;

else
return fac(n-1, acc*n);

}

can be transformed into a loop, noting that the recursive call at the end of the function can be
implemented as jump to the top of the function. Other recursive functions can be transformed
into iterative leaf functions through the addition of accumulator variables (explicitly identified
in the above program as variable acc). Grune et al [51] further describes compiling functional
languages.

Leaf functions are prime candidates for inlining, especially those with only one caller. The
code saved comes from avoiding the need for function entry and exit code, and removing any
register assignment constraints from the original function call site. This then leads to further
opportunities for optimization as the body of the inlined function is now within the context of
the parent function.

2.5.6 Type Conversion Optimization
Another aspect of data processing relates to the physical size of the data itself, and the seman-
tics of data processing operations. To support a variety of data types, compilers insert many
implicit data type conversions, the most common being sign or zero extension. For example,
the C programming language specifies that arithmetic operators operate on integer-sized values
(typically 32-bit). So the statement

char a, b, c;
...

c = a + b;
...

first promotes char (say, signed 8-bit) variables a and b to integer types before doing the
addition. The result of the addition is then demoted to char type before being stored in c. If
a and b are held in memory, then most processors have some form of load-with-sign-extend
operation, so the above expression would indeed compile into four instructions (two loads, add,
and store).
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However, if any of a or b are held in a register, then the compiler must generate code that
behaves as if they were loaded from memory with sign extension. The effect of this is that a
naı̈ve compiler will generate code that sign-extends a and b before doing the addition. For a
processor without explicit sign-extend instructions the compiler will generate two instructions
for each sign extension (a left-shift to move the char sign bit into the int sign bit, and then a
right shift to restore the value and propagate the sign bit into the upper 24 bits of the register).

Careful analysis can identify that since the result of the expression will be converted to a
char type then the addition, too, can be performed with 8-bit precision. This information can
then be used to eliminate the sign extension operations prior to code generation.

Clearly this is a trivial example used for illustration, but the basic principle of using type
analysis to remove redundant type conversions can produce useful reductions in code size. More
aggressive type analysis can identify further type conversions that can be eliminated.

2.5.7 Dead Code Elimination

Dead code—code that, while it may be executed, has no effect on the output of the program—
is a prime candidate for removal. Dead code can arise as the result of previous optimization
passes, as the result of macro expansion or other automated code generation, or simply as a
result of changes to a large body of code that has effects outside of the scope of change (e.g.,
consider a 10,000 line function, and where a maintenance programmer removes an expression
in line 9,876 which makes an expression in line 12 dead).

Partial redundancy elimination identifies expressions which are only partially redundant,
i.e., there is at least one path of execution where a given statement is redundant (dead), and at
least one path where it is not redundant. For example, consider

a = ...;
b = ...;
do {

x = a+b;
a = x+1;
y = a+b;

} while (...)

The first instance of expression “a+b” is partially redundant: on the entry path into the loop
it is not redundant, but on the back path it is redundant, having already been computed for the
assignment to y. We can therefore move it out of the loop, and replace it with a temporary
variable:
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a = ...;
b = ...;
T = a+b;
do {

x = T;
a = x+1;
y = a+b;
T = y;

} while (...)

with the added advantage of exposing the first instance of a+b to optimizations with the pre-
ceding code.

Dead code elimination may be one of the oldest optimizations known, but it still has its
place in modern optimizing compilers. This is especially so with automated code generation
and object-oriented languages emphasising code reuse—it is better to leave redundant code in
the unchanged source code, and let the optimizer remove it during compilation.

2.5.8 Unreachable Code Elimination
While dead code is code that may execute but have no effect on the output of the program,
unreachable code is that code which will never be executed. For example, in

#define DEBUG ( 0 )

...

if (DEBUG)
print(...);

the print statement is unreachable, and both it and the enclosing if can be deleted. However,
in considering

int bigfunc(int n)
{

if (n>10)
{

... HUGE CODE ...
}

}

it would be very beneficial if we could determine if the predicate n>10was always false, as then
the “HUGE CODE” could be removed, with potentially huge savings. The only way to achieve
this is by interprocedural analysis, firstly to determine all of the call sites for this function, and
secondly to determine the range of values that can be passed into the function. The predicate
can then be identified as being always-false, always-true, or otherwise. If the result of analysis
is always-false, the body of the if statement can be deleted.
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Such global analysis is non-trivial, and the safe option is simply not to delete any code if
there is even the slightest doubt that it might not be dead. Leaving the code in place will only
result in a program larger than necessary; deleting it will produce a broken program.

The same is true of predicate analysis: in simple cases, like the example above, the predicate
is trivial to analyse. However, in general, predicate analysis is undecidable, and so we might
take the conservative approach of restricting analysis to schematic equivalence. For example, is
the following predicate always-true, always-false, or otherwise for all values of x?

if ( ((x+1)*(x+1)) == (x*x + 2*x + 1) )
{

...
}

The problem is especially difficult for floating point types, where it is entirely possible for the
left and right hand sides of this predicate to compute different results for the same value of x.

2.6 Summary
This chapter has taken a broad look at the more significant program graphs that have been
proposed and used within compilers. From the original Control Flow Graph and the Data Flow
Graph, Ferrante et al’s Program Dependence Graph, to Ballance et al’s Program Dependence
Web and Click’s Intermediate Representation, to the Value Dependence Graph of Weise et al.

As well as the graphs themselves, we have also reviewed two forms of expressing values
within these graphs: Static Single Assignment form and Gated Single Assignment form. They
simplify dataflow analyses by placing a program in a form where there exists exactly one as-
signment statement for every variable in the program.

We the considered four important optimization goals—control flow optimization, loop opti-
mization, expression optimization, and whole program optimization—and chose from the pro-
gram graphs previously described the one that best supported each given optimization goal.

We then briefly described how our new Value State Dependence Graph (presented in the
next chapter) can be applied to all of these optimization goals, before going on to describe the
three main approaches to code size optimization presented in this thesis: procedural abstrac-
tion, multiple memory access optimization, and combined register allocation and code motion,
described in chapters 4, 5, and 6 respectively.

Finally we chose eight code size optimizations that are important for code size: procedural
abstraction, cross-linking, algebraic reassociation and address code optimization, leaf function
optimization, type conversion optimization, dead code elimination, and unreachable code elim-
ination.

In the next chapter we introduce the foundation of this thesis: the Value State Dependence
Graph, and describe how some of the optimizations presented in this chapter can be applied to
programs described in VSDG form.
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CHAPTER 3

The Value State Dependence Graph

The secret to creativity is knowing
how to hide your sources.

ALBERT EINSTEIN (1879–1955)

An important decision when building a compiler is the choice of the internal data structure
for representing the program. Amongst its many properties it should simplify analysis of

the program and minimize the effort in transforming and maintaining the structure.
The previous chapter reviewed a range of program graphs. It showed that they have various

desirable features, but that there are issues relating to the implementation of analyses and trans-
formations. This chapter begins with a critique of the Program Dependence Graph, showing
that its complex structure over-specifies (and thus overly constrains) the program graph.

The Value State Dependence Graph (VSDG) is then described, showing how it solves the
inherent problems of its predecessor, the Value Dependence Graph, through the addition of state
edges and by careful treatment of loops. The pull-model semantics of the VSDG are given, and
shown to be equivalent to the push-model semantics of the PDG.

Generating VSDGs from syntax-directed translation of structured C programs is described
in detail, together with the implementation of a C-subset1 compiler. Finally, the benefits of the
VSDG are demonstrated with a number of well-known control- and data-flow optimizations.

1Excluding goto and labels. This is fixable, through code duplication or boolean variables, but not the focus
of this thesis.
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3.1 A Critique of the Program Dependence Graph
The Program Dependence Graph (PDG) [39] is a multigraph, combining the Control Flow
Graph (CFG) and the Data Dependence Graph (DDG) into a single, unified graph structure. In
this section we describe in sufficient detail the PDG, and then discuss its weaknesses, showing
that the VSDG (Section 3.3) offers a better framework for optimization.

3.1.1 Definition of the Program Dependence Graph
Vertices in the PDG represent single statements and predicate expressions (or operators and
operands), and edges represent both data-dependencies and control-dependencies.

Definition 3.1 (Program Dependence Graph) The Program Dependence Graph of a pro-
gram P is a directed graph G = (V,E), where V is the set of vertices (statements, operators,
predicate expressions, etc), E ⊆ V × V is the set of dependence edges (of which the four
categories of edge are further defined below), where each edge (p, q) ∈ E connects from
vertex p ∈ V to vertex q ∈ V .

There are two main categories of edge in the PDG: control dependence edges and data
dependence edges.

Definition 3.2 (Control Dependence Edge) There exists a control dependence edge (p, q)
iff either:

1. p is the entry vertex and q is a vertex in P that is not within any loop or conditional;
or

2. p is a control vertex, and q is a vertex in P immediately dominated by p.

In the PDG there are several types of data dependence edges. In the original Ferrante,
Ottenstein and Warren formulation of the PDG [39] there are three types of data dependence
edge.

Definition 3.3 (Flow Dependence Edge) There exists a flow dependence edge (p, q) iff

1. p is a vertex that defines variable x,

2. q is a vertex that uses x, and

3. control can reach q after p via an execution path within the CFG of P along which
there is no intervening definition of x.

Flow dependences are further classified as loop-carried dependencies, for definitions that
are referenced on subsequent iterations of a loop, and loop-independent dependencies, for defi-
nitions that are independent of loop iteration.

The definitions for output dependence edges and anti-dependence edges follow from the
usual definitions:

Definition 3.4 (Output Dependence Edge) There exists an output dependence edge (p, q)
iff both p and q define the same variable x, and control can reach q after p via an execution
path within the CFG of P .
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Definition 3.5 (Anti-Dependence Edge) There exists an anti-dependence edge (p, q) iff p

is a vertex that uses variable x, q is a vertex that defines x, and control can reach q after p

via an execution path within the CFG of P along which there is no intervening definition of
x.

In the Horwitz et al [56] version of the PDG there are no anti-dependence edges, while the
output dependence edges are replaced by def-order dependency edges. This does not change
the basic properties of the PDG, nor the underlying problems discussed below.

3.1.2 Weaknesses of the Program Dependence Graph
The data dependence subgraph is constructed from vertices which represent operators. Thus the
data dependencies refer to the results of operations, rather than, say, the contents of registers
or memory. Because there is no clear distinction between data held in registers and data held
in memory-bound variables (other than arrays), the PDG suffers from aliasing and side-effect
problems.

Languages with well-behaved pointers (such as Pascal [113]) are easily supported through
data flow methods [6]. Other languages, such as C [61], with pointers that can point to almost
anything, can preclude PDG construction altogether, or at the very least increase the effort of
construction and analysis2.

While SSA-form elegantly solves many of these problems, the PDG is not necessarily in
SSA-form, so there is no guarantee that a given PDG formulation is free of these problems.
The worst case assumes that every pointer aliases with every other pointer, and treating the
PDG accordingly. When pointer arithmetic is well-behaved, then the same data flow methods
as before can be applied.

The large number of edge types within the PDG (six for the original PDG, five for the
Horwitz et al version) increases the cost of maintaining and repairing the PDG during trans-
formation. As programs grow in size, the runtime cost of any optimization algorithm must
be carefully weighed against the benefits obtained. Any additional effort just to maintain the
intermediate representation must be considered very carefully.

In contrast, the VSDG has only two types of edge: value-dependency edges and state-
dependency edges. Being implicitly in SSA-form (in that values have only one definition), the
VSDG does not need PDG-like special (i.e., output- or anti-dependence) edges as such informa-
tion is explicitly represented in the SSA-form. Table 3.1 (above) describes the correspondence
between the three main PDG data-dependency edges and their VSDG equivalents.

Several different semantics have been presented for PDGs. Selke provides a graph rewriting
semantics [98], and Cartwright and Felleisen [23] develop a non-strict denotational semantics
of PDGs. However, none of these semantics describes the full PDG.

SSA-form [7] simplifies many dataflow-based optimizations. The PDG, however, is not
an SSA-based graph, with the result that SSA-based optimization requires additional effort to
transform a PDG into SSA-form, and then to maintain the SSA-form during optimization.

From the view of data flow-based optimization it would better to adopt a data flow model.
However, this is problematic in the PDG: multiple definitions of a variable may reach a vertex.
Yet the PDG does not have a natural way to say which of the reaching definitions to choose

2A pessimistic approach is to treat all memory is a single array. While safe, this monolithic approach does
not provide much information about the behaviour of the program, so subsequent analysis yields little information
other than which instructions access memory.
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Node p S ′ =st(S, a, v1) S ′ =st(S, a, v) . . . =ld(S, a)
Node q S ′′ =st(S ′, a, v2) . . . =ld(S ′, a) S ′ =st(S, a, v)
PDG dependence output flow anti
VSDG dependence explicit implicit

Table 3.1: A comparison of the data-dependence edges in the PDG and the VSDG. The
three main types of data-dependence edge in the PDG—output, flow and anti-dependence—
are illustrated with two nodes p and q, where S, S ′, S′′ are state variables, a is an address,
and v is a value. The output- and flow-dependence edges are explicitly represented by the
VSDG’s state-dependency edges (q depends on the state produced by p), and the PDG’s anti-
dependence edges are implied by the VSDG’s restriction of a single live state at any point in a
VSDG (q kills the state that p depends on).

from (in contrast to SSA-form which does), thus complicating reachability analysis, dead code
elimination, and so forth. Indeed, as Cartwight and Felleisen note [23]:

“A rigorous formulation of the data-flow semantics of PDGs reveals a disturbing
feature of the conventional PDG representation: the sequencing information pro-
vided by the output (or def-order) dependencies is not transmitted by the data-flow
edges to the use nodes that must discriminate among multiple definitions of the
same identifier.”

While the PDG has been an important and widely used intermediate graph for compilers, it
is evident that it has problems, most notably with languages like C which allow arbitrary use of
pointers, and also in the lack of data flow information such as computed by SSA-form.

3.2 Graph Theoretic Foundations
Before describing the Value State Dependence Graph we introduce the graph theoretic founda-
tions which will be used in this thesis.

Given two nodes, p and q, such that p depends on the result of q for its execution, then an
edge p → q is drawn, or written as (p, q). Thus both notation and visualisation are consistent
with respect to each other3.

3.2.1 Dominance and Post-Dominance
In CFG-based compilers the dominance relation is used for discovering loops in the CFG, and
where to place SSA-form φ-functions. The VSDG uses dominance and post dominance for
identifing nodes within the VSDG’s concept of basic blocks, i.e., predicate-controlled nodes
and loop-variant nodes.

3.2.2 The Dominance Relation
The dominance relation is a binary relation between two nodes in a graph and their relation to
the entry node (we call N0) of the graph.

3We do not wish to start a religious war over the direction of arrows in graphs. We simply feel that our choice
of direction of arrows in VSDG drawings aids understanding of the relationships between nodes.
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Definition 3.6 (Dominance) A node p dominates node q iff every path from N0 to q in-
cludes p. We write the relation as p dom q.

The dominance relation is reflexive (every node dominates itself), transitive (if p dom q and q
dom r then p dom r), and antisymmetric (if p dom q and q dom p then p = q). Two further
definitions specialise the dominance relation:

Definition 3.7 (Immediate Dominance) A node p immediately dominates node q iff p dom
q and there does not exist a node r such that r 6= p and r 6= q for which p dom r and r dom
q. We write this relation as p idom q.

Immediate dominance has two important properties. Firstly, the immediate dominator of a
node is unique; and secondly, the immediate dominance relation forms the edges of a tree (the
dominance tree, e.g., Figure 3.1) showing all the dominance relations of the graph, with the
entry node, N0, as the root of the tree. We further say,

Definition 3.8 (Strict Dominance) A node p strictly dominates node q iff p dom q and
p 6= q. We write this relation as p sdom q.

The strict dominance relation identifies all the nodes dominated by a given node, other than the
node itself.

The post dominance relation is the inverse of the dominance relation, using the function exit
node, N∞, as the reference node.

Definition 3.9 (Post Dominance) A node p post dominates node q iff every possible path
from q to N∞ includes p. We write this relation as p pdom q.

and

Definition 3.10 (Immediate Post Dominance) A node p immediately post dominates node
q iff p pdom q and there does not exist a node r such that r 6= p and r 6= q and for which p
pdom r and r pdom q. We write this relation as p ipdom q.

Figure 3.1 illustrates the dominance and post dominance trees, constructed from the immediate
dominators and immediate post dominators respectively, for a simple VSDG.

3.2.3 Successors and Predecessors
The dominance and post dominance relations are defined with respect to the entry and exit
nodes of the graph, respectively. More general relations between two nodes are the successor
and predecessor relations, defined below in the context of two sets of edges ES and EV (defined
later).

Definition 3.11 (Successor and Predecessor) A node p is a successor of node q iff there is
a path in EV ∪ ES from p to q. And conversely, q is a predecessor of p.

If we wish to be specific we will write V -successors or S-successors for respectively EV and
ES successors. Similarly, we will write succV (n) and succS(n) for the appropriate sets of V -
successors or S-successors respectively. We simplify this to succ(n) for (V ∪ S)-successors,



Chapter 3. The Value State Dependence Graph 52

A

EXIT

E

D

γ

C

F

B

T

P

C

F

ENTRY

(a)

E

D

γ P B C

A

(b)

A

γ

PC

F

BT CF D

E

(c)

Figure 3.1: A (simplified) VSDG (a), its dominance tree (b) and its post dominance tree (c).
Note that in (c) some of the γ-node post dominance relations are qualified by the port name
(shown as a superscript on the dominated node): node B is post dominated by γ-node port T ,
node C is post dominated by γ-node port F , and node P is post dominated by γ-node port C.

and likewise for predecessors. For example, in Figure 3.1 node B is a successor of node D,
while node D is the only predecessor of node B. Further,

succV (D) = {B,C, P}
predV (D) = {E}.

The definitions of successor and predecessor follow the execution model of the nodes in the
graph; for example, with respect to node D, node E is executed before (precedes) node D,
while nodes B, C and P execute after (succeed) D.

3.2.4 Depth From Root

We define the property “Depth From Root” of nodes in the VSDG:

Definition 3.12 The (maximal) Depth From Root, D(p), of a node p is the length of the
longest path in (EV ∪ ES)∗ from the root to p.
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3.3 Definition of the Value State Dependence Graph
The Value State Dependence Graph (VSDG), introduced in [60], is a directed graph consisting
of operation, loop and merge nodes together with value and state dependency edges. Cycles
are permitted but must satisfy various restrictions. A VSDG represents a single procedure;
this matches the classical CFG but differs from the VDG in which loops were converted to
tail-recursive procedures called at the logical start of the loop.

The original Value Dependence Graph (VDG) [112], from which the VSDG is derived, rep-
resents programs as value dependencies. This representation removes any specific ordering of
instructions (nodes), but does not elegantly handle loop and function termination dependencies.

The VSDG introduces state dependency edges to model sequentialised computing. These
edges also have the surprising benefit of generalising the VSDG: by adding sufficient serializing
edges (state dependency edges added to a VSDG to enforce some ordering of nodes) we can
construct any one of a number of possible CFGs that correspond to a total ordering of the
partially ordered VSDG. Another benefit is that the under-specified node serialization of the
VSDG more easily supports a combined register allocation and code motion algorithm than
compared to the exact serialization of the CFG (see Chapter 6).

An example VSDG is shown in Figure 3.2. In (a) we have the original C source for a recur-
sive factorial function. The corresponding VSDG, (b), shows both value- and state-dependency
edges and a selection of nodes.

The VSDG is formally defined thus:

Definition 3.13 (Value State Dependence Graph) A VSDG is a labelled directed graph
G = (N,EV , ES, `, N0, N∞) consisting of nodes N (with unique entry node N0 and exit
node N∞), value dependency edges EV ⊆ N×N , and state dependency edges ES ⊆ N×N .
The labelling function ` associates each node with an operator (see Section 3.3.1 for details).

VSDGs have to satisfy two well-formedness conditions. Firstly, ` and the (EV ) arity must
be consistent (e.g., a binary arithmetic operator must have two inputs); secondly that the VSDG
corresponds to a structured program, i.e., there are no cycles in the VSDG except those mediated
by θ (loop) nodes (described in Section 3.5.1).

Value dependency (EV ) indicates the flow of values between nodes, and must be preserved
during optimization.

State dependency (ES) has two uses. The first is to represent the essential sequential de-
pendency required by the original program. For example, a load instruction may be required
to follow a store instruction without being re-ordered; a return node must wait for a loop to
terminate even though there might be no value-dependency between the loop and the return
node. The second is that additional serializing state dependency edges can be added incremen-
tally until the VSDG corresponds to a unique CFG.

A well-formed VSDG has the property that there must be exactly one live state, i.e., no two
states can be live at the same time. γ-nodes ensure that, even though there may be two different
states within the true and false subgraphs, during execution exactly one state will be live.

The VSDG inherits from the VDG the property that a program is represented in Static Single
Assignment (SSA) form [7, 33]: for each value in the program there is exactly one node port
which produces that value. Note that, in implementation terms, a single register can hold the
produced value for consumption at all successors; it is therefore useful to talk about the idea of
an output port for q being allocated a specific register, r, to abbreviate the idea of r being used
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int fac( int n ) {
int result;

if ( n == 1 )
result = n;

else
result = n * fac( n - 1 );

return result;
}
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Figure 3.2: A recursive factorial function, whose VSDG illustrates the key graph components—
value dependency edges (solid lines), state dependency edges (dashed lines), const nodes,
a call node, a tupled γ-node, a comparison node (eq), and the function entry and exit nodes.
The γ-node returns the original function argument and state if the condition is true, or that of
the expression if false (including the state returned from the call node).

.

for each edge (p, q) where p ∈ succV (q). Similarly, we will say the “right-hand input port” of
a subtraction instruction.

3.3.1 Node Labelling with Instructions
There are four main classes of VSDG nodes: value nodes (representing pure arithmetic), state
nodes (with explicit side effects), γ-nodes (conditionals), and θ-nodes (loops).

3.3.1.1 Value Nodes

The majority of nodes in a VSDG generate a value based on some computation (add, sub-
tract, etc) applied to their dependent values. Constant nodes are a special case, having no V-
predecessors but possibly S-predecessors after instruction scheduling (especially if a constant
node loads a value into a register, rather than part of another instruction).

We assume that all the value nodes are free of side-effects. Value nodes which are to be
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modelled as generating side-effects (e.g., throwing an exception for divide-by-zero, or arith-
metic over/under-flow) are placed in the fourth category—state nodes.

We also assume that, other than defined by the edges within the graph, the order of evalua-
tion of dependent nodes for n-ary value nodes is arbitrary. Where evaluation order is important
(as might be defined by the semantics of the source language) this is represented in the VSDG
by state edges within the graph.

This has the pleasing result that two value nodes, say, p and q, that are independent of each
other (such that there is no path p to q nor q to p) can be executed in any order, or even in
parallel.

3.3.1.2 State Nodes

State nodes are nodes which depend on, and may also generate, the distinguished state value.
There are three main categories of state nodes: memory access nodes, call nodes, and θ-nodes
(discussed below).

The memory access nodes constitute the load and store nodes. Load nodes depend on both a
state, S, and an address value, a, and return the value read from the memory cell MEM[a] within
S. Volatile loads also produce a new state, reflecting the (potential) changes to the state that
executing the load might cause.

Store nodes depend on a state, S, an address value, a, and a data value, d. The store node
writes d into the memory cell MEM[a] within S, and returns a new state, S ′. Volatile stores are
similar, except during optimization when the volatile property provides additional information.

The call node takes both the name of the function to call and a list of arguments, and returns
a list of results. It is treated as a state node as the function body may depend on or update the
state.

We maintain the simplicity of the VSDG by imposing the restriction that all functions have
one exit node N∞, which depends only on state. Special return nodes depend on state (and a
tuple of values in the case of non-void functions), and generate a new state to preserve the
structure of the VSDG (see Figure 3.2 (b)). Return nodes can be implemented by, for example,
a jump to the end of the function after marshalling the return values into the given target’s return
register(s).

