
Technical Report
Number 576

Computer Laboratory

UCAM-CL-TR-576
ISSN 1476-2986

An implementation of a coordinate
based location system

David R. Spence

November 2003

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2003 David R. Spence

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

An Implementation of a Coordinate Based Location System

David Spence
University of Cambridge Computer Laboratory

J J Thomson Avenue, Cambridge, UK, CB3 0FD
David.Spence@cl.cam.ac.uk

Abstract

This paper explains the co-ordinate based loca-
tion system built for XenoSearch, a resource dis-
covery system in the XenoServer Open Platform.
The system is builds on the work of GNP, Light-
house and many more recent schemes. We also
present results from various combinations of al-
gorithms to perform the actual co-ordinate cal-
culation based on GNP, Lighthouse and spring
based systems and show our implementations of
the various algorithms give similar prediction er-
rors.

1 Introduction

XenoSearch [13] is the initial Resource Discov-
ery (RD) system which is being developed for
the XenoServer Open Platform. For a full ex-
planation of the XenoServer Open Platform see
the companion paper [6].

The XenoSearch system is required to locate
the best possible XenoServer to run a particular
task on, out of the approximately ten thousand
envisioned XenoServers. The primary motivating
attribute in a search is location – we wish to run
tasks at remote network positions, either close to
resources we wish to use or at an interesting point
in the network or to minimise the maximum la-
tency to a set of hosts using a collaborative tool.

To this end we have developed the
ucam.location classes. We take up a co-
ordinate based approach to network locality, as
first suggested by GNP [10]. This approximates
the network topology as a d-dimensional Eu-
clidean space. First a basis is set up between
more than d + 1 Positioning Servers. This basis
is then used to calculate the position of arbitrary
hosts by measuring the latency to that host from
d + 1 of the Positioning Servers, and then the
approximate position of the host with respect to
the basis is calculated.

For XenoSearch we may have hosts not partic-
ipating in the overlay to deal with, so entrusting

the measurements and calculations to the mea-
sured hosts can not be used, as it was by GNP and
lighthouse [11]. Instead the Positioning Servers
measure the latency, connected by an overlay net-
work, and we introduce a load balancing system
to make sure Positioning Servers do not get over-
loaded. We allow Positioning Servers to join and
leave freely: the location system is still viable, as
long as there have always been at least d+1 Posi-
tioning Servers in the overlay since it was created.

We envision this system to be deployed as part
of the XenoSearch system, with each XenoSearch
node running a Positioning Server as a back-
ground task. Each time the XenoSearch node
needs to find a host’s position, it contacts its lo-
cal Positioning Server, which contacts d other Po-
sitioning Servers which make measurements and
return their latency measurements and their own
location. The local Positioning Server can then
calculate the host’s location, and return it to the
XenoSearch node.

The code for this location system is available
free on request from the author.

The following Section explores related work,
Section 3 explains the various calculation engines
we have implemented, Section 4 briefly describes
the overlay we use as a base for the co-ordinate
based location service and Section 5 how this in-
tegrates with the higher level location service to
perform load balancing. Section 6 details the in-
terface that is presented to the user of the loca-
tion system, Section 8 presents an evaluation of
the calculation engines, Section 8 details the on-
going work and Section 9 concludes.

2 Related Work

The work in this area is based on the assumption
that network latency is a quantity that is not con-
stant over long timescales and this is backed-up
by work such as [18]. Given this assumption co-
ordinate based location systems make sense.

The idea of co-ordinate based location systems
was first put forward in the GNP [10]. In this case

3

Simplex Downhill Error minimisation was used to
first construct a basis and then using that basis to
find the positions of hosts relative to that basis.
This was shown to have better average predictions
of latency than IDMaps [4].

