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by
Glynn Winsgkel
University of Cambridge,
Computer Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG.

Abstract.

It is shown how a variety of models for concurrent processes can be viewed as categories
in which familiar constructions turn out to be significant categorically. Constructions to
represent various parallel compositions are often based on a product construction for
instance. In many cases different models can be related by 2 pair of functors forming an
adjunction between the two categories. Because of the way in which such pairs of functors
preserve categorical constructions, the adjunction serves to translate between the different
models, go it is seen how semantics expressed in terms of one model translates to semantics

in terms of another.




Introduction.

The theory of sequential programming language is well understood, making it possible
to reason, often in a formal proof system, about the behaviour of programs. However the
situation is less settled in the case of parallel programs, where several processes run con-
currently to cooperate on a common task. There are concrete models like Petri nets, event
structures, synchronisation trees and state-fransition systems, which essentially model a
process as moving through states as events occur. These models do not even represent con-
currency in the same way. Models like Pefri nets and event structures represent concurrent
activity in terms of causal independence while most other models simulate concurrency by
nondeterministic interleaving of atomic actions. Then there are more abstract models, per-
haps based on powerdomains or on some reasonable idea of operational equivalence, formed
with the idea of detecting and proving rather specific properties of processes. Other ap-
proaches are based on variants of modal logic but here too similar choices are faced; what
is the underlying concrete model and how expressive should the modal logic be?

I am interested in developing a uniform mathematical framework to relate the many
different models that exist for parallel computation. A% present I have had most success.
with concrete models for languages in the style of R. Milner’s “Calculus of Communicating
Systems” (CCS) and C.A.R. Hoare’s “Communicating Sequential Process” (CSP) [W1,2,3).

To give the idea, each kind of concrete model (e.g. Petri nets are such a model)
carries a notion of morphism appropriate to languages like CCS and CSP, which make
it into a category. Then useful constructions within the model, like parallel composition,
arise as categorical constructions accompanied by abstract characterisations. Relations
between two different kinds of models, say nets and trees, are expressed as an adjunction,
between say the category of nets and the category of trees. Because of the way functors of
an adjunction preserve categorical constructions this gives a smooth translation between
semantics in one model and semantics in another. This technique works for a wide range
of parallel programming languages with a wide variety of communication disciplines—they
can be expressed in a very general way using the idea of synchronisation algebra [W1,2].

The way in which constructs in the programming languages are modelled by cate-
gorical constructions leads to accompanying proof rules. Buf unfortunately because the
models are so concrete, the proof rules do not immediately capture aspects of behaviour
at the level of abstractxon one wants. Still, even the more abstract models and their proof
rules have at their basis a concrete model of one sort or another. It is helpful to have
a clear understanding of the relationship there is amongst the diversity of such models.
Given a modicum of category theory it can be expressed in a surprigingly clean way, 28 I
hope will come across. The basic category theory used here can be found in [AM] or [Mac].




1. Languages for communicating processes—an abstract view.

A host of programming languages CCS, CSP, SCCS, CIRCAL, OCCAM, MEUE,
ESTEREL: - - are based on the idea that processes communicate by events of synchronisa-
tion.

Individually a process P is thought of as capable of performing certain events. Some
of them may be communications with the environment and others may be internal actions.
Set in parallel with another process Py an event ep of Py might synchronise with an event
ey of Py. Whether they do or not will of course depend on what kinds of events ¢y and ¢,
are because Py and P; can only perforin certain kinds of synchronisation with their envi-
ronments. But if they do synchronise we can think of them as forming a synchronisation
event (eg,e;). The synchronisation event (eg, ;) has the same effect on the process Py ag
the component event ey and similarly on P; has the same effect as the evenf ¢y.

Of course generally not all events of Py will synchronise with events of P;; there might
be an internal event of Py for example which by its very nature cannot synchronise with
any event of P;. So we cannot expect all events of the parallel composition to have the
form (ep,e;1). Some will have no component event from one process or the other. We can
represent these events in the form (eo, *) if the event ey of Py occurs unsynchronised with
any event of P, or (*,e;) if the event e; of P; occurs unsynchronised. The * stands for
the absence of an event from the corresponding component. ‘

Thus we can view synchronisation as forming compound events from component
events; a synchronisation event is viewed as a combination of events from the processes set
in parallel.

Whether or not synchronisations can occur is determined by the nature of the events.
Right from the start programming languages like CSP and CCS introduce notation to
distinguish the different kinds of events. In the early version of CSP [H] the sequential
processes are named and events of a sequential process are of the form: send a value v
to process P, written Plv, or receive a value from process P into variable z, written P7z.
There is no notation in this language of CSP for the events cof synchronisation between
processes. In the new version of CSP [HBR] events are distinguished according to the
port at which they occur, so processes set in parallel must agree on the occurrence of
events at common ports (this goes to back to an early idea of path expressions [CH| and
is also at the basis of G. Milne’s calculus CIRCAL [Mi]). The idea of ports, places at
which processes communicate with the environment, underlies the language of CCS too—
see [M1]; originally, apart from 7 the labels of CCS a,f, -+ and their complementary
labels &, 3, - - - were thought of as port names so in forming the parallel composition of
two processes only complementary ports, as indicated by the labels, were connected. So
correspondingly in CCS only events carrying complementary labels can synchronise to
from an event labelled by 7. In [M1] value—passing was handled using events labelled av
to represent the input of value v at port o and @v to represent the output of value v at
port a. Their introduction foreshadowed the liberating step Milner took in the language
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of synchronous CCS, generally called SCGS. There the labels (called actions) are regarded
very abstractly and can be composed according %o monoids of actions.

Synchronisation algebras

We take an abstract line inspired by Milner’s monoids of actions in SCCS. However
synchronisation algebras are more general than monoids of actions because they can express
which actions can and cannot occur asynchronously.

We label events of processes to specify how they interact with the environment, so
associated with any particular sychronisation algebra is a particular parallel composition.
By specialising to particular synchronisation algebras we can obtain a wide range of parallel
compositions.

A synchronisation algebra, (L,e, %,0), consists of a binary, commutative, associative
operation o on a set of labels which always includes two distinguished elements * and 0. The
binary operation e says how labelled events combine to form synchronisation events and
what labels such combinations carry. No real events are ever labelled by # or 0. However" "
their introduction allows us to specify the way labelled events synchronise without recourse
to partial operations on labels. It is required that L\ {*,0} #£ 0.

The constant 0 is used to specify when sychronisations are disallowed. If two events
labelled A and ) are not supposed to synchronise then their corhpoS_itioﬁ Aé ) is 0. For
this reason 0 does indeed behave like a gero with respect to the “multiplication” e é.e.

Vi€ L Ae0=0.

In a synchronisation algebra, the constant x is used to specify when a labelled event
can or cannot occur asynchronously. An event labelled A can occur asynchronously iff A e %
is not 0. We insist that the only divisor of * is * itself, essentially because we do not want
a synchronisation event to disappear. We require

xox=2% and VAN EL AeX =x=>A=1x

We present two synchronisation algebras as examples—more can be found in [W1,2].

