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On the Anonymity of Anonymity Systems

Andrei Serjantov

Summary

Anonymity on the Internet is a property commonly identified with privacy of elec-
tronic communications. A number of different systems exist which claim to provide
anonymous email and web browsing, but their effectiveness has hardly been evalu-
ated in practice. In this thesis we focus on the anonymity properties of such systems.
First, we show how the anonymity of anonymity systems can be quantified, pointing
out flaws with existing metrics and proposing our own. In the process we distinguish
the anonymity of a message and that of an anonymity system.

Secondly, we focus on the properties of building blocks of mix-based (email) anonym-
ity systems, evaluating their resistance to powerful blending attacks, their delay, their
anonymity under normal conditions and other properties. This leads us to methods
of computing anonymity for a particular class of mixes – timed mixes – and a new
binomial mix.

Next, we look at the anonymity of a message going through an entire anonymity
system based on a mix network architecture. We construct a semantics of a network
with threshold mixes, define the information observable by an attacker, and give a
principled definition of the anonymity of a message going through such a network.

We then consider low latency connection-based anonymity systems, giving concrete
attacks and describing methods of protection against them. In particular, we show
that Peer-to-Peer anonymity systems provide less anonymity against the global pas-
sive adversary than ones based on a “classic” architecture.

Finally, we give an account of how anonymity can be used in censorship resistant
systems. These are designed to provide availability of documents, while facing threats
from a powerful adversary. We show how anonymity can be used to hide the identity
of the servers where each of the documents are stored, thus making them harder to
remove from the system.
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Chapter 1

Introduction

“Praise the humanities, my boy. That’ll make them think you
are broadminded.”

— Winston Churchill’s advice to R. V. Jones (who had just
been appointed as Professor of Physics)

1.1 Privacy and Anonymity

Privacy is viewed by many, if not most, as a desirable feature of modern society.
Naturally, there is no complete consensus as to the definition of privacy, although
there are a few popular alternatives. Roger Clarke suggests that “Privacy is the in-
terest that individuals have in sustaining a ‘personal space’, free from interference by
other people and organisations” [Cla99]. An alternative definition from the Oxford
English Dictionary is “Privacy is the the state or condition of being alone, undis-
turbed, or free from public attention, as a matter of choice or right; freedom from
interference or intrusion”. What will be of a particular interest to us is the notion
of communications privacy: “Individuals claim an interest in being able to commu-
nicate among themselves, using various media, without routine monitoring of their
communications by other persons or organisations. This includes what is sometimes
referred to as ‘interception privacy’ ” [Cla99].

In this thesis we will be looking at a modern communications infrastructure – the
Internet – and examining how individuals can use it to communicate privately. When-
ever one communicates using the Internet, one leaves “tracks” which identify where
the message (packet) came from and was going to. To be more specific: every email
message, every access to a web page, every file download contains information as to
which IP address the email came from, or which IP address requested the web page,
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or downloaded the file. IP addresses are allocated to individuals or companies by
their Internet Service Providers (ISP), who keep this information and thus ensure
that it is possible to track every Internet communication down to an individual or
at the very least an organisation1. Naturally, some IP addresses are more linkable to
individuals than others; there are practical steps one can take to make oneself more
or less traceable. Using an Internet cafe is a good example, though some countries
require users in such establishments to present their identity cards or simply mount
surveillance cameras on the premises. Whether one can become practically untrace-
able by taking steps to “cover one’s tracks” is a subject of a PhD in its own right
[Cla04]. Here, we are merely concerned with the situation of the average individual.
His communication privacy is virtually non-existent: every packet travelling on the
Internet contains its sender and receiver, any part of the communications infras-
tructure that it travels through (routers, switches, firewalls) can determine who is
communicating to whom and (usually) what they are saying, hence enabling easy
routine monitoring and surveillance of communications by governments, companies
and even individuals in charge of parts of the infrastructure. It may be worthwhile
to contrast this scenario with that of a person heckling from the back of a crowd,
posting an anonymous letter or making a phone call from a telephone box, where
privacy is more or less preserved.

And yet there are many cases when, on the Internet, communications privacy is not
merely desirable, but essential. For instance, a web-based electronic survey connected
with subjects such as AIDS, alcoholism, cancer, etc needs to make sure that even
the very fact that an individual is responding to such a survey is kept secret from
third parties. Failure to do so can be damaging to the individual (it may increase
insurance premiums, cause price discrimination, social tension, etc). Currently, the
fact that an individual has accessed the survey can be trivially obtained by a system
administrator of the company the individual works for, the ISP, and in some cases
even another user of the same network. The current solution is to trust the agency
doing the survey to anonymize the results, and the communications infrastructure
not to collect data about who is responding to the survey. In reality, the arrangement
is often open to abuse: commonly results of surveys are sent in plaintext over the
Internet and thus it is possible to see not only who responds to the survey, but also
what their responses are.

Thus, using the Internet as a basic medium of communications means that, by de-
fault, privacy is destroyed. Protecting it should ensure:

• Secrecy of the contents of private communications, the inability of third parties

1Thus, some countries have taken the view that access logs (in particular, web server access logs)
constitute personal information. Hence, data protection legislation requires that companies take
due care of such information and, upon request, provide access to the individual who browsed the
website.
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to read what is being said in private.

• Anonymity of such communications, the inability of third parties to determine
the participants of private communications.

Secrecy of communications is relatively easy to achieve by using one of a wide vari-
ety of tools (e.g. PGP [PGP]) employing well-known encryption techniques [RSA78,
RSA02, AES01, DR02].

Anonymity of communications is independent from their secrecy: an email message
may be encrypted, but it will be obvious that it is going from Alice to Bob; on the
other hand, it may be possible to hide the fact that a message is going from Alice to
Bob without hiding its contents: “Meet at 10am on Red Square”.

Hence, to even begin to develop an environment in which communications privacy
can be preserved, there is a need for a communications infrastructure (on top of exist-
ing Internet protocols) which allows information to be transmitted from one party to
another without revealing either their identity or the nature of the communication.
In other words, we need to build an infrastructure to enable anonymous communica-
tions on the Internet. The infrastructure may comprise several application-specific
anonymous communication systems or anonymity systems, e.g. for email and web
browsing2.

Anonymity systems, due to their various requirements and depending on user actions,
will provide different degrees of anonymity. Working out precisely how much is the
focus of this work.

The thesis that this dissertation aims to support is that analysis of anonymity systems
is feasible, necessary and somewhat practical. A broader consequence of the work is
that systems providing different desirable degrees of anonymity on the Internet, each
with an associated cost, are a practical option rather than a theoretical possibility.

To analyse anonymity systems, we must first find an appropriate way of quantifying
anonymity and then try to work out the anonymity in situations of interest. However,
trying to calculate directly the level of anonymity of a user sending an email or
retrieving a webpage via an anonymity system is far too difficult – such systems
are very complex. Instead, we will build models of these systems along with ways to
calculate anonymity from these models. In some cases this will enable us to calculate
the anonymity analytically, in others this will prove too difficult and we will have to
resort to simulations.

The anonymity of individuals using various system designs will necessarily depend
on what the anonymity systems are designed to protect against, i.e. how powerful

2On top of an anonymous communications infrastructure we can build up an appropriate identi-
fication and authentication infrastructure as necessary.
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the disturber, the intruder, or the interfering body may be. How should we decide
who to design our anonymity system against? There are several possible approaches.

The first approach is to decide which kinds of intruders we want to protect the users
against and how much anonymity they should have first, and then design and build
anonymous infrastructure keeping this in mind. Our analysis techniques should then
enable us to show that the systems do indeed meet the requirements. The other
approach is to investigate how much anonymity it is possible to provide users with
first, and make a decision as to how much anonymity to actually provide users with
later. In this thesis we follow the second approach: we will design anonymity systems
which are as strong as possible, and thus resist very powerful attackers. Having
investigated stronger attack models, we will be in a better position to design and
build systems tailored to specific anonymity requirements when such a need arises.

It is appropriate to note at this point that privacy conflicts with the ability of law
enforcement agencies to obtain evidence of communications of suspects who may or
may not have committed a crime. So how much privacy should users have? This
is an ongoing debate, to which we wish to make no contributions in this work.
We merely note the fact that it may be possible to modify anonymity systems to
provide anonymity which is revocable on a case by case basis [CDG+]. Thus the
ideas presented in this thesis do not depend on the outcome of the privacy vs law
enforcement debate.

So far we have considered generic user privacy as the main motivation for the design,
development and deployment of anonymity systems. In the next section, we look
at the motivation behind providing anonymity to users in more detail, keeping the
generic “communications privacy” idea in mind.

1.2 Uses of Anonymity

1.2.1 Web Browsing and Email

The most popular uses of the Internet over the last few years have been email and
web browsing. Therefore, to ensure communications privacy, we should build an an-
onymity infrastructure to enable users to perform these activities free from intrusion
by various attackers.

We have already illustrated the motivation for anonymous web browsing with the
electronic survey example in the previous section. There are many other similar
scenarios – browsing websites about specific illnesses or disorders, reading political
opinions, etc.
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Turning to anonymous email, we claim that just as in the past correspondence be-
tween individuals by mail has been free from routine surveillance both in terms of
content and participants, so should be correspondence by email. This may include
emails about families, work, the advantages and disadvantages of products or ser-
vices provided by various companies, political speech and other subjects which are
potentially of interest to parties which are not involved in communication.

Another important application of anonymous email is whistle blowing. Essentially,
this is the ability of an individual to report a wrongdoing and thus expose an ir-
regularity or a crime, often by a person in charge or simply someone with authority
over the whistle blower. Clearly, one way to enable whistle blowing is to have a very
secure (email) anonymous communications system deployed, thus enabling anyone
to send a message relatively easily without fear of being tracked.

Finally, both anonymous email and anonymous web browsing can be used to dis-
tribute news and hold online discussions without fear of surveillance in countries
with repressive regimes.

1.2.2 Electronic Voting

Electronic voting is often viewed as a good application of anonymity. One funda-
mental requirement of an electronic voting system is to ensure that it is not possible
to determine who votes for whom. Another is is to ensure that the votes are ‘receipt-
free’, i.e. the voter is unable to prove to a third party which way they voted. This
is necessary to prevent votes from being sold. E-voting is a very contentious area
with some experts believing that it is currently technically infeasible to provide a
secure system with strong anonymity properties in order to guarantee that an elec-
tion is conducted fairly. Certainly the vast majority of the deployed systems have
major shortcomings in their security, user interfaces, or reliability [Mer03, KSRW03].
Nevertheless, if electronic voting systems are ever to be deployed, they will probably
need to use the same techniques as anonymity systems.

1.2.3 Censorship Resistance

Censorship resistance is the ability to publish a document on a system which ensures
that it will be available for a long time, despite powerful adversaries trying to pre-
vent its distribution. Anonymity is a useful tool in censorship resistant systems. It
enables publishing to be done anonymously, so the author cannot be tracked (thus
removing the fear element which often discourages people from posting controversial
documents). Even more importantly, it prevents the machines which store a file from
knowing what the file they are storing is, thus removing potential burden of filtering
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that may be placed on them by organisations. We explore this issue in more detail
in Chapter 8.

1.3 Structure of the Thesis

Having shown the motivation for anonymous communication infrastructures in the
previous section, we will first examine the basic principles behind achieving anonym-
ity. In Chapter 2 we introduce the scheme commonly used to build strongly anony-
mous communication systems, basic concepts such as mixes and onion encryption,
and discuss the different architectures of anonymity systems. We then distinguish
two basic types of anonymity systems – (email) message-based systems and real-
time connection-based systems. We look at existing designs and the shortcomings of
previous work; and set the scene for our research.

We then go on to examine the problem of measuring anonymity (Chapter 3), and by
way of example show how the anonymity of two mixes can be compared.

In Chapter 4 we turn our attention to message-based systems. We look at individual
mixes – the building blocks of anonymity systems – focusing in particular on how
resistant these are to the powerful blending attacks. These are active attacks which
involve the adversary flooding the mix with his own messages in order to single out
a message he wants to trace and thus deduce its destination.

In the next chapter, we continue analysis of single mixes, and devise a framework
in which they can be expressed and compared and propose yet another mix, the
binomial mix, with better properties.

Analysing single mixes is useful, but a strong anonymity system should consist of
several mixes. The mixes can be combined in various ways. One of these is a mix
network. In Chapter 6 we look in detail at how one would go about analysing
an anonymity system based on a mix network architecture and provide a formal
definition of the anonymity of a message going through such a system.

Next we look at connection-based systems, the attacks on them and how they can be
protected against without using dummy traffic. In particular, we look at the attacks
which a passive adversary can mount.

Finally, we look at how anonymity systems can be used to improve censorship resis-
tant systems.

The meaning of various variables in Chapters 3-7 of the thesis is summarised in
Appendix A.
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1.4 Contributions of the Thesis

In this work we strive to introduce the idea of quantitative probabilistic analysis of
anonymity systems. In the process, we make the following contributions:

• First, we look at the concept of anonymity set – the metric used in most
previous analyses of anonymity systems – and show that it is inadequate for
expressing the anonymity of a large class of real anonymity systems. We pro-
pose our own metric and show how it can be used in analysing single mixes –
the building blocks of anonymity systems.

• We give an account of the n − 1 attack which can be mounted by a powerful
adversary and was thought to defeat anonymity systems. We show how this
attack can be made much more observable and expensive by using more sophis-
ticated mixes. This result quantitatively supports the intuition of the designers
of the Mixmaster network.

• We present a framework in which existing mixes can be expressed, and design
a new mix which is more resistant to blending attacks.

• We present methods of anonymity analysis for a variety of single mixes.

• We tackle the long-standing problem of choosing the best architecture – cascade
or network – for an anonymity system. While mix cascades are easy to build
and analyse, they scale badly and are more easily subjected to n − 1 attacks.
Mix networks, on the other hand, are hard to analyse, but were thought to
have better properties (and scale well). We define the anonymity of a message
travelling through a mix network and thus make substantial progress towards
solving the mix cascade vs mix network problem.

• We also look at connection-based systems, which are designed to provide low-
latency anonymous communication. Some of these can be used for everyday
tasks such as web browsing [DMS04, FM02], while others are more specialised;
addressing anonymous file sharing [BG03]. There are several implementations
of these, with the most popular of these, JAP, having tens of thousands of
users. Astonishingly, virtually none of these (except, perhaps, Crowds [RR97,
WALS02, Shm03]) have a rigorous analysis of the anonymity they provide,
with some (GNUnet) lacking even a consistent description of the system itself.
We refine the standard threat model (this has been long overdue!) and present
very simple attacks which can be used against most of the existing systems and
propose ways of protecting against them. Unlike the relatively mature area of
analysis of message-based anonymity systems, connection-based systems are
very much in need of analysis, and we merely scratch the surface here.

• Finally, we look at censorship resistant systems and show an anonymity system
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can be used to help design a Peer-to-Peer architecture which protects against
rubber-hose cryptanalysis, previously thought to be hard or impossible.

1.5 Publication History

The vast majority of the material presented in this document has been published in
proceedings of peer-reviewed workshops or conferences. Some of Chapter 3 is based
on the paper Towards an Information Theoretic Metric for Anonymity, [SD02] co-
authored with George Danezis. This paper won the 2002 Award for Outstanding
Paper in the field of Privacy Enhancing Technologies. The material of Chapter 4
is a selection of the work presented at the 5th Information Hiding Workshop in the
paper From a Trickle to a Flood: Active Attacks on Several Mix Types [SDS02] co-
authored with Roger Dingledine and Paul Syverson and at the Workshop on Privacy
and Anonymity Issues in Networked and Distributed Systems On the Anonymity of
Timed Pool Mixes [SN03] with Richard E. Newman. Chapter 5 is based on work
published at PET 2003 Generalising Mixes [DS03b] with Claudia Diaz. Work on
the anonymity of mix networks is yet to be submitted at the time of writing. Our
thoughts on connection-based systems of Chapter 7 were published at ESORICS
2003 Passive Attack Analysis for Connection-Based Anonymity Systems [SS03] co-
authored with Peter Sewell, and the work on censorship resistance was presented at
the International Workshop on Peer to Peer Systems, 2002 Anonymizing Censorship
Resistant Systems [Ser02].

Naturally, all the material presented is the author’s contribution towards these pub-
lications or material which has been discovered independently by more than one
person.

Not all the work of the author during the 3 years at Cambridge appears in this
thesis – some was not related to analysis of anonymity systems [SSW01a, SSW01b,
WNSS02, SL03], while other work [NMSS03] was too collaborative. The thesis was
written as of October 2003, and does not include references to work (both my own
and by other people) carried out since.
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Chapter 2

The Basics of Anonymity
Systems

“ZHQM ZMGM ZMFM1”
— G. Julius Caesar

In this chapter we introduce some basic mechanisms designed to provide anonym-
ity on the Internet, looking at threat models and basic terminology. We leave the
technical definitions of anonymity until Chapter 3, where we will have the chance to
examine them in more detail.

2.1 Background and Historical Developments

To design effective anonymity systems we need to consider how real users wish to
communicate on the Internet. The two most popular activities of users on the In-
ternet are email and web browsing. Thus, research in the anonymity community
has focused upon how to design, build and deploy systems which enable anonymous
email and anonymous web browsing. It is important to notice that whatever the
way the users are communicating, they may well be concerned about hiding different
aspects of their communication patterns, all of which would fall under the general
term anonymity.

First of all, users might wish to be undetectable when they send messages (or initiate
communications) through the anonymity system. Alternatively, they might be very

1W and J were added to the Latin aphabet in the middle ages. Although there is some uncertainty
as to when the letters Y and Z were introduced into the Latin alphabet, it has been previously
suggested that they were already present at the time of Caesar[And].
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worried about being observed to receive information from within the system. Finally,
they might be quite happy about being observed to send information and receive
information as long as it is hard to tell who the other communicating party is in
either case.

The natural question to ask now is who they might want this information hidden
from. The attacker could be local – observing the network connection between the
user and the Internet, larger – the user’s ISP, observing some part of the network,
including parts of the anonymity system or global – observing the entire anonymity
system and all the communications between the users and it. In addition, a pow-
erful attacker would probably compromise parts of the anonymity system to try to
deanonymize its users. Finally, an attacker can be actively trying to compromise an-
onymity either by modifying network traffic (and thus potentially being observable)
or passively, offline, having previously captured the data required.

The development of anonymity systems started with a paper by Chaum in 1981
proposing a scheme for untraceable electronic mail [Cha81]. This is the basis of
most modern anonymity systems, as we will discuss in detail below. Seven years
later, Chaum proposed a protocol (Dining Cryptographers) for anonymous broad-
cast which was designed to hide the sender of the message [Cha88]. Pfitzmann and
Pfitzmann made substantial improvements to it in 1990 [PP90]. The next significant
development was a proposed scheme to anonymize telephone calls based on the (at
the time) new ISDN infrastructure – ISDN mixes [PPW91]. It identifies many of
the important and difficult problems of the field of anonymity systems and addresses
them in the context of circuit-switched networks.

In the early 1990’s the first practical email anonymity systems inspired by Chaum’s
work started appearing – the Type I remailers. These were vulnerable to a number
of attacks (broadly, the ones described in Section 2.3.3), which was fixed in the Type
II remailer design [MCPS03, Cot94]. The network of Type II remailers, Mixmaster
[Mix], is operational and handles tens of thousands of emails per day. This system,
however, lacks the ability to reply to anonymous email. After all, if the user receives
an anonymous email, he does not know who to reply to. The scheme for anonymous
reply addresses dates back to the original Chaum paper [Cha81], but has proved hard
to implement securely. Indeed, the first system to do so is the recent Mixminion,
[DDM03].

The first developments in anonymous web browsing began with the Onion Routing
project [OR], although simple HTTP proxies appeared around the same time. In
recent years, many projects have appeared, most notably JAP [JAP], Tarzan [FM02]
and MorphMix [RP02] (the last two are based on a Peer-to-Peer design). More
recently, the field has turned to robust implementation and quantitative (often prob-
abilistic) analysis of anonymity systems. The Onion Routing and JAP projects are
good examples of the former, while a series of papers by Danezis [Dan03b, Dan03c],
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Diaz [DSCP02], Shmatikov [Shm03], Wright [WALS02, WALS03] and myself are
representative examples of the latter.

2.2 Terminology

Before describing any concrete ways of achieving anonymous communication, we
introduce by example some standard terms which are useful in describing anonymity
systems. We broadly follow the proposal of terminology by Pfitzmann and Köhntopp
[PK00].

Let us first consider a multi-party asynchronous communications protocol in which
participants send messages to each other. Some of these messages are real, i.e. contain
information which the sender of a message wanted to transmit to the receiver of it.
The aim of the attacker or the adversary is to discover senders and receivers of
these messages2. Other messages, called dummy messages (or just dummies), do
not contain information and are just sent to confuse the attacker. After some time
(a run of the protocol), some real messages were sent by the senders and received
by the receivers. The protocol provides sender untraceability (unobservability) if the
adversary is not able to determine whether a particular participant has sent any real
messages or not (see Figure 2.1). On the other hand, if the attacker is unable to
determine whether a particular participant has received any real messages or not,
the protocol provides receiver untraceability (see Figure 2.2). A very strong protocol
might provide both sender and receiver untraceability.

Finally, if the set of senders and the set of receivers is known, but the attacker
cannot determine which of the senders sent messages to which of the receivers, the
protocol provides unlinkability. Note that unlinkability is weaker than both sender
untraceability and receiver untraceability.

The above definitions apply to synchronous protocols as well as asynchronous ones.
In the synchronous case, messages correspond to the communications, senders to
initiators of the communications and receivers to responders.

In this thesis we will be dealing mainly with systems which provide unlinkability. A
diagram of such a system is shown in Figure 2.3.

There are two styles of attack that the adversary can perform on such systems (see
Figure 2.4). Broadly, a traffic confirmation attack is one in which the adversary
only examines the communication patterns from senders to the system and from the
system to the receivers. A traffic analysis attack, on the other hand, also takes into

2Of course, sophisticated attackers may not need to discover this with certainty, they may be
content with information about the correlation between senders and receivers.
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Senders and Other Participants

Figure 2.1: A system which provides only sender untraceability as seen by the ad-
versary.
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Figure 2.2: A system which provides only receiver untraceability as seen by the
adversary.
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Figure 2.3: A system which provides unlinkability as seen by the adversary.
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Traffic Analysis vs Traffic Confirmation Attacks

Senders Receivers

Traffic Analysis

Traffic Confirmation

Figure 2.4: A traffic confirmation attack examines only the communications between the
senders and the anonymity system and the anonymity system and the receivers. A traffic
analysis attack also makes use of traffic patterns within the anonymity system.

account the traffic inside the anonymity system. The latter style of attack is usually
more powerful but requires more computational resources as well as more data.

Having equipped ourselves with some terminology, let us look at, perhaps, the most
practical way of achieving anonymity (more specifically unlinkability) – mix systems.

2.3 Unlinkability via Mix Systems

As we already mentioned, the field of anonymity was started with a classic paper
by Chaum [Cha81] which introduces the concept of a mix system and explains how
a message (think of an email message) can be sent from a sender to a recipient via
several proxies, thereby providing unlinkability against an attacker who watches the
entire network.

The following may serve as a useful analogy for how these systems operate. Sarah,
(the sender) having written her letter, puts it into an envelope and addresses it to
Richard (the receiver). She then puts it in an envelope addressed to a friend Nick
with a note asking him to post the envelope. She then takes the envelope addressed
to Nick, and puts it in an envelope addressed to Mike, with a similar note. Finally,
she sends the (by now large) envelope to Mike. Mike and Nick work at two different
post offices and get many letters asking them to forward inner envelopes every day.
They receive all the letters addressed to them at the post office, take them home,
unwrap all the envelopes during the night, and post all the inner envelopes the next
day. Thus even Amy, the boss at the central post office who records the sender and
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Figure 2.5: “Onion encryption” shown diagrammatically and in two standard nota-
tions

recipient of every letter (but cannot see what Mike and Nick do at home) cannot tell
that Sarah sent her letter to Richard.

We are not aware of a permanent post office processing general purpose mail which
operates in this way in the real world, though apparently the town of Loveland, Col-
orado performs remailing services similar to the ones described above for Valentine’s
day every year! In any case, the above description corresponds fairly well to how a
mix system works. This is explained in more detail below.

The system which provides an anonymous email service consists of a number of
remailers or mixes. A sender S wishing to send an anonymous message to a receiver
R decides on a sequence (e.g. [M,N ]) of anonymous remailers (mixes) via which the
message should travel. Each remailer has a public/private keypair3; the public keys
are retrieved by the senders in advance. The sender prepares the message by padding
it to B bytes – a size used by all senders – and, if R has a public key, encrypting
the padded message with it. She now appends the address of R, encrypts with N ’s
public key, appends the address of N , encrypts with M ’s public key, and finally sends
the whole structure to M . The structure, now commonly called an onion (the name
is apparently due to Syverson [GRS96]) is illustrated in several different notations
from [Cla03] in Figure 2.5.

When the onion is sent to the first mix (run by Mike), M , it is decrypted, and placed
inside the mix. A flushing algorithm is then executed to decide whether to send on
(some of) the messages inside the mix. The simplest example of a flushing algorithm
is waiting until n messages are in the mix before reordering them and sending them
all out to their next hop. A mix executing such an algorithm is called a threshold mix
(we will go on to investigate other flushing algorithms in Chapters 4 and 5). When
the message does leave the mix, it will be forwarded to the next mix (N , run by

3The reader who is not familiar with public key encryption, is advised to refer to a standard
textbook on computer security, e.g. [And01].
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Figure 2.6: A message travelling through anonymous remailers

Nick), and so on backwards along the sequence of mixes chosen by the sender (in our
example just [M,N ]), and eventually to the receiver R. This is illustrated in Figure
2.6. Note that when passing through every mix, as far as the attacker can see, the
message was “confused” with several (n in the case of the threshold mix) others. Of
course, if the mix is compromised by the attacker, i.e. the attacker has the private
key of the mix, no “confusion” is created.

This is more or less the scheme proposed by Chaum in [Cha81]. Alternative schemes,
are examined in Section 2.6.

2.3.1 Basic Properties of Chaum’s Construction

We now give an account of the basic properties of Chaum’s construction.

1. First of all, it provides bitwise unlinkability between inputs and and outputs of
a mix. By this we mean that an attacker who is watching the input and the
output channels of a mix (but does not know its private key) cannot correlate
incoming and outgoing messages just by looking at the bits which comprise the
messages.

2. Secondly, it provides bitwise unlinkability against any pair of non-consecutive
(in the sequence) collaborating mixes. Thus, if the first and the last mix decide
to collaborate, they cannot tell which of the messages processed by the first
mix corresponds to which of the messages processed by the last just by looking
at the bit sequences comprising the messages.

It is interesting to note that the onion construction is not necessary to provide bitwise
unlinkability between inputs and outputs of a mix. Instead, Sarah (the sender) could
simply encrypt the message with a key she shares with Mike (the first mix). Mike,
upon receiving the message, decrypts it and encrypts it with a key he shares with
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Nick, etc until the message arrives at Richard4. The reason why onion encryption is
used in mix systems is to provide bitwise unlinkability against collaborating mixes.

It should be noted that the scheme provides bitwise unlinkability against active
attackers as well as passive ones. Should an attacker try to change the message (and
propagate this change through some mixes), in an attempt to discover where this
message goes, anonymity should be preserved. This is done automatically by the
mixes in the scheme described above: if the message was changed in transit, the
mix which receives it will not be able to decrypt it correctly and, thus, will have no
option but to discard it. Hence unlinkability is not compromised. In real anonymity
systems, much more care has to be taken to defend against these attacks [DDM03]
as there, for efficiency reasons, only the header of the message is encrypted with the
public key.

2.3.2 Threat Models

Now that we have seen something of how mix systems work, let us examine the threat
models against which they are designed to protect.

There are several main threat models that anonymity researchers consider. Some of
them will be considered in more detail later in this thesis.

1. The global passive attacker. This is, perhaps, the most common threat
model in the literature. The adversary is able to observe (but not modify) all
network traffic, and is unable to see inside any of the mixes.

2. The global active attacker. This adversary is able to observe and modify
all network traffic. In particular, he is able to inject an arbitrary amount of
traffic into the system in a very short time and delay traffic for an arbitrary
length of time.

3. The global passive attacker with many compromised mixes. This is
a very strong attacker model used by, for instance, Berthold, Pfitzmann and
Standtke in [BPS00]. The only requirement is that there is at least one honest
(uncompromised) mix on the path of the message in question5. Recall that by
“compromised” we mean that the attacker knows the private key of the mix
or can otherwise determine the correspondence between the incoming and the
outgoing messages of the mix. If the attacker is the superuser on the machine
running the mix, he is an active attacker.

4The mixes need not see the message itself either – Sarah could encrypt it with Richard’s public
key.

5The serious problem with this threat model is that it relies upon the user “magically” choosing
a route through at least one honest mix, or suffering the consequences if all the chosen mixes are
compromised.
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4. The global active attacker with many compromised mixes. A combi-
nation of the latter two threat models.

5. A sub-global attacker This is a large class of attackers that have the ability
to monitor some links in the anonymity system, and possibly have some of their
own nodes forwarding traffic. All the real attackers almost certainly fall into
this category. However, it is difficult to pin down precisely what a real attacker
might look like within this class.

At this point it is appropriate to introduce some more terminology. The adversary
is sometimes interested in compromising the anonymity (unlinkability) of a single
message (e.g. the message from sender to the first mix or from the last mix to the re-
ceiver); we call it the target message. When we say “compromising unlinkability” we
mean determining (or at least establishing some correlation between) the sender and
the receiver of this message. We leave a detailed account of quantifying anonymity
till Chapter 3.

