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Bigraphs whose names have
multiple locality

Robin Milnel

Abstract The previous definition of binding bigraphs is generalised s
that local names may be located in more than one region, iaipmore
succinct and flexible presentation of bigraphical reactiigems. This re-
port defines the generalisation, verifies that it retainatired pushouts,
and introduces a new notion of bigragitension this admits a wider
class of parametric reaction rules. Extension is shown wwdiebehaved
algebraically; one consequence is that —as in the originthitien of
bigraphs— discrete parameters are sufficient to genelatesations.

LUniversity of Cambridge, Computer Laboratory, JJ Thomson Aeeambridge CB3 OFD, UK



1 Binding bigraphs

We generalise theinding bigraphsdefined in Section 11 of Jensen and Milner [1],
by allowing the names in an interface to be local to more tham $ite. We assume

familiarity with Sections 1-10 of [1], but not with Sectiod.1We also refer the reader

to the bibliography of that paper.

Definition 1.1 (binding signature) A binding signature is like a pure one except
that the arity of a contrak: h — k now consists of a pair of finite ordinals, thanding
arity h and thefree arity k, indexing respectively theindingand thefree ports of any
K-node. IfK is atomic therh = 0.

We denote byK" the pure signature underlyinkj; for eachK: h—k in K it
assigns a single arity + k, forgetting the binding property of ports. ]

We wish to define a binding bigragh in terms of an underlying pure one, in which

all points linked to a binding port of a nodsdlie insidew, i.e. the scope of the binding

is (the interior of)u. Some of these points may be inner names, and we need to ensure
that they transmit this scope discipline to another bigrapim the compositionGF'.

For this purpose we enrich interfaces as follows:

Definition 1.2 (binding interface) A binding interfacdakes the forni = (m, loc, X),
where thewidthm andname sefX are as in pure bigraphs, afdt C m x X is called
thelocality of I. If (i, z) € loc we say that is aplaceof = (in I). We call[* = (m, X)
the pure interfacenderlying!. ]

We often writeloc; andnms; for the locality and the names &f

Definition 1.3 (binding bigraph) If I and J are binding interfaces, &oncrete)
binding bigraphG: I — J consists of arunderlyingpure bigraphGY: ' — J" sat-
isfying certain locality conditions. To state these coiadis we first define a relation
locg, assigning places to points and links@f, as the smallest relation such that:

POINTS if (i,z) € locy then(i,z) € locg
if p is a binding port of node then(v, p) € locg
if p is a free port of node then(prnt(v),p) € loce.

LINKS  if (j,y) € locy then(j,y) € locg
if an edgee contains a binding port af then(v, e) € loce.

We then impose two rules ofd. In the scoping rule (illustrated in Figure ¢)and/
range over points and links respectively, andv’ over places:

BINDING: A link has at most one binding port; an open link has none.

ScoPING. If linkg(q) = ¢ is a local link thenq is also local, and whenever
(w, q) € locg then there exists’ such thaty < w’ and(w’, ¢) € locg. n

We shall often call or J the inner or outefaceof G: I — J. Note that we are using
the word ‘place’ in two ways. Its simple meaning is a root, @@ site of a bigraph;
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Figure 1: The scoping rule for a poigtin a local link /¢

Figure 2: A binding bigrapltz: ({zy}, {zz},{z}) = ({2'}, {2'%'})

but we also talk of the placef a point or link, meaning a place assigned to a point or
link by the interface or bigraph under consideration.

Consider what the scoping rule implies for a pajnh a local link 4. If ¢ is a port
then it has a unique place; the rule insists that this liesléna place of. If ¢ is an
inner name the rule is stronger; it insists not only thas$ local, but thatachof its
places lies inside a place 6f In either case, if is an edge its place is unique, but if it
IS an outer name it may have many places.

Figure 2 illustrates a binding bigraph (controls not shawlocal link is indicated
by a small circle at each of its places. Note that the likas one point in the first
region and two in the second. Note also that there are twedllisks; one (containing
the inner name) is local, and the other is global and straddles two regions.

As for pure bigraphs, we can quotient concrete binding Ipigsato yield abstract
ones. For now we consider only the concrete ones, and omidhe ‘concrete’.

