
Technical Report
Number 558

Computer Laboratory

UCAM-CL-TR-558
ISSN 1476-2986

A role and context based security
model

Yolanta Beresnevichiene

January 2003

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2003 Yolanta Beresnevichiene

This technical report is based on a dissertation submitted June
2000 by the author for the degree of Doctor of Philosophy to the
University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Abstract

Security requirements approached at the enterprise level initiate the need for models
that capture the organisational and distributed aspects of information usage. Such mod-
els have to express organisation-specific security policies and internal controls aiming to
protect information against unauthorised access and modification, and against usage of
information for unintended purposes. This dissertation describes a systematic approach
to modelling the security requirements from the perspective of job functions and tasks
performed in an organisation. It deals with the design, analysis, and management of
security abstractions and mechanisms in a unified framework.

The basis of access control policy in this framework is formulated around a semantic
construct of a role. Roles are granted permissions according to the job functions that
exist in an organisation, and then users are assigned to roles on basis of their specific
job responsibilities. In order to ensure that permissions included in the roles are used
by users only for purposes corresponding to the organisation’s present business needs, a
novel approach of “active” context-based access control is proposed. The usage of role
permissions in this approach is controlled according to the emerging context associated
with progress of various tasks in the organisation.

The work explores formally the security properties of the established model, in par-
ticular, support for separation of duty and least privilege principles that are important
requirements in many commercial systems. Results have implications for understanding
different variations of separation of duty policy that are currently used in role-based access
control.

Finally, a design architecture of the defined security model is presented detailing the
components and processing phases required for successful application of the model to
distributed computer environments. The model provides opportunities for the imple-
menters, based on application requirements, to choose between several alternative design
approaches.

3

4

Contents

1 Introduction 9
1.1 Secure System . 9
1.2 Representation of Reality . 9
1.3 Research Motivation . 10
1.4 Research Statement . 10
1.5 Outline of Dissertation . 10

2 Security Models and Organisation 11
2.1 Introduction . 11
2.2 Security Goals . 11
2.3 Modelling of Security . 11

2.3.1 Access Rights . 12
2.3.2 Ease of Administration . 12
2.3.3 Expressing Policies . 13

2.4 Organisational Requirements . 13
2.4.1 Structure and Activities . 13
2.4.2 Security Policies . 13

2.5 An Alternative - Role-Based Controls . 14
2.6 Related Work . 15
2.7 Emerging Areas . 16

2.7.1 Security Constraints . 16
2.7.2 “Active” Control . 16

2.8 Conclusions . 17

3 Basic Framework 19
3.1 Introduction . 19
3.2 Basic Strategy . 19

3.2.1 Subjects and Objects . 19
3.2.2 Permissions . 20

3.3 Concept of a Role . 21
3.3.1 User-Role Authorisations . 21
3.3.2 Groups and Roles . 22

3.4 Role Organisation . 24
3.4.1 Identifying Role Types . 24
3.4.2 Constructing the Role Hierarchy . 25

3.5 Authorisation State . 26

5

3.6 Access Granting Rules . 27

3.7 Conclusions . 28

4 Security Constraints 31

4.1 Introduction . 31

4.2 Separation of Duty Requirements . 31

4.2.1 Taxonomy . 33

4.3 Mutual Exclusion of Roles . 35

4.3.1 Authorisation-Time Exclusion . 35

4.3.2 Activation-Time Exclusion . 36

4.3.3 The Effects on Permission Distribution 36

4.3.4 Complete Exclusion . 36

4.3.5 Constraints on Hierarchies . 37

4.4 Critical Combinations of Operations . 39

4.5 Conflicting Datasets . 41

4.5.1 Chinese Walls . 41

4.5.2 Object-based SoD Constraints . 42

4.6 Other Security Constraints . 43

4.6.1 Conflicts Among Users . 44

4.6.2 Cardinality . 44

4.7 Conclusions . 44

5 Context-Based Authorisations 47

5.1 Introduction . 47

5.2 Background . 47

5.2.1 The Subject-Object View . 47

5.2.2 “Active” Access Control . 48

5.2.3 Processing of Tasks . 48

5.2.4 Related Work . 49

5.3 Task-based Authorisations . 49

5.3.1 The Construction of Tasks . 50

5.3.2 Authorisation Templates . 51

5.3.3 Authorisation Tokens . 51

5.3.4 Enabled and Disabled Permissions of Roles 52

5.3.5 History-Based Separation of Duty 53

5.3.6 Denied Users . 54

5.4 Implications to the Basic Framework . 55

5.4.1 Authorisation State . 55

5.4.2 Access Granting Rules . 56

5.5 Discussion - Context Provision . 56

5.5.1 Transactional Workflow Systems . 56

5.5.2 Auditing Systems . 59

5.6 Conclusions . 59

6

6 Design and Implementation 61
6.1 Introduction . 61
6.2 Authorisation Database . 61
6.3 Design Architecture . 62
6.4 Processing Phases . 64
6.5 Authorisation and Administration Phase 65

6.5.1 Revocation of Authorisations . 65
6.5.2 Delegation of Role Authorisations 66
6.5.3 Auditing . 66

6.6 Activation Phase . 66
6.6.1 Session Manager . 67
6.6.2 Activation of Roles . 68
6.6.3 Multiple Sessions . 68
6.6.4 Activation Manager . 69

6.7 Enforcement Phase . 70
6.7.1 Permission Authorisation Service 70
6.7.2 Access Manager . 71

6.8 Conclusions . 71

7 Authentication 73
7.1 Introduction . 73
7.2 Authentication in Distributed Systems . 73
7.3 Ticket-based Approach . 74
7.4 Certificate-based Approach . 75
7.5 Authentication Architecture . 76
7.6 Generating and Managing Certificates . 77

7.6.1 Format . 77
7.6.2 Life-Time . 77
7.6.3 Distribution . 78

7.7 Authentication Across Domains . 79
7.8 Conclusions . 79

8 Conclusions 81
8.1 Summary . 81
8.2 Further Work . 82

7

8

Chapter 1

Introduction

1.1 Secure System

Information is an asset for every organisation. The constantly increasing impact of com-
puter systems on the functioning of organisations results in concerns about threats to the
information usage. Unfortunately, some basic characteristics of computer systems, that
provide overall availability of data and system services, imply risks to information. The
inability of computer system to protect the confidentiality and integrity of information
may cause serious financial and legal problems in an organisation.

These concerns have all contributed to security, approached from an information-
oriented perspective, becoming an important issue in a computer system. The primarily
objectives of the security model presented in this work are expressed in terms of protecting
information against the unauthorised access and modification, and against the usage of
information for unintended purposes.

1.2 Representation of Reality

In order to be helpful and not misleading, security models must be developed not just
from the formed preconceptions about the security issues in computer systems, but by
examining the security requirements arising from the context of some operational and
threat environment. The concepts and principles associated with developing a security
model must reflect the characteristics of this environment.

Many existing security models focus on expressing the requirements that must hold
within the components internal to a computer system. This approach has contributed
to the development of effective mechanisms and tools for implementing internal security
specifications within computers. However, the view taken from an organisation that owns
a computer system expresses different needs and trends. The emphasis here is on policy-
oriented as opposed to mechanism-oriented abstractions and facilities. The emerging
security concerns require to represent various authorisation and control policies related
to job functions and business activities that operate within a distributed computing en-
vironment.

9

1.3 Research Motivation

The traditional security models have been formulated at too low level of abstraction to
be useful for modelling the security requirements that express the organisational and dis-
tributed aspects of information usage. In particular, these models are primarily concerned
with security aspects of internal data components and related rules of low level opera-
tions, and thus lack the constructs necessary to model the job function-related controls
and activity-related authorisations.

Although the work towards formulating the conceptual foundations of higher-abstraction
level security models has advanced with recent research efforts, this dissertation was mo-
tivated by the need to deal with many related security issues of an organisational level in
a unified framework.

1.4 Research Statement

This work proposes a security model for access control and authorisation management.
It captures the security requirements that arise from an organisational context where
responsibilities are divided according to roles and activities are undertaken within tasks.
The aim is to produce a clear and versatile model that provides the abstractions and
mechanisms to (a) model and enforce access control from the perspective of roles, (b)
actively manage authorisations in the context of business activities, and (c) support the
issues of distributed environment.

1.5 Outline of Dissertation

Chapter 2 considers organisational requirements for security models. It gives motivations
for the role-based modelling of security and argues the necessity for contextual interpre-
tation during the enforcement of security.

Chapter 3 outlines the basic framework of our access control model. It presents es-
sential concepts, definitions of the main entities, and formal specifications of mapping
functions and access granting rules.

Chapter 4 analyses security constraints necessary to enforce organisational security
policies of separation of duty and Chinese Walls within the framework presented in chap-
ter 3.

Chapter 5 introduces context-based authorisations as means to control the activation
of role-related rights from the perspective of progressing tasks. The mechanisms are de-
scribed that make it possible to interwork with transactional workflows, and that provide
for the dynamic enforcement of access control.

Chapter 6 proposes a design architecture for application of the defined security model
into computer systems. It also gives detailed description of the entities involved in each
of the three processing phases associated with the design.

Chapter 7 looks at authentication, as one of the fundamental concerns when applying
the proposed architecture to distributed computing environments.

Chapter 8 summarises the research results and suggests further work.

10

Chapter 2

Security Models and Organisation

2.1 Introduction

This chapter discusses requirements for security models. In particular, we concentrate
upon security concerns of commercial organisations, that are characterised by a dynamic
environment of activities being accomplished according to the task fulfilment responsi-
bilities and the actual business processing. In the following sections we derive the set of
requirements arising from an organisational level, and motivate the need for role-based
control and contextual interpretation within a security model.

2.2 Security Goals

Any modelling of the computer system’s security must be towards reaching the security
goals. The main objectives of security concentrate upon protecting information from
unauthorised disclosure and preventing unauthorised actions and improper modification
of information.

Therefore, the essence of a security model must be to ensure that system users can
only gain access to those system resources, including information and programs, for which
they have proper authorisations1. The basis for these authorisations is mainly derived not
from the ability and trust placed upon a user, but from a legitimate need to access the
resources. The needs are formulated in advance by analysing and modelling requirements,
that originate in a realistic computing and organisational environment.

2.3 Modelling of Security

It is widely recognised that security requirements can be viewed at different levels of
abstraction. LaPadula and Williams [LW 91] proposed a layered taxonomy of stages
where the security requirements at higher levels can be refined and elaborated to lower
levels. Starting with the highest level, these include:

1. Trust Objectives: the basic organisational security objectives to be achieved by a
system.

1Providing user accountability for their authorised actions is another important goal.

11

2. External-Interface Requirements: the system’s interface to the environment, in terms
of the security requirements.

3. Internal Requirements: the requirements that must hold within the components
internal to a system.

4. Rules of Operation: the rules that explain how internal requirements are enforced.

5. Functional Design: a functional description of the behaviour of system components.

The security requirements of a system at stages 1 and 2 are at much higher level of
abstraction than those at stages 3, 4, and 5. The higher stages specify what needs to
be done, and these get refined into detailed executable specifications that deal with how
things are to be done.

Given these stages of elaboration, one can formulate security models for each of these
stages, as well as classify existing models as to where they belong. Therefore, at the
highest level there are security models that capture elements of organisational policies and
requirements that pertain to security. These requirements are, through interfaces, refined
and captured by tools and mechanisms in computer-oriented implementation models.

Previous or traditional development has been aimed at specifying and implementing
internal mechanisms based on a computer-oriented policy. Traditional approaches are
of two categories, mandatory and discretionary, depending on the type of policy they
apply. Mandatory approach restricts the access of users to the information on the basis of
security levels and classification of subjects and objects to these levels. In a discretionary
approach access is based on a user’s identity and users are permitted to allow or disallow
other users access to objects under their control.

Although both discretionary and mandatory models have been successfully used, there
is a need for richer and more flexible security models. This need is motivated by different
requirements arising from the organisational level, namely those placed upon the specifi-
cation and administration of access rights, and the means for expressing versatile security
policies.

2.3.1 Access Rights

The common characteristic of traditional approaches is that they operate using simple
access modes such as read, write, execute, that control access at the operating system
level. At the application level, however, one would like to see access rights which relate
to richer and more complex operations. On this level information is manipulated with
transactions such as issue the invoice, authorise payment, debit or credit an account.
These transactions embody access rights specified on a functional basis.

2.3.2 Ease of Administration

The administration of access rights in computer-oriented models is performed at the level
of individual subjects and objects. Administrators distribute and review user access
rights to individual objects. Instead of simply assigning or removing a user to or from
a functional position in an organisation, an administrator has to access low level system

12

objects and change access right to them. This often creates administrative confusion and
errors.

2.3.3 Expressing Policies

Traditional approaches are oriented towards specific environments that do not support
a larger variety of security policies. Mandatory policies are mostly useful for rigid re-
quirements, like those of the military environment. Discretionary policies, on the other
hand, rely on co-operation of users, arising from requirements of an academic environ-
ment. As noted by Clark and Wilson [CW 87], neither approach can effectively express
many practical requirements, especially on provision and maintenance of integrity, arising
in commercial organisations.

2.4 Organisational Requirements

This work attempts to bridge the gap between the internal requirements and higher
stages of elaboration. It is intended to model organisation-specific security requirements.
Usually such a security model is context dependent. An appropriate security model can
be designed only when it is known for what sort of an organisation, for what structure and
policies it will be used. However, the aim is not to present a model which is applicable only
to the specific type of environments, but one which is general enough to capture common
aspects of security in many organisations and also is flexible enough ‘to incorporate unique
requirements of separate organisations.

The basis for organisational security models is derived from the structure of an organ-
isation and the form of activities it undertakes, as well as from an explicitly or implicitly
expressed security policy.

2.4.1 Structure and Activities

Organisational theory [TH 90] emphasises features common to all organisations: they all
operate by division of labour, or more generally, division of complexity. The primary
activity of an organisation, such as manufacturing of cars, clothes, etc., being a large
undertaking, is divided into smaller, more manageable, and co-ordinated tasks. The
division of activity produces many functional tasks that are performed in an organisation
on regular basis.

In any organisation larger than one person there is also division of work between
individuals. This division produces roles which individuals occupy. Each role defines the
responsibilities of the role member, and functions to be performed.

Role and task analysis of an organisation would therefore permit the expression of
functional requirements and dependencies, that form the basis for analysing possible con-
flicts in a security model.

2.4.2 Security Policies

In addition, each organisation formulates its security policy to state acceptable and un-
acceptable situations and values, and to express safeguards that ensure which authorised

13

individuals can access the specific information. It is commonly agreed [DMc 89] that
these elements of policy must be reflected in the design of an appropriate security model.

Although security policies differ in every organisation, there exists a number of fun-
damental security principles, particularly applicable within commercial security systems:

• Least Privilege: according Salzer and Schroeder [Sal 75] every program and every
user of the system should operate using the least set of privileges necessary to
complete the job;

• Separation of Duty: two or more different people should be responsible for the
completion of a task;

• Chinese Wall: people are only allowed access to information which is not held to
conflict with any other information that they already possess.

The intent of the first principle is to limit user’s access rights only to those that
are required to perform a particular function. The support of this principle within a
computer system reduces the number of privileges given to one user to a minimum, so
that unintentional, unwanted, or improper use of access rights are less likely to occur.

The purpose of the second principle is to prevent fraud by separating a task into
subparts and spreading the responsibility of each subpart over multiple people. Salzer and
Schroeder [Sal 75] credited R. Needham for making the following observation: a protection
mechanism that requires two keys to unlock is more robust and flexible than one that
requires only a single key. Committing a fraudulent act then requires the involvement
of more than one individual, making no single accident, deception, or breach of trust
sufficient to compromise the system’s security.

The Chinese Wall policy can be most easily visualised as the code of practice that must
be followed by a market analyst working for a financial institution providing corporate
business services. Such an analyst must uphold the confidentiality of the information
provided to him by company’s clients; this means that he cannot advise corporations
where he has insider knowledge about a competitor. However, the analyst is free to
advise corporations that are not held in competition with each other.

A security model must also provide means for expressing seniority in an organisation,
mechanisms to allow a user to delegate a role or privilege to another user in case of absence
or election (a deputy member), and methods to enforce various prerequisite conditions
such as that of the duty officer, when a position must be occupied by one person at a
time, different from the previous one.

2.5 An Alternative - Role-Based Controls

In the recent study of access control requirements in organisations conducted by the
National Institute of Standards and Technology (NIST) [FGL 93], it has been found that
access control decisions were based on “the roles individual users take on as part of an
organisation”. For example, the roles an individual associated with a hospital can assume
include among others doctor, nurse, and a clinician. Roles in a bank include teller, loan
officer, and an accountant.

14

When roles are introduced at the application level to control access to the application
data, they offer an excellent opportunity to realise benefits in securing organisation’s in-
formation assets, similar to the benefits of employing databases instead of files as the data
storage system. Roles consolidate scattered access rights into a unified service which can
be better managed while providing the flexibility and customisation required by individual
applications.

Over the past years roles and role-based access control (RBAC) has been used in a
variety of forms for computer systems security. Earlier work presented the proposals for
incorporating roles into the existing security mechanisms, such as usage of mandatory
controls and type enforcement [Thom 91], extensions to SQL security system and access
control lists (ACLs) [Bal 90], and creation of a subset of trusted systems [Ste 92]. Intro-
duction of roles at access control level draw attention to many security issues not covered
by the traditional mechanisms and as such role-based access control has been separated
into a policy-neutral alternative to classical discretionary and mandatory access controls.

