
Technical Report
Number 552

Computer Laboratory

UCAM-CL-TR-552
ISSN 1476-2986

The Xenoserver computing
infrastructure

Keir A. Fraser, Steven M. Hand,
Timothy L. Harris, Ian M. Leslie, Ian A. Pratt

January 2003

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2003 Keir A. Fraser, Steven M. Hand, Timothy L. Harris,
Ian M. Leslie, Ian A. Pratt

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986



The Xenoserver Computing Infrastructure
A project overview

K A Fraser, S M Hand, T L Harris, I M Leslie & I A Pratt

Abstract

The Xenoserver project [15] will build a public in-
frastructure for wide-area distributed computing. We
envisage a world in which Xenoserver execution plat-
forms will be scattered across the globe and available
for any member of the public to submit code for exe-
cution. Crucially, the code’s sponsor will be billed for
all the resources used or reserved during its execution.
This will encourage load balancing, limit congestion,
and make the platform self-financing.

Such a global infrastructure is essential to address
the fundamental problem of communication latency.
By enabling principals to run programs at points
throughout the network they can ensure that their
code executes close to the entities with which it in-
teracts. As well as reducing latency this can be used
to avoid network bottlenecks, to reduce long-haul net-
work charges and to provide a network presence for
transiently-connected mobile devices.

This project will build and deploy a global
Xenoserver test-bed and make it available to authen-
ticated external users; initially members of the scien-
tific community and ultimately of the general public.
In this environment accurate resource accounting and
pricing is critical – whether in an actual currency or
one that is fictitious. As with our existing work on OS
resource management, pricing provides the feedback
necessary for applications that can adapt, and prevents
over-use by applications that cannot.

1 Introduction

Technologists often envision a future with distributed
services acted on by mobile agents that traverse the
network at a user’s behest, for example to be close to
data sources, to co-locate for interaction or simply to
migrate away from congestion. Unfortunately, and de-
spite existing work on agent technology and network
programmability, this tantalizing vision will remain
just that until a number of key research challenges are
addressed.

These challenges are (i) the need for a public and
ubiquitous infrastructure that can be used (with suit-
able control and audit facilities) over timescales of the
order of minutes or hours rather than just months, (ii)

the need for a flexible system to support code written
for a variety of languages and paradigms and (iii) the
need to support interaction and sharing in a widely dis-
tributed environment with communication subject to
delay and clients subject to disconnection.

For example, consider the case of a number of
players wishing to participate in an on-line game or
other virtual reality situation. The Xenoserver plat-
form would enable them to run their game server on
on a machine at a point in the network such that the
maximum round trip time between the server and any
of the players is minimized. They would be able to rent
a “slice” of a machine sufficient for their purposes for
the duration of their game, perhaps just a few minutes.

Similarly, the platform could be used to host dis-
tributed services, perhaps a web site with dynamically
generated content, a streaming media distribution sys-
tem. The service administrator (or agent acting on
their behalf) could arrange to replicate the service ac-
cording to demand by buying time on Xenoserver ma-
chines. They could even arrange that service replicas
are distributed according to access patterns and thus
exploit locality [24].

Xenoservers are an ideal substrate for hosting web
service components such as those proposed in the
Open Grid Services Architecture [10], or the plat-
forms contemplated by the EU Global Computing ini-
tiative [1]. They can provide a realisation of the re-
source management functions proposed in the Grid
Resource Allocation and Management architecture
(GRAM), and enable the Grid to extend out onto “pub-
lic” servers. Other web services related technologies
such as UDDI and WSDL provide the infrastructure
required to enable clients to locate transient compo-
nents being hosted on Xenoservers enabling services
to be relocated far more readily than is possible with
current DNS based techniques.

Xenoservers expose a very flexible execution inter-
face, implemented at a low level by a simple hypervi-
sor, running in place of a full-featured operating sys-
tem. This securely partitions the services it hosts, and
accurately accounts the resources that each consumes.
This low-level approach enables Xenoservers to sup-
port a wide range of services. For example, users could
each run their own operating system above the hyper-
visor. A user may wish to rent a partition of a server
on which to run a particular version of Linux, upon

3



which they will run their own application (perhaps an
experimental mobile agent platform, an active network
implementation, or a server for a collaborative virtual
environment). Resource management and QoS pro-
visioning will support multiple concurrent tasks. In
some cases, users will design applications to run di-
rectly on the hypervisor for improved efficiency. Our
experience with hosting the JVM over Nemesis sug-
gests that useful optimizations can be made – for ex-
ample to share the results of run-time compilation, or
to control how the system pages parts of a garbage-
collected heap. Experience with developing the
Nemesis operating system has shown us that a further
benefit of the low-level interface approach is that re-
source accounting and QoS firewalling is made easier.