Lighthouse [11] was a development of the GNP
idea which seeks to solve a number of the scala-
bility issues of the GNP system by allowing any
previously positioned server to act as a “light-
house”. Further scalability issues have been ad-
dressed with the SCoLE system [15], which intro-
duces clustering on the BGP Address Prefix and
does not require the participating hosts to agree
on a global basis.

Virtual Landmarks [16] is a further develop-
ment of the basic GNP idea. In Virtual Land-
marks a Lipschitz transformation is used instead
of a mapping to Euclidean Space. A Lipschitz
transform is performed by simply using the dis-
tance to 20 landmarks as the co-ordinate vector.
This high dimensional vector is then reduced to
7-9 dimensions by a global transformation calcu-
lated by Principle Component Analysis (PCA).
Similarly [8] also uses PCA to extract topological
information from the distance vector.

The simulation of physical springs to calculate
relative network positions, with the rest length of
the springs being the observed latency has been
used to place nodes on overlays [17]; we use this
for co-ordinate calculation as was also suggested
in [2, 3]. The spring model was also used as a first
stage for the work on Big Bang simulation [12],
but this scheme also goes on to use more com-
plex vector fields than the one produced with the
spring model.

The most similar work to ours is the PIC sys-
tem [1], which was developed to allow more effi-
cient building of Pastry overlays. It is similar to
lighthouse but also, like our work, incorporates a
P2P overlay so the other peers can be found.

Location systems do not have to be co-ordinate
based: a number of other systems have been pro-
posed; IDMaps [4] has a network of tracers which
monitor the latency between themselves, upload-
ing this to a HOPS server which calculates a vir-
tual topology for the network. A query for a dis-
tance between two hosts is then satisfied as the
latency from the Address Prefix of each host to
the nearest tracer and the distance in the virtual
topology. King [5], alternatively, uses authorita-
tive DNS name servers close to hosts to estimate
the latency between two hosts, by bouncing a re-
cursive query of one DNS server to the other.

3 Calculation Engines

There are two main calculations which need to
be made within the locating system. Firstly we
need to calculate a basis (a set of d+ 1 locations
for the initial d + 1 Positioning Servers) from a
matrix of d + 1 latency measurements between
the initial Positioning Servers. This is performed
by the BaseSystemCalculation class. Secondly
for each new Positioning Server, each recalcula-
tion of a Positioning Server’s location and each
host location measurement, we need to calculate
a single location from d + 1 locations and la-
tency measurements. This is performed by the
NewPointCalculation class.

Many algorithms for these problems are de-
scribed in the papers mentioned in Section 2. In
our work we evaluate a number of these and also
look how combinations of them perform. The ma-
jor difference between the GNP and Lighthouse
approaches is that GNP uses a single global ba-
sis, while Lighthouse uses many local bases. In
our system, we use one basis, but do not rely on
a single set of nodes to define it.

3.1 BaseSystemCalculation

We have implemented a number of different algo-
rithms for performing the Basis Calculation, each
with their own strengths and weaknesses. These
methods can be combined to reach the required
speed-accuracy trade-off. Each take a starting
point as a assignment of each co-ordinate. The
default is the origin – as in the Big Bang pa-
per [12].

3.1.1 Exact Calculation (Lighthouse)

This method is often used to calculate the ini-
tial global basis; we take the matrix of laten-
cies and try to calculate, by simplified Gaussian
elimination, an exact set of co-ordinates if they
exist. This system is based on the observation
that we have many more degrees of freedom than
constraints, so we can set the first Positioning
Server’s co-ordinates to (0, ..., 0), the second to
(0, ..., 0, x1) and so on. Therefore the system be-
comes trivial, with the system already being in
the triangular form.

In the majority of cases there is no exact system
available, therefore we iteratively change the co-
ordinates toward a Euclidean set, shortening the
longer sides of ‘triangles’ of latencies and lengthen
the two shorter sides. As all the sides of these
‘triangles’ are also the sides of other ‘triangles’ we
are careful to weight the changes on the distance

4

of the ‘triangle’ to a valid Euclidean triangle, and
consider clashes for any particular side.