3.3.1.3 γ-Nodes

The VSDG’s γ-node is similar to the γ-node of Gated Single Assignment form [14] in being
additionally dependent on a control predicate, rather than the control-independent nature of
SSA φ-functions.

Definition 3.14 (γ-Node) A γ-node γ(C, T, F ) evaluates the condition dependency C, and
returns the value of T if C is true, otherwise F .

We generally treat γ-nodes as tupled nodes. One can treat several γ-nodes with the same pred-
icate expression as a single tupled γ-node. Figure 3.3 illustrates two γ-nodes that can be com-
bined in this way.

3.3.1.4 θ-Nodes

The θ-node models the iterative behaviour of loops, modelling loop state with the notion of an
internal value which may be updated on each iteration of the loop. It has five specific ports
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a) if (P)
x = 2, y = 3;

else
x = 4, y = 5;

b) if (P) x = 2; else x = 4;
...

if (P) y = 3; else y = 5;

2 4

γ

P

C

T F

x y

3 5

γC

T F

Figure 3.3: Two different code schemes (a) & (b) map to the same γ-node structure.

j = ...
for( i = 0; i < 10; ++i )

--j;
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Figure 3.4: A θ-node example showing a for loop. Evaluating the θ-node’s X port triggers it to
evaluate the I value (outputting the value on the L port). While C evaluates to true, it evaluates
the R value (which in this case also uses the θ-node’s L value). When C is false, it returns the
final internal value through the X port. As i is not used after the θ-node loop then there is no
dependency on the i port of X.

which represent dependencies at various stages of computation.

Definition 3.15 (θ-Node) A θ-node θ(C, I,R, L,X) sets its internal value to initial value
I . Then, while condition value C holds true, sets L to the current internal value and updates
the internal value with the repeat value R. When C evaluates to false computation ceases
and the internal value is returned through the X port.

A loop which updates k variables will have: a single condition port C, initial-value ports
I1, . . . , Ik, loop iteration ports L1, . . . , Lk, loop repeat ports R1, . . . , Rk, and loop exit ports
X1, . . . , Xk. The example in Figure 3.4 shows a pair (2-tuple) of values being used for I, R, L,X ,
one for each loop-variant value.

For some purposes the L and X ports could be combined, as both represent outputs within,
or exiting, a loop (the values are identical, while the C input merely selects their routing). This
is avoided for two reasons: (i) our semantics for VSDGs (Section 3.4) require separation of
these concerns; and (ii) our construction of Gnoloop (Section 3.5.1) requires it.

The θ-node directly implements 0-trip loops (while, for); 1-trip loops (do...while,
repeat...until) can be synthesised by code duplication, addition of boolean flags, or
augmentation of the semantics to support 1-trip loops.
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Code duplication has two important benefits: it exposes the first loop iteration to optimiza-
tion (cf. loop-peeling [86]), and it normalizes all loops to one loop structure, which both reduces
the cost of optimization, and increases the likelihood of two schematically-dissimilar loops be-
ing isomorphic in the VSDG. A boolean flag avoids duplicating code, but increases the com-
plexity of the loop predicate, and does not benefit from normalization. Finally, augmenting the
semantics with an additional loop node type does not increase code size per se, but does reduce
the benefits of loop normalization.

Note also that the VSDG neither forces loop invariant code (Section 3.8.3) into nor out-
of loop bodies, but rather allows later phases to determine, by adding serializing edges, such
placement of loop invariant nodes.

3.4 Semantics of the VSDG
Given the definition of the VSDG from the previous section we define pull (or lazy) semantics
in terms of CCS operators [78]. We also compare the pull semantics with traditional push
semantics (i.e., data flow machine).

We use the following notations:

• inputs are Ii,

• outputs are Q,

• Z is a reinitialisation port needed for loops,

• θ- and γ-nodes are augmented with a C (condition) input,

• we write ‘+’ for choice,

• ‘|’ for concurrency,

• ‘.’ for serial composition,

• ‘I?x’ for a read from port I , placing the value read into x, and

• ‘Q!e’ for a write to port Q of the value of expression e.

In the demand-driven pull semantics, each input port I (including C) has an associated
request Ireq (a null, i.e., pure, synchronisation) port written to before the value on I is read.
Similarly output ports Q await input on Qreq before proceeding.

The pull semantics for the main types of VSDG node are shown in Figure 3.5 (page 58).
From these it is trivial to generate the pull-semantics for the remaining VSDG nodes.

3.4.1 The VSDG’s Pull Semantics
The semantics of the constant nodes—integer, float, and identifier—are all identical:

constpull(v)
def
= Qreq?().Q!v.constpull(v)
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constpull(v)
def
= Qreq?().Q!v.constpull(v)

minuspull(i, r)
def
= (Z?().minuspull(false, r)) +

(Qreq?(). if i then Q!r.minuspull(true, r)
else (Ireq

1 !()|Ireq
2 !()).(I1?x|I2?y).

Q!(x− y).minuspull(true, (x− y)))

γpull(i, r)
def
= (Z?().γpull(false, r)) +

(Qreq?(). if i then Q!r.γpull(true, r)
else Creq !().C?c. if c then I

req
T !().IT ?x.Q!x.γpull(true, x)

else I
req
F !().IF ?x.Q!x.γpull(true, x))

θpull(i, r)
def
= (Z?().θpull(false, r)) +

(Xreq?().if i then X!r.θpull(true, r)
else Ireq !().I?x.θ′pull(x))

θ′pull(r)
def
= Creq !().C?c. if c then Zreq !().Rreq !().(Lreq?().L!r.R?x.θ′pull(x) + R?x.θ′pull(x))

else X!r.θpull(true, r)

ldpull(i, r)
def
= (Z?().ld pull(false, r)) +

(Qreq?().if i then Q!r.ld pull(true, r)
else (Areq !()|Sreq !()).(A?a|S?s).

let x′ = READ(s,MEM [a]) in Q!x′.ldpull(true, x′))

vldpull(i, r)
def
= (Z?().vld pull(false, r)) +

(Qreq?().if i then Q!r.vld pull(true, r)
else (Areq !()|Sreq !()).(A?a|S?s)

let (x, s′) = READ(s,MEM [a]) in
Q!(x, s′).vldpull(true, (x, s′)))

stpull(i, s)
def
= (Z?().stpull(false, s)) +

(Qreq?().if i then Q!s.stpull(true, s)
else (Areq !()|Dreq !()|Sreq !()).(A?a|D?d|S?s).

let s′ = WRITE(s,MEM [a], d) in Q!s′.stpull(true, s′))

Figure 3.5: Pull-semantics for the VSDG. Note the θ′pull auxiliary process for θpull has a state
variable x which is used to pass the next iteration value read by R?y to the repeat-test. In
general, r is a tuple r0, r1, . . . , rN−1 where at most one of the r is state. All nodes, other than
const, have a process state variable i which indicates whether a node has either been initialized
(i = false) and must re-evaluate its input ports, or that the node has completed execution and
so responds to any pull request with its last computed value (i = true). Nodes are reset by a
pull on the Z port.
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The constant node waits for a pull on its Qreq port, responds with the value, v, of the node on
its Q port, and then continues to wait.

Unary and binary ALU nodes (i.e., all arithmetic, logic, shifts and comparison) share the
same behaviour. As well as the Q port (and its associated Qreq port), the ALU node has one or
two (depending on its arity) value-dependency ports, In, and an initialize port, Z. A node can
have multiple successors in the VSDG. Each successor can pull the node’s value zero or more
times; the semantics ensure that the node only evaluates its predecessors exactly once (in the
case of a loop-variant node it must evaluate exactly once per loop iteration). Then each node
exists in one of two states—evaluated and unevaluated, which in Figure 3.5 is indicated by the
i process state variable.

Consider the minus node semantics:

minuspull(i, r)
def
= (Z?().minuspull(false, r)) +

(Qreq?(). if i then Q!r.minuspull(true, r)
else (Ireq

1 !()|Ireq
2 !()).(I1?x|I2?y).

Q!(x− y).minuspull(true, (x− y)))

A node waits for pulls from one of its two ports: the Z port and the Qreq port. A pull on the Z

port puts the node back into the unevaluated state. The result of a pull on the Qreq port depends
on the state of the node. If the node is in the evaluated state (i = true) then it responds with the
value previously computed when the node was evaluated after it was last initialised. However,
if the node is unevaluated (i = false) then:

1. The node sends, in parallel, requests to its two predecessor nodes via ports I
req
1 and I

req
2 .

2. The node waits for both values to be returned, storing them in x and y.

3. The node computes the result (x− y for this node) and emits the result on its output port
Q.

4. Finally, the node returns to waiting on its input ports, but now in the evaluated state
(i = true).

The γ-node has an additional C (condition) port to pull on the conditional expression (from
this point on we will assume the full request-response behaviour), and IT and IF for the true
and false values respectively.

γpull(i, r)
def
= (Z?().γpull(false, r)) +

(Qreq?(). if i then Q!r.γpull(true, r)
else Creq !().C?c. if c then I

req
T !().IT ?x.Q!x.γpull(true, x)

else I
req
F !().IF ?x.Q!x.γpull(true, x))

If the value pulled from the conditional, c, is true, then the γ-node pulls on the IT port, and if c

is false it pulls on the IF port.
The θ-node is of particular interest as it is described with the aid of an auxiliary process

θ′pull . The main process θpull follows the same pattern as the previous semantics, with process
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state variable i and port Z together determining whether the node requires evaluating or not.

θpull(i, r)
def
= (Z?().θpull(false, r)) +

(Xreq?().if i then X!r.θpull(true, r)
else Ireq !().I?x.θ′pull(x))

The auxiliary process θ′pull requires careful explanation. Note that θ′
pull is only executed when

the loop body is (re)evaluated.

θ′pull(r)
def
= Creq !().C?c. if c then Zreq !().Rreq !().(Lreq?().L!r.R?x.θ′pull(x) + R?x.θ′pull(x))

else X!r.θpull(true, r)

Exactly as for the γ-node, execution of the θ-node first pulls on the C port. If the result of the
conditional expression is true, then an initialise request is sent to all the nodes within the loop4

via the Zreq port. It then sends a request on the Rreq port, and waits for values on the R port
(and optionally responding to pulls on the L port). Once the new loop-variant values have been
pulled into x, θ′pull iterates with the new loop-variant values.

If the conditional value is false, then the auxiliary process returns the final loop-variant
values to the X port, and continues with the parent process.

Finally, the memory access nodes are perhaps the most semantically-complex, due to the
explicit interaction with the state. Consider the st pull semantics:

stpull(i, s)
def
= (Z?().stpull(false, s)) +

(Qreq?().if i then Q!s.stpull(true, s)
else (Areq !()|Dreq !()|Sreq !()).(A?a|D?d|S?s).

let s′ = WRITE(s,MEM [a], d) in Q!s′.stpull(true, s′))

As before, a pull on the Z port initialises the node. Pulling the output (state) port Q initiates (if
the node was previous unevaluated) pulls on the A (address value), the D (data value) and the
S (predecessor state) ports. The values pulled then update the memory cell, producing the new
state s′. This is returned through the Q port.

3.4.2 A Brief Summary of Push Semantics
The pull semantics warrant comparison with the traditional push semantics of such graphs as
the Program Dependence Graph and the Program Dependence Web. First, push semantics are
described, and then a comparison is made between the pull semantics and the push semantics.

We first introduce two new nodes: the split node (which is the push equivalent of the γ-node
in that it combines data flow and control flow) and the merge node, which has no pull equivalent.

The split node takes a value, d, and a condition, c, and outputs the value to one of the dT

or dF outputs, depending on the condition value. Each split node has a matching merge node,
which recombines the values after a split node. It has two inputs, i1 and i2, and output d. The
merge node outputs the values that arrive at i1 and i2. Unfortunately, deciding the optimal
placement of split nodes is NP-Complete [108]. For the purposes of this discussion we will
assume that split nodes have already been inserted.

4That is, all nodes which are post dominated by the θtail node and are successors of the θhead node.
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In the following descriptions we refer to nodes as producers, which generate values, and
consumers, which consume values generated by producers. We also assume that edges behave
as blocking queues of length 0 (i.e., unbuffered with no state), and that nodes execute immedi-
ately (i.e., there is no difference between one node consuming one value from a producer node,
and ten nodes consuming the same value from a single producer node).

The push semantics for the const node is very similar to the pull semantics:

constpush(v)
def
= Q!v.constpush(v)

The output Q blocks until the value is consumed by a consumer node. Compared to the pull
semantics, the notion of request is implied by the blocking nature of the output.

This implied blocking behaviour has the benefit of simplifying the semantic description of
nodes. For example, the push semantics for the minus node is

minuspush(x, y, r)
def
= ((I1?x|I2?y).minuspush(x, y, (x− y))) +

(Q!r.minuspush(x, y, r)

This describes the behaviour of either receiving a value on one (or both) of its inputs I1 and
I2 and computing the arithmetic result, or of outputing the value r when output Q is ready to
push the resulting value (i.e., that a consumer is ready for it). The use of the auxiliary variable
r parallels the runtime behaviour of computing the arithmetic value and storing it in a register.

The split node has two inputs: a data input I and a control input C.

splitpush(d, c)
def
= ((I?d|C?c). splitpush(d, c)) +

(if c then T !d.splitpush(d, c)) +
(if ¬c then F !d.splitpush(d, c))

The split node waits for a value arriving on either the I or C port, and retains this information.
The predicate guards on the second and third clauses ensure that only those successors who
should be served values are satisfied. It emits the d value on either the T or F port depending
on condition value c. Remember that outputs block waiting for a consumer to consume a value;
the second clause will block on T !d, and the third clause or F !d.

The push semantics for the merge node are similar to that of the minus node.

mergepush(t, f, c, r)
def
= ((C?c|IT ?t|IF ?f).mergepush(t, f, c, (if c then t else f))) +

(Q!r.mergepush(t, f, c, r))

The corresponding push semantics for loops assumes the placement of loop entry and exit
nodes (Section 3.5.3). Construction of the semantics then proceeds as shown above.

3.4.3 Equivalence Between Push and Pull Semantics
Suppose we have two nodes: a producer node p and a consumer node q (Figure 3.6). The push
and pull graphs for this relationship are the same, but note that we need additional split nodes
for the pull semantics. The push semantics explicitly shows the flow of data, and implies the
flow of data requests. Conversely, in pull semantics the flow of data is implied as a consequence
of requesting the data5.

5This is comparable to the edges in the demand PDG.
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Figure 3.6: Equivalence of push (a) and pull (b) semantics. The solid lines follow the standard
edges within the specified semantics. The dashed lines indicate the implied edges.

Lemma 3.1 (Pull/Push Equivalence) Pull semantics and push semantics describe the same
process but from different points of view: push semantics considers producers, while pull
semantics considers consumers. Both semantics describe the flow of requests for data and
the corresponding flow of the requested data.

PROOF We sketch the proof by induction as follows. Consider the base case of a single-
value producer and a single-value consumer (Figure 3.6), where the solid edges indicate
0-length queues (i.e., they block, but have no state). In the push semantics, assume that p is
ready to push its data into q. When q is ready for p’s data it consumes the next data from
its input, implicitly requesting data from p. In the pull semantics, again assume p is ready
to produce its data. When q is ready for p’s data it sends a request for (“pulls on”) p’s data,
which it then consumes on arrival from p via the implied data flow. Both semantics describe
p producing one data value, and q consuming one data value.

The inductive step is intuitive: if p has two consumers, then in the push semantics p will
push two instances of its data value into consumers q1 and q2, and in the pull semantics p

will receive two requests, one each from q1 and q2, and send the same value to both. �

Loops in push semantics are particularly interesting in two aspects:

• Push semantics relies on the pushing of new values into nodes to force recomputation;
pull semantics employs lazy evaluation (nodes only recompute if necessary, otherwise
returning the last computed value) so a separate mechanism (the initialise input) is nec-
essary to force nodes in a loop to recompute rather than simply return the last computed
value.

• Loops described in push semantics are difficult to start (hence the need for the non-
deterministic merge node), run until forced to stop, then need η nodes to extract the
resultant values from the loop body. The pull semantics of loops are simpler: the ini-
tial pull on the output starts the loop, which iterates while the control expression is true,
stopping when the control expression is false and producing the final output value.
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3.4.4 The Benefits of Pull Semantics

The pull semantics of the VSDG have several important benefits, which aid both program com-
prehension and optimization.

1. The pull semantics avoids the non-deterministic merge nodes of the GSA form.

2. The flow of data is implied in the pull semantics, with the request for data made explicit.
The semantics are more explicit about control flow, avoiding the need for split nodes.

3. The closer connection between data flow and data request allows the VSDG to be less-
constrained during construction as regards the placement of nodes within loop bodies or
predicates. By under-constraining the graph until the need for explicit node placement,
there is greater freedom to optimize the program.

3.5 Properties of the VSDG
The VSDG as presented above has certain appealing properties (well-formedness and normal-
ization) which we explain further below. We also note the correspondence between our θ-nodes
and GSA form’s µ, η and ⊗ nodes.

3.5.1 VSDG Well-Formedness

As in the VDG we restrict attention to reducible graphs (Section 3.7, page 73) for the VSDG.
Any CFG can be made reducible by duplicating code or by introducing additional boolean
variables. We further restrict attention to programs whose only loops are while-loops and
which exit them through their unique loop exit (i.e., no jumps out of the loop).

In order to specify the “all cycles in a VSDG are mediated by θ-nodes” restriction, it is
convenient to define a transformation on VSDGs.

Definition 3.16 (VSDG Gnoloop Form) Given a VSDG, G, we define Gnoloop to be identi-
cal to G except that each θ-node θi is replaced with two nodes, θhead

i and θtail
i ; edges to or

from ports I and L of θi are redirected to θhead
i and those to or from ports R, X , and C are

redirected to θtail
i .

We then require Gnoloop to be an acyclic graph. Figure 3.7 shows the acyclic version of Fig-
ure 3.4.

Note that for computing DFR (Section 3.2.4) loop bodies are traversed once, such that a
θ-node has two DFRs—one each for the θhead and θtail nodes.

When adding serializing edges we must maintain this acyclic property. To serialize nodes
connected to a θ-node’s X port we add serializing edges to θtail ; all nodes within the body of
the loop are on the sequential path from θtail to θhead ; all other nodes are serialized before θhead .
Definition 3.17 below sets out the conditions for a node to be within a loop.

Although this is merely a formal transformation, note that if we interpret θtail as a γ-node
and interpret θhead as an identity operation then Gnoloop represents a VSDG in which each loop
is executed zero or one times according to the condition.

The formal definition of a VSDG being well-formed is then:
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Figure 3.7: The acyclic θ-node version of Figure 3.4. The θhead and θtail node-pair define
the loop entry and loop exit nodes within the VSDG. The loop body is marked as provisional :
some nodes must be in the body of the loop (the add, subtract, and comparison nodes) as they
depend on loop-variant variables, while other nodes (the constant nodes in this instance) that
are loop-invariant can be placed either in or outside the loop body. This decision is left for later
phases to decide, based on criteria such as register pressure and instruction selection.

Definition 3.17 (Well-Formed VSDG) A VSDG, G, is well-formed if (i) Gnoloop is acyclic
and (ii) for each pair of (θhead , θtail) nodes in Gnoloop , θtail post dominates all nodes in
succ+(θhead) ∩ pred+(θtail).

The second condition says that no value computed inside a loop can be used outside the
loop, except via the X port of the loop’s θtail node.

3.5.2 VSDG Normalization
The register allocation and code motion (RACM) algorithm presented in Chapter 6 assumes
(for maximal optimization potential rather than correctness) that the VSDG has been normal-
ized, roughly in the way of ‘hash-CONSing’: any two identical nodes which have identical
dependencies, will be assumed to have been replaced with a single node provided that this does
not violate the single-assignment (SSA) or the single state properties of the VSDG. Section 3.8.2
describes this in detail. Consider Figure 3.8 on page 65, which shows two loads that, because
of an intervening store, cannot be combined even though they load from the same address.

Note that this is a safe form of CSE (Section 3.8.2, page 79) and loop invariant code lift-
ing (Section 3.8.3, page 81); this optimization is selectively undone (node cloning) during the
RACM phase when required by register pressure.

3.5.3 Correspondence Between θ-nodes and GSA Form
It is clear that there should be some connection or correspondence between the VSDG’s θ-nodes
and GSA form’s µ, η and⊗ nodes. As a first approximation the µ node corresponds to the θhead
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int f( int v[], int i )
{

int a = v[i+1];
v[7] = 0;
return v[i+1] + a;

}
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D

public : f()
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Figure 3.8: An example showing how some nodes cannot be combined without introducing
loops into the VSDG. There will only be one node for the constant 4 (‘1’ in (a) after type
size scaling), and one for the addition of this node to the second formal parameter (i+1).
But two nodes for the load from v[i+1] because sharing this node would violate the single
state property of the VSDG: a single load from v[i+1] would state-depend both on the state
entering the function and the modified state produced by the store to v[7].

node and the ηF node to the θtail node. The non-deterministic merge node, ⊗, is redundant due
to the explicit loop behaviour of the θ-node.

A more detailed comparison considers the fundamental difference between the semantics
of GSA form flow graphs and VSDG dependence graphs. In a flow graph, values enter the
function through the entry node, and execution proceeds by pushing (flowing) values around
the graph until the exit node is reached. Nodes execute when they have input values, and then
proceed to push their result to their consuming successor nodes. A trivial example is straight
line code:

Nentry → A→ B → C → Nexit
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A value, v, enters via entry node Nentry , flows into node A, which computes value vA. This
then flows into node B, which computes vB . Node C then computes, consuming value vB and
producing value vC , which flows into the exit node, Nexit and is returned to the function caller.

The behaviour in the dependence form is similar, save for an initial flow of dependence
from Nexit up through C, B, and A, to demand the function argument from Nentry ; values and
computation then proceed as in the data flow sense.

Loops require careful handling. The loop body must execute exactly the number of times
specified by the source program. GSA form’s µ node consumes either the initial value v init or
the next iteration value viter ; the choice of which to consume is determined by the control value
consumed by the predicate ρ input; the µ node executes (i.e., consumes and produces) if its
control condition is true.

The VSDG’s θhead node performs a similar function: on the loop’s initial evaluation, the
θhead node consumes (pulls) on its dependent nodes, which return the initial values I . It then
makes available these values on its L port for the loop body and control nodes. Subsequent
iterations of the loop (i.e., when the value pulled from the C port is true) sees the θhead node
copy the θtail node’s R values to its L port in preparation for satisfying any dependencies from
the loop body for the next iteration.

GSA form’s ηF node consumes loop values as they iterate around the loop. Then, when its
control condition becomes false, it produces this value on its output port. This alone does not
guarantee termination of the loop; the control condition produced by the predicate node(s) must
be false in order to terminate the loop.

The VSDG’s θtail node serves a similar purpose: it evaluates the loop control predicate and
then either re-evaluates the loop body, or returns the final loop values if the predicate is false.

The important difference between the two forms is the necessity of the merge node, ⊗, in
GSA form. At issue is the fact that the µ node executes (consumes its input value and produces
its output) only when its control condition is true. However, its control condition is produced
by the predicate node, which is waiting to consume values from the µ node. The ⊗ node breaks
this deadlock by allowing the merging of an initial value (usually true) to start the loop, and the
subsequent values produced during iteration.

This deadlock is avoided in the VSDG, obviating the need for a corresponding merge node.
The semantics of the θ-node explicitly describe both the computation of the predicate value and
the execution of the loop body.

3.6 Compiling to VSDGs
Traditionally, SSA-form program graphs have been constructed from CFGs or PDGs, to which
φ-functions are added to merge variables at join points [30]. A different approach is that of
syntax-directed translation of source code into an SSA-form intermediate program graph, where
φ-functions, or other merging functions, are inserted as the program graph is constructed [19].

3.6.1 The LCC Compiler

Our experimental compiler framework, VECC, uses Fraser and Hanson’s LCC [42] C compiler.
It is of modest size (about 11,000 lines of C), uses a hand-written recursive-descent parser,
and benefits from a clean interface between the language-dependent front end and the target-
dependent code generator.



