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Abstract

The proof of the relative consistency of the axiom of choice has been
mechanized using Isabelle/ZF. The proof builds upon a previous mechaniza-
tion of the reflection theorem [15]. The heavy reliance on metatheory in
the original proof makes the formalization unusually long, and not entirely
satisfactory: two parts of the proof do not fit together. It seems impossible
to solve these problems without formalizing the metatheory. However, the
present development follows a standard textbook, Kunen’sSet Theory[6],
and could support the formalization of further material from that book. It
also serves as an example of what to expect when deep mathematics is for-
malized.
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6 1 INTRODUCTION

1 Introduction

In 1940, G̈odel [3] published his famous monograph proving that the axiom of
choice (AC) and the generalized continuum hypothesis (GCH) are consistent with
respect to the other axioms of set theory. This theorem addresses the first of
Hilbert’s celebrated list of mathematical problems. I have attempted to reproduce
this work in Isabelle/ZF.

When so much mathematics has already been checked mechanically, what is
the point of checking any more? Obviously, the theorem’s significance makes it
a challenge, as does its size and complexity, but the real challenge comes from
its reliance on metamathematics. As I have previously noted [15], some theo-
rems seem difficult to formalize even in their statements, let alone in their proofs.
Gödel’s work is not a single formal theorem. It consists of several different theo-
rems which, taken collectively, can be seen as expressing the relative consistency
of the axiom the choice. At the end of Chapter VII, Gödel remarks that given a
contradiction from the axioms of set theory augmented with AC, a contradiction
in basic set theory “could actually be constructed” [3, p. 87]. This claim is crucial:
logicians prefer consistency proofs to be constructive.

A complication in G̈odel’s proof is its use of classes. Intuitively speaking, a
classis a collection of sets that is defined by comprehension,{x | φ(x)}. Every
set A is trivially a class, namely{x | x ∈ A}, but aproper classis too big to be a
set. Formal set theories restrict the use of classes in order to eliminate the danger
of paradoxes. Modern set theorists use Zermelo-Fraenkel (ZF) set theory, where
classes exist only in the metalanguage. That is, the class{x | φ(x)} is just an
alternative notation for the formulaφ(x), anda ∈ {x | φ(x)} is just an alternative
notation forφ(a). The universal class,V, corresponds to the formulaTrue . An
“equation” likeV =

⋃
α∈ON Vα stands for∀x. ∃α.ON(α)∧x ∈ Vα. Gödel worked

in von Neumann-Bernays-G̈odel (NBG) set theory, which allows quantification
over classes but restricts their use in other ways. With either axiom system, classes
immensely complicate the reasoning.

Why did Gödel use classes? Working entirely with sets, he could have used
essentially the same techniques to prove that ifM is a model of ZF then there ex-
ists a modelL(M) of ZFC. (ZFC refers to the ZF axioms plus AC.) Therefore, if
ZFC has no models, then neither does ZF. But with this approach, he can no longer
claim that if he had a contradiction in ZFC then a contradiction in ZF “could actu-
ally be constructed.” For the sake of this remark, which is not part of any theorem
statement, G̈odel chose a more difficult route. Classes create more difficulties for
formal proof checkers (which have to face foundational issues squarely) than they
do for mathematicians writing in English.

The proof uses metatheoretic reasoning extensively. Gödel writes [3, p. 34],

However, the only purpose of these general metamathematical consid-
erations is to show how the proofs for theorems of a certain kind can
be accomplished by a general method. And, since applications to only



7

a finite number of instances are necessary. . ., the general metamathe-
matical considerations could be left out entirely, if one took the trouble
to carry out the proofs separately for any instance.

I decided to take the trouble, not using metatheory but relying instead on a me-
chanical theorem prover.

This paper describes the Isabelle/ZF proofs. It indicates the underlying math-
ematical ideas and sometimes discusses practical issues such as proof length or
machine resources used. It necessarily omits much material that would be too long
or too repetitious. The paper concerns how existing mathematics is formalized; it
contains no original mathematics.

Overview. The paper begins by outlining G̈odel’s relative consistency proof (§2).
After a brief overview of Isabelle/ZF, the paper describes the strategy guiding
the formalization (§3) and presents some elementary absoluteness proofs (§4). It
then discusses relativization issues involving well-founded recursion (§5). Turning
away from absoluteness, the paper proceeds to describe the formalization of the
constructible universe and the proof thatL satisfies the ZF axioms (§6); then, it
describes how the reflection theorem is used to prove thatL satisfies the separation
axiom (§7). Absoluteness again takes centre stage as the paper presents the rela-
tivization of two essential datatypes (§8) and finally presents the absoluteness ofL
itself (§9). Finally, the paper presents the Isabelle proof that AC holds inL (§10),
and offers some conclusions (§11).

2 Proof Outline

Gödel’s idea is to define a very lean model, calledL , of set theory.L contains just
the sets that must exist because they can be defined by formulae. Then, prove that
L satisfies the ZF axioms and the additional axiom “every set belongs toL ,” which
is abbreviatedV = L . We now know thatV = L is consistent with ZF, and can
assume this axiom. (The conjunction of ZF andV = L is abbreviated ZFL.) We
conclude by proving that AC and GCH are theorems of ZFL and therefore are also
consistent with ZF.

Figure1 showsL (shaded) as a subclass of the universe,V. The vertical line
represents the classON of the ordinal numbers.

2.1 The Problem With Class Models

BecauseL is a proper class, we cannot adopt the usual notion of satisfaction. To
formalize the standard Tarski definition of truth [7, p. 60] requires first defining,
in set theory, a setF to represent the syntax of first-order formulae.F is easily
defined, either using G̈odel-numbering or as a recursive data structure. IfM is a
set, p ∈ F represents a formula withk free variables, andm1, . . . , mk ∈ M then
M |H p(m1, . . . ,mk) can be defined by recursion on the structure ofp. If M is
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Figure 1: The Constructible Universe,L

a proper class, then the obvious definition ofM |H p( Em) cannot be formalized in
set theory; the environments that hold the bindings of free variables would have to
belong to a function space whose range was all ofM . Tarski’s theorem on non-
definability of truth [6, p. 41] asserts that no formulaχ(p) expressesV |H p. If
for each formulaφ we writepφq for the corresponding element ofF , thenψ ↔
¬χ(pψq) is a theorem for some sentenceψ . Satisfaction cannot be defined, at
least ifM = V.

2.2 Relativization

Gödel instead expressed satisfaction for class models syntactically. This approach
abandons the setF of formula representatives in favour of real formulae. Set theory
uses a first-order language with no constant symbols, no function symbols and no
relation symbols other than∈ and=. Variables are the only terms.

Gödel’s key concept isrelativization.1 If M is a class andφ is a formula, define
φM recursively as follows:

(x = y)M abbreviates x = y

(x ∈ y)M abbreviates x ∈ y

(φ ∧ ψ)M abbreviates φM
∧ ψM

(¬φ)M abbreviates ¬(φM )

(∃x. φ)M abbreviates ∃x. x ∈ M ∧ φM

Dually (∀x. φ)M abbreviates∀x. x ∈ M → φM , if universal quantifiers are de-
fined as usual. (When working in ZF, we should writeM(x) instead ofx ∈ M
above.) Relativization bounds all quantifiers inφ by M . It is intuitively clear that
φM expresses thatφ is true inM . But while the satisfaction relation (|H) can be
defined within set theory, relativization can only be defined in the metalanguage: it
combines two arguments,φ andM , which lie outside ZF.

1See G̈odel [3, p. 76] or for a modern treatment Kunen [6, p. 112].
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2.3 The Formal Treatment of Terms

Despite the lack of terms in their formal language, set theorists use elaborate
notational conventions. In other branches of mathematics, an expression like
f (x)g(y) − h(x, y) means what it says: functionsf , g and h are applied and
the results combined by multiplication and subtraction. But in set theory, each
expressionE(x) abbreviates a formulaφ(x, y), which reduces the meaning of
y = E(x) to a combination of∈ and=. For example, we can express the meaning
of Y = A∪ B by the predicateunion (A, B,Y), defined by

∀z . z ∈ Y↔ z ∈ A∨ z ∈ B.

We can similarly defineinter (A, B,Y) to expressY = A∩ B. Combining these
predicates gives meaning to more complex terms; for example,Y = (A∪ B) ∩ C
abbreviates

∃X. union (A, B, X) ∧ inter (X,C,Y).

Variable binding notation, ubiquitous in set theory, causes complications. In⋃
x∈A B(x), what is B? Syntactically,B(x) is a term with parameterx, so we

can take it as an abbreviation for some formulaφ(x, y). But then
⋃

becomes
an operation on formulae rather than one on sets. An equally legitimate alterna-
tive [4, p. 34] is to regardB as a function in set theory — formally, the set of pairs
{〈x, B(x)〉 | x ∈ A}.

Set theorists generally say little about these notational conventions and act as
if terms were meaningful in themselves. But relativization forces us to make the
translation from terms to formulae explicit. In the Isabelle formalization, I have
defined relational equivalents of dozens of term formers. I have included a class
argument in each one to perform relativization at the same time; we can express
the relativized term((A∪ B) ∩ C)M as

∃X ∈ M . union (M , A, B, X) ∧ inter (M , X,C,Y)

The hardest tasks were (1) to define relational equivalents of the complicated ex-
pressions generated by Isabelle/ZF for recursively defined sets and functions and
(2) to cope with the sheer bulk of the definitions.

2.4 Gödel’s Claim Viewed Proof-Theoretically

The purpose of relativization is to express claims of the form “φ is true inM .” To
prove thatL satisfies the ZF axioms andV = L , we must proveφL for each ZF
axiomφ, and we must prove(V = L)L . Now we can consider G̈odel’s claim that
from a contradiction in ZFL a contradiction in ZF “could actually be constructed.”
His claim is proof-theoretic. A contradiction in ZFL is a proof,5, of ⊥ from
finitely many ZF axioms andV = L :

φ1 . . . φn V = L
5

⊥
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Once we have proved thatL satisfies the axioms of ZFL, we have then+ 1 proofs

ZF ` φL
1 . . . ZF ` φL

n (V = L)L .