Recently the definitions of basic concepts and main features involved in role-based ac-
cess control were described by Ferraiolo et al [FKC 95, FK 92] and Sandhu et al [SCFY 96].
RBAC regulates the access of users to information and system resources on the basis of the
particular function a user is allowed to perform in an organisation. Instead of specifying
access rights for each individual user, access authorisations to objects, called permissions,
are associated with roles. Roles are then allocated to users according to the current func-
tionality requirements. Since the variety of roles is relatively persistent with respect to
user turn-over and function re-assignment, RBAC provides a powerful mechanism for re-
ducing the complexity, cost, and potential for error when administering access rights in a
computer system. These advantages of RBAC have been extensively analysed by Gligor
and Lorenz [GL 95] and many others.

Various new proposals have emerged targeting specific issues in role-based access con-
trol. In the next section we give a short overview of the previous and current work on
role-based access control. We then proceed to indicate the emerging areas that we think
are particularly in need for further consideration.

2.6 Related Work

Demurjian et al [DTHD 96, DTH 94, DTH 92] first proposed to implement role-based se-
curity in an object-oriented data model. Their approach was to exploit the object-oriented
paradigm to organise user-roles and their permissions. A framework was presented for
organising users into a user-role definition hierarchy.

Several proposals have concentrated on a formal approach to describe role configura-
tion. Giuri [GI 95] presented an alternative definition of a role as a named set of protection
domains (NSPD). A formal model for managing NSPDs and a formal specification of its
semantics was introduced that takes into account the capability to support security con-
straints. Nyanchama and Osborn [NyOs 94] described a formal semantics for expressing
role relationships. The role graph model with its operator semantics and algorithms based
on graph theory was proposed to organise roles. The work built an extensive framework
for organising and managing many different role relationships.

The initiative started by NIST resulted not only in describing the main features of role-
based access control [FKC 95], but also in isolating several fundamental issues of RBAC.

15

Because roles within an organisation typically have overlapping permissions, RBAC has
to include some means to establish and maintain role hierarchies, where a role can in-
clude the permissions of other roles. Role hierarchies have been extensively discussed
by Jansen [Jan 98] and Sandhu [SA 98]. Another fundamental aspect of RBAC is spec-
ification of security constraints required to enforce a particular organisational security
policy. The importance of constraints in RBAC has been recognised both by Sandhu et
al in [SCFY 96] and Ferraiolo et al in [FKC 95], but beyond that they have not received
much attention in the research literature.

2.7 Emerging Areas

The aim in this work is to present a security model that includes the basic elements
of RBAC, and that in addition extends RBAC with novel features that have not been
addressed previously. Two main emerging areas are enforcement of security constraints
and support for an “active” approach to access control.

2.7.1 Security Constraints

Authorisation constraints are an important aspect of access control and are a powerful
mechanism for laying out higher level organisational policy. With the help of constraints
the designers can lay out a broad scope of what is acceptable, and make it across ad-
ministration domains. Unfortunately, the analysis and enforcement of constraints within
role-based security systems has been only preliminary and tentative.

In describing our security model we particularly focus on specification and enforcement
of constraints. The objective is to present a constraint specification framework that
provides for the support of the fundamental security principles indicated in section 2.4.2.
We will treat constraints as invariants that should hold at all times, and specify them
formally using first order predicate logic.

2.7.2 “Active” Control

While discussing the major risks for information systems in organisations, Holbein and
Teufel [HT 95] noted that an extended support should be provided for ensuring that in-
formation in a computer system is accessed and modified only for intended purposes.
The misuse of allocated access rights by authorised users for purposes that are neither
intended nor acceptable by an owner of information (in our case, an organisation) rep-
resents a serious breach of security. Several studies during the last years [CSRB 92] also
confirm that the major threats to information are caused not by outside attackers, but
by internal persons in the organisation who are authorised and in confidence.

The need to access the information and programs depends on the current business
activities in an organisation which imply that a particular task must be fulfilled, e.g. an
order must be verified, or shipment of an ordered product must be done. Therefore, acti-
vation of allocated permissions by authorised users must correspond to the organisation’s
current business transactions. This implies, that permissions should not persist beyond
the time that they are required for performance of a task. In order to support the timely
revocation of permissions a security model has to provide mechanisms that recognise the

16

overall context in which security requests arise and take an active part in the management
of security as it relates to the progress and emerging context within tasks.

Our intention in this work is to show that RBAC framework can be extended further
so that in result the security model provides for the support of “active” access control.

2.8 Conclusions

In this chapter we have reasoned that there exists a need to model security at the organ-
isational level. The security requirements at this level arise from dependencies between
job positions and task fulfilment responsibilities. Such requirements cannot be expressed
just by computer-level operations and mechanisms implemented in traditional security
models. An alternative, more flexible approach was considered where the central view of
security moves from the concrete subjects and objects to higher abstractions refereed by
roles and tasks. With the help of roles access needs in an organisation can be easily man-
aged. In addition, contextual interpretation of progressing tasks can be used to prevent
unintended usage of access rights embodied in roles.

17

18

Chapter 3

Basic Framework

3.1 Introduction

In the previous chapter an alternative approach to access control was highlighted, which
is flexible, policy independent, and closely reflects the versatile environments of organisa-
tions. A role was introduced as the basic construct of this approach.

A role is usually seen as a job position or a named job function performed within an
organisation that embodies authority, responsibility, or competency [FK 92, SCFY 96].
In a security model, a role is used to represent job related access rights which can then
be authorised to users as a single unit. A role must exist as an entity separate from the
specific role holder, and be equipped with sufficient functionality to enable an authorised
user to achieve its associated duty requirements.

In this chapter we give the precise definition of a role and of other entities that form
the basis of a Role and Context Based Security (RCBS) model that is presented in this
work. We also introduce the formal notation which will be used to formally specify
rules and properties of the model throughout the rest of this work. The formalisms are
described using the first-order predicate logic, the detailed overview of which can be found
in [ML 93].

3.2 Basic Strategy

When designing an access control model, the first issues that must be addressed are the
definitions of subjects and objects, and the types of access provided by the system.

3.2.1 Subjects and Objects

In respect to the RCBS model we define two types of subjects: the users of the system
and the transactions that execute on behalf of those users. Users can access objects only
by executing transactions on these objects.

A transaction here refers to the transformation procedure (a program, or a set of exe-
cutable operations), which upon invocation manipulates data items or causes consumption
of a system resource. The behaviour of the transaction and the type of data it can operate
on are determined at design time. A transaction embodies different methods and gran-
ularity than simple access modes do, as can be seen in the following example. Tellers in

19

Permissions

.

OBJECTS

.

.
2

n

1

Transaction

Transaction

Transaction

Figure 3.1: Permissions.

a bank are able to execute a savings deposit transaction, requiring read and write access
modes to the specific fields within a savings file. An account supervisor is allowed to
perform correction transactions, requiring the same read and write access modes to the
same file as the teller’s. The difference between these two transactions is in the whole
process executed and in the values written to the transaction log file.

3.2.2 Permissions

The system protection in an access control model is realised in terms of permissions 1. It
is generally accepted that a permission describes an approval of a particular access right
to an object or set of objects.

In presenting the RCBS model we are concerned with protecting computer system
resources and data from unauthorised access and modification by users of this system.
Since we have accepted that the only access rights the users have is to perform transac-
tions, a permission in this work is viewed as the right to execute a particular transaction
on a specific object from the defined set of objects (figure 3.1). For example, a permission
may authorise the use of a spread-sheet package on specific files, or the execution of an
“approve order” transaction for orders less than 1.000 pounds.

Definition 1 (Permission) A permission p is a pair < tr, objset >, where tr is the
transaction that operates on the given set of objects objset .

Let P denote the universal set of permissions, Tr the universal set of transactions,
and Obj the set of objects. We can define permission/transaction and permission/object
associations with the following mapping functions:

TrP (p) : P → Tr, gives the transaction associated with the given permission p,

1The term of a privilege is sometimes used instead of a permission.

20

ObP (p) : P → 2Obj, gives the set of objects associated with the given permission p.

In respect to the above definition permissions describe what a user is allowed to do,
and do not define what a particular transaction is authorised to do. The issue of correctly
processing transactions themselves is equivalent to proof of program correctness, while
assurance that they access only the authorised data may be provided by application of
internal security mechanisms 2. These areas are outside the scope of this work.

3.3 Concept of a Role

A role is formed by grouping permissions according to the logical and functional require-
ments which this role must represent. Each role has the name which uniquely identifies
this role in the system.

Definition 2 (Role) A role r is a pair < rname, rpset >, where rname is the role
name, and rpset is the set of role permissions.

Let R denote the universal set of roles. We express the mapping between roles and
permissions with a function:

PR(r) : R → 2P , which gives the set of permissions for the given role r.

While allocating permissions to roles the adherence to the principle of least privilege
should be ensured. This means that each role must be given no more permissions than
are necessary for its functional requirements. Although the proposed model supports the
implementation of this principle, it does not enforce the way this principle is applied. For
that, the nature of each job in an organisation must be examined and the minimum set
of permissions required for this job function determined. The role can then be restricted
to permissions only from the specified domain.

3.3.1 User-Role Authorisations

The permissions associated with a role are administered as a single unit such that autho-
risation to access a role puts all the role’s permissions at the disposal of an authorised user
and thus confers access rights grouped in the role to the user. A role acts as a gateway
to system permissions and accessible information, illustrated in figure 3.2.

Associated with each role is a user authorisation list. This list identifies the users who
are authorised to access the role.

Definition 3 (User Authorisation List) A user authorisation list UAL is of the form
[u1, u2, ..., un], where ui is the user identifier.

The authorisation of access rights for an individual user is accomplished at two levels:
either explicitly by assigning/revoking the user to/from an authorisation list of a role,

2Zakinthinos [Zak 93] presents a mechanism that implements the security principle of least privilege
for user processes.

21

Transactions

Lists

User
Authorisation

Users

Permissions

ROLES
Objects

Figure 3.2: User-Role-Permission Mapping.

or implicitly by inclusion/removal of permissions in the role to which the user is already
authorised.

Let U denote the set of user identifiers. Then a user authorisation list can also be
defined as the mapping function between roles and users:

UR(r) : R → 2U , which enumerates the users associated with the given role r.

Although each role is required to have a user authorisation list associated with it, in
some cases this list may be empty. (a) The permissions of a role may not be presently
used in the computer system. The role with this set of permissions can still exist, but not
be authorised to any user. (b) When hierarchies are defined for structuring of roles, the
permissions of the role can be authorised to users indirectly through permission inheritance
by other roles. A role will have an empty user authorisation list, but its permissions can
be used by users authorised to senior roles3.

3.3.2 Groups and Roles

In terms of user-role authorisation management, roles provide a superficial resemblance to
the established concept of user groups, which is widely used for access control purposes,
especially in association with access control lists (ACLs). It is, therefore, necessary to
clearly state the major differences between these two concepts (figure 3.3).

1. The primary purpose for creating groups is to collect users according to their re-
sponsibilities. Only later permissions are associated with groups of users.

In contrast, roles are created to collect unique sets of permissions, each being the set
of permissions necessary to carry out some associated duty responsibilities. Users
are then authorised to roles.

3The inheritance and indirect authorisation of permissions is discussed in more detail later in this
chapter.

22

UALs

group 1

group 2

group n

role 1 permission 1 user 1

permission 2

permission n

user 2

user n

role 2

role n

access control lists user authorisation lists

Groups Roles

users

users

users

permissions

permissions

permissions

ACLs

Figure 3.3: Groups and Roles.

2. A user, after being assigned to a group, is a member of this group at all times and
in all circumstances. At every login session to the system a user is a member of the
same previously assigned set of groups.

When enforcing role-based access controls the issue of role activation inevitably
arises. Even though a user is authorised to a role, he may not always need or be
allowed to act in that role. In this case at each login session the user could be using
a different set of roles 4.

An access control policy that uses groups and ACLs, and the one that is based on roles
and UALs can both be seen as equivalent from the point that each can be used to describe
the other. Given an access control policy of groups and ACLs an equivalent role-based
policy can be constructed by authorising a user to a role if that user is a member of a
group that maps to the same set of permissions as that of the role. On the other hand, a
role-based access control policy can be transformed to groups and ACLs by making the
user a member of the group and associating this group with the set of permissions that
were assigned to a role to which the user was authorised. Barkley [Bar 97] presents a
precise description of how such transformations can be accomplished.

The advantage of role-based control is that it eases the administration of permissions
because of the flexibility with which roles can be configured and reconfigured. Given that
permissions can be very fine-grained, roles offer means of managing then incrementally.
Permissions can be easily revoked/assigned to roles, without affecting user authorisations

4Management of sessions and role activation will be discussed in chapter 6.

23

to roles. This approach offers a simplification of the complexity of permission manage-
ment. Furthermore, in the next section we demonstrate that role relationships can be
easily captured in hierarchical structures, allowing for management and analysis of per-
mission distribution among roles.

3.4 Role Organisation

The exact configuration of roles addresses the issues of the specific field; role engineering
is usually employed to establish the possible set of roles in an application. Although the
content and structure of the final set of roles do not have direct implications on our model,
it is important to identify what structurings and primitives are applicable to creating roles
to be used by this model. In this section we present a generalised approach to different
types of roles and discuss methods to be used for role organisation.

3.4.1 Identifying Role Types

In any organisation larger than one person the division of work produces many roles with
differing responsibilities and job functions. Although the final set of roles depends on the
structure of a specific organisation, many different roles can be divided into user-roles and
functional roles.

An organisation consists of persons belonging to various administratively or physically
divided staff groups, such as a department, a division, or a project team, that are referred
as structural units. Various job positions and specific activities arising in structural units
of an organisation are represented by user-roles. A user-role is associated with users that
fill a job position or perform a specific activity, and permissions that describe this position
or activity.

In addition to user-roles, general functions such as that of an engineer or of a pro-
grammer may exists perhaps common to several structural units. These are represented
by functional roles. The only purpose of functional roles is to group permissions. In
principal, users are not directly assigned to them.

A functional role is often refined into other roles, either other functional roles or
user-roles, that are authorised to include its permissions. For example, in figure 3.4
the programmer’s role is specialised into the roles of system, application, and real-time
programmer.

Functional and user-roles can vary from location to location, and from project to
project. Usually they contain a common set of permissions and have additional permis-
sions that depend on their specific requirements. To define different roles for almost the
same function or job position would be redundant and lead to administrative confusion.
In order to avoid having many and unrelated role names for the same job functionality,
extensional roles are created. Roles are extended on basis of location, branch or project
where a particular function is fulfilled. For example, a functional role of a bank teller
may have extensional roles depending on the branch: a bank teller London and a bank
teller Cambridge; or the role of a system programmer may be involved in several projects
and additional permissions would be assigned to the extensional roles.

24

Programmer

Programmer

System
Programmer

Application
Programmer

Real-time

Figure 3.4: Specialisation of Roles.

3.4.2 Constructing the Role Hierarchy

In an organisation with a large number of diverse duty requirements, the number of
roles increases as new roles are defined to meet specific needs. Some of these roles (usu-
ally a large number) will have overlapping functions, and hence overlapping permissions.
Tracking the distribution of such permissions among roles can become a very complex
and tedious task. In order to simplify administration and analysis of permission dis-
tribution, it is important to have some means for organising the various roles. Such
structures of roles, defined by Baldwin [Bal 90] as privilege graphs and by Ferraiolo et
al [FKC 95, MD 94, SCFY 96] as role hierarchies, are often discussed alongside roles.

In this section we describe the essential properties that must hold in a role organisation
structure so as to offer a consistent permission distribution framework, and to provide the
basis for enforcement of security constraints, that will be presented in the next chapters.

The main concept that role organisation utilises is inheritance, when one role inherits
or includes permissions of other roles.

Definition 4 (Inheritance) An inheritance relation → is defined between two roles ri

and rj, denoted ri → rj, if and only if PR(ri) ⊆ PR(rj).

In this relation role rj is seen as a senior role, whereas ri is a junior role. In addition
to directly assigned permissions role rj indirectly contains the permissions of the junior
role ri. Thus, the function PR(r) returns not only all direct permissions of the role, but
also all indirectly contained (inherited) permissions. This combined set of permissions
will be called effective permissions of the role.

To obtain directly assigned permissions of a role we in addition define function dPR(r),
such as: ∀r ∈ R,∀ri : ri → r dPR(r) = PR(r) − PR(ri).

The inheritance relation is:

reflexive ri → ri since PR(ri) ⊆ PR(ri);

antisymmetric ((ri → rj) ∧ (ri → rj)) ⇒ ri = rj

since (ri → rj) ⇒ PR(ri) ⊆ PR(rj)
and (rj → ri) ⇒ PR(rj) ⊆ PR(ri) ;

transitive ((ri → rj) ∧ (rj → rk)) ⇒ (ri → rk)
since (PR(ri) ⊆ PR(rj)) ∧ (PR(rj) ⊆ PR(rk)) ⇒ (PR(ri) ⊆ PR(rk)).

25

From the latter property it follows that the function PR(r) increases monotonically
in respect to the inheritance (→) relation among roles.

Roles are organised into role hierarchies that reflect the authority of functionality
attached to each role. An example of such role hierarchy is presented in figure 3.5. The
roles that inherit permissions from other roles have higher functionality and are more
powerful. They are also higher in the hierarchy, represented on the top of less powerful
junior roles. In the example from figure 3.5 both an application programmer and project 1
manager are senior to the role of a programmer. By inheriting the permissions of the
junior roles that add up to its own access rights the role of a project 1 manager becomes
associated with bigger authority.

