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Abstract: A bigraphical reactive system (BRS) involves bigraphs, in
which the nesting of nodes represents locality, independently of the edges
connecting them; it also allows bigraphs to reconfigure themselves. BRSs
aim to provide a uniform way to model spatially distributed systems that
both compute and communicate. In this memorandum we develop their
static and dynamic theory.

In Part I we illustrate bigraphs in action, and show how they correspond to
to process calculi. We then develop the abstract (non-graphical) notion of
wide reactive system (WRS), of which BRSs are an instance. Starting from
reaction rules —often called rewriting rules— we use the RPO theory of
Leifer and Milner to derive (labelled) transition systems for WRSs, in a
way that leads automatically to behavioural congruences.

In Part II we develop bigraphs and BRSs formally. The theory is based
directly on graphs, not on syntax. Key results in the static theory are that
sufficient RPOs exist (enabling the results of Part I to be applied), that
parallel combinators familiar from process calculi may be defined, and
that a complete algebraic theory exists at least for pure bigraphs (those
without binding). Key aspects in the dynamic theory —the BRSs— are
the definition of parametric reaction rules that may replicate or discard
parameters, and the full application of the behavioural theory of Part I.

In Part III we introduce a special class: the simple BRSs. These admit en-
codings of many process calculi, including the π-calculus and the ambient
calculus. A still narrower class, the basic BRSs, admits an easy characteri-
sation of our derived transition systems. We exploit this in a case study for
an asynchronous π-calculus. We show that structural congruence of pro-
cess terms corresponds to equality of the representing bigraphs, and that
classical strong bisimilarity corresponds to bisimilarity of bigraphs. At the
end, we explore several directions for further work.
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Part I
Illustrations and Mathematical Framework

The introduction to Part I provides a rationale for bigraphs, an account of
the work that leads up to bigraphs, and a synopsis of the whole memo-
randum. We continue with illustrations of bigraphs themselves, how they
may reconfigure, and how they correspond to process calculi.

We then present the categorical framework in which the theory of bigraphs
will be developed; this includes the notion of a well-supported precategory
and the properties of relative pushouts (RPOs). We introduce an abstract
notion of dynamic system called a wide reactive system (WRS); it is not
graphical, but gives prominence to spatial extension, or width as we shall
call it. This allows us to develop important aspects of structure and be-
haviour, which we shall apply to BRSs in Part II. In particular a WRS
has parametric reaction (rewriting) rules; in terms of these, we define la-
belled transition systems for a wide range of WRSs and prove behavioural
congruence theorems for them.

Thus Part I provides a mathematical frame within which both BRSs (in
Part II) and their applications (in Part III) can be developed.
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Figure 1: An example of a bigraph

1 Introduction
Bigraphical reactive systems (BRSs) [27, 28, 29, 20] are a graphical model of compu-
tation in which both locality and connectivity are prominent. Recognising the increas-
ingly topographical quality of global computing, they take up the challenge to base all
distributed computation on graphical structure. A typical bigraph is shown in Figure 1.
Such a graph is reconfigurable, and its nodes (the ovals and circles) may represent a
great variety of computational objects: a physical location, an administrative region, a
data constructor, a π-calculus input guard, an ambient, a cryptographic key, a message,
a replicator, and so on.

Bigraphs are a development of action calculi [25], but simpler. They use ideas from
many sources: the Chemical Abstract machine (Cham) of Berry and Boudol [2], the
π-calculus of Milner, Parrow and Walker [30], the interaction nets of Lafont [21], the
mobile ambients of Cardelli and Gordon [7], the explicit fusions of Gardner and Wis-
chik [16] developed from the fusion calculus of Parrow and Victor [32], Nomadic Pict
by Wojciechowski and Sewell [40], and the uniform approach to a behavioural theory
for reactive systems of Leifer and Milner [23]. This memorandum is self-contained;
it builds on preliminary definitions and results put forward by Milner [28], but the
approach here is a lot simpler and developed more fully.

The theory of BRSs responds to twin challenges: from application, and from exist-
ing process theory. The former demands greater breadth of concepts, while the latter
demands continuity of ideas. We now discuss these challenges separately.
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The challenge from applications
The long-term aim of this work is to provide a model of computation on a global scale,
as represented by the Internet and the Worldwide Web. The aim is not just to build a
mathematical model in which we can analyse systems that already exist. Beyond that,
we seek a theory to guide the specification, design and programming of these systems,
to guide future adaptations of them, and not to deteriorate when these adaptations are
implemented. There is much talk of the vanishing ubiquitous computer of the future,
which will obtrude less and less visibly in our lives, but will pervade them more and
more. Technology will enable us to create this. To speak crudely, we must make sure
that we understand it before it vanishes.

This will only be achieved if we can reverse the typical order of events, in which
design and implementation come first, modelling later (or never). For example, a pro-
gramming language is rarely based thoroughly upon a theoretical model. This has
inevitably meant that our initial understanding of designed systems is brittle, and dete-
riorates seriously as they are adapted. We believe that the only acceptable solution, in
the long run, is for system designs to be expressed with the concepts and notations of a
theory rich enough to admit all that the designers wish.

The arrival of ubiquitous mobile computing provides an opportunity for this, simply
because it is new enough for its languages and implementation techniques not to be
entrenched. Another reason is that concurrency theorists have anticipated mobility and
have some structures to offer for new languages. Thus designers and analysts may
come to speak the same tongue. For example the π-calculus model is beginning to be
adopted by business process management to provide languages and analytical tools for
business processes with mobile structure [39].

Whatever our optimism, we cannot expect to arrive immediately at the right model.
Initially we have to strike a compromise between incremental development of existing
ideas on the one hand, and making too large a leap on the other hand. For if a model
is to be seriously used in design, then it must be somewhat complex; it must grasp
enough of the complexity of real systems to allow us to assess whether we are on the
right track. If we tackle each aspect of global computation in isolation from the others
we may develop an elegant theory, but it may not survive when other aspects are taken
into account. Yet to tackle all aspects at once will defeat us.

So our strategy here is to tackle just two aspects —mobile connectivity and mobile
locality— simultaneously. In fact this combination contains a novel challenge: to what
extent in a model should connectivity and locality be interdependent? In plain words,
does where you are affect whom you can talk to? To a user of the Internet there is total
independence, and we want to model the Internet at a high level, in the way it appears to
users. But to the engineer these remote communications are not atomic, but represented
by chains of interactions between neighbours, and we should also provide a low-level
model which reflects this reality. So we want to have it both ways; furthermore, we
want to be able to describe rigorously how the high-level model is realised by the
low-level one.

Of these two models, the low-level is the less novel. Indeed, von Neumann’s cel-
lular automata are the original paradigm for it; his agents were arranged on a fixed
rectangular grid and interaction could only occur between neighbours. But in such a
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model we can realise a higher-level one in which a single agent is represented by differ-
ent cells at different moments, and may send messages to other distant agents. So the
challenge we address here is to provide the means to make locality and connectivity as
dependent —or independent— as you wish. This seems to require new mathematical
structures, and bigraphs represent our attempt to provide them.

In defining the bigraph model we are concerned not to ignore familiar calculi of
mobile processes, which deal with interaction and mobility in a variety of different
ways. Instead, we want a theory that can be specialised to each of these calculi, and
therefore unifies them. This leads naturally to the second of our twin challenges.

The challenge from process theory
Existing process calculi have made great progress with interconnected concurrent pro-
cesses [4, 1, 18, 26], with processes having mobile connectivity [30, 13] and with pro-
cesses having notions of spatial location and mobility [2, 7]. There is some agreement
among all these approaches, both in their basic notions and in their theories; perhaps the
strongest feature is a good understanding of behavioural specification and equivalence.
At the same time the space of possible calculi is large, we lack a uniform development
of their theories, and there is no settled way to combine their various kinds of mobil-
ity. In particular, as shown by Castellani’s [8] comprehensive survey, widely varying
notions of locality have been explored.

The bigraphical model aims at further generality both in the treatment of mobility
and in behavioural theory. As far as mobility is concerned, its notion of spatial region is
akin to the ambients of Cardelli and Gordon [7]; we find that it supports both mobility
in physical space (or in analogous organisational spaces, which may be virtual), and
the dynamical control structures found in more traditional process calculi. The way
this works is explained at some length, with examples, in Section 2. Here, we turn to
the quest for a uniform behavioural theory.

It is common to present the dynamics of processes by means of reactions (typi-
cally known as rewriting rules) of the form a . a′, where a and a′ are agents. In
the context of process calculi this treatment is typically refined somehow into labelled

transitions of the form a `
. a′, where the label ` is drawn from some vocabulary ex-

pressing the possible interactions between an agent and its environment. These transi-
tions have the great advantage that they support the definition of behavioural preorders
and equivalences, such as traces, failures and bisimilarity. But the extension to labelled
transitions is tailored for each calculus.

We therefore ask whether these labels can be derived uniformly from any given set
of reaction rules of the form r . r′, where r is an agent that may change its state
to r′. A natural approach is to take the labels to be a certain class of (environmental)
contexts; if L is such a context, the transition a L

. a′ implies that a reaction can occur
in L ◦a leading to a new state a′. (As we shall see, bigraphical agents and contexts live
in a category, or more generally a precategory, where the composition L ◦a represents
the insertion of agent a in context L.) Moreover, we would like to be sure that the
behavioural relations —such as bisimilarity— that are determined by the transitions
are indeed congruential, i.e. preserved by insertion into any surrounding environment.
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But we don’t want all contexts as labels; as Sewell [37] points out, the behavioural
equivalences that result from this choice are unsatisfactory. How to find a satisfac-
tory —and suitably minimal— set of labels, and to do it uniformly, remained an open
problem for many years. As a first step, Sewell [37] was able uniformly to derive satis-
factory context-labelled transitions for parametric term-rewriting systems with parallel
composition and blocking, and showed bisimilarity to be a congruence. It remained
a problem to do it for reactive systems dealing with connectivity, which presents ex-
tra difficulty. Recently Leifer and Milner [23] were able to define minimal labels in
terms of the categorical notion of relative pushout (RPO), and moreover to ensure that
behavioural equivalence is a congruence for a wide class of reactive systems. These
results were extended and refined in Leifer’s PhD Dissertation [22], and Cattani et
al [9] applied this theory to action graphs with rich connectivity. Meanwhile, Mil-
ner developed the bigraph model from action graphs, with inspiration from the mobile
ambients of Cardelli and Gordon. The development was driven by the simplicity that
comes from treating locality and connectivity independently, and was also inspired by
Gardner’s development [15] of symmetric action graphs (i.e. undirected edges).

In this memorandum, the technical thrust is towards a theory of bigraphs in which
behaviour is uniformly represented by RPO-based transitions. The reader will soon
see that, with this purpose in mind, several different paths could have been taken. We
could therefore have proceeded more slowly, analysing each different option and its
implications. Instead, we chose to follow one path far enough to provide evidence
that a bigraphical approach will work; we have aimed at a point at which we can,
within the new theory, recover some of the successes of existing theories such as the
π-calculus. At the same time, we have tried to make it easier to explore different paths
by dividing the theory —wherever possible— into independent topics. For example,
bigraphs themselves are defined in terms of two independent structures, place graphs
and link graphs, and each of these can be varied. Also, bigraphical reactive systems
(BRSs) are defined as merely one instance of a general concept, wide reactive systems
(WRSs), whose abstract theory we first develop; many other instances are possible.

Thus, making reasonable choices (which can be re-examined), we have taken the
theory far enough to be able to set up within it a version of the π-calculus. Our main
example is a finite asynchronous π-calculus, for which —as one member of a broad
class— we are able to derive a transition system that corresponds closely to that de-
fined in the classical approach; indeed, structural congruence in this π-calculus turns
out to be represented by equality of bigraphs, and exactly the same bisimilarity con-
gruence is achieved. In deriving this system we define general tools for the refinement
of contextual transition systems, and comment on how we may tackle richer calculi,
including ambient calculi, with the same approach.

Related work
We now turn to related work by other researchers, apart from those already mentioned.

The longest tradition in graph reconfiguration —often called graph-rewriting— is
based upon the double pushout (DPO) construction originated by Ehrig [11]. Our use
of (relative) pushouts to derive transitions is quite distinct from the DPO construc-
tion, whose purpose is to explain the anatomy of graph-rewriting rules (not labelled
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transitions) working in a category of graph embeddings with graphs as objects and em-
beddings as arrows. This contrasts with our contextual (pre)categories, where objects
are interfaces and arrows are bigraphs. But there are links between these formulations,
both via cospans [14] and via a categorical isomorphism between graph embeddings
and a coslice over our contextual (pre)categories [9]. Ehrig [12] has recently investi-
gated these links further, after discussion with the second author, and we believe that
useful cross-fertilisation is possible.

In the paper just cited, Gadducci, Heckel and Llabrés Segura [14] represent graph-
rewriting by 2-categories, whose 2-cells correspond to our reactions. Another use of
2-categories is by Sassone and Sobocinski [36]; they present an alternative way of
deriving congruential bisimilarities in which 2-categories replace our precategories.
This correspondence is under ongoing discussion; it appears to be very close. Thus the
2-categories will link our theory more closely to category-theoretic standards, while
the corresponding precategories may continue to provide ease of manipulation.

Several other formulations of graph reconfiguration employ hypergraphs, for ex-
ample Hirsch and Montanari [17]. In their model the hypergraphs are not nested, as
bigraphs are; rewriting rules may replace a hyperedge by an arbitrary graph. Drewes,
Hoffmann and Plump [10] deal with hierarchical graphs, but their links do not join
graphs at different levels.

Synopsis
Part I In Section 2, as an illustration of bigraphs in action, it is shown how the
dynamics of the π-calculus and (in less detail) the ambient calculus can be modelled
in bigraphs. Then Section 3 sets up our category-theoretic framework, including the
notion of relative pushout (RPO); in particular it introduces supported precategories,
building upon work in Leifer’s PhD thesis. Roughly speaking, in a precategory whose
arrows are graphs or syntactic entities, support is a way of identifying each occurrence
of a node or a subterm.

Supported precategories are then enriched to wide precategories, suitable for repre-
senting systems with distributed regions. On this basis, Section 4 defines the notion of
wide reactive systems (WRS), equipped with parametric reaction rules; these are well
illustrated by the examples of Section 2, even though we do not formulate bigraphs
explicitly in Part I.

Section 5 shows how a (labelled) transition system (TS) can be uniformly derived
in any WRS, using RPOs and their closely associated idem pushouts (IPOs), which
are a kind of weak pushout. It also adapts the work of Leifer and Milner [23] to
show that bisimilarity in such a TS with sufficient RPOs must be congruential. Using
WRS functors (defined in Section 4), it is seen that these TSs and their congruential
bisimilarities can be transmitted from one WRS to another, along a functor that is
sufficiently well-behaved. One well-behaved functor is the support quotient, which
forgets the identity of nodes and subterms.

The final topic in Part I is the notion of an adequate sub-TS; it allows a TS to be
reduced while leaving bisimilarity unchanged. This will be important in Part III, to
make certain applications tractable.
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Part II In Section 6 the notion of a pure bigraph is formally defined in terms of its
two constituents: a place graph and a link graph. These two notions, dealing respec-
tively with locality and connectivity, are developed in Sections 7 and 8. In each of
these two sections the crucial results are the theorem that RPOs always exist, and the
characterisation of all the IPOs for a given pair of arrows.

In Section 9 the static theory of bigraphs is developed. A pure bigraph is an arrow in
a supported precategory whose objects are interfaces; each interface consists of places
for the place graphs and points for the link graphs. Several structural properties are
introduced, especially RPOs and IPOs — whose characterisation is already provided
by that for place graphs and link graphs respectively. The section provides a taxonomy
of bigraphs, including the notions of ion, atom and molecule which are based upon
a single control node. It also defines forms of parallel product close to the parallel
composition operators of familiar process calculi.

The algebra of pure bigraphs is axiomatised and proved complete in Section 10.
(This section is not required for any subsequent section.) In Section 11 pure bigraphs
are enriched to binding bigraphs by adding binding names, along lines already set out
in [28]. This relaxes the independency between placing and linking, by allowing certain
names to have scope. The precategory of binding bigraphs has enriched interfaces, and
its arrows are defined in terms of underlying pure bigraphs. Thus there is a forgetful
functor from binding to pure bigraphs; the RPO theory for binding bigraphs is derived
via this functor.

Finally in Section 11, with the addition of reaction rules, the central notion of a
bigraphical reactive system (BRS) is defined. A BRS is seen to be a special case of
WRS, as defined in Part I. Furthermore, because bigraphs have RPOs, the congruence
results from Part I immediately apply. The work of Part I also tranfers these results to
abstract BRSs, which are those most closely related to process calculi. It is shown that
RPOs do not exist in abstract BRSs; that is why concrete BRSs —and indeed concrete
WRSs and supported precategories— were introduced.

Part III In Section 13 the class of simple BRSs is introduced. These BRSs include
models of both the π-calculus and the mobile ambient calculus. Their structural prop-
erties also ensure adequacy of a certain sub-TS, namely the engaged transitions; this
eases the task of modelling the calculi mentioned.

Section 14 narrows the class of BRSs still further, to the basic ones. The purpose
of this is to obtain a nice characterisation of the labels involved in modelling the asyn-
chronous π-calculus; moreover we believe that a slight widening of the class of basic
BRSs will embrace both the full π-calculus and mobile ambients.

In Section 15 this characterisation is specialised to a finite asynchronous π-calculus.
It is then proved that the bisimilarity induced by this representation coincides with two
standard congruences, strong bisimilarity and strong barbed bisimilarity. This provides
the technical detail for work already presented by the authors at a conference [20]. It
justifies the claim that bigraphical systems are consistent with previous work in process
calculi, which has been one of the main purposes of the work reported here.

Finally, Section 16 explores several lines for further research.
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2 Bigraphs in action
We introduce bigraphs informally, with examples showing the kinds of system that
they represent, and the kind of mobility that they model. We also illustrate a simple
term language for describing bigraphs. The examples allow us to explain how locality
and connectivity co-operate; they also help to understand how bigraphs are naturally
treated as arrows in a (pre)category whose objects are a simple kind of interface.

Figure 1 shows an uninterpreted example of a bigraph. It has nodes that support
two kinds of structure; hence the term ‘bigraph’. First, nodes may occur inside other
nodes, so a bigraph has depth; since a node represents locality we call this nesting
structure of a bigraph its place graph. Second, nodes have ports that may be connected
by links, represented here by thin lines which may fork; we call this linked structure
of a bigraph, which is independent of locality, its link graph. To each node is assigned
a control, such as K or L, which tells us what kind of node it is. Each control has an
arity, a finite ordinal; for example, L has arity three, so each L-node has an ordered
set of three ports, at each of which a link may impinge. It may impinge either from
inside or from outside the node. The diagram also shows the use of names x and y;
such names allow a bigraph to be linked into larger bigraph.

The place graph and the link graph share a node set, but are otherwise independent
structures. The dynamics of bigraphs, i.e. the reconfigurations that may occur, depend
upon both structural components; they are determined by one or more reaction rules.
Each such rule has a redex and a reactum. The redex is a precondition for a reaction,
represented by a pattern of nesting and linkage; the reactum is a postcondition indi-
cating how the reaction will change that pattern. The places at which reactions may
occur are determined by the controls. A control K may be specified as atomic, mean-
ing that nothing may be nested within a K-node; if non-atomic it may also be specified
as active, meaning that reactions may occur within a K-node. On the other hand if K
is non-atomic but passive, then a K-node must be destroyed before its inhabitant nodes
can react.

We now give some typical reaction rules. A reaction consists of the replacement
of a redex occurring in a bigraph by the corresponding reactum; we shall see later how
the notion of ‘occurrence’ is represented in a precategory of bigraphs.

Example 1 (reaction in the π-calculus) Our first example (Figure 2) represents the
familiar reaction rule of the asynchronous π-calculus (without summation)

xy | x(z).P . {y/z}P .

To present this reaction rule in terms of bigraphs we need two controls send and
get, both with arity two. Recall that in the asynchronous π-calculus there are no output
guards xy.(−) and reaction is forbidden inside the input guard x(z).(−); to match this
we declare send atomic, and get non-atomic but inactive.

The redex R of Figure 2 illustrates a feature of bigraphs that is absent in Figure 1;
the notion of a hole — the grey box. This is a place where another bigraph may be
inserted. Arcs may impinge at points upon the hole, which we call inner names of R;
when another bigraph is inserted, its (outer) names are fused with these inner names.
The inner names and ports in a bigraph are collectively called its points. A link may
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R R′

send

get

y
y xx

send xy | get x(z)�z . x |�y

Figure 2: Reaction rule for the asynchronous π-calculus

connect an arbitrary number of points, and may also (but need not) be given an outer
name.

Here, the hole in R represents the parameter P of the π-calculus rule; the port on
the hole represents the name z bound in P . In fact, every bigraph is parametric in
general; it has both an inner interface I with its parameter(s), and an outer interface J
indicating the kind of hole(s) in which it, in turn, may be placed. We shall call I and J
respectively the inner face and outer face of R. The precategory of bigraphs will have
interfaces as objects and parametric bigraphs such as R : I→ J as arrows. Interfaces
will be triples of the form I = 〈m,~k,X〉, where m is a width (i.e. the number of
sites represented by I), ~k is a vector of length m indicating how many local names are
associated with each site, and X is a set of global names.

In the present caseR has an inner face I = 〈1, (1), ∅〉; the width 1 tells us that there
is only one hole in R, the singleton vector (1) tells us that this hole has one local name
(corresponding to z in the π-calculus rule) associated with it, and the third component
tells us that there are no global names involved at the inner face. Note that if I is an
inner face of a bigraph R, as here, then its names (local or global) are the inner names
of R. The outer face of R is J = 〈1, (0), {xy}〉; again, the width is 1, telling us that R
will occupy just one hole in some outer bigraph. The third component indicates that J
has two global names x and y, also called global (outer) names of R.

In a bigraph, both (outer) names and ports can be binding. Here R has only free
names; if it had a binding name then this would be a local name of the outer face
J . Dually, a local inner name of the inner face I corresponds to a binding name of
any parameter. (The parameter in this example really corresponds to the π-calculus
abstraction (z).P .) We represent a binding occurrence of a point by a small circle;
note that a port —such as the second port of get— may be binding, which means that
it may only be connected to ports inside the node.

The reactum R′ : I→ J has the same inner face I as R, because the parameter
persists through the reaction; it also has the same outer face J so that it may replace R
in some outer context. The substitution {y/z} in the π-calculus rule is represented just
by an arc. The name x is unattached inR′, because the two nodes have been discarded.

13



R R′

!get !get

y x

send

x

sendxy | !getx(z)�z . �y | !get x(z)�z

y

Figure 3: Reaction rule for input replication in the asynchronous π-calculus

Turning to the term language, note how a local name (here z) is written in paren-
theses. Local names may be changed by alpha-conversion. Holes are squares. Note
especially that the operation of juxtaposing two bigraphs, linking any edges with a
name in common, is represented in a term by parallel composition ‘ | ’. The occurrence
of x in the reactum R′ = x |�y means that x, though unused, is part of the outer face
of R′. Thus the correspondence between terms and bigraphs is quite accurate.

Example 2 (a π-calculus reaction rule for replication) In the previous rule, the pa-
rameter P of the π-calculus redex appears exactly once in the reactum; this is reflected
in the bigraphical rule by the single occurrence of a hole in the reactum R′, and by the
fact that R and R′ have the same inner face. But there is also a π-calculus rule called
replicated input:

xy | !x(z).P . {y/z}P | !x(z).P .

Here the parameter P is replicated; we can think of the input of y along x as triggering
the creation of a copy of P to handle it. Figure 3 represents the rule bigraphically;
note that it uses a different control !get, which is preserved in the reactum. Thus the
reactum in this case has a different inner face of width two, namely R′ : I ′→ J with
I ′ = 〈2, (1, 1), ∅〉.

Example 3 (a π-calculus reaction rule for summation) Figure 4 shows the commu-
nication rule for a π-calculus with summation,

(M + xy.P ) | (N + x(z).Q)→ P | {y/z}Q ,

in which two of the parameters, M and N , are discarded. The controls send, get
and sum are passive; this means that no reaction may occur inside nodes with these
controls. Note that sum has arity 0; it serves to group together alternatives, only one of
which will be enacted.
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xy

sum sum

xy

R R′

20

send

1 3

get

0 2

sum(send xy�0 |�1) | sum(getx(z)�2z | �3) . x |�0 |�2z

Figure 4: A reaction rule for the π-calculus with summation

0

amb
amb

1

in

amb

0

1

amb

R′R

amb z(inw | �0) | ambw�1 . ambw(amb z�0 | �1)

wzz w

Figure 5: Reaction rule for the ambient calculus
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y x xy

R R′

send

get

send xy ‖ get x(z)�z . 1 ‖ x ‖�y

Figure 6: Global reaction rule for the π-calculus

Example 4 (reaction in the ambient calculus) In the ambient calculus of Cardelli
and Gordon [7], one of the primitive forms of reaction is the movement of one am-
bient into another. Figure 5 shows how bigraphs may represent such a rule. We use
two controls, each with arity one: amb for an ambient, and in for a ‘command’ to move
its parent ambient somewhere else. We declare in to be atomic; on the other hand we
declare amb to be non-atomic and active, since ambients are intended only to localize
activity, not to inhibit it.

The redex and reactum again have two global names z, w in their outer face, which
has width 1; so this interface is J = 〈1, (0), {zw}〉. The inner face now has two
sites, so has width 2, and no names (local or global) associated with either site; so it is
I = 〈2, (0, 0), ∅〉.

The two parameters of this rule are, literally, passengers; their linkage (if any)
plays no part in the reaction. However, as we shall see later, this does not prevent
the two passengers —like passengers with mobile phones on a train— being linked to
elsewhere, or even to each other. One can imagine interactions occurring between them
independently of the occurrence of this ambient reaction. Our next example provides a
possible instance of this.

In the preceding examples the reactions permitted are all local. For example, the
ambient reaction rule will permit the ambient named x to enter the ambient named y
only if these two ambients are neighbours — i.e. not separated by any control bound-
aries. Similarly, the first π-calculus rule requires the send and get nodes to be neigh-
bours. But we may want to have in a more permissive rule which will allow action at
a distance; in the case of the π-calculus this will mean that we can model the passing
of a message in one step across arbitrarily many control boundaries. For this purpose
the sender and receiver must be linked across region boundaries, as shown in the next
example.

Example 5 (global reaction in the π-calculus) In the π-calculus reaction rule of Ex-
ample 3 the redex has width 1; this means that the rule applies only when the send and
get molecules are co-located. To allow a context to place them apart, we need only
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Figure 7: Some simple bigraphs

change the outer width of the redex and reactum to 2, shown in Figure 6; thus in this
case we haveR,R′ : 〈1, (1), ∅〉→〈2, (0, 0), {xy}〉. Note that, in the term language, we
have used ‘ ‖ ’ rather that ‘ | ’ for parallel composition; this combinator keeps regions
separate but still merges links with a common global name.

Such ‘wide’ reaction rules are interesting in the presence of one or more active
controls, because they can be used to separate the components of a distributed redex
but still allow it to react. We have already introduced amb as an example of an active
control. Indeed, our categorical representation will allow us to insert a bigraph with
arbitrarily many global names in the double-width hole of the ambient rule’s redex.
In particular, we might insert an instance of the redex of our remote π-calculus rule;
by this means we would create two interwoven but independent redexes, such that
neither reaction precludes the other. This is not an unlikely occurrence in the Internet,
modelled at a suitable level of abstraction.

In our illustrations of reaction rules we chose to stay close to familiar calculi. Be-
yond these, the possibilities range widely. For example, using a combination of active
and passive controls, various forms of failure management can be modelled. This may
include the inactivation of processes due to failure, the reporting of failures, recovery
procedures, and the subsequent re-activation of inactivated processes.

Our illustrations so far have emphasised dynamics. We should also realise that
some bigraphs have no dynamic behaviour but are useful building blocks. Figure 7
shows six simple examples, together with the terms that denote them. On the left side,
the first is just a region containing nothing. Its inner face is the so-called origin ε, the
simplest possible interface where everything is null, while its outer face is the simplest
interface I of width 1. The second is the categorical identity at I . The third is again an
identity at an interface J of width 1, but here the site has two local names.

The three bigraphs on the right side of the figure will be called wirings; they have
both interfaces of width 0, i.e. of the form 〈0, (), X〉, which we abbreviate to X (a set
of names). Their function is to link global inner and outer names in various patterns.
The first wiring is just the identity on an interface {xy}; think of it as the identity
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substitution on these two names. The next involves a substitution of the name w for
both the inner names y and z. This wiring also closes the inner name x; that is, when
composed with another bigraph with name x, such as R in Example 3, it will remove
x from the outer face. The last is an example of what Gardner and Wischik [16] call a
fusion. It is like a substitution of z for x and y, but it also closes z.

This concludes our illustration of bigraphs. Our main purpose was to show how
they can represent the dynamics of process calculi; we have also seen that even simple
things like name closure and substitution are bigraphs. We wrote each bigraph as a term
in a language that we shall not formalise here (this will be done in future work). These
terms are a mildly sugared form of mathematical constructions that we shall introduce
in later parts of the paper; we have shown them here to indicate that bigraphs are not
far from a programming language — in which a programmer can define a wide variety
of specialised reaction rules.

Discussion
By means of several examples we have informally introduced what we shall call, in
Part II, a bigraphical reactive system (BRS). Each BRS is based upon a precategory of
agents and contexts built according to a signature that defines controls and their static
properties, and a set of reaction rules that defines dynamics. The bigraphical theory
of Part II will begin with a direct formulation of bigraphs, in the classical tradition of
graph theory. As we have said, bigraphs will be the arrows of a precategory whose
objects are interfaces.

The reader may ask why we go to the trouble of a graphical formulation, when —as
we have illustrated in our examples— there is a rather pleasant algebraic formulation
of them. Can we not develop this algebraic theory, and then consider bigraphs as just
an alternative presentation of its elements?

There are two reasons for taking the graphs as primary. The first is that the space
of mobile computing that we want to model has a strong topographical character —
whether the topography is real or virtual— and it is reasonable to seek to model this
directly.

The second reason is theoretically deeper. One of our main goals is to build a theory
of dynamic systems embracing as much as possible of the behavioural theory embodied
in process calculi. This is often based upon a (labelled) transition system, and we wish
to apply the theory originated by Leifer and Milner [23], which defines such transition
systems in terms of so-called relative pushouts (a weak form of pushout); this ensures
that the resulting behavioural equivalences are congruential — provided that sufficient
relative pushouts (RPOs) exist in the appropriate precategory of agents and contexts.
But it turns out that neither the algebraic theory of bigraphs, nor their straightforward
presentation as a category, possesses RPOs. This is because they do not cater for the
notion of occurrence of one bigraph in another; they represent only abstract bigraphs,
where the identity of nodes is absent. By moving to concrete bigraphs —formulated as
a precategory rather than a category— we regain enough structure for the RPO theory
to work, and can thereby gain a congruential behavioural theory.

Fortunately, when we quotient this theory to recover a category of abstract bigraphs,
the quotiented behavioural theory is still congruential, and we thereby derive a uniform
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Figure 8: Resolving a pure bigraph into a place graph and a link graph

approach to behaviour that can be instantiated for different process calculi.
We shall formalise bigraphs directly in Part II. To manage their complexity we

shall first consider pure bigraphs, those that have no local names; then in a later section
we introduce local names and binding and define binding bigraphs. We represent a
pure bigraph as a combination of two independent mathematical structures — a place
graph and a link graph. Note that this combination is quite distinct from the categorical
composition used to insert one bigraph into another (e.g. an agent into a context). But it
is simply related to them; to compose two bigraphs categorically, we first resolve them
into their respective place graphs and link graphs, then compose these, and finally
combine the results into a new bigraph.

It is helpful to see an example in Figure 8 of how a pure bigraph G can be resolved
into a place graph GP representing locality, and a link graph GL representing connec-
tivity. (Controls are not shown in the diagram.) The nodes v0, . . . , v3 are common to
the two structures, which are otherwise independent. Note the bigraph’s double inter-

19



faces 〈3, X〉→〈2, Y 〉; there is no third component ~k here, because a pure bigraph has
no local names. This interface combines the place graph interface 3→ 2 with the link
graph interface X→Y ; nothing determines that the names y0, y1, y2 ‘belong’ to any
particular region of the bigraph (= root of the place graph), nor that the inner names
x0, x1 ‘belong’ to any particular site.

Let us repeat: in a pure bigraph G : 〈m,X〉→〈n, Y 〉 we admit no association
between the names Y and the roots (regions) n, nor between the inner names X and
the sites m. It is this dissociation that enables us to treat locality and connectivity
independently, yielding a tractable theory. This theory can then be extended rather
easily to binding bigraphs.