Verifying Gödel’s claim reduces to showing that we can always construct a
proof5L of ⊥L from the relativized premises:

φL
1 . . . φL

n (V = L)L

5L

⊥
L

For then we get a proof of ZF̀ ⊥L , which is just ZF` ⊥.
So how we obtain5L from5? To be concrete, suppose we are working with

a natural deduction formalization of first-order logic. By the normal form theo-
rem [17], since the conclusion of the proof is atomic, we can assume that5 applies
only elimination rules. We must modify5 so that it accepts relativized versions of
its premises and delivers a relativized version of its conclusion. The only hard cases
involve quantifiers. Where5 applies the existential elimination rule to∃x. φ(x),
it delivers the formulaφ(x) to the rest of the proof. (Assume thatx has already
been renamed, if necessary.) At the corresponding position,5L should apply the
existential and conjunction elimination rules to∃x. x ∈ L ∧ φ(x), delivering the
formulaex ∈ L andφ(x) to the rest of the proof.

Universal quantifiers require a bit more work. First, recall that the language of
set theory has no terms other than variables. Where5 applies the universal elimi-
nation rule to∀x. φ(x), it delivers the formulaφ(y) to the rest of the proof, where
y is a variable. At the corresponding position,5L should apply the existential and
conjunction elimination rules to∀x. x ∈ L → φ(x). But before it can deliver the
formulaφ(y), it requires a proof ofy ∈ L . We will indeed havey ∈ L if the vari-
abley is obtained by a previous existential elimination, but what ify was chosen
arbitrarily? We can handle such cases by inserting at this point an application of the
empty set axiom, which will yield a new variable (sayz) and the assumptionz ∈ L .
Intuitively, we are replacing all free variables in5 by 0.

The sketchy argument above cannot be called a rigorous proof of Gödel’s
claim. But it is more detailed than standard expositions of Gödel’s proof. Kunen
relegates the relevant lemma to an appendix, and for the proof he merely remarks
“Similar to the easy direction of the G̈odel Completeness Theorem” [6, p. 141].
To Gödel, it was all presumably trivial. I have not formalized the argument in
Isabelle/ZF because that would require formalizing the metatheory.

2.5 Defining the Class L

The equationV =
⋃
α∈ON Vα expresses the universe of sets as the union of

the cumulative hierarchy{Vα}α∈ON, which is recursively defined byV0 = 0,
Vα+1 = P(Vα) and Vα =

⋃
ξ<α Vξ whenα is a limit ordinal. We obtainL by
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a similar construction, replacing the powerset operatorP by thedefinable power-
set operator,D. Essentially,D(A) yields the set of all subsets ofA that can be
defined by a formula taking parameters overA. If we define the setF of formu-
lae and the satisfaction relationA |H p as outlined above, then we can make the
definition

D(A) = {X ∈ P(A) |
∃p ∈ F. ∃a1 . . .ak ∈ A. X = {x ∈ A | A |H p(x,a1, . . . ,al )}}.

(The ellipsis can be eliminated in favour of lists overA.) Finally, we define the
constructible universe: L =

⋃
α∈ON Lα, where L0 = 0, Lα+1 = D(Lα) and

Lα =
⋃
ξ<α Lξ whenα is limit.

Kunen proves thatL satisfies the ZF axioms, remarking [6, p. 170] “only the
Comprehension Axiom required any work.” His remark applies to the Isabelle/ZF
proofs.L inherits most of the necessary properties fromV. Even the axiom scheme
of replacement can be proved as the theoremreplacement(L,P) ; the proof is in-
dependent of the formulaP. However, the proof of comprehension for the formula
φ requires an instance of the reflection theorem forφ, which requires recursion over
the structure ofφ. Each instance of comprehension therefore has a different proof
from the ZF axioms. At the metalevel, of course, all these proofs are instances of a
single algorithm. For Isabelle/ZF, this means that each instance of comprehension
must be proved separately, although the proof scripts are nearly identical.

2.6 Absoluteness: Proving(V = L)L

Proving thatL satisfiesV = L is a key part of the proof, and despite first ap-
pearances, it is far from trivial. It amounts to saying that the construction ofL is
idempotent:LL

= L . The underlying concept is calledabsoluteness, which ex-
presses that a given operator or formula behaves the same in a class modelM as it
does inV, the universe. A classM is transitiveif x ∈ M impliesx ⊆ M , and we
shall only be concerned with transitive models below.

Most constructions are absolute. The empty set can only be a set having no
elements, andA ⊆ B can only mean that every element ofA belongs toB. If
A and B are sets then their union can only be the set containing precisely the
elements of those sets. Many complicated notions are also absolute: domains and
ranges of relations, bijections, well-orderings, order-isomorphisms, ordinals. With
some effort, we can show the absoluteness of recursively defined data structures
and functions.

Powersets, except in trivial cases, are not absolute. For example,P(ω) might
contain subsets of the natural numbers that cannot be shown to exist. The function
spaceA→ B is not absolute because of the obvious connection betweenP(A) and
A → {0,1}. More subtly, cardinality is not absolute: ifM is a countable model
of set theory, andα is an uncountable cardinal according toM , then obviouslyα
must be really be countable, with the bijections betweenα andω lying outsideM .
This situation is called Skolem’s paradox [6, p. 141].
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Metamathematical arguments are an efficient means of proving absoluteness.
For example, any concept that is provably equivalent (in ZF) to a formula involving
only bounded quantifiers is absolute [6, p. 119]. This is the class of1ZF

0 formulae.
The larger class of1ZF

1 formulae can also be shown to be absolute. Unfortunately,
all such arguments are beyond our reach unless we formalize the metatheory.

2.7 The Consequences of V= L

Once we have proved thatL is absolute, we obtain ZF̀ (V = L)L . We can
then investigate the consequences of assumingV = L . To prove the axiom of
choice, it suffices to prove that every set can be well-ordered. The key step, given
a well-ordering ofA, is to construct a well-ordering ofD(A). It comes from the
lexicographic ordering on tuples〈p,a1, . . . ,ak〉 for p ∈ F anda1, . . . , ak ∈ A.
So if Lα is well-ordered, so isLα+1. By transfinite induction, each level of the
construction ofL is well-ordered.

The axiomV = L is very strong. G̈odel proved that it implies the generalized
continuum hypothesis. Others have proved that it implies, for example, the com-
binatorial principle known as♦+. But it is important to note that such proofs are
entirely separate from that of ZF̀ (V = L)L . We prove ZFL` AC, ZFL ` GCH
and ZFL` ♦, but we do not prove ZF̀ ACL , ZF ` GCHL and ZF` ♦L . Those
results, if we want them, are most easily obtained in the metatheory, using the
general fact that ifφ ` ψ thenφL

` ψL .

3 Introduction to the Isabelle/ZF Formalization

Isabelle[8, 11] is an interactive theorem prover that supports a variety of logics,
including set theory and higher-order logic. Isabelle provides automatic tools for
simplification and logical reasoning. They can be combined with single-step in-
ferences using a traditional tactical style or as structured proof texts. TheProof
Generaluser interface provides an effective interactive environment. Isabelle has
been applied to a huge number of verification tasks, including the semantics of the
Java language [18] and the correctness of cryptographic protocols [13]. Most of
these proofs use Isabelle/HOL, the version of Isabelle for higher-order logic. Isa-
belle/HOL’s polymorphic type system is ideal for modelling problems in computer
science.

Isabelle also supports Zermelo-Fraenkel set theory. Formalized material in-
cludes the traditional concepts of functions, ordinals, order types and cardinals.
Isabelle/ZF also accepts definitions of recursive functions and data structures; in
this it resembles other computational logics, with the important difference of be-
ing typeless. Some problems do call for a typeless logic. Isabelle/ZF is also good
for investigating foundational issues, and, of course, for formalizing proofs in ax-
iomatic set theory.

Previous published work on Isabelle/ZF describes its basic development [10]

http://isabelle.in.tum.de/
http://www.proofgeneral.org/
http://www.proofgeneral.org/
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and its treatment of recursive functions [10] and inductive definitions [14]. An-
other paper describes proofs drawn from set theory textbooks [16]. Particularly
noteworthy are the proofs of equivalence between various formulations of the ax-
iom of choice. Those proofs, formalized by Gra̧bczewski, are highly technical,
demonstrating that advanced set theory proofs can be replicated in Isabelle/ZF
given enough time and effort. That is precisely why we should investigate Gödel’s
proof of the relative consistency of AC: much of the reasoning takes place outside
set theory.

The previous section has presented many reasons why we should formalize
Gödel’s proof directly in the metatheory. That strategy does not require a set theory
prover. We could use any system that lets us define the first-order formulae, the set
theory axioms, and the set of theorems derivable from any given axioms. We would
enjoy a number of advantages.

• Relativization could easily be defined by recursion on the structure of for-
mulae.

• Metatheorems about absoluteness — for example, that all1ZF
0 formulae are

absolute — could be proved and used to obtain simple proofs of many abso-
luteness results.

• The constructiveness of the consistency result could be stated and proved.

However, the metatheoretical strategy also presents difficulties. We would have
to work in the pure language of set theory, which reduces all concepts to mem-
bership and equality, and is unreadable; an alternative would be to formalize the
familiar term language. We would constantly be reasoning about an explicitly for-
malized inference system for ZF rather than using our prover’s built-in reasoning
tools. I believe this strategy would involve as much work as the strategy I adopted,
although the work would be distributed differently.

The choice resembles the standard one we face when we model a formal lan-
guage: shall we adopt a deep or a shallow embedding? A shallow embedding
maps phrases in the language to corresponding phrases in the prover’s logic. It
works well for reasoning about specific examples, but does not allow metarea-
soning (proofs about the language). A deep embedding involves formalizing the
language’s syntax and semantics in the prover’s logic. The extra mechanism allows
metareasoning but complicates reasoning about specific examples. Compared with
a shallow embedding, the strengths and weaknesses are exchanged.

I have chosen to formalize G̈odel’s theorem in set theory, minimizing any ex-
cursions into the metatheory. This strategy still requires defining relational equiva-
lents for each element of set theory’s term language, while limiting my exposure to
unreadable relational formulae. After all, the critical proofs involve showing that
various concepts are absolute, which means that they do not vary from one model
of set theory to another. Each absoluteness proof justifies replacing some primitive
of the relational language by its counterpart in the term language. Thus Isabelle’s
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simplifier can transform relational formulae into ones using terms, exploiting the
existing formalization of set theory.

This plan worked well for basic concepts such as union, intersection, relation,
function, domain, range, image, inverse image and even ordinal. The absoluteness
proofs for well-orderings, recursive functions and recursive data types were harder:

• If a concept is defined in terms of non-absolute primitives, such as powerset,
it must be proved equivalent to a suitable alternative definition.

• Much of the theory of well-founded recursion must be formalized from
scratch in the relational language.

• Higher-order functions complicate the relational language.

• Recursive functions generate complicated fixedpoint definitions that must be
converted into relational form manually.