It is easy to check that both composition and tensor prodiegqove the binding
and the scoping rules. This justifies the following:

Definition 1.4 (s-category of binding bigraphs) Given a binding signaturé, the
wide monoidal s-category\BBG(K) of binding bigraphs is defined by taking compo-
sition and tensor product of the underlying pure bigraphglthand origin are as for
pure bigraphs. The forgetful functor from binding to purgraphs is denoted by

U: BBG(K)—BIG(K") . m



WhenK is understood we shall writdBG for "BBG(K).

Binding bigraphs naturally inherit the propertiearren, sibling, active, passive,
hard from place graphs, andle, open, closed, peer, ledrom link graphs. In addition
we say that a link iound(by p) if it contains a binding porp, otherwise free. Note
that every open link is free. We shall call a bigrgpimeiff it has unit width.

Binding bigraphs also inherit other notions:

Proposition 1.5 (isos, epis, monoshh "BBG a bigraph isiso (resp.epi, mong iff its
underlying pure bigraph is iso (resp. epi, mono).

A striking difference from pure bigraphs arises when we a@@rswirings. In the
terminology of [1], Chapter 9, a wiring is described as adpdr with interfaces of zero
width (and hence a trivial place graph). But in the presemtexd we need to ‘wire
up’ local names as well as global ones; we are thereforeddavolve places in our
wirings. So we shall adopt the following:

Definition 1.6 (wiring) A wiring is a binding bigraph without nodes. It isoéacing
if its link graph is an identity; it is dinking if its place graph is an identity. ]

We shall usev and( to range over wiringsy over placings and over linkings re-
spectively. In binding bigraphs a wiring cannot be exprdssenply as a combina-
tion (m, \) of a place graph with a link graph, since the interfaces hawalities and
the scoping rule must be respected. Thus placings and ¢iskias defined above,
will involve all three elements: places, links and localifyor example, in a placing
(2,loc, X) —(2,loc’, X) which swaps its two sites, the localitiésc and loc’ must
normally differ in order to respect the scoping rule.

Exercise Show thatw: I — J is both a placing and a linking iff its place map and
link map are identities antbc; C loc ;.

We shall postpone further taxonomy of wirings to the follogiisection, where we
explore it just forlocal wirings, i.e. those where every name is local.

A similar difference from pure bigraphs arises when we adesions. In pure
bigraphs, if K: k is a non-atomic control with arity, then for eachk-vector ¢ of
names there is aion Ky: (1,Y), whereY = {y}, consisting of ak’-node whose
ports are named in order. (The identity of the node is unspecified.) Withie tbn
we may place any ground bigrajgh: ¢ —(1, Z), whereZ N'Y = (; this creates the
molecule(K; ® idz) o G, with outer face(1,Y W Z). So the constructiol’; @ id,
yields a family of ions, indexed by new nam#&go be exported from inside the ion.

The same construction does not work for local nariesinstead, we define the
corresponding family directly:

Definition 1.7 (ion, molecule, atom) Let K : h — k be a control, withh = 0 if K is
atomic. Letz be anh-vector and; a k-vector, the members af being distinct, and let
X = {Z} andY = {y}. Then for anyZ disjoint from X U Y, theion

KZ;: (XWZ)—(Y 8 2Z)



Figure 3: The ionk foracontrolK: 2 —1

I():E Y

BINDING PURE
BIGRAPHS ’/’1 BIGRAPHS
|
| DO
B/
BO >I< Bl /O)I<\L I“

\ / ZS\H Al

Figure 4. Constructing an RPO in binding bigraphs

has a single/-node, which is parent of its single site. It links the birgliand free
ports of the node respectively to the inner and outer natnesdy, in order, and its
link map also includes the identity function éh Figure 3 shows anion fak: 2 — 1.
A moleculethen takes the foriKZ 7 ®idw) oG whereW are the global outer
names ofG; in alocal moleculeW = (). The caseZ = W = () andG = e yields an
aton this must be the case K is atomic. ]

We now have enough elements to construct all binding bigraph

Proposition 1.8 (enough elementsEvery binding bigraph can be constructed from
lons and wirings using composition and tensor product.

We turn now to the existence of relative pushouts (RPOs)ndibg bigraphs. The
way we construct them is, roughly, to pull the constructimndure bigraphs back along
the forgetful functo/. This is what was done for the more limited notion of binding
bigraph in Section 11 of [1].