Example. The synchronisation algebra for CCS—no value passing: In CCS [M1] events
are labelled by o, 3, -+ or by their complementary labels @, f, - - - or by the label 7. The
idea is that only two events bearing complementary labels may synchronise to form a
synchronisation event labelled by 7. Events labelled by 7 cannot synchronise further;
in this sense they are invisible to processes in the environment, though their occurrence
may lead to internal changes of state. All labelled events may occur asynchronously.
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Hence the synchronisation algebra for CCS taltéa the following form. The resultant parallel
composition, of processes p and g say, is represented as plg in CCS.

e|l* o @ P B Y
x|+ a @ p B T 0.
ola 0 7 0 O 0 0
ala 7+ 0 0 O 0 0
glp o 0 r 0 0 0

Exxample. The synchronisation algebra for || in CSP: In the new form of C5P—see [HBR,
B|—events are labelled by o, f,--- or 7. For its parallel composition' | events must “syn-
chronise on” a, 8, - -. In other words non-7-labelled events cannot occur asynchronously.
Rather, an a—labelled event in one component of a parallel compogition must synchronise
with an a-labelled event from the other component in order to occur; the two events must
synchronise to form a synchronisation event again labelled by o. The synchronisation
algebra for this parallel composition takes the following form.

el x a f 7 O
*] % 0 O 7 0
axl0 a O 0 O
1o o g 0 0

Using synchronisation' algebras one can define a generic programming language, in-
spired by CCS, SCCS and CSP but parameterised by the synchronisation algebra. For a
synchronisation algebra L, the language Procyis given by the following grammar:

tu=nd|z|M|t+e|t@©¢]|t[A]E]]| rec z.t

where z is in some set of variables X over processes, A € L\ {*,0}, A C L\ {*,0}, and
8: I — L is a relabelling function preserving * and 0 and such that B(A) =+ = A =
and B(A) = 0 = A = 0—otherwise it would not lead to a sensible labelling of events.

We explain informally the behaviour of the constructs in the language Procy,. The be-
haviour can be described accurately by the models presented in the next sections. Roughly,
a process of Procydetermines a pattern of event occurrences over time. The nature of
the events, how they interact with the environment, is specified by associating each event
with a label from the synchronisation algebra L. The term nsl represents the nil process
which has stopped and refuses to perform any event. A guarded process Ap first performs
an event of kind ) to become the process p. A sum p+ q behaves like p or ¢; which branch
of a sum is followed will often be determined by the context and what kinds of events the
process is restricted to. A parallel composition process p (D g behaves like p and g set in
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parallel. Their events of synchronisation are those pairs of events (e, e;), one from each
process, where ¢g is of kind Ao and e; is of kind A; so that Ape Ay # 0; the synchronisation
event is then of kind )\ e A\;. The restriction p[A behaves like the process p but with its
events restricted to lie in the set A. A relabelled process p[E| behaves like p but with the
events relabelled according to B. A closed term rec z.p recursively defines a process z with

body p.

The language Procyis not suited to value—passing. However it can easily be extended
to be 8o, and again the discipline of communication can be handled using synchronisation
algebras. Labels are taken to have two components Av; one, A, can be thought of as a
channel name and the other, v, as standing for the value passed or the value received.
Processes can be parameterised in the manner of CCS with value-passing (see [M1]).




2. Petri nets, a general model.

Petri nets model processes in terms of how the occurrence of events incur changes in
local states called conditions. This is expressed by a causal dependency (or flow) relation
between sets of events and conditions, and it is this structure which determines the dynamic
behaviour of nets once the causal dependency relation is given its natural interpretation.
The most general Petri net we consider has the following form. Here and throughout this
paper we refer the reader to the appendix for a treatment of multisets.

Definition. A Petri net is a 4-tuple (B, E, F, My) where
(i) B is a non-null set of conditions,
(ii) E is a set of events,
(ili) F is a multiset of (B x E) U (E x B), called the causal dependency
relation ,
(iv) M, is a non—null multiset of conditions, called the initial marking
which satisfy the restrictions:

Vec E3be B. Fy, >0 and Vee Edbe B: F,4 > 0.

Thus we insist that each event causally depends on at least one condition and has at least
one. condition which is causally dependent on it.

Nets are often drawn as graphs in which events are represented as boxes and conditions
- ag circles with directed arcs between them, weighted by positive integers, to represent the
flow relation. The initial marking is represented by placing “tokens” of the appropriate
multiplicity on each weighted condition. Here is an example.

Example.

By convention we understand an arc which carries no label to stand for an arc with weight
1.

Later, because we have some problems with both the interpretation and mathematics
of such general nets we will restrict to a subclass. But let’s be as general as possible for
the moment.

. Nets viewed as algebras: It is useful, both notationally and conceptually, to regard.
a Petri net as a 2-sorted algebra on multisets. This view underlies the technlques for finding
invariants of nets by linear aigebra [Pe, Br, R].
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Nets are in 1-1 correspondence with 2-sorted algebras with sorts pB 3 non-trivial
multiset of conditions and pE a multiset of events and operations the constant M, € uB,
and the unary operations °(—) : B — B and (=)° : E —, B which satisfy

Mo#0 & (CA=0 or A°=0)=> A=0).

The dynamic behaviour of nets

States of a net are represented as markings which are simply multisets of conditions.
VYou can think of 2 condition as a resource and its multiplicity as the amount of the
resource. As an event occurs it consumes certain resources and produces others. What
and how much is specified by the relation F. Continuing this interpretation, if there are
enough resources then more than one event can occur concurrently, and it’s even allowed
that an event can occur to a certain multiplicity. Now this may be a little hard to swallow,
and I'll come clean and admit that very soon we shall specialise to a subclass of nets; called
contact—free, or safe, in which this cannot occur. The reason for specialising to safe nets -
has mathematical grounds—certain theorems don’t go through otherwise—but this may,
well reflect something unnatural and obscure in the behaviour of the more general nets. I

shall say more later.
Let N = (B, E, F, Moj be a Petri net.
A marking M is a multiset of conditions, i.e. M € pB.
Let M, M’ be markings. Let A be a finite multiset of events. Define
M-A M ©°A<M & M =(M—°4)+ 4°.

This gives the transition relation between markings. When we wish to stress the net N in
which the transition M —4— M’ occurs we write

N:M -4 M.

A reachable marking of N is a marking M for which M, Aoy M, AL, ... An=t,
M,, = M for some markings and multisets of events. ‘

Now we can define the special subclass of nets.

Definition. Say a Petri net N = (B, E, F, Mp) is contact—freeiff F <1 and M <1

for all reachable markings M.
For contact—free nets we can write zF'y instead of Fy 4 = 1.

Remark. Often such nets are called safe. For them a condition only holds or fails to hold
and an event either occurs or does not occur; they do not happen with multiplicities. For
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these nets the term “condition” is consistent with its more usual use where it is imagined
to assert a state of affairs which either holds or does not hold. Tn fact, often people go to
the extent of using different terms, like “place” and “transition”, for the conditions and
events of the general nets. In this short exposition there’s no need to be so finicky.