Chapter 3. The Value State Dependence Graph 67

We replace the intermediate and backend functions of the compiler with functions which
directly emit VSDG nodes and edges (Appendix A). At the point in the compiler where these
functions are called, all types have been decomposed into suitably aligned byte-addressed vari-
ables, and all pointer arithmetic, index scaling, and struct and union address offsets have been
generated. Target-specific details, such as the sizes of the C data types, are described to the
compiler with a machine description file.

During compilation LCC performs some simple transformations (strength reduction, con-
stant folding, etc), some of which are mandated by the language standard (e.g., constant fold-
ing). For each statement, LCC generates an abstract syntax tree (AST), recursively descending
into source-level statement blocks. VSDG nodes and edges are generated directly from the AST
with the aid of the symbol tables.

Symbols in the compiler are augmented with the current VSDG node name and a stack for
storing VSDG node names, employing a similar approach to that of Brandis and Mössenböck [19].
In straight-line code each new assignment of a variable, v, updates the VSDG node name field
in v’s symbol table entry. Selection constructs use the name stack to save, and later restore, the
names of the VDSG nodes when control paths split and later merge.

Expressions naturally translate into VSDG graphs, and control structures (if, while, etc)
generate γ- and θ-nodes. Functions generate special entry and exit nodes, as well as a compiler-
defined intrinsic variable STATE , added to the symbol table at the function scope. VSDG
nodes which touch the state graph access and/or modify this STATE variable.

3.6.2 VSDG File Description
The compiler reads in a C source file and emits a VSDG file. The VSDG file is a human-readable
description of the resulting VSDG. The syntax of the VSDG file is given in Appendix A. The
key points are:

• A VSDG file contains one or more module definitions, each of which contains one or
more data or function definitions. Each source file read by the compiler creates a new
VSDG module, whose name is that of the source file. All data and functions within the
source file are emitted into the module, providing module-level name scoping.

• Functions contain data definitions, nodes and edges.

• The name scoping rules follow those of C: names declared at the module scope are visible
only within that module, unless given the public attribute; names declared within a
function are only visible within that function.

The compiler automatically renames function scope static variables so that they are only
accessible from within the enclosing function. For example, a static variable foo in function
bar might be renamed LS 2, and would be defined at the module scope level, corresponding
to the C source file scope.

3.6.3 Compiling Functions
Each C function generates a VSDG function definition. A C function can return at most one
value, either a scalar (integer, float or pointer) value, or a struct value6; void functions do not

6Most compilers implement functions returning structs using anonymous pointers and/or block copying; a few
architectures support returning structs by combining multiple physical registers.
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int glbVar;

int foo(int a, int b)
{

int lclVar;
lclVar = glbVar + a + b;
return lclVar;

}

module funcvsdg.c {
public function foo (a,b), 1 {

node node0 [op=ld,size=-4];
node node1 [op=constid,value=_glbVar];
edge node0:A -> node1 [type=value];
edge node0:__STATE__ -> foo:__STATE__ [type=state];
node node2 [op=add];
edge node2:L -> node0:D [type=value];
edge node2:R -> foo:a [type=value];
node node3 [op=add];
edge node3:L -> node2 [type=value];
edge node3:R -> foo:b [type=value];
node node4 [op=return];
edge node4:ret1 -> node3 [type=value];
edge node4:__STATE__ -> foo:__STATE__ [type=state];
edge foo:__STATE__ -> node4 [type=state];

}
data _glbVar [size=4];

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
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19

Figure 3.9: An example of C function to VSDG function translation. The C function on the
left produces the VSDG description on the right (line numbers added for illustration purposes).
A single module is generated from the source file funcvsdg.c. The function foo takes two
named parameters, a and b, and returns one value. Node node0 (line 3) is a signed word
load. The size parameter indicates both the type size (in this case four bytes) and whether it
is a signed (negative value, as in this case) or unsigned (positive value) type. node0 is value-
dependent on node1 for its address (lines 4, 5), and state-dependent on the function entry
node (line 6). The first add node, node2 (line 7), is value-dependent on node0’s D-port (line 8)
and function parameter a (line 9). The second add node, node3, is similarly value-dependent
on nodes node2 and function parameter b (lines 11, 12). Return node node4 (line 13) depends
on both the value produced by node3 (line 14), and the initial state of the function (line 15).
Finally, the function exits with the final state (line 16). The global variable glbVar is declared in
line 18 with a size of four bytes, as specified for our chosen target machine (the ARM Thumb).

return a value, only state. The VSDG function definition includes the names of the arguments,
and the number of return values. The argument names are derived from the source names.

During function generation the intrinsic variable, STATE 7, is added to the function’s
symbol table. Additionally, the function exit node state-depends on the final definition of the
STATE variable. An example is shown in Figure 3.9.

The compiler supports the use of registers for the first few function arguments as specified by
the target’s Application Binary Interface (ABI). On entry, the first NUM ARG REGS arguments
are placed in registers; subsequent arguments are placed in special memory cells which are later
translated into stack offsets by the target code generator.

A special VSDG node, the return node, provides an exit from a function while maintain-
ing the consistency of the state graph. It value-depends on the return value of the function, if
any, and also depends on state. It produces a new state, which may be depended on by subse-
quent nodes (e.g., the function exit node). Lines 13–16 of Figure 3.9 illustrate this.

Variadic functions require special handling. A variadic function is one which takes one or
more fixed arguments, and zero or more optional arguments. An example of a variadic function
is the standard library function printf, declared as:

7The C standard [22] specifies all names beginning with two underscores are reserved for the implementation.
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int printf( char *fmt, ... );

The fixed argument is “fmt”, and the “...” identifies where the optional arguments appear in
the function invocation. The traditional stack model of the C machine pushes arguments right-
to-left, thus guaranteeing that the fixed arguments (left-most) are always at a known location on
the stack, and that subsequent arguments can be found by walking the stack.

This leads to two separate issues when compiling C into VSDGs: compiling variadic func-
tion invocations, and compiling variadic function definitions. The solution we adopt solves both
problems. In essence, we compile a variadic function, f V , such that the rightmost fixed and all
of its optional arguments are placed in stack memory cells8. This is achieved by setting the
number of function argument registers for f V to one less than NUM ARG REGS and the number
of fixed arguments.

For example, the printf function has one fixed argument—the format specifier string
fmt. When compiling the function definition, we set the number of register arguments to zero,
and generate a suitable function definition. When compiling a call to printf all arguments,
including fmt, are placed in stack memory cells. Within the body of the function, references to
the address of fmt will refer to the stack as expected.

3.6.4 Compiling Expressions

Expressions in C produce two results: the algebraic result as expected by the programmer (e.g.,
in “x=a+b” the programmer expects x to be assigned the sum of a and b), and side-effects such
as accessing memory or calling functions. It is not safe to consider that operators such as ‘+’
or ‘-’ have no side-effects since it is entirely possible that, for a given target, these operations
could be performed by a library function which may raise exceptions. For example, many
embedded processors implement floating point operations as calls to a support library supplied
as part of the compiler.

The VSDG explicitly supports both results of expressions. The algebraic result is expressed
as a value dependency, and the side-effect is represented as a state dependency.

Memory accesses, both explicit such as array accesses, and implicit such as accesses to
global or address-taken variables, depend on state, and in the case of stores and volatile loads,
produce a new state. Again, in many cases it is not immediately clear from the source code
whether or not an expression depends on, or modifies, state.

Conditional expressions produce exactly the same VSDG as if-statements (Section 3.6.5).
This normalizing effect benefits program analysis by minimizing different program forms. It
also removes artifacts due to differing programming styles, e.g., if a is a local variable then the
two statements below produce the exact same VSDG:

if ( P )
a = 5;

else
a = 6;

a = ( P ) ? 5 : 6;

8The rightmost fixed argument needs to be on the stack so that its address can be computed by the variable-
argument access macros va start, va arg and va end [89].
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Compiling expressions walks the AST provided by the front end, emitting VSDG nodes and
edges during traversal. Nodes which assign to variables (and this includes nodes which modify
the STATE variable) also update the symbol table information for each modified variable,
setting the current VSDG node name (Section 3.6.1) to the names of the defining VSDG nodes.

3.6.5 Compiling if Statements
Both if-statements and conditional expressions are described in the VSDG by γ-nodes (Sec-
tion 3.3.1.3). A γ-node has a control (C) value-dependency, and true (T ) and false (F ) depen-
dencies, one of which is depended on as determined by the control value.

Side-effect-free if-statements have only value-dependencies; if any predicated expression
or statement block has state-changing nodes (i.e., function calls, stores, or volatile loads) then
the γ-node will also have state-dependencies on its T and F ports.

Compiling if-statements requires compiling the predicated statements and expressions,
with the addition of γ-nodes to merge multiple value- and state-dependencies. Prior approaches
to compiling code into SSA-form add the φ-functions after the program graph has been gener-
ated, requiring effort in computing the minimal number of φ-functions to add [33].

Single-pass construction of SSA-form is not new. Brandis and Mössenböck [19] insert split
nodes where control flow diverges as repositories for φ-function variable information. This
information is later used to generate φ-functions on exit of loops and conditional statements.

Our approach is different in that the information necessary to generate γ-nodes is maintained
as part of the symbol data within the symbol tables. Each symbol in the compiler’s symbol table
has a private name stack, onto which VSDG node names are temporarily stored, reflecting the
“stack” of lexical scoping expressed in the source code. A simple example helps illustrate the
concepts:

a = ... ; /* node1 */
b = ... ; /* node2 */
if ( P )

a = 12; /* node3 */
else

b = a;
print( a, b );

The steps to compile this are as follows:

• On entry to the if for each register variable push the current node name onto its node
name stack (the current node name remains unchanged).

For variable a then a.VSDGnode=node1 and its name stack becomes:

a.stack={node1, ...}.

• On exit of the then block and entry to the else block for each register variable swap
the top of the node name stack with the current node name. This restores the original
variable node name prior to entry of the else block.

Variable a was changed after the assignment to constant node node3, so after the swap
a.VSDGnode=node1 and its name stack becomes:
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a.stack={node3, ...}.

• On exit of the else block for each register variable the current VSDG node name is
compared with that on the top of the node name stack. If the names are different, then
add edges from the gamma node T and F ports to the respective nodes.

In the example, variable a requires a γ-node as a.VSDGnode 6= a.stack[TOP]. Vari-
able b was changed in the else block to node1, so that too will require a γ-node. A
2-tuple γ-node is emitted, with two true edges γT (a) → node3 and γT (b) → node2
for variables a and b respectively, and two false edges γF (a) → node1 and γF (b) →
node1.

• Finally, for each register variable pop the old name off the top of the node name stack
(undoing the initial push) and set the current VDSG node name to that of the γ-node if
the two names were different.

To complete the example, after the if-statement a.VSDGnode= γ(a) and b.VSDGnode=
γ(b).

This algorithm leads to an efficient implementation. Each register variable requires one
additional field for the current VSDG node name, and a name stack of depth proportional to the
worst-case nesting depth of the program. Empirical evidence [65] suggests that many programs
have at most three loop nesting levels9. Applying the same argument to γ-nodes, we can say
with some degree of certainty that for all practical programs, there is a constant increase in the
runtime storage and processing requirement per variable.

3.6.6 Compiling Loops
Loops are perhaps the most interesting part of the C language to compile into VSDGs. They
may never execute, they may execute exactly once, they may execute a number of times, or they
may execute forever. Some variables in loops change (are variant) while others remain constant
(invariant). The controlling predicate may be executed before the loop body (for and while
loops) or after (do...while loops).

In addition, loops can restart with continue, or finish early with break. Note that both
maintain the semantics of loops as they can be synthesized from boolean variables and γ-nodes.
For compiling loops to VSDGs two restrictions are enforced. Firstly, that there is exactly one
entry node into the loop; and secondly, that there is exactly one exit node out of the loop. These
two nodes correspond to the two components of the θ-node: θhead and θtail respectively.

During compilation we treat all register variables (i.e., non-address-taken local variables)
as live over the entire loop body. Delaying the optimization of loop-invariant edges greatly
simplifies the compiler.

In order to preserve the terminating property of a program, all loops that cannot be deter-
mined if they terminate or not10 modify state. Remember that state also describes progress
(imagine a clock ticking) so each iteration of the loop by itself modifies state, and thus the state
edge from θtail to θhead must be preserved.

9This famous empirical study analysed approximately 40,000 cards of human-generated FORTRAN programs.
As to whether the same results would be found with today’s increasing use of machine-generated source code
remains to be seen.

10Deciding this for the general case is equivalent to solving the halting problem.
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For example, consider the following function:

int foo( void )
{

int i = 0;
while( 1 ) { i++; }
return 0;

}

It is trivial in this example to determine that the loop control expression is always true; in
the general case it might not be so easy to determine this. Also note that even if the loop did
terminate, the final value of variable i has no effect on the result of the function. By keeping the
state edge in the loop, a dead node elimination pass (Section 3.8.1) will remove the redundant
variable and produce the following, smaller, function:

int foo( void )
{

while( 1 ) { /* empty */ }
return 0;

}

Note that the return statement also depends on state, as every function returns a (possibly
modified) state.

Two special nodes modify the runtime execution of loops: break and continue. Both
nodes have the exact same value and state dependencies as the θtail node, and produce a new
state11. These nodes indicate early termination (break) or restart (continue) of loops. Dur-
ing target code generation they generate jumps to the loop exit and loop entry labels respectively.

The steps to compile a loop are described with the aid of the following example code:

a = 1 ; /* local variable (nodeP) */
b = 2 ; /* global variable (nodeQ stores to loc. B) */
for ( i = 0; i < 10; ++i )
{

a = a + 10; /* nodeR */
b = b * 2; /* nodeS */

}
print( a, b );

• Before to entry to the loop for each register variable we add an edge from the θhead node
I-port to the source node.

For the example, the value edge θhead
I (a)→ nodeP and the state edge θhead

I ( STATE )→
nodeQ are emitted (note that nodeQ is a store node, generating a new state).

11While these nodes do more than simply consume values, treating them as generating a new state maintains the
consistency of the state graph within the loop.
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• On entry to the loop all register variables are updated to refer to the θhead node L-port.

For the example, the VSDG node name for variable a is updated to θhead
L (a), and variable

STATE is updated to θhead
L ( STATE ).

• Before to exit out of the loop, edges are added from the θtail node R-port to the register
variable source nodes.

For the example, two edges are added: θtail
R (a) → nodeR and θtail

R ( STATE ) →
nodeS (note that nodeS is a store node, generating a new state).

• On exit out of the loop all register variables are updated to refer to the θtail node X-port.

For the example, the VSDG node name for variable a is updated to θtail
X (a), and variable

STATE is updated to θtail
X ( STATE ).

The resulting VSDG is shown in Figure 3.10 on page 74. This has been produced directly
from the output of our compiler, and also shows the body and control regions of the loop.

3.7 Handling Irreducibility
A directed graph is either reducible, in that through various transformations it can be reduced
to a single node, or is irreducible if it cannot. Directed acyclic graphs are always reducible, and
thus all VSDGs of the Gnoloop form are reducible. However, not all C programs can be compiled
to reducible graphs. This section describes reducibility, what irreducibility means in practice
(with some examples in C), and how irreducible functions can be compiled into VSDGs.

Note that for the remainder of this section we assume all VSDGs are in the Gnoloop form
and have no unreachable nodes—see Section 3.8.1 for a description of a dead node elimination
algorithm applicable to VSDGs.

3.7.1 The Reducibility Property
Reducibility is a property of a graph such that it can be reduced to a single node. The original
interval method of computing reducibility was first presented by Cocke for global common
subexpression elimination [28]. A graph G(N,E) is said to be reducible if it can be partitioned
into the following two sets:

1. The forward edges, EF , form a DAG GDAG(N,EF ) in which every node can be reached
from the initial node of G.

2. The back edges, EB , consist of only edges whose heads dominate their tails.

The properties of the Gnoloop form VSDGs (Section 3.5) ensure that all such VSDGs are re-
ducible:

Lemma 3.2 All well-formed VSDGs are reducible.

PROOF All well-formed VSDGs are DAGs, therefore the first reducibility critieria will hold
for all well-formed VSDGs. Consequently, there are, by definition, no loops in well-formed
VSDGs. Thus EB = ∅, so the second criteria for reducibility is guaranteed to hold for all
well-formed VSDGs. Therefore all well-formed VSDGs are reducible. �
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Figure 3.10: VSDG of the example code loop from the text.
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Figure 3.11: The upper graph (a) is reducible to one node ABCDEF, while the lower graph (b),
differing in only one edge (G → D), is irreducible, as it cannot be reduced any further after the
second round of T2 transformation.

A later method, proposed by Hecht and Ullman, and found in many of the popular compilers
texts [6, 83], proposes two transformations, T1 and T2. The approach is to repeatedly apply T1
and T2 to the graph, until either it has been reduced to a single node (in which case the original
graph is reducible) or not.

The two transformations, T1 and T2, are:

T1: If there is a loop edge n→ n, then delete that edge.

T2: If there is a node n (not the entry node), that has a unique predecessor, m, then m may
consume n by deleting n and making all successors of n (which may include m) be
successors of m.

An example of a reducible graph, and its reduction to a single node, is shown in Figure 3.11.
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send(to, from, count)
register short *to, *from;
register count;
{

register n=(count+7)/8;
switch(count%8){
case 0: do{ *to = *from++;
case 7: *to = *from++;
case 6: *to = *from++;
case 5: *to = *from++;
case 4: *to = *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to = *from++;

}while(--n>0);
}

}

Figure 3.12: The original presentation of “Duff’s Device”. The switch is used as a computed
goto, jumping to one of the case labels inside the while loop. This is presented as a portable
loop-unrolled block copy, as an alternative to the standard C library memcpy or memmove func-
tions. It is clearly irreducible—there are multiple entries into the loop (eight in this case).

3.7.2 Irreducible Programs in the Real World
Informal experiments of over 22,000 functions indicate that functions with irreducible flow
graphs account for about 0.07% of those functions, most of which appear to be machine-
generated code.

One interesting source of irreducibility arises from unstructured, or multiple, jumps (edges)
into loops. Such edges add additional predecessor nodes to the arrival node (the loop node at
the tail of the flow edge), thus blocking transformation T2 from consuming the arrival node.

Another source of irreducibility is unreachable nodes. These fail the first property of re-
ducibility, in that such nodes are unreachable from the entry node. An unreachable node elimi-
nation pass can remove such nodes (Section 3.8.1).

One interesting program structure that is irreducible is Duff’s Device [37], named after Tom
Duff. His original C source is shown in Figure 3.12. Fortunately such programs are rare. In
fact, Duff presents his device with the following observation:

“Many people have said that the worst feature of C is that switches don’t break
automatically before each case label. This code forms some sort of argument in
that debate, but I’m not sure whether it’s for or against.”

3.7.3 Eliminating Irreducibility
So, irreducible programs do exist, but are generally quite rare. This leads to two approaches to
dealing with irreducible graphs.
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Figure 3.13: The irreducible graph of Figure 3.11 (b) is made reducible by duplicating node
D. The alternative would be to duplicate node EFG instead, but this would result in a larger
program (assuming |EFG| > |D|).

3.7.3.1 Avoiding Irreducibility

Irreducibility can be avoided at the language level by removing explicit gotos, including com-
puted gotos (i.e., switch). This is the current strategy in the VSDG compiler framework:
the compiler rejects switch and goto statements, reporting the error to the user.

3.7.3.2 Handling Irreducibility

The alternative to avoiding irreducibility is to remove it through transformation. The general
approach to transforming irreducible graphs into reducible graphs is through code duplica-
tion [58]. In the worst case this approach leads to exponential code growth, which is clearly
undesirable. For example, the irreducible graph in Figure 3.11 (b) can be made reducible by
duplicating node D, and then reducing by the usual means (Figure 3.13).

3.8 Classical Optimizations and the VSDG
Optimizations on the VSDG can be considered as a combination of graph rewriting and edge or
node marking. In this section we describe how five well-known optimizations—dead code elim-
ination, common subexpression elimination, loop-invariant code motion, partial redundancy
elimination, and reassociation—are applied to the VSDG data structure.

The method of graph rewriting replaces one sub-graph that matches some pattern or some
other specification, with another sub-graph (which may be smaller, faster, cheaper, etc). This
process continues until no further matching sub-graphs are found. Assmann [10] discusses
in considerable detail the application of graph rewriting as a means of program optimization.
Examples of rewriting-based optimizations include: constant folding (replacing a computation
involving constants, with the constant value that would be computed on the target machine);
strength reduction (replacing an expensive computation with a cheaper one); and predicate re-
duction (replacing an expensive predicate expression with a cheaper one). Note that in this
thesis, cost is a measure of code size. It is equally valid to equate cost with execution speed,
cache performance, or any other desired metric.

The second class of transformation walks over the graph marking edges or nodes if they meet
some criteria, and then performing a global operation on all marked (or unmarked) objects.
Dead node elimination is a good example of this kind of optimization: the VSDG is walked
from the exit node marking all nodes that can be reached, then any nodes not so marked are
unreachable, and can therefore be deleted.
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3.8.1 Dead Node Elimination
Dead node elimination (DNE) combines both dead code elimination and unreachable code elim-
ination (both [6]). The former removes code which has no effect on the result of the function
(global dead code elimination extends this to include the whole program), while the latter re-
moves code which will never execute (i.e., there is no path in the CFG from the function entry
point to the code in question).

Dead code generates VSDG nodes for which there is no value- or state-dependency path
from the function exit node, i.e., the result of the function does not in any way depend on the
results of the dead nodes. Unreachable code generates VSDG nodes that are either dead, or
become dead after some other optimization (e.g., γ-folding).

Definition 3.18 A dead node is a node that is not post dominated by the exit node N∞.

The method described here (Algorithm 3.1) is both simple and safe. It is simple in that
only two passes over the VSDG are required resulting in linear runtime complexity: one pass
to identify all of the live nodes, and a second pass to delete the unmarked (i.e., dead) nodes. It
is safe because all nodes which are deleted are guaranteed never to be reachable from (i.e., are
not dominated by) the exit node.

Algorithm 3.1 Dead Node Elimination
Input: A VSDG G(N,EV , ES, N∞) with zero or more dead nodes.

Output: A VSDG with no dead nodes.

Method:

1. WalkAndMark( n ) =
if n is marked then finish;
mark n;
∀{m |m ∈ N ∧ (n,m) ∈ (EV ∪ ES)} do

WalkAndMark( m );
in WalkAndMark( N∞ );

2. ∀n ∈ N do
if n is unmarked then delete(n).

We now show that dead node elimination has linear runtime complexity.

Lemma 3.3 Dead node elimination has runtime complexity O(|N |).

PROOF By inspection. The analysis pass—WalkAndMark—visits at most all nodes, and
for each node also visits all its dependent nodes. For all nodes, there are will be at most
kmaxarity dependent nodes, which for all practical purposes is a constant. This pass runs in
O(kmaxarity |N |) time. The second pass walks a list of the nodes in the graph, deleting those
not marked. This pass runs in O(|N |) time. Therefore the total running time of dead node
elimination is O(kmaxarity |N |+ |N |) ' O(|N |). �
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Figure 3.14: The VSDG of the example code from page 79 is shown in (a). After a round of
dead node elimination (DNE) and constant folding, the unreachable const nodes have been
removed, and the predicate has been folded into a constant false (b). Then γ-folding removes
the γ-node (c), and a final DNE pass removes the last of the unreachable const nodes (d).

Dead node elimination by itself only eliminates nodes which cannot be reached from the
function exit node, i.e., nodes which would be marked unreachable in the CFG by using only
control flow analysis and live range analysis. For example, consider the following program:

i = 4; // S1
i = 3; // S2

if ( i == 4 ) // P1
j = 2; // S3

else
j = 3; // S4

return j; // S5

j = 6; // S6

Assignment S1 is killed by S2 without ever being used, so there will be no successors in
the VSDG. Similarly, S6 is dead because S5 exits the function, so there is no path in the VSDG
from the exit node to the constant node assigned to j in S6. Both S1 and S6 can be eliminated
without additional analysis of the program.