Construction 1.9 (building a binding RPO) Let the pair(Ay, A;) have a bound
(Do, D1) in"BBG, whereA;: H— I, andD;: I, — K (i = 0,1). We wish to build a
binding RPO

(Bo, B1, B)

for (A, Ay) relative to(Dy, D;), as shown in the left-hand diagram of Figure 4. We
start by building an RPQB{,, B, B’) for (A{, AY) to (Dg, DY) in pure bigraphs,



following [1]; this is shown in the right-hand diagram, withediating interface’.
Since a binding bigraph between known interfaces is detexdiy its underlying pure
bigraph, our construction amounts to finding a binding fiaiez I such that/* = I’,
and then defining3; and B so thatB} = B, andB" = B’. Of course, we must then
check that the binding and scoping rules are satisfied.

Let I, = (m;,loc;, X;) (1 = 0,1), andI’ = (m, X). We proceed to construct
I = (m,loc, X) with I" = I’; we need only define the locality relatidoc. So for
eachz € X we must determine the placesc m for which (r,z) € loc. Now z is
linked to one or more names ify or I; or both. Whenever is linked toz; in I;,
and(s,z;) € loc;, letr be the unique place iff such thats <p. r; then declare that
(r,x) € loc. This concludes the definition df and our construction is complete. m

This construction is even easier than in the case where eatle ihas at most one
place [1]; for in that case we needed to verify this propentewconstructind. How-
ever, we still have to check that our construction is validtimer ways:

Proposition 1.10 (binding RPOs) A binding RPO for(Ag, A1) to (Dg, D) is pro-
vided by Construction 1.9.

Proof (outline) Our first task is to show tha; and B, as constructed, obey the
binding and scoping rules. Having done this, we have to sthat for any relative
bound(Cy, C1, C) for (Ap, A1) to (Dy, Dy ) with mediating interface/, there exists a
unique mediato# : I — J with the required commutation properties.

Such a mediator has, as its underlying pure bigraph, thesponding pure media-
tor between the pure RPO and the pure relative bgargdCy', C); it can be found to
obey the binding and scoping rules. Finally, the unicitytbfollows from the unicity
of £ and the fact that the forgetful functbfis faithful.

There is no special difficulty in the details of these steps. ]

2 Local bigraphs

From now on we confine our attention to a subclass of bindiggaphs. It seems that,
once we allow a name to have many placesgiobal names (those with no place) are
less necessary for modelling. We therefore define

Definition 2.1 (s-category of local bigraphs) A local (binding) interfaceis one in
which every name is local. focal (binding) bigraphis one whose interfaces are local.
Given a binding signaturk, the wide monoidal s-categotl BG(K) of local (bind-

ing) bigraphs is the full sub-s-category ®&BG(K) whose interfaces are local. =

This definition is justified by the obvious fact that both caspion and tensor product

preserve the local property. Note that the scoping ruleighty simpler for local

bigraphs, because every point is local. Also evgpgnlink is local, but aclosedlink

may still be non-local; indeed, the bigraph in Figure 2 isaldaut has a non-local link.
We now see that this smaller class of binding bigraphs s8|RPOs:



Figure 5: Extending a bigrapf with a wiring w of equal width

Corollary 2.2 (local RPOs) A local RPO for local Ag, A1) to local (Dy, D1 ) is pro-
vided by Construction 1.9.

Proof Given the proof of Proposition 1.10, we need only check thdhis case the
interfacel in the RPO produced by the construction is local; this is imdiake. ]

Notation We shall often represent a localby (m, X’), or even justf, where the
vectorX = (Xo, ..., Xm—1) specifies the names local to each m. We shall call/
apartition if the setsX; are disjoint. In particulatX) is the interface of width 1 with
local namesX. This is in contrast with the interfac& in pure bigraphs, which has
width 0 andglobal namesX.

As usual we write a ground bigraph in lower case, and writd for a: ¢ — 1.
Also we shall writeG: — J for G: I — J when we do not care abolit ]

From now on we shall assume that every bigraph mentionedad, lonless other-
wise stated, and we shall omit the adjective ‘local’. We kddab write a singleton local
interface(.X') as X; there is no confusion, since we no longer adnii@bal interface
called X.