The behaviour of contact—free nets is particularly simple and can be expressed just
with sets, without the use of multisets. Recall we identify sets with those multisets in

which the multiplicity is 1 at greatest.

Proposition. The behaviour of confact-free nets:
Let N = (B, E, F,M,) be a contact-free net.
Let A be a set of events. Then ° A and A° are sets too.
Any reachable marking is a set.
Let M be a reachable marking. Let M' be a marking of N. Then M 44— M' iff

(Ve€e AeC M) & (Ve,e’ € A.°en®e =0) & M' =(M\"A)U A",

For a contact—{ree net IV, an event e is said to have concession at a reachable marking
M if °e C M. If two events e and €’ have concession at a reachable marking M and share a
common precondition, so °eN®e’ # @, the events e, e’ are said to be in conflict at M. You
can see why; if one occurs at M then the other does not. On the other hand, if M —4— M’
the events in A are said to occur concurrently.

So much for the objects of our first category. But what are the morphisms? To
motivate these let’s look at some constructions that are often seen on nets—see [LC] for
an early example. They arise when we consider how to give a Petri-net semantics to our
generic programming language Procy, for a synchronisation algebra L. Of course when
we model a term in Procy by a nef, the events of the net will correspond to the actions of
communication specifed by the term, so the net carries a litfle extra structure, a labelling
of events by elements of L. Fortunately we can factor the constructions on labelled nets
into 2 construction on the nets proper and an extra construction due to the labelling.

Let us first define the guarding construction in Procy,. The guarding construction Ap
simply precedes the occurrences of events of the net N for p by an event of kind A. A net
construction which achieves this can be drawn in this way:

e

|
Simply adjoin a new event e, to form the new net eV, with the event e labelled by A, to
the net so that on its occurrence it sets—up the original initial marking.

Now we look at the restriction operation on nets. This simply disallows certain kinds
of events from occurring. It can be modelled simply by “deleting” the forbidden events
from the net.




Restriction: Let N = (B, E, F, Mp) be a net. Let E' C E. Define the restriction of
N to E' to be N[E' = (B, E', F’, M,) where F' is I restricted to (B x E')U(E’ x B) i.e.
Flye=Fy.and Flop=Fp fore€ E' and b € B.

Example. Here is a net with its restriction fo a subset of events

The behaviour of a net restricted o a set of events is a restriction of the behaviour of
the original net.

Proposition. Let N = (B, E, F, My) be a net. Let E' C E. Let M and M’ be markings
of N. Then o
N[E:M-A>sM & N:M-A+M & Acpk'. .

Of course if a net is labelled, and so a structure of the form N = (B, E, F, My, ) with
l:E — L\ {*0}, and A C L, then we can define restriction to A to be the labelled net
restricted to those events with labels in A. This models the operator [A in Procy.

Product: Imagine two processes, modelled as nets, set in parallel, side-by-side.
Whether or not they communicate, to form events of synchronisation, depends on the
what kinds of events they are prepared to do. This can be expressed by labelling the
events by elements of a synchronisation algebra. The product of two (unlabelled) nets
allows arbitrary synchronisations. When they are labelled, forbidden synchronisations can
be removed by restriction.

Let Ny = (Bo, Eo, Fo, Mp) and Ny = (By, Ey, F1, M,) be nets. Rather than give a
formal definition of their product—which can afterall be found in [W3}—we describe the
product construction in graphical terms. Disjoint copies of the two nets Ny and N, are
juxtaposed and extra events of synchronisation of the form (e0,e1) are adjoined, for eo
an event of Ny and e; an event of Ny; an extra event (e0,e1) has as preconditions those
of its components 8o ®e = °¢y + °e;y and similarly postconditions ep® + €;°. It is useful
to think of the copies of the original events, those which are not synchronised with any
companion event of the the other process as having the form (eo,*) in the copy of Ny
and the form (*,e;) in the copy of Nj. Then the events of the product have the form
E = {(eo,*) | e0 € Eo} U {(e1,%) | &0 € Ex} U {(e0,€1) | €0 € Eo & e € E;}, which
is the product of the sets Eo and E; in the category of sets with partial functions. And
similarly to be more precise about the conditions we can assume that they have the form

B = By ¥ B; the disjoint union of By and B,.
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The product of Ng and Ny:

Write Ny x Ny for the product of the nets Ny and N;.

So far all we have described, and informally at that, is a graphical construction on
nets. To justify the construction we must understand the behaviour of the product of
two nets in terms of the behaviour of the original nets. For this we need to project the
behaviour of the product net to the behaviour of 2 component net. There are two parts
to such a projection, an event part and a condition part. Consider the projection from
No X Ny to No. There is an obvious partial function from the events of the product to
the events of a component. Define 7y : E — Ey by w(eo,e;) = eo—this will be undefined
if g = *. Define py to be the converse relation to the injection By — B. This projects
conditions in the product back to the component—again it is a partial function. Now with
the help of these two maps we can describe the behaviour of Ny X Nj.

Proposition. The behaviour of a product of nets No X Ny is related to the behaviour
of its components Ny and Ny by

No X Nl M -—A—i‘ Mi iff (No 3p0M—WDA~—>poM' & Nl !le—ﬁLé—*le’).

A marking M is reachable in Ny x Ny iff poM is reachable in Ny and py M is reachable in
N;. . :

Intuitively the behaviour of the product i§ precisely that allowed when we project
into the components. The pair of maps (o, po) specifies how the dynamic behaviour of
the product of nets, Ny X Ny, projects to the dynamic behaviour in the component Np.
The pair (my,p1) plays the same role but for the component ;. They are essential in
describing the behaviour of the product of nets.

Parallel composition: Let us look at the parallel composition of two nets. Assume
now events of the nets Ny and N, carry labels from a synchronisation algebra L. Let
(No, lo) and (N}, 1;) be labelled nets, so I; : g — L\ {*,0} for § = 0,1. Their parallel
composition (N, lo) @ (N1,{;) is 2 labelled net which is the restriction of the product to
those events allowed by the synchronisation algebra L s.e. '

(No, &) © (N1, 5) = (No x Ny)[E',1) where
E = {ec E | lymo(e) e limi(e) # 0}
I(e) = lomo(e) @ Iym1(e).
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Of course we want to understand the behaviour of the parallel composition of nets in
terms of the behaviour of its components. But this follows from our observations about
the restriction and product of nets.

Proposition. The behaviour of the parallel composition of nets (No,lo) and (N1, L)
labelled by a synchronisation algebra is related to the behaviour of its components Ny and

Ny by

No@®N, : M A M if Acple€ E|loymo(e)olymi(e) #0} &
‘ N() . poM -—W—QA—‘? poM’ & Nl fle —ﬁ’i—b le’.