As with GNP and Lighthouse, we expect a rela-
tive error of less than 25% for 95% of latencies and
less than 5% for 70% of latencies. Therefore it is
in the main part not far to a valid Euclidean set
and so this approximate method performs well, as
it is only calculating a start point for a gradient
descent method.

The Exact Calculation method always passes
its results through a very simple gradient descent
method based on Newton’s Method. The hope
for this method is to find a good start point
near the global minimum, to prevent the error-
minimisation algorithms getting stuck at a local
minimum. In fact this is a separate module and
can be use as an alternative to Simplex Downhill.

3.1.2 Damped Spring Simulation

Recently topology-aware overlays have been built
which use simulation of physical springs to find
co-ordinates relative to other nodes in the over-
lay [17].

In these systems the round-trip time (RTT) is
measured between the tracers calculating the ba-
sis and these are used to set the rest length of the
springs between all the basis tracers. The simula-
tion is allowed to run and the co-ordinates of the
settled system can be read off at the end of the
simulation. We wait until the total acceleration
has reached a value below a certain threshold (ie
there is no force on any of the “particles”).

3.1.3 Simplex Downhill (GNP)

The Simplex Downhill Algorithm [9] is a versatile
multi-dimensional error minimisation method. It
tends to produce good results in a quick time,
although it is suggested to restart the method
about three times to check that the minima has
been found. This is how the GNP paper per-
forms error-minimisation. As we use a very sim-
ple non-optimised version we chose to re-run the
algorithm until we get exactly the same results
twice. This can sometimes take many repeats so
we cap this. The maximum number of times we
allow repeats gives us a parameter using which we
can trade off the maximum execution time and
the likely accuracy of the results.

3.2 NewPointCalculation

Similarly to calculate the position of a host we
have several methods which can be combined to
achieve the required trade-offs.

3.2.1 Exact Calculation (Lighthouse)

The exact method is largely as described in the
Lighthouse paper, it relies on the solving of the
set of equations:

c1‖l1‖+ · · ·+ ck‖lk‖cos(̂l1, lk) = ‖nj‖cos(n̂j, l1)
...

c1‖l1‖cos(̂l1, lk) + · · ·+ ck‖lk‖ = ‖nj‖cos(n̂j, l1)

The lengths ln, are the calculated vectors from
the nominated ‘origin’ Positioning Server which
is the origin of the local basis to each of the other
Positioning Servers. nj is the position of the host
which we are calculating. ‖nj‖ is the measured
latency from the origin. The solution is the set ci
and is used to calculate nj:

nj = c1l1 + · · ·+ cklk

We then add in the position of the origin Posi-
tioning Server in the global basis.

As we use the cosine rule without converting to
an angle, we get a result, even if there is no valid
one.

3.2.2 Damped Spring Simulation

For NewPointCalculation we model these hosts
and our new hosts as points connected by Springs.
The hosts already in the system are fixed and the
new host is freely movable. The springs between
this host and the others has a rest length of the
RTT of that link. The system is then simulated
until it comes to rest (the total acceleration is
below a threshold).

3.2.3 Others

As with the BaseSystemCalculation we have
both a Downhill-Simplex and simple error-
minimisation methods also implemented.

3.3 Error Function

We tried out two error functions:

k+1∑

i=0

(
measuredi − estimatei

measuredi

)2

k+1∑

i=0

∣∣∣∣
measuredi − estimatei

measuredi

∣∣∣∣

the first being the error function used in the
GNP paper. These are known as “Relative
Squared” (RelSqr) and “Relative Absolute” (Re-
lAbs) in the paper. The Relative Absolute func-
tion is always used in the calculation of the basis.

5

Figure 1: The Client Interface

[cambridge6@planetlab03 location]$./ping -c 5 -q planetlab2.it.uts.edu.au

PING planetlab2.it.uts.edu.au (138.25.15.195) from 128.95.219.194 : 56(84) bytes of data.