Further optimizations fold predicate P1 into the constant false (Section 3.8.5). Then γ-
folding deletes the γ-node for j and moves its dependent edges to the const(3) node gener-
ated for S4. A final pass of DNE will remove the remaining dead nodes. Figure 3.14 gives the
VSDG for the above code, and shows the steps taken to optimize the code to a single constant
node.

3.8.2 Common Subexpression Elimination
A common subexpression is an expression that appears multiple times in the same function.
Traditionally, value numbering [7] has been used to identify common subexpressions—two
computations have the same symbolic value if they compute the same value.
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Unfortunately value numbering is an expensive process—a symbolic value must be com-
puted for each computation, in a manner that guarantees only equivalent computations are as-
signed the same value. Only after the value numbering phase can any subsequent optimization
process begin. There is also the issue of efficiently maintaining the value numbering during
transformation.

Algorithm 3.2 aggressively combines all common expressions (nodes) in a VSDG such that
two nodes p and q are guaranteed to be common (equivalent) if nodes p and q perform the same
computation, and the (V ∪ S)-predecessors of both nodes are the same. If both conditions are
met then q can be merged into p.

The first criterion is easy to test, based solely on the node operator. The second criterion
uses the address of the node data as a unique symbolic value for that node. Additionally, using
the address of the node as its symbolic value automates the maintenance of the symbolic values
during transformation.

While the algorithm is guaranteed to terminate, due to the VSDG being a reducible DAG
(Section 3.7), this optimization can be potentially costly to reach a fixed point: combining one
common subexpression may then make two previously non-matching expressions common,
which may make further expressions common, and so on.

Algorithm 3.2 Common Subexpression Elimination
Input: A VSDG G(N,EV , ES).

Output: A VSDG with all common subexpressions combined.

Method:

1. Nsort = SORTBYDESCENDINGDFR(N );

2. ∀n ∈ Nsort do
Nsort = Nsort − n;
if n is not marked do

Msort = Nsort ;
∀m ∈Msort do

Msort = Msort −m;
if n.marked and m.marked and op(n) == op(m) and

pred(n) == pred(m) then
move all dependency edges from m to n;
mark m;

3. ∀n ∈ N do
if n is marked then delete(n).

By marking nodes the algorithm does not processes those nodes that will be deleted by the
final DNE pass. The sorting guarantees that the algorithm moves edges from a later (lower
DFR) node to an earlier (higher DFR) node.

Lemma 3.4 The common subexpression elimination algorithm has runtime complexity of
O(|N |2).
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PROOF The complexity of the first stage is O(|N | log |N |). Two loops range over the set of
nodes, giving rise to O(|N |2). We move all edges at most once. In general E ⊆ N × N .
But under the condition that all nodes have at most kmaxarity dependence edges, then this
reduces to O(kmaxarity |N |). The final stage is a simplified dead node elimination pass, with
running time O(|N |). Thus the overall complexity is O(N 2). �

The high runtime cost of this algorithm can, in practice, be reduced by pre-sorting nodes by
their operation type into sets (e.g., Nadd , Nsub), at a cost of O(|N |). This removes the need to
test for operation equality in the above algorithm, and in general reduces the size of the set of
nodes to be optimized. So while it is still an O(|N |2) algorithm, we have significantly reduced
|N |.

It would be possible to perform this operation during construction of the VSDG by the com-
piler. However, other optimizations (e.g., constant folding or strength reduction) can generate
common subexpressions, leading to a need for this algorithm.

The algorithm presented above is an aggressive algorithm, combining all common subex-
pressions within the function, even when doing so might have a detrimental effect on register
pressure or instruction scheduling. This can be undone (either through node duplication or by
spilling) as needed by later phases.

3.8.3 Loop-Invariant Code Motion
Expressions that compute the same value on each iteration of a loop are loop invariant and can
be placed outside the loop, computing their value into a register which remains constant over
the loop. Examples of loop-invariant code include address computation and macro-expanded
expressions, and may also be the result of other optimizations on the program.

The VSDG does not explicitly specify the position of loop-invariant expressions, other than
they are post dominated by the θtail node and not a successor of the θhead node. Later phases
can then choose to place the code in the loop, or move the code outside the loop and place the
invariant value in a (possibly spilled) register.

Definition 3.19 A node n is loop-invariant in a loop θl iff (a) n is post dominated by θtail
l ,

and (b) n 6∈ succ(θhead
l ).

A loop invariant node, v, is moved out of the loop by adding a value dependency edge from
the θhead node’s I port to v, and moving all value dependencies previously to v to the θhead

node’s L port. A loop invariant node is placed within the loop by the addition of serializing
edges from the invariant node to the θhead node.

3.8.4 Partial Redundancy Elimination
A statement is partially redundant if it is redundant on some, but not all, paths of execution from
that statement to the exit of the function. The original formulation of partial redundancy (busy
code motion) is due to Morel and Renvoise [80]. Later work by Knoop et al has refined the
method as lazy code motion [63]. Horspool and Ho formulate partial redundancy elimination
using a cost-benefit analysis [54], producing significant improvements to loop-intensive flow-
graphs, and avoiding unnecessary code motion compared to the original Morel and Renvoise
approach.
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Busy code motion moves computations as far up the program graph as is possible, con-
strained only by the position of the definitions of its arguments. This extends the live range
(register lifetime) of such computations as far as possible, allowing for reuse later in the pro-
gram. Lazy code motion, on the other hand, moves computations to where they achieve the
same result as for busy code motion, but also where the register lifetime is shortest. The advan-
tage of this over the former is in the reduced lifetimes of registers, such that registers are kept
alive over the optimal range of code.

The VSDG naturally represents lazy code motion: a node is placed only as high as to be
above its highest (greatest DFR) successor node, and no higher. The dependency nature of
the VSDG ensures that as the graph is transformed during optimization and allocation, such
computations are kept precisely where they need to be in relation to their successors, while
maintaining minimal register lifetimes.

3.8.5 Reassociation
Reassociation [83, pages 333–343] uses specific algebraic properties—associativity, commu-
tativity and distributivity—to simplify expressions. Opportunities for reassociation stem from
the original source code (e.g., macro expansion), address arithmetic (e.g., array indexing and
pointer arithmetic), to side-effects from other optimizations (e.g., constant folding).

Care must be taken in applying reassociation, especially with regards to integer and float-
ing point arithmetic. For integer arithmetic, care must be taken with over- or under-flow of
intermediate expressions. Address arithmetic is generally less-sensitive to these problems since
overflow makes no difference in address calculations12.

Floating point arithmetic [49] requires care with precision and special values (e.g., NaN ).
Farnum [38] suggests that the only safe floating point optimizations are removing unnecessary
type coercions and replacing division by a constant with multiplication by a constant if the
reciprocal of the constant can be exactly represented, and the multiplication operator has the
same effects as the division operator it replaces.

3.8.5.1 Algebraic Reassociation

Applying reassociation to the VSDG is most naturally implemented as a graph rewriting system,
replacing one expression graph with another, cheaper, graph. Some integer reassociations are
applicable irrespective of target machine arithmetic specifics. Others require special care to
ensure that the optimized computation produces exactly the same result for all arguments (e.g.,
overflow of intermediate results). For example, Muchnick [83] catalogues twenty graph rewrite
rules for address arithmetic alone.

Other transformations replace expensive operations with cheaper ones (strength reduction).
For example, multiplication is slow on many embedded processors. Quite often, multiplication
by a constant can be replaced by a number of shifts and additions from expansion of the binary
series of the n-bit multiplicand:

x× y = 2n−1xyn−1 + 2n−2xyn−2 + . . . + 21xy1 + 20xy0

where ym ∈ {0, 1}. For example, the right-hand expression in

b = a * 5
12Although some processors are sensitive to bad address formation.
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noting that 510 = 01012, can be transformed into

b = a << 2 + a

Booth’s algorithm (most commonly used to simplify hardware multipliers) can also be ap-
plied, noting that

2m + 2m−1 + . . . + 2n+1 + 2n = 2m+1 − 2n.

For example, the expression “a * 14” (1410 = 011102, giving m = 3 and n = 1) can be
replaced with a faster expression involving two shifts and a subtraction:

b = (a << 4) - (a << 1)

As a concrete example for the Thumb processor, consider the expression “a * 1025”. The
Thumb has a single register-to-register multiplication operation, and additionally can only move
8-bit constants into registers (larger constants are either generated in one or two instructions, or
loaded from a literal pool). A direct compilation of this expression would yield a load from the
literal pool and a multiply, with a total size of 64 bits.

However, this expression can be rewritten as “(a<<10)+a”, which can be compiled into
just two instructions—a left shift, and an add—occupying only 32 bits of code space.

3.8.6 Constant Folding
Constant folding computes constant expressions at compile time rather than at runtime. The
optimizer must ensure that the computed constant is that which would be computed by the
target processor, and not that computed by the compiler’s host processor (e.g., “100 + 200”
on an 8-bit microcontroller would compute 44, while the compiler running on a 32-bit desktop
processor would compute 300). This is especially important for intermediate values within more
complex expressions.

A variant of constant folding is predicate folding. This is applied to predicate expressions,
where the result is either true or false. Some predicate folds derive from the identity functions,
while others must be computed within the optimizer. For example

a ∨ true = a ∨ ¬a = true

a ∧ false = a ∧ ¬a = false

Note that in the case that a modifies state (e.g., a volatile load), then while we can eliminate
the value dependencies on a we must maintain the state dependencies.

3.8.7 γ Folding
For γ-nodes whose predicates have been simplified to a constant true or false, the γ-node can be
eliminated, and its successor edges moved to either the T -predecessors or the F -predecessors
as appropriate. A subsequent DNE pass over the VSDG will then remove any dead nodes in the
unused γ-region.

This is equivalent to branch folding on the CFG, since it replaces the conditional branches
of an if/then/else with a jump to the appropriate label.t
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3.9 Summary
This chapter has introduced the Value State Dependence Graph (VSDG). It has shown that
the VSDG exhibits many useful properties, particularly for program optimization. The VSDG
represents the same information as the PDG but with fewer edges types (five or six for the
PDG versus two for the VSDG), and the VSDG is more normalising, in that more programs
map to the same VSDG than to the same PDG—in the PDG the assignment “x:=a+b+c”
would be represented as a single node, and thus if we wish to exploit the subexpression “a+b”
we must transform the PDG, inserting a temporary variable, etc Whereas the VSDG employs
a three-address-like form that has the benefit of breaking up large expressions into a tree of
subexpressions, making them available for later CSE passes.

It has also been shown how to construct the VSDG from a fast and efficient syntax-directed
translation of a subset of C, together with guidance on the parts of the language that are not so
trivial to compile into VSDGs (most notably irreducible programs).

A number of well-known classical optimizations have been shown to be applicable to the
VSDG, demonstrating the elegance of the VSDG in both describing and implementing powerful
optimizations.

The VSDG is particularly effective in expressing loops, with θ-nodes encapsulating the
cyclic nature of loops. Loop invariants are naturally represented: in the VSDG they are neither
“in” nor “out of” the loop in the traditional sense of the PDG: they are undefined until allocation,
which decides on a node-by-node basis if it should be in or out of the loop.

While the data dependencies of the DDG can be modelled in the VSDG, the VSDG’s θ-node
encapsulates cyclic behaviour, rather than explicit general cycles of the CFG.



CHAPTER 4

Procedural Abstraction via Patterns

When truth is nothing but the truth, it’s unnatural,
it’s an abstraction that resembles nothing in the real world.

In nature there are always so many other irrelevant things
mixed up with the essential truth.

ALDOUS HUXLEY (1894–1963)

Compiling source code into VSDG intermediate code has an effect of normalizing different
source structures into similar VSDGs. One result of this normalizing effect is to pro-

duce multiple occurrences of a relatively small number of common code patterns. Procedural
abstraction replaces these multiple occurrences of common code patterns with calls to new,
compiler-generated, functions containing just single copies of the code patterns. Clearly, the
more occurrences of a pattern are found, the greater the benefit achieved from abstraction.

Procedural abstraction can be applied at the source level, at the target code level, and at
the intermediate levels within the compiler. In this chapter we apply procedural abstraction at
the VSDG intermediate level. This has the advantage of avoiding many of the variations and
irrelevant information present in source code—differing variable names, schematically different
code structures—and in target code—differing register assignments and instruction schedules.

Illustrative Example

To illustrate how the VSDG aids procedural abstraction, consider Figure 4.1. The two functions
foo and bar perform similar computations: multiplying or left-shifting the second argument
by five depending on the value of the first parameter. In foo the scaled value is then added to
the first parameter, and the result passed back to the caller. The behaviour of bar is similar,
except it subtracts the scaled value rather than adding it.
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int foo(int x, int y) {
int a = x < 0 ? y * 5 : y << 5;

return x + a;
}

int bar(int a, int b) {
int p = b << 5;

if (a < 0)
p = b * 5;

return a - p;
}

node0[T] node0[F]

public : foo()
x y STATE

lt

L

mul

R

lsh

L

add

L

return

γ

C

consti
0

R

R

consti
5

L

T
F

consti
5

R

ret0

STATE
foo()

(a) (b)

Figure 4.1: Two functions which produce similar VSDGs suitable for Procedural Abstraction.
Both functions foo and bar (a) produce similar VSDGs (b): the final operator in foo’s VSDG
(shown) is add, with a γ-node selecting between the result of the left shift or of the multipli-
cation, in bar the final operator is sub, again with a γ-node selecting either the result of the
multiplication or of the left shift.

Now, both schematically and in the CFG, both functions look markedly different—foo uses
a conditional expression to compute the scaled value, while bar uses an if-statement to assign
a new value to p if a is negative. However, apart from the operation of the final node (add for
foo and subtract for bar) the VSDGs of both functions are identical (Figure 4.1(b)). This
greatly increases the opportunities for abstraction.

The result of applying our procedural abstraction algorithm is shown in Figure 4.2. The al-
gorithm has abstracted the common γ-selection of the two expressions “var*5” and “var<<5”
(where var is y in foo and b in bar). The result of applying procedural abstraction is a saving
of three instructions.

4.1 Pattern Abstraction Algorithm
Procedural abstraction can be viewed as a form of dictionary-based compression using External
Pointer Macros [102]. Storer and Szymanski showed that the problem of deciding “whether the
length of the shortest possible compressed form is less than k” is NP-hard [102]. The problem
for procedural abstraction, then, is deciding which patterns to abstract, and how many of all
occurrences of these patterns should be abstracted.

We apply a greedy algorithm to abstract as many patterns with as many occurrences as
possible. While this does not guarantee the best solution, in many cases it will find the overall,
or globally, optimal solution, and its simplistic approach can often result in an acceptable level
of performance.
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tn_2[T] tn_2[F]
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Figure 4.2: The code of Figure 4.1 after procedural abstraction, showing all three functions:
foo, bar, and the newly created abstract function AbsFunc1.

The following sections describe in greater detail each stage of the algorithm. We begin by
defining some basic terms used in this chapter:

Definition 4.1 A Pattern, π, is a rooted tree of nodes, with additional leaf nodes arg i for
pattern arguments, and where all arg i are distinct.

Definition 4.2 An Abstract Function is a function fA
π holding a single occurrence of an

abstracted code pattern π.

Definition 4.3 The number of nodes in a pattern is denoted ν = |π|.

Definition 4.4 The Arity of a pattern is the number of arguments of that pattern.

Pattern arguments become the formal parameters of the abstract function. Abstract func-
tions are generated which have the same procedure calling standard as source-level functions.
This approach has two benefits. Firstly, there is no difference between abstract functions and
source code functions. This maintains a degree of consistency, with no discernible difference
between a program that has been manually abstracted and one where the abstraction has been
automated. And secondly, all subsequent optimizers and code generators need only consider a
single procedure calling standard. This allows certain assumptions to be safely made regarding
register and stack usage, and function behaviour.

4.2 Pattern Generation
We apply procedural abstraction to VSDGs early on in the compiler, immediately after com-
pilation of the source code. For simplicity of our algorithm we place two restrictions on the
contents and structure of patterns: patterns may not write to memory or call functions (we say
they are lightweight functions), and patterns may not include loops (they must be representable
as trees).
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Algorithm 4.1 Find all beneficial patterns in a program and abstract them.
Input: Program P with N nodes.

Output: A semantically-equivalent program P ′ with fewer nodes |N ′| ≤ |N |.

Method: Apply a greedy algorithm:

1. START: Generate all patterns in P (Section 4.2);

2. Find a pattern π with greatest benefit > 0 (Section 4.3);

3. If we found such a π that saves space, then abstract:

• Generate abstract function fA
π , insert calls to fA

π at every occurrence of π, and re-
move now-redundant nodes (Section 4.4);

• Go back to START.

4. Otherwise END.

Definition 4.5 A Lightweight Function is an abstract function f A such that no node modi-
fies state, and arity(fA) ≤ MAX ARGS , where MAX ARGS is the maximum number of
register arguments defined in the target’s procedure calling standard.

When generating patterns, we only consider constant nodes, ALU nodes (add, subtract,
etc), 1-tupled gamma nodes (and which do not merge state), and ordinary load nodes (i.e.,
loads which do not modify state or access the parent function’s stack), with the additional
restriction that all loads within a pattern depend on the same state. This leads to a simplified
abstraction method, but which still yields a worthwhile reduction. The restriction on the number
of arguments is reasonable given that any processor has a limited set of registers.

4.2.1 Pattern Generation Algorithm

We add all patterns of a given size to a pattern database, then prune out all singly-occurring
patterns before searching for patterns of the next size up, stopping when no further patterns are
added.

The structure of the database is a table, having one row for each node type. Each entry in
the table consists of a list of patterns, with each pattern having a list of occurrence root nodes
in P .

The two functions implementing Algorithm 4.2 are shown in Figure 4.3. The algorithm itself
is implemented in GenerateAllPatterns(), which generates all single-node patterns,
prunes the database, then iterates over ν = 2 . . . νmax .

4.2.2 Analysis of Pattern Generation Algorithm

The number of rooted binary trees of size ν nodes is a formulation of the binary bracketing
problem, for which the number of solutions is given by the Catalan number [64] Cν . This is
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1. global DataBase : ptnDatabase

2. procedure GenerateAllPatterns( P:VSDG )
3. addSingleNodePatterns( P )
4. deleteSingleOccurrencePatterns()
5. for ptnSize = 2 . . . MAX NODES do
6. foreach node in P
7. GeneratePatterns( node, ptnSize )
8. deleteSingleOccurrencePatterns()
9. endforeach
10. if ( no patterns added )
11. return
12. endif
13. endfor
14. endproc

15. procedure GeneratePatterns ( n:node, ptnSize:int )
16. if ( n is a CONST or ARG node and ptnSize == 1 ) then
17. DataBase ∪ = n
18. elseif ( n is a unary or load node ) then
19. pChild← GetPatterns( n.child, Database )
20. DataBase ∪ = {(n, x) | x ∈ pChild ∧ |(n, x)| = ptnSize}
21. elseif ( n is a binary or predicate node ) then
22. pL← GetPatterns( n.Lchild, Database )
23. pR← GetPatterns( n.Rchild, Database )
24. DataBase ∪ = {(n, x, y) | x ∈ pL ∧ y ∈ pR ∧ |(n, x, y)| = ptnSize}
25. elseif ( n is a γ-node) then
26. pT← GetPatterns( n.Tchild, Database )
27. pF← GetPatterns( n.Fchild, Database )
28. pC← GetPatterns( n.Cchild, Database )
29. DataBase ∪ = {(n, x, y, z) | x ∈ pC ∧ y ∈ pT ∧ z ∈ pF ∧

|(n, x, y, z)| = ptnSize}
30. else
31. /* ignore θ-nodes, store nodes and call nodes */
32. endif
33. endproc

Figure 4.3: Algorithm to generate patterns. The function GetPatterns() (not shown) re-
turns a list of patterns from the database where the pattern root node matches the argument.
addSingleNodePatterns() adds a pattern for each node in the program to the database,
while deleteSingleOccurrencePatterns() removes any patterns that occur exactly once
in the pattern database.
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Algorithm 4.2 Generate all multiply-occurring patterns into the pattern database.
Input: A set of VSDGs representing an entire program P , an empty pattern database D, and a

maximum pattern size νmax .

Output: All multiply-occurring patterns, up to the maximum size νmax , found in P will be
recorded in D.

Method:

1. START: Generate all single-node (ν = 1) patterns in P and place them in D, followed by
deleting (“pruning”) all singly-occurring patterns.

2. Then, for each pattern size ν = 2 . . . νmax generate into D all patterns of size ν that can
be derived from sub-patterns already in D.

3. If no patterns are generated (i.e., none of size ν were found) then END.

4. Otherwise, prune D and go back to START.

defined as

Cν ≡
(2ν)!

(ν + 1)!ν!
. (4.1)

The asymptotic form of (4.1) approximates to

Cν ∼
4ν

√
πν3/2

, (4.2)

i.e., exponential in the number of nodes in the tree.
Setting an upper bound on both the total number of nodes in a pattern, νmax , and the pattern

arity (set by the procedure calling standard for the target architecture) bounds this potential
exponential growth in patterns to a constant.

Thus, for |N | nodes and a fixed upper pattern size νmax the total number of patterns, Ψmax ,
that can be generated is

Ψmax = |N |
νmax
∑

i=2

Ci−1. (4.3)

Since each node for a given pattern size i can generate at most Ci−1 patterns, then summa-
tion (4.3) will be constant for a given value of νmax . Thus the upper bound on Ψmax for |N |
nodes is O(|N |). Patterns are stored in memory proportional to the size of the pattern. Thus the
maximum runtime storage space needed is also O(|N |).

4.3 Pattern Selection
The pattern generation algorithm fills the pattern database with all multiply-occurring patterns
that will produce lightweight functions. A benefit is computed for each pattern, and the pattern
with the greatest positive benefit is then chosen for abstraction.
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4.3.1 Pattern Cost Model
Our model considers the following parameters:

Number of Occurrences For a given pattern, determines both the cost (each occurrence will
insert a call node into the parent function) and benefit (abstraction removes all occurrences
of the pattern from the program, and inserts a new occurrence of the pattern into the
abstract function).

Pattern Size This directly affects the number of nodes saved (together with the number of
occurrences) but must also offset the costs of call nodes and the abstract function return
node.

During pattern selection, we apply the following cost function to compute the benefit, βπ,
for pattern π:

βπ = Gain − Loss (4.4)
where Gain = (nπ − 1)νπ

Loss = nπ + 1

and where nπ is the number of occurrences of pattern π, and νπ is the number of nodes in π.
The Gain term describes the number of nodes that are removed from the program: for nπ

occurrences, we delete nπνπ nodes, but add νπ nodes into the newly-created abstract function.
The Loss term accounts for nπ call nodes inserted into the program, and for the additional return
node appended to the abstract function.

Rearranging (4.4) as an inequality to say if it is worth abstracting a pattern (i.e., βπ > 0)
gives

(nπ − 1)(νπ − 1) > 2. (4.5)

The least benefit is from either a four-node pattern appearing twice, or a two-node pattern
appearing four times in the program. The example in Figure 4.2 (page 87) has nπ = 2 and
νπ = 7, giving a benefit of 4, i.e., it is worth doing the abstraction.

4.3.2 Observations on the Cost Model
There are several issues that we have avoided in our simplistic cost model.

Foremost is the potential cost of additional spill code that may be generated in the parent
functions. This is a difficult figure to quantify: on the one hand the additional abstract function
calls will increase pressure on the variable (non-scratch) registers, with a potential increase in
spilling; on the other hand, the resulting simplification of the parent functions can reduce the
register pressure1.

Another issue is the runtime penalty. In straight-line code this is minimal, as the abstract
call will be made at most once. However, where the abstracted code is inside a loop then the
additional processing time of the call is likely to be significant. However, because we only
generate lightweight abstract functions, this cost is minimised, and in the best case the penalty
is the cost of the call and the return.

1A first approximation might be to consider that half the abstract function arguments will need register spilling
or copying.
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Finally, our cost model is based on intermediate code size, not target code size. While this
has the benefits of platform-independence and of working on the intermediate levels within the
compiler, the cost model does suffer from loss of precision due to the abstract nature of the
intermediate code.

Our main interest is embedded systems, where code size is the dominant factor. We con-
sider these (potential) runtime penalties to be worth the significant savings achieved through
procedural abstraction.