4 Relativization and Absoluteness: Basics

The first step is to define the relational language, introducing predicates for all the
basic concepts of set theory. Each predicate takes a class as an argument so that it
can express relativization. This relational language will later allow appeals to the
reflection theorem. Space permits only a few of the predicates to appear below.
Note that the class quantifications∀x ∈ M and∃x ∈ M are written∀ x[M] and
∃ x[M] in Isabelle. For example,∀ x[M]. P(x) is definitionally equivalent to∀ x.

M(x) −→P(x) .

4.1 From the Empty Set to Functions

We begin with definitions of trivial concepts such as the empty set and the subset
relation. A setz is empty if it has no elements:

"empty(M,z) == ∀ x[M]. x /∈ z"
"subset(M,A,B) == ∀ x[M]. x ∈A −→ x ∈ B"

All Isabelle definitions in this paper are indicated by a vertical line, as shown.
A set z is the unordered pair ofa andb if it contains those two sets and no

others. The Kuratowski definition of ordered pairs〈a,b〉 = {{a,a}, {a,b}} is then
expressed using the predicateupair :

"upair(M,a,b,z) == a ∈ z & b ∈ z & ( ∀ x[M]. x ∈z −→ x=a | x=b)"
"pair(M,a,b,z) == ∃ x[M]. upair(M,a,a,x) &

( ∃ y[M]. upair(M,a,b,y) & upair(M,x,y,z))"

A set z is the union ofa andb if it contains their elements and no others. The
general union

⋃
(A), also written as

⋃
{X | X ∈ A}, has an analogous definition.
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"union(M,a,b,z) == ∀ x[M]. x ∈ z ←→ x ∈ a | x ∈ b"
"big union(M,A,z) == ∀ x[M]. x ∈ z ←→ ( ∃ y[M]. y ∈A & x ∈ y)"

A set z is the domain of the relationr if it consists of each elementx such that
〈x,y 〉 ∈ r for somey .

"is domain(M,r,z) == ∀ x[M]. x ∈ z ←→
( ∃w[M]. w ∈r & ( ∃ y[M]. pair(M,x,y,w)))"

4.2 Relativizing the Ordinals

Now we can define relational versions of ordinals and related concepts. The for-
malization is straightforward.

An ordinal is a transitive set of transitive sets.

"transitive set(M,a) == ∀ x[M]. x ∈a −→ subset(M,x,a)"
"ordinal(M,a) ==

transitive set(M,a) & ( ∀ x[M]. x ∈a −→ transitive set(M,x))"

A limit ordinal is a non-empty, successor-closed ordinal.

"limit ordinal(M,a) ==
ordinal(M,a) & ˜ empty(M,a) &
( ∀ x[M]. x ∈a −→ ( ∃ y[M]. y ∈a & successor(M,x,y)))"

A successor ordinal is any ordinal that is neither empty nor limit.

"successor ordinal(M,a) ==
ordinal(M,a) & ˜ empty(M,a) & ˜ limit ordinal(M,a)"

The set of natural numbers,ω, is a limit ordinal that contains no limit ordinals.

"omega(M,a) ==
limit ordinal(M,a) & ( ∀ x[M]. x ∈a −→ ˜ limit ordinal(M,x))"

4.3 Defining the Zermelo-Fraenkel Axioms

Formally defining the ZF axioms relative to a classM lets us express thatM satis-
fies those axioms. Each axiom is relativized so that all quantified variables range
overM.

We begin with extensionality:

"extensionality(M) ==
∀ x[M]. ∀ y[M]. ( ∀ z[M]. z ∈ x ←→ z ∈ y) −→ x=y"

The separation axiom is also known as comprehension:

"separation(M,P) ==
∀ z[M]. ∃ y[M]. ∀ x[M]. x ∈ y ←→ x ∈ z & P(x)"
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This only yields a valid instance of separation if the formulaP obeys certain syntac-
tic restrictions. All quantifiers inP must be relativized toM, and the free variables
in P must range over elements ofM. These restrictions prevent us from assuming
separation as a scheme by leavingP as a free variable. We must separately note
every instance of separation that we need. If it meets the syntactic restrictions, then
later we shall be able to prove thatL satisfies it.

That looks bad when we recall that the native separation axiom in Isabelle/ZF,
and the theorems using it, are schematic inP. But if we formalize Bernays-G̈odel
set theory as a new Isabelle logic (creating the system Isabelle/BG) then the same
problem occurs elsewhere. The analogue of separation in BG set theory is the Gen-
eral Existence Theorem, which is a metatheorem: proving each instance requires a
separate construction. To compensate, at least BG has no axiom schemes.

The axioms of unordered pairs, unions and powersets all state thatM is closed
under the given operation:

"upair ax(M) == ∀ x[M]. ∀ y[M]. ∃ z[M]. upair(M,x,y,z)"
"Union ax(M) == ∀ x[M]. ∃ z[M]. big union(M,x,z)"
"power ax(M) == ∀ x[M]. ∃ z[M]. powerset(M,x,z)"

The foundation axiom states that every non-empty set has a∈-minimal ele-
ment:

"foundation ax(M) ==
∀ x[M]. ( ∃ y[M]. y ∈x) −→ ( ∃ y[M]. y ∈x & ˜( ∃ z[M]. z ∈x & z∈y))"

Call a formulaunivalentover a set if it describes a class function on that set.
The replacement axiom holds for univalent formulae:

"univalent(M,A,P) ==
∀ x[M]. x ∈A −→ ( ∀ y[M]. ∀ z[M]. P(x,y) & P(x,z) −→ y=z)"

"replacement(M,P) ==
∀A[M]. univalent(M,A,P) −→

( ∃Y[M]. ∀b[M]. ( ∃ x[M]. x ∈A & P(x,b)) −→ b ∈ Y)"

Intuitively, if F is a class function and andA is a set, then replacement says that
F“ A (the image ofA underF) is a set. However, the axiom formalized above is
weaker: it merely asserts (relative to the classM ) thatF“ A ⊆ B for some setB.
To get the set we really want, namelyF“ A, we must apply the axiom of separation
to B. The weak form of replacement can be proved schematically forL . The strong
form cannot be proved schematically because of its reliance on separation.

"strong replacement(M,P) ==
∀A[M]. univalent(M,A,P) −→

( ∃Y[M]. ∀b[M]. b ∈ Y ←→ ( ∃ x[M]. x ∈A & P(x,b)))"

4.4 Introducing a Transitive Class Model

The absoluteness proofs are carried out with respect to an arbitrary class modelM ,
although they are only needed forL . Generalizing the proofs over other models
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has two advantages: it separates the absoluteness proofs from reasoning aboutL
and it allows the proofs to be used with other class models.

Isabelle’s locale mechanism [5] makes the generalization possible. A locale
packages the many properties required ofM , creating a context in which they are
implicitly available. A proof within a locale may refer to those properties and
to other theorems proved in the same locale. A locale can extend an older one,
creating a context that includes everything available in the ancestor locales.

locale Mtrivial =
fixes M
assumes transM: " [[y∈x; M(x) ]] H⇒ M(y)"

and upair ax: "upair ax(M)"
and Union ax: "Union ax(M)"
and power ax: "power ax(M)"
and replacement: "replacement(M,P)"
and Mnat [iff]: "M(nat)"

The classM is assumed to be transitive (transM ) and to satisfy some relativized
ZF axioms, such as unordered pairing (upair ax ) and replacement. It contains
the set of natural numbers,nat (which is also the ordinalω). This locale does not
assume any instances of separation.

4.5 Easy Absoluteness Proofs

Here is a canonical example of an absoluteness result. The phrasein Mtrivial

includes the lemma in the locale.

lemma ( in Mtrivial) empty abs [simp]:
"M(z) H⇒ empty(M,z) ←→ z=0"

apply (simp add: empty def)
apply (blast intro: transM)
done

The proof refers to the definition of empty set (empty def ) and to the transitivity
of M (the locale assumptiontransM ); it usesblast , an automatic prover. The
attribute[simp] declaresempty abs as a simplification rule: the simplifier will
replace any occurrence ofempty(M,z) by z=0 provided it can proveM(z) . From
now on, usually just the statements of theorems will be shown, not header lines and
proofs.

Here are some similar absoluteness results, also proved in localeMtrivial

and declared to the simplifier. Most have trivial proofs like the one shown above.

"M(A) H⇒ subset(M,A,B) ←→ A ⊆ B"
"M(z) H⇒ upair(M,a,b,z) ←→ z={a,b}"
"M(z) H⇒ pair(M,a,b,z) ←→ z= 〈a,b 〉"
" [[M(r); M(A); M(z) ]] H⇒ image(M,r,A,z) ←→ z = r‘‘A"
" [[M(A); M(B); M(z) ]] H⇒ cartprod(M,A,B,z) ←→ z = A×B"
" [[M(a); M(b); M(z) ]] H⇒ union(M,a,b,z) ←→ z = a ∪ b"
" [[M(A); M(z) ]] H⇒ big union(M,A,z) ←→ z = Union(A)"
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These theorems express absoluteness because the classMdisappears from the right-
hand side: the meaning of subset, image, etc., is the same as its meaning inV. Each
theorem also expresses the correctness of an element of the relational language, for
example thatbig union captures the meaning ofUnion .

Absoluteness results involving ordinals are also easily proved:

"M(a) H⇒ ordinal(M,a) ←→ Ord(a)"
"M(a) H⇒ limit ordinal(M,a) ←→ Limit(a)"
"M(a) H⇒ successor ordinal(M,a) ←→

Ord(a) & ( ∃b[M]. a = succ(b))"

Thus we see that the simplifier can rewrite relational formulae into term notation,
provided we are able to prove that they refer to elements ofM. For this purpose,
there are many results showing thatM is closed under the usual set-theoretic con-
structions. In particular, we can use the separation axiom for a specific formulaP:

"M(A) H⇒ M(Union(A))"
" [[M(A); M(B) ]] H⇒ M(A ∪ B)"
" [[separation(M,P); M(A) ]] H⇒ M({x∈A. P(x) })"

Also useful are logical equivalences to simplify assertions involvingM:

"M({a,b}) ←→ M(a) & M(b)"
"M( 〈a,b 〉) ←→ M(a) & M(b)"

4.6 Absoluteness Proofs Assuming Instances of Separation

All the theorems shown above are proved without recourse to the axiom of separa-
tion. Obviously many set-theoretic operators are defined using separation — pos-
sibly in the guise of strong replacement — so we now extend localeMtrivial

accordingly.

locale Mbasic = M trivial +
assumes Inter separation:

"M(A) H⇒ separation(M, λx. ∀ y[M]. y ∈A −→ x∈y)"
and Diff separation:

"M(B) H⇒ separation(M, λx. x /∈ B)"
and cartprod separation:

" [[M(A); M(B) ]]
H⇒ separation(M, λz. ∃ x[M]. x ∈A &

( ∃ y[M]. y ∈B & pair(M,x,y,z)))"
and image separation:

" [[M(A); M(r) ]]
H⇒ separation(M, λy. ∃p[M]. p ∈r &

( ∃ x[M]. x ∈A & pair(M,x,y,p)))"
and converse separation:

"M(r) H⇒ separation(M, λz. ∃p[M]. p ∈r &
( ∃ x[M]. ∃ y[M]. pair(M,x,y,p) &
pair(M,y,x,z)))"

Only a few of the 11 instances of separation appear above. Omitted are the more
complicated ones, for example concerning well-founded recursion.