--- planetlab2.it.uts.edu.au ping statistics ---

5 packets transmitted, 5 received, 0% loss, time 4044ms

rtt min/avg/max/mdev = 157.542/158.275/159.084/0.588 ms

Figure 2: Same query using ping

4 Structure of Overlay

We have developed a simple peer-to-peer overlay.
It stores the IP address and port (UDP) of every
other peer in the system. This has been been de-
veloped as a quick, simple and lightweight DHT,
for situations when we have few nodes in the sys-
tem. The location classes use this overlay to keep
track of the other Positioning Servers in the sys-
tem and to communicate.

Each node in the overlay has a unique 128bit
nodeId. The system models the key space as a
ring, with nodes managing the key space after
it’s identifier, up to the next one, much in the
same way as Chord [14].

4.1 Joining

A node joins the overlay by contacting a node al-
ready in the peer-to-peer system. From this peer
we retrieve the list of all the peers in the system
and their addresses (called its routing table). This
is then used to calculate the new nodes predeces-
sor. The new node sends a join message to this
node (which could be forwarded on several times
round the ring, to support concurrent joins). The
predecessor node adds the new node to its rout-
ing table and at this point the node has joined

the network. It replies with a JoinAck message,
this may contain a new routing table entry if the
Join message went via another message. Finally
in the background the new node notifies all the
other nodes in its routing table of it’s presence.

4.2 Routing within the Overlay

Routing is simply a matter of consulting the local
list of active nodes and sending to the appropriate
node. Nodes can request an acknowledgement to
check the receipt of the message otherwise the
overlay automatically resends.

There is no guarantee that a routing table is
complete, but a message sent to the wrong node
is always sent to a predecessor of the correct node
and as long as the node knows about the successor
it will be forwarded on and the sending nodes
tables corrected.

Using this method it is a very short time before
every node knows about a new node.

4.3 Node Death

When a node dies, it is not noticed until a node
tries to send it a acknowledged message (there is
no need to actively probe as this consumes band-
width). If any node, A, detects that another

6

node, B, is not acknowledging the messages it
sends to it, A removes B from its routing table
and sends background messages to all the other
nodes it knows about. After this it retries the
messages, sending it to the node that is now re-
sponsible for that area of the key space.

4.4 Rate Limiting

The traffic from nodes is shaped: ordinary traf-
fic is passed through a token bucket rate limiter,
before being put on a per remote host queue.

Background traffic is sent at a constant rate of
5 packets per second.

5 Distribution and Load Bal-
ancing

Within the location system there are two fac-
tors which affect the choice of which Positioning
Server we use to sample a host’s distance:

• Widely distributed locations of probes, to en-
able a good estimation

• Load balancing: we do not wish a Positioning
Server located in a sparsely populated area
to be involved in every query.

To this end we register each Positioning Server
on the overlay with a topologically dependant
nodeId. We know the position of the Position-
ing Server and we normalise each dimensions of
this to a number in the range [0, 1]. We then use
the top b128/dc bits (where d is the number of
dimensions) for each dimension as the input to a
Hilbert-transformation to a single d ∗ b128/dc bit
integer. This is used as the top bits of the 128 bit
nodeId. The algorithm used is the one described
in [7].

The Hilbert mapping gives clustering: when
points are close on the Hilbert curve they tend
to be close in real space. In fact the clustering is
such that the d-dimensional space is split into 2d

equal hypercubes and the curve totally fills one
of these before going on to the next. Further, in
each of the hypercubes the curve has identical be-
haviour. This can be seen in the simple case of
the two dimensional version shown in Figure 3.