4.3.3 Overlapping Patterns
Maximum benefit from procedural abstraction is obtained when for any two pattern occurrences
πm and πn there are no common nodes (i.e., πm ∩ πn = ∅).

The problem of deciding which of a number of overlapping pattern occurrences to abstract is
NP-Complete in the number of clashing pattern occurrences. It can be formulated as finding the
minimum weighted path of a graph where nodes correspond to pattern occurrences, and there is
an edge (πm, πn) in the graph if patterns πm and πn overlap, and where the weight of the edge
= |πm ∩ πn|. Pattern occurrences that do not overlap with any other pattern occurrences can be
abstracted without further consideration.

In practice we have found that, even though we do suffer some clashes, the overall effect is
tolerable—in the worst-case we replace the root node with a call to the abstract function, at a
cost of one call node in place of the original root node.

4.4 Abstracting the Chosen Pattern
Having chosen the pattern that is to be abstracted, the final stage is to perform the actual ab-
straction process.

4.4.1 Generating the Abstract Function
We have as input a tree pattern from which we generate a new function. The function is placed
into a new module (“ AbstractLib ”) created specifically to hold the abstract functions.

Because only lightweight functions (Section 4.2) are abstracted the upper limit on the num-
ber of function arguments is set by the chosen target’s procedure calling standard. The function
body is then generated from the tree pattern, with VSDG nodes and edges emitted as necessary.

4.4.2 Generating Abstract Function Calls
For each occurrence of the abstraction pattern we add a new call node. Value dependency
edges are inserted from the call node to the corresponding V-predecessors of the pattern occur-
rence. If the abstract function contains one or more load nodes then a state-dependency edge is
added from the call node to the S-predecessor of the load node(s) being abstracted. All value-
dependency edges from the occurrence’s root node V-successors are then moved to the call node,
resulting in at least the occurrence root node becoming dead, and all nodes post-dominated by
the root node.

Finally, a dead node elimination pass will remove at least the pattern occurrence root node,
and any other nodes that become unreachable. For example, consider Figure 4.1(b): after in-
serting the call to the abstract function and moving the edge from the output of the γ-node to
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the output of the call node, both the γ-node and every node post-dominated by the γ-node are
now dead and can be removed from the graph.

4.5 Summary
Procedural abstraction has been the subject of research for many years. However, it is only in re-
cent times that it is being implemented in production compilers, either as part of the compilation
process itself, or as a post-compilation pass.

The approach we have taken to procedural abstraction achieves a reduction of around 18%
(Chapter 7). This compares favourably with prior research, e.g., aiPop [3], Squeeze++ [35]
and Liao’s work [74].

Though we take a simplified view of program analysis (we do not abstract loops, function
calls or memory store operations) we attribute this result to applying procedural abstraction
at a higher level within the compiler chain, and in particular the VSDG. This has the benefit
of removing many of the variations between regions of code, allowing potentially many more
opportunities for abstraction.

Adding support for the remaining operations could increase the effectiveness of the algo-
rithm. All three remaining VSDG nodes place artificial boundaries on the size of patterns that
can be abstracted. Supporting function calls in abstract patterns would increase the potential
cost of abstraction, due to additional instructions to save and restore the callee-preserved regis-
ters, and a greater potential for introducing spill code within abstract functions due to increased
register pressure in the presence of call nodes.

Supporting θ-nodes in patterns would also remove an artificial boundary to abstract patterns.
However, abstracting loops is an all-or-nothing transformation: we either abstract the entire
loop body and enclosing θ-node, or just (a part of) the loop body: we could not abstract a θhead

node without its matching θtail node, nor a loop without its control predicate.
As well as reducing code size, lightweight procedural abstraction is also a suitable tool for

instruction set exploration, where we consider abstract functions as potential candidates for new
instructions. In this context, we gain execution speed since we no longer suffer the penalty of a
function call and execution of multiple instructions.

The potential number of patterns that can be generated from intermediate code is huge,
with a corresponding runtime cost during pattern generation. Our pattern generation algorithm,
coupled with aggressive database pruning during the pattern generation phase, and hard limits
on the dimensions of patterns, keeps this potentially prohibitive cost in check.
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CHAPTER 5

Multiple Memory Access Optimization

As memory may be a paradise
from which we cannot be driven,

it may also be a hell
from which we cannot escape.

JOHN LANCASTER SPALDING (1840–1916)

Memory is a blessing and a curse. It allows a processor with limited internal memory (i.e.,
registers) to handle large data sets, but the additional instructions that access the memory

increase the code size by a considerable amount. One potentially profitable route to reducing
code size, for processors that support them, is through the effective use of Multiple Memory
Access (MMA) instructions. These combine several loads or stores into a single instruction,
where a set of registers (typically defined by some range or bitmap representation) are loaded
from, or stored to, successive words in memory. Their compactness comes from expressing a
set of registers with only a few instruction-word bits; for example, the ARM LDM instruction
uses only sixteen bits to encode up to sixteen register loads in a single 32 bit instruction (cf. 512
bits without the use of the LDM instruction).

This chapter begins with a review of an algorithm with properties appealing to MMA op-
timization: Liao et al’s SOLVESOA algorithm. We then describe the SOLVEMMA algorithm,
which identifies profitable memory access sequences for combining into MMA instructions,
and selects stack frame layouts that facilitate multiple reads and writes of local variables. Inter-
estingly, it turns out that array accesses and local variable accesses are best treated separately.

We describe SOLVEMMA as applied to the Control Flow Graph, and then show how the
less-constrained VSDG provides greater opportunities for merging multiple load and store in-
structions. Finally, we specialize the algorithm to the Thumb processor.
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5.1 Examples of MMA Instructions
The Thumb processor [97] executes a compact version of the ARM instruction set. A hardware
translator expands, at runtime, the 16-bit Thumb instructions into 32-bit ARM instructions (a
similar approach is taken in the MIPS16 embedded processor [62]). A disadvantage of this ap-
proach is that fewer instruction bits are available to specify registers. This restriction artificially
starves the register allocator, resulting in more register spill code (providing more potential
sources of MMA optimization, which is poorly done in existing compilers).

The load-store nature of a RISC architecture also gives rise to many explicit memory access
instructions. In contrast, a CISC machine with memory-access-with-operation instructions can
achieve better code size by combining a load or store operation (especially where the address
offset is small) with an arithmetic operation (e.g., “add EAX,ESI[EBX*4]+Offset” on
the Intel x86 [1]). Restricting the number of accessible registers, as described above, increases
the number of memory access instructions: by way of example, the adpcm benchmark from Me-
diaBench [68] generates approximately 35% more memory access instructions for the Thumb
than for the ARM.

However, the state of the art in commercial compilers appears1 to be based on opportunis-
tic peephole-style optimization. The GCC compiler also takes an ad-hoc approach to MMA
optimization2.

5.2 Simple Offset Assignment
Liao et al’s Simple Offset Assignment (SOA) algorithm [72] rearranges local variables within
a function’s stack frame in order to minimize address computations. It was originally for-
mulated for a single address register Digital Signal Processor (DSP) with word-oriented auto-
increment/decrement addressing modes. While not directly solving the MMA optimization
problem, it forms the starting point of our approach, and so deserves explanation as a founda-
tion for this chapter.

The input to the algorithm is an instruction-scheduled and register-allocated program, i.e.,
a Control Flow Graph, with a fixed memory access sequence. The SOLVESOA algorithm con-
structs an Access Graph (V,E), an undirected graph with vertices V and edges E, where ver-
tices correspond to variables, and there is an edge e = (p, q) between vertices p and q with
weight w(e) if there are w(e) adjacent accesses to variables p and q. The algorithm then covers
the Access Graph with one or more maximally-weighted disjoint paths.

A covering of a graph is a subset of its edges, and where a path is an alternating sequence
of vertices and edges, with each edge connecting its adjacent vertices, and there are no cycles
in the path. Each path specifies an ordering on the stack of the variables in the path, thereby
minimizing the number of address computations through the use of auto-increment/decrement
addressing to walk along the access path, where each increment or decrement is a step forwards
or backwards. The number of address computations is then given by the sum of the weights of
the uncovered edges in the Access Graph.

Finding an optimal path covering is a formulation of the Maximum Weight Path Covering
(MWPC) problem, which has been shown [72] to be NP-Complete in the number of nodes in

1Through literature and private communication with industrial compiler developers.
2For example, the GCC compiler uses hard registers to enforce a particular register assignment within the RTL

intermediate form.



Chapter 5. Multiple Memory Access Optimization 97

c = a + b;
f = d + e;
a = a + d;
c = d + a;
b = d + f + a;
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Figure 5.1: Example illustrating SOA. In (a) is a short code sequence, accessing variables a–
f. The access sequence (b) describes the sequence of read or write accesses to the variables
(for illustration we assume variables in expressions are accessed in left-to-right order). This
leads to the Access Graph shown in (c), where the edge weights correspond to the number of
times a given sequence occurs in (b). The graph is covered using the MWPC algorithm, with
covered edges shown in bold. The result is the stack frame layout shown in (d).

the graph. Liao et al proposed a greedy algorithm (similar to Kruskal’s spanning tree algo-
rithm [5]) which iteratively chooses the edge with the greatest weight to add to the path while
preserving the properties of the path (if two or more edges have the same weight the algorithm
non-deterministically chooses one of them). It terminates when either no further edges can be
added to the solution, or there are no more edges. An example of SOA is shown in Figure 5.1.

Computing this approximate MWPC can be done in O(|E| log |E|+ |L|) time, where |E| is
the number of edges in the Access Graph, and |L| the number of variable accesses. Liao et al
showed that for large programs the Access Graphs are generally quite sparse.

The General Offset Assignment (GOA) algorithm extends SOA to consider k address regis-
ters (consider SOA as a special case of GOA, with k = 1). The SOLVEGOA algorithm grows an
Access Graph, adding vertices to it if adding an additional address register to the graph would
likely contribute the greatest reduction in cost. The decision of which variables to address is left
as a heuristic.

5.3 Multiple Memory Access on the Control Flow Graph
In this section we describe the SOLVEMMA algorithm in the context of the Control Flow Graph
(CFG) [6]. The SOLVEMMA algorithm is different to SOLVESOA in two distinct ways. Firstly,
the goal of SOLVEMMA is to identify groups of loads or stores that can be profitably combined
into MMA instructions. And secondly, SOLVEMMA is applied before instruction scheduling,
when it is easier to combine loads and stores into provisional MMA instructions and to give
hints to the register assignment phase.

Similar to the SOLVESOA algorithm, we construct an Access Graph from the input program
and then find a covering which maximizes provisional MMA instructions and biases register
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assignment to enable as many of these as possible to become real.

5.3.1 Generic MMA Instructions

For discussion purposes we use two generic MMA instructions—LDM and STM—for load-
multiple and store-multiple respectively. The format of the LDM (and STM) instruction is:

LDM Addr, { reglist }

where Addr specifies some address expression (e.g., register or register+offset) computing
the address from which the first word is read, and the registers to be loaded are specified in
reglist. As in the Thumb instructions, the only constraint on the list of registers is that they
must be sorted in increasing numerical order. Section 5.5 discusses the details of target-specific
MMA instructions.

The SOLVEMMA algorithm is applied twice to the flow graph. The first pass transforms
global variables whose address and access ordering is fixed in the CFG3, while the second pass
transforms local and spill variables, whose addresses are not fixed, and can in many cases be
re-ordered.

5.3.2 Access Graph and Access Paths

We define the Access Graph and Access Paths as a framework in which to formulate the problem
and the SOLVEMMA algorithm.

Definition 5.1 Let α(p) be the set of instructions which access variable p and op(i) be the
operation (load or store) of instruction i. Then the Access Graph is a weighted directed
graph AG = (V,E), consisting of vertices V, one for each variable, and edges E ⊆ V × V

such that there exists an edge (p, q) ∈ E between vertices p and q iff (1) i ∈ α(p) and
j ∈ α(q) are in the same basic block; (2) op(i) = op(j); (3) j is scheduled after i; and (4)
j is not data-dependent on i.

Vertices in V are tagged with the direction property dir ∈ {UND ,HEAD ,TAIL} to mark
undecided, head and tail vertices respectively. Initially, all nodes are marked UND . For some
access sequences the direction of accesses must be enforced (e.g., accesses to memory-mapped
hardware registers), while in others the sequence is equally valid if traversed in either direction.
The direction property marks explicit directions, while deferring the final direction of undefined
access sequences to the covering algorithm. The use of a directed Access Graph is in contrast
to SOA’s undirected Access Graph.

Definition 5.2 The Weight w(e) of an edge e = (p, q) ∈ E is given by the number of times
the four criteria of Definition 5.1 are satisfied.

It is possible that some pairs of vertices are accessed in both combinations (p, q) and (q, p).
Some of these edge pairs are likely to have differing weights, due to explicit preferences in the
program (e.g., a pair of stores). Such edges are called unbalanced edges:

3But note Section 5.4 where using the VSDG instead allows only essential (programmer-required) ordering to
be fixed.
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Definition 5.3 An Unbalanced Edge is an edge e = (p, q) ∈ E where either there is an
opposite edge e′ = (q, p) ∈ E such that w(e) 6= w(e′), or where such an opposite edge does
not exist (i.e., w(e′) = 0).

The definition of the Access Path follows from the above definition of the Access Graph.

Definition 5.4 An Access Path C = (VC ⊆ V,EC ⊆ E) where |EC | = |VC | − 1, is a
sequence of vertices {v1, v2, . . . , vm} where (vi, vi+1) ∈ EC and no vi appears more than
once in the sequence.

An Access Graph can be covered by two or more disjoint access paths:

Definition 5.5 Two paths CA = (VA, EA) and CB = (VB, EB) are disjoint if VA ∩ VB = ∅.

Note that SOLVESOA does not consider the type of access operation. In contrast, SOLVEMMA
combines instructions of the same operation, so path covering must be sensitive to access oper-
ations. Consider this access sequence of three local variables a, b and c:

arbrcwbrarbw

where the subscript r denotes read and w denotes write. It may be that a, b and c are placed in
contiguous locations, but the write to c prevents the construction of a single MMA access path
{a, b, c}, whereas SOA might place all three in a path. When SOLVEMMA is applied to the
VSDG (Section 5.4), which would not specify the order of the reads of a and b, then either {a, b}
or {b, a} can be normalized to the other, subject to any restrictions imposed by target-specific
MMA instructions. Additionally, we may arrange a and b in memory to allow a multiple load
for arbr, but we cannot combine arbw as they are different access operations.

5.3.3 Construction of the Access Graph

The Access Graph is constructed in a single pass over the input program, as directed by Def-
inition 5.1. The first two criteria restrict merging to access instructions of the same operation
(load or store) and that both are within the same basic block (this maintains the ordering of
memory accesses in the CFG). The third criterion ensures that there are no intervening load or
store instructions that might interfere with one or the other instructions (e.g., consider two loads
with an intervening store to the same address as the second load).

Vertices in the Access Graph represent variables whose address can be statically deter-
minable or are guaranteed not to alias with any other vertex4. While this restriction may seem
harsh, it supports global variables, local (stack-based) variables, including compiler-generated
temporaries, and register-plus-constant-offset (indexed array) addressing. In these cases we can
statically determine if two memory accesses do not alias.

4Aliasing may produce loops in the access path. For instance, consider the path a-b-c-d; if c is an alias for
b, after addresses have been assigned the resulting offset sequence would be, say, 0-4-4-8. MMA instructions
generally can only access contiguous memory locations, neither skipping nor repeating addresses, and thus this
sequence of accesses is not possible.
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5.3.4 SOLVEMMA and Maximum Weight Path Covering
We follow the approach taken in SOLVESOA of a greedy MWPC algorithm (Section 5.2).
The SOLVEMMA algorithm (Algorithm 5.1) is greedy in that on each iteration it selects the
edge with the greatest weight; if two or more edges have the same weight the algorithm non-
deterministically chooses one of them.

In the following let AG be an Access Graph (Definition 5.1) with vertices V and edges E.

Definition 5.6 A partial disjoint path cover of a weighted Access Graph AG is a subgraph
C = (V ′ ⊆ V,E ′ ⊆ E) of AG such that ∀v ∈ V ′, degree(v) ≤ 2 and there are no cycles in
C; an orphan vertex is a vertex v ∈ V \V ′.

Algorithm 5.1 The SolveMMA algorithm.

// Take program P , construct its Access Graph (V,E) return a covering
// Access Graph (V ′, E ′).

1. procedure SOLVEMMA ( P :CFG ): AccessGraph
2. (V,E)← CONSTRUCTACCESSGRAPH(P );
3. Esort ← SORTDESCENDINGORDER(E); // Sort E by weight.
4. V ′ ← V,E ′ ← ∅;
5. while |E ′| < |V | − 1 and Esort 6= ∅ do
6. e← greatest edge in Esort ;
7. Esort ← Esort − {e};
8. if e does not cause any vertex in V ′ to have degree > 2 and
9. e does not cause a cycle in E ′ and
10.+ head(e).dir ∈ {UND ,TAIL} and
11.+ tail(e).dir ∈ {UND ,HEAD} then
12. E ′ ← E ′ + {e};
13.+ e′ ← reverse-edge ∈ E of e;
14.+ if e′ = ∅ or weight(e′) 6= weight(e) then
15.+ walk from head(e) ∈ V ′ marking UND vertices as HEAD ;
16.+ walk from tail(e) ∈ V ′ marking UND vertices as TAIL;
17.+ endif
18. else
19. discard e;
20. endif
21. endwhile
22. return (V ′, E ′);
23. endproc

The steps additional to the SolveSOA algorithm (marked with a ‘+’) are lines 10 and 11,
which ensure that we never add edges that violate the direction of directed paths, and lines 13–17
which convert undirected paths into directed paths if e is an unbalanced edge (Definition 5.3).

Applying the SOLVEMMA algorithm to the Access Graph produces a partial covering of the
graph. It is partial in that some vertices in the graph may not be covered by an access path. An
orphan vertex identifies a variable that cannot be profitably accessed with an MMA instruction.
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The first step of the SOLVEMMA algorithm constructs the Access Graph (V,E) from the
input program P . The set of edges E is then sorted in descending order by weight, a step which
simplifies the operation of the algorithm. We initialize the output Access Graph (V ′, E ′) with
V ′ = V , and no edges.

The main body of the algorithm (lines 5–21) processes each edge, e, in Esort in turn until
either there are just enough edges in the solution to form one long path (at which point we can
add no further edges to E ′ that would satisfy the criteria on lines 8 or 9), or there are no more
edges in Esort . We remove e from Esort and then decide whether it should be added to C. To
do so, it must meet the following four criteria:

1. The edge must not cause a cycle in E ′;

2. The edge must not cause any vertex in V ′ to have degree > 2, i.e., no edge can connect to
an internal vertex within a path;

3. The head of the edge can only connect to a vertex that is either the tail of a directed path,
or the end of an undirected path; and

4. The tail of the edge can only connect to a vertex that is either the head of a directed path,
or the end of an undirected path.

If all four criteria are satisfied we add e to E ′.
Initially, all vertices (and hence paths constructed from them) are marked UNDecided, re-

flecting no preference in the access order. However, it is very likely that in (V,E) there will be
some sequences of access that are more favourable than others (e.g., if there was one instance
of (p, q) and two instances of (q, p)). This is reflected in a difference between the weights of
the edges (p, q) and (q, p). Indeed, there may not even be a matching reverse edge (line 13).

The remaining lines, 15 and 16, handle the case of e being unbalanced, marking all the
vertices from the head of e with HEAD , and all the vertices from the tail of e with TAIL. Note
that this can happen at most once per path, as any subsequent addition to the path must respect
its direction (lines 10 and 11). This simple heuristic works well in practice and has low runtime
cost.

5.3.5 The Phase Order Problem
An important problem encountered by compiler designers is the phase ordering problem, which
can be phrased as “in which order does one schedule two (or more) phases to give the best target
code?”. Many phases are very antagonistic towards each other; for example, if SOLVEMMA
is applied before register allocation then any subsequent spill code generated by the register
allocator would not be considered by SOLVEMMA, and additional constraints specified by the
semantics of a given target’s MMA instructions would be imposed on the operation of the reg-
ister allocator. Alternatively, if SOLVEMMA is applied after the instruction scheduling phase
then the scheduler might construct a sequence that prevents several memory access instructions
becoming a single MMA instruction.

5.3.6 Scheduling SOLVEMMA Within A Compiler
We now describe the order in which MMA optimizations are applied to a CFG. While this
order does not produce optimal code for all programs, the performance is generally good, with
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Figure 5.2: Scheduling MMA optimization with other compiler phases.

acceptable worst-case behaviour.
The first pass of MMA Optimization takes in a scheduled CFG, where the order of instruc-

tions (especially loads and stores) is fixed. At this stage the only memory accesses are to global
variables (fixed addresses) and local and global arrays and structs (known to be on the stack or
in global memory)5. The access graph constructed during this pass identifies provisional MMA
instructions, albeit in a fashion which can be undone later.

The second phase is Register Allocation. This inserts spill code (compiler-generated loads
and stores to temporaries placed on the stack) into the CFG where there are insufficient physical
registers to be able to colour a virtual register.

The third phase is another MMA Optimization pass, but now concerned with loads and stores
introduced by register spilling. Spill temporaries and their access sequences are added to the
Access Graph of the first pass.

Phase four—Offset Assignment—assigns stack offsets to spilt locals and temporaries, guided
by the access paths generated in the previous phase.

Finally, Register Assignment maps the virtual registers onto the physical registers of the
target architecture. Again, the access paths are used to guide the assignment of registers to the
MMA instructions, since most target MMA instructions enforce some order on the register list.

The output of this chain of phases is a CFG from which target code can be emitted. Where
the register assigner has been unable to comply with the constraints of the target’s MMA in-
struction register ordering, a single provisional MMA instruction is decomposed into a number
of smaller MMA instructions, or even single loads or stores.

5.3.7 Complexity of Heuristic Algorithm
SOLVEMMA processes each edge in E ⊆ V × V , which is potentially quadratic in the number
of variables in the program. Thus we require SOLVEMMA to be an efficient algorithm else
it will be too costly for all but trivial programs. Here, we show that SOLVEMMA has similar
complexity to SOLVESOA.

Lemma 5.1 The running time of SOLVEMMA is O(|E| log |E|+ |L|), where E is the num-
ber of edges in the Access Graph, and L is the number of variable accesses in the program.

PROOF SOLVEMMA is derived from SOLVESOA, whose complexity has been shown to
be O(|E| log |E|+ |L|). Thus we only consider the additional complexity introduced in the

5We assume that local user variables have been mapped to virtual registers, except in the case of address-taken
variables, which are turned into one-element arrays.
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construction of the MMA Access Graph and in lines 10–11 and 13–16 of Algorithm 5.1.
For every variable access l ∈ L there can be at most 1 adjacent variable access. Lines 10, 11
and 14 incur a constant cost per edge, as does line 13 in a well-implemented program. Lines
15–16 together walk paths to convert them into directed paths. A path can be converted from
undirected to directed at most once. The total complexity is then O(|E| log |E|+ |E|+ |E|+
|E|+ |L|), i.e., O(|E| log |E|+ |L|). �

Using path elements [72] the test for whether an edge e forms a cycle in C is reduced to
testing whether the head and tail vertices of e are common to a single path element. This test
can be performed in constant time.

5.4 Multiple Memory Access on the VSDG
The previous section applied MMA optimization to a program in CFG form. The transforma-
tions that are possible are constrained by the precise ordering specified by the CFG. In this
section MMA optimization is applied to the Value State Dependence Graph (Chapter 3), which
has fewer constraints on the ordering of instructions.

Figure 5.3 shows the VSDG of the example program from Figure 5.1, showing memory
load, memory store and add nodes, with value- and state-dependency edges, together with the
resulting Access Graph and memory layout.

5.4.1 Modifying SOLVEMMA for the VSDG

The VSDG under-specifies the ordering of instructions. Thus we can reformulate the four
criteria of Definition 5.1 to “(1) i ∈ α(p) and j ∈ α(q) are in the same γ- and θ-dominated
regions6; (2) op(i) = op(j); (3) for loads, j has the same state-dependent node as i; for stores,
j state-depends on i; and (4) j is not value-dependent on i.”