By Inter separation it follows thatM is closed under intersections.
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lemma ( in Mbasic) Inter closed:
"M(A) H⇒ M(Inter(A))"

From the lemma declaration, you can see that the proof takes place in locale
Mbasic . All results proved in localeMtrivial remain available.

By cartprod separation it follows that the classM is closed under Carte-
sian products. The proof is complicated because the powerset operator (which is
not absolute) occurs in the definition. A trivial corollary is thatM is closed under
disjoint sums.

" [[M(A); M(B) ]] H⇒ M(A×B)"
" [[M(A); M(B) ]] H⇒ M(A+B)"

I devoted some effort to minimizing the number of instances of separation required.
For example, the inverse image operator is expressed in terms of the image and
converse operators. Then the domain and range operators can be expressed in
terms of inverse image and image. We obtain five closure theorems from the two
assumptionsimage separation andconverse separation :

" [[M(A); M(r) ]] H⇒ M(r‘‘A)"
" [[M(A); M(r) ]] H⇒ M(r-‘‘A)"
"M(r) H⇒ M(converse(r))"
"M(r) H⇒ M(domain(r))"
"M(r) H⇒ M(range(r))"

These five operators are also absolute. Here is the result fordomain :

" [[M(r); M(z) ]] H⇒ is domain(M,r,z) ←→ z = domain(r)"

Although we assume thatM satisfies the powerset axiom, we cannot hope to
proveM(A) H⇒M(Pow(A)) . The powerset ofA relative toM is smaller than the
true powerset, containing only those subsets ofA that belong toM. Similarly, we
cannot show thatMcontains all functions fromA to B. However, it holds for a finite
case, essentially the setBn of n-tuples:

" [[n∈nat; M(B) ]] H⇒ M(n->B)"

This lemma will be needed later to prove the absoluteness of transitive closure.

4.7 Some Remarks About Functions

In set theory, a function is a single-valued relation and thus is a set of ordered pairs.
Operators such as powerset and union, which apply to all sets, are not functions.
(Strictly speaking, there are no operators in the formal language of set theory, since
the only terms are variables.) Isabelle/ZF distinguishes functions from operators
syntactically.

• The application of the functionf to the argumentx is written f‘x . On
the other hand, application of an operator to its operand is written using
parentheses, as inPow(X) , or using infix notation.
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• Function abstraction over a setA is indicated byλx∈A, and yields a set of
pairs. For instance,λx∈A. x denotes the identity function onA. Operators
are essentially abstractions over the universe, as inλx. Pow(Pow(x)) . Ab-
straction can also express predicates; for instance,λx. P(x) & Q(x) is the
conjunction of the two predicatesP andQ.

Kunen [6, p. 14] defines function application in the usual way:f ‘x is “the
uniquey such that〈x, y〉 ∈ f .” Isabelle/ZF originally adopted a formal version
of this definition, using a description operator [10, §7.5]. The relational version of
the operator, namelyfun apply(M,f,x,y) , held if the pair〈x,y 〉 belongs tof
for that uniquey .

My original definitions of function application, in its infix and relational forms,
both followed Kunen’s definition. However, the absoluteness theorem relating
them was conditional on the function application’s being well-defined. That made
it harder to simplifyfun apply(M,f,x,y) to f‘x = y and often forced proofs
to include what was essentially type information.

Redefining function application byf ‘x =
⋃
( f “ {a}) solved these problems by

eliminating the definite description. The new definition looks peculiar, but it agrees
with the old one when the latter is defined. Its relational version is straightforward:

"fun apply(M,f,x,y) ==
( ∃ xs[M]. ∃ fxs[M].

upair(M,x,x,xs) & image(M,f,xs,fxs) & big union(M,fxs,y))"

Thus it follows thatM is closed under function application, which is also absolute:

" [[M(f); M(a) ]] H⇒ M(f‘a)"
" [[M(f); M(x); M(y) ]] H⇒ fun apply(M,f,x,y) ←→ f‘x = y"

5 Well-Founded Recursion

The hardest absoluteness proofs concern recursion. Well-founded recursion is the
most general form of recursive function definition. The proof that well-founded
relations are absolute consists of several steps. Well-orderings, which are well-
founded linear orderings, are somewhat easier to prove absolute.

5.1 Absoluteness of Well-orderings

The concept of well-ordering is the first we encounter whose absoluteness proof is
hard. One direction is easy: if relationr well-ordersA, then it also well-ordersA
relative toM . For if every nonempty subset ofA has anr -minimal element, then
trivially so does every nonempty subset ofA that belongs toM ; this is Lemma IV
3.14 in Kunen [6, p. 123]. For proving the converse direction, Kunen (Theorem
IV 5.4, page 127) reasons that “every well-ordering is isomorphic to an ordinal.”
We can obtain this result by showing that order types exist inM and are absolute.
The proof requires some instances of separation and replacement forM .
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The theory defines various properties of relations, relative to a classM. Tran-
sitivity, linearity, and other simple properties have the obvious definitions and are
easily demonstrated to be absolute. The definition of well-founded refers to the
existence ofr -minimal elements, as discussed above.

"wellfounded on(M,A,r) ==
∀ x[M]. x 6=0 −→ x ⊆ A

−→ ( ∃ y[M]. y ∈x & ˜( ∃ z[M]. z ∈x & 〈z,y 〉 ∈ r))"

A well-ordering is a well-founded relation that is also linear and transitive.

"wellordered(M,A,r) ==
transitive rel(M,A,r) & linear rel(M,A,r) &
wellfounded on(M,A,r)"

Kunen’s lemma IV 3.14 takes the following form:

"well ord(A,r) H⇒ wellordered(M,A,r)"

The definition of order types is standard; see Theorem I 7.6 of Kunen [6, p. 17].
We use replacement to construct a function that maps elements ofA to ordinals,
proving that its domain is the whole ofA and that each element of its range is an
ordinal. Its range is the desired order type. But the construction must be done
relative toM. In particular, when we need well-founded induction onr , we must
apply a relativized induction rule:

" [[a∈A; wellfounded on(M,A,r); M(A);
separation(M, λx. x ∈A −→ ˜P(x));
∀ x∈A. M(x) & ( ∀ y∈A. 〈y,x 〉 ∈ r −→ P(y)) −→ P(x) ]]

H⇒ P(a)"

One premise is an instance of the separation axiom involving the negation of the in-
duction formula. Each time we apply induction, we must assume another instance
of separation.

After about 250 lines of proof script, we arrive at Kunen’s Theorem IV 5.4.
The notion of well-ordering is absolute:

" [[M(A); M(r) ]] H⇒ wellordered(M,A,r) ←→ well ord(A,r)"

Order types are absolute. That is, iff is an order-isomorphism from between
(A,r) and some ordinali , theni is the order type of(A,r) .

" [[wellordered(M,A,r); f ∈ ord iso(A, r, i, Memrel(i));
M(A); M(r); M(f); M(i); Ord(i) ]] H⇒ i = ordertype(A,r)"

These results are not required in the sequel, but I found their proofs useful prepa-
ration for tackling the more general problem of well-founded recursion.
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5.2 Functions Defined by Well-founded Recursion Are Absolute

It is essential to show that functions can be defined by well-founded recursion inM

and that such functions are absolute. This is Kunen’s theorem IV 5.6, page 129.
Let r be a well-founded relation. Iff is recursively defined overr then f (a) is

derived froma and from variousf (y)wherey ranges over the set ofr -predecessors
of a. This set is justr−1“{a}, the inverse image of{a} underr , more explicitly
{y | 〈y,a〉 ∈ r }. Writing the body of f asH(x, g), with free variablesx andg, we
get the recursion equation:

f (a) = H(a, f � (r−1“ {a})) (1)

Note that f � (r−1“ {a}) denotes the function obtained by restrictingf to r -
predecessors ofa.

If r and H are given, then the existence of a suitable functionf follows by
well-founded induction overr , as I have described in previous work [12]. I have
had to repeat some of these proofs relative toM. The theorems may assume only
the relativized assumptionwellfounded(M,r) , which for the moment is weaker
thanwf(r) . About 200 lines of proof script are necessary, but fortunately much
of this material is based on earlier proofs. We reach a key result concerning the
existence of recursive functions:

" [[wellfounded(M,r); trans(r);
separation(M, λx. ˜ ( ∃ f[M]. is recfun(r,x,H,f)));
strong replacement(M, λx z.
∃ y[M]. ∃g[M]. z= 〈x,y 〉 & is recfun(r,x,H,g) & y = H(x,g));

M(r); M(a);
∀ x[M]. ∀g[M]. function(g) −→ M(H(x,g)) ]]

H⇒ ∃ f[M]. is recfun(r,a,H,f)"

The predicateis recfun(r,a,H,f) expresses thatf satisfies the recursion equa-
tion (1) for the given relationr and bodyH for all r -predecessors ofa. So the
theorem states that ifr is well-founded and transitive then there existsf in Msatis-
fying the recursion equation belowa. Obviouslyr anda must belong to the class
M, which moreover must be closed underH. Two additional premises list instances
of separation and replacement, which depend uponr andH. Before we can as-
sume such instances, we must express them relative toM. That in turn requires a
relativized version ofis recfun :

"M is recfun(M,MH,r,a,f) ==
∀ z[M]. z ∈ f ←→

( ∃ x[M]. ∃ y[M]. ∃ xa[M]. ∃ sx[M]. ∃ r sx[M]. ∃ f r sx[M].
pair(M,x,y,z) & pair(M,x,a,xa) & upair(M,x,x,sx) &
pre image(M,r,sx,r sx) & restriction(M,f,r sx,f r sx) &
xa ∈ r & MH(x, f r sx, y))"

This definition is the translation of equation (1) into relational language. (Ob-
serve how quickly this language becomes unreadable.) In particular, the binary
operatorH becomes the ternary relationMH. The argumentH makesis recfun a
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higher-order function, which complicates subsequent work. We cannot relativize
is recfun once and for all, but ifMHis expressed in relational language, then so
is Mis recfun .