Part II ends with a section introducing the dynamic theory of bigraphs, and Part III
goes on to specialise and apply this theory. But the foundation of this theory is laid in
the abstract setting of wide reactive systems (WRSs), where the topographical element
is reduced to a very simple categorical notion of width. The remainder of Part I is
devoted entirely to these abstract dynamic systems.
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3 Precategories and relative pushouts
In this section and the following one we develop a mathematical framework for the
static and dynamic properties of bigraphs. There are several varieties of bigraph, and
we wish to derive in an abstract setting as many definitions and properties as we can
that will apply to all varieties. Sections 3 and 4 are an adaptation and extension of
work started by Leifer and Milner [23], then further developed by Leifer in his PhD
Dissertation [22] and by Milner [28]. These two sections closely follows Section 3 in
the latter paper.

The reader can perfectly well study Part II and beyond, independently of Sections 3
and 4, provided he or she is willing to take their main results on trust and to refer back
to important definitions from time to time.

The present section is concerned with the categorical framework and the important
concepts, especially relative pushouts, that will underlie the treatment of dynamics in
Section 4.

Notation We shall always accent the name of a precategory, as in ´C. We use ‘ ◦ ’,
‘id’ and ‘⊗’ for composition, identity and tensor product. We denote the domain I and
codomain J of an arrow f : I→ J by dom(f) and cod(f); the set of arrows from I to
J , called a homset, is denoted by ´C(I, J).

IdS will denote the identity function on a set S, and ∅S the empty function from ∅
to S. We shall use S ∪· T for union of sets S and T known or assumed to be disjoint,
and f ∪· g for union of functions whose domains are known or assumed to be disjoint.
This use of ∪· on sets should not be confused with the disjoint sum ‘+’, which disjoins
sets before taking their union. We assume a fixed representation of disjoint sums; for
example, X+P +Y means ({0}×X)∪ ({1}×P )∪ ({2}×Y ), and

∑
v∈V Pv means⋃

v∈V ({v} × Pv).
We write f �S or R�S for the restriction of a function f or relation R to the set S.
A natural number m is often interpreted as a finite ordinal m = {0, 1, . . . ,m− 1}.

We often use i to range over m; when m = 2 we use ı for the complement 1 − i of i.
We use ~x to denote a finite sequence {xi | i ∈ m}; when m = 2 this is an ordered pair.

Definition 3.1 (precategory, functor) A precategory ´C is defined exactly as a cat-
egory, except that the composition of arrows is not always defined. Composition with
the identities is always defined, and id ◦f = f = f ◦ id. In the equation h ◦ (g ◦f) =
(h ◦g) ◦f , the two sides are either equal or both undefined.

A subprecategory ´D of ´C is defined like a subcategory, with g ◦f defined in ´D
exactly when defined in ´C. A functor F : ´D→ ´C between precategories is a total
function on objects and on arrows that preserves identities and composition, in the
sense that if g ◦f is defined in ´D, then F(g) ◦F(f) = F(g ◦f) in ´C.

In general we shall use I, J,K, . . . to stand for objects and f, g, h, . . . for arrows.
We shall extend category-theoretic concepts to precategories without comment when
they are unambiguous. One concept which we now extend explicitly is that of a
monoidal category:
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Definition 3.2 (tensor product, monoidal precategory) A (strict, symmetric) monoidal
precategory has a partial tensor product ⊗ both on objects and on arrows. It has a unit
object ε, called the origin, such that I⊗ ε = ε⊗ I = I for all I . Given I⊗J and J ⊗ I
it also has a symmetry isomorphism γI,J : I ⊗ J→ J ⊗ I . The tensor and symmetries
satisfy the following equations when both sides exist:

(1) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h
(2) (f1 ⊗ g1) ◦ (f0 ⊗ g0) = (f1 ◦f0)⊗ (g1 ◦g0)
(3) γI,ε = idI
(4) γJ,I ◦γI,J = idI⊗J
(5) γI,K ◦ (f ⊗ g) = (g ⊗ f) ◦γH,J (for f : H→ I, g : J→K) .

‘Strict’ means that equation (1) holds exactly, as stated, not merely up to isomor-
phism; ‘symmetric’ refers to the symmetry isomorphisms satisfying equations (3)–(5).
We shall omit ‘strict’ and ‘symmetric’ from now on, as we shall always assume these
properties.

Why do we wish to work in precategories? In the Introduction we pointed out that
the dynamic theory of bigraphs will require the existence of relative pushouts (RPOs).
This means that we need to develop the theory first for concrete bigraphs, those in
which nodes have identity; then we can transfer the results to abstract graphs by the
quotient functor that forgets this identity. Precategories allow a direct presentation of
concrete bigraphs; for we can stipulate that two bigraphs F andGmay be composed to
form H = G ◦F only if their node sets are disjoint. We can think of this composition
as as keeping track of nodes1; we can recover from H exactly which nodes come from
F and which from G.

More generally, we are interested in monoidal precategories where the definedness
of composition and of tensor product depends upon a support set associated with each
arrow. In bigraphs the support of an arrow will be its node set. In general we assume
support to be drawn from some unspecified infinite set. We now give a general defi-
nition of precategories ´C with support; we continue to use this accented notation for
them, dropping the accent only when we have a category.

Definition 3.3 (supported (monoidal) precategory) A precategory ´C is supported
if it has:

• for each arrow f , a finite set |f | called its support, such that |idI | = ∅. The
composition g ◦f is defined iff |g|∩|f | = ∅ and dom(g) = cod(f); then |g ◦f | =
|g| ∪· |f |.

• for any arrow f : I→ J and any injective map ρ whose domain includes |f |, an

1Leifer’s development [22] (see Chapter 7) made use of a special category Track(´C) to keep track of
nodes in a precategory ´C. This allowed the theory of RPOs to be developed for categories rather than for
precategories. However, it can be developed more succinctly if we stay with the latter.

22



arrow ρ �f : I→ J called a support translation of f such that

(1) ρ � idI = idI
(2) ρ �(g ◦f) = ρ �g ◦ρ �f
(3) Id|f | �f = f
(4) (ρ1 ◦ρ0) �f = ρ1 �(ρ0 �f)
(5) ρ �f = (ρ� |f |) �f
(6) |ρ �f | = ρ(|f |) .

If ´C is monoidal as a precategory, it is monoidal as a supported precategory if it
also satisfies

(7) ρ �(f ⊗ g) = ρ �f ⊗ ρ �g .
Each of these seven equations is required to hold only when both sides are defined.

Exercise Deduce condition (1) from conditions (5) and (3).

We now consider functors between supported precategories.

Definition 3.4 (support equivalence, supported functor) Let Á be a supported pre-
category. Two arrows f, g : I→ J in Á are support-equivalent, written f l g, if
ρ �f = g for some support translation ρ. By Definition 3.3(5) and (6) this is an equiv-
alence relation. If ´B is another supported precategory, then a functor F : Á→ ´B is
called supported if it preserves support equivalence, i.e. f l g ⇒ F(f) l F(g).

When we no longer need to keep track of support we may use a quotient category (not
just precategory). To define such quotients, we need the following notion:2

Definition 3.5 (static congruence) Let≡ be an equivalence defined on every homset
of a supported precategory ´C. We say that ≡ is preserved by an operator ∗ if f ≡ f ′

and g ≡ g′ imply f ∗ g ≡ f ′ ∗ g′ whenever the latter are defined. Then ≡ is a
static (monoidal) congruence on ´C whenever it is preserved by (tensor product and)
composition.

As an example of a simple static congruence on bigraphs, we may define f ≡ f ′ to
mean that f and f ′ are identical when all K-nodes are discarded, for some particular
control K.

The most important example of a static congruence will be support equivalence
(l). But the following definition shows that any static congruence at least as coarse as
support equivalence will yield a well-defined quotient category:

Definition 3.6 (quotient categories) Let ´C be a supported precategory, and let≡ be
a static congruence on ´C that includes support equivalence, i.e. l ⊆ ≡. Then the
quotient of ´C by ≡ is a category C def

= ´C/≡, whose objects are the objects of ´C and
whose arrows are equivalence classes of arrows in ´C:

C(I, J)
def
= { [f ]≡ | f ∈ ´C(I, J) } .

2We use the term static congruence to emphasize that these congruences depend only on static structure,
in contrast with behavioural congruences —like bisimilarity— that depend upon the dynamics of a system.
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In C, identities and composition (and tensor product when ´C has it) are given by

idm
def
= [idm]≡

[f ]≡ ◦ [g]≡
def
= [f ◦g]≡

[f ]≡ ⊗ [g]≡
def
= [f ⊗ g]≡ .

By assigning empty support to every arrow we may also regard C as a supported precat-
egory, so that [·]≡ : ´C→C is a special supported functor called the≡-quotient functor
for ´C.

Note that the quotient does not affect objects; thus any tensor product on C may still
be partial on objects. But composition is always well-defined in C because f ≡ g
implies f l g, and so also is tensor product provided it is defined on the domains and
codomains.

We often abbreviate [·]l to [·]; we call it the support quotient functor. From the
definition, clearly a coarser quotient [·]≡ exists whenever ≡ is the least equivalence
that includes an arbitrary static congruence ≡′ as well as support equivalence. In Parts
II and III we shall define two coarser quotient functors on bigraphs by this means.

We now turn to the notion of relative pushout (RPO), which is of crucial importance
in defining labelled transitions in the following section.

Notation In what follows we shall frequently use ~f to denote a pair f0, f1 of arrows
in a precategory. If, for example, the two arrows share a domainH and have codomains
I0, I1 we write ~f : H→ ~I .

Definition 3.7 (bound, consistent) If two arrows ~f : H→ ~I share domain H , the
pair ~g : ~I→K share codomain K and g0 ◦f0 = g1 ◦f1, then we say that ~g is a bound
for ~f . If ~f has any bound, then it is said to be consistent.

Definition 3.8 (relative pushout) In a precategory, let ~g : ~I→K be a bound for
~f : H→ ~I . A bound for ~f relative to ~g is a triple (~h, h) of arrows such that ~h is a
bound for ~f and h ◦hi = gi (i = 0, 1). We may call the triple a relative bound when ~g
is understood.

A relative pushout (RPO) for ~f relative to ~g is a relative bound (~h, h) such that for
any other relative bound (~k, k) there is a unique arrow j for which j ◦hi = ki (i = 0, 1)
and k ◦ j = h.

f0 f1 f0 f1

h0 h1

k0

k1

g0 h g1

h0 h1

g0 g1
h k

j
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We shall often omit the word ‘relative’; for example we may call (~h, h) a bound (or
RPO) for ~f to ~g.

The more familiar notion, a pushout, is a bound ~h for ~f such that for any bound
~g there exists an h which makes the left-hand diagram commute. Thus a pushout is
a least bound, while an RPO provides a minimal bound relative to a given bound ~g.
In bigraphs we shall find that RPOs exist in cases where there is no pushout; see the
discussions following Constructions 7.11 and 8.12.

Now suppose that we can create an RPO (~h, h) for ~f to ~g; what happens if we try
to iterate the construction? More precisely, is there an RPO for ~f to ~h? The answer lies
in the following important concept:

Definition 3.9 (idem pushout) In a precategory, if ~f : H→ ~I is a pair of arrows with
common domain, then a pair ~h : ~I→ J is an idem pushout (IPO) for ~f if (~h, idJ) is an
RPO for ~f to ~h.

Then it turns out that the attempt to iterate the RPO construction will yield the same
bound (up to isomorphism); intuitively, the minimal bound for ~f to any bound ~g is
reached in just one step. This is a consequence of the first two parts of the following
proposition, which summarises the essential properties of RPOs and IPOs on which
our work relies. They are proved for categories in Leifer’s Dissertation [22] (see also
Leifer and Milner [23]), and the proofs can be routinely adapted for precategories.3

Proposition 3.10 (properties of RPOs) In any precategory Á:

(1) If an RPO for ~f to ~g exists, then it is unique up to isomorphism.

(2) If (~h, h) is an RPO for ~f to ~g, then ~h is an IPO for ~f .

(3) If ~h is an IPO for ~f , and an RPO exists for ~f to h ◦h0, h ◦h1, then the triple
(~h, h) is such an RPO.

(4) (IPO pasting) Suppose that the diagram below commutes, and that f0, g0 has an
RPO to the pair h1 ◦h0, f2 ◦g1. Then

– if the two squares are IPOs, so is the big rectangle;

– if the big rectangle and the left square are IPOs, so is the right square.

f0 f1

g0 g1

h0

f2

h1

(5) (IPO sliding) If Á is supported then IPOs are preserved by support translation;
that is, if ~g is an IPO for ~f and ρ is any injective map whose domain includes
the supports of ~f and ~g, then ρ �~g is an IPO for ρ � ~f .

3This adaptation works for the definition of precategory in Definition 3.1, which is satisfied by our sup-
ported precategories.
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4 Wide reactive systems
We now introduce a kind of dynamical system, of which bigraphs will be an instance.
This section adapts and extends the work of Section 3.3 in [28].

In previous work [23, 22] a notion of reactive system was defined. In our present
terms, this consisted of a supported precategory whose arrows are called contexts, in-
cluding agents whose domain is the origin ε, together with a set of agent-pairs (r, r′)
called reaction rules, and a subprecategory of so-called active contexts. The reaction
relation . between agents was taken to be the smallest such that D ◦ r .D ◦ r′

for every active context D and reaction rule (r, r′).
For such systems we uniformly derived labelled transitions based upon IPOs. Sev-

eral behavioural preorders and equivalences based upon these transitions —including
bisimilarity— were shown to be congruences, subject to two conditions: first, that suf-
ficient RPOs exist in the precategory; second, that decomposition preserves activity —
i.e. D ◦C active implies both C and D active.

In subsequent work, sufficient RPOs were found in interesting cases (Leifer [22],
Cattani et al [9]). In each of these cases the condition that decomposition preserves
activity is also met, if we limit attention to contexts with a single hole. However, certain
derived transition systems are unsatisfactory under this limitation, as Sewell [37] has
pointed out with examples. Also, as we saw in Section 1, we wish to consider multi-
hole bigraphical contexts — not only to represent parametric reaction rules but also to
accommodate multiple or ‘wide’ agents, as in the remote π-calculus reaction rule in
Example 5. There are other reasons for treating wide agents; for example, we would
like to understand reactions that may occur between agents located arbitrarily far apart.

This gives rise to the possibility of contexts in which some sites may be active, i.e.
may permit reaction to occur, but not others. The following definitions allow this. They
lead to wide reactive systems, which refine the above notion of reactive system as little
as necessary for that purpose. We shall also see that, if we specialise this new treatment
to narrow contexts (those with unit width), we recover the original notion of reactive
system.

In what follows we shall use Nat, the strict symmetric monoidal category whose
objects are finite ordinals, and whose arrows are functions between them.

Definition 4.1 (wide precategory, wide functor) A wide precategory Á is a sup-
ported precategory equipped with a functor width : Á→Nat invariant under sup-
port translation, and a distinguished object ε called the origin such that width(ε) = 0.
Moreover, for each permutation π on the ordinal width(I) there is an isomorphism
πI : I→ I in Á with width(πI) = π.

If Á —as a precategory— is monoidal with unit ε, and width preserves tensor
product, then Á equipped with ε and width is a wide monoidal precategory.

The objects I, J, . . . of Á are called interfaces, and its arrows A,B, . . . are called
contexts. The set of contexts from I to J , called as usual the homset of the pair (I, J),
will be denoted by Á(I, J) or I→ J . We call I and J the inner and outer faces of this
homset. Arrows in a homset Gr(I)

def
= ε→ I are called ground arrows; we let lower

case letters a, b, . . . range over these, and abbreviate a : ε→ I to a : I .
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A supported functor F : Á→ ´B is called wide if it preserves origin and width, i.e.
(distinguishing elements of ´B by a prime) ε′ = F(ε) and width′ ◦F = width.

We shall define bigraphs as a wide precategory in the next section. Meanwhile,
from our discussion in Section 1 it is easy to see that, in bigraphs, ‘width’ is concerned
only with locality, not with connectivity; the width of a bigraphical interface I =
〈m,~k,X〉 is just its multiplicitym, and the width of a bigraphG : 〈m,~k,X〉→〈n, ~̀, Y 〉
is the function mapping each site s ∈ m to the unique region r ∈ n that contains s.
We here define width at the abstract level of wide precategories, but when specialised
to bigraphs it will allow us to define exactly which sites of a bigraph permit reaction.
The notion of location will help us to formulate this:

Definition 4.2 (location) A location of an interface I with width m is a subset λ ⊆
m. We denote by loc(I) the set of locations of I , i.e. the powerset of width(I).

The width function of a context C : I→ J is extended to loc(I) by width(C)(λ)
def
=

{width(C)(i) | i ∈ λ}. The offset of λ by n is given by nu λ def
= {n+ i | i ∈ λ}.

We are now ready to consider how to add dynamics to wide precategories. We shall
define a reaction relation over ground arrows.

At the start of this section we spoke of reaction rules of the form (r, r′), a pair of
agents (redex and reactum) in the same homset. This does not reflect our examples of
reaction rules in the introduction, which were all parametric; they were pairs of the
form

(R : I→ J, R′ : I ′→ J)

with, in general, different inner faces I and I ′. The parameter for such a rule will be a
ground arrow in Gr(I). In general the reactum R′ will be composed with a transform
of this parameter, in Gr(I ′). This is illustrated by Example 2, the replication rule which
duplicates its parameter, and by Example 3 which discards parts of a parameter (which
may of course have arbitrary width). So the following definition allows rules that ar-
bitrarily transform their parameters. It also allows for the possibility that parameters
are constrained to lie in some subset of Gr(I). Remarkably, the congruence theorem of
this section holds without any constraint upon either the parameter set or the nature of
parameter transformations.

Finally, since reactions are supposed to occur only in contexts that are active, the
following definition introduces an activity map to determine the sites at which each
context is active, and how this activity is treated by composition; this map is further
explained in the discussion that follows the definition.

Definition 4.3 (wide reactive system) A wide reactive system (WRS) is a wide pre-
category Á equipped with a triple (Par,Reacts, act), where

• For each I , the set Par(I) ⊆ Gr(I) represents the parameters of reaction rules.

• Reacts is a set of reaction rules of the form (R,R′, trans), with redexR : I→ J ,
reactum R′ : I ′→ J and transform map trans : Par(I)→Gr(I ′).
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• For each I, J the activity map act : Á(I, J)→ loc(I) satisfies two properties:

(1) act(idI) = width(I)

(2) act(D ◦C) = act(C) ∩ width(C)
−1

(act(D)) .

We require that Par(I) and Reacts are closed under support translation, that each trans
preserves it, and that act respects it. We say C is active at i if i ∈ act(C); similarly C
is active at λ if λ ⊆ act(C), and C is active if act(C) = width(dom(C)).

The reaction relation . over ground arrows is defined as follows: g . g′

iff there exist a reaction rule (R,R′, trans), an active4 context D and a parameter d ∈
Par(I) such that g = D ◦R ◦d and g′ = D′ ◦R′ ◦d′, whereD′ l D and d′ l trans(d).

For a monoidal WRS we require a third condition on act:

(3) act(C ⊗D) = act(C) ∪· (width(dom(C))u act(D)) .

We shall usually denote this WRS just by Á. Let us explain the activity conditions
more fully. Condition (2) asserts that D ◦C is active at i iff C is active at i and D is
active at width(C)(i). If width(dom(C)) = m then condition (3) asserts that C ⊗D
is active at i iff either i < m and C is active at i or i ≥ m and D is active at i −m.
We leave it to the reader to check that these conditions make sense — i.e. that they are
consistent with the equations governing composition and tensor product.

In passing, suppose that we are only concerned with reaction in contexts D that
have interfaces of unit width 1 = {0}, so that width(D)(0) = 0. Then D is active
iff it is active at 0. Conditions (1) and (2) then amount to requiring that the active
contexts form a subprecategory closed under decomposition. Thus, as promised, we
have a proper generalisation of the conditions under which the original congruence
theorems [22, 23] were proved.

Definition 4.3 ensures that all its ingredients are closed under support equivalence,
allowing us in Definition 4.7 to divide Á byl, forming a quotient WRS. The following
is immediate:

Proposition 4.4 (support translation of reactions) Reaction in a WRS is closed un-
der support equivalence, i.e. if g l h, g′ l h′ and g . g′ then h .h′.

A natural notion of functor F : Á→ ´B between WRSs is one that preserves reac-
tion. What this means is that all the ingredients that constitute a reaction in ´B must be
at least as generous as in Á. The definition is as follows:

Definition 4.5 (WRS functor, sub-WRS) Let Á and ´B be wide reactive systems. A
wide functor F : Á→ ´B of wide precategories is a WRS functor from Á to ´B if it

4Our definition requires D to be active at the whole width n of the codomain of the redex R. An
alternative, more refined, approach is to equip a reaction rule with a fourth component λ, a location in n;
then we can require only that D be active at λ, not at the whole of n. One can imagine reaction rules, like
the one in Example 5 of width two, where we might wish only one part of the redex to lie at an active site.
Everything that follows can be adapted to this refinement; we avoid it here only for the sake of simplicity.
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preserves the extra components of a WRS, i.e. (distinguishing the components of ´B by
a prime):

d ∈ Par(I) ⇒ F(d) ∈ Par′(F(I))
(R,R′, trans) ∈ Reacts ⇒ (F(R),F(R′), trans′) ∈ Reacts′

where F ◦ trans = trans′ ◦F
act(C) ⊆ act′(F(C)) .

Call F monoidal if both Á and ´B are monoidal and F preserves tensor product. If F
is a (monoidal) inclusion functor then we call Á a (monoidal) sub-WRS of ´B.

Proposition 4.6 (WRS functors preserve reaction) A WRS functor F : Á→ ´B pre-
serves reaction, i.e. if g . g′ in Á then F(g) .F(g′) in ´B.

Clearly WRSs and their functors form a category. An important example of a functor
is the support quotient functor, extended to WRSs as follows:

Definition 4.7 (quotient WRS) Let Á be a wide reactive system. Then its support
quotient wide reactive system is based upon the support quotient A = Á/l, with other
ingredients defined as follows:

• the parameters are [d], for each parameter d in Á

• the reaction rules are ([R], [R′], trans), for each rule (R,R′, trans) in Á, where
in A we define trans([d])

def
= [trans(d)]

• the active sites are given by act([D])
def
= act(D).

Proposition 4.8 (quotient reflects reaction) The support quotient functor [·] : Á→A
both preserves and reflects reaction, i.e. [g] . [g′] in A iff g . g′ in Á.

The quotient functor takes a concrete WRS, based on a precategory, to an abstract
WRS based upon a category. In the next section we show how to obtain a behavioural
congruence for an arbitrary concrete WRS Á with sufficient RPOs. The support quo-
tient A of Á may not possess RPOs, but nevertheless the quotient functor allows us to
derive a behavioural congruence for A also. This use of a concrete WRS with RPOs to
supply a behavioural congruence for the corresponding abstract WRS was first repre-
sented by the functorial reactive systems of Leifer’s thesis [22].
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5 Wide transition systems
We now consider how to equip a WRS with a labelled transition system. This will
comprise a subset of the ground arrows, called agents, together with a set of transi-
tions of a form such as a L

. a′, where a, a′ are agents and L is a context with L ◦a
defined. Then bisimilarity is defined in the usual way, and we are interested in general
conditions under which it will be a congruence.

The definition of labelled transitions of Leifer and Milner [23] was as follows:
a L

. a′ if there is a reaction rule (r, r′) and an active context D for which (L,D) is
an idem pushout (IPO) for (a, r) and a′ = D ◦ r′. We shall do something close to this,
but with two refinements.

The first refinement is to equip a transition with information about locality. For an
agent a : I , a transition of the form a L

. a′ tells us the extra context L : I→ J needed
by a to create a redex, but does not specify where this completed redex occurs within
L ◦a, i.e. at which location in J the reaction takes place. This makes a difference if J
has more than unit width. It turns out that, to achieve congruence of bisimilarity, we
must index each L-transition by a location in the outer face of L.

Let us illustrate this with a simple example involving bigraphs. We need only the
superficial understanding of bigraphs supplied by the introduction.

Example 6 (non-congruence) This example shows that bisimilarity based upon unlo-
cated transitions, which we denote by .∼, is not in general a congruence for bigraphical
systems. Take the signature K = {K, L,M}, each with arity zero; let K, L be atomic
and M non-atomic but passive. Ports, names and links are irrelevant in this example,
so we take interfaces to be just finite ordinals (widths).

Now write K, L : 0→ 1 for agents with a single atomic node, and M : 1→ 1 for
the elementary passive context consisting of a single M-node. Let there be a single
reaction rule (K, L); it allows the reaction K . L in any active context.

Consider the two agents a, b : 0→ 2 illustrated below, where a = K ⊗ L and
b = L⊗ K. They can each do a transition that turns K into L, i.e. we have

a id2 . L⊗ L and b id2 . L⊗ L .

Because these two transitions do not record the different places at which the reaction
occurs, it turns out that a .∼ b.

K K K6 .∼
M

LL
M

KL L.∼

C
def
= M | id1a

.∼ b C ◦a 6 .∼ C ◦ b

M

Now put a and b in the context C def
= M | id1 : 2→ 1, as shown; then we find C ◦a 6 .∼

C ◦ b. In C ◦ b the K-node is active, so there is a transition C ◦ b id1 . ; but C ◦a has no
such transition since its K-node is passive.
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Our second refinement is concerned with the parametric nature of reaction. Each
reaction is based on a redexR together with a parameter d. To reflect this in transitions,
we adopt pair-labels of the form L = (Lred, Lpar), where Lred arises from the redex
and Lpar from its parameter. In a pair-label L we require the composition Lred ◦Lpar to
be defined, and indeed it represents the previous single label. Thus each transition will
have an underlying pair of IPOs, not just a single IPO.

For a pair-labelL, in expressions we shall usually writeL to meanLred ◦Lpar. Also,
for any equivalence ≡, we shall take L ≡ M to mean Lred ≡ M red and Lpar ≡ Mpar.
None of the results in Part I and II appears to depend on the use of pair-labels; we adopt
them mainly in anticipation of future work that may depend on them.5 For example it
provides a starting point for relating our present work more closely to that of Sewell
[37], in which labels themselves are parametric.

With these two refinements, we now define transition systems. We allow for a broad
class of transitions, within which we distinguish those based upon IPOs.

Lred

d R

Lpar

a D

Definition 5.1 (transition) A transition consists of a quadruple written a L
.λ a

′,
where a and a′ are ground,L is a pair-label and there exist a reaction rule (R,R′, trans),
an active context D and a parameter d such that the above diagram commutes, and

λ = width(D)(m) where m = width(cod(R))
a′ = D′ ◦R′ ◦d′ where D′ l D and d′ l trans(d) .

We say that the reaction rule and the diagram underlie the transition. A transition is
minimal if the underlying diagram is an IPO-pair.

Definition 5.2 (transition system) Given a WRS Á, a (labelled) transition system L
for Á is a pair (Agi, Trans), where

• Agi is a set of interfaces called the agent interfaces; for I ∈ Agi, the members of
Gr(I) are called agents of L.

• Trans is a set of transitions whose sources and targets are agents of L.

The full (resp. standard) transition system for a WRS consists of all interfaces, together
with all (resp. all minimal) transitions. When the WRS concerned is understood we
shall denote these two transition systems respectively by FT and ST.

Let ≡ be a static congruence (Definition 3.5) in a WRS equipped with L. Suppose
that, for every transition a L

.λ a
′ in L, if a ≡ b and L ≡ M —where M is another

label of L with M ◦ b defined— then there exist an agent b′ and a transition b M
.λ b
′

in L such that a′ ≡ b′. Then ≡ and L are said to respect one another.
We abbreviate ‘(labelled) transition system’ to TS. A TS M is a sub-TS of L,

writtenM≺ L, if its interfaces and transitions are included among those of L.
5Indeed, examples exist where the bisimilarity for single labels is strictly coarser than for pair-labels.
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From now on we shall use ‘label’ to mean a pair-label. Note that ‘respect’ is mutual
between an equivalence and a TS, so that ‘L respects≡ ’ means the same as ‘≡ respects
L’; we shall use them interchangeably.

Note that our definition of transition presupposes a set of reaction rules, i.e. an
unlabelled transition relation. Sometimes —for example in CCS— labelled transition
systems have been the primary means of providing process dynamics, and unlabelled
transitions corresponded to transitions with a ‘null’ label (τ in CCS). But in this work
we are committed to taking reaction rules as primary, because they can be described
generally without any presupposition about the interaction discipline of each calculus.

Returning briefly to Example 6 we now see that the location component in tran-
sitions allows us to distinguish between the two agents a and b. In fact their only
transitions take the respective forms a L

.{0} and b L
.{1} , where L = (id, id).

We shall meet various different equivalences when we deal with bigraphical WRSs.
For support equivalence (l) we now deduce from Propositions 3.10(5) and 4.4 that:

Proposition 5.3 (support translation of transitions) In any wide reactive system Á,
the full and standard transition systems respect support equivalence.

The standard transition system ST is only useful when RPOs exist. Later we shall
show how to derive from it a TS for the quotient WRS, which may not possess RPOs.
But however transitions are defined or derived, we may define behavioural equivalences
and preorders in the usual way. Here we shall limit attention to strong bisimilarity.
(Throughout this paper we shall omit ‘strong’ since we do not define or use weak
bisimilarity.)

Definition 5.4 (wide bisimilarity) Let Á be a wide reactive system equipped with a
TS L. A simulation (on L) is a binary relation S between agents with equal interface
such that if aSb and a L

.λ a
′ in L, then whenever L ◦ b is defined there exists b′

such that b L
.λ b
′ in L and a′Sb′. A bisimulation is a symmetric simulation. Then

bisimilarity (on L), denoted by ∼L, is the largest bisimulation (on L).

We shall often omit ‘onL’, and write∼ for∼L, whenL is understood from the context.
This will usually be when L is ST.

Note the slight departure from the usual definition of bisimulation of Park [31]; here
we must require L ◦ b to be defined. This is merely a technical detail, provided that the
TS respects support translation; for then, whenever L ◦a is defined there will always
exist L′ l L for which both L′ ◦a and L′ ◦ b are defined. Moreover if the WRS is based
on a category —in particular if it is a support quotient— then the side-condition holds
automatically; in this case the definition of bisimilarity reduces to the standard.

We may now prove our main congruence theorem for WRSs. Its main point is that
ST ensures bisimulation congruence. The reader can deduce the (perhaps more obvi-
ous!) result that FT ensures the same; simply replace the word ‘IPO’ by‘commuting
square’ in the proof.

Theorem 5.5 (congruence of wide bisimilarity) In a wide reactive system with RPOs,
equipped with the standard transition system, wide bisimilarity of agents is a congru-
ence; that is, if a0 ∼ a1 then C ◦a0 ∼ C ◦a1.
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(a)

(c) (d)

(b)

D0

d0

E0

R0

Mpar

D1D1

C ◦a0 a0

a1

R0d0

d1

a1

R1 d1 R1

Mpar

Mpar

M red

M red

M red

Lpar Lpar

Lred

Lred Lred

Lpar

E

E

E0

J0J0

J1J1

C

C
E1

Proof The proof is along the lines of Theorem 3.9 in Leifer [22]. We establish the
bisimulation

S def
= {(C ◦a0, C ◦a1) | a0 ∼ a1, C any context} .

Suppose that a0 ∼ a1, and that C ◦a0
M

.µ b
′
0, for some label M such that M ◦C ◦a1

is defined. It is enough to find b′1 such that C ◦a1
M

.µ b
′
1 and (b′0, b

′
1) ∈ S.

There exist a reaction rule (R0, R
′
0, trans0) with outer face J0, an active contextE0

and a parameter d0 such that diagram (a) is an IPO-pair; moreover if width(J0) = m0

then width(E0)(m0) = µ and b′0 = E0 ◦R′0 ◦ trans0(d0). Then because consistent
pairs have RPOs, there exists an RPO for (a0, d0) relative to the given bound, and
using Proposition 3.10(5) we can complete diagram (b) so that every square is an IPO.

D0 is active at m0 by Definition 4.3, so the lower squares represent a transition
a0

L
.λ a

′
0, where λ = width(D0)(m0) and a′0 = D0 ◦R′0 ◦ trans0(d0). Also E is

active at λ. Since a0 ∼ a1 there is a transition a1
L
.λ a

′
1 with a′0 ∼ a′1. (Note

that L ◦a1 is defined, since M ◦C ◦a1 is defined and M ◦C = E ◦L.) So there exist a
reaction rule (R1, R

′
1, trans1) with outer face J1, an active context D1 and a parameter

d1 such that diagram (c) is an IPO pair; moreover width(D1)(m0) = λ and a′1 =
D1 ◦R′1 ◦ trans1(d1).

