
Technical Report
Number 572

Computer Laboratory

UCAM-CL-TR-572
ISSN 1476-2986

Design choices for language-based
transactions

Tim Harris

August 2003

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2003 Tim Harris

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986



Design choices for language-based transactions

Tim Harris
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, UK, CB3 0FD

tim.harris@cl.cam.ac.uk

ABSTRACT
This report discusses two design choices which arose in our
recent work on introducing a new atomic keyword as an
extension to the Java programming language. We discuss
the extent to which programs using atomic blocks should be
provided with an explicit ‘abort’ operation to roll-back the
effects of the current block. We also discuss mechanisms for
supporting blocks that perform I/O operations or external
database transactions.

1. INTRODUCTION
In recent work we have been investigating the use of Soft-
ware Transactional Memory (STM) as a mechanism for im-
plementing language-level concurrency control features [6].
In our system, developed as an extension to the Java pro-
gramming language, we introduce a new keyword atomic

which allows a group of statements to execute atomically
with respect to the operation of other threads. We also al-
low atomic statements to be guarded by boolean conditions,
with execution blocking until the condition is satisfied. For
example, the core of a single-cell shared buffer could be im-
plemented as:

class Buffer {

private boolean full;

private int value;

public void put(int new_value) {

atomic (!full) {

full = true;

value = new_value;

}

}

public int get() {

atomic (full) {

full = false;

return value;

}

}

}

The atomic construct build on designs for Conditional Crit-
ical Regions (CCRs) [8] and on the concurrency control fea-
tures of languages such as DP [3], Edison [4], Lynx [10] and
Argus [9].

Our intended semantics are that an atomic block without
a guarding condition should behave equivalently to execut-
ing the block in single-threaded mode. Executing a block

with a guard condition should be equivalent to waiting until
the condition is known to be true and then executing the
block in single-threaded mode. In either case, the order in
which different blocks enter single-threaded mode will define
a serialisable order for their execution.

As you may realise from this sketch, these informal defini-
tions leave many design choices for exactly how this atomic
construct should behave. Our OOPSLA paper describes the
decisions taken in our prototype implementation [6]; the pur-
pose of this paper is to elaborate on some of the more con-
tentious points which have frequently come up in discussion.

In Section 2 we present a brief overview of our system, de-
scribing the interface exposed by the STM and showing how
we implement the atomic keyword over it. In Section 3 we
discuss the extent to which transactional semantics should
be exposed to application programmers. In Section 4 we dis-
cuss the integration of I/O operations (and, more generally,
operations with side effects). Section 5 concludes.

2. SYSTEM OVERVIEW
Our current implementation of the atomic is built in two
layers:

• The lower level is a word-based software transactional
memory (STM). This allows groups of memory ac-
cesses to be performed within transactions which com-
mit atomically. The STM is implemented in C within
the Java Virtual Machine. The heap formats used by
the JVM remain unchanged.

• The higher level maps the atomic keyword onto a series
of STM operations. For example, entering an atomic
block requires a new transaction to be started, and
accesses to shared fields within an atomic block re-
quire special STM read and write operations to be in-
voked. This translation is implemented in the source-
to-bytecode compiler (for transaction management op-
erations) and the bytecode-to-native compiler (for in-
dividual field accesses). The intermediate Java byte-
code format is unchanged.

We describe the lower level interface in Section 2.1 and then
show how we map atomic onto these operations in Sec-
tion 2.2.

2.1 STM interface
The STM provides operations for non-nesting transactions
accessing memory locations on a word-addressed basis. We
define five operations for transaction management:

3



boolean done = false;

while (!done) {

STMStart ();

try {

if (condition) {

statements;

done = STMCommit ();

} else {

STMWait();

}

} catch (Throwable t) {

done = STMCommit ();

if (done) {

throw t;

}

}

}

Figure 1: A CCR of the most general form atomic

(condition) { statements; } expressed in terms of
transaction start/commit operations, assuming that
done is an otherwise unused identifier. In practise
exception propagation is complicated by the fact
that the translated code should retain the expected
throws clause.