The predicaterelation2 expresses thatis f is the relational form off
overM:

"relation2(M,is f,f) ==
∀ x[M]. ∀ y[M]. ∀ z[M]. is f(x,y,z) ←→ z = f(x,y)"

The predicateis wfrec expresses thatz is computed froma andMHby well-
founded recursion overr . The body of the definition expresses the existence of a
function f satisfying equation (1), with z = H(a,f) .

"is wfrec(M,MH,r,a,z) ==
∃ f[M]. M is recfun(M,MH,r,a,f) & MH(a,f,z)"

We now reach two lemmas, stating thatMis recfun and is wfrec behave
as intended. The first result is absoluteness ofis recfun . Among the premises
are thatM is closed underH and thatMHis the relational form ofH:

" [[∀ x[M]. ∀g[M]. function(g) −→ M(H(x,g)); M(r); M(a); M(f);
relation2(M,MH,H) ]]
H⇒ Mis recfun(M,MH,r,a,f) ←→ is recfun(r,a,H,f)"

Under identical premises, we get the corollary

"is wfrec(M,MH,r,a,z) ←→ ( ∃g[M]. is recfun(r,a,H,g) & z=H(a,g))"

5.3 Making Well-founded Recursion Available

Mathematically speaking, we have already proved the absoluteness of well-
founded recursion. Pragmatically speaking, unfortunately, more work must be
done to package the results so that they can be used in formal proofs. In partic-
ular, we need a theorem relating the predicateis wfrec defined above with the
function wfrec provided by Isabelle/ZF [12, §3.1]; wfrec(r,a,H) denotes the
result off(a) , wheref is the function with bodyH defined by recursion overr .

The development of well-founded recursion assumesr to be transitive. To
apply well-founded recursion to other relations requires a theory of transitive clo-
sure. Isabelle/ZF defines the transitive closure of a relation inductively [12, §2.5].
Inductive definitions are abstract and elegant, but they do not lend themselves to
absoluteness proofs because they use the powerset operator. We must find an alter-
native definition, and an obvious one is based on the intuition

x ≺∗ y ⇐⇒ x = s0 ≺ s1 ≺ · · · ≺ sn = y.

The sequences0, s1, . . . , sn can be modelled as a finite function: as noted in Section
4.6, finite functions are absolute. Fromx ≺∗ y it is trivial to define the transitive
closure,x ≺+ y. In the definition below,f is the sequence andA is intended to
represent the field ofr :
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"rtrancl alt(A,r) ==
{p ∈ A*A. ∃n∈nat. ∃ f ∈ succ(n) -> A.

( ∃ x y. p = 〈x,y 〉 & f‘0 = x & f‘n = y) &
( ∀ i ∈n. 〈f‘i, f‘succ(i) 〉 ∈ r)}"

It is easy to prove that this definition coincides with Isabelle/ZF’s inductive one:

"rtrancl alt(field(r),r) = rˆ*"

Since every concept used in the new definition is absolute, we merely have to
relativize this definition toM, definingrtran closure mem(M,A,r,p) to hold
whenp is an element ofrtrancl alt(A,r) . I omit the definition because the
relational language is unreadable. We cannot even use the constant0 but must
introduce a variablezero and constrain it byempty(M,zero) .

The next two predicates relativize the reflexive-transitive and transitive closure
of a relation:

"rtran closure(M,r,s) ==
∀A[M]. is field(M,r,A) −→

( ∀p[M]. p ∈ s ←→ rtran closure mem(M,A,r,p))"
"tran closure(M,r,t) ==

∃ s[M]. rtran closure(M,r,s) & composition(M,r,s,t)"

Once we assume an instance of separation involvingrtran closure mem, clo-
sure and absoluteness results follow directly:

"M(r) H⇒ M(rtrancl(r))"
" [[M(r); M(z) ]] H⇒ rtran closure(M,r,z) ←→ z = rtrancl(r)"
"M(r) H⇒ M(trancl(r))"
" [[M(r); M(z) ]] H⇒ tran closure(M,r,z) ←→ z = trancl(r)"

If a relation is well-founded then so is its transitive closure. The following
lemma use useful because at this point we do not know thatwellfounded(M,r)

is equivalent towf(M,r) .

" [[wellfounded(M,r); M(r) ]] H⇒ wellfounded(M,rˆ+)"

After about 130 lines of proof script, we arrive at some important theorems. One
asserts absoluteness, relating the predicateis wfrec with the operatorwfrec :

" [[wf(r); trans(r); relation(r); M(r); M(a); M(z);
wfrec replacement(M,MH,r); relation2(M,MH,H);
∀ x[M]. ∀g[M]. function(g) −→ M(H(x,g)) ]]
H⇒ is wfrec(M,MH,r,a,z) ←→ z=wfrec(r,a,H)"

Another states that the classM is closed under well-founded recursion:

" [[wf(r); trans(r); relation(r); M(r); M(a);
wfrec replacement(M,MH,r); relation2(M,MH,H);
∀ x[M]. ∀g[M]. function(g) −→ M(H(x,g)) ]]
H⇒ M(wfrec(r,a,H))"
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The theorems fortunately require identical instances of replacement. Both the-
orems assumetrans(r) ; omitted are more general theorems that relax the as-
sumption of transitivity.

Both theorems use the predicatewfrec replacement to express a necessary
instance of replacement. Its arguments are the ternary predicateMH, which repre-
sents the body of the recursive function, and the well-founded relationr .

"wfrec replacement(M,MH,r) ==
strong replacement(M,

λx z. ∃ y[M]. pair(M,x,y,z) & is wfrec(M,MH,r,x,y))"

6 Defining First-Order Formulae and the Class L

We pause from proving absoluteness results in order to consider our main objective,
namely the classL and its properties. The most logical order of presentation might
have been to developL first and then to prove that constructibility is absolute.
The order of presentation adopted here better represents how I actually carried
out the proofs. Kunen similarly presents general absoluteness results before he
introducesL .

6.1 Internalized First-Order Formulae

The idea ofL is to introduce, at each stage, the sets that can be defined from ex-
isting ones by a first-order formula with parameters. Neither Gödel nor Kunen ac-
tually use first-order formulae, preferring more abstract constructions that achieve
the goal more easily. However, Isabelle/ZF’s recursive datatype package automates
the task of defining the set of first-order formulae and the satisfaction relation on
them.

The obvious representation of first-order formulae is de Bruijn’s [2], where
there are no variable names. Instead, each variable reference is a non-negative
integer, where zero refers to the innermost quantifier and larger numbers refer to
enclosing quantifiers. If the integer is greater than the number of enclosing quan-
tifiers, than it is a free variable. This representation eliminates the danger of name
confusion. It is particularly useful for formulae with parameters, since their order
is determined numerically rather than by name.

datatype "formula" = Member ("x ∈ nat", "y ∈ nat")
| Equal ("x ∈ nat", "y ∈ nat")
| Nand ("p ∈ formula", "q ∈ formula")
| Forall ("p ∈ formula")

Having only four cases simplifies the relativization of functions on formulae. All
propositional connectives are expressed in terms ofNand.
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"Neg(p) == Nand(p,p)"
"And(p,q) == Neg(Nand(p,q))"
"Or(p,q) == Nand(Neg(p),Neg(q))"
"Implies(p,q) == Nand(p,Neg(q))"
"Iff(p,q) == And(Implies(p,q), Implies(q,p))"
"Exists(p) == Neg(Forall(Neg(p)))"

6.2 The Satisfaction Relation

Satisfaction is a primitive recursive function on formulae. Thanks to the nameless
representation, interpretations are simply lists rather than functions from variable
names to values. The familiar list functionnth , defined below, looks up variables
in interpretations:

"nth(0, Cons(a, l)) = a"
"nth(succ(n), Cons(a,l)) = nth(n,l)"
"nth(n, Nil) = 0"

The second of these equations is subject to the conditionn ∈ nat . Note that
element zero is the head of the list. Another useful function isbool of o, which
converts a truth value to an integer:

"bool of o(P) == (if P then 1 else 0)"

This conversion is necessary because Isabelle/ZF is based on first-order logic. For-
mulae are not values, so we encode them using integers. We thus define a recursive
predicate as a recursive integer-valued function. We are now able to define the
functionsatisfies , which takes a set (the domain of discourse), a formula and
an interpretation (writtenenv for environment). It returns 1 or 0, depending upon
whether or not the formula evaluates to true or false:

"satisfies(A,Member(x,y)) =
( λenv ∈ list(A). bool of o (nth(x,env) ∈ nth(y,env)))"

"satisfies(A,Equal(x,y)) =
( λenv ∈ list(A). bool of o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
( λenv ∈ list(A). not ((satisfies(A,p)‘env) and

(satisfies(A,q)‘env)))"
"satisfies(A,Forall(p)) =

( λenv ∈ list(A). bool of o
( ∀ x∈A. satisfies(A,p)‘(Cons(x,env)) = 1))"

The abstraction and explicit function applications involving environments are
necessary because the environments can vary in the recursive calls. The last line
of satisfies deserves attention. The universal formulaForall(p) evaluates to
1 just if p evaluates to 1 in every environment obtainable fromenv by adding an
element ofA. Such environments have the formCons(x,env) for x∈A.

The satisfaction predicate,sats , is a macro that refers to the function
satisfies .

translations "sats(A,p,env)" == "satisfies(A,p)‘env = 1"
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The satisfaction predicate enjoys a number of properties that relate the inter-
nalized formulae to real formulae. All the equivalences are subject to the typing
conditionenv ∈ list(A) . For example, the membership and equality relations
behave as they should:

"sats(A, Member(x,y), env) ←→ nth(x,env) ∈ nth(y,env)"
"sats(A, Equal(x,y), env) ←→ nth(x,env) = nth(y,env)"

The propositional connectives also work:

"sats(A, Neg(p), env) ←→ ˜ sats(A,p,env)"
"(sats(A, And(p,q), env)) ←→ sats(A,p,env) & sats(A,q,env)"
"(sats(A, Or(p,q), env)) ←→ sats(A,p,env) | sats(A,q,env)"

Quantifiers work too. Notice how the environment is extended:

"sats(A, Exists(p), env) ←→ ( ∃ x∈A. sats(A, p, Cons(x,env)))"

6.3 The Arity of a Formula

The arity of a formula is, intuitively, its set of free variables. Insats(A,p,env) ,
if the arity of p does not exceed the length ofenv , then the environment supplies
values to all ofp’s free variables.