Key to the Xenoserver architecture is “Xenocorp”
which acts as a broker and introduction service be-
tween Xenoservers and clients; it authenticates clients,
matches client requirements with server availability
and maintains billing information. Although the in-
teraction between a client and a particular Xenoserver
may be transient, both the client and the Xenoserver’s
owner have a longer term contractual relationship with
Xenocorp. Between them Xenocorp and Xenoserver
owners maintain an audit trail of the network activity
of applications running on the platform. This can be
used (under warrant) to identify the sponsor of an ap-
plication later identified to be behaving illegally.

Note that Xenocorp does not represent a centralized
single point of failure: most of its functions may be
achieved by renting time on Xenoservers – either from
the public infrastructure or, for trusted services, on
dedicated Xenoservers. There could even be multiple
Xenocorp instances, with Xenoservers’ owners regis-
tering their machines with more than one organisation.
The organisations would compete on the basis of their
ability to meet users’ requirements, much like WWW
portals do today.

Xenocorp will maintain knowledge of the network
topology around each Xenoserver, enabling it to iden-
tify servers that best match clients’ communication
latency requirements. Since the price that individ-
ual Xenoservers charge for resources will fluctuate ac-
cording to the demand they are currently experienc-
ing Xenocorp will maintain a database of these charges
and use this information to match any cost constraints
described in the clients’ requests. Middleware will
be developed to assist client applications in determin-
ing their resource requirements and making decisions
about how to react to changes in resource price, etc.

1.1 Goals

In summary, our main goals are to:

• develop an efficient Xenoserver platform for host-
ing services and managing the resources they use,

• investigate techniques for automatic service
placement and adaptive resource management in
a wide-area setting with a diverse mix of clients,

• develop a scalable system for managing access
control and auditing in this distributed setting,

• provide effective programming aids and services
for developing code to operate on Xenoservers, in
particular in combination with mobile devices or
widely distributed clients,

• as a demonstration of this project (and as a tool
for others), use Xenoservers to deploy one or
more existing active network systems developed
under UK research programmes.

2 Research context

In this section we briefly survey research in service de-
ployment, system virtualization and pervasive comput-
ing.

Deployment systems. Existing service-hosting
companies rent access to Internet-connected servers
over reasonably long timescales – booking involves
personal interaction with the company and mini-
mum periods of several months are typical. This
fits with the operators’ expected market of hosting
long-running services, such as web sites or off-site
storage facilties. Only recently have operators begun
to consider the possibility of hosting smaller services
over shorter timescales [16].

The success of existing infrastructure providers such
as Akamai and Digital Island indicates that there is
demand for third-party service distribution within the
Internet. These existing infrastructure providers host
replicas of client web sites and use DNS redirection to
route service requests to the current optimal replica in
each section of the Internet.

Within computational grid projects, the Globus soft-
ware, provides facilities for remote job execution and
security management within a heterogeneous network.
The current version is described as not offering ‘sub-
stantially more functionality than a set of scripts and
remote shells’ [3] for managing jobs on remote high-
performance machines drawn from a federated user
community.

Virtual machines. Virtual machines are partitions of
complete systems that provide an execution environ-
ment to the tasks running within them. This virtual-
ized environment may be the same architecture as the
host machine (e.g. providing a mechanism to run mul-
tiple OSs on a single computer) or it may be radically
different (for example the Java Virtual Machine which

4



provides its own instruction formats and extensive li-
braries).

Virtualization is prevalent on large server systems
(for example logical partitions within the IBM S/390
and zSeries architectures, Sun dynamic system do-
mains or virtual partitions on HP Superdome sys-
tems). Each of these systems provides the ability to
run several isolated OS instances over a single phys-
ical machine by dividing the CPUs, I/O devices and
memory between the various domains.