Therefore we split the curve (or entries in the
routing table) into 2d∗c equal length segments,
where c is a variable cluster factor (2–3 in the cur-
rent system). We then have values for the number
of Positioning Servers in each of the clusters and
so choose d+1 of the clusters, with the probability
for each cluster weighted by the number of items

Figure 3: 2D Hilbert curve example

in it and then chose a random Positioning Server
in each of the chosen clusters. Hence we have the
d+1 probes and on average each receives the same
amount of traffic and we do not normally choose
servers which are close to one another. If there
are not enough clusters with Positioning Servers
in then we revert to choosing d + 1 severs uni-
formly, if there are not d + 1 servers the overlay
is dead and needs to be restarted.

6 Client Interface

The client interface is simply an advertised TCP
port. Clients send the line: FindHost followed
by the IP address on the following line. The Po-
sitioning Server responds as follows:

• LocationReturn: followed on the next line
by the calculated co-ordinates of the host

• ErrorDead: the systems no longer has
enough servers.

• ErrorNoOverlay: the system has not fin-
ished being set up.

• ErrorNoHost: the Positioning Server can not
resolve the host name or ping the host.

• Disconnect: unknown error.

When a Positioning Server wishes to join the
overlay, it opens a connection to the same port
and sends a FindHostNewServer and its IP ad-
dress on the next line. the possible responses are
ErrorDead, ErrorNoHost or Disconnect as above
or:

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
re

qu
en

cy

Average Relative Error

Different Combinations for Base System Algorithms

Exact-Newton
Exact-Spring-Newton

Spring-Newton-Simplex
Simplex

Figure 4: Accuracy in Extrapolation: Comparing
various methods

• ServerLocation: followed on subsequent
lines by the position and an overlay boot-
point. The boot-point returned should be
the Positioning Server Topologically closest
to the new server.

• ErrorNoOverlay: the system has not yet
been set up – in this case it is followed by
the IP and port address of the server to con-
tact to help to create the overlay.

To help in the overlay creation a server opens
a TCP connection to the given port and sends
HelpInit. If there is already enough servers then
HelpObtained is returned and the server backs off
for a few seconds and then tries to join normally.
Otherwise WaitForInfo is sent, then after a de-
lay GetDistanceSet, with the number of dimen-
sions and the hosts to probe. The server pings
these hosts, replying with DistanceSetReturn,
and the latencies. The co-ordinating server then
calculates the Location of each server and sends
each server a JoinOverlay message with its loca-
tion and where to bootstrap for the overlay.

6.1 Client

We have written a simple client, whose display
is shown in Figure 1, with the equivalent ping
shown in Figure 2. This client simply uses the
text based TCP interface to query a chosen Po-
sitioning Server, which returns a location. The
distance between the two hosts are then calcu-
lated. For this example we set up a three dimen-
sional basis (for which we need d+ 1 = 3 + 1 = 4
servers to calculate the basis) with one server in
England, one the Western coast, one on the East-
ern and one in the centre of the United States.
With this set up we queried the distance from

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

C
um

ul
at

iv
e

F
re

qu
en

cy

Relative Error

How the Performance of the Newton-Based Basis Calculation changes with Number of Dimensions

1D
2D
3D
4D
5D
6D
7D
8D
9D

10D

Figure 5: Accuracy in Extrapolation: How it
changes with Dimensions (Note the x-axis is not
at y=0)

a server in Washington to one in Australia and
then performed the equivalent ping. The value
was 167.292 for our system and 158.275 for the
ping a 5% error. All the servers used were part
of the PlanetLab1 testbed.

7 Results

In these results we present a sub-set of the results
we have obtained, they seek to show that the var-
ious algorithms give similar results to each other
and to GNP. This paper as a whole seeks to give
an overview of the practical system we developed
to perform co-ordinate based location, we wish
to show it is a frame-work that many algorithms
can integrated. The data we use is the GNP data
used in both the GNP and lighthouse papers.