In addition to the capabilities described above, each attacker may have some addi-
tional knowledge about what happens in the system. For instance, if we consider
some run of a system, he might also know facts like “a message which arrived at R
(hopefully this was not the target message!) was sent by A” or, “a message which
arrived at R was not sent by B or C”. Such knowledge might arise, for example, if
the message to R was written in Mongolian and we definitely knew that neither B
nor C had learnt Mongolian.

The basic construction described in Section 2.3 already provides unlinkability against
the global passive attacker. However, we need to understand the scheme in more
detail to consider whether it protects against some of the more powerful adversaries.

2.3.3 More on Mix Systems

In just giving Chaum’s basic construction we omitted many details which are im-
portant to ensure that the system provides anonymity and some choices available to
designers of anonymity systems. We will now briefly mention some of these.

Let us first of all recall that Sarah’s message travelled through Mike’s and Nick’s
remailers before reaching Richard. How were these remailers chosen? This is one
of the most important questions in the design of anonymity systems, and various
systems have dealt with it differently. Some do not allow any choice of routes at all.
All messages have to travel via the same sequence of mixes (route). Such a system
is called a mix cascade. A mix network on the other hand, allows users to choose
their routes through the network. A free route mix network allows users to choose
arbitrary routes (via any sequence of available nodes) while in a restricted route mix

27



network, users are somewhat constrained.

This design choice has many implications for the rest of the anonymity system. Note,
for instance, that messages will decrease in size when they travel through a mix.
Thus, in the mix network as presented above, messages would only be confused with
other messages of the same size. More precisely, message µ would only be confused
with message µ′ at mix M if µ and µ′ are to pass through the same number of mixes
after M . To ensure that all messages passing through a mix get mixed together,
we need each mix to add a certain amount of padding (random bits) to make all
messages the same size. Naturally, all the contents of messages must also be the
same size as we mentioned previously.

In a mix network, we must also make sure that mixes do not know their position
within the sequence the message is travelling through. Otherwise, a strong attack
(by the global passive adversary with many compromised mixes) is possible. See
[BPS00] for details.

Yet another attack is based on replaying messages. A global active adversary wants
to trace a message travelling through a mix. To do this, he first records all the
incoming and outgoing messages to this mix. He then takes the incoming message
he wants to trace and sends it to the mix again. The mix flushes, and then if the
attacker compares the outgoing messages from the mix to the ones he has recorded
before, he will get exactly one match he knows that this is the reinserted message.
He can now see where this message is going. Protection against this attack is easily
possible by including timestamps in messages and storing details (more precisely
cryptographic hashes) of the messages which have been seen in the last few days.
Indeed modern mixes (e.g. Mixminion, [DDM03]) ensure that any replayed messages
will be discarded automatically.

2.3.4 Cascades vs Networks

As we have seen in the previous section, the architecture of a mix system affects
other choices in the design. Here we examine the properties of mix networks and
mix cascades slightly more deeply in order to motivate some of the work presented
in the later chapters of the thesis.

Mix cascades These are relatively easy to analyse. For instance, if a cascade is
made up of threshold mixes with threshold n, it is clear that each message is mixed
with n− 1 others. It is also clear that if one of the mixes in a cascade stops working,
so does the entire cascade. Finally, we note that the scalability of a mix cascade
is entirely limited by the scalability of the machines on which the mix software is
run. On the other hand, a mix cascade maintains a level of anonymity against a
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global passive attacker with many compromised mixes6 [BPS00]. In other words, as
long as one mix remains uncompromised, some anonymity is achieved. Indeed, if we
consider a mix cascade made up of threshold mixes with threshold n, then even if all
the mixes but one are compromised, the anonymity provided by the cascade is not
reduced7 .

Mix networks Mix networks are much harder to analyse. First of all, their prop-
erties are heavily dependent on how routes are chosen. This is often done by the
users, which are hard to model. Nevertheless, it is clear that the scalability and
reliability of mix networks are better than that of cascades, though these properties
have not been rigorously quantified or compared. Finally, quantifying the anonymity
that a mix network provides has proved elusive for several years. In this thesis we
make considerable progress towards this goal. An efficient way of calculating the
anonymity of a mix network would enable us to look at properties of mix cascades
and mix networks and make a detailed comparison. It has generally been considered
that mix networks are secure against the global passive attacker ; though it has been
shown in [BPS00] that they are not secure against the global passive attacker with
many compromised mixes. The reader may find the above statements odd – what is
“secure” in the context of an anonymity system? What we mean by “an anonymity
system is secure against X” is that the adversary X does not significantly reduce
the anonymity of the system from that which it was designed to provide. Or, more
simply (though more subjectively), a significant amount of anonymity is maintained
against threat model X.

2.3.5 The (n− 1) Attack

One strong attack, which is still subject of ongoing research, is the n − 1 attack.
Consider a threshold mix which flushes when n messages have arrived. If, of the n
messages in the mix, n−1 come from the attacker (and are therefore recognisable to
him at the output), he can deduce the remaining message and observe where it has
gone to. This is a very powerful attack; one can seemingly do little to protect against
it. Indeed, most methods try to reduce it to a denial of service attack in which the
system stops working, without anonymity being compromised. Alternatively, one
can try to make the attacker as observable as possible. We explore this subject in
much more detail in Chapter 4.

6As long as no n − 1 attacks (see Section 2.3.5) are possible. Methods of protecting cascades
against this attack do exist, see, for instance, the first part of the Stop-and-Go mixes paper [KEB98].

7Although we have not examined this in detail, it is likely that the anonymity provided by a
cascade of more sophisticated mixes, e.g. pool mixes, does go down as the number of compromised
mixes goes up. Of course, it never goes down below the anonymity of a single pool mix.
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At the very beginning of this chapter we mentioned that to design effective anonymity
systems we need to tailor them to the particular method of communication. Thus,
having now examined the basics of mix systems, we look at both email and web
browsing anonymity systems in more detail.

2.4 Message-based Systems for Anonymous Email

There are three characteristics of email traffic which are important for anonymizing
it:

1. High Latency. It is likely that users would tolerate a delay of minutes, hours,
and sometimes even a few days if strong anonymity guarantees are provided to
them. This is crucial for anonymity because when a message passes through a
mix, a delay is introduced. As we shall see in Chapter 4, the more delay, the
more anonymity.

2. Narrow size distribution. To a first approximation, all email messages are
of a similar size. Typically, they are a few kilobytes long, for instance, around
1.1% of the 8130 emails in my inbox at the time of writing were bigger than
100K. Hence, a typical email will fit into one Mixmaster or Mixminion packet
(if it does not, strong intersection attacks are possible [KAP02]).

This is very important for anonymity because all messages need to be made
the same size to avoid being trivially recognised within the system.

3. Low bandwidth. It is useful to observe that although email is very important
in everyday life, the bandwidth used up in transporting it is very low compared
to other forms of traffic. The relevance of this to anonymity is that sending
dummy messages (which must be of a similar size to real messages) is cheap.

The second property gives rise to the term under which we use to denote email
anonymity systems: message-based systems.

Another crucial property that message-based anonymity systems have to satisfy is
that of usability. While senders of email who wish to preserve their anonymity might
be happy to download and run special software, people who might receive such email
are unlikely to do so8. If this is the case then anonymous email can be sent to
anybody without requiring them to go to any extra effort to read it. A remark is in
order here. Back in Chapter 1, we talked about hiding the content of the message
as opposed to hiding the sender and the receiver of the message. A message-based
anonymity system can be used to send a message to someone anonymously (without

8To hide the contents of the traffic from the observer when the message goes from the last mix
to the receiver, the latter will need basic decryption capabilities.
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requiring them installing special software) only if the content of the message itself
does not reveal the sender and the receiver of the message. Alternatively, the content
may be hidden by encrypting the message from the sender to a receiver using either
symmetric or public key cryptography.

We have already mentioned that message-based anonymity systems work much along
the lines of Chaum’s original scheme. We do not go into any further details of
the protocols of any of the remailer networks – what we have described about mix
systems is sufficient for the purposes of this thesis. For more details about protocols
and implementations of message-based systems see [MCPS03, DDM03].

2.4.1 Open Problems

We have already mentioned some open problems in this area when we were examining
the theory of mix systems in Section 2.3. These include:

• Dealing effectively with the n − 1 attack. Our approach to achieving this
is presented in Chapter 4. We evaluate several mixes with respect to their
resilience to the n− 1 attack. Some are likely to provide enough for the attack
to be detected (and hence the anonymity not compromised). Other methods of
dealing with this attack also exist [KEB98], which have not yet been analysed
in a satisfactory way. There is also some recent work on dealing with the attack
using active defences (i.e. dummy traffic) [DS03a].

• Analysing and comparing the effectiveness of single mixes. We do this for active
attackers in Chapter 4 and more generally in Chapters 3 and 5. As always,
some open questions still remain.

• Analysing the anonymity of a mix network and comparing it to that of a mix
cascade. This is a difficult problem; we make a substantial contribution towards
solving it in Chapter 6 by presenting a definition of the anonymity of a message
in a run of the network.

• Dealing with the issue of repeated communication. If the attacker knows that
Alice is communicating with a fixed set of receivers over a long period of time, he
can try to deduce this set. Such activity is generally referred to as intersection
attacks. There is a substantial body of work on this issue; [KBS02, KAP02,
AKP03, Dan03c]; we do not deal with this problem in the thesis.

2.5 Anonymous Web Browsing

Web browsing imposes a much stricter set of requirements on the anonymity system:
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1. Low Latency. These systems must ensure that retrieving a webpage anony-
mously takes no longer than a few seconds. Otherwise, anonymous web brows-
ing becomes unusable.

2. Large size distribution. The files which users commonly wish to download
from the Internet can be anywhere between several kilobytes (small text files)
and tens or even hundreds of megabytes (images and video). Note that frag-
menting large files into small packets and reassembling them at the other end
enables strong intersection attacks [KAP02].

3. High bandwidth. A user browsing the web uses up much more bandwidth
than the one who sends and receives email. Hence using dummy traffic to
help create anonymity is in general expensive: for instance, making a dummy
request for a retrieving a file might result in a download of several megabytes.
One way of limiting bandwidth costs is to make a closed system for a known
set of users, but this, of course, also severely limits anonymity.

The usability requirement for anonymous web browsing systems is similar to that of
the message-based system: a user (who downloads client software) must be able to
browse material on existing web servers who are unaware of the anonymity system.

The reader should by now have the impression that these systems face strict require-
ments. Thus, we might expect them to be able to withstand only significantly weaker
threat models and provide less anonymity than message-based systems. Indeed this
is the case. It is much less clear how to build an anonymity system for web browsing
which satisfies all of the above requirements. Nevertheless, some attempts have been
made using Chaum’s scheme as a broad basis.

A very broad description of a low-latency anonymous communication system is as
follows. A number of users, running anonymity clients, connect through the system
to some web servers (not running special software). HTTP requests and responses
both travel through the system. The system itself consists of a number of nodes.
Some designs have a ‘classic’ architecture, with relatively few nodes, whereas others
have a ‘Peer-to-Peer’ architecture, with nodes run by each user. Each node has logical
links to some (not necessarily all) other nodes, along which it forwards traffic. Links
are implemented above inter-node TCP connections between IP/port addresses, link-
encrypted. Nodes also accept connections from end-user clients. To protect against
node compromise, data from each of the clients passes through several nodes before
it reaches the web server. The first design choice made in all systems that we are
aware of (Onion Routing, [OR], Tarzan [FM02], MorphMix, [RP02] and JAP [JAP])
was to make such systems connection-based. This means that the client establishes a
bi-directional connection through the system and all the data travels (up and) down
the same path. Another common feature of such connection-based systems is that
they split up the traffic into small (from 128 bytes to 1K) packets. Note that such
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systems are not only useful for web browsing, but for any protocol running over TCP.
Indeed, IRC and ssh are also possible (though the anonymity of a user running such
protocols is likely to be low – it is likely that effective application-protocol specific
attacks can be mounted).

While Onion Routing, Tarzan and MorphMix are based on a mix network architec-
ture, JAP is a cascade. However, as we shall see in the next section, both classes of
systems admit similar attacks.

2.5.1 Attacks and Open Problems

We will now briefly outline some well-known attacks on connection-based anonymity
systems. These are presented here to give the reader the flavour of the problems
with connection-based systems. The first of these attacks can be dealt with relatively
easily; the others are strong attacks which are hard to protect against. We do not
explore them further in the thesis. Instead, in Chapter 7, we look at two relatively
simple attacks which defeat current systems and examine ways of protecting against
them.

Suppose the adversary is a global passive attacker and the anonymity system is a
free route network. If the attacker watches all the incoming (from users to nodes)
and outgoing (from nodes to webservers) connections of the anonymity system, then
because webpages vary so markedly in size, the number of bytes transferred is likely
to be sufficient to identify which connection is which. Note that this is a traffic
confirmation attack; it only requires observing the senders and the receivers rather
than the entire anonymity system.

One of the ways anonymity systems can try to protect against this attack is by
employing traffic padding from the client software to the first node on the route.
What the best kind of padding to apply here is currently an open issue, as is the
protection that such schemes can provide. We do not address this further in this
thesis.

A global active adversary can also mount the following attack. He targets a user,
wanting to find out which website he is accessing via the anonymity system. He then
injects a ‘timing signature’ into the traffic travelling from the user to the first node,
i.e. introduces a series of delays into the stream which he hopes to recognise when
this data travels from the last node to the web server. He does the same (though the
other way) when the website data starts travelling back to the user. Note that this
is also a traffic confirmation attack (though the adversary is active).

Finally, an adversary who owns the first and the last node of a connection through
the anonymity system, can, by simply watching the total volume of data passing
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through a connection, correlate the start and the end times of the connection. This
is very similar to the first attack we discussed, though, unlike that attack, it cannot
be protected by dummy traffic from user to the first node. Indeed, more generally,
we note that an attacker who owns two compromised nodes may use time and traffic
volume information to establish whether a connection passes through both these
nodes. This is in sharp contrast to message-based systems, where such an attack is
not possible (all messages are the same size).

On a rather different note, connection-based anonymity systems are much more ex-
pensive to run than message-based ones, and will hence be harder to deploy. While
there were enough volunteers who devote their spare time to running remailers, this
may not be the case with connection-based systems. Hence, an open problem is look-
ing at ways to encourage people to run nodes, behave honestly or even merely use
the system. Acquisti, Dingledine and Syverson have started looking at this problem,
[ADS03], but many open questions remain.

2.6 Other Schemes – Related Work

So far we have only described mix systems as a way of achieving anonymity. In fact,
there are other ways as well.

2.6.1 Crowds

Crowds [RR97] is a system which is designed to maintain sender (but not receiver)
untraceability. The scheme is very simple: to initiate a communication, a participant
of the system forwards his request to another member of the crowd. They then
flip a biased coin; if the outcome is heads, they forward the communication to the
responder, if it is tails they forward it on to another randomly chosen member of
the crowd. Data from the responder travels down the same path in the opposite
direction.

This system was designed to enable co-operating users on a medium-sized LAN (say,
within a company) to protect themselves against the threats out on the Internet.
Hence, there is no mixing, padding or onion encryption. Therefore an adversary who
observes the entire network can trivially find the initiator – the initiator sends out
a packet without having received one, while all other participants receive a packet
first, forwarding it a short time later. Another problem with Crowds is the fact that
the system is inherently not very scalable – in the original design every node had to
share a key with every other node.

Several comments are in order. First of all, it is clear that the Crowds scheme
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of anonymous communication is less secure than a mix system for a message-based
system. Secondly, although the Crowds scheme for connection-based systems has not
been adequately compared to onion-based schemes, the latter offer more potential in
the future because of the bitwise unlinkability properties offered by onion encryption.
Indeed, that comparison is an interesting piece of work to do in itself – there are
many attacks which can be mounted on both systems and coming up with a realistic
threat model and an onion-based scheme which does not suffer from devastating
attacks (some of which are outlined in Chapter 7) in that threat model is challenging
in itself.

Furthermore, researchers have shown that even within the threat model (no global ad-
versary, some number of compromised nodes) it is possible to mount effective attacks
against Crowds [WALS02, Shm03]. However, these basically amount to long-term
intersection attacks which are likely to be effective against any anonymity system.

An interesting extension of the Crowds system is Hordes [LS02]. It is essentially an
efficiency improvement over crowds where data travels back to the initiators via a
multicast group which they had initially selected.

2.6.2 Dining Cryptographers Networks

Schemes which provide sender and receiver untraceability (and thus unlinkability) are
usually based on some sort of broadcast mechanism. Hence, unlike in mix systems,
the adversary is unable to determine who is sending or receiving messages. The first
is a scheme called “Dining Cryptographers” [Cha88] which is commonly illustrated
by considering a number of cryptographers sitting round a table flipping (fair) coins.
They arrange themselves in such a way that each could see their own outcome of
the coin toss as well as that of the person sitting to the right of them. Each would
broadcast whether the two coins they saw were the same or different. The protocol
is executed repeatedly. A person may transmit a bit by inverting his broadcast if
he is transmitting a “1” or act as above if he is transmitting a “0”. (If two people
start to transmit, they will soon notice). Naturally, this is a good scheme only if the
underlying communications medium offers broadcast as a basic service or sending lots
of traffic is not too expensive. Examples of these include local LANs (or dinner tables
at restaurants!). The work on DC-nets was continued by Waidner and Pfitzmann
[WP90].

Yet another recent anonymous communication scheme based on broadcast is P5

[SBS02]. It presents an efficient way of setting up a broadcast-based communication
(as a binary tree). As a result, the authors claim that the system is secure against
a global passive adversary. Several comments are in order. First of all, the scheme
does not satisfy the usability requirement we have argued essential above (Sections
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2.4, 2.5). The scenario involves a set of users opting to co-operate and using the P 5

scheme between themselves. Hence, if this scheme was to provide anonymous web
browsing, users would only be able to browse websites which run on P5-compatible
webservers. This, in our view, is unacceptable. Secondly, the system admits packet
loss (this makes anonymity easier to provide, but the vast majority of anonymous
communication systems avoid it if at all possible). The bandwidth requirements
are also quite high, although, as expected, much better than the näıve broadcast
protocol.

Other work in this area includes XOR-trees [DO00] and Herbivore [GRPS03].

2.6.3 Buses

A related way of doing anonymous communication is to exploit persistent communi-
cation patterns [BD03]. A variety of protocols with various time and communication
complexity are explored in this work. They all rely on the co-operation of all the
parties in the network and are not likely to lead to the development of practical
systems.

The simplest of the protocols based on this idea is as follows. Imagine a bus driving
around town. It stops in front of each participant who checks for any messages that
were sent to him and changes all the “seats” allocated for his messages either to
random junk or to messages he wants to send to other participants.

2.6.4 Location Privacy

A different kind of connection-based system was presented by Al-Muhtadi and co-
authors [AMCK+02]. It is aimed at achieving location privacy, the inability of the
adversary to determine someone’s location, and does not have a very strong threat
model. The architecture of the system is very rigid, with packets being passed “up”
and “down” the tree. Each node trusts its Lighthouse node. There is very little
analysis of the anonymity this systems provides.

Most other work on location privacy also assumes weaker threat models. An inter-
esting example with some anonymity analysis is presented by Beresford and Stajano
[BS03].

2.7 Summary

In this chapter we have looked at the terminology often used to describe various as-
pects of anonymity systems, examined the basic constructions which underly anony-
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mous communications, including a fairly detailed look at mix systems, considered
how users might wish to communicate on the Internet and finally examined some
other (mostly broadcast-based) schemes.

We now go on to look at ways of measuring anonymity.
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Chapter 3

Measuring Anonymity

“Primitive man regards his name as a vital portion of himself
and takes care of it accordingly.”

— Sir James George Frazer, The Golden Bough, Chapter 22.

In the previous chapter we presented some schemes for anonymous communication,
but did not calculate how much anonymity they provide. Indeed, anonymity is hard
to measure or quantify – the users of the system do not see how high or low their
anonymity is directly. Naturally, they may see the effect of this later! This chapter is
devoted to discussions of how to measure or quantify anonymity: until quite recently,
there has been no consensus as to which metric should be used to quantify anonymity.
Arguably this is still the case.

Let us briefly remind ourselves of the reasons for quantifying anonymity. First of all,
if we can work out the amount of anonymity to be provided by a system, then each
of the users can assess whether this system suits their requirements and thus decide
whether to use it or not. Secondly, we need a consistent metric of anonymity to be
able to compare different anonymity systems. Finally, we should also be able to use
the metric to compare the effectiveness of attacks against anonymity systems.

In this chapter we first look at how anonymity has been measured previously, then
point out the problems with this approach. We then propose a better metric. In
all the examples we choose to abstract away from the application level issues of
anonymous communication. Examples of this include preventing the attacker from
embedding URLs pointing to the attacker’s webpage in messages in the hope that
the victim’s browser opens them automatically [CDK01]. Instead, we work with the
example of message-based mix systems, broadly at the abstraction level presented
in Section 2.3. The threat model employed in this chapter is the global passive
adversary.
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Perhaps the most intuitive way of quantifying the anonymity of a message M in a
mix system is to just count the number of messages M has been mixed with while
passing through the system. However, doing so would produce a bad metric as the
case of the n− 1 attack (Section 2.3.5) shows – here the message is confused with n
messages, but really has no anonymity at all.

Another popular metric of anonymity is the notion of anonymity set. We now look at
how anonymity sets have previously been defined in the literature and what contexts
they have been used in.

3.1 Previous Work: Anonymity Sets

3.1.1 Anonymity Sets in Dining Cryptographers Networks

The notion of anonymity set was introduced by Chaum in [Cha88] in order to quantify
the “security” of Dining Cryptographers’ (DC) networks. The anonymity set of a
message is defined as the set of participants who could have sent that particular
message, as seen by a global observer who has also compromised a set of nodes.

The size of the anonymity set reflects the fact that even though a participant in
a Dining Cryptographers network may not be directly identifiable, the set of other
participants that he or she may be confused with can be large or small, depending
on the attacker’s knowledge of particular keys. Chaum argues that the size of the
anonymity set is a good indicator of how good the anonymity provided by the network
really is. In the worst case, the size of the anonymity set is 1, which means that no
anonymity is provided to the participant. In the best case it is the size of the network,
which means that any participant could have sent the message.

3.1.2 Anonymity Sets in Stop-and-Go Mixes

In analysing Stop-and-Go mixes, [KEB98], the authors also use sets as the measure
of anonymity. Given a message, they define the anonymity set of users as those
who had a non-zero probability of having the role r (sender or recipient) for that
message. The size of the set is then used as the metric of anonymity. Furthermore,
deterministic anonymity is defined as the property of an algorithm which always
yields anonymity sets of size greater than 1.
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3.1.3 Standard Terminology – Anonymity Sets

In an effort to standardise the terminology used in anonymity and pseudonymity
research publications and clarify different concepts, Pfitzmann and Köhntopp [PK00]
define anonymity itself as:

“Anonymity is the state of being not identifiable within a set of subjects,
the anonymity set.”

In order to further refine the concept of anonymity and anonymity set and in an
attempt to find a metric for the quality of the anonymity provided they continue:

“Anonymity is the stronger, the larger the respective anonymity set is
and the more evenly distributed the sending or receiving, respectively, of
the subjects within that set is.”

The concept of “even distribution” of the sending or receiving of members of the
set identifies a new requirement for judging the quality of the anonymity provided
by a particular system. It is not obvious any more that the size is a very good
indicator, since different members may be more or less likely to be the sender or
receiver because of their respective communication patterns.

The reader will note that the definitions of anonymity sets look very similar, though
we will later (in Section 3.2) show that there are subtle differences in the way they
apply to the systems they are defined in the context of.

We slightly rephrase the definitions presented in the Stop-and-Go mixes work [KEB98]
to introduce the notions of sender and receiver anonymity sets. For a particular mes-
sage, and a particular attacker, we can try to compute all the possible senders who
could have sent this message (from the point of view of the adversary). This is the
sender anonymity set. Similarly, the receiver anonymity set is the set of receivers
who could have received this message. Note that we are usually interested in the
sender anonymity set when we know who received a message, and the receiver an-
onymity set if we know who sent it. If both the sender and the receiver anonymity
sets contain only one element, unlinkability is compromised (we know who sent the
message and who received it).

Let us consider an example of some messages travelling through a mix network made
up of threshold (n = 2) mixes and see what the sender and receiver anonymity sets
of different messages are. It is often helpful to illustrate a run of a mix system on a
mix network run diagram such as the one shown on Figure 3.1. Here, A,B,C,D,E
are the senders and Q,P,R, S are the receivers. Each arrow represents one message
(sent from the entity at the base of the arrow to the entity at the head of the arrow),
while each grey box represents a firing of a mix. Time runs from left to right, so the
message from A to the uppermost mix has arrived before a message was sent from
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Figure 3.1: Example: Sender and Receiver Anonymity Set of a message

the uppermost mix to Q. Note that it does not matter whether the message from A
or from B has reached the uppermost mix first – it cannot flush until both of them
have arrived. Note that arrows from right to left would represent messages travelling
back in time, and thus cannot appear on mix network run diagrams.

It is worth pointing out the contrast between anonymity and cryptography. When
an adversary is attacking a cipher, he has typically 264 or 2128 possible keys which
could be the key the message was encrypted with. On the other hand, when trying
to compromise the anonymity of a target message, he has merely the people in the
anonymity set as possible candidates. This might be a few thousand participants or
even less – much smaller than 264. Of course, it is much harder to do an exhaustive
search of those participants!

3.2 Difficulties with Anonymity Set Size

Let us examine how the definitions of the anonymity sets were applied to the context
they were defined in. The attacks against DC networks presented in [Cha88] can only
result in partitions of the network in which all the participants are still equally likely
to have sent or received a particular message. Therefore the size of the anonymity set
is a good metric of the quality of the anonymity offered to the remaining participants.
In the Stop-and-Go system [KEB98] definition, the authors realise that different
senders may not have been equally likely to have sent a particular message, but
choose to ignore it. We note, however, that in the case they are dealing with (mix
cascades in a system where each mix verifies the identities of all the senders), all
senders have equal probability of having sent the message. In the standardisation
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Figure 3.2: A Pool Mix (one round). Note that this is not a mix network run diagram,
it simply represents the operation of the mix

attempt [PK00], we see that there is an attempt to state, and take into account this
fact in the notion of anonymity, yet a formal definition is still lacking.

We have come to the conclusion that the issue of potentially different probabilities of
different members of the anonymity set actually having sent or received the message
has not been adequately addressed in previous work. Yet the fact that the proba-
bilities are different gives a lot of extra information to the attacker. We proceed to
illustrate this with an example.

3.2.1 The Pool Mix

To further emphasise the dangers of using sets and their cardinalities to assess and
compare anonymity systems, we note that some systems have very strong “anonymity
set” properties but may not provide intuitively good anonymity. One such system is
a pool mix.

What is a pool mix? A pool mix differs from the threshold mix we described in
Chapter 2 only in its flushing algorithm. This mix always stores a pool of p messages
(see Figure 3.2). When n incoming messages have accumulated in its buffer, it
picks p messages randomly out of the p+ n it has, and stores them, forwarding the
others in the usual fashion. The process of accumulating (in this case n) messages,
then processing them and finally sending messages out is called a round. There is
always a non-zero probability of any message which has ever entered the mix not
having left it. Hence the sender anonymity set of a message M passing through the
pool mix includes the senders of all the messages which have passed through that
mix before M , i.e. the anonymity set grows without limit. At this point we must
consider the anonymity provided by this system. Does it really give us very strong
anonymity guarantees or is measuring anonymity using sets inappropriate in this
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Figure 3.3: Vulnerability of Anonymity Sets

case? Our intuition suggests the latter1, especially as the anonymity set seems to be
independent of the size of the pool, p.

3.2.2 Knowledge Vulnerability

Yet another reason for being sceptical of the use of anonymity sets is the failure of
the metric to take account an attacker’s additional knowledge. Consider the mix
network run diagram in Figure 3.3 (some of the messages arriving at receivers are
labelled with their sender anonymity sets).

Notice that if the (global passive) attacker somehow establishes the fact that, for
instance, A is communicating with R, he can derive the fact that S received a message
from E. Indeed, to expose the link E → S, all the attacker needs to know is that
one of A,B,C,D is communicating to R. And yet this is in no way reflected in S’s
sender anonymity set (although E’s receiver anonymity set, as expected, contains
just R and S).

It is clear that not all senders in this arrangement are equally vulnerable to this.
Other mix network run diagrams may be less (or at least more evenly) vulnerable
to additional knowledge of the attacker. Although we have highlighted the attack
here by using mixes with threshold of 2, it is clear that the principle can be used in
general to cut down the size of the anonymity set.

1A side remark is in order here. In a practical implementation of such a mix, one might like
to put an upper limit on the time a message can remain on the mix with a policy such as: “All
messages should be forwarded on within 24 hours + K mix flushes of arrival”.
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3.3 Entropy

We have now discussed several distinct and, in our view, important difficulties with
using anonymity sets and their cardinalities for quantifying anonymity. We have
also demonstrated that there is a clear need to reason about information contained
in probability distributions. One could therefore borrow mathematical tools from
Information Theory [Sha48]. The concept of entropy seems particularly appropriate
as it is designed to describe the amount of information contained in a probability
distribution, and should therefore let us measure the amount of uncertainty the
attacker has about who sent or received the message. We now proceed to define our
anonymous communication model and use entropy to describe its quality. The model
is very close to the one described in the Stop-and-Go mixes paper [KEB98].

Definition 1. Given an attacker and a set of all users Ψ, let r ∈ R be a role for
the user (R = {sender, recipient}) with respect to a message M . Let U(M,r)(u) be
the attacker’s a-posteriori probability of a user u ∈ Ψ having the role r with respect
to M .

In the definition above we do not have an anonymity set but an r anonymity proba-
bility distribution U(M,r) : Ψ→ [0, 1] s.t.

