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Further analysis of ternary and 3-point univariate
subdivision schemes

M F Hassan∗

Abstract

The precision set, approximation order and Hölder exponent are derived for each
of the univariate subdivision schemes described in [3] and [4].

1 Introduction

In this report we present a method to calculate the Hölder exponent of a ternary subdi-
vision scheme based on Rioul’s method for binary schemes [7]. Then we go on to apply
his method or our method to each of the univariate subdivision schemes described in [3].
We also derive the approximation order/precision set for each of the schemes. This report
should be read as an annex to [3] and [4].

2 Hölder exponent

The Hölder spaces Ċr, r ∈ R+, generalize the spaces CN of N -times continuously differ-
entiable functions.

Definition A function ϕ(x) is said to be Lipschitz of order α (0 < α ≤ 1), ϕ(x) ∈ Ċα,
if we have for all x and h ∈ R,

|ϕ(x + h)− ϕ(x)| ≤ c|h|α, (1)

where c is a constant. Since the spaces Ċα, for 0 < α ≤ 1, interpolate between C0 and
C1, a Ċα-function will be said to be regular of order α. Note that C1 and Ċ1 do not
coincide; for example, a linear spline function is Ċ1 but not differentiable at its knots.

Definition A function ϕ(x) is regular of order r = N + α (0 < α ≤ 1), ϕ(x) ∈ Ċr, if it
is CN and its Nth derivative ϕ(N)(x) is Lipschitz of order α, ϕ(N)(x) ∈ Ċα.

As already mentioned in the case N = 1, ĊN contains functions that are not CN . In fact
“ϕ(x) is ĊN” can be thought of as “ϕ(x) is almost CN ,” or “ϕ(x) is CN−ε,” since if ϕ(x)
is ĊN+ε, for some ε > 0, then ϕ(x) is truly CN . In this sense the limit function produced
by the binary four point scheme is C2−ε[2].
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2.1 Method

In our framework Rioul’s method is as follows: If we have a binary subdivision scheme S,
with a mask α satisfying ∑

j∈Z

α2j = 1,
∑
j∈Z

α2j+1 = 1, (2)

we can prove S∞P 0 ∈ Ċm+ν , 0 < ν ≤ 1, by first deriving the mask of 1
2
Sm+1 and

then computing ‖(1
2
Sm+1)

k‖∞ for k = 1, 2, 3, . . . L, where L is the first integer for which
‖(1

2
Sm+1)

L‖∞ < 1. If such an L exists and the mask of Sl satisfies (2) for all l ≤ m then

S∞P 0 ∈ Ċm+νk
for all k ≥ L, where νk is given by

2−kνk

=

∥∥∥∥∥
(

1

2
Sm+1

)k
∥∥∥∥∥
∞

. (3)

The derivation and proofs for the ternary method are given in [6]. In summary, if we
have a ternary subdivision scheme S, with a mask α satisfying∑

j∈Z

α3j = 1,
∑
j∈Z

α3j+1 = 1,
∑
j∈Z

α3j+2 = 1, (4)

we can prove S∞P 0 ∈ Ċm+ν , 0 < ν ≤ 1, by first deriving the mask of 1
3
Sm+1 and

then computing ‖(1
3
Sm+1)

k‖∞ for k = 1, 2, 3, . . . L, where L is the first integer for which
‖(1

3
Sm+1)

L‖∞ < 1. If such an L exists and the mask of Sl satisfies (4) for all l ≤ m then

S∞P 0 ∈ Ċm+νk
for all k ≥ L, where νk is given by

3−kνk

=

∥∥∥∥∥
(

1

3
Sm+1

)k
∥∥∥∥∥
∞

. (5)

In each of the methods above the integer m can be determined using Dyn’s method
described in [1] for the binary case and the extension to the ternary case described in [5].

3 Binary 3-point approximating scheme

The derivation of this scheme is given in [3]. Here we will simply give the mask: α =
1
16

[1, 5, 10, 10, 5, 1].