7.1 Basis Calculation

Figure 4 compares various combinations of algo-
rithms and how well they fit the model. These
results use every possible permutation of 4 trac-
ers from the GNP set and then plot the Cumula-
tive Frequency of the relative error between the
measured distance and the basis model created.
The two algorithms which in the last case use
the Simplex algorithm perform roughly the same
as do the two having the Newton steepest slope
as the last step. The Newton step seems to do
best to reduce the really large outliers where the
Simplex seems to overall increase the percentage
of errors which have zero error (70% rather than
40%).

1http://www.planet-lab.org/

8

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

3 4 5 6 7 8

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Number of Dimensions

Comparing Various Error Functions

Full Scheme(RelSqr)
Full Scheme(RelAbs)

Figure 6: Accuracy in Prediction: comparing var-
ious error functions

This is a cumulative Frequency of the Average
Relative Error between the predicted RTT be-
tween two servers in the model and the measured
value. This is done for each pair of servers in the
model calculated for each possible set of tracers
we can use as a basis.

Figure 5 looks at one of these cases (the Exact-
Newton case) and considers how it performs with
the number of dimensions. It seems that the al-
gorithm gets worse with the larger number of di-
mensions, but this is not the case as the number
of constraints tends to go up with O(N 2) so the
model is harder to fit, it still produces better pre-
diction as seen in Section 7.3.

7.2 Error Functions

Figure 6 shows a comparison between various dif-
ferent error functions. These results were ob-
tained using our “full” scheme (described in Ta-
ble 1). We chose a set of d + 1 landmarks from
the 19 tracers in the GNP set, these were used
to calculate a basis. The rest of the tracers were
then placed by the “full” New Point Calculation
routine as were all the 869 targets. The results
are the average relative error between the pre-
dicted distance between every target and every
non-basis tracer and the actual measured RTT
between the same two servers.

It can be seen that the “Relative Square” error
function out performs the “Relative Abs”. We
have chosen to use the “Relative Square” function
in the rest of this paper.

The“Relative Abs” behaves strangely anomaly
at 4 and 8 dimensions (or at 5, 6 and 7) where the
“Relative Abs” function drops right down to the
value of the “Relative Square” square functions.
We think this is due to the particular data-sets
we have chosen to use from the GNP data sets

0

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Number of Dimensions

Comparing the Single Basis with a set of Random Basis

Full - Random
Full - Single

Figure 7: Comparing the situation used in the
paper for one set of basis servers to results taken
over a wide number, randomly chosen

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

3 4 5 6 7 8

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Number of Dimensions

Comparing Various Schemes

Basic Scheme(RelSqr)
Full Basis/Basic New (RelSqr)

Spring and Simplex(RelSqr)
Full Scheme(RelSqr)

Hybrid/No Simplex(RelSqr)
GNP

Figure 8: Accuracy in Prediction: comparing var-
ious methods (Note the x-axis is not at y=0)

(the choice of which landmarks to use) and will
be resolved by taking wider results.

7.3 New Point Calculation

The results shown in Figures 8 and 9 summarise
some of the results we obtained, to compare the
various combinations of schemes.

The method is the same as described in the
previous section for comparing error functions.
We take the results from a single choice of ba-
sis servers, we compare this in Figure 7 to taking
results for lots of different choices of basis at Ran-
dom, giving a total of 1000 results. As can be seen
they closely match, except for the 3 dimensional
case - which seems to be too few dimensions for
this data set. With higher dimensions the random
line tends to be below the single case, but it seems
to have a larger variance, this is because although
we have the same number of results in each ex-

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

C
D

F

Relative Error

How the Distribution of Errors Changes using the Basic Algorithms

3D
4D
5D
6D
7D
8D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

C
D

F

Relative Error

How the Distribution of Errors Changes with Dimensions using the Basic New Point and Full Basis Algorithm