Synchronous product: Another important construction can be derived from the
product construction with restriction, that of synchronous product. It is the restriction
of the product of two nets fo events of the form (eo,e;) where both ey and e; must be
proper, non—+ events. Thus there is a tight synchronisation between the components of a
synchronous product; in order o occur within a synchronous product every event of one
component must synchronise with an event from the other.

Let Ny = (Bo, Eo, Fo, M) and Ny = (By, Ey, Fy, M;) be nets. Define their syn-
chronous product No ® Ny to be the restriction No X Ny[(Eo x E;). There are obvious
projections got by restricting the projections of the product.

Example. One can represent a ticking clock as the following simple net, call it £:
[ P,

A)

Given an arbitrary contact-free net N jt is a simple matter fo serialise, or interleave, its
event occurrences; just synchronise them one at a time with the ticks of the clock. This
amounts to forming the syncbronous product N ® ) of N with Q, in a picture:

It is easy to check that the synchronous product N ® {} does serialise the event occur-
rences of N—just use the properties of restriction and product.

Proposition. M is a reachable marking of N ® {} and M A M’ in N@QIif M —p
is a reachable marking of N and Je. A = (e,t) & N :(M —p) - (M’ —p).

Sum: We define the sum construction but only for contact—free nets as I'm not sure
what the general construction should be. Roughly the sum construction fuses together the
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initial markings of two nets, 8o the resulting net either behaves like one component or the
other. Again we shall describe the construction graphically—refer to [W3] for a formal
definition,

Let No = (Bo, Eo, Fo, Mo) and N, = (B,, E,, Iy, M,) be contact—{ree nets. The two
nets Ny and N, are laid side by side and then a little surgery is performed on their initial
markings. For each pair of conditions by in the initial marking of Ny and b, in the initial
marking of Ny a néw condition (b, b;) is created and made to have the same pre and post
events as by and b; together. The conditions in the original initial markings are removed
and replaced by a new initial marking counsisting of these newly created conditions. Here
is the picture: __ __ __ __ - |— = — — = -

N,

|
I !
l Ma é)(

Notice a condition in the initial marking of one component is generally represented
by more than one condition in the initial marking of the sum.

Example. The sum of two nets:

L, 030

The set of events of the sum F is the disjoint union Eo W E; of the events of the
components. There are the obvious injections ¢ng : By — F and sny : By — E on events.
The initial marking of the sum can be represented by M = My x M, and its set of
conditions by :

1

B = {(bo,*) l bo EBo\Mo}U{(*,bl) ' bl € Bl \ME}UM.,
Then there are the obvious injection relations ¢¢ and ¢; where

60206 A= 3b1 & El ) {*}. b= (Y?o,b[),

blllb <~ abo € Bo U {*}. b= (50,51).
Thus the injection relations are opposite to the obvious partial functions taking a condition
in B to its first or second component. Using the injections we can express the behaviour

of the sum in terms of the behaviour of its components.
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Proposition. Let N+ Ny be the sum of contaci—free nets Wi&h injections (ing, to) and
(§n1,¢1). Then M is a reachable marking of No + Ny and M -4 M' iff

3 reachable marking
Mo, Ao, MY, Ny : My 22 M} & A=ingho & M=1.Mp & M' = 10M;
or
3 reachable marking
M, Ay, Mj. Ny : M, A M & A=A & M=uM, & M = 13 M].

Those familiar with Milner’s work may be a little bothered by our definition of sum.
For the + of CCS and SCCS once a component has been selected nondeterministically the
choice is stuck to, which is not true in general for our sum—consider the example above.
However our construction will agree with Milner’s on those contact—free nets for which
Vb € My Ae. eFb i.e. no event leads into the initial marking. If one were to systematically
give a net semantics to the languages Proey, which include CCS and SCCS, all the nets
constructed would be contact—free and satisfy this property.

LAY

We do not describe the recursive definition of nets in detail here. Such nets can be
defined in the standard way one builds-up sets by inductive definitions (see [Ac]); one must
however take a little care to ensure that the operations on nets are monotonic with respect
to the ordering of coordinatewise inclusion on nets, but this is not hard (see [W3] [Stu]
or [GM] though the last is unnecessarily complicated). Alternatively, recursion can be
handled in a categorical setting using the notion w-limits of chains of net—-embeddings and
w—continuous functors spelt—out in [W3]. We leave the other constructions for Procyto

the reader.

Projections and injections on nets are examples of a more general notion of morphism
between nets. It seems from our examples that a morphism from a ne% N to a net N’
should express how the behaviour of N induces a behaviour in N’. We look for a general

definition.

Given that we can regard a net as a 2-sorted algebra, an obvious first attempt is to
take morphisms to be homomorphisms of the associated net— algebra,s Because they are
algebras over multisets the maps should be linear. Let’s spell out what it means to be such

a homomorphism.

Let N = (B, E,F,M) and N' = (B', E', F', M') be pets. A homomorphism from N
to N’ is a pair of mu]tlfunctlons (n,P) withyy: E =, E' and §: B —, B’ such that

BM =M & VAcpE.(nd) =PCA) & (nA)° = B(4°).
You can see a homomorphism of nets preserves initial markings and the condition—

environments of events. We are on the right track because homomorphisms do indeed
preserve the dynamic behaviour of nets.
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Proposition. Let (y,0) : N — N’ be a homomorphism of nets. If M -4 M' in N
then PM 14— AM’ in N'. .

If (9, f) is 2 homomorphism from N to N’ as a computation

MO Ag “Mg Ay An_y >Mn Ay N

is traced—out in IV so the computation

[ YRR} ) AU TS SN LTI ) S (VRN

is traced—out in N’. This is not to say that all homomorphisms on nets should be mor-
phisms. But if the morphisms are homomorphisms they will automatically preserve be-
haviour, a property we certainly require.

Example. A homomorphism:

There is 2 problem with the interpretation of the homomorphism in this example. The
occurrence of a single evenf in the domain of the homomorphism induces the simultaneous
or coincident occurrence of 2 events ep and e; in its range. This goes against a view of Petri
nets expressed by Petri that events which are coincident are the same event. Morphisms
should be homomorphisms which preserve events, in the sense that 5 should be a partial
function, thus fobidding the example above. Note we do not want morphisms to “preserve
conditions” in the sense that § should be a partial function; to do so would rule out the
injections used to characterise the behaviour of our sum construction. '

Definition. A morphism of Petri nets is a homomorphism (7, #) in which 5 is a partial
function. A morphism (5, ) is synchrorous when 5 is a total function.
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When nets are contact—free, just as their behaviour can be described using sets and
relations instead of multisets and multifunctions, so can morphisms be characterised in a
more elementary manner. '

Proposition. Let N = (Bo, Eo, Fo, Mo) and Ny = (By, Ey, Fy, M;) be contact-free
nets. A pair (1, 0) is a morphism Ny — Ny iff 9 is a partial function, and B is a relation
between By and By such that:

(i) Ml = ﬁMO and Vbl € MlEl!bo € Mo. 50ﬁbl»
(ii)  If bofby then

y restricts to a total function °by — °b;  and

7 restricts to a total function bo® — b;°,
(iii) If egney then

PP restricts to a total function °e; — °¢p and

PP restricts to a total function e;° — eo°.