Now replace the lower two squares of (b) by diagram (c), obtaining diagram (d) in
which, by Proposition 3.10(5), the large square is an IPO. Moreover E1

def
= E ◦D1 is

active, since E is active at λ. Hence C ◦a1
M

.µ b
′
1 where b′1

def
= E1 ◦R′1 ◦ trans1(d1).

Finally (b′0, b
′
1) ∈ S as required, because b′0 = E ◦a′0 and b′1 = E ◦a′1 with a′0 ∼ a′1.

We shall henceforth often omit the adjective ‘wide’ when discussing bisimilarity.
We should remark that we are taking (strong) bisimilarity as a representative of many
preorders and equivalences; Leifer [22] has proved congruence theorems for several
others, and we expect that those results can be transferred to the present setting.

Now, if a WRS is equipped with a TS we can define transitions for various quotient
WRSs as follows:
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Definition 5.6 (transitions for quotient WRSs) Let Á be a WRS equipped with a
TS L, and let F : Á→ ´B be a WRS functor. We say that F respects L if the static
congruence it induces on Á respects L. The TS F(L) induced by F on ´B has the
agent interface F(I) whenever I is an agent interface of L, and whenever L has a
transition a L

.λ a
′ then F(L) has the transition

F(a)
F(L)

.λ F(a′) .

This definition always makes sense, but it will not always make bisimilarity a congru-
ence in ´B, even if it is so in Á. However, the next theorem tells us when this will be
ensured. Recall that a full functor is surjective for each homset.

Theorem 5.7 (transitions induced by functors) Let Á be equipped with a TSL. Let
F : Á→ ´B be a full WRS functor that is the identity on objects and respects L. Then
the following hold for F(L):

(1) a ∼ b in Á iff F(a) ∼ F(b) in ´B.

(2) If bisimilarity is a congruence in Á then it is a congruence in ´B.

(3) Both (1) and (2) hold when F = [·] : Á→A, the support quotient functor.

Proof (1) (⇒) We establish in ´B the bisimulation

R = {(F(a),F(b)) | a ∼ b} .

Let a ∼ b in Á, and let p = F(a), q = F(b) and p M
.λ p

′ in ´B. Then by definition
of the induced TS we can find L and a′ such that M = F(L) and p′ = F(a′), and
a L

.λ a
′ in Á with L ◦ b defined. So for some b′ we have b L

.λ b
′ with a′ ∼ b′. It

follows that q M
.λ q
′ in ´B, where q′ = F(b′) and (p′, q′) ∈ R, so we are done.

(1) (⇐) We establish in Á the bisimulation

S = {(a, b) | F(a) ∼ F(b)} .

Let F(a) ∼ F(b) in ´B, and let p = F(a), q = F(b) where a L
.λ a

′ in Á with L ◦ b
defined. Then p M

.λ p
′ in ´B, where M = F(L) and p′ = F(a′). So for some q′ we

have q M
.λ q
′ with p′ ∼ q′. This transition must arise from a transition b1

L1 .λ b
′
1 in

Á, where q = F(b1), M = F(L1) and q′ = F(b′1). But then b1 ≡ b and L1 ≡ L,
where ≡ is the equivalence induced by F ; we also have L ◦ b defined, and L respects
≡, so we can find b′ for which b L

.λ b
′ and b′1 ≡ b′. But also (a′, b′) ∈ S so we are

done.
(2) Assume that bisimilarity in Á is a congruence. In ´B, let p ∼ q and let G be

a context with G ◦p and G ◦ q defined. Then there exist a, b, C in Á with p = F(a),
q = F(b) and G = F(C), and with C ◦a and C ◦ b defined. From (1)(⇐) we have
a ∼ b, hence by assumption C ◦a ∼ C ◦ b. Applying the functor F we have from
(1)(⇒) that G ◦p ∼ G ◦ q in ´B, as required.

(3) The result follows immediately from Proposition 5.3.
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In a later section we shall set up bigraphical reactive systems as WRSs. Then, using
the theorems we have just proved —or close analogues of them— we shall derive TS
and deduce behavioural congruences for them.

We now turn to a question that arises strongly in applications. Our standard TS,
containing only the minimal transitions, is of course much smaller than the full TS.
But it turns out that in particular cases we can reduce the standard TS still further,
without affecting bisimilarity. We introduce here the basic concepts to make this idea
precise, since they do not depend at all on the notion of bigraph.

Definition 5.8 (relative bisimulation, adequacy) Assume given a TS L, with a sub-
TS M. A relative bisimulation for M (on L) is a symmetric relation S such that
whenever aSb, then for every transition a L

.λ a
′ inM, with L ◦ b defined, there ex-

ists b′ such that b L
.λ b
′ in L and a′Sb′. Define relative bisimilarity forM (on L),

denoted by ∼ML , to be the largest relative bisimulation forM (on L).
We callM adequate (for L) if ∼ML coincides with ∼L on the agents ofM; ifM

has interfaces I, we write this as ∼ML = ∼L �I.

When L is understood we may omit ‘on L’; equally we may write ∼M for ∼ML .
Note that, for a ∼ML b, we require b only to match the transitions of a that lie inM,
and b’s matching transition need not lie inM. This means that relative bisimilarity is
in general not transitive, so it is not in itself a behavioural equivalence.

The value of relative bisimilarity lies in the case when M is adequate for L, for
then the proof technique of relative bisimulation can relieve us of the task of checking
a large class of transitions. Indeed it may be the case that fewer labels are employed in
M-transitions than inL-transitions; then we only have to consider transitions involving
this smaller set of labels.

Even at this abstract level of WRSs, we can draw attention to possibilities for a
transition system M adequate for L, in particular when L is ST. A simple example
depends on the fact that ST is closed under isomorphism, i.e. if a L

.λ a
′ is a transition

of ST then so is ιa κLι−1

.λ κa
′ for any isos ι and κ. (We are omitting ‘ ◦ ’ when

composing with an iso.) Then when checking for bisimilarity with a given a, intuitively
it should suffice to consider not every transition of a, but only one in every iso class.
This holds more generally:

Proposition 5.9 (representative transitions) Let L be a transition system closed un-
der isomorphism, and let M ≺ L be a sub-TS. Suppose that, for every transition
a L

.λ a
′ in L, there is a transition a κL

.λ κa
′ in M for some iso κ. Then M is

adequate for L.

Proof We show thatR = {(ιa, ιb) | a ∼ML b} is an L-bisimulation. Let a ∼ML b, and
let ιa L

.λ a
′ in L. We must find a matching L-transition for ιb.

Since isomorphism preserves transitions in L, there is an L-transition a Lι
.λ a

′.
So by assumption there is anM-transition a κLι

.λ a
′′ def

= κa′.
Since a ∼ML b there is an L-transition b κLι

.λ b
′′ with a′′ ∼ML b′′. Applying

two isos, there is an L-transition ιb L
.λ b
′ def

= κ−1b′′. But a′ = κ−1a′′, so (a′, b′) ∈ R
and we are done.
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We shall exploit this result in Section 15.
A deeper example of adequacy arises from the intuition that the transitions that

really matter are those where the agent ‘contributes’ to the underlying reaction, i.e. a
supplies a ‘part’ of the redex R, leaving the label L to supply the rest. We can make
this precise in terms of support: we are interested in transitions a whose underlying
redex R is such that |a| ∩ |R| 6= ∅. We call such transitions engaged.

Intuitively, we may conjecture that the engaged transitions are adequate, for the
standard TS. We shall later prove this for a particular class of bigraphical reactive
systems, broad enough to include the π-calculus and the ambient calculus. It is very
nice when the conjecture holds, for it means that the only significant labels L are those
whose leading part Lred is strictly contained in some redex R.

We now look at a rather well-behaved kind of sub-TS. For arbitraryM ≺ L and
any given pair (L, λ), it is possible that M contains some but not all of the (L, λ)-
transitions in L. But if this is not the case —i.e. if such pairs determine which transi-
tions are inM— then the situation is somewhat simpler:

Definition 5.10 (definite sub-TS) LetM≺ L. CallM definite for L if, for all pairs
(L, λ) and all transitions of L

a L
.λ a

′ ∈M iff b L
.λ b
′ ∈M .

Then immediately we deduce that a relative bisimilarity is an absolute one:

Proposition 5.11 (definite sub-TS) IfM is definite for L then ∼M = ∼ML .

IfM is definite and adequate for L, we can deduce an important corollary for later
use. To illustrate it, suppose that L is the standard TS. If we are interested only in
agents at I, and are able to establish thatM with interfaces I is definite and adequate
for L, then we can deduce congruence for bisimilarity onM. More generally:

Corollary 5.12 (adequate congruence) LetM, with interfaces I, be definite and ad-
equate for L. Then

(1) The bisimilarities onM and L coincide at I, i.e. ∼M = ∼L�I.

(2) If ∼L is a congruence, then ∼M is a congruence; that is, for any C : I→ J
where I, J ∈ I, if a ∼M b then C ◦a ∼M C ◦ b.
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Part II
Bigraphical Reactive Systems

In Part II we begin by defining the notion of a pure bigraph formally, in
terms of its two constituents: a place graph representing locality and a
link graph representing connectivity. We continue by defining these two
notions in turn, ensuring that they enjoy the categorical properties that we
shall need. We then combine them, yielding a theory of pure bigraphs
where locality and connectivity are totally independent. A short section is
devoted to the algebraic theory of pure bigraphs, showing that they possess
a simple complete axiomatisation.

We proceed to relax the independence of locality and connectivity, in a
controlled manner, in defining binding bigraphs; these allow certain local
names to have a scope consisting of a particular bigraphical region. Prop-
erties of binding bigraphs are derived from those of the underlying pure
ones.

Finally we introduce dynamics, in the form of reaction rules, yielding bi-
graphical reactive systems (BRSs). These are shown to be a special case
of WRSs. We therefore apply Part I to yield labelled transition systems
and behavioural congruences, for both pure and binding BRSs.
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6 Pure bigraphs: definition
In this section we define the notion of pure bigraph formally, in terms of the con-
stituent notions of place graph and link graph, which are dealt with in the following
two sections. Then in Section 9 we resume the study of pure bigraphs, combining the
properties of its constituents. In Section 10 we develop their algebraic theory. In Sec-
tion 11 we define a binding bigraphs as an enrichment of the pure ones; we ensure that
they enjoy the properties that allow us to apply the theory developed in Part I. Finally,
in Section 12 we give the central definition of a bigraphical reactive system (BRS)
and study its dynamic behaviour; then we apply the results of Part I to derive labelled
transitions and congruences for both pure and binding BRSs.

Definition 6.1 (pure signature) A (pure) signature K is a set whose elements are
called controls. For each control K it provides a finite ordinal ar(K), an arity; it also
determines which controls are atomic, and which of the non-atomic controls are active.
Controls which are not active (including the atomic controls) are called passive.

Note that a signature need not be finite, or even denumerable. Thus a bigraph, though
itself finite, may denote an element of a continuous state space. We shall not here
exploit this possibility, but we comment further on it in Section 16.

As we saw in Section 1 of Part I, a non-atomic node —one with a non-atomic
control— may contain other nodes. A node’s control determines its ports, and if the
control is active then reactions are permitted inside the node. A passive node —such
as a get-node in the π-calculus— can be thought of as a script, or program, awaiting
activation; this must take the form of a reaction that destroys the node boundary.

In refinements of the theory a signature may carry further information, such as a
sign and/or a type for each port. The sign may be used, for example, to enforce the
restriction that each negative port is connected to exactly one positive port, as in action
calculi [9, 25]. Another possible refinement is a kind assigned to each node, determin-
ing the controls of the nodes it may contain. (Our atomic nodes already represent the
most restrictive kind.) In Part III we shall define an important refinement that allows
names to have scope, and controls to bind names. The theory of pure bigraphs, where
names have no scope, is prerequisite to understanding all these refinements.

We begin by defining concrete bigraphs. The definition is ‘top-down’; here we
define a bigraph as the combination of two parts, and in the following sections we
define those parts themselves.

Definition 6.2 (concrete pure bigraph) A (concrete) pure bigraph over the signa-
ture K takes the form G = (V,E, ctrl , GP, GL) : I→ J where I = 〈m,X〉 and
J = 〈n, Y 〉 are its inner and outer faces, each combining a width (a finite ordinal)
with a finite name set. Its first two components V and E are finite sets of nodes and
edges respectively. The third component ctrl : V →K, a control map, assigns a control
to each node. The remaining two are:

GP = (V, ctrl , prnt) : m→n a place graph
GL = (V,E, ctrl , link) : X→Y a link graph .

Place graphs and link graphs are defined in Definitions 7.1 and 8.1 respectively.
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We refer to these as concrete bigraphs because their nodes and edges have identity.
Thus we shall work with a supported precategory of bigraphs, because there we shall
be able to find RPOs. The support of a concrete bigraph consists of its nodes and edges;
in terms of the definition, |G| = V + E. In Section 9 we shall take the quotient by
support equivalence to obtain abstract bigraphs. As is usual in graph theory, we shall
omit the adjectives ‘concrete’ and ‘abstract’ when they are unimportant or implied by
the context.

We shall normally work with a fixed but unspecified signature. We refer to G as
the combination of its constituents GP and GL; we write it as G = 〈GP, GL〉. A
place graph can be combined with a link graph iff they have the same node set and
control map. In Section 9 we revisit bigraphs, developing their structure by combining
attributes from their constituent place graphs and link graphs.
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7 Place graphs
Definition 7.1 (place graph) A place graph A = (V, ctrl , prnt) : m→n has an
inner width m and an outer width n, both finite ordinals; a finite set V of nodes with
a control map ctrl : V →K; and a parent map prnt : m ∪· V →V ∪· n. The parent
map is acyclic, i.e. prntk(v) 6= v for all k > 0 and v ∈ V . An atomic node —i.e. one
whose control is atomic— may not be a parent. We write w >A w

′, or just w > w′, to
mean w = prntk(w′) for some k > 0.

The widthsm and n index the sites and roots ofA respectively. The sites and nodes
—i.e. the domain of prnt— are called places.

The acyclicity condition makes the parent map prnt represent a forest of n un-
ordered trees. The sites and roots provide the means of composing the forests of two
place graphs; each root of the first is planted in a distinct site of the second. Figure 9
shows two simple examples of composition, B0 ◦A0 and B1 ◦A1. Formally:

Definition 7.2 (precategory of place graphs) The precategory ´PLG has finite ordi-
nals as objects and place graphs as arrows. The composition A1 ◦A0 : m0→m2 of
two place graphs Ai = (Vi, ctrl i, prnt i) : mi→mi+1 (i = 0, 1) is defined when
the two node sets are disjoint; then A1 ◦A0

def
= (V, ctrl , prnt) where V = V0 ∪· V1,

ctrl = ctrl0 ∪· ctrl1, and prnt = (IdV0
∪· prnt1) ◦ (prnt0 ∪· IdV1

). The identity place
graph at m is idm

def
= (∅, ∅K, Idm) : m→m.

It is easy to check that A ◦ id = A = id ◦A, and that composition is associative. Note
that ´PLG is supported, with node sets V as support.

Here are some basic properties:

Definition 7.3 (barren, sibling, active, passive) A node or root is barren if it has no
children. Two places are siblings if they have the same parent. A site s of A is active
if ctrl(v) is active whenever v > s; otherwise s is passive. If s is active (resp. passive)
in A, we also say that A is active (resp. passive) at s.

When dealing with many place graphs A, B, . . . , instead of indexing their par-
ent maps as prntA, prntB etc. we shall find it more convenient to abuse notation and
denote the parent map of a place graph A again by A. The context will prevent ambi-
guity; for example in B ◦A we are talking of place graphs, while in B(A(v)) we are
talking of their parent maps. Thus (B ◦A)(v) means the parent map of the composite
place graph B ◦A applied to the node v. Note especially that (B ◦A)(v) differs from
B(A(v)); in fact if v ∈ VA then (B ◦A)(v) is equal to A(v) if this is a node, otherwise
equal to B(A(v)).

Proposition 7.4 (isomorphisms in place graphs) An arrow ι : m→m in ´PLG is an
isomorphism iff it has no nodes, and its parent map is a bijection.

What is a suitable tensor product for ´PLG? We do not want A ⊗ B to have the
effect of merging nodes from A and B. So we adopt a partial tensor product, with
A ⊗ B defined exactly when the node sets are disjoint, in which case its node set is
VA ∪· VB . Intuitively, the tensor product of two place graphs consists in placing them
side-by-side.
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Definition 7.5 (tensor product) The tensor product ⊗ in ´PLG is defined as follows:
On objects, we take m ⊗ n def

= m + n. For two place graphs Ai : mi→ni (i = 0, 1)
we take A0 ⊗ A1 : m0 + m1→n0 + n1 to be defined when A0 and A1 have disjoint
node sets; for the parent map, we first adjust the sites and roots of A1 by adding them
to m0 and n0 respectively, then take the union of the two parent maps.

Epimorphisms (epis) will play a central role, both for place graphs and for link
graphs. Monomorphisms (monos) will also be used. Recall that in the category of sets
with functions the epis and monos are the surjective and injective functions respec-
tively. Here we find something analogous:

Proposition 7.6 (epis and monos in place graphs) In ´PLG, a place graph is an epi
iff no root is barren; it is mono iff no two sites are siblings.

We shall now prove that RPOs always exist in place graphs, and we show how to
construct them. We first give a simple intuition. Let ~D be a bound for ~A; we wish to
build an RPO ( ~B,B) as shown in the diagram below. To form ~B, we first truncate ~D

by removing the roots, and all nodes not present in ~A. Then for the upper interface of
~B, we create a new parent (a root) for each place orphaned by the truncation, equating
these new roots only when required so that B0 ◦A0 = B1 ◦A1.

Notation When considering a pair ~A : h→ ~m of place graphs with common sites
h, we shall adopt a convention for naming their nodes. We denote the node set of Ai
(i = 0, 1) by Vi, and denote V0 ∩ V1 by V2. Recall that ı means 1 − i for i ∈ 2. We
shall use vi, v′i, . . . to range over Vi (i = 0, 1, 2), and ri, r′i to range over the roots mi

(i = 0, 1). We shall also use w2, w
′
2, . . . to range over h ∪· V2; this is useful because

shared sites behave just like shared nodes in our construction of pushouts.

We shall now give a construction for RPOs in ´PLG.

Construction 7.7 (RPOs in place graphs) An RPO ( ~B : ~m→ m̂,B : m̂→ p), for a
pair ~A : h→ ~m of place graphs relative to a bound ~D : ~m→ p, will be built in three
stages. We use the notational conventions introduced above.

m1

m̂

B0 B1m0

A0 A1

B D1D0

p

nodes: If Vi are the nodes of Ai (i = 0, 1) then the nodes of Di are Vı\V2 ∪· V3 for
some V3. Define the nodes of Bi and B to be Vı\V2 (i = 0, 1) and V3 respectively.
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interface: Construct the shared codomain m̂ of ~B as follows. First, define the roots in
each mi that must be mapped into m̂:

m′i
def
= {r ∈ mi | Di(r) ∈ V3 ∪· p} .

Next, on the disjoint sum m′0 +m′1, define ∼= to be the smallest equivalence for which
(0, r0) ∼= (1, r1) whenever A0(w) = r0 and A1(w) = r1 for some w ∈ h ∪· V2. Then
define the codomain up to isomorphism:

m̂
def
= (m′0 +m′1)/∼= .

For each r ∈ m′i we denote the ∼=-equivalence class of (i, r) by î, r.

parents: Define B0 to simulate D0 as far as possible (B1 is similar):

For r ∈ m0 : B0(r)
def
=

{
0̂, r if r ∈ m′0
D0(r) if r /∈ m′0

For v ∈ V1\V2 : B0(v)
def
=

{
1̂, r if A1(v) = r ∈ m1

D0(v) if A1(v) /∈ m1 .

Finally define B, to simulate both D0 and D1:

For r̂ ∈ m̂ : B(r̂)
def
= Di(r) where î, r = r̂

For v ∈ V3 : B(v)
def
= Di(v) .

Several checks are necessary to ensure that this definition is sound; that is, that the
right-hand sides in the clauses defining the parent maps B0 and B are well-defined
places in B0 and B respectively. These points are checked in Appendix A.1, which
gives the proof of the following:

Theorem 7.8 (RPOs in place graphs) In ´PLG, whenever a pair ~A of place graphs
has a bound ~D, there exists an RPO ( ~B,B) for ~B to ~D, and Construction 7.7 yields
such an RPO.

For the behavioural theory of bigraphs we need to know not only how to construct
each RPO (which we do for place graphs and link graphs separately), but also how to
characterise the set of IPOs for a pair ~A with common domain. For then, when A1 is a
redex, we shall know all the labelled transitions of A0. For place graphs, an immediate
question is: how does our RPO ( ~B,B) vary, when we keep ~A fixed but vary the given
bound ~D? One corollary of our next theorem will be that, if ~A are both epi, then ~B
remains fixed, and only B varies; thus ~A is this case has a unique IPO — which is in
fact a pushout. But in general ~B will vary, so there will be many IPOs.

This phenomenon will be important for our transition systems, and also occurs in
link graphs, so it is worth seeing a simple example. The diagram shows a pair ~A in
which A0 consists only of a barren root r0, while A1 has two nodes u, v. There is
a bound ~D with shared root r and an extra node w. Keeping D1 fixed, we can vary
D0 by choosing D0(r0) to be any of {w, u, v, r} while keeping D0 ◦A0 fixed (since
r0 is barren in A0). The diagram also indicates how the pair ~B of the RPO varies;
for D0(r0) ∈ {u, v} we take B0(r0) = D0(r0), while for D0(r0) ∈ {w, r} we take
B0(r0) to be an extra root (shown in parentheses), which also appears (barren) in B1.
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This example illustrates all the possible IPOs ~B for a given pair ~A; each barren root ri
of Ai may be mapped in Bi either to a special root or to any node. In the former case
the composite Bi ◦Ai has a special root as a trace of ri, but in the latter case it retains
no such trace; so we shall call the latter case an elision.

Before constructing IPO families formally, we must answer the question: Under
what conditions does a pair ~A have a bound at all? If a bound exists we call ~A con-
sistent, and our next step is to define certain conditions on ~A that are necessary and
sufficient for consistency. Roughly speaking, these conditions ensure that A0 and A1

treat their shared members (all the sites and some of the nodes) compatibly; then a
bound ~B can exist, since B0 can extend A0 to include ‘the part of A1 not shared with
A0’. Such a bound will also be an IPO if, roughly, it adds no more than necessary for
this.

Definition 7.9 (consistency conditions for place graphs) We define three consistency
conditions on a pair ~A : h→ ~m of place graphs. We let i range over {0, 1}; also recall
that w2, w

′
2 range over h ∪· V2, the shared places.

CP0 ctrl0(v2) = ctrl1(v2)
CP1 If Ai(w) ∈ V2 then w ∈ h ∪· V2 and Aı(w) = Ai(w)
CP2 If Ai(w2) ∈ Vi\V2 then Aı(w2) ∈ mı, and if also Aı(w) = Aı(w2)

then w ∈ h ∪· V2 and Ai(w) = Ai(w2) .

It may be helpful to express CP1 and CP2 in words; they are both to do with children of
nodes in Ai. If i = 0, CP1 says that if the parent of any place w in A0 is a node shared
with A1, then w is also shared and has the same parent in A1. CP2 says, on the other
hand, that if the parent of a shared place w2 in A0 is an unshared node, then its parent
in A1 must be a root, and further that any sibling of w2 in A1 must also be its sibling
in A0.

Necessity of these conditions is easy, and we omit the proof:

Proposition 7.10 (consistency in place graphs) If the pair ~A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple example.
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Figure 9: A consistent pair ~A of place graphs, with bound ~B

Example 7 (consistent place graphs) Consider the pair ~A in Figure 9, each with two
roots and no sites; nodes with subscript 2 are shared. (Controls are not shown). It is
worth checking that the consistency conditions hold. What happens if an extra node u
is added toA1 as a sibling of v2? If u is unshared then CP2 is violated, so no bound can
exist. If u is shared, then to preserve the consistency conditions —in particular CP2—
u must also become a sibling of v2 in A0; then ~B remains a bound.

Now, assuming the consistency conditions of Definition 7.9, we shall prove that
there exist one or more IPOs for ~A. (Thus, since any IPO is a bound, we shall also
have shown that the consistency conditions are sufficient for a bound to exist.) The
idea behind the following construction is that if ~A are both epis then there is a unique
IPO; but every barren root r of ~A allows a variation, as we saw earlier.

Construction 7.11 (IPOs in place graphs) Assume the consistency conditions for
the pair of place graphs ~A : h→ ~m. We define a family of IPOs ~C : ~m→n for ~A as
follows.

nodes: Take the nodes of Ci to be Vı\V2.

interface: For i = 0, 1 choose any subset `i of the barren roots in mi. Set ki = mi\`i.
Define k′i ⊆ ki, the roots to be mapped to the codomain n, by

k′i
def
= {r ∈ ki | ∀v ∈ V2. Ai(v) = r ⇒ Aı(v) ∈ mı} .
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Next, on the disjoint sum k′0 + k′1, define ' to be the smallest equivalence such that
(0, r0) ' (1, r1) whenever A0(w) = r0 and A1(w) = r1 for some w ∈ h ∪· V2. Then
define the codomain up to isomorphism by

n
def
= (k′0 + k′1)/' .

For each r ∈ k′i we denote the '-equivalence class of (i, r) by î, r.

parents: Choose two functions ηi : `i→Vı\V2 (i = 0, 1), arbitrary except that ηi(r) is
a non-atomic node for all r ∈ `i. Then define the parent map C0 : m0→n as follows
(C1 is similar):

For r ∈ m0 :

C0(r)
def
=





0̂, r if r ∈ k′0
A1(v) if r ∈ k0\k′0, for v ∈ h ∪· V2 with A0(v) = r
η0(r) if r ∈ `0

For v ∈ V1\V2 :

C0(v)
def
=

{
1̂, r if A1(v) = r ∈ m1

A1(v) if A1(v) /∈ m1 .

The maps ηi are called elisions; this refers to the fact that the barren roots `i in Ai
are not exported in the IPO interface n, but instead mapped into the body of Ci. There
is a distinct IPO for each choice of `i and ηi. However the IPO will be unique if `i = ∅
is forced (i = 0, 1). This can happen for one of two reasons: either Ai has no barren
roots; or Vı\V2 is empty (i.e. all nodes of Aı are shared), so no elision can exist.

We have to show that the definition ofC0 is sound. Thus in the first clause forC0(r)
we must ensure that v ∈ V2 exists such that A0(v) = r, and that each such v yields
the same value A1(v) in V1\V2; in the second clause for C0(v) we must ensure that
r ∈ k′1. The consistency conditions do ensure this, and also that C0 ◦A0 = C1 ◦A1.

We can now validate Construction 7.11:

Theorem 7.12 (characterising IPOs for place graphs) A pair ~C : ~m→n is an IPO
for ~A : h→ ~m iff it is generated (up to isomorphism) by Construction 7.11.

Proof (outline) We work up to isomorphism.

(⇒) Recall that a bound ~B for ~A is an IPO iff it is the legs of an RPO for ~A w.r.t.
some bound ~D. So assume such a ~B : ~m→m built by Construction 7.7, and recall
the subsets m′i ⊆ mi and the equivalence ∼= over m′0 + m′1 defined there. Now apply
Construction 7.11 to create a pair ~C : ~m→n, by choosing sets ~̀ and elisions ~η as
follows:

`i
def
= {r ∈ mi | r barren in Ai, Di(r) ∈ Vı}

ηi :`i→Vı
def
= Di �`i .

Then indeed ~C coincides with ~B. To prove this, first show that k′0, k′1 and' in the IPO
construction coincide with m′0, m′1, ∼= in the RPO construction; hence the codomain n
of ~C coincides with the codomainm of ~B. Then show that the parent mapsCi coincide
with Bi. Thus every IPO is a bound built by Construction 7.11.
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(⇐) To prove the converse, consider any bound ~C : ~m→n built by Construction 7.11,
for some sets ~̀ and elisions ~η. Now apply Construction 7.7 to yield an RPO ( ~B,B) for
~A to ~C.

Then indeed ~B coincides with ~C. To prove this, first show thatm′0,m′1 and∼= in the
RPO construction coincide with k′0, k′1,' in the IPO construction; hence the codomain
of ~B coincides with the codomain n of ~C. Then show that the parent maps Bi coincide
with Ci. Thus every bound built by Construction 7.11 is an IPO.

We shall finish this section by introducing an important subprecategory of place
graphs, motivated by development to be studied in Section 12.

Definition 7.13 (hard place graphs) A hard place graph is one in which no root or
non-atomic node is barren. They form a sub-precategory denoted by PLGh.

The condition on roots ensures that hard place graphs are epi. This means, as we have
seen, that a consistent pair always has a unique IPO, i.e. a pushout. The extra condition,
that a non-atomic node must not be barren, makes some of the mathematics simpler;
for example, if B ◦A is hard then so are both A and B. Moreover, no change to the
IPO (or pushout) construction is needed, as we now see:

Proposition 7.14 (pushouts for hard place graphs) If ~A is a consistent pair of hard
place graphs, then the pushout ~B built in ´PLG by Construction 7.11 is also hard, and
is indeed a pushout in PLGh.

There is another connection between ´PLG and ´PLGh. Let K be any signature,
and choose a new atomic control M with zero arity; adjoin M to K to form KM. We
can make any arrow G of ´PLG(K) into a hard place graph in ´PLGh(KM) by adding a
M-node as a child of any barren root or node. We shall call M-nodes place nodes. Now
let us say that two bigraphs F and G in ´PLGh(KM) are place-equivalent, F ≡M G,
if they differ only in occurrences of place nodes. Then place equivalence is a static
congruence (Definition 3.5). Also there exists a quotient precategory ´PLGh(KM)/≡M,
whose arrows are place-equivalence classes of hard place graphs, and where the sup-
port of each equivalence class is just the support of each member less its place nodes.
Furthermore this quotient precategory is isomorphic with ´PLG(K).

The reader may safely omit the rest of this section until reading Section 14. Until
then we shall work with hard place graphs because their IPOs are pushouts, which
helps to avoid elisions. But at that point we need to invoke place equivalence in order
to forget place nodes. For this purpose, in order to transfer our results to an abstract
setting, we need to know certain properties of≡M. We prepare for this now by showing
that the operation which generates ≡M —i.e. the addition or removal of a single place
node Mu— does not affect the pushout property, under certain conditions.

In the following two propositions, for ease of notation, we shall use M to mean a
fresh place nodeMu distinct from all others present. The proofs appear in the Appendix.

Proposition 7.15 (first pushout variation) Let ~B be a bound for ~A in ´PLGh(KM).
Add a new place node M to both A0 and B1, yielding AM0 and BM1 such that B0 ◦AM0 =

BM1 ◦A1. Then ~B is a pushout for ~A iff (B0, B
M
1 ) is a pushout for (AM0 , A1).
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There are other ways of adding a single place node to a square consisting of a
bound ~B for ~A, and preserving the bound. Which of these ways will preserve the
pushout property in both directions, as in the last proposition? If we add M to both B0

and B1 then we lose the pushout; for we violate the IPO property that the nodes of an
IPO for ~A must be among the nodes of ~A. What about adding M to both A0 and A1?
In this case we may gain a pushout where only a bound previously existed. This is best
seen in reverse; if ~B is a pushout for the augmented pair ~AM, then by deleting M from
the latter we may remove the only shared node, thus leaving a merging of roots that
should not occur in a pushout.

However, by adding a constraint we obtain the following:

Proposition 7.16 (second pushout variation) Let ~B be a bound for ~A in ´PLGh(KM).
Let a fresh place node M be added to both members of ~A, yielding ~AM such that ~B is
also a bound for ~AM, and with AM0 (M) a node (not a root). Then

(1) If ~B is a pushout for ~A, it is also a pushout for ~AM.

(2) Let M have a sibling w in both AM0 and AM1 . Then if ~B is a pushout for ~An, it is
also a pushout for ~A.

A0

B1B0

C1C0 Ĉ

A1

C1C0 Ĉ

AM1

B1B0

AM0

(a) (b)
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8 Link graphs
Link graphs capture the connectivity of bigraphs, ignoring their nesting. The treatment
here is significantly simpler than the previous treatment [28], though compatible with
it.6 There is a close formal analogy in the treatment of place graphs and link graphs.

As with place graphs, we assume a signatureK assigning to each controlK an arity
ar(K). We also assume an infinite set X of names.

Definition 8.1 (link graph) A link graph A = (V,E, ctrl , link) : X→Y has finite
sets X of inner names, Y of (outer) names, V of nodes and E of edges. It also has a
function ctrl : V →K called the control map, and a function link : X ∪· P →E ∪· Y
called the link map, where P def

=
∑
v∈V ar(ctrl(v)) is the set of ports of A.