∑
u∈Ψ

U(M,r)(u) = 1. In other words, given his

view of a run of the system, the attacker takes a message M and calculates as best as
possible, the probability distribution of its senders and receivers. Of course, U(M,r)

may assign zero probability to some users which means that they cannot possibly
have had the role r for the particular message M . For instance, if the message we are
considering was seen by the attacker as having arrived at Q, then U(M,receiver)(Q) = 1
and ∀S 6= Q . U(M,receiver)(S) = 0.2 If all the users that are not assigned a zero
probability have an equal probability assigned to them, (as will be the case of a DC
network under attack) then, as Chaum suggests, the size of the set could be used
to describe the anonymity. The interesting case is when users are assigned different,
non zero probabilities.

Definition 2. We define E(M,r), the r anonymity of a message M , as the entropy
of an r anonymity probability distribution U(M,r). In other words

E(M,r) = −
∑

u∈Ψ

U(M,r)(u) log2(U(M,r)(u))

We also define the effective anonymity set size as 2E.

2Alternatively, we may choose to view the sender/receiver anonymity probability distribution for
a message M as an extension of the underlying sender/receiver anonymity set to a set of pairs of
users with their associated (non-zero) probabilities of sending or receiving it.
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It is trivial to see that if one user is assigned a probability of 1 then the effective
size of the anonymity set is 1, which means that the attacker already has enough
information to identify the user.

There are some further observations:

• It is always the case that 0 ≤ E ≤ log2 |Ψ|.
• If E = 0 the communication channel is not providing any anonymity.

• If E = log2 |Ψ| the communication channel provides perfect anonymity.

Let us now use our new metric to analyse the anonymity of a message which has
passed through the pool mix.

3.4 Analysis of the Pool Mix

Recall from Section 3.2.1 that a pool mix stores p (p > 0) messages and receives n
messages every round. It then combines the stored and received messages and outputs
n of them (chosen randomly). When the mix first starts operating, p messages are
generated by the mix and placed in the pool. We call this round zero. The time
period during which the next n messages arrive and the mix flushes is called round
one, and so on.

First, we calculate the sender anonymity set and its cardinality for a run of the pool
mix. Let the sender anonymity sets associated with the n messages arriving at round
i be Ki,1 . . .Ki,n and let K̂i = Ki,1∪ . . .∪Ki,n. The sender anonymity set K̂0 consists
of only one sender – the mix itself (all the messages in the pool have been placed
there by the mix). Let Ai be the sender anonymity set of the outgoing messages
after round i; it is equal to the union of the anonymity sets of the messages stored
in the mix (all of which are the same and are equal to the anonymity sets of all the
messages which left the mix at the previous round) and the messages which arrived
from the network.

A0 = {mix}

Ai = Ai−1 ∪ K̂i

Now, assume that all of the messages arrive at the pool mix directly from senders,
which are all different from each other. This will allow us to calculate the maximum
possible anonymity of a pool mix, which we can compare to that of other mixes.
Formally, assume ∀i, j, l,m.(i 6= l∨ j 6= m)⇒ Ki,j 6= Kl,m. This implies that the size
of the set after round k is
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|Ak| = n× k + 1

and in the limit3 k →∞
lim
k→∞

|Ak| → ∞

It is clear once again that the size of Ak does not provide us with a useful insight
on how well this mix performs. In particular, it does not capture the fact that
senders of past rounds have smaller probabilities of being the senders of messages
that come out of the mix at the last round. Finally, this metric does not allow
us to effectively compare the pool mix with other mixing architectures, including
conventional threshold mixes.

We now calculate the entropy of the sender anonymity probability distribution of a
message coming out of the pool mix.

The probability that a message which comes out of the mix at round k was introduced
by a sender in the mix at round 0 < i ≤ k is

proundi =
n

n+ p

(
p

n+ p

)k−i

pround0 =

(
p

n+ p

)k

Definition 3. Assume that each message arrives at the mix directly from its sender
and all senders only send one message. After round 0, the only sender involved is
the mix itself. The entropy of the anonymity probability distribution at round k is

Ek = −
k∑

i=1

(
n

n+ p

(
p

n+ p

)k−i
log2

(
1

n+ p

(
p

n+ p

)k−i))

−
(

p

n+ p

)k
log2

(
p

n+ p

)k

After a large number of rounds (k →∞) the above expression converges towards4

lim
k→∞

Ek =
(

1 +
p

n

)
log2 (n+ p)− p

n
log2 p

3Note that in taking the limit we are assuming an infinite set of users.
4This expression was derived by Danezis, [Dan04].
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n p Anonymity Average Delay Average Delay
(rounds) (message arrivals)

100 0 6.6439 1 50

100 1 6.7248 1.01 51

100 10 7.1273 1.1 60

100 100 8.6439 2 150

200 0 7.6439 1 100

200 1 7.6893 1.005 101

200 10 7.9339 1.05 110

200 100 9.0213 1.5 200

Table 3.1: Some threshold and pool mixes together with their anonymity and average
delay.

Note that the additional anonymity that the pool mix provides is not “for free”, of
course, since the average latency of the messages increases from 1 round to 1 + p

n
rounds, or, in terms of the average number of message arrivals, from 1

2n to 1
2n + p.

The delay and anonymity of various threshold and pool mixes are summarised in
Table 3.4. Note that the mixes with pool of zero messages, are, of course, threshold
mixes, which have anonymity log2(n).

3.5 What is Anonymity?

At this stage we are ready to return to the key question “What is anonymity?”. It
turns out that the question is ill-posed. The anonymity of a message which has passed
through a mix system is fundamentally a very different thing from the anonymity of
a mix system.

We have quantified the sender/receiver anonymity of a message which passed through
the system from the point of view of the attacker as the entropy of the sender/receiver
anonymity probability distribution of this message which the attacker builds given
his observation of the system. There are two key questions: “How much does the
attacker know?” and “How does he compute the probability distribution?”5. Clearly,
if the attacker knows a lot about the system (e.g. the keys of all the mixes the message
went through), the anonymity of our chosen message will be zero. Also, if the attacker
invests huge amounts of computational power and finds the private keys of all the
mixes, the anonymity will be zero.

5One example of how this is done is presented in Chapter 6. It is interesting to note that the
attacker may come up with an algorithm for computing the anonymity probability distribution which
is incorrect! A trivial example of this is “Always blame sender A”.
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The entropy of sender/receiver probability distribution is useful for comparing dif-
ferent attacker models, or different ways of computing the anonymity probability
distributions. It is less useful for comparing systems. The reason for this is that
anonymity systems are very often non-deterministic, e.g. if a user sends message A
through the same mix network at two different times t and t′, he will get a different
behaviour, resulting in that message having different anonymity as seen by the same
attacker who uses the same algorithm to compute the anonymity probability distri-
bution. What causes this non-determinism? In mix systems, anonymity is created by
mixing messages together, hence different numbers of messages in the mix system at
times t and t′ will have caused A to have different anonymity. Even if there were the
same number of messages, they would most likely travel via different routes, resulting
in different anonymity. Finally, even if all the parameters of user messages at t and
t′ were the same, the non-determinism in the network can still cause a discrepancy
in the anonymity of A at t and t′.

How can we compute the anonymity of an anonymity system? After all, we seemed
to perform such an analysis for the pool mix. It turns out that the pool mix has
several properties which makes its analysis relatively easy. Firstly, there is the fact
that all the messages coming out of the pool mix had the same anonymity6, so
analysing the anonymity of one message passing through the pool mix is meaningful
for all the messages. Indeed, we will use this method in analysing other mixes in
just the same way. Secondly, we must remember that in the pool mix the user was
very constrained – he could only do one thing, i.e. send a message to the pool mix.
In other systems, users can perform different actions, some of which are much more
difficult to anonymize than others.

Thus, if we take a fixed action A of a particular user, we can compute the anonymity
of this action (e.g. the receiver anonymity of the message that our chosen user sent
via remailers [N,M ]) in each of the possible runs of the anonymity system. Given
assumptions about (or probability distribution of) the actions of all the other users of
the system, we can build a probability distribution of the possible values of anonymity
action A will gain if this system is used. This is very useful to the user – he knows
the action he is going to perform, and can therefore compare different anonymity
systems by comparing these distributions.

At this point it is interesting to note that the requirements of the user can be quite
complex too: they may require that against a certain attacker, their message, having
passed through the anonymity system, under no circumstances has sender anonymity
less than 10. On the other hand, they may be content with a guarantee that on
average, the system would provide their message with sender anonymity of 20.

We are now in a position to compare the anonymity of a certain action provided by

6If we assume that the mix started working at the beginning of time!
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different systems against a particular adversary. We could abstract this to account
for all possible actions, and thus try to compare anonymity systems in general. This
is entirely possible in principle, but likely to be very computationally expensive as we
would need to build probability distributions over all the possible things that could
have happened inside the anonymity system. We do not discuss this any further.
It may well be the case that such analyses are performed in the future. It is worth
mentioning that a very similar approach was taken by Shmatikov in his analysis
of Crowds [Shm03]. There, he uses a model checker to enumerate all the possible
states the anonymity system can reach given certain inputs. (Though, even that
rather complicated analysis did not have to account for the case of users being able
to perform different actions – the only thing a Crowds user can do is to initiate a
connection.)

We hope that the reader will have gathered that analysis of anonymity systems in
the general case is hard and computationally complex. Hence, we must try to find
properties of the system we are trying to analyse which allow the analysis to be
simplified. If such properties cannot be found, analysis is likely to be constrained to
simple systems.

It is worth saying that although this is the general method of analysing anonymity
systems, many current designs are not mature enough to be analysed in this way.
Some break so easily that much simpler constructions can be used to show this fact
(see the two analyses of Chapter 7).

3.6 Related Work

We will see many more uses of the entropy metric throughout the thesis. For now,
let us have a more detailed discussion about some of the other metrics of anonymity,
not restricting our attention to those employed in discussions of mix systems.

We have already discussed the anonymity set metric originally introduced by Chaum
in Section 3.2.

A metric very similar to ours was developed independently by Diaz, Seys, Claessens
and Preneel and (also) published in PET 2002 [DSCP02]. They have the same idea of
using an anonymity probability distribution, but then compute the entropy divided
by the size of the set. This measures precisely (from [PK00], Section 3.1.3) how
evenly distributed the probabilities within the anonymity set are. However, it does
not take into account the size of the set itself! Hence, it is fair to use this metric
only in combination with the size of the set, but this is precisely what is achieved by
our proposal above7.

7In some later papers, Diaz uses the metric outlined here.
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Another metric was proposed by Reiter and Rubin; and employed in their analysis
of the Crowds anonymity system [RR97]. They proposed to measure anonymity as
the probability of the attacker determining the sender of a particular message. The
main degrees of anonymity are defined as follows. The sender is beyond suspicion if
he is as likely to have sent the message as any other sender in the system. The sender
is guaranteed probable innocence if he is no more likely to have sent the message as
not (i.e. the probability of him sending the message is less than 0.5). The sender
maintains possible innocence if there is a non-trivial probability of someone else to
have sent the message.

There are several problems with this definition. First of all, it does not take into the
number of senders in the set. “Beyond suspicion” is achieved just as well by a single
mix with a threshold of 2 as by one with a threshold of 1000. This is somewhat similar
to the knowledge vulnerability problem pointed out in Section 3.2.2. Secondly, the
notion of possible innocence contains a rather vague term “non-trivial probability”.
Finally, the term probable innocence is also defined rather arbitrarily – why should
we care about a user of having sent the message with a probability of 0.5 more than,
say 0.55.

A different framework for expressing anonymity properties was recently proposed
by Hughes and Shmatikov in [HS04]. Let us use an example of a set S of senders
potentially communicating to a set R of receivers. Suppose the communication graph
is represented by a function f : S → R (hence each sender sends a message to only one
receiver). An attacker’s view of this function f consists of graph knowledge, a binary
relation F (F ⊆ S ×R s.t. f ⊆ F ); image knowledge, a subset of R representing the
receiver who were communicated to and kernel knowledge, an equivalence relation
representing the senders who communicated to the same receivers. Using these, we
can represent the (by now) familiar concepts of anonymity set, sender untraceability,
etc. The authors go on to define the concept of privacy (in their view, privacy is
maintained when the type of communication is hidden, for instance whether Alice
communicates to Bob in his capacity as a doctor or a counsellor, even if both the
endpoints are known to the adversary). In our view, the term privacy in its broadest
sense is rather too vague to be defined formally. Hence, although the authors formally
define a variety of information hiding properties, calling one of them “privacy” is
rather misleading.

A number of different formal definitions of anonymity were recently proposed by
Halpern and O’Neill [HO03]. They present definitions very similar to those of ano-
nymity set. In particular, they define an action as being totally anonymous if all the
participants of the protocol are in the set and minimally anonymous if more than one
participant is in the set. They also define a probabilistic notion of anonymity which
essentially says that the probability of the participant having performed a particular
action is less than α. Yet another probabilistic definition states that all members of
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the anonymity set ought to have equal probabilities of having performed the action.
Overall, the authors present a good set of formal definitions broadly along the lines
of those presented in this chapter.

The two PET 2002 papers on anonymity metrics [SD02, DSCP02] have lead to a
probabilistic definition of unlinkability by Steinbrecher and Köpsell [SK03]. There
they define more abstract notions of unlinkability of items within a set as well as
unlinkability of items belonging to different sets. This notion is useful in research on
anonymity systems as it allows us to measure, for example, the degree to which two
messages might have been sent by the same sender, without considering who that
sender might be.

3.7 Summary

We have now seen how anonymity can be quantified taking into account the different
probabilities with which various parties have performed the particular action. In
this case we examined the probability with which a particular sender sent the target
message.

Having now equipped ourselves with a way of measuring the anonymity, we return
to the subject of mix systems. Since we can analyse threshold pool mixes using the
new metric, we embark on a more detailed investigation of the properties of various
other mixes. In the next chapter, we examine their properties under active attack
scenarios.
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Chapter 4

Active Attack Properties of
Single Mixes

“When an Ojebway is asked his name, he will look at some by-
stander and ask him to answer.”

— Sir James George Frazer, The Golden Bough, Chapter 22.

Chaum first introduced the concept of a mix in 1981 [Cha81], and since then re-
searchers and developers have described many mix variations, e.g. [GT96, Jak99,
KEB98]. These have different aims and approaches, yet the performance and ano-
nymity tradeoffs between them are still not well-understood. In fact, some of the
mixes used in well-known fielded systems such as Mixmaster [Cot94, MCPS03] are
mentioned only briefly or not at all in the literature. We start closing this gap by
enumerating and exploring a variety of mix flushing algorithms. Here we consider
batching mixes – i.e. ones that collect a batch of messages before processing them.
This is in contrast with continuous or synchronous mixes which process messages
individually and typically rely on a particular distribution of traffic (e.g. [KEB98]).

In the past, many anonymity systems have been concerned with protecting their
users against passive adversaries, either global or local, usually citing the n−1 attack
which we introduced in Section 2.3.5 as a vulnerability, with (quoting Berthold et al.
[BPS00]) “no general applicable method to prevent this attack”. In this chapter we
discuss ways of reducing this vulnerability. In particular, we consider the extent to
which the mixes are vulnerable to active attacks such as the n− 1 attack.

An active attack on a batching mix is usually mounted in the following way: the
adversary targeting a specific message going into a mix manipulates the messages
entering that mix so the only message unknown to him in the batch is the target
message [Cot94, GT96]. This manipulation may involve delaying or dropping most
or all other incoming messages (a trickle attack [GT96]), or flooding the batch with
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attacker messages (a flooding attack). We call these attacks or combinations of them
blending attacks.

We provide a rigorous analysis and comparison of several properties of each mix
variant, including anonymity, latency, and resistance to blending attacks. We also
give intuition and guidelines about which environments and circumstances are most
suitable for each mix variant.

4.1 Blending Attack Taxonomy

Here we consider a global active adversary (see Section 2.3.2) who is not only able to
see the traffic on all the links, but also to delay or insert arbitrarily many messages
in a short time. These are reasonable assumptions – methods of logging per-packet
data on high bandwidth links exist, as does the possibility of building fast hardware
to insert or delay messages. We further assume our attacker can send messages from
many different source addresses1. Any attempt to counter this – source authenti-
cation – would trivially defeat the very anonymity that free-route mix systems are
intended to protect. The active attacker’s threat comes from his power to log and
manipulate messages on the links.

Note that the global active attacker can be viewed as a combination of two separate
attackers: one who can only insert messages (global inserting attacker) and one who
can only delay messages (global delaying attacker). The latter is obviously easier to
implement.

It is well known that the ability to insert or delay messages may allow the attacker
to determine, for instance, the recipient of a particular message originating from
a sender. We illustrate this in the case of a single threshold n mix. The attack,
commonly referred to as the n−1 attack, proceeds as follows: The attacker observes
the target message leaving the sender heading towards the mix and delays it. He
now starts sending messages into the mix along with anyone else’s messages that
happen along until it fires. As soon as the mix fires, he stops all other messages
from entering the mix and sends in the target message along with n − 1 of his own
messages. After the mix fires, he can recognise each of the n− 1 messages of his own
when they leave the mix and can therefore determine the destination of the target
message. The same attack can be used against a mix cascade by mounting it against
the first mix, or against a mix network by repeating the attack for each of the mixes
on the path of the message in turn.

We now consider the properties of this attack before going on to examine how a
similar arrangement could work on other mixes.

1Indeed, infrastructures to ensure sender authentication have proved difficult to build.
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First of all, we note that the attack is exact – that is, it provides the adversary
with the ability to determine the receiver of a particular message with certainty 1
(the anonymity of a message passing through the mix is 0). We also note that this
attack does not depend on the rest of the mix network; that is, the attacker has
enough power to always isolate and trace a particular message. We call such an
attack certain.

We classify mixes into the following categories of vulnerability to blending attacks.

• If no blending attack can reduce the anonymity of any message at all, the mix
is strongly resistant to blending attacks.

• If no blending attack can reduce the anonymity of any message below a constant
k, then the mix has blending attack anonymity k.

• If the attacker can always reduce the anonymity of a message arbitrarily, but
never to 0, the mix is vulnerable to non-exact, uncertain blending attacks.

• If the attacker can always reduce the anonymity of a message to 0, but may
need to spend an arbitrary amount of resources (time/messages) to do so, the
mix is vulnerable to exact, uncertain attacks.

• If the attacker is always able to reduce the anonymity of a message to 0 in a
bounded amount of resources, it is vulnerable to exact certain attacks.

Although it may appear that the “vulnerability” of the mixes goes up as we go down
the list, this is not necessarily the case – it is important to consider the cost of the
attack as well. For example, suppose the anonymity of a message going through Mix
1 under active attack is proportional to the inverse of the cube of the number of
messages expended in the attack. This mix can be seen as “more vulnerable” than
Mix 2 which is always compromised by 106 attacker messages. Note that Mix 1 is
vulnerable only to non-exact blending attacks, while the Mix 2 is vulnerable to exact
certain attacks.

We will proceed to analyse and categorize several mixes. For each of them, we will
suggest their blending attack cost (both of time and number of messages it takes to
carry out) where necessary. Before doing so, there is a further interesting point to
consider – what aspects of the cost of the blending attack are important?

The cost in terms of attacker messages clearly correlates with the amount of pro-
cessing power the adversary has to expend to generate the attacker messages (each
message requires at least one public key encryption!2) and bandwidth in order to
send these messages.

The time taken to execute the attack is in some sense more important – it is also the

2Though messages can be precomputed.
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time for which all the other messages need to be prevented from entering the mix
which under attack. If this time is significant (i.e. not accountable for by network
delays), the attack becomes visible to the rest of the mix network. If such an attack is
detected, anonymity can be preserved by, for instance, manual intervention from the
mix operator to delete the messages inside the mix which is under attack. Although in
this case the target message does not reach its destination, its anonymity is certainly
not compromised and thus the active attack has failed. In summary, we want to
find mixes which require as many attacker messages and as much time to attack as
possible.

4.2 Simple Mixes

In this section we describe various mixes divided according to their flushing algo-
rithms which are sometimes known as batching strategies. In particular we set out,
for each mix type: the mix parameters, the flushing algorithm, the delay on messages
in normal operations (i.e. when not under attack), the minimum and maximum ano-
nymity provided against a purely passive adversary, analysis of the blending attacks
on the mix, and finally provide a discussion of the adversaries capable of performing
blending attacks. This section describes simple mixes, in which all of the messages
in the mix are sent each time it fires. The more complex pool mixes are discussed in
Section 4.3 below.

In describing the different mix flushing algorithms and working out their properties,
we make several assumptions:

• The mixes take a constant time to fire (send messages out).

• The mixes have limited physical memory and so can only contain a finite num-
ber of messages. Further, they have finite bandwidth, so can only receive a
certain number of messages in a given amount of time.

• Mixes prevent message replays.

• Messages may or may not arrive at a uniform rate.

• In calculating the minimum and maximum anonymity we assume the global
passive adversary. The vulnerability to the active attacker is described sepa-
rately.

• When we talk about anonymity, we mean sender anonymity of any of the mes-
sages at the current round. Similar ideas can be applied to receiver anonymity
as well.

• A mix can store a maximum of c messages.
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• Just as in Section 3.2.1, we assume that all the messages in the batch are from
different senders (and go to different receivers). This is done merely to be able
to fairly compare the mixes against each other.

• A message takes ε time to arrive or leave the mix.

• A mix takes a constant (µ) time to process each message (decrypt, reorder,
check for duplicates, etc).

• A mix only starts receiving messages only after it has sent on all the messages
from the previous round.

Note that in practice, these can be ignored as the time it takes a mix to process the
message is small compared to the inter-arrival time between messages.

4.2.1 Threshold Mix

Parameters: n, the threshold.

Flushing Algorithm: When the mix collects n messages, it fires (flushing all n).

Message Delay: The minimum delay is ε + µ (the target message arrives when
there are n − 1 messages already in the mix and leaves first). The maximum delay
can be infinite (the target arrives at a mix and no more ever arrive). Assuming a
rate of arrival of messages r, the expected delay of a message is: n−1

2r .

Anonymity: For completeness, let is derive the anonymity of the threshold mix.
Consider one round where the messages arrived to the mix directly from n different
senders {s, s′, s′′, . . .}. Take a message M and consider the probability it arrived from
the various senders. Clearly, ∀s.P (s = M) = 1

n .

Hence the anonymity of the mix is:

−
∑

n

1

n
log2

1

n
= − log2

1

n
= log2 n

Blending Attack Behaviour: The attack is exact and certain; it proceeds as
outlined in Section 4.1 and is usually referred to as the n− 1 or the flooding attack.
It takes a maximum of (4n − 1)ε + 2nµ time to insert the required messages and
for the two firings of the mix to happen. The attack takes a minimum of n − 1
messages (the attacker waits until the mix is empty, forwards the target message to
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the mix along with n−1 attacker messages to flush it out) and a maximum of 2n−2
messages. (the attacker does not wait for the mix to become empty).

Adversaries: The above attack seemingly requires both the global delaying at-
tacker capabilities and the global inserting attacker capabilities. However, this is not
necessarily so. If the global inserting attacker is able to insert n− 1 of his own mes-
sages between each of the “good” messages going into a mix, he effectively mounts
an n− 1 attack on each of them.

Another possible attack scenario is when an attacker owns a mix in a free route mix
network. He has the capability to delay all the messages going through this mix until
the conditions are “just right”, i.e. the next mix (on the path of a message) contains
n − 1 of the attacker’s messages and will fire as soon as the target message reaches
it. Thus, he has the capability to attack the next mix in the route of each of the
messages going through the mix he controls. As a result, if the attacker owns all the
mixes but one, he is able to compromise the anonymity of any message.

4.2.2 Timed Mix

Parameters: t, the period.

Flushing Algorithm: The mix fires (flushing all the messages) every t seconds.

Message Delay: The minimum delay is ε + µ, which occurs, for instance, if the
message is the only one in the mix and arrives just before the mix is due to fire.
The maximum delay is t+ c(ε+ µ), which is the case when the message arrives just
after the firing, then the mix is filled to capacity by other messages, and the target
message is the last to leave. The mean delay, assuming a constant rate of arrivals of
messages, is t

2 + rt(ε+ µ), but is likely to be dominated by t
2 .

Anonymity: The minimum anonymity is 0 – one message arrives during the entire
time period. The maximum anonymity is theoretically infinite, but in practice is
limited by the capacity of the mix. The mean anonymity set size (assuming a rate
of arrival of r messages/s) is rt.

Note that the threshold and timed mixes are in some sense dual. If the goal of the
anonymity system is to guarantee anonymity at the expense of fast message delivery,
threshold mixes are good. (This is the scenario of a spy in a hostile country – if the
anonymity is compromised, the spy is caught.) On the other hand, if timeliness of
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message delivery is crucial and anonymity is a bonus, the timed mix is ideal. Notice
that if the messages are assumed to arrive at a constant rate, the properties of these
mixes are exactly equivalent.

Blending Attack Behaviour: The attack is exact and certain and proceeds as
follows: The adversary delays the target message for a maximum of t until the mix
fires. He then delivers the target message and blocks all other incoming messages.
After another t seconds the mix fires again producing the target message on its own.
This takes a maximum3 of 2t+ cµ+ ε+ µ and a minimum of 2ε+ µ seconds (when
the mix was empty and about to fire), and 0 messages. The attack is usually referred
to as the trickle attack.

Adversaries: This attack does not require any insertion of messages, so the global
delaying attacker is sufficient. We also note that this “attack” can happen naturally
in low traffic conditions, so a dishonest mix may be able to attack the next hop of a
message simply by holding it until the next hop is empty and about to fire.

4.2.3 Threshold-Or-Timed Mix

Parameters: n, the threshold; t, the period.

Flushing Algorithm: The mix fires (flushing all messages) every t seconds or
when n messages accumulate in the mix, whichever comes sooner.

Message Delay: The maximum message delay is t + n(ε + µ), the minimum is
ε+ µ.

Anonymity: The minimum anonymity is 0 – one message arrives during the entire
time period. The maximum anonymity set size is n.

Blending Attack Behaviour: This design exhibits the worst case behaviour of
both the threshold and the timed mixes (and hence is exact and certain). The
adversary can choose to perform a trickle attack, a flood attack, or a mixture of the
two depending on whether he prefers to wait or send messages. The attack can be

3This happens when the mix was full to capacity at the start of the attack, cε seconds after the
last firing.
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performed in a minimum of 0 messages in somewhere between 2ε+µ and 2(t+ ε+µ)
seconds or with a maximum of 2n− 2 messages, in a maximum of n(2ε+µ) seconds.

Adversaries: This attack can be performed by either the global inserting or the
global delaying attacker.

4.2.4 Threshold-And-Timed Mix

Parameters: n, the threshold; t, the period.

Flushing Algorithm: A mix fires (flushing all messages) every t seconds but only
when at least n messages have accumulated in the mix.

Message Delay: The minimum delay is n(ε+µ), and there is no maximum delay.

Anonymity: The minimum anonymity of this mix is n. The maximum anonymity
is in theory infinite, but is limited in practice by the number of messages the mix
can hold.

Blending Attack Behaviour: The n − 1 attack is still exact and certain and
uses a combination of the attacks on the threshold and the timed mixes. It takes a
maximum of cµ+2t+n(ε+µ) and a minimum of n(2ε+µ) seconds; and a maximum
of 2(n− 1) and a minimum of n− 1 messages.

Adversaries: It is clear that to mount an attack on this mix, the attacker has to
have the capability both to delay and to insert messages.

4.3 Pool Mixes

The active attacks on all of the mixes described in the previous section are not only
exact and certain, but also low-cost. We now examine pool mixes, which give the
adversary only an uncertain attack, and substantially increase the cost of it.

4.3.1 Threshold Pool Mix

Parameters: n, the threshold; p, the pool size.
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Flushing Algorithm: The mix fires when n+ p messages accumulate in the mix.
A pool of p messages, chosen uniformly at random from all the messages, is retained
in the mix. (Consider these messages as feedback into the mix.) The other n are
forwarded on. Note that the threshold is the threshold of messages that must be
received to fire again during ongoing operation. For pool mixes this is distinct from
the ‘threshold’ of messages to fire when the mix is completely empty, i.e. n + p for
the threshold pool mix being described.

Message Delay: The minimum delay is ε+µ, the maximum delay is infinite since
until n new messages arrive, the mix does not fire. Note, however, that even if there
is a constant flow of messages and the mix is firing periodically, there is still a small
but non-zero probability of a message remaining in the mix for an arbitrarily long
time. The mean delay is 1 + p

n rounds. If the messages arrive at a rate of r per
second, then the mean delay is (1 + p

n)nr seconds.

Anonymity: Here we have to resort to the information theoretic definition of an-
onymity described in Chapter 3 rather than the standard set-based definition, since
the probabilities of the senders (receivers) sending (receiving) the message are un-
equal. Note also that the anonymity of the message going through a mix depends
on the entire history of events that have happened in this mix. Thus, we achieve the
maximum anonymity Emax when all of the messages that have ever passed through
the mix come from different senders. We have already seen this analysis in Chapter 3,
the result is given here merely for completeness.

Emax =
(

1 +
p

n

)
log2 (n+ p)− p

n
log2 p

Of course, we can compare the anonymity above to that of the other mixes by
recalling that the effective anonymity set size is given by 2Emax .

The concept of minimum anonymity in pool mixes is slightly more elusive. In the
threshold mix case we assumed that all the messages in the batch come from different
senders. Under this assumption, regardless of previous history, the minimum sender
anonymity of a threshold pool mix is at least log2 n, and therefore no worse than that
of a corresponding threshold mix. Indeed, unless the attacker is able to deduce that
the pool contains no honest messages at the start of the current round (and all the
messages in the current round come from different senders), the sender anonymity
of any message in this round is necessarily greater than log2 n. A similar statement
holds for receiver anonymity: unless the attacker is able to deduce that the pool
contains no honest messages at the end of the current round (and all the messages
in the current round go to different receivers), the sender anonymity of any message
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in this round is necessarily greater than log2 n. Thus the minimum anonymity of a
threshold n pool mix is at least as high as that of a simple threshold n mix.