(We use R°P for the opposite relation to R.)

Definition. Let Net be the category of nets with net morphisms. Let Net® be the full
subcategory of nets with objects just the contact-free nets. Let Net,y,; and Net’,yn be
their subcategories in which morphisms are synchronous.

The constructions we have seen turn out to be categorical constructions. Recall the
definition of product in a category. A product of two objects Ny and N, consists of an object
No x N; with projection morphisms ITp : No x Ny — Ny and II; : Ny x Ny — N; which
satisfy the property that given any pair of morphisms fo : N — Ny and f; : N — N
there is a unique morphism [fo, f1] : N — No X Ny such that f, = Tlp o [fo, f1] 2nd
f1 = Iy o [fo, f1]. Coproduct is the dual notion got by reversing the arrows. Categorical
constructions such as these are unique to within isomorphism.

Proposition. : ‘

The product Ny x Ny, with morphisms (7o, po) and (ry, p1), is a categorical product
in Net, the category of nets.

The synchronous product Ny ® Ny, with morphisms the restrictions of the projections
is a product in Net,yy, the category of nets with synchronous morphisms.

The sum Np + N; with injections (ing,to) and (iny,¢y) is a coproduct in both the
subcategories of contact—free nets with morphisms and synchronous morphisms.

The fact that parallel composition is so closely related to a product adds mathematical
substance to the intuition, often expressed, that parallelism is some kind of “orthogonality”.

So. what? Well, one important consequence of the constructions being categorical is
that each comes accompanied by a characterisation to within isomorphism. This means
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that we need not worry about the details of the concrete and ad hoc construction we chose
to build—up our product, synchronous product and sum. But more important perhaps
is the use to which these facts can be put when we translate between different models.
They too can be made into categories. In them too parallel compositions are obtained by
restricting the product, and the sum of processes will be modelled as a coproduct. And it
happens that the categories can be related by functors, passing back and forth, in such a
way that the categorical consiructions are preserved. We see a typical example of how in

the next section.

We turn to consider other models, and see how they can be embedded in the category
of nets. For the most part we shall be very sketchy in our treatment of labelled versions
of these other models, but because we show how they can be identified with labelled nets
it follows how to perform constructions on these other labelled structures.
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3. Occurrence nets—the semantics of Petri nets.

Nets are rather complex objects with an intricate behaviour which so far has been
expressed in a dynamic way. We would like to know when two nets have essentially
the same behaviour. In this section we propose a more “static” representation of their
behaviour as a certain kind of net, a net of condition and event occurrences. This is a
generalisation of the familiar unfoldmg of a state-transition system fo a tree [W2]. The
theorems of this section only work if we restrict the class of nets and we will assume that
the nets are contact—free. The occurrence nét we associate with a contact-free net will be
built-up essentially by unfolding the net to its occurrences. This unfolding is a canonical
representative of the behaviour of the original net. Occurrence nets and the operation of
unfolding a net to an occurrence net were first introduced in [NPW, W].

We want to axiomatise those nets in which conditions and events correspond to oc-
currences (as is the case with Petri’s causal nets but we also wish to represent conflict in
these nets).

An occurrence net is a contact—free net (B, E, F, M) for which the following restrics ..
tions are satisfied:

(i) be M & °b =@, so the initial marking is identified with the set of
conditions which are not precéded by any events in the F-relation,

(ii) Vb e BJb <1802 condifsion can be caused to hold through the
occurrence of at most one event,

(ili) F¥ is irreflexive and Ve € E. {¢' | ¢'F*e} is finite, so we ban repetitions
of the same event and insist the occurrence of an event can only depend
on the occurrence of a finite nimber of evénts,

(iv) # is irreflexive where

ef1e! SGaye€E & € € E & °en®e # @ and
ez’ ©4.p de, e € Eefhre & eF*z & &'F*z'.

In this way we eliminate those events which cannot possibly occur be-
cause they depend on the previous occurrence of conflicting events.

Suppose N = (B, E, F, M) is an occurrence net. We call the relation #; defined above
the immediate conflict relation and # the conflict relation. We define the concurrency
relation, co, between pairs z,y € BU F by:

zcoy gy (sFty or yFtz or zfy).

Being nets, occurrence nets determine a subcategory of Net.
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Deflnition. Write Oce for the category of occurrence nets with net morphisms. Write
Oce,yy, for the subcategory of occurrence nets with synchronous morphisms.

For occurrence nets there is an especially simple definition of a concurrency relation
and conflict relation which was previously only defined with respect to a marking.

Proposition. Let N = (B, E, F, M) be an occurrence net. Then every event of N has
concession at some reachable marking and every condition of N holds at some reachable
marking.

Let e, ¢' be two events of N. Let b,8" be two conditions of N.

The relations #y C E? and # C (B U E)? are binary, symmetric, irreflexive relations.
The relation of immediate conflict e#f;e' holds iff there is a reachable marking of N at
which the events e and ¢’ are in conflict.

The relation co is a binary, symmetric, reflexive relation between conditions and events
of N. We have b co b’ iff there is a reachable marking of N at which b and b' both hold.

We have e co ¢ iff there is a reachable marking at which e and ¢’ can occur concurrently.

Proposition. Let N = (B, E, F, M) be a contact—free net. There is a unique occurrence
net UN = (B', E', F', M’} with a folding f = (y,) : UN — N which satisfies:

B ={(0,b) | be M}U{({e},d) |eo € E' & be B & wn(eo)F'b},
E ={(S5,e)| SCB & ecE & (S ="c & Vby,b, € S.by co b},
oF'y & Jw,z. y = (w,2) & z €z,
Mlz{(@:b)leM})
and
eone ¢ 35 C B'. eg = (S, ¢),
bofbisbe M & by = (0,b) or Jeg € E'. by = ({e0},b).

Example. This example illustrates a contact—free net together with its occurrence net
unfolding.
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Something is lost in the passage from a net N to the occurrence net Y V. For example
two mon—isomorphic nets like

unfold to isomorphic occurrence nets. We have lost information about which events are
occurrences of the same repetitive event. Still, Y N is in some sense the natural occurrence
net which represents N. We make this precise.

The morphism f : UN. — N expresses how the conditions and events in YN are
occurrences of conditions and events in the original contact—free net N where events and
conditions may occur repeatedly. It is the construction ¥ N together with the morphism
f which possess an abstract characterisation; the pair UN, f is cofree over N. Informally
this says that YV is the “best” occurrence net to represent N. Formally it says

Proposition. If O is any other occurrence net which maps g: O — N then there is a
unique morphism h : O — UN such that this diagram commutes:

R

See {W3] for a proof.

Because this can be done for all contact—free nets N this implies by [Mac thm 2,
p-81] that the operation of unfolding on nets extends to an operation on morphisms to
make Il into a functor Net® — Occ which is the right adjoint to the inclusion functor
Occ — Net®. Together the inclusion functor and U determine an adjunction between
Occ and Net®; the inclusion functor is the left adjoint and U the right adjoint of the
adjunction. This has some important consequences.

