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Abstract
Passive network monitoring offers the possibility of gathering a wealth of data about the traffic
traversing the network and the communicating processes generating that traffic. Significant
advantages include the non-intrusive nature of data capture and the range and diversity of the
traffic and driving applications which may be observed. Conversely there are also associated
practical difficulties which have restricted the usefulness of the technique: increasing network
bandwidths can challenge the capacity of monitors to keep pace with passing traffic without
data loss, and the bulk of data recorded may become unmanageable.

Much research based upon passive monitoring has in consequence been limited to that using
a sub-set of the data potentially available, typically TCP/IP packet headers gathered using
Tcpdump or similar monitoring tools. The bulk of data collected is thereby minimised, and
with the possible exception of packet filtering, the monitor’s available processing power is
available for the task of collection and storage. As the data available for analysis is drawn
from only a small section of the network protocol stack, detailed study is largely confined to
the associated functionality and dynamics in isolation from activity at other levels. Such lack
of context severely restricts examination of the interaction between protocols which may in
turn lead to inaccurate or erroneous conclusions.

The work described in this dissertation attempts to address some of these limitations. A
new passive monitoring architecture — Nprobe — is presented, based upon ‘off the shelf’
components and which, by using clusters of probes, is scalable to keep pace with current high
bandwidth networks without data loss. Monitored packets are fully captured, but are subject
to the minimum processing in real time needed to identify and associate data of interest across
the target set of protocols. Only this data is extracted and stored. The data reduction ratio
thus achieved allows examination of a wider range of encapsulated protocols without straining
the probe’s storage capacity.

Full analysis of the data harvested from the network is performed off-line. The activity of
interest within each protocol is examined and is integrated across the range of protocols,
allowing their interaction to be studied. The activity at higher levels informs study of the
lower levels, and that at lower levels infers detail of the higher. A technique for dynamically
modelling TCP connections is presented, which, by using data from both the transport and
higher levels of the protocol stack, differentiates between the effects of network and end-
process activity.

The balance of the dissertation presents a study of Web traffic using Nprobe. Data collected
from the IP, TCP, HTTP and HTML levels of the stack is integrated to identify the patterns
of network activity involved in downloading whole Web pages: by using the links contained
in HTML documents observed by the monitor, together with data extracted from the HTML
headers of downloaded contained objects, the set of TCP connections used, and the way in
which browsers use them, are studied as a whole. An analysis of the degree and distribution
of delay is presented and contributes to the understanding of performance as perceived by the
user. The effects of packet loss on whole page download times are examined, particularly those
losses occurring early in the lifetime of connections before reliable estimations of round trip
times are established. The implications of such early packet losses for pages downloads using
persistent connections are also examined by simulations using the detailed data available.
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Chapter 1

Introduction

Computer networks in general, whether serving the local, medium or wide area, and in partic-
ular, the globally spanning aggregation known as the Internet (henceforth referred to simply
as the network) remain in a period of unprecedented and exponential growth. This growth is
not only in terms of the number of communicating hosts, links and switching or routing nodes;
but also encompasses new technologies and modes of use, new demands and expectations by
users, and new protocols to support and integrate the functioning of the whole.

Heavy demands are made by new overlaying technologies (e.g. streamed audio and video)
which carry with them additional requirements for timely delivery and guaranteed loss rates
— the concept of Quality of Service (QOS) becomes significant; the growth of distributed
computing makes new demands in terms of reliability. Sheer growth in the size of the net-
work and volume of traffic carried places strain on the existing infrastructure and drives new
physical technologies, routing paradigms and management mechanisms.

Within this context the ability to observe the dynamic functioning of the network becomes
critical. The complexity of interlocking components at both physical and abstract levels has
outstripped our capacity to properly understand how they inter-operate, or to exactly predict
the outcome of changes to existing, or the introduction of new, components.

1.1 Introduction

The thesis of this dissertation may be summarised thus: observation of the network and the
study of its functioning have relied upon tools which, largely for practical reasons, are of
limited capability. Research relying upon these tools may in consequence be restricted in
its scope or accuracy, or even determined, by the bounded set of data which they can make
available. New tools and techniques are needed which, by providing a richer set of data, will
contribute to enhanced understanding of application performance and the system as a whole,
its constituent components, and in particular the interaction of the sub-systems represented
by the network protocol stack.
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The hypothesis follows that such improved tools are feasible, and is tested by the design and
implementation of a new monitoring architecture — Nprobe — which is then used in two case
studies which would not have been possible without such a tool.

1.2 Motivation

This section outlines the motivation underlying passive network monitoring and the devel-
opment of more capable tools by which it can be carried out. The following sections (1.3
and 1.4) introduce the desirability of monitoring a wider range of protocols and suggest the
attributes desirable in a monitor which would have this capability.

1.2.1 The Value of Network Monitoring

The term network monitoring describes a range of techniques by which it is sought to ob-
serve and quantify exactly what is happening in the network, both on the microcosmic and
macrocosmic time scales. Data gathered using these techniques provides an essential input
towards:

• Performance tuning: identifying and reducing bottlenecks, balancing resource use, im-
proving QOS and optimising global performance.

• Troubleshooting: identifying, diagnosing and rectifying faults.

• Planning: predicting the scale and nature of necessary additional resources.

• Development and design of new technologies: Understanding of current operations and
trends motivates and directs the development of new technologies.

• Characterisation of activity to provide data for modelling and simulation in design and
research.

• Understanding and controlling complexity: to understand the interaction between com-
ponents of the network and to confirm that functioning, innovation, and new technolo-
gies perform as predicted and required. The introduction of persistent HTTP connec-
tions, for instance, was found in some cases to reduce overall performance [Heidemann97a].

• Identification and correction of pathological behaviour.

1.2.2 Passive and Active Monitoring

The mechanisms employed to gather data from the network are classified as passive or active,
although both may be used in conjunction.
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1.2.2.1 Passive Monitoring

Passively monitored data is collected from some element of a network in a non-intrusive
manner. Data may be directly gathered from links — on-line monitoring — using probes1

(e.g. tcpdump) to observe passing traffic, or from attached hosts (usually routers/switches
or servers, e.g. netflow [Cisco-Netflow], Hypertext Transfer Protocol (HTTP) server logs).
In the first case the data may be collected in raw form (i.e. the unmodified total or part
content of passing packets) or may be summarised (e.g. as protocol packet headers). All
or a statistical sample of the traffic may be monitored. In the second case the data is most
commonly a summary of some aspect of the network traffic seen, or server activity (e.g. traffic
flows [netflow], Web objects served, or proportion of cache hits).

Data thus collected is typically stored for later analysis, but may be the subject of real-time
analysis, or forwarded to collection/analysis servers for further processing.

The strength of passive monitoring is that no intrusion is made into the traffic/events being
monitored, and further — in the case of on-line monitoring by probes attached to a network
attached directly to network links — that the entire set of data concerning the network’s traffic
and functioning is potentially available. The weakness, particularly as network bandwidths
and the volume of traffic carried increase, is that it becomes difficult to keep up with the
passing traffic (in the processing power required both to collect the data and to carry out any
contemporaneous processing) and that the volume of data collected becomes unmanageable.

1.2.2.2 Active Monitoring

Active network monitoring, on the other hand, is usually concerned with investigating some
aspect of the network’s performance or functioning by means of observing the effects of
injecting traffic into the network. Injected traffic takes the form appropriate to the subject
of investigation (e.g. Internet Control Message Protocol (ICMP) ping packets to establish
reachability, HTTP requests to monitor server response times).

The data gathered is largely pertinent only to the subject of investigation, and may be
discarded at the time of collection, or may be stored for global analysis. Specificity of injected
traffic and results may limit the further usefulness of the data gathered. There is always the
risk that the injected traffic, being obtrusive, may in itself colour results or that incorrect or
inappropriate framing may produce misleading data.

1.2.3 Challenges in Passive Monitoring

When considering passive monitoring, issues of maximising potential information yield and
minimising data loss arise.

1Here and elsewhere in this dissertation the term probe is used to describe a data capture software system,
and the computer on which it runs, connected to a network for monitoring purposes.
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1.2.3.1 How and Where to Monitor

As the majority of data pertinent to a network’s functioning and instantaneous state originate
from, and are as a result of, the traffic traversing the network, it follows that the traffic itself
is the richest source of data — and from that data, information of interest. At best data
obtained from sources such as server logs or Management Information Bases (MIBs) can only
be summaries; of events internal to a particular machine, of network events or traffic visible
to the machine, or of events or state communicated by others. Such summaries are likely
to be specific to a particular purpose, or of a limited subset of the data originally available.
It follows that there are cogent arguments for conducting passive monitoring on-line (i.e. by
using a probe machine to observe and examine all packets traversing the network(s) to which
it is attached; the technique usually referred to as packet monitoring) rather than by observing
or collecting state held by others.

This is, of course, exactly the way in which hosts such as routers build repositories of data
(e.g. NetFlow), but there are crucial differences. Modern routers or switches are specialised
machines, often able to handle high bandwidths by carrying out critical functions in hardware,
and optimised for this purpose. Those core functions, moreover, are likely to be concerned
primarily (or totally) with processing packets at a specific level in the protocol stack. The
range of data collected by these machines is therefore generally limited, relatively inflexible in
type and scope, and largely (although not always exclusively) specific to the protocol level of
the machine’s core function. The potential richness of information contained in the available
data is largely lost.

Care must be taken when deciding the placement of on-line network probes, and the effects
of placement upon the data gathered given due weight. Ideally probes should be attached to
links where the greatest and widest sample of traffic is carried, where packets travelling in both
directions between servers and clients are visible, and where routeing variations have minimal
impact. A great deal may be learned, however, through selective placement (e.g. attachment
to links accessing specific sites can illustrate the usage patterns of particular communities,
attachment adjacent to modem banks or server farms may produce informative comparisons).

1.2.3.2 Avoiding Data Loss

As previously mentioned, constantly increasing bandwidths and traffic volumes make consid-
erable demands of the mechanisms designed to collect, process and store monitored traffic.
Leland and Wilson [Leland91] describe a relatively complex mechanism2 employed at the
start of the last decade to collect packet arrival times and lengths on a 10 Megabits per sec-
ond (Mbps) ethernet segment, and which provided the data upon which at least two seminal
papers were based [Leland94] [Paxson95]. In the intervening 13 years network link band-
widths have increased by up to three orders of magnitude; the increase in processor speeds,
memory and storage capacities has tended to lag behind.

The core functionality of any on-line monitoring probe is to passively capture the traffic
arriving at its interface to the monitored network, and to process and store data contained

2See Section 2.8.1 on page 39.
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in or derived from that traffic. The utility of the monitoring is constrained by the processing
power of the probe and its ability to store the desired data; if arrivals from the network
over-run either capacity packets will be dropped and data lost. To process data arriving at
rates of tens or hundreds of Mbps (or, increasingly, Gigabits per second (Gbps)) consumes
considerable computational resources. To store the traffic traversing a fully utilised 10 Gbps

link in one direction verbatim would, for instance, generate over 4.5 Terabytes of data per
hour requiring an on-disc bandwidth in excess of 1,250 Megabytes per second (MBps).

It is useful to establish some terminology at this point, where data refers to the data which
it is desired to capture from the network, and which may be a verbatim copy of all or part of
packet contents, or may be an abstract of the partial content of interest:

Data drop: arbitrary data lost in an uncontrolled manner because the probe has been
overwhelmed by arrivals (e.g. packet loss due to network input buffer over-run) or
exhaustion of probe storage capacity

Data loss: failure to fully capture and store required data

Data discard: selective data rejection, either because it is not required or in order to
limit the demands on the probe and hence avoid data drop (but not necessarily data
loss)

Data extraction: identification, capture and storage of the required sub-set of the total
data; implies data discard

Data abstraction: data extraction of a summary or semantic element from some part
of the whole data as opposed to a verbatim copy of packet content

Data association: the aggregation of all data forming a logically associated sub-set
within and across protocol and packet boundaries

Data reduction: reduction of the total volume of data to be stored through a process
of data extraction

Data reduction ratio: the ratio of the volume of stored data to observed traffic volume
after data reduction

In designing mechanisms for passive network monitoring the optimal degree of data reduction
must be sought: too little and storage requirements become excessive both in volume and
bandwidth, too much and the computational cost of data extraction may make it impossible
to keep up with the monitored traffic.

Traditional monitoring tools (e.g. tcpdump3) impose a coarse-grained data extraction policy.
Discard based upon packet filtering to select a desired sub-set of traffic operates at the resolu-
tion of whole packets, while further data selection is limited to capture of the first N octets of
all accepted packets — hence potentially storing a considerable amount of unwanted content.
There is no mechanism for abstraction of required data from packet content. The available
processor resources are largely consumed in making two copies of the data between kernel

3Unless otherwise stated reference to tcpdump is to its use as a data-capture system rather than in its role
as a packet content summary tool.
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and user memory, one to read packet contents from the packet filter, and one for output to
disc.

The consequence of such limited data extraction capability is that data capture has been
largely restricted to the opening octets (e.g. Media Access Control (MAC), Internet Protocol
(IP) and Transmission Control Protocol (TCP) headers) of a limited range packets representing
a traffic class of interest. It follows that research based purely upon on-line monitoring has
also been largely restricted to that which can be carried out using this sub-set of the data.

1.3 Multi-Protocol Monitoring and Analysis

Almost all passive on-line monitoring systems, and the research based upon the data which
they collect, take as a minimum data set the IP and TCP headers contained in the captured
packets. However, in the context of this dissertation the term multi-protocol monitoring is
reserved for systems which harvest data from a wider span of the network protocol stack,
particularly from levels at and above the transport level.

1.3.1 Interrelationship and Interaction of Protocols

The design of the network protocol stack seeks to achieve independence of each level of the
stack from those above and below it, and to allow multiplexing of protocols at any level on to
one or more protocols at the lower level. However functional and dynamic independence is not
a reality — the demands made upon lower level protocols by those above will vary according to
the purpose and behaviour of the user protocol or application. Contrast the differing demands
made upon the infrastructure by TCP and the User Datagram Protocol (UDP); while both
may seek to maximise throughput, TCP is adaptive to congestion, UDP is not. Both File
Transfer Protocol (FTP) and HTTP traffic use TCP as a transport layer protocol, but make
widely differing demands of it (and hence the underlying network); one attempts to maximise
throughput in (usually) one continuous burst, the other will more often produce many bursts
of activity as the Web browser opens pages containing graphic images — typically by opening
multiple TCP connections to fetch those objects.

If network monitoring is to help us achieve a true understanding of the phenomena observed,
analysis of behaviour at all levels and the interaction between them is desirable. The content
of a Web object, for instance, may do much to illustrate the traffic following it across the
network. For the reasons explained above past work has tended to concentrate data collection
and analysis within a small set of protocols in isolation, albeit in a specific context. It is
necessary to broaden this approach so that a greater range of data from multiple protocol
levels is gathered and integrated, with obvious implications for data extraction and reduction
which may now demand that a certain amount of the integration is performed on the fly.

New protocols, supporting existing or (more commonly) new traffic types (e.g. streamed me-
dia), are supported at lower levels by existing protocols whose original design never envisaged
the demands now made of them. In such a circumstance it may be difficult to predict the pos-
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sible interaction of protocols, which may be sufficiently complex that undesirable side effects
are introduced, or the required functionality is not fully achieved. Monitoring methods must
be developed which are capable of observing and correctly interpreting such phenomena.

1.3.2 Widening the Definition of a Flow

Much work has been done on the analysis of flows across the Internet; most commonly de-
fined as all traffic passing between two host/port pairs without becoming quiescent for more
than some specified time-out period. A richer understanding may perhaps be achieved by
widening this definition into a hierarchy of flows, with all traffic flowing in the network at its
head. Sub-flows (which need not necessarily be disjunct) may then be more flexibly defined
(e.g. traffic between two networks, traffic providing a particular service, traffic carrying a
particular payload type, traffic from a single host to a particular network flowing across a
particular link, and so on).

While flow data collected in terms of host/port/protocol may be used to identify flows defined
upon some subset of the tuple (e.g. network/network flows or flows of a particular service type)
the flows so defined are themselves necessarily super-sets of those flows which can be defined
by those tuples. Hence if certain aspects of network behaviour, or traffic types are to be
studied in terms of flows, through the mechanism of monitoring, it may again be necessary
to gather a more comprehensive data set as the traffic is observed. This also implies that
packet contents beyond the network and transport protocol level headers must be examined.
The transmission of real-time video and audio presents an example: streamed traffic may
pass between end points on two hosts where the ports used are not well-known addresses,
subsequent to negotiation during a set-up phase which uses a connection established using
a known address. Without observing and interpreting the higher level protocol content of
packets during the set-up period the existence of such a flow may be observed, but at best
its nature can only be (perhaps incorrectly) inferred. Similarly the dynamics of passing
IP multicast traffic may be better understood if data can be gathered from the relevant
Internet Group Management Protocol (IGMP) packets; and of World Wide Web traffic if
causal contents contained in earlier Web objects are identified. Many flows may only be fully
identifiable and understandable if information is gathered from a range of relevant protocols.

1.4 Towards a More Capable Monitor

Section 1.2 has discussed factors motivating packet monitoring, some of the practical diffi-
culties which may limit the usefulness of the technique, and the shortcomings of traditional
packet monitoring software. Section 1.3 presents an argument for extending the capabilities
of packet monitoring systems, particularly in order to capture a wider set of data across the
span of the protocol stack.

It is unlikely, despite constant increases in the power of available processors, that probes
based upon the prevailing current model of data capture will be able to provide the required
functionality. A new generation of packet monitoring probe is therefore called for, in which
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the following attributes are desirable:

Optimal Data Reduction Ratio: Data storage requirements should be minimised by achiev-
ing the highest Data Reduction Ratio (DRR) compatible with the avoidance of infor-
mation loss.

Efficiency: Processor cycles expended in housekeeping tasks such as packet and data copying
should be minimised in order to free computational resources as far as possible for data
extraction. Any memory copies should be of the reduced data.

Scalability: Emerging network bandwidths are likely to fatally challenge the capabilities
of even costly purpose designed probes, and it is, in any case, desirable that probes
should be based upon relatively inexpensive commodity hardware so that the widest
range of placements and most representative data samples are available. Nevertheless
it is desirable that monitoring facilities should be capable of keeping pace with high
bandwidth links without data loss — probes should be scalable to meet bandwidth
demands.

Fine-grained data extraction: To minimise storage requirements without data loss.

Data abstraction: To further minimise storage requirements where core data is less bulky
than the corresponding packet content (e.g. textual HTTP header field contents may
often be recorded more concisely as numeric codes).

Coarse-grained data discard: While fine-grained data extraction or abstraction are nec-
essary (and imply a fine-grained data discard) they may be computationally expensive;
the probe should also be capable of coarse-grained discard of unwanted data.

Statefulness: Simple data extraction, for instance of IP addresses or UDP/TCP port num-
bers, can be carried out on a per-packet basis with each packet treated as a discrete
entity. At higher levels of the protocol stack, data extraction may require knowledge
of previous packet contents; data of interest may span packet boundaries or may be
semantically indeterminable without earlier context, and stream-oriented data may re-
quire reassembly or re-ordering (e.g. TCP re-transmissions). Data association may also
be determined by earlier context. The probe must maintain sufficient state for the dura-
tion of a defined flow or logical data unit to enable accurate extraction and association
of data in such circumstances.

Accurate time-stamping: Individual packets should ideally be associated with a time
stamp which is attached as they arrive at the probe in order to avoid inaccuracies.
Time stamps should be both as accurate as possible, and of an appropriate resolution
which, as a minimum, reflects the serialisation time of packets at the bandwidth of the
network(s) monitored.

Dynamic flow identification: Identification of flows based upon static 5-tuples of end-
point IP addresses, TCP/UDP port numbers and transport level protocol is likely to
be inadequate as an increasing number of services are sourced at dynamically assigned
server ports or hosts. Probes used to capture data from such flows will require the
capability to understand and track dynamic allocations.
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Flexibility and modularity: A simple packet monitor exercising data capture through ver-
batim copying of packet content requires little or no knowledge of the arrangement,
syntax or semantics of the data captured (although the user may need such knowledge,
in order to define the packet octet range of interest). Capabilities such as fine-grained
data extraction and statefulness imply that the probe must possess such knowledge and
will in consequence be very much more complex. Such capabilities also imply that func-
tionality will be closely tied to specific monitoring tasks and the data requirements of
the particular study being undertaken — the one-size-fits-all probe model is no longer
appropriate. It would be impractical to design a new and complex system for each
new task; specificity must be accomplished through a degree of flexibility which allows
functionality to be tailored as necessary. A design is suggested which provides an infras-
tructure of basic functionality, but which facilitates the addition of task-specific data
extraction modules.

1.5 Aims

The work described in this dissertation concerns the development of a generic framework for
data collection and analysis which can be tailored to specific research tasks. The aim was the
design and implementation of a packet monitor possessing the desirable attributes described
in Section 1.4 and which addresses the challenges posed in Sections 1.2.3.2 and 1.3.

The harvesting of data from the network is, of course, only the first step in a process which
must proceed to a later analysis of the gathered data. Although study and content-specific
analysis will be similar, however the data was collected, the logged data itself will reflect the
task-specific tailoring of the collection process, and will be more complex in structure than the
verbatim packet copy of a simple probe due to the intervening processes of data extraction
and abstraction. The attributes of flexibility and modularity in the probe, as discussed in
Section 1.4, must be reflected in the analysis software. In order to avoid the undesirable task
of writing all parts of the analysis code from scratch for each individual study, an additional
stage must be introduced into the post-collection processing of the data which understands the
task-specific logging format and presents data in a canonical form. A second aim of the work
has therefore been to develop a further generic framework for the retrieval and presentation
of data from monitor logs.

The scope for research based upon use of such a powerful new monitoring system is enormous;
a third and final aim of the work has been to conduct two studies as examples illustrating
the potential of the new tools, but which would not have been possible without them.

1.6 Structure of the Dissertation

The following chapter of this dissertation describes the historical background to this work,
and places it in the context of related research.

The remainder of the body of the dissertation falls broadly into two parts. In the first part
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Chapter 3 describes the design and implementation of the Nprobe architecture and Chapter 4
introduces the framework for post-collection analysis of the logs collected. Chapter 5 goes
on to describe a technique for modelling TCP connection activity based upon the protocol-
spanning data provided.

The second part presents two studies based upon data collected using Nprobe. Chapter 6
describes the estimation of Web server latencies, Chapter 7 introduces the observation and
reconstruction of Web page downloads, and in Chapter 8 this foundation is extended to
examine causes of download delay with particular emphasis on delays originating from packet
loss during the early stages of a TCP connection’s lifetime.

Finally Chapter 9 reviews the work contained in previous chapters and draws a number of
conclusions. The original contribution of the dissertation is assessed and areas for further
work suggested.
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Background and Related Work

A considerable body of research based upon network monitoring has been established and
to present a comprehensive review would be impracticable. This chapter therefore describes
only some historically significant contributions and current work particularly related to the
research described in this dissertation.

It is convenient to divide the work described into approximately functional (although not
necessarily disjoint) categories:

2.1 Data Collection Tools and Probes

No survey of passive network monitoring tools would be complete without mention of the
ubiquitous tcpdump [Jacobson89] which, with its variants, remains the staple collection tool
for much post-collection analysis based research. Despite its high copy overheads and inability
to keep pace with high arrival rates, its packet filtering capacity and familiarity are attractive
to many projects. This familiarity also makes tcpdump a useful base-line to which other
systems can be compared.

Packet capture is provided by the libpcap [McCanne89] library which also provides routines
for verbatim binary dumping of packet contents to file1, for reading back dumped files, and
a platform-independent interface to a packet filter.

A coarse-grained data discard facility is provided by the packet filter — normally the Berkeley
Packet Filter (BPF) [McCanne93] which incorporates a highly efficient and flexible stack-based
content-matching capability allowing packets to be accepted on the basis of a very wide range
of criteria. The packet filter may be implemented in user space, but is more often incorporated
into the kernel for reasons of efficiency. Both the BPF and libpcap are widely used in other
data capture tools.

1A defined ‘capture length’ of the first N bytes is usually dumped rather than the entire packet content;
each packet is prepended with a short header record containing a time stamp, details of packet length, etc.
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Tcpdump provides facilities for both packet capture and the textual summarization of packets.
The latter role implies some syntactic and semantic understanding of the range of protocols
handled, and hence a degree of data extraction — this is limited, however, to content pre-
sentation and no data reduction (other than partial packet capture) is applied to dumped
content. Although both facilities may be used simultaneously the computational cost of pre-
sentation — not to mention the limitations of the human eye and brain — makes use in
this way infeasible in monitoring all but the most sparse traffic. Tcpdump is therefore most
commonly used as a data capture tool, the logs generated being interpreted and analysed by
other software, or in presenting the content of previously gathered logs2.

The AT&T Packetscope [Anerousis97] has provided the packet capture facility for a number
of research projects. Built upon hardware consisting of dedicated DEC Alpha workstations
equipped with raid discs and tape robots it is capable of collecting very large traces. Software
is based upon tcpdump but with the kernel enhancements to optimise the network interface/-
packet filter data path suggested by Mogul and Ramakrishnan [Mogul97b]. The ability to
keep pace with 45 Mbps T3 and 100 Mbps Fiber Distributed Data Interface (FDDI) links
with packet loss levels of less than 0.3%, while collecting contents up to and including HTTP

protocol headers, has been reported by Feldmann [Feldmann00].

Further traces of HTTP request and response header fields collected using the PacketScope
have been used to drive simulations [Caceres98] demonstrating the deleterious effects of cook-
ies and aborted connections on cache performance.

The Cooperative Association for Internet Data Analysis (CAIDA) are responsible for con-
tinuing development of one of the most ambitious families of data collection tools — OCx-
Mon [Apisdorf96]. OC3Mon, OC12Mon and OC48Mon probes, designed to keep pace
with OC-3, OC-123 and OC-48 fibre-carried traffic at bit arrival rates of 155Mbps, 622Mbps

and 2.5Gbps respectively, collected via a passive optical tap, have been widely deployed. ‘Off
the shelf’ components are used in this Personal Computer (PC)-based architecture which uses
precise arrival time-stamping provided by the network interface card, and custom firmware
driving the card’s on-board processor. Initially only the first cell of each AAL5-based IP

datagram was passed by the interface (allowing for collection of IP headers and — in the
absence of any IP option fields — TCP or UDP headers). No data extraction or association
is carried out and no data reduction beyond selection of the leading proportion of packets to
be collected.

The OCxMon family of probes have now been subsumed into the CAIDA Coral Reef [Keys01]
project. Coral Reef provides a package of libraries, device drivers, and applications for the
collection and analysis of network data. Packet capture is provided through the OCxMon
family or more conventional Network Interface Cards (NICs) via libpcap; packet filtering
(e.g. the BPF) may be incorporated.

The IP MONitoring Project (IPMON) monitor [Fraleigh01a], developed by Sprint ATL,

2Some analysis software uses tcpdump to extract data (possibly selected by a user-level invocation of the
packet filter) and uses the textual output thus generated as its own input (e.g. TCP-Reduce [TCP-Reduce]).

3OC3Mon and OC12Mon were originally designed for the capture of Asynchronous Transfer Mode (ATM)
traffic, but the range of network interfaces now employed has extended to additional technologies (e.g. 100 Mbps

and 1 Gbps Ethernet).
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is designed to keep pace with line speeds on up to OC-48 links. Only the first 48 bytes of
each packet are stored, on a verbatim basis. The system is distinguished particularly by its
use of Global Positioning System (GPS) receivers to very accurately synchronise time-stamps
amongst distributed probes, and data taps from the network links using optical splitters and
DAG Synchronous Optical NETwork (SONET) Network Interface Cards [DAG-Over].

2.2 Wide-Deployment Systems

Several projects deploy sets of probes monitoring traffic at selected points and whose output
can be integrated in order to capture a more comprehensive picture of network traffic than
can be obtained from a single monitoring point.

The National Laboratory for Applied Network Research (NLANR) Network Analysis Infras-
tructure (NAI) [NLANR98] project seeks to ‘gather more insight and knowledge of the inner
workings of the Internet’ through the Passive Measurement and Analysis (PMA) [NLANR02]
and Active Measurement Project (AMP) [NLANR] projects. Monitoring points are scattered
amongst the High Performance Connection (HPC), Very High Performance Backbone Network
Service (vBNS), and Internet2/Abilene high performance networks. Results, as raw traces, or
at various levels of integration and abstraction, are publicly available.

The PMA project relies on a set of over 21 OC3 and OC12-based probes to passively monitor
traffic passing over the target networks. The traces collected are post-processed, anonymized
and collected in a central data repository. A set of trace selection and analysis tools are
provided.

The AMP project uses over 100 active monitors which periodically inject traffic into the
network to measure Round Trip Time (RTT), packet loss, topology, and throughput across
all monitored sites.

Sprint ATL deploy 32 IPMON monitors at Point of Presences (POPs) and public peering
points on their IP backbone networks. The very large data samples collected are used primarily
for workload and link-utilisation characterisation, construction of traffic matrices, and TCP

performance and delay studies [Fraleigh01b].

Possibly the most widely deployed passive monitoring system is to be found in Cisco routers
and switches, which are equipped with a flow data collection mechanism, Netflow

[Cisco-Netflow], which collects network and transport protocol layer data for each packet
handled, together with routing information and first and last packet time stamps for each
identified flow. Expired flow data is exported for storage/analysis by UDP datagram to en-
abled hosts running Cisco’s own FlowCollector [Cisco-Netflow] software or other systems
such as CAIDA’s cflowd Traffic Flow Analysis Tool [CAIDA-cflowd]. Much work has been
done using data collected by Netflow but is limited in its scope by the data set.

Netflow-collected information formed part of the input data for a study by Feldmann et al.
[Feldmann01] which derived a model of traffic demands in support of traffic engineering and
debugging.
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While Netflow is a powerful and voluminous source of data, the limited data set provided
severely restricts the scope of studies using it; its employment may also detract from router
performance and, in conditions of high load, the proportion of data loss can be extremely
high. It is noted in [Feldmann01] that up to 90% of collected data was lost due to limited
bandwidth to the collection server.

Mention should also be made of the Simple Network Management Protocol (SNMP)
[Stallings98], the most widely used network management protocol. Routers maintain a MIB

of data pertinent to each link interface (e.g. packets and bytes received and transmitted or
dropped, and transmission errors) collected by an agent. Most routers support SNMP and
implement both public and vendor-specific MIBs. Data is retrieved by management stations
via UDP.

2.3 System Management and Data Repositories

The employment of multiple probes capturing common or complementary data implies that
techniques and systems must be developed for the transfer, storage and management of po-
tentially very large volumes of data; and for secure remote management of remote probes4.
Data repositories or warehouses are required which provide selection and retrieval facilities
and implement data audit trails.

Several systems have been proposed and implemented. The data repository and management
systems employed by Sprint ATL are described in [Fraleigh01b] and [Moon01]. Research at
AT&T makes use of the facilities provided by the WorldNet Data Warehouse.

The NLANR National Internet Measurement Infrastructure (NIMI) project [Paxson00]
[Paxson98], based upon Paxson’s Network Probe Daemon [Paxson97b], uses servers de-
ployed throughout the Internet to generate active probes which compute metrics such as
bandwidth, packet delay and loss. This sophisticated and comprehensive framework is inde-
pendent of the actual measuring tools used by the probes and will use the services of as many
probes as are required for the metric measured and the desired level of accuracy. In common
with all active techniques it suffers from the problem of capacity to generate only a small
number of metrics at a time.

2.4 Monitoring at Ten Gigabits per Second and Faster

Advances in network technology dictate the need to monitor at continually higher line speeds.
Probes keeping pace with OC-3 and OC-12 carried traffic are now commonplace and those
capable of monitoring at OC-48 arrival rates are being deployed (e.g. Coral Reef and IPMON).
The design of probes capable of monitoring higher speed networks is the subject of continuing
research and development and becomes more feasible with increases in input/output bus
bandwidths and the availability of the corresponding NICs. As NICs become more capable,

4Even single probes are usually, of course, likely to require remote management.
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additional functionality can be incorporated to the advantage of monitoring systems: higher
bandwidths dictate the need for more accurate and finer-grained time-stamps attached to
packets at arrival times and many NICs now provide this functionality; some NICs supported
by the OCxMon family, for instance, are migrating a sub-set of the packet filter into the card’s
firmware.

The current challenge is the development of probes with the capacity to pace network band-
widths of an order of 10 Gbps (e.g. OC-192 and 10 Gigabit Ethernet technologies). The NLANR

OC192Mon project [OC192Mon] (with support from Sprint ATL) is currently testing a mon-
itor capable of collecting IP header traces at such arrival rates.

Monitoring requirements, especially as distributed probe systems are deployed, and the band-
widths monitored increase, may call for functionality not normally found in NICs, and hence
purpose designed cards. The University of Waikato (New Zealand) Dag research group have
developed the DAG series of NICs [DAG-Cards] which incorporate accurate time-stamps syn-
chronised using GPS receivers and can interface with OC-x or Ethernet carried traffic. The
cards are equipped with large field-programmable gate arrays and ARM processors which
allow for on-board processing (e.g. packet filtering or data compression). DAG3 Cards are
designed to keep pace with OC-3 and OC-12 line speeds, and DAG4 cards with OC-48; both
are used in PMA, IPMON and Coral Reef. DAG6 Cards, designed to match OC-192 and
10 Gigabit Ethernet speeds form the packet capture element of the OC192Mon project.

An approach to keeping pace with higher bandwidth networks by using monitoring clusters is
described by Mao et al. [Mao01]. In contrast to the Nprobe method of striping packets across
multiple processors/monitors (described in Section 3.3.2 on page 54) the authors describe
a system in which a switch is used to direct packets to clustered monitors. Algorithms for
monitor allocation and probe failure recovery are discussed.

Iannaccone et al. [Iannaccone01] describe some of the issues raised in monitoring very high
speed links; some of the proposed techniques (e.g. flow-based header compression flow termi-
nation) had already at the time been incorporated in the Nprobe design.

2.5 Integrated and Multi-Protocol Approaches

This section describes work employing a multi-protocol or stateful approach to probe design.

Malan and Jahanian [Malan98b] describe a sophisticated and flexible probe architecture —
Windmill — designed to reconstruct application level protocols and relate them to the un-
derlying network protocols. The architecture features a dynamically generated protocol filter,
abstract analysis modules corresponding to network protocols, and an extensible experiment
engine as shown in Figure 2.1.

The extensible experiment engine provides an interface allowing a remote probe administrator
to dynamically load, modify and remove experiments without interrupting the continuity of
probe operation. Results may be stored to disc and later retrieved through the interface or
sent to a remote destination in real time using a custom data dissemination service [Malan98a].
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The Windmill Packet Filter runs in the kernel for efficiency and is dynamically recompiled
as experiments are added or removed. The packet filter passes packets identified by the
experiments’ subscriptions to a dispatcher which in turn passes them to the appropriate
subscribing experiment(s). An experiment draws on the services of one or more abstract
protocol modules to extract data specific to the protocol. The modules maintain and manage
any state associated with the target protocol and also ensure that processing is not duplicated
by overlapping experiments. A per-packet reference count is maintained which allows each
packet to be freed once seen by all interested experiments.

Experiments have been carried out to investigate the correlation between network utilisation
and routeing instability noted by Labovitz [Labovitz98], and to demonstrate real-time data
reduction by collecting user-level statistics for traffic originating in the Upper Atmospheric
Research Collaboratory, a data access system to over 40 instruments. The latter study also
illustrated Windmill’s ability to trigger external active measurements defined by the experi-
ments in progress.
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Packet Despatcher

Experiment 1

Experiment n

Protocol Filter

Device Driver

User Space

Kernel Space

Network

Abstract Protocol Modules Extensible Experiment Engine

Note: Reproduced from An Extensible Probe Architecture for Network Protocol Performance Measure-
ment [Malan98b] pp. 217 c©1998 ACM, Inc. Included here by permission.

Figure 2.1: The Windmill probe architecture

At lower levels of the protocol stack Ludwig et al. [Ludwig99] have conducted a study of
the interaction between TCP and the Radio Link Protocol (RLP) [ETSI95] using tcpdump to
collect TCP headers and their own rlpdump tool to extract data from an instrumented RLP
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protocol implementation. The two sets of data were associated during post-processing using
the purpose designed multitracer tool.

Anja Feldmann describes use of the Bi-Layer Tracing (BLT) tool [Feldmann00] to extract
full TCP and HTTP level packet traces [Feldmann98c][Feldmann98a] via packet monitor-
ing based upon the packetscope. The tool’s functionality is decomposed into four pipelined
tasks: packet sniffing which captures selected traffic via the packet filter, writes it to file and
anonymizes IP addresses; a Perl script controlling the pipeline and tape writing; HTTP header
extraction software that produces time-stamps for relevant TCP and HTTP events, extracts
the full contents of HTTP request/response headers, summarises the data part of transactions
(e.g. body lengths) and creates logs of full packet headers; and off-line association of HTTP

requests and responses. Control flow in BLT is shown in Figure 2.2.
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Note: Reproduced from BLT: Bi-Layer Tracing of HTTP and TCP/IP [Feldmann00] with the kind
permission of the author.

Figure 2.2: Control flow of the BLT tool HTTP header extraction software

Data extraction is performed under control of the Perl script once a sufficient number of
packets have been received, and saved to reconstruct each HTTP transaction5. The extracted
data is saved as three log files containing packet headers, unidirectional IP flow information,
and HTTP/TCP data (e.g. events, timings and raw HTTP text).

A series of studies have been undertaken using BLT: the benefits of compression and delta
encoding for Web cache updates are examined by Mogul et al. [Mogul97a], the frequency

5This step is actually staged due to the large number of packets that may be involved.
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of resource requests, their distribution and how often they change are investigated by the
same authors in [Douglis97]; the processor and switch overheads for transferring HTTP traffic
through flow-switched networks are assessed by Feldmann, Rexford and Caceres in a further
study [Feldmann98d]. BLT-produced data sets were used by Feldmann et al. [Feldmann98b]
to reason about traffic invariants in scaling phenomena. Other work includes that on the
performance of Web proxy caching [Feldmann99][Krishnamurthy97].

One of the earliest architectures designed with a capability for ‘on the fly’ data extraction is
the Internet Protocol Scanning Engine (IPSE) [Internet Security96] developed by the Internet
Security, Applications, Authentication and Cryptography Group, Computer Science Division,
at the University of California, Berkeley. This packet-filter based architecture incorporated
a set of protocol specific modules which processed incoming packets at the protocol level
(e.g. TCP stream reassembly) before passing them upwards to experiment-specific modules.
An HTTP specific module was used by Gribble and Brewer [Gribble97] to extract and record
IP, TCP and HTTP header data in a client-side study of Web users on the Berkeley Home IP
Service.

This section closes with mention of another probe design, HTTPDUMP [Wooster96] which,
although extracting data only from the HTTP contents of packets into the common log for-
mat [Consortium95], is stateful in order to associate per-transaction data. Packets are ex-
tracted from the network via a packet filter into a FIFO queue from which a user-level thread
reads and stores content in a cell-based array. Data is extracted, under the control of a dis-
patcher thread, on a thread per transaction basis on to disc. The designers themselves were
disappointed with performance.

2.6 Flows to Unknown Ports

Identifying traffic within flows of interest will usually be based upon the well-known port
at the server. In the case of some traffic types, the server will not communicate via such a
well-known port, and port allocation may be dynamic; the Real Time Streaming Protocol
(RTSP) [Schulzrinne98], the dominant control protocol for streaming content on the Internet,
for example, defines a negotiation between client and server during which the characteristics of
the streamed content, including server port, are determined. In such cases a probe is required
to extract pertinent information (i.e. server port number) seen during the negotiation phase
and to capture packets accordingly.

The mmdump monitor [van der Merwe00] is designed to have this capacity. Based upon tcpdump

this system passes RTSP protocol packet contents to a parsing module which extracts the port
numbers to be used for the streamed content, the packet filter then being dynamically modified
to accept the flow so defined. Modules understanding the set-up phase used by the Session
Initiation Protocol (SIP) [Handley99] and the H.323 conferencing control protocol [ITU-T96]
are also incorporated into the tool. While monitoring, the probe initially accepts traffic on
the well-known ports used by the monitored protocols. As set-up traffic is parsed (and saved)
and streams added to the packet filter set, the streaming packets are also dumped to file.
Further data extraction and association is performed during a second, off-line, pass of the
saved data through mmdump.
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2.7 Measurement Accuracy

Issues of accuracy in measurement are discussed by Cleary et al. [Cleary00] and Belenki and
Tafvelin [Belenki00] with particular emphasis on time-stamp accuracy and precision. The
emphasis of the first of these works is on the use of purpose-designed NICs for monitoring
use (the DAG cards described in Section 2.4), while the second describes techniques for the
analytical removal of error.

Pásztor and Veitch [Pásztor02] describe a software solution to providing timestamps with 1 ns
resolution and low access overheads for PC-based monitoring applications.

2.8 Studies Based upon Passively Monitored Data

As an introduction to this section the comment in the preamble to this chapter, concerning
the sheer bulk of research and publication in the network monitoring field, is reiterated.

Much past work has centred upon characterisation of network traffic, usually based upon one
particular, or a combination of, protocols. Currently the greatest volume identified by protocol
is World Wide Web (WWW) traffic transferred using the HTTP protocol [Fielding99]. With
the growth in individual connections to the Internet there is little reason to think that this
will change in the foreseeable future, and consequently this area receives particular attention.

2.8.1 A Brief Mention of some Seminal Studies

Perhaps the best known early bulk data collection was made by Leland and Wilson [Leland91]
at Bellcore in 1989. A single board computer (SBC) with on-board Ethernet interface captured
and time-stamped packets, the first 60 bytes of which were then stored in a dedicated buffer.
The SBC was in turn connected to the internal bus of a Sun workstation which, when the
buffer was full, copied its contents to disc. A lower-priority process then spooled the collected
data from disc to tape. An interval timer board, also interfaced to the workstation’s bus,
provided accurate relative time stamps. Three seminal papers were based upon the traces of
Local Area Network (LAN) and Wide Area Network (WAN) traffic gathered: on the nature
and time-scale of network congestion [Fowler91]; and on the properties of self-similarity found
in the traces [Leland94] and [Paxson95]6. The self-similar nature of network traffic is a topic
which has preoccupied many researchers ever since.

Another early bulk data collection was made by Crowcroft and Wakeman [Wakeman92] who
monitored all traffic between University College London and the Unites States for a period
of five hours. Data from IP and TCP/UDP headers were saved using tcpdump and a set
of detailed traffic characterisations produced by analysing the (ASCII) traces using AWK
scripts. The statistics generated included packet size, connection duration, and number of
packets per connection distributions — both global and broken down by protocol; Domain

6Data from a wider selection of traces was also used in this study.
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Name Service (DNS) response latencies; inter-packet delays and inter-packet gaps (in packets
and time). It is interesting to note that, at the time (March 1991), the authors report that
FTP and Simple Mail Transfer Protocol (SMTP) accounted for 79% of all traffic seen.

In 1990 the growing power of workstations prompted Jeffrey Mogul to present a paper
[Mogul90] describing their use as passive monitors as an alternative to dedicated hardware.
The principles of using workstations for this purpose, underlying issues, and some principles
of post-collection analysis were discussed. The same author investigated the phenomenon
of TCP ACK compression in TCP connections in [Mogul92]. It was shown, using passively
collected traces of TCP/IP headers, that ACK compression could be automatically identified
using techniques to compute instantaneous ACK bandwidths, and that a correlation existed
between ACK compression and packet loss.

Vern Paxson is another investigator who has based several well known studies on passively-
collected traces, of which three are mentioned here. In [Paxson94] 2.5 million TCP connections
from 14 traces of wide-area traffic are used to derive analytic models describing the random
variables associated with common application protocols and a methodology presented for
comparing the effectiveness of the models with empirical models such as tcplib [Danzig91].

A study described in [Paxson99] used data derived from passive measurement of 20,000 TCP

bulk transfers to observe and characterise a range of network pathologies and TCP behaviours.
Measurements were taken using the NPD measurement framework [Paxson97b] at both end-
points in recognition of asymmetry between forward and return Internet paths. The same
data was used in a further study with Mark Allman [Allman99b] which evaluated the ef-
fectiveness of a number of retransmission timeout estimation algorithms and investigated an
improved receiver-side bandwidth estimation algorithm.