We shall call the inner names X and ports P the points of A, and the edges E and
outer names Y its links.

The outer and inner names are for interfacing, and will be important in defining com-
position. When we talk of a ‘name’ without adjective, we mean an outer name.

Here are some basic properties:

Definition 8.2 (idle, open, closed, peer, lean) A link is idle if it has no preimage un-
der the link map. An (outer) name is an open link, an edge is a closed link. A point
(i.e. an inner name or port) is open if its link is open, otherwise closed. Two distinct
points are peers if they are in the same link. A link graph is lean if it has no idle edges.

An idle name is sometimes needed; for example we may want to consider two bigraphs
as members of the same homset, even if one of them uses a name x and the other does
not. On the other hand an idle edge serves no useful purpose, but may be created by
composition. Sometimes we shall need to ensure that the property of leanness (no idle
edges) is preserved by certain constructions.

Definition 8.3 (precategory of link graphs) The precategory ´LIG has name sets as
objects and link graphs as arrows. The composition A1 ◦A0 : X0→X2 of two link
graphs Ai = (VI , ctrl i, Ei, link i) : Xi→Xi+1 (i = 0, 1) is defined when their node
sets and edge sets are disjoint; then A1 ◦A0

def
= (V, ctrl , E, link) where V = V0 ∪· V1,

ctrl = ctrl0 ∪· ctrl1, E = E0 ∪· E1 and link = (IdE0
∪· link1) ◦ (link0 ∪· IdE1

). The
identity link graph at X is idm

def
= (∅, ∅K, ∅, IdX) : X→X .

Note that ´LIG is supported, with node-edge sets V + E as support sets.
We can describe the composite link map link of A1 ◦A0 as follows, considering all

possible arguments p ∈ X0 ∪· P0 ∪· P1:

link(p) =





link0(p) if p ∈ X0 ∪· P0 and link0(p) ∈ E0

link1(x) if p ∈ X0 ∪· P0 and link0(p) = x ∈ X1

link1(p) if p ∈ P1 .

6The main difference is that we here give identity not only to the nodes, but also to the links, in a link
graph. Using our present terminology, we previously defined links in terms an equivalence over points
and names, each link being an equivalence class. This avoided introducing an explicit link set, but the
manipulation of equivalences required to exhibit and characterise RPOs and IPOs was much harder than
with the present treatment.
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By analogy with place graphs, we often denote the link map of A simply by A.

Proposition 8.4 (isomorphisms in link graphs) An arrow ι : X→Y in ´LIG is an
isomorphism iff it has no nodes or edges and its link map is a bijection from X to Y .

Note that the names in an interface are identified alphabetically, not positionally.
This difference is mathematically unimportant. Alphabetical names are convenient for
link graphs just as they are convenient in the λ-calculus, and they also lead naturally to
forms of parallel product that are familiar from process calculi. But in defining tensor
product we have to require disjoint interfaces:

Definition 8.5 (tensor product) The tensor product ⊗ in ´LIG is defined as follows:
On objects, X ⊗ Y is simply the union of sets required to be disjoint. For two link
graphs Ai : Xi→Yi (i = 0, 1) we take A0 ⊗ A1 : X0 ⊗X1→Y0 ⊗ Y1 to be defined
when the interface products are defined and when A0 and A1 have disjoint node sets
and edge sets; then we take the union of the link maps.

There is an important variant of tensor product that merges outer names, i.e. does not
require them to be disjoint. This has fewer algebraic properties than the tensor (cate-
gorically, it is not a bifunctor), but will be important in modelling process calculi:

Definition 8.6 (parallel product) The parallel product | in ´LIG is defined as fol-
lows: On objects, X |Y def

= X ∪ Y . On link graphs Ai : Xi→Yi (i = 0, 1) we define
A0 |A1 : X0 ⊗X1→Y0 |Y1 whenever X0 and X1 are disjoint, by taking the union of
link maps.

Again we shall need epis and monos, and we have the following:

Proposition 8.7 (epis and monos in link graphs) A link graph is epi iff no name is
idle; it is mono iff no two inner names are peers.

Notation When considering a pair ~A : W → ~X of link graphs with common domain
W , we shall adopt a convention for naming their nodes, ports and edges. We denote
the node set of Ai (i = 0, 1) by Vi, and denote V0∩V1 by V2. We shall use vi, v′i, . . . to
range over Vi (i = 0, 1, 2). Similarly we use pi ∈ Pi and ei ∈ Ei for ports and edges
(i = 0, 1, 2). However, we shall sometimes use pi also for points, i.e. pi ∈ W ∪· Pi;
the context will resolve any ambiguity.

One of the reasons for equipping link graphs with explicit edge sets, as well as node
sets, is that we get a simple RPO theory. Also, as the reader will have noticed, there is a
striking formal analogy between link graphs and place graphs. On closer inspection, the
analogy appears to break down. For a parent map is prnt : h ∪· V →V ∪· mwhere both
the domain and codomain include the nodes V , while a link map is link : W ∪· P →E ∪· X
where the sets P and E are disjoint; so unlike a parent map, a link map cannot be it-
erated, i.e. a link graph has no notion of nesting. Nonetheleless, The RPO theories are
almost identical, and we present them as similarly as possible.

We first give the same intuition as for place graphs. Suppose ~D is a bound for ~A,
and we wish to construct the RPO ( ~B,B). To form ~B, we first truncate ~D by removing
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the names, and all points and edges not present in ~A. Then for the outer face of ~B, we
create a new link (a name) for each point unlinked by the truncation, equating these
new names only when required so that B0 ◦A0 = B1 ◦A1. Formally:

Construction 8.8 (RPOs in link graphs) An RPO ( ~B : ~X→ X̂, B : X̂→Z), for a
pair ~A : W → ~X of link graphs relative to a bound ~D : ~X→Z, will be built in three
stages. Since RPOs are preserved by isomorphism, we assume X0, X1 disjoint. We
use the notational conventions introduced above.

nodes and edges: If Vi are the nodes of Ai (i = 0, 1) then the nodes of Di are
Vı \V2 ∪· V3 for some V3. Define the nodes of Bi and B to be Vı \V2 (i = 0, 1) and
V3 respectively. Edges Ei are treated exactly analogously, and ports Pi inherit the
analogous treatment from nodes.

interface: Construct the shared codomain X̂ of ~B as follows. First, define the names
in each Xi that must be mapped into X̂:

X ′i
def
= {x ∈ Xi | Di(x) ∈ P3 ∪· Z} .

Next, on the disjoint sum X ′0 +X ′1, define ∼= to be the smallest equivalence for which
(0, x0) ∼= (1, x1) whenever A0(p) = x0 and A1(p) = x1 for some point p ∈ W ∪· P2.
Then define the codomain up to isomorphism:

X̂
def
= (X ′0 +X ′1)/∼= .

For each x ∈ X ′i we denote the ∼=-equivalence class of (i, x) by î, x.

links: Define B0 to simulate D0 as far as possible (B1 is similar):

For x ∈ X0 : B0(x)
def
=

{
0̂, x if x ∈ X ′0
D0(x) if x /∈ X ′0

For p ∈ P1\P2 : B0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

Finally define B, to simulate both D0 and D1:

For x̂ ∈ X̂ : B(x̂)
def
= Di(x) where x ∈ Xi and î, x = x̂

For p ∈ P3 : B(p)
def
= Di(p) .

This definition can be proved sound; for it can be shown that the right-hand sides in the
clauses defining link maps Bi and B are well-defined links in Bi and B respectively.
Then we can prove the following (the proof appears in Appendix A.2):

Theorem 8.9 (RPOs in link graphs) In ´LIG, Whenever a pair ~A of link graphs has
a bound ~D, there exists an RPO ( ~B,B) for ~B to ~D, and Construction 8.8 yields such
an RPO.
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We now proceed to characterise all the IPOs for a given pair ~A : W → ~X of link
graphs, just as we did for place graphs. Fortunately, the formal analogy between the
two allows us to omit proofs, but we shall exhibit the construction in full.

Again we ask: how does our link graph RPO ( ~B,B) vary, when we keep ~A fixed
but vary the given bound ~D? The answer is the same: if ~A are both epi, then ~B remains
fixed and onlyB varies, so that in this case there is a pushout. But, as with place graphs,
we need to treat the general case. The first step is to establish consistency conditions.

Definition 8.10 (consistency conditions for link graphs) We define three consistency
conditions on a pair ~A : W → ~X of place graphs. We use p to range over arbitrary
points, pi, p′i, . . . to range over Pi, and p2, p

′
2, . . . to range over W ∪· P2, the shared

points.

CL0 ctrl0(v2) = ctrl1(v2)
CL1 If Ai(p) ∈ E2 then p ∈W ∪· P2 and Aı(p) = Ai(p) .
CL2 If Ai(p2) ∈ Ei\E2 then Aı(p2) ∈ Xı, and if also Aı(p) = Aı(p2)

then p ∈W ∪· P2 and Ai(p) = Ai(p2) .

Again, let us express CL1 and CL2 in words. If i = 0, CL1 says that if the link of
any point p in A0 is closed and shared with A1, then p is also shared and has the same
link in A1. CL2 says, on the other hand, that if the link of a shared point p2 in A0 is
closed and unshared, then its link in A1 must be open, and further that any peer of p2

in A1 must also be its peer in A0.

Proposition 8.11 (consistency in link graphs) If the pair ~A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple example.

Example 8 (consistent link graphs) Consider the pair ~A : ∅→ ~X of link graphs in
Figure 10, where X0 = {x0, y0, z0} and X1 = {x1, y1}. Nodes with subscript 2 are
shared. (Controls are not shown). The pair is consistent, with bound ~B as shown. It is
worth checking the consistency conditions.

Now, assuming the consistency conditions of Definition 8.10, we shall construct a
nono-empty family of IPOs for ~A; the construction exactly follows the analogy with
place graphs. As before, it is clear that when ~A are both epi there are no elisions, and
hence the IPO is unique and hence pushout.

Construction 8.12 (IPOs in link graphs) Assume the consistency conditions for the
pair of link graphs ~A : W → ~X . We define a family of IPOs ~C : ~X→Y for ~A as
follows.

nodes and edges: Take the nodes and edges of Ci to be Vı\V2 and Eı\E2.

interface: For i = 0, 1 choose any subset Li of the names Xi such that all members
of Li are idle. Set Ki = Xi \Li. Define K ′i ⊆ Ki, the names to be mapped to the
codomain Y , by

K ′i
def
= {xi ∈ Ki | ∀p ∈ P2. Ai(p) = xi ⇒ Aı(p) ∈ Xı} .
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Figure 10: A consistent pair ~A of link graphs, with bound ~B

Next, on the disjoint sum K ′0 + K ′1, define ' to be the smallest equivalence such that
(0, x0) ' (1, x1) whenever A0(p) = x0 and A1(p) = x1 for some p ∈W ∪· P2. Then
define the codomain up to isomorphism:

Y
def
= (K ′0 +K ′1)/' .

For each x ∈ K ′i we denote the '-equivalence class of (i, x) by î, x.

links: Choose two arbitrary functions ηi : Li→Eı \E2 (i = 0, 1). Then define the
link maps Ci : Xi→Y as follows (we give C0; C1 is similar):

For x ∈ X0 :

C0(x)
def
=





0̂, x if x ∈ K ′0
A1(p) if x ∈ K0\K ′0, for p ∈W ∪· P2 with A0(p) = x
η0(x) if x ∈ L0

For p ∈ P1\P2 :

C0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

A1(p) if A1(p) /∈ X1 .

The maps ηi are called elisions; this refers to the fact that the idle names Li in
Ai are not exported in the IPO interface Y , but instead mapped into the body of Ci.
There is a distinct IPO for each choice of Li and ηi. However the IPO will be unique if

52



Li = ∅ is forced. This can happen for one of two reasons: either Ai has no idle names;
or Eı\E2 is empty (i.e. all edges of Aı are shared), so no elision can exist.

The soundness of the above definition, and the fact that ~C is a bound, are both
established by analogy with the corresponding results for place graphs. Similarly the
following characterisation theorem, stating that our construction creates all and only
IPOs for ~A, is proved analogously to Theorem 7.12 for place graphs:

Theorem 8.13 (characterising IPOs for link graphs) A pair ~C : ~X→Y is an IPO
for ~A : W → ~X iff it is generated (up to isomorphism) by Construction 8.12.
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9 Pure bigraphs: development
We now develop the theory of pure bigraphs, based upon Definition 6.2. First we
introduce the obvious precategory by combining ´PLG and ´LIG:

Definition 9.1 (precategory of pure concrete bigraphs) The precategory ´BIG(K)
of pure concrete bigraphs over a signature K has pairs I = 〈m,X〉 as objects (inter-
faces) and bigraphs G = (V,E, ctrlG, G

P, GL) : I→ J as arrows (contexts). We call
I the inner face of G, and J the outer face. If H : J→K is another bigraph with
node set disjoint from V , then their composition is defined directly in terms of the
composition of the components as follows:

H ◦G def
= 〈HP ◦GP, HL ◦GL〉 : I→K .

The identities are 〈idm, idX〉 : I→ I , where I = 〈m,X〉 . The subprecategory ´BIGh

consists of hard bigraphs, those with place graphs in ´PLGh.

Throughout this section, unless otherwise stated the definitions and results apply
equally to ´BIG and ´BIGh. The whole section is about pure bigraphs, in contrast to
the binding bigraphs to be studied in Section 11, so we shall omit the adjective ‘pure’
here. We shall also omit ‘concrete’ for the time being; but in Definition 9.12 we shall
introduce abstract bigraphs, via a forgetful functor. We shall continue to omit the
signature K except when it is important. We now combine some familiar place graph
and link graph structures to yield bigraph structures.

Proposition 9.2 (isomorphisms in bigraphs) The isomorphisms in ´BIG are all com-
binations ι = 〈ιP, ιL〉 of a place graph isomorphism and a link graph isomorphism.

Definition 9.3 (tensor product) The tensor product of two bigraph interfaces is de-
fined by 〈m,X〉 ⊗ 〈n, Y 〉 def

= 〈m+ n,X ∪· Y 〉 when X and Y are disjoint. The tensor
product of two bigraphs Gi : Ii→ Ji (i = 0, 1) is defined by

G0 ⊗G1
def
= 〈GP

0 ⊗GP
1 , G

L
0 ⊗GL

1〉 : I0 ⊗ I1→ J0 ⊗ J1

when the interfaces exist and the node sets are disjoint. This combination is well-
formed, since its constituents share the same node set.

It is routine to verify the axioms for a partial tensor product. In fact bigraphs are an
instance of a mathematical structure that we introduced in Section 4:

Theorem 9.4 (bigraphs are wide monoidal) For any signature K, the precategories
´BIG(K) and ´BIGh(K) are wide monoidal; the origin is ε = 〈0, ∅〉, and the interface
〈n,X〉 has width n.

Proof We leave the details for the reader to check. Note first that ´BIG and ´BIGh

are supported, with support sets of the form V + E — a disjoint sum of a node set
and an edge set. The width functor on arrows (bigraphs) is given as follows: for G :
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〈m,X〉→〈n, Y 〉, its width is the function sending each site s ∈ m to the unique root
r ∈ n such that r >G s.

Following Section 4 we use lower case latters a, b, . . . for ground bigraphs, those with
inner face ε, and we write a : ε→ I as a : I . These will represent the agents of our
BRSs in Section 12, and will be used to model the agents in a conventional process
calculus in Section 15.

Several properties of bigraphs are inherited from place graphs and link graphs. For
example:

Proposition 9.5 (epis and monos in bigraphs) A bigraph G in ´BIG (or ´BIGh) is
epi (resp. mono) iff its componentsGP andGL are epi (resp. mono) in ´PLG (or ´PLGh)
and ´LIG.

It follows from Theorem 9.4 that when we later equip bigraphs with reaction rules
we shall have a WRS, and then we can apply the main congruence theorem, Theo-
rem 5.5, provided that we have enough RPOs. So now we draw together our RPO
results for place graphs and link graphs. We deduce from Theorem 7.8 and 8.9 the
following:

Corollary 9.6 (RPOs for bigraphs) In both ´BIG and ´BIGh an RPO for ~A to ~D is
provided by the triple

( 〈BP
0 , B

L
0〉, 〈BP

1 , B
L
1〉, 〈BP, BL〉 )

where ( ~BP, BP) is a place graph RPO for ~AP to ~DP and ( ~BL, BL) is a link graph RPO

for ~AL to ~DL.

Proof We can check from Constructions 7.7 and 8.8 that each combination in the
triple is well formed, since its two constituents have the same node set. Once this is
established, the RPO property is easily verified by diagram chasing.

Now we shall consider IPOs for bigraphs. We can use Theorems 7.12 and 8.13 to prove
that:

Corollary 9.7 (IPOs for bigraphs) A pair ~B is an IPO for ~A in ´BIG or ´BIGh iff ~BP

is a place graph IPO for ~AP and ~BL is a link graph IPO for ~AL.

Proof It is enough to prove it just for ´BIG.

(⇒) Assume the IPO in ´BIG. Then in ´PLG, by definition ~BP is a bound for ~AP. We
need to show that ( ~BP, id) is an RPO for ~AP to ~BP. So, for any other candidate RPO
( ~CP, CP), we must find a unique mediating arrow between the intended RPO and this
candidate.

It can be shown that the members of ( ~CP, CP) have the same support as the mem-
bers of ( ~BP, id). So we may form the triple of combinations

( 〈CP
0 , B

L
0〉, 〈CP

1 , B
L
1〉, 〈CP, id〉 )
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Figure 11: A consistent pair ~A of bigraphs, with IPO ~B

(with suitable interfaces), and also prove it to be a candidate RPO in ´BIG for ~A to
~B. Hence there is a unique mediating arrow between the given RPO ( ~B, id) and this
candidate. The place graph constituent of this mediator then provides the required
unique mediator in ´PLG, and we are done. A similar argument applies also to ´LIG.

(⇐) Assuming IPOs in ´PLG and ´LIG, by routine diagram chasing we can verify the
IPO property in ´BIG.

Example 9 (Bigraph IPOs) To illustrate IPOs in ´BIG, we can combine Example 7
for place graphs and Example 8 for link graphs, since they have the same node sets. In
both cases the bounds ~B are IPOs, and indeed pushouts because the graphs ~A are epi.
The combination is shown in Figure 11. Again, both of the bigraphs ~A are epi, so our
results show that the bound ~B is again an IPO and a pushout.

We now give a few special cases of IPOs. First, some pushouts (hence also IPOs)
that are easy to verify for any precategory:

Proposition 9.8 (containment pushout) Let A be epi. Then the pair (A,F ◦A) has
the pair (F, id) as a pushout. In particular, by taking A = id and F = id respectively:
(1) any pair (id, F ) has (F, id) as a pushout, and (2) if A is epi then (A,A) has (id, id)
as a pushout.
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Next, tensor product preserves IPOs with disjoint support:

Proposition 9.9 (tensor IPO) In any of ´PLG, ´PLGh, LIG, ´BIG or ´BIGh, Let ~C be
an IPO for ~A and ~D be an IPO for ~B, where the supports of the two IPOs are disjoint.
Then, provided the tensor products exist, ~C ⊗ ~D is an IPO for ~A⊗ ~B.

An important corollary, with the help of Proposition 9.8, is when the two given IPOs
contain identities:

J

I
idI ⊗ b

a⊗ idJ

I⊗J

b

a

idI ⊗B
I⊗J

I′⊗J

I⊗J ′
(a) (b)

A⊗ idJ ′ A⊗ idJ
idI′ ⊗B

Corollary 9.10 (tensor IPOs with identities) Let A : I ′→ I and B : J ′→ J share
no nodes, and let the free names of I ′, I be disjoint from those of J ′, J . Then the pair
(A⊗ idJ ′ , idI′ ⊗B) has an IPO (idI ⊗B,A⊗ idJ). See diagram (a).

In particular if I ′ = J ′ = ε then A = a and B = b are ground bigraphs, and the
IPO is as in diagram (b).

We shall call a bigraph lean if its link graph is lean, i.e. has no idle edges. In
Section 12 we shall need to transform IPOs by the addition or subtraction of idle edges.
Let us write AE for the result of adding a set E of fresh idle edges to A. The following
is easy to prove from the IPO construction for link graphs:

Proposition 9.11 (IPOs, idle edges and leanness) For any two pairs ~A and ~B:

(1) If ~B is an IPO for ~A, and A1 is lean, then B0 is lean.

(2) For any fresh set E of edges, ~B is an IPO for ~A iff (B0, B
E
1 ) is an IPO for

(AE0 , A1).

We now turn to abstract bigraphs. To get them from concrete bigraphs, we wish to
factor out the identity of nodes and edges; we also wish to forget any idle edges. So we
define an equivalence m that is a little coarser than support equivalence (l):

Definition 9.12 (Abstract pure bigraphs and their category) Two concrete bigraphs
A and B are lean-support equivalent, written A m B, if after discarding any idle edges
they are support equivalent. The category BIG(K) of abstract pure bigraphs has the
same objects as ´BIG(K), and its arrows are lean-support equivalence classes of con-
crete bigraphs. Lean-support equivalence is clearly a static congruence (Definition 3.5).
The associated quotient functor, assured by Definition 3.6, is

[[·]] : ´BIG(K)→BIG(K) .

The definition of BIGh is analogous, with the restriction of [[ · ]] to ´BIGh as quotient
functor.
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Figure 12: Two abstract bigraphs may lack an RPO

Note that there are natural abstract versions of place graphs and link graphs. But
we have little use for them, for we cannot combine an abstract place graph with an
abstract link graph to form an abstract bigraph! (The combination only makes sense
when nodes have identity.) The deeper reason for studying concrete bigraphs is that
they possess RPOs. This will allow us Section 12 to derive a behavioural congruence
for ´BIG, and then to show how to transfer it, under certain assumptions, to BIG.

To see why we cannot work directly in BIG, let us see how it lacks some of the
structure present in ´BIG. A simple example of this is that the functor [[ · ]] loses epis;
for example, the abstract bigraph A in Figure 12 is not epi, though (since it has no idle
names) all its [[·]]-preimages are epi. More seriously, BIG lacks RPOs in general; this
we shall now show.

Example 10 (abstract bigraphs lack RPOs) Let the controls K and L be atomic
with arity 1. Figure 12 shows two candidate RPOs for the pair (A,A) of abstract
bigraphs w.r.t. the pair (G,G). The candidates are ( ~C,C) and ( ~D,D), where Di = id
(i = 0, 1) and D = G. Speaking informally, the first candidate keeps the two K-nodes
in (A,A) distinct, whereas the second candidate coalesces them. These two treatments
of node-occurrences cannot be properly distinguished in abstract bigraphs; that is why
an RPO fails to exist in this example.

To see this, suppose an RPO ( ~B,B) exists. Then there must be mediators Ĉ, D̂
to the two candidates, as shown, making the diagram commute. But this leads to a
contradiction, as follows. First,B0 andB1 must have empty support, since for example
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D̂ ◦B0 = D0 = id. From B0 ◦A = B1 ◦A it can then be deduced that B0 = B1.7 It
follows that C0 = Ĉ ◦B0 = Ĉ ◦B1 = C1, a contradiction.

We shall finish this section by introducing some terminology and operations that
will be needed in following sections.

Notations and terminology We often abbreviate an interface 〈0, X〉 to X , and {x}
to x; similarly we abbreviate 〈m, ∅〉 to m. Thus the interfaces ∅ and 0 are identical
with the origin ε, and indeed the identity idε may be written variously as ε, ∅ or 0.

A bigraph with interfaces of zero width (and hence having no nodes) is called a
wiring. The wirings ω are generated by composition and tensor product from two basic
forms: /x : x→ ε, called closure; and a function σ : X→Y , not necessarily surjective,
called a substitution. For X = {x1, . . . , xn} we write /X for /x1 ⊗ · · · ⊗ /xn, a
multiple closure. For vectors ~x and ~y of equal length, with the xi distinct, we write ~y/~x
or (y0/x0, y1/x1, . . .) for the surjective substitution xi 7→ yi. The unique substitution
with empty domain and codomain Z is written Z : ε→Z. Every substitution σ can be
expressed uniquely as σ = τ ⊗ Z, with τ surjective. We let α range over renamings,
the bijective substitutions.

An interface is prime if it has width 1. We shall often write a prime interface
I = 〈1, X〉 as 〈X〉; note in particular that 1 = 〈∅〉. A prime bigraph P : m→〈X〉 has
no inner names and a prime outer face. An important prime is merge : m→ 1; it has
no nodes, and simply maps m sites to a single root. A bigraph G : m→〈n,X〉 with no
inner names is converted by merge into a prime (merge ⊗ idX) ◦G.

A bigraph is discrete if it has no edges, and its link map is bijective. This means
that every point is open, no two points are peers, and no name is idle.

For any non-atomic control K with arity k and sequence ~x of k distinct names
we define the discrete ion Kv,~x : 1→〈~x〉 to have a single K-node v, whose ports are
severally linked to ~x. We omit the subscript v when it can be understood. For a discrete
prime P with names Y the composite (K~x ⊗ idY ) ◦P is a discrete molecule. If K is
atomic it has no ion, but we define the discrete atom K~x : ε→〈~x〉; it resembles an ion
but possesses no site. An arbitrary (non-discrete) ion, molecule or atom is gained by
composing ω ⊗ id1 with a discrete one.

We often omit . . . ⊗ idI in compositions, when there is no ambiguity; examples
from above are merge ◦G for (merge ⊗ idX) ◦G and K~x ◦P for (K~x ⊗ idY ) ◦P .

Given a wiring ω : Y →Z we may restrict its link map to any subset X ⊆ Y ,
yielding the restricted wiring ω �X : X→Z. Then, if the outer face of G is 〈m,X〉
we may write simply ωG for (ω �X ⊗ idm) ◦G.

Note that every atom and every molecule is prime, but whereas an atom is ground, a
molecule need not be (it can have sites). The reader may wonder why primes do not
have inner names. This is what allows us to prove a prime factorisation property in
Proposition 9.17(2).

We now look at variants of the tensor product, which reflect more closely the notion
of ‘parallel composition’ familiar in process calculi. Although these operations apply

7This would be immediate if A were epi, but it is not! (Even though its representatives in ´BIG are epi.)
However, a specific argument can be given in this case.
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to arbitrary bigraphs, they are especially significant when applied to ground bigraphs,
because these will model processes.

Process calculi often have a parallel product p ‖ q or p | q, in which the processes
p and q may share names. We therefore extend the parallel product ‘ | ’ of link graphs
(Definition 8.6) as follows:

Definition 9.13 (parallel product) The parallel product of two bigraphs is defined
on interfaces by 〈m,X〉 ‖ 〈n, Y 〉 def

= 〈m+ n,X ∪ Y 〉, and on bigraphs by

G0 ‖G1
def
= 〈GP

0 ⊗GP
1 , G

L
0 |GL

1〉 : I0 ⊗ I1→ J0 ‖ J1

when the interfaces exist and the node sets are disjoint.

It is easy to verify that ‖ is associative, with unit ε. We insist that G0 and G1 have
disjoint inner names, this ensures that their parallel product is well-formed. Note that
it keeps the regions of G0 and G1 separate; this was its purpose in the remote reaction
rule for the π-calculus shown in Figure 6.

Another way of constructing G0 ‖G1, which we shall use later in extending the
product to binding bigraphs, is to disjoin the names of G0 and G1, then take the tensor
product and merge the names again:

Proposition 9.14 (parallel product) Let G0 ‖G1 be defined. Then

G0 ‖G1 = σ(G0 ⊗ τG1) ,

where the substitutions σ and τ are defined as follows: If zi (i ∈ n) are the names
shared between G0 and G1, and wi are fresh names in bijection with the zi, then
τ(zi) = wi and σ(wi) = σ(zi) = zi (i ∈ n).

We shall continue to use | to combine two wirings; in fact ω0 |ω1 (as defined for
link graphs) means the same as ω0 ‖ω1. We shall also abuse notation by extending |
to primes:

Definition 9.15 (prime product) The prime product of prime interfaces is given by

〈1, X〉 | 〈1, Y 〉 def
= 〈1, X ∪ Y 〉 .

For two prime bigraphs ~P : ~I→ ~J , with I0⊗ I1 defined, we define their prime product
by

P0 |P1
def
= merge ◦ (P0 ‖P1) : I0 ⊗ I1→ J0 | J1 .

Again | is associative, with unit 1 when applied to primes. We have chosen the symbol
that is used in CCS and the π-calculus, since the correspondence will turn out to be
exact. We shall find it useful to abuse notation even further, and write ω |P instead of
ω ‖P when joining a wiring to a prime. To summarise: G0 |G1 is defined whenever
G1 have width ≤ 1, and it has the maximum of their widths.

Let us now consider discrete bigraphs. In a precise sense they fully complement
wiring:
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Proposition 9.16 (underlying discrete bigraph) Every bigraph G in ´BIG or ´BIGh

can be expressed uniquely (up to iso) as G = (ω ⊗ idn) ◦D, where ω is a wiring and
D is discrete.

We shall call this unique factorisation of G a discrete normal form (DNF). It applies
equally to abstract bigraphs, and indeed it will play an important part in the complete
axiomatisation of BIG which is the subject of a later section.

Discreteness is very well-behaved. It is clear that both composition and tensor
product preserve it, and more:

Proposition 9.17 (synthesis and analysis of discrete bigraphs) In ´BIG or ´BIGh the
discrete pure bigraphs form a monoidal sub-precategory. Moreover

(1) Every discrete D : 〈m,X〉→〈n, Y 〉 may be factored uniquely, up to isomor-
phism on the domain of each factor Di, as

D = α⊗ ((D0 ⊗ · · · ⊗Dn−1) ◦π)

with α a renaming, each Di prime and discrete, and π a permutation.

(2) If (D′, G′) is an IPO for (G,D) and D is discrete, then D′ is discrete.

(3) If D′ ◦G = ωD with D and D′ discrete, then (D′, ω) is an IPO for (G,D).

Note that a renaming is discrete but not prime (since it has zero width); this is why
(1) has such a factor. This unique factorisation depends on the fact that primes have
no inner names. In the special case that D is ground, the factorisation in (1) is just
D = d0 ⊗ · · · ⊗ dn−1, a product of prime discrete ground bigraphs.

We have to make one more preparation for Section 12 on dynamics. When we de-
fine parametric reaction rules we must allow them to replicate some of their parameters
and discard others. We shall call this operation on parameters instantiation. The fol-
lowing definition ensures that names are shared between all copies of a parameter, and
uses support translation to ensure that the several copies are given disjoint supports.

Definition 9.18 (instantiation) An instantiation % from (width)m to (width) n, which
we write % :: m→n, is determined by a function % : n→m. For any X this function
defines the map

% : Gr〈m,X〉→Gr〈n,X〉
as follows. Decompose g : 〈m,X〉 into g = ω(d0 ⊗ · · · ⊗ dm−1), with ω : Y →X and
each di prime and discrete. Then define

%(g)
def
= ω(e0 ‖ · · · ‖ en−1) ,

where ei l d%(i) for i ∈ n. This map is well-defined (up to support translation), by
Propositions 9.16 and 9.17.

Note that the names of e0 ‖ · · · ‖ en−1 may be fewer than Y , because % may not be
surjective. But by our convention the outer names of %(g) are determined by the outer
names of ω, i.e. X .

We deduce two important properties of wirings:
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Proposition 9.19 (wiring an instance) Wiring commutes with instantiation; that is,

ω%(a) l %(ωa) .

Proof Let a : 〈m,X〉, with % :: m→m′. Take the DNF a = ω′d. Then %(a) = ω′a′,
where a′ = d′0 ‖ · · · ‖ d′m′−1 with each d′i l d%(i). So

%(ωa) l %(ω(ω′d))
= %((ω ◦ω′)d)
l (ω ◦ω′)a′

= ω(ω′a′)
= ω%(a) .

Proposition 9.20 (wiring a product) Wiring commutes with parallel and prime prod-
uct; that is,

ω(F ‖G) = ωF ‖ωG and ω(F |G) = ωF |ωG .

Proof Routine.

We can now deduce how to apply instantiation to a product of primes:

Proposition 9.21 (instantiating a product) Let ai : 〈Yi〉 be prime and ground (i ∈
m), and let Y =

⋃
i Yi. Let % :: m→n be an instantiation. Then

%(a0 ‖ · · · ‖ am−1) = Y ‖ b0 ‖ · · · ‖ bn−1

where bj l a%(j) for j ∈ n.

Proof First express each ai in DNF, using discrete di with disjoint name sets. Then
apply Propositions 9.19 and 9.20.