For example, in “x=v[a+b]” there are three loads—one each for a, b and the indexed
access into array v[]. But the order of the first two loads is unspecified. This is represented in
the Access Graph by two edges, (a, b) and (b, a), of equal weight.

We gain two benefits from using the VSDG. The first is due to the state dependency edges
defining the necessary ordering of loads and stores. For example, if a group of loads all depend
on the same state, then those loads can be scheduled in any order; the VSDG underspecifies the
order of the loads, allowing MMA optimization to find an order that benefits code size.

The second benefit is due to the separation of value dependency and state dependency. Such
a separation facilitates a simple method of code motion by inserting additional serializing edges
into the VSDG. For example, we can hoist an expression from between two stores, allowing
them to be combined into a single MMA store.

The VSDG does not change the SOLVEMMA algorithm itself, but it is a better data struc-
ture, allowing greater flexibility in the mixing of phases within the compiler. For example, the
register allocation phase (Chapter 6) can favour an instruction ordering which allows provisional
MMA instructions to become actual MMA instructions.

6These are equivalent to basic blocks in the VSDG—see Chapter 6, page 112
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Figure 5.3: The VSDG of Figure 5.1. The solid lines in (a) are value dependencies, and the
dashed lines state dependencies (the middle portion of the graph is not shown, but can be
readily constructed). The labels of the memory load ‘ld’ and memory store ‘st’ nodes include
the variable name after the period. The Access Graph of (a) is shown in (b), with the covered
edges in bold, resulting in memory layout (c).

5.5 Target-Specific MMA Instructions
The generic MMA instructions (Section 5.3.1) do not specify any addressing mode, since the
underlying algorithm is neutral in this respect. Its purpose is to combine multiple instructions
into a single instruction to reduce code size.

Tailoring the algorithm for a given architecture requires adding constraints to the code gen-
erator and register assigner. For example, the PowerPC’s lmw and stmw instructions require a
contiguous block of registers ending in R31. Appendix B describes the MMA instructions of a
number of popular MMA-capable embedded and desktop processors.

The Thumb LDM and STM instructions use a post-incremented register. Thus we only con-
sider access paths where the address is increasing. Raddr is updated with the address of the
word after the last word accessed by the MMA instruction. This gives another form of register
re-use similar to GOA which we resolve opportunistically: after an MMA instruction the base
register may be available for re-use later, saving an address computation.

5.6 Motivating Example
The SOLVEMMA algorithm has been implemented as a transformation tool within our exper-
imental compiler, VECC (Chapter 7). The Thumb’s MMA instructions (LDMIA and STMIA)
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void bufswap(int * array) {
int i;
for ( i = 0; i < 256; i += 4 ) {
int t1, t2, t3, t4;

t1 = array[i];
t2 = array[i+1];
t3 = array[i+2];
t4 = array[i+3];

array[i] = t4;
array[i+1] = t3;
array[i+2] = t2;
array[i+3] = t1;

}
}

bufswap PROC
push {r4-r6,LR}
mov r1, #0

tn_2 cmp r1, #255 **
bgt tn_1 **
lsl r2, r1, #2 **
add r6, r0, r2 **
ldr r5, [r6, #0]
ldr r4, [r6, #4]
ldr r3, [r6, #8]
ldr r2, [r6, #12]
stmia r6!, {r2-r5}
add r1, r1, #4
b tn_2

tn_1 pop {r4-r6,PC}

(a) C source (b) Thumb code (14 instructions)

Figure 5.4: A motivating example of MMA optimization of the function in (a). The output of our
compiler (b) shows that we combine the four stores into a single STMIA instruction. This code
compares favourably with that produced by the ARM commercial compiler, which required 17
instructions and one extra register; using classical optimizations our code gives 10 instructions.

are a subset of those in the full ARM instruction set, so any implementation will be applicable
to both instruction sets, and there is greater interest in producing compact code for the Thumb
than for the ARM.

A motivating example is shown in Figure 5.4. It is a function which performs some operation
on an array, as might be found in network packet processing. SOLVEMMA combined all four
loads into a provisional LDM instruction, and similarly for the four stores. However, the code
generator found it cheaper (avoiding mov instructions) to undo the provisional LDM and emit
four separate load instructions. Using classical optimizations not yet implemented in VECC
we can remove the four instructions highlighted in Figure 5.4(b) by modifying the final add
instruction.

5.7 Summary
This chapter presents the SOLVEMMA algorithm as a tool for combining several memory ac-
cess instructions into a single MMA instruction. Using a technique similar to that of Liao’s
SOLVESOA algorithm, we both identify loads and stores that can be combined into single
MMA instructions and guide stack frame layout. Implemented as a transformation within
VECC we achieve up to 6% code size reduction, and never increase code size. Further ex-
perimental evidence is given in Chapter 7.

The current implementation of SOLVEMMA takes a simple approach to alias analysis, con-
sidering only loads or stores where we can directly infer their address relationship from the
VSDG. More aggressive alias analysis should identify yet more opportunities for combining
loads and stores into MMA instructions.
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One wider question that remains unanswered is which of the possible MMA instructions
produces the best results for code compaction. In our choice of the Thumb we have a single
address register and a bitmap to specify the desired data registers. In contrast the MMA instruc-
tions of the PowerPC support register+offset addressing and specify the start index of a block
of contiguous registers ending in R31.



CHAPTER 6

Resource Allocation

We are generally the better persuaded
by the reasons we discover ourselves

than by those given to us by others.
BLAISE PASCAL (1623–1662)

Consider two important resources that target code consumes: time and space. Statically,
we can view time as a schedule of instructions; we can view space as the registers and

temporary variables that the compiler fills with intermediate values (subexpression values, loop
counters, etc). The challenge, then, is to allocate these two resources in such a way as to
minimize code size.

This leads to the phase order problem—which can be phrased as “in which order does one
schedule two (or more) compiler phases to give the best target code?”, where best in this thesis
is smallest. Many phases are very antagonistic towards each other; two examples being code
motion (which may increase register pressure) and register allocation (which places additional
dependencies between instructions, artificially constraining instruction scheduling).

In this chapter we show that a unified approach, in which both register allocation (space) and
code motion (time) are considered together, resolves the problem of which phase to do first. Our
approach uses the flexibility and simplicity of the Value State Dependence Graph (Chapter 3)
to present an elegant solution to this problem.
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6.1 Serializing VSDGs
Weise et al [112] observe that their mapping from CFGs to VDGs is many-to-one; they also
suggest that “Code motion optimizations are decided when the demand dependence graph1 is
constructed from the VDG”—i.e., that a VDG should be turned back into a CFG for further
processing—but do not give an algorithm for this or consider which of the many CFGs corre-
sponding to a VDG should be selected.

We identify VSDGs with enough serializing edges with CFGs. Such VSDGs can be simply
transformed into CFGs if desired, the task of resource allocation then being to make the VSDG
sufficiently sequential.

Definition 6.1 A sequential VSDG is one which has enough serializing edges and matching
split nodes for every γ-node to make it correspond to a single CFG.

Here ‘enough’ means in essence that each node in the VSDG has a unique (EV ∪ ES)
immediate dominator which can be seen as its predecessor in the CFG. Exceptions arise for
the start node (which has no predecessors in the VSDG or corresponding CFG), γ-nodes and
θ-nodes.

Given a γ-node g we interpret those nodes which the T port post-dominates as the true sub-
VSDG (the T γ-region) and those which the F port post-dominates as the false sub-VSDG;
a control-split node (corresponding to a CFG test-and-branch node) is added to the VSDG as
the immediate ES-dominator of both sub-VSDGs. For a θ-node, we recursively require this
sequential property for its body and interpret the unique immediate post-dominator property as
a constraint on its I port.

Upton [108] has shown that optimal placement of these split nodes is NP-Complete. While
this is unfortunate, it should be noted that once the split nodes have been placed, then generating
good code from the split-augmented VSDG is no longer NP-Complete.

6.2 Computing Liveness in the VSDG
For the purposes of register allocation we need to know which (output ports of) VSDG nodes
may hold values simultaneously so we can forbid them being allocated the same register. We
define a cut as a partition of a VSDG in Gnoloop form (Chapter 3, page 63), and the notion of
interfering nodes in a given cut.

Definition 6.2 A cut is a partition N1 ∪ N2 of nodes in the VSDG with the property that
there is no EV ∪ ES edge from N2 to N1.

Definition 6.3 Nodes n and n′ are said to interfere if there is a cut N1 ∪N2 with n, n′ ∈ N1

and with both succV ∪S(n) and succV ∪S(n′) having non-empty intersections with N2.

This generalises the normal concept of register interference in a CFG; there a cut is just a
program point and interference means “simultaneously live at any program point”. Similarly
“virtual register” corresponds to our “output port of a node” and note that we use the concept
of “cut based on Depth From Root” in Section 6.4 for our new greedy algorithm.

1The demand dependence graph (DDG) has a similar structure to the control dependence graph (CDG) [39].
The DDG is constructed using the predicates that lead to a computation contributing to the output of the program,
while the CDG uses the predicates that lead to a computation being performed, even if that computation does not
contribute to the program’s output.
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6.3 Combining Register Allocation and Code Motion
The goal of register allocation in the VSDG is to allocate one physical register (from a limited
set) to each node’s output port. Tupled nodes are a special case, as they require multiple registers
on their tupled ports. To whit: these are non-trivial γ- and θ-nodes, and multiple loads and stores
(Chapter 5).

Register requirements can be reduced by serializing computations (two live ranges can be
targeted to the same physical register if they are disjoint), or by reducing the range over which
a value is live by duplicating a computation, or by spilling a value to memory.

6.3.1 A Non-Deterministic Approach
Given a VSDG we repeatedly apply the following non-deterministic algorithm until all the
nodes are coloured and the VSDG is sequential. In the following discussion we assume the use
of an interference graph (e.g., see [25]), where nodes correspond to live ranges of variables (i.e.,
virtual registers), and there is an edge between two nodes if the two live ranges overlap.

1. Colour a port with a physical register—provided no port it interferes with is already
coloured with the same register;

2. Add a serializing edge to force one node before another—this removes edges from the
classical register interference graph by forbidding interleaving of computations;

3. Clone a node, i.e., recalculate it to reduce register pressure (a form of rematerializa-
tion [21]).

4. Tunnel values through memory by introducing store/load spill nodes.

5. Merge two γ-nodes γa and γb into a tuple, provided their C ports depend on the same
predicate node and there is no path from γa to γb or from γb to γa.

6. Insert a split node for a γ-node to identify the boundaries of the γ-node regions (Sec-
tion 6.5.1).

The first action assigns a physical register to a port of a given node. The second moves a node;
the choice of which node to move is determined by specific algorithms (Sections 6.3.2 and 6.4).

Node cloning replaces a single instance of a node that has multiple uses, with multiple copies
(clones) of the node, each with a subset of the original dependency edges. For example, a node
n with two successor nodes p and q, can be cloned into nodes n′ and n′′, with p dependent on
n′ and q dependent on n′′.

Spilling follows the traditional Chaitin-style register spilling [25] where we add store and
load nodes, together with some temporary storage in memory.

The cost of spilling loop-variant variables is higher than the store-and-reload for a normal
spill. For θ-nodes where the tuple is wider than the available physical registers, we must spill
one or more of the θ-node variables over the loop test code, not merely within the loop itself.
At most this requires two stores and three loads for each variable spilled. Figure 6.2 shows the
location of the five spill nodes and when they are needed.

Finally, we can arrange to move nodes out of a γ-node region by inserting a split node. This
will reduce the number of live edges in the γ-node region, at the cost of increasing the overall
number of live edges over the γ-node. For example, consider the following
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a) if (P)
x = 2, y = 3;

else
x = 4, y = 5;

b) if (P) x = 2; else x = 4;
...

if (P) y = 3; else y = 5;

2 4

γ

P

C

T F

x y

3 5

γC

T F

Figure 6.1: Two different code schemes (a) & (b) map to the same γ-node structure.

if ( P )
a = ( p * q ) + ( r / s ) - ( v % u );

else
a = c + d;

The complex expression in the true region of this γ-node has six live variables on entry. If there
are insufficient registers then moving either the entire expression or part of it out of the γ-node
would yield the following

temp = ( r / s ) - ( v % u );
if ( P )

a = ( p * q ) + temp;
else

a = c + d;

6.3.2 The Classical Algorithms
We can phrase the classical Chaitin/Chow-style register allocators as instances of the above
algorithm:

1. Perform all code motion transforms through adding serializing edges and merging γ-
nodes if not already sequentialized;

2. Map the VSDG onto a CFG by adding enough (Section 6.1) additional serializing edges;

3. If there are insufficient physical registers to colour a node port, then:

(a) Chaitin-style allocation [25]: spill edges, with the restriction that the destination reg-
ister of the reload is the same as the source register of the store. Chaitin’s heuristics
can be applied to determine which edge to spill.

(b) Chow-style allocation [26]: spill edges, but without the register restriction of Chaitin-
style, splitting the live-range of the virtual register; use Chow’s heuristics to decide
which edge to split.
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Figure 6.2: The locations of the five spill nodes associated with a θ-node (left), describing
(right) when each of the spill nodes is needed.

In both allocation algorithms post-code-motion transformations during register allocation
are limited to inserting spill nodes into the program.

Note that there are a range of possible approaches to allocating VSDGs. One approach is a
depth-first traversal of the VSDG, another being the ”snow-plough” algorithm described in the
following section.

6.4 A New Register Allocation Algorithm
The Chaitin/Chow algorithms do not make full use of the dependence information within the
VSDG. Instead, they assume that a previous phase has performed code motion to produce a
sequential VSDG—corresponding to a single CFG—on which traditional register colouring
algorithms are applied.

We now present the central point of this chapter—a register allocation algorithm specifically
designed to maximise the usage of information within the VSDG. The algorithm consists of two
distinct phases:

1. Starting at the exit node N∞, walk up the graph edges calculating the maximal Depth
From Root (DFR) of each node (Definition 3.12, page 52); for each set of nodes of equal
depth calculate their liveness width (the number of distinct values on which they depend,
taking into account control flow in the form of γ- and θ-regions).

2. Apply a forward “snow-plough”2-like graph reshaping algorithm, starting from N∞ and
2Imagine a snow plough pushing forward, scooping up excess snow, and depositing it where there is little snow.
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pushing up towards N0, to ensure that the liveness width (Section 6.6) is never more than
the number of physical registers. This is achieved by moving or cloning nodes, or spilling
edges, in a greedy way so that the previously smoothed-out parts of the graph (nearer the
exit) are not re-visited.

The result is a colourable VSDG; colouring it constitutes register assignment. The following
sections describe the steps necessary to allocate physical registers to a VSDG.

6.5 Partitioning the VSDG
The first pass annotates a VSDG with the DFR. The second pass then processes each cut of the
VSDG in turn.

Definition 6.4 A depth-first cut Sd is the set of nodes with the same DFR d:

Sd = {n ∈ N | D(n) = d}

It is also convenient to write

S≤d = {n ∈ N | D(n) ≤ d}
S>d = {n ∈ N | D(n) > d}

Note that the partition (S≤d,S>d) is a cut according to Definition 6.2 (page 108).

6.5.1 Identifying if/then/else

A necessary task during VSDG register allocation and code motion is to identify γ-regions, i.e.,
the nodes which will be in the true or false regions of the γ-nodes in a VSDG.

Definition 6.5 A γ-region for a γ-node g is the set of nodes, Rγ(gp), strictly post-dominated
by port p of g, such that

Rγ(gp) = {n | n ∈ N ∧ gp spdom n}.

During sequentialization of a VSDG we identify the node which the γ-node’s C port de-
pends on as the split node, and insert serializing edges from all nodes in the two γ-regions to
this split node.

6.5.2 Identifying Loops
The second region of interest in the VSDG is the θ-region: the set of loop-variant nodes that
must be in a loop body.

Definition 6.6 A θ-region for a θ-node l is the set of nodes, Rθ(l), such that

Rθ(l) = {n | n ∈ N ∧ ltail spdom n ∧ ∃ n
EV ∪ES−→ lhead},

where EV ∪ES−→ denotes a path in (EV ∪ ES).

The goal is to even out the peaks and troughs.
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Loop-invariant nodes may be placed either inside or outside a loop as directed by the re-
source allocation algorithm. For example, consider

a = ...;
b = ...;
for( i = 0; i < 10; i++ )
{

...
x = a + b;
...

}
print(x);

The expression “a+b” is loop-invariant, so it can be executed either on each iteration (if placed
inside the loop) or computed once into a temporary, which is then read from within the loop,
producing:

temp = a + b;
for( i = 0; i < 10; i++ )
{

...
x = temp;
...

}
print(x);

Such subexpressions can occur from address expressions or macro expansion. It is not clear
whether such expressions should be inside or outside of a loop, and it is left to the RACM
algorithm to move the expression out of the loop if possible (thus reducing execution time) or
placing it in the loop if this minimises spill code or code duplication.

The Gnoloop form (Definition 3.16, page 63) on VSDGs guarantees that all paths from a
node n outside Rθ to θhead includes θtail , and therefore its DFR must be less than that of the θtail

node. Figure 6.3 illustrates the intersection of the two conditions: nodes strictly dominated by
the θtail node, and nodes dependent on the θhead node.

Many optimization passes, together with code generation, need to compute the θ-regions
of a VSDG. While speed of compilation is not the main focus of this thesis, it is desirable to
employ fast algorithms. Fortunately, Algorithm 6.1 has O(|N |) runtime complexity:

Lemma 6.1 The complexity of computing the θ-region of a θ-node is O(|N |), for |N | nodes.

PROOF Clearly, step 1 is constant time, O(1). Step 2 first passes over all N nodes in G,
adding them to A if they match the DFR test. Sorting the list then takes O(|N |) time since
we know beforehand how many bins there will be. This step has complexity O(|N |+ |N |).
Finally, step 3 processes each node in the set A, and tests at most |E| edges.

The total complexity is therefore O(|N | + |E|). However, in the the VSDG, |E| =
kmaxarity × |N |, (where kmaxarity is the maximum arity of nodes in G). Therefore the com-
plexity of computing the θ-region is reduced to O(|N |). �
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Figure 6.3: Illustrating the θ-region (hatched) of a θ-node as the intersection of nodes post
dominated by the θtail node (dashed line), and nodes dependent on the θhead node (dash-dot
line). The Gnoloop form ensures the former, while Algorithm 6.1 computes the latter.

Algorithm 6.1 Compute Theta Region
Input: A VSDG G = (N,EV , ES, `, N0, N∞) and a θ-node l ∈ N .

Output: All loop-variant nodes in N are in Rθ(l).

Method:

1. Initialise Rθ(l) = {l}.

2. Let A = SORTBYDESCENDINGDFR({n | n ∈ N ∧ D(ltail) < D(n) < D(lhead)}).

3. For each a ∈ A, from first to last, if a is (EV ∪ ES)-dependent on a node in Rθ(l), then
move a from A to Rθ(l).

6.6 Calculating Liveness Width
We wish to transform each cut so that the number of nodes having edges passing through it is
no greater thanR, the number of registers available for colouring.

For a cut of depth d the set of such live nodes is given by

Win(d) = S>d ∩ predV (S≤d)

i.e., those nodes which are further than d from the exit node but whose values may be used on
the path to the exit node. Note that only EV and not ES edges count towards liveness, and that
nodes which will not require registers (e.g., small constants, labels for call nodes, etc) do not
contribute towardsWin .

One might expect that |Win(d)| is the number of registers required to compute the nodes in
S≤d but this overstates the number of registers required for γ-nodes. The edges of each γ-region
are disjoint—on any given execution trace, exactly one path to a γ-node, g, will be executed at
a time, and so we can reuse the same registers for colouring Rγ(gT ) and Rγ(gF ).
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To compute the maximal |Win(d)| we compute the maximum width (at depth d) of S≤d ∩
Rγ(gT ) and S≤d ∩ Rγ(gF ). This computation is recursively applied to all γ-nodes, g, where
S≤d ∩ Rγ(gT ) 6= ∅ or S≤d ∩ Rγ(gF ) 6= ∅. Thus for a set of nested γ-nodes we compute the
maximal (i.e., safe) value of |Win(d)|.

6.6.1 Pass Through Edges
Some edges pass through a cut. These pass-through (PT) edges may also interact with the cut.
However, even the ordinary PT edges require a register, and so must be accommodated in any
colouring scheme.

Definition 6.7 The lifetime L of an edge (n, n′) is the number of cuts over which it spans:

L((n, n′)) = D(n′)−D(n)

Definition 6.8 An edge (n, n′) ∈ EV is a Pass Through (PT) edge over cut Sd when:

D(n′) > d > D(n)

A Used Pass Through (UPT) edge is a PT edge from a node which is also used by one or
more nodes in Sd, i.e., there is n′′ ∈ Sd with (n′′, n′) ∈ EV .

In particular, PT (and to a lesser extent, UPT) edges are ideal candidates for spilling when
transforming a cut. The next section discusses this further.

6.7 Register Allocation
To colour the graph successfully with R physical registers then no cut of the graph must be
wider than the number of physical registers available.

The register allocation algorithm proceeds from N∞ upwards, processing each cut in turn.
For each cut Sd, at depth d, calculateWin(d). Then, while |Win(d)| > R we apply three trans-
formations to the VSDG in order of increasing cost: (i) node raising (code motion), (ii) node
cloning (undoing CSE), or (iii) edge spilling, where we first choose non-loop edges followed
by loop edges.

Note that |Win(d)| = |Wout(d + 1)|, such that once a given cut, Sd, has been register
allocated, then the next cut, Sd+1, is guaranteed to have |Wout(d + 1)| ≤ R.

6.7.1 Code Motion
The first strategy for reducing |Win(d)| is to push up nodes which have more value dependencies
than outputs. For example, moving a binary node (e.g., add) may reduce |Win(d)| by one edge:
its two value dependencies reduce |Win(d)|, and its output increases |Win(d)|.

We say can because PT edges, including UPT edges, reduce the effect of pushing nodes
which are incident to them. If one of the value-dependency edges of the add node from above
was a UPT edge, then pushing up that node would not reduce |Win(d)|. Indeed, if both value-
dependency edges were UPT edges, then |Win(d)| would be increased, due to the addition of
the result edge(s) of the node (which was previously only inWout(d)).

Code motion first identifies the base node of the cut—the node which will least reduce
|Win(d)|. Then, while |Win(d)| > R, we choose a node in the cut that will most reduce
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Figure 6.4: Node cloning can reduce register pressure by recomputing values. In (a), cut 2 has
|Win(2)| = 5. If R = 4, then this cut is not colourable. With only one node (node f) in cut 2,
code motion is not possible. The least-cost option, then, is to clone node c, producing node c’
(see (b)), making |Win(2)| = 4.

|Win(d)|. Then serializing edges are added from the base node to the node being pushed to
move it up the graph and into the next cut. We repeat this until either |Win(d)| ≤ R, or there is
only one node (the base node) left in the cut.

6.7.2 Node Cloning

In node cloning, we take a node and generate copies (clones), undoing node merging (CSE)
performed during earlier stages of VSDG construction and optimization. Cloning nodes in the
current cut, Sd, will not reduce |Win(d)|. The greatest benefit is achieved from cloning nodes
which generate PT edges over the cut, and which are V -successors of values that are live over
the cut, and may also be used by other nodes in that cut. The benefit comes from removing the
generated PT edges from |Win(d)|.

An example of the application of node cloning is shown in Figure 6.4. Without node cloning,
the register allocator would be forced to spill the edge from the print node to the c node, at a
cost of two spill nodes (one load/store pair).

Node cloning is not always applicable as it may increase the liveness width of higher cuts
(when the in-registers of the cloned node did not previously pass through the cut); placing
a cloned node in a lower cut can increase the liveness width. But, used properly [96], node
cloning can reduce the liveness width of lower cuts by splitting the live range of a node, which
potentially has a lower cost than spilling.