2.8.2 Studies of World Wide Web Traffic and Performance

Improvements to overcome the shortcomings in HTTP/1.0 were suggested by Mogul and Pad-
manabhan [Padmanabhan95] and the initial design of HTTP/1.1 persistent connections in-
formed by simulation studies driven by data sets derived from Web server logs [Mogul95]7.

Traffic to and from the official Web server of the 1996 Atlanta Olympic Games was observed
by Balakrishnan et al. [Balakrishnan98] who took TCP header traces from the FDDI ring
feeding the servers, which were additionally instrumented to notify the tracing machine of
retransmitted packets. The traces were post-analysed to examine the dynamics of the con-
nections used, and to suggest improvements that might be made to transport-level protocols.
Deficiencies were found in the existing TCP loss recovery techniques (almost 50% of losses re-
quiring a coarse timeout for recovery), receivers’ advertised windows were found to contribute
a bottleneck, and the correlation between ACK compression and packet loss was confirmed. It
was discovered that multiple parallel HTTP connections were more aggressive users of the net-
work than single connections, current use of Selective ACKnowledgements (SACKs) avoided
only a small proportion of timeouts, and parallel connections with small outstanding windows
suffered a disproportionate share of loss. Proposed improvements to single connections’ loss

7This work is described more fully in Section 7.2 on page 160.
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recovery mechanism using right edge recovery (prompting duplicate ACKS by sending a seg-
ment with a high sequence number), and to multiple connections’ loss recovery by integrating
congestion control/recovery across the set of connections, were simulated and found to be
beneficial.

Bruce Mah determined a set of several Web retrieval characteristics using solely tcpdump-
collected traces of TCP/IP headers in order to establish an empirical model of HTTP network
traffic for further use in simulation studies [Mah97]. Grouping of individual components into
Web pages depended upon a set of heuristics. Factors such as request/reply lengths, document
size, consecutive document retrievals and server popularity were quantified.

Mark Allman [Allman00] used a combination of passively-collected header traces and Web
server logs to characterise downloads from a single server over a period of one and a half
years, and to extend this work to investigate the TCP-level activity of the connections used.
The findings note increasing use of the TCP SACK option, the detrimental effects of small
advertised windows, that larger values of Congestion WiNDow (CWND) would be beneficial
and that the use of persistent TCP/HTTP connections appeared to be declining.

An investigation of Web traffic by Donelson Smith et al. [Smith01] using OC3Mon and
OC12Mon-gathered traces of TCP/IP headers from a campus network, and further similar
traces from the NLANR repository, established a number of characterisations of the traffic
and the patterns of TCP usage by HTTP.

The Wide Area Web Measurement Project (WAWM) [Barford99a][Barford99b] com-
bines the collection and analysis of packet traces with active measurement techniques to study
the effects of varying load on Web servers. A server, established for the purpose of the exper-
iments, was subject to a variable load generated by the Scalable URL Reference Generator
(SURGE) [Barford01] on both local and distant clients.

A similar, but extended, combination of active and passive components was used to drive
a further study [Barford00] using varying loads, but employing critical path analysis (CPA)
techniques to identify and quantify the time elements constituting object download times.

Web object download times were deconstructed into server address resolution, TCP connection
establishment, server latency and object download times by Habib and Abrahams [Habib00]
using the keynote measurement tools [Keynote98] and artificially generated loads. Olshefski
et al. [Olshefski02] describe Certes (CliEnt response Time Estimated by the Server), a server-
based mechanism which combines connection drop, acceptance and completion rates with
packet-level measurements to measure response times experienced by the client. The effects
of combining Certes with web server control mechanisms and listen queue management to
improve quality of service are discussed.

Several studies based upon combined TCP and HTTP data gathered using the Packetscope
(BLT) have been referred to in Section 2.5.



42 Background and Related Work

2.9 Summary

This chapter has attempted to distill a ‘snapshot’ of the current state of passive monitor
design together with some historical background and indication of how trends towards the
monitoring of higher network bandwidths are to be accommodated. It will be noted that
few of the probe architectures presently implemented possess all, or even a majority of, the
desirable attributes described in Section 1.4.

A broad division exists between architectures intended to keep pace with high bandwidths
(OCxMon, IPMON), which essentially only capture a verbatim copy of packet headers up to
the TCP level and are not stateful, and those with more capable data extraction features
(Windmill, IPSE and Packetscope (as BLT)). HTTPDUMP suffers from poor performance
and is, essentially, only a single-protocol monitor, while mmdump, which supports dynamic
flow identification does not (except in this limited sense) implement data extraction.

The Packetscope (BLT) is built upon a complex data flow and control structure, with frag-
mented logging, which is likely to inhibit its generality in terms of multi-protocol monitoring
of a range of higher level protocols. The majority part of data association is postponed until
the post-processing stage, hence rendering trace logs less concise than might otherwise be the
case8. Data extraction is largely coarse-grained, HTTP headers, for instance, being copied
verbatim. Although it is reported as keeping pace with FDDI link speeds of 100Mbps it is sur-
mised that the complexity of the architecture may inhibit its use to monitor at substantially
higher network bandwidths.

Both Windmill and IPSE implement finer-grained data extraction, but both designs predate
currently common bandwidths, and it is not known how well they would perform, or how
easily the designs might be adapted, in the present context.

Some relevant research using data obtained through passive monitoring are briefly described
in Section 2.8.2. These studies may be characterised into those observing real traffic [Mah97],
([Balakrishnan98], and [Smith01]); and those based upon artificially generated traffic
([Barford99a], [Barford00], and [Habib00]).

In the context of Chapters 7 and 8 of this dissertation there is a critical distinction be-
tween those studies based solely upon data garnered from the traffic’s TCP and IP headers
([Balakrishnan98], [Mah97], [Allman00], [Smith01], and [Habib00]); and those where the base
data contained elements drawn from activity at the HTTP level ([Allman00], [Barford99a],
[Barford00], and [Feldmann00]). In the case of the latter category, the studies based upon
BLT-gathered data are unique in that the HTTP-level data was extracted from monitored
packets — in all other cases the higher-level protocol information originated from server logs
(Allman) or from specially instrumented servers.

All of the work mentioned relates TCP and HTTP-level activity with the exception of that by
Mah [Mah97] and to a greater-or-lesser extent derives some characterisation of Web traffic.
With the, again, notable exception of the BLT studies, associations between TCP and HTTP-

8The BLT architecture is designed as in part to deliberately disassociate stored data in order to address
concerns of privacy and security.
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level activity have to be largely9 inferred from the lower-level protocol activity using knowledge
of the operational semantics of HTTP; thus a data-carrying TCP segment transmitted by a
browser client can be assumed to carry a HTTP request, and the following data-carrying
segments from the server to carry a reply; a pause in activity may imply that an entire page
has been downloaded and further activity following this ‘think-time’ that a fresh page has
been requested10. The extent to which such reliance upon inference may affect the accuracy
of results is discussed further in Section 7.3.1 on page 162.

9In the case of studies collecting only TCP and IP header data, of course, entirely.
10Mah [Mah97] demonstrates the effect of differing assumed think-times.





Chapter 3

The Nprobe Architecture

The increasing power of relatively inexpensive PCs in terms of processor frequency, bus band-
width, memory, and disc capacity makes feasible the design of a relatively inexpensive yet more
capable on-line monitoring system than currently available; one utilizing standard hardware,
device drivers, and operating systems, but sufficiently nimble to keep up with the potential
bandwidth usage of contemporary network link technologies.

Such a system should be capable of capturing all packets traversing the network(s) to which it
is attached with minimal or no loss. It should be sufficiently powerful to process and analyse
protocol header fields at all levels together with some simple examination of packet content
— the capacity for data reduction at a speed matching its input from the network, and should
have attached storage media with access bandwidth and capacity sufficient to store generated
data without loss and for trace periods of a macrocosmic scale.

This chapter describes the implementation of the Nprobe monitoring system and the on-line
packet processing performed in order to extract and store data of interest. The later off-line
processing of the stored data is described in Chapter 4.

3.1 Design Goals

The design and implementation of the Nprobe monitor have been based upon a set of general
requirements which dictate that it should:

• possess the desirable characteristics introduced in Section 1.4 on page 27.

• be based upon an off the shelf PC machine architecture with sufficient expansion slots
to accommodate several network interface cards

• incorporate multiple processors of the highest commonly available frequency for maxi-
mum processing power
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• run the Linux operating system — although it is desirable to use standard operating
system components and device drivers, the availability of the Linux source code makes
some relatively minor but necessary modifications possible

• be equipped with high capacity Redundant Array of Inexpensive Disks (RAID) storage

• minimize the overhead of copies to and from user and kernel space while performing
Input/Output (I/O) by using the kernel’s memory mapping facility

• be non-invasive of the attached network(s)

• collect packets arriving at network interface(s) but not process them in the device
drivers, minimizing modification to the drivers

• perform all packet processing in user-level processes, hence maintaining flexibility

• employ a modular architecture for user-level packet processing software

3.2 Design Overview

Figure 3.1 illustrates the principal components and arrangement of the Nprobe architecture.

3.2.1 Principal Components

Nprobe functionality encompasses three stages: packet capture, packet processing, and data
storage. Buffering between the stages accommodates burstiness in packet arrivals, and varia-
tions in packet processing and data storage rates.

Packets arriving from the network are presented to a simple filter implemented in the NIC’s
firmware; those passing the filter are time-stamped and transferred into a kernel memory
receive buffer pool without any further processing.

A probe will have one or more receive buffer pools, each associated with one user-level Nprobe
process and mapped into its address space. Nprobe processes present packets held in the
receive buffer pool to a series of protocol-based modules which extract the required data
from each packet in place; each packet is processed in turn in its entirety (except as noted in
Section 3.3.3.4 on page 59), and its containing buffer marked as free for re-use by the network
interface driver. Data extraction will normally be dependent on the context provided by the
processing of preceding packets; this context is held as state which is attached to each packet
as it is processed. Extracted data is temporarily stored as part of the attached state.

When the last packet of an associated series has been processed all of the extracted data
held in state is copied into an output log buffer from where, once sufficient data has been
accumulated, it is written to a trace file on disc.
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Figure 3.1: The principal components of Nprobe showing packet and data flows
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3.2.2 Rationale

The Nprobe design rationale is presented in Section 3.2.2.1 and develops the two intimately
related themes of data flow through the system and control; a third, and equally significant
theme — that of state emerges as a consequence.

Several monitoring architectures are briefly described in Chapter 2; in Section 3.2.2.2 on
page 50 the Nprobe design rationale is developed further by comparison with the most similar
systems described in Section 2.5 on page 35.

3.2.2.1 Data Flow and Control

The central task of a passive on-line monitoring system is to transform an afferent flow
of data contained in packets captured from the network into stored output consisting of
only the required data. This task will be partitioned into functional components which
must be coordinated. In a sophisticated system which performs data extraction, reduction,
and association, the control of interaction between these components may become complex.
Subject only to physical constraints of bus and I/O bandwidth, the system’s capacity to
keep pace with packet arrivals will depend upon the maximum possible proportion of Central
Processing Unit (CPU) resources being available to the system’s central task, and to this task
being executed as efficiently as possible. Any control function should therefore absorb the
minimum possible number of CPU cycles and should not introduce inefficiency into packet
processing; separate control processes requiring frequent context switches are, for instance,
undesirable.

In the Nprobe design control is as far as possible data driven (e.g. packets are passed from
one protocol processing module to another according to their content): the packet processing
loop is driven by the presence of packets in the receive buffer pool, data copy from state to log
buffer is triggered by the processing of the final packet of an associated sequence). No control
processes are introduced (with one exception — the infrequently called file management thread
described in Section 3.3.4 on page 68) and control derives from data processing, hence adding
only a minimal overhead.

Any monitoring system must accommodate the bursty nature of packet arrivals, the widely
varying workload involved in the processing of individual packets, and the variable rate at
which saved data is generated — at the very least buffering will be required between these
three fundamental stages in the flow of data through the system. The desirability of packet
processing in user-level processes to maximize flexibility, and of avoiding such processing in
device drivers so as to minimize modification, has been stated as a design goal; to these
can now be added the desirability of minimizing any packet processing as part of network
interrupt handling — such processing may compromise the buffering of bursty arrivals and
contribute to the risk of packet loss at the network interface. Arriving packets are therefore
simply placed in a receive buffer pool by the interface; the pool is as large as is possible
with regard to overall memory size in order to accommodate bursty arrival rates and variable
processing demands.
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Monitors based upon the tcpdump model incur a considerable data copy overhead as arriving
packets placed in the kernel’s receive buffers must be copied into user memory space for
processing. Nprobe avoids this penalty by using the kernel’s memory-mapping facility to map
the receive buffer pool directly into the user-level packet processing process(es)’ address space.
All data extraction and other processing is carried out on the packets in place.

At the very high arrival rates to be expected when monitoring contemporary networks, even
a relatively large receive buffer pool would be exhausted if required to hold incoming packets
for any more than a minimal period. The Nprobe design therefore calls for all packets to
be processed, as far as is possible, in their entirety as soon as possible after arrival and the
buffer so freed returned to the pool of buffers available to receive new incoming packets.
This principle is, of course, violated by the necessity to hold out of order packets when
reconstructing stream oriented flows (e.g. as explained in Section 3.3.3.4 on page 59). That
some packets must inevitably be held strengthens, rather than negates, the necessity that the
remainder be dealt with promptly.

The immediate processing of packets has two important implications. Firstly, while the data
contained within packets which is pertinent to lower level protocols (e.g. TCP and IP headers)
forms discrete, per-packet, quanta and may be extracted as such, higher-level protocol data
may well conform to both syntactic and semantic units which span packets; the processing of
discrete packets must therefore be carried out in the context of the additional state needed
to ‘bridge’ processing across packet boundaries, and the processing itself is made rather more
complex. Secondly, however, control flow is simplified. Packets are simply passed upwards by
the processing modules representing the ascending levels of the protocol stack as determined
by the packet type and contents and the data requirements of the study being conducted.

The desirability of statefulness was introduced in Section 1.2 in the context of enabling packet-
spanning data extraction and association from contents at higher protocol levels, and rein-
forced earlier in this section in the context of bridging packet boundaries during processing.
Even when the data collected requires no context external to the containing packet (e.g. TCP

or IP headers), there are good reasons for maintaining data association across logical flows
as, for example, explained in Section 3.3.3.4. The existence of state requires a determination
of the granularity with which it is held, which in turn follows from an identification of the
most efficient Data Association Unit (DAU)1. A larger DAU may assist in achieving a high
data reduction ratio (as less data is required to be stored solely to later associate data), but
may make unacceptable demands on memory, or be unfeasibly expensive to compute on the
fly. A smaller unit may be cheaper to compute, make less demand on available memory (as it
is likely to be completed and dumped to disc after fewer packets have been seen, its lifetime
will be shorter and less units of state will therefore be concurrently held), but may be more
expensive to maintain and to save (e.g. several smaller units would be more expensive to
initialize or to transfer into output buffers than fewer, larger, ones).

In the case of the Nprobe design this decision was informed by two, happily complementary,
factors: it was anticipated that most studies would be based upon particular traffic types
(i.e. services as identified by TCP or UDP port numbers), and that the association of packets

1A DAU is defined as the sequence or set of packets from which logically or semantically associated data is
aggregated.



50 The Nprobe Architecture

(and hence of the data extracted from them) by the five-tuple of the two host IP addresses,
port numbers and the IP header protocol field is a relatively cheap operation. The normal
DAU was therefore chosen to coincide with the naturally self-suggesting unit of the TCP or
UDP connection; and it is at this granularity that state is initialized and associated with the
packets processed; and data associated, stored, and dumped to disc. The choice of DAU also
determines the point at which packets are associated with the state providing the context
within which they are processed, and it will be consequently seen in Figure 3.1 on page 47
that attachment of state to packets is carried out at the level of the transport level protocol
processing modules. Once state has been attached to a packet, additional, protocol-specific
state, may be further attached to the basic unit as the packet is passed to higher-level modules.
Throughout the remainder of this dissertation the set of packets contributing to a DAU are
referred to as a flow.

As data is extracted from packets, it is stored as part of the associated state and upon
termination of the flow is copied into a log buffer in memory. The log buffer is configured as
a memory mapped file, hence is written asynchronously to disc by the operating system —
the only data copy required therefore is that of the reduced data from state to buffer.

3.2.2.2 Comparison with other probe architectures

The maximum duration of an Nprobe monitoring run is determined by the available disc
capacity — both the Packetscope (BLT) and Windmill are designed to collect very long,
continuous, traces: BLT through utilizing tape storage and Windmill by exporting data
during collection. The first of these solutions to the problem presented by finite and limited
disc capacity when collecting very long traces, was not considered for incorporation into the
Nprobe design on grounds of expense, and because the overheads associated with copying
to tape would violate the underlying aim of producing a ‘lean and mean’ design where the
maximum possible resources are devoted to packet capture and data extraction. The option
of exporting data while the monitor was live was also similarly discounted on grounds of
avoiding additional CPU and I/O bandwidth overhead, and because, in the anticipation that
probe placements would normally be such as to preclude the provision of dedicated data
download links, downloading large volumes of data while monitoring would carry the risk
of perturbing the monitored traffic. The provision of dedicated links would, alternatively,
limit probe deployment options. It is thought that the provision of disc capacity sufficient to
record 24 hour traces (and hence any diurnal traffic cycles) is likely to cater adequately for
the majority of studies; only a very few connections remain alive beyond this time scale, and
longer periodic variations in traffic can be catered for by repeated traces.

Nprobe, Windmill and BLT all incorporate a packet filter in some form, although differing
in purpose and implementation. Both Windmill and BLT implement coarse-grained data
discard through packet filtering: the former accepting only HTTP traffic selected by port
number and the latter the selection of traffic dynamically subscribed to by the currently
running experiments. In both cases, the packet filter operates on packets which have been
accepted from the attached link and placed into the probe’s receive buffers. The Nprobe

filter is relatively simple and serves a different purpose — to support scalability as described
in Section 3.3.2 on page 54; it is implemented in the NIC’s firmware with the result that
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unwanted packets are rejected without being transferred into receive buffers, hence avoiding
unnecessary load on the probe’s Peripheral Component Interconnect (PCI) bus.

The BLT control flow, shown diagrammatically in Figure 2.2 on page 37, implements pipelining
between the packet sniffing, data extraction, and (two stage) writing to log through the
mechanism of files used as buffers between the stages of the pipeline. HTTP data extraction
is only carried out after a set number of packets have been accumulated. Computational
overhead is introduced by the number of data copies introduced into the long data path
and by the need to manage the stages of the pipeline; the accumulation of packets prior to
data extraction would incur a considerable memory penalty if they were not buffered on disc,
but this in itself must introduce a bottleneck and tend to slow operation. This mechanism
contrasts significantly with the minimal control overhead, buffering arrangements and fast
packet turnover of the Nprobe design.

Flexibility and the capacity to load and unload different experiments while continuously mon-
itoring also lead to a relatively complex data and control flow in the Windmill architecture,
as shown in Figure 2.1 on page 36. This represents a very different approach to the tailoring
of the probe to suit the data requirements of varying studies than that employed in Nprobe.
The Windmill packet filter accepts the super-set of all packets required by subscribing exper-
iments, which are then submitted to the experiment(s) by a packet dispatcher. The various
experiments draw upon the services of a series of abstract protocol modules which are called
recursively to extract the required data from each packet. The protocol modules maintain
any state that must be maintained across packet boundaries. Because Nprobe is not designed
for continuous operation, flexibility can be achieved through the addition or modification
and recompilation of the various user-level processing modules, and it is suggested that this
approach can lead to an equal or greater functionality (as described in Section 3.3.3.1 on
page 55) without the additional complexity of the Windmill design. The ability to gather
data concurrently for a range of experiments is provided by provision of a suite of appropriate
processing methods which form part of state, control flow thereby being determined by packet
content rather than external mechanisms.

3.3 Implementation

Nprobe remains under continuing development but at the time of writing (April 2003) the
major infrastructure has been implemented together with modules processing common link-
level (MAC), IP, TCP, UDP, DNS, HTTP and Hypertext Markup Language (HTML) protocols.
Embryonic modules relevant to ICMP, FTP, RTSP, and NFS have also been partially developed.
The Nprobe implementation is coded entirely in the C language.

3.3.1 Packet Capture

The receiving interface places incoming packets into a receive buffer pool in the normal way,
this pool is considerably larger, however, than that normally employed in order to buffer
between bursty arrivals and variable packet processing demands at higher levels. All packet
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processing is carried out by user-level processes, to which the buffer pool is made visible by
mapping the buffer pool memory into the processes’ memory space using the standard kernel
memory mapping mechanism. In this way no copy overhead is incurred in making packet
contents available to the analysis processes. Packet handling as part of interrupt processing
thus remains minimal and is primarily concerned with buffer management and with standard
device control functions.

3.3.1.1 Network connection

Nprobe connection to the target physical network will depend upon the technology of the
network: in the case of shared media types (e.g. 10 Mbps Ethernet, FDDI) it is sufficient to
connect in the normal way and to operate the interface in promiscuous mode; in the case
of non-shared media it is necessary to tap directly into links or to make use of the port
monitoring facility provided by switches — although care must be taken to select links or
switches which will maximize the visibility of traffic. In some instances it may be necessary
to employ multiple taps drawing traffic from several links into a range of interfaces.

Nprobe machines have to date monitored fibre-optic carried ATM traffic via a passive optical
splitter placed into the link(s) of interest2 and 1 Gbps ethernet networks via port monitoring.

3.3.1.2 Operating System and Driver Modifications3

Nprobe runs over the Gnu Linux operating system with minimal modification, principally to
circumvent minor shortcomings in the memory management and mapping code. Other small
patches have been required to improve the behaviour of the asynchronous msync() system
call used in writing data log files to disc (see Section 3.3.4 on page 68).

Minor modifications are required to the standard interface drivers — the mechanism by which
buffers are marked as containing valid data by the driver during interrupt processing, and then
freed by the receiving process for re-use must now encompass interaction between kernel and
user space processes. The firmware of the most commonly used NICs has also been modified
to provide the high-resolution time stamps described in Section 3.3.1.3 and packet filtering
functionality described in Section 3.3.2 on page 54.

3.3.1.3 Packet arrival time-stamping

The modified NIC firmware prepends each accepted packet with an accurate arrival time
stamp generated by a clock on the card. In this way inaccuracies due to latency between

2Care must be taken when using optical splitters because of the signal attenuation caused by the splitter;
it is envisaged that suitable links will be identified as those between switches within switching centres, rather
than long haul links, so this should not be found to be a problem in practice.

3The work described in this Section (3.3.1.2) has been carried out by Dr. Ian Pratt and Dr Steven Hand of
the Computer Laboratory Systems Research Group. Dr. Pratt is responsible for modifications to the network
interface drivers and NIC firmware and Dr. Hand has contributed the file system patches.
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arrivals and packet processing (whether in the device driver or in user-level processing) are
avoided.

Table 3.1: Serialization delays for a range of packet payload sizes including
allowance for MAC, IP and TCP/UDP headers.

Payload
octets

Serialization delay in µs for bandwidths of:

10 Mbps 100 Mbps 155 Mbps 1 Gbps 10 Gbps

0 41.600 4.160 2.684 0.416 0.042
512 451.200 45.120 29.110 4.512 0.451

1024 860.800 86.080 55.535 8.608 0.861
1460 1209.600 120.960 78.039 12.096 1.210
2048 1680.000 168.000 108.387 16.800 1.680
4096 3318.400 331.840 214.090 33.184 3.318
8192 6595.200 659.520 425.497 65.952 6.595

16384 13148.800 1314.880 848.310 131.488 13.149

The clock provided by the NICs currently used by Nprobe provides timing with an accuracy
and precision of approximately 1 µs but does not run at exactly 1 MHz, and is vulnerable
to drift with variations in temperature. As packets are processed the NIC-generated time
stamps are periodically compared with the system clock; the current NIC clock frequency is
calculated from the elapsed time of both, and its current offset (NIC clock ticks are relative to
an arbitrary base) from real-time noted. As packets are drawn from the receive buffer pool,
these two parameters are used to calculate an accurate real-time arrival stamp for each. The
periodic comparison between NIC-generated time stamps and the system clock is based upon
a small number of repeated readings of both in order to identify and eliminate inaccuracies
which may arise as a result of intervening interrupt handling.

Time stamps generated in this way will have a relative accuracy of one or two microseconds,
and an absolute accuracy determined by the accuracy of the system clock — typically within
1 millisecond, using the Network Time Protocol [Mills92]. Reference to Table 3.1 will show
that a relative accuracy of 1 µs is not precise enough to accurately measure the serialization
times of back-to-back packets at network bandwidths of 1 Gbps and above, but is of the same
order as the serialization times of minimum-size packets at bandwidths of 100 Mbps or small
(512 octet) packets at bandwidths of 1 Gbps.

3.3.1.4 Tcpdump-collected Traces

Nprobe processes can, as an alternative to drawing packets from the receive buffer pool, read
them from a tcpdump-format trace file. This facility was initially provided for developmental
purposes so that frozen samples of network activity could be processed multiple times, but it
is also useful to have the ability to apply Nprobe’s data extraction and analysis capabilities
to traces collected using tcpdump (although, of course, the limitations of tcpdump will still
apply).
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The ability to read packets from tcpdump-style traces is also used in investigating data pro-
cessing failures as explained in Section 3.3.6 on page 72.

3.3.2 Scalability

It must be recognised that a probe’s ability to keep pace with packet arrivals will be over-run
at some point as the need arises to monitor higher bandwidth links or link utilisation increases;
however efficiently the probe’s software processes incoming packets, the available processor
cycles are finite and physical limitations exist in terms of memory access time and I/O or
bus bandwidth and contention. Even costly and dedicated purpose-designed hardware will
eventually hit hard limits, but these will be lower in the case of probes built upon commodity
PCs.

Nprobe’s scalability is based upon the striping of packets across multiple Nprobe processes,
possibly running on multiple probes; although the capacity of individual PC-based probes
may be less than that of purpose hardware, their relatively low cost makes the employment
of monitoring clusters an attractive proposition. Striping may, alternatively, be used as a
form of coarse-grained data discard in order to collect a sample of the total network traffic
by simply discarding a sub-set of the total stripes.

A simple filter, shown in Figure 3.2 on the facing page, is implemented in the firmware of each
of the probe’s NICs; accepted packets are transferred into the receive buffer pool associated
with an individual Nprobe process, rejected packets are simply dropped, hence not placing
load on the probe’s PCI bus. The filter employs an N -valued hash based upon packets’ XOR’d
source and destination IP addresses — hence distributing traffic amongst N processes, each
dealing with a specific aggregated bi-directional sub-set of the total. The number of processes
employed will be determined by the power of the probe machines and the arrival bandwidth;
if the number of processes required exceeds that available on a single machine then multiple
probes, forming a monitoring cluster will be deployed. Where multi-processor probe machines
are employed, one Nprobe process is run per processor (hence exploiting processor affinity
— to exceed one process per processor would simply unnecessarily waste cycles in context
switching).

3.3.3 On-Line Packet Processing and Data Extraction

Packets collected by Nprobe are processed on the fly by user-level nprobe processes which
extract the required data from the contained protocol headers and payloads and save it for
post-collection analysis. Each incoming packet is dealt with in its entirety and the containing
buffer immediately returned for re-use by the input driver unless temporarily retained for TCP
sequence ordering. Because data extraction also requires a partial analysis of packet content
in order to associate data, on-line processing is henceforth referred to as packet analysis; to
avoid confusion the later off-line analysis of collected data is referred to as data analysis.
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Figure 3.2: Nprobe scalability

3.3.3.1 Modularity and the Protocol Stack

The packet analysis software — Wan4 — is implemented as a series of modules, providing
flexibility and allowing monitoring and analysis functions to be composed and customised
as required to meet the needs of single or multiple studies. Each module extracts protocol
specific data, and where necessary demultiplexes packets to higher level protocol processing
modules.

In general modules provide multiple, configurable, additive levels of data extraction which
may be characterised in order of their increasing functionality to:

Simply count packets/bytes passed to the module: The base functionality which is provided
by all modules.

Demultiplex packets according to content: Packets may be passed to the appropriate higher-

4The Nprobe on-line packet analysis code suite is collectively known as Wan. The name is not a well-known
networking acronym — the software is named after a fictitious character, an orphan growing up surrounded
by advanced alien technology which he regards as commonplace and knows how to use, but who has no
understanding of the underlying principles.
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level protocol module or not processed further.

Process data for presentation to higher-level protocol modules: Strip protocol headers and per-
form a minimal correctness check; more complex processing may be required — in the
case of a TCP processing module, for instance, higher level protocol handling modules
may require a properly reconstructed and ordered byte-stream.

Extract data specific to the protocol: The degree and nature of the data extracted may itself
be configurable, or alternative modules supplied which are tailored to the exact needs
of a particular study.

As explained in Sections 3.2.2.2 and 3.3.2 the NIC-based packet filter provides scalability
rather than a coarse-grained packet discard function — the latter is distributed amongst
the processing modules. Because the Nprobe architecture does not copy packets from kernel
to user space, there is no longer a need to concentrate discard in a kernel-based filter to
avoid copying packets which will later be discarded. By distributing packet discard amongst
processing modules, where discard decisions can be based upon packet contents, considerable
flexibility can be achieved, and both accepted and discarded packets can be accounted for.
Whatever the specific study-based data being currently collected by Nprobe it is desirable
that this is placed in the context of the traffic mix traversing the monitored network. By
appropriately configuring modules the desired level of detail can be obtained; at each protocol
stack level demultiplexing may either pass packets to the appropriate higher-level module
where they will be accounted for (and possibly processed further) or alternatively simply
account for them as the default ‘other’ type.

3.3.3.2 State and Data Management and Format

The concept of a data association unit (DAU ) was introduced in Section 3.2.2.1 and may be
defined as a sequence of packets having semantic or functional continuity at one or more levels
of the protocol stack, and from which data is extracted, aggregated and associated. For the
reasons described in Section 3.2.2.1 the DAU normally employed is that of the TCP or UDP5

connection. It is clear that both the state necessary to extract and associate data across
packet boundaries, and the extracted data itself, will refer to the same DAU and that the
two can therefore be stored and managed together, extracted data forming part of the state
associated with a DAU during its lifetime. The storage allocation unit for state is henceforth
referred to as a State Storage Unit (SSU). Each current DAU will have a corresponding State
Storage Unit (SSU) held in the probe’s memory.

Lines 1 – 9 of Fragment 3.1 show the (partial) C structure forming the repository of basic
TCP or UDP connection data. Lines 11 – 18 define the state associating the packets of these
DAUs and illustrate how the data is encapsulated within the outer SSU structure at Line 15.
In this way state and data are identified for attachment to packets, initialised and managed as
a single unit, and data can be transferred efficiently as a single continuous block of memory.
Complex data and state associations may require several levels of nested structures.

5
UDP is, of course, not connection oriented as is TCP , but a UDP connection can now be defined as the

sequence of packets which together form a DAU .
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The continual birth and death of DAUs gives rise to a very high turnover of associated SSUs.
Rather than constantly allocate and free memory it is more efficient6 to create a pool of the
various SSU structures when the monitor is activated, and for SSUs to be drawn from it as
required. The pool is organised as a stack so as to maximise locality of reference.

Flexibility in the degree and type of data collected from packets, tailored to the specific
requirements of a particular study (or set thereof), is reflected in the requirement for a
similar degree of flexibility in the content and format of the SSUs employed. State and
data vary with studies’ requirements within a specific protocol and the composition of data
extraction functions as packets are passed from one module to another will determine a
parallel composition of SSU components. Additionally, even for the same composition of data
extraction functions/SSU components, the nature and extent of data may vary significantly
(e.g. an HTTP/TCP connection may carry one or many HTTP transactions, the HTTP header
fields present in each may vary, and the types of object returned for each may vary).

The choice of TCP or UDP connection as the normal DAU determines that an SSU is associated
with a packet as it is passed to the corresponding transport-level protocol processing module.
As new DAUs are encountered a new SSU is drawn from the pool and entered into a hash
list based upon IP addresses and port numbers7; as succeeding packets are processed the
appropriate SSU can therefore be efficiently located.

The content and format of a SSU for each Wan module are defined by the module itself and
reflect the data that will be extracted by it; by linking module-level SSUs these become sub-
components of the SSU corresponding to a specific DAU and the composition of module-level
extraction functions can be accommodated; repetitive data extraction (e.g. multiple HTTP

transactions over one TCP connection) is accommodated by chaining the SSUs associated
with a particular module. Figure 3.3 on page 59 illustrates the arrangement of a generalised
SSU . Because the monitor may see traffic travelling in only one direction, state and data are
divided into meta state/data applying to the DAU as a whole and two directional sub-units,
each pertaining to a unidirectional flow. The directional sub-units need not be symmetrical.

The size of data fields within an SSU may be statically or dynamically determined. Numeric
or abstracted data will be stored in numerical data types of known size, but a mechanism
for the storage of variable-sized data (normally alphanumeric strings or sequences, e.g. the
alphanumeric Uniform Resource Locator (URL) field of an HTTP request header) is also
required. The demands of efficient packet processing preclude an exact memory allocation
for each data instance and a trade-off therefore has to be made between allocating sufficient
space to accommodate unusually large requirements and making unduly heavy demands upon
the available memory. In the case of such data a count of length is kept and used to ensure
that only the data (as opposed to the size of statically allocated buffers) is logged.

Code Fragment 3.2 illustrates the way in which variable-length data is stored. The http trans

structure forms the top-level SSU for HTTP transactions, and the nested http trans cinf

structure is the request data repository. The URL length field reqlen at Line 5 forms part of

6Profiling of the Wan code during early development showed that up to 40% of processor cycles were being
consumed in allocation and deallocation of memory for SSUs.

7The hashing strategy used is actually two-stage, based first upon IP addresses and then port numbers.
The option to associate multiple connections as a single flow is thereby provided.
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1 struct flow_inner

2 {

3 unsigned int state; /* State and disposal flags

*/

4 unsigned short srcport , dstport ; /* NBO */

5 unsigned int srcaddr , dstaddr ; /* NBO */

6 us_clock_t first_arr_tm ; /* absolute us */

7 unsigned int last_arr_tm ; /* relative us */

8 unsigned char serv_type;

9 };

11 struct flow_common

12 {

13 list_t hlist; /* hash list links */

14 list_t conn_timeo_q ; /* connection time out queue

*/

15 struct flow_inner inner; /* Data */

16 unsigned char type; /* eg. TCP , UDP */

17 ...

18 };

Fragment 3.1: Encapsulation of extracted data. The flow inner structure holds
the data which will be logged, the outer flow common structure contains the state
required to associate packets belonging to the same DAU.

the extracted data — and will hence be saved with it — but the URL string itself at Line 12
is kept as part of the enclosing state. As the string part is of variable length it will have to
be transferred and stored as a discrete data item under the control of the known length; it
would be wasteful of log file and disc space to write out the entire (usually sparsely populated)
http reqstr array.

Timing data is central to many studies, and as described in Section 3.3.1.3, packet time stamps
are provided with a precision of 1 µs. Time stamps recorded in a 32 bit unsigned integer would
overflow/wrap-round in a period of a little over one hour. Such wrap-rounds can normally
be inferred, but to remove possible ambiguity in the case of events temporally separated by
periods exceeding the wrap-round period, significant time stamps (e.g. TCP connection open
times) are recorded as 64 bit quantities in epoch time. To ensure conciseness in the data
stored the majority of timings are recorded as 32 bit offsets from such significant event times
(time-out mechanisms will normally preclude the possibility of wrap-round ambiguities in
such cases).

3.3.3.3 IP Processing

The IP module performs header check-sums, checks header correctness and maintains basic
network-usage statistics. IP headers and any options are stripped and packets, differentiated
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Note: Link fields allow composition of units associated with the protocols from which data is to
be extracted and chaining of multiple instances or queue membership (e.g. the SSU pool or timeout
queues). State and data may be further nested to an arbitrary depth to meet the data extraction and
storage requirements of individual modules.

Figure 3.3: Generalised SSU arrangement

by transport-level protocol, are dispatched to the appropriate module (e.g. ICMP, UDP, TCP).

As it is anticipated that Nprobe will normally be monitoring non-local traffic, datagram
reassembly functionality is not provided, but could be added if required. In this case the
facility to time-out incomplete datagrams (similar to that described in Section 3.3.3.4 in
respect of missing TCP segments) would be necessary.

3.3.3.4 TCP Processing

Because the modules corresponding to transport-level network protocols are the normal locus
of state attachment, and because data collection will normally be determined by service type
(determined by port numbers), the TCP module is designed to allow considerable flexibility in
the way it processes packets, in the way in which it dispatches packets to higher-level protocol
modules, and in its coarse-grained discard functionality.

Packets arriving at the module are associated with a SSU as explained in Section 3.3.3.2. The
presence of the SYN flag in the TCP header will denote a new connection and cause a new TCP

SSU to be drawn from the state pool and entered into the SSU hash list, subsequent packets
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1 struct http_trans_cinf

2 {

3 unsigned int reqstart_us ; /* us relative */

4 unsigned int reqend_us ; /* do */

5 http_reqstr_len_t reqlen ; /* length of request string */

6 ...

7 };

9 struct http_trans

10 {

11 struct http_trans *next; /* next in chain */

12 char http_reqstr[HTTP_REQSTR_LEN ]; /* URL requested */

13 unsigned char method ; /* request method */

14 struct http_trans_cinf cinf; /* request -specific data */

15 ...

16 };

Fragment 3.2: Recording variable-length data. The http trans cinf structure
contains a count of the number of characters held in the http reqstr array of
the http trans structure.

belonging to the connection will find the associated SSU by reference to this list8.

Part of the TCP module’s function is to pass packets on to higher-level protocol processing
modules in the case of protocols or services of interest. Rather than demultiplex each packet
individually the module to which a packet is passed is determined by the attached SSU . As
the first packet of a connection is encountered, and an SSU allocated, the server port number is
used to determine the service carried by the connection and to allocate a method suite which
will form part of the state associated with the connection and will be used in any processing
of the connection’s packets. The method suite is provided by the higher-level module(s) and
comprises functions:

xx open: Called when the connection opens

xx segment: To process data segments carried by the connection

xx synch: Which attempts recovery over missing data segments

xx close: Called at connection close

xx dump: To transfer extracted data to the output buffer

8The TCP module may be configured to accept only connections where at least one SYN packet of the
three-way connection establishment phase is seen, or all connections. In the former case packets belonging to
connections where the SYN is not seen will be discarded; in the latter case the first packet seen of any connection
will result in the allocation of an SSU. The distinction is likely to arise only in the case of connections already
in progress when the probe is activated, or seen as a result of routeing changes.
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Method suites are accompanied by a flag-set, also provided by the appropriate higher-level
module, which controls the packet processing carried out at the TCP level, primarily whether
the delivery of a coherent, ordered, byte stream is required, whether packets should be check-
summed and whether packet header information should be recorded.

Two alternative default method suites are provided by the TCP module: the first simply
accounts for all connections and packets not providing a service of interest as an aggregate of
‘other’ packets and octets, the second maintains similar counts but on a per-connection basis
for each connection seen.

If TCP-level activity is of interest the significant header fields (e.g. sequence and acknowl-
edgement numbers, segment size, window advertisement, and flags) of each packet are logged.
Flow-based compression is used; because packets are associated repeated fields such as ad-
dresses and port numbers do not need to be saved for each. As connections are opened each
is assigned a unique 32 bit identifier and this, the addresses, port numbers, and time logged.
Any further data associated with this connection, for instance the main dump of extracted
data, is identified by reference to this unique identifier. Per-packet header data is accumulated
as part of the connection’s data and dumped to log with it on the close of the connection.
Because each connection may comprise a potentially very large number of packets it would be
infeasible to pre-allocate sufficient memory to meet all cases; the normal TCP SSU therefore
buffers data pertaining only to 32 packet headers. In the case of longer connections, the
header data is periodically written to the output buffer in blocks of this size, identified by the
connection identifier. For conciseness each block of header data carries a 32 bit time offset
from the connection opening, and each packet records a further time offset from this.

Data collected for every connection processed will include a set of significant event timings
(e.g. that of SYNs, FINs or RSTs, first and last data segments in each direction); a count of TCP

and payload octets, and of total and data segments; a count of missing, duplicated and out
of order packets and octets; and connection Maximum Segment Size (MSS) and window-scale
options.

Packets from which higher-level data is to be extracted will normally be subject to IP check
sum verification before being passed for further processing. Malformed or corrupted packets
may break processing code or incorrect data may be extracted; it is assumed that such packets
will also be rejected by the receiving host and therefore retransmitted and seen again by the
probe.

The TCP headers of incoming packets presented to the module are checked for correctness, and
stripped from packets being passed to other modules. Any TCP option fields are examined and
MSS notifications and window scale factor options extracted. Other options are not currently
recorded as data, but may be noted as points of interest as explained in Section 3.3.6 on
page 72. The flags field of each header is examined, and the current connection status held
in state; a greatly simplified TCP state machine detects connection closure either through the
normal 4-way handshake or the presence of the RST flag.

Care must be taken that SSUs associated with the inevitably arising unclosed connections
do not exhaust the probe’s memory; such connections may result from FIN or RST seg-
ments unseen due to packet loss, routing changes, or crashing or misbehaving hosts. A
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timeout mechanism is employed to detect and deactivate quiescent connections. The ques-
tion of whether a static or adaptive timeout should be used is discussed by Christophe Diot
et al. [Iannaccone01], based upon work by K.C.Claffy et al. [Claffy93][Claffy95], who conclude
that a 60 second timeout will correctly determine the termination of an adequate proportion
of flows. A slightly different approach is employed in the Nprobe implementation: the mem-
ory allocation available for the storage of TCP SSUs is bounded and there is consequently no
reason why connections should be timed out until all available SSUs have been utilised (i.e. it
is the finite amount of available memory which determines how many currently live flows can
be accommodated by the system, and hence dictates that timeouts must occur as a conse-
quence of new flows arriving). In this way timeout periods are not static, but are dynamically
determined by the level of network and probe activity, and may be made as long as possible
so as to accommodate the maximum possible period of connection quiescence before forcing
closure. A minimum timeout period now needs to be determined so as to detect over-early
timeouts due to the capacity of the probe being over run. In practice, subject to a shorter
timeout period determined by SSU availability, an upper timeout bound is imposed — as data
is logged at connection closure an over-generous timeout period would lead to it appearing in
the saved traces later than it should, with possibly unfortunate results when analysing partial
traces.

All live TCP SSUs are placed upon a timeout queue; as each packet is processed its arrival
time is noted and its SSU is moved to the tail of the queue which is consequently time ordered
with the least recently active connection at the head. The last arrival time of the queue head
is periodically examined to ascertain whether connection(s) should be timed out. The queue
head SSU is recycled and the associated connection timed out if the pool of free TCP SSUs
becomes exhausted.

All packets (other than those aggregated and accounted for as ‘other’) are examined in the
context of the connection’s sequence space and counts maintained of out-of-order, duplicated
or missing segments9. In the normal case of connections providing services of interest, where
packets are passed to further modules, those modules expect to receive a complete and ordered
byte stream corresponding to that delivered to a higher-level protocol in the receiving machine.
The TCP module therefore performs the necessary reordering and coalescing required to
deliver a coherent byte stream. In-sequence segments are delivered immediately using the
segment processing function provided by the method suite associated with the connection,
segments already seen are discarded or trimmed, and any segments preceded by a gap in the
sequence space are held pending reordering and delivery — note that this is the one exception
to the general rule of immediate packet processing and buffer return.

Each TCP SSU provides for a sequence-ordered priority queue in which any held segments are
placed; as the great majority of segments placed into the queue will be received in order, and
hence be appended at the rear, the cost of insertion is normally trivial. If packets are held
on the queue any newly arriving in-sequence packets are checked against the sequence of the
queue head; if the sequence void is filled all queued packets up to any further sequence gap
are immediately removed from the queue, passed on for processing and the containing buffers

9These may not be the same as seen by endpoint hosts due to Nprobe’s placement at an arbitrary point
between the two; segments can, for instance, be lost ‘downstream’ of the probe or routes changed and packets
routed around it.
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returned to the receive pool.