Blending Attack Behaviour: In general, the blending attack has two phases:
flushing the mix so that no good messages remain inside it, then submitting the
target message and flushing it out onto the network. With simple mixes, one flush was
sufficient for each phase. With pool mixes, this is no longer the case. Furthermore,
there is now a small but non-zero probability that a given message (e.g. the target
message) remains in the mix for an arbitrary length of time. The attack ceases to
be certain. It proceeds as follows:

The attacker delays the target message, fills up the pool mix and flushes it. If j of
the attacker messages do not come out, he knows that p − j good messages remain
inside the pool mix. He now delays all the incoming messages and tries to flush the
remaining good messages out of the mix (he can distinguish them as they come out).
Of course, this is likely to take more messages than to flush out a threshold mix (see
below for details), but the attack is still exact (because if/when the attacker succeeds
in getting all the messages to leave the mix, he knows he has done so). When all
good messages have been flushed, he just sends in the target message, and flushes
the mix as before until the target message comes out. Because the attacker may need
to spend an arbitrary amount of resource to flush out the mix completely or to flush
out the target message, the attack is uncertain.

Analysis: The threshold pool mix cannot always be flushed of good messages in
one round. In particular, if at the time of flushing there are fewer attacker messages
than there are good messages inside the mix, then at least one good message will
remain inside it. We assume that when the adversary starts the attack, all the
messages in the pool are good messages. Hence, any threshold pool mix with p > n
is impossible to empty of good messages in one round.

For our analysis of blending attacks we consider a pool mix with parameters n, p
with G good messages in it being attacked with N bad messages and calculate the
probability of k good messages coming out (k ≤ G) in one round:

(
G
k

)(
N

n− k

)

(
n+ p
n

)

An important special case is when k = G, i.e. all the good messages leave the mix in
one round.
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The probability of this happening is:

(
N

n− k

)

(
n+ p
n

) =
N !n!

(n−G)!(n+ p)!

Example 1 Consider a pool mix with a threshold of 80 and a pool of 20 messages.
The average delay of a message through this mix is 1.25 rounds. Assuming the
attacker targets a mix with 20 good messages in it, the probability of flushing the mix
in one round is 0.0066.

We wish to calculate the probability of the attacker emptying the mix in ρ rounds.
Clearly, given the opportunity to try to empty the mix with p good messages in it
for ρ rounds, the attacker will send n of his own messages to the mix during each
round. If the attacker succeeds, then there will be no good messages in the mix after
round ρ. However, this may happen in many ways: all the good messages might
leave during the first round, or stay in the mix until round k and leave then, or leave
a few per round. The probabilities of each of these happening are different. Hence,
we need to calculate all the possible ways the good messages will leave the mix, then
calculate the probability of each of these scenarios happening, and then add up the
probabilities. We illustrate this with a simple example.

Suppose the threshold pool mix with parameters n, p has one good message inside it
and we wish to find the probability of the attacker getting it to leave the mix in three
rounds. There are three possible ways this can happen; these can be represented by
[1, 0, 0], [0, 1, 0], [0, 0, 1] where the list [1, 0, 0] represents one good message leaving
during the first round and none during the second and the third. The formula
above allows us to calculate the probability (taking the first example) that one good
message leaves the mix which contains only that one good message (and n+p−1 bad
ones). Hence, to calculate the probability of a scenario like [1, 0, 0] happening, we
calculate the probability of each of the rounds happening using the formula above
and multiply the probabilities together. We now add the probabilities of each of
the scenarios happening to get the probability of a mix being emptied in ρ rounds.
Naturally, there are far too many scenarios to do so by hand, so we wrote a program
in Haskell [PJH+99] to help us. The program enables us to analyse scenarios such
as the following:

Example 2 Consider a threshold pool mix with a threshold of 20 and a pool of 10
messages. The mean delay of this mix is 1.5 rounds and the anonymity (entropy) is
5.70. When the adversary begins his attack, there are 10 good messages in it. The
probability of the attacker emptying this mix in 5 rounds is 0.96. This attack requires
100 attacker messages and 100(ε+ µ) time.
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A threshold mix with the same mean delay (assuming a uniform rate of arrivals) has
n = 30, and therefore anonymity of 4.91. Naturally, it can be emptied of good mes-
sages with no more than 29 attacker messages. Note that both the extra anonymity
and the extra blending attack resistance come from the fact that the variance on the
delay of the pool mix is greater than that of the threshold mix – after all, all the
messages of a threshold mix have the delay of one round.

Thus, the use of a threshold pool mix in an anonymity system not only makes the
n − 1 attack uncertain, but also much more expensive (than the threshold mix) in
terms of the number of attacker messages which need to be inserted to perform the
attack successfully. Note, however, that the attack can still be carried out quickly –
it is merely the time it takes for the mix to process the messages employed in the
attack.

A variety of results about how the threshold, the pool and the number of rounds
affects the probability of the attacker emptying the mix can be calculated similarly.
We do not present these here, as we believe that these are not important enough to
warrant a detailed investigation. Similarly, the techniques outlined here enable us to
perform a number of comparisons between the various mixes. We do not carry out
such a study because it will inevitably draw far reaching conclusions while relying
on particular assumptions about the distribution of message arrivals. Such a study
can only be carried out in the context of a real anonymity system, for which message
arrival distributions are known. Instead, we go on to highlight the blending attack
properties of other mixes.

4.3.2 Timed Pool Mix

Parameters: t, the period; p, the pool.

Flushing Algorithm: The mix fires every t seconds. A pool of p messages chosen
uniformly at random is retained in the mix. The others are forwarded on. If p or
fewer messages are in the mix, it does not fire. (Thus, strictly speaking, this is a
threshold and timed pool mix, for which the threshold is zero.)

Message Delay: The minimum message delay is ε, and there is no maximum delay
(if no messages arrive, the messages that are in the pool will never leave the mix). As
in the case of the threshold pool mix, there is again a small but non-zero probability
that any given message could remain in the mix for an arbitrarily long time even if
there are messages flowing through the mix.
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Blending Attack Behaviour: Two flavours of blending attack are possible on
this mix. The adversary has no control over when the mix fires, but he can choose
to add many or just a few messages to each batch. (He prevents all other messages
from reaching the mix).

By adding as many messages as possible in one round, he maximizes the probability
that after one flush only the attacker messages will be left in the pool. He knows that
he has succeeded if p of his messages do not come out with the flush. This approach
is very inefficient in terms of the number of messages added by the attacker, N , since
the probability of flushing the mix by this method is 4

N !N !

(N −G)!(N + p)!

However, this aims to flush the good messages out of the mix in one round, and
therefore a maximum of t+N(ε+ µ) seconds.

Example 3 Consider a timed pool mix with a pool of 5 messages. The probability
of flushing the mix in a single round by adding 90 messages is 0.76.

Alternatively, the attacker can add just one message to each round for many rounds.
This is very efficient in the number of messages N (indeed, this attack is much more
efficient than the one on the threshold pool mix in terms of messages, but clearly not
in terms of time). However, this approach delays all the messages to the mix by at
least tN seconds, which is highly observable to the users of the anonymity system.
The probability of flushing the mix using this scheme can be calculated using the
same method we used for the threshold pool mix (and the same Haskell program).

Example 4 The timed mix with a pool of 5 messages can be attacked by adding a
single message at each round. After 10 rounds the probability of having flushed all
the messages out is 0.36.

The attacker can choose either or a combination of these approaches, based on
whether he can send out many messages or delay messages to a mix for a long
time. As argued previously, the attacker will probably choose the former attack in
order to remain unobservable.

Minimum and Maximum Anonymity: The timed nature of this mix allows an
arbitrarily large number (only limited by the memory and bandwidth capacity of the
mix) of messages to be mixed together. If we assume a constant rate r of message
arrivals, the anonymity provided by this mix must be calculated in just the same

4As previously mentioned, in practice there is an upper limit on N due to the finite memory
capacity of the mix.
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way as for the threshold case (if all the messages come from different senders). To
be more precise, the anonymity of the timed pool mix is the same as the anonymity
for the threshold pool mix with the same pool, and taking n = rt.

The minimum anonymity of a timed pool p mix (recall that in our analysis of the
threshold pool mix we argued that the lowest possible anonymity coming just from
the last batch of messages can be seen as the minimum anonymity of the mix) is 0,
and therefore clearly smaller than that of a threshold pool p mix. The maximum
anonymity is, in theory, infinite, in practice it is limited by the capacity of the mix.
If the capacity of the mix is c, then the maximum anonymity of it is (at each round
c messages arrive from different senders):

Emax =

(
1 +

p

c− p

)
log2 c−

p

c− p log2 p

If we do not assume a constant rate of message arrivals, then the anonymity of a
message going through this mix depends on the messages which have arrived at this
mix previously. Similarly to the threshold pool mix case, the total number (and
the senders) of messages which have passed through it is important. However, here
the number of messages which have arrived during each round is also important –
there is a difference between all the messages having arrived during one round vs
the same number of messages having arrived during different rounds. Hence, if we
have a history of the mix (a record of its operation ever since it was started), we can
calculate the anonymity of the timed pool mix for that particular case. The history
of a mix includes the senders of each message and the number of messages that got
mixed together in each batch.

Anonymity of the Timed Pool Mix – the General Case First of all, assume
that all messages arrive at the pool mix directly from senders. Furthermore, for the
purposes of comparison, assume that the senders of all the messages are distinct.

We will proceed as follows: first, we consider a message inside the mix at round k (we
do not care whether this message leaves the mix or not) and calculate the probabilities
that it had been sent by each of the senders who sent a message at round j, j < k. We
will then have a probability distribution of senders who could have sent the message.
Taking the entropy,

∑
p log2 p, of this probability distribution, will give the sender

anonymity.

We have already used this method to analyse the threshold pool mix in Chapter 3.
However, the difference between the threshold pool mix and the timed pool mix is
that in the former case the number of messages arriving at every round is the same
(the threshold, n), while in the latter case it varies.
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Given the mix at round k and a history of the numbers of messages which arrived at
the mix during each of the rounds [N1, . . . , Nk], let us calculate the probability of a
message from rounds 1 . . . k still being in the mix.

The probability that a particular message that is in the mix at round k has entered
the mix at round k is:

pk =
Nk

Nk + p

Thus, a sender who sent a message at round k (there were Nk of them) was the
sender of this message with probability:

p(s,k) =
1

Nk + p

Similarly, the probability that a message that is in the mix at round k has entered
the mix at round k − 1 is:

pk−1 =
p

Nk + p

(
Nk−1

Nk−1 + p

)

and the probability that a particular sender at round k − 1 sent this message is:

pk−1 =
p

Nk + p

(
1

Nk−1 + p

)

If the message was in the mix before the first flush (round zero), the probability of
it staying until round k is:

p0 =
k∏

i=1

(
n

Ni + p

)

Of course, if the message came from round zero, then it must have been “sent” by
the mix itself (recall this is the way a pool mix starts operating).

Hence, the sender anonymity probability distribution for a message which exited the
mix at round k is:

p(s,0) =
k∏

i=1

p

Ni + p
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p(s,x) =
1

Nx + p

k∏

i=x+1

p

Ni + p

p(s,k) =
1

Nk + p

where 0 < x < k.

Now we can calculate the entropy of the probability distribution (note that there is
only one sender at round zero and Ni senders at round i).

Ek = − Nk

Nk + p
log2

1

Nk + p
−
(

k∏

i=1

p

Ni + p

)
log2

(
k∏

i=1

p

Ni + p

)
+

−
k−1∑

x=1

(
Nx

Nx + p

(
k∏

i=x+1

p

Ni + p

)
log2

(
1

Nx + p

k∏

i=x+1

p

Ni + p

))

At this point it may be helpful to refer back to Section 3.4 and observe how the
above expression resembles the one for anonymity of the threshold pool mix.

An Alternative Method We can also derive the anonymity of a timed pool mix
in a different way. This has largely been the work of other people, and is presented
here briefly merely to show that the method above has been verified by other means
and for completeness. It is based on the formula for composition of mixes introduced
by George Danezis in Section 3.2 of [SD02], and has been suggested by Richard
Newman as a different way of analysing the threshold pool mix.

When Richard Newman proposed this alternative method for analysing the threshold
pool mix, it was not clear that the results obtained using this method and the method
presented in Section 3.4 were the same. I proceeded to show that they were, and
apply this method to the timed pool mix (as presented below). Unfortunately, we
have not been able to prove analytically that the two methods give the same results
for the timed pool mix, but the results coming from implementing the two methods
suggest that they are consistent. The method proposed by Newman is roughly as
follows (the reader will need to refer back to [SD02]):

In Section 3.2 of [SD02] the formula for composition of mixes was presented:

Stotal = Ssec +
∑

0<i<l

piSi
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Intuitively, this says that the anonymity of a message in the mix is the inherent
entropy of the mix (Emix) plus the mean anonymity of all the messages inside the
mix.

We can use this formula in the following way. Consider the mix at round i. It has,
essentially, 2 inputs: messages from round i−1 and messages from the senders. There
are p messages from round i − 1 and they have entropy Ei−1, (E0 = 0). There are
Ni messages from the senders, each having entropy zero. We now separate out the
mixing of the Ni user messages together into a separate mix. Consider the pool mix
at round k as two mixes: a threshold mix which mixes the user messages together
and then another threshold mix which mixes the p messages from the previous round
with the Ni messages from first mix. It is trivial to see that the first threshold mix
produces Ni outputs, each with an entropy of log2(Ni).

A message coming out of the second mix could have come from two places: from the
previous round (call the probability of this pi) or from the first mix. So,

pi = p
Ni+p

and 1− pi = Ni
Ni+p

Then, the inherent entropy of the second mix at round i is

Eimix = −pi log2 pi − (1− pi) log2(1− pi)

Using the above formula we can now obtain the anonymity of a timed pool mix after
r rounds (it is the entropy of the second mix plus the mean of the entropy of messages
from the previous round and the entropy of the Ni messages from the first mix):

Ek = Ekmix + pkEk−1 − (1− pk) log2Nk

This can be expanded as:

Ek = Ekmix − (1− pk) log2Nk +
k−1∑

x=1

Exmix

k∏

i=x+1

pi −
k∑

x=1

(1− px) log2Nx

k∏

i=x+1

pi

It is important to notice that to calculate the anonymity of a timed pool mix (using
either method), we need to know the number of messages that had arrived at the
mix during each of the previous rounds.

Now suppose we wish to analyse the anonymity of a timed pool mix at round K.
It is clear that messages which have passed through the mix a long time ago will
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not contribute much to the current anonymity.5 Thus, we can approximate the total
anonymity by supposing that only the last k′ of the K rounds contribute to the
anonymity.

Suppose that message inter-arrival times during time period T follow some proba-
bility distribution (an exponential distribution, for example) and that N messages
arrive in total. Furthermore, take T to be some multiple of t, the time parameter
of the mix, so that the N messages arrive over k′ = T

t rounds. Now we can simply
enumerate all the possible ways (we call these histories) that N messages can arrive
in k′ rounds, and calculate the probability of each one. Now all that is left to do is to
calculate the anonymity of each one of the histories, the probability of each history
occurring given the exponential (or in fact any other) distribution and compute the
mean anonymity.

Implementation and Results This calculation is far too tedious to do by hand,
so a short program was written in Haskell [PJH+99] to enumerate all the possible
histories, calculate their probabilities using an exponential distribution and deter-
mine the anonymity of the pool mix. The program calculates anonymity using the
two methods presented earlier and gives the same results in each of our test cases.
This leads us to believe that the two methods are indeed consistent with each other.

Note that this approach is not as precise as the one used for the threshold pool mix
– we were unable to come up with a closed form for the anonymity of a timed pool
mix as the number of rounds grows large. However, we consider the method used
above satisfactory and practical.

The program enables a comparison with a threshold pool mix, for which we take the
same scenario and calculate its anonymity after r rounds.

We performed the comparison in the following settings: we took a timed pool mix
with a period of 1 minute and a pool of 2 messages over 5 rounds with 10 messages
arriving to it during these 5 rounds. The mean inter-arrival time for the Poisson
process was taken to be 1 message/min.

We then compared it to a threshold pool mix with the same volume of traffic flowing
through it over 5 rounds. We took the threshold to be 2 messages. Note that this
corresponds to the anonymity of the timed mix when the history of the timed mix
is [2, 2, 2, 2, 2]. The anonymity of the threshold pool mix was 2.91 bits, whilst the
anonymity of the timed pool mix was 3.012 bits. If we model the arrival of messages
using a zipf distribution, the anonymity of the timed pool mix is 3.07 bits.

5Implementors of mixes have also suggested that including a timeout clause such as “message
should not be delayed for more than 10 rounds” would make them feel more comfortable.
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We do not currently wish to make any general claims about the anonymity of timed
mixes versus threshold mixes. Such a statement would be much more a product of
the various assumptions we have made than the batching strategies themselves. In
particular, as we have seen above, the probability distribution of message arrivals to
the mix is an important factor. Also, we have measured the anonymity of the timed
pool mix as the anonymity of the message passing through it after the particular
history has happened. Perhaps if we measure it as the average anonymity of each
message over the whole history, the results will favour the threshold pool mix. Finally,
a rigorous comparison of the two mixes would also have to take account of the average
delay of the messages through the two mixes, and possibly other factors. Here we
merely illustrate that the method which we use to work out the anonymity of a timed
mix is powerful enough to enable such a comparison.

4.3.3 Timed Dynamic-Pool Mix (Cottrell Mix)

Parameters: t, the period; pmin the minimum pool; frac, the fraction of messages
to be sent; n, the threshold

Flushing Algorithm: The mix fires every t seconds, provided there are n+ pmin

messages in the mix. We call the actual number of messages in the mix at the time
of firing m,(m−pmin ≥ n). Instead of sending m−pmin messages (as in a timed-and-
threshold constant-pool mix), the mix sends the greater of 1 and b(m− pmin) ∗ fracc
messages, and retains the rest in the pool.

If n = 1, this is the mix that has been used in the Mixmaster remailer system for
years [Cot02, Cot94].

When messages arrive at a constant rate of one per t, Cottrell mixes are equivalent to
both timed pool mixes and threshold-1 constant-pool mixes. Specifically, if the rate
r of message arrival is 1/t, the mix will forward 1 message in every period and retain
pmin in the pool. For a general Cottrell mix, if the messages arrive at a constant rate
of n ∗ frac/t and dn ∗ frace = n ∗ frac, then this is equivalent to a constant-pool mix
with a pool of pmin + n(1− frac) (and threshold n ∗ frac).

Message Delay: As with the other pool mixes, the minimum delay is ε, and there
is no upper limit on the delay. The mean delay depends on the future rate of arrival
of messages into the mix; it is at least as big as that of a timed constant-pool mix
with the same pool size.
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Anonymity: The dynamic-pool mix has identical minimum and maximum ano-
nymity properties to a timed constant-pool mix. We could similarly use a record of
the mix’s activity to calculate the anonymity of a message passing through it (al-
though the calculation would be slightly different). Qualitatively, we may note that
the anonymity provided by the mix would be higher than that provided by a timed
constant-pool mix: As the number of messages in the mix goes up, frac keeps the
chance of the message remaining in the mix constant, whereas it decreases in the
case of the timed constant-pool mix. Naturally, the extra anonymity comes from the
extra message delay.

Blending Attack Behaviour: The introduction of the dynamic parameter frac
has several new consequences compared to the timed constant-pool mix.

Firstly, the maximum probability of a particular message exiting the mix in a single
round does not asymptotically approach 1 as the number of messages goes up, instead
it approaches frac. Hence, even if the attacker sends in a large number of his messages
to the mix, the probability of flushing G good messages out of it in one round is fracG.

Therefore there is no possibility of flushing the mix with high probability in one flush:
the first of the two blending attacks on timed constant-pool mixes is blocked. As
already noted, it is similarly more resistant to flooding than a constant-pool threshold
mix.

Secondly, the attacker has to find out how many messages are in the mix. Of course,
the number of good messages in the mix is easy to calculate from the number of
messages that come out.

Finally, the number of messages inside the pool mix may be arbitrarily high and
cannot be reduced to below pmin in one round. Therefore, if we wish to send a
message that is harder for the active attacker to track, we should send it at a time of
higher traffic – thereby increasing the cost (in terms of messages or time) of attempted
attacks on it.6

Thus timed dynamic-pool mixes require the attacker to delay all the traffic to the
mix for a substantial number of rounds, and therefore for a substantial time. Again,
our Haskell program allows us to compute the probability of the attacker emptying
the mix in a variety of scenarios:

This example shows that the protection this mix provides against blending attacks
is still not very strong. Indeed, as the number of messages inserted by the attacker
at each round goes up, the probability of a successful attack tends to ((1− frac)k)G

where k is the number of rounds. Ideally we would like a mix for which the anonymity

6Unfortunately, an attacker capable of arbitrary message insertions, as we have been assuming,
will make it hard to determine times of higher legitimate traffic.
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Messages Rounds Probability of Success

30 3 0.14

60 3 0.28

300 3 0.46

600 3 0.48

30 5 0.474

60 5 0.66

300 5 0.82

600 5 0.84

30 7 0.73

60 7 0.87

300 7 0.95

600 7 0.95

Table 4.1: Emptying the Cottrell Mix

does not go to 0 even as the cost of the attack goes up. We would also be happier
with a mix where the probability of a successful attack is proportional to 1

P (k) where
P is a polynomial of a small degree.

4.4 Related Work

There are relatively few attempts to deal with active attacks in the literature. First
and foremost, Kesdogan proposes two schemes for dealing with such attacks in
[KEB98]. We look at these in more detail.

4.4.1 Limitations of Stop-and-Go Mixes

The first of the proposals outlined in [KEB98] is a scheme for an anonymity system
based on a mix cascade that requires authentication. This is based on a stronger
assumption – that the attacker cannot mount a distributed n − 1 attack where the
hostile messages come from different users. Unfortunately, it seems very hard to
re-use this idea in free route networks: since there is no centralized input location
at which we can do authentication, compromised mixes could claim to have done
authentication on traffic they instead generate themselves.

The second scheme, Stop-and-Go mixes, involves the sender estimating a time win-
dow during which the message is allowed to arrive at each of the mixes making up
the route of the message. If the message arrives during that time period it will be
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forwarded on; otherwise it will be discarded. Therefore the attacker’s ability to delay
messages is much more limited, so active attacks are harder. The attack is uncertain,
and the authors argue that the probability of executing the attack successfully is very
low.

However, the scheme relies on the users being able to accurately calculate a security
parameter that depends on their estimate of the rate of arrival of messages to the
mixes that the target message will go through at the time it will travel through them.
In other words, the users need to be able to predict the traffic levels in the system
in the future to remain anonymous. This is likely to be exploited by the attacker
(the exact details depend, of course, on how the security parameter is calculated).
Furthermore, an active attacker is able to arbitrarily affect the levels of traffic in the
mixes which the target message goes through.

Thus, we defer the evaluation of Stop-and-Go mixes to future work as the precise
details of parts of the protocol, crucial to the security of the system, have not yet
been specified.

4.4.2 Other Work on Batching Mixes

Mixes have been studied fairly extensively in the literature. Chaum proposed the
threshold mix. The pool mixes were described by Cottrell in [Cot94]; in particular, he
describes the threshold pool, the timed pool and the Cottrell mixes. The last was the
mix used in the Mixmaster system for a long time. There is an interesting discussion
of the anonymity provided by two types of mixes in the Babel paper [GT96]. They
do not use an information theoretic metric of anonymity, nor do they analyse the
same mixes (their mix is a variant of a pool mix where a message is never delayed for
more than one round), but this work is one of the earliest attempts at quantitatively
analysing anonymity of different mixes.

A substantial account of the functionality of batching mixes is given in Jerichow’s
PhD thesis [Jer00]. She outlines very strong requirements on the mixes, essentially
adopting the active attacker with many compromised mixes model. She then pro-
ceeds to analyse the extent to which we can protect against the n− 1 attack, inves-
tigating a broad range of attacks and prevention measures. However, the study is
broad and very often open-ended with little in the way of concrete results (e.g. on
page 121 the author claims that in pool mixes “the size of the anonymity set becomes
bigger”).

There is another strand of research devoted to mixes. This is a collection of papers
(see [Jak99, OA00, DK00, FS01, Nef01, NSN03, Möl03, Abe98]) which focuses on
designing mixes which provide strong properties like verifiability. Such properties
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are useful in applications like electronic voting where it is extremely important that
every message gets to its “destination”.

One new strand of research shows that bitwise unlinkability does not have to be
achieved by public key decryption as in the original scheme by Chaum. Instead,
re-encryption can be used (using, for example the El-Gamal public key encryption
[ElG85]). Traditional re-encryption requires the mixes to possess a public key for
the message in order to re-encrypt it. A more recent scheme, universal re-encryption
[GJJS, Dan03a, GJ03] can be used to allow mixes to provide bitwise unlinkability
without knowledge of a public key. Unfortunately, mixes must provide other proper-
ties, e.g. resistance to tagging attacks and replay prevention. Universal re-encryption
does not support these naturally, and this currently renders anonymity system de-
signs based on them impractical or simply insecure. Nevertheless, we feel that this is
an important research area which is likely to provide interesting results in the future.

4.4.3 Deployed Mixes

The analysis we have presented in this chapter has been very much from a theoretical
point of view, but the mixes which we have described are used in practice.

In particular, the Mixmaster system uses the Cottrell mix. The period of the mix is
set by the remailer operator and so many mixes operate with different parameters.
Typically, the period is between 5 and 30 minutes. Similarly, the number of messages
arriving at a mix per round varies between zero and around a hundred messages.
This is part of the reason for including the minimum and the maximum anonymity
properties of mixes in this chapter and not relying on assumptions about distribution
of traffic. Rigorous analysis of the performance of the various mixes under realistic
traffic is future work.

4.5 Summary

The main contribution of this chapter is the comparison of the blending attack be-
haviour of the different mixes. The results are summarised in Table 4.5.

Several things ought to be noted. Firstly, two different blending attacks are possible
on the Threshold or Timed mix and on the Timed Pool mix; we presented the results
for the attack which takes less time and is therefore less observable, although more
expensive in the number of attacker messages. Secondly, the probability of success
is equal to ((1 − frac)k)G only when N = ∞, i.e. an infinite number of attacker
messages per round are sent to the mix. When a finite number of messages is sent,
the probability of success is lower; see Section 4.3.3. Also, the attacks on the timed
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Cost of Blending attack

Time Messages
Prob. of success

Threshold (4n− 1)ε+ 2nµ n 1

Timed 2t+ (c+ 1)µ+ ε 0 1
Simple

Thresh. or Time n(2ε+ µ) n 1

Thresh. & Time cµ+ 2t+ n(ε+ µ) n 1

Threshold λ(ε+ µ) > n See 4.3.1

Pool Timed 2t+ λ′(ε+ µ) N N !N !
(N−G)!(N+p)!

Cottrell (k + 1)t+ λ′′(ε+ µ) (k + 1)N ((1− frac)k)G ≤
n threshold
t period
p pool
N number of attacker messages
G number of good messages
k number of rounds the attack lasts
λ,λ′,λ′′, constant factors

Table 4.2: Summary of blending attack properties of various mixes.

pool mixes are calculated for the case when N � G, if this is not true the attack
might take an extra round, t seconds (+ constant factor for message processing).
Finally, we did not include the precise numbers for the time needed for processing
of messages as the duration of the attack is dominated by the number of periods t it
takes.

In addition to providing the blending attack properties of the mixes, we provided de-
scriptions of them and considered their anonymity and delay. We have also proposed
a new method of working out the anonymity of timed pool mixes along with an im-
plementation of this method. We do not provide a full comparison as the anonymity
of the timed mixes depends heavily on the patterns of message arrivals to them.

We concluded that the timed dynamic pool mix provides a reasonable resistance to
blending attacks, both in terms of the number of attacker messages required and
the time the mix has to be isolated from the rest of the network in order to get a
reasonable probability of a successful attack. In addition, we provided commentary
on the popular continuous mix, the Stop-and-Go mix, and on its blending attack
properties.
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Chapter 5

Generalising Mixes and the
Binomial Mix

“When one cannot invent, one must at least improve.”
— fortune cookie

In this chapter we continue looking at batching mixes, proposing a common frame-
work for expressing them. This leads us to a design of yet another mix with an
interesting property – it hides the number of messages inside it from the attacker.
This chapter concludes our study of single mixes. In Chapter 6 we go on to examine
mix networks as a single entity and try to formalise some of their properties.

5.1 Expressing Mixes as Functions

In the process of analysing individual batching mixes in the previous chapter it
became clear that they all contain some common features. Their flushing algorithm,
which determines the time when flushing happens and how many messages are sent
out, depends on two factors: the time that has passed since the last flushing and the
number of messages inside the mix. Naturally, this influences both the anonymity
and the message delay properties of the mix. In existing literature the batching
strategy is often expressed by giving the algorithm for collecting messages together
and forwarding them on to the next hop. This is cumbersome and, although it
corresponds well to the implementor’s view of the mix, it does not isolate the details
important for the analysis of the mix well at all. Instead, we propose a simple
formalism for expressing mixes which also allows quick (qualitative) comparison.

We express the batching strategy of mixes as functions P : N → [0, 1] from the
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number of messages inside the mix (m) to the fraction of messages to be sent to
their next hop. Examining the graph of such a function is a very nice way to gain
the intuition behind the operations of a mix. We also need to specify when the
mix flushes, hence we include a parameter t which specifies how often the batching
strategy is executed. For timed mixes, this is the time between flushes (known as
the period, t). For threshold mixes we want the flushing to happen as soon as
the appropriate threshold is achieved, hence the batching strategy to be executed
constantly; t = 0.

Existing mixes can be expressed in this framework as follows. The function of each
mix P (m) is illustrated in Figures 5.1, 5.2, 5.3, 5.4, 5.5.