Native transaction management
void STMStart()
void STMAbort()
boolean STMCommit()
boolean STMValidate()
void STMWait()

The first four of these have their usual meaning in trans-
action processing [1]. STMStart begins a new transaction
within the executing thread. STMAbort aborts the trans-
action in progress by the executing thread. STMCommit at-
tempts to commit the transaction in progress by the exe-
cuting thread, returning true if this succeeds and false if
it fails. STMValidate indicates whether the current transac-
tion would be able to commit – that is, whether the values
read represent a current and mutually consistent snapshot
and whether any locations updated have been subject to
conflicting updates by another transaction. It is an error
to invoke STMStart if the current thread is already running
a transaction. Similarly, it is an error to invoke the other
operations unless there is a current transaction.

The fifth operation, STMWait, is one that we introduce for
allowing threads to block on entry to a CCR. It ultimately
has the effect of aborting the current transaction. However,
before doing so, it can delay the caller until it may be worth-
while attempting the transaction again. In a basic imple-
mentation STMWait would be equivalent to STMAbort, lead-
ing to callers spin-waiting. In our implementation, STMWait
blocks the caller until an update may have been committed
to one of the locations that the transaction has accessed.

2.2 Construction of atomic statements
Figure 1 summarises how a non-nesting atomic block may be
expressed in terms of these explicit transaction management
operations. Nesting CCRs are implemented within the same
transaction, counting the dynamic nesting depth and only
invoking STMCommit when the top-level completes; they do

Transaction A: Transaction B:

atomic { atomic {

if (x != y) x ++;

while (true) { } y ++;

} }

Figure 2: Initially x=y=0. Unless the system per-
forms periodic validation, transaction A may enter
an endless loop if it reads x before Transaction B
commits and then reads y after it does so.

not require support here.
Note how exceptions propagate – if an exception reaches

the end of an atomic block then the operations made up
to that point are attempted to be committed and, if that
succeeds, the exception is propagated outside the block. If
the update fails to commit then the atomic block is re-tried,
leading to the intended exactly-once semantics.

Java bytecode provides separate operations for accessing
different kinds of data: local variables, fields, and array-
elements. This means that local variables can continue to
be accessed directly. STMRead and STMWrite operations are
only necessary when accessing fields or array-elements.

We add a second method table to each class. This holds
references to transactional versions of its methods (compiled
on demand) and is used by method invocations within trans-
actional methods. The bytecode-to-native compiler is re-
sponsible for inserting STMValidate calls to detect internal
looping in transactions that cannot commit. This can oc-
cur if a transaction has made unrepeatable reads – Figure 2
shows an example.

3. TRANSACTIONS VERSUS CCRS
In contemporary work, Herlihy et al developed an alterna-
tive STM with a Java-based interface [7]. They expose trans-
actional operations directly, providing methods for transac-
tion management and requiring that objects accessed by the
transaction are ‘opened’ before use.

A frequent question, given our use of a general STM as
an implementation mechanism, is whether we should also
provide explicit transaction management operations to the
application programmer. The ability to abort a running
atomic block is of particular interest.

For illustration, consider a case in which a thread is at-
tempting to move an object from one container to another.
The two containers provide remove and insert operations
and an insert operation can fail with an exception if the
target container is discovered to be full. Using the atomic

syntax, a move operation could be implemented as:

void move(Container s, Container d, int key) {

atomic {

Object o = s.remove(k); /*R1*/

try {

d.insert(k, o); /*I1*/

} catch (ContainerFullExn e) {

s.insert(k, o); /*I2*/

}

}

}

The code is far from elegant; the programmer must man-
ually implement appropriate fix-up operations in the case

4



of discovering that the destination container is full. Fur-
thermore, when R1 has to be counteracted by I2 the under-
lying software transaction may involve numerous updates
even though the abstract state of the two containers is un-
changed. It may even be necessary to consider exceptions
raised by I2.