A timeout mechanism is also required for out of order segments held awaiting the arrival of
missing segments (which may not be seen, in the same way as packets signifying connection
closure can be lost to the probe). A more aggressive timeout policy is required however —
each live connection only consumes one SSU but may require multiple out of order segments
(and hence receive buffers) to be held — exhaustion of the receive buffer pool would result in
disastrous packet drop and data loss. The segment at the head of a connection’s held queue
is therefore timed out if any of the following conditions apply:

• More than a set proportion of the entire receive buffer pool is consumed by held segments
— in practice a proportion of 50% of the total number of buffers has been found to give
satisfactory operation.

• An acknowledgement for any sequence number beyond the missing segment(s) is seen
hence indicating that a retransmission is unlikely to be encountered.

• The number of segments held by the connection reaches a predetermined threshold — to
guard against the possibility of long connections absorbing a disproportionate number
of buffers.

• The connection as a whole is timed out.

When a timeout occurs the held segment(s) are presented to the appropriate method suite’s
synch function which may attempt to resynchronize its data extraction with the interrupted
byte stream (e.g. the HTTP module’s resynchronization function might look for byte sequences
indicating the start of a fresh transaction, or simply jump a certain number of bytes if the
sequence gap falls within the length of a known-size object). All subsequent held segments
are then processed in the same way as if an arriving segment had filled the sequence void. In
the case of timeouts due to overall connection timeout the synchronisation function may be
repeatedly called if multiple sequence voids exist, until all segments have been processed. It
should be noted that the arrival of a RST, or the FIN segments representing a full connection
close do not trigger a timeout (which could then precede the arrival of retransmitted packets).

3.3.3.5 UDP Processing

The configuration and operation of the UDP module are very similar to those of the TCP

module with the significant and obvious exception that connection-oriented functionality —
the tracking of connection set-up and tear-down phases and byte-stream ordering — is not
required.

Because there is no UDP mechanism corresponding to the closure of a TCP connection there
is not the same convenient signification of when a flow has reached completion and data
can be dumped, and state torn down. The timeout mechanism will ensure that all flows are
eventually terminated from the probe’s viewpoint, but this may lead to an undue consumption
of UDP SSUs associated with flows completed, but awaiting timeout. It is expected that UDP
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flows of interest (i.e. those where state is attached, rather than those simply accounted for
as ‘other’) will normally also be processed by higher-level protocol modules which will detect
termination as determined by the protocol semantics (e.g. trivially, a DNS flow is terminated
by the receipt of a response datagram).

3.3.3.6 HTTP Processing

The main function of the HTTP processing module is to parse HTTP request and response
messages and to extract data from the lines and header fields of interest. The following are
identified and processed:

Request-Lines: Method, requested URL and HTTP version are extracted.

Response status lines: Numeric response code and server HTTP version are extracted.

Header Fields: Currently recognised fields include:

• Connection (persistent or non-persistent connections are identified and persis-
tence negotiations tracked.)

• Content-Type and Content-Length

• Referer (sic)

• Transfer-Encoding

• TE and Trailer (are trailer header fields acceptable, and if so are any present to
be parsed?)

• Host

• User-Agent

• Via

• Location

• Refresh

• Server

The header field identification and data extraction infrastructure is implemented through a
series of C macros in such a way that additional fields can be trivially added. It is planned to
extend the current set of fields to include those pertaining to cache control, object freshness
and lifetime and conditional requests.

The timing of significant events (e.g. the start and finish of request and response headers and
bodies) is recorded.

Although the great majority of HTTP headers are usually wholly contained in a single TCP

segment the possibility of fragmentation across several segments must be catered for where
the sender implements a particularly aggressive transmission policy. Rather than construct a
parsing mechanism which is able to recommence after the interruption represented by segment
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boundaries a less complex policy is followed: if header parsing detects a truncated header
(i.e. the segment end is detected but the header remains incomplete) the header is copied into
a temporary buffer which is linked to the HTTP SSU. Subsequent segments are appended to
the buffer and the parse recommenced until the header is found to be complete. Although this
mechanism is less elegant than designing a parsing mechanism capable of spanning segment
boundaries it is used because the situation is sufficiently rare that the additional overhead
in state maintenance and processing complexity that would be necessary, and that would
necessarily apply to all transactions, would almost certainly be more expensive.

A TCP connection may carry multiple HTTP transactions if a persistent TCP connection
is used. The module is therefore required to identify persistent (or potentially persistent)
connections and process on this basis — the type of connection may determine how the end
of any response body is signified. The default connection persistence type is determined from
the client and server HTTP version numbers contained in the respective request and response
lines and any dynamic persistence negotiation conducted through Connection header fields
is tracked.

In the case of persistent connections carrying multiple transactions, the transaction bound-
aries may be inferred from activity at the TCP level (i.e. the end of each response is marked by
the transmission of the next request), but this inference is not reliable due to the possibility
of pipelining (i.e. successive requests are sent without waiting for the response to the previous
request to be received) — boundaries must be identified using ‘Content-Length’ header fields
or by tracking chunked encoding headers. As each transaction on a persistent connection is
encountered a new HTTP SSU is drawn from the pool and chained to its predecessor — the
SSU associated with the first transaction on a connection of either type will be linked to the
connection’s TCP SSU.

1 struct http_conn

2 {

3 /* multiple trans . on persistent connection - kept as SLL

*/

4 http_trans_t *trans ; /* first transaction on list */

5 http_trans_t * reqtrans ; /* current request */

6 http_trans_t * reptrans ; /* current reply */

7 http_conn_meta_t meta;

8 };

Fragment 3.3: Stepping through pipelined HTTP connections. The top-level
HTTP SSU contains pointers to a chain of per-transaction HTTP SSUs and to
those of the current request and response transactions. The meta field is a
structure containing state and data pertaining to the connection as a whole.

Because multiple transactions on a connection may be pipelined the request and response
currently being processed may not be one and the same. Fragment 3.3 illustrates the mech-
anism which permits request and response processing to independently step through chained
HTTP SSUs.
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The combination of HTTP header parsing and location of the HTTP body end serve to delimit
the message entity. Header and body lengths are recorded. In all cases a crc-based hash is
used to fingerprint the entity; the fingerprint is stored and may be used in later analysis to
identify the resource or to detect changes in its composition. No further processing is carried
out on entity bodies, except in the case of HTML documents, which are passed to the HTML

processing module.

3.3.3.7 HTML Processing

The primary function of the HTML module is to parse HTML documents and to extract and
record any contained links — this data may be used during data analysis to aggregate the
multiple transactions used to fetch a complete page. Reference links (i.e. those followed under
user control) are distinguished from in-line links (i.e. those referencing document images,
frames, style sheets etc.).

If pages are to be successfully reconstructed both links and additional information are re-
quired; the parser therefore passes through both the head and the body of the document and
recognises:

Elements/Tags: Which may contain attributes with absolute or relative URL values. A non-
exhaustive list includes:

ANCHOR AREA BODY

FRAME IMG IFRAME

LINK MAP STYLE

The attributes themselves: Which may take URL values, including:

HREF BACKGROUND ACTION

USEMAP SRC CODE

CODEBASE OBJECT ARCHIVE

DATA

Base Elements/Tags: Which may define the base of relative or relocated URLs (e.g. BASE)
and the end of such base scopes.

META tags: Particularly HTTP-EQUIV elements and REFRESH directives together with the as-
sociated CONTENT and URL attributes. Such directives may cause repeated or periodic
downloads of the same or other documents, or may be used as a redirection mechanism.

There is a significant probability that HTML documents will span several TCP segments, and
the simple mechanism employed to parse fragmented HTTP headers is therefore inappropri-
ate. Instead a ‘simple’ parser has been implemented which is capable of resuming a parse
interrupted by segment boundaries. This mechanism implies both that the state of the inter-
rupted parse must be recorded and that a linear, rather than a recursive, method be employed
— a series of templates are provided which specify the tags and elements of interest and the
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relevant attributes. As the first part of an HTML document is passed to the module an HTML

SSU is attached to the HTTP-level state; an interrupted parse records the current parse phase
(e.g. a relevant element has been encountered and is being actively parsed, no element is
currently encountered) and sufficient data to identify the element or attribute being parsed
(normally by recording the currently active template). As subsequent segments are received
the parser is therefore able to resume at the appropriate stage.

1 #define LINKS_BUFSZ (128*16)

3 /*

4 * -6 allows for two record terminators plus ( optional) time

5 * stamp and preamble byte

6 */

7 #define LINKS_BUFLEN ( LINKS_BUFSZ - 6)

8 #define LINKS_MAX_BUFS 16 /* beware runaway parse */

10 struct links_buf

11 {

12 struct links_buf *next ; /* chained in use or in pool */

13 unsigned short nchars ; /* use - including delimiters

*/

14 char buf[LINKS_BUFSZ ]; /* the buffer itself */

15 };

17 struct links

18 {

19 struct links_buf *chain ; /* first buffer in chain */

20 struct links_buf * current ;/* current buffer */

21 char *buf; /* where currently writing */

22 unsigned char nbufs; /* number currently chained */

23 unsigned short nchars ; /* usage of current buffer */

24 unsigned int totchars ; /* total o/a buffers */

25 };

Fragment 3.4: HTML links buffer and management structures.

Because HTML document sizes, and the number of contained links, may vary considerably, it
is, once again, infeasible to provide buffers sufficiently large to accommodate all of the data
that may be extracted for all currently active documents. The HTML SSU therefore provides
for a basic buffer to which others can be chained as necessary. Fragment 3.4 illustrates the
buffer and buffer management structures employed. As parsing proceeds the current buffer
is populated with a continuous series of records, each consisting of:

• One byte of record-type identifier denoting the record (and link) type

• The record itself, which may be:

– A null-terminated character sequence representing a URL
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– A null-terminated character sequence representing a base URL (used in relative
URL resolution)

– An end of base scope marker

– A four byte sequence representing a relative time stamp giving the arrival time of
the segment containing the link (the time stamp applies to all following links until
the next time stamp is encountered.)

When the end of the flow is reached and data dumped, the chained buffers are coalesced and
prepended with a count of content length.

3.3.3.8 Dynamic Flow Recognition

Identifying traffic within flows of interest will usually be based upon the well-known port at
the server as described in Section 3.3.3.4. However in the case of some services the server
will not communicate via such a well-known port, or port allocation may be dynamic; the
RTSP [Schulzrinne98] protocol, for example, defines a negotiation between client and server
during which the server port is determined.

Services using a known port outside the well-known range are trivially catered for — the
port number can simply be coded into the table of significant port numbers of interest in
the normal way. Where services using negotiated port numbers are to be investigated it is
anticipated that a module with knowledge of the syntax of the negotiation protocol (which
will be directed to a known port) will be deployed and will identify the port to be used. This
port can then be entered into the table of ports of interest, and a suitable SSU inserted into
the SSU hash table — as the base SSU will be a TCP or UDP SSU it will also discriminate
packets based upon IP addresses so will not accept other, unrelated, traffic which may also
be using the same port number.

3.3.4 Data Output

Sections 3.2.1 and 3.2.2.1 introduce the need for buffering between the extraction of data and
its storage on disc. The data generation rate will be variable due to bursty packet arrivals
and variations in the computational expense of data extraction, and it is desirable to commit
to disc efficiently in multiples of the block size. The relationship between stored data and
output buffering is illustrated in Figure 3.1 on page 47.

As flows terminate, extracted data, held in state, is dumped into a log output buffer as a
series of continuous records in the format to which they will be written to disc. The format
must reflect the variable nature and format of the data collected and must therefore be self-
specifying. Each record opens with a header containing a record type10 identifier and an
integer record length count: the type identifier is used, when retrieving data from disc, to

10Output record types are not confined to those recording extracted data — others may record interesting
phenomena or probe-centric data as explained in Sections 3.3.6 on page 72 and 3.4 on page 73.
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identify the data type and format of the DAU meta data block following the header; the length
field is used during retrieval to step over unwanted records.

Dumping is triggered by the close function of the method suite provided by service-level
protocol modules, which will invoke the services of the corresponding dump method. Where
SSUs are linked, dump invocations will be chained to save all data from the various SSU sub-
components of the overall SSU. At least one chained dump call will normally be made — to
the appropriate transport-level SSU associated with the service. Data dumping functionality
must reside with the protocol processing modules as it is they who define and understand
the protocol specific data storage format and any state denoting the nature and degree of
the data extracted. The data held as part of any top-level SSU will contain a flags field
denoting which data constituents have been extracted and consequently which nested data
structures are to be dumped. In the case of the TCP module, for instance, connection meta
data (shown in Figure 3.3 on page 59) will always be dumped and contains flags indicating
which directional traffic has been seen; one or both directional sub-SSU state repositories will
be dumped accordingly. When data is retrieved from trace files the same meta data fields
will be used to indicate the format and presence of the saved data. Figure 3.4 illustrates how
the dump format is controlled by the contents of state.

The output buffer is configured as a memory mapped file and is therefore written out to
disc by the operating system’s piod thread as blocks of data accumulate. The only memory
copy involved in data output is therefore that of dumping data to the buffer. This copy is
unavoidable as the unpredictable nature and extent of the data as it is extracted denies the
possibility of formatting or reserving buffer space until the termination of each flow.

Even with the high data reduction ratio achieved by Nprobe very large trace files will be
gathered which may exceed the maximum file size allowed by the system. Output is therefore
divided amongst a succession of trace files, a file cycle being signalled when a predetermined
number of bytes have been dumped. Although the memory mapped output file is configured
for asynchronous operation, the unmapping of a completed file (which will cause it to be closed
and the file cache buffers to be flushed) can cause the unmapping process to block for a short
period. Because continuous processing of incoming packets is critical to avoid receive buffer
pool exhaustion, each Nprobe process spawns a file management thread at probe start-up
which manages file cycle operations. As this thread is called upon infrequently, the context
switch overhead is acceptable.

3.3.5 Protocol Compliance and Robustness

When processing very large numbers of packets and flows it is inevitable that some will be
encountered giving rise to maverick conditions:

Pathological conditions: Which may arise from poor protocol implementations, misbehaving
or poorly configured hosts, malformed packets or protocol headers, corruption of packet
contents, or other errors.

Protocol specification infringements due to erroneous implementations: Some Web browsers
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Figure 3.4: Nprobe data dump format
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and Servers, as an example, terminate HTML header lines with a lone <NL> rather than
the specified <CR><NL> sequence.

Flow interruptions: Missing packets which have been lost in the network or due to routeing
changes).

Intentional protocol infringements: One family of Web browsers, for instance, does not con-
form to the standard TCP four-way handshake after receiving an HTTP object on a
non-persistent connection — it simply transmits a RST segment. The TCP module must
be capable of differentiating such behaviour from RST segments indicating pathological
connection conditions.

Inconsistencies due to probe placement: Because the probe may be placed in an arbitrary
position at any point between communicating hosts, normal protocol semantics may
not fully apply. Multiple concurrent TCP connections, for instance, may appear to
exist between the same two hosts and same two port numbers — a RST segment, for
example, may be sent by one host followed by a SYN segment opening a new connection
between the same two ports. Traffic belonging to the first connection may still be seen
arriving from the other host. Such a case is compounded by hosts which do not correctly
implement the selection of TCP Initial Sequence Numbers and reuse the sequence space
of the original connection.

Content or behaviour which is correct but which is not understood by processing modules: The
complexity inherent in network and end system dynamics, and component interactions,
will give rise to situations that the probe is unable to dispose of correctly — to foresee
every circumstance that will arise is infeasible.

In the case of a simple probe which copies packet content verbatim, the problems posed by
such mavericks are deferred until post collection analysis of traces, but a data-extracting probe
must be capable of handling any condition without interrupting normal operation, corrupting
collected data, extracting erroneous data, or itself entering a pathological state — it must be
robust in the face of whatever arrives11 on the network.

Maverick conditions arising from pathological states or protocol compliance failures will nor-
mally be detected during packet processing as checksum failures, malformed packets or proto-
col headers, or breaches of protocol syntax or semantics. A distinction must be made between
incorrect and misleading semantics: the former (e.g. pathological errors in TCP sequence num-
bering, contradictory HTML header fields) are detectable and action can be taken; the latter
(e.g. incorrect HTML Last-Modified header fields, inaccurate HTML content) are not. The
Nprobe implementation, in attempting to identify such conditions, is guided by consideration
of how problematic packets or content would impact upon the receiving host or application;
thus the former category may generate an error condition, the latter would probably also
remain undetected by the recipient.

Detectable errors will result in one of the following outcomes:

11Or, conversely, sometimes, what does not arrive.
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The condition is regarded as pathological: An error condition is generated and processing of
the packet is dropped — detailed processing will not be carried out on any subsequent
packets of the DAU.

The condition is not pathological, but further full processing of the DAU packets is impossible:
For example a missing TCP segment over which a higher-level protocol module cannot
resynchronize with the byte stream or an HTML header parse failure.

The error is fatal only to processing of the individual packet: If recovery is possible normal
processing may resume with subsequent packets.

Disambiguation or toleration of probe position inconsistencies: Apparently concurrent TCP

connections between the same host/port pairs, for instance, can largely be resolved
by maintaining SSUs for each connection and assigning packets to a particular flow on
the basis of sequence space feasibility; delays between seeing the final packet of an HTTP

response and the first packet of a subsequent request on a persistent connection may
make it impossible for the probe to tell whether or not pipelining is taking place —
processing must proceed correctly without this knowledge.

The condition would probably be accepted by the receiving host: The probe must attempt to
accommodate it (e.g. minor syntactic errors; the HTTP module can, for instance, parse
header lines missing the <CR> part of the delimiter).

In all cases the SSU and corresponding data will be marked and the type of error recorded.

Considerable ingenuity has been invested in attempts to ensure that maverick conditions are
detected and the correct action taken, particularly in the case of minor or recoverable errors.
The law of diminishing returns, however, applies: some problems will be too computationally
expensive to detect or recover from, and others will be too rare to reasonably accommodate.
Where to set the cut-off point is subject to arbitrary decision, but the Nprobe implemen-
tation sets a target of successfully processing 99% of all incoming packets. Some semantic
irregularities or inconsistencies may be detectable, and corrective action possible, during data
processing when the absence of time constraints allows greater computational resources to be
employed, and when data can be integrated and compared across DAU boundaries.

3.3.6 Error Handling, Identification of Phenomena of Interest and Feed-
back into the Design

In addition to the main trace files Nprobe outputs an error log to which offending packets are
written in their entirety when error conditions are generated. This log file is formatted as a
tcpdump trace file, but with the MAC/LLC header overwritten with an error code and some
(error dependent) bytes of additional information; the interface type field of the tcpdump file
header identifies the file as generated by Nprobe.

The tcpdump format was chosen as it allows examination of the error log files using tcpdump12,

12A slightly modified tcpdump is used which is capable of interpreting and printing the data over-writing the
LLC/MAC header.
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and in particular because the packet filter can then be used to select packets for display or
extraction by error type (possibly in combination with other criteria). As Nprobe can take
packet input from tcpdump trace files (see Section 3.3.1.4), offending packets can be re-offered
to the analysis process multiple times as an aid to module development or improvement. The
error log output is managed by the file management thread and file cycling is synchronised
with that of the trace files.

When error conditions arise resulting in the situation where further data extraction is not
possible for the remainder of a flow it is still, nevertheless, desirable to track, and account
for, any subsequent packet arrivals (e.g. the HTTP module provides for two types of dummy
transaction SSU; these accumulate a count of packets and octets arriving after error conditions
or sequence voids).

Conditions, or phenomena, of interest may arise during probe operation which it is desirable
to record, but which do not form part of the data normally extracted: it may, as an example,
be wished to count occurrences so as to determine whether extraction code should be enlarged
to handle certain conditions, to identify unusual correlations between data, or to note minor
syntax infringements. A C macro, which can be placed anywhere in a processing module,
identifies the desired condition and causes a record of type interesting to be written to
the normal log buffer; the record is textual and therefore provides a very flexible means of
recording all associated data of interest.

A similar, macro-based, mechanism which parallels distributed coarse-grained data discard
can also be placed anywhere in the processing modules to dump entire packets to the error log
when interesting, as opposed to error, conditions are encountered. Traffic samples conforming
to a flexible specification can thereby be gathered.

The mechanisms in this section provide both a means of examining and categorising the
cause of error conditions, which can be utilised in the iterative design process, and a means
of gathering sample data over a range of granularities for the development of new processing
modules.

3.4 Trace and Monitoring Process Metadata

An operating probe will not only generate data extracted from the packets observed — data
pertinent to traffic as a whole, and to the probe’s own operation must be recorded; such trace
and monitoring process meta data is gathered and dumped on a periodic13 basis as a number
of output record types which record for each period:

Operational error conditions: Principally the number of packets dropped due to receive buffer
pool exhaustion or by the network interface14

13The period employed is arbitrary, involving a balance between computational/storage cost and granularity,
but two seconds is currently employed. A summary of major data items is also presented at the console with
a rather greater period.

14Nprobe is intended to operate with nil packet loss but rather than shut down the system if loss occurs it is
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CPU and system usage: CPU cycles accounted to the Nprobe process, interrupts taken, con-
text switches, page faults, I/O blocks, memory Resident Set Size, and number of page
swaps as retrieved from the /proc pseudo-filesystem

Process receive buffer and SSU pool usage accounts: The number of buffers withdrawn and re-
turned to the receive pool and the maximum number concurrently held, together with
similar data pertaining to the SSU pool

Timeout accounting: The number and type of connection and reassembly timeouts, and the
minimum timeout period necessitated by SSU pool availability

Traffic statistics: A count of total packets and octets received with categorisation of type
and sub type(s) at the granularity and level of detail provided by the various protocol
processing modules; the arrival bandwidths of major traffic classes

Output file usage: The total number of bytes and records or packets written to the trace and
log files respectively, both overall and in respect of the current file cycle

Operational meta data: Which is saved at each file cycle and includes the file start and end
times, Wan software version and configuration, hardware version and operational param-
eters of the monitoring run

Disposal summary: Saved on a per file basis giving a summarised total of the periodic data,
the number and type of error conditions encountered and successful flow terminations,
maximum and minimum values for the number of concurrent active flows of each type,
and maximum and minimum arrival rates for the major traffic types

New probe deployments and shifting traffic patterns dictate that overall operating parameters
(e.g. the relative proportions of the various SSU types held in the pool) have to be tuned; the
availability of suitable meta data informs this process.

3.5 Hardware and Deployment

Nprobe was initially developed on a DEC Alpha 3100 workstation equipped with a four GB
hard disc and network interface provided by a TurboChannel FDDI NIC fed from an optical
tap in the University of Cambridge Computing Service (UCCS) internal FDDI ring.

Further development was carried out using the probes which have been deployed to date:
dual Intel 500 MHz Pentium III machines with 64 GB software RAID discs. These probes
have been fitted with Fore 200LE ATM and Alteon ACEnic 1 Gbps NIC cards and deployed to
monitor traffic traversing the link between the UCCS and the United Kingdom Joint Academic
NETwork (SuperJANET) and in the switching centre of a large commercial Internet Service
Provider (ISP).

preferable to record loss rates periodically. Traces with unacceptable loss can be rejected. SSU pool exhaustion
is regarded as a fatal error condition as it may result in massive data loss. The shutdown condition would be
recorded.
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A new generation of more powerful probe machines are being acquired (April 2003) based
upon dual Intel Xeon 2.4 GHz processors with 4 GB of DDR EEC memory, each equipped with
thirteen 200 GB RAID discs. A range of deployments across institutional and ISP locations
is planned.

3.6 Probe Performance

Deployments to date have not strained the probe’s capabilities — traffic rates of approxi-
mately 120 Mbps with HTTP content of 95 Mbps have been monitored continuously without
packet loss, with the consumption of less than 20% of available processor cycles on a 500 MHz
development machine, and achieving a data-reduction ratio of approximately 12:1. Calcula-
tion of capacity based upon off-line data extraction (i.e. running the monitoring software
with input from tcpdump trace files) suggest that the software itself will keep pace with band-
widths of approximately 780 Mbps, using a single 2.4 GHz processor, when a small number15

of concurrent connections are monitored.

Benchmarking tests have been carried out16 using traffic generated by clusters of machines
and concentrated via a common switch. The test load has encompassed a range of traffic
mixes, packet sizes, and numbers of concurrent connections, and has also included the replay
of real traffic multiplexed to the desired line rate by modifying host IP addresses. The results,
described in [Moore03], suggest that any one of several factors may limit monitoring capacity.

The performance of the available Gigabit Ethernet cards varies, and unfortunately, their
capacity to perform at nominal ratings over single packets does not, in general, extend to a
sustained ability to deal with trains of small packets. The appropriate combination of NIC

and motherboard are necessary to achieve optimal performance, as underlined in a study
by Hughes-Jones et. al. [Hughes-Jones93]. PCI bus bandwidth can prove a bottleneck, and
at high arrival rates interrupt handling becomes problematic. A high number of concurrent
connections, and hence high state memory requirement, can cause the extraction software to
become a limiting factor due to frequent processor cache misses. As other components of the
system are tuned and optimised trace bandwidth onto disc will eventually become a further
bottleneck.

Initial tests based upon a single data extraction process running on a 2.4 GHz processor sug-
gested that live traffic loads of approximately 790 Mbps could be accommodated over a limited
number of concurrent flows, the rate dropping to 280 Mbps when using replays of real traffic
mixes. When all non-HTTP traffic was removed from these traces a sustainable monitoring
rate of 189 Mbps was achieved. It should be noted, however, that these results were obtained
using standard interface drivers and un-optimised extraction code with full debugging and
‘safety’ features enabled. Since they were performed, considerable improvements to capture
rates have already been made, and there is confidence that full capture approaching 1 Gbps

using a single probe will shortly be achieved — and will be exceeded using the emerging faster

15A small number of connections, in this context, meaning those whose state can be accommodated in the
processor’s L2 cache.

16The benchmarking work has been carried out by Euan Harris, Christian Kreibich and Dr. Andrew Moore
of the Computer Laboratory Systems Research Group.
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PCI bus technologies.

3.7 Security and Privacy

Because on-line monitoring can potentially examine and record the entire content of network
traffic, regard must be paid to issues of the privacy of users and the security of content; to
these should, perhaps, also be added the protection of researchers — consider the position of
an investigator who unintentionally discovers illegal activity.

The accepted practice in addressing these issues is to anonymize IP addresses and to limit
data capture to the lower, and essentially content free, levels of the protocol stack. The first of
these mechanisms, it is argued, may provide an illusory security and may place considerable
practical limitations on the useful information content of captured data; the second is, of
course, in contradiction to one of the basic rationales underlying the Nprobe design.

It must be remembered that research based upon monitoring is only one of a growing number
of legitimate activities which may potentially compromise security and privacy. Most network
service providers, whether ISPs, private or public institutions, or other organisations, carry
out some form of monitoring — for network or personnel management purposes. In the
United Kingdom it has been proposed that ISPs should keep comprehensive records of users’
e-mails and Web accesses which will be available, on demand and without legal scrutiny, to
a wide range of central and local government agencies. The level of security, and respect for
privacy, required in monitoring must be placed in the context of the many potential sources
of ‘leakage’.

Address anonymization may be classified by method into techniques which render the orig-
inal address recoverable (i.e. employing symmetrical cryptosystems) or not (using one-way
cryptographic functions), and further into those which are prefix-preserving (i.e. anonymized
addresses based within the same network or sub-net will still be identifiable as such) or not.
There are powerful arguments for both recoverable and prefix-preserving schemes: the pro-
posed research may well require identification or aggregation of the original addresses (e.g. all
of an ISP’s dial-up customers, all traffic to a certain service); original IP addresses may be re-
quired in data analysis (e.g. reconstruction of Web page download activity may require DNS

look-ups of addresses as explained in Section 7.5 on page 172). Whichever anonymization
scheme is employed the level of security offered may be partially illusory: an IP address of
32 bits represents a relatively small search space, and with relatively little traffic analysis (if
any is actually required at all) is very vulnerable to a known text style of attack. Although
the designers of prefix-preserving schemes (e.g. Xu et al. [Xu01]) claim security comparable
with non prefix-preserving methods it is inescapable that the discovery of one address will
compromise others. If recoverable schemes are employed, security rests inevitably with the
group in possession of the essential key.

Data gathered from higher protocol levels may similarly be anonymized through encryption,
but will almost certainly have to be recoverable to be usable, and may be equally vulnerable
to known text attack (consider commonly known and popular Web sites). Higher and lower-
level data may also be combined to compromise security: the IP address of a Web server may,
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for instance, be anonymized but will possibly appear as a textual Host field in HTTP headers
— if one is to be anonymized both must be, and also the requested URL — hence adding
considerable, and perhaps unacceptable, computational overhead to data extraction. Anja
Feldmann describes the BLT exercise [Feldmann00] as separating the data files containing
anonymized IP addresses from those containing HTTP header fields, yet the two must be
capable of combination, hence security rests, in effect, in the secure storage of data rather
than the mechanism employed.

The essence of the matter rests with access; it is argued that any probe-gathered data,
anonymized and encrypted or not, is to some extent vulnerable and security must rest pri-
marily in restricting access to it. It is certainly to be hoped that researchers are possessed
of no less integrity than others (ISP employees, for instance) with access to sensitive user
information, and that their data storage facilities will be at least as secure. Technical secu-
rity mechanisms must be considered as an adjunct to, rather than as a substitute for, the
appropriate use of measures such as Non Disclosure Agreements (NDAs) and data security
enforcement.

It may be that, when seeking probe placements, or permission to monitor, researchers feel
the need to engage in a certain degree of technological over-kill in order to reassure providers
and managers that the issues have been addressed, or to conform to the expectations of their
peers. The experience of finding potential deployments for Nprobe monitors suggests strongly
that the majority of service providers are happy to give access subject only to the appropriate
NDAs.

Nprobe therefore relies upon access restriction as its primary mechanism ensuring privacy and
security. The probes can only be activated by a very restricted group of root users, and data
stored at the probe or elsewhere can only be accessed by a similarly restricted group. Access
to remote probes is only possible using secure means (e.g. ssh) and data is downloaded in
encrypted form using similar mechanisms (e.g. scp). Address and data anonymization (of, for
instance, URLs) can be applied as data is collected if required, using recoverable techniques
which may, additionally, provide for prefix preservation.

Addresses are anonymized in the case of traces made available in the public domain or in
published results.

3.8 Summary

A unique passive on-line network monitoring architecture has been proposed, which embodies
the desirable attributes introduced in Section 1.4 on page 27 of Chapter 1, and is subject
to the design goals described in Section 3.1 on page 45. The design rationale employed is
described in Section 3.2.2 on page 48 and developed with reference to the themes of data flow,
control and state. The monitor would provide a more powerful and flexible tool than hitherto
available for harvesting data from the network and would, consequently, enable studies which
had previously not been possible.

The main body of this chapter describes the more detailed design and implementation of the



78 The Nprobe Architecture

monitor — Nprobe. The major infrastructure and protocol processing modules have been
completed, and although design and development of the probe continue — it is part of the
underlying design philosophy that it should be extensible — probes have been deployed and
have operated satisfactorily. Traces have been gathered, some of which form the basis of the
studies presented in Chapters 6 and 8 which demonstrate the utility of the system.

The success of the design and implementation of Nprobe, and the extent to which it has lived
up to its ambitious goals may be judged, following the operation of prototype probes, by the
forthcoming purchase of a series of more powerful and capable hardware platforms and the
planning of their wider deployment.



Chapter 4

Post-Collection Analysis of Nprobe
Traces

Chapter 3 has described the implementation of the Nprobe monitor and the generation of
trace files containing data extracted from packets traversing the network. During data col-
lection, packet contents are only analysed sufficiently to allow the correct interpretation of
content during data extraction or abstraction, to aggregate data at the granularity of a Data
Association Unit (DAU), and to allow flow-based compression. The transformation from data
to information will require, at the very least, the retrieval of data from the format in which
it is stored in the trace files and, in almost all cases its further post-collection association and
analysis.

This chapter describes the mechanism of post-collection data analysis and a framework for its
design and execution which reflects the unique nature of the traces gathered by Nprobe. The
framework is introduced in Section 4.1; Sections 4.2 – 4.5 describe its components and the
analysis process itself, and Section 4.6 illustrates how the toolkit that it provides is used to
construct complex analysis processes. Section 4.7 considers how confidence may be attached
to the results obtained, and in section 4.8 implementation issues arising from the use of
Python are discussed.

4.1 A Generic Framework for Post-Collection Data Analysis

Analysis of Nprobe-gathered data presents challenges which differ both in scale and nature
from those inherent in the analysis of more conventional probe traces. The format of the
trace files is more complex and is likely to be extended or amended. The data itself is richer
and more complex, and consequently the information which can be distilled from it will also
be both more sophisticated and diverse. As a result a wider range of analysis tasks, or forms
of analysis, may be called for to fully realise the information potential of the data.

The design of a data gathering system such as Nprobe must, therefore, be accompanied by
an analysis framework which addresses these issues. Such a framework should recognise the



80 Post-Collection Analysis of Nprobe Traces

differing demands of two broad phases in the analysis process:

• Analysis development: calling for an analysis development environment supporting fast
assembly of analysis software from existing components, reasoning about the meaning
and relationships of data items, iterative analysis algorithm design, comprehensive trac-
ing during analysis execution, detailed examination of preliminary results, and a high
level of code re-use

• Generation of results: where mature analysis code is run on complete traces and the
emphasis is on summarising, selection, and the presentation of results

The principal components of the Nprobe data analysis framework and their relationship to
each other are shown in simplified form in Figure 4.1.

The analysis framework and analysis tasks related to specific studies are implemented in
Python [Python01][Lutz96]: its late binding, powerful high-level data types, object orienta-
tion, modular structure, and suitability for quick prototyping make it attractive for use in
complex analysis tasks where there may be a considerable degree of code re-use. Section 4.8.1
on page 106 enlarges upon the suitability of an object-oriented language for writing data
analysis software, and some of the difficulties inherent in the use of Python are discussed in
Section 4.8.2.

4.1.1 Modularity and Task-Driven Design

Analysis design will be motivated in three ways:

• Identified tasks: where directed research requires specific, predefined, information.

• Suggested tasks: arising where analysis results indicate that additional information may
be available, or that further phenomena of interest may be investigated. The scope of
the data gathered by Nprobe makes it likely that, even when data has been gathered
tailored specifically to the needs of an identified task, further, suggested, tasks will be
generated during analysis, or that additional identified tasks may be based upon the
same data set.

• Exploratory analysis: because Nprobe-gathered data is so rich, it will often contain
values or correlations not envisaged when identifying the data to be collected, and
which do not fall within the scope of suggested analysis tasks. Exploratory analysis
may be particularly suggested when:

– Traces contain speculative data (i.e. not identified in advance as required for a
particular research goal, but gathered for the sake of completeness or its potential
informational content).

– Archival traces are gathered (e.g. for purposes of future research or time based
comparison). Patterson et al. [Patterson01] identify the need to collect such traces
which are, by their nature, entirely speculative.
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Figure 4.1: Nprobe data analysis
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Even disparate analysis tasks will share some common functionality (e.g. the manipulation of
trace files, selection and retrieval of data from trace files, the aggregation and presentation of
results, and other utility functions), but rising to a very high degree in the case of suggested
or additionally identified tasks. The decomposition of any analysis task will, in other words,
identify many sub-components (both utility and analytic) which are shared with other tasks.
A series of modules, or components, are required which can be reused and composed as
necessary to meet the requirements of the current analysis task, new modules being added
when necessary and enlarging the existing pool of components. Top-down analysis design will
therefore become a matter of recursively decomposing a task until sub-tasks can be met from
the set of standard or existing modules and any new components identified and implemented.

The analysis framework may therefore be regarded as providing a toolkit of utility and analysis
components, which can be combined as required to meet the requirements of specific tasks with
the minimum duplication of functionality and expenditure of time spent in the development
of analysis software. The toolkit also contributes the analysis development environment.

Analysis framework or toolkit components may consist of Python modules, module-level func-
tions, classes, or class methods, as determined by the functionality provided and the way that
they will be used in conjunction with other components. At the highest level, analysis will
be driven by a Python script, which will import and call upon the services of the required
components. Simple analysis tasks may be implemented in a very few lines of code using only
basic data retrieval components, but even comparatively complex tasks can be executed by
a relatively short script which imports and uses the more sophisticated higher-level analysis
and utility classes.

4.1.2 The Framework Components

The components of the data analysis framework fall into four categories:

A consistent data retrieval interface: Traces gathered using a monitoring system such as
tcpdump consist of a series of verbatim extracts of packet content, each prepended
with a header containing data such as arrival time stamp, packet length and capture
length. Successive headers are read from the trace file, identifying the length of the
following (possibly partial) packet to be read. Post collection analysis is presented with
pertinent data from the header (e.g. time stamp and packet length) and as much of
the verbatim packet contents as were captured. Before any analysis can proceed the
required data must be extracted from packet contents.

In contrast, Nprobe-gathered traces contain data already extracted from packet contents
during collection, but due to the variable degree, nature, and format of the data, retrieval
from trace files is more complex, and the required subset of the total recorded data
must be selected. Section 3.3.4 on page 68 explains how Nprobe trace files consist of a
series of records with a self specifying format, and Figure 3.4 on page 70 illustrates the
mechanism diagrammatically.

Differing studies may require the retrieval of a varying set of trace records from trace
files, and of varying sets of data selected from those records. Because Nprobe is intended
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to be extensible, and to be flexible in its collection of data, new protocol modules may
be added, or existing modules amended or extended. In order to avoid the need to re-
write analysis code from scratch in each case it is necessary to provide a uniform data
retrieval interface for the recovery of data from trace files, and its selection in canonical
form. The interface should, furthermore, as far as possible, be transparent to changes
in trace file format, and allow the simple addition of new data record types.

The data retrieval interface is described in detail in Section 4.2 on the next page.

Data analysis components: The very simplest analysis may be implemented by the appropri-
ate code contained within a script, but as explained in Section 4.1.1 and Section 4.8.1
on page 106 it will normally be preferable to implement analysis components as the
methods of dedicated analysis classes. Sections 4.3.1 on page 87 and 4.3.2 on page 88
introduce protocol analysis classes providing analysis methods applicable to individual
instances of protocol use and Section 4.3.3 on page 88 explains how associative anal-
ysis classes are used to aggregate and analyse data pertinent to several instances of a
protocol’s use and where data spans protocols.

As new analysis tasks are encountered new classes will be written, new methods added
to existing classes, or existing classes will be sub-typed to modify their functionality.
By implementing analysis functionality in this way the repertoire of components made
available to the toolkit is continually enlarged.

Data conversion, analysis support, and general utilities: There are many low-level and util-
ity functions shared by a range of components, together with functionality required to
support analysis tasks independent of the nature of the task itself. Section 4.8.2 on
page 106, for instance, describes how data conversion or manipulation is required in the
case of some C data types not supported by Python, Section 4.3.5 on page 89 intro-
duces the common support required to accumulate analysis results, and Section 4.3.6
on page 90 explains a method of storing data locations to enable partitioning of analysis
tasks. It is convenient to make these and similar functionalities available as a set of
utility components.

Tools for summarising, examining, selecting, and presenting results: The toolkit provides tools
for summarising, examining, selecting, and presenting results. These tools, which are
described in more detail in Section 4.4 on page 91, will be used primarily for the man-
agement of results when running mature analysis code, but when used during analysis
development contribute primarily to the analysis development environment.

Tools for visualising trace file data and analysis results: The bulk and scope of trace file data
call for tools which render the data and the relationships that it contains in a compact
and readily comprehensible form. Visualisation provides a powerful aid to understanding
and reasoning and is supported by the tools described in Section 4.5 on page 93.

Framework components are used to construct a trace file reader, which although not part of
the framework is an essential accompanying utility. A Python script uses the data retrieval
interface and textual presentation methods contributed by Nprobe’s protocol modules to read
a trace file and present its contents in human-readable form. Multiple trace files, representing
the whole, or part of a monitoring run, may be specified as input, in which case the trace
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meta-data is aggregated appropriately. The reader permits rudimentary file navigation by
applying a set of input filters, specified in the command line, which determine the record(s)
to be displayed using one or more of the criteria: record type(s) or identifier; originating
host(s); protocol(s), or connection identifier.

4.2 The Data Retrieval Interface

Nprobe trace files contain binary data as records in the self-specifying format described in
Section 3.3.4 on page 68 and consist, in essence, of a series of dumped C structures. The
content and format of these structures is, in turn, determined by the type definitions of
the various Nprobe infrastructure and protocol-specific packet processing modules. An in-
terface is required, therefore, between trace files and analysis code which performs not only
the retrieval of data from disc, but its conversion to a form suitable for use in the Python
analysis code. It would be possible to hand craft such a data retrieval interface, but this
would be a time consuming task, and would not meet the requirement that the interface
be transparent to minor changes or additions to the underlying C structures — even minor
changes would require laborious re-writing of parts, or all, of the interface. The core of the
required interface is therefore generated automatically by the Simplified Wrapper and Inter-
face Generator (SWIG) [Beazley96], the operation of which is described in greater detail in
Appendix A.

4.2.1 Data Retrieval Components

Data retrieval from trace files draws upon services provided by several Python modules:

A trace file manipulation module: Which exports a get files function taking as its argu-
ment a list of one or more trace files1, or a directory containing trace files, orders the
files and checks for continuity, and aggregates monitoring and traffic meta-data. The
meta-data and a list of open file objects are returned.

A flexible filter module: Containing an infrastructure which constructs a filter allowing se-
lection of DAUs for analysis based upon arbitrarily complex predicates which may be
composed and may span multiple protocols. Predicates are selected as an analysis
process command line argument.

The SWIG-generated file interface module: Which defines the principal classes based upon the
required Nprobe infrastructure and protocol module C data structure definitions:

A TraceFile class: Which provides trace file navigation methods (e.g. analogues of fseek
and ftell file-positioning functions, step over the current record), record selection
methods (e.g. to position the file pointer to read the next record encountered of

1It is explained in Section 3.3.4 on page 68 that, for all but the shortest monitoring runs, a series of trace
files will be generated. Analysis may be based upon a single file of the series, all files, or a subset selected by
appropriate use of shell wild-cards.
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a specified type or group of types), file reporting methods (e.g. to provide tex-
tual summaries of file contents or monitor meta-data), record retrieval methods
which build upon the record selection methods and DAU classes to return objects
of those classes populated with data, and various other utility methods relating to
manipulation of trace files as a whole.

Data retrieval classes: Whose primary purpose is to provide a mechanism for reading
formatted data from trace files and fast accessor functions to individual data fields.

Utility classes: In some instances data manipulation is required which is not readily
accommodated as a method of one of the existing classes. In other cases classes
needed for analysis purposes perform the majority of their data manipulation upon
the C based structures underlying the basic retrieval classes. In these situations it is
advantageous to define utility classes as a set of C structures and functions for which
SWIG will generate a Python interface — access to data is hence more efficient, and
manipulation can be carried out with minimal crossing of the C/Python interface.
The list of links, for instance, contained in an HTML Web object are recorded
in a buffer of type char, as explained in Section 3.3.3.7 on page 66, in which
header type fields, textual strings and multi-byte integer values are serialised. The
reconstruction of Web page downloads described in Chapter 7 makes use of a Link
class; in order to populate objects of this class the buffer must be parsed and
values of the correct type extracted — a trivial task to implement using C pointer
manipulation and type coercion, but which would be complex, and less efficient in
Python.

Module-level utility functions: Many utility functions required during analysis are Nprobe
specific, are not provided by standard Python modules, are more efficiently invoked
from C, or (where provided by Python) may be more conveniently accessed from
the interface module. Such functions are provided as SWIG-generated module level
Python functions by inclusion of the appropriate C prototypes and implementa-
tion code (which may be hooks into functions provided by standard libraries or
elsewhere in the Nprobe code) in the SWIG interface definition file. Examples of
such functions include byte-ordering utilities, textual representations of abstracted
or coded data values, or name/address translations.

Class utility modules: It is convenient to provide utility modules which provide functions as-
sociating high and low level or related protocol-based classes, or instantiate and populate
sets of classes. A http util module, for instance, exports a function get conn and trans

which, given a file positioned at the start of a file record containing data appertaining
to a TCP connection carrying HTTP transactions, will instantiate the appropriate TCP

and HTTP transaction DAU retrieval classes, populate them with data from the trace
file record and return the TCP object together with a list of the transaction objects.