Virtualization has also been explored on desktop
systems, although in a quite different mode to those
above: the base system is being multiplexed between
the environments that it supports, often under the con-
trol of a single user, rather than being partitioned into
them for use by separate users or groups. The reallo-
cation of resources to domains therefore occurs over
short timescales (milliseconds) to support execution,
rather than over longer timescales to adapt to shifting
load. Environments such as the Java Virtual Machine
(JVM) and Microsoft CLR have gained currency be-
cause they provide an OS-independent interface to ap-
plications. Similarly, on workstations, systems to run
separate OS instances (such as VMWare) are used for
software compatibility.

Resource management and task isolation has been
the focus of ongoing work since the original deploy-
ment of the JVM. The state of the art is to use sup-
port within the JVM to track resource usage and pro-
vide isolation within tasks [6]. Czajkowski et al sug-
gest that this is the first scheme that is suitable for use
in earnest: earlier developments placed significant re-
strictions on application behaviour (for example, for-
bidding the usual reflection API) or imposed further
run-time checks on frequent operations.

Pervasive computing. The development of agent
systems has been a popular topic of research into dis-
tributed systems – [23] provides a contemporary in-
troduction. Such systems may be seen as precursors
to general programmable networks in that they host
remotely-supplied code, often so that operations can
be performed close to the data with which the code is
to interact.

The need for inter-operability between agent sys-
tems has recently been recognised. The OMG, main-
tainers of the vendor-neutral CORBA standard for dis-
tributed objects, attempted to define a common API
which could be supported by existing systems [13].
They define a common terminology (agents, author-
ities, places and the like) and general operations to
transfer, to name and to locate agents. However, while
aiming for portable implementation, it assumes the
ubiquity of the Java programming language and does
not aim to provide a general platform for remote or
mobile execution.

This write-once, move anywhere goal has also been
proposed by Grimstrup et al [7]. They again ad-
dress inter-operability between the APIs of different
agent systems, defining translations to and from exist-
ing APIs and a common format. They also assume that
Java will be used throughout.

Several ongoing projects are investigating general
programmable networks. SafetyNet at Sussex Uni-
versity expresses network security policies by extend-
ing the type system of an active programming lan-
guage [11]. Lancaster Active Node (LANode) fo-
cusses on per-packet processing and presents two
switch interfaces to the programmer: a Java-based
control interface, and an efficient switch-specific data-
forwarding interface (such as LARA NodeOS [5]).
The UCL XMILE project has developed an XML-
based programming language supporting fine-grained
code mobility between active switches. These projects
build on existing work such as the MIT Active Node
Transfer System (ANTS) [22], and University of Penn-
sylvania’s SwitchWare architecture [2]. In addition,
there is ongoing work to develop general OS support
for liquid software [9, 19].

One application of Xenoservers is to host a test de-
ployment of these existing mobile agent platforms at
strategic places within the Internet, providing a com-
mon substrate for the authentication and resource man-
agement that they require for public use.

Summary. Existing work provides piece-wise solu-
tions that cannot be combined cohesively. Firstly, ser-
vice hosting schemes have a high entry cost and are
designed for use with manual and contractual inter-
vention. They are unsuitable for fast deployment of
ad-hoc or experimental. Secondly, facilities for parti-
tioning moderately sized machines are geared for soft-
ware compatibility. We require a system with accurate
resource accounting at the level of individual partitions
– perhaps hosting several dozen on an ordinary work-
station. Finally, mobile agent systems, which present
a natural mechanism for deploying client software in
a ubiquitous network, have not gained currency in a
public environment. Existing systems do not integrate
resource management, audit facilities, operation on be-
half of public users or cross-language support.

3 Work programme

We describe our proposed work in three packages, es-
sentially corresponding to three concurrent strands of
activity. The first, described in Section 3.1 is the server
platform operating on each Xenoserver, hosting appli-
cations, services or agents. The second, described in
Section 3.2 is the management infrastructure which we
term Xenocorp. The third, covered in Section 3.3 are

5



facilities to aid the operation of code on Xenoservers,
supporting latency-tolerant distributed computing. Fi-
nally, Section 3.4 describes our global deployment
strategy.

3.1 Server platform

Each Xenoserver acts as a host for the applications,
services or agents deployed on it by clients and au-
thenticated by Xenocorp. The platform must provide
isolation between these clients, both in terms of access
control (to allow safe execution of mutually untrusting
code on the same hardware) and in terms of resource
consumption (so that clients may be charged according
to their usage).