The hierarchies of roles with inheritance relations among them are combined to form
a directed acyclic graph5, such that with the roles as nodes for a given directed edge
< ri, rj >: PR(ri) ⊆ PR(rj).

Definition 5 (Role Graph) A role graph is an inheritance relation on the set of roles,
defined as RG = (R × R, →). The nodes are the roles from the set R, and the edges
are defined with → relation.

Although roles are organised to reflect an organisation’s lines of authority and respon-
sibility, this does not imply that they must be structured according to the established
organisation’s responsibility lines. The inheritance of permissions offer more powerful
combination of access rights to the senior roles. The effective permissions of a role are
those directly associated with it, and those indirectly available through junior roles. Be-
cause we required that the principle of least privilege be applied when creating roles,
the same should be ensured when creating the inheritance relations among roles; no role
should inherit more permissions than are necessary for its functional requirements. For
example, although a manager of some department might be senior in authority than other
roles of the same department it does not necessarily mean that this role should inherit
the permissions from all roles junior in authority.

3.5 Authorisation State

The described elements and system functions (summarised in figure 3.6) form a static
authorisation database of our security model. An authorisation database is created for
each application of the security model indicating users, roles, user authorisation lists, and
a role graph. An authorisation state is, therefore, a 4-tuple

(Users,Roles, UserAuthorisationLists, RoleGraph).

The elements here are not subject to dynamic changes. The transitions in the autho-
risation state can be triggered only by administrators performing administrative opera-
tions6.

5Further reading on graph theory employed for role graph management can be found by Nyanchama
and Osborn in [NyOs 94].

6More attention to the authorisation database and administrative operations is given in chapter 6.

26

The roles authorised to a user have to be activated, so that the user can use the associ-
ated permissions. We assume that the user’s discretion alone determines which authorised
roles are activated. An active role set is associated with each user, defined as the following
mapping function:

ARS(u) : U → 2R, the user/active role mapping, which gives the set of roles active
for user u.

This adds a dynamic element to the above authorisation state. The changes in it are
triggered by users, dynamically activating and deactivating their authorised roles.

3.6 Access Granting Rules

We can now proceed to define the rules under which an access is granted to a user within
our security model.

Firstly, a user has to activate one or more roles authorised to him.

Rule 1 (Role Activation) A user can activate a role if and only if the user is authorised
to this role.

∀u ∈ U, r ∈ R : u ∈ UR(r) ⇒ can activate(u, r). (3.1)

Only after the roles are activated, the user can proceed to request access to objects
and to perform permitted transactions. The user is able to use all permissions associated
with activated roles, including inherited ones7.

Rule 2 (Exercising a Permission) A user can exercise a permission if and only if the
permission is an effective permission of the user’s active role.

∀u ∈ U, p ∈ P :

∃r ∈ ARS(u) : p ∈ PR(r) ⇒ can exercise(u, p). (3.2)

Since a permission was defined as the right to execute a transaction on specific ob-
ject(s), the latter rule can be re-written to include authorisation to transaction and ob-
ject(s) access.

Rule 3 (Object Access) A user can perform a transaction on an object if and only if
there exists a role in the user’s active role set and this role has a permission authorising
execution of the transaction that operates on the object.

∀u ∈ U, tr ∈ Tr, obj ∈ Obj :

∃r ∈ ARS(u) ∧ ∃p ∈ PR(r) : tr ∈ TrP (p) ∧ obj ∈ ObP (p)

⇒ can execute(u, tr, obj). (3.3)

7In chapter 6 we consider how to restrict usage of inherited permissions in some cases.

27

3.7 Conclusions

This chapter described our basic access control framework that uses roles as means to
combine several related permissions under the same name, by associating them with the
business and job position. A number of different specifications of role-based access control
has been previously given by various authors. Although the framework described here
is not identical to any of them, it captures the essential features such as referenced by
Sandhu et al [SCFY 96] and Ferraiolo et al [FKC 95].

In specifying a role we wanted to refer to the functional aspect that captures the
responsibilities and rights pertaining to some duty requirements. A role was defined
in terms of permissions and was viewed as a unit of access rights that exists separate
from users. The inheritance relation between roles was presented also in terms of per-
missions, and not in terms of role membership by users as has been described in some
models [FKC 95, FBK 98].

With respect to organisation-specific requirements, role-based access control allows for
incorporation of application-level security constraints and semantics. In the next chapter,
we aim to exploit the variety of constraints that can be enforced within this framework.

28

Manager

Programmer
Application

Programmer

System
Programmer

CRT
Designer

I/O System
Designer

Designer

Hardware

Manufacturing

Manufacturing

Project_1 Project_2

User_Int_Designing
Task_2_1

Task_2_2Task_1_2
Task_1_1

Op_Sys_Programing

Project_2
Manager

Project_1

Figure 3.5: Example of Role Hierarchies.

29

• U = a set of users, u1, ..., un;

Tr = a set of transactions, tr1, ..., trn;

Obj = a set of objects, obj1, ..., objn; and

P = Tr × Obj a set of permissions, p1, ..., pn; and

R = a set of roles, r1, ..., rn.

• RG = (R×R,→) is a directed acyclic graph on R with edges defined by inheritance
(→) relation, such that

∀(ri, rj)(ri → rj) ∈ RG ⇒ PR(ri) ⊆ PR(rj).

• user: UR(r) : R → 2U , a function mapping role r to a set of users.

• permissions: dPR(r) : R → 2P , a function mapping role r to a set of permissions;

permissions*: PR(r) : R → 2P , extends permissions to a set of all effective
permissions in the presence of inheritance from other roles

∀r ∈ R,∀ri : ri → r dPR(r) = PR(r) − PR(ri).

• transaction: TrP (p) : P → Tr, a function mapping permission p to one transac-
tion.

• object: ObP (p) : P → 2Obj, a function mapping permission p to a set of objects.

Figure 3.6: Main Elements and System Functions.

30

Chapter 4

Security Constraints

4.1 Introduction

Previously, in chapter 2, we have recognised the existence of a wide range of requirements
arising from organisational security policies. Separation of duty and the Chinese Wall
policy were defined as two methods at the heart of commercial fraud and error control.
Consistent enforcement of these security principles within an access control framework is
as important as support for the least privilege principle, and as significant to commercial
integrity as implementation of Bell-LaPadula’s principles is to military non-disclosure
policies.

In this chapter we present a framework for applying security policies of commercial
organisations in the RCBS model. We specify constraints necessary for laying out the
separation of duty policy and for simulating the Chinese Wall properties. We examine
their implications for permission distribution in role hierarchy.

4.2 Separation of Duty Requirements

Clark and Wilson [CW 87] were first to call major attention for enforcing separation of
duty within security systems. They described separation of duty as attempting to ensure
the correspondence between data objects within a system and the real world objects they
represent. Since this correspondence cannot normally be verified directly, it is ensured in-
directly by separating all operations into several subparts and requiring that each subpart
be executed by a different person. Clark and Wilson then proposed, that to implement
separation of duty in computer systems each user must be permitted to use only certain
sets of programs (transactions). This approach is later referred as static separation of
duty policy that is realised at design time.

Since then several other definitions of separation of duty have been proposed, as enu-
merated in figure 4.1. Dynamic separation of duty introduced by Sandhu [San 90] provides
greater flexibility by allowing a user to perform conflicting transactions, but only on dis-
tinct objects. Nash and Poland [NP 90] developed this concept further by introducing
the notion of dynamic object-based separation of duty, which forced every transaction
against an object to be executed by a different user.

31

“No user of the system, even if authorised, may be permitted to modify data items
in such a way that assets or accounting records of the company are lost or corrupted.
Essentially there are two mechanisms at the heart of fraud and error control: the well-
formed transactions, and separation of duty among employees. The most basic separation
of duty rule is that any person permitted to create or certify a well-formed transaction
may not be permitted to execute it. This rule ensures that at least two people are required
to cause a change in the set of well-formed transactions.” (by Clark and Wilson [CW 87])

“Separation of duty is enforced by the rule that for transient objects different transactions
must be executed by distinct users”. (by Sandhu [San 90])

“It is a security principle used to formulate multi-person control policies, requiring that
two or more different people be responsible for the completion of a task or set of related
tasks. The purpose of this principle is to discourage fraud by spreading the responsibility
and authority for an action over multiple people, thereby raising the risk involved in
committing a fraudulent act by requiring the involvement of more than one individual.”
(by Simon and Zurko [SZ 97])

“Its purpose is to ensure that failures of omission or commission within an organisation
are caused only by collusion among individuals and, therefore, are riskier and less likely,
and that chances of collusion are minimised by assigning individuals of different skills or
divergent interests to separate tasks.” (by Gligor et al [GGF 98])

“In complex environments where the actions of ill-intentioned users can create financial
or other damage to a company, it is common to identify combinations of operations which
should not be authorised to a single user. Policies which deal with preventing fraud are
called separation of duties policies.” (by Nyanchama and Osborn [NyOs 99])

Figure 4.1: Definitions of Separation of Duty.

32

4.2.1 Taxonomy

Although separation of duty is intuitively easy to understand, so far there is no systematic
and comprehensive approach for applying many variations of this principle in security
models. Separation of duty (SoD) can be analysed as conflict of interest constraint along
different dimensions: as conflict between roles, between operations, between objects, or
between users.

Simon and Zurko [SZ 97] informally enumerated all the variations of separation of
duties that have been mentioned in previous sources, while Gligor et al [GGF 98] presented
formal definition of all best known to date properties of separation of duty. According to
the taxonomy described in those papers, it is possible to distinguish the following forms
of separation of duty:

• simple static/dynamic SoD

a user is permitted to use only certain sets of operations;

• operational SoD

no user is allowed to perform all operations forming a business task, regardless of
target object;

• object-based SoD

no user can be allowed to act upon the same object more than once;

• history-based SoD

no user can be allowed to perform all operations forming a business task on the same
object.

A simple static/dynamic separation of duty is considered in most role-based access
control models, and is implemented by declaring certain roles as being mutually exclusive
(Ferraiolo et al [FBK 98, FKC 95]). A common example is that of mutually disjoint
organisational roles, such as those of purchasing manager and accounts payable manager.
Generally, the same individual is not permitted to access both roles because this creates
a possibility for committing fraud.

An operational separation of duty policy is used to prevent one person from doing all
parts of a business function/task that should require two or more. A frequently used
example in this case is a business function involving preparing and approving purchase
orders. Presented in figure 4.2, this task consists of a number of steps, each with a different
operation. For this task to be fulfilled, each step must be successfully completed. For it
to be fulfilled according to an operational separation of duty policy, each step must be
performed by a different user. Since it is not always practical to apply operational SoD
on every existing business task, the most sensitive tasks must first be identified, and then
SoD is applied only on the critical operations within those tasks. The rule of operational
SoD then expresses the following:

no user can be allowed to perform all operations that form a critical combination of a
business task.

33

Read/Write

purchase order
Issue and send

purchase order

purchase order
Authorise

Sign purchase order

Figure 4.2: Example of a Business Task.

An object-based separation of duty policy is often subject to different interpretations,
since the informal definition presented above [NP 90] does not specify precisely which
objects and operations are subjected to this rule. One way to interpreting this rule is
to restrict a user from performing an operation in a business task on an object if the
user has already performed another operation of the business task on the same object,
but this corresponds exactly to the history-based SoD viewed here as a distinct type of
SoD. Another interpretation is to consider critical conflicts that might be existing among
groups of objects. The purpose then is to prevent the same user from acting upon objects
from conflicting groups.

We may recall from chapter 2, that the security principle of the Chinese Walls is
applied to disallow people from accessing information that is held to conflict with any
other information that they already possess. This principle and the latter variant of
object-based SoD both have similar purpose, in the sense that information held in objects
is distributed among different conflicting groups, and the rules are specified on how these
groups are then accessed by the authorised users. We will review the properties of the
Chinese Wall policy later in this chapter. We then propose how those properties can be
simulated with constraints of object-based SoD.

A history-based separation of duty policy combines properties of both operational and
object-based separation of duty. Simon and Zurko [SZ 97] described history-based SoD
as expressing the most desirable properties of SoD policies. Object-based SoD does not
allow a user to perform a second action on an object when this makes sense and is allowed
by (human) policy, and operational SoD does not allow one user to perform all the actions
of a task on different objects when this makes sense and is allowed by (human) policy.
History-based SoD is used to restrict a user just from performing the operations of one

34

business task on one object. The central part in this SoD policy is played by histories
recording previous user accesses. To implement this policy, the mechanisms must be in
place that record relevant history, and later analyse it.

In this chapter we will present a systematic framework for applying separation of duty
policies in the RCBS model. Our work builds upon SoD properties analysed by Simon
and Zurko [SZ 97], and formalised by Gligor et al [GGF 98]. In addition to the known
properties, we identify other significant SoD properties which have not been previously
defined. In particular, we emphasise the importance of permission-centric SoD constraints.
We also include the notion of role hierarchies in SoD specifications, and introduce new
SoD properties required for simulating Chinese Walls.

4.3 Mutual Exclusion of Roles

Within role-based access control models separation of duty has been implemented with
mutual exclusion of roles [FBK 98, FKC 95, SCFY 96]. The term “mutual exclusion”
usually has the meaning that some form of conflict exists between pair of roles. Users are
allowed to access only one role from this pair.

When implemented using role exclusion rules, separation of duty can be analysed
along two dimensions: when mutual exclusion is applied, and the permissions to which
it is applied. Ferraiolo et al [FKC 95] defined two types of role exclusion in their formal
model of RBAC, an authorisation-time exclusion and an activation-time exclusion, that
depend on whether the mutual exclusion is applied at the time a user is authorised to a
role, or at the role activation time.

In the next sections we aim to explore how the framework presented previously is im-
plicated by mutual exclusion of roles. In order to do that, we first extend an authorisation
state to include pairs of roles that are mutually exclusive:

Excl : R × R is the set of mutually exclusive role pairs (ri, rj) | i 6= j, that hold one
of the following relations:

strong excl(ri, rj),
role pairs of authorisation-time exclusion type,
weak excl(ri, rj),
role pairs of activation-time exclusion type.

4.3.1 Authorisation-Time Exclusion

According to Ferraiolo et al [FKC 95] the authorisation-time exclusion requires that the
following constraint is satisfied in user-role authorisations:

Constraint 1 (Authorisation-time Exclusion) A user is authorised to a role if the
role is not mutually exclusive with another role to which the user is already authorised.

∀ra, rb ∈ R

strong excl(ra, rb) ⇒ UR(ra) ∩ UR(rb) = ∅. (4.1)

35

4.3.2 Activation-Time Exclusion

A similar but weaker form of exclusion is to allow users to be authorised for roles that
are mutually exclusive, but allow them to activate only one such role at a time. This
form of exclusion is applicable only at the time a user activates a role. In respect to our
framework, we specify it as an extension to the previously defined role activation rule:

Rule 1a (Activation-time Exclusion) A user can activate an authorised role if the
role is not mutually exclusive with any other role in the user’s active role set.

∀u ∈ U,∀ra, rb ∈ R

weak excl(ra, rb) ∧ ra ∈ ARS(u) ⇒ rb 6∈ ARS(u). (4.2)

4.3.3 The Effects on Permission Distribution

Role exclusion constraints express the requirements of simple static/dynamic SoD, as
defined by Clark and Wilson [CW 87]. This means that they do not directly ensure
that requirements of operational or object based SoD are satisfied as well. Therefore, the
complications arise when exploring distribution of permissions of mutually exclusive roles.

For example, suppose there are two roles R1 and R2, which are mutually exclusive.
Role R1 has permissions a and b, while role R2 has permission c. In addition, there are
other two roles P1 and P2, that respectively have permissions a and b each. It is possible
for a user which is authorised to role R2 to be authorised also to both role P1 and role
P2, and thus gain the same permissions as of roles R1 and R2 taken together.

The described situation can occur, because role exclusion did not place any restrictions
on the distribution of permissions among roles. In principal, a statement by the role
designer that two roles are mutually exclusive or conflict with each other is a very powerful
statement. Since each role is defined as a collection of permissions, mutual exclusion may
define either the case that all permissions of two roles conflict, or the situation when only
a small part of the two roles conflict.

For example, say there are two roles R1 and R2 with the sets of permissions {a, b, c, d}
and {e, f, g, b} respectively. Suppose the designer wants to declare these two roles as
mutually exclusive, but really it is only permissions c, d that conflict with permissions
e, f . The reason for this might be operational or object based SoD. Thus, role exclusion
constraint in this case is too strong. The only solution in this case would be to create
two additional roles, such as role S1 junior to role R1 with permissions c, d, and role S2
junior to role R2 with permissions e, f . Mutual exclusion can then be declared between
these two roles.

More flexible approach to solve the above example is to allow for finer granularity by
allowing application of permission-centric constraints that specify conflicts between two
separate permissions.

4.3.4 Complete Exclusion

In the remainder of this chapter we will examine in more detail the requirements of oper-
ational and object-based SoD to realise permission-centric constraints. First, however, we

36

have to define more precisely what we mean by mutual exclusion in terms of permission
sharing.