As data retrieval from trace files involves a series of highly iterative operations, as much as
possible of the data retrieval functionality is implemented in C. The data retrieval interface
is illustrated in Figure 4.2.
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Figure 4.2: Data retrieval from Nprobe trace file records
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4.2.2 Data Retrieval

The classes generated by SWIG do not store the values of data attributes in the normal
Python internal representation, but in the defined C structures as part of the underlying
C implementation of the class. The read functions provided by the Nprobe modules can
therefore populate retrieval class objects with data from trace files simply and efficiently by
reading a block of data from file into the corresponding structure. It is the function of
the accessor methods to select individual data items from the C structures and return their
Python representation.

Trace file objects’ get next rec method provides the mechanism to sequentially locate trace
file records of the required type(s). The records’ header fields indicate the precise record type
and hence the data retrieval class providing the appropriate read method. The first data to
be read will be meta-data, part of which specifies which structures are present in the serialised
record. Where nested or chained data is present, the process continues recursively until the
entire record is read, and the retrieval class instance(s) fully populated with the data present.

Appendix B provides an example of the use of the data retrieval infrastructure to read Nprobe

trace files during the analysis process. Code Example B.1 on page 205 demonstrates how the
use of retrieval classes and standard utility functions enables analysis functions or scripts
to retrieve data in a very few lines of code; Code Example B.2 on page 207 illustrates the
function of retrieval classes in greater detail.

4.3 Data Analysis

Data analysis processes will call upon a range of components provided by the analysis frame-
work, but as explained in Section 4.1.2 analysis functionality is provided primarily by a
collection of analysis classes.

4.3.1 Protocol Analysis Classes

Although analysis code can access data using the retrieval classes’ accessor functions, this is,
in most cases, not the optimal mechanism:

• The same data item may be referenced several times, each occurrence requiring trans-
lation at the C/Python interface.

• Many data fields are of types not directly supported by Python (e.g. unsigned or long
long integers as explained in Section 4.8.2 on page 106) and would require mapping on
to a supported type for every reference.

• The majority of time stamps are relative; to adjust them to a common base on every
reference would be inefficient.
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These difficulties could, of course, be overcome by a single recovery of each data value using
an accessor function, and its storage in the retrieval class as a Python data attribute after
any necessary type or base conversions; the retrieval class would have to be equipped with a
set of methods to provide the necessary conversions. This solution is not ideal: Section 4.8.2
on page 106 explains that memory capacity can be a problem when using Python to analyse
large data sets, and this difficulty would be exacerbated by, in effect, storing each data item
twice. Instead, a higher-level protocol analysis class analogous to each protocol specific State
Storage Unit (SSU) of the DAU-based retrieval-level classes is defined in which the data values
are stored after any conversion. Data retrieval can now be based upon the use of a single
object of each retrieval class whose read method is repeatedly called for each new record; the
object is passed as an argument to the protocol class constructor and its accessor functions
invoked to select the required data during instantiation of the new object. All type and
base conversions are now carried out in the higher-level class’ constructor method, possibly
calling other, dedicated, class methods. The reuse of a single retrieval object of each class
carries additional benefits: repetitious creation of new objects is avoided, and the objects
themselves can be instantiated fully equipped with all chained and linked subsidiary SSUs,
storage, buffers for variable length data, and optional components (e.g. buffers for TCP packet
header data, HTML links buffers, multiple HTTP transaction chains) rather than inefficiently
and repeatedly allocate them on a per-record demand basis.

During simple data analysis where few data values are required, where repeated accesses to
those values are few, or where the data requires no conversion, the use of higher-level objects
is not required and data selection can simply use the retrieval class objects’ accessor methods
directly.

4.3.2 Discrete Protocol Analysis

Data analysis may be concerned with activity occurring at a single protocol level, or when
relating activity at multiple protocol levels may still contain components drawn from a single
level. Analysis of discrete protocols is carried out by analysis methods of the protocol analysis
classes, each analysis task being implemented by a dedicated class method and operating on
the class object’s data attribute values.

As explained in Section 4.2.2 the protocol class objects are populated with data by invoca-
tion of the appropriate retrieval class’ accessor methods, and at this initialisation stage any
necessary type conversions are carried out. The semantic integrity of the data is also checked
at this stage.

4.3.3 Protocol-Spanning Analysis — Associative Analysis Classes

Analysis will usually draw from data relating to activity at several levels of the protocol stack.
Multi-protocol trace file data is already associated at the granularity of a DAU, and this will
be reflected in the grouping of protocol class objects containing the retrieved data. There
will also, however, be analysis tasks for which further integration or association of data is
required (e.g. all of the TCP connections and transactions involved in the download of a Web
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page and DNS requests associated with the TCP connections to a Web server).

Such complex analysis requires mechanisms both to gather and integrate the more widely
associated data, and to perform analysis on the large data composites which are collected.
Analysis of this sort can be carried out by execution of an appropriately coded script, but it is
likely that multiple forms of analysis will be carried out on the data composites, and either a
specific script for each purpose, or a single and unduly complex script would be required. It is
therefore preferable to define a further set of yet higher-level associative analysis classes which
can be instantiated by a relatively simple script, which act as the aggregation locus for the set
of protocol analysis objects of interest, and provide methods for each of the various analysis
tasks. Where components of the analysis relate only to one protocol level, the associative
analysis objects’ methods can invoke the discrete protocol analysis methods of the protocol
analysis class objects which they have gathered. Chapter 7 demonstrates how a WebHost
analysis object gathers together all of the TCP-connection protocol objects relating to a
single client with the the HTTP transactions that they carry, and how it provides methods
which, for instance, reconstruct Web page downloads, identify causes of delay, and relate the
pages downloaded to each other.

4.3.4 Analysis Classes as Toolkit Components

Analysis classes, by forming a locus in which data and analysis methods are associated,
contribute analytical components to the toolkit which can be readily selected, combined, or
modified. Specific analysis functionality is made available simply by instantiating an analysis
object of the appropriate class and calling the class method required, encapsulation ensuring
that objects may call upon each other’s services without risk of undesirable side effects.

Where new analytical methods are required new classes may be called for, but existing classes
will often provide the needed functionality by the addition of new methods or by the modi-
fication of their behaviour by sub-classing. The ease with which existing components can be
modified ensures that a wide range of tasks can be constructed based upon a relatively small
number of basic components.

4.3.5 Accumulation of Analysis Results

Data analysis will generate two categories of output: the analysis results, usually in statistical
form, and a record of the analysis process itself; both require accumulation and collation as
analysis proceeds through its input data. In accordance with the aim of establishing a generic
analysis framework a further utility is provided — the StatsCollector class.

Different analysis tasks will generate results with widely varying characteristics and content,
which will require similarly differing collation. There are, however, many items of functionality
which will be common to all analysis, and the StatsCollector class is designed to make these
readily available. The following, for example, are provided:

Logging methods: Used to create and manipulate logs of analysis activity. Entries in analysis
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logs might include trace statements recording activity, summaries of the input data or re-
sults, notes of data which are not amenable to interpretation by the analysis algorithms,
or records of particular conditions or combinations found in the data.

Recording methods: A consistent syntax and format for log entries is provided by a set of
recording methods.

Interface methods: Which provide a common interface to tools which summarise, select, or
present results.

A consistent analysis control interface: Analysis tasks may proceed differently according to
the task in hand; the way in which activity logs are collected may, for instance, vary
between analysis intended purely to generate results and that being carried out in an
analysis design environment.

The results collection and collation functionality specific to each analysis task are provided
by using the mechanisms of sub-typing and inheritance to define task specific collector sub-
classes. Such sub-classes may be defined with the required collection and collation methods,
or may act as ‘results repositories’ for similar methods provided by analysis classes.

In their most sophisticated form objects of StatsCollector sub-classes control the analy-
sis to be performed by calling the analysis methods of the protocol and associative analysis
objects of interest to generate the data which they accumulate. At the completion of analy-
sis the StatsCollector’s termination method will invoke a Summary object (described in
Section 4.4.1 on page 92) to summarise analysis activity and results.

4.3.6 Memory Constraints

Any analysis of large data sets may encounter difficulties due to the memory requirements
of the analysis program exceeding the physical memory capacity of the machine upon which
it is being executed; this problem is particularly evident when using Python as described
in Section 4.8.2 on page 106. As analysis proceeds working space is needed which remains
constant, but there will be an additional memory requirement proportionate to the size of
the trace file being analysed due to:

• Accumulation of results

• Accumulation of data pending association or aggregation

• Retention of data which may be needed for further examination

Various strategies can be used to circumvent these difficulties, the analysis task usually de-
termining which will be employed:

Partition of the analysis: The process of analysis may be partitioned in order to reduce mem-
ory demands. Transverse partitioning (i.e. analysing sub sets of a series of trace files



4.4 Analysis Logs, Results and Presentation 91

or only partial files) is effective, but may be inappropriate where long-term trends or
phenomena feature in the analysis. Longitudinal partitioning is often the technique of
choice, but may suffer from the disadvantage of additional complexity, the introduction
of additional passes through the data, or the need to accumulate data in order to control
or identify the partitions.

Accumulation of results in temporary data files: The nature of the data collected by Nprobe

will normally encourage analysis generating rich and voluminous results (consider com-
plete data concerning the timing, causes and magnitude of packet loss delays for all
of the Web page downloads and millions of supporting TCP connections contained in
a large trace), and the results of several analysis tasks may be generated concurrently
as described in Section 4.8.2 on page 106. The data which will be accumulated during
analysis may therefore become very bulky, and will advantageously be stored in tem-
porary files. In this case a further analysis pass, or a separate subordinate analysis
program will be required to correlate and accumulate such intermediate results.

Concise representation of data held for association, aggregation, or further examination: Data
will frequently be held for purposes of association or aggregation but not analysed fur-
ther until that process is complete (e.g. associating all of the TCP connections and
HTTP transactions originating from a particular client). As the data is not immediately
required the analysis process need only collate it and store a reference to its location
during a preliminary pass and proceed to full analysis during a second pass once as-
sociation is complete — in effect producing a fine grained longitudinal partition of the
data. A further utility class — FileRec — makes this possible. The class stores refer-
ences to the data as a list of open file/offset pairs indicating where the data is to be
found together with a type code indicating the type of analysis class relevant to further
analysis. The FileRec class exports one primary method — reconstruct — which
instantiates an analysis object of the appropriate type and uses the necessary retrieval
classes to populate it with data. Code Example B.3 on page 209 illustrates the use of
the FileRec class.

Strategies may also be determined by whether analysis is being conducted in its final form or
in the analysis development environment. In the former case it is likely that full traces will
be analysed, and greater use will be made of longitudinal partitions and the accumulation of
results and analysis logs in temporary files. During analysis development shorter traces, or
excerpts, will probably be processed, but the ready availability of results and the facility to
re-examine the analysis of individual record are, by comparison, more desirable; greater use
will therefore be made of FileRec objects.

4.4 Analysis Logs, Results and Presentation

Analysis processes produce a log summarising their activity and noting any points of interest
encountered which the analysis designer wishes to be recorded. Processes will also generate
results which may consist of many sets and subsets of data, which may be large and complex,
and which may require examination and management. An interactive analysis summary tool
presents log contents and results in a convenient form.
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4.4.1 An Analysis Summary Tool

The analysis of large trace files will generate large logs recording and summarising analysis
activity. Log entries are generated at the discretion of the analysis designer but at a minimum
are likely to include data relevant to the analysis process (e.g. the count of file records pro-
cessed, the number of DAUs encountered) and to record points of note arising during analysis
(e.g. situations where analysis could not satisfactorily resolve the data presented or had to
use heuristic rather than deterministic rules to interpret it, error conditions, or phenomena of
particular interest). During analysis design many additional entries may be made identifying
and quantifying situations or values requiring further attention.

The size of log files, and the wide variety of entries, would make it very difficult to identify
and collate the information that they contain; support is therefore provided by the analysis
summary tool. The tool collates, sorts, and summarises log entries; the summary is presented
as a pane containing top-level summary entries which can be interactively selected and recur-
sively expanded in detail, hence allowing for fast and comprehensive navigation of the log.
Collation may be selected by entry (e.g. TCP connections with multiple SYN packets) or by
id (e.g. by connection identifier, Web client address).

As explained in Section 4.3.5 the summary tool is normally invoked from the analysis pro-
cess’s StatsCollector object, which is also responsible, during invocation, for providing the
tool with a callback function; log entries may be accompanied by tags identifying the data
generating the entry, and which are passed by the tool as an argument to the callback. The
callback will identify the type of entry and will re-analyse the data which generated it with
full tracing enabled, possibly also invoking the appropriate visualisation tool2. Hence an audit
trail is established allowing the originating raw data and its analysis to be examined in close
detail.

The summary tool may also be used in ‘stand alone’ mode for the retrieval and examination
of logs generated by past analysis processes. When used in this way the facility to examine
the origin of entries is, of course, absent.

4.4.2 Summaries of Analysis Results

The analysis process’s StatsCollector object may generate summaries of the analysis results
and references to data sets which are appended to the log. The summary tool also collates,
summarises and presents these entries in the same manner as normal log entries.

In the case of results entries, the callback functions provided by the StatsCollector will
normally present data sets by invoking the data plotter tool or other visualisation tools ap-
propriate to the granularity of the summary items. Because the callback is provided by the
StatsCollector, the system allows for very flexible selection of the data or its subsets which
are to be examined.

2Visualisation tools are described in Section 4.5 on the facing page .
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4.5 Visualisation

Visualisation tools constitute an important element of the toolkit and provide support in the
design and mature phases of analysis. They contribute significantly to the design environment,
as described in Section 4.5.3, and in assessing informal indicators of confidence as described
in Section 4.7.5.

4.5.1 The Data Plotter

The data plotter tool may be used as a stand-alone data plotter but is normally invoked from
the summary tool in order to display selected data sets from analysis results. The tool is
designed to make the manipulation, examination and comparison of data sets possible without
reloading; and provides interactive support for raising, lowering, or blanking out individual
sets and a zoom facility. Plotting styles can be varied as desired, and the data re-plotted as
scatter plots, histograms, probability and cumulative density functions as appropriate to its
type. Basic smoothing methods are also available.

The plotter acts as the principal data management tool allowing selected data sets (or sub sets)
or their derivatives (e.g. distribution functions) to be saved or printed. The most significant
difference between the plotter and other plotting programs is, however, its facility allowing
the user to examine the derivation of data points. A callback and tag mechanism similar
to that employed by the summary tool allows the user to select a set of data points and to
examine the underlying raw data and the process of its (re-)analysis in close detail.

4.5.2 TCP Connection and Browser Activity Visualisation

The raw trace file data contributing to each datum generated during analysis are likely to be
complex and bulky and to have complex relationships (consider the data associated with each
packet of a TCP connection, the number of packets that may be sent on a single connection,
the complications due to packet loss, and the number of connections that may be involved in
a Web page download). The raw data, furthermore will be sparsely distributed amongst the
other file contents. Although the trace file reader mentioned in Section 4.1.2 presents trace
records in a convenient form, and provides rudimentary facilities for selecting associated data,
it would be time consuming, and (in the case of large data associations) virtually impossible to
fully assimilate and comprehend all items without assistance. The appropriate visualisation
tools will present data in a compact and comprehensible way which assists in identifying the
relationships that it represents.

Trace file data analysis is, however, concerned with the distillation of information from the
raw data. Visualisation should, therefore, not only present the raw data but also, insofar as is
possible the information generated by analysis and the relationships upon which it is based.
The analysis framework visualisation tools are designed to meet this requirement.
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4.5.2.1 The TCP Visualisation Tool

The TCP visualisation tool, illustrated in Figure 4.3, plots sequence numbers against time in a
style similar to Tcptrace [Ostermann]. Data segments are shown as vertical arrows scaled to
the data length carried, acknowledgements as points, the ACK high water drawn, and segments
are annotated with any flags set. Other salient data (e.g. window advertisements) may also
be shown.

The tool, however, has considerably greater functionality: Chapter 5 explains a technique for
examining the dynamics of TCP connections, relating them to activity at higher levels of the
stack and identifying application behaviour and connection characteristics. Where connec-
tions have been subject to this technique its inferences are also displayed: the relationship
between TCP and application activity, causal relationships between packets, and congestion
windows are, for instance shown; secondary plots of the number of packets in flight, inferred
network round trip times, and application delays are also presented.

Figure 4.3 shows the tool’s primary window displaying, as an example, the activity of a non-
persistent TCP/HTTP connection. Although the figure contains a great deal of interesting
detail comment on a few features illustrates the power of the visualisation:

A The solid purple line to the left of the segment arrows represents the server’s conges-
tion window as predicted by the connection model — the number of segments in each
subsequent flight increasing as the window opens.

B Packet #13 is retransmitted (packet #18 — shown as a red arrow) at approximate time
540 ms.

C The server’s congestion window shrinks following the retransmission, resulting in a flight
of only two segments immediately afterwards. The retransmission also causes the con-
nection to enter congestion avoidance — shown by the broken congestion window line.

D Horizontal dashed lines indicate causal relationships between packets. Here packet #25
from the server triggers an acknowledgement — packet #26 — from the client

E The last line of the legend at the top of the main pane indicates that the modelling process
has explained the behaviour the server’s TCP implementations based upon a generalised
base model of behaviour with an Initial Window of two segments; the client’s behaviour
is explained by a similar model, but the IW is unknown as less than one MSS of data has
been sent. The term ‘SSTG=1’ denotes that the implementations enter the congestion
avoidance phase when the congestion window exceeds3 the slow start threshhold.

To ascertain the patterns of TCP activity involved in even the relatively short and uncom-
plicated connection visualised in Figure 4.3 would require the close examination of 38 packet
headers, a time consuming task which might, even then, fail to identify all of the features
present. To fully comprehend the activity of a substantial connection, or one with complex

3This is the default for the base TCP model — TCP implementations may optionally enter congestion
avoidance when the congestion window reaches the threshold [Allman99a].
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Figure 4.3: The TCP visualisation tool’s primary window
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features, rapidly becomes a daunting and error-prone task. Such difficulties are, however,
minor in comparison with those presented by the need to relate the outcome of the connec-
tion modelling process to the packet level data contained in the trace — an essential step
to ensure the accuracy of the model constructed. The figure illustrates that visualisation of-
fers a succinct and comprehensive presentation of both the original data and the information
synthesised from it, in which features are readily identified and relationships made explicit.

The tool opens a secondary window (not shown in Figure 4.3) which displays a textual
representation of the trace file data associated with the connection and which may be toggled
between packet and application level data. Displayed items can be selected and recursively
expanded to show greater detail.

4.5.2.2 The Web Browser Activity Visualisation Tool

The Web browser activity visualisation tool presents the data extracted from the TCP, HTTP

and HTML levels of the protocol stack for all HTTP activity originating from single hosts or
client and server pairs. Figure 4.4 on the next page illustrates a small page download.

The tool’s main pane [1] displays the TCP connections carrying HTTP transactions plotted
against time as scaled horizontal bars with tics showing packet arrival times (at the probe)
and annotated (in blue) with details of the connection. Client activity is shown above the
bar, and server activity below it. HTTP activity is shown as requests and responses above and
below the TCP connection line respectively. Request or response bodies are shown as blocks
of colour representing the object type, and are annotated (in black) with the transaction’s
principal characteristics (e.g. the object’s URL, the request type and the server response code).

A secondary pane [2] may be toggled between a display showing a key to the symbols used
in the main pane and a summary of the activity shown, or details of individual selected
TCP connections in the style of the TCP visualisation tool’s secondary window. The TCP

visualisation tool may be invoked by dragging over a connection bar in order to closely examine
individual selected connections. A further secondary map pane [3] shows an overall view of
the entire set of browser activity at reduced scale (the level of detail in the [scrollable] main
pane will generate a graph larger than the tool’s window for large pages or extended browsing
sessions and the secondary pane serves to locate the main pane contents).

Chapter 7 explains how all activity associated with the downloading of entire Web pages is
reconstructed from trace data; the tool presents the results of this reconstruction by showing
the dependency relationships between objects as dashed lines. In-line links (e.g. those to con-
tained images or frames, or representing redirection or automatic updates) are differentiated
from ‘followed’ links (i.e. those followed by the user). The objects downloaded as constituents
of discrete pages are thus grouped together and the user’s progress from page to page iden-
tified. The way in which the browser uses TCP connections and the inferred relationships
between connections and objects are illustrated in clear detail.

Figure 4.4 is annotated to demonstrate a sample of the key features of the example visuali-
sation:
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A The red box in the map pane [3] identifies the section of the entire reference tree shown
in the main pane [1] which can be scrolled by either dragging the box or the main pane
itself.

B The map pane shows that the user goes on to visit another page following that currently
occupying the main pane.

C The page’s root HTML document identifies its referrer, not seen by the trace, which is
represented by the small black box immediately above it.

D1 and D2 The browser is configured to download subsidiary objects using four concurrently
open TCP connections.

D1 Connections #1 – #4 are used to download the first four in-line images in the page. Each
request occupied a single packet shown as a large tic above the connection bar (coloured
grey for ‘type unknown’ as there is no object associated with the GET requests); dotted
lines above the request tics connect them to the referring object (C) at the packet
carrying the portion of the parent document containing the links. Although the links
were seen in a packet at approximate time 450 ms the browser did not open connections
upon which to request the objects until approximate time 1400 ms — hence introducing
a delay of nearly a second into the page download.

E Although delivery of the first four image objects was completed by approximate time
1950 ms the browser does not close the relevant connections until approximate time
3300 ms, hence inhibiting the opening of the subsequent set of four connections, and
introducing a further overall delay of about 1.3 seconds.

To manually identify and associate the activity involved in downloading the first page shown
in Figure 4.4 would require the examination of 12 trace file records containing details of an
equal number of transactions, and of 159 TCP packets — a complex and tedious task. To
identify the links contained in the parent document would additionally involve the scanning
of 8,658 bytes of HTML spread over 17 packets. If traditional tcpdump style traces had been
collected the exercise would involve the manual examination of all 159 packets, their TCP and
HTTP headers. The page illustrated is atypically small — pages with container documents
measured in tens of kilobytes containing tens or hundreds of in-lined images are not unusual
— it would be infeasible to manually examine the data describing activity in such cases, and
to correctly interpret its internal relationships and meaning. The utility of the tool is amply
demonstrated in the figure which presents all of the relevant data and the inferences drawn
during analysis in an immediately accessible form. The overall pattern of activity is plainly
discernible and features of interest clearly identifiable.

The tool’s contribution to analysis design is discussed in Section 4.5.3, and its role in assessing
the confidence invested in the veracity of analysis results in Section 4.7.5 on page 105.

4.5.3 Visualisation as an Analysis Design Tool

Although visualisation tools may be invoked to examine features of analysis results in detail,
their main role is in the analysis development environment. The presentation of raw data
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in comprehensible and compact form assists in identifying relationships within the data and
reasoning about those relationships when designing analysis algorithms.

Sections 4.5.2.1 and 4.5.2.2 illustrate the power of the visualisation tools and comment upon
the difficulty of comprehending and interpreting large masses of associated data without a
mechanism for its succinct presentation — an essential precursor to analysis design. Fig-
ures 4.3 and 4.4 demonstrate the way in which visualisation identifies and clarifies relation-
ships, features and patterns of activity within the data — also essential to the design process.
Both sections illustrate the volume and scope of trace data which may contribute to a single
analysis result datum (e.g. the download time of a single Web page) and, by implication, the
complexity of the analysis involved in its calculation.

The presentation of analysis output in conjunction with the data upon which it is based
allows the relationships between raw data and analysis output to be examined and verified
in detail, and the facility to repeat the analysis underlying selected results supports the close
examination of the analysis process. Iterative design is supported by the facility to reload
and re-execute analysis software on selected sets of data. Both visualisation tools may be
instructed to redraw their displays: all analysis modules are re-imported, the underlying raw
data is re-read from the trace file and re-analysed with full tracing enabled, and the display
redrawn. Analysis code can therefore be modified during the analysis process and immediately
re-run, and the modified analysis process examined in detail.

Although both of the tools described are specific to particular protocol sets they are con-
structed in such a way as to contribute to a generic framework. Functionality is divided
between protocol-specific and display management classes (i.e. one set of classes provides and
manages canvases and interactive features, another — given a set of raw data and results
— knows how to draw them into the display provided). In some cases entirely new drawing
classes may be required, but in general sub-typing will provide the appropriate functionality:
the TCP tool’s drawing class could be trivially sub-typed (with much removed functional-
ity) to display the activity of UDP flows and the browser visualisation tool’s drawing classes
sub-typed to accommodate other higher level protocol activity.

The summary tool provides a convenient mechanism for recording and identifying items of
interest within the data and any correlations which may require particular attention during
analysis design, and to then closely examine and modify analysis algorithms. The facility to
quickly select and examine data sets generated by analysis, and to then examine the derivation
of multiple or individual data items supports similar design processes at a larger scale.

The tight integration between analysis code, summary tool, and visualisation tools, and the
way in which their invocation can be cascaded, provides a rich and productive design envi-
ronment. The support for examination of the analysis process during design also facilitates
validation of the analysis methods employed, and hence underpins confidence in the results
obtained. The part played by the tools in assessing confidence is further explored in sec-
tion 4.7.5 on page 105.
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4.6 Assembling the Components

The previous Sections of this Chapter have described the components provided by the analysis
framework; an overview of how they may typically be combined to build a complex analysis
process can now be presented — a Python script will:

1. Use the file manipulation module to return TraceFile objects representing the trace files
to be analysed and the accompanying accumulated meta data.

2. Instantiate data retrieval class objects appropriate to the file record types to be read
(e.g. TCP/HTTP connections).

3. Instantiate a Filter class object if further selection of records (e.g. by host, HTTP-1.0

persistent connections).

4. Instantiate an appropriately sub-classed StatsCollector object to invoke the required
analysis methods of analysis classes and accumulate the results generated.

5. Call upon the file objects’ NextRec record selection methods to step through the trace
file(s) and:

(a) Use the retrieval class objects’ read methods to recover data from file.

(b) Instantiate the required analysis class or subtype object and call the required
analysis method(s).

6. At analysis completion:

(a) The StatsCollector object will instantiate a Summary object, the user may:

i. Examine results data by invoking the Plotter tool.

ii. Examine the analysis log.

iii. Invoke visualisation objects to re-analyse selected data under close observation.

iv. Modify code, re-import and repeat Step 6(a)iii.

(b) The data generated, or its subsets or derivatives can be saved.

The example above illustrates a non, or transversely, partitioned analysis operating on data
contained within discrete DAUs. If further association of data, or a longitudinal partition of
the analysis, is required step 5 might be replaced by a two-pass analysis using the FileRec

class:

5a. First pass — call upon the file objects’ NextRec record selection methods to step through
the trace file(s) and:

(a) Use the data retrieval object’s read method to establish the record’s collation key
(e.g. host address).
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(b) Add the record’s location to an existing FileRec object containing associated
records, or at the first instance of the collation key instantiate a FileRec of the
appropriate type.

5b. Further collate and partition the collected FileRec objects if required

5c. Second pass — for each partition:

(a) Call the FileRec(s) reconstruct method to instantiate and populate the appropri-
ate analysis class object.

(b) Call the required analysis method(s).

Note that the above example does not represent a prescriptive formula for analysis processes,
but rather an example of the way in which framework components may be easily and flex-
ibly assembled to meet the requirements of analysis tasks. Standard components are used
throughout, only the StatsCollector and analysis classes requiring modification through sub-
typing or the addition of further analytical methods. As the existing component collection
grows through the addition of analytical methods and sub-types, it will be increasingly the
case that analysis requirements will be met entirely from existing methods used in new com-
binations, or that only minimal modifications will be required in order to achieve the required
behaviour.

As data extraction from additional protocols is added to Nprobe’s repertoire, new retrieval
classes will be automatically generated, the only manual effort required being to contribute
appropriate trace file reading functions. Steps 6(a)i – 6(a)iv of the process described above
will support fast development of new protocol analysis classes or the modification of those
already existing.

4.7 Issues of Data Bulk, Complexity and Confidence

The Nprobe design reflects the expectation that it will be used to collect relatively long
traces comprising many gigabytes, if not terabytes, of data, and that this data will be both
comprehensive, and span activity at multiple levels of the protocol stack. Analysis of the
collected data will generate commensurately rich and bulky results and explore and identify
complex relationships within the data (e.g. interactions between protocols, complex behaviour
within individual protocol levels). Consideration must therefore be given to the validity of
the results and measures of confidence that can be attached to them.

4.7.1 Data Bulk — The Anatomy of a Small Trace and Its Analysis

Sections 4.5.2.1 and 4.5.2.2 on pages 94 and 96 comment upon the mass of associated data
which may require integration during analysis to produce a single result datum. Table 4.1 on
the next page, on the larger scale, indicates the magnitude of the data input to the analysis
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process by summarising the anatomy of a comparatively small trace4 and its analysis. The
average line rate observed was 82.66 Mbps over a period of approximately one and three-
quarter hours but over nine million trace records were generated.

Table 4.1: The anatomy of a small trace

Summary of Trace Analysis Results

Duration 1 hr 42 min 5 s HTTP Clients 40,518
Total Packets 124,368,030 Web pages 773,717
Total Octets 63,284,550,146 Analysis log entries 1,782,066
Average bitrate 82.66 Mbps Data sets 63
TCP Host/host flows 1,722,917 Data points 8,630,943
TCP Connections 3,507,974
TCP Packets 103,408,831
TCP Octets 56,363,350,227
HTTP Packets 50,254,988
HTTP Octets 28,194,834,668
HTTP Transactions 3,373,406
Trace files (75 MB) 66
Trace file records 9,107,483

When Nprobe is used to monitor higher bandwidth technologies, or link utilisation is greater,
and full length traces are taken, the data bulk will be one or two orders of magnitude greater.
Analysis recreating the network activity involved in downloading Web pages and categorising
delays identified approximately 770,000 distinct pages and generated approximately 1,800,000
analysis log entries and 63 data sets comprising over 8,600,000 individual values — these
figures would also be commensurately greater for larger traces or analysis of a wider scope.

The sheer bulk of data input to analysis will impinge upon the accuracy or validity of the
results obtained:

• The data will be less tightly homogeneous.

• Algorithms will have to be robust in the face of a less closely defined general case.

• The number and range of special cases will be greater.

• The probability of invalid or rogue inputs will be higher.

• Such cases will be both more diverse and more difficult to identify.

• The aggregate of input data contributing to each result datum may expand proportion-
ately to the input data bulk.

The volume of results generated during analysis of large inputs will also contribute to the
difficulty of verification:

4Gathered from the 1 Gbps link connecting the UCCS networks to the SuperJANET
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• Verification by inspection becomes less feasible.

• Invalid results are less readily identified in large data sets, particularly those with dis-
persed or long tailed distributions.

• Mappings between input data and results are more difficult to identify and to navigate.

4.7.2 Data and Analysis Complexity

Because the data gathered by Nprobe may be collected from multiple layers of the proto-
col stack, and because the data collected from each layer may be very comprehensive, the
relationships between data items will be both complex and sometimes subtle, reflecting the
complex dynamics and interactions of the network and application activities observed. As the
number of individual data contributing to each output datum increases the complexity of their
potential relationships will grow exponentially; this growth will be limited by transitivity, but
this, in itself, carries the risk that analysis errors will be propagated.

The complex nature of the phenomena studied dictates that elements of analysis will depend
upon a degree of inference and may be based upon heuristic rules. Complex data encompassing
equally complex relationships, inference, and a widely ranging set of possible input conditions
all determine that there is considerable scope for error in the design and implementation of
analysis processes, and the reasoning that underpins them. The audit trail between input
data and the information extracted or synthesised from it will, additionally, become more
complex and commensurately difficult to follow.

Sections 4.5 and 4.6 explain how complexity in analysis design is supported by the use of
visualisation tools and the composition of mature analysis components provided by the toolkit.
Sections 4.7.3 – 4.7.5 now go on to discuss the establishment of confidence in the information
generated by analysis.

4.7.3 Determinants of Validity

The validity of analysis results will depend upon a range of factors the most significant being:

The veracity and accuracy of the raw data (i.e. rubbish in — rubbish out): As explained in
Sections 3.3.3.3 to 3.3.3.7 on pages 58–66 the process of data extraction at the pro-
tocol level both implies a check on the semantic integrity of that data and may involve
specific semantic tests. Section 3.3.5 on page 69 describes the situations which may
arise where semantic constraints are broken by the contents of packets arriving at the
probe, and the disposal of such situations: in effect a DAU is marked as terminating
in an error condition if any of the associated data is semantically inconsistent as it
appears to the probe. The section also introduces the distinction between incorrect and
misleading data semantics — the former will generate an error condition, and data will
be rejected during analysis, but the latter must be detected during the analysis process
or by its contribution to anomalous results.
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The design and robustness of the analysis algorithms employed: The truism that analysis al-
gorithms must correctly interpret the data presented to them should not obscure con-
sideration of the extent to which such algorithms must be robust in the face of unan-
ticipated or unusual data. Section 3.3.5 points out that it is infeasible to provide data
extraction software which will dispose correctly of every possible combination of network
or application behaviour, or packet content — the number of possible permutations is
simply too great, even in the absence of pathological conditions, incorrect behaviour,
or incorrect protocol implementations. The same is, of course, true in the case of anal-
ysis software: there will, inevitably, be combinations of activity in the sometimes very
complex operations observed and interrelationships between protocols which will not be
anticipated during algorithm design.

Appropriate identification and interpretation of the relationships between data items: Analysis
results will be incorrect if the algorithms employed do not correctly identify and interpret
the relationships between the data items recorded in Nprobe trace files, even though the
algorithms themselves may be technically correct. In this context confidence depends
upon the validity of the knowledge and reasoning bought to bear upon the analysis
design process. There is, unfortunately, no formalism, or system of proof, applicable to
this critical factor.

In the absence of an appropriate formalism an assessment of validity, and hence of confidence,
must depend upon informal, or heuristic, indicators.

4.7.4 Indicators of Validity and Confidence in the Absence of Formal Proof

Indicators of validity may be pertinent to either the raw data, intermediate, or final results
and may serve to suggest overall measures of confidence, or to identify dubious results. Such
indicators will include:

Protocol and Application Semantics: During analysis more sophisticated checks can be car-
ried out on data to identify incorrect or unusual values arising from misleading protocol
semantics than are possible during data collection.

Cross Protocol Semantics: The semantics of individual protocols will often bear upon those
of the protocols with which they interact and may generate similar indicators. The
HTTP response header lengths and the size of the objects delivered should sum, for
instance, to the number of data octets carried from the server by the TCP connection
transporting them.

Data self consistency: Both data and results can be checked for self consistency, often in
conjunction with semantic checks.

Consistency with other known data or results: Unless there are known reasons why identifi-
able differences should exist, data and results should be consistent with other known
values, although care must be taken that consistency is not the result of common er-
rors. Ideally such consistency checks should be based upon data sets arrived at by
independent and unrelated methods.
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Independent verification: Verification may be sought through comparison with known ac-
curate data (using consistency checks) or through data gathered specifically for the
purpose, possibly using active methods. The round trip times calculated in Chapter 6
were, as an example, checked for feasibility using measurements obtained by the ping

programme; the reconstruction of Web page downloads described in Chapter 7 can be
verified by independently downloading a sample of pages and manually examining the
HTML page source and tcpdump traces collected on the client machine.

Statistical Indicators: Statistical indicators may apply at both microcosmic and macrocosmic
scales. Examination of results data may reveal distributions informally suggesting that
analysis results are feasible, or may, conversely, suggest that the derivation of results
should be examined more closely (e.g. if unexpected or inexplicable features are present).
Checks that results match a particular statistical distribution will usually be too precise
— indeed it may be part of the research goal to identify distribution characteristics.
Small scale features of distributions (e.g. outlying points) may suggest errors in the
analysis and that further examination is required.

Examination of samples from results : The derivation of individual data items contained in
results can be examined for accuracy. The individual items may be a sample of the
whole, a sample of a subset of the whole (e.g. those based upon TCP connections where
loss has occurred), or be suggested by statistical indicators or analysis logs (e.g. outlying
points or those derived in an unusual or particularly complex context).

The application of indicators runs across a spectrum from those which suggest specific tests ap-
plied automatically during analysis (e.g. those based upon semantics or data self-consistency)
to those, more applicable to results, which require user intervention and reasoning (e.g. in-
dependent verification or the examination of statistical indicators). Which indicators are
employed will also depend upon the stage of analysis development reached: the examination
of individual values and their derivation will be more common early in the cycle and macro-
cosmic statistical indicators will assume a more significant role when using mature analysis
processes.

4.7.5 Visualisation as an Informal Indicator of Confidence

Section 4.5.3 explains how the visualisation tools contribute to an analysis design environment
supporting the development of robust code which produces valid results and hence engenders
confidence. The tools also provide convenient access to a set of indicators of confidence.

The summary and plotter tools support the examination of statistical indicators at the macro-
cosmic scale. The facility to examine the derivation of individual data contained in the results
through re-analysis and visualisation make scrutiny at the microcosmic scale convenient. Fast
and comprehensive navigation of analysis logs facilitates the identification and examination
of analysis in the case of dubious results or analysis failures, and allows for the examination
of samples from analysis results.
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4.8 An Assessment of Python as the Analysis Coding Lan-
guage

This section assesses the contribution of the Python language’s features to implementation of
the analysis framework and code, and some of the difficulties arising from its use.

4.8.1 Python and Object Orientation

It is proposed that data analysis is an environment to which the object-oriented paradigm
is eminently suited: sets of data items are grouped in hierarchies and aggregations of dif-
fering granularities, and at each hierarchical level a distinct set of analytical operations is
required. Although Python does not enforce strict data hiding its class structure implies full
encapsulation of data sets and the operations to be performed on them.

The very rich nature of the data gathered by Nprobe suggests that data analysis will be
complex, and that it will be the subject of a potentially wide range of analytic tasks, each
of which will draw from a different set of operations at each level of the data hierarchy.
Section 4.2.2 shows how automatically generated retrieval classes contribute to a generic data
retrieval interface and Section 4.3 explains how analysis and utility classes form a locus for
analysis functionality which, by appropriate design and choice of analysis methods and the
inheritance mechanism, provide a flexible and powerful analysis infrastructure with a high
degree of code reuse.

The implementation of the summary and visualisation tools introduced in Section 4.5 as
classes, which may be invoked from anywhere in the analysis code, in cascades, and recursively,
allows a degree of integration contributing a flexible and productive development environment.
The facility to re-import modules and to re-run code also makes a significant contribution to
fast design.

4.8.2 Difficulties Associated with the Use of Python

Although the choice of Python as the language in which the data analysis code and environ-
ment have been written has proved itself in practice, there are, nevertheless, some disadvan-
tages which must be noted:

Python lacks some low-level data types useful in the context of trace file analysis: Python pro-
vides two signed integer types: plain integers and long integers5. There is, therefore no
direct Python representation of some integer types frequently occurring in Nprobe trace
files:

32 bit unsigned integers: Which are heavily used in numeric data items to obtain max-
imum capacity in a 32 bit quantity and in protocol (e.g. TCP ) header fields. The

5Python plain integers are based upon C long integers and hence provide at least 32 bit precision; Python
long integers give unlimited precision.
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manipulation of TCP sequence numbers also relies heavily upon the properties of
unsigned integer arithmetic.

64 bit integers (i.e. C long long integers): Which are used by Nprobe for full time stamps.

The lack of these types does not present insuperable difficulties — all of these C types
can be represented as Python long integers, but a conversion overhead is introduced,
especially as conversion must be carried out at the Python, rather than the C level, in
the data retrieval interface. SWIG-generated retrieval classes treat unsigned integers as
signed, and accessor functions therefore return unsigned integers as (incorrectly valued)
signed plain integers. A utility module — np longutils — provides a set of functions
employing bit-level manipulations to convert such items to correctly valued long integers.
Conditional inclusion in a type-defining header file, part of the SWIG input, ensures
that 64 bit integers are seen by SWIG as a class containing two unsigned 32 bit integers;
similar functions can then be employed to convert these values to a Python long integer
representation. A further utility module — np seq — provides a set of functions which,
applied to Python long integers, mimic the results of unsigned integer arithmetic for the
manipulation of sequence numbers. All type conversion of this nature is normally carried
out during the data population of protocol analysis classes as explained in Section 4.2.2.

The execution of Python code is slower than of C: Python, an interpreted language, runs more
slowly than would the equivalent C program. This disadvantage is minor in the case of
mature analysis code: although complex analysis of a large trace file may take several
hours it is expected that traces will normally require once-only analysis, and the use of
analysis classes equipped with a rich range of functionality as described in Section 4.8.1
makes the concurrent execution of multiple analysis tasks during a single run feasible.
The drawback of relatively slow execution is more apparent during the iterative design of
analysis algorithms and code, but must be balanced against the ease and speed of code
generation in an interpreted high-level language, and the tools described in Section 4.5
are designed, in part, to alleviate this problem.

Python can be memory hungry: The memory overheads associated with object instantiation
and Python’s internal data representation result in a substantially higher memory us-
age per data item than would be the case if analysis code were written in C, and this
can produce difficulties due to shortage of physical memory when analysing large trace
files6. Because Python does not provide direct control over memory allocation it is,
additionally, not possible to exploit locality of reference in the case of programs where
virtual memory requirements exceed physical capacity. Careful partitioning of the anal-
ysis process may be required, together with other mechanisms such as the FileReference
class described in Section 4.3.6.

Garbage collection contributes an unwelcome overhead: Python objects are reference counted,
being destroyed and their memory deallocated when the count decrements to zero. A
more sophisticated garbage-collection mechanism detects reference cycles creating refer-
ence counts which would never reach zero and would result in objects which are never
destroyed. In such cases the reference cycles must be explicitly broken, or the Python

6Memory constraints will, of course, be felt whatever the language used and similar mechanisms employed
to circumvent the consequent difficulties — the problem is simply exaggerated by the use of Python.
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garbage collector must be relied upon to detect those cycles which are no longer reach-
able (i.e. encompass objects none of which are referenced from objects external to the
cycle) and to destroy them. It is inevitable that complex analysis tasks will create
many reference cycles, and that it will be difficult, or infeasible, to manually identify
and break them — one disadvantage of the analysis infrastructure model is that it is not
possible to tell in advance exactly how standard classes will be used in future analysis
tasks, and it may therefore be inappropriate to build in the explicit breaking of cycles.
As analysis will normally involve a high degree of iteration, any cycles created will recur
very frequently and garbage collection will therefore become correspondingly expensive.
The Python garbage collector is, fortunately, tunable, and the frequency with which it
is invoked can be controlled — the correct balance must be found between too frequent
invocation (in which case the overhead becomes unacceptable) and infrequent invoca-
tion, in which case objects persist unnecessarily long with consequent effects on total
memory usage.

4.9 Summary

The gathering of data by a network monitoring probe is only the first stage of a process which
must later progress to an analysis of the data gathered. Nprobe trace files are distinguished
from those gathered by more conventional means by their complex format and the scope and
variability of the data that they record. The complex data format and variable content call
for a uniform interface to data retrieval from trace files; the scope of the data implies that
analytical tasks will be more complex than normally encountered, that multiple similar tasks
will be called for or that trawling for information in speculatively gathered traces will be
desirable. These factors determine that the monitor design cannot be regarded as complete
without the provision of an appropriate framework within which analysis can be designed and
executed — Nprobe data collection and analysis are complementary components of a common
system.

This chapter has described the implementation of a suitable analysis framework. Section 4.1
introduces the need for a framework in the context of Nprobe-gathered data, and in particular
the requirement for an analysis development environment which readily supports the evolution
and design of a range of analysis tasks. The development environment is based upon a toolkit
which provides a consistent data retrieval interface, data analysis, analysis support and utility
components, and tools for manipulating and navigating analysis results. Visualisation tools
which present analysis input data and results in a succinct form are also provided.

The aim of the toolkit is to provide a set of building blocks which can be combined as re-
quired to support fast analysis development, and tools to support the design of new analysis
components. Some components (e.g. the data retrieval interface, data conversion and support
utilities, and results manipulation tools) provide an infrastructure common to all analysis,
but others (e.g. data analysis and results-gathering components) will be selected and com-
posed for the needs of specific analysis tasks. As new analysis components are designed and
implemented they add to the existing stock.