3D
4D
5D
6D
7D
8D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

C
D

F

Relative Error

How the Distribution of Errors Changes using the Spring-Simplex Algorithm

3D
4D
5D
6D
7D
8D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

C
D

F

Relative Error

How the Distribution of Errors Changes with Dimensions for the Full Algorithm

3D
4D
5D
6D
7D
8D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

C
D

F

Relative Error

How the Distribution of Errors Changes using the Hybrid (No Simplex) New Point Algorithm

3D
4D
5D
6D
7D
8D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

C
D

F

Relative Error

How the Distribution of Errors Changes with Dimensions for the GNP algorithm

3D
4D
5D
6D
7D
8D

Figure 9: Accuracy in Prediction: comparing various error functions

10

Name Method used for Base System Method used for New Point
Basic Scheme Simplex Downhill Simplex Downhill
Full Basis/BasicNew Spring Simplex Downhill

Newton Minimise
Simplex Downhill

Spring and Simplex Spring Exact Co-ordinates
Newton Minimise Spring
Simplex Downhill Simplex Downhill

Full Scheme Spring Spring
Newton Minimise Simplex Downhill
Simplex Downhill

No Simplex Spring Spring
Newton Minimise Newton Minimise
Simplex Downhill

GNP GNP GNP

Table 1: Key to Methods

periment, we choose a much smaller proportion of
the basis, for 3 dimensions there are 969 possible
basis, for 8 dimensions there are 75582. Therefore
we expect a larger variance in results.

Figure 8 compares at a glance how the various
schemes compare, while Table 1 explains which
algorithms are used and in what order. The graph
shows that all our algorithm combinations per-
form better than GNP, this is probably due to us
doing more restarts of the Simplex Downhill. It
seems that the best results are to be found at 6
dimensions, but I think this maybe the fact that
the simplex algorithm we use seems to need more
restarts to get that last bit of accuracy. The in-
crease in average error for 7 and 8 dimensions is
just us not getting that last bit of accuracy and
so performing more like GNP.

Figure 8 shows the results in more detail, with
the Cumulative Distribution of the Relative Error
(absolute) for each dimension in each scheme. It
is most interesting to note that in all the results
of our algorithms the 4D performs much better
in the tail (and the tail is generally better than
GNP). And so in this case 4D may be better than
higher dimensions if it is really detrimental to
have massively wrong results. It seems that for
4D we have 80% of errors less than 0.4 and only
5% of them are more than a factor of 1 out.

There seems to be differences in opinion over
how many dimensions best model the Internet
topology, some suggest three dimensions [2] while
others go as high as seven [15] or eight [16].
This is both a question of further research and
of the required accuracy of the resulting approxi-
mations, but our results seem to suggest that, for
the GNP set we chose, 6 dimensions seems to give

the best results gives a pretty optimal solution.

8 Further Work

We would like to investigate further in to sev-
eral parts of the location system. We would def-
initely wish to look at how the system performs
with larger data sets, along side this we would
like to perform try a more wider set of land-
marks/lighthouses using the GNP data-set.

A second issue we would like to investigate fur-
ther is which actual hosts and positions cause the
large outliers. We believe this will give insights
on how to develop better algorithms.

Finally we wish to perform test of the dis-
tributed location system in the wide-area to eval-
uate it’s performance.

9 Conclusion

We presented a distributed wide area co-ordinate
system for use in the XenoSearch Resource Dis-
covery system of the XenoServer Open Platform.
We also presented results from various possible
algorithms that can be used within the frame-
work to calculate the co-ordinates, each with dif-
ferent trade-offs between average prediction er-
ror, distribution of the errors (whether there are
many really bad predictions) and time. The co-
ordinates calculated would be used to search and
index XenoServers.

11

10 Acknowledgements

We are grateful to the States of Jersey Educa-
tion Department for funding the work of David
Spence.

References

[1] costa, M., Castro, M., Rowstron, A.,
and Key, P. Pic: Practical internet
coordinates fo distance estimation. Tech.
Rep. MSR-TR-2003-53, Microsoft Research,
Cambridge, September 2003.