We say that when two roles are defined as mutually exclusive, a user authorised to
one of the roles cannot have access to any of the permissions which are also assigned to
the other role. This implies, not only that a user cannot have access to permissions of the
two mutually exclusive roles, but also that a user authorised to one role from a mutually
exclusive pair cannot assigned to any other role that has at least one permission in common
with the other role from the pair. This property is independent of authorisation-time
or activation-time exclusion. We formalise it into the following constraint, which is a
fundamental assumption underlying what follows1:

Constraint 2 (Complete Exclusion) If two roles are defined as mutually exclusive
then the user authorised to one of the roles must not have access to any permissions
that are part of directly assigned permissions of the other role.

∀(ra, rb) ∈ Excl : ra 6= rb

a∀rc ∈ R dPR(ra) ∩ PR(rc) 6= ∅ ⇒ dPR(rb) ∩ PR(rc) = ∅ ∧
b∀rd, re ∈ R : UR(rd) ∩ UR(re) 6= ∅

dPR(ra) ∩ PR(rd) 6= ∅ ⇒ dPR(rb) ∩ PR(re) = ∅ ∧

dPR(ra) ∩ PR(re) 6= ∅ ⇒ dPR(rb) ∩ PR(rd) = ∅. (4.3)

The formal specification says that (a) no one role is allowed to have permissions of
both roles from a mutually exclusive pair, and (b) no two roles with a common authorised
user are allowed to have permissions of both roles from a mutually exclusive pair.

The constraints reflect a definition of a role given in this work; if a user cannot be
authorised to a role, it means that the user cannot be given any permission from the set
of permissions associated with this role. Given such assumption, constraints on mutual
exclusion of roles should be used only when conflict exists between every permission of two
given roles. If the mutual exclusion constraint is too strong, then either roles have to be
redefined with a finer granularity or permission-centric constraints described in section 4.4
are better applicable.

4.3.5 Constraints on Hierarchies

The defined constraints have direct implications on relationships between roles in the role
hierarchy. Let us consider the example from figure 4.3. Authorising a user to role R1
makes permissions {a, b} that are directly assigned to this role available to the user. Since
an inheritance relation exists between roles R1 and S1, this also makes permissions {c, d}
available to the user authorised to role R1. Suppose that roles S1 and S2 are defined as
mutually exclusive. If the inheritance relation is established also between roles S2 and R1

1Our notion of complete exclusion is fundamentally different from the one used previously by
Kuhn [Kuhn 97]. Their complete exclusion says that if any role is mutually exclusive with another
role, then no permission of the first role is assigned to any other role. In our cases, the permissions of
mutually exclusive can be shared between other roles, they just cannot be available to the same user.

37

L2

{k, i, j}{c, d}
S3S1 S2

{m, n}

{e, f}

L1
{l}

R1
{a, b}

R2
{g, b}

R3
{h}

Figure 4.3: A Sample Role Hierarchy.

(a dotted line in figure 4.3), authorising a user to role R1 gives him permissions of both
role S1 and role S2. As these roles have been declared mutually exclusive, this violates
our complete exclusion constraint. Thus, declaring two roles as mutually exclusive has
consequences to their common seniors. The following formalises this:

Theorem 1 Mutually exclusive roles cannot have a common senior role.

∀(ra, rb) ∈ Excl

6 ∃rc ∈ R : ra → rc ∧ rb → rc. (4.4)

. Suppose there is a role rc such that ra → rc ∧ rb → rc and (ra, rb) ∈ Excl. The role
rc then contains permissions from both role ra and rb, and according to the constraint 2
is unauthorisable. Since there cannot exist unauthorisable roles, it follows that mutually
exclusive roles must have no common seniors. /

The next result is direct consequence of complete exclusion:

Theorem 2 Mutually exclusive roles cannot inherit each other.

∀(ra, rb) ∈ Excl ra 6→ rb ∧ rb 6→ ra. (4.5)

Note that the defined mutual exclusion rules do not prevent two mutually exclusive
roles from having a common junior role. This is important since many systems usually
have one common role that all other roles inherit. This could be an “employee” role, the
basic permissions of which are available by inheritance to other roles.

Mutually exclusive roles can still be inherited by other roles as long as they never have
a common upper bound. This means that, when authorising a user to a role, we have to
verify not only that this role does not conflict with already authorised roles, but also that
there will be no conflicts among inherited roles.

Constraint 1a (Inheritance at Authorisation-time Exclusion) A user is au-
thorised to a role if the role does not inherit another role that is mutually exclusive either
with the role to which the user is already authorised, or with the role junior to it.

∀ra, rb ∈ R,∀rc ∈ R : ra → rc,∀rd ∈ R : rb → rd, rd 6= rc

strong excl(ra, rb) ⇒ UR(rc) ∩ UR(rd) = ∅ ∧

UR(rb) ∩ UR(rc) = ∅ ∧ UR(ra) ∩ UR(rd) = ∅. (4.6)

38

Similarly, the same applies to activation-time exclusion:

Rule 1b (Inheritance at Activation-time Exclusion) A user can activate an
authorised role if the role does not inherit another role that is mutually exclusive either
with the already activated role, or with the role junior to any of the already activated roles.

∀u ∈ U,∀ra, rb ∈ R,∀rc ∈ R : ra → rc,∀rd ∈ R : rb → rd, rd 6= rc

weak excl(ra, rb) ∧ ra ∈ ARS(u) ∨ rc ∈ ARS(u) ⇒

rb 6∈ ARS(u) ∧ rd 6∈ ARS(u). (4.7)

4.4 Critical Combinations of Operations

When only some parts of two roles conflict, other types of constraints have to be in-
troduced. They represent permission-permission conflicts, indicating that for whatever
reason two or more permissions should never be authorised together to the same user.

In order to define constraints that indicate permission-permission conflicts, we first
consider properties of operational SoD. We recall the example describing the business task
of processing purchase orders. The structure or plan of this task can be seen from figure 4.2
as composed of four consecutive steps. According to the requirement of operational SoD
each of these transactions must be executed by different user. This means, that the user
who wrote the purchase order can never be permitted to authorise it.

To identify what transactions operational SoD is applied on, we introduce the concept
of a critical combination.

Definition 6 (Critical Combination) A critical combination defines the set of trans-
actions of a task, where each transaction should be performed by a different user.

Let T be the set of tasks2. Then a critical combination for the given task t can be
obtained with the function CC(t) : T → 2Tr.

Within our role-based framework permissions of a role specify which transactions are
available to an authorised user. If both transactions write purchase order and authorise
purchase order are allocated to the same role, it means that they are also both available to
the same user. Since this is not acceptable with our definition of operational SoD, one of
the constraints must restrict transactions of the same business task from being allocated
to one role.

Constraint 3 (Per-Role Operational SoD) A role has permission to a transaction
only if this transaction is not in a critical combination with another transaction already
allocated to the role.

∀r ∈ R,∀pi, pj ∈ PR(r),∀t ∈ T

{TrP (pi), T rP (pj)} 6⊆ CC(t) ∨ TrP (pi) = TrP (pj). (4.8)

2The precise definition of tasks will be presented in the next chapter.

39

A user can still gain access to all transactions of the task, when the combined permis-
sions of several roles have all critical transactions, and if the user is authorised to all these
roles. For example, if the transaction write purchase order is accessible through the role
R1, and the transaction authorise through the role R3, then the user can gain access to
both transactions if he is authorised to both role R1 and role R3. Additional constraint
must, therefore, ensure that some combinations of roles do not allow a user to have access
to the transactions restricted by operational SoD.

Constraint 4 (Static Operational SoD) A user is authorised to a role only if no
transaction allocated to this role is in a critical combination with any transaction of any
other role already authorised to the user.

∀ra, rb ∈ R : UR(ra) ∩ UR(rb) 6= ∅ ⇒

∀pi ∈ PR(ra),∀pj ∈ PR(rb),∀t ∈ T

{TrP (pi), T rP (pj)} 6⊆ CC(t) ∨ TrP (pi) = TrP (pj). (4.9)

Since by inheritance all permissions of junior roles are authorised to a user when a
senior role is authorised, there cannot be any relationships in role hierarchy between roles
that have conflicting permissions. This results in the following security property:

Theorem 3 (Inheritance in Operational SoD) Two roles ra and rb cannot be con-
nected within a role graph if their combined set of permissions authorises transactions in
a critical combination.

∀ra, rb, rc ∈ R

∃pi ∈ PR(ra),∃pj ∈ PR(rb),∃t ∈ T :

TrP (pi) ∈ CC(t) ∧ TrP (pj) ∈ CC(t) ∧ TrP (pi) 6= TrP (pj)

⇒ (ra 6→ rb ∧ rb 6→ ra) ∧ (rb 6→ rc ∨ ra 6→ rc). (4.10)

The dynamic variant of operational SoD can be implemented by requiring that a user
does not at the same time activate the roles that allow to perform transactions in a critical
combination. In an actual implementation, however, and especially when users are allowed
to open a number of sessions at the same time this requirement is not sufficient; even if a
user may not be able to perform a transaction in one session, he can still perform it in a
different session with different active role set. In chapter 6 we will consider how to control
activation of mutually exclusive roles, when there are multiple sessions. In chapter 5 we
also demonstrate that requirements of dynamic operational SoD could be better addressed
with history-based SoD constraints.

40

.. obj_n

Individual Objects

obj_3obj_2obj_1

nmlkjihgf

CBA

Obj
Set of all objects

Conflict of interest classes

Domains

Figure 4.4: Composition of Objects.

4.5 Conflicting Datasets

In section 4.2 we have indicated that object-based SoD policy can apply to situations that
require control of access according to conflict of interest between different sets of data.
The sets of conflicting data may be the information about competitive corporations held
within the same computer system in the organisation that provides corporate business
services. A financial analyst within that organisation cannot at the same time advice to
corporations that are in competition with each other. This means, that the sets of data
on each corporation in competition are defined as being in conflict of interest class, and
a single user is allowed to access at most one set of data within that class.

The above specification of object-based SoD is useful for simulating properties of the
Chinese Wall policy in role-based access control. In the next section we describe this
policy by adapting the description presented by Brewer and Nash [BN 89]. We then
proceed to define object-based SoD constraints.

4.5.1 Chinese Walls

To describe the Chinese Wall policy it is necessary that all corporate information is stored
in a hierarchical order with three levels of significance:

1. at the lowest level there are individual items of information, equivalent to what we
have termed as objects ;

2. at the next level objects are grouped together into domains under some selected
attribute of the data (for example, only data that concern the same corporation);

3. at the highest level, domains are grouped into conflict of interest classes. The
domains that are within the same class are viewed as conflicting.

The described composition of objects is illustrated in figure 4.4. Examples of conflict
of interest classes could be the business sector headings, such as Financial Institutions,

41

Oil Companies, while domains would be the names of individual companies listed under
those headings.

Formally, we can specify that each object obj ∈ Obj is associated with two security la-
bels (x, y): function X(obj) returns conflict of interest class x of the given object obj, while
function Y (obj) gives its domain y. The properties associated with those characteristics
are as follows:

• ∀obji, objk ∈ Obj : Y (obji) = Y (objk) ⇒ X(obji) = X(objk)

if two objects obji and objk belong to the same domain, then they also belong to
the same conflict of interest class;

• ∀obji, objk ∈ Obj : X(obji) 6= X(objk) ⇒ Y (obji) 6= Y (objk)

if two objects obji and objk belong to different conflict of interest classes then they
must belong to different domains.

The basis of the Chinese Wall policy is that users are only allowed to access information
which is not held to conflict with any other information that they already possess. This
means, that if a user has been allowed to access an object from a domain belonging to
some conflict of interest class, a Chinese Wall is created for that user around that domain.
The wrong side of the Wall would be any domain within the same conflict of interest class
as that domain within the Wall. A user can only be allowed to access objects within the
same domain or belonging to different conflict of interest classes.

This policy is defined with the following security rule:

access is only granted if the object requested: (a) is in the same domain as an object
already accessed by that user, or (b) belongs to an entirely different conflict of interest
class.

4.5.2 Object-based SoD Constraints

In our framework the defined security rule can be enforced by specifying permissions
not only in terms of transactions, but also in terms of object types, with constraints on
instances.

We may recall the function ObP (p) : P → 2Obj, which gives the set of objects associ-
ated with the given permission p.

The permissions of a role regarding access to objects are determined at design time,
and are not allowed to be changed at run-time. This means, that initially, i.e. before
any user has requested activation of any role and access to any object, roles have to be
correctly initialised. The permissions of the same role can only authorise transactions on
the objects that are

• in the same domain,

• or within a different conflict of interest class.

We can ensure the above with the following security constraint:

42

Constraint 5 (Per-Role Object-based SoD)

∀r ∈ R,∀pi, pj ∈ PR(r),

∀obji ∈ ObP (pi),∀objj ∈ ObP (pj)

Y (obji) = Y (objj) ∨ X(obji) 6= X(objj). (4.11)

The next step is to control how users are assigned to roles that have permissions on
conflicting datasets. Since a single user is not limited to one role, the user can still gain
access to domains that are in conflict through some combination of roles.

Constraint 6 (Static Object-based SoD) A user is authorised to a role only if the
objects that can be accessed with permissions of this role are in the same domain or within
different conflict of interest class than objects accessible with permissions of all other roles
already authorised to the user.

∀ra, rb ∈ R : UR(ra) ∩ UR(rb) 6= ∅ ⇒

∀pi ∈ PR(ra),∀pj ∈ PR(rb),∀obji ∈ ObP (pi), objj ∈ ObP (pj)

Y (obji) = Y (objj) ∨ X(obji) 6= X(objj). (4.12)

As previously, the defined constraints have direct implications on inheritance relations
between roles in the role hierarchy:

Theorem 4 (Inheritance in Object-based SoD) Two roles ra and rb cannot be
connected within a role graph if their combined sets of permissions gives access to objects
from the same conflict of interest class but different domain.

∀ra, rb, rc ∈ R

∃pi ∈ PR(ra),∃pj ∈ PR(rb),∃obji ∈ ObP (pi),∃objj ∈ ObP (pj) :

X(obji) 6= X(objj) ∧ Y (obji) = Y (objj)

⇒ (ra 6→ rb ∧ rb 6→ ra) ∧ (rb 6→ rc ∨ ra 6→ rc). (4.13)

The dynamic variation of the described policy can be enforced only by monitoring the
history of the previous accesses by users. The mechanisms to monitor and analyse those
histories will be presented in chapter 5.

4.6 Other Security Constraints

In addition to constraints enforcing SoD policies, other security constraints may be re-
quired by a particular application. For example, a role may have prerequisite conditions
that limit the ability of users to be authorised for the role or to activate the role. It may
be the case that some roles in an application are accessible only if not simultaneously in
use by other users, or that certain roles can be activated only from some particular termi-
nal. Such entry conditions can be introduced either as static constraints or as activation
rules, to be enforced either at authorisation or at activation time. In the next sections we
briefly describe two of the most commonly used role entry conditions.

43

4.6.1 Conflicts Among Users

The conflicts of interest arising among different users are called as user incompatibility.
This might be either the case when two or more users cannot be authorised to the same
role, or the case when they cannot be active in the role at the same time. For example,
the role of purchasing clerk is authorised to four users: John, Sarah, Tim, and Jane, but
only John and Sarah or Tim and Jane can activate this role.

The conflict in this example can be resolved by first identifying which users authorised
to the same role are incompatible. We define the function IncomU(r, u) : R × U → 2U ,
that returns users authorised to the role r incompatible with the user u. Then the following
condition has to be satisfied at every attempt to activate this role:

Rule 1b (Activation-time User Conflict) An authorised user can activate the
role if the user is not incompatible with any other user already active in this role.

∀r ∈ R,∀ui, uj ∈ UR(r)

ui ∈ IncomU(r, uj) ∧ r ∈ ARS(uj) ⇒ ¬can activate(ui, r). (4.14)

We must note, that in large distributed computer systems it is cumbersome to enforce
user incompatibility at run-time, since it requires finding if the role in question has been
activated by other users anywhere in the system. The situation could be helped by also
placing restrictions on the place, indicating where the role should be activated.

4.6.2 Cardinality

Another constraint associated with the same difficulties at its run-time enforcement is
the cardinality of a role. It requires that no more than a defined number of users are
either authorised or active in the role. For example, only one person is allowed to be
active in the role of a managing director at any given time, even though the role might
be authorised to several users.

In this case a role has to be associated with a constant indicating the maximum num-
ber of users that can activate the role at the same time. Whenever a request to activate
the role is presented, a system must verify that the associated constant is not exceeded.
Again, this is more efficient if only a limited number of active sessions are opened.

Before a role can be activated an authorised user may be required to satisfy many
different prerequisite conditions. For example, in order to access the role of a Chair of a
meeting, a user is required first to have successfully activated the role of a Fellow, and
also be a senior fellow to all other users that activated the role of a Fellow. This requires
verifying current activations of the additional role, and also information about personal
details of involved users.

4.7 Conclusions

In this chapter we have explored how constraints arising from the requirements of commer-
cial separation of duty policies can be implemented within our role-based access control
framework. We showed that it is possible to utilise role-based protection for enforcing the
essential principles of many commercial security policies.

44

Specification of such constraints reduces complexity in ensuring consistency and com-
pleteness of organisational security requirements in applications. The constraints can be
tailored to fit a specific application.

45

46

Chapter 5

Context-Based Authorisations

5.1 Introduction

The framework and security constraints presented in the previous chapters have been
specified with respect to users, roles and permissions, and granting access rights to users.
We studied the propagation of permission authorisation, but did not tie it with any
activity in the system. The predefined authorisations to roles and permissions often allow
access for more time than required; even if a user completes a task, the user still has the
same permissions, until an administrator has not explicitly removed them. This results
in compromised security.