6.7.3 Spilling Edges

Potentially the most costly transformation is spilling. When the allocation algorithm finds a
cut, Sd, which is too wide, and for which neither node pushing nor node cloning can reduce
|Win(d)|, it chooses an edge to spill.
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The aim of spilling is to reduce |Win(d)| of cut Sd. By the time the algorithm considers
spilling both node pushing and cloning have already been exhaustively applied to the cut in
question. Therefore the algorithm only considers PT edges for spilling, since spilling a UPT
edge will not change |Win(d)|.

Given a set of PT edges over a cut Sd, the choice then is which edge to spill. This is decided
by a heuristic cost (Equation 6.1) computed for each edge, with the edge with the lowest cost
being chosen. As discussed previously (page 109), spilling variant θ-node edges (Figure 6.2)
suffers the highest cost of spilling, with up to two stores and three loads.

Our initial heuristic cost function for edge spilling is

C(e) =

{

5L(e)−1 if e is loop-variant,
2L(e)−1 otherwise. (6.1)

It favours loop-invariant edges over loop-variant edges since we save on not storing the updated
value, with savings both in static and dynamic instruction counts. The constant factors reflect the
number of nodes added to the program when spilling both types of edge. It also favours edges
with greater lifetimes, i.e., greater separation between the spill node and the corresponding
reload node(s), which affords good performance on modern pipelined RISC processors.

6.8 Summary
Combining code motion and register allocation avoids the well-known conflict between these
two antagonistic phases. The method presented in this chapter uses the inherent flexibility
of the VSDG as a step towards this goal, due to its underspecification of the ordering of the
instructions (nodes) within a program.

A levelling, single-pass, algorithm walks up the VSDG, from the exit node, moving or
cloning nodes, or spilling edges, to reshape the graph so that it can later be coloured with
physical registers.

Experimental evidence presented in the next chapter shows that this relatively simple, and
platform-neutral, algorithm can achieve results as good as, or better than, those of carefully-
tuned commercial compilers.
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CHAPTER 7

Evaluation

Advice is judged by results, not by intentions.
CICERO (106–43 BC)

The goal of this thesis is reducing code size for embedded systems through the optimization
of intermediate code. The chapter begins with a description of the process of generating

Thumb target code from a VSDG, including register assignment and instruction scheduling. We
then present the results of experiments on procedural abstraction, MMA optimization, and the
RACM algorithm.

Our experimental compiler generates VSDG intermediate code from a large subset of C (ex-
cluding labels for convenience), a number of optimizations are applied to the intermediate code,
which is then turned into target code for the Thumb 32-bit processor. The framework includes
the optimizations described in Chapter 4 (Pattern-based Procedural Abstraction), Chapter 5
(Multiple Memory Access Optimization), and Chapter 6 (Combined Register Allocation and
Code Motion).

7.1 VSDG Framework
The VECC (VSDG Experimental C Compiler) framework, shown in Figure 1.2 on page 22,
provides a complete tool set, including a C compiler, a variety of optimizers and analysis tools,
and a Thumb target code generator. Between the various components of VECC the program is
represented as text files, as described in Appendix A. This allows experimentation with different
optimization strategies through the use of shell scripts, and intermediate results can be easily
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saved for later analysis.

7.2 Code Generation

The vsdg2thm tool generates code for the Thumb 32-bit processor [97]. It assumes that reg-
ister allocation has already been performed on the VSDG by the RACM optimizer (Chapter 6).
The code generator comprises five main functions—CFG generation, register assignment, stack
frame layout, instruction selection, and literal pool management.

7.2.1 CFG Generation

The code generator assumes that all code scheduling and register allocation has been applied to
the input VSDG. The remaining scheduling inserts additional serializing edges to construct a
CFG, with exactly one node per cut (Section 6.1).

7.2.2 Register Colouring

A Chaitin-style graph-colouring register allocator assigns (colours) edges with physical regis-
ters. An undirected interference graph, (V,E), is constructed. Each output port in the VSDG
that requires a register is represented as a vertex v ∈ V , and there is an edge (v, v ′) ∈ E if the
output port identified with vertex v is live at the same time as the output port identified with
vertex v′.

Where an edge cannot be coloured (perhaps due to specific register assignments to satisfy
calling conventions or instruction-specific registers) a simple spill is inserted. Previous RACM
passes minimize the occurrences of such late spills.

7.2.3 Stack Frame Layout

Local variables (address-taken variables, arrays, structs, spills, etc) generate local data objects
in the VSDG. These are mapped to stack locations for which offsets are assigned, guided by
MMA information (Chapter 5). The VSDG is then updated with these offsets prior to instruction
generation.

7.2.4 Instruction Selection

Instructions are selected in three stages. The first stage walks backwards (with respect to control
flow) up the scheduled and coloured VSDG, selecting instructions and pushing them onto a
stack. This mirrors the direction of dependence in the VSDG, and supports good use of the
target’s instruction set, e.g., register-plus-offset addressing:
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add

r3

r3

r4

ldr

4

−→ ldr r4,[r3,#4]

After the VSDG has been traversed and all the instructions have been pushed onto the stack,
a simple optimizer walks down the stack applying peephole optimizations, such as eliminating
jumps and simplifying conditional branches.

The final stage emits the target code, starting with the function prologue (setting up the stack
frame and marshalling the argument registers), then the contents of the instruction stack, and
finally the epilogue code (restoring the stack and returning to the caller).

7.2.5 Literal Pool Management

The Thumb is limited to loading 8-bit unsigned immediate values, so larger values (e.g., pointers
or large constants) must either be loaded from a literal pool, or computed at runtime. The break-
even point for computing a literal with two instructions is for two occurrences: computing it
twice consumes sixty-four bits of code space (four 16-bit instructions), and loading from the
literal pool also consumes sixty-four bits (one 32-bit literal, and two 16-bit loads). VECC
computes literals if they can be generated from two instructions and they occur exactly once in
a function; all other literals are loaded from a literal pool. Literals that cannot be computed in
two instructions are always stored in the literal pool.

For example, the constant 0x3F00 is too large for a single instruction. If it appears once,
then it can be computed from an immediate load of 0x3F and a left-shift by eight.

7.3 Benchmark Code
VECC has been applied to the gsm benchmark from the MediaBench benchmark suite [68].
This code is typical of the kind found in mobile phones, set-top boxes, PDAs, games, and a
wide variety of other similarly-sized embedded systems. It is an implementation of the GSM-
standard realtime speech compressor.

The gsm benchmark consists of over three thousand lines of source code generating over
six thousand VSDG nodes. Due to limitations in VECC some minor changes were made to the
source code (primarily to rephrase switch and case statements as if-trees); when compar-
ing with other compilers the exact same modified source code is used for consistency.

7.4 Effectiveness of the RACM Algorithm
The baseline for VECC is the effectiveness of the RACM algorithm and our code generator.
We compare VECC with both the commercial Thumb C compiler from ARM (version ADS1.2
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Module ARM Thumb VECC Thumb GCC Thumb
add.c 253 298 (117.8%) 332 (131.2%)
code.c 91 92 (101.1%) 104 (114.3%)
decode.c 122 128 (104.9%) 142 (116.4%)
gsm decode.c 480 584 (121.7%) 603 (125.6%)
gsm encode.c 430 559 (130.0%) 552 (128.4%)
gsm explode.c 433 609 (140.1%) 567 (130.9%)
gsm print.c 690 748 (108.4%) 874 (126.7%)
lpc.c 1129 1094 (96.9%) 1281 (113.5%)
short term.c 899 850 (94.5%) 1134 (126.1%)
Numeric totals 4527 4962 (109.6%) 5589 (123.5%)

Table 7.1: Measured performance of VECC with the RACM optimizer. Numbers indicate static
instruction counts; percentages are relative to ARM’s Thumb compiler.

[Build 805]), and the open-source GCC C compiler (version 3.2.1). Both compilers are run with
their standard size-optimizing flags (“-Ospace” for ARM’s compiler, and “-Os” for the GCC
compiler).

The modules chosen for analysis represent a range of different sizes and styles of source
code. The smaller modules consist mostly of expression-rich functions with many live registers
and thus opportunity for optimizing spill code. The larger modules consist mostly of long
lists of similar, small statements generated from macro expansion or element-by-element array
processing.

The results of this experiment are shown in Table 7.1 (page 122). Overall, ARM’s Thumb
compiler produces around 9% fewer instructions than VECC. This is attributable to peephole
optimization, a carefully designed register allocator, narrow sub-word optimizations, and so on.
In a couple of cases (lpc.c and short term.c) VECC beats ARM’s compiler by up to
5%—analysis of the resulting code indicates some functions where ARM’s compiler generates
more spills, and hence more stores and reloads.

In contrast, VECC produces almost 13% smaller code than the GCC compiler with its
“-Os” optimizations. It achieves this by spilling fewer callee-save registers and reusing address
expressions. In gsm encode.c GCC produces smaller code by, for example, using arithmetic
identities, which are not the focus of this thesis.

7.5 Procedural Abstraction
The procedural abstraction algorithm (Chapter 4) was scheduled between the C-to-VSDG com-
piler and the RACM optimizer. The same code from the previous experiment was applied to the
compiler, with the results shown in Table 7.2.

For each file the number of instructions before procedural abstraction and, for maximum
pattern sizes of 5, 10 and 20 nodes1, the resulting total number of instructions, including any
abstract functions created.

VECC achieves a combined reduction of about 18%, which is mostly independent of the

1Additional experiments were carried out for maximum pattern sizes of 30 nodes, but there was no improvement
over the results for pattern sizes of 20 nodes.
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File # Insn 5 Node Patterns 10 Node Patterns 20 Node Patterns
add.c 253 228 (90%) 228 (90%) 228 (90%)
code.c 91 91 (100%) 91 (100%) 91 (100%)
decode.c 122 122 (100%) 122 (100%) 122 (100%)
gsm decode.c 480 399 (83%) 399 (83%) 399 (83%)
gsm encode.c 430 289 (67%) 289 (67%) 289 (67%)
gsm explode.c 433 367 (85%) 367 (85%) 367 (85%)
gsm implode.c 490 377 (77%) 377 (77%) 377 (77%)
gsm print.c 690 601 (87%) 601 (87%) 601 (87%)
long term.c 793 635 (80%) 635 (80%) 635 (80%)
lpc.c 1129 1011 (89%) 1011 (89%) 1011 (89%)
preprocess.c 115 100 (87%) 100 (87%) 100 (87%)
rpe.c 701 552 (79%) 565 (81%) 531 (76%)
short term.c 899 783 (87%) 801 (89%) 792 (88%)
COMBINED 6626 5446 (82%) 5450 (82%) 5466 (82%)

Table 7.2: Applying pattern abstraction algorithm to the gsm benchmark for three pattern max-
ima. The first node column is for the unmodified program. The following columns indicate the
total number of instructions after procedural abstraction, and the resulting compaction ratio.
The final row is for procedural abstraction applied to all files combined into one program; note
that this is not the same as the arithmetic sum due to common patterns shared between files.

maximum pattern size. Interestingly, the size reduction decreases slightly as the maximum
pattern size increases. This is due to the increased likelihood of two patterns overlapping as
the abstract pattern size increases, reducing the effectiveness of the algorithm and distorting the
benefit cost model.

Table 7.3 (page 124) shows the number of abstract functions created (and thus the number
of beneficial patterns found in the source program) and the total numbers of calls made to the
abstract functions (i.e., the total number of pattern occurrences).

Most of the reduction in size is due to smaller patterns occurring very frequently, rather than
larger patterns occurring once or twice. For example, short term.c and rpe.c generate
two more pattern instances when increasing the maximum pattern size from five to ten nodes.
Note that while adding support for loops would allow even larger patterns to be abstracted, as
the majority of abstracted patterns are small (patterns of five nodes or less account for almost
all of the abstractions) the benefit would be small.

The COMBINED figures show the results after applying the procedural abstractor to all of
the modules combined into a single VSDG. This provides more program for the abstraction
algorithm to analyse and to find more occurrences of common patterns. For example, for 5-
node patterns, considered separately there were 67 patterns abstracted, but together only 32
patterns abstracted.

Also note that while fewer patterns were abstracted, over 10% more pattern occurrences
were abstracted. This is due to the greater number of pattern occurrences found in the larger
body of code, thus making it beneficial to abstract pattern occurrences that may occur only once
or twice in a module, but overall many times in the program. This clearly shows the benefits
of whole-program optimization: the more code that is visible to the optimizer, the more pattern
occurrences it finds, and so the greater the degree of compaction of the code.
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5 Nodes 10 Nodes 20 Nodes
File Funcs Calls Funcs Calls Funcs Calls

add.c 3 15 3 15 3 15
code.c 0 0 0 0 0 0
decode.c 0 0 0 0 0 0
gsm decode.c 4 111 4 111 4 111
gsm encode.c 6 110 6 110 6 110
gsm explode.c 4 111 4 111 4 111
gsm implode.c 6 110 6 110 6 110
gsm print.c 4 111 4 111 4 111
long term.c 7 100 7 100 7 100
lpc.c 15 187 15 187 15 187
preprocess.c 1 4 1 4 1 4
rpe.c 5 68 6 68 6 68
short term.c 12 116 13 106 13 106
COMBINED 32 1,162 32 1,176 33 1,172

Table 7.3: Continuing from Table 7.2, showing for each module the number of abstract functions
(beneficial patterns) created and the number of abstract calls (pattern occurrences) inserted
into the program.

Function VECC VECC ARM GCC
+ MMA Thumb Thumb

code.c::Gsm Coder() 93 92 91 105
decode.c::Gsm Decoder() 86 81 66 82
gsm encode.c::gsm encode() 561 559 430 552
lpc.c::Reflection coeffs() 193 191 211 234

Table 7.4: Measured behaviour of MMA optimization on benchmark functions. Numbers indi-
cate instruction counts; both ARM’s Thumb and GCC’s Thumb compilers were run with space
optimization selected.

7.6 MMA Optimization
The SOLVEMMA algorithm performs best on spill-code and global-variable-intensive code,
where a significant proportion of the instructions are loads or stores that can be combined into
MMA instructions. Of note is that SOLVEMMA degrades gracefully—in the worst case a
provisional MMA instruction is decomposed into a corresponding number of load or store in-
structions.

The results shown in Table 7.4 are for individual functions where there was a reduction
in code size. In all other cases, while SOLVEMMA identified many provisional MMA in-
structions, the limited addressing modes available to the Thumb’s MMA instructions require a
minimum of three loads or stores to be combined for there to be any benefit in this optimiza-
tion, replacing them with one address computation and the MMA instruction. Thus all two-way
provisional MMA instructions are decomposed back into single loads or stores.

In the first case, Gsm Coder(), the saving was through the use of a multiple push (a special
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form of STM using the stack pointer as the address register with pre-decrement) to place two
function arguments onto the stack prior to a function call.

The remaining cases utilise LDM or STM instructions to reduce code size. Further examina-
tion of the generated Thumb code indicates places where provisional MMA instructions have
been decomposed into single instructions during register allocation. These suggest improve-
ments to the processor instruction set2 where there may be potential savings in code size.

7.7 Summary
This chapter has shown the effectiveness of the algorithms presented in this thesis on benchmark
code typical of smaller, code size critical, embedded systems. The results indicate three main
points: that the VSDG is a viable intermediate language for code size optimization research
and development; that the simplified procedural abstraction algorithm of Chapter 4 achieves a
respectable 18% reduction in code size; and that MMA optimization, while being less effective
than the RACM or procedural abstraction algorithms, still offers a worthwhile reduction in code
size.

2Assuming, of course, that we have the luxury of defining or modifying the processor’s instruction set.
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CHAPTER 8

Future Directions

Prediction is very difficult,
especially about the future.

NIELS BOHR (1885–1962)

This thesis considers the code size optimization of program code for embedded systems. Its
foundation is the Value State Dependence Graph (VSDG), and in this section we consider

three future directions of research that the VSDG is eminently suitable for, in addition to the
techniques already described.

8.1 Hardware Compilation
The growing complexity of logic circuits (microprocessors, image processors, network routers,
etc) is driving the need for increasingly-higher level languages to describe these circuits, using
the power of abstraction and ever-more powerful compilers and optimizers to produce circuits
better and faster than can be achieved with current tools.

The spectrum of hardware design languages extends from high-level languages, such as
Sharp’s SAFL [85] and SAFL+ [101] based on a functional programming style, Frankau’s
SASL [41] extending the functional style to include lazy streams, and the family of synchronous
declarative languages, such as the control-flow oriented Esterel [17], and the data-flow oriented
Lustre [24].

Other languages present a more familiar C-like programming paradigm; for example, C++-
based SystemC [73], the SPARK [52] project, and OCCAM-like Handel-C [87], as well as the
industry-standard VHDL and Verilog, both of which have been standardised by the IEEE (IEEE
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Std 1076 and IEEE Std 1364 respectively).
During the VSDG’s development it has often been observed that it has some very interesting

properties relating to generation of hardware. Almost all of the VSDG’s nodes have a close
mapping to a hardware equivalent form:

• γ-nodes naturally map to multiplexers;

• θ-nodes map to Moore state machines, where the body of the loop generates the logic
which computes the next-state information, the θhead node generates an input multiplexer,
the θtail node generates a set of registers for all loop-variant variables, and the control-
region nodes generate a loop controller that determines when to stop the loop iterating
and when to generate a “data ready” signal for the following circuits;

• load and store nodes map to memory access cycles over a shared memory system;

• arithmetic and predicate nodes generate combinatorial logic.

Sharing of resources and scheduling function calls could be managed through the use of,
say, SAFL as the target language.

Interestingly, most of the components required to translate C source code to Verilog hard-
ware description language: a C-to-VSDG compiler, a set of VSDG optimizers, and a functional
hardware compiler (SAFL). The remaining component, the VSDG-to-SAFL code generator,
is all that is needed to explore the use of the VSDG as a potential intermediate language for
hardware compilation.

8.2 VLIW and SuperScalar Optimizations
Many high-performance embedded processors and DSPs are based on multi-issue very long
instruction word (VLIW) architectures. VLIW processors have multiple processor cores run-
ning in parallel. Examples include the Phillips Trimedia PNX1500 (5-way issue), and Texas
Instruments’ C64x DSP family (8-way issue).

A difficulty with such processors is identifying parallelism from legacy source code (some-
thing that Fortran compiler writers have been solving for many years). Previous program graphs
have over-specified the ordering of instructions within a program, so any effort to identify sets
of parallelizable instructions first have to remove the inessential relations between instructions,
and then discover groups of instructions that can be executed in parallel. The goal being to
fill all the instruction slots within the target code with useful instructions, rather than simply
padding with no-ops.

The VSDG seems to offer an elegant solution to this problem. By under-specifying the
relationships between instructions (maintaining only the essential I/O semantics) scheduling
instructions for parallel execution is a modification of the RACM algorithm, with a modified
constraint on the number of (and perhaps the type of) instructions in each cut. Then each cut
becomes a single VLIW instruction, with empty slots filled with no-ops.

The recent introduction of the restrict keyword to the C language [22] can enable two
sequential stores (e.g., “st a,[r]; st b,[s]”) to be considered randomly reorderable if
r and s are marked as restricted pointers, i.e., that the programmer guarantees that they will
never alias. For a VLIW target we can place both stores in the same instruction, gaining both
execution speed and reduced code size; even more so if r and s are adjacent words in memory
(Section 5).
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8.2.1 Very Long Instruction Word Architectures
A variation on VLIW is Single Instruction Multiple Data (SIMD) architectures, such as the Mo-
torola AltiVec vector co-processor (Appendix B). This can perform an arithmetic operation on
sixteen 8-bit variables, eight 16-bit variables, or four 32-bit (float or long) variables in parallel.
Aimed at multimedia data processing applications (audio and video processing, 3D image ren-
dering, desktop publishing, etc), access to these instructions is usually through vendor-supplied
hand-written libraries, rather than from the compiler itself, and requiring special data types to
guarantee correct alignment of variables in memory.

Again, the VSDG provides an intermediate language where any parallelism in a program
can be readily identified. In the case of SIMD the goal is to find or generate cuts where all of
the ALU operations are the same (e.g., add) and the data types are the same (e.g.,int).

8.2.2 SIMD Within A Register
A generally applicable variation of SIMD is SWAR—SIMD Within A Register [40]. The goal
is to combine several similar operations into one single common operation, fitting the operands
into a single physical register, and executing a single instruction.

Polymorphic SWAR instructions, such as bitwise AND, OR and NOT, are easily imple-
mented. Other SWAR instructions (ADD, SUBTRACT, etc) require some additional effort to
handle over- or under-flow between fields in the physical register. One software solution is to
separate the data fields with guard bits, ensuring that any carry-over from one addition will not
affect another addition; for example three 8-bit additions within a single 32-bit register.

Some hardware solutions already support this feature, with special instructions like ”add.8”,
that do not propagate the carry bit between specific bits in the ALU (e.g., from bit 7 to bit 8 in
the case of an 8-bit addition).

Further benefit can be achieved if the data is stored in memory in prepacked form, reduc-
ing the need to pack and unpack them at runtime. It should be possible to extend the MMA
algorithm (Chapter 5) to consider variables of sizes other than int and thus to prepack these
narrower variables in an order favourable to SIMD or SWAR instruction generation.

8.3 Instruction Set Design
Another area that the VSDG could be applied is that of processor instruction set design. When
designing a new processor, there are many choices about which instructions are worth including
in the instruction set, and those which either never occur at all (perhaps due to limitations of
a compiler), or occur so infrequently in benchmark code that the cost of including them in the
instruction set is greater than emulating the functionality in a software library.

On the VSDG, the procedural abstraction optimizer (Chapter 4) could be used. The ap-
proach might take the following steps:

• Start with a simple RISC machine;

• Compile up lots of benchmark code into VSDGs;

• Analyse the programs with the Procedural Abstraction optimizer;

• Identify the most used abstract functions;
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• Create new custom VSDG nodes which implement the functionality of these abstract
functions;

• Repeat the above, refining the instruction set until some pre-defined goal is reached (e.g.,
code size).

The custom VSDG nodes then describe the additional instructions that could be added to
the processor’s instruction set.
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Conclusion

Every day you may make progress. Every step may be fruitful. Yet there will stretch
out before you an ever-lengthening, ever-ascending, ever-improving path.

You know you will never get to the end of the journey.
But this, so far from discouraging, only adds

to the joy and glory of the climb.
SIR WINSTON CHURCHILL (1874–1965)

Computers—in the form of embedded systems—are everywhere. And just as they grow in
numbers, they shrink in size. This thesis has studied the problem of reducing code size

from within the compiler, benefiting both legacy applications ported to new systems, and new
applications made possible through reduced code size.

Previous work in optimizing code for size has been influenced by the choice of the inter-
mediate representation—the more powerful the representation, the more powerful the optimiza-
tions that can be applied to it.

Many such intermediate representations have been developed: from the original Control
Flow Graph and the Data Flow Graph, Ferrante et al’s Program Dependence Graph, Ballance
et al’s Program Dependence Web and Click’s Intermediate Representation, to the Value Depen-
dence Graph of Weise et al. Developments in the Static Single Assignment and Gated Single
Assignment forms have augmented these intermediate representations, simplifying many opti-
mizations (of which there are many), and making others viable within a practical compiler.

The first contribution of this thesis is the Value State Dependence Graph (VSDG) as an
intermediate form for compilers. Primarily developed for compiling for small code size, it
can equally be applied to producing fast code, or parallel code. The VSDG has the property
of partially specifying (through essential value and state dependencies) the order of instruc-
tions within the program. Subsequent optimization phases are at liberty to transform the graph
through graph rewriting rules. Code generation from the VSDG applies sufficient serializing
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edges to the VSDG to construct a single CFG, from which code is generated.
The next contribution showed how procedural abstraction can be applied to the VSDG. Code

patterns are generated from the VSDGs of a program, and stored in a database. Transformation
then selects patterns with the greatest benefit—from these patterns new compiler-generated
abstract functions are created, and all occurrences of the patterns in the original VSDG are
replaced by calls to the abstract functions.