By [Mac thm 1, p. 114] right adjoints preserve limits and in particular products. Thus
we know that

U(No X Nl) & UNO XOece uNl)

for contact—free nets Ny and N, i.e. that if we take the product of two contact—free nets,
and then unfold the result, we obtain the same net to within isomorphism as if we unfold
the nets first, and then form their product in the category Oce .

The unfolding of an occurrence net is isomorphic to the occurrence net itself. Formally
the morphism fo : YO — O is a natural isomorphism for any occurrence net O. This makes

the adjunction a bit special; it is a coreflection and Oce is a coreflective subcategory of
Net®. Thus we see that the product of two occurrence nets Oy and Oy in Oce is

O X0ee Oy & UOy X0ee UO, & U(Oo XNet 01)
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Because U is a right adjoint to the inclusion functor Oce — Net®, the inclusion
functor is a left adjoint to U/, and so the inclusion functor preserves colimits like coprod-
uct. This fact tells us that coproducis in OQce are the same, to within isomorphism, as

coproducts in Net® d.e.
OO +0oce OA = 00 'i‘Nce"O!s

the coproduct in Net®.

Proving these facts directly from the unfolding construction is quite unwieldy—and
completely uninstructive—so it is fortunate there is this abstract characterisation of the
occurrence net unfolding of a contact—free net. In a sense it was there all the time, because
the unfolding operation acts on nets as the right adjoint to the inclusion functor Occ —
Net® so it was determined, to within natural isomorphism, by the categorical set—up.

Right adjoints preserve limits; they do not necessarily preserve colimits, and indeed
here is a simple example where a coproduct is not preserved by unfolding.

Example. This example is essentially the same as that given in [W2] for a category of
transition systems where unfolding yields a tree. Let N be the net . Let £} be the net
representing 2 clock, as seen before. Then U(N + Q) 22 UN + UQ. )

Of course we can restrict to subcategories of nets so that unfolding does preserve
coproducts. A subcategory, which have already remarked on, for which this is true is that
where the pets satisfy: every condition in the initial marking has no pre—events.

The coreflection between Occ and Net® cuts down to a coreflection between the
gubcategories of synchronous morphisms with the analogous results. '

It is now a simple exercise to define operations on labelled occurrence nets which
correspond to constructs of Procy, in the same way as we did for nets. For example, the
parallel composition of labelled occurrence nets is the restriction of their product in Oce .

Why did we restrict ourselves to contact—free nets in this section? Although there
does seem to be a natural occurrence-net unfolding of the more general nets it is easy
to see that this cannot be cofree over the original net. Let the net N consist of a single
condition & with the initial marking 2b. Suppose there were an occurrence net O which
was cofree over N. The occurrence net would esther have an initial marking containing
two conditions ¢, d so that in the “folding” f = (6,9) : @ — N we had Bgp = fep =1 oF
a single condition p such that 8, = 2. The latter case is impossible as we would then not
have a morphism A making this diagram commute:

b fo@F A
o |
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So if anything f. = Pa,p = 1 for ¢,d in the initial marking of 0. But then of course we
do not have a unique morphism making this diagram commute, as is shown by these two
morphisms:

OO
Thus we cannot have an occurrence net and morphism which is cofree over N. This
argument works just as well to show there cannot in general be a contact—free net which
is cofree over an arbitrary Petri net. The relationship between the categories Net and
Net®, and the categories Net and Oce does not seem to be as pleasant as that between
the other categories we discuss here, and certainly is not understood as well.
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4. Fvent structures.

We show the relationship between a category of event structures and the category of
nets. The event structures are of the simple form introduced in [NPW]; they consist of a
get of events related by a causal dependency relation and a conflict relation. The paper
[NPW] and thesis W] contain a great deal to motivate event structures. The morphisms
on event structures were introduced in [W1] and we refer the reader there and to [W] for
the relationship between the event structures used here and more general event structures.

We show that constructions given in [NPW]| determine an adjunction between nets and
event structures. There is 2 right adjoint, part of a coreflection, from occurrence nets to
event structures. This composes with the right adjoint of unfolding, part of a coreflection,
to give a right adjoint from nets to event structures, consequently part of a coreflection.
This pleasant categorical set~up makes it easy to relate semantics given in terms of nets
to those in terms of event structures, and thirough them to the pomset model of Vaughan
Pratt [Pr| and the behaviour systems of Mike Shields {Sh1,2].

An event structure can be regarded as an occurrence net with its conditions stripped
away leaving the F* relation as the causal dependency relation and the # relation as
conflict.

An event structure is a triple (E, <, #) consisting of
(i) F asetof events,‘
(ii) < the causal dependency relation a partial order on E and
(iii) # the conflict relation a Binai’y symmetric relation on ¥
which sétisfy eft e <e'=>ef e and (¢ =4ey {¢' € E| &' < ¢} is finite.

Remark. Notice that here we insist that event structures satisfy a finiteness restriction,
[e] < 0o, a restriction not enforced in [NPW]. Event structures of the simple form above
are called prime event structures in [W1, 2].

Event structures are accompanied by a natural idea of configuration (or state), the
downwards-closed and conflict—free subsets of events with respect to < and #. Intuitively
a configuration is a set of events that occur in some history of a process; it should only be
possible for an event to occur once the events on which it causally depends have occurred
and it should be impossible for two events in conflict to occur in the same history.

Let (E, <, #) be an event structure. Let z C E. Say = is downwards—closed iff
Ve,e! € E.e < ¢ € z = ¢ € z. Say z is conflict—free iff Ve,e' € z. —(e # ¢'). Write
L(E, <, #) for the sef of left—closed conflict—free subsets.

The set of configurations of an event structure determine a behaviour system in the
sense of [Sh1,2]. Imagine every event of an event structure labelled by an element of a
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synchronisation algebra, to form a labelled event structure. Then each configuration is a
pomset and the set of configurations is a process in the sense of [Px]. This indicates the
relationship between labelled event structures and the pomset model.

Clearly an occurrence net determines an event structure [NPWJ; just strip the condi-
tions away but remember the more abstract causal dependency and conflict relation they
induce.

Definition. Let N = (B, E, F, M) be an occurrence net. Define
E(N) = (E,F*[E, # | E).

A morphism (»,8) : N — N' between occurrence nets N and N’ consists in part of a
partial function v : E — E’ between the associated sets of events. The partial function ¢
always respects the event structures associated with the nets, in this sense:

Vz € L(EN). (nz € L(EN') & (Ve, e’ € 2. y(e) =n(e') # * => e =¢')).

So, on the event structures the map 5 preserves configurations and the nature of events. It
seems natural to take this as a definition of morphisms on event structures, so 2 morphism
on event structures is a partial function between the sets of events which satisfies the

property above.

Definition. Define P to be the category of event structures obtained by taking mor-
phisms on event structures to be partial functions on the sets of events which preserve
configurations and events in the sense above; morphisms are composed as partial func-
tions. Define P,ynto be the subcategory of synchronous morphisms, in which maps are
total.