We now proceed to a new operation which is essential for gagrirent of wiring in
local bigraphs, especially in handling parametric reactides. Recall the construction
of ions in Definition 1.7; we defined a family of iodsf%, so that any bigraph with
outer nameg’ and Z can be inserted into an ion to formfa-molecule, exporting the
bigraph’s extra nameg at its outer face. To treat parametric reaction rules we need
to generalise this construction from ions to an arbitragydgphs. Consider the bigraph
G: (z,0) —y shown in Figure 5; the figure also shows a wiriagof equal width,
and shows the result of ‘adding’ this wiring @ without widening its interfaces. We
denote this operation by, and call itextension

In general, we want to be able to compose a contéextl — J with a parameter
a: I’ whose outer facé’ extendd, that is, it has the same width Abut possibly extra
names, arbitrarily located. Then the composite should haveuter face/’ similarly
extending/. So we must define extension first of interfaces, then of pigga

Definition 2.3 (extension) If two interfacesl = (m, loc, X) andI’ = (m, loc’, X")



have equal width they aonformal If X N X’ = () then theextension of by I’ is
I®I = (m,locwloc’, X & X') .

If a bigraphG': I — .J and a wiringw: I’ — .J’ have equal width and disjoint suppdrts
they areconformal This implies that their inner facdsand’ are conformal, and so
are their outer faces. Thenif® I’ and.J & J' are defined, thextension of+ by w is

Gow: Il -JaJ ;
it has the place graph @f, and the tensor product of the two link graphs. ]

It is not possible to define the extension@fby anarbitrary bigraph —or even by
one with equal width— since its place graph would would bedfined. We therefore
admitG @ F only whenF' is a wiring.

A useful form of wiringw: m — I has no inner names, and its link map is just the
empty functiond x, where X are the names aof. We denote such a wiring just by
when its place map is determined by the context; for exan@alte extensionG @ 1
simply extends the outer face 6fwith idle namesX located by/.

It is easy to check that extension preserves the scoping huédso behaves well
with composition:

Proposition 2.4 (composing extensionsYhe following hold, with appropriate inter-
faces, when both sides are defined:

wohw = Jow
(Gow)dw = GO (wadw)
(Fow)o(Gow) = (FoG)® (wou).

With the help of interface extension we now define two imparfaroperties of a
bigraph.

Definition 2.5 (minimal, discrete) LetG: — I & H be any bigraph.

G is minimal for [ if, for all (i,z) € H, the namer is linked to some point ofz
located below.

G is discrete for! of it is open, and for alli, ) € H, the namer is linked to
exactly one point of5 located below.

WhenI = ¢ we omit ‘for I'. ]

Thus discreteness implies minimality; it also generalies notion of discreteness
defined for binding bigraphs in [1].

We now define some linkings which, when decomposed from ther dace of a
bigraph, reduce it to a bigraph that is open, minimal or @itzr

Definition 2.6 (closure, substitution) Define the following linkings:

A closure /Z: I — I’ is the identity on/ except that it maps every name €
Z N nmsy to an edge, and this name is omitted in formifigrom 7. A closure may
also contain idle edges.

A substitutiono: (m, loc, X) —(m, loc’, X') has a surjective link map; in forming
loc’ from loc, every namer is replaced by its image under the link map. ]

2Sincew has no nodes, this merely excludes the possibility (handw share an edge.
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Figure 6: A non-open bigraphas a closure = /2’ o ¢, with ¢ open

Recall that dreelink is one without a binding port, that aspenlink is an outer
name, and that a bigragh is openiff every free link is open. For parametric reactions
that replicate parts of their parameters, we need to expresy bigraph in terms of an
open one, in order to define replication unambiguously.

For example, the ground bigraphof Figure 6 is not open because it has a closed
link joining two free ports. (It is immaterial whether thgserts lie in the same region,
or —as here— in different regions.) Howewean easily be represented as a closure of
an open bigraph, as shown. In fact, we claim that in general:

Proposition 2.7 (open decomposition)A bigraphGG: — I may be expressed uniquely
up toisomorphisma& = /Zo F,where/Z: I& H — I isaclosureand”: —I®H
Is open and minimal fof.

Proof Include inZ a distinct new name for each free non-idle edge @f, and
replace this edge by an open linkn F'. Also include in/Z all the idle edges of;. =

We now come to the most important property of open bigraphs:

Proposition 2.8 (open factorisation) Any open ground bigraph: X with outer width
m can be uniquely factorised into primes, as

c=col| - ||l em-1, Withe;: X; .

Combining this with open decomposition, we can uniqueledaine the prime parts
of any ground bigraph; this allows us to define unambiguously it$diésation into

prime parts. Let us begin with simple form of instantiationyhich all copies of the
same prime part will share their free links.