Several popular embedded processors have load-multiple and store-multiple instructions.
On first inspection, these would seem to be ideal instructions to use in generating compact
code—representing multiple (perhaps as many as thirty two) loads or stores in a single instruc-
tion. However, it seems that most commercial compilers seem only to combine multiple loads
or stores opportunistically during peephole optimization. This makes such optimization sub-
ject to unfortunate instruction schedules and register assignments. As a first attempt at tackling
this problem, we presented a new method specifically targeted at using these multiple-memory-
access instructions, combining loads and stores within the VSDG before target code generation,
in a way that can be undone during later stages to avoid spilling or code duplication.

The final contribution of this thesis is a combined approach to register allocation and code
motion (RACM). These two separate phases have been shown to be antagonistic towards each
other: register allocation can artificially constrain instruction scheduling, while the instruction
scheduler can produce a schedule that forces a poor register allocation, perhaps even generating
spill code. We have shown that our RACM algorithm formulates these two previously antago-
nistic phases as one combined pass over the VSDG, transforming nodes (moving, cloning, or
spilling) as directed by the register pressure measured from the graph. Additionally, preferences
for instruction schedules (e.g., separating loads and stores to minimize load/store dependencies
in pipelined architectures) can be factored into the algorithm.

The ideas presented in this thesis have been implemented within a prototype compiler. Our
C front end is based on Fraser and Hanson’s LCC compiler, modified to generate VSDGs from
C source. All other transformation and analysis tools have been implemented as stand-alone
command line utilities reading, transforming, and writing VSDGs as text files. Our results
show that, even though we implement a subset of all the possible optimizations described in the
literature, we can achieve code sizes comparable to, and in some cases better than, that produced
by commercial compilers.

Finally, the ideas in this thesis can be both extended in the original problem domain—
compacting code for embedded systems—and also in other areas, from hardware description
languages, parallelizing code for VLIW or SIMD processors (and software emulation of SIMD),
to instruction set design.
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Concrete Syntax for the VSDG

The Value State Dependence Graph data structure, described in Chapter 3, formally repre-
sents the VSDG within the context of a software tool. Here we describe, in a format suitable

for a grammar generator tool such as YACC [71], the structure of the VSDG syntax. This syntax
serves two purposes: it provides a clean, human-readable, portable file format to support the
development of analysis and transformation tools, and it clearly defines the structure of VS-
DGs, from the whole-program level down to the individual components of a VSDG (modules,
functions, etc).

A.1 File Structure
A VSDG description file is a two-level description of a VSDG. The upper level defines modules,
and the lower level defines the functions within each module.

Description files by themselves do not define any scope—they provide storage for mod-
ule definitions. There is no difference between a single file containing multiple modules, and
multiple files containing single modules. This approach has the benefit of allowing textual con-
catenation of VSDG files to combine multiple modules. VSDG transformation tools can thus
read in one or more VSDG files (e.g., programmer-generated VSDG files and library VSDG
files) and treat them as a single, large, application file.

Modules contain data definitions, constant definitions, and function definitions. Names of
objects defined within a module are only visible within the enclosing module. This can be
overridden with the public attribute.

Data definitions define both initialised and uninitialised statically-allocated variables. The
parameter list for a data definition (Section A.4.3) specifies the size, in bytes, of the data object,
and optionally a contiguous ordered list of byte-sized and byte-aligned initial values. Constant
definitions are of the same format as initialised data definitions.

Function definitions take a function name, an argument name list (which is empty for void
functions), the number of return values, and a body.

A function’s body consists of an unordered list of node definitions, edge definitions, and data
and constant definitions. The data and constant definitions are exactly the same as described
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example.c
int globalVar;

int foo(int a, int b)
{

return a + b;
}

example.vsdg
module example.c {
data globalVar [size=4];
public function foo (a,b), 1 {
node node0 [op=return];
node node1 [op=add];
edge node1:L -> foo:a [type=value];
edge node1:R -> foo:b [type=value];
edge node0:ret1 -> node1 [type=value];
edge node0: STATE -> foo: STATE [type=state];
edge foo: STATE -> node0 [type=state];
}
}

Figure A.1: Illustrating the VSDG description file hierarchy. Top is the C source which produces
the VSDG file shown (bottom). The compiler has added the preceding underscore to the global
variable globalVar as part of its naming convention. The compiler has also marked the
function as public, the default for C.

above for module-level data and constant definitions, but with function-level scope.
Node definitions describe nodes within a function. A node has both a name and a set of

parameters describing properties of the node (Section A.4.1).
Edge definitions describe dependencies between nodes in the same function (edges are not

allowed to cross function or module boundaries). An edge definition names the node ports at the
head and tail of the edge, and specifies parameters of the edge such as its type (Section A.4.2).
By default, edges are value edges.

A.2 Visibility of Names
The scoping rules follow the same hierarchical structure of the C language:

• Names defined within a module definition and having the public qualifier have global
scope.

• All other names defined within a module definition have module scope and are visible
only within the enclosing module.

• Names defined within a function have function scope and are visible only within the
enclosing function.
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A.3 Grammar
The grammar is described in the following pages in a form suitable for processing with YACC [71].
This is followed by definitions of the terminal symbols, which can be similarly turned into pat-
tern definitions suitable for a lexical analysis tool such as LEX [71]. The following table lists
the font styles and their meanings used in the syntax:

Style Meaning
typewriter literal terminal symbols (keywords, punctuation, etc)
bold italicized other terminal symbols (literals, constants, etc)
italicized non-terminals

Note: the suffix “opt” indicates optional symbols.
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A.3.1 Non-Terminal Rules
program:

module
program module

module:
module identifieropt { module-body }

module-body:
publicopt module-item
publicopt module-item module-body

module-item:
data-definition
const-definition
function identifier ( argument-listopt ) num-retsopt { function-body }

data-definition:
data identifier parameters ;

const-definition:
const identifier parameters ;

argument-list:
identifier
identifier , argument-list

num-rets:
, integer-constant

function-body:
function-item
function-item function-body
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function-item:
node identifier parameters ;
edge identifier port-nameopt tuple-nameopt ->

identifier port-nameopt tuple-nameopt parametersopt ;
data-definition
const-definition

port-name:
: identifier

tuple-name:
< identifier >

parameters:
[ parameter-list ]

parameter-list:
parameter
parameter , parameter-list

parameter:
identifier = identifier
identifier = integer-constant
identifier = float-constant
identifier = { value-list }

value-list:
value
value , value-list

value:
identifier
integer-constant
float-constant

A.3.2 Terminal Rules

The structure of the terminals identifier, integer-constant and float-constant follow that of the
C programming language [22] with minor modifications.
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A.3.2.1 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
$

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

A.3.2.2 Integer constants

The terminal integer-constant is as specified in the C standard [22].

A.3.2.3 Floating constants

The terminal float-constant is as specified in the C standard [22].

A.4 Parameters

The grammar defines the syntactic structure of VSDG descriptions. Nodes, edges, and memory
definitions (data and const) take additional information in the form of a list of parameters.
The following three sections describe the parameters for nodes, edges, and memory definitions.

A.4.1 Node Parameters

Nodes take one required parameter, op, and additionally for the constant nodes the value of that
node.
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op:
consti constf constid constant
ld st plain load/store
vld vst volatile load/store
tld tst temporary load/store
neg add sub mul div mod signed arithmetic
udiv umod unsigned arithmetic
lsh rsh ursh arithmetic shift
not and or xor bitwise arithmetic
fadd fsub fmul fdiv fneg floating-point
call function call
eq ne gt gte lt lte conditional test
gamma theta selection and loop
break cont loop branches
return function return

value:
identifier if op = constid
integer-constant if op = consti
float-constant if op = constf

Other parameters can be added as required and must be preserved during transformation,
such as code generation hints, debugging information (e.g., source coordinates), and so on.

A.4.2 Edge Parameters
Edges by default are value edges, but can also be state or serial edges.

type:
value
state
serial

Additionally, one can specify a target register number as an integer constant, but this may
be ignored.

reg:
integer-constant

A.4.3 Memory Parameters
Both data and const memory definitions require the size parameter, and an optional init
initial-value list for data definitions.

size:
integer-constant

init:
value-list
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APPENDIX B

Survey of MMA Instructions

Many processors have instructions which implement some form of multiple memory access.
In this appendix summarises the MMA instructions of a variety of popular processors:

MIL-STD-1750A, ARM and Thumb, PowerPC, MIPS16, SPARC V9, and the vector-based co-
processors now popular in desktop systems—Intel’s MMX, Motorola’s AltiVec, and Sun’s VIS.
In all cases the instruction mnemonics are those used in the relevant source material.

B.1 MIL-STD-1750A
The MIL-STD-1750A 16-bit processor [109] is used primarily in the military and aerospace
industries, not least because of its availability in radiation-hardened form. It has sixteen 16-bit
registers, with a 64k word address space for both program code, data and stack.

The 1750A has four MMA instructions. The first two are load multiple LM and store multiple
STM. The two addressing modes for these instructions are immediate (constant address) and
register-plus-offset; the address counter is incremented after each access (there is no register
write-back like the ARM). All register transfers start at register R0 and stop at the end register
specified in the instruction.

The other two MMA instructions are PUSH and POP, for transferring data between regis-
ters and the stack. Both instructions implicitly use R15 as the Stack Pointer. The instruction
specifies the lowest and highest registers to be transferred. Interestingly, if the the end regis-
ter number is lower than the start register number (e.g.,PUSH R14,R2), then the processor
proceeds up to R15, wraps round to R0, and continues up to the end register.

B.2 ARM
The ARM [97] load-multiple and store-multiple instructions are very capable instructions, able
to load or store a non-contiguous subset of all sixteen registers (including the Stack Pointer and
the Program Counter) with four addressing modes. While the ARM MMA instructions lack
the register+displacement addressing modes compared to other architectures described in this
appendix, this is partly compensated by a choice of four address register modes, and an optional
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write-back of the final address to the address register.
The syntax of the load multiple instruction1 is:

LDM{<cond>}<addressing_mode> Rn{!}, <registers>{ˆ}

with option items enclosed in ‘{}’.
The five fields of this instruction are:

1. The ‘<cond>’ field indicates the condition which must be met for the instruction to be
executed. The default is “execute always”.

2. The ‘<addressing mode>’ field specifies one of four modes:

IA increment after (post-increment)

IB increment before (pre-increment)

DA decrement after (post-decrement)

DB decrement before (pre-decrement)

3. The optional ‘!’ indicates a write-back to the address register Rn upon completion of the
instruction.

4. The ‘<registers>’ field specifies the set of registers to be loaded, encoded as a bit
pattern within the instruction. The bit pattern is scanned from lowest bit (corresponding
to register r0) to the highest bit (r15), with a load executed if the corresponding bit is
set.

5. Finally, the optional ‘ˆ’ indicates that the User mode registers are the destination (for
when the processor is in a different operating mode, such as within an interrupt handler
or pre-emptive scheduler).

The <register> field allows for non-contiguous register sets to be loaded anywhere
within the register block (e.g., “r4-r5,r9,r12-r14”). This offers a greater degree of flex-
ibility over the PowerPC, which demands a contiguous register block beginning at a specified
register and ending at register r31.

A final point to note is that since the Program Counter (PC) is one of the sixteen registers (it
is a pseudonym for register r15) it too can be the destination (or source) of a MMA instruction.
For a load-multiple, the effect is to jump to the address loaded into the PC. The load-multiple
instruction is very effective in function epilogue code, both restoring callee-saved registers and
branching back to the caller in a single instruction.

B.3 Thumb
The Thumb (the compact instruction set version of the ARM), is restricted in its MMA instruc-
tions: only the first eight registers can be loaded or stored; all MMA instructions do a write-back
to the address register; there is no condition code field; and there is no user mode flag.

1The syntax and operation of the store-multiple instruction is very similar, and the reader should have little
difficulty relating the operation of the store-multiple instruction to that of the load-multiple described here.
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The four MMA instructions of the Thumb have names which clearly identify their intended
purposes, which are reflected in the choices made by the designers to fit the instructions into 16
bits.

The LDMIA and STMIA instructions map directly onto the equivalent ARM instructions,
with write-back to the address register, and both the address register and the register list can
only specify registers in the range {r0–r7}. These two instructions are primarily aimed at
block copy operations, allowing up to eight words of data to be moved per instruction.

The PUSH and POP instructions are specifically intended for function prologue and epi-
logue code. Both instructions implicitly use the Stack Pointer (register r13 as the address reg-
ister (with write-back), and the addressing modes support a downwards-growing stack (PUSH is
equivalent to STMDB SP!,<registers>, and POP is equivalent to LDMIA SP!,<registers>).

In addition to the eight Thumb registers, PUSH can optionally store the Link Register (reg-
ister r14), and POP can optionally load the Program Counter (register r15). These are clearly
designed to produce compact function prologue and epilogue code: on entry to a function PUSH
saves the callee-saved registers and the return address (in the Link Register) on the stack, and on
exit the POP instruction both restores the callee-saved registers and loads the Program Counter
with the return address, with the effect of a return instruction. The following example shows
both the use of PUSH and POP, and allocating space on the downwards-growing stack for local
variables:

PROC foo
push {r4-r7,LR}
sub SP, #... ; reserve space for locals

... procedure body ...

add SP, #... ; restore stack pointer
pop {r4-r7,PC}

ENDPROC

B.4 MIPS16
The MIPS16 [62, 2] MMA instructions, SAVE and RESTORE, are specifically designed for
function prologue and epilogue code. They can load or store limited non-contiguous registers,
but only those specified in the MIPS application binary interface, and only to or from the stack
(the Stack Pointer is implied).

There are two versions of both instructions: ‘normal’ 16-bit instructions which can save
or restore the return address and registers GPR16 and GPR17, and adjust the stack pointer
by a specific number of words (up to 128 bytes); and ‘extended’ 32-bit instructions which
additionally can save or restore specific combinations of GPR[4-7] and GPR[18-23,30],
and adjust the stack frame by up to 64kB.

B.5 PowerPC
The PowerPC [82] has two classes of MMA instructions—Load/Store Multiple Word (lmw
and stmw respectively) for handling word-sized and word-aligned data, and Load/Store String
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Word (lsw and stsw) for transferring unaligned blocks of bytes.
Both lmw and stmw transfer all registers from the start register up to, and including, r312.

Both instructions use only register-plus-offset addressing mode (written as “d(rA)” in the
assembler mnemonic); the offset can be 0.

The string instructions lsw and stsw transfer at most 128 bytes (32 words). The sequence
of registers wraps round through r0 if required, and successive bytes are transferred in left-to-
right order for each register in turn. These instructions have two addressing modes: immediate
(register addressing) and indexed (base register plus offset register). In the former, the number
of bytes transferred is specified as a constant within the instruction; in the latter, the number of
bytes transferred is read from the XER register.

B.6 SPARC V9
The SPARC V9 [110] processor architecture defines two multiple-word memory access instruc-
tions: LDD and STD. They are very limited in their application, transferring the lower 32 bits of
exactly two registers to or from memory.

Both instructions are deprecated in the V9 architecture, and are maintained only for back-
wards compatibility with the earlier V8 archhitecture. While there are no replacement MMA
instructions, the recommended approach is to use the LDX/STX extended instructions to trans-
fer 64 bits to or from a single register and memory.

B.7 Vector Co-Processors
Vector co-processors are now widely adopted in many 32-bit and larger microprocessors. While
they enjoy differing acronyms, they all share the common single-instruction-multiple-data ap-
proach to improving the speed of multimedia-type data processing code.

The Intel MMX [57], the PowerPC AltiVec [81] and Sun’s VIS [104], all include MMA-
like multiple loads and stores. However, these instructions are limited to fixed-size (typically
64- or 128-bit) memory block loads and stores to special data, or vector, registers, and not to
general purpose processor registers. This restriction limits the use of these MMA instructions
to specific data processing code, not to general purpose code (e.g., spill code).

2It is interesting to note that the IBM S/360 processor had a similar instruction, but additionally specified the
end register.
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VSDG Tool Chain Reference

The VECC framework (Figure C.1) provides a complete toolset, including a C compiler, a
variety of optimizers and analysis tools, and a Thumb target code generator.
During processing, all intermediate files are stored as text files, either as files written to and

read from disk, or as Unix pipes. This allows experimentation with different optimizers and op-
timization strategies through the use of shell scripts, simple textual analysis of the intermediate
files, such as comments against specific instructions, and inspection and modification of inter-
mediate files during testing and development. The format of the intermediate files is specified
in Appendix A.

In addition to the command line flags described below, all of the VSDG tools may be in-
voked with a -v (“verbose”) flag . This generates additional debugging and progress informa-
tion to the standard error file1.

C.1 C Compiler
The experimental C compiler is based on Fraser and Hanson’s LCC compiler [42]. Our modifi-
cations to the compiler are described in detail in Chapter 3. The compiler is invoked as

mlcc -S infile -o outfile

1Note that for non-trivial programs the amount of debugging information can be very large.
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C Source
File

Merge

C Compiler C Compiler
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C Source
File

Whole Program VSDG

Optimizer

Optimizer

Optimized Whole Program VSDG

Target Code
Generator

Target Code

VSDG IL Domain

Optimizer Sequence

Figure C.1: Block diagram of the VECC framework, showing C compiler, standard libraries
(pre-compiled source), optimizer sequence (dependent on experiment) and target code gener-
ator. (Reproduced from Chapter 1)
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The “-S” flag specifies only the preprocessor and compiler proper (the other parts of the LCC
compiler are not used in this project). If outfile is “-” then the output of the compiler is redi-
rected to the standard output. This is useful for piping the output of the compiler through, say,
the classical optimizer:

mlcc -S foo.c -o - | vsdgopt -O D+ -o foo.vsdg

C.2 Classical Optimizer
The classical optimizer provides a framework for up to 26 individual optimizers (Chapter 3),
each identified with a letter ‘A-Z’. An optimization command string is supplied as a command
line argument specifying which optimizations to apply, in what order, and whether a fixed-point
should be reached before completion of any given pass (including nested passes). The optimizer
tool has the following command line invocation:

vsdgopt flags [infiles...] [-o outfile]

If no infiles are specified the tool reads from the standard input. Similarly, if no outfile is
specified the tool sends its output to the standard output.

Command Line Flags

-O sequence The string sequence specifies the sequence of optimization passes
to be applied to the input.

The optimization sequence string consists of the letters ‘A-Z’, to invoke each of the 26
possible optimizations, the ‘+’ operator to mark a pass that should be repeated until no further
changes (fixed point) have been made to the program, and ‘[...]’ to indicate substrings
(which may also be specified with the fixed point operator). For example, the command string

AB+[C[D+E]+]+

applies optimization A, then B repeatedly until fixed point, then the substring “C[D+E]+” until
fixed point. The substring applies C, then substring “D+E” repeatedly until fixed point. This
substring, in turn, applies D repeatedly, until fixed point, and then a single application of E.

C.3 Procedural Abstraction Optimizer
The procedural abstraction optimizer tool applies procedural abstraction optimization (Chap-
ter 4) to a VSDG. The procedural abstraction tool has the following command line invocation:

vsdgabs flags [infiles...] [-o outfile]

If no infiles are specified the tool reads from the standard input. Similarly, if no outfile is
specified the tool sends all output to the standard output.

Command Line Flags
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--maxsize n n specifies the maximum number of nodes in a pattern (the default
value is 6).

--showtable Dump the pattern table after it has finished processing the input.
The table is sent on the standard error output, which can be redi-
rected to a file for later analysis.

C.4 MMA Optimizer
MMA optimization (Chapter 5) is performed by the MMA optimizer tool. It has the following
command line invocation:

vsdgmma flags [infiles...] [-o outfile]

If no infiles are specified the tool reads from the standard input. Similarly, if no outfile is
specified the tool sends all output to the standard output.

In addition to the output file, the MMA optimizer generates a file, ag.dot, which can be
post-processed by dot [67] to view the access graph constructed during analysis.

Command Line Flags

--maxtuples n n specifies the maximum number of loads or stores that may be
combined into a single MMA instruction (the default value is 6).

--showalledges Show all edges in the access graph, not just the covered ones.
--portrait Specify portrait page orientation of the access graph. This is the

default.
--landscape Specify landscape page orientation of the access graph.

C.5 Register Allocator and Code Scheduler
The register allocation and code scheduling tool applies the RACM algorithm (Chapter 6) to a
VSDG. The RACM tool has the following command line invocation:

vsdgracm flags [infiles...] [-o outfile]

If no infiles are specified the tool reads from the standard input. Similarly, if no outfile is
specified the tool sends all output to the standard output.

Command Line Flags

-r n n specifies the maximum number of registers available to the algo-
rithm (the default value is 8).

C.6 Thumb Code Generator
The Thumb target code generator produces a Thumb assembler file from the supplied VSDG
source files. The code generator tool has the following command line invocation:

vsdg2thm flags [infiles...] [-o outfile]
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If no infiles are specified the tool reads from the standard input. Similarly, if no outfile is
specified the tool sends all output to the standard output.

Command Line Flags

--dumpvsdg Dumps the scheduled and register-coloured VSDG to the standard
output, which can be captured and processed with the vsdg2dot
tool.

C.7 Graphical Output Generator
As an aid to debugging and presenting VSDGs, the graphical output generator reads in VSDGs
and emits a layout file suitable for the dot graph drawing tool [67]. The graphical generator tool
has the following command line invocation:

vsdg2dot flags [infiles...] [-o outfile]

If no infiles are specified the tool reads from the standard input. Similarly, if no outfile is
specified the tool sends all output to the standard output.

Command Line Flags

--noserial Turns off the plotting of serialising state-dependency edges.
--showcut Forces the layout of nodes to reflect the depth from root as com-

puted from the graph, overriding the node placement algorithm of
dot.

The two-level module/function hierarchy is displayed, together with data and const memory
objects. There are many examples of the output of this tool in this thesis (e.g., Figure 4.1,
page 86).

C.8 Statistical Analyser
The statistical analyser prints the total number of nodes, edges, arguments and return values
for each function, together with module-by-module node and edge totals, and overall node and
edge totals. The statistical analyser has the following command line invocation:

vsdgstat flags [infiles...]

If no infiles are specified the tool reads from the standard input.

Command Line Flags

--summary Prints only the overall totals for nodes and edges.
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[96] RÜTHING, O., KNOOP, J., AND STEFFEN, B. Sparse code motion. In Proc. 27th ACM
SIGPLAN-SIGACT Symp. Principles of Prog. Langs (POPL) (Boston, MA, 2000), ACM
Press, pp. 170–183.

[97] SEAL, D. ARM Architecture Reference Manual. Addison-Wesley, UK, 2000.

[98] SELKE, R. P. A Rewriting Semantics for Program Dependence Graphs. In Proc. ACM
Symp. Principles of Programming Languages (January 1989), ACM Press, pp. 12–24.



BIBLIOGRAPHY 158

[99] SETHI, R., AND ULLMAN, J. D. The Generation of Optimal Code for Arithmetic Ex-
pressions. J. ACM 17, 4 (October 1970), 715–728.

[100] SHARMA, N., AND GUPTA, S. K. Optimal Stack Slot Assignment in GCC. In Proc.
GCC Developers Summit (May 2003), pp. 223–228.

[101] SHARP, R., AND MYCROFT, A. A Higher-Level Language for Hardware Synthesis. In
Proc. 11th Advanced Research Working Conf. on Correct Hardware Design and Verifi-
cation Methods (2001), no. 2144 in LNCS, Springer-Verlag.

[102] STORER, J., AND SZYMANSKI, T. Data Compression via Textual Substitution. J. ACM
49, 4 (October 1982), 928–951.

[103] SUDARSANAM, A., LIAO, S., AND DEVADAS, S. Analysis and Evaluation of Address
Arithmetic Capabilities in Custom DSP Architectures. In Proceedings of the 34th Annual
Design Automation Conference (1997), ACM Press, pp. 287–292.

[104] SUN MICROSYSTEMS. VIS Instruction Set User’s Manual. No. 805-1394-03. Sun Mi-
crosystems, May 2001.

[105] SWEANY, P., AND BEATY, S. Post-Compaction Register Assignment in a Retargetable
Compiler. In Proc. 23rd Annual Workshop on Microprogramming and Microarchitecture
(November 1990), pp. 107–116.

[106] TOUATI, S.-A.-A. Register Pressure in Instruction Level Parallelism. PhD thesis, Uni-
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