W1.1 Core platform development. The core plat-
form requirements of resource accounting and isola-
tion fit closely with our experience developing the
Nemesis operating system [12, 8]. Our basic platform
design will follow a similar model: a low-level hy-
pervisor provides protection, scheduling and account-
ing. However, rather than running applications directly
over this (as we did in Nemesis) we intend to host tra-
ditional OSs – these form the unit of resource manage-
ment, rather than individual applications. Applications
with soft real-time QoS processing constraints can pur-
chase fine-grained resource reservations.

A client of the Xenoserver may elect whether to
instantiate its own OS instance (guaranteeing isola-
tion, but at a higher resource cost), to deploy its
code over an existing instance (with weaker isola-
tion, but lower start-up costs) or to use a special-
ized resource-managed platform, such as our exist-
ing RCANE active-networking environment (provid-
ing isolation, but requiring specialized client code).

W1.2 Guest OS development. The interface be-
tween the core platform and guest OS will be designed
with low-cost virtualization in mind, rather than com-
plete transparency. For example, unlike VMWare, we
do not intend to host un-modified operating systems
by emulating in software processor features that are
difficult to virtualize. Our experience with Nemesis
informs us that by sacrificing complete transparency
the cost of virtualization can be reduced: we aim for
the hypervisor to be able to support a substantial num-
ber of concurrent instances of guest OSs, rather than
the small number that may be managed by VMWare.
The cost to the hypervisor of running an instance of a
suitably-developed guest OS should be comparable to
the cost of an ordinary system running a process.

We will take Linux as our first guest OS and fol-
low a simple incremental approach: firstly defining
special interfaces, exported by the core platform, for
each privileged instruction required by the Linux ker-
nel and then replacing these with efficient compound

operations – for example propagating page-table up-
dates proposed by the guest OS in batches. We can
take a similar approach to device virtualization, intro-
ducing sharing on a per-device basis.

Linux provides a familiar POSIX environment and
many existing server-type applications and demonstra-
tors. They can thus run unmodified on our platform.
Linux also serves as a host for other APIs, such as the
JVM, Microsoft CLR, the Globus Grid toolkit, and ac-
tive network node implementations such as the LARA
NodeOS.

APIs will be added to our port of Linux to enable
applications to control the resources allocated by the
hypervisor and receive information about current re-
source prices, athough reasonable default behaviour
(based on the sponsor’s initial specification) will be
provided so that applications may run unmodified.

W1.3 Resource management. Although the mech-
anisms for resource management in the core platform
resemble those used in Nemesis, they differ fundamen-
tally in the timescales over which changes are made
and in the models of allocation and revocation. As a
workstation OS, Nemesis assumes that all applications
are controlled by a single user who acts as an ultimate
arbiter: the available resources are fixed and the user’s
own goals guide the allocation policy.

On a Xenoserver we rely on economic feedback
to users to control application resource consumption.
In this work item we will investigate such mecha-
nisms for distributed resource management, building
on our experience of economic approaches to manage-
ment of a single machine [21, 14]. The distributed
setting raises challenges in terms of how frequently
the entities involved communicate (short timescales al-
low rapid adaptation to varying resource availability,
but load the participants and intervening network) and
what occurs when communication fails. One promis-
ing approach is for such policies and trade-offs to
be under the control of a client-supplied agent, also
hosted on the Xenoserver, to which the client can del-
egate control over short timescales but which requires
re-authorization beyond a certain resource budget. The
interfaces available to such an agent, the language in
which it is expressed and the accounting of its own re-
source usage are all areas for study.

3.2 Management infrastructure

Xenocorp acts as a broker and introduction service be-
tween clients and Xenoservers; it authenticates clients,
matches client requirements with server availability
and maintains billing information. Although the in-
teraction between a client and a Xenoserver may be
transient, both would have a longer term contractual
relationship with Xenocorp.

6



W2.1 Base management platform development.
This work item will develop the basic management
functionality that is required, namely the authentica-
tion of prospective clients, storage of client account
information, and maintenance of basic directory in-
formation about available Xenoservers. Items W2.2–
W2.4 develop this further.

W2.2 Resource discovery. We envisage client code
being supplied for execution for a variety of purposes,
for example: an organization may want to deploy a
prototype service, or small-scale service; a group of
users may want to deploy a server for their own private
use (perhaps to control a multi-user game or as storage
for collaborative work); or an individual user’s appli-
cation may wish to execute a number of short running
queries close to some data source. In each of these
cases the code being executed has distinct positioning
requirements in terms of latency and bandwidth to var-
ious network endpoints, and of course the users may
have different levels of funding for their endeavours.