The analysis framework is implemented in Python, whose rich high-level data types support
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the writing of complex analysis code, and whose modularity and object-oriented structure
supports the composition and tight integration of the toolkit components. Section 4.2 in-
troduces the data retrieval interface responsible for extracting the required data from the
complex formatting of trace files and presenting it it in canonical form to analysis processes.
Because the trace file format is dictated by the Nprobe data extraction modules, data retrieval
classes are automatically generated from the Nprobe modules’ data format specification, hence
avoiding a complex and tedious manual chore, accommodating changes in file formats without
requiring modification of analysis code, and reflecting additions to the range of protocol data
collected.

The mechanism of data analysis is described in Section 4.3 which explains how analysis func-
tionality resides in a series of protocol analysis classes in which data is associated, and which
provide methods specific to analysis within that protocol. Where analysis spans protocols, or
where multiple protocol instances are associated, associative analysis classes act as the data
aggregation locus, provide appropriate analysis methods, or call upon the analysis methods
of the associated protocol classes. By instantiating the appropriate analysis classes and using
selected methods, complex analysis processes can be quickly constructed using existing com-
ponents. New analysis components can be safely added by providing new methods to existing
classes, and behaviour modified, if required, by using sub-typing.

The analysis of large trace files may require large amounts of memory, and the section con-
cludes by introducing techniques for circumventing the difficulties which arise from memory
constraints: analysis may be partitioned, or references to data locations in the trace file(s)
stored rather than the data itself.

Analysis may also generate long and comprehensive logs of its execution, together with large
and varied sets of results data. Section 4.4 introduces an analysis summary tool which sup-
ports the navigation of log files and the examination and manipulation of analysis results.
The summary tool is integrated with the visualisation tools and allows the close examination
of the input data and analysis process underlying selected results.

Section 4.5 introduces and briefly describes the visualisation tools, currently comprising a data
plotter, TCP visualisation tool, and Web browser activity visualisation tool. The data plotter
allows results and their derivatives to be examined from within the analysis process, and its
integration with the other tools allows examination of the derivation of results in a manner
similar to the analysis summary tool. The power of the visualisation tools is demonstrated
by illustrations of their use and the way in which they present input and results data, and
clarify the relationship between them. The role of the tools in analysis design is explained
with emphasis on their support of iterative design, reasoning about relationships within the
data, and close examination of the analysis process.

The use of the toolkit is illustrated in Section 4.6 which draws the preceding sections together
with an explanation of how an analysis task might be constructed from individual components.
Examples of a partitioned and non-partitioned analysis are given, and demonstrate the utility
and flexibility of the system.

The potentially very large trace files analysed, the complexity of the analysis itself, and the
volume and variety of results which may be generated, call for an assessment of the validity
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of the analysis and the confidence with which results can be viewed. Section 4.7 considers
determinants of validity, how indicators of confidence may be identified, and the role of
visualisation tools as indicators.

The chapter concludes with an appraisal of Python as the coding language for the analysis
framework. The strengths of object orientation in the context of data analysis are discussed,
together with some of the problems arising from the use of Python and how they are accom-
modated.

The toolkit has been used for the development of the analysis software used in the studies
presented in the later chapters of this dissertation, and has confirmed both the rationale for
its development and the utility of its implementation. In conclusion it is noted that other
analysis of Nprobe traces has been carried out in support of Web traffic characterisations
presented in a recently submitted paper [Moore02]. The principal researcher and author,
who was previously unacquainted with the Nprobe system, designed and implemented the
necessary analysis in a few hours and reports in the paper:

“It is worth noting that the whole task of off-line processing of the data was
constructed in 10’s of lines of Python code.”



Chapter 5

Modelling and Simulating TCP
Connections

TCP activity does not take place in isolation: connections are opened and data transfers
originated by processes higher in the protocol stack, the underlying IP and physical network
layers determine crucial factors such as latency (e.g. Round Trip Times (RTTs) and serialisa-
tion delays), packet loss and bandwidths. Packet-trace based studies normally force inference
of network properties from the activity observed at the transport level, and the limitations
of most traditionally-collected traces (i.e. containing only IP/TCP headers) similarly confine
observation of activity at higher, or application, levels to that of inference.

The traces collected by Nprobe do not contain any additional information about the net-
work and physical layers but, because they may contain details of higher-level activity, allow
TCP connections to be interpreted in context and, conversely, allow the higher levels to be
studied in the light of the TCP connection activity which underlies them. One of the prime
motivations for the development of Nprobe was to provide data for the detailed study of the
interaction between the transport layer and higher-level protocols; in order to do this it is
necessary to distinguish activity determined by the network, the transport mechanism and
higher levels. This chapter describes a technique which allows such distinctions to be made by
modelling the activity of individual TCP connections. Because the technique precisely defines
the characteristics of the TCP connections studied and the behaviour of the applications using
them, the output of the models constructed can be used as the input to accurate trace-driven
simulations of the same connections in order to examine their performance with varying input
parameters.

5.1 Analytical Models

Analytical models of TCP have been developed by many researchers. Mathis et al. [Mathis97]
proposed a performance model predicting effective bandwidths under conditions of light to
moderate loss, and which accommodates connections using SACKs. Padhye et al. [Padhye98]
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[Padhye00] construct an analytic characterisation of TCP throughput which incorporates
timeout-based and fast retransmissions, and the effects of small receiver-side windows.

Both these and other similar models are based upon an assumption of steady state (i.e. a bulk
data transfer over an established and unending connection in which the sender maintains
a full transmit buffer). The models are verified through a combination of simulation and
measurement of real traffic.

5.2 The Limitations of Steady State Modelling

The great weakness of steady state models is that they do not reflect the reality of the majority
of TCP connections: Brownlee and Claffy [Brownlee02] report, in a study of traffic observed
on the campus OC12 link at UC San Diego, that 87% of Web streams were under 1 kB in
length, 8% between 1 and 10 kB, and 4.8% between 10 and 100 kB. For non-Web traffic the
proportions were 89%, 7%, and 1.5% respectively. The same authors, with others, report
in [Brownlee01] that 75% of TCP flows were of less than ten packets and of length less than
2 kB. Although the small proportion of large-transfer connections may represent a majority
of the bytes transferred, the preponderance of small transfers is of critical importance. The
user will often be aware of large transfers and anticipate some delay; the characteristics of
small connections, however, will frequently be cumulative (e.g. in the download of multiple
Web-page components) and will effect perceived utility disproportionately to the number of
bytes actually carried.

Figure 5.1, based upon an analysis of responses to HTTP GET requests in a one and three-
quarter hour trace of the University of Cambridge’s external link, shows approximately similar
results. Figure 5.1(a) shows the distribution of delivered object sizes: approximately 39% of
objects were less than 1 kB in size, 43% between 1 and 10 kB, and 17% between 10 and
100 kB. Figure 5.1(b) shows the distribution of the number of TCP segments required to
deliver HTTP responses to the requests made over non-persistent connections: just over 60%
of all responses are carried in a single segment, 90% in eight segments or less, and 92% in ten
or less.

Much of the apparent discrepancy between Figures 5.1(a) and 5.1(b) (and between these
and those of the studies cited) can be explained by reference to Figure 5.2 which shows the
distribution of status codes accompanying server responses to these requests. Approximately
38% of the responses (304 — ‘Not Modified’ and 302 — ‘Moved Temporarily’) do not return
an object; the HTTP response header itself — typically of a few hundred bytes — being
transmitted in a single packet.

Steady state models characterise TCP connections primarily in terms of their RTTs, Maximum
Segment Sizes (MSSs), and loss rates. The dominant feature of short1 connections are those
of latency: connection establishment, in the originator’s response to establishment, and in the
other party’s response; and of slow start. Although steady state models normally incorporate

1In this context ‘short’ should be interpreted as meaning a connection carrying a small number of data
segments, rather than ‘short-lived’. Such connections are by definition ‘mice’, they are only probably ‘dragon-
flies’.
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Figure 5.1: Distribution of HTTP object sizes and number of segments required
to deliver HTTP responses
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Figure 5.2: Distribution of server return codes

slow start characteristics as a response to loss, they do not, by their nature, recognise the
significance of connections which operate entirely within this phase.

Some recent models of TCP have attempted to address the reality of finite, or short connec-
tions. Sikdar et al. [Sikdar01] develop a model extending that of [Padhye98] to incorporate
the connection establishment phase and an approximation of slow start behaviour. Card-
well et al. [Cardwell00] also propose a model which extends [Padhye98] and accommodates
the possibility that short connections will not suffer loss. Both models are verified by com-
parison with measured connections and by simulation.

5.3 Characterisation of TCP Implementations and Behaviour

TCP is primarily defined by a set of core Request for Comments (RFCs): RFC 793 Trans-
mission Control Protocol [Postel81], RFC 813 Window and Acknowledgement Strategy in
TCP [Clark82], RFC 896 Congestion Control in IP/TCP Internetworks [Nagle84], RFC 1122
Requirements for Internet Hosts – Communication Layers [Braden89], and RFC 2581 TCP
Congestion Control [Allman99a]. The core RFCs are supplemented by numerous extensions
and clarifications (e.g. RFC 2018 TCP Selective Acknowledgment Options [Mathis96], RFC

3390 Increasing TCP’s Initial Window [Allman02], RFC 2582 The NewReno Modification to
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TCP’s Fast Recovery Algorithm [Floyd99], and RFC 2988 Computing TCP’s Retransmission
Timer).

The status of RFCs varies (e.g. ‘STANDARD’, ‘PROPOSED STANDARD’, ‘INFORMA-
TIONAL’) as does the degree of prescription in their recommendations (e.g. ‘MUST’,
‘SHOULD’); the recommendations are, moreover, for minimal standards of behaviour or func-
tionality, rather than exact definitions or implementation directives. There are many TCP

implementations, although often based upon a smaller number of core implementations and
their variations; not all behave as intended and some (particularly in early manifestations)
contain bugs or are not entirely RFC compliant. All TCP implementations, moreover, define
a number of user-configurable parameters which may be expected to take a range of values.

As a consequence it is impossible to predict the behaviour of individual TCP connections
with absolute confidence in the face of widely varying network conditions, higher-level pro-
tocol behaviours, peer implementations, and connection histories; even when the general
characteristics of a particular known implementation are relatively well understood, nothing
is absolutely guaranteed.

Several studies have characterised the behaviour of specific implementations, or of TCP con-
nections in the round. The majority of these works have employed active techniques, normally
constructing sequences of segments designed to elicit responses from the target implementa-
tion illustrative of its behaviour in a range of specific circumstances.

Comer and Lin [Comer94] used this technique to investigate retransmission timer, keep alive
and zero window probing behaviours of a range of implementations without access to the
source code. A similar study was performed by Dawson et al. [Dawson97], who used an instru-
mented kernel and fault injection techniques to investigate a range of commercially available
implementations. Brakmo and Peterson [Brakmo95] used simulation, together with examina-
tion and modification of the source, to investigate performance problems in the BSD4.4 TCP

implementation. A rather different approach was taken by Padhye and Floyd who describe
a tool — TBIT [Pahdye01] — which probes Web servers2 to investigate Initial Window val-
ues; congestion control algorithms; responses to SACKs, time wait durations, and response
to Explicit Congestion Notification (ECN), of a wide range of servers. Rather than target
a known set of implementations the NMAP tool [Fyodor97] is used to identify the target
implementation.

All of these studies confirmed the differing behaviours to be found between and within imple-
mentations. In addition all identified flaws or bugs in the implementations and areas of RFC

non-compliance.

A contrasting study by Paxson [Paxson99] used passive measurement of 20,000 TCP bulk
transfers to observe and characterise a range of network pathologies and TCP behaviours.
Measurements were taken using the NPD measurement framework [Paxson97b] at both end-
points in recognition of asymmetry between forward and return Internet paths.

2Web servers are chosen because of the predominance of HTTP traffic on the Internet — the technique
can be generalised to any service reachable through a well-known address which can therefore be expected to
respond.
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5.4 Analysis of Individual TCP Connections

It is axiomatic that analytical models of TCP are generalised, and many are, additionally,
essentially stochastic in nature. The shortcomings of models based upon steady state as-
sumptions are discussed briefly in Section 5.2, but even those based upon the more realistic
recognition of finite and short connections, such as [Sikdar01] and [Cardwell00], will not re-
liably describe the detailed behaviour of individual connections at the packet level: not all
features, implementation variations, optional features, or network parameters can be gen-
eralised, and such models do not take into account behaviour of application-level processes
(e.g. client or server latency, use of multiple serial or concurrent connections) or of human users
(e.g. human browsing patterns). Although the steady state model is isolated from application-
level behaviour (explicitly by assumptions, for instance, of constantly full transmit buffers),
this is a weakness of finite-connection models as currently developed.

The characterisations described in Section 5.3, which are based upon active probing, are
also limited in their prediction of the overall behaviour of individual connections: with the
exception of [Pahdye01], they are limited to specific implementations, but more fundamentally,
although probing is carried out on individual connections, they all describe specific behaviour
assessed in the context of sets of carefully contrived conditions.

The work described in [Paxson99], being based upon passive measurements, does not subject
the end implementations to predefined conditions and observes a wider range of characteristic
TCP behaviour. Although the emphasis is upon the use of TCP connections to observe and in-
fer network dynamics, the study is particularly relevant to the work in this chapter: analysis of
the individual connections observed necessarily involved differentiating between TCP and net-
work behaviour and relies heavily for this reason upon Paxson’s tcpanaly tool [Paxson97a].

Tcpanaly was developed to automate the analysis of individual connections and, by isolating
TCP behaviour, to identify idiosyncrasies, bugs, and RFC non-compliance in TCP implemen-
tations. The original hope that analysis could be carried out on the fly proved unrealistic,
but off-line analysis demonstrated the effectiveness of the tool, which successfully identified
a range of implementations and their shortcomings. Input to tcpanaly consists of TCP/IP

headers collected by a packet filter based monitor. The underlying analytic mechanism is
based upon modelling the state of the TCP implementation at each end point, the change in
state arising from packet arrivals, and the packet transmission behaviour of each implemen-
tation as a result of the state modification. This mechanism is similar to that used by the
modelling technique described in Section 5.5 of this chapter; although there are significant
differences, the concepts of causality, data liberation and ACK generation are central to both.

A different approach to the analysis of individual connections was taken by Barford and
Crovella [Barford00]. Their tcpeval tool also relies upon the identification of data liberations
and ACK generation, but with the emphasis on Critical Path Analysis (CPA) of the TCP

connections carrying HTTP transactions.
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5.5 Modelling the Activity of Individual TCP Connections

Because Nprobe traces will normally contain details of activity at levels above the transport
layer of the protocol stack, it is possible to construct models of individual TCP connection
activity which incorporate this knowledge and can more accurately distinguish between net-
work, transport, and higher levels than the studies in [Paxson97a] and [Barford00]. While
tcpanaly and tcpeval make this distinction in order to isolate and describe activity partic-
ularly at the network and transport levels respectively, the modelling technique described in
this chapter can also provide information pertinent to higher-level activity and, significantly,
describe how activity at lower levels is seen by the application and consequently the user.

This section describes an activity model of individual TCP connections which reconstructs
connection dynamics on a packet by packet basis by identifying the cause and effect relation-
ships between segments in the context of models of TCP end-point state. A parallel model of
application-level activity both informs the TCP model and is informed by it.

5.5.1 The Model as an Event Driven Progress

The timing of primary events observed when monitoring a TCP connection (i.e. the transmis-
sion of data segments and/or acknowledgements) will be determined by a variety of causes,
which are themselves events occurring over a range of levels in the protocol stack. The series
of segments, for instance, whose payload is an HTTP response comprising a Web object, is
initiated by the receipt of the corresponding HTTP request. The exact transmission time of
each individual segment or acknowledgement will, however, be determined by one or more of
a number of preceding events and the current state associated with the connection — these
in turn are determined by the events that precede them and the connection state at the time.

From the viewpoint of the monitor, the packets observed reliably represent transmission events
and possibly the higher-level events represented by packet contents. The observed packets
do not represent receipt events as packets may be lost between the monitoring point and
receiving host. Receipt events can only be inferred from the observation of the transmission
events which they trigger. A further category — hidden events — also identified only by
inference include transmission events not seen because of packet loss, timer driven events
(e.g. retransmission timeouts, delayed ACKs), or transmission buffer exhaustion.

5.5.2 Packet Transmission and Causality

The modelling technique described in this section is based upon the proposition that the
observed activity can only be fully understood by the correct association of cause and effect
— an HTTP response occurs because a request is received, but it is not possible to quantify
the server’s delay in responding simply by measuring the time between seeing request and
response — why the corresponding data segments are transmitted at a certain time must be
understood. The precipitating event may be the arrival of the request, a received acknowl-
edgement advancing the sender’s transmission window or enlarging its congestion window,
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the enlargement of the transmission window in response to an incoming advertisement, the
transmission of the last data segment of the preceding response on a persistent HTTP con-
nection, or simply the transmission of a preceding packet. Where cause and effect events are
represented by observed packets the pair of packets form a causative association.

5.5.2.1 TCP-level Activity

Although TCP activity is initiated, and may be modified, by application level events it is
largely determined by events and end-point state within its own level. The activity model is
therefore TCP-centric, but is developed in the context of precipitating events in the associated
model of higher-level activity, and itself contributes to the associated model.
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Note: Each ACK received generates a data liberation which results in the transmission of a flight of
data segments; arriving data segments create ACK obligations. The ACK and associated flight form a
round. The ACKs transmitted by Host A at times X and Y refer to the third segment of flights 2 and
3 respectively but are delayed.

Figure 5.3: Data liberations, ACK obligations, flights and rounds

Because the underlying concept of segment based cause and effect is similar to that employed
by [Paxson97a] and [Barford00], it is convenient to use the same terminology: data liberations
occur as the result of ACK receipts which cause congestion window growth or advance the flow
control window in the sender, and result in the transmission of a flight3 of one or more data

3A flight, which will consist of one or more packets — its size — should not be confused with the number
of segments in flight (i.e. those transmitted but not yet acknowledged from the viewpoint of the sender); the
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segments; ACK obligations arise as a result of data segment arrivals at the receiver; the ACK

and the flight segments carrying the data liberated by it form a round.

Figure 5.3 illustrates liberations, obligations, flights, and rounds in a time line diagram.
The connection shown is in its slow start phase; the Host B TCP implementation grows
its congestion window by one segment for each ACK received and the number of segments
potentially in flight increases accordingly. Host A implements delayed ACKs — the second
segments of flights 2 and 3 generate immediate acknowledgements, but the third segment is
not acknowledged until A’s delayed ACK timer fires at times X and Y.

Although a simple model based upon data liberations, ACK generation, and rounds underlies
the activity model, it is in practice too simple to account for the activity observed in the
case of many TCP connections. As indicated in Figure 5.3 the possibility of delayed ACKs
must be taken into account, and it can not be assumed that data liberations always result
in immediate transmission of the associated flight: in the figure an ACK arrives at time Z,
but the associated flight must await the completion of the flight 5 segment transmissions
currently in progress. The enhancements to the data-liberation model required by these and
other more complex TCP-level behaviours are discussed in Section 5.5.9 on page 130. The
incorporation of packet loss into the model is introduced in Section 5.5.5 on page 123, and
the determination of TCP activity by higher-level activity is discussed in Section 5.5.2.2.

5.5.2.2 Activity at Higher Protocol Levels as a Determinant

It must be remembered that TCP connections and data transfers are initiated by application-
level connect and write operations. Although these operations are infrequent and coarse
grained in comparison with the manifestations of TCP-level activity observed or inferred from
network activity, they determine the timing of TCP activity on the broad scale.

Because Nprobe traces contain detail of application-level activity, and because this detail iden-
tifies the packet from which it was extracted, events at the application level which cause TCP

activity can be identified. Some application-level events (e.g. the active open of a connection,
or the issue of an HTTP request on a persistent or non-persistent connection) precipitate the
immediate transmission of a segment; some (e.g. the issue of a request) may precipitate other
application-level events in the recipient which in turn cause the transmission of segment(s).

Alternatively, application-level events, for instance the issue of subsequent requests on a
pipelined HTTP connection, may trigger immediate application-level events in the recipient,
but any consequent TCP-level events are determined by activity at the TCP level (as the
segments carrying the response must await the transmission of segments carrying previous
responses). Whether application-level events precipitate immediate, or delayed, transmission
events must be decided by the model in the context of the current TCP activity.

Other application-level detail, while not representing causative events, may also inform inter-
pretation of TCP-level activity: HTTP header lengths and object sizes determine the bound-
aries between responses on pipelined connections and persistence negotiations may determine

latter is also referred to as the flight size.
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which party initiates a connection close. TCP activity can, conversely, imply application-level
events (e.g. a FIN segment on a non-persistent HTTP connection denotes an completion of
object event).

5.5.2.3 Interaction Between TCP and Higher-Level Protocols

As noted in Section 5.2, analytic TCP models have largely been based upon steady state
assumptions, a simplification which isolates TCP activity from that at higher levels. Studies
based upon the analysis of individual connections have also simplified the models upon which
they are based to minimise the impact of higher-level events: tcpanaly operates on traces of
single bulk data transfers of 100 Kilobytes, hence limiting application-level activity to opening
the connection and a single write operation; tcpeval isolates the connection set up and
HTTP request/response phases from the main liberation-based model. These simplifications
are not only convenient, but are also necessary in the absence of comprehensive knowledge of
application activity.

Higher-level activity which overtly precipitates TCP activity has been discussed in Sec-
tion 5.5.2.2, but more subtle interactions are also possible. The rate at which the receiver
consumes data will affect the sender’s transmission rate through the window advertisement
mechanism. TCP transmission will cease if the sender does not maintain adequate data in
the transmit buffer. In the former case, the effect is explicit through the observed window
advertisements and is trivially incorporated into the liberation based model; transmit buffer
exhaustion must be inferred from the sender’s failure to transmit data at the expected time.

The amount of data to be transmitted can also modify TCP behaviour: Heidemann
[Heidemann97a] notes how persistent HTTP performance can be compromised by delays in
transmitting partial segments due to the operation of Nagle’s algorithm [Nagle84]. Following
the publication of Heidemann’s findings, most Web servers operate with Nagle’s algorithm
disabled, but the activity model must be able to incorporate the behaviour of TCP connec-
tions where this is not the case: there is no guarantee that Nagle’s algorithm will be disabled
by all Web servers, and it will not be in many other applications. Because the model knows
data transfer sizes Nagle effects can be identified and incorporated.

5.5.3 Monitor Position and Interpretation of Packet Timings

The monitoring point from which data is gathered may be anywhere between the commu-
nicating endpoints and it is therefore inappropriate to interpret packet arrivals in terms of
conventional RTTs. RTTs, moreover, measure the total time taken by rounds and comprise
network transit times, delays introduced by TCP itself and application delays — the moti-
vation behind the development of the activity model is partly to distinguish between these
components.
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Figure 5.4: Causative packet associations, lags, application-level delays and
partial round trip times as seen at the monitoring point.

5.5.3.1 The Monitoring Point, Packet Lags and Partial Round Trip Times

The model employs the concepts of lags between packets in causative associations, partial
Round Trip Times (pRTTs), and end system delays as illustrated in Figure 5.4. The monitor
sees packets en-route to a host and those returning from it. Those in the forward direction
represent events which modify the TCP state of the host connection and which, in association
with the state, may trigger events represented by those travelling in the reverse direction.
These events may be interpreted, in the context of knowledge of causation at higher levels in
the protocol stack, to maintain a current model of the connection’s TCP state and to asso-
ciate departing packets with causative arrivals. For each causative association the difference
between timestamps represents the lag (i.e. the time taken for packets to traverse the network
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from the monitoring point to a communicating host, any delay at the host, and for returning
packets to traverse the reverse path). A conventional RTT4 is thus analogous to a pair of lags
from the client and server sides of the monitor.

If any delay at the host is deducted from the relevant lag the residual time represents the
network transit time or partial Round Trip Time (pRTT) of packets from monitor to host and
back; a pair of pRTTs therefore represents the total network transit time between the two
hosts. Figure 5.4(a) illustrates the relationship between lags, pRTTs and end-point delays.

5.5.3.2 Differentiation of Network and End System Times

The activity model discriminates the returning packets of causative pairs into those trans-
mitted immediately on receipt of an incoming packet — in which case the lag time of the
association is equal to, and establishes, a pRTT — and those transmitted after some delay.
Figure 5.4(b) shows a time line diagram of causative associations with and without delay.
End-point delays may be categorised as those due to:

• TCP implementation mechanisms (e.g. delayed ACKs , Nagle effects)

• Application delays (e.g. HTTP request processing and response generation)

• Serialisation delays (e.g. transmission awaiting that of previously queued packets)

• Combinations of two or more of the above

Because the activity model maintains models of the current TCP end-point state and appli-
cation activity, it is able to both identify causative associations where lags include a delay
and to categorise the delay. The majority of delays are identifiable as due to a single factor,
but where more than one cause is possible the delay is taken to be due to the cause for which
the model calculates the maximum notional lag magnitude.

For each identified delay the current pRTT is calculated by interpolation from nearby known
pRTTs and deducted from the lag time to calculate the magnitude. It is axiomatic that a
lag containing a delay does not yield an immediate pRTT and it has to be accepted that, in
order to calculate delay magnitudes, some inaccuracy arising from interpolation of pRTTs is
inevitable. The accuracy obtained by this technique will, however, normally be far better than
that obtained by those where network transit times and end-point delays are not differentiated.

5.5.4 Unidirectional and Bidirectional Data Flows

The activity model is described for simplicity in terms of a unidirectional data flow. Such
TCP flows are comparatively rare (the data transfer connections used by the File Transfer

4A similar technique is reported by Jiang and Dovrolis [Jiang02] who base RTT estimations on rounds —
the activity model can achieve the same end, by combining pairs of pRTTs , but the differentiation of client
and server pRTTs allows the calculation of delay magnitudes.
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Protocol representing a significant exception) — even protocols such as HTTP , where the
majority data transfer is unidirectional, normally include some bidirectional element (e.g. the
transmission of the client request).

The model is, however, able to accommodate bidirectional flows without significant additional
complexity. Where bidirectional flows do not take place concurrently, connection activity can
be regarded in effect as two distinct unidirectional flows bounded by application-level activity;
where the two flows occur concurrently causative associations are not invalidated, but care
must be taken to differentiate ACKs piggy-backed on data segments from those whose timing
is determined by normal ACK generation alone.

5.5.5 Identifying and Incorporating Packet Loss

Because the Nprobe monitor may be positioned at any point between communicating hosts
packet loss presents particular difficulties. Packets may be lost:

Between the monitor and the receiver: The monitor sees the lost packet, but receiver state
must not be modified to erroneously reflect its arrival.

Between the sender and the monitor: The monitor does not see the lost packet, but the loss
must be detected by the model in order to adjust transmitter state appropriately.

In the first case, loss of data segments is trivially identified as the monitor will see a duplicate
(retransmission) of the lost segment. An initial pass through the trace packet records marks
the lost segment; when encountered the model adjusts the transmitter state but not that of
the receiver.

In the second case the transmission of the sent, but unseen, segment must be inferred. In the
majority of cases the loss will be suggested by a sequence gap in the segments seen by the
monitor — also detected during an initial pass through the packets — during which a dummy
packet can be inserted into the packet records to ensure that transmitter state is adjusted
at the correct point. If the missing segment is part of a flight, the time that it would have
been seen by the monitor can be estimated with reasonable accuracy from the timings of the
accompanying segments.

In both cases loss will also usually be indicated by the generation of duplicate ACKs generated
by the receiver. The possibility of individual segment loss can also be eliminated by the
assumption that all acknowledged segments have been received5.

There is more difficulty in identifying data segments lost between the sender and monitor
where, at the time of loss, no subsequent segments are transmitted and hence no sequence
gap is identified. In this case the model must rely upon either a subsequent data liberation
manifesting the sequence gap or its own expectation that an unseen segment should have been
transmitted. In the former instance the preliminary pass will identify the lost packet in the

5This assumption is regarded as safe — a TCP receiving an ACK for an unsent sequence would reset the
connection and the model would be rejected as invalid.
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normal way, in the second there is the possibility of ambiguity: the expected packet may
have been lost, its transmission may have been subject to an application delay6 or both delay
and loss may be present. A heuristic solution is employed based upon the model’s current
estimation of the sender’s retransmission timeout, application-level activity and the data size
of the eventually transmitted segment.

When data segment loss is detected, the model must reflect the consequent effects upon TCP

state and subsequent events, and must differentiate between timeout triggered retransmis-
sions and fast retransmits [Allman99a]7. The possibility of a fast retransmit will have been
flagged by the observation of three or more duplicate ACKs , and the timing of the retransmis-
sion will normally indicate which has occurred. The model must incorporate the connection
(re)entering a slow-start or fast recovery phase and adjust the value of its congestion window
and slow-start threshold accordingly; the notional retransmission timer value must also be
adjusted.

The loss of ACK segments presents rather more difficulty than that of data segments as the
clue provided by retransmission is absent; it is primarily for this reason that the detection
of lost data segments does not place reliance on the absence of the relevant observed ACK.
Conversely, because ACK obligations result only from activity at the TCP level no possibility
of confusion between lost ACKs and application-level delays arises.

It is useful, at this point, to introduce more of Paxson’s terminology [Paxson97a]: ACK obli-
gations may be optional — TCP may acknowledge a data arrival (e.g. when new in-sequence
data arrives) or mandatory — an ACK must be generated (e.g. when out of sequence data
arrives, for at least every second full sized segment, and at the upper bound of ACK delays
[500 ms]). ACKs arising from in-sequence data may be normal (i.e. those for two full sized
segments), delayed (i.e. for single segments) or stretch (i.e. for more than two full-sized seg-
ments). The activity model adds the term sequence acknowledgement for those generated by
the arrival of out of sequence data.

ACK loss occurring between sender and monitoring point may be indicated by the failure to
observe expected ACKs (either normal, or delayed after an appropriate period); unfortunately
stretch ACKs are not uncommon8 which renders the expectation of mandatory ACKs for every
second segment unreliable as an indicator of loss on connections where they are found. The
loss of stretch ACKs themselves can be detected because they inevitably acknowledge sequences
within the same flight.

The cumulative nature of ACKs means that any failure to update the sender’s state in the
case of losses before the monitoring point is healed by subsequent ACKs. Similarly, ACKs lost
between the monitor and the receiver are indicated by the release of an unexpectedly large
flight following the receipt of a subsequent ACK — the flight size also distinguishes this case
from that of data segment loss before the monitor. When flight sizes are determined by the

6
TCP mechanism delays are disqualified — the model would anticipate such delays and a segment trans-

mission would not be expected.
7The ‘NewReno’ modification to the fast retransmit algorithm [Floyd99] is not yet incorporated into the

model — SACKs are not yet collected by Nprobe or modelled.
8With the exception of a maximum ACK delay of 500 ms, RFC 1122 [Braden89] couches its recommendations

for ACK generation in terms of ‘SHOULD’ rather than ‘MUST’.
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congestion, rather than the flow, window, the corresponding indicator is a failure of expected
window growth.

Fortunately the case critical to the accuracy of the model is that where ACK loss (wherever
it occurs) results in retransmission, for which identification mechanisms are comparatively
robust, and the retransmitting host’s state can thus be corrected accordingly. The removal
of possible ambiguities in detecting loss is also made easier because expectations can usually
be expressed both in terms of sequence, and of observation time.

It may appear that a modelling process which depends upon both inferring loss and delay
through observed activity is analogous to lifting one’s self by the boot straps. The set-
up phase of the connection, however, provides a reliable foundation for any following time-
based heuristics. Application-level delays are absent from this phase, default retransmission
timeouts (initially three seconds) are sufficiently large to be unambiguously identifiable, and
an approximate magnitude for the connection’s pRTTs is established.

5.5.6 Packet Re-Ordering and Duplication

Although, with the exception of retransmissions, it is assumed that data segments are trans-
mitted strictly in order, the activity model must recognise that packets may be re-ordered by
the network. As with packet loss, re-ordering may occur both upstream and downstream of
the monitoring point. In general re-ordering may be distinguished from the case of packets
lost before reaching the monitor and their retransmission, following intervening packets, be-
cause re-ordering inevitably occurs within the same flight9, and because insufficient time will
have elapsed for a retransmission to have taken place.

Upstream data re-ordering is trivially detected during the initial pass through packet records,
and the relevant packets so marked to avoid confusion with sequence gaps denoting lost
packets; downstream occurrences can only be inferred through subsequent connection activity.
Because re-ordering does not effect the sender, and because, once the re-ordered sequence has
been delivered, the receiver state is identical to that had not re-ordering taken place, the
model is faced with little difficulty subject to the proviso that:

• Re-ordering is not confused with retransmission

• Any sequence ACKs generated are not taken as indicators of packet loss (the distinction
is drawn by a closely subsequent normal or delay ACK)

• Fast retransmits due to multiple sequence ACKs are recognised10

ACK segment re-ordering has a lower incidence than that of data segments: Paxson reports
9This observation is supported by Bellardo and Savage who conducted a survey of packet re-

ordering [Bellardo02] using active techniques which exploited characteristic TCP behaviour. They report
finding the incidence of re-ordering of minimum-sized TCP packets to be less than 2 per cent when separated
by more than 50 µs , tending to zero at 250 µs.

10This will occur only in the case of a re-ordering distance greater than three segments — no such distances
have yet been observed.
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a ratio of approximately 1:3 [Paxson99] for bulk transfers where a high proportion of ACKs
might be expected to cluster due to large flights of data segments. For the majority of short-
lived connections the findings reported in [Bellardo02] (see Footnote 5.9) suggest that ACK

re-ordering will be extremely rare. Where ACKs are reordered, their impact on both receiver
and model are minimal (due to their cumulative nature), although the model should ensure
that the ACK following the delayed ACK is not confused with a stretch ACK .

Packets may also be duplicated by the network. Where data duplications are seen by the
monitor, they can normally be distinguished from duplication due to retransmission by their
arrival time. Duplications are detected during the initial pass through the packet records,
marked, and subsequently rejected by the model, as they would be by the receiver. Duplicated
ACKs can be ignored by the model; they will introduce inaccuracy only in the unlikely event
that three duplications trigger a fast retransmission.

5.5.7 Slow Start and Congestion Avoidance

Congestion window growth must be tracked by the model during slow-start and congestion-
avoidance phases of the connection. Accurate identification of flight sizes (Section 5.5.8 and
Code Fragment 5.1 on the facing page) is necessary to enable the model’s predictive element
(Section 5.5.8.2) to verify that window-growth behaviour is accurately understood.

TCP implementations may enter congestion avoidance either when CWND is equal to the
Slow-Start THRESHold (SSTHRESH), or when it becomes larger. The model notes the point
at which CWND = SSTHRESH and determines the implementation’s behaviour on the basis
of CWND growth thereafter.

5.5.8 Construction of the Activity Model

The core of the activity model is a representation of the TCP state at the communicating
end points; packet events (as represented by the header records collected by Nprobe ) are
presented in order to the model and state modified — the exact interpretation of events
and their impact upon state are dependent upon the state at the time of the event. The
representation of state identifies cause and effect relationships between packet events, and
these and the state itself. A model of higher-level activity is incorporated and provides the
context for the TCP-level activity observed; this model is typically relatively simple, activity
consisting of request/response events and data transfer sizes. Other relevant information
(e.g. the course of HTTP persistence negotiations, or whether pipelining is employed) is also
recorded.

The model makes a preliminary pass through the packet records in order to group data
segments into flights, and to mark any retransmitted, re-ordered, or duplicated packets iden-
tifiable at this stage. The simple, but reliable, algorithm used to identify flights is reproduced
in Code Fragment 5.1.
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1 TFACT = 2

3 # Calculate data transfer duration and threshold

4 dur = self.sldata -self.sfdata

5 thresh = ( dur/self.dsegs)/TFACT

7 flt = 0

8 lt = self.pktlist [0].tm

9 # step through the packets

10 for p in self.pktlist:

11 if p.len or p.flags & ( TH_SYN | TH_FIN):

12 if p.tm-lt > thresh:

13 # belongs to next flight

14 flt += 1

15 # assign flight to packet

16 p.flt = flt

17 lt = p.tm

18 else:

19 # not data segment - no flight membership

20 p.flt=None

Fragment 5.1: TCP data segments are assigned to the same flight if the interval
between their arrivals is less than a threshold value based upon the average
inter-segment arrival period for the connection.

5.5.8.1 Base and Dynamic State Representation

The TCP state at each end point is represented by two sub models: a base model representing
the rules governing the TCP mechanism and behaviour, and a dynamic model representing
the endpoint state at any given point in time. A base model is established for each host
endpoint which establishes the modification in state associated with each packet event and
any resulting activity; the events themselves maintain and modify the dynamic model.

Differing base models are required to represent the range of TCP implementations encoun-
tered; for each implementation sub-models may be required to reflect connection-specific
parameters (e.g. maximum segment size).

5.5.8.2 Self Validation and Iteration

For any moment in time the dynamic state model for each connection endpoint predicts
the outcome of a packet arrival and any packet departure events which may be triggered.
By observing packet departures, therefore, the correctness of the dynamic model may be
confirmed, and, by inference, the base model validated for that connection. If a dynamic
model displays violation of causality, the degree and nature of the discrepancy are used,
together with the current base and dynamic models, to generate a fresh base model for that
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endpoint which would not give rise to the inaccuracy.
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Note: If incoming segments violate the model’s predictions a new base model is generated and the
model re-started, otherwise state is adjusted and the next segment processed.

Figure 5.5: Base, state and application-level models

Each new TCP connection is initialised with a pair of generic base models of TCP behaviour:
packets are presented as arrivals to the appropriate model, and as departures to the other,
which are thereby validated or fail by violating the predictions made. If necessary new base
models are iteratively generated and tested11 until one is found which correctly predicts and
matches the behaviour of the connection. Successful models are saved for future use, together
with the heuristic rules used in their generation.

Base models, and their sub models, are represented by an alphanumeric code. When an
iteration failure calls for the generation of a new base model, its code is checked against any
models previously employed for that connection so as to avoid the possibility of repetitive
loops. If a new model is generated which has previously been tested, or if a new model can
not be generated to accommodate the preceding failure, then the model as a whole is rejected
as a failure.

In practice few iterations of the model are generally required: the model seeks to understand
and interpret only the connection activity seen, which for the great majority of short con-

11It would, perhaps, be more efficient to rewind the model to the error point than to recommence entirely
with the new base model. If analysis code were written in C this might be feasible — state could be pushed
on to a stack at each packet. Unfortunately Python does not provide an efficient memory copy mechanism
analogous to the The C Programming Language (C) memcpy routine.
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nections requires only a simple generic base model, and once a host has been seen its base
model can be cached for reuse during the remainder of the analysis12. Successful pairs of
models can be found for the majority of connections to new hosts with very few iterations —
approximately 95 per cent of connections finding an accurate model with three iterations or
less.

5.5.8.3 Confidence and the Validity of the Model

Although the overall model will fail if a suitable base model can not be derived, precautions
must be taken against illusory models (i.e. those which produce no overt failures but which
nevertheless do not accurately account for the observed connection activity). An additional
test of successful models is therefore carried out based upon incremental confidence.

Some features of TCP activity and their representation by the model are trivially verified
(e.g. an in-order segment is transmitted), others require more complex interpretation which
may involve heuristic tests, or may give rise to possible ambiguity (e.g. the inference that a
downstream segment has been lost). The interpretation of each packet event, and the accuracy
with which it meets the model’s predictions can therefore be associated with a confidence
factor weighted to represent the complexity of the event prediction; a confidence score reflects
the model’s confidence in its disposal. Each apparently successfully modelled connection will
consequently be accompanied by a confidence rating R (0 ≤ R ≤ 1.0) calculated as:

R =

n=N
∑

n=1

(Cn × C ′

n)

n=N
∑

n=1

(C ′

n)2

where:
N is the number of packet events
C ′

n is the confidence factor associated with event n (0 < C ′ ≤ 100)
and
Cn is the confidence score associated with event n (0 ≤ C ≤ 100)

If the model’s confidence rating falls below a threshold value R′ then the model is rejected as
invalid. The exact values ascribed to C and C ′ for any event, and to R′, are arbitrary, and
require ‘tuning’ in the light of experience as the activity model is developed.

12Persistent caching of base models is possible, with the caveat that host systems may change over time,
but is not currently implemented as continuing development of the activity model may invalidate entries.
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5.5.9 Enhancement of the Basic Data-Liberation Model

The basic data-liberation/ACK-obligation model of TCP behaviour will fail to characterise TCP

activity in all but the most trivial steady-state established connections — although these are
the main determinants of activity, connections’ behaviour is considerably more complex. The
way in which the model incorporates packet loss, re-ordering, or duplication is described in
Sections 5.5.5 and 5.5.6; other desirable enhancements include:

The receiver’s ACK strategy: Differing ACK generation behaviours will result in varying data
liberation patterns as illustrated in Figure 5.6.

The model is able to distinguish delayed ACKs because they advance the window by
less than two segments. A record of the times at which delayed ACKs are seen enables
the model to approximate the period and phase of any heartbeat timer13. Stretch
ACKs are recognised because they advance the window by more than two segments —
differentiation between stretch and lost ACKs is discussed in Section 5.5.5.

TCP timers: In some situations the model depends upon retransmission timeout values to re-
solve ambiguities or to generate arrival event expectations (see Section 5.5.5 on page 123).
Each end point’s RTT estimation and retransmission timer is therefore modelled; the
sum of server-side and client-side lags approximating the current RTT. This estimation
is out of phase by the period taken by an ACK to travel between monitor and receiver,
but the inaccuracy introduced is minor compared to the coarse precision required to
distinguish retransmission events.

The model does not represent the TCP persist timer, as its representation is not nec-
essary for the identification of zero-window probes; the keep-alive timer is similarly
omitted as connections involving long periods of quiescence have not been studied to
date, and keep-alive probes are also readily identified.

Maximum segment size: Nprobe records details of TCP MSS options, if seen, allowing each
base model to be initialised with the correct, or default, value. The model must, never-
theless, check the MSS used by each end point as some implementations use a value 14
octets less14 than that advertised.

Window advertisements: The receiver’s current window advertisement must be recorded,
both to identify whether it, or the congestion window, is determining segment transmis-
sion, and to identify non-transmission due to window closure. Zero-window probes and
transmission due to window growth are identified with reference to the current window
size.

Initial window size: Base models are initialised with an Initial Window (IW) of two seg-
ments [Allman99a], but the size of the initial flight is checked and the value adjusted
to guard against the possibility of the larger window allowed by RFCs 2414 [Allman98]
and 3390[Allman02].

13Paxson notes that Solaris TCP uses a 50 ms interval timer, rather than a heartbeat timer; this possibility
has not yet been incorporated into the model.

14Coincidentally the length of an ethernet header.
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(b) No delayed
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Note: The receiver’s acknowledgement strategy, and the period and phase of the delayed-ACK heartbeat
timer, affect the pattern of data liberations and the interleaving of rounds. All of the connections shown
deliver 14 segments in slow-start.

Figure 5.6: The effect of receiver acknowledgement strategies

Sender window: TCP implementations will place an upper bound on the number of segments
in-flight based upon the size of the buffer committed to holding unacknowledged data.
This bound is likely to be encountered only in the case of large data transfers on con-
nections with particularly high bandwidth-delay products but should be recognisable
by the model.

Application-level behaviour: Application-level activity in terms of initiating data transfers,
etc. is implicitly recognised by the model, but it must also be capable of recognising
when the application fails to deliver data to the sending TCP, which could otherwise
have been sent at that time.