In order to ensure that users possess authorisations only when required, a dynamic au-
thorisation management framework has to be introduced. In this chapter we describe an
approach to active authorisation control. The abstractions and mechanisms will be intro-
duced that provide for the run-time management of access control, which is in accordance
with emerging context associated with progressing tasks and operation sequences.

5.2 Background

First we discuss influence behind “active” access control, and present the main concepts
used in this approach.

5.2.1 The Subject-Object View

In most security models a static approach to enforcing access control is implemented.
Subjects, objects, and rights that subjects possess to gain access to the various objects
are represented in such structures as capabilities or access control lists, that are defined by
security administrators or designers, and that do not incorporate any dynamic changes.
This static subject-object view of access control can be traced to the earliest security
models. The access control framework described in chapter 3 has also been influenced
by the same static view of access control; the rights users can gain are determined by
analysing user authorisation lists associated with roles and permissions assigned to those
roles. However, this view of access control has the following limitations:

• access control is detached from larger operational context;

47

• there is no association with past accesses;

• there is no record of usage of permissions;

• existing permissions can be revoked but cannot be suspended.

Access control in “passive” security models is enforced according to a simple rule
which can be stated that if a subject has requested an access operation to an object, and
the subject possesses the permission to the operation, then access is granted. No other
contextual information about ongoing tasks is taken into account when evaluating access
requests; so long as a permission exists the subject can use it any number of times.

5.2.2 “Active” Access Control

The preliminary ideas for an “active” access control were presented by Thomas and
Sandhu [TS 93, TS 94]. An objective of this novel approach is to ensure that access
control decisions correspond to the current business activities.

A cursory look at an organisation reveals a complex web of activities that often span
different departments. One can view these activities as composed of a number of tasks
initiated by users in accordance with their responsibilities and duties in the organisation.
When task execution is computerised, as in a workflow technology, we are faced with the
problem of maintaining the required integrity. One concern is to ensure that operations in
tasks are performed only by authorised users. Another concern is how to make sure that
authorised users use these operations to perform only the tasks, required by organisation’s
current business activities.

The latter can be achieved if access requests are being evaluated within the context
of progressing tasks; access to the specific operation is granted only if this operation
is required to complete a started task. This results in permissions being enabled and
disabled according to authorisation requirements within context of tasks. Context-based
authorisations are concerned with evaluating previous accesses and planning future access
decisions. To illustrate the role of context-based authorisations let us consider the co-
ordinated execution of tasks in the purchase process, shown in figure 5.1.

5.2.3 Processing of Tasks

The goods purchase process consists of a number of tasks, including preparation of req-
uisition orders, receiving of goods, and issuing payments. During the preparation of the
requisition order, clerks are given permissions to create (read/write) and sign the order,
and the order becomes a valid document only after its is countersigned by an approving
supervisor. Once the order is sent for approval the write permission on this order of the
clerk role has to be disabled. In addition, for any given order, the operations create and
approve must be performed by different users.

In “active” access control, not all permissions that have been allocated through access
control lists, or user authorisation lists and roles, can actually be used at any moment in
the system. A permission must in addition be authorised according to the context, based
on previous accesses and current activities within tasks.

48

Approve

Task ’’Processing Requisition Order’’

Clerk
payment

goods

Accountant

order

Task "Issuing Payment against the Order"

Request
Clerk

payment
Issue

Prepare

Approve

Verify

Record receipt

of goods

Accountant-supervisor

Issue and send

Accountant

Accountant

Storeperson

Supervisor

order

order
Create

invoice

payment

Figure 5.1: The Purchase Processing.

5.2.4 Related Work

The work towards specifying notions that support active access control and provide just-
in-time permissions has been two-directional. Thomas and Sandhu [TS 97] developed a
concept of an authorisation (step) granted while processing the tasks. Their authorisation
(step) models the equivalent of a single act of granting a signature in the paper world.
It is associated with rich semantics, such as going through a number of states during
its lifetime. Each state of an authorisation (step) implies that certain permissions are
granted while others are put on hold.

Atluri [AH 96] and Bertino [Ber 99, Ber 97] specify authorisations in association with
workflow management systems. Since workflows represent processes that consist of several
well-defined tasks, the authorisation flow can be synchronised with the workflow.

The general motivation behind both approaches is similar to ours in that they try
to synchronise authorisations with the execution of tasks and so provide just-in-time
permissions. However, we concentrate only on how “active” control can be applied within
a role-based security framework. In presenting context-based authorisations we want to
extend access control framework defined in chapter 3.

5.3 Task-based Authorisations

In this section we describe the components that make up a task. Based on definitions
of tasks and task authorisation templates, we will then proceed to present a framework
for enabling the permissions of roles within the context of execution progress in task
instances.

49

5.3.1 The Construction of Tasks

A task t can be defined as a set trset of a partial or total order of transactions
{tr1, tr2, ..., trn}, that involve manipulation of objects. The execution of the task con-
sists of processing relevant objects by subjects (transactions). Thus, every task starts
when one or more objects have to be processed within the task. For example, the process-
ing of an order is initiated with the request for some goods. In this task, the requisition
order against the requested goods is created, approved, and sent to the appropriate ven-
dor. It is possible to assume that each step in a task starts when one or more objects
arrive and finishes when object leaves 1.

At the time a task is defined, however, only the types of objects to be processed are
known. If Obj denotes the set of objects, then Type is introduced to represent a finite set
of object types. We can define a function:

type(obj) : Obj → Type; if type(obji) = typei, then obji is of type typei.

Now we can give the following definition of a task:

Definition 7 (Task) A task t is defined as a 3-tuple

< task trset, task typeset, plan >,

where task typeset ⊆ Type is the set of object types that are allowed to be processed
in the task, task trset is the set of transactions to be performed in task t, and plan

specifies the order in which transactions have to be executed in the task, given in the form
of predicate-based rules.

Accordingly, we introduce the following mapping functions:

TrT (t) : T → 2Tr, gives the transactions in the given task t,

TypeT (t) : T → 2Type, gives the set of object types that can be processed in the given
task t.

Whenever a task is being executed, a task instance t inst is generated. Any task may
have several instances. We define a function:

TInst(t) : T → 2T INST , that gives the set of task instances of the given task t.

In the task instance the concrete objects are being processed of the types given in
TypeT (t). The execution of each task instance is performed according to the plan specified
in the task definition.

We assume that a special planner exists in a computer system that suggests the se-
quence the transactions have to be executed in each task instance. Implementation of such
planner can be found in the workflow management systems (Georgakopoulos [GH 95]) and
business process models (Holbein et al [HTB 96]).

1In the workflow systems each task step goes through the various processing states within a life-cycle.
However, in presenting task definition within our framework we take a simplified approach.

50

5.3.2 Authorisation Templates

Since processing of a task involves performing transactions on objects, it means that
certain permissions of certain roles will be used by authorised users. The permissions
must be valid only during a lifetime of a task; once the task is finished the permissions
must be no longer used, i.e. they have to be revoked or suspended. We have to know in
advance what permissions of what roles are authorised for each step in a task.

In our framework, for any given task there exists an authorisation template2:

Definition 8 (Authorisation Template) A task authorisation template AT is defined
as a finite set of triples < pi, ri, (typei, −) > |i ∈ {1, ..., n}, where pi denotes the
permission of role ri to be enabled for executing transaction in the task: TrP (pi) ∈
TrT (t), and (typei, −) is an object hole that can be filled only by the object of type
typei.

An authorisation template gives reference as to what permissions of which roles can
be used during execution of a task. When a task starts the permissions of roles defined
in a template are enabled for the objects of the indicated type. Users that can use
these permissions are not defined in an authorisation template, since the user’s access to
permissions is controlled via roles. Users must activate necessary roles in order to execute
transactions of a task.

5.3.3 Authorisation Tokens

Whenever an execution of a transaction is scheduled by the planner, an authorisation
token is generated to enable a permission of some role.

Definition 9 (Authorisation Token) A permission authorisation token for each en-
abled permission p in a task instance t inst is defined as a 7-tuple
< p, obj, r, t inst, usage count, denied users, executors >.

The authorisation token indicates that the permission p of the role r can be used on
object obj in a task t inst a usage count defined number of times.

In the definition, denied users is a list of user names that should not be allowed to use
the enabled permission. executors represent users that have already used the permission.
This component is filled in only when the permission is being used. We will explain later
the purpose of having those attributes in an authorisation token.

An authorisation token indicates that a certain permission of some role has been
enabled, and can be used in a task instance. Values in the token are derived from the
task authorisation template, after the execution of the corresponding transaction has been
scheduled by the planner.

The usage count is associated with each enabled permission. Its value is determined
while defining the task authorisation template. In most cases this would be equal to 1.
The count is reduced each time the permission is being used. When it reaches zero, the
authorisation token becomes invalid. This means that the permission can no longer be

2The notion of templates is also used by Atluri [AH 96]. Our notion of authorisation templates is
different in the sense that it is used only as a reference to enable the correct permissions.

51

used in this particular task instance. Such approach enforces constant and automated
check-in and check-out of permissions in our framework.

If Auth Tokens denotes the universal set of authorisation tokens, then we can define
a function AToken(t inst) : T INST → 2Auth Tokens, that gives the set of authorisations
tokens generated to enable permissions in a task instance t inst.

For each authorisation token we also define the following mapping functions:

PAuth Token(at) : Auth Tokens → P , gives the permission enabled with authorisa-
tion token at;

RAuth Token(at) : Auth Tokens → R, gives role name for which the permission is
enabled;

OAuth Token(at) : Auth Tokens → Obj, gives the object on which the action is
authorised;

CountAuth Token(at) : Auth Tokens → N , gives current value of usage count in the
given authorisation token at;

Executors(at) : Auth Tokens → 2U , gives users that finally used the enabled permis-
sion.

When an authorisation token is initially generated the set of executors is empty, but
fills in whenever an enabled permission is being used. The user using the enabled per-
mission must be authorised either to the role from the token, or to the role senior to
it.

Property 1 (User of Enabled Permission) A permission enabled in an authorisation
token can be used only by a user that is authorised to the role defined in the token, or to
the role senior to it.

∀at ∈ Auth Tokens,∀u ∈ Executors(at)

u ∈ UR(RAuth Token(at)) ∨

∃r ∈ R : (RAuth Token(at) → r) ∧ u ∈ UR(r). (5.1)

5.3.4 Enabled and Disabled Permissions of Roles

Conceptually, we can think of permissions associated with roles as being enabled and
disabled according to authorisations in task instances. Previously, permissions were al-
located to roles according to a broad policy defined to reflect access requirements and
restrictions. Context-based access control, on the other hand, is used to manage permis-
sions according to the requirements of current progressing activities, by associating the
dimension of tasks with access control mechanisms.

The total set of permissions that is associated with a role can be seen in figure 5.2 as
composed of permissions that have been enabled for specific tasks, and of other permissions
that, though assigned to a role, cannot be used, because they are either disabled or have
not yet been enabled within the context-based authorisation framework. Each role has a
set of assigned permissions, and within that a set of enabled permissions.

We define a function Enabled PR(r, obj) : R ×Obj → 2P , that gives enabled permis-
sions of role r that can be used on object obj.

52

Role

Enabled Permissions

Assigned Permissions

Figure 5.2: Permissions of a Role.

Property 2 (Enabled Permissions of Roles) A permission is an enabled permission
of role r on object obj if there exists a valid authorisation token within some task instance
that authorises the permission of the role to be used on the object.

∀r ∈ R,∀p ∈ PR(r),∀obj ∈ ObP (p)

p ∈ Enabled PR(r, obj) ⇒

∃t ∈ T,∃t inst ∈ TInst(t),∃at ∈ AToken(t inst) :

p ∈ PAuth Token(at) ∧ r ∈ RAuth Token(at) ∧

obj ∈ OAuth Token(at) ∧ CountAuth Token(at) 6= 0. (5.2)

Figure 5.3 illustrates this property.

5.3.5 History-Based Separation of Duty

In presenting the above task-based authorisation framework, we said that permissions
are enabled and appropriate authorisation tokens are generated for each task instance
according to the information from a task authorisation template. It is also possible to
specify certain constraints that apply conditions on what roles are selected for the enabled
permissions, and what users are allowed to use them. A framework for enforcing some
of such constraints is presented by Bertino et al [Ber 97]. However, the constraints of
separation of duty policies, that are of particular importance in our security model, have
not received much attention.

According to the taxonomy of separation of duty policies described in chapter 4, two
variations of this policy are concerned with tasks; one of them being operational SoD, and
another - history-based SoD. In the previous chapter we have specified how constraints
pertaining to static operational SoD can be applied in a framework of role-based access
control which is not tied with any context of current or previous activities. Both dynamic

53

Enabled

Instance of Task B

authorisation token for permission_2

Instance of Task A

authorisation token for permission_1

authorisation token for permission_6

permission_n

permission _2

authorisation token for permission_n

permission_1

of
Permissions

a Role

.

.

.

.

..

Figure 5.3: Enabled Permissions.

operational Sod and history-based SoD, on the other hand, require to take into account
the current status of activities that have been performed within tasks.

In operational SoD policy, no user is allowed to perform all operations that are in
a critical combination of some task. In history-based SoD policy, no user is allowed to
perform all operations that are in a critical combination of a task on the same object
in any instance of this task. The operational SoD can be viewed as based on a general
constraint for a task, while the history-based SoD applies to every task instance.

In the next section we present how separation of duty properties can be realised
within the framework of context-based authorisations. The constraints could be viewed
as enforcing both history-based SoD, and dynamic operational SoD policies.

5.3.6 Denied Users

We require that a user who performed one operation from a critical combination should
not be allowed to perform another operation from this combination within the same task
instance. For example, the user that created the requisition order in the order processing
task cannot be given permission to approve the same order. This means that for the
task instance where this order is being processed, an authorisation token of permission
“approve the order” must indicate that this permission cannot be used by the same user
that created the order.

We may recall the attribute denied users, that was specified in the definition of an
authorisation token. The users that performed other transactions from a critical com-
bination have to be recorded in this set of denied users, if the transaction of enabled
permission is in critical combination with these other already performed transactions.

A mapping function Denied Users(at) : Auth Tokens → 2U gives the set of users

54

that are denied use of permission PAuth Token(at), enabled with authorisation token at.

Constraint 7 (Denied Users) A user that performed a transaction from a critical com-
bination cannot use the permission that allows to perform another transaction from the
critical combination in the same task instance.

∀t ∈ T,∀t inst ∈ TInst(t),∀ati, atj ∈ AToken(t inst):

Executors(ati) 6= ∅ ∧ Executors(atj) = ∅ ∧

TrP (PAuth Token(ati)) ∈ CC(t) ∧

TrP (PAuth Token(atj)) ∈ CC(t) ∧

TrP (PAuth Token(ati)) 6= TrP (PAuth Token(atj))

⇒ Executors(ati) ∈ Denied Users(atj). (5.3)

Users that are able to use the permission enabled with authorisation token at are the
ones that are authorised to the role in the token, minus the denied users. Users in the set
of the denied users might or might not be authorised users of this role.

When a user presents a request to use a permission of an authorised role on some
object, access control mechanisms must verify that the permission of the given role is
enabled on the requested object, and that this particular user has not been denied the
permission.

We introduce a predicate denied(u, p, obj) : U × P × Obj → boolean, which is true
when user u is in the set of users denied to use permission p on object obj, otherwise it is
false3:

denied(u, p, obj) ⇒

∃t ∈ T,∃t inst ∈ TInst(t),∃at ∈ AToken(t inst) :

p ∈ PAuth Token(ati) ∧ obj ∈ OAuth Token(at) ∧

u ∈ Denied Users(at) ∧ CountAuth Token(at) 6= 0. (5.4)

5.4 Implications to the Basic Framework

Context-based authorisations extend the basic framework of role-based access control that
was presented in chapter 3. In this section we specify an authorisation state that includes
the entities of both role-based and task-related access control. We also redefine access
granting rules that now include concepts of enabled permissions and denied users.

5.4.1 Authorisation State

An authorisation state is seen as composed of static elements that are stable except when
changes are initiated by administrative actions, and dynamic elements that are tied with
activities initiated either by users or as a result of user actions in the system:

3A user can be denied to use a permission for other reasons, such as not being authorised for the
necessary roles, but this is enforced with other rules in our framework. This particular predicate will be
used only to ascertain that the user is not denied to use an enabled permission.

55

static element Users,Roles, UserAuthorisationLists,

RoleGraph, Tasks, TaskAuthorisationTemplates

dynamic element ActiveRoleSets, EnabledPermissions,

TaskInstances, AuthorisationTokens.

Figure 5.4 gives an overview of additional elements and system functions introduced
by a task-related framework.

5.4.2 Access Granting Rules

The following access granting rules now apply in addition to the previously defined Rule 2.
Rule 2a (Using an Enabled Permission) A user can use a permission of the user’s

active role on the specific object only if the permission is enabled for this role.

∀u ∈ U,∀r ∈ ARS(u),∀p ∈ PR(r),∀obj ∈ ObP (p)

p ∈ Enabled PR(r, obj) ⇒ can exercise(u, p, obj). (5.5)

Rule 2b (Denial of Enabled Permission) A user can use a permission enabled
for the user’s active role on the specific object only if the separation of duty policy is not
violated.