Different applications may also request different ex-
ecution environments, not all of which can be effi-
ciently supported by all Xenoservers. For example,
some programs may have quite explicit requirements
such as “Redhat Linux 7.2 on Intel x86”, whereas a
program requiring “Java 1.4” could probably have it’s
necessary environment assembled on most CPU archi-
tectures. The management infrastructure is responsi-
ble for matching all these requirements with the facil-
ities available from the Xenoservers under its control.

In this work item we will investigate higher level
questions of resource allocation during client-code de-
ployment, as distinct to the adaptation and control in-
terfaces that are used once a job has been sited on a
Xenoserver (W1.3). Key questions are how to express
requirements in a flexible manner and how to enable
efficient matching. The use of a hierarchical XML for-
mat for expressing requirements and an extended tree
matching language is one concrete option.

W2.3 Network audit-trail management. The
prospect of a publically-available computing platform
raises obvious concerns over its potential for nefarious
use – in particular in its rôle as another level of
indirection between a user’s own machine and a target
that they may wish to attack over the network. Taking
this as the major risk for misuse of the system, the
Xenoserver infrastructure as a whole should be able
to identify the user initiating a particular network
connection from a Xenoserver. However, rather than
logging information about all connections we can
extend the rôle of the hypervisor since that is required,
in any case, to ensure that packets being sent by a
guest operating system are correctly formed with an
appropriate source address and protocol settings.

We will evaluate a range of schemes, in terms of
the resource budget of the client, the run-time over-
head and the kinds of network access that clients are
permitted. At one extreme a globally-unique IP ad-
dress, owned by the local Xenoserver, can be leased
to the client, and serve to identify it – this scheme
is easy to enforce by packet filtering and information
need only be logged on address re-use. At the other ex-
treme the hypervisor may write fingerprints into pack-
ets to identify their provenance – clients may share a
single IP address, but there is a per-packet overhead
of creating or checking fingerprints. Song and Perrig’s
scheme illustrates this form of fingerprinting [20]. Fur-
thermore, the hypervisor could prevent many common
types of Denial of Service attack by checking that net-
work flows exhibit reasonable packet rates in both di-
rections; a large excess of outgoing packets indicates a
client may be behaving suspicously.

W2.4 Recursive implementation. A running theme
through the development of the base platform, man-
agement infrastructure and service facilities is the ten-
sion between flexibility afforded to ‘control path’ op-
erations such as resource negotiation and the ability
to account the resources that such operations use. For
example, a candidate for both W1.3 and W2.2 would
be to use arbitrary code to express client policies and
preferences (much as the Nemesis OS does).

Throughout the project we will investigate how
much of the functionality provided needs to be con-
sidered an inviolable part of the Xenoserver infrastruc-
ture and which can be executed over it (subject, there-
fore, to resource accounting). We suspect that much of
the management infrastructure can be provided in this
way, with only the most basic directory information
maintained within the core. The problems again re-
semble those of OS design but in a distributed setting
and with a need to consider latency and failures.

3.3 Service facilities

We envisage that many of the applications hosted by
Xenoservers will be written in a conventional style, us-
ing existing development tools and libraries. Under the
Service facilities work package we propose developing
techniques that can be used to aid efficient execution in
the face of comparatively long communication delays
and failures.

W3.1 Storage management. Having access to a
shared distributed file system will assist users in
efficiently moving their code and data between
Xenoservers. Code components used by applications
will often be common between multiple users. For
example, the guest OS executables and components
such as JVMs and web servers can be digitally signed

7



by their author and then can be cached and used by
anyone who trusts the originator. Other application
components, and data files in particular, are likely to
be private to particular users. The shared file sys-
tem provides a convenient and relatively efficient way
of allowing users a uniform environment across all
Xenoservers.

The Grid Storage Resource Broker [4] offers some
of these facilities, but does not yet address the quota
management and automatic caching and replication re-
quired in a Xenoserver environment. We have begun
the design of a system called Pasta which makes use
of the Pastry [17] peer-to-peer routeing substrate. Un-
like most other peer-to-peer file systems, Pasta explic-
itly addresses issues such as file mutability and per-
manence. It will make use of the Xenoserver billing
mechanisms to charge users for the data they store, and
to pass on charges incurred during retreival.