It is assumed that flights of segments are transmitted as back-to-back packets and an approx-
imation of upstream bottleneck bandwidth BU Mbps can therefore be estimated as shown in
Figure 5.7(a) using the formula:
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BU =
(s + ((n − 1) × OP )) × 8

t

where:
n is the size of the flight
OP is the per-segment packet overhead in octets
Si is the initial sequence number of segment i of the flight
s = Sn − S0

Ti is the arrival time of segment i of the flight
and
t = Tn − T0 in microseconds

Downstream bottleneck bandwidths are less accessible, but an estimation can be based upon
the rate of returning ACKs using the technique of Instantaneous ACK Bandwidths (IABs) used
by Mogul [Mogul92] and shown in Figure 5.7(b), and explained here, in simplified form. The
IAB of two ACKs — BI Mbps — is calculated as:

BI =
s

tA

where:
s = (sA + (nA × OP )) × 8
sA is the number of octets acknowledged
nA is the number of segments acknowledged
OP is the per-segment packet overhead in octets
and
tA is the time interval between the acknowledgements in microseconds

Figure 5.7(b) on the facing page shows the ACKs which might be generated by the segments
shown in Figure 5.7(a) on the next page. IABs will indicate the downstream bottleneck
bandwidth if the packets upon which they are based maintain queueing at the bottleneck:
s1/t1 and s3/t3 will yield meaningful results if it is assumed that packets in the first and
second flights queue; the value given by s2/t2 will probably not, as the buffer at the bottleneck
may have drained between the two flights. Mogul demonstrates that a frequency analysis of
the IABs generated by a connection produces a median value representing the connection’s
bottleneck bandwidth; values below the median represent segments which have not queued,
and those above it represent ACK compression on the return path15. If the upstream bottleneck
passes a lower bandwidth than that downstream then no information about the downstream
bandwidth is available.

15Mogul’s study is an investigation of ACK compression and its effect on TCP’s self-clocking mechanism. The
IAB technique itself is originally owed to Shepard [Shepard91].
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Figure 5.7: Calculation of up and down-stream bottleneck bandwidths

The studies carried out with Nprobe to date have concentrated on HTTP traffic with its
characteristic predominance of short connections. The accuracy of IAB-based bottleneck
estimation relies upon an ample sample of ACKs, and consequently this feature remains to be
fully implemented.

5.5.10 The Model Output

Because the activity model accurately analyses TCP and higher-level activity and behaviour,
and infers the contribution made by the network, its output is potentially a characterisation at
both the individual and macrocosmic scales. The principal motivation for the development of
the model has been the distinction of network/TCP and application level delays: the primary
model output therefore comprises application-level delays and pRTTs.

A secondary output, consisting of a detailed characterisation of each connection, is available
as an input to the simulation process described in Section 5.6, but could, in aggregate, also
form the basis for wider studies. The model’s output is defined and aggregated by a sub-type
of the StatsCollector class described in Section 4.3.5 on page 89.

5.6 Simulation of Individual TCP Connections

Studies, such as that of the contribution of single connection delays to whole Web page down-
load times described in Chapter 8, call for an accurate assessment of the impact of connection
features (e.g. packet loss and recovery) at the granularity of the single connection. Although
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the accuracy of analytic models has been improved (e.g. by [Sikdar01][Padhye98] for short
TCP connections) they do not encompass enough of the factors determining a connection’s
activity and duration to reliably predict individual outcomes when parameters at the level of
detail provided by Nprobe traces are varied — to do so calls for accurate simulation of the
connection based upon such fine-grained detail.

5.6.1 Assessment of the Impact of Packet Loss

The approach to assessing the impact of packet loss taken by Barford and Crovella [Barford00]
is to use network analysis techniques to identify the critical path through the rounds of a
connection. The contribution of connection set-up latency, application delay, and loss to the
path are identified and quantified. This technique isolates the set of rounds determining the
Payload Delivery Time (PDT) of the connection, and the network delay introduced into those
rounds due to loss, but does not determine the overall effect of loss on the PDT because it is
based upon the critical path as it is determined in the presence of the loss. In the absence of
loss the critical path would be shorter, or could follow a different interleaving of rounds.

The major determinant of TCP PDT is the network RTT and the number of rounds required
in connection set-up and to deliver data. When loss occurs, the effect on overall PDT is
determined by an increased number of rounds rather than the delay between initial and
re-transmission of the lost segment in all but the shortest connections.

Packet loss may increase the number of rounds as determined by the sender’s retransmission
policy (i.e. the use of fast retransmits and possibly fast recovery); the receiver’s acknowl-
edgement policy may determine fast retransmits. The position of the loss in the segment
stream, particularly if resulting in the connection re-entering slow-start (and the modification
of SSTHRESH — hence adjusting the point at which CWND growth becomes linear rather
than exponential) will also affect the number of subsequent rounds, and their interleaving as
shown in Figure 5.8.

Estimation of the connection delay due to loss must therefore rely upon establishing the
PDT of the connection without loss through accurate simulation. Similarly any other what if
analysis, whether based upon Critical Path Analysis or not, must rely upon simulation.

5.6.2 Construction of the Simulation

The method employed to simulate individual connections is analogous to the construction of
the activity model but with the following transpositions:

• The predictive element of the model becomes a posting of future packet events.

• Interpretative elements (e.g. pRTTs or application-level delays) become input parame-
ters.

• Packet arrival events are concrete, rather than tentative.
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(a) No loss

R

(b) Segment 1
lost

R

(c) Segment 7
lost

R

(d) Segment 12
lost

Note: The connections shown transfer 15 data segments. ‘R’ indicates packet retransmission, red tics
indicate the receiver’s delayed ACK heartbeat, and non-data–liberating ACKs are omitted for the sake
of clarity. Connection (b) spends its entire lifetime in congestion avoidance. Although the congestion
window re-initialises in (c) recovery is faster as the new value of SSTHRESH is higher. Re-entering
slow-start has little impact on (d). If the sender implemented fast retransmit and recovery the impact
of loss on (c) and (d) would be less, but (b) would not be affected as insufficient ACKs would be
generated following the loss.

Figure 5.8: Growth in rounds as a result of packet loss

• The base model of connection behaviour is fixed, and is not modified during the con-
nection’s lifetime.

As in the model, simulated connection activity is based upon data liberations and ACK obli-
gations; the connection itself is modelled as the state at the two end points. Packet arrivals
modify state and may cause further packets to be transmitted — represented in the simulation
as posted packet arrival events. Other posted events include factors such as the receiver’s de-
layed ACK heartbeat timer firing (which will cause a delayed ACK event if an acknowledgement
is outstanding) and zero-window expansion.
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5.6.2.1 The Simulation Viewpoint

Because the simulation is based upon data collected at Nprobe’s arbitrary monitoring point
between hosts, it, in common with the activity model, must recreate connection activity
in terms of time delays between packet events as seen at the monitoring point. pRTTs,
application-level, and other delays are recombined to create lags between causative packet
associations.

The unmodified simulation will be short by the total time taken for the first SYN segment to
travel from the originating host to the monitor, and the final segment to travel from monitor
to host. One-half of the relevant pRTT is added in compensation, but will introduce possible
inaccuracy due to path asymmetries.

5.6.2.2 Input to the Simulation

Input to the simulation comprises its basic parameters and the detailed characterisation of the
end-point TCP behaviours and application-level activity determined by the activity model:

The base model: determining the connections behaviour and parameters, such as initial con-
gestion window size and delayed ACK period and phase. The default base model is one
of generic TCP behaviour based upon RFCs 793, 813, 1122, and 2581, without fast re-
transmission and recovery. If the activity model has identified behaviour modifying the
generic base model then the modified base model is passed to the simulation.

A list of data transfers: incorporating details of request/response delays at client and server
and whether transfers are pipelined.

A list of application-induced features (e.g. window-advertisement adjustments and any zero-
window periods, and transmit buffer starvation).

A list of (numbered) segments to be dropped: dropped segments modify the sender’s state,
but are not scheduled as arrival events. The simulation models the connection’s re-
transmission timers in accordance with RFC 2988 and uses the appropriate values to
post retransmission events if fast retransmits are not being used, or are not triggered.

The construction of a simulation with unmodified input parameters should produce a notional
connection essentially identical to the observed connection upon which it is based. Any of the
input parameters may be adjusted as required to investigate the desired what if scenarios.

5.6.2.3 Underlying Assumptions

The assumptions upon which any simulation is based are reduced as the level of input detail
rises. The fine-grained characterisation of behaviour and activity produced by the activity
model minimises the number of assumptions that must be made when generating the simu-
lations described, although with the caveat that simulation may give rise to states with an
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outcome not assessed by the informing model. Such cases are minimised because many con-
nections are often seen from a specific host, and characterisations of its TCP implementation
behaviour can therefore be aggregate-based; where they do arise accuracy must depend upon
appropriate generalisation of default behaviour.

A further, and inescapable, class of assumption is that other factors remain invariant when
one or more input parameters are modified (e.g. changes in data transmission patterns do not
affect the end points’ ability to source or sink data, RTTs, or packet loss). Simulation results
should be interpreted in the context of such assumptions.

5.6.3 Simulation Output

The primary simulation output is a list of the packets generated and Payload Delivery Times.
Unmodified input parameters are already known and do not require duplication.

When a detailed analysis of simulation output is required, the output can be input to the
activity model and the desired data extracted and aggregated as for observed connections.
Care must be taken that any shortcomings in the original model are not perpetuated through
the simulation and remodelling processes.

5.7 Visualisation

The results of activity-model analysis are incorporated into the TCP connection visualisation
introduced in Section 4.5.2.1 on page 94. Causal relationships are presented, together with
the model’s congestion and flow-control window predictions, pRTT, and application delay
estimations.

Support for analysis model and simulation development are provided by the visualisation
tool. The Python TCP base model class interacts with the visualisation tool to present a
menu allowing the results of activity modelling of each connection with a variety of bases to
be assessed, and features such as the congestion window, and ACK high-water, indicators can
be interactively slid to investigate their fit to observed data. The tool also allows simulations
to be generated and the results modelled and displayed in order to present the effects of
parameter modification.

5.8 Validation of Activity Models and Simulations

The activity model conducts the internal assessment of validity and confidence described in
Section 5.5.8.3. The confidence which can be associated with analysis results in general,
discussed in Section 4.7, is also pertinent to results obtained from the model and simulations.
In the latter case, however, an additional difficulty arises because the results obtained contain
a notional element which can not be traced back to known data.
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5.9 Summary and Discussion

This chapter has introduced the analysis of individual TCP connections using an activity model
which uses TCP/IP header fields, and the details of higher-level protocol activity collected by
Nprobe, to reconstruct and interpret connection activity at the packet level. The model does
not require data collection adjacent to a connection end point, and distinguishes application-
level, TCP-level, and network effects.

Table 5.1: Principal distinctions between tcpanaly and the activity model

Tcpanaly Activity Model

Designed to analyse generated test traffic
of large data transfers

Must analyse whatever traffic is captured
by the monitor (e.g. short connections)

Emphasis on identifying implementation
bugs and RFC non-conformance

Emphasis on discrimination between TCP

and application-level behaviour

Identifies limited set of test
implementations through their static
built-in characteristics

Implementation characteristics inferred
through observed behaviour and
modification of a generic behavioural model

Single continuous data transfer Correlates multiple transfers and
client/server interaction

Analysis of packet-filter–collected TCP/IP

packet headers
Analysis of Nprobe-gathered TCP/IP

packet header records integrated with
application-level data

Must allow for packet filter losses,
reordering, and duplication

Not introduced by Nprobe

Traces gathered at, or adjacent to,
connection end point

Analysis must accommodate arbitrary
monitor position

Network loss and reordering upstream of
packet filter

May be up or down-stream of monitor

A TCP connection simulation implementation is also introduced, which generates TCP-level
activity, also on a packet-by-packet basis, and which minimises underlying assumptions of
TCP and higher-level activity and behaviour by taking its input from the fine-grained detail
provided by the activity model. By varying the simulation’s input parameters accurate what
if scenarios can be investigated in the precise context of the individual connections being
studied.

The activity model compares with Paxson’s tcpanaly tool [Paxson97a] and shares a common
basis in the underlying data-liberation model of TCP activity. There are, however, signifi-
cant differences between the two, as summarized in Table 5.1: the demands made upon the
activity model are greater, and its output and function are more complex. Tcpanaly does
not accommodate known details of higher-level activity, and places less emphasis on identify-
ing and quantifying application-level effects; it was designed to analyse connections carrying
large data transfers between known TCP implementations, whereas the activity model must
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deal with connections of arbitrary length, and between whichever implementations are en-
countered. Both recognise that analysis of connection activity can not be based upon a fully
generic model of TCP behaviour: the tcpanaly solution is to equip the tool with the known
characteristics of the test implementations used; the activity model uses a generic base model
which is modified to reflect the implementation-specific behaviour observed.

The activity model is not intended to uniquely identify the end-point host TCP implementa-
tions, the majority case of short connections without packet loss provides insufficient data,
but to accurately interpret the observed activity sufficiently to discriminate the contribu-
tions of network, TCP, and higher-level protocols. Implementations are therefore categorised
by behaviour rather than marque, and the reservation arises that there may, therefore, be
no cross check of the model’s interpretation against TCP implementation. It is, however,
possible to confirm that the model consistently identifies the same model of behaviour on
all connections from the same host with the same level of activity complexity — a correlation
which can be investigated with base-model caching disabled. A further indication is provided,
when analysing TCP/HTTP connections, by examining the HTTP User-Agent and Server

header fields. Although these fields only yield a low level of implementation detail, a good
correlation between operating system/version and the model’s interpretation across all hosts
is established.

Development of the activity model is continuing to ensure robust interpretation of increasingly
complex connection activity, but in its present state effectively all connections without loss
are correctly interpreted, and better than 90 per cent of those with loss. Chapter 6 describes
a series of tests designed to assess the model’s ability to discriminate and quantify Web server
latency, concluding with a study of latency at a popular server. Chapter 8 describes the
use of the activity model and simulation to investigate delay in Web page downloads. The
technique provides a new and valuable facility to distinguish between the factors contributing
to connection and application performance.





Chapter 6

Non-Intrusive Estimation of Web
Server Delays Using Nprobe

The study described in this chapter was undertaken in order to assess the development of
the activity model described in Chapter 5. It is not a demonstration of the full scope of data
collection, or study complexity that Nprobe was designed to meet.

6.1 Motivation and Experimental Method

The performance of Web servers is a matter of considerable importance to the Internet Com-
munity, one metric of interest being response times to the requests received. Whilst these
can be measured using both existing active and passive techniques, such measurements are
likely to be inaccurate. At the worst TCP connection latency may be included (confirmed by
the WAWM project [Barford99a] to make a major contribution to the time taken by HTTP

transactions); at the best, even when the interval solely between request and response is
measured, the contribution of server latency and network RTT to the observed delay are not
differentiated.

Web content is increasingly generated dynamically, and often tailored on-the-fly to the user
accessing the site. This places a considerable burden on the server through the execution of
server-side programs accessed through mechanisms such as the Common Gateway Interface
(CGI), and the use of scripting languages such as DHTML, ASP or PERL. Back-end processing
involving database accesses is also often involved. Thus, servers may be expected to become
more vulnerable to high or over-load conditions, and the potential requirement to monitor
their performance and response latencies will become more acute.

A series of Nprobe traces of Web object downloads were analysed using the activity model to
discriminate and quantify server latencies and partial Round Trip Times (pRTTs). Although
the study emphasises initial server delays (i.e. from complete receipt of a request until the first
segment of the response is dispatched), the analysis could equally well be used to identify all
components of delay whether contributed by the server, browser, network, or TCP behaviour.
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Three sets of experimental tests, based upon artificially generated traffic and described in
Section 6.3, were conducted to assess the techniques used. In the study described in Section 6.4
on page 154 the techniques were then applied to real-world traffic. The target servers in the
initial tests were set up specifically for the purpose, and were free of other, unknown, loads.

6.2 Use of the Activity Model

Sections 5.5.2 and 5.5.3 on pages 117 and 120 of Chapter 5 describe causal relationships be-
tween packets observed by the monitor, and how network, TCP, and application-level time
components can be differentiated by the activity model. Section 5.5.3.2, in particular, de-
scribes how application-level delays are calculated.

In the experiments described in this chapter the calculation of server latency is based upon
the measured delay between observing the final request packet from the client, and the first
packet of the matching response from the server. This delay forms the lag from which a
pRTT , interpolated from those established by non-delayed packets (i.e. those triggering an
immediate return transmission by the receiver), can be deducted to calculate the component
contributed by the application level. The activity model must thus correctly identify the
appropriate causative associations in activity at both TCP and application levels.

In the case of the tests conducted using pipelined persistent connections described in Sec-
tion 6.3.3, the model was required to establish valid causation in a more complex context
where transaction boundaries are less evident, and where the timing of responses might be
determined by activity at either the TCP or application levels, queueing behind preceding
responses, or packet serialisation delays.

All connections carrying the transactions of the observed server load were presented to the
activity model, which was used to identify instances of server latency and to differentiate
the associated pRTTs. The model output, in this instance, comprised a list of latencies and
pRTTs indexed by time. The latencies calculated for pipelined transactions were further
distinguished by type as explained in Section 6.3.3.

6.3 Assessment Using an Artificially Loaded Server

The first set of tests, described in Section 6.3.1, observed traffic between a server and loading
clients which were all connected to the same Cisco LX3500 100 Mbps Ethernet switch. The
network RTTs were therefore considerably smaller than the expected server delays. In the
second set of tests (Section 6.3.2) a more remote server, situated in the Computer Science
Department of the University of Glasgow, was used and loaded by the same set of machines
in the Cambridge Laboratory. This yielded an observation of transactions with RTTs and
server delays of approximately the same order of magnitude.

Both servers ran the Apache 1.3.9 Web Server over Linux: on an Intel Pentium III 500MHz
based PC in Cambridge and, in Glasgow, an Intel Pentium 200MHz based PC. The objects
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requested consisted of static objects — files of random bytes of varying sizes.

Two patterns of artificially generated load were produced:

• One or more background loads generated by Httperf [Mosberger98] consisting of re-
peated single requests at specified rates.

• An observed load generated by Httperf comprising repetitions of a single GET request
for a 1024 byte document followed, on completion, by a series of ten concurrent requests
for a 512 byte object. The estimated server delays are based upon observation of this
load as the background load was varied with time.

The set of objects forming the background and observed loads was chosen to ensure that all
requests could be satisfied from the server’s cache, hence avoiding random delays due to disk
reads. The cache was primed by a set of requests made before each test commenced.

A low priority idle loop process was run on each server for the duration of the tests, which
simply recorded the number of times it was able to increment a counter during each 100 ms
period — hence providing an indication of spare CPU capacity at any time during the experi-
ment. The process was launched and terminated via CGI requests, enabling its operation and
results to be synchronised with those derived by monitoring the network.

In each test the idle loop was first launched, followed by the observed load at time 10 s.
Background loads were progressively added, and later removed, at further 10 s intervals.
The client and server machines, load characteristics, load generating program, etc. for each
test were defined by a simple configuration file providing the input to a script running on a
master machine which controlled the various components of the experiment. The master was
responsible for starting slave scripts on each of the loading clients, instructing them of the
load to be generated and issuing commands to start and stop load generation at the times
defined in the configuration file.

In the three experiments described in this section it was expected that server latency would
rise with load, that the pRTT between monitor and server might rise as network throughput
increased, and (trivially) that the number of free CPU cycles would fall. The results are shown
in Figures 6.1 – 6.4: in each, Sub-figure (a) shows the total number of objects delivered per
second and serves to confirm that the specified loads were actually presented to the server;
Sub-figures (b) and (c) present the server latencies and pRTTs discriminated and calculated
by the activity model; and (d) demonstrates the correlation between server delay and CPU

usage.

In each Sub-figure (d) server delays averaged over successive correlation intervals are plotted
against an average CPU load factor for the same interval. The tests were not intended to
saturate the server, and even at the highest background loading spare cycles are available.

The CPU load factor φ (0 ≤ φ ≤ 1.0) expressed as the ratio of CPU cycles absorbed by
servicing the current load to those available at zero load is calculated as:
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φt =
C0 − Ct

C0

where:
Ct is the idle loop count for period t
and
C0 is the idle loop count at zero load

The spread of points plotted for each background load indicates the consistency of the load
factor (x-axis) and server latency (y-axis). It is difficult to predict the correlation between
varying load and server latency using a queueing model, due to the deterministic nature
of service times (which must be assumed constant), and the general distribution of request
inter-arrival times1 (which, due to the nature of the loads generated does not conform to any
standard distribution).

The average latency of observed load responses at zero background load can, however, be
predicted with some confidence. It is known that the observed load results in less than full
server utilisation, and that the burst of requests is not issued until the initial response has
been received — the two can therefore be assumed not to impinge upon each other’s servicing.
It can be further assumed that the burst requests arrive at very nearly the same moment in
time. The time in system (i.e. response latency) for each burst request will therefore consist
of its own servicing time plus waiting time while its predecessors are serviced, i.e. for a burst
of N requests and service time TS the mean time in system TN for each request is given by:

TN = TS +

(

N − 1

2

)

TS = TS

(

1 +
(N − 1)

2

)

(6.1)

The initial request of each observed load will not queue and will therefore simply have an
in-system time of TS ; the average latency over the whole observed load TO will therefore be
given by:

TO = (TS + (N × TN ))/(N + 1) (6.2)

As background load is applied, observed load requests may be forced to queue as a result
of requests already in the system, or requests arriving during processing of the burst. It
is suggested that the waiting time TW contributed by such queueing (irrespective of the
queueing model employed) would be additional to the average zero-load latency TO. In each
sub-figure (d) the result of such additional waiting time with rising background load, obtained

1It should be remembered that the experiments were designed to test the activity model’s capacity to
distinguish perturbations in server latency rather than to investigate queueing behaviour — in which case it
would have been possible to arrange, at least, an exponential distribution of requests.



6.3 Assessment Using an Artificially Loaded Server 145

by modelling the system as a simple M/M/1 queue2 with ρ = φ, is shown superimposed upon
the observed values. It is stressed that the system is not being modelled as a simple queue
— the queueing function is shown for comparative purposes only.

6.3.1 Client and Local Server with Small Round Trip Times
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Figure 6.1: Local server: load, calculated server latency and pRTT, and delay
function

Figure 6.1 show results typical of a test run with small RTTs between clients and server. The

2Hence with waiting time TW =
ρTS

(1 − ρ)
and time in system (average latency) TQ = TO + TW
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observed load request bursts were spaced at 0.1 s intervals, and background load requests for
a 1024 byte object were transmitted at a rate of 200 per second. Figure 6.1(a) shows the
number of objects served per second over time.

The calculated server delays for the observed load during the period of this test are shown
in Figure 6.1(b), which clearly demonstrates increasing server response times as the machine
is loaded and unloaded. Delays are quite widely scattered during the periods when only the
observed load is present (t = 10 – 20 s and t = 70 – 80 s). This is due to CPU scheduling
artifacts as the single HTTP daemon competes against other processes running on the machine;
under higher load Apache spawns more server processes which masks the effect. The delays
of approximately 27 ms and 32 ms at times t = 0 s and t = 90 s are those of the CGI request
sent to the server to activate and terminate the test, and reflect the longer delays associated
with such requests.

The calculated pRTTs between the monitoring point and the server are shown in Figure 6.1(c).
For clarity the values are averaged over 1 second periods, the error-bars representing the
standard error of the mean for each period. At high load, some evidence of packets queueing
in the network switch and/or the server interrupt handler can be seen, consistent with the
range that would be expected, and values become more dispersed. The switch was carrying no
other traffic, so, although not stressed, any contention for resources (e.g. during the periodic
burst of concurrent requests) is evident. Comparison with Figure 6.1(b) shows that, for this
experimental arrangement, the server delays and pRTTs differ by approximately two orders of
magnitude, and that they are successfully differentiated by the activity modelling technique
with little or no evidence of cross-talk.
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Figure 6.2: Local server: detail of individual server delays

Figure 6.1(d) demonstrates that server latencies and the CPU load factor remain largely con-
sistent within each background load, with the exception of the few higher latencies seen during
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the periods of lowest loading. A simple M/M/1 queue model with is shown superimposed
upon the observed values, with a service time TS = 0.836 ms (3 s.f.), obtained by substitution
of the mean server latency at zero background load in Equation 6.2. With the exception of a
minority of scattered values (and notably the groups of exceptional delays at zero background
load — which are excluded from the mean latency in calculating the mean service time) the
observed values conform surprisingly well to the predictions of the M/M/1 model.

Figure 6.2 shows greater detail of the response delays for each request for t = 15 – 25 s
(i.e. during the period when the first background load is added to the observed load), and
demonstrates the precision with which individual delays are isolated. The regular spacing of
request bursts at 0.1 s intervals is apparent, and the distribution of delays clearly reflects the
way in which the observed load is generated — the burst of 10 concurrent requests following
the initial request are transmitted back to back, each of the sequence queueing in the server
after its predecessors, and consequently being subject to an increasing delay. It can be
seen that approximately 30 per cent of the responses to bursts of concurrent requests before
the server load is increased at t = 20 s are delayed by approximately an additional 12 ms,
although the increasing delay within the burst remains consistent with the other bursts, and
the corresponding initial request is not subject to the additional delay.

6.3.2 Client and Remote Server with Larger Round Trip Times

Figure 6.3 shows results obtained by repeating the previous tests but observing a more distant
server. This is a less powerful machine than that used for the local-server tests, and the ob-
served load was therefore reduced to a request burst interval of 1 s and the added background
loads to requests for a 512 byte object at a rate of 100 per second. Only two background
loads were applied.

Figure 6.3(b) shows the calculated server delays, which are more distinguishable than those
in Figure 6.1(b) due to the greater spacing of the observed load request bursts, which can
now be seen at 1 s intervals. The effect of increasing and decreasing load over time can also
be seen, but is rather less apparent than in Figure 6.1(b) as this figure is scaled to show the
very long delay at t = 38 s. The structure of the request bursts can once again be seen,
although the increasing delays due to queueing in the server are now less regular than those
seen during the previous experiment. It is concluded that the greater variation in round trip
times leads to a less regular arrival rate in the server’s request queue, with the consequent
decrease in consistency of the queueing times themselves. The server latency exhibited by
this, less powerful machine, is approximately twice that seen in the previous experiment, with
occasional gross delays.

This experiment did not reveal the occurrence of the much greater delays for some request
bursts seen in Figures 6.1(b) and 6.2, with the single exception at t = 38 s. It is not known
whether this difference is due to the lower loads presented, to scheduling differences between
Linux 2.2.5 and Linux 2.2.16 (running on the Glasgow and Cambridge machines respectively),
or to other, unknown causes.

pRTTs between the monitoring point and the server are shown in Figure 6.3(c), again averaged
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Figure 6.3: Distant server: load, calculated server latency and pRTT, and delay
function

over 1 second periods. The pRTTs to the more distant server are now of the same order of
magnitude as the identified server latency, their variation over time and dispersion remaining
approximately in the same proportion to their absolute magnitude as seen in the case of the
much smaller pRTTs shown in Figure 6.1(c). It is noticeable that the highest pRTT values are
in most cases associated with greater dispersion over the 1 second periods shown, but that
the correspondence between increasing background load and pRTTs is not clear — the load
imposed by the tests was only a small proportion of the total traffic traversing the network
components involved.

In contrast with the previous experiment where clients and server were connected by a single
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100 Mbps switch link, the packets now observed have had to traverse many switches/routers
and some lower-bandwidth links. However, the fine structure in Figure 6.3(b) suggests that
it is still possible to extract pRTTs and server delays with accuracy. Although the potential
for cross-talk between round trip times and calculated delays is far greater in this experiment,
there is still little to suggest that it is present in any significant degree.

The correlation between CPU load and server latency shown in Figure 6.3(d) for each back-
ground load remains consistent3, although less tightly so than in the previous test — it is
surmised that, because the server on this machine consumes a higher proportion of the CPU

than that in the previous test (a load factor of approximately 0.33 – 0.95 compared with
0.11 – 0.72), performance is more vulnerable to other demands upon the system. A simple
M/M/1 queue model with service time TS = 2.82 ms (3 s.f.) is shown superimposed upon
the observed values.

6.3.3 HTTP/1.1 Persistent Connections

The experiment described in Section 6.3.2 was repeated, but using HTTP/1.1 persistent con-
nections (i.e. the objects were all requested and served on a single TCP connection). The
results of a typical test are summarised in Figure 6.4.

The requests sent on the persistent connections were pipelined (i.e. some requests were sent
without awaiting the receipt of preceding replies). Requests were transmitted in three bursts:
for object #1, for objects #2–#4, and finally for objects #5–#11, with a pause between each
burst while the outstanding replies were received. Figure 6.5 on page 151 illustrates the
pattern of activity on a typical connection; the request bursts are marked A, B and C.

The use of persistent connections and pipelining in this way gives rise to some interesting
observations. Server delays can now be categorised as initial delays — the interval between
the first request and response (corresponding to server delay on non-persistent connections),
response delays — delays between subsequent requests and their response, and null delays –
where the response is available but is queued for transmission behind its predecessor(s), and
where TCP mechanisms may also determine timing. As null delays are the result of TCP and
network characteristics they contribute nothing to the assessment of server performance.

Figure 6.4(b) distinguishes between initial and response delays. It is interesting to note that
two bands of response delays can be identified at approximately 10 ms and 15 ms. The lower
band represents the delay in response to request #1 (the first of a burst of three requests
transmitted in separate segments), and the upper band the delay in response to request #4
(the first of a burst of seven requests transmitted in the same segment. The two bands
are less distinct as load rises; it is not clear whether the difference in response times is
due to scheduling effects, or because the server processing required for the transmission of
response #1 can commence immediately upon receipt of the single request. Figure 6.6 on
page 152 shows the request-burst activity on the connection in greater detail.

The correlation between server latency and CPU load shown in Figure 6.4(d) also distinguishes

3The single extremely high delay seen at t = 38 s has been omitted.
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Figure 6.6: Detail of request bursts A, B and C shown in Figure 6.5
.
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between initial and response delays. Comparison with Figure 6.3(d) shows that pipelining
reduces the CPU load factor by between approximately 20 per cent and 15 per cent at the
lowest and highest loadings, and this may explain the slightly more consistent load factor at
each background load seen during this test4. Server latencies, however, exhibit a relatively
wide variation, which may be due to inconsistencies in the number of objects served in relation
to the scheduling of server threads, as a result of pipelining.

The single initial request latency of each observed loading can now be compared with the
standard M/M/1 queue model, where time in system (latency) TQ = TS/(1 − ρ), shown in
Sub-figure 6.4(d) with TS = 2.82 ms (3 s.f.).

The pipelining of requests #1 – #3 and #4 – #10 requires a reworking of Equation 6.1
calculating the average latency of a request burst at zero background load: within each burst
the number of requests, and hence the accumulated queueing time, is less - but additional
latency is introduced where the transmission of a response is delayed awaiting subsequent
responses transmitted in the same segment. This is more readily illustrated by Table 6.1, which
summarises the typical response pattern shown in Figure 6.5, than formulaically. A mean
latency for all responses over the two pipelined request bursts TB becomes (with reference to
Table 6.1):

TB = TS + 3.9TS = 4.9TS

Table 6.1: Calculation of additional latency in units of the mean service time TS

for average latency of pipelined request bursts.

Req. Pre Post Req. Pre Post

Burst 1 1 0 1 Burst 2 4 0 1
2 1 0 5 2 2
3 2 0 6 3 1

7 4 2
8 5 1
9 6 1

10 7 0

TOTAL 3 1 27 8

BURST TOTAL 4 35
4

OVERALL TOTAL 39

Mean value per response over ten responses 3.9TS

Note: Queueing while preceding burst members are serviced contributes Pre latency, and delay
while waiting for service of subsequent responses to be transmitted in the same segment contributes
additional Post latency.

The M/M/1 queue model for the pipelined requests is also superimposed upon the observed

4Also compare Figure 6.4(d) with Figure 6.1(d) where a lower CPU load factor is associated with more
consistent values
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values.

Comparison of Figures 6.3(b) on page 148 and 6.4(b) on page 150 indicates that initial delays
on pipelined connections are of approximately the same magnitude as the delays seen on
non-persistent connections. The response delays5 seen in Figure 6.4(b) are higher than those
of non-persistent connections, but must be set against the greater saving of a connection-
establishment latency for each transaction. Figure 6.4(b) does not show null delays, and
the number of measurements is therefore considerably less than when using non-persistent
connections, although the number of objects requested are the same in both cases. Each null
delay represents a saving of at least a single RTT per transaction compared to non-pipelined
requests on a persistent connection. Interestingly, despite the obvious efficiency of pipelining,
there is little evidence for it being widely exploited by current browsers.

6.3.4 Discussion of the Experimental Results

The results presented in Sections 6.3.1 – 6.3.3 suggest that the technique of activity modelling
is able to successfully discriminate between network and application-level time components,
with precise evaluation of both, and with little evidence of cross-talk. The anticipated positive
correlation between CPU load and server latency is seen, but a comparison with the system’s
behaviour and the predictions of modelling it as a simple queue are, as expected, mixed. The
observed behaviour of the local server bears a closer resemblance to M/M/1 queue behaviour
then that of the less loaded distant server, where latencies do not rise as rapidly with load as
in the model.

The accuracy of the technique can also be assessed by examination of the inter-arrival times
for requests and responses as observed at the monitor. Appendix C discusses the results
in this context, and shows that the zero background load latencies obtained by the Equa-
tion 6.2 model are in close agreement with those obtained by examination of the distribution
of response inter-arrival times.

6.4 Observation of Real Web Traffic to a Single Site

The assessment tests described in Section 6.3 were followed by a study of real traffic: all
HTTP requests from the University site to a well-known news server during periods of the
day when the rate of requests made might be expected to vary. Figures 6.7 and 6.8 show
the results obtained between 11.30am and 1.50pm, during which time approximately 90,000
TCP connections to the server, carrying 114,000 HTTP transactions in 2,522,500 packets were
seen.

Figure 6.7(a) shows server delays; the delays increase sharply from around 12.15pm, presum-
ably as people nationwide browse during their lunch break. The dispersion of delays increases

5The lower band of delays can be considered analogous to a subsequent request on a non-pipelined persistent
connection as they refer to response delays for a single request made after the receipt of the response to its
predecessor.
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Figure 6.7: News server: calculated latency and pRTT . The values shown are
averaged over 10 s intervals.
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Figure 6.8: News server: measurement context. The values shown are averaged
over 60 s intervals

correspondingly. It should be remembered that these delays pertain to the retrieval of in-
dividual objects, and that the total time taken to download entire pages will be subject to
a correspondingly greater increase with load — the reconstruction of whole page downloads
is discussed in Chapter 7 and a study based upon the trace introduced here is presented in
Section 8.4 on page 181.

Figure 6.7(b) shows how server-side pRTTs increase and become more dispersed over the
same time period. The server and network loads observed in Figures 6.7(a) and 6.7(b) are
determined by browsing patterns nationwide. In comparison Figure 6.8(a) shows the number
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of requests per second originating from the University site (i.e. the traffic which was monitored
in order to calculate the delays and pRTTs shown). It can be seen that although an increase
in delays and pRTTs is detected, reflecting national usage trends, this is independent of the
rate of traffic monitored, which remains approximately constant throughout the experiment,
and indicates that the results obtained are not effected by local load conditions.

The relationship between the calculated server delays and pRTTs for the observed period
is shown in Figure 6.8(b). It can be seen that, while there is a strong correlation between
pRTTs and increasing delays up to a value of approximately 150 ms, the network transit
time remains approximately constant for higher delays. The implication is that (for the
links involved) network performance is more robust than server performance in the face of
increasing load.

6.5 Summary

The activity model described in Chapter 5 has been developed to differentiate and quantify
the activity and time components contributing to a TCP connection’s life time and behaviour
by the network, TCP, and application-levels. This chapter has described the use of the model
to analyse the TCP connections carrying Web traffic, with emphasis on isolating and assessing
server latency.

Section 6.3 describes experiments in which Nprobe observed artificial HTTP traffic to and
from a dedicated server to assess the accuracy of the activity model and its ability to cor-
rectly discriminate between TCP and application-level phenomena. A series of tests presented
varying loads to the server to promote small differences in response latency, and were repeated
with both geographically close and distant servers to vary the ratio of RTT to server latency.
In all tests the model successfully isolated and measured latency and RTT, producing precise
and accurate results.

A final, and more demanding, series of tests were based upon the observation of persistent
HTTP connections with pipelined requests and are described in Section 6.3.3. The model
was able to accurately associate transactions and the TCP segments carrying them using
information collected from HTTP headers, and to distinguish characteristics of server latency
arising from connections of this type which have been hitherto inaccessible without end-system
instrumentation.

The accurate assessment of application-level delays is desirable, but previous techniques based
upon passive monitoring risk introducing inaccuracy because the contribution of network
RTTs can not be precisely evaluated and removed. Conversely RTT estimations will be in-
accurate when application-level effects are included in the apparent network transit times
measured. Section 6.4 describes a study of Web traffic between the University site and a pop-
ular news server. The growth in server latency experienced as the site becomes busy during
the lunch break is clearly defined, and the trends in RTT, although an order of magnitude
less than latency, successfully discriminated. The behaviour of a busy server as it reaches
demand saturation is identified.
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The utility and accuracy of the activity model has been demonstrated, and results not pre-
viously accessible using passive techniques have been obtained. An accurate measure of
application performance has been demonstrated — although the HTTP traffic monitored con-
forms to a relatively simple model of client/server interaction, the techniques underlying the
results obtained are applicable to a wide range of protocols and applications.





Chapter 7

Observation and Reconstruction of
World Wide Web Page Downloads

World Wide Web (WWW) traffic forms by far the largest single category carried by the
current Internet. As such, its study motivates a considerable and wide body of research. At
the largest scale, characterisation informs network planning and traffic engineering, and at
the smaller scale its underlying mechanisms, their interactions, and performance continue to
attract attention as their dynamics are studied and performance improvements sought. This
chapter describes how the data contained in Nprobe traces is used to reconstruct the activity
involved in the download of whole Web pages, in contrast to more usual research based upon
examination of the TCP connections used to download individual objects.

7.1 The Desirability of Reconstructing Page Downloads

Although the underlying Hypertext Transfer Protocol (HTTP) has wide applicability and is
frequently used for single document, or object, transfers, its primary employment is to request
and download Web pages comprising multiple objects. Detailed study of the dynamics of page
downloads must encompass not only network, TCP, and HTTP activity, but also the behaviour
of browser and server; accuracy also demands that the set of objects involved — the page’s
components — must be correctly identified.

A great deal has been learned from the examination of individual TCP/HTTP connections,
but as explained later in Section 8.2 on page 176 such examination may fail to answer even
such fundamental questions as how delay in downloading a page’s constituent objects affects
the download time of the whole page. Although the interaction of the protocols involved can
be studied at the granularity of a single TCP connection, this runs the risk common in any
concentration upon a system component in isolation — that the system as a whole, and the
interplay of its parts, are not fully understood. By using trace data pertinent to the full range
of protocols involved in Web activity, not only can the set of individual objects concerned be
properly identified, but the interrelationships and interactions of the activities by which they
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are retrieved, and the behaviour of the entities concerned, can be analysed in the context of
the whole.

7.2 The Anatomy of a Page Download

The typical Web page consists of a container document, normally written in Hypertext
Markup Language (HTML), which may stand alone for simple documents, but normally con-
tains in-line links to other subsidiary page components (e.g. images) which are automatically
downloaded. More complex documents may contain further, subsidiary, container documents
— frames — also downloaded via in-line links. Pages may also contain a scripted element:
executable scripts run at page download or close time, or under user control. Scripts may
be embedded in the container document or independently downloaded, and may themselves
download further components, or fresh pages, either automatically or upon user demand.
The layout and style of the page may be internally defined, or may be specified by one or
more automatically downloaded Cascading Style Sheet components. The page itself, or one
or more components (e.g. tickers), may, additionally, be automatically refreshed either once
or periodically. Pages usually contain external, or reference, links (to other discrete pages),
which are normally followed by the user and do not contribute to the current page download.
Components of whatever type are habitually referred to as objects.

Container and subsidiary components usually reside upon the same (origin) server, but in
some cases (e.g. central repositories of advertising material, Content Distribution Networks
(CDNs)) sub-sets of components may be fetched from secondary servers. Because browsers
can maintain caches of previously downloaded objects, not every link encountered results in
a new request for the target object; requests may be conditional upon the freshness of the
cached object and do not necessarily receive the object as a response.

Objects are normally retrieved via HTTP GET requests, but may also sometimes be returned
as the response to other request types (e.g. POST). The request for a page will result in the
return of the container document followed by a burst of requests for in-line objects which
may be cascaded if those objects include frames or script elements. The identification of all
objects is by Uniform Resource Indicator (URI) [Berners-Lee98], but the close coupling of
identity and location inherent in object retrieval is reflected in the inevitable use of the URL

subset [Berners-Lee94][Fielding95].

HTTP uses TCP as its transport mechanism. Early browsers opened a separate connection
for each transaction, each download thus being subject to connection establishment latency,
and commencing in the slow start phase. Additional load was placed upon the network, and
servers had to maintain and service an unnecessarily large number of connections. Improve-
ments to this strategy were suggested by Mogul and Padmanabhan [Padmanabhan95]. Of
particular relevance were persistent HTTP connections — multiple requests carried over a sin-
gle connection, and pipelining — requests transmitted without waiting for the response to their
predecessor. Experimental data supported their recommendations and showed a significant
reduction in overall download latency. A following paper by Mogul [Mogul95] demonstrated
the reduction in latency that could be achieved, and presented the results of extensive simu-
lations which also showed the reduction in server resources under TCP TIME-WAIT states of
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various durations. HTTP/1.1 [Fielding97], published in January 1997, incorporated persistent
HTTP connections and pipelining, together with a protocol allowing connection persistence
to be negotiated between HTTP/1.0 and HTTP/1.1 clients and servers.

Nielson et al. [Nielsen97] evaluated the performance of persistent HTTP connections and
pipelining, concluding that significant improvements required the use of both techniques but
were less noticeable when data was carried over low-bandwidth links. This observation was
reinforced by Heidemann et al. [Heidemann97b] who conclude, as a result of the analysis of
traffic models, that lowest link bandwidths in excess of 200 Kbps are required in order to
realise a subjective improvement in performance seen by the user. The models used were
validated in another paper [Heidemann97a] by comparison with real traffic. This paper also
identifies areas of TCP/HTTP interaction where persistence introduces delay due to the effects
of Nagle’s algorithm [Nagle84].

The most common pattern of TCP activity seen during a page download is the opening of a
single connection used to download the container document, followed, as the browser encoun-
ters in-line links, by the opening of one or more connections for the retrieval of subsidiary
components. The number of following connections concurrently open is typically limited to
two in order to limit undue bursts of demand on both network and server. If persistent connec-
tions are being used, all subsidiary components are normally downloaded on two connections,
otherwise one connection is opened for each. Observation of very many downloads by Nprobe

to date suggests that, despite potential performance improvements, persistent connections
are used only in a minority of downloads (approximately 10%) and pipelining in hardly any1.

7.3 Reconstruction of Page Download Activity

Page downloads must be examined in terms of the objects downloaded (HTTP transactions),
the TCP connections used and their dynamics, and client and server activity. In order to
quantify the contribution of these elements, each must be identified, but the interactions
between them can only be fully understood in the additional context of:

(a) The arrival time of each in-line link at the browser2.

(b) The full set of objects and their dependency structure (i.e. how do the objects relate to
each other, which objects contain links causing others to be downloaded).

1This may be explained by many popular browsers being configured to use non-persistent connections by
default. User-configurable browser properties vary greatly between browser marques, and between versions of
the same browser. The option to employ pipelining is offered by very few, and is pointless in many cases as
few servers support it

2Analysed in terms of lags and delays, as explained in Section 5.5.3 on page 120, because of the monitor’s
position independence. The term arrival time is used hereonwards for convenience and is valid in the context
of observed causative associations where the delay between components is of interest (e.g. browser-contributed
latency in opening a connection may be inferred from the difference between the time when the packet carrying
an HTML link is seen by the monitor and that of the the corresponding SYN segment — a correction for the
appropriate pRTT must be made).
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The dependency structure within a page can be represented by a sparse Directed Acyclic
Graph (DAG) with objects as nodes and links as edges — it is convenient to refer to this
structure as a reference tree. Because pages may be arbitrarily linked to one another, the
reference structure of multiple pages does not necessarily form an acyclic graph, but again
may be represented as such if the progress through a cycle is regarded as a return to an
node visited earlier (to do so reflects the reality of re-using cached documents and page
components). Because components (e.g. page decorations) are often shared between sets of
pages the overall reference structure forms a set of DAGs with a number of shared nodes.