∀u ∈ U,∀r ∈ ARS(u),∀obj ∈ Obj,∀p ∈ Enabled PR(r, obj)

denied(u, p, obj) ⇒ ¬can exercise(u, p, obj). (5.6)

5.5 Discussion - Context Provision

The presented context-based authorisation framework depends largely on the realisation
of a task planner. Several established technologies and information systems in use are
suitable for this purpose. The basic requirement for such system is control of business
activities, that can be mapped to role definitions of our security model. We briefly review
two types of such technologies and discuss if they are suitable to our purposes for providing
up-to-date information about current activities.

5.5.1 Transactional Workflow Systems

The actions involved in a group of tasks can be viewed as unified to accomplish some
business process. For example, the separate tasks for creating order, receiving goods, and
paying for the goods could be logically viewed as the process “purchase”.

The co-ordinated execution of a group of transactions processing relevant objects by
subjects forms an activity that is also referred to as a transactional workflow. Many organi-
sations perform the information processing activities using predefined workflows consisting
of the numerous steps of transactions with different interactions between them [WH 97].
Transactional workflow models specify, schedule, and execute transactions forming a sep-
arate task. They define a task structure and transactional dependencies in it as well as

56

• Tr = a set of transactions, tr1, ..., trn;

T = a set of tasks, t1, ..., tn;

AT = a set of task authorisation templates;

T INST = a set of task instances, t inst1, ..., t instn;

Auth Tokens = a set of authorisation tokens, at1, ..., atn;

Obj = a set of objects, obj1, ..., objn;

Type = a set of object types, type1, ..., typen.

• transactions: TrT (t) : T → 2Tr, a function mapping task t to a set of transactions;

• objects: type(obj) : Obj → Type, a function mapping object obj to its type;

TypeT (t) : T → 2Type, a function mapping task t to a set of object types that can
be processed in it;

• task instances: TInst(t) : T → 2T INST , a function mapping task t to a set of
task instances;

• authorisation tokens: AToken(t inst) : T INST → 2Auth Tokens, a function map-
ping task instance t inst to a set of authorisation tokens;

• enabled permissions: Enabled PR(r, obj) : R × Obj → 2P , a function mapping
role r and object obj to the set of enabled permissions.

Figure 5.4: Additional Elements and System Functions.

57

the execution requirements4. However, the workflow models do not in themselves support
authorisations or access control policies5.

Tasks in Workflows

Tasks in the workflow systems are specified by defining:

• a set of transactions together with an execution structure of each transaction,

• temporal dependencies between transactions in the task,

• task execution requirements.

An execution structure of each transaction is defined by providing execution states
and transitions between these states. The execution states of previous transactions may
influence the successive order of other transactions in a task. Every transaction can
progress through several states, generally defined as initial, executing, done, on-hold,
aborted. Any of these states of one transaction may be a precondition for the progress
of other transactions. An example of such a precondition is “transaction Tr1 can start
when transaction Tr2 is done”, or “transaction Tr3 can start when transaction Tr2 has
aborted”.

The processing sequence of the whole task can depend on the output values of its
transactions. For example, in the task to approve a sales order, if the credit rating
returns a pure outcome for a customer, the sale is not approved and ordered goods are
not delivered. This precondition can be stated as “transaction Tr1 can not be started if
transaction Tr2 returns a value less than the specified number”.

External events, such as expirations and deadlines, may also influence the progress of
the task. The examples of such conditions could be “transaction Tr1 can not be started
after 8 PM”, or “transaction Tr2 must be done within 24 hours, otherwise it is aborted”.

Task Scheduler

The evaluation of the defined inter-transaction dependencies and processing of the whole
task in the workflow system is performed by a task scheduler. A scheduler is a pro-
gram that submits transactions for execution and ensures that a transaction reaches an
acceptable termination state. It then schedules successive transactions according to the
dependencies in each task. A scheduler is also responsible for the whole task reaching
an acceptable termination state in an optimal way. It is capable of identifying various
alternative ways to proceed with the task and of handling failures.

From this overview it is possible to perceive that the workflow management systems
would be very suitable for providing information required by our context-based authori-
sations. The design could utilise the known task structures, co-ordination requirements

4Further reading about transactional workflow systems can be found in Rusinkiewicz [RS 95], Geor-
gakopoulos [GH 95].

5Recently there have been several attempts to define authorisation models for work-
flows(Atluri [AH 96], Bertino [Ber 97, Ber 99]).

58

of a collection of transactions, and execution semantics of the workflow systems. The
workflow task scheduler can be used to give information about terminated and scheduled
transactions to enable just-in-time permissions of roles.

5.5.2 Auditing Systems

A journal kept for audit purposes can also be used to identify previous context. If audit
history is made available to the access control software, future access request will be
conditional on past actions recorded in the journal. However, the audit journal is a very
large and complex data structure. The only information that is required in our framework
is what transaction was invoked by which user, and in what role it has been used. Further
work is needed to standardise content and organisation of audit journals so that suitable
context can be developed.

5.6 Conclusions

Though the need for context-based access control has been recognised for some time,
there has been little research into specification and enforcement of authorisations from a
task-based perspective.

In this chapter we have described an “active” context-based approach to access control.
This approach differs from a “passive” subject-object view in many respects. Permissions
are controlled and managed in such a way that they are turned-on only if they are to be
used in tasks. To enable this, we have defined an authorisation token that indicates what
permission of which role is enabled.

Although a number of workflow applications are presently used to control and execute
related groups of transactions, they do not in themselves handle permission authorisations,
especially in a unified framework with role-based access control. The mechanisms intro-
duced in this chapter could also be useful for authorisation management in the workflow
systems. These issues may require further investigation.

59

60

Chapter 6

Design and Implementation

6.1 Introduction

In this chapter we will describe how we propose to apply the presented security model with
its security constraints and context-based authorisations in computer systems. The RCBS
model is independent of the environment in which it may be implemented. For example,
the model can be embedded in operating systems or database systems, or implemented
at the application level. The implementers are able to choose, based on requirements,
between several alternative design approaches.

6.2 Authorisation Database

Access control mechanisms in the RCBS model require that security attributes are kept
about users, roles, transactions, objects and tasks, as is illustrated in figure 6.1.

User security attributes describe what roles are authorised to the user.
Role security attributes consist of permissions associated with the role, users autho-

rised for the role, and names of roles that are strongly/weakly exclusive with the role. A
role hierarchy describing inheritance relationships between roles may exist as a separate
structure.

Types of objects that a transaction can operate on, and the names of tasks in which
it can be used are referred to by transaction security attributes.

Object security attributes define the permissions required to operate on the object.
According to the classification of objects taken in chapter 4, the object security attributes
describe in addition the domain and the conflict of interest class to which the object
belongs.

Task security attributes are represented as task authorisation templates, describing
permissions that are enabled for each task’s instance together with the names of roles to
which permissions belong. A defined critical combination of transactions within the task
is also a security attribute of the task.

To help with the maintenance of the database of security attributes security packages
often support implementation of description files. A description file allows a designer to
capture semantic information pertaining to access control requirements of a particular
entity. The database may be established by defining and managing description files to
represent and capture the essential features. The technical skills required for creation

61

Templates

User security attributes

Transaction security attributes

Role security attributes

Object security attributes

Task Authorisation

Figure 6.1: Database of Security Attributes.

and administration of the separate description files differ, decreasing from lower level
to highest level. This provides for possible decentralisation of management of different
components of the model.

6.3 Design Architecture

In this section we propose a design architecture for the RCBS model. We introduce the
components, through which the consistent management of security attributes occurs.

Figure 6.2 gives an overview of all components that enable effective enforcement of
security constraints and authorisations defined in previous chapters.

The consistency of the static authorisation state is ensured with the help of two main
components, called a role manager and a task manager.

A role manager has to accomplish the following tasks:

1. verify that roles are correctly defined;

2. ensure consistency in role hierarchy;

3. monitor user authorisations to roles.

First task is concerned with the application of constraints that directly deal with
permissions given to roles. In addition to ensuring that each role has minimum number
of permissions required, the role manager must verify that no role violates an enforced
separation of duty policy. This requires applying Constraint 3 (per-role operational
SoD), and Constraint 5 (per-role object based SoD).

62

Activation Manager Access Manager

Task ManagerObject Manager

Role Manager Role Hierarchy

Transaction Manager

Static

Dynamic Part

Authentication

Service

Part Outside

Appli-

cations

Session Manager

PAS

Workflow

Management

System

Figure 6.2: The Design Architecture.

63

Second task ensures consistency of role relationships in role hierarchy according to the
properties of SoD policies. Specifically, statements defined throughout Theorems 1-4
must hold true at all times.

Finally, the role manager has to ensure that users are authorised to the defined roles in
consistence with authorisation-time exclusion (Constraints 1, 1a, 1b), as well as with
operational and object-based SoD properties (Constraints 4, 6).

The role manager must also support the main mapping functions. It must provide
answers to the queries such as the permissions associated with a role, the transaction and
objects included in those permissions, or the set of mutually exclusive role pairs.

A task manager is required for the enforcement of context-based authorisations.
The task manager has to provide information as to what permissions of what roles can
be used in a particular task instance. In addition, critical operations of transactions are
defined through the task manager.

Other components, such as a transaction manager and an object manager are
less important in the framework of the RCBS model. A transaction manager has to ensure
that transactions operate only on the allowed types of objects, and deals primarily with
the internal operating structure of transactions. An object manager, on the other hand,
deals with the classification of objects to conflict of interest classes and domains.

The consistency of the dynamic state is ensured with the help of the other two com-
ponents, called an activation manager and an access manager. An activation manager
enforces application of Rules 1, 1a, 1b at the role activation time, while the actual
access according to the Rules 2, 2a, 2b and Rule 3 is controlled by an access man-
ager . A permission authorisation service (PAS) is introduced to provide for the effective
enforcement of context-based authorisations at the dynamic level. The functions of these
components will be described in more detail later in the chapter when we present pro-
cessing phases necessary associated the RCBS model.

The security constraints of the RCBS model provide confidence as to adherence of
organisational security policies. In theory, similar effects can be achieved through estab-
lishment of security procedures among administrators. For example, administrators can
maintain and share a list of all known conflicting permissions and ensure that two conflict-
ing permissions are never assigned to the same role. In reality, however, the procedures
break down, and administrators get reassigned over time. The constraints, therefore,
provide assurance that critical security requirements are uniformly enforced within the
system.

6.4 Processing Phases

The different security rules and constraints of the defined security model are applied
throughout three processing phases associated with our security model:

Authorisation and Administration This phase consists of creating and maintaining
the database of security attributes. Administration tools are usually implemented
separately as privileged applications.

Activation The activation phase consists of establishing a session and activating/deactivating
roles in a session. A session is a set of processes, acting on behalf of a user. Session

64

establishment involves authenticating the user, creating one or more user processes,
and associating user security attributes with each process.

Enforcement In the enforcement phase the access control rules are enforced in order
to grant or deny access to objects. User security attributes such as active roles
are compared with task requirements and object security attributes to make a final
access decision.

In an actual application, a designer may chose between several alternative design
approaches in respect as to how and what is processed at each phase. In the next section
we describe each phase in more detail and indicate what design decisions should be taken.

6.5 Authorisation and Administration Phase

During authorisation phase, an authorisation database is created, and constraints for the
enforcement of high-level security policy are defined. Depending on a particular applica-
tion, a designer might choose to include constraints pertaining to only one of the several
variations of separation of duty presented in chapter 4. For example, application of either
history-based SoD or operational SoD may be sufficient in some security policies. A de-
signer is given possibility to chose the SoD policy that is most suitable to the requirements
of an application. Once selected, all constraints pertaining to the same SoD policy must
be applied.

The RCBS model is treated as enforcing a non-discretionary access control method.
That is, one or more administration roles are required to be distinct from other roles. Their
permissions must deal only with the policy-defining components of the model, such as user-
to-role, role-to-permission, and permission-to-task mappings, and security constraints;
users not assigned to administration roles should be denied those permissions.

An example of administration model suitable for managing the components of the
RCBS model is presented by Sandhu in [SCFY 97, SBh 97]. The administration tools,
should they be implemented, have to communicate with the relevant managers, and by
means of fixed operations manage an authorisation database. The integrity is maintained
by checking and enforcing security constraints and theorems.

The administration of a role-based security system has to address problematic issues
related to the revocation of role authorisations, delegation of role authorisations, and
auditing. Since they have been little covered in the existing literature, we feel that is
necessary to address those issues in more detail, as far as they apply to our security
model.

6.5.1 Revocation of Authorisations

Revocation of a role authorisation from a user involves, in respect to the basic framework
of chapter 3, removing the user from the authorisation list associated with the role.

In the RCBS model, if role R1 inherits role R2, then the permissions of role R2 form
a subset of permissions of role r1. When a user is authorised to role R1, this means that
all its permissions are available to the user including permissions inherited from role R2.
When the role authorisation is revoked, all permissions of the role including inherited
ones are automatically removed from the user. If the administrator wishes inherited

65

permissions to be left authorised for the user, this operation must be done explicitly by
assigning the user to the UAL of the appropriate roles.

The administration tools must constantly remind an administrator about the role
hierarchy when a new role is being authorised to the user. This helps to assess that the
user has the minimum set of permissions required for his functions.

6.5.2 Delegation of Role Authorisations

A non-discretionary access control method prohibits users not assigned to administration
roles from granting role authorisations to other users. However, in case of absence of users
authorised to certain roles or inability to use certain permissions from some machines,
users may need to temporarily delegate role authorisations to other users. In such cases
a possible delegation procedure may be worth considering.

In the RCBS model, a delegation procedure can be introduced by creating a special
transaction that operates by temporarily assigning an authorised role to another user.
Permission to perform such transaction could be allocated to roles that have to be regularly
in use, when absence of authorised users might put activities of others on hold. Temporal
role assignment to other users has to be accompanied by some kind of a delegation token.
This must give particulars as to what role has been delegated, what user originated
the delegation, and for what period of time, which could be later analysed for auditing
purposes by system administrators.

Delegation, as such, is a complex issue, and many aspects, such as related account-
ability issues, still require further research before it can be safely introduced to non-
discretionary security systems.

6.5.3 Auditing

By their nature, roles provide a simple way to identify what users currently have access
to permissions associated with them. The constraints can also provide an information as
to how these roles are authorised to users, and how permissions are allocated to roles.
In the RCBS model, the points have been indicated where different constraints could
be introduced, and the mechanisms have been proposed to enforce them. This provides
administrators and auditors with the capability to determine how an active access is
granted to users. At activation and enforcement phases, the information is recorded
about current role activations and permission usage. This information can be used for
auditing to answer queries about activities in the system.

6.6 Activation Phase

In order for a user to activate authorised roles, a session must be established. A session is
a set of processes acting on behalf of a user. Session establishment involves authenticat-
ing the user, creating user processes, and associating user security attributes with these
processes. The full activation phase in a computer system consists also of changing the
characteristics of, and removing sessions.

The rules under which users activate roles (Rules 1, 1a, 1b) are applied during the
activation phase. Up-to-date values of user security attributes, such as authorised roles,

66

Request activation of roles

User Security Attributes

Present with a choice of roles

Authorised Roles of Each User

Session’s Active Role Set

that can be used in the session

U S E R

SESSION

SESSION

MANAGER

Figure 6.3: Session Manager.

must be available in order for user processes to be able to access roles in the name of the
user.

One of the following approaches may be implemented for keeping up-to-date values of
user information:

uncached user information User information including the roles authorised for each
user is obtained through the role manager;

cached user information User information is kept on each server, and this information
is used during the activation phase without having to access role manager.

Keeping an uncached user information guarantees that this information is always up-
to-date but requires communication with the role manager whenever a session is estab-
lished. In addition, failure in communication results in that no sessions can be processed.

Cached user information requires updates whenever there is a change in user infor-
mation, such as new roles being authorised, but does not require communication during
session establishment. Since it is generally assumed, that session phase is more frequent
than occurring changes in user information, most implementations use cached user infor-
mation, so reducing network usage.

6.6.1 Session Manager

We introduce a special component, called a session manager, to start processes on behalf
of a user in a session. Each established session in a computer system must have a separate
session manager.

67

As is illustrated in figure 6.3, during the activation phase the session manager enables
the user to activate/deactivate roles in a session. It also handles access requests on behalf
of the user.

The operations that have to be performed by the session manager after a session has
been established are:

1. to analyse user security attributes,

2. to identify authorised roles,

3. to apply role activation rules,

4. to present the user with roles that can be used in a session.

6.6.2 Activation of Roles

One of the several options is available for managing activation of roles in a session. One
option is to have all roles authorised for a user automatically activated once the session
is established. The extreme opposite of this is to restrict a user to only one active role
per session. However, in the first case the roles are activated that may never be used
by the user, whereas the second case increases the likelihood of users trying to bypass
security procedures. The third option is to let users choose the authorised roles they want
to activate in each session.

Since weak exclusion constraints (Rules 1a, 1b) prohibit simultaneous activation
of certain roles, a user will not always be able to activate just any role from the set
of authorised roles. Firstly, a session manager must identify the different subsets of
roles allowed to be active at the same time. The user can then select to activate one
or more roles from one of the identified subsets. The user should also be allowed to de-
activate already active roles and to activate new roles in the same session, while activation
constraints apply on every role activation.

6.6.3 Multiple Sessions

To give the required flexibility and convenience, users are often allowed to have multiple
sessions opened simultaneously in the system. This requires to consider whether each
session opened by the same user should have the same or different set of active roles (ARS).