• Threshold mix, threshold n: This mix flushes as soon as n messages are accu-
mulated (t = 0) and sends out all the messages (P (n) = 1 ∧ ∀n′.(n′ 6= n) ⇒
P (n′) = 0). Hence it is represented on a graph by a single point.

• Timed mix, period t: This mix flushes all the messages which are inside it at
the time of flushing. Hence, ∀m.P (m) = 1.

• Timed pool mix, period t and pool p: This mix flushes when the time t expires
and sends out m− p messages. Hence ∀m.P (m) = 1− p/m.

• Threshold pool mix, threshold n, pool p: This mix flushes as soon as the
threshold n is reached (t = 0), and sends out n messages. Hence, ∀m.((m <
n+ p)⇒ P (m) = 0) ∧ (m = n+ p)⇒ P (m) = n/(n+ p).

• Timed dynamic pool mix (Cottrell mix), minimum pool pmin , period t, fraction
frac1: This mix flushes every time period t, sending out b(m − pmin)fracc
messages. Hence, ∀m.P (m) = (m−pmin )frac

m .

At this point it is worth noting that all these flushing algorithms are stateless, i.e.
the fraction (and therefore the number) of messages forwarded on by the mix at each
round depends only on the number of messages inside it during this round and not
the number of messages in the mix during the previous round.

5.2 Extensions Arising Out of the Framework

The natural way to proceed is to say that a mix is an arbitrary function from the
number of messages inside the mix to the percentage of messages to be flushed. What
does this gain us?

Throughout the mix literature, a tradeoff between message delay and anonymity
can clearly be seen. Indeed, as shown first in [SD02] (and in Chapter 3), the pool

1For clarity of exposition, we use a timed dynamic pool mix with a threshold of zero.
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Figure 5.1: Threshold mix, n = 100 Figure 5.2: Timed mix
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Figure 5.3: Timed pool mix, p = 20 Figure 5.4: Threshold pool mix, n =
100, p = 67
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Figure 5.5: Timed dynamic pool mix (Cottrell mix), pmin = 20, frac = 0.8
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Figure 5.6: P(m) of a Cottrell mix with frac = 0.8 vs a normal cumulative distribu-
tion function with µ = 100, σ = 40.

mix gains more anonymity from higher average delay as compared to the threshold
mix. Expressing the mix batching strategy as a function allows us to define an
arbitrary tradeoff between anonymity and message delay. We now go on to examine
a particular mix function.

Suppose that we would like to develop a mix which has same the properties in low
and high traffic conditions as a particular timed dynamic pool mix, but which gains
more anonymity for a longer delay in low traffic conditions. This is easily possible –
all one needs to do is to invent a suitable function.

In Figure 5.6 we show a comparison between the Cottrell mix and our new mix,
which is defined by a suitable function (normal cumulative distribution function2).

The normal cumulative distribution function has desirable properties. It grows
smoothly at low n, providing a larger anonymity when the mix contains few mes-
sages. This is achieved at the cost of increasing the delay in low traffic conditions. On

2This function has no closed form, hence is computed numerically.
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the other hand, when the number of mixed messages is large enough, the cumulative
function improves the delay over the Cottrell function.

5.3 Adding Randomization: The Binomial Mix

In this section we add randomness to the batching strategy of the mix. Suppose we
treat the result of the function P (m) not as a fraction, but as a probability. We can
then use it as the bias of a coin, which we toss for each message inside the mix. A
head indicates that this message should be sent out during this round, a tail – that
it should remain in the mix. It is clear that the expected number of messages sent
out at a particular round is mP (m); the actual number is picked from a binomial
distribution with bias P (m). Due to this property, we call this mix the binomial mix.

Adding randomness has the effect of hiding the number of messages which are in the
mix at the time it flushes. This has two desirable consequences:

• It makes it more difficult to decide whether a message was a dummy message
or a real message. We have so far not touched on the issue of dummy traffic
in a mix network. If dummy traffic is added in a mix network, the attacker
performing a blending attack will see several messages leaving a mix – the
target message along with some dummy messages. Now, at some point the
dummies will get discarded by the mixes in the mix network. (None of the
cover traffic schemes propose to send the dummies all the way to the receivers.
This is because such traffic would have the plaintext exposed to the attacker,
who is likely to be able to differentiate real messages from the automatically
generated dummies. Furthermore, such traffic will annoy the receivers.) If the
attacker knows how many messages are in the mix, he can trivially deduce
whether the mix has discarded a certain message (because it was a dummy) or
kept it (because it was the real message). In a threshold mix, he arranges for
there to be n − 1 real (his own) messages in the mix and sends in the target
message. If the mix flushes, the message was real, if it does not, it was a dummy
message. Similar decision procedures can be executed for the timed, threshold
pool, timed pool and Cottrell mixes.

• It makes the blending attack on the mix probabilistic rather than exact. This
is explained in more detail below.

Before we proceed to examine the blending attack properties of this mix, we sum-
marize its batching algorithm for completeness.

Binomial mix: t, P (m) = cumulative distribution function of the normal distri-
bution.
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P (m|µ, σ) =
1

σ
√

2π

∫ m

−∞
e
−(t−µ)2

2σ2 dt

The mix flushes every t seconds; at each flush the value of P (m) is determined from
the function, and is used as the bias of a coin tossed for each message. A head
indicates that the message should be forwarded on to the next hop, a tail that it
should stay in the mix.

The analysis of the anonymity of this mix is rather more difficult than that of the
timed mixes because the number of messages it sends out is not a deterministic
function of the state of the mix. Thus, to compute the average anonymity of this
mix, we not only need to average over all the possible histories of the mix, but also
over all mix “behaviours”. (Recall that at each round the mix can potentially send
out anywhere between zero and all the messages in the mix).

5.3.1 Blending Attack on the Binomial Mix

The flooding strategy.

The goal of the attacker is to trace a particular message (the target message) that
is sent by a user to the mix. The actions of the attacker can be divided into two
phases: the emptying phase and the flushing phase.

The emptying phase. During this stage of the attack, the goal of the attacker is to
remove all unknown messages contained in the pool, while preventing new unknown
messages from going into the mix. In order to flush the mix, the attacker sends some
number of messages to the mix at every round. In the analysis that follows, we will
assume this value, NT , to be such that it forces P (m) to be equal to its asymptotic
value, pasym, which gives us an upper bound on the effectiveness of the attack. The
attacker can compute the probability of success of his actual attack by using the
value of P (NT ) instead of pasym in the formulae below.

If the attacker wants to empty the mix with probability 1 − ε, then he will have to
flood the mix for some number of rounds. We call this k.

The formula that can be used to estimate the number of rounds needed to flush all
unknown messages with probability 1− ε is:

(1− (1− pasym)k)G ≥ 1− ε (5.1)
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where G is the number of good messages in the mix initially. If the attacker does
not have any information about n he will have to assume G = Nasym, the maximum
number of messages a mix may contain (worst case scenario for the attacker).

We can rewrite this as:

k =
ln(1− (1− ε)1/n)

ln(1− pasym)

which for small ε simplifies to:

k =
ln(ε/n)

ln(1− pasym)

Cost of emptying the mix. We compute the cost of this phase of the attack
taking into account the following:

• Number of messages the attacker has to send to the mix.

• Time needed to complete the operation.

Number of messages the attacker has to send to the mix. In the first
round the attacker has to send NT messages, to ensure that the function P (m) takes
a value close to pasym, and therefore the probability of each message leaving is close
to maximum. In the following rounds, it is enough to send as many messages as
the mix outputs. Note that if G + NT is bigger than Nasym, then some messages
may be dropped (depending on the implementation) and the mix will contain Nasym

messages. We do not specify this, and it does not affect our analysis.

Thus, for the first round the attacker sends NT messages, and the following rounds
he sends (NT + G)pasym messages on average. The total number of messages sent
during this process is:

Number of messages sent = NT + (k − 1)(NT +G)pasym (5.2)

Time needed to complete the operation. This is a timed mix, so the attacker
has to wait t units of time for each round. This is highly likely to dominate the
duration of the attack, so we ignore the time it takes for the messages to arrive and
be processed. Therefore, the total time needed is around kt time units.
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The flushing phase Once the mix has been emptied of unknown messages, the
attacker sends the target message to the mix. Now, he has to keep on delaying
other incoming unknown messages and also send messages to make the mix flush the
target.

The number of rounds needed to flush the message is, on average, k′ = 1
pasym

. The
cost of this phase is computed according to the previous parameters.

Number of messages the attacker has to send to the mix Assuming that the
attacker carries out this phase of the attack immediately after the emptying phase,
the number of messages needed in the first round is (NT + G − 1)pasym, and in the
following ones (NT +G)pasym. The total number of messages is:

pasym(NT +G− 1 + (k′ − 1)(NT +G)) = pasym(k′NT + k′G− 1) (5.3)

The other two parameters are computed in the same way as in the emptying phase,
taking into account the new value of k′.

Total cost of the attack Clearly, if the attacker has chosen to empty the mix in
k rounds and flush the message in k′ rounds, then the total time the attack lasts is
(k + k′)t, the total number of messages is:

NT + (k − 1)(NT +G)pasym + pasym(k′NT + k′G− 1)

and the probability of success is:

((1− (1− pasym)k)G)(1− pasym)k
′

Guessing the number of messages within the mix with an active attack
The attacker can use the flooding strategy (emptying phase only) in order to deter-
mine the number of messages contained in the pool of the mix. However, it is rather
expensive and is not a good use of the resources of the attacker.

Probabilistic success Note that, due to the probabilistic nature of the binomial
mix, the attacker only succeeds with probability 1− ε. Therefore, with probability ε
there is at least one unknown message in the mix. In this particular case, the attacker
can detect his failure if during the flushing phase more than one unknown message
leaves the mix in the same round (and there is no dummy traffic policy), which
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happens with probability p2
asym for the case of one unknown message staying during

the emptying phase (the most probable case). With probability pasym(1 − pasym)
the target message leaves the mix alone, and the attack is successful. Also with
probability pasym(1 − pasym), the other unknown message leaves the mix first, and
the attacker follows a message that is not the target without noticing. Finally, with
probability (1−pasym)2, both messages stay in the pool and the situation is repeated
in the next round.

5.4 Related Work

There has not been a huge amount of work on analysing single mixes, as mentioned
in Section 4.4. This chapter is based on the paper “Generalizing Mixes” [DS03b,
SN03] (coauthored with Diaz) where the new framework of expressing mixes and the
analysis of timed pool mix was presented. Since then, more work has been done by
Diaz [DP04a, DP04b].

We also mentioned that the idea of picking the number of messages to be sent out
from a probability distribution was proposed in the description of the Babel system
[GT96], though the metric they used for the analysis of the anonymity of the mixes
they considered was misleading. It effectively amounted to using the largest value in
the anonymity probability distribution to measure the anonymity.

5.5 Summary

In this chapter we proposed a framework for expressing batching mixes as functions
from the number of messages in the mix to the probability of a message being sent
on. This turned out to be useful and has lead to to a design of a new mix – the
binomial mix.

We now leave the issue of anonymity of single mixes and go on to examine mix
networks.
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Chapter 6

From Mixes to Mix Networks

“Privacy is part philosophy, some semantics, and much pure pas-
sion”

— Alan Westin, 1967

In the two previous chapters we examined properties of various single mixes in the
context of the global passive and global active adversaries. In this chapter we give a
definition of the anonymity of mix networks. In particular, we approach the issue of
calculating the anonymity probability distribution for a message which has travelled
through a free route mix network composed of threshold mixes as viewed by the
global passive adversary.

First of all, we present a formal framework for analysing the anonymity of a run of a
network of threshold mixes (given an observation made by the attacker). We go on
to present a method for defining the anonymity probability distribution and hence
the entropy-based metric which we saw in Chapter 3. Finally, we briefly use the
model to illustrate our analysis with a simple example.

Our main aim is to develop a principled way of defining the anonymity of mix net-
works. It is computationally infeasible to do calculations on real anonymity networks,
but our definition should provide a good basis for future work on approximate cal-
culations.

6.1 The Mix Network

First of all, let us outline the overall characteristics of the anonymity system which
we are modelling.

We consider an anonymity system which consists of senders which send messages
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to receivers via a mix network made up of the simplest type of mix – threshold
mix. The choice of sequence of mixes through which each message passes through
is left to the sender (in contrast to, say, MorphMix [RP02]). Once this choice has
been made, the senders construct onions in the usual fashion. Our model is flexible
enough to accommodate any “not quite free route” mix network – routes defined
by sequences of mixes in which one mix occurs twice consecutively in the sequence
are not allowed. More restrictive mix networks (and in particular mix cascades) are
also easily modelled within our framework; a fully free route mix network requires a
slight extension. We discuss this later in the chapter.

We analyse the anonymity this system provides against the global passive adversary
who is able to observe the network very close to each of the senders, receivers and
mixes (rather than only in the core of the network). Thus, each message (i.e. sender
to mix, mix to mix and mix to receiver, not sender to receiver) is observed twice – at
its source and destination. Furthermore, we assume that the adversary cannot break
the encryption used by the mixes and does not possess any of the mixes’ private keys.

We do not model several well-understood aspects of mix networks. These include
replay prevention by mixes, retrieval of the mixes’ public keys by the senders, padding
to ensure that all the messages are the same size, etc. The focus of model is precisely
to be able to calculate the anonymity of a message passing through the mix network,
and we aim to abstract away other, perhaps tangentially relevant, details. One of
these is encryption of messages – our model requires certain properties from the
encryption scheme used in the mix network. First of all, if the sender encrypts the
message for the receiver before constructing the onion, we require that the encryption
scheme satisfies semantic security (broadly, seeing the ciphertext does not give any
information about the plaintext). Secondly, the (public key) encryption scheme used
in each layer of the onion structure should be semantically secure encryption against
chosen ciphertext attacks. For us, this has two important consequences: firstly,
observing the outer layer of the onion gives the attacker no observation about the
inner layer; and secondly the attacker flipping any bits of a message will cause many
bits to be flipped in the decryption (and thus the message is very likely to be discarded
by the mix). We note that public key cryptosystems satisfying this property exist,
e.g. [Sho98].

We have now specified the overall architecture of the anonymity system, but not
necessarily the specific parameters. As before, the threshold of the mixes will be
denoted by n. Of course, the threshold may be different for each mix. Since this is
an easy extension of the model we present below, hence we omit it.

Another important parameter which we have so far ignored is the maximum number
of mixes that a message can pass through. Why is there a maximum number of
mixes? Recall that all the messages in a mix network have to be the same size (see
Section 2.3.3). Furthermore, each mix that a message passes through “peels off” a
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layer of the onion, thus reducing the size of the message (and replacing the layer by
random padding to make the true size of the message unobservable to the attacker
looking at the network). Hence, there is a limit on the maximum number of mixes
messages pass through. We denote this by rl for route length. Naturally, the attacker
is aware of the values of n and rl.

Some attention has to be paid to the contents of the messages which travel through
the network. In the formal model, we assume that all message contents are different
from each other. If desired, this can be easily implemented by including, for instance,
128 bit nonces together with the actual content.

Now that we have some idea of the system which is being modelled, let us see how
we can express this system formally.

6.2 Formal Representation of the Mix Network

A mix network is described by a 5-tuple: (S,R,M, n, rl) of (senders, receivers, mixes,
threshold of the mixes, maximum route length of a message), where S,R,M are
pairwise disjoint sets, ranged over by s, r,m, and rl, n ∈ N. User message contents
are taken from a set C, ranged over by c.

Then, messages which travel through the network (onions) can be represented as
elements of

A = M∗ ×R× C

denoting a sequence of mixes through which the onion is yet to travel, the address
of the receiver of the message, and the message content. The encryption layers are
left implicit.

We write ε for the empty sequence and −→x for a sequence of zero or more x’s.

Example 1. Thus, the onion {{c}kr , r}kn , n}km (where c represents the message con-
tent itself) would be represented by (mn, r, c) and {c}kr by (ε, r, c).

We call a message a sender message if this message travels from the sender to the
first mix in its sequence. Correspondingly, a receiver message is a message which
travels from the last mix to the receiver.

6.3 Mix Network State

If we look at the mix network at any point in time, some of the messages will be in
transit, i.e. in the routers or in the wires, while others will be inside mixes. While
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a message is in transit, the attacker knows where it is travelling from and to – this
information is included on every IP packet comprising the message1. The network
(in other words everything but the mixes, senders and receivers) can therefore be
represented as a set of messages.

Messages inside mixes are handled in a more interesting fashion. In all our description
of the batching mixes so far, we have never explicitly outlined how the messages are
received, stored or sent out. We do this now. A mix has a buffer called the input
buffer in which messages accumulate. It may also, as we have seen in the previous
chapters, have a separate pool of messages. As soon as a mix fires, the incoming
messages are redirected to a new buffer and the batching algorithm (which in our
case is the threshold one) is executed on the old one. We have previously said that
the mix now “sends out” messages selected for sending by the batching strategy. Let
us be more specific. Strictly speaking, the mix should put the selected messages into
a separate “output” buffer (having reordered them, of course), and now tries to send
these out to the appropriate mixes or receivers. Now, it may be the case that the
mix is unable to send out all the messages in the output buffer before the mix fires
again. In this case, the new messages are put into a separate output buffer and none
of them are sent out before the old output buffer is empty. In summary, the mix
works like a FIFO queue (with each element of the queue being a batch of messages),
with new messages coming in, being processed by the batching algorithm and then
sent out. Thus, we model a mix as a non-empty sequence of buffers (there is always
at least one buffer into which the messages accumulate). Messages in a buffer are
sent out in a random order (and all messages are distinct), so each buffer is modelled
by a set.

Jumping ahead slightly, it is worth pointing out that a message travelling from one
mix to another will be transferred from the buffer inside the first mix to the network
and then from the network into a buffer of the second mix. This allows us to easily
model the arbitrary delay and reordering which may be introduced by the network.

6.4 Formal Representation of the Mix Network State

The state of the mix network is then (σ, ν) where

σ : (M → (P(A))+) and ν : P((S ∪M)×A)

where Pn(A) denotes the set of subsets of A, each of which is of size n. Here σ
represents the state of all the mixes, i.e. the messages inside their buffers, and ν is

1IP spoofing, although effective against the receiver, does not provide any extra security against
our threat model, the global passive attacker.
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the set of messages in transit in the underlying communication network, each tagged
with its (most recent) origin. We let o (for ‘origin’) range over S∪M . The destination
is included in the message itself – it is the first mix in the sequence of mixes, or the
receiver if that sequence is empty.

Let α range over P(A). Sometimes we abuse notation and write (−→m, r, c) ∈ σ(m) to
mean a message is in one of the buffers of the mix m.

6.5 Mix Network Dynamics

If we take the state of the mix system at one particular instance, we see where all the
messages are. What might happen next? We can describe the things that happen in
a mix system by a small set of formal rules – reduction rules. What are the different
types of events that happen in a mix network and changes its state?

1. The network might receive a message from a sender (note that we only model
the mix network, not the sender).

2. One of the mixes might send a message which amounts to transferring it from
the buffer inside the mix into the network.

3. A message might arrive at a mix, in which case it is taken out of the network
and placed in the incoming buffer of the mix.

4. A message might leave the network to be received by the receiver.

Every time a state changes, we would like to be able to record this fact. Thus, a
label summarising the event that has occurred is attached to each of the reduction
rules. Sometimes we do not wish to record anything, so the reduction rule has no
label attached to it. We use the word label and event interchangeably.

There are two points of notation about the labels. The labels which denote a sending
action (items 2 and 4 above) have an overbar in CCS style [Mil80]. The labels of
state transitions which happen inside the network (items 2 and 3), i.e. do not involve
senders or receivers, have a τ attached to them.
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6.6 Formal Representation of the Mix Network Dynam-
ics

Mix networks have labelled transitions of the form (σ; ν)
l→ (σ′; ν ′) where labels l

are taken from

L = S ×A external receive

∪ {τ} × {(m, a) | m ∈M ∧ a ∈ A} internal send
∪ {τ} × ((S ∪M)×A) internal receive

∪ {(m, a) | m ∈M ∧ a ∈ A} external send

In each case, the two main components of the label define where the message is from
and what the message is. Where the message is going to is part of the message (the
first element of the mix sequence or, if it is empty, the receiver).

Thus, an external send label actually represents a receiver message arriving at the
receiver, and an external receive label represents a sender message leaving the sender.

The transitions are defined by a number of axioms. For the network receiving a
message from a sender (ext-recv-1):

(σ; ν)
(s,a)−−−→ (σ; ν ∪ {(s, a)})

For the network sending a message to a receiver (ext-send-1):

(σ; ν ] {(m, (ε, r, c))}) (m,(ε,r,c))−−−−−−→ (σ; ν)

For a mix receiving a message from the network and storing it in the current buffer
(int-recv-1):

(σ,m 7→ α−→α ; ν ] {(o, (m−→m, r, c))}) τ,(o,(m−→m,r,c))−−−−−−−−−→
(σ,m 7→ (α ∪ {(−→m, r, c)})−→α ; ν)

where |α| < n− 1.

If the current buffer is nearly full and the last message arrives (int-recv-2):

(σ,m 7→ α−→α ; ν ] {(o, (m−→m, r, c))}) τ,(o,(m−→m,r,c))−−−−−−−−−→
(σ,m 7→ ∅(α ∪ {(−→m, r, c)})−→α ; ν)

where |α| = n− 1.
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Note that ∅ denotes the empty set (buffer) while ε denotes the empty sequence.

For a mix sending messages from the last buffer (int-send-1):

(σ,m 7→ −→α (α ] {(−→m, r, c)}); ν)
τ,(m,(−→m,r,c))−−−−−−−−→

(σ,m 7→ −→αα; ν ∪ {(m, (−→m, r, c))})

where |α| 6= 0.

When the last message from the current output buffer is sent, the next output buffer
in the FIFO queue becomes the output buffer from which the messages are sent out
(int-send-2):

(σ,m 7→ −→α ({(−→m, r, c)}); ν)
τ,(m,(−→m,r,c))−−−−−−−−→ (σ,m 7→ −→α ; ν ∪ {(m, (−→m, r, c))})

Let us consider a small example to illustrate the reduction rules. The mix system
consists of one mix m (threshold two) and starts out empty. Then, sender s sends
in a message (rule ext-recv-1).

(λm.∅; ∅) (s,(m,r,c))−−−−−−→ (λm.∅; {(s, (m, r, c))})

Now this message arrives at mix m (rule int-recv-1).

(λm.∅; {(s, (m, r, c))}) τ,(s,(m,r,c))−−−−−−−→ (λm.{(ε, r, c)}; ∅)

Similarly, another message is sent into the mix network from s′ and arrives at mix
m (rules ext-recv-1 and int-recv-2).

(λm.{(ε, r, c)}; ∅) (s′,(m,r′,c′))−−−−−−−−→ (λm.{(ε, r, c)}; {(s′, (m, r′, c′))})

(λm.{(ε, r, c)}; {(s′, (m, r′, c′))}) τ,(s′,(m,r′,c′))−−−−−−−−−→
(λm.∅{(ε, r, c), (ε, r′, c′)}; ∅)

Now one of the messages comes out of the mix and then gets delivered to the receiver
(rules int-send-1 and ext-send-1).

(λm.∅{(ε, r, c), (ε, r′, c′)}; ∅) (m,τ,(ε,r′,c′))−−−−−−−−→
(λm.∅{(ε, r, c)}; {(m, (ε, r′, c′))})

(λm.∅{(ε, r, c))}; {(m, (ε, r′, c′))} (m,(ε,r′,c′))−−−−−−−→ (λm.∅{(ε, r, c)}; ∅)
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The other message will reach its receiver by two more transitions (rules int-send-2
and ext-send-1). Of course, many other interleavings of these events are also possible.

6.7 Attacker Observations of the Mix Networks

So far we have represented the change of state of the mix network with labels. Thus,
if we know the initial state of the network and the sequence of labels, we know
everything about what happened in the network.

Our aim is to use the model to compute the anonymity probability distribution of a
message which travels through the network. How many state changes do we need to
consider to perform such a computation? In other words, how long do we need to
“run” the model for to be able to calculate the anonymity probability distribution?
We do not answer this question directly, instead we take a safe over-approximation.
After all, if the run we consider is too small, then we may be missing some of the
messages our target messages was mixed with, while if our run was too big (assuming
our algorithm for calculating anonymity was correct) we will not get anything wrong,
though we might perform far more computation than necessary. In our calculation of
anonymity we consider runs of the system from the time the system was completely
empty of messages (both the network and the mixes) to the time it was completely
empty again. If we have such a run of the system (we call such runs complete traces),
we can compute the anonymity of any of the messages which were received by any
of the receivers during this run.

Another assumption of our model is that senders only send a message to the ano-
nymity system once. This, at first, seems totally unrealistic, but the situation can be
easily rectified if we take our sender in the model as the real identity of the sender
of a message tagged with the time the message was sent. Thus, we are able to
neatly separate our analysis from the entirely orthogonal issue of intersection attacks
[Dan03c, WALS02, WALS03].

Before we proceed with the definition of anonymity, we need to consider what the
global passive attacker can see when the network transitions take place.

If a message (m′, r, c) leaves mix m (the label would be τ, (m, (m′, r, c)) ), the global
passive adversary is not able to see it as the message (m′, r, c) which left mix m –
what he sees is a message (suppose he calls it M1) going from m to m′. He cannot
see the internal structure of this message. On the other hand, when he observes the
message (m′, r, c) being received by mix m′ (again, merely as a message M2 from
m to m′), he can deduce that it is really the same message as M1. In other words,
although he cannot see the true contents of the message, he is able to see that the
bits comprising the message have not changed and can thus correlate the “send” and
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the “receive” events of a particular message. In other words, the network does not
do any mixing – only the mixes do.

We need to capture this in our formalism. In particular, if we are relying on the
attacker to be able to “match up” send and receive events, we need to make sure
that all send events can be matched up to a unique receive event and vice versa.
Indeed, we need to prove that our formalism has these properties. Once this has

been done, we can define a function which converts a sequence of labels
−→
l into a

sequence of attacker-observed labels.

6.8 Formal Representation of the Attacker Observations

6.8.1 Defining Labels Observable by the Attacker

Let us first of all consider what the attacker who can observe the network is able to
see. For every transition with a label l, he would be able to see the corresponding
label latt from the set Latt below. Note that the third line of the grammar represents
the attacker’s observations of receiver messages2.

Latt = {(o,m)|o ∈ (S ∪M) ∧m ∈M}
∪ {(o,m)|o ∈ (S ∪M) ∧m ∈M}
∪ {(m, r, c)|m ∈M ∧ r ∈ R ∧ c ∈ C}

We can now define a function strip: L→ Latt which extracts the information which
the attacker can observe from a single label directly.

strip(s, (m−→m, r, c)) = (s,m)

strip(m, (ε, r, c)) = (m, r, c)
strip(τ, (o, (m−→m, r, c))) = (o,m)

strip(τ, (o, (m−→m, r, c))) = (o,m)

strip(τ, (m, (ε, r, c))) = (m, r, c)

As noted above, we want to make explicit the fact that the attacker can match up the
sending and receiving events of one message by looking at the bits which comprise
the encrypted message.

To do so, we proceed to define tags which specify which outgoing message corresponds
to which incoming message. First, however, we need some more definitions.

2Whether the attacker actually observes the content of a receiver message depends on whether
the communication was end-to-end encrypted. Here we suppose that it was not and the content was
visible.
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6.8.2 Defining Traces

A complete trace
−→
l is a sequence of labels l1 . . . ln generated by the transition system

which also satisfies some conditions.

(σ0; ν0)
l1−→ . . .

ln−→ (σ0; ν0)

where (σ0, ν0) represents the empty system – no messages in mixes and no messages
in the network. Expressed formally, σ0 = λm ∈M.∅ and ν0 = ∅.

The conditions which traces have to satisfy are listed below (some of these have been
mentioned previously).

1. All external receive labels have to have different content:

−→
l = (

−→
l1 (s, (−→m, r, c))−→l2 (s′, (

−→
m′, r′, c′))

−→
l3 )⇒ c 6= c′

2. All external receive labels cannot have the same mix more than once consecu-
tively.

((s, (−→mmm′
−→
m′, r, c)) ∈ −→l )⇒ m 6= m′

Omitting this restriction would not be faithful to the real network as our model
would allow the possibility of messages going from a host to itself taking arbi-
trary amounts of time to do so, whilst this does not happen in a real network.

The model could be augmented with further rules which would model the fact
that when messages go from the host to itself, they do so quickly, but this
would obscure the focus of the work. Therefore we choose to forbid this.

3. All external receive labels have to come from different senders (i.e. each sender
sends just one message).

−→
l = (

−→
l1 (s, (−→m, r, c))−→l2 (s′, (

−→
m′, r′, c′))

−→
l3 )⇒ s 6= s′

As we mentioned above, if we feel unhappy about this, we can just define a new
network where each sender S is represented by several senders Si, such that Si
sends only the ith message that S sent in the original network.

4. The length of the route a message is to pass through cannot be more than the

maximum route length. ((s, (−→m, r, c)) ∈ −→l )⇒ |−→m| < rl

Combining these, the trace property trace(
−→
l ) is:
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trace (
−→
l ) = (∀−→l1 ,

−→
l2 ,
−→
l3 , s, s

′,−→m,−→m′, r, r′, c, c′.
((
−→
l = (

−→
l1 (s, (−→m, r, c))−→l2 (s′, (

−→
m′, r′, c′))

−→
l3 ))⇒ c 6= c′))

∧ (∀s,−→m,m,m′,−→m′, r, c.
((s, (−→mmm′−→m′, r, c)) ∈ −→l ⇒ m 6= m′))

∧ (∀−→l1 ,
−→
l2 ,
−→
l3 , s, s

′,−→m,−→m′, r, r′, c, c′.
((
−→
l =
−→
l1 (s, (−→m, r, c))−→l2 (s′, (

−→
m′, r′, c′))

−→
l3 )⇒ s 6= s′))

∧ (∀s,−→m, r, c.((s, (−→m, r, c)) ∈ −→l ⇒ |−→m| < rl))

complete trace(
−→
l ) = (σ0; ν0)

−→
l−→ (σ0; ν0) ∧ trace(l)

We also define a function typ for extracting the type of a label as follows:

typ(s, (−→m, r, c)) = ext-recv

typ((m, (ε, r, c))) = ext-send
typ(τ, (o, (−→m, r, c))) = mix-recv

typ(τ, (m, (−→m, r, c))) = mix-send

6.8.3 Attacker Observations

As mentioned before, we need to establish the correspondence between the send
and receive labels which correspond to sending and receiving of one message. We
illustrate this idea with an example. Suppose a message leaves mix m for mix m′,
and gets delayed in the network for a long time. Then, (after mix m has fired several
times), another message leaves mix m for mix m′ and arrives quickly at mix m′.
Subsequently, the first message arrives at mix m′.