Definition 2.9 (instantiation) Let X be of widthm, and letf: n — m be a map of
ordinals. Defin&’ of width n by settingY; = Xy for j € n. We proceed to define
theinstantiationf induced byf, a map of ground homsets

T Gr(X)—Gr(Y).

For anya: X, by Propositions 2.7 and 2.8 we have= /Zo(co|| - - - || ¢m_1), With
ci: Xy W Z;andZ = | J; Z;. Letd; = c4(;) (j € n) have disjoint supports, and define

Fla):Y = /Zo(do] - || dn-1) - u

11



The unicity results make instantiation well-defined up tpmurt equivalence. Al-
though instantiation is not well-defined for arbitrary laghs, nor even for arbitrary
wirings, it extends naturally to linkings:

Definition 2.10 (link instantiation) Let A: (m, X) —(m, X’) be a linking, and let
f: n—m be a map of ordinals. Defin€ andY’ by Y; = X,(; andY; = X},
(7 € n). Then define thinstance

X: (n,Y)—(n,Y")
to havelink, | Y as its link map, wher& = | J{Y'}. "

It is easy to check that this respects the scoping rule. Iivi@ directly that instantia-
tion distributes over composition among linkings and gbbigraphs:

Proposition 2.11 (instantiation distributes) For linkings A\, \’ and ground bigraphs
a with appropriate interfaces we have

FoX) = FN)eof(N)
f(Aoa) = f(N)of(a).

Now, recalling how instantiation of ground bigraphs is dedinn [1], we wish
to refine our definition so that some of the names of each cogymime part are

disjoined, and can therefore be bound differently in a cdnt&his requires explicit
name bijections:

Definition 2.12 (parametric instantiation) Let I = X andJ = Y be partitions
with widths m andn, and letf: n—m be a map of ordinals. Let be bijections
tj: Xy —Y; (4 € n). Then theparametric instantiation

frGrXaX)—>G6r(YaY)

is defined as in Definition 2.9, except that we haye X; ® X! @ Z; and we take
dj Eas (Lj b id)on(j). [ ]

Again we have distributivity, but of a refined form:

Proposition 2.13 (parametric instantiation distributes) Leta: X®X bea ground
bigraph, with widthm. Let\: X’ — X" be alinking andf : n — m a map of ordinals.
Letz’be isomorphisms fromX 4 ;) to Y; (j € n). Then

TA(idg ©X)ea) = (idy ®F(X)oTda)

This result will be important later when we wish to prove thatgenerate a reaction
relation from a given set of parametric rules, it is suffiti@nconsider only parameters
that are appropriately discrete.
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3 Reactions

We are now ready to define reactions, together with the @acélation they induce
between bigraphs.

Definition 3.1 (reaction rule, reaction relation) A ground (reaction) rules a ground
pair (r, "), redexandreactum with the same outer face. Given a set of ground rules,
the reaction relation—-> over agents is the least, closed under support equivalence
(=), such thatD o r— D o7’ for each activeD and each ground rule-, ’). ]

Definition 3.2 (parametric reaction rule) A parametric (reaction) ruléakes the form
(R: I-K,R:I'-K, f,7)

whereR and R’ are called théparametric) redexandreactum I = X andl’ = X’
are partitions with widthsn andm’, andf: m’ — m is a map of ordinals. The fourth
component is a vector of bijections: X ;) — X7, one for eacly € m'.

The parametric rule generates ground rule of the form

(R@w)oa, (R ®w)oa')

as follows. Letl @ H, I’ @ H' andK @ L be interface extensions with’ = f(H).
Letw: H— L andw’: H'— L be wirings that agree on the namesiéf. Then for
anya: I & H, complete the ground rule by definiag= f(a): I' ® H'. m

The extensiorf{ in the outer face of the parameteallows names to be exported from
it via w. The names off’ in the outer face of the instaneé are similarly exported;
these will be among the names Bf and will coincide with them iff is surjective.

On the other hand, consider a rule which takes a prime paearartl discards it,
so thatm = 1,/ = 0. Then we may havél = L andw = id;, while H' = ¢ and
w': e— Lis simply an idle extension.

We have placed no constraints upon the parametéra rule. This constrasts with
[1] where we required parameters to be discrete. We can now #hat if we con-
fine ourselves to suitably discrete parameters, then weystierate the same reaction
relation. This will make it easier to analyse propertieshef latter relation.