When the roles are not constrained on activation, the situation that each session may
be associated with a different ARS is probably acceptable to most security administrators.
For example, a user who is involved in several projects benefits from having a window
open for one project, and on the same display, a window open for another project.

However, when role activation is constrained with the mutual exclusion among roles,
the situation that a user on a workstation screen has one window open with one ARS
and another window with a different and conflicting ARS might be not at all acceptable,
since it may not be consistent with the enforced separation of duty policy. For example,
a bank teller can also be an account holder at the same bank. The policy in a bank is
to constrain employees who are also account holders from being active simultaneously in
both roles. The situation where an employee has one window open for the bank teller

68

Manager

Session_1 Session_2 Session_n

. . .manager
session
manager

session session
manager

mutually exclusive role pairsARS(u)

User security attributes Role security attributes

Activation

Figure 6.4: Activation Manager.

role and another window on the same display for the management of his account is not
consistent with this policy.

One solution is to restrict a user to a single session at a time. Another solution
considered by Barkley in [Bar 97] is to associate a single unique ARS with a given number
of sessions. When a user changes an ARS in any of these sessions, each ARS of every
other session from the identified set is also updated. This approach ensures that a given
set of sessions will not have conflicting roles active simultaneously. In large computer
systems this solution, however, might seriously impact network throughput, since there
will be constant communication among the sessions opened by the same user.

6.6.4 Activation Manager

For controlling multiple sessions in an implementation of the RCBS model, we propose a
solution based on a slightly modified variation of the above approach.

We first introduce an additional component, called an activation manager, to handle
role activation requests passed on by session managers from sessions started in the system1,
as is illustrated in figure 6.4.

For each user a dynamically updated list of currently active roles is kept by the acti-
vation manager. The ARS in every session opened by the same user is then allowed to
be different. However, the activation manager must be contacted on every role activa-
tion/deactivation in a session, so that the main ARS for each user is up-to-date.

We also require that all ARSs kept by the activation manager must always remain
internally consistent. New roles can be activated in the established sessions and new
sessions can be opened with different ARSs, as long as no conflicts arise among the

1In actual implementations, a number of activation managers will probably have to be implemented,
each handling requests from sessions started in subsystems with smaller number of users.

69

Task Planner

Workflow Mnagemet System

Task Instances

Service
Authorisation

Permission

Task Authorisation Templates

Authorisation Tokens

Task Security Attributes

Figure 6.5: Permission Authorisation Service.

already activated roles and the newly requested roles by the same user. This ensures that
no mutually exclusive roles are simultaneously activated by any user.

Although this method ensures effective control of multiple sessions, the activity in a
network of computers is again increased. A number of sessions opened by the same user
could be limited in order to reduce the number of required communications. However, no
one solution will satisfy all needs in this situation. For each specific application a designer
must choose a level of (in)convenience that is appropriate for the current environment,
its risk, and level of user discipline.

6.7 Enforcement Phase

The enforcement phase consists of analysing permissions of activated roles in order to grant
or deny access to transactions that operate on objects. This phase occurs every time a
user, i.e. a process acting on behalf of a user, attempts to perform transactions in order to
manipulate the application’s objects. In a network environment, an implementation must
ensure that the enforcement phase has up-to-date information about the permissions of
activated roles.

In the proposed design architecture of the RCBS model, the role manager has access
to role hierarchy, and can give information about current effective permissions of a role.
The information as to which of these effective permissions can actually be used at the
specific moment must be available from a different service.

6.7.1 Permission Authorisation Service

We propose implementing a permission authorisation service (PAS) for the enforcement
of context-based authorisations. PAS has to register what tasks have been started in the

70

system, and accordingly enable/disable permissions of relevant roles. Figure 6.5 illustrates
the basic operations that have to be performed by PAS. They are the following:

1. to contact the task planner about the completed transactions and the transactions
scheduled for possible execution;

2. to generate an authorisation token for the permission that allows to execute the
scheduled transaction;

3. to keep track of permissions used; each time an enabled permission has been used
the associated usage count must be reduced;

4. to record users that use the enabled permissions.

In this approach, we assume that a task planner is available from a workflow manage-
ment system. It schedules transactions according to the plan defined in the definition of
a task. PAS enables permissions to scheduled transactions, taking information from the
task authorisation templates. In principal, PAS cannot enable a permission to perform a
transaction, if this transaction has not been scheduled.

An authorisation token for enabled permissions is available from PAS. When a user
requests access to a certain transaction, PAS is contacted. If there exists an authorisation
token that allows to use the requested transaction on the indicated object for a user active
in the correct role, and if the usage count in this token has not been exceeded, the request
is granted. If otherwise, the request is rejected.

6.7.2 Access Manager

To evaluate access requests and to enforce access decisions according to the defined Rules
2, 2a, 2b, and Rule 3, we introduced yet another component, called an access manager.

Figure 6.2 shows that to reach an access control decision in respect to the rules in-
troduced in the RCBS model, an access manager must have information from the role
manager about the effective permissions associated with active roles, from PAS about
which of the effective permissions are enabled, and from the transaction manager about
the types of objects that can be accessed.

6.8 Conclusions

The design decisions that can be taken towards the implementation of the RCBS model are
varied and are mostly dependent on requirements of a specific application. In this chapter
we have emphasised the points where it is necessary to take one of several alternative
approaches.

The functionality of the RCBS model depends on successful implementation associated
with each of processing phases, including set-up of the main database of access control
information, establishment and management of sessions, enforcement of access control,
and overall maintenance with the help of administration tools. The RCBS model has
been formulated at the level of abstraction that is intuitive and consistent with the way
duties and responsibilities are shared and business is conducted in the commercial or

71

government organisation, making security administration easier. Enforcement of security
constraints gives additional assurance as to adherence to well-known security principles
and policies that are important in business practices.

72

Chapter 7

Authentication

7.1 Introduction

Applying the presented RCBS model to distributed computing environments requires to
reappraise the established security framework. Each service in the model could be imple-
mented on distributed hosts that make their assertions without reference to a mediator,
such as a centralised resource that keeps an authorisation database. The mechanisms
to enable this must be dynamic and easily used by all services while maintaining strong
assurance. Specifically, the hosts should be able to collect and authenticate the neces-
sary assertions (identity, roles, use-conditions), based on which a specific service will be
granted.

In this chapter we look at one of the fundamentals concerns in building a secure
distributed system, authentication, and how it affects the design of our model. Specifically,
we examine two existing approaches to authentication in distributed systems, namely
ticket-based approach enforced in Kerberos, and certificate-based approach used in SPX
and PKI. We look at how effectively each of these approaches can be combined with the
RCBS model. We conclude by presenting an authentication framework that to be used
in applying the RCBS model to distributed computing environments.

7.2 Authentication in Distributed Systems

A distributed system presents some unique security problems. A fundamental concern is
authentication of various entities in the system. In a distributed system, entities communi-
cate by sending and receiving messages over the network. Various services are distributed
among different servers across the network. The processes acting on behalf of users direct
service requests to the appropriate servers.

An assured authentication framework is vital for servers to be able to identify and
verify an identity of the user making a request. Only after successful authentication the
server can proceed with access control decision to its service.

All authentication procedures involve checking known information about a claimed
identity against an information supplied by the claimant. In the very primitive authentica-
tion measures, users are required to enter their passwords in order to access a server. Such
measures, however, are seriously inadequate in distributed systems. A detailed survey of
all authentication aspects in distributed systems is presented by Woo and Lam [WL 97].

73

Role Manager

Access Manager

Manager
Session

User’s Session

Activation Manager

authenticate A

issue ticket for B

(TGS) (B)

(A)

Server

present ticket for B

Authentication

issue ticket for TGS

present ticket for TGS

Figure 7.1: Ticket-based Authentication.

In the next sections we examine two of the most popular approaches to authentication,
and present how they can be applied in the design of the RCBS model.

7.3 Ticket-based Approach

A centrally enforced, symmetric cryptography based authentication scheme is defined in
the Kerberos model, the overview of which is presented by Neuman and Ts’o in [NT 94].
Kerberos provides secure network authentication, allowing a user to access different servers
on the network. Authentication is built around the concept of tickets. A ticket is used to
pass securely to the server an identity of the user for whom the ticket was issued. The
user has to obtain tickets for every service he wants to use on the network.

The authentication protocol in this architecture is quite straightforward. A user first
requests an initial ticket for ticket granting service (TGS) from a Kerberos authentication
server (KAS). This ticket is sent to the user, encrypted with a secret key shared between
the user and KAS. Using this ticket, the user can request other tickets for services on the
network from TGS. The appropriate tickets are then presented to the servers providing
the required services, along with the user’s authenticator. Based on the outcome of the
authentication protocol, a server lets/denies access to its service.

Kerberos authentication scheme could be used to provide assured authentication be-
tween different services of the RCBS model. In a network of computers, services, such as a
role manager, activation manager, and an access manager can be distributed over a num-
ber of different servers. A user logging into the computer system will need, after initial
authentication by KAS, to access both an activation manager and an access manager.

Figure 7.1 indicates the communication steps that have to take place between different

74

services for a user to access resources in the RCBS system. A central authentication server
first authenticates the user. It issues an initial ticket to access the activation manager.
The activation manager can act as a ticket granting service in this case, since, according
to our security policy, a user may access other services only after the necessary roles have
been activated. Alternatively, a separate ticket granting server could be implemented that
issues tickets to all services in the system.

The activation manager contacts the role manager to verify that the requested roles
are authorised to the user. Having activated the roles, the activation manager supplies
the user with tickets to access other services in the system, including the access manager.

There are, however, several limitations associated with this authentication scheme.
Kerberos enforces primarily a centralised security model with the authentication server
at the heart of it, and although connections between different administrative domains can
be established with the help of Kerberos realms, this leads to an increased complexity of
the scheme. Another limitation is that it requires servers to be online. The KAS has to
be on-line during login, and the activation manager is needed when tickets are requested.
In addition, the role manager has to be contacted on every role activation.

7.4 Certificate-based Approach

We will now consider another approach to authentication on distributed systems, built
around the digitally signed statements, called certificates.

In the existing certificate-based authentication schemes, such as SPX [TA 91], or more
recent PKI [FHPS 99], a certificate refers to digital binding of a principal’s1 name to its
long-term public key. This certificate, called public key/identity certificate, is used
for identity authentication, that in addition requires proving that the principal knows the
associated private key. Identity certificates are issued by certification authorities (CA).
They verify the connection between an identity of a principal and possession of a public
key/private key pair before signing the certificates.

Lately, there is a tendency to use certificates for attesting also other information,
such as various attributes associated with a principal [FH 99] or use-condition informa-
tion [TJM 99]. For example, when a party wants to authenticate a principal authorised
for some role, this means that the party requires assurance not only as to an identity
belonging to a claimant, but also that at the time of a request the claimant is authorised
to a certain role.

We may recall that previously, in order to ascertain a user’s authorisation to a role, the
service had each time to access a role authorisation database held by the role manager.
Certificate-based approach, however, allows pieces of an access control policy to be stored
in distributed certificates. Names of the roles authorised to a user can then be recorded in
digitally signed certificates to be exchange between services on the network during mutual
authentication.

Components that enable certificate-based authentication include reliable mechanisms
for generating, distributing and verifying certificates. All these mechanisms rely on public-
key cryptography for digital signatures, a public key infrastructure for certificate man-
agement, and protocol for secure communication.

1An entity that constitutes a principal can be a user, a host, or a process acting on behalf of a user.

75

Authority
Certification

User’s Session

Manager

activation

certificate
activation certificate

Role Manager

identity certificate

role

certificate

identity

certificate

role certificate

(Certificate Issuer)

Session

Activation Manager
Access Manager

(Certificate Issuer)

Figure 7.2: Certificate-based Authentication.

Advantages of the certificate-based approach over the established Kerberos systems
are decentralisation and reduced network activity since servers can be off-line. However,
this approach also requires that users and some of the services should get hold of a public
key/private key pair, and use more expensive cryptographic techniques. Final decision
depends on the requirements of a particular application. It is our expectation that PKI
identity certificates will become more widespread than Kerberos identities since many
organisations are beginning to use them for employee identification. For this reason we
present in the next sections a detailed architecture for deployment of certificate-based
authentication in the RCBS system.

7.5 Authentication Architecture

Figure 7.2 shows an overview of authentication architecture in our security model indi-
cating only the major components. The heart of the system is the session manager where
all the user’s requests originate. The session manager first requests on behalf of the user
a role certificate, presenting an identity certificate during communication with the role
manager. The role manager verifies the identity certificate, and then from its database
of UALs generates a list of roles authorised to the authenticated user. A digitally signed
role certificate is sent to the session manager. This certificate can be cached at the local
machine. Since it will not be necessary to obtain another role certificate until the previous
one expires2, the role manager can be off-line.

2Exception is the case of some of the authorised roles being revoked from the user. Then the old
certificate has to be revoked, and a new one issued.

76

One of the functions of the session manager is to activate the requested roles on behalf
of a user. For this purpose the activation manager is contacted. In the course of mutual
authentication, the session manager sends the cached role certificate together with the
names of requested roles. After identifying the user and verifying the role certificate, the
activation manager either activates or refuses to activate the roles. A digitally signed
activation certificate is issued as a proof of successful activation. It will be valid for
the current session.

Having activated the roles, the user can proceed to execute transactions and request
access to recourses. In this case the access manager is contacted. The cached activation
certificate is presented during mutual authentication between the session manager acting
on behalf of the user and the access manager. The access manager then acts according
to the access granting rules to allow/disallow requested services.

7.6 Generating and Managing Certificates

In the described framework three types of certificates are being used: user identity certifi-
cates, role certificates, and activation certificates. We assume that the identity certificates
are generated and managed by certification authorities (CAs) and certificate distribution
centres of the public key infrastructure, that typically also supports some form of certifi-
cate revocation.

7.6.1 Format

Role and activation certificates are the declaration statements.

A role certificate declares an identity of a user and names of the roles authorised
for this user.

An activation certificate binds the user’s identity with the names of activated roles
and an id of the current session.

These certificates do not, in themselves, specify any associated public key, or define
how the roles were entered or how the certificate must be used. Additional values include
a validity period and a unique ID for the certificate.

Both the role manager and the activation manager generate the appropriate certifi-
cates according to the access control information held in the system, based on having
successfully identified the user. The result is digitally signed with the certificate issuer’s
private key. The receiver of those certificates will need to obtain corresponding public
keys separately, in order to check the signature on each certificate.

7.6.2 Life-Time

A lifetime of a certificate depends on how long-lived is the declared information. For
example, identity certificates containing the name and long-term public key usually have
validity periods of months or even years.

77

Role certificates used in our system bind a user’s identity with the names of authorised
roles. Assuming that job related tasks and responsibilities assigned to a person are rela-
tively stable, role authorisations will not change very often. Therefore, the validity of role
certificates could be almost as long as of identity certificates. This inevitably means that
some form of revocation mechanism must exists, in case role authorisations are removed
from a user before the certificate expires.

A certificate can be revoked by maintaining a certificate revocation list or by deleting
certificates from the role manager’s database. This requires for the role manager to
be on-line during verification of certificates. In an actual implementation, a certificate
revocation list could be available from a different server.

Activation certificates declaring that a user has activated certain roles have a lifetime
spanning only one session. We may safely say that they will expire by the end of working
hours. Having such short-lived certificates has advantage, because they will rarely need to
be revoked before expiring. Some of the features of short-lived certificates are presented
by Hsu and Seymor in [HS 98].

7.6.3 Distribution

Different approaches for obtaining the digitally signed certificates can be taken. Each
approach could be made to work within our model, and we will now compare their relative
advantages and disadvantages.

User-Pull Architecture

One method is a user-pull scheme, where a user or, more accurately, the process acting on
behalf of the user in a session pulls the appropriate certificates from the certificate issuers
and then presents them to other servers.

In describing an authentication framework above, we have assumed this particular
approach. A user, Alice, first needs to download her role certificate issued by the role
manager and store it in her machine. Later, when Alice activates roles this certificate is
presented by her machine to the activation manager. The activation manager, in turn,
issues to Alice the activation certificates, that are stored in her machine, and are later
presented to the access manager. Each service uses the information retrieved from the
certificates for its own purposes, e.g. for activation of roles or for granting access to certain
objects.

The user-pull method supports high user mobility. A user can download the necessary
certificates to her current machine. The user’s machine can then present those certificates
to remote servers along with her identity information.

Server-Pull Architecture

Another method is a server-pull scheme, where each server pulls the appropriate certifi-
cates from the certificate issuers as needed, and then uses them for its own purposes.
In this architecture, a user, Alice, does not need to download her role and activation
certificates. Instead, she needs only to prove her identity.

The remote server first authenticates the user. The server then retrieves the certificates
required for supplied services from the appropriate certificate issuers, e.g. the activation

78

manager gets the role certificate from the role manager, and the access manager obtains
the activation certificate from the activation manager.

In this architecture the certificate obtaining mechanism is transparent to a user, while
limiting user portability.

7.7 Authentication Across Domains

Up to now we have assumed a centralised certification authority and centralised activa-
tion and access managers. A realistic distributed system, however, often interconnects
several independently administered subsystems. The emergence of Internet also increased
an amount of co-operative work between people from different organisational domains
separated by large distances.

Interaction between principals from different subsystems depends largely on inter-
domain authentication. The defined framework is sufficient for identity and role authen-
tication within the local system, since services and a certification authority can easily
verify certificates issued locally. However, a server has no way of verifying a request from
a remote principal, even if the request is certified by some remote certification authority.

For inter-domain authentication, two issues need to be addressed: naming and trust.