The following part of a real trace corresponds to this scenario:

[. . . (τ, (m, ([m′], r1, c1)); (τ, (m, ([m′], r2, c2));
(τ, (m, [m′], r2, c2)); (τ, (m, [m′], r1, c1)) . . .]

Clearly, the sequence of attacker labels that the adversary would be observing is the
following (this should be clear from the range of the function strip):

[. . . (m,m′); (m,m′); (m,m′); (m,m′) . . .]

Thus, it is not clear from this sequence of labels that the first message arrived after
the second. On the other hand, the real attacker who watches the network can
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deduce this fact easily – the bits comprising the two messages are different and he
can compare the bits of messages coming out of mix m to the bits of messages coming
into mix m′. The network does not transform messages in any way (if it does, the
message will be dropped by the mix as it will not decrypt to anything sensible), so it
is easy for the attacker to work out which message is which. This is, of course not a
problem – it is the mixes which are supposed to introduce anonymity in the system,
not the network.

We express this correspondence by means of a relation R̂−→
l

on N×N. If (i, i′) is in R̂−→
l
,

this represents the fact that li is the sending of a message which was received with
the label li′ . By li, of course, we mean the ith label in the sequence, starting from
zero. The situation in our example above could then be described by the attacker
trace

[. . . (m,m′); (m,m′); (m,m′); (m,m′) . . .]

together with the relation {(0, 3), (1, 2)}.
In our model, there are three ways different labels can represent sending and receiving
of messages. First, an ext-recv label will necessarily correspond to a mix-recv label
(a message sent in by a user gets received by a mix), a mix-send label can correspond
to a mix-recv label (as in the example above) or a mix-send label can correspond to
an ext-send label (representing a message sent out by a mix to a user and the user
receiving it).

Given a trace
−→
l , we represent the attacker observation of it as follows:

1. We construct the relation R̂−→
l

which establishes the correspondence between
sending and receiving events of messages.

2. We use the relation to include the information about the correspondence of the
different events together with the events themselves.

3. We construct a new trace with the information hidden by encryption removed
(using the function strip defined above), but with the correspondence included.

There are a number of things we have to take care of. First of all, we would like to

ensure that given a complete trace
−→
l , we can construct a relation R̂−→

l
“properly”.

First, let us make sure that messages in our system cannot be duplicated.

Lemma 1 A trace of the system contains no label more than once.

More formally,

∀−→l1 ,
−→
l2 ,
−→
l3 , l, l

′ . trace(
−→
l1 l
−→
l2 l
′−→l3 )⇒ l 6= l′
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Proof. By induction on the number of the mixes in the sequence of mixes, while
observing that if that does not change then the type of events must be different.

Now we can define the relation R̂−→
l

that we are looking for. First, we define a family
R−→

l
of relations R−→

l
where each R−→

l
represents a correct but partial “matching up”

of send and receive labels of the trace
−→
l . We define R−→

l
as the set of all relations R

satisfying a predicate P−→
l

.

P−→
l

(R) = complete trace(
−→
l ) ∧

(∀(i, i′) ∈ R
∃m,m′,−→m, r, c, s.

((li = (τ, (m′, (m−→m, r, c))) ∧ li′ = (τ, (m′, (m−→m, r, c))))
∨ (li = (s, (−→m, r, c)) ∧ li′ = (τ, (s, (−→m, r, c))))
∨ (li = (τ, (m, (ε, r, c))) ∧ li′ = (m, (ε, r, c))))

Now we want to find the biggest relation in R−→
l
. We can compare these relations

using the inclusion ordering. The biggest relation is the union of all others, as we
can show that P satisfies the following property.

Lemma 2 For a trace
−→
l , the union of a set of relations satisfying P−→

l
is itself a

relation which satisfies P−→
l

. More formally, P (
⋃
R∈R−→

l
R).

Proof. Consider an arbitrary member of the union of the sets of relations, and check
that it is consistent with P .

Now we need to make sure that no label is in the relation more than once, e.g. it
is impossible that our model shows that some message was sent once and received
twice (or, sent twice and received once!).

Lemma 3 Every label index occurring in a relation satisfying P appears at most
once.

∀(i, i′) ∈ R. 6 ∃i′′.(i, i′′) ∈ R ∧ 6 ∃i′′′.(i′′′, i′) ∈ R

Proof. By case analysis of an arbitrary label li.

We can also show that a label occurs at least once in a relation satisfying P−→
l

.

Lemma 4 Every label index occurring in a relation satisfying P appears at least
once.

∀li ∈
−→
l .∃l′j , R.(i, j) ∈ R
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Proof. By case analysis of an arbitrary label li – in a complete trace there is always
a corresponding label which “causes” li or “is caused” by it.

Clearly, the largest relation satisfying P−→
l
(R) is the union of the set of all the relations

satisfying P−→
l
(R), and by Lemma 2 it satisfies P−→

l
(R). Hence, we can find the largest

relation R̂−→
l

=
⋃
R∈R−→

l
R which will contain all the label indices exactly once.

Now that we are sure that we can generate a “proper” R̂−→
l
, we are ready to use it

and obtain a trace representing the attacker’s observation.

6.8.4 Erasing the Trace

Now we are ready to define the erasure function. It takes a complete trace as input,
and outputs an attacker trace tagged with a pair of integers according to the relation
R̂−→

l
. The pair of integers are the sequence number of this label and the sequence

number of the label it is related to by the relation.

The erasure function erase−→
l

: L∗ → (Latt × N× N)∗ can now be defined as follows:

erase(
−→
l ) = map (λi.(strip(li))id−→

l
(i)) [0, . . . , |−→l | − 1]

where id−→
l

(i) is the unique pair (i, i1) such that (i, i1) ∈ R−→
l
∨ (i1, i) ∈ R−→l and map

is the function which applies its first argument (which is itself a function) to each
element of its second argument (which is a list).

Hence, in our example at the beginning of Section 6.8.3, the attacker observes:

[. . . (m,m′)(0,3); (m,m′)(1,2); (m,m′)(2,1); (m,m′)(3,0) . . .]

Having obtained from
−→
l a sequence of integer tagged attacker labels which we call

Obs−→
l

, we proceed with the definitions of anonymity.

6.9 Calculating the Anonymity Probability Distribution

We have seen that we can model the behaviour of the system and that from any trace
which records one particular behaviour of the system we can obtain a representation
of what the attacker sees. We now proceed to define the process of calculating
the anonymity probability distribution of a message which has passed through the
network, and thus the anonymity of it.
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We have previously said that the senders determine various parameters of the mes-
sages they send through the anonymity system, e.g. the route the message will take.
We assert that it is best to remove this burden from them and leave the choice of
route to the anonymity client. The arguments for this are well-known, and need not
be presented here (e.g. usability, removing the burden of security-critical decisions
from the user, etc).

At this point we make a rather strong assumption (in favour of the attacker). We
assert that the routes are chosen by the sender from a probability distribution which
is also known to the attacker3. This is clearly true if the route length and the route are
picked by the anonymity client from a fixed probability distribution. Unfortunately
the popular Mixmaster client QuickSilver [Qui] currently leaves the choice of route
and route length up to the user.

However, there are several parameters which cannot be determined by the anonymity
client. One of these is the receiver of the message! Thus, we assume that the attacker
has some idea (i.e. a probability distribution) of who the sender is likely to send
messages to. Naturally, if he does not, a uniform distribution is the best he can
assume. Another such parameter is the content c of the message. Again, we assume
the attacker has a set of probability distributions (one per sender) from which each
of the contents was picked. Obviously, if all the content which the attacker sees is
encrypted (with the public key of the receiver), then the probability distribution of
a sender constructing any of these is uniform. Note that the choice of content of
a message and the choice of receiver are not independent. For example, an NSA
cryptographer is likely to send a message about his specialist subject, but is unlikely
to send this message to someone at the KGB.

Now, for each sender, we multiply the probability of each of the routes being chosen
by the probability of each of the combinations of receiver and content being chosen
and thus get the probability of that particular sender sending content c to receiver r
via the route −→m. In other words, for each sender we have a probability distribution
over all the possible messages he could send.

We can then construct probability distributions over sets of sender messages being
sent out by senders (and thus entering our anonymity system) by merely multiplying
together the probability distributions for each sender. This, of course, requires the
senders to construct their messages independently from each other. Why is this the
case? Recall that each sender has “anonymous email software” which helps them
choose the route through the mix network randomly and therefore, independently of
one another. Even if the anonymity client sends dummy traffic to the network, a good
dummy policy is likely to be randomized and ensure that the messages generated by

3Naturally, if the probability distribution is not known to the attacker, the sender is better off.

101



the clients are not dependent on each other4.

Each set of sender messages can give rise to a number of traces
−→
l due to network

reordering. Suppose we have one such set of sender messages, and its corresponding
set of traces.

Now, a global passive attacker can take an observation which he has made and check
if any of the traces resulting from the set of sender messages matches it. If there is a
match, that means that this set of sender messages could have resulted in the actual
observation.

For each of the possible set of sender messages we have a probability of it being
received by the network and a binary decision of whether it was compatible with the
observation the adversary has made. Now we renormalise the distribution, throwing
away all the sets of sender messages which could not have generated traces consistent
with the observation and obtain something we call a scenario distribution. From this
it is easy to calculate an anonymity probability distribution for each message.

6.10 Calculating the Anonymity Probability Distribu-
tion Formally

6.10.1 External Receive Events

First of all, we introduce a notation for probability distributions. A function f of
type X → [0, 1] where the sum of the range is equal to 1 is written as f : X ; [0, 1].

For each sender, the adversary makes an assumption about the probability distribu-
tion from which that sender chooses routes for his messages travelling through the
network. We call this probability distribution SM, for sequences of mixes.

SM : S →




 ∑

i∈{0...rl}
M i


; [0, 1]




He also assumes how likely each sender is to send all the different contents of messages
to each receiver. We call this probability distribution RC, for receivers and contents.

RC : S → ((R× C) ; [0, 1])

4More concretely, a dummy policy like “send a message every hour on the hour” means that the
sender messages are not independent, but will not add much anonymity.
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Note a couple of interesting cases.

Example 2. If the attacker is not able to determine the content of messages (i.e. has
never seen the plaintexts of messages coming out of the anonymity network), then
∀s, r, c, c′.RC(s)(r, c) = RC(s)(r, c′).

Example 3. If the system we are modelling is a cascade with a sequence of mixes
−→
m′,

then

SM s −→m = 0 if −→m 6= −→m′
1 otherwise

Now for each sender we construct a probability distribution ERV over external receive
events. This essentially amounts to multiplying the two probability distributions we
have (SM and RC) together. This is justified as the route is independent of the
choice of content and sender, as the choice of route is performed by the anonymity
client. In some systems the route might be chosen in such a way that the last mix is
close to the client (to minimize delay), but this is hardly justified in the context of
message-based systems.

ERV : S →
((

∑
i∈{0...rl}

M i

)
×R× C

)
; [0, 1]

ERV(s) = λ(−→m, r, c).(SM s −→m)× (RC s (r, c))

Now we build a distribution SERE over sets of external receive events (for a partic-
ular number of senders). We assume that each of the senders chooses the content
and receivers of their messages independently of the others, hence the probability
distributions for each of the senders can simply be multiplied together.

X ⊆ S × (M∗ ×R× C)
SERE : Pn(S × (M∗ ×R× C)) ; [0, 1]
SERE(X) =

∏
x∈X ERV((π1x)(π1π2x, π2π2x, π3π2x))

The attacker now has an a priori probability distribution over sets of external receive
events of size |X|. Note that we have not yet examined the trace observed by the
adversary at all. We do this next.
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6.10.2 Scenario Anonymity

Each set of external receive events which we have obtained can give rise to several

different traces
−→
l . This is caused by both network reordering and mix reordering.

An example is appropriate at this point.

Example 4. Take a network with two senders, two receivers, a maximum route length
of 1 and one mix with a threshold of two. Hence, the network is defined as a five-tuple
({a, b}, {p, q}, {m}, 2, 1).

Now consider two messages injected into this network. These are represented by the
following set of sender messages (external receive events):

{(a, (m, p, c)), (b, (m, q, c′))}

The possible traces resulting from it include:

[(a, (m, p, c)); (b, (m, q, c′)); (τ, (a, (m, p, c))); (τ, (b, (m, q, c′))); (6.1)

(τ, (m, (ε, p, c))); (τ, (m, (ε, q, c′))); (m, (ε, p, c)); (m, (ε, q, c′))]

[(a, (m, p, c)); (b, (m, q, c′)); (τ, (b, (m, q, c′))); (τ, (a, (m, p, c))); (6.2)

(τ, (m, (ε, p, c))); (τ, (m, (ε, q, c′))); (m, (ε, p, c)); (m, (ε, q, c′))]

(Difference from 6.1 caused by network reordering)

[(a, (m, p, c)); (b, (m, q, c′)); (τ, (a, (m, p, c))); (τ, (b, (m, q, c′))); (6.3)

(τ, (m, (ε, q, c′))); (τ, (m, (ε, p, c))); (m, (ε, p, c)); (m, (ε, q, c′))]

(Difference from 6.1 caused by mix reordering)

Now suppose the attacker has made an observation. He does not know what trace
this observation corresponds to (after all, this is the entire point of the anonymity
system!). Hence, we call the observation of the attacker Obs : (Latt × N × N)∗. We
compute the set of traces compatible with Obs.

ScenObs = {−→l |complete trace(
−→
l ) ∧ erase(

−→
l ) = Obs}
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Let us define the function rcv which extracts the set of receive events from a trace.

rcv(
−→
l ) = {l|l ∈ −→l ∧ typ(l) = ext-recv}

Now extract the set of sets of receive events which could have caused all the traces.

ERVObs = {X|X = rcv(
−→
l ) ∧ −→l ∈ ScenObs}

Clearly, all the traces in ScenObs have the same number of receive events, so the
cardinality of all the members of ERVObs is the same. Each element of ERVObs has
a probability associated with it (as calculated above). Hence, to obtain a probability
distribution over ERVObs we renormalise the probability distribution SERE over sets
of external receive events on those sets which correspond to elements of ERVObs.

First, we calculate the probability that any of the sets of external receive events in
ERVObs occurred:

TotObs =
∑

X∈ERVObs

SERE(X)

Y : ERVObs ; [0, 1]

Y = λX.SERE(X)
TotObs

From Y we can compute the sender anonymity of a message arriving at a particular
receiver. To do this, we define UM,Obs – the anonymity probability distribution
discussed in Chapter 3. Note that here the anonymity probability distribution is
parameterised with the observation of the attacker, Obs. Given an external send
event (m, (ε, r, c)), the sender anonymity probability distribution of this message is:

UM,Obs : S ; [0, 1]
U

(m,(ε,r,c)),Obs
= λs.

∑

l=(s,(−→m,r,c)) ∧
l∈X ∧X∈ERVObs

Y (x)

From this distribution we can compute the information theoretic metric, as described
in Chapter 3.

Anon
(m,(ε,r,c)),Obs

=
∑

s∈S
U

(m,(ε,r,c)),Obs
(s) log2 U(m,(ε,r,c)),Obs

(s)

We now proceed to illustrate the whole process with a simple example.
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6.11 Calculating Anonymity – a Simple Example

Suppose our mix network consists of two mixes M = {m,m′}. Suppose further
that we have three senders S = {a0, a1, a2} and three recipients R = {r0, r1, r2}.
Furthermore, our mix threshold n = 2 and the senders pick their routes though
through no more than two mixes from a uniform distribution. There are four different
routes for the messages to travel through: [m,m′]; [m′,m]; [m]; [m′]. Hence, SM =
λs.λ−→m = 0.25.

Suppose further that the anonymity client used by all the senders of the anonymity
system forces them to encrypt the message content with the senders’ public key
and they have obtained this key out of band (e.g. by meeting up in the street).
Furthermore, the adversary knows very little about each sender in the network,
and hence assigns a uniform probability distribution to the potential recipients each
sender might want to communicate to. Hence,

∀s, r, c, s′, r′, c′.RC(s (r, c)) = RC(s′ (r′, c′))

Suppose further that the attacker has made the following observation of the network
and would like to find the anonymity of the message arriving at r2.

Obs = [ (a0,m)(0,2); (a1,m)(1,3); (a0,m)(2,0); (a1,m)(3,1); (m,m′)(4,8);

(m, r0, c0)(5,6); (m, r0, c0)(6,5); (a2,m
′)(7,9); (m,m′)(8,4);

(a2,m
′)(9,7); (m′, r1, c1)(10,12); (m′, r2, c2)(11,13); (m′, r1, c1)(12,10);

(m′, r2, c2)(13,11)]

This observation can be represented by the mix network diagram shown in Figure
6.15.

Now, there are four traces which erase to Obs.

−→
l0 = [ (a0, ([m], r0, c0)); (a1, ([m,m

′], r1, c1)); (τ, (a0, ([m], r0, c0)));

(τ, (a1, ([m,m
′], r1, c1))); (τ, (m, ([m′], r1, c1)); (τ, (m, (ε, r0, c0)));

(m, (ε, r0, c0)); (a2, ([m
′], r2, c2)); (τ, (m, [m′], r1, c1));

(τ, (a2, ([m
′], r2, c2))); (τ, (m′, (ε, r1, c1))); (τ, (m′, (ε, r2, c2)));

(m′, (ε, r1, c1)); (m′, (ε, r2, c2))]

5The careful reader will note that there is a one to many correspondence between mix network
diagrams and attacker observations (as above).
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PSfrag replacements

a0

a1

a2

r0

r1

r2

m

m′

Figure 6.1: The example attacker observation of the system is represented in this
mix network diagram.

−→
l1 = [ (a0, ([m], r0, c0)); (a1, ([m,m

′], r2, c2)); (τ, (a0, ([m], r0, c0)));

(τ, (a1, ([m,m
′], r2, c2))); (τ, (m, ([m′], r2, c2)); (τ, (m, (ε, r0, c0)));

(m, (ε, r0, c0)); (a2, ([m
′], r1, c1)); (τ, (m, [m′], r2, c2));

(τ, (a2, ([m
′], r1, c1))); (τ, (m′, (ε, r1, c1))); (τ, (m′, (ε, r2, c2)));

(m′, (ε, r1, c1)); (m′, (ε, r2, c2))]

−→
l2 = [ (a0, ([m,m

′], r1, c1)); (a1, ([m], r0, c0)); (τ, (a0, ([m,m
′], r1, c1)));

(τ, (a1, ([m], r0, c0))); (τ, (m, ([m′], r1, c1)); (τ, (m, (ε, r0, c0)));

(m, (ε, r0, c0)); (a2, ([m
′], r2, c2)); (τ, (m, [m′], r1, c1));

(τ, (a2, ([m
′], r2, c2))); (τ, (m′, (ε, r1, c1))); (τ, (m′, (ε, r2, c2)));

(m′, (ε, r1, c1)); (m′, (ε, r2, c2))]

−→
l3 = [ (a0, ([m,m

′], r2, c2)); (a1, ([m], r0, c0)); (τ, (a0, ([m,m
′], r2, c2)));

(τ, (a1, ([m], r0, c0))); (τ, (m, ([m′], r2, c2)); (τ, (m, (ε, r0, c0)));

(m, (ε, r0, c0)); (a2, ([m
′], r1, c1)); (τ, (m, [m′], r2, c2));

(τ, (a2, ([m
′], r1, c1))); (τ, (m′, (ε, r1, c1))); (τ, (m′, (ε, r2, c2)));

(m′, (ε, r1, c1)); (m′, (ε, r2, c2))]

Thus,

ScenObs = {−→l0 ,
−→
l1 ,
−→
l2 ,
−→
l3 }

We now extract the set of sets of receive events from ScenObs:
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ERVObs = {
{(a0, ([m], r0, c0)), (a1, ([m,m

′], r1, c1)), (a2, ([m
′], r2, c2))},

{(a0, ([m], r0, c0)), (a1, ([m,m
′], r2, c2)), (a2, ([m

′], r1, c1))},
{(a0, ([m,m

′], r1, c1)), (a1, ([m], r0, c0)), (a2, ([m
′], r2, c2))},

{(a0, ([m,m
′], r2, c2)), (a1, ([m], r0, c0)), (a2, ([m

′], r1, c1))}
}

It is clear from the distributions SM and RC that the probability of each of these
sets of receive events occurring is the same. Hence, we are able to calculate the
anonymity probability distribution for any of the receiver messages directly. For
example, the sender anonymity probability distribution of the message (m, (ε, r0, c0))
(expressed in the set notation) is {(a0, 0.5), (a1, 0.5)} while that of (m′, (ε, r2, c2)) is
{(a0, 0.25), (a1, 0.25), (a2, 0.5)}. The corresponding sender anonymity is 1 and 1.5
bits respectively.

6.12 Commentary and Model Design Choices

We have shown how to use the model to analyse the anonymity of a message which
has travelled through the system given the observation of the system by the global
passive attacker. This analysis was done by hand and has not been excessively
painful. Clearly, with more complex systems and larger traces, such methods rapidly
become infeasible. The next step was to write an analysis tool which implements our
semantics.

The tool, written in Haskell [PJH+99] can perform several tasks: Firstly, given a
number of sender messages, it can act as a mix network and produce a set of resulting
real traces and the final state in each case. Secondly, given a real trace, it can erase
it to give the trace observed by the attacker. Finally (and most importantly) we can
use the tool to work out the anonymity of a message given a particular observation
– this involves generating the set ScenObs. The algorithm for generating ScenObs
from an erased trace is non-trivial, and much has been gained from implementing
it in a high-level functional language. Unfortunately, the size of ScenObs is O(n!) if
the trace has no more than one message between two mixes during any round, and
even worse otherwise. So, even having implemented the semantics we are still limited
to fairly small examples (around 5 messages). This is clearly unsatisfactory (hence
we do not describe our algorithm here) and we need to look for a more efficient
algorithm which computes an approximation. It is, however, unclear, that a good
algorithm for doing so exists. One such algorithm was proposed in our PET paper
[SD02]; finding a proof or even an argument for its correctness has turned out to be
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very difficult. We leave this for exciting future work. On the other hand, one can
always go back to non-probabilistic analysis, i.e. compute the anonymity set (much
easier to do approximately) and declare that the probability distribution over all the
senders in the sender anonymity set is uniform. Instead, we go on to discuss the
design choices of the semantic model we have constructed followed by a survey of
formal models for anonymity systems and a speculation about the future.

In creating our model we made a number of design choices. Here we document the
more important ones and discuss alternative approaches.

First of all, we decided to include the reordering produced by the network in the
model. This is done using non-determinism in the reduction rules of the semantics.
Following on from this, we assumed that the attacker observes the traffic at the
senders, receivers and mixes and showed that the attacker is able to factor out the
network reordering. This is consistent with the observation that anonymity is pro-
duced by the mixes, not the network. If the attacker is not observing the traffic very
close to the mixes6, he may not be able to deduce correctly which message belongs
to which batch. Thus, it may appear to him that messages from different batches
got mixed together, hence yielding increased anonymity. We are not aware of this
simple observation having been made before.

Secondly, we have chosen to abstract from the issue of intersection attacks. This was a
valuable design decision as our work is completely orthogonal to (and could therefore
be easily combined with) previous research on statistical disclosure: [Dan03c, AKP03,
KAP02].

We have also chosen to model a “not quite free route” mix network. This merely
saved us several reduction rules in the model, though one must note that additional
technicalities would be required for the construction of the attacker’s observation.
The one difference between a free route mix network and the one we modelled is that
in the latter messages are not allowed to have the same mix occurring consecutively
in the sequence of mixes of any message. What happens if a message does have two
mixes consecutively in its sequence? The answer is simple – it does not get sent out
onto the network and thus is not seen by the attacker. However, because the mixes
we are dealing with in this model are threshold mixes, the attacker is able to deduce
that a message remained in the mix and infer the correct “observation” from the lack
of one. This inference would have to be included in the definition of the attackers
observation. Note that a similar inference could be made in the case of timed, timed
pool and threshold pool mixes, but not in the case of binomial mixes or in the presence
of a randomised dummy traffic policy. Modelling this formally is challenging future
work, which may turn out to be infeasible for some mixes! A related, (and much

6The technical condition is the attacker sees the messages in the same order as they leave/arrive
at the mix.
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easier) inference would have to be performed to account for message drops. Take the
case of a threshold mix network, as above. From an observation Obs the attacker can
deduce when a mix drops messages – in this case this mix would have more arrival
events than send events. A dropped message, of course, is equivalent to a message
leaving the network. Hence, once a message drop has been identified, we can augment
Obs with two events in an appropriate place which represent the message leaving the
network to a receiver drop. From here on, the analysis proceeds mostly as before
(though now R must also include this new “receiver” and the mix must be made not
to fire until n + 1 messages arrive at the appropriate time). Although we have not
formalised this, it is clear that it can be added relatively easily to the framework
presented above.

Finally, we have chosen to abstract away the details of encryption, message transfer
protocols, retrieving the necessary public keys by the users, etc. This is the subject
of other work, e.g. [Dan04], and is mostly orthogonal to our efforts.

6.13 Related and Future Work

The anonymity properties of mix networks, however simple, have not been analysed
previously. In this section we list papers which have merely touched on the subject.

First, there is some fairly speculative debate in [BPS00] on the advantages of mix
cascades over mix networks. The authors present some observations: first they argue
that in the context of a threat from the global active attacker with many compromised
mixes, an attack which partitions the anonymity set of a mix network is possible.
Further arguments made in favour of mix cascades are made on the basis that the
probability of choosing at least one trustworthy mix is higher in a mix cascade.
There is an informal description, though no algorithm, of how one might go about
working out the anonymity set size of a run of a mix network. Naturally, there is
no probabilistic analysis, and from the descriptions it is apparent that the method is
not general enough to analyse any trace, rather it computes the upper bound on the
anonymity of a run (recall the formula for the composition of mixes in [SD02] does
this taking into account probabilities).

The anonymity of some of the other systems have been analysed formally. The best
example of this is, perhaps, Shmatikov’s analysis of the Crowds system [Shm03].
There, a model checker was used to help explore the state space of the Crowds
system with a small number of nodes. New and interesting results were derived. It
may be possible to explore such a mechanised approach to look at the anonymity of
mix networks as well.

One direction of future work which we have mentioned previously is finding an effi-
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cient algorithm for calculating the anonymity of the mix network and validating it
against the definitions presented above.

Another promising direction is extending the model to cope with pool mixes. The
difficulty here is two-fold. Firstly, a network of pool mixes always has some mes-

sages in the mixes, so our definition of a trace, i.e.
−→
l s.t. (σ0, ν0)

−→
l−→ (σ0, ν0) is no

longer appropriate (the network is never in a state σ0). Thus, we have to find an
alternative definition of traces. Secondly, the problem is that the probability of a
message leaving the network merely tends to 1, so computing a receiver anonymity
probability distribution requires an infinitely long observation. Alternatively, com-
puting the sender anonymity probability distribution requires an observation of the
entire history of the mix. Finally, the complexity of working out the anonymity of a
message travelling through a network of pool mixes is going to be even worse!

An easier (yet still fruitful) piece of work is to find a different definition of traces
which still allows us to compute anonymity. This is likely to be necessary if we are
to build tools for the analysis of the anonymity of mix networks.

6.14 Summary

In this chapter we have looked at the anonymity of a message going through a network
made up of threshold mixes. We have designed a model of such a network, derived
the information that can be seen by the global passive adversary and thus computed
how much anonymity each message going through it has.

In the last few chapters we have looked at the anonymity of message-based mix
systems. Our results broadly support the hypothesis that these systems provide
a substantial amount of anonymity against the global passive attacker, and some
anonymity against the global active attacker. Furthermore, there are techniques
(which we have not investigated in this thesis) for gaining even more anonymity;
dummy traffic is a good example. Of course this will be the subject of further
investigations.

We now leave the subject of message-based systems altogether and embark on an
investigation of the anonymity of connection-based systems. As mentioned in Chap-
ter 2, these are subject to stricter delay requirements and therefore we expect their
anonymity to be much worse than that of message-based systems. In the next chapter
we show that this is indeed the case.
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Chapter 7

On the (non)-Anonymity of
Connection-based Systems

“Shut up and code”
— Notice on the office wall of an industrial software manager

7.1 Introduction

In this chapter we examine the anonymity of connection-based systems. These com-
monly aim to provide low-latency bidirectional communication for a variety of ap-
plications (e.g. SSH connections, web browsing, etc). There are several implemented
designs [DMS04, RP02, FM02]. Although these are also sometimes called mix sys-
tems, current designs do not do any mixing as such.

The anonymity properties of connection-based systems is potentially a big area for
future research; here we take the first steps towards their comprehensive analysis. We
take two simple attacks, identify the conditions under which the attacker succeeds
in linking the endpoints of a connection, and try to reduce the probability of those
conditions occurring in the anonymity system.

Here we examine the protection such systems can provide against a passive attacker
(i.e. one who watches the network rather than tries to compromise nodes). Some
systems, MorphMix [RP02] for example, explicitly state that they are vulnerable to
such an adversary; our work may provide insight into ways of strengthening them.
Others, notably Tarzan [FM02], employ an expensive dummy traffic policy in an
effort to protect against this adversary. We show that it is possible to avoid this.