3.1 Precision set

Suppose {pi}, i ∈ N0 is a sequence of points lying at equally spaced parameter values on
a quartic. Without loss of generality we can write

P (t) = 1
24

(1− t)(2− t)(3− t)(4− t)p0

+ 1
6

t(2− t)(3− t)(4− t)p1

− 1
4

t(1− t)(3− t)(4− t)p2

+ 1
6

t(1− t)(2− t)(4− t)p3

− 1
24

t(1− t)(2− t)(3− t)p4 (6)
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so that P (i) = pi.
Now let {qi} be the sequence of points after one subdivision step:

q2i = 5pi + 10pi+1 + pi+2 (7)

q2i+1 = pi + 10pi+1 + 5pi+2 (8)

and define

Q(t) = 1
24

(1− t)(2− t)(3− t)(4− t)q0

+ 1
6

t(2− t)(3− t)(4− t)q1

− 1
4

t(1− t)(3− t)(4− t)q2

+ 1
6

t(1− t)(2− t)(4− t)q3

− 1
24

t(1− t)(2− t)(3− t)q4. (9)

From (6),(7) we have

q2i = 5P (i) + 10P (i + 1) + P (i + 2)

= ... (10)

= 1
24

(1− 2i)(2− 2i)(3− 2i)(4− 2i)(5p0 + 10p1 + p2)

+1
6
2i(2− 2i)(3− 2i)(4− 2i)(p0 + 10p1 + 5p2)

−1
4
2i(1− 2i)(3− 2i)(4− 2i)(5p1 + 10p2 + p3)

+1
6
2i(1− 2i)(2− 2i)(4− 2i)(p1 + 10p2 + 5p3)

− 1
24

2i(1− 2i)(2− 2i)(3− 2i)(5p2 + 10p3 + p4)

= Q(2i) (11)

Similarly from (6),(8) we can show

q2i+1 = Q(2i + 1) (12)

Hence qi = Q(i) and so the subdivided points also lie on a quartic. This cannot be
shown for a quintic. Therefore the precision set of this scheme is the quartics and the
approximation order is O(h5).

3.2 Hölder exponent

Using Rioul’s method [7] we find that the Hölder exponent for this scheme is Ċ4.

4 Ternary 3-point interpolating scheme

Hassan’s PhD thesis [6] gives a much fuller analysis of this scheme. Here we will simply
give the mask:

α = [. . . , 0, 0, a, 0, b, 1− a− b, 1, 1− a− b, b, 0, a, 0, 0, . . .] (13)

where −1
9

< a < 0, b = a + 1
3
, and (1− a− b) = 2

3
− 2a.
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4.1 Precision set

Suppose {pi}, i ∈ N0 is a sequence of points lying at equally spaced parameter values on
a straight line. Without loss of generality we can write

P (t) = (1− t)p0 + tp1 (14)

so that P (i) = pi.
Now let {qi} be the sequence of points after one subdivision step:

q3i = bpi + (1− a− b)pi+1 + api+2 (15)

q3i+1 = pi+1 (16)

q3i+2 = api + (1− a− b)pi+1 + bpi+2 (17)

As this is an interpolating scheme, we can immediately see that q3i+1 = P (i + 1). We
also have

q3i = bP (i) + (1− a− b)P (i + 1) + aP (i + 2)

= [(1− i)b− i(4
3
− 2b)− (i + 1)(b− 1

3
)]p0 + [ib + (i + 1)(4

3
− 2b) + (i + 2)(b− 1

3
)]p1

= (1
3
− i)p0 + (i + 2

3
)p1

= P (i + 2
3
) (18)

and similarly we can show that

q3i+2 = P (i +
4

3
) (19)

Hence the subdivided points lie on the original line. This is not true for a quadratic, and
so this scheme has linear precision giving an approximation order of O(h2)1.

4.2 Hölder exponent

In order to calculate the Hölder exponent for this scheme, we used the method described
in Section 2.1 to conduct the following experiment. First we selected 20 values for a
equally distributed within the range for which the scheme is C1 (−1

9
< a < 0). For each

of these values we then calculated νk, given by

3−kνk =

∥∥∥∥∥
(

1

3
S2

)k
∥∥∥∥∥
∞

, (20)

for k = 1, . . . , 20. Surprisingly, we found that∥∥∥∥∥
(

1

3
S2

)k
∥∥∥∥∥
∞

=

(∥∥∥∥1

3
S2

∥∥∥∥
∞

)k

(21)

for all the values of a and k that we considered. This indicates that, for this particular
mask, the method converges at the first step, giving

3−νk =

∥∥∥∥1

3
S2

∥∥∥∥
∞

. (22)

1For b = 2
9 this scheme has quadratic precision (approximation order O(h3)). However for this value

of b we cannot show that the limit curve is C1.
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Figure 1: Graph of the Hölder exponent against a for the 3-point interpolating scheme.
Note that the Hölder exponent is only defined for −1

9
< a < 0.