Naming is concerned with ensuring that principals are uniquely identifiable across
domains. Since existing authentication schemes are mostly based upon identification of
a name or identity of a principal, they are not sufficient for large-scale systems. One of
the emerging solutions is to extend an identity information with additional attributes, as
presented by Sandhu et al [SP 99]. An attribute may be some particular property of a
principal helping to uniquely identify the principal in an outside computer system. For
example, authorisation to some role could imply that certain trust can be placed upon a
user, or that the user is the one to initiate a particular action.

An access control policy in the RCBS model prohibits any user from activating roles
and accessing services, if the user’s id has not been found in the local user-role authorisa-
tion database. If, however, the role certificate is used during inter-domain authentication,
the server has in addition to the user’s id a certified information about the roles that
are authorised to the user on some remote system. Based on this additional information
the server might be able to proceed by allowing activation of local roles. This requires
that the server should have a mapping mechanism that maps the names of remote roles
declared in role certificates to the local role names. Besides that, the server must also be
willing to trust a certification made by a remote authority regarding a remote user. Such
trust relationships must be explicitly established between domains.

The success of extending the RCBS model to meet the requirements of enterprise-wide
security in large-scale computer systems, therefore, depends largely on further research in
inter-related areas.

7.8 Conclusions

In this chapter we looked at implications of applying the presented RCBS model to dis-
tributed environments. Authentication is a fundamental concern in distributed systems,

79

that also has a serious impact on the security of our model. We examined existing au-
thentication schemes, and presented a framework that can be used with the security
mechanisms of the RCBS model.

80

Chapter 8

Conclusions

This dissertation presents a security model for access control and authorisation man-
agement that allows fine grain specification and enforcement of enterprise-specific policies
and internal controls. This chapter summarises the main conclusions and suggests further
work.

8.1 Summary

Two fundamental problems that this work attacks are the deficiency of formal expressions
for capturing security policies of separation of duty and Chinese Walls, and the lack of
mechanisms for the active runtime management of authorisations and related access con-
trols. The main goals are achieved by developing properties of role-based access control,
and integrating them with context-based authorisations. The essential features, arising
from these domains, may be summarised as follows.

• The application of security constraints, especially for expressing separation of duty
policies.

Separation of duty is a well-known principle of computer security. However, it is dif-
ficult to express and effectively enforce this principle in security systems. Although
different variations of separation of duty exist, there are few mechanisms necessary
to uniformly support this variety of separation of duty policies in a security model.

In chapter 4 a framework of security constraints was presented that enables appli-
cation of different variations of separation of duty policy at the role-based access
control level. The constraints deal with user assignment to roles, and with per-
mission distribution among roles, including role hierarchies. Chapter 5 developed
this further by presenting mechanisms for runtime application of separation of duty
policy. In chapter 6 multiple sessions are constrained when separation of duty con-
straints are in effect.

• The enforcement of authorisations from the perspective of activities in the tasks.

In the traditional security models1, access and authorisation control is based on the
statically defined relationships between subjects and objects. If a subject requests

1A role-based approach that does not consider role or transaction activations also falls into this
category.

81

access to an object, and the subject has relevant rights, access is granted without
any further controls. However, in such view access requests are separated from
larger context, such as activities of other subjects, history of operations on objects,
and current state of business tasks in an organisation.

The abstractions and mechanisms defined in chapter 6 provide for the active man-
agement of authorisations as tasks progress to completion. Permissions of roles
are constantly monitored, and are enabled and disabled in accordance with con-
text emerging from progressing tasks. Such task-based approach represents radical
departure from traditional passive security models.

The proposed mechanisms can be effectively layered on top of role-based controls.
The points were also indicated where the workflow or other sequencing technologies
might be added.

The trade-offs of the RCBS model are made on the grounds of multi-point protection
and flexibility:

Multi-point protection Most of the traditional approaches for controlling a subject’s
access to objects introduced control only at the point of individual objects. Spec-
ification of access control lists (ACLs), for example, is the most popular way for
defining subjects’ rights to objects. A subject is then granted an access if an appro-
priate access right to an object is specified in the ACL.

In the RCBS model, authorisations are embodied through several components, such
as permissions assigned to roles, role inheritance relations, task authorisation tem-
plates, and, finally, user-role authorisation lists. These components collectively
determine what a particular user is allowed to access at a certain moment in the
system. In addition, an access control policy can be enforced not only at the static
level, but also at the time authorised roles are being activated by users.

Flexibility The presented security model is not oriented towards dome specific organisa-
tional or computing environment. The design architecture presented in chapters 6
and 7 provides only the guidelines for applying the model in computer systems. The
granularity of roles and permissions can be specified to suit a specific environment.
The designer is able to choose between several alternative approaches for the enforce-
ment of separation of duty policies and other security constraints. The mechanisms
introduced for the active runtime management of security provide possibilities for
the administrators to define security policies with fine granularity. Because the se-
curity policies can, and usually does, change over the system life cycle, the RCBS
model offers a key benefit through its ability to meet changing organisational needs.

8.2 Further Work

Further work can exploit mainly the areas of policy extensions to specify inter-organisational
issues, to integrate with workflow management systems, and to reason about auditing and
accounting. Formal analysis may also require further work.

82

Inter-organisational issues Policy extensions are required for application of the RCBS
model over multiple organisational subsystems. Of particular importance are facil-
ities that allow interaction between components from different administrative do-
mains.

Integration with Workflow Systems For context-based authorisation controls of the
RCBS model to be effective, we have to seek ways where they can be automatically
enforced at runtime when the corresponding tasks are invoked. In recent years,
workflow management systems have gained popularity in commercial sectors. They
are used to coordinate and streamline business tasks in an organisation. Integrating
context-based authorisations with workflow systems is a broad objective for future
research efforts.

Auditing Many mechanisms presented in the model are designed to record current and
previous activities in the system. As such, they ought to prove useful when consid-
ering the issues of auditing and accounting.

Formal reasoning The formal specifications presented in the model mainly provide
ground to reason about the influence of constraints on the access decisions. The
ability to reason about the effect of changes in role hierarchies requires further
work.

83

84

Bibliography

[AH 96] V. Atluri, W-K. Huang. An Authorisation Model for Workflows. In Lecture
Notes in Computer Science, ESORICS’96, pages 44-64, 1996.

[Bad 89] Lee Badger. A Model for Specifying Multi-Granularity Integrity Policies. In
Proceedings of IEEE Symposium on Security and Privacy, 1989.

[Bal 90] Robert W. Baldwin. Naming and Grouping Privileges to Simplify Security
Management in Large Databases. In Proceedings of IEEE Symposium on
Security and Privacy, 1990.

[Bar 97] John Barkley. Comparing Simple Role-Based Access Control Models with
Access Control Lists. In Proceedings of 2nd ACM Workshop on Role-Based
Access Control, 1997.

[Ber 97] E. Bertino, E. Ferrari, V. Atluri. A Flexible Model Supporting the Specifi-
cation and Enforcement of Role-Based Authorisations in Workflow Manage-
ment Systems. In Proceedings of 2nd ACM Workshop on Role-Based Access
Control, 1997.

[Ber 99] E. Bertino et al. The Specification and Enforcement of Authorisation Con-
straints. In ACM Transactions on Information and System Security, Vol.2
No.1, February 1999.

[BN 89] David F.C. Brewer, Michael J. Nash. The Chinese Wall Security Policy. In
Proceedings of IEEE Symposium on Security and Privacy, 1989.

[CSRB 92] Computer Security Reference Book. K.M. Jackson, J. Hruska, D.B. Parker
(eds.). Butterworth-Heinemann Ltd., 1992.

[CW 87] David D. Clark, David. R. Wilson. A Comparison of Commercial and Military
Computer Security Policies. In Proceedings of IEEE Symposium on Security
and Privacy, 1987.

[DMc 89] John E. Dobson, John A. McDermid. A Framework for Expressing Models of
Security Policy. In Proceedings of IEEE Symposium on Security and Privacy,
1989.

[DTH 92] S.A. Demurjian, T.C. Ting, M.-Y. Hu. Requirements, Capabilities, and Func-
tionalities of User-Role Based Security for an Object-Oriented Design Model.
In Database Security V: Status and Prospects, 1992.

85

[DTH 94] S.A. Demurjian, T.C. Ting, M.-Y. Hu. Unifying Structural and Security Mod-
elling and Analyses in the ADAM Object-Oriented Design Environment. In
Database Security VIII: Status and Prospects, 1994.

[DTHD 96] S.A. Demurjian, T.C. Ting, M.-Y. Hu, T.A. Daggett. User-Role Based Se-
curity (URBS) Enforcement Mechanisms for Object-Oriented Systems. In
Database Security IX: Status and Prospects, 1996.

[FB 97] David F. Ferraiolo, J. Barkley. Specifying and Managing Role-Based Access
Control within a Corporate Intranet. In Proceedings of 2nd ACM Workshop
on Role-Based Access Control, 1997.

[FBK 98] David F. Ferraiolo, J. Barkley, D. Richard Kuhn. A Role Based Access Con-
trol Model and Reference Implementation within a Corporate Intranet. In
Proceedings of 3rd ACM Workshop on Role-Based Access Control, 1998.

[FGL 93] D.F. Ferraiolo, D.M. Gilbert, N. Lynch. An Examination Of Federal and
Commercial Access Control Policy Needs. In Proceedings of 16th National
Computer Security Conference, 1993.

[FH 99] S. Farrell, R. Housley. An Internet Attribute Certificate Profile for Authori-
sation. Internet Engineering Task Force, an Internet Draft. www.ietf.org.

[FHPS 99] W. Ford, R. Housley, W. Polk, D. Solo. Internet X.509 Public Key Infras-
tructure. Internet Engineering Task Force, an Internet Draft. www.ietf.org.

[FK 92] David F. Ferraiolo, D. Richard Kuhn. Role-Based Access Controls. In Pro-
ceedings of 15th National Computer Security Conference, October 1992.

[FKC 95] David F. Ferraiolo, D. Richard Kuhn, J.A. Cugini. Role Based Access Con-
trol: Features and Motivations. In Proceedings of Computer Security Appli-
cations Conference, December 1995.

[GI 95] Luigi Giuri, Pietro Iglio. A Formal Model For Role-Based Access Control
With Constraints. In Proceedings of 9th IEEE Computer Security Founda-
tions Workshop, 1996.

[GGF 98] Virgil D. Gligor, S I. Gavrila, David Ferraiolo. On the Formal Foundations of
Separation-of-Duty Policies and their Composition. In Proceedings of IEEE
Symposium on Security and Privacy, May 1998.

[GH 95] D. Georgakopoulos, M. Hornick. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. In Dis-
tributed and Parallel Databases, pages 119-153, 1995.

[GL 95] Virgil D. Gligor, Sven Lorenz. Role-Based Security Administration. Draft
10/13/1995.

[HS 98] Yung-Kao Hsu and Stephen P. Seymour. An internet security framework
based on short-lived certificates. In IEEE Internet Computing, March/April
1998.

86

[HT 95] R. Holbein, S. Teufel. A Context Authentication Service for Role-Based Ac-
cess Control in Distributed Systems - CARDS. In Proceedings of IFIP 11th
International Conference on Information Security, 1995.

[HTB 96] R. Holbein, S. Teufel, K. Bauknecht. The Use of Business Process Models for
Security Design in Organisations. In Proceedings of IFIP 12th International
Conference on Information Security, 1996.

[Jan 98] W. A. Jansen. Inheritance properties of role hierarchies. In Proceedings of
21st NIST-NCSC National Computer Security Conference, October 1998.

[Kon 95] W. Fred. de Koning. Security Within Financial Information Systems, as seen
from an auditor’s point of view. In Proceedings of IFIP 11th International
Conference on Information Security, pages 26-38, 1995.

[Kuhn 97] D. Richard Kuhn. Mutual Exclusion of Roles as a Means of Implementing
Separation of Duty in Role-Based Access Control Systems. In Proceedings of
2nd ACM Workshop on Role-Based Access Control, 1997.

[LABW 92] B. Lampson, M. Abadi, M. Burrows, E. Wobber. Authentication in Dis-
tributed Systems: Theory and Practice. ACM Transactions on Computer
Systems, Vol. 10, No. 4, 1992.

[LW 91] L.J. La Padula, J.G. Williams. Toward a Universal Integrity Model. In IEEE
Computer Security Foundations Workshop, June 1991.

[MD 94] I. Mohammed, David. M. Dilts. Design for Dynamic User-Role-Based Secu-
rity. Computers & Security, 13 (1994).

[ML 93] Many-Sorted Logic and Its Applications. K. Meinke, J. V. Tucker (eds.). John
Wiley & Sons Inc., 1993.

[NP 90] Michael J. Nash, Keith R. Poland. Some Conundrums Concerning Separation
Of Duty. In Proceedings of IEEE Symposium on Security and Privacy, 1990.

[NyOs 94] M. Nyanchama, S.L. Osborn. Access Rights Administration in Role-Based
Security Systems. In Database Security VIII: Status and Prospects, 1994.

[NyOs 99] M. Nyanchama, S.L. Osborn. The role graph model and conflict of interest. In
ACM Transactions on Information and Systems Security, 2(1):3-33, February
1999.

[NT 94] B.C. Neuman, T. Ts’o. Kerberos: An Authentication Service for Computer
Networks. In IEEE Communications Magazine, v. 32 n. 9, pages 33-38, 1994.

[RS 95] M. Rusinkiewicz, A. Sheth. Specification and Execution of Transactional
Workflows. In Modern Database Systems, W.Kim (ed.), 1995.

[SA 98] R. Sandhu, Gail-J. Ahn. Decentralised group hierachies in UNIX: An ex-
periment and lessons learned. In Proceedings of 21st NIST-NCSC National
Computer Security Conference, October 1998.

87

[Sal 75] J.H. Saltzer, M.D. Schroeder. The Protection of Information in Computer
Systems. In Proceedings of IEEE, Vol.63, No 9, September 1975.

[San 90] R. Sandhu. Separation of Duties in Computerised Information Systems. In
Proceedings of IFIP WG 11.3 Workshop on Database Security, September
1990.

[SBh 97] R. Sandhu, V.Bhamidipati. The URA97 Model for Role-Based User-Role As-
signment. In Proceedings of IFIP WG 11.3 Workshop on Database Security,
August 1997.

[SCFY 94] R. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman. Role Based Access
Control: A Multi-Dimensional View. In Proceedings of 10th Annual Com-
puter Security Applications Conference, 1994.

[SCFY 96] R. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman. Role Based Access
Control Models. IEEE Computer, February 1996.

[SCFY 97] R. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman. The ARBAC97 Model
for Role-Based Administration of Roles. In Proceedings of 2nd ACM Work-
shop on Role Based Access Control, 1997.

[SM 97] R. Sandhu, Q. Munawer. The RRA97 Model for Role-Based Administration
of Role Hierarchies. In Proceedings of 3rd ACM Workshop on Role Based
Access Control, 1998.

[SP 99] R. Sandhu, J.S. Park. Smart Certificates: Extending X.509 for Secure At-
tribute Services on th Web. In Proceeddings of the 4th ACM Workshop on
Role Based Access Control, 1999.

[Ste 92] Daniel F. Sterne. A TCB Subset For Integrity and Role-Based Access Con-
trol. In Proceedings of 15th National Computer Security Conference, October
1992.

[SZ 97] Richard T. Simon, Mary Ellen Zurko. Separation of Duty in Role-Based
Enviroments. In Proceedings of 10th IEEE Computer Security Foundations
Workshop, June 1997.

[TA 91] J.J. Tardo, K. Alagappan. SPX - Global Authentication Using Public-Key
Certificates. In Proccedings of the 1991 IEEE Symposium on Research in
Security and Privacy, 1991.

[TJM 99] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, A. Essiari.
Certificate-based Access Control for Widely Distributed Resources. In Proc-
cedings of the 8th USENIX Security Symposium, 1999.

[TH 90] I.A. Todd, R.D. Haggart. The Organisation and Its Enviroment, pages 70-90,
1990.

[Thom 91] D.J. Thomsen. Role-Based Application Design and Enforcement. In Database
Security IV: Status and Prospects, 1991.

88

[TS 93] R.K. Thomas, R. Sandhu. Towards a Task-based Paradigm for Flexible and
Adaptable Access Control in Distributed Applications. In Proceedings of the
Second New Security Paradigms Workshop, 1993.

[TS 94] R.K. Thomas, R. Sandhu. Conceptual Foundations for a Model of Task-
based Authorisations. In Proccedings of IEEE Computer Security Founda-
tions Workshop, June 1994.

[TS 97] R.K. Thomas, R. Sandhu. Task-based Authorisation Controls: A Family of
Models for Active and Enterprise-oriented Authorisation Management. In
Proceedings of IFIP WG 11.3 Workshop on Database Security, August 1997.

[WH 97] Workflow Applications within Business Organisations, pages 41-59; Ap-
plications of Workflow, pages 89-124. In Wokflow Handbook 1997, P.
Lawrence(ed.), John Wiley & Sons Inc., 1997.

[WL 97] Thomas Y.C. Woo, Simon S. Lam. Authentication for Distributed Systems.
in Internet Besieged: Countering Cyberspace Scofflaws, D. Denning and P.
Denning (eds.), ACM Press and Addison-Wesley, 1997.

[Zak 93] A. Zakinthinos. A Least Privilege Mechanism for User Processes. Masters
Thesis, Department of Computer Science, University of Toronto, 1993.

89