Thus, although instantiation breaks up a ground bigraph in general, it does not break
up a prime; in fact, applied to a product of primes, it simply reassembles copies of the
prime factors. Also, if we instantiate G ◦a where a is prime, then a will not be broken
up but the result may contain several copies of a. This fact, which will be important for
Section 12, means that %(G ◦a) can be transformed into %(G ◦ b) by replacing a finite
number of occurrences of a by b. Formally:

Proposition 9.22 (instantiating with prime component) LetG : 〈X〉→〈m,Y 〉 be ar-
bitrary with prime inner face, and % :: m→n be an instantiation. Then for some
k ≥ 0, if we choose disjoint renamings αi : X→Xi (i ∈ k), there exists a context
C : 〈k,⋃iXi〉→〈n, Y 〉 such that

%(G ◦a) l C ◦ (a0 ⊗ · · · ⊗ ak−1)

whenever G ◦a is defined, where ai l αia.
Moreover for any pair a, b : 〈X〉 we have (%(G ◦a), %(G ◦ b)) ∈ S∗, where

S = {(H ◦a,H ◦ b) | H any context } .
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Proof For the first part, apply Propositions 9.16 and 9.17 to express G in terms of a
product of prime discrete factors. Then use the fact that all but one of these factors is
ground (since G has prime inner face) to obtain the equation

G ◦a = (ω ⊗ π) ◦ ((F ◦a)⊗ d1 ⊗ · · · ⊗ dm−1)

where π is a permutation, F has prime outer face and all of the right-hand side (except
a) is independent of a. Finally we use Proposition 9.21 to obtain an expression for
%(G ◦a) involving several support-disjoint copies of a, as required.

For the second part, define for each i ∈ k

ci = C ◦ (b0 ⊗ · · · ⊗ bi−1 ⊗ ai ⊗ · · · ⊗ ak−1) ,

so that ci differs from ci+1 by the replacement of a single copy of a by b. For the
required result we only need to observe that (ci, ci+1) is in S, by choosing the context

Ei = C ◦ (b0 ⊗ · · · ⊗ bi−1 ⊗ 〈αi〉 ⊗ ai+1 · · · ⊗ ak−1) .

We have now taken the theory of pure bigraphs as far as required for the dynamics
of bigraphs, which we introduce in Section 12.
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10 Algebra of pure bigraphs
In this section we diverge from our main theme, the behavioural theory of bigraphs,
to sharpen our understanding of their algebraic structure. The reader may safely study
later sections without reading this one.

Ths algebra we develop here is just for abstract bigraphs BIG. These are our pri-
mary model; we introduced concrete bigraphs ´BIG mainly to obtain – in Part III – a
behavioural theory, which can then be transferred to BIG. However, it is likely that the
algebraic theory for BIG will, with minor modifications, be valid also for ´BIG.

We shall find that there is a simple complete axiomatisation of pure bigraphs. There
are also two useful kinds of normal form. One of them is in terms of discrete bigraphs,
and is useful for proving the completeness of our axioms; the other uses the parallel
products ‖ and | , and is better fitted for practical applications. We begin by defining
our algebraic signature (not to be confused with the control signature K), consisting of
elementary bigraphs sufficient to generate all bigraphs.

Elementary bigraphs We define six elementary forms of pure bigraph:

/x : x→ ε closure
[f ] : X→Y substitution (f : X→Y )

1 : ε→ 1 a barren root
merge : 2→ 1 map two sites to one root
γm,n : m+n→n+m swap m with n places
K~x : 1→〈1, ~x〉 a discrete ion (~x distinct).

We shall show that they generate all bigraphs by composition and tensor product.
The first two elements generate all wirings, i.e. the node-free link graphs, as ex-

plained in Section 9. The notation [f ] is introduced here for clarity, distinguishing a
bigraphical substitution from its underlying functional substitution f . Recall that σ
ranges over bigraphical substitutions, and α over renamings.

The next three elements generate all placings, i.e. the node-free place graphs. For
example mergem : m→ 1, which merges m sites, can be defined for all m ≥ 0 by

merge0
def
= 1

mergem+1
def
= merge ◦ (id1 ⊗mergem) .

Note that merge1 = id, and hence merge2 = merge . Note also that the unit 1 is absent
in hard bigraphs BIGh. We use π : m→m to range over permutations, those placings
generated by the γm,n. Every isomorphism ι is the product π ⊗ α of a renaming and a
permutation. The usual symmetries of a strict symmetric monoidal category are defined
by extending the place symmetries γm,n as follows:

γI,J
def
= γm,n ⊗ idX⊗Y , where I = 〈m,X〉 and J = 〈n, Y 〉 .

Finally, given all these node-free elements, we require only the discrete ions K~x to
express everything in BIG. In particular, we can express a discrete atom as K~x ◦1.
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Discrete normal forms The following proposition shows the expressive power of the
elementary bigraphs. Further, it shows that every bigraph in BIG can be expressed in a
kind of normal form, called discrete normal form (DNF). We shall consistently use D,
Q and N to stand for discrete, discrete prime and discrete molecular bigraphs.

Proposition 10.1 (discrete normal form) In BIG each bigraph G, discrete D, dis-
crete prime Q and discrete molecule N can be expressed in discrete parts by an equa-
tion of the respective following form (recall that α is a renaming, π a permutation):

G = (ω ⊗ idn) ◦D
D = α⊗ ((Q0 ⊗ · · · ⊗Qn−1) ◦π)
Q = (mergen+p ⊗ idY ) ◦ (idn ⊗N0 ⊗ · · · ⊗Np−1) ◦π
N = (K~x ⊗ idY ) ◦Q .

Moreover, the expression is unique up to certain isomorphisms on the parts.

By applying the equations to any bigraph expressionG, we transform it into DNF; after
applying the first two equations once, we apply the last two repeatedly. Note that the
unit 1 occurs as a special case of Q when n = p = 0.

Axiomatisation We now address the question: What set of axioms is complete in the
sense that every valid equation in terms of the elementary bigraphs is provable? The
answer turns out to be rather simple; the axioms are shown in the table below.

CATEGORICAL AXIOMS:
A ◦ id = A = id ◦A

A ◦ (B ◦C) = (A ◦B) ◦C
A⊗ idε = A = idε ⊗A

A⊗ (B ⊗ C) = (A⊗B)⊗ C
(A1 ⊗B1) ◦ (A0 ⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)

γI,ε = idI
γJ,I ◦γI,J = idI⊗J

γI,K ◦ (A⊗B) = (B ⊗A) ◦γH,J (A : H→ I,B : J→K)

LINK AXIOMS:
[f ] ◦ [g] = [f ◦g]

[f ]⊗ [g] = [f ∪· g]
/y ◦ [f ] = /X (f : X→ y)

[f ] ◦ (x⊗ idX) = [f �X] (f : x⊗X→Y )

PLACE AXIOMS:
merge ◦ (1⊗ id1) = id1 (unit)

merge ◦ (merge ⊗ id1) = merge ◦ (id1 ⊗merge) (associative)
merge ◦γ1,1 = merge (commutative) .

The categorical axioms are standard for a strict symmetric monoidal category. But note
that the tensor product is defined only when interfaces have disjoint name sets; thus the
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equations are required to hold only when both sides are defined. What is remarkable
is that no axioms at all are required on ions, which are the only non-empty elements.
Thus bigraphs are a rather free structure.

Theorem 10.2 (Complete axiomatisation) Two expressions, constructed from the el-
ements by composition and tensor product, denote the same bigraph in BIG if and only
if they are in the congruence generated by the axioms.

Proof The proof of the theorem is quite detailed, and we only give a brief outline
here. The ‘if’ direction, soundness, just requires an easy proof that each of the axioms
is valid. The ‘only if’ direction, completeness, requires two steps. First we show,
by induction on the structure of expressions, that the equality between an arbitrary
expression and its DNF is provable from the axioms. Second, since DNFs are only
unique up to certain isomorphisms, we show that the equality between isomorphic
DNFs is also provable from the axioms.

Connected normal forms The discrete normal form (DNF) was important for our
proof of completeness of the axioms. Moreover, the tensor product is heavily used in
our axiomatisation; in particular its bifunctoriality

(A1 ⊗B1) ◦ (A0 ⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)

plays a very important part.
On the other hand parallel products like ‖ and | , which allow the sharing of names

(so do not preserve discreteness) are found very natural in process calculi and in pro-
gramming; the main purpose of a combinator such as | in the π-calculus is to combine
expressions that use the same channel, and which may therefore communicate via that
channel, as in the reaction rule xy |x(z).P → {y/z}P . See all the examples in Sec-
tion 2, where these combinators are used; see also the discussion of parametric reaction
rules in Section 12 to follow.

In fact we can find a normal form that is in a sense opposite to DNF. Whereas in
DNF we pull all wiring to the outermost, we can adopt instead the strategy of pushing
it inwards as far as we can. This is achieved by using ‖ and | in place of ⊗, and by
pushing closures /Z inwards wherever possible. We call the result connected normal
form (CNF); it is embodied in the following proposition, analogous to Proposition 10.1.
We use P and M for primes and molecules (not necessarily discrete):

Proposition 10.3 (connected normal form) In BIG each bigraph G, prime P and
molecule M can be expressed by an equation of the respective following form (recall
that σ is a substitution and π a permutation):

G = (/Z ⊗ idn) ◦ (σ ‖ ((P0 ‖ · · · ‖Pn−1) ◦π)
P = (/Z ⊗ idm+n) ◦ (idm |M0 | · · · |Mn−1) ◦π
M = (/Z ⊗ id1) ◦ (K~x | idY ) ◦P

where, in each case, any member z ∈ Z is a name of at least two members of the
ensuing product ( ‖ or | ). The names ~x need not be distinct. Moreover, in each case
the expression is unique up to a renaming of Z and certain isomorphisms on the parts.
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We regard CNF as important for practical use. For example, although we shall not
do so, it is not hard to derive the CNF for F ◦G, F ‖G or F |G from the CNFs for
F and G. We shall also leave open whether there exists a pleasant axiomatisation that
uses these parallel products in place of the tensor product.
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11 Binding bigraphs
The reader who is interested in dynamics rather than in adding binding to bigraphs can
safely skip this section and proceed to the dynamic theory in Section 12. He or she will
also be able to read Sections 13 and 14 of Part III, interpreting them in pure bigraphs.
However, binding is needed for Section 15 on the asynchronous π-calculus.

In Section 9 we studied a pure form of bigraph in which placing and linking are
completely independent structures over a set of nodes. In doing so we found several
roles played by a place: it may define a neighborhood within which reactions can be
confined (e.g. in the ambient calculus); in contrast it may prevent reaction until its
boundary is removed (e.g. in the π-calculus); it may define the site for a parameter of
a reaction rule, thereby determining what may be replicated or discarded.

In this section we shall relax the independence of placing and linking by defining
yet another role for a place: it may define the scope of a bound link. This will allow
us to represent, among other things, the input prefix of the π-calculus (which binds a
name). The first step we take is to enrich signatures.

Definition 11.1 (binding signature) A binding signature K is like a pure signature
(Definition 6.1), except that the arity of a control K : h→ k now consists of a pair
of finite ordinals: the binding arity h and the free arity k, determining the number of
binding and non-binding ports of any K-node. If K is atomic then h = 0.

For example, for the π-calculus controls, we have get : 1→ 1 and send : 0→ 2 (see
Examples 2, 3, 4 and 6).

We wish to define a binding bigraphG in terms of an underlying pure one, in which
all points linked to a binding port of a node u lie inside u. These points may be inner
names as well as ports; to ensure that these inner names transmit the scope discipline
to any other bigraph composed at the inner face of G, we enrich interfaces as follows:

Definition 11.2 (binding interface) A binding interface takes the form I = 〈m,~k,X〉,
where the width m and the global names X are as before, and the new component
~k = k0, . . . , km−1 is a sequence of finite ordinals, indexing for each r ∈ m a set
{(r, j) | j ∈ kr} of local names; we say these are located at r.

Denote the local names of I by X` and set Xu = X` ∪· X . Then we call Iu =
〈m,Xu〉 the pure interface underlying I .

We call an interface global if all its names are global. Note that we represent local
names positionally, but continue to represent global names alphabetically. We are now
ready for the main definition:

Definition 11.3 (binding bigraphs) A (concrete) binding bigraph G : I→ J con-
sists of an (underlying) pure bigraph Gu : Iu→ Ju with extra structure as follows. De-
clare its binders to be the binding ports of its nodes together with the local names of its
outer face J . Then G must satisfy the following:

SCOPE RULE: If p is a binder located at a node or root w, then every peer
p′ of p must be located at a place w′ (a site or a node) such that w′ <Gu w.
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In the precategory ´BBG(K) of (concrete) binding bigraphs over K, composition and
identities are defined as for the underlying pure bigraphs; they are easily found to
respect the scope rule. The forgetful functor

U : ´BBG(K)→ ´BIG(K)

forgets binding; it sends each I to Iu and each G to Gu.
The analogous definition holds also for hard binding bigraphs ´BBGh(K).

As for pure bigraphs, a link is open if it is a name, otherwise closed. In binding
bigraphs we have a further distinction: a link is bound if it contains a binder, otherwise
free. These terms also extend to the points in the link. The scope rule ensures that
every bound link in G : I→ J has exactly one binder and that all global inner names
are free; local inner names (i.e. local names of I) can be free or bound.

Note that, in considering names, the global/local distinction is with reference to
interfaces, while the free/bound distinction is with reference to bigraphs. For example,
for G : I→ J , an inner name of G may be a local name in I but free in G.

We shall say that a bigraph G : I→ J is free if its outer face J is global, i.e. every
outer name of G is free. To avoid confusion, note that G itself may still not be a pure
bigraph, i.e. it may have closed links that are bound. Free bigraphs will be important in
what follows; their characteristic is that no bound point of G can become free in F ◦G,
for any F .

We shall now embark on recording or verifying several properties of binding bi-
graphs, and how each relates to the corresponding property in Section 9 for pure bi-
graphs. Where the correspondence is easy we do not give a new definition, proposition
etc; we merely cite the corresponding one for pure bigraphs.

In many cases the correspondence is illuminated by an attribute of the forgetful
functor U . Let us recall the relevant attributes. First, U is faithful but not full; that is,
restricted to each particular homset ´BBG(I, J) or ´BBGh(I, J) it is injective, but not
surjective.

A functor can be characterised by the properties that it preserves or reflects. Letting
∆ range over arbitrary commuting diagrams, a functor F is said to preserve a property
Φ of diagrams if Φ(∆) ⇒ Φ(F(∆)), and to reflect Φ if Φ(F(∆)) ⇒ Φ(∆). An
interesting example will be that U preserves the RPO property but does not reflect it.
This means that to find an RPO in binding bigraphs we cannot take any U-preimage of
an RPO in pure bigraphs; but we shall find that one particular preimage, unique up to
iso, is indeed an RPO.

For the remainder of this section we shall extend to binding bigraphs several prop-
erties of pure bigraphs, in the order in which they were treated in Section 9.

Binding bigraphs: Elementary notions

isomorphisms (Proposition 9.2) An iso ι : 〈m,~k,X〉→〈m, ~̀, Y 〉 of binding bigraphs
combines a permutation π : m→m of places with a bijection X→Y of global
names and, for each place r ∈ m, a bijection kr→ `π(r) between the local names
at corresponding places. U both preserves and reflects isos.
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tensor product (Definition 9.3) The tensor product of interfaces I = 〈m,~k,X〉 and
J = 〈n, ~̀, Y 〉, where X and Y are disjoint, is I⊗J = 〈m+n,~k~̀,X ∪· Y 〉. The
tensor product of two binding bigraphs Gi : Ii→ Ji (i = 0, 1), where I0 ⊗ I1
and J0 ⊗ J1 are defined, is just Gu

0 ⊗Gu
1, but after disjoining the local inner and

outer names names of G1 from those of G0.

U neither preserves nor reflects tensor product. This is essentially because of the
partial nature of the tensor; a more standard categorical tensor product would be
total, because it would disjoin name sets before taking their product. This would
complicate our application of bigraphs to process calculi. However the following
shows that the tensor is well-behaved for binding bigraphs:

wide monoidal (Theorem 9.4) ´BBG(K) and ´BBGh(K) are wide monoidal precate-
gories.

epis and monos (Proposition 9.5) A binding bigraph is epi (resp. mono) iff its under-
lying pure bigraph is epi (resp. mono). U both preserves and reflects epis and
monos.

This concludes the elementary notions for binding bigraphs.

We now move on to the central properties of relative and idem pushouts. To ensure
that RPOs and IPOs exist we have to take a little more care, but can still rely mostly
on the corresponding results for pure bigraphs. In what follows we shall use the terms
binding and pure RPO to mean RPOs in binding and in pure bigraphs respectively; the
results apply to ´BBGh and ´BIGh and well as to ´BBG and ´BIG. We shall also talk of
binding IPOs and pure IPOs.

Construction 11.4 (building a binding RPO) Let ~D : ~I→K be a bound for ~A : H→ ~I
in binding bigraphs. We wish to build in a binding RPO

( ~B : ~I→ I, B : I→K) .

We first build a pure RPO ( ~B′, B′) for ~Au to ~Du, using the separate constructions for
place graphs and link graphs (Constructions 7.7 and 8.8). Let I ′ = 〈m,X ′〉 be the
interface of the RPO, i.e. the inner face of B′.

We shall build the required ( ~B,B) with interface I = 〈m,~k,X〉 so that for some
link isomorphism ι : I ′→ Iu in ´BIG (see the diagram)

~Bu = ι ◦ ~B′ and Bu ◦ ι = B′ .

In general, several such triples exist as bounds for ~A relative to ~D; they vary with the
chosen isomorphism ι, because for a given name x ∈ X ′ we may choose ι(x) either
to be a global name in X or to be a local name located at some place r ∈ m. They
will not all be binding RPOs; this amounts to saying that U does not reflect the RPO
property from pure to binding bigraphs.

70



B′

B′0

Bu
1

I′

Iu

B′1
ι

Au
0 Au

1

Du
0

Bu

Du
1

Iu
0

Iu
1

Bu
0

I0 I1

B1

B D1

B0

D0

A1A0

I

PURE

BIGRAPHS

BINDING

BIGRAPHS

In fact we shall choose I and ι so that ~B and B obey the scope rule, and also —
subject to that constraint— so that I contains as many local names as possible. By
Construction 8.8 (and using its notation), each x ∈ X ′ is linked in B′i to one or more
names xi ∈ Xu

i (i = 0, 1), where Xu
i is the name set of Au. If any such name xi is

a global name of Ai then we choose ι(x) to be global in Iu — i.e. a member of X .
Otherwise every such xi is a local name of Ai, so we choose one of them, located at
some site s in Ii; we then choose ι(x) to be located at the unique r ∈ m such that s < r

in B′i. This determines both ( ~B,B) and I up to isomorphism.

Note that the scope rule on ~A ensures that the definition of r is independent of the
choice of local name xi linked to x. The construction is therefore well defined.

Proposition 11.5 (binding RPOs) A binding RPO for ~A to ~D is provided by Con-
struction 11.4, via Corollary 9.6.

Proof Let ( ~B,B) be as in the construction. Note that ( ~B,B)
u

is a pure RPO for ~Au

to ~Du. Let ( ~C,C), with interface J , be any bound for ~A relative to ~D. We must find a
unique mediating arrow Ĉ : I→ J .

Cu
1

Ju

C ′

Au
0 Au

1

Iu
0

Iu
1

Cu
0

Du
0

Iu

Bu
Cu

Du
1

Bu
0 Bu

1

Now ( ~C,C)
u
, with interface Ju, is a bound for ~Au relative to ~Du. Hence there is a

unique mediating arrow C ′ as shown in the diagram. We now claim that C ′ obeys
the scope rule. This can be shown by a case analysis for the bound points in C ′, and
depends on three facts: first, that ~Bu and ~Cu obey the scope rule; second, that each
name x ∈ Iu is linked in Bu

i (i = 0 or 1) to some name xi ∈ Iu
i ; third, that by

construction x is local iff all such xi are local.
It follows that C ′ = Ĉ

u
for some mediating arrow Ĉ : I→ J ; also that this is

unique, since C ′ : Iu→ Ju is a unique mediating arrow and U is a faithful functor.
This completes the proof.
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Corollary 11.6 (preserving RPOs) The forgetful functor U preserves RPOs; that is,
if ( ~C,C) is a binding RPO for ~A to ~D then ( ~C,C)

u
is a pure RPO for ~Au to ~Du.

Proof Assume the binding RPO ( ~C,C) with interface J . Let ( ~B,B), with interface
I , be the binding RPO built for ~A to ~D by Construction 11.4. Then, since RPOs are
unique up to isomorphism, there is a mediating iso ι : I→ J between these two RPOs.
Also from the construction we know that ( ~B,B)

u
is a pure RPO for ~Au to ~Du, and we

have a mediating iso ιu : Iu→ Ju between this RPO and the relative bound ( ~C,C)
u
.

But isomorphism preserves the RPO property, so ( ~C,C)
u

is also a pure IPO.

Let us now turn to binding IPOs. Their construction —unlike RPOs— depends upon a
set of consistency conditions, and we find that one extra condition is needed in binding
bigraphs. Then we show how to construct a family of binding IPOs for any consistent
pair ~A : H→ ~I , based upon the corresponding construction of pure IPOs. Finally we
check that this indeed yields all binding IPOs for ~A, up to isomorphism.

Definition 11.7 (consistency conditions) Let ~A be a pair of binding bigraphs with
common inner face. We define three conditions for ~A to be consistent:

CP Conditions CP0 – CP2 for the underlying place graphs (Definition 7.9);
CL Conditions CL0 – CL2 for the underlying link graphs (Definition 8.10);
CB If p is a shared point, bound and closed in Ai but open in Aı,

then Aı(p) is a local name.

To see the need for CB, suppose that ~B is a bound for ~A; let A0(p) = e be bound and
closed, and A1(p) = x, a name. Then (B0 ◦A0)(p) = e, hence also (B1 ◦A1)(p2) =
e; thus B1(x) = e, and the scope rule for B1 requires x to be local.

As we did for place graphs and link graphs, we find that these conditions are nec-
essary and sufficient for the existence of both bounds and IPOs in binding bigraphs.
We can also characterise the binding IPOs in terms the pure ones. We deal with these
in a single theorem as follows (note that the sufficiency of the consistency conditions
follows from clause (2) of the theorem):

Theorem 11.8 (binding IPOs)

(1) The consistency conditions CP, CL and CB are necessary for the existence of
bounds in binding bigraphs.

(2) Let ~A satisfy the consistency conditions and ~Au have a pure IPO ~B′. Then ~A has
a binding IPO ~B, with ~Bu isomorphic to ~B′.

(3) If ~A has a binding IPO ~B, then ~Au has a pure IPO ~Bu.

Proof (1) Suppose ~B bounds ~A in binding bigraphs. Then ~Bu bounds ~Au in pure
bigraphs; so immediately CP and CL hold, since they are necessary for a bound in place
graphs and link graphs respectively. The condition CB can be established by an argu-
ment based on the preceding discussion.
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(2) Suppose that ~A satisfies the consistency conditions, and ~Au has a pure IPO ~B′.
(Note that conditions CP and CL ensure at least one such IPO.) We construct a binding
bigraph ~B and a pure isomorphism ι such that ~Bu = ι ◦ ~B′; the construction proceeds
as in Construction 11.4 but uses condition CB on ~A. Then ~Bu is also a pure IPO, hence
( ~B, id)

u
is an RPO for ~Au to ~Bu. Therefore, using the construction and corollary in

this special case, we conclude that ~B is a binding IPO for ~A.

(3) Finally, the third result is a special case of Corollary 11.6.

Thus, when the pair ~A of binding bigraphs is consistent, there is a precise correspon-
dence between its binding IPOs and the pure IPOs of ~Au.

We now lift further static properties to binding bigraphs, especially IPO properties.
Note especially that pure bigraphs are a sub-precategory of binding bigraphs: those
without binders. Although we shall not labour the point, our theory for binding bi-
graphs is a conservative extension of that for pure bigraphs; that is, every property
of binding bigraphs, when restricted to pure ones, coincides with the corresponding
property of the latter as previously defined.

Binding bigraphs: Further properties

special IPOs (Propositions 9.8 and 9.9, Corollary 9.10 and Proposition 9.11) The
containment pushout, and the tensoring of two IPOs with disjoint supports, hold
unchanged in binding bigraphs. Also, the notion of a lean bigraph —one with
no idle edges— is unchanged, because of course an idle edge cannot be bound,
so properties relating IPOs to idle edges and leanness are unchanged. It follows
that lean-support equivalence (m), which extends support equivalence (l) by
discarding idle edges, also unchanged. This leads to the following:

abstract bigraphs (Definition 9.12) An abstract binding bigraph is a lean-support
equivalence class of concrete ones. For any signatureK this leads to the category
BBG(K), and the quotient functor [[·]] : ´BIG(K)→BIG(K). Similarly for hard
binding bigraphs we have [[·]] : ´BIGh(K)→BIGh(K).

ground bigraphs As before, a ground bigraph is one with inner face ε.

interfaces The general form of interface is I = 〈m,~k,X〉. If it is global we may
write it as 〈m,X〉; if it has no places (so m = 0) we may write it as X; if
it has no names we may write it as m. I is prime if it has width m = 1, i.e.
I = 〈1, (k), X〉; then we may write it as 〈(k), X〉, or as (k) if X = ∅, or as 〈X〉
if k = 0. Note that 〈X〉, with unit width, differs from X with zero width.

wirings As before, a wiring is a bigraph whose faces have zero width. Thus it has no
nodes, and takes the form ω : X→Y . We retain our notations /X and ~y/~x for
closure and substitution of global names.

prime bigraphs A bigraph G is prime if its outer face is prime and its inner face has
no global names; thus G : 〈m,~k, ∅〉→〈(`), X〉. Note particularly that it may
have local inner names. An important prime is the datum p~xq : (k)→〈~x〉, which
links k local inner names one by one to k free names ~x = x1, . . . , xk.
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abstraction Dual to the datum is a the new operation of abstraction on primes P . For
P : I→〈(k), x ∪· X〉we may form the abstraction (x)P : I→〈(1+k), X〉 , which
turns a free name of P into a local name. (This cannot violate the scope rule,
because P has no global inner names.) If ~x = x1, . . . , xk is a vector of distinct
names we write (~x)P for (x1) · · · (xk)P ; then we have the dual properties

(p~xq⊗ idX) ◦ (~x)P = P and (~x) p~xq = id(k) .

discreteness The notion of discreteness becomes more subtle for binding bigraphs.
Recall that a link is free if it is not bound by a binder — a local name or a
binding port; also that a point is a port or an inner name. A binding bigraph is
discrete if every free link is an (outer) name and has exactly one point. This is a
conservative extension of discreteness for pure bigraphs; it imposes no constraint
on bound links.

ions, atoms, molecules The definition of an ion must now allow for binding. For any
non-atomic control K : h→ k and sequence ~x of k distinct names we define the
free discrete ionK~x : (h)→〈~x〉 whose h local inner names are bound by a single
K-node. Then for any prime discrete P with outer face 〈(h), Y 〉, where Y is
disjoint from the names ~x, we call (K~x ⊗ Y ) ◦P a free discrete molecule. For
atomic K a free discrete atom is just K~x : ε→〈~x〉 as before. An arbitrary ion,
molecule or atom is got by imposing wiring and abstracting free names.

This concludes our second list of properties for binding bigraphs, including a taxonomy
which is a conservative extension of the taxonomy of pure ones.

Finally we (conservatively) extend the important operations and decompositions
from pure to binding bigraphs, and add some new ones.

Binding bigraphs: Operations and decompositions

parallel product (Definition 9.13, Proposition 9.14) Extending the previous defini-
tion, the parallel product of two interfaces Ji = 〈ni,~ki, Yi〉 (i = 0, 1) keeps their
local names disjoint but may share their global names:

J0 ‖ J1
def
= 〈n0+n1,~k0

~k1, Y0 ∪ Y1〉 .

We define parallel product on binding bigraphs by the equation in Proposition 9.14.

prime product (Definition 9.15) Extending the previous definition, the prime product
of two prime interfaces is

〈~k,X〉 | 〈~̀, Y 〉 def
= 〈~k~̀,X ∪ Y 〉 .

The expression of the prime product of two prime binding bigraphs in terms of
their parallel product is just as before.
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underlying discrete bigraph (Proposition 9.16) The previous unique decomposition
of any bigraph G in terms of its underlying discrete one is extended almost ex-
actly:

G = (ω ⊗ idI) ◦D ,

where ω is a wiring, D is discrete and I has no free names. As before, this is
called the discrete normal form (DNF) of G.

synthesis and analysis of discrete bigraphs (Proposition 9.17) Again the discrete
binding bigraphs form a monoidal sub-precategory. The factorisation of a dis-
crete D : 〈m,~k,X〉→〈n, ~̀, Y 〉 into a tensor product of prime discrete factors is
as before (where of course ~k and ~̀ were essentially zero-vectors), and the IPO
properties of discrete bigraphs are as before — but replacing the wiring compo-
nent ω ⊗ idn by ω ⊗ idI where I has no free names.

instantiation (Definition 9.18) We replace instantations % :: m→n for pure bigraphs
by instantations % :: I→ J for binding bigraphs, where the interfaces I = 〈m,~k〉
and J = 〈n, ~̀〉 have no free names. The instantiation is again determined by the
underlying function % : n→m, which must also satisfy `j = k%(j) for all j ∈ n.
For any X , this condition allows the map

% : Gr(X ⊗ I)→Gr(X ⊗ J)

to be defined just as before in terms of DNF, but with wiring component ω⊗ idn
replaced by ω ⊗ idI where I has no free names.

wiring an instance (Proposition 9.19) The proof that %(ωa) = ω%(a) for all instanti-
ations % and wirings ω proceeds as before.

wiring a product (Proposition 9.20) The proofs that ω(F ‖G) = ωF ‖ωG and that
ω(F |G) = ωF |ωG proceed as before.

instantiating a product (Proposition 9.21) The proof proceeds as before that if the
ai are prime, with total name set Y , then

%(a0 ‖ · · · ‖ am−1) = Y ‖ b0 ‖ · · · ‖ bn−1

where bj l a%(j) for j ∈ n.

instantiating with prime component (Proposition 9.22) This proposition asserts that
if G has prime inner face I and a, b : I are two prime agents, then the two in-
stances %(G ◦a) and %(G ◦ b) are similar, in the sense that one can be transformed
into the other by replacing several occurrences of a by b. This property is vital
for proofs of bisimilarity, and its proof proceeds as for pure bigraphs.

This concludes our extension of operations and decompositions to binding bigraphs.

We shall not refine the algebraic theory of Section 10 for binding bigraphs. We con-
jecture that the definitions and results need only minor adjustments, chiefly concerning
data and abstractions, but we do not need them for this paper.
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To conclude: We have established the static theory of binding bigraphs as a conser-
vative extension of that for pure bigraphs. The refinements were mostly minor; only
with RPOs and IPOs was a non-trivial extra argument needed. In later sections, where
we develop the dynamics of binding bigraphs, we shall often appeal to a definition or
result about pure bigraphs that has been extended or refined here to binding bigraphs;
then we shall add a superscript ‘b’ to the reference, for example ‘Definition 9.18b’.
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12 Reactions and transitions
In Section 11 we ensured the existence of RPOs in binding bigraphs, and defined some
useful structural properties such as discreteness. We are now ready to specialise the
definitions and theory for wide reactive systems (WRSs) in Section 4, to obtain bi-
graphical reactive systems (BRSs). We do it here for binding bigraphs. The binding
BRSs form the objects of a category whose arrows are WRS functors; the pure BRSs
constitute a subcategory. Readers who have omitted reading Section 11 on binding
bigraphs may interpret this whole section in terms of pure bigraphs; to do this, simply
read ´BIG and BIG for ´BBG and BBG, and ignore the superscript ‘b’ on references to
definitions and results.

To define the notion of BRS, the main remaining step is to define parametric re-
action rules over (binding) bigraphs, and the main result we obtain is a congruence
theorem —both for ´BBG and for ´BBGh— which we are then able to transfer to ab-
stract bigraphs in BBG and BBGh.

Let us consider reaction rules for a BRS, recalling both the abstract Definition 4.3
for WRSs and the examples in Section 2. What should the parameters Par(I) be,
and what should the transform maps trans : Par(I)→Gr(I ′) be? Parameters will be
discrete; recall from Section 11 that a binding bigraph is discrete if every free link is
open (i.e. a free name) and has exactly one point. This does not limit the applicability
of the reaction rules, because from Proposition 9.16b we can obtain everything by
combining discreteness with wiring; moreover, the technical development is smoother
with discrete parameters. For the transforms, we must allow for both replication and
discard of parameters, so we use the instantiations of Definition 9.18b.