Take each de Bruijn reference, adjusted for the depth of quantifier nesting at
that point; the arity is the maximum of the resulting values. The recursive definition
of functionarity is simpler than this description.

"arity(Member(x,y)) = succ(x) ∪ succ(y)"
"arity(Equal(x,y)) = succ(x) ∪ succ(y)"
"arity(Nand(p,q)) = arity(p) ∪ arity(q)"
"arity(Forall(p)) = Arith.pred(arity(p))"

Note thatm ∪ n = max{m,n} in set theory and thatArith.pred denotes the
predecessor function. Trivial corollaries of this definition tell us how to compute
the arities of other connectives:

"arity(Neg(p)) = arity(p)"
"arity(And(p,q)) = arity(p) ∪ arity(q)"

The following result is more interesting. Extra items in the environment (ex-
ceeding the arity) are ignored. Here@is the list “append” operator, soenv @

extra is env with additional items added.

" [[arity(p) ≤ length(env); p ∈ formula;
env ∈ list(A); extra ∈ list(A) ]]
H⇒ sats(A, p, env@extra) ←→ sats(A, p, env)"
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6.4 Renaming (Renumbering) Free Variables

If A is a set, then the subset

{x ∈ A | φ(x,a1, . . . ,am)}

is determined by the choice ofφ and of the parametersa1, . . . , am, which are
elements ofA. These are the definable subsets ofA.

Now, consider the problem of showing that the definable sets are closed under
intersection. Suppose another subset ofA is defined by a formulaψ and parameters
am+1, . . . ,am+n:

{x ∈ A | ψ(x,am+1, . . . ,am+n)}

Then, their intersection can presumably be defined by

{x ∈ A | φ(x,a1, . . . ,am) ∧ ψ(x,am+1, . . . ,am+n)}

Our aim is to regard the conjunctionφ ∧ ψ as having the free variablesx, a1, . . . ,
an. The occurrences ofx in both formulae must be identified, while the parameter
lists of the two formulae must be kept disjoint. To achieve our aim may require
renaming one of the formula’s free variables.

The de Bruijn representation refers to variables by number rather than by name.
The variables shown asx above always have the de Bruijn index zero, so they will
be identified automatically. We keep the parameter lists disjoint by renumbering
the free variables in one of the formulae. Sincex must be left alone, we only
renumber the variables having an index greater than zero.

Renumbering functions are often necessary with the de Bruijn approach,
though normally they rename variables during substitution. When efficiency mat-
ters, the renumbering functions take an argument specifying what number should
be added to the variables. Here, the definitions are for reasoning about rather than
for execution, so renaming for us means adding one; repeating this allows renam-
ing by larger integers. In the following definitions,nq refers to the number of
quantifiers enclosing the current point. Any de Bruijn index smaller thannq must
not be renamed.

6.4.1 The Renaming Function

First, we need a one-line function that renames a de Bruijn variable:

"incr var(x,nq) == if x<nq then x else succ(x)"

Now we can define the main renaming function. As withsatisfies above, ab-
straction and explicit function applications are necessary: the argumentnq (“nest-
ing of quantifiers”) varies in the recursive calls. In theMember andEqual case, the
variables are simply renamed. TheNand case recursively renames the subformulae
using the same nesting depth, while theForall case renames its subformula using
an increased nesting depth.
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"incr bv(Member(x,y)) =
( λnq ∈ nat. Member (incr var(x,nq), incr var(y,nq)))"

"incr bv(Equal(x,y)) =
( λnq ∈ nat. Equal (incr var(x,nq), incr var(y,nq)))"

"incr bv(Nand(p,q)) =
( λnq ∈ nat. Nand (incr bv(p)‘nq, incr bv(q)‘nq))"

"incr bv(Forall(p)) =
( λnq ∈ nat. Forall (incr bv(p) ‘ succ(nq)))"

Recall the example at the start of this section, concerning a set defined by the
conjunctionφ ∧ ψ . If we are to conjoin the formulaeφ andψ and combine their
sets of parameters, then we need to ensure that some of the parameters are only
visible toφ and the rest are only visible toψ . The following lemma makes this
possible:

" [[p ∈ formula; bvs ∈ list(A); env ∈ list(A); x ∈ A]]
H⇒ sats(A, incr bv(p) ‘ length(bvs), bvs @ Cons(x,env)) ←→

sats(A, p, bvs@env)"

For the intuition, suppose thatbvs is the list [x0, . . . , xm−1] (and therefore has
lengthm). Then the conclusion essentially says

sats(A, incr bv(p) ‘ m, [x0, . . . , xm−1, x, xm, . . . , xn]) ←→
sats(A, p, [x0, . . . , xm−1, xm, . . . , xn])"

and thus the renaming allows an additional value to be put into the environment at
positionm. The renamed formula will ignore the new value. By repeated renaming,
we can construct a formula that will ignore a section of the parameter list that is
intended for another formula.

The next result describes the obvious relationship betweenarity and renam-
ing. Renaming increases a formula’s arity by one, unless the variable being re-
named does not exist, when renaming has no effect.

" [[p ∈ formula; n ∈ nat ]]
H⇒ arity (incr bv(p) ‘ n) =

(if n < arity(p) then succ(arity(p)) else arity(p))"

Considering how trivial the notion of arity is, many proofs about it (including this
one) are complicated by innumerable case splits. Getting the simplifier to prove
most of them automatically requires some ingenuity. Many other tiresome proofs
about arities are omitted.

6.4.2 Renaming all but the first bound variable

One more thing is needed before we can define sets using conjunctions. As dis-
cussed at the beginning of Sect.6.4, when a formulaφ defines a set, the variable
with de Bruijn index zero gives the extension of that set, while the remaining free
variables serve as parameters. Therefore, our basic renaming operator must only
rename variables having a de Bruijn index of one or more:



30 6 DEFINING FIRST-ORDER FORMULAE AND THE CLASS L

"incr bv1(p) == incr bv(p)‘1"

Finally we reach a lemma justifying our intended use of renaming.

" [[p ∈ formula; bvs ∈ list(A); x ∈ A; env ∈ list(A);
length(bvs) = n ]]
H⇒ sats(A, iterates(incr bv1, n, p), Cons(x, bvs@env)) ←→

sats(A, p, Cons(x,env))"

If the environment has an initial segmentbvs of length n and if we apply the
incr bv1 n times, then the modified formula ignores thebvs part. But the re-
named and original formulae agree on the first element of the environment, shown
above asx .

6.5 The Definable Powerset Operation

The definable powerset operator is calledDPow:

"DPow(A) == {X ∈ Pow(A).
∃env ∈ list(A). ∃p ∈ formula.

arity(p) ≤ succ(length(env)) &
X = {x ∈A. sats(A, p, Cons(x,env))}}"

A set X belongs toDPow(A) provided there is an environmentenv (a list
of values drawn fromA) and a formulap. The constraintarity(p) ≤

succ(length(env)) indicates that the environment should interpret all but one
of p’s free variables. The variable whose de Bruijn index is zero determines the
extension ofX via the satisfaction relation:sats(A, p, Cons(x,env)) . You
may want to compare this with the informal discussion in the previous section, or
with Definition VI 1.1 of Kunen [6, p. 165].

Some consequences of this definition are easy to prove. The empty set is de-
fined by the predicateλx.x 6= x, and singleton sets byλx. x = a.

"0 ∈ DPow(A)"
"a ∈ A H⇒ {a} ∈ DPow(A)"

The complement of a setX is defined by negating the formula used to defineX.
Intersection is done by conjoining the defining formulae, using the renaming tech-
niques developed in the previous section. Union is then trivial by de Morgan’s
laws.

"X ∈ DPow(A) H⇒ (A-X) ∈ DPow(A)"
" [[X ∈ DPow(A); Y ∈ DPow(A) ]] H⇒ X Int Y ∈ DPow(A)"
" [[X ∈ DPow(A); Y ∈ DPow(A) ]] H⇒ X Un Y ∈ DPow(A)"

And thusDPowcoincides withPow (the real powerset operator) for finite sets:

"Finite(A) H⇒ DPow(A) = Pow(A)"
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6.6 Proving that the Ordinals are Definable

In order to show thatDPow is closed under other operations, we must be able to
code their defining formulae as elements of the setformula . The treatment of the
subset relation is typical. We begin by encoding the formula∀z. z ∈ x → z ∈ y.
Below, x and y are de Bruijn indices, which are incremented tosucc(x) and
succ(x) because the quantifier introduces a new variable binding.

"subset fm(x,y) ==
Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"

The arguments are just de Bruijn indices because internalized formulae have no
terms other than variables. It is trivial to prove thatsubset fm maps a pair of de
Bruijn indices to a formula:

" [[x ∈ nat; y ∈ nat ]] H⇒ subset fm(x,y) ∈ formula"

The arity of the formula is the maximum of those of its operands:

" [[x ∈ nat; y ∈ nat ]] H⇒ arity(subset fm(x,y)) = succ(x) ∪ succ(y)"

The following equivalence involves absoluteness, since it relatessubset fm

to the real subset relation,⊆. To reach this conclusion requires the additional
assumptionTransset(A) , saying thatA is a transitive set. The premisex <

length(env) puts a bound onx (which is a de Bruijn index), ensuring that
nth(x,env) belongs toA.

" [[x < length(env); y ∈ nat; env ∈ list(A); Transset(A) ]]
H⇒ sats(A, subset fm(x,y), env) ←→ nth(x,env) ⊆ nth(y,env)"

We must repeat this exercise (details omitted) for the concepts of transitive
set and ordinal. This lets us prove that ordinals are definable, leading to a result
involving ordinals andDPow.

"Transset(A) H⇒ {x ∈ A. Ord(x)} ∈ DPow(A)"

This lemma ultimately leads to a proof thatL contains all the ordinals.