7.3.1 Limitations of Packet-Header Traces

Traditional traces, based upon TCP/IP headers do not provide the context described: the
data required to satisfy (a) are absent, and (b) must rely upon inference which may be
misleading. A burst of connections carrying HTTP traffic between two hosts may imply
that a page is being downloaded, but will fail to recognise concurrent page downloads, or
associate components from multiple servers. Analysis of the individual connection activity
may recognise the boundaries between transactions on persistent connections (e.g. a data
packet from the client [request] followed by one or more from the server [response]), but will
fail in the presence of pipelining. The nature of the server’s responses is unknown, hence
retrieval of small objects may be indistinguishable from non-delivery responses (e.g. not

modified to conditional requests). Nothing can be inferred concerning the structure of the
page (e.g. the presence of frames), and phenomena such as redirection, or automatic reloads,
will not be recognised.

Studies of web performance using traditional traces have often concentrated upon single
TCP connections but, as explained in Section 8.2.1 on page 176, there is often no direct
relationship between single-connection performance and overall page download times. Where
multiple connections have been considered, the inferential element may introduce considerable
inaccuracy. The full set of data required to accurately reconstruct page downloads can,
uniquely, be captured in Nprobe traces because of the monitor’s capacity to extract data
from the full range of relevant protocols. Data extraction from the IP, TCP, HTTP and
HTML levels of the protocol stack is described in Sections 3.3.3.3 to 3.3.3.4 on pages 58–63
and 3.3.3.6 to 3.3.3.7 on pages 64–68.

7.3.2 Reconstruction Using Data from Multiple Protocol Levels

Page downloads are reconstructed and analysed using objects of the WebHost associative
analysis class described in Section 4.3.3 on page 88. TCP connections are assigned to each
object by client IP address; the structure of Nprobe trace files immediately associates each
HTTP transaction with the TCP connection carrying it.

The relationship between objects is established by construction of the page reference tree(s),
as described in Section 7.4, using HTML link and HTTP header data. The reference tree deter-
mines the relationships between transactions, the connections carrying them, the connections
themselves, and hence any interactions of interest between protocols — the DAG representing
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the reference tree also represents an analogous graph in which the nodes are TCP connections,
and which establishes the relationship between connections.

Figure 7.1 on the next page shows the relationships between the container document and in-
line image objects for the early part of a typical page download. Analysis and deconstruction
of the connection, using the activity model, identify time components derived from connection
activity using TCP/IP header and HTML-level data. Thus LReq and LResp indicate the lags
from which browser request (SYN-ACK → request) and server response (request → first packet
of response) latencies are calculated for the download of transaction #3.

The notation ‘PO: N/N/N’ (A) denotes the number of connections presently open as each new
connection is opened, calculated by the three criteria (initial SYN → final FIN-ACK), (server’s
SYN-ACK → final FIN-ACK), and (server’s SYN-ACK → first FIN) respectively — observation of
many downloads suggests that all of these tests are applied by various browsers in deciding
when a subsequent connection may be opened. For the connection shown the browser is
maintaining four concurrently-open connections using the first criterion, hence connection #4
opens as a result of the full close of connection #0, and #5 follows #2.

The delay between the browser ‘seeing’ an in-line link and initiating a transaction to fetch
the relevant object contributes browser connection latency, quantified using HTML link and
TCP connection data, and shown as LConn in the enlarged detail of Figure 7.2. Where
connection open time is dependent upon the close of an earlier connection LConn is determined
by connection timings as shown in Figure 7.1.

Connection ordering is normally determined by the ordering of the transactions carried, but
it is interesting to note that this is not the case for the first three secondary connections (#1
– #3) shown. It is surmised that the browser has opened these connections speculatively as
their request latencies are larger than those of following connections, which are ordered as
expected. Figures 7.1 and 7.2 show detail of a page download with the visualisation tool
in detail mode: the ordering of events is maintained but time periods in which no events
take place are ‘sliced out’ in order to allow detail to be shown — the horizontal time scale
is therefore non-linear. In contrast, Figure 7.3 on page 166 shows the entire page download
in time mode; horizontal scaling is now linear, and the relationship in time between events is
clear.

7.4 Constructing the Reference Tree

Construction of the reference tree depends upon data from two sources: HTTP request head-
ers, which contribute ‘Host’ and ‘Referer’ fields; and the HTML content of container docu-
ments, which contribute the list of contained links extracted by Nprobe .

7.4.1 Referrers, Links and Redirection

For each container document identified during data collection, an associated list of link records
(described in Section 3.3.3.7 on page 66) is attached to its Data Association Unit (DAU) trace
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LReq LResp

A

L Conn

Note: The container document and early in-line images are shown. The visualisation tool is in detail
mode; the fine vertical lines denote the missing slices of time between events. Blue dotted lines
represent the links associating objects, and show that HTML link data also identifies the data segment
carrying the link and hence its arrival time at the browser (see Footnote 7.2). The reference tree also
establishes the relationship between the TCP connections opened by the browser.

Figure 7.1: Detail from the Web activity visualisation of a typical page download

record. Not all links present in a document are guaranteed to be contained in this list: parsing
functions for scripted elements have not yet been incorporated into the Wan software, and the
HTML parsing function (whilst made as robust as possible) necessarily emphasises on-line
parsing speed rather than absolute reliability.

Each downloaded object is associated with its container object (or referring page) by identi-
fying, in order:

(i) The referrer named in the request Referer field: It is assumed that this field, if present,
correctly identifies the URL of the referring document.

(ii) A link to the object in the current container object: if (i) has been successful the current
container is thus identified and this step serves to verify the Referer field. If the request
header does not contain a Referer, field step (i) is omitted; if a referrer identified in (i)
does not yield the appropriate link, it is assumed to reflect an omission by the on-line
parse.

To accommodate cascaded dependencies, subsidiary containers (e.g. frames) are pushed
onto a stack as they are encountered; if the required link is not associated with the
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L Conn

LReq

L CE

Note: The request latency LReq is measured from the receipt of the server’s SYN-ACK and is conse-
quently separated from LConn by less than the full TCP connection set-up latency LCE .

Figure 7.2: Close detail of Figure 7.1 showing the browser connection latency

current container, the stack is popped until the container is found (if step (i) has iden-
tified a container not at the top of the stack all higher documents can be immediately
popped).

and if (i) and (ii) fail:

(iii) A link contained in container objects previously seen:

When a link is identified in either step (ii) or (iii) its record identifies its arrival time and
type (e.g. in-line or external, container, frame, or script). In most cases the link type can
be checked for consistency with the HTTP response Type header field for the linked object.
Where a link has not been identified (e.g. due to a monitor parse fail or its inclusion in a
scripted element) a dummy is created for inclusion in the reference tree: its arrival time is
assumed to be that of the link to the immediately preceding downloaded object, and its type
is decided in the context of its target object type and subsequent download activity.
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Figure 7.3: The whole of the page download shown in partial detail in Figures 7.1 and 7.2; the visualisation tool is in
time mode.
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Web pages and their components are frequently moved to fresh locations3. In such cases it
is desirable to establish the transitive dependency from referrer to relocated object in order
to identify delays due to redirection. Redirections are identified by the server’s return code,
the relocated object being located by one or both of: an HTTP Location header field (used
by the browser to automatically issue a new request for the relocated object), and a textual
object for presentation to the user, normally containing an external link to the object.

A

B

CD

Note: The long-dashed blue line A denotes an external link followed by the user to a new page
(object #7). The page’s referrer is an earlier page (object #1, as denoted by the notation (〈–1)).
The page contains an in-line image, requested as transaction #8, but which has been relocated. The
long-dashed orange line B indicates that the object dependency is established by referrer only, and
the dotted purple line C denotes an in-line automatic redirection.

Figure 7.4: Detail of download redirection

When trace collection encounters redirection, the presence of a Location header field, or
body containing an external link, prompts the addition of an appropriately typed in-line, or
external, link to the HTTP transaction’s link records. The redirection is therefore automati-
cally assimilated into the reference tree during construction. Figure 7.4 shows the detail of a
redirection: the fine dotted line and symbol ‘o ’ (C) indicate that the response to request #8
(server return code 302 Moved Temporarily) has been redirected and is now requested from
its new location as transaction #9. The single response packet contains an HTML object (D)
giving the URL of the new location, but automatic redirection has taken place.

3Figure 5.2 on page 114 shows a typical figure of approximately seven per cent of all GET requests receiving
a ‘Moved . . . ’ response from the server for the trace summarised.
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7.4.2 Multiple Links, Repeated Downloads and Browser Caching

The same link is frequently included multiple times in a container document (e.g. to small
page decorations), and in multiple pages. Browser caching will normally result in a single
request for the target object; in which case the object download is assumed to be triggered
by the first occurrence of the link in the current container document (it is assumed that any
download of the object in response to links in earlier containers will already have been made).
Objects are sometimes requested multiple times (the browser may not be caching the object,
may be faulty, or the object may have a nil lifetime) in which case the multiple requests are
associated with link occurrences in order.

A difficulty may arise when the user returns to a previously visited page (either through
use of the ‘back button’ or by following a cyclic link. If the container object has been
cached, but other components are requested, then the delimiter of the fresh container request
is absent, and the component requests may appear to be much-delayed multiple requests
originating from the original page. This situation can normally be identified due to intervening
page downloads, but can cause confusion if components are shared. The converse case (the
container is re-fetched but components are satisfied from the browser cache) is not problematic
as the reference tree simply omits the cached objects, as it would in the case of fresh page
downloads where components are cached. When components requests are observed which do
not form part of the current page download (identified as such because they have a different
referrer, the relevant links are absent from the container, and an arbitrary threshold period
has been exceeded), a revisit is assumed and a dummy link inserted into the reference tree.

7.4.3 Aborted Downloads

Users may abort page downloads — usually as a result of delay — either by using the browser’s
‘stop’ button, or by recommencing the download using the ‘refresh’ button. These cases can
not be identified by a failure to download all components, which may result from caching.

Recommenced downloads may be indicated by the abort of one or more currently active
connections, followed by a continuation of normal download activity (and possibly one or more
repeated requests for objects already seen). Aborted connections are themselves indicated
by premature termination (a lone SYN or a connection reset). Care must be taken over
apparently reset connections, as browsers from the Internet Explorer stable tend to respond
to the server’s FIN segment on non-persistent connections with a RST segment, rather than
complete the normal full four-way connection close. Such RSTs can normally be identified, as
the transaction is complete, and there is no indication of inconsistent TCP state. A similar
cessation of activity will be seen in the case of total aborts, but without the recommencement
of the download.

Aborted downloads are a matter of considerable interest, particularly their correlation with
the user’s subjective experience of delay. Future Nprobe development will include further
empirical assessment of activity in this situation and will aim to make its identification as
robust as possible.
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7.4.4 Relative References, Reference Scopes and Name Caching

Because a textual match is required to associate link, referrer, and request URLs , and because
these are frequently given in abbreviated or relative form, all occurrences are converted into
canonical form before contributing to construction of the reference tree. Although deprecated,
URLs may sometimes include dotted decimal IP addresses rather than machine names.

Relative URLs are resolved in the context of the current relative base, normally that of
the container document, but HTML provides mechanisms for defining alternative, defined,
bases and their scope. The on-line HTML parse identifies such base elements and scope
delimiters, and includes appropriate records in the list of extracted links. During reference
tree reconstruction relative URLs are therefore resolved in the correct context.

HTTP requires that all requests contain a (textual) Host header field identifying the origin
server for the requested object. The given host name is used to resolve abbreviated URLs
(e.g. of the form “/”), and also to check the host part of URLs for consistency. A problem can
arise when dotted decimal addresses are used in request URLs and the Host field is omitted.
In such cases the canonical URL is established by reference to the analysis process’s own cache
of name bindings described in Section 7.5 on page 172.

7.4.5 Self-Refreshing Objects

HTML documents may contain ‘HTTP-EQUIV = REFRESH’ META tags which cause the browser
to reload the same, or another, object after a defined period, and which may result in repeated
downloads if the refreshed object also contains the same directive. The mechanism may be
used to redirect requests (in which case it is identified by the Wan code and accommodated
in a manner similar to normal redirection as described in Section 7.4.1) or, more usually, to
implement features such as tickers.

The mechanism is, for tree reconstruction, equivalent to the inclusion of an in-line link (as
it results in an automatic download). Refreshes must be identified and excluded from the
assessment of page-download times.

Figure 7.5 illustrates a self-refreshing object repeatedly downloaded to drive a ticker: the
periodic refresh can be seen in the map window. The activity shown is extracted from a long
trace, in which the object is refreshed at 31 s periods for over 40 minutes. The user continues
to browse — transaction #2 is part of another page download (the root is not seen in this
9.4 s excerpt and is therefore represented by a dummy object). The transaction is aborted
by a browser RST (indicated by a red packet tic) before completion, but not before an in-line
text object is downloaded (transaction #4) - this connection is terminated by a server RST.

7.4.6 Unresolved Connections and Transactions

It may not be possible to immediately associate some transactions with a referring object:
the Referer field may be absent, and no matching link found. In the case of container
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Figure 7.5: A self-refreshing object repeatedly downloaded to drive a ticker. The figures at the head of the main
window indicate the boundaries of the missing time slices in the detail view.
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documents it is assumed that the referrer has not been seen because its download fell outside
the monitoring period, or because the request originates from a bookmark or user-provided
URL . Such transactions become the roots of discrete reference trees.

In the case of subsidiary page components a simple heuristic is employed — if the transaction
falls within a group of others known to originate from the current container, then that con-
tainer is taken as the referrer. A dummy link is created similar to that in the case of resolved
transactions with no identified link.

Aborted connections upon which a request has been issued can be integrated into the reference
tree in the normal way, but where connection attempts have been unsuccessful, or connections
are aborted before a request is made, no transaction request exists with which to integrate
the connection into the reference tree — it is desirable to do so because such connections
may indicate aborted or recommenced downloads (Section 7.4.3 on page 168). It is normally
possible to resolve such connections using a similar heuristic to that employed in the case of
unresolved transactions.

7.4.7 Multiple Browser Instances and Web Cache Requests

Multiple concurrent page downloads can occur when a single user instantiates more than one
browser, or in the case of multi-user hosts. This may cause confusion in the construction
of reference trees, if identical pages, or those with common components, are concurrently
downloaded. Although transactions are associated with a browser using the client IP address
of the connections carrying them, such potential confusion can be minimised by using the
finer-grained association provided by the browser employed — this information is provided
by the HTTP User-Agent header field. It is suggested that multiple concurrent downloads of
the same page, to the same host, using the same browser marque and version are relatively
rare, and where they do arise inaccuracies are likely to be, to some extent, self-cancelling.

Where the requesting entity is a Web cache, it is expected that a smaller set of page compo-
nents will be requested, the majority of objects being satisfied from the cache, and the pos-
sibility of multiple concurrent requests for identical objects being filtered out by the caching
operation. The reference trees constructed will be sparse, and massively interleaved, but are
of less significance than those in respect of studies based upon browsers — the focus of interest
is likely to be on cache performance.

Any future study of cache performance using Nprobe (it would, for instance, be informative
to position monitors both up and down stream of caches) will add impetus towards the
extraction of data pertaining to object freshness and lifetime, and caching directives, from
HTTP header fields. An analytic methodology to associate and compare such traces remains
to be developed.
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7.4.8 Timing Data

The transaction data recorded by Nprobe includes the timing of significant events (e.g. start
and end of requests, responses and objects, link arrivals). TCP data includes significant
connection timings (e.g. open, close, SYN, FIN and packet arrivals). All major components of
page downloads can therefore be analysed correctly in the time domain.

The timings provided by Nprobe are attached to events after any packet delivery reordering
necessitated by loss in order to reflect, as accurately as possible, when content would have
been delivered to the application. This mechanism can account only for losses and delayed
delivery where the monitor is aware of retransmission (i.e. where loss has occurred upstream
of the monitor). Where traces are known to have been collected immediately adjacent to a
client this may be adequate, but where there is the possibility that significant down-stream
loss may have occurred, connections must be filtered through the activity model to attach
the effective application delivery time to each packet and associated events.

7.5 Integration with Name Service Requests

Domain Name Service (DNS) requests made prior to connection opening have been shown by
Habib [Habib00] to contribute to download latency. When an Nprobe monitor is positioned
so as to observe DNS requests from the client they are incorporated into the page-download
reconstruction.

Where the construction of canonical URLs demands a name binding between a dotted-decimal
IP address in a requested URL, and the requester’s HTTP Host header field is missing, the
binding is supplied from a cache maintained by the analysis process. The cache is populated
from three sources:

• Bindings contributed where the Host field is present

• DNS requests observed by the monitor

• A persistent cache maintained by all analysis processes

Bindings are not obtained by correlating server addresses and Host fields as they would be
incorrect in the case of requests made to caches.

Persistent caches are maintained on both a global basis, and specific to individual traces (as
name bindings may change over time, and between traces). Where a mapping cannot be
obtained from the trace-specific cache, it is located, if possible, from the global cache. The
name binding module provided as part of the analysis tool kit provides a stand-alone method
for extracting the server addresses from traces and building caches by issuing the appropriate
DNS requests.
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7.6 Visualisation

The Web activity visualisation tool graphically reproduces the relationships between objects
and connections as represented by the reference tree. Relationships in time between com-
ponents are also illustrated. The alternative detail and time modes allow for inspection of
detail, or scaled relationships in time, and the selectable secondary pane contents provide de-
tailed inspection of the underlying trace data. A draggable cursor accurately indicates time
intervals, even in the non-linearly–scaled detail mode, and hence supports evaluation of time
based relationships.

The tool presents the structure and context of page downloads in readily comprehensible form,
and aids the identification of relationships between transactions, connections, and between
the two. It is particularly valuable in the development of analysis of page downloads, and in
recognising both typical, and dysfunctional, patterns of behaviour.

7.7 Web Traffic Characterisation

Because Nprobe is unique in collecting a range of transaction data from the HTTP header
content of the observed traffic, the potential exists for characterisation based upon data not
previously available, or available only in limited, or partial form, from server logs, content, or
using active techniques. Such characterisations could include, for instance, the proportions of
requests eliciting particular server responses, conditional requests, characterisation of object
lifetimes, and so on; the possible range is wide.

The ability, also unique, to accurately recreate page structures also makes possible more
accurate characterisations of metrics such as the number of component objects, overall data
transfer sizes, or the proportions of different component types. There remains a further, and
most significant, area of characterisation which has hitherto been impossible — that of whole
page download times; without the facility to accurately associate all components of a page,
no measure of overall time has been possible. The matter of page download times, and the
impact of individual connection delays, is discussed more fully in Chapter 8.

7.8 Summary

Commonly available passive monitoring tools, because normally limiting data collection to
TCP/IP headers, restrict the study of Web downloads to that of single connection activity.
Inference, based upon host addresses and patterns of activity over multiple connections, may
suggest the grouping of individual objects into pages, but inferential methods are likely to be
inaccurate because of factors such as concurrent downloads, frames, redirection and multiply-
hosted pages.

It is suggested in this chapter that Web page downloads must be examined as a whole if
the contribution of the various components of the download system and their interactions
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are to be identified. A full understanding can be achieved only by investigating the full set
of page objects, the connections used to download them, and activity at all of the protocol
levels involved. In Chapter 8 it will be seen, for instance, that the contribution of individual
object delays to whole page download times can only be assessed in the context of the whole
download set.

The protocol-spanning data collected by Nprobe, and its level of detail, allow page down-
loads to be accurately reconstructed during post-collection analysis, and hence examined as
a whole. This chapter has introduced the technique used, and has shown how integration of
the available data makes explicit the relationships between system components, and detail
accessible at both coarse and fine granularities.

The ability to accurately reconstruct whole page downloads will present new opportunities to
present Web traffic characterisations based upon this unit. The explanation of the analysis
and reconstruction techniques that have been developed show that the comprehension and
correct interpretation of the complex and diverse data are, once again, assisted and made
feasible by the tools provided in the post-analysis toolkit.



Chapter 8

Page Download Times and Delay

No one who has used a browser to access pages from the World Wide Web has escaped the
experience of over-long download times. While times in the order of seconds are acceptable,
those exceeding even a few tens of seconds become increasingly annoying.

Identification of the various elements contributing to the download time of Web objects has
been the subject of much research. It is, however, the download time of a set of objects
comprising an entire page which is of critical importance to the user — particularly in the
presence of delay leading to subjectively long waits. In this chapter the contribution of delays
in downloading individual objects is related to the effect on the download time of whole pages,
and techniques are introduced for assessing both the degree and the distribution of delay. The
potentially disastrous effects of packet loss early in the lifetime of the TCP connections used
is considered, and is assessed in a case study of downloads from a popular site. The effect
of such early loss is examined in the context of a trace-driven simulation of the same set of
pages downloaded using exclusively persistent connections.

8.1 Factors Contributing to Overall Download Times

Overall page download times are determined by a number of factors:

The number and size of the constituent objects: How many objects must be downloaded, how
many are cached by the browser and how many may be satisfied by conditional requests

The composition of the page: Is delay introduced by redirection, and can sub sets of objects
only be requested after the receipt of subsidiary container documents (e.g. frames)

Server latency (i.e. the period between receipt of the complete request and the start of re-
sponse transmission)

Browser latency (i.e. the period between the browser receiving a segment of the response
containing an in-line link to a subsidiary object and the transmission of a request for
that object)
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TCP connection latency (i.e. the time taken to establish a TCP connection)

Network RTTs

Available bandwidth

Packet loss: What proportion of packets are lost, when in the connection’s lifetime, and the
TCP implementations’ recovery strategy

The browser’s use of TCP connections: Are persistent connections used, and if so are re-
quests pipelined, how many concurrently open connections are maintained, and does
the browser open and close connections in a timely manner

While it is axiomatic that packet loss causes delay, disproportionate or avoidably high con-
tributions by any of these factors may also be considered delays. Whereas some factors (e.g.
the number of constituent objects or the use of persistent connections) have a direct effect on
page download time, others’ immediate effect is on the download time of individual objects,
and only indirectly influences the whole page.

8.2 The Contribution of Object Delay to Whole Page Down-

load Times

Because browsers typically use parallel TCP connections to download the set of objects, and
because they may not use these connections in a timely manner, overall page download times
are not simply the sum of the individual object download times, and delays at the page scale
are similarly not the sum of delays suffered by individual objects. To fully analyse the time
components of page downloads it is therefore necessary to consider the full set of constituent
object deliveries, the connections used, and their interrelationships over the total download
period. The download of a Web page must be distinguished from that of its component
objects.

8.2.1 Differentiating Single Object and Page Delays

The point is illustrated by Figure 8.1 on the next page, which shows three simple cases of page
downloads and the effects that delayed objects might have on overall times. In Sub-figure (a)
Object B is delayed, but with no effect on overall page download time. Objects D – J are
delayed as only a single connection is available, but not by the magnitude of the Object B
delay; this will be noticeable in a browser which renders objects as they are received.

In Sub-figure 8.1(b) Object B is delayed beyond the download time of the container document,
and hence adds to the overall page download time. Objects C – I are delayed as in Sub-
figure 8.1(a). Object J is also delayed, but adds nothing to the delay in overall time already
contributed by Object B. Although the overall page download time has been extended, it is
only the rendering of two objects which is significantly delayed.
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(a) Page download with object B delayed — the
whole page download is not delayed
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(b) Page download with objects B and J delayed
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(c) Page download with objects B and D delayed
— the whole page download is delayed

Note: Each single horizontal line represents the period of a TCP connection from the client’s SYN, and
the superimposed boxes the period between HTTP request and the last data packet of the response.
In each figure Object A is an HTML document and Objects B – J might be small in-line image
objects. The x-axis represents elapsed time, and the y-axis the order in which connections are opened
and the objects requested. Typical browser behaviour is represented in which the root document is
downloaded on one connection, and a maximum of two concurrently open connections is maintained
for the download of subsidiary objects. The arrowed letter following each connection line indicates the
connection which follows its closure.

Figure 8.1: The contribution of single object delays to overall page download
time when using non-persistent connections
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Sub-figure 8.1(c) also shows a download in which two objects are delayed. In this case the
downloads of six of the remaining objects are also significantly delayed resulting in late receipt
of eight of the nine images contained in the page.

It will be appreciated that the typical Web page will probably contain many more objects
than in the simple examples shown, and that, while individual object delays of the general
pattern shown in Sub-figures 8.1(a) and 8.1(b) may serve only to introduce minor delays
in the presentation of a whole page, there is also the possibility that delays occurring in
patterns similar to that shown in Sub-figure 8.1(c) may result in very a significant cumulative
degradation in performance.

8.2.2 Assessing the Degree of Delay

Whole page delay may be defined as the difference between the time when delivery of the
last object of a page completes and the corresponding time had there been no delays in the
delivery of individual objects. Calculation of this delay therefore depends upon establishing
the notional download time without delay.

In order to calculate the duration of the delay-free page download three steps are required:

Establishment of an accurate model: A model of the set of TCP connections and HTTP trans-
actions involved is derived using the reconstruction techniques described in Section 7.3.

Calculation of object PDTs in the absence of delay: The delay-free PDT for each individual
object is calculated using the accurate connection simulations described in Section 5.6
on page 133. Because the technique draws upon fine-grained detail of TCP, application,
and network-level activity provided by the activity model, downloads can be simulated
in the total absence of loss, or as a set of what if scenarios (e.g. with only a certain
category of packet loss1, with a differing probability of loss, with modified browser/server
latencies, or if persistent connections or pipelining were used).

Reconstruction of the page download based upon the modified constituent download times:
The original download will be traversed by a critical path through its constituent con-
current connections and transactions. Reconstruction of the download may make the
original critical path obsolete, but it is not necessary to use network analysis techniques
to identify or calculate the duration of either the original, or the new, path — both are
inherent in the reconstruction of the download.

Even with the relatively rich set of data provided by Nprobe traces it is not entirely simple
to derive a model of an equivalent, non-delayed, set of downloads for a page. It can be
difficult to ascertain the target number of concurrently open TCP connections: browsers are
often inconsistent — even within a single page, the point of connection closure recognised by
browsers may also vary (the completion of the full TCP 4-way close, the transmission of the

1In some cases where timings are to be calculated with the removal of an easily identified and quantified
category of loss (e.g. SYN loss) it is possible to do so without traversing a simulation.
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browser’s FIN packet, the receipt of the server’s FIN packet on a non-persistent connection,
etc.), the opening of new connections may be delayed by the browser, and account must be
taken of the delay between causative and consequent events as seen by the probe.

A frequency analysis of the number of connections currently open, as each fresh connection
opens, is calculated on the basis of the various possible criteria which a browser may use.
This gives an indication of the criterion used by the browser and its concurrency target.

The whole page download is reconstructed by taking the set of connections used, discarding
any which did not establish a full connection or succeed in obtaining a server response, and
adjusting the PDTs of the remainder using the desired scenario. The modified open and ‘close’
times can then be calculated for each successive connection on the basis of the timings of the
preceding connections, and the browser’s concurrency criterion and target. It is assumed
that any inconsistencies in the browser’s observed pattern of connection concurrency would
also apply to the recalculated set of download connections2, and in calculating when each
connection would open, the number of currently open connections at the point of opening
are used in order to maintain any such inconsistencies. It is also assumed that any delays in
the server remain constant despite changes in the pattern of requests over time, and similarly
that any browser-introduced delays remain constant. Because the relationship between the
links contained in the root document and object downloads is known, it can be ensured that
modified connection timings do not cause an object to be requested before the browser would
have seen the corresponding link.

Chapter 6 describes the techniques used to estimate server and client delays together with
the pRTTs between probe/host/probe which establish the time lag between causative and
consequent events, but for the purposes of this calculation such techniques are not consid-
ered necessary if it is assumed that client/server delays and network transit times remain
unchanged (and unless these are modified as part of a what if scenario). These assumptions
are considered reasonable, as the new model of the set of downloads without delays does not
in general produce major changes to either patterns of network or server activity. Any vari-
ations which break these assumptions are also likely to be at least two orders of magnitude
smaller than the phenomena of interest.

8.2.3 The Distribution of Object Delay within a Page Download

From the subjective perspective of the user it is not just the overall page download time which
is important, but also the distribution of any object delays within the download period. The
delays shown in Figure 8.1(c) would probably be perceived as more annoying than those
shown in Figure 8.1(b), although both pages may be completed in the same times. It is
assumed that, in the general case, in-line objects are fetched in the order that the browser’s
HTML parser encounters the relevant links, and that this order reflects the significance and
rendering order of the objects.

In the current analysis the distribution of individual object delays is characterised using a
simple metric — a cumulative object delay (cod) for a page of N objects calculated as follows:

2There appears to be no correlation between unsuccessful or delayed connections and such inconsistencies.
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cod =

(

n=N
∑

n=1

(Dn − Un)

)

×
1

N

where:
N is the number of objects in the page,
Dn is the delivery completion time of object n
and
Un is the notional delivery completion time of

object n in the absence of delay

As an illustration of the effect of object delays and distribution on the cod, Table 8.1 sum-
marises the downloads shown in Figure 8.1, giving the cod for each case, assuming the con-
tainer document downloads in 100 time units and that each image object would download in
10 time units if not delayed. It is stressed that the cod represents a measure of the distribu-
tion of delay; while it is intuitive that delay early in the download of a page is subjectively
less acceptable than delay affecting only the later components, assessment of user dissatis-
faction is not within this field of study. This metric, however, together with the accurate
calculation of overall download time and delay, would provide a constructive basis for any
such investigation.

Table 8.1: Summary of delays and cumulative object delays for the page
downloads illustrated in Figure 8.1.

Fig.
Individual object delays Cumulative

delay
Page Download Time

cod
Object Delay Object Delay Delayed Undelayed

(a) B 50 - - 100 100 100 10
(b) B 130 J 90 310 180 100 31
(c) B 130 D 60 670 150 100 67

Note: Although the total individual object delays, and the overall page download time, are higher
in (b) than in (c), the distribution of object delays results in a higher cod for (c).

8.3 The Effect of Early Packet Loss on Page Download Time

In the initial stages of a TCP connection neither client nor server has seen enough packets to
establish a usable round trip time estimation. In the case of packet loss, retransmission will
therefore take place only after a default timeout period (typically in the order of 3 seconds,
increasing exponentially for each repeat). Packet losses during this period are henceforth
referred to as early packet loss. Such delays in individual connections have been noted by the
WAWM Project [Barford99a].
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This context gives rise to a serious implication for the use of many short-lived TCP connections
delivering single objects. While long delays may be introduced by early packet loss on any
connection, the page downloads using non-persistent connections are particularly vulnerable
— most or all activity taking place in conditions of potential early packet loss. From here
onwards in this chapter ‘delay’ will refer to delay arising as a result of early packet loss unless
otherwise stated.

Whereas the delay contribution to page download times due to connection setup latency, or
to packet loss on an established connection, are likely to comprise a small number of RTTs
— in the order of some tens or hundreds of milliseconds — those due to early packet loss
contribute delays in the order of seconds, and which, when occurring in patterns similar to
that illustrated in Figure 8.1(c) may cumulatively reach the order of tens or even hundreds
of seconds. It is also inherent in this stage of a connection’s lifetime that fast-retransmit
mechanisms will not be operative. It is worth noting that in the context of many short-lived
connections, default retransmission values based upon shared routing metrics are also unlikely
to be available to individual connections.

On an individual connection early packet losses will manifest themselves as:

• Loss of client’s SYN packets(s) causing one or more SYN retransmissions.

• Loss of server’s SYN-ACK causing one or more SYN retransmissions.

• Loss of client’s request causing one or more retransmissions.

• Loss of server’s ACK to the request causing one or more retransmissions.

• Loss of server’s response.

Such losses may occur on both persistent and non-persistent connections, but in the persistent
case losses of requests/responses after the first will normally cause retransmits based upon
established RTT values or fast-retransmit mechanisms. The case where a client’s first request
is lost can be distinguished from that where the server merely exhibits a long delay before
responding by the receipt of an ACK for the segment carrying the request.

8.4 Delay in Downloading from a Site with Massive Early
Packet Loss

Users of a popular British news Web site frequently experience long and frustrating delays
in downloading pages. Traffic between this site and the UCCS network was monitored for a
period of 24 hours to obtain the trace first introduced in Section 6.4. Analysis of the trace
revealed that downloads from the site suffered a high incidence of exactly the delays due to
early packet loss discussed in Section 8.3, and that the delivery of many pages was thereby
considerably delayed.
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(a) Whole page download times over time
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(b) Cumulative object delays for the observed
page downloads

Note: For clarity the traces in (a) and (b) are averaged over 60 s periods and have been smoothed using
a 3:3 simple moving average. The error bars show the standard error of the mean for each period.
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12.40pm. Times for the entire page delivery and
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1.50pm. Times for the entire page delivery and
85% of its content are shown, both for the ob-
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Figure 8.2: News server: whole page download times.

This section concentrates upon an analysis of the trace for the period between approximately
11.30am and 1.50pm, which is of particular interest as it spans the beginning of the lunch
hour, when the server load may be expected to increase as people visit the site during their
break. The trace and analysis results are summarised in Table 8.4 on page 191.

Figure 8.2 summarises the results of the trace analysis. In Sub-figure (a) a dramatic rise in
page download times can clearly be seen between approximately 12.30pm and 1.00pm as load
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increases. At the higher page download times the error bars show a corresponding increase in
the standard error: the difference in download times between delayed and non-delayed pages
becomes more marked due to the magnitude of the delays. Sub-figure (b) shows the cods for
the page downloads, and demonstrates a corresponding increase in magnitude.

The download times for the observed pages, but with the contribution of early loss removed,
were calculated as described in Section 8.2.2. The CDFs of page download times for the
first and second periods of the trace are shown in Sub-figures (c) and (d); comparison of the
two again clearly show the increase in download times during the lunch break. Times for
download of 85% of page content, and the calculated loss-free equivalents are also shown.

Table 8.2 summarises page download times for the 75th and 90th percentiles of complete and
85% downloads, showing for comparison the results calculated with delay removed. It can
be seen that, for instance, early-loss delays contribute only approximately 1 second to 90%
of downloads during the early period of the trace, but that the corresponding contribution
during the second period is approximately 20 seconds (i.e. an increase of approximately 50%
in download time).

Table 8.2: 75th and 90th percentiles of news site page download times in seconds
for whole pages and 85% of content

Period
75th percentile 90th percentile

Page 85% Page 85%

11.30 – 12.40 8.2 6.3 18.1 14.2
Without delays 7.6 5.5 16.9 12.2

12.40 – 1.50 35.6 26.4 58.0 46.6
Without delays 25.0 12.6 37.9 25.0

In order to compare the effects of early loss on the observed page download times with other
contributory factors as load increases, Figure 8.3(a) and (b) reproduce Figure 6.7, and show
how server latency and pRTT vary over the period of the trace. The increase in latency is an
order of magnitude larger than that of pRTTs and, in the case of non-persistent connections,
its contribution to increasing download times is secondary only to that of early delays.

Sub-figure 8.4(a) presents the probability of either SYN or data packet retransmission on an
individual TCP connection. The probability that data packets will be retransmitted due to
network loss rises slightly from approximately 12.00pm onwards as (by inference) traffic levels
increase. It is suggested that the contrasting very sharp rise in the probability of SYN retrans-
mission at approximately 12.40pm is due to connection refusal by the server as load increases.
Figure 8.3(a) shows that from 12.40pm onwards server latency remains approximately con-
stant, although higher and more dispersed than during the earlier period of lower demand,
and that this time therefore represents the point at which the server becomes saturated and
is, in effect, exercising admission control through connection limiting. It is the sharp rise in
‘lost’ SYNs that is the principal cause of the corresponding jump in page download times.
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Note: For clarity the values shown are averaged over 10 second intervals.

Figure 8.3: News server: server latency and pRTTs over time
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The contribution made to individual object download times by early loss in each category,
when it occurs, is summarised by the CDFs shown in Figure 8.4(b). Note that, with the
exception of delays caused by single SYNs not receiving a response, or connections upon
which the client issued no request — in neither case is packet retransmission involved — the
reliance of retransmission on default values is very clearly seen from the distinct steps at 3,
6, 9. . . seconds. It is surmised that many of the large delays introduced by connections
on which SYNs were retransmitted, and which did not result in a connection (greater than
21 seconds in approximately 45% of cases), and connections upon which no request was made
(greater than 21 seconds in approximately 20% of cases), represent the situation of the user
cancelling, or recommencing, an apparently stalled download.

8.5 Comparison with a General Traffic Sample

The high rate of SYN loss observed in the traces of traffic to the news site is fortunately
not typical of the majority of page downloads. Table 8.5 on page 192 present summaries of
three traces (Traces 2 – 4), each of approximately two hours duration, collected at the same
monitoring point and at the same time of day. Traffic to the news site has been excluded
from the analysis upon which these tables are based.

Comparison with Table 8.4 on page 191 shows that approximately 7.4% of connections in
the general samples suffer from early loss (as opposed to approximately 14.4% in the case of
the news server); similar proportions for the number of pages visited are 2.7% and 18.82%.
Although the incidence of early delay is markedly less in the general sample, the potential
magnitude of the delay which can be caused in page-download time may be subjectively
annoying to the user in the instances where it occurs. In view of the high incidence of long
delay enshrined in ‘Web lore’ it may be surmised that page requests from the University site
contains a higher ratio of visits to well-provisioned servers than that of the general population.

8.6 Implications of Early Packet Loss for Persistent Connec-

tions

When non-persistent connections are used to download pages, early loss on one of the con-
current connections used to fetch components does not necessarily lead to serious delay — as
shown in Figures 8.1(a) and (b), progress can continue using other connections. The download
only becomes completely stalled when the browser’s entire ‘allowance’ of concurrent connec-
tions are delayed, as illustrated in Figure 8.1(c). When persistent connections are employed,
the effects of early loss can cause a different pattern of delay. If a connection is stalled through
early loss, all requests using that connection will be delayed, but once a connection has been
established no further such delays will occur.

Figure 8.5 on the next page shows a typical pattern of page download activity using persistent
connections: the container document is requested on an initial connection, and component
objects are downloaded on concurrent persistent connections. In the download shown at A,
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Note: The dotted lines indicate an initial delay on the connection. In the case of page A one connection
suffers delay while object downloads proceed on the other. All progress is initially stalled in the case
of page B. Näıve behaviour is demonstrated by the browser downloading page C.

Figure 8.5: The contribution of early delay to page-downloads using persistent
connections

one connection is subject to delay, but activity can continue on the other; objects downloaded
on the first connection, once established, are all subject to the initial delay. In the case of page
download B, both connections are initially stalled, and no progress can be made. In either
case, object downloads are not postponed for longer than would have been the case if one, or
both, of the initial pair of non-persistent connections of a similar download had been delayed.
However, once the persistent connections have been established there is no opportunity for
further delay to be introduced by subsequent early loss (assuming that the connections do
not remain unused for any period sufficiently long to cause a reversion to slow-start mode).

It is interesting to know how the set of page downloads represented by the news server trace
would have performed if persistent connections had been used, and how the high rate of SYN
loss would have affected them. The downloads were therefore simulated using this scenario,
both with early loss, and in its absence. The observed server latencies, network transit times,
probability of loss (both early and later) and browser sinking capacity prevalent at the time
of each download were used in the simulation.

A set of key assumptions must underlie such simulation:

• That the different pattern of data transfer would not significantly alter network char-
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acteristics (i.e. transit times and loss rates)

• That the more bursty requests would not appreciably raise server latency (or alterna-
tively that the decreased number of connections to be serviced would not increase the
server’s work rate)

• That the browser would keep pace with higher data arrival rates

• That the service latency for subsequent requests remains that of the initial request on
each connection

The simulation of each page download follows the typical pattern of one connection used
to request the container document, and two concurrent persistent connections upon which
subsidiary components are requested, shown in Figure 8.5. When one of the two secondary
connections are subject to initial delay, requests are channelled to the active connection until
a connection is established, and thereafter each request is made on the first connection to
become available. The näıve browser behaviour shown at C in Figure 8.5, in which requests
are equally divided amongst connections, would result in undue delay. Care is taken that
requests are not issued before the browser would have seen the corresponding link in the
container document. The University site is connected to that of the news server by a well-
provisioned network, and the requirement of good connectivity stipulated in [Heidemann97b]
would apply to the simulated connections. A conservative assumption of 10 Mbps links is
employed in calculating serialization delays in the simulation’s operation.

Figure 8.6(a) shows the page download times calculated by the simulation. Comparison
with Figure 8.2(a) on page 182 (which shows the actual observed times) shows that the
times are considerably less, although they do follow approximately the same trend over the
period of the trace, and that the proportionate increase over the lunch period is reduced
by a factor of approximately 1.7. It is noticeable that there is a great deal more variation
between averaging periods, and that shorter-term trends are much less identifiable; the pattern
of activity and delay when using non-persistent connections is smoothed by the constantly
shifting juxtaposition of delayed and non-delayed connections during a page download, in the
case of persistent connections delay is ‘all or nothing’ and download times consequently vary
to a much greater degree.

The improvement in performance that would have been gained by using persistent connection
is underlined by comparing the cods shown in Figure 8.6(b) with the observed values of
Figure 8.2(b): although the proportionate increase as the server becomes busy is maintained,
the averaged values of the cods are reduced by two orders of magnitude. It is interesting to
note that while the average cod for the real traffic is approximately 25% of the average page
download time, in the case of the simulated downloads this proportion falls to approximately
2.5%. This difference reflects the concentration of delay at the commencement of the persistent
connections, and confirms that download performance when using persistent connections is
more robust in the face of early loss.

Figures 8.6(c) and (d) show the CDFs of simulated page downloads corresponding to the
observed values shown in Figures 8.2(c) and (d). The reduction in the overall magnitudes of
the download times are accompanied by a lesser difference in the distributions for 85% of the
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(b) Cumulative object delays for the simulated
page downloads

Note: Times are averaged over 60 second periods — the error bars show the standard error
of the mean for each period, and have been smoothed using a 3:3 simple moving average. Note
that the scales representing page download times in this figure differ from those employed in Figure 8.2.
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(d) CDF of page download times: 12.40pm –
1.50pm. Times for the entire page delivery and
85% of its content are shown, both for the ob-
served downloads, and as calculated for the same
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Figure 8.6: Page download times for the pages downloaded from the news site
using simulated persistent connections

content and the delay-free download times. The greater robustness of persistent connections
in the presence of early loss is demonstrated by the closer lossy and lossless distributions, and
the absence of early loss once connections are established is reflected in the closer whole page
and 85% of objects distributions.
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Table 8.3: 75th and 90th percentiles of news site page download times in seconds
for whole pages and 85% of content, using simulated persistent connections

Period
75th percentile 90th percentile

Page 85% Page 85%

11.30 – 12.40 2.9 2.6 7.5 6.4
Without delays 2.8 2.5 7.2 6.2

12.40 – 1.50 10.0 5.9 14.6 10.9
Without delays 8.0 5.4 12.6 10.2

In conclusion, Table 8.3 summarises the simulated page download times for the 75th and 90th
percentiles of complete and 85% downloads, with and without early loss. Comparison with
Table 8.2 on page 183 reinforces the comment already made about the better performance
realised by persistent connections, and the very much greater degree of robustness that this
mechanism displays in the presence of early loss.

8.7 Summary

This chapter has drawn together the matter of the previous chapters to consider the phe-
nomenon of delay in downloading Web pages. The page download reconstruction techniques
introduced in Chapter 7 have been used to identify the sets of object downloads forming
the overall download and the relationships between them, and the modelling and simulation
techniques described in Chapter 5 used to investigate the same page downloads using the sce-
nario of the exclusive use of persistent TCP/HTTP connections. The simulations encompass
the discrimination of application-level latency and network transit times described in Chap-
ter 6; none of these techniques would be feasible without the protocol-spanning data collected
by Nprobe, and the sophisticated analysis involved has been developed and run using the
post-collection analysis toolkit described in Chapter 4.

It has been shown in this chapter that component object delays may contribute to delays in
page downloads, but that the overall effect can only be assessed in the context of the whole
page, the relationship between objects, and the interaction between components. Such an
assessment must rely upon data contained in a range of protocols. Techniques for assessing
the degree of delay, based upon a delay-free reconstruction of the page download, and its
distribution over the period of the download, based upon simulation and calculation of delay-
free component downloads, have been introduced.