Recalling

α(1) = 3

[
. . . , 0, 0, a,−a, a +

1

3
,
1

3
− 2a, a +

1

3
,−a, a, 0, 0, . . .

]
(23)

α(2) = 9

[
. . . , 0, 0, a,−2a, 2a +

1

3
,−2a, a, 0, 0, . . .

]
, (24)

we deduce that this scheme is Ċr, where r is given by

r =

{
1− log3(−9a) −1

9
< a ≤ − 1

15

1− log3(1 + 6a) − 1
15
≤ a < 0.

(25)

Figure 1 shows a plot of the Hölder exponent against a. Notice that the highest smoothness
is achieved at a = − 1

15
, which also gives the best trade-off for the magnitude of the third

eigenvalue. For a = − 1
15

the scheme is Ċ1.46 (3sf).

5 Ternary 3-point approximating scheme

The derivation of this scheme is given in [3]. Here we will simply give the mask: α =
1
27

[1, 4, 10, 16, 19, 16, 10, 4, 1]

5.1 Precision set

Suppose {pi}, i ∈ N0 is a sequence of points lying at equally spaced parameter values on
a cubic. Without loss of generality we can write
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P (t) = 1
6

(1− t)(2− t)(3− t))p0

+ 1
2

t(2− t)(3− t)p1

− 1
2

t(1− t)(3− t))p2

+ 1
6

t(1− t)(2− t)p3 (26)

so that P (i) = pi.
Now let {qi} be the sequence of points after one subdivision step:

q3i = 10pi + 16pi+1 + pi+2 (27)

q3i+1 = 4pi + 19pi+1 + 4pi+2 (28)

q3i+2 = pi + 16pi+1 + 10pi+2 (29)

and define

Q(t) = 1
6

(1− t)(2− t)(3− t))q0

+ 1
2

t(2− t)(3− t)q1

− 1
2

t(1− t)(3− t))q2

+ 1
6

t(1− t)(2− t)q3 (30)

From (26),(27) we have

q2i = 10P (i) + 16P (i + 1) + P (i + 2)

= ... (31)

= 1
6
(1− 2i)(2− 2i)(3− 2i)(10p0 + 16p1 + p2)

+1
2
2i(2− 2i)(3− 2i)(4p0 + 19p1 + 4p2)

−1
2
2i(1− 2i)(3− 2i)(p0 + 16p1 + 10p2)

+1
6
2i(1− 2i)(2− 2i)(10p1 + 16p2 + p3)

= Q(2i) (32)

Similarly from (26),(28), and (29) we can show

q2i+1 = Q(2i + 1) (33)

q2i+2 = Q(2i + 2) (34)

Hence qi = Q(i) and so the subdivided points also lie on a cubic. This cannot be shown for
a quartic. Therefore the precision set of this scheme is the cubics and the approximation
order is O(h4).

5.2 Hölder exponent

Using the method described in Section 2.1 we find that the Hölder exponent for this
scheme is Ċ3.
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Scheme O(hn+1)/Πn Support Size Cn Ċn

Binary 3-point approximating 4 5 3 4
Ternary 3-point interpolating 1 4 1 1.46
Ternary 3-point approximating 3 4 2 3

Table 1: Comparison of the main properties of the schemes. The highest Hölder Exponent
has been given for the interpolating scheme, rounded down to three significant figures.
The Hölder Exponent for the approximating schemes are exact.

6 Summary

Table 1 gives a comparison of the main properties of the schemes. The highest Hölder
Exponent has been given for the interpolating scheme (a = 1

15
), rounded down to three

significant figures. The Hölder Exponent for the approximating schemes are exact.
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