6.7 Defining L, The Constructible Universe

The constantLset formalizes the family of sets{Lα}α∈ON. Its definition in
Isabelle/ZF uses a standard operator for transfinite recursion. We also define
L =

⋃
α∈ON Lα:

"Lset(i) == transrec(i, %x f.
⋃

y∈x. DPow(f‘y))"
"L(x) == ∃ i. Ord(i) & x ∈ Lset(i)"

Some effort is required before we can transform the cryptic definition ofLset into
the usual recursion equations. First, we prove Kunen’s [6, p. 167] lemma VI 1.6,
which states the transitivity and monotonicity of theLα:
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"Transset(A) H⇒ Transset(DPow(A))"
"Transset(Lset(i))"
"i ≤j −→ Lset(i) ⊆ Lset(j)"

Then we reach the 0, successor and limit equations for theLα:

"Lset(0) = 0"
"Lset(succ(i)) = DPow(Lset(i))"
"Limit(i) H⇒ Lset(i) = (

⋃
y∈i. Lset(y))"

The basic properties ofL , as presented in Kunen’s IV §1, are not hard to prove.
For example,L contains the ordinals:

"Ord(i) H⇒ i ∈ Lset(succ(i))"
"Ord(i) H⇒ L(i)"

6.8 Eliminating the Arity Function

The functionarity can be surprisingly hard to reason about, particularly when we
try to encode higher-order operators. Once we have established the basic properties
of L , we can prove its equivalence to a new definition that does not involve arities.
Here is another form of definable powerset:

"DPow’(A) == {X ∈ Pow(A).
∃env ∈ list(A). ∃p ∈ formula.

X = {x ∈A. sats(A, p, Cons(x,env))}}"

This version omits the constraintarity(p) ≤ succ(length(env)) but is oth-
erwise identical toDPow. The point is that if the environment is too short, attempted
variable lookups will yield zero; recall the properties ofnth from Sect.6.2. If the
setA is transitive, then it contains zero as an element. So the too-short environment
can be padded to the right with zeroes.

"Transset(A) H⇒ DPow(A) = DPow’(A)"

EachLset(i) is a transitive set, so they can be expressed usingDPow’ rather than
DPow:

"Lset(i) = transrec(i, %x f.
⋃

y∈x. DPow’ (f ‘ y))"

The equation above, proved by transfinite induction, lets us relativizeLset without
having to formalize the functionsarity and length . That eliminates a lot of
work.

The following lemma is helpful for proving instances of separation. The first,
quantified, premise asks for an equivalence between the real formulaP and the
internalized formulap. Often we can derivep from P automatically by supplying
a set of suitable inference rules.

" [[∀ x∈Lset(i). P(x) ←→ sats(Lset(i), p, Cons(x,env));
env ∈ list(Lset(i)); p ∈ formula ]]
H⇒ {x ∈Lset(i). P(x)} ∈ DPow(Lset(i))"

Also, the lemma makes no reference toarity , thanks to the equivalence between
DPow’ andDPow.
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6.9 The Zermelo-Fraenkel Axioms Hold in L

Following Kunen VI §2, it is possible to prove thatL satisfies the Zermelo-Fraenkel
axioms. Separation is the most difficult case and is considered later.

6.9.1 Basic Properties of L

We begin with simple closure properties. Many of them involve exhibiting an
element offormula describing the required set. We typically begin by starting in
Lset(i) and proving that the required set belongs toLset(succ(i)) .

L is closed under unions:

"X ∈ Lset(i) H⇒ Union(X) ∈ Lset(succ(i))"
"L(X) H⇒ L(Union(X))"

L is closed under unordered pairs. More work is necessary because the setsa

andb may be introduced at different ordinals:

"a ∈ Lset(i) H⇒ {a} ∈ Lset(succ(i))"
" [[a ∈ Lset(i); b ∈ Lset(i) ]] H⇒ {a,b} ∈ Lset(succ(i))"
" [[a ∈ Lset(i); b ∈ Lset(i); Limit(i) ]] H⇒ {a,b} ∈ Lset(i)"
" [[L(a); L(b) ]] H⇒ L({a, b})"

Also, Lα is closed under ordered pairs providedα is a limit ordinal. This result
is needed in order to apply the reflection theorem toL . Specifically, it is needed
because my version of the reflection theorem [15] uses ordered pairs to cope with
the possibility of a formula having any number of free variables.

" [[a ∈ Lset(i); b ∈ Lset(i); Ord(i) ]]
H⇒ 〈a,b 〉 ∈ Lset(succ(succ(i)))"

" [[a ∈ Lset(i); b ∈ Lset(i); Limit(i) ]] H⇒ 〈a,b 〉 ∈ Lset(i)"

6.9.2 A Rank Function for L

Some proofs require theL -rank operator. Kunen (VI 1.7) definesρ(x) to denote
the leastα such thatx ∈ Lα+1:

"lrank(x) == µi. x ∈ Lset(succ(i))"

Here is one consequence of this definition:

"Ord(i) H⇒ x ∈ Lset(i) ←→ L(x) & lrank(x) 〈 i"

A more important result, whose proof involveslrank , states that every set of
constructible sets is included in someLset :

"( ∀ x∈A. L(x)) H⇒ ∃ i. Ord(i) & A ⊆ Lset(i)"

This theorem is useful in proving thatL satisfies the separation axiom. However,
note thatA ⊆ L does not implyA ∈ L , not even ifA is a set of natural numbers.

The lrank operator is useful for proving thatL satisfies the powerset axiom:
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"L(X) H⇒ L({y ∈ Pow(X). L(y)})"

Note that the powerset ofX in L comprises all subsets ofX that belong toL. It is
potentially a superset ofDPow(X) .

The lrank operator also assists in the proof thatL satisfies the replacement
axiom. The idea is to use replacement on the ranks of the members ofL:

" [[L(X); univalent(L,X,Q) ]]
H⇒ ∃Y. L(Y) & Replace(X, %x y. Q(x,y) & L(y)) ⊆ Y"

The proof of replacement is schematic, and therefore independent of the formulaQ.
But it is the weak form of replacement. It concludes that the range ofQ (viewed
as a class function) is included in some constructible setY. Strong replacement,
which is the version we really want, asserts that the range itself is constructible.
Each instance of strong replacement requires proving an instance of the axiom of
separation.

6.9.3 Instantiating the LocaleMtrivial

Now we are ready to show thatL satisfies all the properties we assumed of the
classM, which we used to develop the general theory of absoluteness. The classL

is transitive:

" [[y∈x; L(x) ]] H⇒ L(y)"

The facts aboutL proved above can be summarized using the relativized forms of
the ZF axioms:

"Union ax(L)"
"upair ax(L)"
"power ax(L)"
"replacement(L,P)"

We do not needL to satisfy the foundation axiom. However, this fact is a trivial
consequence of the foundation axiom:

"foundation ax(L)"

The theorems above are all we need to prove"PROP Mtrivial(L)" . This the-
orem makes all the results proved in locale"M trivial" available as theorems
aboutL. In particular, the absoluteness and closure results listed in Sect.4.5above
apply toL.

7 Comprehension in L

It remains to show thatL satisfies the axiom of separation. The proof requires the
reflection theorem. As described elsewhere [15], my formalization of that theorem
applies to any classM =

⋃
α∈ON Mα, where the family{Mα}α∈ON is increasing

and continuous. An additional condition is that ifα is a limit ordinal thenMα
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must be closed under ordered pairing. Isabelle’s locale mechanism captures these
requirements, and we can now instantiate the locale with the classL =

⋃
α∈ON Lα.

However, making it ready for practical use requires additional work.

7.1 The Reflection Relation

The reflection theorem states that ifφ(x1, . . . , xn) is a formula inn variables then
there exists a closed and unbounded classC such that for allα ∈ C andx1,. . . ,
xn ∈ Mα we have

φM (x1, . . . , xn) ⇐⇒ φMα (x1, . . . , xn).

In fact, we only need the weaker conclusion thatC is unbounded, which enables
us to find a suitableα > β given any ordinalβ.

Applying the reflection theorem yields an Isabelle formula describing the
classC. These formulae may be interesting in the case of small examples [15],
but in typical applications they are huge. The trivial proofs, which merely refer
to other instances of reflection, take minutes of computer time; the resulting the-
orems amount to pages of text. The obvious solution is to express the reflection
theorem using an existential quantifier, but classes cannot be quantified over: they
are formulae.

Fortunately, Isabelle makes a distinction between the object-logic (here first-
order logic) and the metalogic (a fragment of higher-order logic) [9]. I was able
to formalize a metaexistential quantifier. It lies outside of first-order logic — in
particular, Isabelle will reject any attempt to use it in comprehensions. However,
it can be used in top-level assertions, which is all we need. We can now define the
reflection relation between two formulaeP andQ:

"REFLECTS[P,Q] ==
(??C. Closed Unbounded(C) &

( ∀a. C(a) −→ ( ∀ x ∈ Lset(a). P(x) ←→ Q(a,x))))"

It relates the formulae just if there exists a classC satisfying the conclusion of the
reflection theorem [15]. That is,C is a closed, unbounded class of ordinalsα such
that P andQ agree onLα. The existential quantifier,??C, hides the prohibitively
large formula describing this class. The following lemma illustrates the use of the
reflection relation. Note that the quantification over classes has disappeared.

" [[REFLECTS[P,Q]; Ord(i) ]]
H⇒ ∃ j. i<j & ( ∀ x ∈ Lset(j). P(x) ←→ Q(j,x))"

If REFLECTS[P,Q] and i is an ordinal then there exists a larger ordinalj for
which P andQagree. Our choice ofi can makej arbitrarily large.

The general form of the reflection theorem uses the relativization operator,
which cannot be expressed in Isabelle/ZF. However, given a specific formulaφ,
we can generate an instance of the reflection theorem relatingφL andφLα . Here is
the base case, where normallyP should have the formx ∈ y or x = y:
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"REFLECTS[P, λa x. P(x)]"

Reflection relationships can be formed over the propositional connectives, here
negation, conjunction and biconditionals:

"REFLECTS[P,Q] H⇒ REFLECTS[λx. ˜P(x), λa x. ˜Q(a,x)]"

" [[REFLECTS[P,Q]; REFLECTS[P’,Q’] ]]
H⇒ REFLECTS[λx. P(x) ∧ P’(x), λa x. Q(a,x) ∧ Q’(a,x)]"

" [[REFLECTS[P,Q]; REFLECTS[P’,Q’] ]]
H⇒ REFLECTS[λx. P(x) ←→ P’(x), λa x. Q(a,x) ←→ Q’(a,x)]"

Reflection relationships can be formed over the quantifiers:

"REFLECTS[ λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
H⇒ REFLECTS[λx. ∃ z[L]. P(x,z), λa x. ∃ z∈Lset(a). Q(a,x,z)]"

In the conclusion, a quantification overL is related to one overLα, as suggested
by the general form of the reflection theorem. The premise uses the projection
operators for ordered pairs to introduce the new variable,z ; syntactically,λx.

P(fst(x),snd(x)) is a unary formula.