First, we need to show that every bigraph can be expresseaulysimterms of a
suitably discrete one. The following is closely analogauBtoposition 2.7:

Proposition 3.3 (discrete decomposition)A bigraphG: — I & H may be expressed
uniquely up to isomorphism & = (id; & A\)o D, whereX: J — H is a linking and
D: — I @ Jisdiscrete forl.

Proof (outline) The linking\ must do four things: increase the locality frafrto H
sinceD is to be minimal forl; close some names ihto form the closed free links of
G include any idle edges d@f; and identify some names ih by a substitution since
D is to be discrete. ]

We are now ready to prove that

13



Proposition 3.4 (discrete parameters suffice)The ground rules generated by a para-
metric reaction rule are unchanged if parameters are casgd to be discrete.

Proof Consider a ground rule(R @ w)oa, (R’ @ w')od’) generated as in Defini-
tion 3.2. Then we have: I © H anda’ = f-(a): I'® H' whereH' = f(H). We also
know that the wiringsv: H — L andw’: H' — L agree on the names &f’. Further,
By Proposition 3.3 we have = (id; & \) od with d: I & J discrete for!.

It will be enough to show that our given ground rule can be egged in the form

(R®Q)od, (R'®()od)
for suitable wirings and¢’, whered’ = f{(d): I' © J’' and.J’ = f(J). We have
(RPw)oa = (RBPw)o(idf®dN)od = (R®()od by Proposition 2.4

where¢ £ wo X. Next we have

(RRow)od = (RRow)ofA(idr®A)od)
= (RR@w)o(idy @ f(N)of:d) by Propositions 2.4, 2.13
= (Re()od

where¢’ £ ' o f(\). But then¢ and¢’ agree on the names df, so we are done. m

Having verified that discrete parameters generate all isges;twe turn attention
to the wirings(w, w’) that act on the namésY, X’) of a parameted and its instance
d' = f.(d). Wirings are more general than required to export these sgauitably
located); for example they may close some names, or applpstiguion. Since the
latter operations can be applied by an external contextve should expect the same
reaction relation to be generated by ground rules that «wejacingg«, 7’) in place
of arbitrary wirings. We shall now justify this expectatjdsut we have to allow that
d’ exports fewer names thah since the instantiation may discard partsiofSo we
expectr: H — J andr’: H' — J whereJ = J" & J".

Proposition 3.5 (placings suffice)The relation relation defined for a parametric re-
action rule in Definition 3.2 is generated by the ground rules

((Ren)od, (R ®&J")od)
whered' is the instance of a discrete parametkand (7, 7’) are placings.
Proof Consider a ground rule defined with wirings:
((R®w)od, (R ®w)od).

We wish to show that its reactions can be generated insteadibg placings.

We know thatv: H — L andw’: H' — L have link maps that agree on the names
of d'. LetL = W with width £. Let # = X andH’ = X' with X/ = X ;). It will be
enough to show that we can decompose the wirings as follows:

W= A\oT T H—J
o=Xo(#®J") m:H -J, J=Ja&J

14



where the linking\ is shared, and can therefore be decomposed from the wirntys a
absorbed in to a surrounding active contéxt

To achieve this, we first definé. It must have exactly the names&f= X, since
a placing has an identity link map. For locality, we take= Y where, for eaclj € ¢,

def

Y; ={x € X |w(z) € W, orzclosed inw} .

Thus a name closed hy s located everywhere ifi. Now A, 7 and=’ are fully deter-
mined once/ is fixed; for A must have identity place map and the link mapothile
7w and7’ must have identity link maps and the place maps ahd ofw’ respectively.
The construction is therefore complete; we leave it to tlaelee to check that the
scoping rule is obeyed in all three cases. ]

It appears that this is as far as we can simplify the grouresroeeded to generate
the reaction relation from a parametric rule. It concludes initial study of bigraphs
with multiply located names. Further work is needed to ass$es value of such a
naming discipline, and this should involve the use of bigsafor practical purposes
such as modelling interactions in structured physicalremvnents. It also affects the
way to model fundamental calculi, such as thealculus, in bigraphs. By studying
known proofs of confluence (the Church—Rosser theorem)arbigraphical setting,
we hope generalise them to establish partial or total coméeien a wide range of
applications. This will be the topic of a sequel to the pregaper.

Acknowledgement | thank Ole Jensen for helpful discussions which led to sofme o
these ideas.
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