Clearly € extends to a functor Oce — P from occurrence nets to evept structures
by defining £ on morphisms (5, ) by

g(ﬂ;ﬂ) = 1.

Note we not only have a functor £ : Oce — P from occurrence nets to event structures
but also the functor £ o U : Net® —» P translatmg arbitrary contact—free nets to event

structures.

It is natural to ask if, conversely, an event structure can be identified with an occur-
rence net. Of course we would like every morphism betweei event structures to correspond
to net morphism between the associated nets. We seek a functor ¥ : P — Oce which

“embeds” the category of event structures in the category of occurrence nets, so E NE
is naturally isomorphic to the original event structure E. Ideally, we would hope that £
would be 2 right adjoint to & making a coreflection. This is indeed the case and we have
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all the benefits explained in the last section. We explain the construction of N, 2 minor
modification of that in [NPW].

An event structure can be identified with a canonical occurrence net. The basic idea
is to produce an occurrence nef with as many conditions as are consistent with the causal
dependency and conflict relations of the event structure. But we do not want more than
one condition with the same beginning and ending evenis—we want an occurrence net
which is “condition—extensional” in the terms of [Br]. Thus we can identify the conditions
with pairs of the form (e, A) where ¢ is an event and A is a subset of events causally
dependant on e and with every distinct pair of events in A in conflict. But not quite, we
also want initial conditions with no beginning events.

Definition. Let (E, <, #) be an event structure. Define N(E, <, #) to be (B, E, F, M)
where

M={(@,A)| ACE & (Yo,a' € A. a(# U1)a")}
B=MuU{(e,A)|e€ E & ACE & (Va,0' € A. a(# Ul)a') & (Vo€ A. e<a)}
F = {(e, (e, A)) | (e, A) € BYU {((c, A),e) | (c, A) € B & e € A}.

This time it is easier to establish the coreflection by showing the freeness of the
occurrence net associated with an event structure.

Proposition. Let (E, <, #) be an event structure.

Then N(E, <, #) is an occurrence net. Moreover, £ o N(E, <, #) = (E, <, #).

The net NE and identity function 1 : E — ENE is free over E with respect to £
i.e. for any morphism f: E — EN in P there is a unique morphism h: NE — N in Occ

such that Eholp = f (i.e. Eh= f).

Thus there is a coreflection between event structures and occurrence nets with £ as
its right adjoint and N as its left adjoint . This composes with the coreflection between
occurrence nets and contact—free nets we saw in the last section to give a coreflection
between event structures and contact-free nets.

Reasoning in the same way as we did for the coreflection between Net® and Occ , we
see, for insfance,

£(N0 XOece Nl) = gNo Xp €N1
EO Xp E1 = €U(MEO XNet NE!)
Eo +p E1 = EH(MEO tNet NEI))

which translates constructions in one category to constructions in the other, giving the
product and coproduct in P in terms of the product and coproduct in Net®.

With extra labelling structure one can carry out the construction for parallel com-
postion pretty much as for nets. More direct definitions of the product, sum and parallel
composition of event structures can be found in [W1).
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. Trees and synchronisation trees.

Trees underlie most interleaving models of parallel computation. The nodes represent
states and the arcs occurrences of events. When the arcs are labelled by elements of a
synchronisation algebra they are generally called synchronisation trees, a term introduced
by Milner in [M1] for the special case when the synchronisation algebra is that for CCS.
Trees can be identified with a special kind of event structure, and so of course with 2
special kind of net, just applying the results of the previous section.

A tree is an event structure in which any two compatible configurations are compara-
ble. In other words, if, when ordered by inclusion, the partial order of the configurations
of an event structure form a tree with limit points, we call the event structure a tree. This
picks out those event structures (F, <, #) in which pairs of events are either in conflict or

related by causal dependency s.e.
Ve, € B.e<é or € <eor e

You can check that in this representation of trees, finite cqnﬁgurations correspond nodes
and events to arcs of a tree. We can pick out arcs of the tree by the “covering” relation
on finite configurations

c——y e Jeeds & y=1zU({e).

As event structures, trees inherit a notion of morphism from the category P . Let
S and T be trees with finite configurations S° and_ TO, to be thought of as nodes. A
morphism 6 : § — T on trees corresponds to a map g SO — T on nodes which satisfies
these properties which can be easily understood in terms of the more familiar graphical

view of trees:
(i) 8(D) = @ s.e. the root-node is preserved,

(i) z—y=>0(z)= f(y) or 8(z)——B(y) i.e. either arcs are preserved
or collapsed.

Synchronous morphisms ¢ correspond to those in which (ii) is replaced by the stronger

property . R
z—y = 0(z) —0(y).

Definition. Write T for the category of trees and Tx,,, for the subcategory with
synchronous morphisms.

Again, as you’d expect by now, trees form a coreflective subcategory of event structures
and this can be got by cutting down a coreflection between the category of contact—free
nets Net® and Tr . We need not look very far for the coreflection. Putting a contact—free
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net IV in synchronous product with the “ticking clock” €2, of section 2, we obtain the net
N ®pet €8 in which the event occurrences are gerialised. Unfolding this to an occurrence
net and then taking the event structure associated with this we obtain a tree,

TN =EUN @ 0).
Using the property that right adjoints preserve products we derive

TN =EUN @ Q)
= (EUN)®p (EUD)
= (EUN)®p 02p

where {1p is the event structure associated with the “clock”; it consisis of events 0 < 1 <
2<.-<t<--.. Thus TN puts the event structure associated with N in synchronous
product with the event—structure model of a clock. While intuitive it does require a proof
that TNV is a tree. We refer to [W1] where it is shown that (~®p f1p) : P — T¥ extends
to a right adjoint of the inclusion functor Te — P , identifying trees with a certain kind
of event structure. This adjunction is a coreflection. Composing it with the coreflection
between contact-free nets and event structures we obtain

Proposition. 7T extends to a functor which is right adjoint to the functor N : Tr —
Net®. They determine a coreflection between Tx and Net®.

Thus there is an interleaving, or serialising, functor T = £U(— ® Q) : Net® — Tr
which translates the non—interleaving models of Petri nets and event structures into the
interleaving mode! of trees. We know that products are preserved by T and that coproducts
of trees coincide with their coproducts regarded as contact—free nets. Consequently, when
we label nets and trees by elements of a synchronisation algebra we have that parallel
compositions are preserved by interleaving and that the notion of sum agrees on frees
whether we look on it as based on the coproduct of trees or the coproduct of trees regarded

as nets.