It is therefore tempting to consider variants of atomic

which would allow allow a transactional abort to be invoked.
Two options are immediately. The first is that exceptions
which leave an atomic block should cause any updates made
thus far to be abandoned – in this case an exception thrown
by I1 would cause any updates made by R1 to be discarded.
The second option is to provide an explicit ‘abort transac-
tion’ operation as a method call.

In Section 3.1 we discuss the consequences of allowing
any kind of abort operation within CCRs. In Section 3.2 we
discuss the particular mechanism of using exceptions in this
rôle.

3.1 Allowing abortable CCRs
Allowing a deliberate abort operation appears attractive,
not least given our use of an STM (and given the titles of
the papers in which we have presented this work). How-
ever, it is by no means clear that it is applicable in other
implementations of atomic.

For instance, given our intended semantics, a simplistic
implementation is that entering an atomic block will actu-
ally switch the system to single-threaded execution and leav-
ing it will resume the ordinary scheduling discipline. This
may be appropriate for low-end devices, or for applications
which are actually single-threaded1.

Of course, as well as explicit aborts, the implementation
may have to abort transactions that have made unrepeatable
reads (as we illustrated in Figure 2). However, note that the
need to perform validation-triggered aborts can be avoided
by using a CCR implementation which enforces strict isola-
tion: if a transaction cannot fail validation then it cannot
be required to abort.

Allowing explicit aborts places a stronger requirement in
necessitating that the implementation of atomic retains the
ability to roll-back updates, even if strict isolation is used in
its implementation.

3.2 Aborting CCRs with exceptions
A separate problem, if exceptions were to be used to trigger
aborts, is how to expose the abort to the code around the
atomic block.

It is unreasonable to simply propagate the exception in
question. Exceptions in Java are ordinary objects which
extend a designated superclass; they can have fields and, al-
though the usage ‘throw new ContainerFullExn()’ would
be common, the exception thrown could be an existing ob-
ject. If the exception object was instantiated or modified
within the CCR then retaining it outside is incompatible
with rolling back the other modifications made. Indeed, in
the general case, it would be unclear which modification to
retain and which to lose if the exception object was inter-
linked with the data structure being updated.

Furthermore, using existing exceptions as triggers for roll-

1Such a scheme was, of course, used in earlier systems pro-
viding CCRs in non-preemptive environments. In the Java
Virtual Machine a number of niggling problems would re-
main, e.g. finalizer execution and class initialization.

back could destroy invariants assumed by existing library
code. For example, a library implementor may ensure that
some particular kind of exception is only thrown after the
data structure has reached some a given state. This guaran-
tee would be broken if changes leading up to the exception
were automatically rolled back.

3.3 Discussion
The question of whether to provide an abort operation seems
separate from the use of an STM as a concurrency control
mechanism; in examples such as the move operation it could
benefit programmers of single-threaded code as well as those
developing concurrent systems. One could say that these
problems are correctly avoided by designing an appropriate
interface for the container – in this case one that allows a
capacity check to be made before attempting an insert.

However, if an abort operation is to be provided then there
seems to be a strong case that:

• As with our existing semantics, ordinary exceptions
are not used to automatically trigger roll-back. This
avoids the problems of exception-carried state and li-
brary invariants.

• CCRs which may be aborted should be able to be iden-
tified through a straightforward static analysis. This
allows streamlined implementation in single-threaded
code or in non-STM mechanisms which do not ordi-
nary provide an abort operation.

One option, which we hope to explore in future work, is to
introduce a single new exception class for triggering aborts.
It would subclass java.lang.Exception and therefore – as
a checked exception – would need to be declared in methods’
throws clauses. This means that the existing analysis per-
formed to track exception propagation would indicate which
CCRs could possibly require roll-back. If the exception class
is declared final then it cannot be sub-classed and so can-
not be used to expose links to objects instantiated within
the aborted CCR. Separate instances of it could be used to
expose different reasons for aborted CCRs.