113



It is important to note that in this chapter we consider connection-based anonymity
systems which are running on top of standard Internet protocols, i.e. packet-switched
networks. We do not consider schemes over circuit-switched networks such as ISDN
mixes [PPW91].

7.2 Systems and Usage

We begin by outlining the application scenario, high-level anonymity goals, and sys-
tem architecture that we consider in our analysis. The architecture presented be-
low is a distillation of the key choices of Onion Routing, Tarzan, and MorphMix
[DMS04, FM02, RP02]. None of these have been widely deployed, although the first
generation of Onion Routing was a prototype with 5 nodes.

Scenario We are primarily considering systems for anonymous web browsing. A
number of users, running anonymity clients, connect through the system to some
web servers (not running special software). HTTP requests and responses both
travel through the system.

System goals Such a system should:

1. provide usable web browsing, with no more than a few seconds additional
latency; and

2. make it hard for an attacker to determine what website any given user is brows-
ing

The system need not protect against the attacker determining that the user is brows-
ing, or which web servers are being accessed through the anonymity system. The
system should, of course, also protect against the webserver determining who is
browsing the website, unless it is compromised by an application-level feature (e.g.
cookies).

In particular, as we discuss below, the system should protect a user against an
attacker who can observe all traffic on the path of their connection. Note that to do
this, the adversary does not need to observe all traffic in the anonymity system.

The goals clearly involve a trade-off: the more delay, the higher the (potential)
anonymity.

Architecture We make some basic assumptions about the system structure:
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• The system consists of a number of nodes. Some designs have a ‘classic’ ar-
chitecture, with relatively few nodes, whereas others have a ‘Peer-to-Peer’ ar-
chitecture, with nodes run by each user. Each node has logical links to some
(not necessarily all) other nodes, along which it forwards traffic. Links are
implemented above inter-node TCP connections between IP/port addresses,
link-encrypted. To protect against node compromise, each connection passes
through several nodes. Nodes also accept connections from end-user clients.

• To protect against the simple passive observer, who can bitwise compare traffic
entering and leaving a node, traffic is onion-encrypted (as first suggested by
Chaum in [Cha81]). This also provides bitwise unlinkability against collabo-
rating nodes (see Section 2.3).

• The length of messages remains observable, so the data is divided into fixed-
length cells. Typically these are small for efficiency reasons (in the original
Onion Routing design, each cell carries 128 bytes of data).

• “Onion connection” setup is expensive. Hence all the cells for a particular
client/server communication are routed via the same sequence of nodes. (Ap-
plication proxying may reduce the number of communications, e.g. fetching all
objects of a webpage in one communication.)

• Routes may be chosen either by the end-user or by the network.

This architecture broadly follows the design of second generation Onion Routing
(Tor) [DMS04], Tarzan [FM02], and MorphMix [RP02]. Our results are also appli-
cable to JAP [JAP] and the Freedom Network [BGS00].

Adding dummy traffic is a standard technique used in message-based anonymity
systems e.g. Mixmaster. For connection-based systems, however, practical experience
shows the bandwidth requirements of nodes are large, and so the additional cost of
dummies must be minimised. Accordingly, in this chapter we assume that inter-
node links do not involve dummies (though it turns out to be beneficial to apply
some padding to the links between the client and the first node). We leave for future
work the question of how a given quantity of dummy traffic can be most effectively
used.

7.3 Threat Models

Prior work on threat models for connection-based systems has focused on the threat
of malicious nodes, looking at how anonymity is affected by the fraction of attacker-
controlled nodes [Shm03, STRL00].
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In this chapter we focus on the threat of traffic analysis by a passive observer. Earlier
notions of “global passive” attacker, as used in analysis of message-based systems, are
too vague for connection-based systems. The threats must be stated more precisely:
the quality (time accuracy) of the traffic data available to different global passive
attackers may vary considerably, making different traffic analyses possible.

There are several different low-level mechanisms an attacker might use to obtain
traffic data, differing in the quality of data they make available, and in the effort
required.

• Attacker-controlled nodes. Not considered here.

• By applying legal (or sub-legal) pressure to an ISP, a high-resolution traffic
monitor can be installed on a machine within the same collision domain as a
node. This could capture all IP packets travelling to and from other nodes,
with precise (sub-millisecond) timestamps; that data could be forwarded on-
line to an analysis machine. Note that if nodes are distributed among judicial
domains, it is hard to attack a substantial proportion of them.

• By compromising a machine in the same collision domain as a node the same
data could be captured, though here there may be difficulties in surreptitiously
forwarding it to the analyser.

• By installing non-intrusive fibre taps ‘in the field’, on the fibres that carry traffic
between nodes [Hod91], one can capture similar data, but here, as there are
typically routers between a node and an external fibre, some timing accuracy
will be lost (several router delay variances). How many such attackers are
required to intercept all node-to-node communications depends on the topology,
but typically examining just backbone fibres will not suffice.

• Traffic data can also be obtained by compromising a router on each of the inter-
node links and placing traffic monitoring code there. However, here the attacker
is more likely to get per-link packet counts (over large fractions of a second)
rather than per-packet data with timestamps. These can be retrieved via the
standard SNMP protocol. More accuracy can be obtained by compromising
routers closer to each node.

Broadly, all these attackers gain access to the same class of data – the number of
packets that travel between pairs of nodes (on anonymity-system logical links) during
particular time intervals. The packet counting interval determines what kinds of
traffic analysis the attacker can perform: taking long intervals amounts to low-pass
filtering of the data, erasing informative high-frequency components.

A further distinction is between per-interval and waveform analysis. In the former,
each packet-counting interval is treated separately – the attacker can forget the data
for each interval after it has been analysed – whereas in the latter a substantial
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Figure 7.1: Each arrow represents an incoming or an outgoing link. The number on
the arrow represents the number of packets observed by an attacker on the link over
one time period.

region of the traffic waveform must be considered. The latter attacks may obviously
be more expensive to mount.

7.4 Analysis: Lone Connection Tracking

Our first attack is based on packet counting. We recall that traffic travels down
a connection in small cells. Consider a node in the system. During a particular
time interval the number of packets on each of the connections travelling through
it is highly likely to be different. The attack is based around the idea that if the
attacker could see the numbers of packets of each connection coming into the node
during this time interval and the number of packets of each connection coming out
of the node, then he should see which incoming connections corresponds to which
outgoing ones. It is worthwhile to note that the links of a connection-based anonymity
system are typically implemented above TCP. The attacker watching the link can
easily distinguish packets which are carrying encrypted data and should be counted
because they carry data from the anonymity system from the others (such as ACKs)
which should not. Such a packet counting attack also requires the delay introduced
by the node to be small compared to the size of the time interval, so the number of
incoming and outgoing packets of the node on each connection will be very similar.
They will not be identical as some packets will have been in the node before the
interval started and some will remain after the interval ends.

However, a passive attacker can observe the number of packets of a connection which
arrive at the node and leave the node only if this connection is lone – it is the only
one travelling down its incoming link and its outgoing link during the time interval.
This scenario is illustrated on Figure 7.1.

It is clear that the numbers of packets on links from D to the node X and from X
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to T are very similar, so the attacker can be confident that the connection(s) from
D have been forwarded to T . Naturally, there is a possibility that he is mistaken:
one of the connections from A, B or C could have carried 1079 packets and been
forwarded to T , while the connection(s) from D were forwarded to Q, R or S. We
now go on to examine this in more detail.

Consider a node which has d incoming and outgoing links, and c connections during
the current time period. Now take a target connection which has arrived on a link
lone, and had its number of packets, pack, observed by the attacker. Now, what is
the probability of this connection exiting on a link lone and thus being compromised?

pcompromise =

(
d− 1

d

)c−1

Now consider the probability of the attacker making a mistaken inference from his
observation of similar packet counts on an incoming and an outgoing link. For
simplicity, let us say that the attacker only declares the correspondence between
an incoming link and an outgoing link if the packet counts on them are the same.
Clearly, we must calculate the probability of pack packets (which do not belong to
the target connection) appearing on exactly one of the outgoing links. Suppose that
the attacker has some knowledge of the probability distribution V (volume) of the
number of packets on a connection going through the anonymity system (this is easy
to obtain, he can simply watch the unpadded links between the anonymity system
and the webservers). It is important to note that pack packets on a single link
can be caused either by a single lone connection other than our target connection
or by several connections on the same outgoing link with a total packet count of
pack. The probability of the latter is likely to be small compared to the former1,
hence we ignore it. Naturally, when we are able to obtain an estimate of V from
a deployed anonymity system, we will be able to compute the error we introduced
by this simplification precisely. Similarly, we only consider the case where one of
the incoming connections has pack packets on it (and is, hence, linear in V (pack)
which is small2). Now we can calculate the probability of there being one incoming
connection with pack packets and it being forwarded to a link alone.

perror = (c− 1)V (pack)(1− V (pack))c−2 d− 1

d

((
d− 1

d

)c−2

−
(
d− 2

d

)c−2
)

1As an analogy, the reader is invited to consider the probability of getting a 3 from a roll one
die, compared to getting a 3 from a roll of 2 dice.

2At this point it is worth considering how small V (pack) might be. If each cell carries 128 bytes
of data, then the rate of flow of cells through a connection could be as high as several hundred per
second. Naturally, V is not uniform, but it is still reasonable to expect that the highest value of
V (pack) is no more than 0.1.
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Naturally, the more links and the fewer connections on them, the lower the probability
of error and the higher the probability of a compromise. Note also that, as we argued
above, V (pack) is small, hence the overall probability of error is small. The attacker
can further reduce this probability by doing the same observations during a different
time interval and checking the results are consistent.

Note that this attack does not require a global packet counting attacker, merely one
who observes all the links a connection travels on.

This attack is based on other assumptions, some of which we have touched on already:

• The packet counting interval is much larger than the mix delay. This is neces-
sary as otherwise the packets inside the mix at the starts and ends of packet
counting intervals will make the incoming and outgoing packet counts dissimi-
lar.

• The packet counting interval is much smaller than the mean time between new
connections being set up on this pair of links. The longer the counting interval,
the more likely there is to be a new connection initiated which will traverse an
incoming or an outgoing link, thereby ruining the packet counts and thus the
attack. Note that if the adversary is unable to obtain packet counts for short
enough time periods (e.g. if he is extracting packet counts via SNMP), he loses
some opportunities for attacks.

It may seem that the attacker can just as easily count packets coming in from the
users to the first node of the connection and try to correlate this with the packet
counts coming out of the anonymity system to the webservers. This is the extreme
version of packet counting across several nodes. Such an attack is less likely to
succeed (and easier to protect against) for the following reasons:

• In the description of the attack on a single node, it was necessary for the packet
counting interval to be much larger than the node delay. Thus, in the case of
mounting the attack on the anonymity system as a whole, the packet counting
interval will have to be made much larger than the delay on all the nodes of a
connection together plus all the link delays. This increases the chances of the
user initiating another connection to the same first node, thereby confusing the
packet counts. Implementors of connection based systems should note that this
can be a basis of a good and cheap defence strategy (though it relies on the
first node being uncompromised) — all the connections the user makes should
be established through the same first node.

• A small amount of padding between the user and the first node protects against
the attack. This requires much less bandwidth than padding each link in the
anonymity system as suggested by [Ren03]. Of course, it would be desirable to
also pad the link from the last node to the webserver, but this is impossible as
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the webserver is not running anonymity software.

• It may be possible to arrange for the first link not to be observable by the
attacker (e.g. run a node at the edge of a corporate network and ensure that
everyone inside the company uses it as their first node).

Having shown that lone connections allow the attacker to compromise anonymity, we
now calculate how many such connections a system is likely to have under different
conditions (and thus how likely a user’s connection is to be compromised). First,
we derive an approximation, and then examine the subject in more detail using a
simulator. Finally we suggest ways of defending against this attack.

7.4.1 Mean-based analysis

We assume the users initiate on average c connections per second, each forwarded
along ` links (inside the network) and that there are n nodes in the anonymity system.
Furthermore assume each connection has duration dur.

Thus on average at any instant there are c×dur connections. Each connection exists
on l links, so on average there are c× dur× l link-occupancies. Links are, of course,
unidirectional as the attacker can distinguish packets going from P to Q from those
going from Q to P . If there is a link between each pair of nodes, there are roughly
n × n links3. On average there are c × dur × l/(n × n) connections per link. It is
clear that the absolute lower bound of the number of connections per link is 1, and
for a good anonymity system this number should be much greater.

Let us illustrate this with an example. Suppose we have a system with n = 30 nodes,
the users initiate connections through l = 3 network links (i.e. 4 nodes), each lasting
dur = 2 seconds. If each node can talk to every other, then around 150 connection
initiations per second are necessary for this system not to be susceptible to this
attack.

7.4.2 Definitions

It is clear that the approximations calculated in the previous section are rather crude.
We now proceed to define lone connections formally and show how to work out the
fraction of lone connections of a particular system.

First, define the anonymity system graph as a set of nodes G with |G| = n and a set
of directed edges (links) E (ranged over by e), with each edge being a pair of nodes. A

3It is debatable whether routes with the same node occurring twice consecutively should be
allowed.
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path (of a connection), then, is a sequence of adjacent edges. Take all the connections
ci (of length li) which are open during a particular packet counting interval in some
particular order and let g = [[e1,1 . . . e1,l1 ]; [e2,1 . . . e2,l2 ]; . . .] be the sequence of paths
of these connections. We can easily express the number of connections on each link
resulting from such a configuration.

fg(e) =
∑

p∈g
occurrences of e in p

A connection is lone when it is lone on all the links it is going through. Now cal-
culating the set (and therefore the number) of lone connections in a configuration is
straightforward:

lone = |{|p|p ∈ g ∧ ∀e ∈ p.fg(e) = 1|}|

We can also find the fraction of lone connections: lone
|g| .

We now go on to calculate the probability of a connection going through the ano-
nymity system being lone.

First, let us assume some parameters of the anonymity system.

• Φ(c), the probability that c connections go through the anonymity system
during the same packet counting interval. An attacker can easily obtain this
probability distribution by observing the anonymity system for a while and
building up the distribution. Indeed, the operators of the JAP system [JAP]
are currently providing their users with c in real time as a very crude indication
of the anonymity of their connections.

• Ψ(j), the probability that a connection route is chosen to have length j. This
distribution is encoded into the anonymity client, e.g. Tor, and hence can be
easily obtained by an attacker.

• The graph of the anonymity system is given by G,E. This is clearly visible to
a global passive attacker.

• The maximum number of connections which can go through a system is max c
and the maximum route length is max rt. The latter is an inherent parameter
of the anonymity system determined by the size of the onions, the former can
be obtained from observing the system for some time.

Now define G([l1, . . . , lc]), to be the set of all sequences of paths of lengths [l1, . . . , lc]
in the graph G,E.
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G([l1, . . . , lc]) = {m| m = [[e1,1 . . . e1,l1 ]; [e2,1 . . . e2,l2 ]; . . . ; [ec,1 . . . ec,lc ]]
∧ ex,y ∈ m⇒ ex,y ∈ E
∧ ((i, j)x,y ∈ m ∧ (k, l)x,y+1 ∈ m)⇒ j = k}

Now, the probability P of a randomly chosen connection being lone is:

P =
∑

c∈0...max c

Φ(c)×
∑

L=[l1,...,lc]

∀i.li≤max rt

∏

l∈L
Ψ(l)×

∑

g∈G(L)

|{|p|p ∈ g ∧ ∀e ∈ p.fg(e) = 1|}|
|g|

There are several assumptions which we have made implicitly in the above formula.
Firstly, the probability distribution for path lengths of all connections is the same,
Ψ(l). Secondly, paths are chosen uniformly at random from all the possible paths
(of length l) through the graph G,E4. Finally, all the path lengths and all the paths
themselves are chosen by the connection initiators independently.

Although the above formula defines the probability of a connection going through
an anonymity system unmixed, it is hard to see the quantitative implications of it
directly. We therefore make a simulation of the anonymity system.

7.4.3 Simulator Results

We have constructed a simulator which uses the definitions above to calculate the
fraction of lone connections. Given a graph of nodes connected by links, and the
number of connections we wish to simulate, it picks a route length for each connection
(Ψ(j) is assumed to be a uniform distribution between a minimum and a maximum
value) and then generates the routes themselves. Then it calculates the fraction of
lone connections using the definitions above. Clearly, the fraction of lone connections
going through the network is also the probability that a particular user’s connection
is going to be observed by the global packet counting attacker.

For example, let us take a Peer-to-Peer anonymity system with 100 nodes (each user
running a node) all connected to each other. Suppose each of the 100 users has
a connection (Φ(100) = 1 during the packet counting interval we are considering)
through a minimum of 2 and a maximum of 4 network links5. This system provides
very low anonymity – around 92% of the connections going through it are lone.

4Hence the number of connections a node will handle is determined by the number of links it has
to other nodes.

5Such a route length distribution is typical for Tor.
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Figure 7.2: Fraction of lone connections (as viewed by a global packet counting
attacker) vs the number of nodes in the anonymity system. There are 60 connections,
each going through two network links.

A graph of the number of nodes vs the probability of connection compromise is
shown in Figure 7.2. There are 60 connections going through the network and each
connection is going through 2 network links.

We note that the fraction of lone connections is not the only measure of anonymity
we could have used. Indeed, although it conveys a very clear message to the user
(the probability of the connection they are about to establish being observable), it
also suffers from some disadvantages. First, it does not indicate how many other
connections a particular connections has been mixed with, as an anonymity set (or
the information theoretic metric of Chapter 3) does. It is worth pointing out that
if a connection is lone on some, but not all of its links, its anonymity set is very
much reduced (which is not reflected in the probability of it being compromised).
Secondly, the designers of the anonymity system might like to know the probability
of at least one connection being compromised – a much stronger property. We leave
calculating these metrics and analysing the attack in more detail to (rather tedious)
future work.
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Figure 7.3: Fraction of lone connections (as viewed by a global packet counting
attacker) vs route length. There are 50 connections and 50 nodes.

7.4.4 Protection

As we saw in the previous section, the packet counting attack on the lone connections
is quite powerful against some systems. Here we examine ways of protecting against
it.

Firstly, more traffic (and/or fewer nodes) makes the system much less vulnerable to
the attack. Modifying the system from the example above to one with 20 nodes with
200 connections going through it (and keeping the route length the same at between
2 and 4 links) reduces the fraction of compromised connections from 92% to 2.5%.

Secondly, increasing the route length helps increase the total volume of traffic in
the network, but also has the undesirable effect of increasing latency. For example,
doubling the route length in our example above (100 nodes, 100 connections, route
length of 4 to 8 network links) reduces the probability of a connection being com-
promised from around 92% to 72%. The graph showing how route length affects the
fraction of lone connections is shown in Figure 7.3.

Thirdly, and most importantly, we can design the architecture of the system to suit
the amount of traffic we expect to flow through it. If there is very little traffic, a
cascade ought to be used. If there is slightly more, a restricted route architecture (see
[Dan03b]) can be employed to dramatically decrease the fraction of lone connections.
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For instance, for an anonymity system of 100 nodes, each able to forward traffic to 5
others (with route length of between 2 and 4 links and 100 connections), the fraction
of lone connections is reduced to around 17%. This is still unacceptable, however,
and suggests that making every client run a node is not a good choice for a strong
anonymity system.

The fact that Peer-to-Peer anonymity systems do not provide much anonymity
against the passive attacker who can observe all the links is an important conclusion
which may seem counter-intuitive. However, it can be easily explained when we ob-
serve the fact that the connections have to “fill up” the network graph at least twice.
If we run a node at every client, the number of connections will be within a constant
factor of number of nodes. It is likely that each user does not have many active open
connections with data flowing through them all the time, so this constant factor is
typically less than one. The number of links in a fully connected network is roughly
n2, so the anonymity of such a network will be low. This is clear even from the crude
calculations in Section 7.4.1.

As well as designing the system in a way which suits the expected level of traffic, we
need to be able to handle daily or weekly variations in the number of connections
established through the system. This may be possible by dynamically reconfiguring
the network topology from cascade to restricted routes to full network. Of course,
short term (intra-day) variations in traffic could not be handled in this way; this
should be handled by suggesting to the users the number of nodes their connections
should go through to stay anonymous.

7.5 Analysis: Connection-start Tracking

Our second attack is based on tracking the increase in the volume of traffic from an
incoming to an outgoing link of a node which results from data starting to flow on
a new connection. This increase happens when the webserver is starting to send the
webpage data in response to a request made by a client. We call such an increase a
“connection start”. We note that the propagation of such a connection start through
a node is observable to a packet counting attacker, even if the connection is not
lone. If the node does not delay traffic significantly (as current systems do not), the
attacker will observe a node in a steady state; then a start of connection arriving
followed by a start of connection leaving, and will deduce where the new connection
has come from and been forwarded to.

Hence, nodes must delay traffic (but still provide low latency communications). The
most appropriate mixing strategy here is the Stop-and-Go Mix of Kesdogan et al.
[KEB98]. It is easy to analyse, handles each packet separately and does not rely on
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batching. We proceed to describe this mix and examine how it can help us protect
against the above attack.

The Stop-and-Go mix treats each packet independently. When a cell arrives, the mix
draws a random value from an exponential distribution with parameter µ and delays
the cell by that time. The mean delay of the mix is thus 1/µ.

Assume the users initiate (on average) c connections per second, each going through
` nodes. The system consists of n nodes. Write λ for the mean rate of arrival of
starts of connections (per second) to a particular node. We have λ = c`/n.

Assume further that the arrivals of the starts of connections to the node are Poisson
distributed (with parameter λ).

This is essentially the n− 1 attack scenario described in [KEB98], though performed
here for starts of connections instead of individual asynchronous messages. We want
to choose the parameters λ and µ such that the probability of the attacker tracking
a start of connections through all the mixes is small.

Now, the attacker tracks a connection through a mix if and only if:

1. When the start of the connection arrives, the mix is “empty of starts of con-
nections”. This means that there has not been an incoming start of connection
that has not been followed by an outgoing one. From queueing theory, the
probability of this is: e−λ/µ.

2. Having arrived on an incoming link, the start of the connection leaves the mix
whilst no other start of a connection has arrived. The probability of this is
equal to the probability of the delay of the message being smaller than the
time of the next message arrival, 1

1+λ/µ .

Now to get the probability that a connection is tracked through one node, we just
multiply the two together.

e−
λ
µ

1 + λ
µ

The probability of the attacker tracking a particular connection which is going
through ` mixes is:

(
e
−λ
µ

1 + λ
µ

)`

substituting in the expression for λ from above gives:

126



(
e
− c`
nµ

1 + c`
nµ

)`

A user of this system would incur a delay of roughly 2`/µ seconds for onion connection
setup, `/µ for a request and `/µ for a response, or a total connection delay of: 4`/µ.

We will now do some order-of-magnitude calculations to see how much traffic needs
to go through the anonymity system to get acceptable delay and anonymity values
and then show graphs of the probability of having the connection compromised in a
variety of different scenarios.

Clearly, as long as ` ≥ 3 and c`/nµ ≥ 1, the probability of tracking a connection is
low (< 0.006). Hence, c`/nµ ≥ 1 or c` ≥ nµ.

Suppose ` = 3 and the maximum acceptable delay is 2 seconds, hence 4`/µ = 2,
hence µ = 2` = 6. Substituting in, we get c ≥ 2n. This implies that the users of the
system have to initiate twice as many connections per second as there are nodes.

Suppose we have U users browsing every day. If each browses 100 pages a day,
c = U × 100/(3600× 24).

Now suppose we have an anonymity system of 30 nodes. We find the number of users
U needed for the system to provide anonymity. U × 100/(3600 × 24) ≥ 2 × 30, or
U ≥ 2 × 30 × 36× 24 = 51000. This is a realistic target for a small to medium size
anonymity system.

Naturally, the calculation above is rather crude as it involves the mean amount of
traffic (and suppose that the traffic is evenly distributed throughout the day). More
traffic is required to to protect against traffic troughs (e.g. at night).

We now show how the probability of a connection being tracked through the ano-
nymity system is affected by the various parameters. In Figures 7.4, 7.5, 7.6, 7.7
the probability of a connection being compromised is plotted against route length,
the delay parameter of the mix, the rate of incoming connections and the number of
nodes in the system (respectively).

It is worth considering the quality of traffic data the adversary has to have access
to to mount such an attack. If a timestamp for every packet is available, the attack
can be mounted with maximum effectiveness. However, if the adversary can only
do packet counting over some time intervals, then the time interval must be much
longer than the node delay and much smaller than the interarrival times of starts of
connections to a node. Note that this is more precision than was required for the lone
connections attack (the time interval there had to be much less than the interarrival
times of connections on a single link).
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Figure 7.4: Probability of a connection being tracked vs route length. µ = 6, c = 10,
n = 30.
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Figure 7.5: Probability of a connection being tracked vs delay parameter. ` = 5,
c = 10, n = 30.
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Figure 7.6: Probability of a connection being tracked vs connection rate length.
µ = 6, ` = 5, n = 30.
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Figure 7.7: Probability of a connection being tracked vs number of nodes. µ = 6,
` = 5, c = 10.
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7.5.1 Working with Richer Traffic Features

We have so far considered starts of connections and showed that if these are allowed
to propagate through the network then a certain level of traffic is required to maintain
anonymity. Now we consider how the attacker could use more general traffic features
(e.g. spikes) to track individual connections. This is an example of a waveform
analysis – data from several intervals will be required.

Let us consider a simple case of a node with 2 incoming and 2 outgoing links. The
adversary sees a spike on one of the incoming links (say from A) and one of the
outgoing links (to Q) some time later. For clarity of exposition, we suppose he
knows that both the links which exhibited spikes have lone connections on them6,
but the other links (from B and to R) contain many connections, so some spikes may
be hidden. The smart adversary does not jump to conclusions about a correlation
between the links with spikes, but instead calculates the probability of it.

There are two possibilities: Either the attacker is correct and the spike from A really
went to Q, or the attacker is mistaken and there was a hidden spike which came in
from B and went to Q, while the spike from A got forwarded to R and hidden in the
traffic.

The probability of the former is 1/2 (assuming the connection from A was equally
likely to be forwarded to Q and R). The probability of the latter is P (spike)× 1/2.
Hence, the attacker is correct with probability 1

1+P (spike)
. The probability of a spike

occurring on a link is low (spikes do not occur often, and a similar argument to the
one we presented in Section 7.4 applies), so the probability of the attacker being
correct is high.

A complete analysis is not presented here – we would need to examine real connec-
tion traffic to determine the probability of spikes occurring and determine what other
kinds of traffic features we might make use of. It is notable that interactive applica-
tions like SSH are much more vulnerable to this kind of attack than web browsing as
the traffic is much less uniform. In general one would expect to use signal-processing
techniques – filtering the signal to frequency ranges known to include identifiable fea-
tures and/or calculating running correlations between signals and common feature
patterns. We leave this for future work.

7.6 Discussion and Solutions

In the previous sections we looked at two powerful attacks which can be mounted on
connection-based anonymity systems by passive attackers, evaluated their effective-

6This constraint is easily relaxed.
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ness and assessed potential protection measures.

Unlike previous analyses in the literature, we stayed clear of using vague and costly
proposals of adding dummy traffic to the system, instead calculating the number of
user connections required to maintain anonymity. This approach is crucial for build-
ing efficient, fast, and therefore deployable connection-based anonymity systems,
whilst still providing anonymity to the users.

However, we have not examined all the attacks which the adversaries can potentially
mount against connection-based anonymity systems. In particular, in this chapter
we have not considered the “first and last node” attack or any active attacks. We
comment upon them briefly here.

The “first and last node” attack involves the attacker compromising two nodes and
then using them to identify the connections which start and end at these nodes. He
can filter padding from the client to the first node (if there was any) and modify
traffic travelling in both directions. In particular, he can insert a signal into the
inter-arrival times of cells of a particular connection and then look for it (low-pass
filtered to account for the variances in network and mix delays) on the other side. As
the packets are small, the signal is likely to carry a substantial amount of information
and help the attacker succeed. Note that an active attacker who can modify traffic
on links (but has not compromised any nodes) has the same capability.

There are several potential countermeasures which will help make this attack less
powerful. First, longer routes will help reduce the amount of signal which propa-
gates from the first to the last node. Secondly, increasing the packet size (and thus
decreasing the number of packets) will help reduce the size of the signal which can be
inserted into the connection. In the limit, if all webpages fit into one packet, active
attacks become ineffective (though this comes with a massive efficiency loss).

We have not yet commented upon the potential use of traffic shaping as a counter-
measure to both the attacks presented here and future, more sophisticated ones. It
is worth noting that such a traffic shaping policy would have to make all the connec-
tions in the anonymity system have the same profile, which is likely to be expensive
in terms of introducing delays or bandwidth (dummy traffic). We have not investi-
gated this mostly because protection against the attacks outlined could be achieved
by cheaper means.

One of the implications of the results presented here is that anonymity systems
which involve all the users running nodes are impractical simply because there is
not enough traffic to fill all the links. It is evident that adding nodes provides less
anonymity (contrary to popular belief) against the global passive attacker. Whether
this statement is true for the case of partial attackers remains the subject of future
work. Of course, increasing the system size makes it harder to be a global attacker
or compromise a certain fraction of the system.
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Another interesting line of research is to see whether an anonymity system could be
built using an architecture which elevates a subset of the Peer-to-Peer nodes to a “su-
pernode” status. The role of such supernodes would be to perform mixing, while the
other, “lesser” nodes would simply forward traffic. This may yield a good compro-
mise between the performance and scalability of current Peer-to-Peer architectures
and resistance against passive attackers.

7.7 Related Work

As mentioned before, there is not a great deal of work on the analysis of connection-
based anonymity systems. Qualitative analyses include [BMS01, Ray00]. Quantita-
tive analysis has so far been limited to evaluating the impact of compromised nodes
on the anonymity provided. Wright and coauthors examine this issue in many dif-
ferent anonymity systems [WALS02], while [STRL00] gives a detailed account of the
security of the first generation of the Onion Routing system against compromised
nodes.