Definition 12.1 (reaction rules for bigraphs) A ground (reaction) rule is a pair
(r, r′), where r and r′ are ground with the same outer face. Given a set of ground
rules, the reaction relation . over agents is the least such that D ◦ r .D ◦ r′ for
each active D and each ground rule (r, r′).

A parametric (reaction) rule has a redex R and reactum R′, and takes the form

(R : I→ J, R′ : I ′→ J, % )

where the inner faces I and I ′ have widths m and m′ but no free names.8 The third
component % :: I→ I ′ is an instantiation (Definition 9.18b). For every X and discrete
d : X ⊗ I the parametric rule generates the ground reaction rule

( (idX ⊗R) ◦d, (idX ⊗R′) ◦%(d) ) .

Note that as d = d0⊗· · ·⊗dm−1 is discrete (where each di is prime) the instance %(d)
takes the form

%(d) = X ‖ d%(0) ‖ · · · ‖ d%(m′−1) : X ⊗ I ′ .
Thus, if some di occurs more than once in the instance, the bound names of each copy
may be treated differently by the reactum R′. On the other hand, the free names of d
are exported to the context that surrounds the reaction.

8For pure bigraphs we shall have I = m and I ′ = m′; then the instantiation is % :: m→m′.
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It follows from this remark that requiring d to be discrete does not limit reaction,
because the outer context can impose any wiring present in a non-discrete parameter.
However, it does limit transitions, essentially because the parameter part Lpar of a label
L reflects the discreteness of d. Without the limitation, the parameter underlying a
transition a L

.λ a
′ might impose an arbitrary substitution on the part of a shared with

it, exceeding the role a parameter should play.
The function % underlying an instantiation need not be injective, so it allows for

replication of parameters in the reactum. Similarly it need not be surjective, so it
allows for the discard of parameters.

Definition 12.2 (bigraphical reactive system) A bigraphical reactive system (BRS)
over a signature K consists of ´BBG(K) equipped with a set ´Reacts of reaction rules
closed under support equivalence (l). We denote it —and similarly for ´BBGh(K)—
by

´BBG(K, ´Reacts) .

Proposition 12.3 (a BRS is a WRS) Every bigraphical reactive system is a wide re-
active system.

Proof First, it is easy to see that ´BBG(K) and ´BBGh(K) are wide precategories, for
any signature K. The support of a bigraph is the disjoint sum V +E of its node set and
edge set, the width of an interface 〈m,~k,X〉 is m, and we have already discussed the
width of a bigraph. The other details are easy to check.

For the reaction rules, their parameters Par(I) at any interface are just the discrete
agents d : I . The activity map act is given by

act(C)
def
= {s ∈ m | ∀v. v >C s⇒ v active} .

Lastly the transform of each reaction rule is provided by its instantiation %.

This result ensures that BRSs inherit from WRSs the definition of transitions a L
.λ a

′

based upon IPO pairs, and the standard transition system ST induced from its reaction
rules. They also inherit the definition of bisimilarity, and so we have the following
immediate corollary of Theorem 5.5:

Corollary 12.4 (congruence of wide bisimilarity) In any concrete BRS equipped with
the standard transition system ST, wide bisimilarity of agents is a congruence.

We would now like to transfer ST, together with its congruence property, to the
abstract BRS BBG(K,Reacts), where BBG(K) is defined by the quotient functor [[ · ]]
of Definition 9.12b, and Reacts is obtained from ´Reacts also by [[ · ]]. (Similarly for
BBGh.)

Now recall that this functor, the quotient by lean-support equivalence (m), is a little
coarser than the quotient by support equivalence (l), because it discards idle edges. To
transfer the congruence result we must prove that m respects ST. For this purpose, we
have to impose a slight constraint upon the reaction rules ´Reacts, namely that every
redex is lean — i.e., recalling Section 9, it has no idle edges. We then deduce the
crucial property of lean-support equivalence:
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Proposition 12.5 (transitions respect equivalence) In a concrete BRS with all re-
dexes lean, equipped with ST:

(1) In every transition label L, both components are lean.

(2) Transitions respect lean-support equivalence (m) in the sense of Definition 5.2.
That is, for every transition a L

.λ a
′, if a m b and L mM where M is another

label with M ◦ b defined, then there exists a transition b M
.λ b
′ for some b′ such

that a′ m b′.

Proof For the first part, use Proposition 9.11b(1) and the fact that every discrete agent
is lean. For the second part, use Proposition 9.11b(2); the assumption that each redex
is lean ensures that it cannot share an idle edge with the agent a.

We are now ready to transfer the congruence result of Corollary 12.4 from concrete
to abstract BRSs. The following is immediate by invoking Theorem 5.7:

Corollary 12.6 (behavioural congruence in abstract BRSs) Let Á be a concrete BRS
with all redexes lean, equipped with ST. Let [[·]] : Á→A be the quotient functor by lean-
support equivalence. Then

(1) a ∼ b in Á iff [[a]] ∼ [[b]] in A.

(2) Bisimilarity is a congruence in A.

This concludes the elementary theory of bigraphical reactive systems. In Part III
we shall refine these results for two important classes of BRS, thereby obtaining more
tractable transition systems. Part III ends by applying the results to a bigraphical pre-
sentation of an asynchronous π-calculus, exactly recovering its standard behavioural
theory.
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Part III
Specialisation and Application

The class of simple BRSs is introduced; they include models of both the
π-calculus and the mobile ambient calculus. Their structural properties
allow us to simplify the transition systems that were derived more gener-
ally in Part II. In particular, we prove an important adequacy theorem; it
asserts that in the derived transition system for a simple BRS it is enough
to confine attention to those transitions a L

.λ a
′ in which the agent a

contributes non-trivially to the underlying reaction.

We then narrow the simple BRSs still further, to the basic BRSs. The
purpose is to obtain a nice characterisation of the labels involved in the
derived transition systems; this result is verified using the techniques of
relative pushouts.

We proceed to encode a finite asynchronous π-calculus as a basic BRS.
The first result —independently of dynamics— is that two processes are
structurally congruent if and only if their representing bigraphs coincide.
Then it turns out that the labels of the derived transition system corre-
spond well with the standard labels. Finally, we prove that the bisimilarity
induced by the bigraph representation of this calculus coincides with two
standard congruences, strong bisimilarity and strong barbed bisimilarity.
This supports the claim that bigraphical systems are consistent with previ-
ous work in process calculi.

The final section explores several lines for further research, including sug-
gestions both for varying the technical presentation of bigraphs and for
enriching their domain of application.
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13 Simple BRSs and adequacy
We shall now specialise our theory by defining the simple BRSs, whose redexes have
certain structural properties. As predicted in Section 5, working in ´BBGh we are then
able to show that engaged transitions on free prime agents are adequate for the standard
transition system ST. This yields a tractable transition system, which we can then
transfer to abstract BRSs over BBGh, yielding a bisimilarity that is a congruence. The
class of simple BRSs admits both the π-calculus and the ambient calculus.

Recall from Section 8 that a link is open if it belongs to the outer face, otherwise
closed, and that these properties are inherited by the points of the link. Recall also from
Section 11 that a bigraph is free if every open link is free.

Definition 13.1 (simple BRSs) Call a bigraph open if every free link is open. Call it
guarding if no inner name is open, and no site has a root as parent. Call it simple if

- it has no idle names and no barren regions;
- no two inner names are peers, and no two sites are siblings;
- it is free, prime, open and guarding.

A BRS is simple if all its redexes are simple.

The first two conditions are easy to accept; indeed, we see no purpose for a redex which
fails them. In a concrete BRS they equate respectively to the epi and mono properties.
However, we define simpleness as above because we would like it to be preserved by
the quotient functor [[·]] (which preserves neither epis nor monos).

Again, guarding is an easy condition to accept. So the main simpleness constraints
are freeness, primeness and openness. It remains to be seen how far we can relax these
three constraints without weakening our results.

We give without proof three easy properties of openness:

Proposition 13.2 (openness properties)

(1) A composition F ◦G is open iff both F and G are open.

(2) Every open bigraph is also lean (i.e. has no idle edges).

(3) If ~B is an IPO for ~A and A1 is open, then B0 is open.

For the rest of this section we are concerned only with hard BRSs, i.e. over ´BBGh(K)
or BBGh(K) for some signature K. To see where simpleness is used in our adequacy
proof we shall underline each use of a simpleness condition. The first consequence of
simpleness in a hard concrete BRS is that, if we limit consideration to free agents, we
can often avoid the elisions that arise in IPOs and RPOs:

Proposition 13.3 (transition pushouts) In a hard concrete BRS, if the IPO pair un-
derlying a standard transition of a free agent has a simple redex then its main rectangle
and right-hand square are pushouts.9

9It is easy to show that the left-hand square need not be a pushout; in fact it may be an elisive IPO. This
arises because d, though discrete, may have idle bound names. This cannot happen in pure bigraphs, so in
that case the left-hand square is indeed a pushout.
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Proof The typical IPO pair underlying a transition a L
.λ a

′ is shown in the diagram
below. Let r = (idW ⊗R) ◦d be the ground redex. It will be enough to show that in the
two IPOs, (L,D) for (a, r) and (Lred, D) for (Dpar, idW ⊗R), there can be no elisions.
There can be no place elisions because we are working with hard place graphs, so we
need only consider link elisions.

In the first case, since R is open and every parameter d (being discrete) is open,
then so are r and L by Proposition 13.2. So any elision of a name x of a would be to a
bound closed link in L, violating the scope rule for L because x is free. On the other
hand no names of r can be elided, since it has no idle names because R —and hence
r— is epi.

The argument in the second case is similar except that, unlike a, Dpar may have
bound names. But since a is free, and the left square is an IPO, any outer name in Dpar

can only be bound if it is linked by Dpar to a bound name of d; therefore it is a busy
name and cannot be elided. The rest of the argument for the second case is as for the
first case, so we are done.

d idW ⊗R

Lpar Lred

a DDpar

We shall also need a specific property of transitions with simple redexes:

Lemma 13.4 In a hard concrete BRS, let the IPO pair underlying a standard transition
(as shown) have a simple redexR. Suppose that |Dpar|∩|R| = ∅. ThenDpar = D′⊗idI
for some D′, up to isomorphism, where I is the inner face of R.

Proof We first prove that, for each name y (necessarily local) in I , there is a local
outer name z of Dpar such that Dpar(y) = z and y has no peers in Dpar.

Since R is guarding and open, R(y) = p for some binding port p, so by commu-
tativity (Lred ◦Dpar)(y) = p. But p is not a port in Dpar by assumption, so for some
outer name z we have Dpar(y) = z and Lred(z) = p. Also p is binding, so z is local by
the scope rule for Lpar.

Now suppose y has a peer, i.e. Dpar(q) = z for some point q 6= y. Then we have
(Lred ◦Dpar)(q) = p, whence also R(q) = p. If q is an inner name this contradicts R
mono; if q is a node port then q is also in R, contradicting |Dpar| ∩ |R| = ∅. Hence no
such q can exist.

The result follows by a similar argument showing that each site s of I has a root as
parent and has no siblings.

We now turn to engaged transitions, especially those involving free prime agents.

Definition 13.5 (engaged transitions) A standard transition of a is said to be en-
gaged if it can be based on a reaction with redex R such that |a| ∩ |R| 6= ∅.

We denote by FPE the transition system of free prime interfaces and engaged tran-
sitions. We write ∼FPE for ∼FPE

ST
, bisimilarity for FPE relative to ST.
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Now we would like to prove that ∼FPE is adequate for standard bisimilarity (Defini-
tion 5.8), i.e. ∼FPE = ∼ restricted to free prime interfaces; for then, when a and b are
free prime agents, to establish a ∼ b we need only prove a ∼FPE b. For this purpose,
we need only match each engaged transition of a (resp. b) by an arbitrary transition of
b (resp. a). This is a lighter task than matching all transitions.

In proving that a ∼FPE b implies a ∼ b for free prime a and b, we have to show
how b can match the non-engaged transitions of a, and the antecedent only tells us
how to match the engaged ones. However, it turns out that a non-engaged transition
of a can be suitably matched by any b (whether or not a ∼FPE b). This is intuitively
not surprising, because a contributes nothing to such a transition, so replacing it by b
should not prevent the transition occurring.

We begin with a lemma that justifies this intuition, even in the case that a may
contribute to the parameter of the reaction.

d idW ⊗R

Lpar Lred

a DDpar

Lemma 13.6 In a hard concrete BRS let a be free and prime, with a standard transition
a L

.λ a
′ based upon the reaction rule (R,R′, %), with underlying IPO pair as shown

in the above diagram.
LetR be simple, and assume that |a|∩|R| = ∅ but that |a|∩|d| 6= ∅. Then |a| ⊆ |d|,

and moreover Lred and a′ can be expressed to within isomorphism in the form

Lred = idW ′ ⊗R and a′ = (idW ′ ⊗R′) ◦%(Lpar ◦a) .

Proof From Lemma 13.4 we find that Dpar takes the form Dpar = D′ ⊗ idI up to
isomorphism, where D′ has domain W (with zero width).

We now claim that D′ has no nodes. For there exists a node u ∈ |a| ∩ |d|; if
there exists any v ∈ |D′| then also v ∈ |a|, hence (because a is prime) we would
have u, v in the same region of Lpar ◦a but different regions of Dpar ◦d, contradicting
Lpar ◦a = Dpar ◦d. Thus |a| ⊆ |d|, and Dpar = ω ⊗ idI , with ω : W →W ′ a wiring.

By Proposition 13.3 the right-hand square in the diagram is a pushout, and hence a
tensor IPO by Corollary 9.10b, so up to isomorphism we have

Lred = idW ′ ⊗R and D = ω ⊗ idJ .

Thus we have the required equation for Lred, and for the other equation we calculate

a′ = D ◦ (idW ⊗R′) ◦%(d)
= (ω ⊗ idJ) ◦ (idW ⊗R′) ◦%(d)
= (ω ⊗R′) ◦%(d)
= (idW ′ ⊗R′) ◦ (ω ⊗ idI′) ◦%(d)

(∗) = (idW ′ ⊗R′) ◦%((ω ⊗ idI) ◦d)
= (idW ′ ⊗R′) ◦%(Lpar ◦a)
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where at (∗) we commute an instantiation with a wiring, by Proposition 9.19b.

We can now prove the adequacy theorem.

Theorem 13.7 (adequacy of engaged transitions) In a hard concrete BRS that is sim-
ple and equipped with ST, the free prime engaged transitions are adequate; that is,
engaged bisimilarity ∼FPE coincides with bisimilarity ∼ on free prime agents.

Proof It is immediate that ∼ ⊆ ∼FPE restricted to free primes. For the converse we
must prove that if a0 and a1 are free and prime then a0 ∼FPE a1 implies a0 ∼ a1. For
this purpose, we shall show that

S = {(C ◦a0, C ◦a1) | a0 ∼FPE a1, both free and prime}

is a standard bisimulation up to transitive closure. This will suffice, for by taking
C = id we deduce that ∼FPE ⊆ ∼.

Suppose that a0 ∼FPE a1. Let C ◦a0
M

.µ b
′
0 be any standard transition, with

M ◦C ◦a1 is defined. We must find b′1 such that C ◦a1
M

.µ b
′
1 and (b′0, b

′
1) ∈ S.

There exist a reaction rule (R0, R
′
0, %0) and an underlying IPO pair as in diagram

(a) below, with E0 active; moreover if width(J0) = m0 then width(E0)(m0) = µ
and b′0 = E0 ◦R′0 ◦%0(d0). Then by taking RPOs we can complete diagram (b) so that
every square is an IPO.

(a) (c)(b)
Mpar

a0 a1

E

D1
C ◦a0

idW0
⊗R0d0 d0 idW0

⊗R0 d1 idW1
⊗R1

D0
E0

Mpar

Lpar
M red

Lpar

M red

Lred Lred
C

J0J0 J1

E0

Now D0 is active at m0, so a0
L
.λ a

′
0 where

λ = width(D0)(m0) and a′0 = D0 ◦R′0 ◦%0(d0) .

Also E is active at λ. Moreover, by Proposition 13.3, the lower rectangle and lower
right-hand square in diagram (b) are pushouts. Also b′0 = E ◦a′0.

Since M ◦C ◦a1 is defined we deduce that L ◦a1 is defined, and we proceed to
show in three separate cases the existence of a transition a1

L
.λ a

′
1, with underlying

IPO pair as shown in diagram (c). (Note that we cannot immediately infer this from
a0 ∼FPE a1, since the transition of a0 may not lie in FPE.) Substituting this diagram for
the lower squares in (b), we can infer a transition C ◦a1

M
.µ b
′
1 where b′1 = E ◦a′1.

In each of the three cases we then argue that (b′0, b
′
1) ∈ S∗, thus completing the proof

of the theorem.
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Case 1 Suppose the transition a0
L
.λ a

′
0 is not engaged, i.e. |a0|∩|R0| = ∅. Suppose

also that |a0| ∩ |d0| = ∅. Then the lower large rectangle of (b), being a pushout, is
tensorial; so up to isomorphism we have

L = idH ⊗ ((idW0
⊗R0) ◦d0) and D0 = a0 ⊗ idW0⊗J0

.

Then we calculate

a′0 = D0 ◦ (idW0
⊗R′0) ◦%0(d0)

= a0 ⊗ ((idW0
⊗R′0) ◦%0(d0))

= E′ ◦a0 where E′ = idH ⊗ ((idW0
⊗R′0) ◦%0(d0)) .

Therefore in this case we form diagram (c) by taking d1 = d0,D1 = D0 andR1 = R0;
this forms a pair of IPOs and so

a1
L
.λ a

′
1

def
= E′ ◦a1 .

Then for the context C ′ def
= E ◦E′ we have b′0 = C ′ ◦a0 and b′1 = C ′ ◦a1; but a0 ∼FPE

a1, so we have (b′0, b
′
1) ∈ S as required.

Case 2 Suppose the transition a0
L
.λ a

′
0 is not engaged, i.e. |a0| ∩ |R0| = ∅, but

that |a0| ∩ |d0| 6= ∅. Then since a0 is prime, from Lemma 13.6 we find that, up to
isomorphism, Lred = (idW ′ ⊗R0) and

a′0 = (idW ′ ⊗R′0) ◦%0(Lpar ◦a0) .

We shall now find a similar transition for a1. We first consider Lpar ◦a1. Since d0 is
discrete we know by Proposition 9.17b(2) that Lpar is discrete; by Proposition 9.16b

we can find a wiring ω1 : W1→W ′ and discrete d1 : W1 ⊗ I0 such that Lpar ◦a1 =
(ω1 ⊗ idI0) ◦d1, and moreover by Proposition 9.17b(3) this represents a pushout. So,
by adjoining a tensorial pushout, we have an IPO pair as shown:

d1

a1

idW1
⊗R0

Lpar

ω1 ⊗ idI0

Lred = idW ′⊗R0

ω1 ⊗ idJ0

Therefore by manipulations as in Lemma 13.6 we have

a1
L
.λ a

′
1

def
= (ω1 ⊗ idJ ) ◦ (idW1

⊗R′0) ◦%0(d1)

= (idW ′ ⊗R′0) ◦%0(Lpar ◦a1) .

Comparing this with the similar form of a′0, and since a0 ∼FPE a1 (both free and prime),
we appeal to Proposition 9.22b to find a sequence c0, . . . ck such that b′0 = c0, ck = b′1
and (ci−1, ci) ∈ S for 0 < i ≤ k, and thus (b′0, b

′
1) ∈ S∗ as required.
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Case 3 Suppose the transition a0
L
.λ a

′
0 is engaged, i.e. |a0| ∩ |R0| 6= ∅. Then

since R0 is free and prime, by considering the IPO (L,D0) and the outer face of D0

we find that a′0 is free and prime, so the transition lies in FPE. But a0 ∼FPE a1, so
there is a transition a1

L
.λ a

′
1 for some free prime a′1 such that a′0 ∼FPE a′1; hence

C ◦a1
M

.µ b
′
1

def
= E ◦a′1, and thus (b′0, b

′
1) ∈ S as required.

As we have seen in case 3 of the proof, when a simple transition a L
.λ a

′ is
engaged, and a is free and prime, then so is a′. Thus, in proving the bisimilarity of
prime agents, we can indeed confine attention to bisimulations containing only free
prime agents.

Simpleness and adequacy makes it easy to verify two desirable properties of idle
names (though they also hold more generally):

Proposition 13.8 (idle names and bisimilarity) In a hard concrete BRS that is sim-
ple and equipped with ST,

(1) a ∼ b iff x⊗ a ∼ x⊗ b.
(2) a ∼ b does not imply that a and b have the same idle names.

Proof (1) For the forward implication, use congruence. For the converse, we shall
verify that S = {(a, b) | x⊗ a ∼ x⊗ b} is a bisimulation.

Let aSb, and consider a transition consider a transition a L
.λ a

′. We easily deduce
that x ⊗ a idx⊗L .λ x ⊗ a′, hence x ⊗ b idx⊗L .λ b

′′ where x ⊗ a′ ∼ b′′. Assuming
simpleness we see (as in the above proposition) that this transition of x ⊗ b cannot
involve an elision of x. It is then easy to verify that b′′ takes the form x ⊗ b′ (up to
isomorphism), where b L

.λ b
′. But then a′Sb′ and we are done.

(2) Consider the asynchronous π-calculus with the rule of Example 1. The agent
/x sendxy, consisting of a message whose channel x has been closed, has a single
name y that is not idle. On the other hand y ⊗ /x/y sendxy has an idle name y. But
neither agent has an engaged transition, so they are bisimilar.

We now wish to transfer FPE to abstract BRSs, via the functor

[[·]] : ´BBGh(K)→BBGh(K) .

To do this, we would like to know that FPE is definite for ST (see Definition 5.10), for
then by Proposition 5.11 we can equate the relative bisimilarity ∼FPE with the absolute
one ∼FPE. For this, we need to know that, from the pair (L, λ) alone, we can determine
whether or not a transition a L

.λ a
′ is engaged.

It turns out that this holds in a wide range of BRSs, including the natural encoding
of π-calculus and ambient calculus. This is because they all satisfy a simple structural
condition, which we now define.

Definition 13.9 (definite BRS) Define ctrl(G), the control of a bigraph G, to be the
multiset of controls of its nodes. A BRS is definite if, whenever R0 and R1 are redexes
of different rules, neither ctrl(R0) nor ctrl(R1) is a sub-multiset of the other.
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Note that this property applies equally to concrete and abstract BRSs, and is indeed
preserved and reflected by the quotient functor [[·]]. We have chosen the term ‘definite’
because, in a concrete BRS, it ensures definiteness of the engaged transitions in relation
to ST, in the sense of Definition 5.10. In fact, with the help of Corollary 5.12, we deduce

Corollary 13.10 (engaged congruence) In a hard concrete BRS that is both definite
and simple:

(1) The engaged transition system FPE is definite for ST.

(2) Engaged bisimilarity ∼FPE coincides with standard bisimilarity on prime agents.

(3) ∼FPE is a congruence; that is, for any context C with free prime interfaces,

a ∼FPE b implies C ◦a ∼FPE C ◦ b .

Now recall from Proposition 13.2 that every simple bigraph is lean. We therefore
derive the analogue of Corollary 12.6, with FPE in place of ST, under extra assumptions:

Corollary 13.11 (engaged congruence in hard abstract BRSs) Let Á= ´BBGh(K)
be a hard concrete BRS that is definite and simple. Let [[ · ]] : Á→A be the quotient
functor for lean-support equivalence (m). Let ∼FPE denote bisimilarity both for FPE in
Á and for the induced transition system [[FPE]] in A. Then

(1) a ∼FPE b in Á iff [[a]] ∼FPE [[b]] in A.

(2) Engaged bisimilarity ∼FPE is a congruence in A.

Proof First note that the quotient functor satisfies the conditions of Theorem 5.7.
In particular, by Proposition 12.5 it respects FPE, since this is a sub-TS of ST. So the
theorem yields (1) immediately. It also yields (2) with the help of Corollary 13.10.

Thus we have ensured congruence of engaged bisimilarity in any hard abstract BRS
BBGh(K) satisfying reasonable assumptions.

To conclude this section, we ask: What is the effect of working in ´BBGh and BBGh

as we have done, rather than in ´BBG and BBG? First, the theory is smoother because
we avoid place graph elisions. On the other hand, the disadvantage is that the empty
agent 1 is missing. In particular, the empty process NIL of the π-calculus must be
encoded not by 1, but by a M-atom, where M is an atomic control with zero arity (see
Section 7). This inelegance is minor, because one can prove that M | a ∼ a (provided
that no redex contains M). In Section 14 we shall improve on this; we shall find that for
a subclass of the simple BRSs we can remove the inelegance by the forgetful functor
from ´BBGh to ´BBG that replaces M by 1, thus turning it into a unit for prime parallel
product.
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14 Characterising basic BRSs
In this section we prepare for a wide range of applications of our theory to process
calculi. We begin by defining the class of basic BRSs; for these we obtain a tractable
characterisation of transitions, showing that both parts of a label-pair take a particularly
simple form. We then show that in basic BRSs we can transfer the congruence for the
engaged TS from hard concrete BRSs to soft abstract ones, which is where wish to
deploy the theory in practice.

In Section 15 we shall deploy these results for a finite asynchronous π-calculus.
Basic BRSs extend further than this, but they need refinement before handling full π-
calculus or the ambient calculus. We are confident that this refinement is possible, but
here we prefer to work in the simplest setting that allows an application to be treated
fully.

Let us embark on defining basic BRSs. Most of the work has already been done.
Recall Definition 13.1 of a simple BRS; every simple redex is free, prime, open and
guarded, and satisfies structural conditions which, for a concrete BRS, ensure it is both
epi and mono. A basic BRS will have two extra conditions.

Definition 14.1 (basic BRS) A redex is flat if no node has a node as parent. A redex
is basic if it is flat and simple. A binding BRS is basic if it is definite (Definition 13.9)
and all its redexes are basic.

The following proposition shows that basic redexes are easy to describe:

Proposition 14.2 (products of atoms and ions) A redex is basic iff it is a non-empty
prime product of free atoms and ions.

We now seek to characterise uniformly, as exactly as possible, the FPE transitions
in any basic BRS ´BBGh(K,Reacts). For each particular such BRS this task may be
relatively simple, but a general characterisation will avoid repeated work in particular
cases. Throughout this section and the next we only consider FPE transitions; we write
them as a L

. a′ omitting the location index λ, because this is always zero.
The crucial property of a basic BRS that we shall exploit in order to characterise

a transition a L
. a′ is that the underlying redex r can be expressed as the parallel

product of, essentially, the nodes shared with a, on the one hand, and the nodes disjoint
from a, on the other. We call this property pseudo-flatness.

Definition 14.3 (pseudo-flat transition) A transition of an agent a is pseudo-flat if
a and the underlying redex r can be expressed in the forms

a = /Z (σ r0 | b) and r = τ r0 | r1 ,

where |a| ∩ |r1| = ∅.

Proposition 14.4 (basic ensures pseudo-flatness) Every FPE transition arising from
a basic redex is pseudo-flat.
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Thus, a BRS being basic is sufficient (though not necessary) for an FPE transition to
be pseudo-flat; consequently we shall be content to characterise pseudo-flat FPE tran-
sitions.

First we need a couple of lemmas on IPOs of link graphs.

Lemma 14.5 Let ω : X→Y be a wiring and let A : ε→X0 be a concrete link graph
such that X0 ⊆ X . Then the following square is pushout:

X
ω // Y

X

A | idX
OO

ω
// Y .

ωA | idY
OO

Lemma 14.6 Let Ai : ε→Xi (i = 0, 1) be concrete link graphs with disjoint support,
and let X ⊇ Xi. Then the following square is an IPO:

X
A1 | idX // X

X

A0 | idX
OO

A1 | idX
// X .

A0 | idX
OO

Recall that we use abbreviations like 〈X ⊗ Y 〉 for the prime interface 〈1, X ⊗ Y 〉.
We shall find it convenient in the following to extend this notation to wirings, so that
for ω : X→Y we denote by 〈ω〉 the bigraph id1 ⊗ ω : 〈X〉→〈Y 〉. Note that the
placing of the angle brackets is somewhat arbitrary; for example 〈X ⊗ Y 〉 = 〈X〉 ⊗ Y
and 〈idX⊗Y 〉 = id〈X⊗Y 〉 = id〈X〉 ⊗ idY .

We now come to the characterisation theorem. Its proof relies on the notion of
pseudo-flatness, which allows us to factor the redex r underlying a transition a L

. a′

into the part shared with a, on the one hand, and the part disjoint from a, on the other.
In general this factorisation is different from the decomposition of r into a parametric
redex R and a parameter d, which in turn leads to the decomposition of the label L into
a pair (Lred, Lpar). It is convenient, therefore, to first prove the result for unstructured
labels. Afterwards we shall then refine the characterisation for L to obtain Lred and
Lpar separately.

Theorem 14.7 (Characterising transitions in a basic BRS) Let a : 〈X〉, and let a L
. a′

be an FPE transition with underlying ground rule (r, r′ : 〈Y 〉). Suppose the transition
is pseudo-flat with expressions

a = /Z (σ r0 | b) and r = τ r0 | r1 ,

and let Y1 ⊆ Y be the names of r1. Then L and a′ are of the forms

L = 〈τ̌〉 | σ̌ r1 : 〈X〉→〈X ′〉
a′ = /Z (σ̂ r′ | τ̂ b) : 〈X ′〉 ,
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where

X ⊗ Z τ̂ // X ′ ⊗ Z

V

σ

OO

τ
// Y

σ̂

OO

is pushout and the substitutions satisfy σ̂ �Y1 = σ̌ ⊗ Z and τ̂ = τ̌ ⊗ idZ .

Proof The transition a L
. a′ has an underlying IPO as shown in (a) below, such that

a′ = D ◦ r′. Thus the required expression for a′ will follow by establishing

D = /Z (〈σ̂〉 | τ̂ b) .

Using the expressions for a and r we refine the diagram (a) as (b). Since r0 is epi, the
lower square in (b) is pushout, and hence the upper square is an IPO.

〈X〉 L //

ε

a

OO

r
// 〈Y 〉

D

OO

〈X〉 L //

〈V 〉

/Z (σ | b)
OO

τ | r1

// 〈Y 〉
D

OO

ε

r0

OO

r
//

a

EE

〈Y 〉

〈idY 〉
OO

X ⊗ Z τ̂ // U

V

σ

OO

τ
// Y

σ̂

OO

(a) (b) (c)

Now form a pushout of the substitutions σ and τ as shown in (c); this determines
σ̂ and τ̂ up to a bijection on U , and σ̂ and τ̂ are themselves substitutions because they
have empty support and are open. Suppose τ(v) = τ(v′) for some names v, v′ ∈ V
such that σ(v) 6= σ(v). Then by the consistency of the upper square in (b) the names v
and v′ must be open in /Z (σ | b). Hence, we can choose Û = X ′⊗Z and τ̂ = τ̌ ⊗ idZ
for some X ′ and τ̌ : X→X ′. Now suppose for some v ∈ V that τ(v) ∈ Y1. Then
τ(v) = r1(p) for some port p of r1, and since b and r1 have disjoint support p is
not shared with /Z (σ | b). Using consistency again, v must then be open in /Z (σ | b),
and hence σ(v) /∈ Z. This shows that σ̂(Y1) and Z are disjoint, and it follows that
/Z σ̂ r1 = σ̌ r1, where we obtain σ̌ from σ̂ by restricting the domain to Y1.
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We then refine the upper square in the diagram (b) above as follows:

〈X〉
〈τ̌〉

//

L

))〈X ′〉
σ̂ r1 | idX′

// 〈X ′〉

〈X ⊗ Z〉

〈idX ⊗ /Z〉

OO

〈τ̌〉 ⊗ idZ //

〈τ̂〉
// 〈X ′ ⊗ Z〉

σ̂ r1 | idX′⊗Z
// 〈X ′ ⊗ Z〉

〈idX′ ⊗ /Z〉

OO

〈X ⊗ Z〉

b | idX⊗Z

OO

〈τ̂〉
// 〈X ′ ⊗ Z〉

τ̂ b | idX′⊗Z

OO

σ̂ r1 | idX′⊗Z // 〈X ′ ⊗ Z〉

τ̂ b | idX′⊗Z

OO

〈V 〉

〈σ〉

OO

〈τ〉
//

/Z (σ | b)

DD

τ | r1

55〈Y 〉

〈σ̂〉

OO

idY | r1 // 〈Y 〉 .

〈σ̂〉

OO

D

ZZ

The lower square on the left is pushout by the preceding construction; the squares
above it and to its right are pushout by Lemma 14.5; the remaining small square is an
IPO by Lemma 14.6; and the top rectangle is tensorial. The required expressions for L
and D follow by calculation of the composite arrows.