4. SIDE EFFECTS
The second subject which we consider in this paper is how
to support atomic blocks with external side effects. In the
system described in our OOPSLA paper we prohibited all
native methods – that is, all methods that are not imple-
mented in Java bytecode. This ultimately restricts the avail-
ability of most I/O operations. Fortuitously simple text-
based output remains possible if the characters written are
absorbed by buffering within the standard Java libraries.
However, this is far from being a comprehensive solution to
the general case.

4.1 Side effect visibility
There are some series of operations for which the JVM can-
not guarantee atomicity. For example, the programmer may
attempt to define an atomic block to swap the names of two
files by a series of renameTo method invocations. There
is nothing that the JVM can do to make these operations
atomic unless the operating system provides such a facility;
all that can reasonably be provided is atomicity with re-
spect to the operations of other threads in the JVM. Again,

5



this is consistent with our intended ‘as-if single threaded’
semantics.

There is an interaction between the ability to explicitly
abort transactions and the range of features that can be
supported within them. As in Section 3 the problem is that
aborting requires undo information to be available – in this
case operations with external side effects may have been
performed and so even if a ‘balancing’ operation is possible,
other processes may have observed the intermediate state.

4.2 Implementation options
In the general case, there is not a clear solution to the prob-
lem of supporting arbitrary native methods with side effects.
However, aside from a simple prohibition of operations with
external side effects, a number of possible directions exist.

The first option, which would allow general native meth-
ods to be executed, is to actually use single-threaded exe-
cution of blocks that perform operations outside the STM.
While unlikely to give good performance in concurrent pro-
grams, this option shows that a simple complete implemen-
tation remains possible.

A second possibility is to develop some kind of layer be-
low the native methods’ implementation in order to ensure
serialisation of transactions at the system call level; perhaps
dealing with a small number of system calls is more practical
than dealing with an aribtrary number of native methods.
Czajkowski and Daynès’ work on running native methods
in a separate process may be useful here [5], as is our own
work on machine virtualization [2].

A third option is to prohibit the execution of native meth-
ods within CCRs but to provide separate mechanisms which
library implementors can use where operations are required
to have side effects. This is the option that we are cur-
rently following. It requires key I/O-related libraries to be
re-implemented, but it would allow application software to
be used without modification and it would not require the
low-level intricacies of supporting arbitrary native methods.
One direction which is particularly interesting is integrating
JDBC-style database transactions within atomic blocks.

Our proposed scheme introduces a reflective interface to
the STM. The general idea is that libraries implementing
transactional output will temporarily exit the current trans-
action and use library-specific mechanisms to buffer opera-
tions with tentative side effects. When the transaction at-
tempts to commit, a two-phase protocol is used to ensure
that the commit is acceptable to each library involved. The
side effects can then be exposed externally (or buffered data
discarded). Input can be performed in a similar manner,
except that data read must be buffered for subsequent re-
reading if the transaction aborts rather than consuming it.

The reflective interface defines the following operations:

Java transaction reflection
TransactionHandle currentTransaction()
void writeExit(TransactionHandle t)
void readExit(TransactionHandle t)
void readEnter(TransactionHandle t)
void writeEnter(TransactionHandle t)
void registerCallback(TransactionHandle t,

TransactionCallback cb)

The first operation, currentTransaction returns a handle
representing the currently active transaction (or null if no
transaction is active).

The next set of four operations are used to control whether
write operations made by the calling thread are global or
transactional and whether or not read operations will see
updates made by the indicated transaction. In each case
the supplied transaction handle must be the most recent
transaction associated with the current thread and must not
have committed or aborted.