To the best of our knowledge, the first work which describes the packet counting
attack is the analysis by Back, Möller and Stiglic [BMS01], however, they fail to
specify the attack precisely. Clearly, simply from observing similar packet counts on
an incoming and outgoing link, the inference that a connection is forwarded from one
to the other cannot be made. Indeed, in this work we showed how to calculate the
probability of such an inference being correct and erroneous in Section 7.4. Neither
do they investigate the parameters of the anonymity systems which make them more
or less vulnerable to this attack, or how to protect against it.

Another recent work [Ren03] looks at packet counting attacks of the end-to-end
variety, arguing that over time an intersection attack combining all these will succeed.
However, the author does not calculate the probability of success, arguing simply
that protection against these using dummy traffic is necessary. He then proposes a
constant dummy traffic policy which is likely to be too costly to be acceptable to
volunteers who might run nodes in a connection-based anonymity system (though
the dummy traffic policy would also protect against some attacks which we have not
considered).

The connection-start tracking problem was observed in [PPW91]; there it is solved
by dividing the connection into a number of “time slice channels”. It is interesting
to consider the ISDN mixes scheme in the context of the current infrastructure (each
user having a DSL connection to the Internet). It requires two independent channels
to be used all the time, which imposes large overhead on the ISP of the users. ISPs
currently implement bandwidth caps to discourage “heavy bandwidth use”, hence a
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solution which involves constant padding is unlikely to be acceptable to them7. This
scheme requires extra overhead and its effectiveness remains to be evaluated.

There are also systems which provide anonymous connections for web browsing
[SBS02] which do not follow the “mix” architecture of Chaum, but they also lack
quantitative analyses of the anonymity provided.

7.8 Summary

We examined in some detail two attacks which can be mounted by passive adversaries
on connection-based anonymity systems. These compromise current (experimental)
anonymity systems completely as they do not delay packets at nodes and have little
traffic. Similarly, we do not feel it is appropriate to compare system X against
system Y at this moment as parameters of these systems crucial to the analysis
change dramatically over time and will hence invalidate any results we can come up
with. We feel that having provided easy methods of analysis, the system designers can
use them easily enough to ensure their system is not vulnerable to attacks described
here. In particular, we showed that the threats can be protected against without
resorting to dummy traffic and keeping the delay to users’ connections acceptable.

Finally, the work in this chapter shows that analysis of connection-based anonymity
systems is just as feasible as that of message-based ones. Furthermore, such analysis
is required to develop and evaluate methods of protection against real threats. As
a promising direction for future work, we suggest that mounting real attacks on
implemented (and deployed) anonymity systems will provide further insight into the
measures necessary to keep anonymity systems anonymous.

We now finish our rather brief excursion into the analysis of connection-based systems
and go on to look at an application which can be built on top of strong anonymity
systems.

7A scheme where each ISP runs a node may be more acceptable as it will cause no additional
external traffic, but it does require the co-operation of the ISPs.
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Chapter 8

Anonymity and Censorship
Resistance

“Any problem in Computer Science can be solved by another layer
of indirection”

— David Wheeler

In the previous chapters we presented various analyses of both message-based and
connection-based anonymity systems. In this chapter, we assume a strong anonymity
system and build a censorship resistant scheme with strong properties on top of it.
This provides a novel application for the anonymity system and also strengthens
previous work on censorship resistant systems.

8.1 Introduction

Back in Chapter 1 we remarked that censorship resistance is a property which essen-
tially amounts to long-term availability in an adversarial environment. More specifi-
cally, censorship resistant systems have to cope not only with byzantine failures, but
also “real world” attacks aiming to remove content from the system.

Many censorship resistant systems have been proposed recently, yet most still lack
one crucial feature – protection of the servers hosting the content.

In the past this was not considered an issue. For instance, in Anderson’s Eternity
Service [And96], it was deemed sufficient to guarantee that a document was always
available through the system. However, many examples indicate that servers hosting
content are vulnerable to censorship, due to “Rubber Hose Cryptanalysis” – various
kinds of pressure applied by attackers to shut down servers or remove files. Examples
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of documents subjected to censorship on the Internet include DeCSS [Tou], the paper
detailing the attack on SDMI [CWL+01], and documents (or quotes from documents)
which the Church of Scientology described as their secrets. In cases like this, the
server administrators receive “cease and desist” letters when the censor finds the
offending document on their server.

Most modern censorship resistant systems, for example Publius [WRC00] and Freenet
[CSWH00], have not addressed this problem in a satisfactory way. It is possible for a
malicious reader to find out which servers some particular piece of content is stored
on, and subsequently try to pressure the server administrators to remove it. With
Publius in particular, the situation is slightly more complicated as each document
is encrypted and the key is split into n shares, any k of which are recombinable to
form the document back. In this case, the attacker needs to remove content from
n − k + 1 servers, but can easily locate all of them1. With the number of servers
reasonably small and static, the job of censoring documents becomes easier than one
might expect.

An alternative approach to dealing with censorship resistance is taken by systems
such as Dagster [SW01] and Tangler [WM01] which prevent removal of any single
document from the system by entangling documents together. However, in our view,
these are not effective enough at dealing with the problem either: if the offending
document was entangled with the Declaration of Independence, Das Kapital and the
Little Red Book, censoring it (thereby removing all of the above from the system)
would not be a major problem as all the other documents are readily available from
other sources. Even if the other documents were not available elsewhere, the censor
is unlikely to be discerning enough to want to keep them. Furthermore, if the system
is run on a single server (e.g. Dagster), then the censor may simply try to shut down
the entire server.

The rationale behind the design of our system can be seen by considering a simple
attack which works against most other censorship resistant systems. First of all,
we need to consider how the attacker locate certain piece of content, or even a part
(share) of it. In Publius, for instance, the name of the machine on which each share
is stored is included in the address of the document. Of course, the storer can deny
the fact that he is storing a particular share, but, if watched by the attacker, he will
be faced with a dilemma of whether to answer requests (and thus reveal the fact
that he is storing the share) or drop the request, effectively censoring the document.
Once the attacker has obtained proof that a storer has, and has been answering
requests for a particular share, legal pressure can be applied. We will return to this
attack later in this chapter to see how the various features of our proposed design
help protect against it.

1Indeed, if one server has been pressured into removal, the other server administrators may simply
follow the precedent and remove the offending content themselves.
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Broadly, in our system, we consider the storers of the files to be valuable entities,
and protect them against “Rubber Hose Cryptanalysis”. Furthermore, we protect the
documents they are storing by providing active-server document anonymity (as first
introduced in Free Haven [DFM00a]). This is the property that the storer should not
be able to determine (parts of) which document it is storing, not even by retrieving
the document from the system. We now proceed with a description of the system
and then give an analysis and critique of it.

8.2 System Description

Our system consists of many identical peers, each of which can fulfil five different
roles:

• Publisher p. The node which has a document and wishes to make it available
and censorship resistant.

• Storer s. A node which stores part of a document.

• Forwarder a. A node which has an anonymous pointer to a node storing part
of a document.

• Client c. A node which retrieves a document.

• Decrypter l. A node which decrypts part of a document and sends it off to the
client.

The system is built on top of an existing Peer-to-Peer document storage service
such as PAST [DR01]. PAST itself is built on top of Pastry [RD01], a Peer-to-Peer
routing scheme. Pastry can be viewed as a network of machines (peers), each with a
unique identifier. The only thing required to send a message to a machine is its id,
furthermore, Pastry guarantees that the message takes around logN hops, where N
is the number of nodes in the system. Using an existing Peer-to-Peer architecture
allows us to abstract away routing, clients leaving and joining the network, and other
low level issues.

On top of Pastry, PAST also provides robustness: neighbouring machines (machines
within a certain distance of each other within a logical namespace) share state.
This is further discussed below. We also assume a public key infrastructure, so
any peer is able to learn any other peer’s public key. This is further discussed
in Section 8.4. Finally, we make use of an anonymous connection system such as
Mixminion [DDM03] which is capable of handling replies.

As usual in censorship resistant systems, the operations available to a node are
publishing and retrieval. There is no search facility, therefore we rely on a broadcast
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Figure 8.1: Publishing. Zig-zag lines indicate anonymous connections.

mechanism such as an anonymous newsgroup to transmit retrieval information to
potential readers. We do not support content deletion or modification.

8.2.1 Publishing

The overall publishing process is illustrated in Figure 8.1. The main idea is to split
the documents into many parts or shares hi, and store them (encrypted) on machines
si, while making them accessible through machines ai which forward requests for the
appropriate shares anonymously.

Publisher:

To publish a document (see Figure 8.2), the publisher p splits it into n+ 1 shares hi,
any k+ 1 of which can be combined to form the whole document again. This can be
done using one of the standard algorithms such as Shamir’s secret sharing [Sha79].
He then generates n+ 1 keys ki and encrypts each share with the corresponding key.
He now picks n + 1 peers a0 . . . an at random to act as forwarders and constructs
onions to send (via the anonymous connections layer) each of them the encrypted
share {hi}ki , the corresponding key ki

2 and a (large) random integer vi together with
a return address (reply onion)3 rp. The publisher can now wait for a confirmation to
come back from each of the ai’s (via the reply onion) saying whether the publishing
has been successful or not. If the operation failed, the publisher should try different
ai’s.

2Both {hi}ki and ki are sent to minimize the work which has to be done by the forwarder.
3A return address is a kind of onion which, if included in an anonymous message, can be used to

reply to that message without revealing the original sender (see [Cha81] for details).
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Figure 8.2: Inserting share h0. All communication is done via the anonymous con-
nection system using randomly constructed onions. If the message is sent using a
return address, it is displayed at the base of the arrow. Anonymous return addresses
are denoted by r, e.g. ra0
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Figure 8.3: Retrieval

Forwarder:

The forwarder (all of them perform the same operation, here we use a0 as an example)
receives the message, finding an encrypted share {h0}k0 , a key k0 and a random
number v0 and the publisher’s return address. He then picks a storer s0 to store
the share and a number v′0 which the storer should associate the share with. He
constructs an onion for delivering these to the storer. Thus, he puts the encrypted
share, v′0, as well as his own anonymous return address ra0 into the onion as the
message and sends it off (see Figure 8.2a). He remembers v0, v′0, k0 and rp. When
the onion is received by s0, it stores the share and issues a number of different return
addresses r̃s0 (to be used for retrieval), sending them back to a0 via the return
address ra0 . Now a0 associates v0, v′0 and k0 with the return addresses r̃s0 , forgets
s0, and replies “ok” to the publisher via rp. Once all the shares have been stored,
the publisher destroys them and announces the name of the file, together with the
n+ 1 pairs (ai, vi) to potential users.
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8.2.2 Retrieval

To retrieve a document (see Figure 8.3), the client c asks the forwarder a0 (and
each ai in the same way) to retrieve the share h0 by sending them an anonymous
message with v0 and their anonymous return address rc. The forwarder a0 then picks
a random server l to act as a decrypter and sends it k0, the key it is storing which
decrypts the stored share, v′0, rc, and a return address ra0 , getting back a return
address for l. Now a0 forwards rl and v′0, which identifies the share, to s0 via one of
the r̃s0 (rs0). Now s0 looks up the encrypted share corresponding to v′0 and forwards
it and v′0 to l, which decrypts the share and sends it to the client via rc. The process
continues until c has accumulated enough shares to reconstruct the document.

We note that when the forwarder starts running out of return addresses for the storer
(you can use each one only once), all the forwarder needs to do is request some more
via one of the return addresses it still has.

The other important detail which we have so far left out of the description of the
system is that the Peer-to-Peer storage layer (PAST) replicates state among neigh-
bouring nodes. This enables requests to be routed to any of the nodes which contain
the replicated state. In particular, the forwarder shares (v0, v

′
0, k0, r̃s0) with neigh-

bouring nodes which can therefore also answer requests. Similarly, the storer shares
(v′0, {h0}k0). The decrypter does not need to share anything as he will only get one
request to decrypt the share and will then give up this role.

8.3 Commentary on the Protocol

In the last section we presented the protocol. Here we will try to explain some of
our design decisions and show how they relate to the properties we want our system
to satisfy.

There are several novel aspects in the design of our censorship resistant system as
compared to existing architectures:

• Replication. The use of a Peer-to-Peer layer such as PAST to replicate state
in forwarders and storers.

• Forwarders. The use of forwarders to provide an extra layer of indirection and
prevent the storers from being visible by clients.

• Encryption of shares. Storing the shares in an encrypted form and keeping the
keys at the forwarders.

• Decrypters. The use of separate nodes (as opposed to, for instance, forwarders)
to decrypt shares.
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8.3.1 Replication

Replication of state in the system provides fault tolerance, efficiency and prevents
several kinds of attacks.

Firstly, it makes denial of service attacks and simple efforts to take down individ-
ual forwarders ineffective because there are always a number of other hosts ready
to forward requests. Furthermore, even if the attacker succeeds in taking down a
particular forwarder, state will be replicated onto a new node which will also start
forwarding requests.

More subtly, it reduces the link between any particular forwarder and the share
which has been retrieved. This is because the address for a particular forwarder (for
instance, a0) which is published in the anonymous newsgroup denotes a dynamic
set of physical hosts rather than a single machine. This is due to the behaviour of
the underlying layer (PAST): if asked to route a request to a node (a0), it does not
necessarily forward it to that specific node, but instead to any node which shares
state with a0. Therefore, it is not easy to establish precisely which physical machines
the address a0 represents; indeed, this set changes as machines go down and come
back up.

However, this introduces a slight complication. Although the forwarders share state,
they cannot share private keys (it would be impossible to keep these keys secret
because the set of forwarders constantly changes as nodes go up and down). Therefore
requests addressed to them must be delivered in plaintext4. This turns out not to
be problem here as the attacker who watches traffic arriving at the forwarders sees
v0 and rc. The former is public anyway, and the latter gives away no information
about c itself (but enables him to send a fake share to c5).

8.3.2 Forwarders

The use of forwarders serves several purposes. First of all, they help protect the stor-
ers against “Rubber Hose Cryptanalysis” by hiding them from the clients. Secondly,
they can help provide active-server document anonymity by randomly introducing
new dummy requests into the system and dropping some of the valid ones. Thus, it
will make it hard for the storer to find out (part of) which document it is storing,
even by acting as a client in the system. Finally, we use the forwarders to store keys
which decrypt the shares and forward them to the decrypters.

4This means that the last layer of the onion is not encrypted. Therefore, the message is still
anonymous but not secret.

5This does not constitute an attack as the adversary would have to perform this active and
therefore expensive operation for every share every client requests.
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8.3.3 Encryption of Shares

We have argued that the storers should not be able to see the content they are storing,
to prevent the possibility of them being pressured into censorship. Therefore, we must
make them store the shares in an encrypted form and stop them from getting hold
of the keys which would decrypt the shares. Thus these keys cannot be published as
this would enable the storers to retrieve all of them and see which one decrypts each
of the shares. Hence they are stored by the forwarders.

8.3.4 Decrypters

Some would argue that the use of decrypters is superfluous. The storer could just send
the shares back to the forwarder who would send them back to the client. However,
this would expose the forwarder to the risk of being caught red-handed with the share.
Furthermore, they might be pressured into installing a filter to censor shares which
the attacker does not like. As the forwarder is the publicly visible part of the system
(and therefore the most vulnerable), we decided to delegate the task of decrypting
the share to a completely different entity who does not have any information about
what it is decrypting.

Having looked at the various features of the system, let us see how they combine to
protect against the attack we described earlier. First of all, the use of forwarders
means that the storers do not have to be included in the address of the document.
Furthermore, the use of a strong anonymity system does not allow the storers to be
identified even by a global passive adversary who tries to analyse where the messages
from the forwarders travel to. Finally, even if the attacker picks a particular storer
for reasons other than analysing the communication patterns, he can deny knowledge
of the content on his machine – the shares are encrypted and he does not possess
the keys. Having established the fact that we protect the storers against this attack,
let us consider the forwarders. Certainly, it is possible to determine some of the
forwarders for a particular share of a certain document are. However, it is possible
for a forwarder to deny that a request for a particular share has been forwarded.
Firstly, due to replication of the forwarder state, over time different machines act
as forwarders for a singe share, so simply sending a request for a share does not
identify the machine which forwarded it. Secondly, even if a record of a forwarder is
identified, his link to the document is extremely weak – he forwards what essentially
amounts to random bits which may (or may not) cause a part of a document to arrive
from a completely different part of the network (the decrypter) later. Certainly, in
our view this provides much better protection than, say, Publius.
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8.4 Discussion

In this section we discuss the limitations of our system.

First, one should question the validity of assuming a public key infrastructure on
a Peer-to-Peer network. We need each peer to be able to retrieve the public key
of any other peer and verify that the key belongs to that particular peer. The
simple solution is to use a global repository. However, such a scheme has well-known
problems: it would limit the scalability and the resilience of the whole system. This
is a much more general problem which is likely to receive a fair amount of attention
in the coming years. A related issue is the fact that working on top of a Peer-to-Peer
system may result in attacks. For instance, if the attacker is able to arrange requests
not to reach a particular set of nodes corresponding to a forwarder at this level
(by, for instance, modifying routing tables in some of the nodes of the Peer-to-Peer
system), he will effectively censor the corresponding share. We do not address these
problems here, but merely point out that this is an active research area and one
which we need to pay close attention to. A nice summary of the problems in security
of Peer-to-Peer systems and some solutions to them can be found in [SM02, Dou02].

Secondly, we should consider how likely the forwarders are to suffer from “Rubber
Hose Cryptanalysis” – they are certainly visible to the attacker and contain infor-
mation which is necessary for share retrieval. However, we argue that they are much
less likely to be subjected to such pressure than, for example, Publius servers for the
following reasons:

• They are not storing the offending document, not even in an encrypted form,
so their connection with it is somewhat indirect.

• They do not store the identities of the si entities, so an attack to try to get it
out of them will not succeed.

• The share does not actually go through the forwarders ai after publication is
completed.

• The requests addressed to the forwarder ai are likely to end up being handled
by a number of different physical hosts.

A slight modification to the protocol (which we do not describe here) can be intro-
duced to further reduce the role the ai play in the protocol, and therefore reduce the
potential for them to be attacked. It is essentially based around the idea of passing
the received message to another forwarder as well as possibly handling it yourself.
This should provide better receiver untraceability.

We must also consider the number of compromised peers it takes to remove a docu-
ment from the system. A possible attack is as follows: each forwarder ai remembers
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(rather than forgetting) the corresponding storer si at the time of publication in
the hope of exposing them later, if the content turns out to be offending. Once the
document has been successfully published, ai notes the correspondence between the
random integer (vi) published with the document and one in its lookup table, and
works out the fact that si is storing a share of a particular document. It can now
pressure si into removing the share. However, the chances of the n − k + 1 peers
picked as ai being compromised are small and the peers have to be compromised at
the time of publication, otherwise the attack fails.

Having stated that we provide active server anonymity, we must pay attention to the
amount of information the storer can gain by repeatedly requesting the document
and noticing the requests coming in for the share it is storing. This is essentially
an intersection attack (which, as various papers [WALS02, Dan03c] point out, will
ultimately be successful), though here it is easier to protect against as it is possible
to introduce end-to-end dummy traffic as well as tolerate some percentage of packet
loss. The precise details of this, along with a quantitative analysis (in the spirit of
the previous chapters) of the anonymity of a storer is left for future work.

We also note that we are presenting just one part of a design of a system. Many
questions are left unanswered and a few attacks are not addressed. For example, the
attacker can simply flood the censorship resistant system with random data so that
there is no room for “real” documents to be inserted. This design does not include
protection against such an attack.

Neither do we deal with accountability in any systematic way. Consider a scenario
where the attacker is powerful enough to insert many nodes into the system. Each of
these, when asked to act as a forwarder, replies “ok”, but drops the share and fails
to answer subsequent requests. In this design, we are relying on the inability of the
attacker to insert enough malicious nodes to censor documents in this way. We felt
that although standard methods which are summarised in [DFM00b] can be used
in this system, they are inappropriate in this context or do not provide adequate
protection. Therefore, we leave this for future work.

8.5 Related and Future Work

A variety of censorship resistant systems have been designed, some of which have
also been implemented. We have already discussed Publius, Dagster and Tangler but
perhaps the system closest to ours, in terms of the aims it tries to achieve, is Free
Haven [DFM00a].

Free Haven is built on top of an underlying network of anonymous remailers and
deals with reader anonymity, server anonymity and censorship resistance. However,
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it uses a Gnutella-like search for retrieval of shares of the document. More specifi-
cally, a user request to retrieve a particular document gets broadcast from the user
node to all the neighbouring nodes, and so on. When a request arrives at a peer
which has a matching share, it gets sent off to the requester via a chain of remailers.
This scheme for locating files is rather inefficient, and, as the Gnutella experience
has shown, does not scale for large numbers of peers. Furthermore, we note that
peers frequently exchange shares with each other. This is costly in terms of net-
work bandwidth and makes it hard to provide guarantees that a document will be
located. Our system aims to be more efficient both in terms of bandwidth and share
retrieval. We note, however, Free Haven authors suggest an interesting technique for
increasing censorship resistance – moving the individual shares around in the system
– which may be incorporated into our system. For example, the shares may be moved
periodically, and the state in the forwarders updated.

We have two main future objectives. Firstly, having described an anonymity system
and claimed that it satisfies some properties, we consider it worthwhile to formalise
those and prove them rigorously. Finally, we would like to build a prototype imple-
mentation on top of a Peer-to-Peer storage layer like PAST and a suitable anonymity
system such as Mixminion.

8.6 Summary

In this chapter we have presented a design of a system which deals with censorship
resistance and satisfies strong anonymity requirements. We have also made a point
of reusing existing designs which provide efficient routing and replication rather than
reinvent this ourselves. This may, in principle, also make implementation easier as a
free implementation of Pastry (though not PAST) is available6.

We have argued for building an anonymous censorship resistant system on top of
a peer to peer architecture and demonstrated the feasibility of doing so to provide
strong anonymity and robustness guarantees.

This chapter concludes the main part of the thesis. We now go on to summarise our
findings and ponder the things left to be discovered.

6http://www.cs.rice.edu/CS/Systems/Pastry/FreePastry/
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Chapter 9

Conclusion and Future Work

“You have zero privacy anyway, get over it.”
— Scott McNealy, CEO Sun Microsystems, 1999

“Some problems are better evaded than solved.”
— C.A.R. Hoare

A variety of anonymity systems have been developed, but relatively little atten-
tion has been paid to the analysis of their anonymity properties. In this work we
have shown that analysis of anonymity systems is feasible, necessary and somewhat
practical. A secondary thesis that this work does a great deal to support is that
systems providing different desirable degrees of anonymity on the Internet, each with
an associated cost, are a practical option rather than a theoretical possibility.

All the analyses presented here use relatively simple mathematical techniques and
most of our simulations are not overly costly. Yet the results we have obtained
are relevant to the anonymity systems which are in the process of being designed,
implemented and deployed today and in the future. We have also seen clear benefits
naturally arising out of our analyses. First of all, where the analysis has identified
a new way of looking at the problem, an improvement to the existing system was
quickly found (e.g. Chapters 4 and 5). Secondly, we were able to compare different
systems and identify their properties more clearly, which lead us to their better
understanding. Finally, in the case of Chapter 6, we laid the foundations for future
analysis of the anonymity of mix networks by providing the definition of anonymity
of a run of a mix network given an observation of the attacker. Although the work of
this chapter cannot provide results which are applicable to deployed mix networks,
we feel it is a significant step towards this goal. Besides, our program for calculating
anonymity can be used by researchers to gain an intuition as to which configurations
(e.g. uniform route length) provide more anonymity on small mix networks.
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In this dissertation we have explored a broad range of topics related to mix systems.
Some were explored in more depth than others: for instance, our investigation of the
properties of various single mixes has left relatively few important questions unan-
swered. Indeed, here our analysis has driven the design of a new mix (the binomial
mix) which has lead to its implementation and deployment within the Mixmaster
system. More specifically, our analysis of Chapter 4 has confirmed the intuition of
Cottrell which he expressed in [Cot94] and implemented in Mixmaster. The work
which followed (presented in Chapter 5) proposed a generalisation and two alterations
to the mix design which resulted in the binomial mix.

Our analysis of mix networks has given us some understanding of the anonymity
provided by mix networks with simple mixes. It is clear that more complex models
are needed before the results from such analyses can be used to drive design decisions
in real systems. However, this is an important first step towards an analysis of mix
networks. It also proposes an important level of abstraction at which the anonymity
properties of mix networks can be analysed. We note that although in the course
of this analysis we have made some interesting and important observations, there
were no “nasty surprises”. In other words, the level of anonymity we found matched
our expectations. This suggests that the anonymity of the Mixmaster system (which
uses more sophisticated mixes) is no worse than that of the system we modelled1.

Our analysis of packet-switched connection-based systems told a different story. Hav-
ing taken the global passive adversary as a threat model, we found several powerful
attacks on many of the systems. Although we described such attacks more precisely
than before, quantified them and suggested some solutions, much work in this area
remains. Indeed, while some have been content with analysing such systems against a
weaker threat model, we hope that work on securing them against the global passive
adversary continues.

In Chapter 8, we suggested a novel use of anonymity systems to improve properties
of censorship resistant systems. Although it requires rather strong properties from
the underlying anonymity system, it shows the need for deriving such properties from
anonymity system. It also serves to illustrate a different type of application of such
systems (other than just email or web browsing).

Before performing any of the analyses presented in this dissertation, we had to devise
a suitable metric for anonymity. Furthermore, the difference between the anonymity
of a message and the anonymity of a system had to be clarified. Thus, we claim
to have provided some insight into how anonymity properties can and should be
expressed. Perhaps this is the most valuable part of the thesis for those who take up
this field in the future.

1We stress that this is merely informed intuition rather than scientific evidence.
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9.1 Future Directions

The more you know, the more you don’t know. Analysis of anonymity systems is a
big field and there is only so much one can do in a dissertation. Here we look at the
areas for future research we have identified in the course of our work.

First of all, let us consider the problem of defining and measuring anonymity. There
are many interesting properties left to be defined formally. Recall, for instance, our
informal notions of sender and receiver untraceability presented back in Chapter 2.
A promising direction for future work is to develop a formal framework in which
one can express a protocol which satisfies one or more of these properties and prove
them. This could lead to the development of new protocols or attacks on existing
ones. We have already started exploring this direction.

In the area of analysis of the anonymity of single mixes, one might like to perform
a rigorous comparison between timed and threshold pool mixes along the lines we
have described and investigate the effect of dummy traffic on mixes. Overall, we feel
that further work in this area will not bring much more insight into the remailer
community and one should concentrate on analysis of whole systems rather than
single mixes.

Perhaps the most interesting technical problem we have looked at is the anonymity
provided by a mix network. In Chapter 6 we considered the anonymity of a message
passing through a network made up of simple mixes. Several extensions of this work
are possible; they are outlined in Section 6.13. The most promising of these include
extending the model to account for more sophisticated mixes such as the binomial
mix and developing more efficient algorithms to compute the anonymity of a message
passing through a mix network. Such research would also have direct impact on the
community running systems such as Mixmaster and Mixminion.

Yet another high-impact area of research is that of connection-based anonymity sys-
tems. As we have seen in this thesis, current systems do not provide much anonymity
and significant modifications are required to ensure that even the minimum levels of
anonymity are attained. The two most promising areas for investigation in this field
are to work out a scheme for maintaining some level of anonymity against the global
passive adversary with a few compromised mixes and to come up with a threat model
which enables a useful comparison between the various existing anonymity systems:
Onion Routing, Tarzan, MorphMix and Crowds.
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9.2 Concluding Remarks

Despite the future work remaining, we feel that our two theses are broadly justified.
We presented numerous analyses of the anonymity of anonymity systems and derived
benefits from each one, whether in the ability to compare systems or in gaining
insight into the design of better ones. We also showed that there are systems (or
at least designs of systems) which can provide significant amounts of anonymity
to Internet users. Clearly, there is more anonymity to be gained in the case of
message-based systems than connection-based ones. We feel that further work on
the analysis of anonymity systems would be beneficial to the anonymity community,
as would contributions towards the debate on the pros and cons of the availability
of anonymity to a wide variety of users.
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Appendix A

Variable Conventions

In the thesis we adopt the following variable conventions:

Chapter 3

R the set of roles – {sender, recipient}
n threshold

p pool

U(M,r) r anonymity probability distribution of a message M

Ak sender anonymity set of a message coming out of the pool mix at round k

E(M,r) Anonymity (entropy of the anonymity probability distribution)

Ek entropy of the anonymity probability distribution of a message coming
out of the pool mix at round k

Chapter 4

n threshold

t period

c maximum number of messages a mix can contain

p pool

r rate of arrival of messages to a mix

N number of attacker messages

G number of good messages in the mix

m total number of messages in the mix

pmin the minimum number of messages in the pool

frac fraction of messages above the minimum pool which are to be flushed

k number of rounds of a particular blending attack
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Chapter 5

P function expressing the batching strategy of a mix

m number of messages in a mix at the time of flushing

t period

n threshold

p pool

G number of good messages in the mix

NT number of messages the attacker sends in to achieve a certain
probability of each message being flushed

k, k′ numbers of rounds

Chapter 6

s, s′ senders

r, r′ receivers

m,n mixes

ε empty sequence

a onion encrypted message (comprising of a sequence of mixes,
a receiver and message content)

o a sender or a mix
−→
l a trace

P(X) powerset of X

Chapter 7

n number of nodes

d number of links of a node

c number of connections

V distribution of the number of packets on a connection

l route length, number of links

` route length, number of nodes

G,E graph represengting the topology of the network

e edge

λ parameter of the distribution of message arrivals

µ delay parameter of the mix
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