Pasta has a very flexible and extensible scheme for
naming in a decentralised system. Users can construct
their own private file system name spaces, and then
selectively share them with other users. As well as di-
rectories and files, user name spaces can ‘mount’ other
exported name spaces. Overlay and union mounts en-
able functions akin to copy-on-write etc. Since Pasta
is versioning file system, it is possible for users to se-
lect specific archived versions of files or to access the
most recent. Users can keep any file in the system per-
manent by agreeing to share the cost of its storage.

W3.2 Latency tolerant protocols. Existing proto-
cols for communicating and sharing data are usually
based on caching and multiple-reader-single-writer
ownership (for example NFS v4 or CODA [18]). Lock
ownership is particularly problematic in the presence
of failures since system-wide liveness requires the
continued operation of the lock holder. Our ongo-
ing work on lock-free data structures has developed
practical techniques for coping with delayed tasks or
system failures in shared-memory multiprocessor sys-
tems. We will investigate how similar techniques can
be used here, accessing remote shared data and meta-
data through atomic primitives.

As with the atomic operations available on micro-
processors, a small set of primitives can be used both
to express existing protocols (enabling un-modified
client APIs to be used) and also to allow specialised
new designs. Providing load-linked (LL) and store-
conditional (SC) operations acting at a byte-range
level are promising candidates for inclusion as basic
operations – these can be used to build ordinary locks
for use by existing APIs and also to express bespoke
lock-free communication services.

W3.3 Virtualized debugging. When debugging
code, distribution poses even more substantial prob-

lems than those of single-process systems: separate
debuggers must be attached to the various processes
involved. There is no central way to control system-
wide parameters – perhaps to impose particular loss
patterns or delays on communications, to corrupt mes-
sages or to control the relative execution speeds of dif-
ferent components. Such features must either be intrin-
sic to the platform running the tests or must be imple-
mented as additional testing code by the programmer.

To address these problems we propose the technique
of virtualized debugging in which all of the resources
used by the system under test are virtualized by the
debugger – ranging from low-level details such as the
precise implementation of processor instructions to the
scheduling of threads, the provision of separate vir-
tual address spaces to different processes and network
communication between those processes. Retaining
control over the resources in use allows the debugger
to ensure deterministic execution, to expand or con-
tract the detail with which parts of the system are mod-
elled, to manage distributed applications as single en-
tities and to control the performance of external com-
ponents such as communication links.

The Xenoserver architecture provides an ideal set-
ting in which to evaluate this approach.

3.4 Deployment and experiementation

In the second and third years of the project we plan
to deploy at least ten prototype Xenoservers in well-
connected network locations around the world.

Some of the test nodes will come through re-
deployment of the initial development platforms
among collaborators, others will be procured by rent-
ing “dedicated servers” from specialist hosting com-
panies. Rather than using a single international host-
ing company to provide machines in a number of loca-
tions, it is more cost-effective to deal with small com-
panies in individual cities. This will have the addi-
tional benefit of resulting in a more rich and represen-
tative network topology.

After an initial private testing phase, we plan to
make the platform available to other research groups
wishing to trial distributed applications and services.
We have already been in contact with groups working
on potential candidates for deployment, including ac-
tive network nodes, wide-area event distribution sys-
tems, and Internet topology discovery and measure-
ment tools.

Our ultimate goal is to make the trial system pub-
licly available, where users register via a web site and
receive some Xenoserver currency to spend as they de-
sire. At this point an economic analysis of the system
can be conducted to discover how the resource pricing
algorithms work in practise, and how they might be
improved to achieve the desired goals of load balanc-

8



ing and congestion control while maintaining stability.
This would also be an opportunity to assess the secu-
rity and auditing capabilities of the platform.

A further topic of investigation is to determine
whether such a platform is realistically self-funding,
or perhaps even profitable. We envisage a scenario
whereby the actual Xenoserver machines are owned
by a wide range of companies such as current server
hosting facilities, ISPs, or even service companies
such as Altavista or Google that host databases that
Xenoserver users may wish to access. The cost of
running the Xenoservers would hopefully be recouped
through the charges incurred by users and distributed
to the owners through Xenocorp. Xenocorp would in
turn pay charges to the various Xenoserver owners for
hosting components of the management infrastructure
it runs. Xenocorp itself might be funded through tak-
ing a percentage of each transaction.