Corollary 14.8 (Characterising parametric transitions) In the above theorem, sup-
pose r = (idW ⊗R) ◦d for some redex R and discrete d. Then r1 = (idW1

⊗R1) ◦d1

for some W1 ⊆ W , some R1 with |R1| ⊆ |R|, and some discrete d1 with |d1| ⊆ |d|,
and L has the components

Lpar = 〈idX〉 ⊗ d1

Lred = τ̌ | σ̌R1

Proof Consider the IPO pair underlying the transition:

〈X〉 L
par

// Lred
//

ε

a

OO

d
//

Dpar

OO

idW ⊗R
// 〈Y 〉 .

D

OO

Clearly, |Lpar| = |d1| and |Lred| = |R1|; moreover Lpar is discrete, since d1 is discrete,
and hence Lpar cannot contribute nontrivially to σ̌ and τ̌ . The factorisation of L follows
as stated.
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We now shift our attention to abstract BRSs. As mentioned repeatedly, we have
worked in concrete BRSs because they have enough structure, i.e. enough RPOs and
IPOs —and even pushouts— to apply the theory that ensures congruential behavioural
equivalence. Moreover, we have eased our task by working in hard concrete BRSs
´BBGh(K), where place graphs have pushouts.

It is now open to us to apply the quotient functor of Definition 9.12b

[[·]] : ´BBGh(K)→BBGh(K)

in order to transfer FPE and the congruence theorem to hard abstract BRSs. In fact this
transfer is justified by the crucial Theorem 5.7 that links concrete wide reactive systems
to abstract ones. The most specific result is the congruence of engaged bisimilarity in
BBGh(K) (Corollary 13.11).

This may be appropriate for some applications, but it fails for those where the re-
action rules are destructive, in the sense that they may create bigraphs with empty
regions — since these are inadmissible in hard bigraphs. Consider Example 5, illus-
trated in Figure 6; an empty region in the reactum is created. Recall our discussion at
the end of Section 13; in hard bigraphs we would have to encode the empty agent NIL
of the π-calculus by not by the unit 1 of parallel product, because 1 does not exist in
hard bigraphs, but by a place node, i.e. a M-node where M is an atomic control with
zero arity. Then indeed we could expect to prove the bisimilarity M | a ∼ a.

But, just as we treat this equation in π-calculus as a structural congruence NIL |P ≡
P , so in bigraphs we would hope to treat it as an identity of bigraphs, not just a bisimi-
larity. So we would like to quotient by place equivalence, which is a static congruence.
We therefore define mM to be the smallest equivalence including both m and ≡M. (We
might call it soft lean-support equivalence.) Then, following Definition 3.6, we have
the mM-quotient functor

[[·]]M : ´BBGh(KM)→BBG(K) .

Now, to transfer our dynamic theory along this functor we must show that mM respects
FPE transitions, at least in basic BRSs. We know that m does so; it therefore remains
to show that ≡M does so.

Proposition 14.9 (place equivalence respects FPE) In any basic BRS with all redexes
M-free, place equivalence (≡M) respects FPE transitions.

The proof uses Corollary 14.8, and appears in detail in Appendix A.3; it exploits flat-
ness, although it may well hold also under weaker conditions.

We are now ready to prove the corollary that will allow us to create a tractable and
congruential TS in basic (soft) abstract BRSs. The following is an exact analogue of
Corollary 13.11; it makes use of the preceding proposition to replace a hard abstract
BRS by a soft one.

Corollary 14.10 (engaged congruence in soft abstract BRSs) Let Á= ´BIGh(KM) be
a hard concrete BRS that is definite and basic, with all redexes M-free. Let

[[·]]M : ´BBGh(KM)→BBG(K)
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be the quotient functor by mM, and let A = BBG(K). Let ∼FPE denote bisimilarity both
for FPE in Á and for the induced transition system [[FPE]]M in A. Then

(1) a ∼FPE b in Á iff [[a]]M ∼FPE [[b]]M in A.

(2) Engaged bisimilarity ∼FPE is a congruence in A.

Proof The functor [[·]]M is the quotient by mM, the smallest equivalence that includes
both m and ≡M. We know that engaged transitions respect m, and by Proposition 14.9
they also respect ≡M; hence they respect mM and thus of course the quotient functor
[[ · ]]M. Therefore this functor and the transition system FPE fulfil the conditions of
Theorem 5.7 which, with the help of Corollary 13.10, yields the required results.

The reader will find it helpful to compare Corollaries 12.6, 13.11 and 14.10. In each
case we transfer a transition system from a concrete to an abstract BRS, and in each
case we show that congruence of the associated bisimilarity is preserved. The third
case has the advantage not only that it deals with an engaged transition system, which
is more tractable, but also that it works in soft bigraphs, which is where we would often
expect to work because it is inconvenient to avoid having empty regions.

To conclude this section we outline how we would normally expect to apply Corol-
lary 14.10, and indeed how we shall apply it in Section 15. We assume that we have to
hand an abstract BRS BBG(K,Reacts) which is basic; that is, all its reaction rules are
simple and flat, and in addition it is definite, roughly meaning that no redex is properly
included in another. We wish to equip this BRS with a suitable transition system for
prime free agents, in such a way that bisimilarity is a congruence. We do this in three
stages.

1. We first create ´BBGh(KM,´Reacts), a preimage of BBG(K,Reacts) under the
quotient functor [[ · ]]M, as follows. We choose a fresh nullary atomic control M;
then for the concrete reaction rules ´Reacts we take every lean [[·]]M-preimage of
a rule in Reacts, and insert a M-node into each empty region of its reactum.

2. Next we equip ´BBGh(KM,´Reacts) with the engaged transition system FPE, know-
ing from previous results that is associated bisimilarity ∼FPE is a congruence.

3. Finally we equip BBG(K,Reacts) with the transition system [[FPE]]M , and invoke
Corollary 14.10 to ensure that the associated bisimilarity ∼FPE is a congruence.

This construction corresponds to Construction 9 in [20]; however, the details here are
much simpler.

It is worth remarking that the passage to concrete BRSs has more than one purpose.
Not only do concrete BRSs provide RPOs which are absent in abstract ones, but they
also give meaning to ‘engaged’, a notion which is not so clear in abstract transition
systems.
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15 Finite asynchronous π-calculus
In this section we illustrate bigraph theory by applying it to the asynchronous π-
calculus of Honda and Tokoro [19] and Boudol [3]. We restrict our attention here
to the fragment without replication and summation; we refer to this calculus as Aπ.
We encode Aπ as a BRS and investigate the TS and bisimilarity thereby induced on it.

Aπ has processes given by the abstract syntax

P ::= xy
∣∣ x(z).P

∣∣ 0
∣∣ P |Q

∣∣ νz P ,

denoting output, input, inaction, parallel composition, and restriction, respectively. Dy-
namics is given by the single reaction rule

xy |x(z).P −→ {y/z}P ;

it indicates that y is communicated along x and substituted for z in P . This rule can
be applied in any context except underneath an input prefix; moreover, the input and
output terms may be ‘brought together’ by the application of structural congruence
≡, which relates process terms differing only by syntactical detail, such as alpha-
conversion of names and reordering of parallel components.

Dynamics is also given in terms of a TS, based on which several variations of
bisimilarity are defined; in asynchronous calculi, as that considered here, several stan-
dard bisimilarities (including early, late and open) coincide and form a congruence.
We shall refer to it simply as (π-)bisimilarity.

One variant of TS for π-calculus is the so-called early style. It can be summarised
for Aπ by the following lemma, which characterises transitions according to the struc-
ture of processes up to structural congruence:

Lemma 15.1 Let P be a process in Aπ. Then

1. P
xy−→ P ′ iff P ≡ xy |P ′.

2. P
x(y)−−→ P ′ iff P ≡ νy (xy |P ′).

3. P
xy−→ P ′ iff there exist P0, P1, z and Z such that P ≡ νZ (x(z).P0 |P1) and

P ′ ≡ νZ ({y/z}P0 |P1).

4. P
τ−→ P ′ iff there exist P0, P1, x, y, z and Z such that P ≡ νZ (xy |x(z).P0 |P1)

and P ′ ≡ νZ ({y/z}P0 |P1).

We now define a BRS for Aπ along the lines already anticipated in Example 2.

Definition 15.2 (BBGAπ) The BRS BBGAπ = BBG(KAπ,RAπ) has signature KAπ
consisting of two controls,

send : 0→ 2 (atomic)
get : 1→ 1 (non-atomic, passive) .
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The rule setRAπ consists of the single reaction rule (R,R′, %), where

R = sendxy | getx
R′ = x | pyq

with x 6= y, and the instantiation % : 1→ 1 is the identity.

We are now ready to translate Aπ-processes into bigraphs. Another conventional
abbreviation will help us. Recall that in composing a wiring we write ωG for ω ◦G. We
now adopt the same convention for ions and data, writing getxG and pyqG for getx ◦G
and pyq ◦G. With these conventions we model processes in BBG(KAπ) as follows:10

[[xy]] = sendxy

[[x(z).P ]] = getx (z) [[P ]]

[[0]] = 1

[[P |Q]] = [[P ]] | [[Q]]

[[νz P ]] = /z [[P ]] .

Thus, output and input, the ‘operational’ ingredients in Aπ, are modelled by an atom
and a molecule, respectively, built from controls introduced specifically for the pur-
pose; parallel composition is modelled by prime product (justifying the overloading of
the symbol); and restriction is modelled by name closure. Some basic properties of the
encoding are immediate:

Lemma 15.3

1. [[P ]] is a prime, free, busy agent a : 〈fn(P )〉.

2. [[{x/y}P ]] = x/y[[P ]].

3. For all non-input contexts C of Aπ there is a bigraph D such that, for all pro-
cesses P , [[C[P ]]] = D ◦ [[P ]].

4. P ≡ Q implies [[P ]] = [[Q]].

Proof (Outline.) The first three clauses are proved by induction on the structure of P .
For the last clause one must check that each axiom of structural congruence is respected
by the translation, and the result follows from compositionality of the translation.

The map [[·]] is bijective on processes (up to≡), i.e., [[P ]] = [[Q]] iffP ≡ Q, provided
that structural congruence is taken to include the restriction-input axiom

νz x(y).P ≡ x(y).νz P z 6∈ {x, y} .

This axiom is not usually included, because it is not necessary for defining reaction.
We contend, however, that the axiom is entirely natural; it respects bisimilarity, so it
does not change the behavioural theory of the calculus.

10Do not confuse this translation function [[·]] with quotient functors used in earlier sections.
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Reaction in BBGAπ accurately models reaction in Aπ. To state this formally we
first deal with a slight complication. One might expect P −→ P ′ to imply [[P ]] . [[P ′]],
but this is not true in general. As a simple counterexample, consider the Aπ-reaction
xy |x(z).P −→ {y/z}P , and suppose that x does not occur free in P (but z does). The
corresponding reaction in BBGAπ is

[[xy |x(z).P ]] = sendxy | (getx(z) [[P ]]) . (y/z[[P ]])⊗ x = [[{y/z}P ]]⊗ x .

The problem is that, while the Aπ-reaction reduces the set of free names, bigraph
interfaces are constant under reaction. To solve this we extend the mapping to agents
with idle names by indexing it for each process P with a name set X containing all
free names of P , as follows:

[[P ]]X = [[P ]] |X .

Thus the bijection between processes and BBGAπ-agents is extended to cover all prime
free agents (not just the busy ones); for such an agent a we shall denote the corre-
sponding process —unique up to structural congruence— by aπ . We can then state the
correspondence between reaction in Aπ and BBG Aπ .

Theorem 15.4 (Dynamics correspondence) For each process P and agent a : 〈X〉,

[[P ]]X . a iff P −→ aπ .

Now that we have obtained an accurate bigraphical model of reaction in Aπ, we are
interested in what equivalence is induced on Aπ by bisimilarity in BBG Aπ. A different,
but related, question is how the TSs of Aπ and BBGAπ relate. In order to investigate
these issues one might choose either to work in Aπ (and reflect BBG Aπ-bisimilarity
and -transitions back into Aπ), or to work in BBGAπ (and analyse the images under
[[−]] of the relevant Aπ-relations). We choose the former approach, which enables us
to use the well-developed theory of π-calculus as much as possible.

Definition 15.5 (induced bisimilarity) ∼ind is the smallest relation on Aπ-processes
such that aπ ∼ind bπ whenever a ∼ b.

Theorem 15.6 (congruence) ∼ind is a congruence.

Proof By Lemma 15.3(3) congruence of ∼ind with respect to non-input contexts fol-
lows immediately from the general congruence property of bigraph bisimilarity (The-
orem ref??). We treat input-contexts separately. Suppose P ∼ind Q and let C = x(z).[·].
Then P = aπ and Q = bπ for some bisimilar a and b. Let a1 = getx(z) (a | z) and
b1 = getx(z) (b | z); these are bisimilar because their only engaged transitions are of
the forms

a1 . id | sendxyy/z(a | z)

b1 . id | sendxyy/z(b | z) ,

and the right-hand sides are bisimilar by congruence of bigraph bismilarity. The result
then follows, observing that (a1)π = C[P ] and (b1)π = C[Q].
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Lemma 15.7 The following three statements are equivalent:

1. P ∼ind Q

2. [[P ]]X ∼ [[Q]]X for some X ⊇ fn(P,Q)

3. [[P ]]X ∼ [[Q]]X for all X ⊇ fn(P,Q).

Proof The implication (2) ⇒ (1) is immediate, noting that ([[P ]]X)π = P for any
X . The implication (3) ⇒ (2) is also immediate, since fn(P,Q) is finite and hence a
proper subset of N . For the implication (1) ⇒ (3), suppose P ∼ind Q. Then P = aπ
and Q = bπ for some a, b : 〈Y 〉 such that a ∼ b and Y ⊇ fn(P,Q). Let a0 = [[P ]]Z
and b0 = [[Q]]Z , where Z = fn(P,Q). Then a = a0 |Y and b = b0 |Y , and so by
Proposition 13.8, a0 |X ∼ b0 |X for any X . If X ⊇ fn(P,Q) then [[P ]]X = a0 |X
and [[Q]]X = b0 |X , and the result follows.

In order to relate ∼ind to Aπ-bisimilarity, we next analyse the TS induced on Aπ
by the encoding. As we shall see, many transitions in the BRS correspond closely to
ordinary Aπ-transitions. Certain transitions, however, seem alien, but can be easily
eliminated. The problem is that BRS-transitions are defined only up to isomorphism;
this means that whenever a L

. a′ there is also a transition a ιL
. ιa′. In particular, an

arbitrary name substitution can be applied to a′ by including it in the label. To avoid
such arbitrary substitutions we introduce the concept of straightness:

Definition 15.8 (straight link graph) A link graph A : X→Y is straight if every
outer name y ∈ Y satisfies the following condition: if y is co-open (i.e. y ∈ A(X))
then y ∈ X and A(y) = y, otherwise y 6∈ X .

Lemma 15.9 For every link graphA there is an isomorphism ι such that ιA is straight.

Proof For every outer name y of A, if it is co-open pick an inner name x such that
A(x) = y, and let ι(y)

def
= x; if not, pick a fresh name w and let ι(y)

def
= w. Clearly this

defines an iso, and its construction directly ensures straightness of ιA.

We say that a transition a L
. a′ is straight if the label L is straight (i.e., has a

straight link graph). An immediate consequence of the preceding lemma and Proposi-
tion 5.9 is the following:

Proposition 15.10 (adequacy of straight transitions) In every BRS the straight tran-
sitions are adequate.

Thus we are justified in limiting attention to the straight, engaged transitions in
BBGAπ . We now define an alternative TS on Aπ whose purpose is to reflect exactly
these transitions.

Definition 15.11 (induced transitions) Define the induced labels for Aπ as

α ::= x(z)S
∣∣ xy

∣∣ x/y
∣∣ τ .
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The consigned output label x(z)S binds the name z within the process S; we require
that no other name may have more than one free occurrence in S. Moreover, we con-
sider such labels equal when they differ only by structural congruence on S and alpha-
conversion on z.

For each induced label α we declare its agent names an(α) and its environment
names en(α) to be as follows:

an(x(z)S)= {x} en(x(z)S)= fn(S) \ {z}
an(xy)= {x} en(xy)= {y}
an(x/y)= {x, y} en(x/y)= ∅

an(τ)= ∅ en(τ)= ∅ .

The mapping [[α]]X into BBG(KAπ) is defined when an(α) ⊆ X and en(α) ∩X =
∅, and is then given by

[[x(z)S]]X = 〈idX〉 | getx (z) [[S]]

[[xy]]X = 〈idX〉 | sendxy

[[x/y]]X = 〈idX\y | x/y〉
[[τ ]]X = 〈idX〉 .

For any process P and any name set X ⊇ fn(P ) we write P :X to denote the pair
(P,X). Define the transition relation −→

ind
between such pairs, labelled with induced

labels, to be the smallest such that P :X
α−→

ind
P ′ :X ′ whenever [[P ]]X

[[α]]X
. [[P ′]]X′

is a straight engaged transition in BBGAπ .

Note that the definition ensures that, in a transition P :X
α−→

ind
P ′ :X ′, the process

P provides the free names of α and the environment provides the new names, which
must be fresh. This reflects the IPO property of transitions in BBG Aπ: in an IPO names
are essentially only equated when this is required for commutativity.

We shall prove below that, indeed, the induced transition relation −→
ind

has induced
bisimilarity ∼ind as its associated bisimilarity; in other words, −→

ind
provides us with a

coinductive characterisation in Aπ of ∼ind. First we give two intermediate results char-
acterising, respectively, the straight, engaged transitions of BBG Aπ, and the induced
TS in Aπ.

Lemma 15.12 Let a : 〈X〉 in BBGAπ , and let a .La′ be a straight, engaged tran-
sition. Then a, L and a′ are of the forms

a = /Z (ra | b)
L = 〈σ〉 | rL : 〈X〉→〈X ′〉
a′ = σ /Z (pyq c | b) : 〈X ′〉 ,
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where, up to a bijection of names, one of the following cases holds:

case ra rL σ conditions
(1) sendxy getx c id x ∈ X, c discrete

with names not in X ∪ Z
(2) getx c sendxy id x ∈ X, y /∈ X ∪ Z
(3) sendx0y | getx1

c 1 id | xi/xı x0, x1 ∈ X
(4) sendxy | getx c 1 id

Proof In the rule (r, r′ : 〈Y 〉) underlying the transition, r and r′ have the forms

r = sendxy | getx d and r′ = pyq d |x ,

where d : 〈(1),W 〉 is discrete and Y = W ⊗ {x, y}. Since BBG Aπ is pseudo-flat,
we can apply Theorem 14.7 to characterise the transition. Hence r can be factored as
r = σr r0 | r1 and

a = /Z (σa r0 | b) L = 〈σ̌r〉 | σ̌a r1 a′ = /Z (σ̂a r
′ | σ̂r b) ,

where

X ⊗ Z σ̂r // X ′ ⊗ Z

V

σa

OO

σr
// W ⊗ x⊗ y

σ̂a

OO
(1)

is pushout and the substitutions satisfy σ̌a r1 = /Z σ̂a r1 and σ̂r = σ̌r ⊗ idZ . By
straightness and engagedness of the transition, σ̌r is straight and |r0| non-empty. We
proceed by cases, according to the factorisation of r. In the following u denotes σa(u)
for u ∈ V .

Case r0 = senduv and r1 = getz d. Then σr is an iso with σr(u) = x and
σr(v) = y. Then the pushout property implies that σ̌r = idX and that σ̂a maps x to u,
y to v, and W bijectively to some W ′ such that X ′ = X ⊗W ′. Then

a = /Z (senduv | b) L = 〈idX〉 | getu (σ̌a d) a′ = /Z (pvq (σ̂a d) | b) .

Let c = σ̂a d. Then c is discrete, since d is discrete and σ̂a is bijective on W . Case (1)
of the table follows.

Case r0 = getu e and r1 = sendxy . Then σr is an iso with σr(u) = x and
σr e = d. Then the pushout property implies that σ̌r = idX and that σ̂a maps x to u
and y to some y′ such that X ′ = X ⊗ y′, and moreover σ̂a d = σa e. Then

a = /Z (getu (σa e) | b) L = 〈idX〉 | senduy′ a′ = /Z (pvq (σa e) | b) .

Let c = σa e; case (2) of the table follows.
Case r0 = senduv | getw e and r1 = 1. Then σr(u) = σr(w) = x, σr(v) = y

and σr e = d. If u 6= w then the pushout property implies that u,w ∈ X and either
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X ′ = X \ w and σ̌r = idX′ | u/w, or the symmetric case with u and w swapped. We
assume the former. Then the pushout property further implies σ̂a(x) = u, σ̂a(y) = v,
and σ̂a d = u/w σa e. Then

a = /Z (senduv | getw (σa e) | b) L = 〈idX〉
a′ = /Z (pvq (u/w σa e) | u/w b) = u/w /Z (pvq (σa e) | b) .

Let c = σa e; case (3) of the table follows.
If instead u = w then the pushout property implies that σ̌r = idX , that σ̂a maps x

to u = w and y to v, that σ̂a d = σa e, and that X ′ = X . Then

a = /Z (senduv | getw (σa e) | b) L = 〈idX〉 a′ = /Z (pvq (σa e) | b) .

Let c = σa e; case (4) of the table follows.

The following lemma follows straightforwardly from the preceding one.

Lemma 15.13 If P :X
α−→

ind
P ′ :X ′ then an(α) ⊆ fn(P ) and en(α) = X ′ \X and P ,

α and P ′ are of the form given by one of the following cases:

case P α P ′

(1) νZ (xy |P0) x(z)S νZ (P0 | {y/z}S)
(2) νZ (x(z).P0 |P1) xy νZ ({y/z}P0 |P1)
(3) νZ (x0y |x1(z).P0 |P1) xi/xı {xi/xı}(νZ ({y/z}P0 |P1))
(4) νZ (xy |x(z).P0 |P1) τ νZ ({y/z}P0 |P1)

We are now ready to prove that the transition relation −→
ind

characterises ∼ind in es-
sentially the standard sense. The equivalence ∼ind relates processes, whereas −→

ind
is over

pairs of processes and name sets. This mismatch is remedied simply by requiring tran-
sitions to involve pairs with name sets large enough to include all free names of both
of the processes we are relating.

Lemma 15.14 P ∼ind Q iff (P :X) R (Q :X) for some X ⊇ fn(P,Q) and some
−→

ind
-bisimulationR.

Proof (⇒) Let

R = {(P :X,Q :X) | P ∼ind Q and X ⊇ fn(P,Q)} ;

we show that this is a−→
ind

-bisimulation. Suppose P ∼ind Q andX ⊇ fn(P,Q), and more-

over P :X
α−→

ind
P ′ :X ′. Then there is a straight engaged transition [[P ]]X

[[α]]X
. a′

def
=

[[P ′]]X′ in BBGAπ. Note that P ′ = a′π . By Lemma 15.7 [[P ]]X ∼ [[Q]]X , so there is a

matching transition [[Q]]X
[[α]]X

. b′ : 〈X ′〉 such that a′ ∼ b′. Hence P ′ ∼ind Q
′ def

= b′π .
Note that [[Q′]]X′ = b′. Then Q :X

α−→
ind
Q′ :X ′ and (P ′ :X ′) R (Q′ :X ′) as required.

(⇐) For any −→
ind

-bisimulationR we show that

Rπ = {([[P ]]X , [[Q]]X) | (P :X) R (Q :X)}
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is a bisimulation in BBGAπ . Suppose (P :X) R (Q :X) and [[P ]] .La′ : 〈X ′〉. Let
α = Lπ and P ′ = a′π; then [[α]]X = L and [[P ′]]X′ = a′, and so P :X

α−→
ind
P ′ :X ′.

Then there is a matching transition Q :X
α−→

ind
Q′ :X ′ such that (P ′ :X ′) R (Q′ :X ′).

Then [[Q]]X .Lb′
def
= [[Q′]]X′ and (a′, b′) ∈ Rπ .

With the coinductive characterisation of ∼ind we can now address the main question
of this section: relating ∼ind to ordinary Aπ-bisimilarity.

Theorem 15.15 (characterising induced bisimilarity) The induced bisimilarity ∼ind

in Aπ coincides with standard bisimilarity ∼ and barbed congruence '.

Proof In Aπ bisimilarity and barbed congruence coincide. It will therefore suffice to
establish the two inclusions

∼ ⊆ ∼ind ⊆ ' .
The last inclusion is immediate, observing that∼ind is a congruence, and that−→

ind
-transitions

characterise observations and reductions as follows:

1. P :X
x−→

ind
iff P ↓x

2. P :X
τ−→

ind
P ′ :X iff P −→ P ′.

For the first inclusion, consider the relationR consisting of all pairs of the form
(
νZ (P |R) :X , νZ (Q |R) :X

)

such that P ∼ Q and X ⊇ fn(νZ (P |R), νZ (Q |R)). We show that R is a −→
ind

-
bisimulation; this will suffice by taking Z = ∅ and R = 0. For any such pair suppose
νZ (P |R) :X

α−→
ind
P ′ :X ′. We proceed by cases according to the label α.

Case α = x(z)S. Then by Lemma 15.13 we have

either (i) P = νy (xy |P0) and P ′ = νZ (νy (P0 | {y/z}S) |R)
or (ii) R = νy (xy |R0) and P ′ = νZ (P | νy (R0 | {y/z}S))

or similar cases without the restriction on y. We assume case (i) and omit the others,
which are similar or simpler. By Lemma 15.1 P

x(y)−−→ P0. Then there is a match-
ing transition Q

x(y)−−→ Q0 for some Q0 such that P0 ∼ Q0. Then, using the lem-
mas in reverse order, Q = νy (xy |Q0), and hence νZ (Q |R) :X

α−→
ind
Q′ :X ′, where

Q′
def
= νZ (νy (Q0 | {y/z}S) |R). Without loss of generality we can assume y /∈ fn(R);

it follows that P ′ = νZy (P0 | {y/z}S |R) and Q′ = νZy (Q0 | {y/z}S |R). Hence,
(P ′, X ′) R (Q′, X ′) as required.

Case α = xy. Similar to previous case.
Case α = x/u. Using Lemma 15.13 we get several subcases. One case is P =

νV (x(z).P0 |P1) andR = νy (uy |R0) with y /∈ fn(P ), andP ′ = {x/u}(νZy (P ′0 |R0)),
where P ′0 = νV ({y/z}P0 |P1). There are symmetrical cases with the roles of x and u
swapped, and with the sender in P and the recipient in R; moreover, there are cases
where both the sender and receiver is in either P or R; finally, all cases can be var-
ied by dropping the restriction on y. We omit all these additional cases, which are
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similar to, or simpler than, the one stated. Without loss of generality we assume
y /∈ fn(Q). By Lemma 15.1 P

xy−→ P ′0 and R
u(y)−−→ R0. Then there is a match-

ing transition Q
xy−→ Q′0 for some Q′0 such that P ′0 ∼ Q′0. Then, using the lemmas

in reverse order, Q is of the form νW (x(z).Q0 |Q1) and Q′0 = νW (x(z).Q0 |Q1),
and hence νZ (Q |R) :X

α−→
ind
Q′ :X ′, where Q′ def

= {x/u}νZy (Q′0 | |R0). Hence,
(P ′, X ′) R (Q′, X ′) as required.

Case α = τ . Similar to previous case.
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16 Further research directions
In this final section we examine some possible further developments. We consider
three kinds of development: using the model, adapting and extending the model, and
deepening the model theory. Of course, further uses of the model may well entail
developments of the second and third kind.

Using the model
In the previous section we have shown how to model a substantial fragment of the
π-calculus as a basic BRS. Work is in progress on extending our results to the full
π-calculus; this involves several largely independent developments:

Synchronous output: The calculus considered in the previous section is asynchronous
in the sense that outputs have no continuations. The full calculus has outputs of
the form xy.P ; these can be modelled using a non-atomic form of the send-
control. We expect this extension to be straightforward.

Replication: Some form of replication or recursion is necessary in order to express
agents with infinite behaviour. The simplest form to handle is replicated input,
an encoding of which is outlined in Example 2. A slight complication arises in
the handling of restriction in the presence of replication, because we must now be
careful about the location of a restriction. As an example, consider the processes
νz (!x(y).P ) and !x(y).νz P ; in the former, any free occurrence of z in P will
be shared among copies of P , whereas in the latter each copy of P will have a
private copy of z. Because of this we cannot, as we have done so far, handle all
restrictions by name closure. A version of the !get-control that binds ports to be
shared among copied agents seems to provide a simple solution.

Whereas replicated input amounts to an extra variant of reaction, it is standard in
the π-calculus to introduce replication instead as a structural notion by including
the axiom !P ≡ P | !P . This seems to elude a direct graphical modelling, but it
might still be possible to work with a WRS obtained by quotienting the BRS by
the equivalence induced by the axiom.

Summation: Example 3 outlines the encoding of summation of inputs. (An extension
to cover also ‘synchronous’ outputs is immediate.) Such a reaction rule, however,
departs from the conditions of basic BRSs, because the redex is not flat. Thus,
some refinement of the theory is necessary in order to obtain the results; we
believe that the flatness constraint can be weakened sufficiently by adopting a
notion of sorting on bigraphs; summations and actions (inputs or outputs) will
then have different sorts, and the redex of Example 3 will still be ‘essentially
flat’, so that e.g. pseudo-flatness of transitions can still be established.

Encodings of other calculi than the π-calculus are of interest, too. One example
is the ambient calculus, an encoding of which is outlined in Example 4. We intend
to pursue this in detail, and to compare our resulting transitions and congruences with
those that already exist, for example by Merro and Hennessy [24]. Note that the rule
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illustrated in our example violates the flatness constraint on redexes, and —unlike π-
calculus with summation— the ambient calculus does not seem to be subject to an
obvious notion of sorting. Thus, to encode ambient calculus we may need either to find
other means of relaxing the flatness condition, or alternatively to work in a hard BRS.
In any case one may note that the ambient calculus (in its purely migrationary form) is
simpler than π-calculus in one important aspect: it does not employ binding.

As well as wishing to establish a firm link with existing process calculi, we also
wish to explore beyond them. We may wish to combine existing calculi, or to set up
new ones. In either case, both for analysis and for programming, the algebraic for-
mulation of bigraphs is important, and the preliminary algebraic results of Section 10
provide a promising start. Combining these with the convenient notations suggested
in our illustrations (Section 2), we propose to define a generic bigraphical program-
ming language. It will allow systems designers to explore new design structures for
mobile systems, thus providing an essential experimental tool for assessing the power
and tractability of the model.

One particular line of modelling is already being explored by Cardelli [5]; this
concerns the use of bigraphs to model biological processes. Building on an original
model by Shapiro et al [38] that used the π-calculus for this purpose, Cardelli has
shown that more direct modelling is possible using ambient-like reaction rules. Since
the bigraph model embraces both the π-calculus and ambients, Cardelli is able to show
how to map his rules into bigraphs without any extension to the latter.

But such experimental usage typically exposes the need to adapt or extend the bi-
graph model to accommodate real-world phenomena that lie beyond its present scope.
One of these is a stochastic treatment of non-determinism; this was important in the
cited paper of Shapiro et al, in order run simulations in the π-calculus model and check
them against observed behaviour. Another real-world extension is to add the contin-
uum, to allow continuous reactions. We comment on both these extensions below.

Adapting and extending the model
We have formulated bigraphs to admit a wide variety of dynamical systems, including
existing process calculi. How much wider can we go? There are many directions to
look, and our present model does not appear to block any of them.

In one direction, we may try to refine our locational structure. In particular, one can
easily think of uses for a model whose locations —or regions— are not forced to be
nested. For example, an agent may reside at a geographical location, say Cambridge,
and may also be part of a national research network or a multinational business process;
these two locations —one physical, one virtual— may overlap, neither lying within
the other. To model this, our place graphs must become directed acyclic graphs, not
forests. What effect does this have upon the theory? Difficulties could arise with RPOs
(Section 7), with the algebra (Section 10) or with the programming language (suggested
by examples in Section 2).

Another direction is in the form of our reaction rules. Why have we confined our-
selves to transitions of ground bigraphs, i.e. those with domain ε? There are a number
of inter-related issues here, which we chose not to tackle in this study. As Sewell [37]
points out, we might consider reactions of non-ground contexts. Suppose for example
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that (R,R′, %) is a reaction rule, and d = d0⊗ d1 a possible parameter for R. Then we
may wish to allow all the following reactions:

R ◦d .R′ ◦d R ◦ (d0 ⊗ id) .R′ ◦ (d0 ⊗ id) R .R′ ,

although only the first is a ground reaction. We have avoided this because we wished
to allow the reaction to replicate or discard parts of a parameter d. In our model this
means that R′ is not proper context but rather a schematic bigraph, since our contexts
are linear, i.e. composition does not entail discard or replication. In fact, the result
of the first reaction above is in general not R′ ◦d but R′ ◦%(d), where % performs the
appropriate replications and discards. So, for all three of the above reactions to make
sense, our theory must admit non-linear contexts, which is a non-trivial matter. It is
not clear how composition of bigraphs would treat support, and it is not clear whether
RPOs would exist. We leave this question for further research.