Invoking writeExit causes subsequent writes by the caller
to be made directly to the heap. Similarly, invoking the
writeEnter operation causes subsequent writes to be made
transactionally. A readExit call indicates that subsequent
reads need not reflect updates made by the current transac-
tion, while readEnter requires that they must – this pair of
operations could be no-ops if atomic blocks are implemented
by single-threaded execution, but can offer performance ben-
efits if transactions are built over an STM. The intent is
that a thread will writeExit the current transaction, copy
data it requires access into globally-visible structures, then
readExit the current transaction and perform appropriate
buffering or external communication as appropriate.

The final operation registerCallback requests that a
call-back is made when the specified transaction attempts
to commit or to abort. The call-back object cb defines two
operations:

Java call-back interface
boolean canCommit(TransactionHandle t)
void setResult(TransactionHandle t,

boolean result)

These operations are used to perform voting on commit and
to inform each registered call-back of the eventual result.
Once more, the ability to perform roll-back is necessary if
canCommit may ever return false.

It is hoped that this scheme is sufficiently flexible to ac-
commodate a wide range of different forms of input and
output. For instance, interaction with an external database
would be possible by associating an external transaction
identifier with the current transaction handle and deferring
commit/abort of the external transaction until a decision
is made about the CCR in which it is being performed.
Of course, this requires a suitable interface to the external
database that is compatible to the two-phase voting algo-
rithm proposed here.

5. CONCLUSION
This paper has examined two particular aspects of our atomic
construct.

The first is the attraction, in many situations, of be-
ing able to automatically roll-back updates made within an
atomic block. This is straightforward to implement in our
current scheme based on an STM, but as we have shown
it may not have an effective implementation in other situa-
tions. We have also shown how it is important to consider
the implications of the mechanism used to trigger roll-back.

The second area is that of performing operations with ex-
ternally visible side effects – that is, operations which cannot
be deferred within the STM. We have described our current
ideas for providing I/O operations as part of atomic blocks.

In future work we will assess the implementation and per-
formance consequences of these different options. A third
area, which we have not dwelt on here, is the performance of
long-running atomic blocks. As with long-running database

6



transactions, this is probably an area in which further design
work is necessary when compared with the shorter-running
statements which we have studied to date.

6. REFERENCES
[1] Bacon, J., and Harris, T. L. Operating Systems:

Concurrent and Distributed Software Design, 3rd ed.
Addison Wesley, 2003.

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S.,
harris, T., Ho, A., Neugebauer, R., Pratt, I.,
and Warfield, A. Xen and the art of virtualization.
In Symposium on Operating Systems Principles
(SOSP ’03) Oct. 2003.

[3] Brinch Hansen, P. Distributed processes: A
concurrent programming concept. Communications of
the ACM 21, 11 (Nov. 1978), 934–941.

[4] Brinch Hansen, P. Edison – a multiprocessor
language. Software – Practice and Experience 11, 4
(Apr. 1981), 325–361.

[5] Czajkowski, G., and Daynès, L. Multitasking
without compromise: a virtual machine evolution. In
Object-Oriented Programming, Systems, Langauges &
Applications (OOPSLA ’01) Nov. 2001.

[6] Harris, T., and Fraser, K. Language support for
lightweight transactions. In Object-Oriented
Programming, Systems, Langauges & Applications
(OOPSLA ’03) Oct. 2003.

[7] Herlihy, M., Luchangco, V., Moir, M., and
Scherer, W. Software transactional memory for
dynamic-sized data structures. In Proceedings of the
22nd Annual ACM Symposium on Principles of
Distributed Computing (July 2003), pp. 92–101.

[8] Hoare, C. A. R. Towards a theory of parallel
programming. In Operating Systems Techniques
(1972), vol. 9 of A.P.I.C. Studies in Data Processing,
Academic Press, pp. 61–71.

[9] Liskov, B., and Scheifler, R. Guardians and
actions: linguistic aupport for robust, distributed
programs. ACM Transactions on Programming
Languages and Systems 5, 3 (July 1983), 381–404.

[10] Scott, M. L. Language support for loosely coupled
distributed programs. IEEE Transactions on Software
Engineering SE-13, 1 (Jan. 1987), 88–103.

7