By carrying out the construction in Net®, it is easy to see that the coproduct of trees
has the effect of glueing them together at the root. The product has a more interesting
characterisation, familiar from the work of Milner on synchronisation trees. Write YierT;
for the more general coproduct of a set of trees T; indexed by ¢ € I; this construction glues
the set of trees together at their roots. The guarding operation e/V on a net N gives a
guarding operation on frees; it simply prefixes a tree T by an event e. Note any tree can
be represented to within isomorphism as a coproduct of guarded trees X,c 42T, for some
set of events A. It is shown in [W1,2] that the product in the category of trees has the

following form:
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Propogiﬁon, Let S and T be irees. Then

S e EaS‘B and T & Em
aEA bep

for some sets of events A and B and trees S, and Ty indexed by a € A and b € B
respectively. We have the following characterisation of the product of S and T in Tk :

SxTeY (a,0)8exT+ D (a,0)S xTy+ ) (%,b)S xT.
e€A a€A,beB be P

Restricting the events of the product in accord with e.g. the synchronisation algebra for
CCS we obtain the recursive characterisation of the parallel composition of synchronisation
trees that Milner uses in [M1]. This reassuring fact demonstrates the coherence of the
categorical view of constructs in a range of models.
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8. Conclusion, loose ends.

There is a criss—cross of coreflections bridging different categories. We have seen
gsome in this paper. I'll summarise those categories of models that have been related by
coreflections in a diagram. (A diagram of the same pattern is valid for the synchronous
subcategories, in which the morphisms are restricted to being synchronous.)

General event structures

uvva’dmj N fﬂﬁ» pf[W-U.

p—

Ne[:<——7i\/ef:§0w ?N F’é: Tr

(fekbs) (Coutack-free  (Oeoverence ( Evené strucbures) e (Trees)

_mels.) mels “.

-
» -
~
< -
P
-z

Generul bransiion ngfem!. 3/ /5 of. [WE]

Tm ng.“:l‘on 93.)‘/@”19.

Coreflections are represented by double arrows in the direction of the left adjoint, and
single functors by single arrow. Coreflections which are suspected, but not yet worked
out are represented by dotted double arrows. As was pointed out there are fundamental
obstacles to obtaining an adjunction between general nets and contact-free nets. Still, there
does seem to be an obvious unfolding of a general net to an occurrence net. At present
I have no idea of its categorical significance. And what about a coreflection between
transition systems and nets? A category of transition systems is defined in [W2] and
there is an obvious functor from nets in general to transition systems—take markings as
states and single occurrences of events as transitions. If there is a left adjoint to that
functor—there probably is—it will have to extend that which embeds trees in nets; the
“obvious” identification of transition systems with nets in which states are represented as
single conditions in a contact—free net cannot be the right adjoint. There is another variety
of transition system, those in which transitions correspond to concurrent firings of a set
of events—I've called them general transition systems in the diagram; I haven’t thought
much about that category, though from our experience with nets it is clear how to define
morphisms on it. The statement that net morphisms preserve the dynamic behaviour of
nets translates into the fact that there is a functor from nets fo the category of general
transition systems, which can be taken to stand for net behaviour.

All the categories of models we have considered have been unlabelled. Constructions
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on labelled objects were derived, though it was nevér defined what it meant to be a mor-
phism between labelled nets for example. This can be done following the lines of [W2] in
which categories of labelled trees (synchronisation trees) and transition systems are intro-
duced. The idea is to restrict the morphisms further in accord with the extra labelling
structure; the label of the image of an event should divide the label of the original event.

Each category has its own natural notion of equivalence, induced by isomorphism.
We started with the Petri net model, our most concrete and least abstract model, with all
its detail, and passed to the far abstract model of trees in which the concurrency struc-
ture is lost entirely. As far as the synchronisation-tree model is concerned the two CCS
terms (andl|fnil) and (afnil + fanil) are the same—they denote isomorphic synchronisa-
tion trees—while as nets or event structures they are distinguished because they are not
isomorphic,

There are, of course, many more abstract models yet, e.g. powerdomain models, mod-
els based on observational equivalence, the failure-set model and traces model, and their
relationship is being understood better all the time. It remains to be clarified whether
or not the categorical approach here can be generalised in a useful way to more abstract. .
models. (The paper [LP] is an attempt, though I’'m not convinced that the approach is
useful for relating models, or is anything like general enough.) To do so it seems necessary
to pass beyond the vocabulary of events and conditions or physical states to properties of
the kind captured by temporal or modal logics, and take morphisms which respect these
properties. The papers (S, Sm, Ab, LW, W4] portray denotational semantics in this light
and to some extent the role of the categories here is taken by domains and the role of
coreflections by embedding—projection pairs (see [W5]).

There is an apparent mismatch between the approach used here, with processes rep-
resented as objects in a category, and that generally used in denotational semantics where
processes are taken to be elements of a domain, itself in a category of domains. Indeed it
is hard to see how all the detailed structure of Petri nets, for example, could be caught
adequately in a domain. It appears that sometimes we need a finer categorical structure
than is possessed by a domain. This issue has appeared in another context, the work of
Lehmann and Abramsky on generalisation of domains to categories [Abl, Le].
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Appendix: multisets and multifunctions.
Multisets

Let X be a set.

A multiset of X is a function f : X — w., Write f, for the multiplicity f(z) of the
element z. Write pX for the set of multisets of X.

Let n € w. Define n of X to be the multiset i : & — n. In particular, the null multisef
0 of X is the fqnction. 0:z+ 0,

1 fz=y

. s . o . : . 0 otherwise.
Say a miultiset is a singleton if it has this form. Whenever it is clear form the context we

shall write = for %.

Let z € X. Define the singlefon multiset £ to be the function % : y +— {

By convention, we shall identify subsets of X with those multisets of f € pX such
that f < 1.

Operations on multisets

Many operations and relations on multisets are induced pointwise by operations and
relations on integers.

Let f,g € pX. Define

(f +9)z = fa+ gz,
(f~—g)$:{gz"gx lffzsg:z

otherwise
(fV9)e = max{fs, gz}
(f A g)e =min{f., g.}
for £ € X. Define
L9 VzeX f; <gs

Occasionally it might happen that for example f is a multiset over a set X while ¢ is a
multiset over another set ¥. In such a case we can still make sense of the operations above
by simply extending f and ¢ to be multisets over X U Y.

Let n € w and f € pX. Define their scalar multiplication nf to be the multiset given
by (nf)z = nfs for z € X.

Multifunctions

Let X and ¥ be sets. A multifunction from X to Y is a function 8 : p X — ;;LY which
is linear i.e.

9(nf + mg) = n(6f) + m(fg)
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for all n,m € w and f,g € ,uX Wﬂte 0: X —u ¥ when 0 is such 4 multlfunctnon
Clearly the multifunction @ determines and is determined by the matrix 0, , = (6‘2:),, for
z € X,y € Y, a multiset of X x ¥, and we shall often define a multifunction by giving its
matrix.

By convention, we shall identify the relations between a set X and a set ¥ with those
multifunctions 6 : X —,, ¥ for which 65, < 1. In particular, we shall identify functions
and partial functions with their extensions to multifunctions. We use + as a value to
represent when the function is undefined. We shall use standard notation for relations and
functions e.g. writing z Ry when z and y are in relation R. For a relation R we use R°? to
represent the converse or opposite relation Ry ¢ 4.5 yRzx.
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