There is a strong challenge to represent real-time and hybrid systems, if we wish
our model to embrace not only communication networks but also the physical devices
to which they are connected (or within which they are embedded). Process calculi
are moving in this direction. As far as real-time is concerned, there is already much
research on timed transitions, we would hope to adopt similar approaches for bigraphs.

For hybrid systems, an approach very relevant to bigraphs is the Φ-calculus of
Rounds et al [35], which combines the mobility of the π-calculus with differential
equations for the behaviour of real (i.e. continuous) variables. Nothing in our formula-
tion prevents a control signature from being denumerably infinite or even a continuum;
for example, a family of controls indexed by the real numbers to represent distance.
Then a differential equation —say relating several distances and their rates of change—
can be modelled by a reaction rule representing infinitesimal variation. We could then
represent the Φ-calculus as a BRS, which may then provide useful metatheory for the
former. No doubt there are technical hurdles to overcome —not least in the handling
of infinitesimals— but the approach seems worth investigation.

Finally, for many purposes of modelling, the non-determinism of the reaction re-
lation (generated by the reaction rules of an arbitrary BRS) needs to be refined by a
stochastic treatment. There is a considerable body of work on stochastic process cal-
culi, and in particular the stochastic π-calculus by Priami [33]; this has already been
exploited [34] in Shapiro’s project to model biological processes. There are rich op-
portunities for modelling other real-life mobile processes, such as the applications on
the Worldwide Web, using a stochastic treatment of bigraphs. Just as with biological
processes, stochastics will provide the opportunity to compare bigraphical simulations
with experiment, offering a way to validate a bigraphical model.

Deepening the model theory
The bigraph model is based on supported precategories, after much effort to find the
mathematical medium best suited to express a uniform behavioural theory. It is still
possible that other categorical structures satisfy our needs in a more standard way.
Though supported precategories are well-behaved, they do not appear to be much used
elsewhere. Sassone and Sobocinski have begun to investigate the use of 2-categories,

106



in which the strict commutation of diagrams is relaxed by admitting second-order ar-
rows. They note that if these arrows form a groupoid then bigraphs can be modelled,
and RPOs turn into GRPOs (i.e. groupoid RPOs). Their work is consistent with ours,
so may be useful in providing access to existing categorical results, while the precate-
gorical approach may be retained for detailed theoretical analysis.

In this memorandum we have placed strong emphasis on transition systems and be-
havioural congruence. These notions have allowed us to form useful connections with
existing process theory, but they are not suitable for every form of analysis. Also im-
portant are algebraic systems such as the CSP failures pre-order [18], which allow spec-
ification and implementation to be expressed and matched in the same medium. There
is no reason why these models should not be adaptable to bigraphs; indeed Leifer [22]
has already shown, in an abstract setting (the forerunner of our WRSs) that the failures
preorder is a precongruence for RPO-derived transition systems, just as it is in CSP.

Process theory also has strong tradition of non-standard logics such as temporal
logic or the modal µ-calculus; these allow incremental analysis of processes, because
simple properties (as opposed to full specifications) of a system can be expressed and
verified one by one. For bigraphs, the obvious challenge is to find a logic that is spatial
as well as temporal. Indeed, work by Caires and Cardelli on spatial logics for mobile
ambients [6] has already been under way for a few years, and provides a very promising
starting point for a logic for bigraphs.

As a final direction for theoretical development, we may wish to refine the notion
of wide reactive system (WRS). Recall from Section 4 that it was designed as an ab-
stract framework in which transitions and behavioural congruence could be derived
for systems with locality, allowing reaction to occur between remote components. But
BRSs have many structural properties absent in WRSs, and they therefore enjoy a more
refined theory; for example, RPOs can be shown to exist and IPOs can be fully char-
acterised. At the same time, bigraphs as we have defined them are somewhat arbitrary.
It is therefore worth asking whether we can impose axioms upon WRSs that are sat-
isfied by bigraphs, but allow the theory to be derived via the axioms rather than in a
fully specified model such as bigraphs. This axiomatic theory may come closer to the
essence of mobile distributed systems.

Conclusion As we said at the outset, our model based on bigraphs is a pilot study.
Here and there we have made arbitrary choices, with the aim not only to explore a
topographical theory of mobile systems in its own right, but to see whether it might
generalise existing process theories. We hope to have demonstrated some success. This
work is best considered not as a definitive theory, but as a study of possible ingredients
of such a theory, and as an incentive to develop it more thoroughly.
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Appendix

A Proofs

A.1 Proofs for place graphs
We begin by justifying the RPO construction for place graphs, from Section 7. First
we restate it, for convenience.

Construction 7.7 (RPOs in place graphs) We construct an RPO ( ~B : ~m→ m̂,B : m̂→ p)

for a pair ~A : `→ ~m of place graphs relative to a bound ~D : ~m→ p in three stages.

nodes: If Vi are the nodes of Ai (i = 0, 1) then the nodes of Di are Vı\V2 ∪· V3 for
some V3. Define the nodes of Bi and B to be Vı\V2 (i = 0, 1) and V3 respectively.

interface: Construct the shared codomain m̂ of ~B as follows. First, define the roots in
each mi that must be mapped into m̂:

m′i
def
= {r ∈ mi | Di(r) ∈ V3 ∪· p} .

Next define, on the disjoint sum m′0 + m′1, the equivalence ∼= to be the smallest for
which (0, r0) ∼= (1, r1) whenever Ai(w) = ri (i = 0, 1) for some w ∈ ` ∪· V2. Then
define the codomain up to isomorphism by

m̂
def
= (m′0 +m′1)/∼= .

For each r ∈ m′i we denote the ∼=-equivalence class of (i, r) by î, r.

parents: Define B0 to simulate D0 as far as possible (B1 is similar):

for r ∈ m0 : B0(r)
def
=

{
0̂, r if r ∈ m′0
D0(r) if r /∈ m′0

for v ∈ V1\V2 : B0(v)
def
=

{
1̂, r if A1(v) = r ∈ m1

D0(v) if A1(v) /∈ m1 .

Finally define B, to simulate both D0 and D1:

for r̂ = î, r ∈ m̂ : B(r̂)
def
= Di(r)

for v ∈ V3 : B(v)
def
= Di(v) .

Lemma A.1 The definition in Construction 7.7 is sound.
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Proof The second clause defining B0(r) is sound, since if r /∈ m′0 then by definition
D0(r) ∈ V1\V2, which is indeed the node set of B0. Similar reasoning applies to the
second clause defining B0(v).

The first clause defining B0(v) is sound, since if A1(v) = r with v ∈ V1 \V2

then we have r ∈ m′1; for if not, then D1(r) ∈ V0 \V2, which is impossible since
D1 ◦A1 = D0 ◦A0.

Finally, the clauses defining B are sound because the right-hand sides are indepen-
dent of the choice of i and of r; this is seen by appeal to the definition of ∼= and the
equation D1 ◦A1 = D0 ◦A0.

Lemma A.2 ( ~B,B) is a candidate RPO for ~A relative to ~D.

Proof To prove B0 ◦A0 = B1 ◦A1, by symmetry it will be enough to consider cases
for w ∈ ` ∪· V0, and for the value of A0(w).

Case w ∈ V0 \V2, A0(w) = v ∈ V0. Then (B1 ◦A1)(w) = B1(w) = D1(w) =
(D1 ◦A1)(w) = (D0 ◦A0)(w) = A0(w) = (B0 ◦A0)(w).

Case w ∈ V0\V2, A0(w) = r ∈ m0. Then (B1 ◦A1)(w) = B1(w) = 0̂, r = B0(r) =
(B0 ◦A0)(w).

Case w ∈ ` ∪· V2, A0(w) = v ∈ V0 \V2. Then (B0 ◦A0)(w) = A0(w) = v. Also
(D1 ◦A1)(w) = (D0 ◦A0)(w) = v, so for some r ∈ m1 we have A1(w) = r and
D1(r) = v, hence r /∈ m′1. Then (B1 ◦A1)(w) = B1(r) = D1(r) = v.

Case w ∈ ` ∪· V2, A0(w) = v ∈ V2. Then (D1 ◦A1)(w) = (D0 ◦A0)(w) = v, so
also A1(w) = v. Hence (B1 ◦A1)(w) = v = (B0 ◦A0)(w).

Case w ∈ ` ∪· V2, A0(w) = r0 ∈ m′0. Then D0(r0) ∈ V3 ∪· p, and so (D1 ◦A1)(w) =
(D0 ◦A0)(w) ∈ V3 ∪· p; hence for some r1 ∈ m′1 we have A1(w) = r1 and D1(r1) =
D0(r0). Hence (B0 ◦A0)(w) = B0(r0) = D0(r0) = D1(r1) = B1(r1) = (B1 ◦A1)(w).

Case w ∈ ` ∪· V2, A0(w) = r ∈ m0 \m′0. Then D0(r) = v ∈ V1 \V2; hence
(D1 ◦A1)(w) = (D0 ◦A0)(w) = v, so A1(w) = v. So (B1 ◦A1)(w) = v = D0(r) =
B0(r) = (B0 ◦A0)(w).

We now prove B ◦B0 = D0 by case analysis.

Case r ∈ m′0. Then (B ◦B0)(r) = B(0̂, r) = D0(r).

Case r ∈ m0\m′0. Then B0(r) = D0(r) ∈ V0\V2, hence (B ◦B0)(r) = D0(r).

Case v ∈ V1\V2, D0(v) ∈ V1\V2. Since D0 ◦A0 = D1 ◦A1 we have A1(v) /∈ m1,
so B0(v) = D0(v) ∈ V1\V2; hence (B ◦B0)(v) = B0(v) = D0(v).

Case v ∈ V1 \V2, D0(v) ∈ V3 ∪· p. Since D0 ◦A0 = D1 ◦A1 there exists r ∈ m1

with A1(v) = r; moreover we readily deduce r ∈ m′1, so B0(v) = 1̂, r. Hence
(B ◦B0)(v) = B(1̂, r) = D1(r) = (D1 ◦A1)(v) = (D0 ◦A0)(v) = D0(v).

Case v ∈ V3. Then (B ◦B0)(v) = B(v) = D0(v).

We are now ready to prove the theorem justifying our construction:
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Theorem 7.8 (RPOs in place graphs) In ´PLG, Whenever a pair ~A of place graphs
has a bound ~D, there exists an RPO ( ~B,B) for ~B relative to ~D, and Construction 7.7
yields such an RPO.

Proof We have already proved that the triple ( ~B,B) built in Construction 7.7 is an
RPO candidate. Now consider any other candidate ( ~C,C) with intervening interface
n. Ci has nodes Vı\V2 ∪· V4 (i = 0, 1) and C has nodes V5, where V4 ∪· V5 = V3. We
have to construct a unique mediating arrow Ĉ, as shown in the diagram.

C0

Ĉ
m1m0

C

C1

B

B0 B1

D0 D1

A1A0

p

m̂

n

We define Ĉ with nodes V4 as follows:

for r̂ = î, r ∈ m̂ : Ĉ(r̂)
def
= Ci(r)

for v ∈ V4 : Ĉ(v)
def
= Ci(v) .

Note that the equations Ĉ ◦Bi = Ci (i = 0, 1) determine Ĉ uniquely, since they
force the above definition. We now prove the equations (considering i = 0):

Case r ∈ m′0. Then (Ĉ ◦B0)(r) = Ĉ(0̂, r) = C0(r).

Case r ∈ m0\m′0. Then D0(r) ∈ V1\V2, so B0(r) = D0(r), hence (Ĉ ◦B0)(r) =
D0(r). Also since C ◦C0 = D0 ∈ V1\V2 we have C0(r) = D0(r).

Case v ∈ V1\V2, D0(v) ∈ V1\V2. Since D0 ◦A0 = D1 ◦A1 we have A1(v) /∈ m1, so
B0(v) = D0(v), hence (Ĉ ◦B0)(v) = D0(v). Also C0(v) = (C ◦C0)(v) = D0(v).

Case v ∈ V1\V2, D0(v) ∈ V3 ∪· p. Then A1(v) = r ∈ m′1 with D1(r) = D0(v), and
B0(v) = 1̂, r. So (Ĉ ◦B0)(v) = Ĉ(1̂, r) = C1(r) = (C0 ◦A0)(v) = C0(v).

Case v ∈ V4. Then (Ĉ ◦B0)(v) = Ĉ(v) = C0(v).

It remains to prove that C ◦ Ĉ = B. The following cases suffice:

Case r̂ = 0̂, r ∈ m̂, B(r̂) ∈ V4. Then (C ◦ Ĉ)(r̂) = Ĉ(r̂) = C0(r) = D0(r) = B(r̂).

Case r̂ = 0̂, r ∈ m̂, B(s) ∈ V5 ∪· p. Then D0(r) = B(r̂) ∈ V5 ∪· p, so for some
s ∈ n we have C0(r) = s and C(s) = B(r̂). But by definition Ĉ(r̂) = s, so
(C ◦ Ĉ)(r̂) = C(s) = (C ◦C0)(r) = D0(r) = B(r̂).

Case v ∈ V4, B(v) ∈ V4. Then (C ◦ Ĉ)(v) = Ĉ(v) = C0(v) = D0(v) = B(v).
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Case ∈ V4, B(v) ∈ V5 ∪· p. Then B(v) = D0(v) = C(t), where C0(v) = t ∈ n, and
by definition Ĉ(v) = C0(v), so (C ◦ Ĉ)(v) = C(t) = B(v).

Case v ∈ V5. Then (C ◦ Ĉ)(v) = C(v) = D0(v) = B(v).

Hence Ĉ is the required unique mediator; so ( ~B,B) is an RPO.

We now turn to the proofs on pushout variations at the end of Section 7. Again, we
restate them for convenience.

Proposition 7.15 (first pushout variation) Let ~B be a bound for ~A in ´PLGh(KM).
Add a new place node M to both A0 and B1, yielding AM0 and BM1 such that B0 ◦AM0 =

BM1 ◦A1. Then ~B is a pushout for ~A iff (B0, B
M
1 ) is a pushout for (AM0 , A1).

A0

B1B0

C1C0 Ĉ

A1

CM1C0 Ĉ

A1

BM1B0

AM0

(a) (b)

Proof We refer to diagrams (a) and (b) for both directions of the proof. For the for-
ward direction (⇒) we assume the pushout in diagram (a), then assume the uppermost
arrows to be a bound in diagram (b) and finally prove them to be a bound also in (a);
for the reverse direction (⇐) the reasoning goes the other way. For both directions,
first note that M has a sibling, say w (a node or site), in AM0 .

(⇒) Assume that ~B is a pushout for ~A, and let C0, C
M
1 be an arbitrary bound in (b).

To establish (B0, B
M
1 ) as a pushout out we must find a mediator Ĉ in (b) as shown.

(Uniqueness of a mediator is ensured since all arrows are epi.)
Clearly CM1 contains M, but C0 does not. Now since AM0 has a sibling for M, this is

also sibling for M in C0 ◦AM0 = CM1 ◦A1; hence CM1 has a sibling for M. We therefore
obtain a well-formed hard place graph if we form C1 from CM1 by omitting M. Then ~C

is a bound in (a), and because ~B is a pushout there is a mediator Ĉ in (a).
To show that Ĉ is also a mediator in (b) it suffices to show that (Ĉ ◦BM1 )(M) =

CM1 (M). We now consider two cases for the sibling w for M in AM0 :

Case 1 The siblingw is a node shared betweenAM0 andBM1 . Thenw is a sibling ofM in
both BM1 and CM1 . So (Ĉ ◦BM1 )(M) = (Ĉ ◦BM1 )(w) = (Ĉ ◦B1)(w) = C1(w) =
CM1 (w) = CM1 (M) .

Case 2 The sibling w is a node or site shared between AM0 and A1. Then A1(w) = i ∈
m1, where i is a sibling of M in both BM1 and CM1 . Make the same calculation
with i in place of w.

(⇐) Assume that (B0, B
M
1 ) is a pushout for (AM0 , A1), and let ~C be an arbitrary bound

in (a). We need a mediator Ĉ in (a), as shown. Consider the sibling w of M in AM0 .
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Case 1 The sibling w is a node shared between A0 and B1. Then w is a sibling of M
in BM1 , and is also in C1 since ~C is a bound. Extend C1 to CM1 by adding M as a
sibling of the node w. Then (C0, C

M
1 ) is a bound in (b), so a mediator Ĉ exists in

(b). We require Ĉ also to be a mediator in (a), and for this it suffices to show that
Ĉ ◦B1 = C1. But this follows directly from the fact that Ĉ ◦BM1 = CM1 , since
B1 and C1 are obtained from BM1 and CM1 just by omitting M.

Case 2 The sibling w is a node or site shared between A0 and A1. Then because
BM1 ◦A1 = B0 ◦AM0 , we have A1(w) = i ∈ m1, where i is a sibling of M in BM1 .
Extend C1 to CM1 by adding M as a sibling of the site i. Then again (C0, C

M
1 ) is

a bound in (b), and we proceed exactly as in the previous case.

Proposition 7.16 (second pushout variation) Let ~B be a bound for ~A in ´PLGh(KM).
Let a fresh place node M be added to both members of ~A, yielding ~AM such that ~B is
also a bound for ~AM, and with AM0 (M) a node (not a root). Then

(1) If ~B is a pushout for ~A, it is also a pushout for ~AM.

(2) Let M have a sibling w in both AM0 and AM1 . Then if ~B is a pushout for ~An, it is
also a pushout for ~A.

A0

B1B0

C1C0 Ĉ

A1

C1C0 Ĉ

AM1

B1B0

AM0

(a) (b)

Proof Recall that to establish ~B as a pushout in either direction we need only exhibit a
mediator for each arbitrary bound, since the epi property ensures unicity of a mediator.

(1) Assume that ~B is a pushout for ~A, diagram (a). Let ~C be an arbitrary bound for
~AM, diagram (b). Then, since ~A are formed by omitting M from both of ~A, ~C is also

a bound for ~A. Hence a mediator Ĉ exists as shown in (a). Trivially, Ĉ is also the
required mediator in (b).

(2) Assume that ~B is a pushout for ~AM, diagram (b). Let ~C be an arbitrary bound for
~A, diagram (a). Using the shared sibling w of M, we shall show that ~C is also a bound
for ~AM. It suffices to prove that (C0 ◦AM0 )(M) = (C1 ◦AM1 )(M). We calculate:

(C0 ◦AM0 )(M) = (C0 ◦AM0 )(w) = (C0 ◦A0)(w)
= (C1 ◦A1)(w) = (C1 ◦AM1 )(w) = (C1 ◦AM1 )(M) .

Now, since ~B is a pushout in (b), there is a mediator Ĉ in (b) as shown. Trivially, Ĉ is
again a mediator in (a), ensuring that ~B is indeed a pushout in (a) as required.
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A.2 Proofs for link graphs
We begin by justifying the construction of RPOs for link graphs given in Section 8. We
first repeat the construction, for convenience.

Construction 8.8 (RPOs in link graphs) We construct an RPO ( ~B : ~X→ X̂, B : X̂→Z)

for a pair ~A : W → ~X of link graphs relative to a bound ~D : ~X→Z in three stages.
Since RPOs are preserved by isomorphism, we assume X0, X1 disjoint. We use the
notational conventions introduced above.

nodes and edges: If Vi are the nodes of Ai (i = 0, 1) then the nodes of Di are
Vı \V2 ∪· V3 for some V3. Define the nodes of Bi and B to be Vı \V2 (i = 0, 1) and
V3 respectively. Edges Ei are treated exactly analogously, and ports Pi inherit the
analogous treatment from nodes.

interface: Construct the shared codomain X̂ of ~B as follows. First, define the names
in each Xi that must be mapped into X̂:

X ′i
def
= {x ∈ Xi | Di(x) ∈ P3 ∪· Z} .

Next, on the disjoint sum X ′0 +X ′1, define ∼= to be the smallest equivalence for which
(0, x0) ∼= (1, x1) whenever Ai(p) = xi (i = 0, 1) for some point p ∈ W ∪· P2. Then
define the codomain up to isomorphism by

X̂
def
= (X ′0 +X ′1)/∼= .

For each x ∈ X ′i , denote the ∼=-equivalence class of (i, x) by î, x.

parents: Define B0 to simulate D0 as far as possible (B1 is similar):

for x ∈ X0 : B0(x)
def
=

{
0̂, x if x ∈ X ′0
D0(x) if x /∈ X ′0

for p ∈ P1\P2 : B0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

Finally define B, to simulate both D0 and D1:

for x̂ ∈ X̂ : B(x̂)
def
= Di(x) where x ∈ Xi and î, x = x̂

for p ∈ P3 : B(p)
def
= Di(p) .

The soundness of this definition can be checked in the same way as for Construction 7.7
for place graph RPOs. Next, we show that

Lemma A.3 ( ~B,B) is a candidate RPO for ~A relative to ~D.

Proof To prove B0 ◦A0 = B1 ◦A1, by symmetry it will be enough to consider cases
for p ∈W ∪· P0, and for the value of A0(p).
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Case p ∈ P0 \P2, A0(p) = e ∈ E0. Then (B1 ◦A1)(p) = B1(p) = D1(p) =
(D1 ◦A1)(p) = (D0 ◦A0)(p) = A0(p) = (B0 ◦A0)(p).

Case p ∈ P0\P2, A0(p) = x0 ∈ X0. Then (B1 ◦A1)(p) = B1(p) = x̂0 = B0(x0) =
(B0 ◦A0)(p).

Case p ∈ ` ∪· P2, A0(p) = e ∈ E0 \E2. Then (B0 ◦A0)(p) = A0(p) = e. Also
(D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so for some x1 ∈ X1 we have A1(p) = x1 and
D1(x1) = e, hence x1 /∈ X ′1. Then (B1 ◦A1)(p) = B1(x1) = D1(x1) = e.

Case p ∈ ` ∪· P2, A0(p) = e ∈ E2. Then (D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so also
A1(p) = e. Hence (B1 ◦A1)(p) = e = (B0 ◦A0)(p).

Case p ∈ ` ∪· P2, A0(p) = x0 ∈ X ′0. Then D0(x0) ∈ E3 ∪· Z, and so (D1 ◦A1)(p) =
(D0 ◦A0)(p) ∈ E3 ∪· Z; hence for some x1 ∈ X ′1 we have A1(p) = x1 and D1(x1) =
D0(x0). Hence (B0 ◦A0)(p) = B0(x0) = D0(x0) = D1(x1) = B1(x1) = (B1 ◦A1)(p).

Case p ∈ W ∪· P2, A0(p) = x0 ∈ X0 \X ′0. Then D0(x0) = e ∈ E1 \E2; hence
(D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so A1(p) = e. So (B1 ◦A1)(p) = e = D0(r0) =
B0(x0) = (B0 ◦A0)(p).

We now prove B ◦B0 = D0 by case analysis.

Case x ∈ X ′0. Then (B ◦B0)(x) = B(0̂, x) = D0(x).

Case x ∈ X0\X ′0. Then B0(x) = D0(x) ∈ E0\E2, hence (B ◦B0)(x) = D0(x).

Case p ∈ P1\P2, D0(p) ∈ E1\E2. Since D0 ◦A0 = D1 ◦A1 we have A1(p) /∈ X1,
so B0(p) = D0(p) ∈ E1\E2; hence (B ◦B0)(p) = B0(p) = D0(p).

Case p ∈ P1\P2, D0(p) ∈ E3 ∪· Z. Since D0 ◦A0 = D1 ◦A1 there exists x ∈ X1

with A1(p) = x; moreover we readily deduce x ∈ X ′1, so B0(p) = 1̂, x. Hence
(B ◦B0)(p) = B(1̂, x) = D1(x) = (D1 ◦A1)(p) = (D0 ◦A0)(p) = D0(p).

Case p ∈ P3. Then (B ◦B0)(p) = B(p) = D0(p).

We are now ready to prove the theorem justifying our construction:

Theorem 8.9 (RPOs in link graphs) In ´LIG, Whenever a pair ~A of link graphs
has a bound ~D, there exists an RPO ( ~B,B) for ~B relative to ~D, and Construction 8.8
yields such an RPO.

Proof We have already proved that the triple ( ~B,B) built in Construction 8.8 is an
RPO candidate. Now consider any other candidate ( ~C,C) with intervening interface
Y . Ci has nodes Vı\V2 ∪· V4 (i = 0, 1) and C has nodes V5, where V4 ∪· V5 = V3. We
have to construct a unique mediating arrow Ĉ, as shown in the diagram.
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C0

Ĉ
X1X0

C1

B

B1

D0 D1

A1

Z

B0

A0

X̂

C

Y

We define Ĉ with nodes V4 as follows:

for x̂ = î, x ∈ X̂ : Ĉ(x̂)
def
= Ci(x)

for p ∈ P4 : Ĉ(p)
def
= Ci(p) .

Note that the equations Ĉ ◦Bi = Ci (i = 0, 1) determine Ĉ uniquely, since they force
the above definition. We now prove the equations (considering i = 0):

Case x ∈ X ′0. Then (Ĉ ◦B0)(x) = Ĉ(0̂, x) = C0(x).

Case x ∈ X0\X ′0. Then D0(x) ∈ E1\E2, so B0(x) = D0(x), hence (Ĉ ◦B0)(x) =
D0(x). Also since C ◦C0 = D0 ∈ E1\E2 we have C0(x) = D0(x).

Case p ∈ P1\P2, D0(p) ∈ E1\E2. Since D0 ◦A0 = D1 ◦A1 we have A1(p) /∈ X1,
so B0(p) = D0(p), hence (Ĉ ◦B0)(p) = D0(p). Also C0(p) = (C ◦C0)(p) = D0(p).

Case p ∈ P1\P2, D0(p) ∈ E3 ∪· Z. Then A1(v) = x ∈ X ′1 with D1(x) = D0(p),
and B0(p) = 1̂, x. So (Ĉ ◦B0)(p) = Ĉ(1̂, x) = C1(x) = (C0 ◦A0)(p) = C0(p).

Case p ∈ P4. Then (Ĉ ◦B0)(p) = Ĉ(p) = C0(p).

It remains to prove that C ◦ Ĉ = B. The following cases suffice:

Case x̂ = 0̂, x ∈ X , B(x̂) ∈ E4. Then (C ◦ Ĉ)(x̂) = Ĉ(x̂) = C0(x) = D0(x) =
B(x̂).

Case x̂ = 0̂, x ∈ X , B(x̂) ∈ E5 ∪· Z. Then D0(x) = B(x̂) ∈ E5 ∪· Z, so for
some y ∈ Y we have C0(x) = y and C(y) = B(x̂). But by definition Ĉ(x̂) = y, so
(C ◦ Ĉ)(x̂) = C(y) = (C ◦C0)(x) = D0(x) = B(x̂).

Case p ∈ P4, B(v) ∈ E4. Then (C ◦ Ĉ)(p) = Ĉ(p) = C0(p) = D0(p) = B(p).

Case p ∈ P4, B(p) ∈ E5 ∪· Z. Then B(p) = D0(p) = C(y), where C0(p) = y ∈ Y ,
and by definition Ĉ(p) = C0(p), so (C ◦ Ĉ)(p) = C(y) = B(p).

Case p ∈ P5. Then (C ◦ Ĉ)(p) = C(p) = D0(p) = B(p).

Hence Ĉ is the required unique mediator; so ( ~B,B) is an RPO.
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A.3 Proofs for a basic BRS
. We give here the proof of Proposition 14.9, that place equivalence respects the transi-
tion system FPE in a basic BRS. We begin with a technical lemma that shows how the
pushout-pair underlying a transition of an agent a is affected by the addition or removal
of a single place node in a. This lemma invokes Propositions 7.15 and 7.16, which are
proved in Appendix A.1.

In the following we write G >M F to mean that G is formed from F by adding a
single place node.

Lemma A.4 Let a >M a. Then

(1) If diagram (a) underlies an L-transition of a, then a has an L-transition based
upon either diagram (b) with d >M d, or diagram (c) with D >M D.

(2) For every L-transition of a, the underlying pushout pair takes the form of either
diagram (b) or diagram (c), such that there is a corresponding L-transition of a
based upon diagram (a) where either d >M d, or respectively D >M D.

(a)

(b)

(c)

Lpar Lred

Dpar Da

d idW⊗R

Lpar Lred

Dpar Da

d idW⊗R

Lpar Lred

Dpar Da

d idW⊗R

JI

JI

JI

Proof In either case, let Mu be the place node added to a to form a. Then Mu has a
sibling node, say u, in a.

(1) Assume an L-transition of a based upon diagram (a). There are three cases accord-
ing to where else u occurs in the diagram.

Case 1 The node u occurs in the parameter d. Then form d >M d by setting d(Mu)
def
=

d(u). Clearly diagram (b) commutes, and by Proposition 7.16(1) the new left-
hand square is a pushout; so the diagram underlies an L-transition of a.

Case 2 The node u occurs in both Dpar and the redex R. Then because R is flat,
we have R(u) = j, a site in J . Form Dpar >M Dpar and D >M D by setting
Dpar(Mu)

def
= Dpar(u) and D(Mu)

def
= D(j). Then clearly diagram (c) commutes,

and by Proposition 7.15 each of the new squares is a pushout; so the diagram
underlies an L-transition of a.
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Case 3 The node u occurs in both Dpar and D. Then form Dpar >M Dpar and D >M
D by setting Dpar(Mu)

def
= Dpar(u) and D(Mu)

def
= D(u), and argue as in the

previous case that diagram (c) underlies an L-transition of a.

(2) Assume an L-transition of a, which contains Mu. In the underlying pushout pair Mu
cannot occur in the redex R; so it must occur either in the parameter only, or in both of
the two vertical arrows. Diagrams (b) and (c) represent these two cases, which we now
analyse separately.

Case 1 The transition is based upon (b), with Mu in d. Then since Mu has a sibling u
in a, by commutation it must also have u as a sibling in d. So by omitting Mu
from d we obtain a well-formed parameter d, and we also obtain a commuting
diagram (a).

This diagram differs from (b) only in the left-hand square. Since u is a shared
sibling of Mu in a and d, we invoke Proposition 7.16(2), showing that this new
square is a pushout, so diagram (a) underlies an L-transition of a.

Case 2 The transition is based upon (c), with Mu in both Dpar and D. Then, since Mu
has a sibling u in a, by commutation it must also have a sibling inDpar and inD.
(This sibling may be u, or it may be a site.) So by omitting Mu from Dpar and
D we obtain a well-formed arrows Dpar and D, and we also obtain a commuting
diagram (a).

We now invoke Proposition 7.15 for each square in turn, showing that this dia-
gram is a pushout-pair, so diagram (a) underlies an Ltransition of a.

Note that this lemma made use of flatness.
We can now prove the property that justifies our taking the quotient of hard place

graphs by place equivalence.

Proposition 14.9 (place equivalence respects FPE) In any basic BRS with all re-
dexes M-free, place equivalence respects FPE transitions.

Proof Let a L
. a′ be an FPE transition. We have three things to prove:

(1) We must show that if a ≡M b and L ◦ b is defined, then for some b′ ≡M a′ we
have b L

. b′. It will be enough to prove this for the cases a >M b and b >M a.
Now Lemma A.4 assures us of a transition b L

. b′ whose underlying pushout pair
has arrows agreeing with those for a only by place equivalence. Moreover, for any
instantiation % we can easily verify that d ≡M e ⇒ %(d) ≡M %(e). Putting these two
together, we find that b′ ≡M a′ as required.

(2) Now let M be another label such that L ≡M M — i.e. Lpar ≡M Mpar and Lred =
M red — and M ◦a is defined. We have to show that for some a′′ ≡M a′ we have
a M

. a′′. It will suffice to prove this for the simple case when Lpar >M Mpar or
Lpar <M Mpar.

Now by Corollary 14.8 we have Lpar = id ⊗ d1, where d1 is the tensor product of
some prime factors of d, the parameter underlying the transition of a. Then M par can
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only be idH⊗e1 where d1 >M e1 or d1 <M e1, and if we form a new discrete parameter
e from d by replacing (the factors) d1 by the new factors e1, then by Proposition 7.15
(in one or other direction), together with the property of instantiations already noted,
we indeed obtain a pushout pair underlying a transition a M

. a′′ with a′′ ≡M a′, as
required.

(3) Finally, we must check that if a L
. a′ is an engaged transition, then so is the new

transition b M
. b′ generated in cases (1) and (2) by adding or subtracting place nodes

in a and L respectively. We need only note that any node shared between a and the
redex R cannot be a place node (since R has none), and that the construction changes
a by place nodes only, leaving R unchanged. This completes the proof.
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