[2] Cox, R., and Dabek, F. Learning
euclidean coordinates for internet hosts.
http://www.pdos.lcs.mit.edu/˜rsc/6867.pdf,
December 2002.

[3] Cox, R., Dabek, F., Kaashoek, F.,
Li, J., and Morris, R. Practical, dis-
tributed network coordinates. In the proceed-
ings of the ACM SIGCOMM Scond Work-
shop on Hot Topics in Networks (HotNets-
II) (November 2003).

[4] Francis, P., Jamin, S., Jin, C., Jin, Y.,
Raz, D., Shavitt, Y., and Zhang, L.
IDMaps: a global internet host distance es-
timation service. IEEE/ACM Transactions
on Networking (TON) 9, 5 (2001), 525–540.

[5] Gummadi, K. P., Saroiu, S., and Grib-
ble, S. D. King: Estimating Latency be-
tween Arbitrary Internet End Hosts. In
SIGCOMM Internet Mesurement Workshop
2002, Marseille, France (November 2002).

[6] Hand, S., Harris, T., Kotsovinos, E.,
and Pratt, I. Controlling the XenoServer
Open Platform. In Proceedings of the 6th
International Conference on Open Archi-
tectures and Network Programming (OPE-
NARCH) (April 2003).

[7] Lawder, J. K. Calcualation of mappings
between one and n-dimensional values using
the hilbert space-filling curve. Tech. Rep.
JL1/00, School of Computer Science and In-
formation Systems, Birbeck College, Univer-
sity of London, August 2000.

[8] Lim, H., Hou, J., and Choi, C.-H. Con-
structing internet coordinate system based
on delay measurement. In Internet Measure-
ment Conference 2003 (October 2003).

[9] Nelder, J. A., and Mead, R. A simplex
method for function minimization. Com-
puter Journal 7 (1965), 308–313.

[10] Ng, E., and Zhang, H. Predicting Internet
network distance with coordiantes-based ap-
proaches. In INFOCOM’02, New York, USA
(2002).

[11] Pias, M., Crowcroft, J., Wilbur, S.,
Harris, T., and Bhatti, S. Lighthouse
for Scalable Distributed Location. In pro-
ceedings of IPTPS ’03 - 2nd International
Workshop on Peer-to-Peer Systems (Febru-
ary 2003).

[12] Shavitt, Y., and Tankel, T. Big-bang
simulation for embedding network distances
in euclidean space. In the proceedings of
IEEE INFOCOM 2003 (April 2003).

[13] Spence, D., and Harris, T. Xenosearch:
Distributed resource discovery in the
xenoserver open platform. Proceedings of
the 12th IEEE symposium on High Perfor-
mance Distributed Computing (HPDC-12).

[14] Stoica, I., Morris, R., Karger, D.,
Kaashoek, F., and Balakrishnan, H.
Chord: A Scalable Peer-To-Peer Lookup Ser-
vice for Internet Applications. In Proceed-
ings of the ACM SIGCOMM 2001 Confer-
ence (SIGCOMM-01) (New York, August
2001), R. Guerin, Ed., vol. 31, 4 of Com-
puter Communication Review, ACM Press,
pp. 149–160.

[15] Szymaniak, M., Pierre, G., and van
Steen, M. Scalable cooperative latency
estimation. Submitted for publication,
July 2003. http://www.globule.org/publi/
SCOLE draft.html.

[16] Tang, L., and Crovella, M. Virtual
landmarks for the internet. In Internet Mea-
surement Conference 2003 (October 2003).

[17] Waldvogel, M., and Rinaldi, R. Ef-
ficient topology-aware overlay network. In
proceedings of the First Workshop on Hot
Topics in Networks (HotNets-I) (October
2002).

[18] Zhang, Y., Paxson, V., and Shenker,
S. The Stationarity of Internet Path Proper-
ties: Routing, Loss, and Throughput. ACIRI
Technical Report (2000).

12