The potentially large delays introduced by packet loss before the establishment of TCP’s
RTT estimate have been considered, and illustrated by the analysis of downloads from a
site over a period where the phenomenon was experienced with growing demand upon the
server. Finally a simulation of the same page downloads, but using persistent TCP/HTTP

connections, investigated the effects of such loss upon downloads using this mechanism. It
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is demonstrated that the use of persistent connections is not only more robust in the face of
early loss, but that the distribution of delay is considerably more favourable. The trace-driven
simulations used, and the page download reconstructions based upon them, would, again, not
have been possible without the powerful analytic tools provided by the Nprobe monitoring
and analysis systems.

Web browsing is probably the most common computer-based activity currently experienced by
the non-specialist, and certainly their most common interaction with the Internet. Download
delays are a common, and subjectively irritating experience, yet their investigation has been
hampered by the restriction of research to the investigation of single-object delays, due to the
limitations of the prevalent data collection and analysis technologies. By making the study of
whole-page downloads possible, based upon more powerful and comprehensive data collection
and analysis techniques, the work described in this chapter has made a new and significant
contribution to this important area of research.
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Table 8.4: News site: summary of trace and delays

Number of % Persistent
connectionsPeriod Clients Servers Conns. Trans. URLs Pages

1130 – 1350 732 29 89195 113901 1570 10232 0.52
1130 – 1240 407 18 43377 55734 835 4908 0.70
1240 – 1350 470 24 45818 58167 1098 5327 0.36

(a) The total numbers of clients, servers, connections, transactions, distinct URLs, and page downloads
seen. The final column indicates the proportion of persistent connections upon which multiple requests
were made.

% Later
% Delayed packet loss

Period Conns. Pages Servers Client Server

1130 – 1350 14.39 18.82 34.48 0.12 2.32
1130 – 1240 2.64 5.03 33.33 0.09 2.25
1240 – 1350 25.52 31.31 41.67 0.15 2.38

(b) The proportion of connections, distinct pages, and servers subject to
delay through early packet loss. For purposes of comparison the last two
columns indicate the proportion of later packets lost from each host.

% of connections subject to early loss % Early

Client Other packet loss

Period SYN Req. No Req.. No Rep. No conn. SYN Req.

1130 – 1350 13.18 0.86 1.39 1.62 1.07 119.42 16.67
1130 – 1240 2.05 0.35 0.26 0.39 0.14 102.50 4.77
1240 – 1350 23.73 1.35 2.46 2.79 1.94 135.22 27.78

(c) The proportion of connections subject to early packet loss, and its category; note that the categories
are not mutually exclusive. The last two columns show SYNs and requests retransmitted as a proportion
of the number of connections suffering early loss — multiple retransmissions account for percentages
in excess of one hundred.

Note: The topmost entry describes the entire trace for the period of interest, the sub-periods 11.30am –
12.40pm and 12.40 –1.50pm are shown below.
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Table 8.5: Summary of trace and delays: Traces 2 – 4 (general Web traffic)

Number of % Persistent
connectionsTrace Clients Servers Conns. Trans. URLs Pages

2 19077 10820 983921 1608944 157146 368774 14.41
3 18510 13592 1177208 1788477 212412 572355 12.83
4 10804 7877 386891 661562 90432 169697 17.64

(a) The total numbers of clients, servers, connections, transactions, distinct URLs, and page down-
loads seen. The final column indicates the proportion of persistent connections upon which multiple
requests were made.

% Later
% Delayed packet loss

Trace Conns. Pages Servers Client Server

2 9.03 3.84 8.48 0.42 21.14
3 5.85 1.48 7.43 0.42 21.25
4 7.38 2.85 7.21 0.63 23.13

(b) The proportion of connections, distinct pages, and servers subject
to delay through early packet loss. For purposes of comparison the
last two columns indicate the proportion of later packets lost from
each host.

% of connections subject to early loss % Early

Client Other packet loss

Trace SYN Req. No Req.. No Rep. No conn. SYN Req.

2 4.51 0.42 5.29 7.92 4.54 72.36 6.24
3 3.72 0.43 4.59 4.65 3.71 68.40 6.78
4 3.43 0.75 4.77 4.76 3.76 65.64 8.32

(c) The proportion of connections subject to early packet loss, and its category; note that the
categories are not mutually exclusive. The last two columns show SYNs and requests retransmit-
ted as a proportion of the number of connections suffering early loss — multiple retransmissions
account for percentages in excess of one hundred.



Chapter 9

Conclusions and Scope for Future
Work

This final chapter of the dissertation summarises the work upon which it is based and assesses
the original contribution of the work. The closing section describes continuing development
of the Nprobe monitor and post-collection analysis, and indicates the scope for future work.

9.1 Summary

As the volume of traffic carried by networks continues to increase, and the bandwidths em-
ployed rise, passive monitoring is faced with a dual challenge: to keep pace with the observed
traffic, and to store and manage the potentially very large volume of data collected. Although
there is a body of research dedicated to monitoring ever-faster network technologies, the com-
mon approach to these challenges is to limit capture to TCP/IP headers — hence bounding
both computational expense and volume, or to sub-sample. Packet capture continues to rely
principally on packet-filter–based mechanisms which may also be used selectively, but which
impose a coarse-grained data discard policy.

Such an approach has the great disadvantage that activity at higher levels of the protocol
stack cannot be directly observed, and, crucially, that the facility to examine the interaction
between higher and lower level protocols is severely limited. As a consequence, research based
upon passive monitoring has often been shaped by the limitations of the available tools.

Chapter 1 introduces the concept of a monitor designed to keep pace with higher bandwidths
and which captures data simultaneously from the whole of a range of protocols of interest,
and discusses the attributes desirable in pursuit of this goal. In particular, it is suggested that
the design should minimise data bulk through extraction, abstraction, and storage of only the
data of interest — leading in turn to integration of data over disparate protocol data units and
the need to maintain state. The design should be scalable: by striping packets across multiple
processors, possibly in a cluster of monitoring machines, to accommodate high traffic volume;
and through modularity, to allow the addition and tailoring of data collection mechanisms
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to varying experimental demands. Such a monitor should also be efficient, minimising data
copying and control overheads.

A considerable body of research has been founded upon passive network monitoring and
Chapter 2 outlines a selection of the most relevant work. It is seen that the two themes —
of monitoring higher bandwidths, and of monitoring a wider range of protocols — have not
significantly come together in any single project or wide deployment of monitoring effort. The
few projects which have extended the range of protocols monitored (e.g. Windmill [Malan98b],
IPSE [Internet Security96], BLT [Feldmann00]) have either not been designed to monitor high
bandwidths (Windmill, IPSE) or have been designed only to study an integrated but limited
range of protocols (BLT). Other studies which integrate data from higher protocol levels
have relied upon a combination of TCP/IP-level traces augmented by server instrumentation
(Balakrishnan et al. [Balakrishnan98]), server logs (Allman [Allman00]), or data gathered
using active techniques (WAWM [Barford99a][Barford99b]).

Chapter 3 describes the design and implementation of a unique monitor — Nprobe — which
constitutes the major single item of work described in this dissertation. The probe infras-
tructure, common to all protocols monitored, is described, together with the protocol-specific
data extraction modules implemented to date.

Traces collected with existing monitoring tools are likely to consist of verbatim copies of
whole or partial packets; the required data can be extracted using knowledge of the contained
protocols’ syntax and semantics — trivially in the case of those protocols (e.g. TCP, IP,
RPC, or NFS) where the verbatim copy mirrors defined C language structures. Nprobe-
collected traces, on the other hand, contain data which is not only already extracted but
may be abstracted or coded, and which is variable in nature and format as determined by
experimental requirements; a common interface for data retrieval is required. The relatively
rich and complex data contained in Nprobe traces, moreover, will be collected for the purpose
of, and subject to, commensurately more complex and sophisticated post-collection analysis.
An early decision was therefore made that the Nprobe design would be incomplete without
an accompanying post-collection analysis infrastructure.

Chapter 4 describes the post-collection analysis of Nprobe traces based upon an analysis
toolkit which provides a data-retrieval interface generated automatically from the data struc-
ture definitions contained in the Nprobe data extraction modules, a library of standard ana-
lytical methods for the protocols so far incorporated, and an analysis development environ-
ment. Visualisation tools are also provided to present trace data in a summarized and readily
comprehensible form, and to assist in identifying and reasoning about the interrelationships
between the activities represented by it. An analysis definition and control infrastructure
defines the analysis to be carried out and accumulates the data generated, while an analysis
summary tool presents the, possibly high, volume of results and an analysis log. The data
generated may be examined using the toolkit’s own plotting tool, which, together with the
summary tool, is integrated with the analysis modules to allow the derivation of any result
to be re-run and examined in detail. Analysis code may also be modified and re-run under
close scrutiny during the analysis process, hence supporting iterative design. The potentially
large volumes of trace data to be analysed dictate that mechanisms should also be provided
to allow partitioning of analysis, and that confidence in results should be supported by the
facility to follow an audit trail based upon the data’s derivation.
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The possession of data from multiple protocols allows analysis to examine activity at any
protocol level with an accurate knowledge of events at other levels. Chapter 5 presents an
activity model of TCP behaviour which differentiates and quantifies the effects of the network,
TCP itself, and application-level processes. The detailed information provided by the model
may, in turn, be used as the basis for trace-driven simulations which, by varying the known
parameters of the observed connections, can be used to investigate what if scenarios and, for
instance, to assess the exact effects of loss, RTT variation, or changes in server latencies.

Use of the activity model is illustrated in Chapter 6 in a case study of Web server latency.
Traffic carrying artificial server loads is observed to assess the accuracy of the modelling
technique, and the changing latency of a busy server examined as load increases.

The investigation of Web page downloads based upon passive monitoring has, because of the
limited data gathered by existing tools, been largely confined to the study of the download
of individual page components. Chapter 7 explains how the comprehensive data collected
by Nprobe can be used to accurately reconstruct the total activity involved in the download
of whole pages, hence allowing the relationships between HTTP transactions and the TCP

connections carrying them to be examined in full context, and the download to be analysed
as a complete system of activity.

Finally, Chapter 8 draws together the work described in earlier chapters in a case study of
delay in Web page downloads. It is demonstrated that whole page delays are not simply the
sum of component delays; the technique of page download reconstruction is used to assess the
download times of pages observed in traffic to a popular news site, with particular emphasis
on major delays caused by packet loss occurring before the establishment of TCP RTTs . The
connection modelling and simulation techniques introduced in Chapter 5 are then used to
examine the implications of early packet loss on the observed page downloads had persistent
HTTP connections been exclusively used.

9.2 Assessment

This section of the dissertation measures the work described in the previous chapters against
the thesis and hypothesis stated in Chapter 1, and assesses its original contribution to the
field of passive network monitoring.

“The thesis of this dissertation may be summarised thus: observation of the
network and the study of its functioning have relied upon tools which, largely for
practical reasons, are of limited capability. Research relying upon these tools may
in consequence be restricted in its scope or accuracy, or even determined, by the
bounded set of data which they can make available. New tools and techniques are
needed which, by providing a richer set of data, will contribute to enhanced un-
derstanding of application performance and the system as a whole, its constituent
components, and in particular the interaction of the sub-systems represented by
the network protocol stack.

The hypothesis follows that such improved tools are feasible, and is tested by
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the design and implementation of a new monitoring architecture — Nprobe which
is then used in two case studies which would not have been possible without such
a tool.”

9.2.1 Conclusion

Chapter 2 draws attention to the paucity of research based upon examination of activity at all
levels of the network protocol stack, and shows that when such research has been conducted,
it has rarely drawn all of its data from passive monitoring of the network. A small body
of research has been based upon data gathered from levels above TCP/IP, but has been
based upon monitoring systems designed for a single protocol set, or has not addressed the
parallel challenge of keeping pace with contemporary network bandwidths. Current work in
monitoring high-speed network technologies has, conversely, limited itself to the traditional
collection of a verbatim copy of a limited set of lower-level protocol headers.

It is axiomatic that any research based upon gathered data must be shaped by the scope of
that data. All inter-computer communications are based upon complex systems of interrelated
and interacting components and protocols, yet current tools fail to exploit the breadth and
scope of the data available through passive monitoring, and as a consequence, research is
largely limited to investigation of sub-systems of the whole. The limitation is manifest in two
ways: at the granularity of a single connection only a subset of the protocols are studied, and
at the larger granularities often implicit in application activity, the set of connections used
may not be accurately identified and associated with that activity. In both cases the study of
application-level activity is inhibited, and the interactions between system components may
not be manifest, identifiable, or quantifiable.

A passive network monitor has been designed and implemented which successfully circum-
vents the limitations of existing tools of the genre. By extracting only the data of interest from
passing traffic the bulk to be stored is reduced, and data from the whole range of contributing
protocols can be captured. Careful attention to efficiency of operation, and to achieving a
data-reduction ratio which balances computational expense against storage volume, enables
the design to keep pace with relatively high bandwidths. Extensibility in terms of the pro-
tocols studied is ensured by the provision of a common infrastructure and protocol-centric
data extraction modules, which also provide the capacity to tailor data collection to specific
needs. The extensibility required to keep pace with higher traffic bandwidths is provided
by partitioning data processing between multiple processors, possibly located in clusters of
monitoring machines.

A more comprehensive set of gathered data suggests the potential for post-collection analysis
employing a variety of more sophisticated techniques, particularly as the interplay of activity
inherent in examination of a greater range of subsystems is captured. The richer nature of the
data, moreover, also suggests that, for any data set, the range of analysis that can be carried
out is wider and more varied. There is consequently a danger that the full informational
potential of the data gathered will not be realised if analysis tasks are designed in an ad-hoc
manner: an environment is called for where analysis tasks can be designed and executed with
minimal time expenditure; which supports a common data retrieval interface, reuse of analysis
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components, and investigative analysis design; and reflects the bulk and complexity of the
data. The analysis infrastructure and toolkit accompanying the Nprobe monitor meet this
requirement, and represent a foundation upon which the new analysis techniques presented
in this dissertation are constructed.

New and powerful analysis techniques — the TCP activity model, Web server latency mea-
surement, Web page download reconstruction and delay assessment, the investigation of early
packet loss effects, both as observed and as assessed using accurate trace-driven simulation —
demonstrate the greater understanding of application-level behaviour and system component
interactions which can be contributed by gathering a more complete set of data from the
network, and which would not be possible without it. Some of these analysis techniques are
general, others are directed towards specific protocols or tasks, but all can be generalised.

In summary — a new and more powerful passive monitoring design has been implemented
and used to gather a considerable amount of data from a range of network protocols. New
analysis techniques have been developed which exploit the comprehensive contents of the
data and have demonstrated the ability to investigate and understand behaviour at network,
transport and application levels of the protocol stack. The utility of the monitor, and of the
enhanced analysis of the gathered data have thus been demonstrated.

9.2.2 The Original Contribution of this Dissertation

The proposition that passively monitored data would contribute to more comprehensive re-
search if the data were to be gathered from a wider range of network protocols is hardly
new. The requirement for probes to keep pace with increases in network bandwidths is well
recognised and such probes are the subject of ongoing development. It is then, perhaps,
rather surprising that so few probes have been designed to gather data from protocols be-
yond TCP/IP1, and that no probe has yet been developed for use by the network research
community which directly addresses both needs.

The Nprobe design, therefore, makes a new and powerful contribution to the field of computer
network research based upon passively monitored and gathered data. For the first time the
three requirements of multi-protocol data capture, capacity to monitor high bandwidths, and
general applicability (i.e. the capacity to extend and tailor data gathering to the requirements
of a specific study) have been addressed in a single probe implementation. The probe is
therefore not only capable, but highly flexible.

The implications for future research based upon such a tool are considerable: application-level
activity can not only be observed directly, but can be related to lower-level activity; events
hitherto studied at the granularity of a single connection can be aggregated into the multiples
associated with higher-level activity; and the interactions of components at all levels and
granularities can be studied. Probe placements are not (as) limited to low-volume (and hence
possibly unrepresentative) links, and data reduction allows for longer traces to be gathered

1Probes based upon the packet filter and its variants can, of course, do so, simply by capturing a greater
packet length, but are largely discounted because of the data copy overheads and the infeasibly high volume
of the resulting capture.
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for any set traffic volume and mix.

Neither is the association of data collection and analysis into a single system entirely new:
Coral Reef [Keys01], netflow [Cisco-Netflow], and NIMI [Paxson98][Paxson00], for instance,
all provide standard analysis and report mechanisms. These mechanisms are, however, essen-
tially static: set measurements are performed and subject to one or more standard analyses.
Nprobe breaks new ground in providing an analysis toolkit and environment designed to
support not only the execution of post-collection analysis tasks, but their fast design and
development; the richness and complexity of the data gathered must be matched by equally
sophisticated analysis methods.

The variable and extensible nature of the data collected has required the development of a
unique, automatically generated, data retrieval interface which can be used by any analysis
task. The principle is extended into an innovative framework of standard analysis control,
data collection, and analysis summary tools accompanied by a library of reusable analysis
classes. Full advantage is taken of the object-oriented software model to ensure that the
infrastructure and analysis classes can be rapidly modified through sub-typing and composed
to meet the requirements of specific tasks. Two new visualisation techniques also introduce
novel features: a TCP connection visualisation tool, and a Web download visualisation tool,
present not only a summary of trace data but also the results of the analysis carried out on
it. The relationships within the data are made more easily identifiable, and confidence is
promoted by the explicit connection between original and generated data which is displayed.
The design and testing of complex analysis would be very much more difficult without such
tools.

The provision of a fully integrated and extensible analysis toolkit also enables the incorpo-
ration of other novel features: both the analysis summary tool and a dedicated data plotter
employ callback mechanisms which allow the derivation of individual or multiple results to
be examined in detail and the appropriate visualisations instantiated. Thus development and
confidence are both supported.

The TCP activity model represents a new technique for the examination of individual TCP

connections and the discrimination of activity determined by the separate components at
network, TCP and application-levels. The model is also innovative in its independence of
probe position and ability to interpret TCP-level activity without a priori knowledge of the
participating implementations.

Another new and far reaching technique that has been introduced is that of Web page down-
load reconstruction, enabling downloads to be studied as a whole, and the contribution and
interaction of all components assessed. Such a technique is particularly valuable as it rep-
resents the ability to accurately investigate communications involving multiple connections,
where previously they would have to be studied individually, and their relationships inferred.

The two case studies which have been presented, investigations into Web server latencies
and Web page download times, represent original and unique research into Web activity.
This area was chosen to demonstrate Nprobe capabilities because, although the protocols
and principles involved are relatively well understood, it is also a field where the accurate
investigation of certain fundamental phenomena — those involved in whole page downloads
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— have been beyond reach without the range of data gathered by Nprobe and the analysis
techniques which depend upon it. The study presented in Chapter 8, in particular, represents
unique work in its assessment of individual transactions’ contribution to overall page download
times, the investigation of early loss, and the accuracy of the simulations used in assessing an
alternative download scenario.

Although the case studies are included primarily as examples of the power of the Nprobe

monitor, and the analysis techniques which it makes possible, they stand as original research
in their own right. It is important to note that the underlying analysis makes use of the
common analysis infrastructure and TCP analysis classes, which could contribute equally to
the investigation of other protocol sets. The elements of analysis specific to HTTP and HTML

would contribute equally to wider analysis of these protocols, but, more importantly, establish
principles and techniques which can be generalised to the study of further protocols.

The potential of the monitor, and the breadth of new research which it makes feasible, are
recognised by the establishment of two new projects which are based upon it. The Computer
Laboratory’s Gridprobe project will build upon the work described here to continue Nprobe

development, with the aim of increasing capture rates and extending the range of protocols
and tools. The Intel Cambridge Laboratory’s Scope project [Hamilton03] will collaboratively
pursue the same aims.

9.3 Scope for Future Work

It is convenient to present discussion of the scope for future work under the heads of further
investigation into Web traffic and continuing Nprobe development.

9.3.1 Further Analysis of Web Activity

Although the exemplary studies presented here have concentrated upon the assessment of
delay due to early packet loss, it will be little more than a triviality to extend the work
to assess the impact of download delay due to all causes, and the contributions made by
both server and browser. In particular, initial investigations indicate that browsers may
sometimes behave in a less than optimal manner, and this may prove a fruitful field for
further investigation. It is hoped that future probe placements will present the opportunity
to observe a more representative sample of traffic than that so far encountered, and that this
may be used to establish up to date traffic characterisations, which will be more valuable
than those hitherto available because they will be page, rather than object, based.

It is remarked that the Web traffic gathered to date provides almost an embarrassment of
information that might be extracted by widening existing analysis methods, but that further
examples of possible research include extension of the HTTP data extraction module to gather
object lifetime, freshness, and caching data to study cache behaviour and effectiveness. It
is also noted, for instance, that a high proportion of GET requests are conditional, and that
of these a very high proportion receive not modified responses; it may be that those re-
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sponsible are unduly pessimistic about object lifetimes, and that considerable unnecessary
traffic is therefore generated. Informal observation suggests that the number of individual
pages drawing content from multiple servers appears to be growing, particularly where partial
content (e.g. that from ad-servers or CDNs) is independent of the main content. It would be
interesting to know whether such multiple sourcing has deleterious effects upon performance.

In some cases analysis of the collected data reveals that full understanding of the phenomena
seen can only be achieved through further observation, or data gathering by other means.
Section 7.4.3, for example, refers to aborts of apparently healthy TCP connections as indicators
of aborted page downloads. While this situation can be inferred from currently gathered data,
accurate identification of aborted or recommenced downloads, and their correlation with
delay, must depend upon the dependable recognition of user behaviour based upon patterns
established using mechanisms such as instrumented browsers, or the observation of browsing
sessions set up for the purpose.

9.3.2 Nprobe Development

Current work is concentrating on benchmarking Nprobe performance — no probe placement
has so far provided traffic volumes sufficient to test its capabilities — and increasing potential
capture rates. The capabilities of the available NICs are being investigated, together with
improvements to their drivers to allow higher degrees of interrupt coalescence. The use of
more powerful NICs, such as the DAG cards, may also be investigated. Work is also required
to optimise the way in which workload is shared across multiple processors, particularly dual
core architectures.

Because Nprobe is designed to allow the simple addition of further protocol-based data extrac-
tion modules, the scope for further work using it is very wide — the existence and availability
of a more powerful tool leads to further research, and ease of analysis development encourages
innovative studies. There are currently plans to add a Border Gateway Protocol (BGP) mod-
ule to investigate routing convergence and stability, and further modules designed to observe
streamed media traffic. Future work may include investigations of real and user-perceived
Quality of Service, denial-of–service attack detection, traffic engineering issues, and extension
into observation of new Grid traffic types.

The use of Nprobe is not, of course, limited to the observation of established protocols and
application activity: its unique capabilities may make it a valuable tool in the development
of new protocols, and of distributed systems.



Appendix A

Class Generation with SWIG

Figure A.1 on the following page illustrates the generation of the data retrieval interface by
SWIG. Input, in the form of the relevant C header files, is converted into a Python mod-
ule — the data retrieval interface — defining a series of Python classes, each analogous to
one of the C structures in which data is stored and dumped by Nprobe, and having data
attributes corresponding to the fields of the C structure. SWIG output consists of the Python
module containing the class definitions, a C file containing the class implementations, and
an (optional) documentation file. The class definitions include initialization and destructor
methods for the class, together with a set of accessor methods for the data attributes. The
C implementation file is compiled into a library which is imported into the Python interface
module.

A.1 Interface Definition

SWIG operation and module generation are specified in an interface definition file which lists
the header files upon which class generation is to be based, and also those which must be
included in the C interface implementation file. Any changes in the header files are incorpo-
rated into the interface by regenerating it under the control of the normal make dependency
hierarchy.

The SWIG interface definition file allows considerable flexibility in the generation of the desired
module. Additional C structures may be defined, generating further classes for inclusion in the
module, and C function prototypes may be included which will generate module-level functions
implemented by C code, also included in the interface file, and which is copied verbatim
into the C interface implementation file. Such C code may be specified as implementing
further methods (helper functions) for each of the classes generated. Defining methods for the
interface classes in this way can lead to efficiency gains in certain circumstances: automatically
generated accessor methods for nested classes (structures) will call an accessor method for
each level of nesting whereas a helper function can return the desired value in a single method
(function) call, and where manipulation of the underlying C structure is required, this can be
implemented directly by helper functions.
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Note: The interface definition lists the Nprobe module header files from which Python classes are to
be generated, and includes verbatim C functions which provide hooks into the modules’ data retrieval
code, and fast accessor and data manipulation functions. SWIG generates a Python module defining
the required interface classes and C source which is compiled into a library implementing them. Hooks
may also be provided for other data manipulation functions provided by the Nprobe modules.

Figure A.1: SWIG Trace file interface generation.

A.2 Tailoring Data Representation in the Interface

SWIG helper functions, providing methods for the generated Python interface classes, have
one further, and central, role — their use as hooks by which further functions can be called.
The Nprobe modules must provide not only the definition of data structures, but also the
functions which can interpret record formats, and hence read the data from trace files; these
functions are made available to the interface through the hooks provided for each class.

A sub-set of the C preprocessor constructs are understood by SWIG which, additionally, can
be invoked with a set of defined constants. Class generation can therefore be based upon
a sub-set of the definitions contained in C header files by appropriate use of the #ifdef

and similar directives. The same mechanism can also be used to modify the content of the
Nprobe module data structures to a more appropriate form in the retrieval interface where
appropriate.

Reference to Figures 3.3 and 3.4 on pages 59 and 70 respectively will show, for instance, the
way in which data and state may be nested within Nprobe, but that only the data is dumped
to file, and that nested data is serialized as it is dumped — state does not need to be saved,
and nested data may or may not be present, hence it would be potentially wasteful of file
and disc space to dump nested data structures. Although the components of state relevant
to data extraction are not required in the analysis data representation, those locating and
associating data (e.g. links to chained or subsidiary SSUs) are; data nesting also associates
data, and should be reflected in the analysis representation. Conditional inclusion is therefore
used in the relevant structure definitions in order to create appropriately nested classes which
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include only the state fields required to associate and link SSUs and recreate data nesting.
Serialized data structures are retrieved into the original nested form.





Appendix B

An Example of Trace File Data
Retrieval

Section 4.2.2 on page 87 explains the role of automatically generated Python retrieval classes
and utility module functions, provided by the analysis infrastructure, when reading trace file
data. The examples in this Appendix demonstrate the use of the infrastructure during the
analysis process.

B.1 A Typical Data-Reading Function

The Code Example in this section shows how a get data function1 retrieves selected data
from an Nprobe trace file.

2 #

3 # Retrieve TCP connection and HTTP transaction data

4 # from Nprobe trace files:

5 # - argument file_list is list of trace files

6 # - returns data as list of connection/transaction list tuples

7 #

9 from np_file_util import get_files , EOF

10 from np_http_util import allocate_http_reusable_objects

11 from np_http_util import get_http_rec_and_trans

12 from np_TCPConn import TCPConn

13 from np_HTTPTrans import HTTPTrans

14 from nprobe import REC_TCP_HTTP

16 def get_data(file_list):

1The example shows a function called by a data analysis script, but it could equally well be a method of an
analysis object. Whether to drive analysis through function calls made by a script, or method invocations of
an analysis object will depend upon which is the more appropriate for the analysis task in hand.
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18 # check and open trace files , aggregate meta -data

19 openfilelist , counters = get_files(file_list)

21 #

22 # instantiate a reusable TCP connection data retrieval

23 # object with list of HTTP transaction retrieval objects

24 #

25 connrec , tlist = allocate_http_reusable_objects ()

27 # a list to return the data in

28 data = []

30 #

31 # main loop

32 #

33 for file in openfilelist:

35 while TRUE:

37 # position at next TCP/HTTP record

38 try:

39 file.next_type_rec(REC_TCP_HTTP)

40 except EOF:

41 break

43 # get the data into the retrieval objects

44 ntrans = get_http_rec_and_trans (file , connrec , tlist)

46 # instantiate higher -level protocol class objects

47 conn = TCPConn(connrec)

48 translist = []

50 for t in tlist [: ntrans ]:

51 translist.append(HTTPTrans(t))

53 # accumulate data for this connection and its

transactions

54 data.append ((conn , translist))

56 #

57 # return the data

58 #

59 return data

Example B.1: An example of trace-file data retrieval. The function steps through
the specified files, selecting from each the records of the desired type. A class
utility function — get http rec and trans — uses the retrieval objects connrec

and tlist to read data from the record. The retrieval records are passed as
arguments to the instantiation of the higher level class objects of type TCPConn

and HTTPTrans. The higher-level classes’ constructor functions will use the
retrieval objects’ accessor functions to select the data values required, and will
call its own conversion functions to map data types or reduce relative time
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stamps to a common base.

In Code Example B.1 lines 9 – 11 import the utility functions required by the get data

function, and lines 12 – 13 import the higher-level DAU classes. Note that the retrieval
objects returned by the call to the utility function allocate http reusable objects are
instantiated only once, and are reused for each record read. The inner loop commencing at
line 35 uses the next type rec method of the current file (an object of type TraceFile) to
position the file at the data part of the next record of the required type (REC TCP HTTP); an
EOF exception is caught at the end of each file.

The retrieval records are populated with data from the record in line 44 by the utility func-
tion get http rec and trans which invokes their read methods; the number of transactions
actually carried by the TCP connection is returned (as the list of transaction data retrieval
objects is pre-allocated and is long enough to hold an arbitrary maximum number of objects,
the number actually populated with data is required). Lines 47 and 51 instantiate the higher
level classes TCPConn and HTTPTrans which will be used in the data analysis itself.

All of the utility functions called are part of the standard analysis infrastructure, as are
the SWIG-generated retrieval classes and the higher-level protocol classes. The entire data
retrieval process has been implemented in exactly 17 lines of code (excluding comments and
import statements).

B.2 Use of Retrieval Interface Classes

Figure 4.2 on page 86 illustrates the use of retrieval interface objects to read data from trace
files, and Code Example B.1 in Section B.1 demonstrates their use in a typical trace file reading
function. In the function shown reusable retrieval objects of types tcp conn and http trans

are instantiated by a call to the utility function allocate http reusable objects and pop-
ulated with data using a call to the function get http rec and trans — both provided by
the utility module np http util. Code Example B.2 is an excerpt from that module showing
the two functions.

2 from nprobe import tcp_conn , http_trans , MAX_NTRANS

4 #

5 # Return a tcp_conn object and maximum list of http_trans

6 # objects for repeated use

7 #

9 def allocate_http_reusable_objects ():

11 # instantiate a TCP retrieval class object

12 tc = tcp_conn ()

13 # provide it with a packet header data buffer

14 tc.tcp_alloc_hdrbuffs ()

16 tl = []
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17 # provide a list of HTTP transaction retrieval class objects

18 for i in range(MAX_NTRANS):

19 tr = http_trans ()

20 # provide each with a buffer to hold link data

21 tr.http_links_buf_alloc ()

22 tl.append(tr)

24 # return the objects

25 return (tc , tl)

27 #

28 # Given an Nprobe rec file lined up at the next TCP/HTTP tconn

record ,

29 # a pre -allocated tcp_conn object and list of http_trans objects ,

30 # read the data from file into the objects

31 #

33 def get_http_rec_and_trans (file , connrec , translist):

35 # get tconn record data

36 connrec.read(file)

38 #

39 # build the transaction list

40 # - first find out how many transactions

42 ntrans = connrec.get_ntrans () # accessor method

43 i = 0

44 while i < ntrans :

45 # get the transaction data for each

46 translist[i].read(file)

47 i += 1

49 return ntrans

Example B.2: Instantiation and reuse of retrieval interface classes. An excerpt
from the np http util utility module showing the functions provided to
instantiate the retrieval interface classes which read TCP and HTTP transaction
data from trace files, and to populate the class objects with data by invoking
their read methods.

Line 2 of Code Example B.2 imports the retrieval classes tcp conn and http trans from the
automatically generated retrieval interface module nprobe.py. Note the imported constant
MAX NTRANS2 — SWIG understands the #define C preprocessor construct (in the case of
constants so defined) and generates module level ‘constant’ variables with the corresponding
names and values.

2Although there is no theoretical limit on the number of transactions that may be carried by a TCP

connection a finite (but adequate) upper bound is imposed in practice in order to avoid depletion of Nprobe
HTTP SSUs in the case of a ‘runaway’ connection.
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The function get http rec and trans at line 9 instantiates a single tcp conn object and a
list of MAX NTRANS http trans objects. Lines 14 and 21 equip the objects with buffers into
which they can read TCP packet header and HTML links data respectively — as the retrieval
objects are to be re-used it would be inefficient to allocate these buffers on the fly as required
by individual record instances.

get http rec and trans at line 33 is called as each record is encountered in order to pop-
ulate the retrieval classes with data from the trace file, taking as its arguments the current
TraceFile object (positioned to read the record data) and the retrieval objects. The read

method of the tcp conn object is invoked at line 36 and its get ntrans() accessor method
at line 42 in order to establish the number of transactions present. The loop at line 44 reads
the required number of transaction records serially from the file, each being populated by the
read method of the corresponding http trans in the list.

B.3 Using the FileRec Class to Minimize Memory Use

Data association during analysis may exceed the available memory capacity if all data is
stored. The FileRec class is used to store the location of the associated trace file records
during a preliminary pass through the file(s) and then, during full analysis of the associated
data, to retrieve data from file and instantiate an analysis object of the appropriate type.
Code Example B.3 illustrates the association of data using FileRec objects.

3 from np_file_util import get_files , EOF from nprobe import

tcp_conn ,

4 REC_TCP_HTTP from np_filerec import FileRec , WEBCLIENT

6 #

7 # Use an initial pass through the trace to associate TCP/HTTP data

8 # on a per -client basis using the FileRec class

9 #

11 def first_pass(file_list):

13 # check and open trace files , aggregate meta -data

14 openfilelist , counters = get_files(file_list)

16 #

17 # instantiate a reusable TCP connection data retrieval object

18 #

19 connrec = tcp_conn ()

21 # a dictionary in which to store the associated data (as

FileRecs)

22 clients = {}

24 #

25 # main loop
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26 #

27 for file in openfilelist :

29 while TRUE:

31 # position at next TCP/HTTP record

32 try:

33 file.next_type_rec(REC_TCP_HTTP)

34 except EOF:

35 break

37 # get the file offset

38 off = file.curr_offset # get before read advances

40 # get the data into the retrieval object

41 connrec.read(file)

43 client = connrec.client () # accessor method

45 if clients.has_key(client):

46 #

47 # a FileRec for this client exists

48 # - add this record to it

49 #

50 clients[client ]. add_rec (( REC_TCP_HTTP , file ,

offset))

51 else:

52 #

53 # create a new FileRec with this record initially

54 # - the analysis object to be constructed will be

55 # of class WebClient

56 #

57 clients[client ] = FileRec(WEBCLIENT , REC_TCP_HTTP

, file , offset)

59 #

60 # return the associated data

61 #

62 return clients

64 #

65 # Now analyse the associated data - clients is a dictionary

66 # of FileRecs associated by client

67 #

69 def analyse(clients):

71 for c in clients.values ():

72 # create a WebClient analysis object

73 client = c.reconstruct ()

75 # call the object ’s analysis methods

76 c.build_page_downloads ()
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77 c.first_analysis_task ()

79 .

80 .

81 .

83 return

Example B.3: Minimizing memory use by storing record locations. TCP/HTTP

data pertaining to individual clients is associated by client during an initial pass
through the trace. The data itself is not stored — objects of the FileRec class
accumulate a list of the relevant record locations. During full analysis objects of
the WebClient class are instantiated and populated using the FileRec objects’
reconstruct method.

Data association (in this case the activity associated with individual Web clients) is carried
out during the first pass through the trace file(s) by the function first pass at line 11. The
opening of the listed files at line 14 and the main loop at line 27 are substantially equivalent
to the similar operations shown in Code Example B.1, but in this case protocol class objects
are not instantiated. A re-used data retrieval object reads the record from file at line 41, the
only data accessed being the address of the TCP connection client. If the client has already
been encountered (the if statement at line 45) the record’s type and location are added to
the client’s existing FileRec object’s list of records at line 45. Otherwise a new FileRec

object is created, initially populated with the location of this first record encountered, and
entered into the clients dictionary at line 57.

Analysis of the associated data is carried out in the analyse function at line 69 which steps
through the entries in the clients dictionary instantiating WebClient analysis objects at
line 73 by invoking the reconstruct method of the FileRec object forming the data part of
each dictionary client entry. The WebClient’s analysis methods are then called from line 76
onwards.





Appendix C

Inter-Arrival Times Observed
During Web Server Latency Tests

Chapter 6 describes a technique, based upon the activity model of TCP connections, which
can be used to distinguish and quantify network and application-level time components of
TCP connections. Sections 6.3.1 – 6.3.3 describe a series of experiments conducted to evaluate
the technique and present the results in Figures 6.1 to 6.4 on pages 145–150. This Appendix
examines the results of these experiments in the context of the request and response inter-
arrival times observed at the monitor.

C.1 Interpretation of Request and Response Inter-Arrival Times

Figures C.1 and C.2 show the distribution of inter-arrival times for requests and responses
in each of the typical experiments. As the monitoring point was immediately adjacent to
the clients the request distribution shown is known to be minimally effected by variations in
network transit times and therefore reliably represents intervals at the client.

The distribution of response inter-arrival times may assume a different shape to that of
requests due to one or more of three factors:

• Variations in the processing time of individual requests

• Request queueing at the server

• Variations in network pRTTs between monitor and server

As care was taken to ensure that all requests could be satisfied from the server cache, and
because demands upon the server were constant during each loading interval, variations in the
processing time of individual requests should not materially effect the distribution of response
inter-arrival times. In the case of the local server pRTTs are typically less than 0.05 per cent
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of the minimum inter-arrival periods observed, and therefore can not materially effect their
distribution.

Although pRTTs were of the same order of magnitude as inter-arrival periods in the experi-
ments conducted with a distant server, examination of Figures 6.3(c) and 6.4(c) on pages 148
and 150 shows that variations in pRTT are less than the significant inter-arrival periods and
that (for each averaging period) the standard error of the mean is generally less than 1 ms.
It is unlikely, therefore, that pRTT variations contribute significantly to the distributions ob-
served in these experiments. Reference to Figures C.2 (a) – (b) and (d) – (e) additionally
shows that response inter-arrival periods remain consistent for the proportion of responses
expected to occur regularly, and also suggests that pRTT variation does not materially affect
the distributions seen.

It is concluded, therefore, that differences seen between the distributions for requests and re-
sponses accurately reflects queueing behaviour at the server. Where a section of the response
inter-arrival time distribution is displaced from the corresponding section of the request dis-
tribution, and both refer to the same set of requests/responses, the offset represents either a
minimum possible server response time or the delay due to queueing.

C.2 Inter-Arrival Times for Client and Local Server with Small

Round Trip Times

Figure C.1 shows the distribution of inter-arrival times for the typical experiment using a
local server, and with small RTTs, for the range of four background loads employed (0, 200,
400 and 600 objects per second, Sub-figures (a) and (c) – (e)). In all cases the proportion of
inter-arrival times attributable to each part of the observed and background loads is clearly
identifiable, and is annotated appropriately. As background loads are added, shown in (c) –
(e), the features due solely to the observed load, shown in (a) become less significant, and
contribute a correspondingly lower probability to the distribution.

Figure C.1(b) presents a detail of the small inter-arrival time distribution at zero background
load showing the contribution of the burst of back-to-back requests which forms part of the
observed load. It is clear that the server has a maximum service rate, represented by a
minimum latency of 0.8 ms (i.e. service time TS), which is present at all background loads,
and which will contribute an accumulative queueing delay of this magnitude to each response
to requests arriving back-to-back. It is exactly this accumulative delay which is seen in
Figure 6.1(b) on page 145, and confirms the figures calculated by the activity model; it also
conforms reasonably to the service time of 0.836 ms predicted by the zero-background–load
model of server activity.

Sub figures (c) – (e) show that, at background loads of 200 and 400 requests per second the
server response is sufficiently fast to avoid queueing for the majority of the requests, but at
a background load of 600 requests per second all requests are queued. The distinct steps
introduced into the distribution by the successively added background loads suggest that the
requests generated by the loading machines were (as might be expected) neither in phase,
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for all loads
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nor were their phases evenly distributed — although the average request arrival interval
(approximately 1.4 ms at the highest load) is never less than the server’s minimum response
latency the phasing of the requests makes it inevitable that some queueing will result.

C.3 Inter-Arrival Times for Client and Distant Server with

Larger Round Trip Times

Figure C.2 shows the distribution of inter-arrival times for the typical experiments using a local
server with small RTTs on non-persistent and persistent pipelined connections, for the range
of four background loads employed (0, 100 and 200 objects per second, sub figures (a) – (c)
and (d) – (f)). Sub figures (b) and (e) show detail of the small inter-arrival time distribution
at zero background load.

C.3.1 Using Non-Persistent Connections

The features of the zero-load inter-arrival times for the larger RTTs encountered in these tests,
when using non-persistent connections (Figure C.2 (a) – (c)), are similar (although slightly
less well defined) to those of the tests utilising a server with small round trip times. The less
powerful server used reflects in a lower maximum service based upon a minimum latency of
2.5 ms, clearly seen in sub figure (b). This degree of latency again agrees closely with the
accumulative queueing delays calculated by the activity model for this test, and which are
shown in Figure 6.3(b) on page 148, and compares with a service time of 2.82 ms derived
from the zero-background–load model.

The zero-load distribution features are not as well preserved by comparison, however, when
background loads are added (sub figure (c)), and this probably reflects the higher proportion-
ate load placed upon the machine’s processor (compare Figures 6.1(d) and 6.3(d) on pages 145
and 148). The distribution of background load request inter-arrival times differs dramatically
from the cleanly stepped distribution seen in the case of the local server. It is suggested that
Httperf’s request-scheduling policy underlies this difference: when called upon to gener-
ate a high request rate, Httperf schedules its activity by spinning between requests, hence
achieving precise timings; at lower rates the select system call is used to schedule requests.
The median values of background load request inter-arrival times are approximately 5 and
10 ms, as expected for loads of 100 and 200 requests per second, with a mean dispersion of
approximately 2.5 ms — a typical, and expected, degree of precision when using the select

mechanism.

C.3.2 Using Persistent Pipelined Connections

Zero-load inter-arrival time distributions for a typical test using persistent connections with
pipelined requests are shown in Figure C.2 (d) and (e). Sub figure (d) demonstrates the
division of request intervals into those between primary requests (approximately 9.1% of the
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total), between two bursts of pipelined requests (18.2%) and pipelined requests (72.7%). It is
suggested, therefore, that the principal features exhibited by the distribution are determined
by the pipelining behaviour of the requesting agent.

Sub-figure (e) shows the detail of (d) and is clarified by reference to Figure 6.5 on page 151,
which shows the pattern of pipelining for request bursts and responses. The differing interval
between the transmission of the primary response and the first response burst (approximately
32 ms) and the first and second response bursts (approximately 38 ms) are seen at B and
A. The 45% of all responses whose initial octets share a segment with those of the preceding
response result in zero inter-arrival times seen at D; 27 per cent of pipelined responses whose
initial octets are carried in a subsequent segment are seen at C. It is clear that the principal
features of the response inter-arrival time distribution are also determined largely by the
pattern of pipelining. It is interesting to note, however, that the segments carrying responses
#4 –#10 are not transmitted back to back1, but are separated by approximately 1.5 ms (C).
It may be that this interval represents a maximum service rate for pipelined responses, which
is feasible compared with the 2.5 ms minimum latency exhibited for non-persistent and non-
pipelined responses, where each involves the additional computational expense of creating
and scheduling a separate server thread — the zero-background–load model of the server,
however, does not support this supposition. The lower workload in the persistent/pipelined
case is reflected in the lower CPU load factor seen in Figure 6.4(d).

The predominant features of the distributions with the addition of background load (Sub-
figure C.2(f)) are dictated by the additional loadings, and are essentially similar to those in
the case of non persistent connections shown in sub figure C.2(c). The different pattern of
observed load is, however, reflected in the lower left-hand part of the two plots.

1The activity model assumes that these segments are transmitted back to back, and that the responses
that they carry are, therefore, subject to null delays (see Section 6.3.3 on page 149). This will not introduce
inaccuracy, but the model should be enhanced to recognise such delays between pipelined responses.
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