It is only through having a deployed prototype
with some example applications that we can discover
whether there would be the user demand and willing-
ness to pay to make the public infrastructure we pro-
pose viable.

4 Beneficiaries, dissemination

Within the short term the direct beneficiaries of this
work will be the research groups that will be able to
use Xenoservers as an experimental platform for wide-
area evaluation. The benefits of doing so will be that
system behaviour can be explored more thoroughly
than (for example) through simulation or through
deployment over local workstation clusters. Agent
technology and active networking is a thriving area
within UK academic research, but currently lacks the
practical grounding and global-scale deployment that
Xenoserver technology can bring.

Over the longer term, Xenoservers stand to have a
pervasive influence on deploying and managing soft-
ware. A platform of the kind we intend to develop – in-
tegrating flexibility, authentication and resource man-
agement – promises to be a key part of next-generation
network services. It will act both as a host for code
from poorly-resourced mobile devices and as a mech-
anism for exploratory or rapidly-adaptive service de-
ployment.

During the course of the project we intend to dis-
seminate the key academic results through meetings
and through publication. We will hold twice-yearly
open meetings at which interested parties will be in-
vited to attend presentations (at their own expense) on
the progress of the work and contribute to discussions
about direction. We envisage each of the items of work
identified in Sections 3.1–3.3 being accompanied by
a report suitable individually for workshop presenta-

tion and ultimately as substantial components of PhD
dissertations and full conference papers. We intend to
produce at least one such major publication combining
the experiences from each of the work packages, tar-
geting SOSP, OSDI, PODC or PLDI. Our final report
will draw together that work and incorporate experi-
ences from early adopters of the platform.

5 Success criteria

Beyond the goals of Section 1.1, in terms of resource
management, scalability and application support, we
wish to demonstrate the success of this project by it
(i) providing clear pointers to new research areas en-
abled by pervasive global computing and (ii) devel-
oping a concrete model and experimental platform for
economic-based resource management in a wide-area
distributed setting.

Corresponding to each goal, we have the following
acceptance criteria:

• The overheads introduced by executing on the
Xenoserver platform should be low: the resources
needed to host an application on a Xenoserver
should be comparable to those needed to host it
over an ordinary OS.

• Xenocorp should provide sufficient services that
user authentication and service placement can be
automated to a degree acceptable to a casual user.

• Our final demonstrations should show how the
system will scale to support large numbers of
users (1000s) and large numbers of servers
(100s), ideally by using the resulting Xenoserver
to host many aspects of the management func-
tionality.

• We should be able to demonstrate clear benefits
by the new techniques for storage management
and communication that we will investigate – ide-
ally with examples of these techniques having
been found effective by early adopters of the plat-
form.

• Our resulting infrastructure should be open for
use by other programmable networks research
groups. Demonstration applications should show
how the system can be used to support ubiquitous
computing.

References

[1] Global computing, FET
proactive initiative, 2001,
http://www.cordis.lu/ist/fetgc-
sy.htm.

9



[2] ALEXANDER, D. S., ARBAUGH, W. A.,
KEROMYTIS, A. D., AND SMITH, J. M. A se-
cure active network architecture: Realization in
SwitchWare. IEEE Network 12, 3 (1998), 37–
45. Special Issue on Active and Controllable Net-
works.

[3] ALLAN, R. J., BOYS, D. R. S., FOLKES, T.,
GREENOUGH, C., HANLON, D., MIDDLETON,
R. P., AND SANSUM, R. A. Globus and asso-
ciated Grid middleware. consolidated evaluation
report from UKHEC sites. Tech. rep., UKHEC,
2001.

[4] BARU, C., MOORE, R., RAJASEKAR, A., AND

WAN, M. The sdsc storage resource broker,
1998.

[5] CARDOE, R., FINNEY, J., SCOTT, A. C., AND

SHEPHERD, W. D. LARA: a prototype system
for supporting high performance active network-
ing. In Proceedings of the First International
Working Conference on Active Networks – IWAN
’99 (June 1999).

[6] CZAJKOWSKI, G., AND DAYNÈS, L. Multitask-
ing without compromise: a virtual machine evo-
lution. In OOPSLA 2001.

[7] GRIMSTRUP, A., GRAY, R. S., KOTZ, D.,
COWIN, T., HILL, G., SURI, N., CHACON, D.,
AND HOFMANN, M. Write Once, Move Any-
where: Toward Dynamic Interoperability of Mo-
bile Agent Systems. Tech. Rep. TR2001-411,
Dartmouth College, Computer Science, Hanover,
NH, July 2001.

[8] HAND, S. M. Self-paging in the nemesis op-
erating system. In Proceedings of the 3rd Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI ’99) (Feb. 1999), The USENIX
Association, pp. 73–86.

[9] HARTMAN, J., MANBER, U., PETERSON, L.,
AND PROEBSTING, T. Liquid software: A
new paradigm for networked systems. Tech.
Rep. TR96-11, Department of Computer Sci-
ence, University of Arizona, 1996.

[10] I. FOSTER, C. KESSELMAN, J. N., AND

TUECKE, S. The physiology of the grid: An
open grid services architecture for distributed
systems integration., January 2002.

[11] JEFFREY, A., AND WAKEMAN, I. A survey
of semantic techniques for active networks.
Available from the SafetyNet Project web site,
http://www.cogs.susx.ac.uk/projects/
safetynet/.

[12] LESLIE, I. M., MCAULEY, D., BLACK, R.,
ROSCOE, T., BARHAM, P., EVERS, D., FAIR-
BAIRNS, R., AND HYDEN, E. The design and
implementation of an operating system to sup-
port distributed multimedia applications. IEEE
Journal on Selected Areas In Communications
14, 7 (Sept. 1996), 1280–1297.

[13] MILOJICIC, D., BREUGST, M., BUSSE, I.,
CAMPBELL, J., COVACI, S., FRIEDMAN, B.,
KOSAKA, K., LANGE, D., ONO, K., OSHIMA,
M., THAM, C., VIRDHAGRISWARAN, S., AND

WHITE, J. MASIF: The OMG Mobile Agent
System Interoperability Facility. In Proceedings
of the 2nd International Workshop on Mobile
Agents (1998), K. Rothermel and F. Hohl, Eds.,
vol. 1477 of Lecture Notes in Computer Science,
Springer-Verlag: Heidelberg, Germany, pp. 50–
67.

[14] OPARAH, D. Adaptive Resource management
in a Multimedia Operating System. PhD thesis,
University of Cambridge Computer Laboratory,
2000.

[15] REED, D., PRATT, I., MENAGE, P., EARLY, S.,
AND STRATFORD, N. Xenoservers: accounted
execution of untrusted code. In Proceedings of
the fifth Workshop on Hot Topics in Operating
Systems (HotOS-VII) (1999).

[16] ROSCOE, T., AND LYLES, B. Distributing Com-
puting without DPEs: Design Considerations
for Public Computing Platforms. In 9th ACM
SIGOPS European Workshop, Kolding, Denmark
(September 2000).

[17] ROWSTRON, A., AND DRUSCHEL, P. Pastry:
Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science 2218 (2001), 329–
350.

[18] SATYANARAYANAN, M. Fundamental chal-
lenges in mobile computing. In Fifteenth
ACM Symposium on Principles of Distributed
Computing (Philadelphia, PA, May 1996).
http://www.cs.cmu.edu/afs/cs/project/coda/Web/coda.html.

[19] SHAPIRO, J. S. Operating system requirements
for liquid software. Tech. Rep. SRL-2000-02,
Department of Computer Science, Johns Hop-
kins University, 2000.

[20] SONG, D. X., AND PERRIG, A. Advanced
and authenticated marking schemes for IP trace-
back. In Proceedings IEEE Infocomm 2001 (Apr.
2001).

10



[21] STRATFORD, N., AND MORTIER, R. An eco-
nomic approach to adaptive resource manage-
ment. In Proceedings of the Seventh Workshop
on Hot Topics in Operating Systems (HotOS-VII)
(1999).

[22] WETHERALL, D., GUTTAG, J., AND TENNEN-
HOUSE, D. ANTS: Network services without the
red tape. Computer 32, 4 (Apr. 1999), 42–48.

[23] WONG, D., PACIOREK, N., AND MOORE, D.
Java-based Mobile Agents. Communications of
the ACM 42, 3 (Mar. 1999), 92–102.

[24] YAN, J., EARLY, S., AND ANDERSON, R. The
XenoService – a distributed defeat for distributed
denial of service. In Proceedings of the Informa-
tion Survivability Workshop (ISW) (Oct. 2000).

11