7.2 Internalized Formulae for Some Set-Theoretic Concepts

Every operator or concept that is used in an instance of the axiom of separation
must be internalized. If the defining formula is complicated, then writing the cor-
responding element offormula requires a manual (and error-prone) translation
into de Bruijn notation. The Isabelle/ZF development of constructibility theory
contains about 100 such encodings. A typical example resembles that shown in
Sect.6.6 above forsubset fm. First to be internalized are elementary concepts
such as the empty set, unordered and ordered pairs, unions, intersections, domain
and range.

The union predicate was defined in Sect.4.1as

∀z . z ∈ Y↔ z ∈ A∨ z ∈ B.

In the corresponding formula, the variablesx , y andz range over de Bruijn indices.

"union fm(x,y,z) ==
Forall(Iff(Member(0,succ(z)),

Or(Member(0,succ(x)), Member(0,succ(y)))))"

As for subset fm above, we can prove thatunion fm yields an element of
the setformula . The theorem about satisfaction now takes the following form:

" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A) ]]
H⇒ sats(A, union fm(x,y,z), env) ←→

union(**A, nth(x,env), nth(y,env), nth(z,env))"
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Here, **A is Isabelle syntax for the class given by the setA, that is, {x | x ∈
A}. The theorem above simply expresses the equivalence between the relational
formula union and union fm, which is its translation into an element of set
formula . Such equivalences are usually trivial: they simply relate two syntaxes
for formulae. They do not express the equivalence betweenunion fm and∪,
which would be an instance of absoluteness.

After internalizing a predicate such asunion , it makes sense to prove its in-
stance of the reflection theorem too, since both results will be needed when proving
instances of separation.

"REFLECTS[λx. union(L,f(x),g(x),h(x)),
λi x. union(**Lset(i),f(x),g(x),h(x))]"

Most reflection proofs are trivial two-line scripts:

1. Unfold the concept’s definition (hereunion ).

2. Repeatedly apply existing reflection theorems.

Each predicate is internalized similarly. Parts of the declarations and proofs can
be copied from those of another predicate. However, getting the definition right
requires careful attention to the original first-order definition.

7.3 Higher-Order Syntax

Higher-order syntax is ubiquitous in naive set theory.In the union
⋃

x∈A B(x), the
higher-order variableB represents an indexed family of sets. In the function ab-
stractionλx∈A b(x), the higher-order variableb represents the function’s body. Isa-
belle/ZF additionally uses higher-order syntax to express many forms of recursion,
and so forth. Although this syntax is indispensable, it is also illegitimate: formal
set theory has no non-trivial terms, let alone higher-order ones. We must formalize
the conventions governing higher-order syntax into the language of set theory.

Converting a higher-order operator such asλx∈A. b(x) into relational form
yields a higher-order predicate. Among its arguments is a predicateis b that ex-
presses the function body,b, in relational form. Ifis b is purely relational, then
so is the definiens ofis lambda .

"is lambda(M, A, is b, z) ==
∀p[M]. p ∈ z ←→

( ∃u[M]. ∃ v[M]. u ∈A & pair(M,u,v,p) & is b(u,v))"

This definition states thatz is a λ-abstraction provided its elements are ordered
pairs that satisfyis b and whose first component belongs toA.

The following predicate expresses thatis f represents the relational version
of f for arguments ranging overA:

"Relation1(M,A,is f,f) ==
∀ x[M]. ∀ y[M]. x ∈A −→ is f(x,y) ←→ y = f(x)"
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This abbreviation, and similarlyRelation2 , etc., are useful for expressing abso-
luteness results. Ifis b is the relational equivalent ofb, and if the classMcontains
eachb(m) for m∈A, then is lambda(M,A,is b,z) is the relational version of
λx∈A. b(x) . And thusλ-abstraction is absolute:

" [[Relation1(M,A,is b,b); M(A); ∀m[M]. m ∈A −→ M(b(m)); M(z) ]]
H⇒ is lambda(M,A,is b,z) ←→ (z = λx∈A. b(x))"

Showing thatM is closed underλ-abstraction requires a separate instance of strong
replacement for eachb.

" [[strong replacement(M, λx y. x ∈A & y = 〈x, b(x) 〉);
M(A); ∀m[M]. m ∈A −→ M(b(m)) ]]
H⇒ M(λx∈A. b(x))"

Internalizingis lambda is not completely straightforward. The predicate ar-
gument,is b, becomes a variable ranging over the setformula .

"lambda fm(p,A,z) ==
Forall(Iff(Member(0,succ(z)),

Exists(Exists(And(Member(1,A#+3),
And(pair fm(1,0,2), p))))))"

Given a formula and two de Bruijn indices,lambda fm yields another formula:

" [[p ∈ formula; x ∈ nat; y ∈ nat ]] H⇒ lambda fm(p,x,y) ∈ formula"

But there is no binding mechanism for expressing predicates that take arguments
or refer to local variables. The formulap must refer to its first argument using the
de Bruijn index 1 and to its second using the index 0 (both to be increased in the
usual way ifp contains quantifiers). If we are lucky, then we can arrange matters
such that the actual arguments have the right indices, and otherwise we can force
the indices to agree by introducing quantifiers and equalities: in the internalization
of ∀x.∀y. x = a ∧ y = b → p, the variable with de Bruijn index 1 will refer
to a and similarly the index 0 will refer tob. If p contains free references to other
variables, their de Bruijn indices must be increased by 3 becausep is inserted into
a context enclosed by three quantifiers.

The satisfaction theorem foris lambda formalizes the remarks above:

lemma sats lambda fm:
assumes is b iff sats ∈

"!!a0 a1 a2.
[[a0∈A; a1 ∈A; a2 ∈A]]
H⇒ is b(a1,a0) ←→ sats(A, p, Cons(a0,Cons(a1,Cons(a2,env))))"

shows
" [[x ∈ nat; y ∈ nat; env ∈ list(A) ]]
H⇒ sats(A, lambda fm(p,x,y), env) ←→

is lambda(**A, nth(x,env), is b, nth(y,env))"

The assumes-showssyntax eases the use of the complicated assumption, which
states thatis b agrees withp for the fixed environmentenv extended with three
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additional elements ofA. I have not been able to simplify the form of this theorem
while retaining its generality.

It gets more complicated when one higher-order operator refers to another.
One such operator has a quantifier nesting depth of 12. When an operator uses its
higher-order argument more than once, we must ensure that the two contexts are
similar, adding quantifiers if necessary to make the nesting depths agree.

Instances of the reflection theorem for higher-order operators must take into
account the possibility of the higher-order argument’s referring to local variables.
Althoughis lambda expectsis b to have only two arguments, below we formal-
ize it with three arguments (plus its class argument). The extra argument is bound
by theREFLECTSoperator, allowing direct reference to elements ofL or Lset(i) .

theorem is lambda reflection:
assumes is b reflection:

"!!f g h. REFLECTS[ λx. is b(L, f(x), g(x), h(x)),
λi x. is b(**Lset(i), f(x), g(x), h(x))]"

shows "REFLECTS[λx. is lambda(L, A(x), is b(L,x), f(x)),
λi x. is lambda(**Lset(i), A(x), is b(**Lset(i),x), f(x))]"

The arity of a higher-order function naturally depends upon that its function
argument. I found the properties so unintuitive and their proofs so vexing that I
undertook the work described in Sect. sec:no-arity, which eliminates the need for
theorems concerning arities.

7.4 Proving Instances of Separation

The set comprehension{x ∈ A | φ(x)} comes from the separation axiom scheme
instantiated to the formulaφ. The axiom of replacement yields a set that may be
bigger than we want, again requiring an appeal to separation. Because I have not
formalized the metatheory, the Isabelle/ZF development cannot express the proof
that the separation scheme holds forL . Each instance has to be proved individually.
Fortunately, the proof scripts are nearly identical. Givenφ, the first step is to prove
instance of the reflection theorem for that formula. The next step is to run a proof
script corresponding to the sketch in Kunen [6, p. 169]. The formulaφ will of
course be expressed using the relational language, using predicates such asunion .
Executing the proof script will automatically generate an internalized formula, with
union fm in the corresponding place.

The lemmas outlined on the preceding pages suffice to prove many instances
of separation. Consider the instance that justifies the existence of the intersection
Inter(A) . We must first prove the corresponding instance of the reflection theo-
rem:

"REFLECTS[λx. ∀ y[L]. y ∈A −→ x ∈ y,
λi x. ∀ y∈Lset(i). y ∈A −→ x ∈ y]"

Such instances are written manually. A text editor can replace quantification overL
by quantification overLα in the second formula. The proof, almost always, is a
one-line appeal to previous reflection theorems.
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The statement of each instance of separation comes from the corresponding
locale assumption. The locale refers to an arbitrary classM , so we must replaceM
by L . The proof scripts are typically three lines long and follow a regular pattern.
Note that any parameters used in the separation formula (hereA) must be elements
of L .

"L(A) H⇒ separation(L, λx. ∀ y[L]. y ∈A −→ x∈y)"

The following instance of separation justifies relational composition. I leave
the corresponding instance of reflection to your imagination.

" [[L(r); L(s) ]]
H⇒ separation(L, λxz. ∃ x[L]. ∃ y[L]. ∃ z[L]. ∃ xy[L]. ∃ yz[L].

pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
xy ∈s & yz ∈r)"

After proving ten or so instances of separation, we arrive at a cryptic theorem:

"PROP Mbasic(L)"

This asserts thatL satisfies the conditions of the localeMbasic , namely all the
instances of separation needed to derive well-founded recursion. The absoluteness
and closure results proved in that locale (described in Sect.4.6) — now become
applicable toL.

7.5 Automatic Internalization of Formulae

Isabelle’s ability to translate formulae written in the relational language into mem-
bers offormula simplifies the proofs of separation. Here is an example, from the
proof of the instance shown above (about relational composition).

The first proof step applies a lemma for proving instances of separations.
It yields a subgoal that has the assumptionsr ∈ Lset(j) ands ∈ Lset(j) ,
wherej is arbitrary. We have to prove that the comprehension belongs to the next
level of the constructible hierarchy, namelyDPow(Lset(j)) :

{xz ∈ Lset(j) . ∃ x∈Lset(j). ∃ y∈Lset(j). ...} ∈DPow(Lset(j))

The second proof step applies a lemma for proving membership in
DPow(Lset(j)) . It yields three subgoals (Fig.2). The first is to show the equiva-
lence between the real formula

( ∃ xa∈Lset(j). ∃ y∈Lset(j). ...)

andsats(Lset(j), ?p3(j), [x,r,s]) . This is the satisfaction relation ap-
plied to?p3(j) , a “logical variable” that can be replaced by any expression, pos-
sibly involving the bound variablej . The third subgoal in Fig.2, namely?p3(j)

∈ formula , checks that the chosen expression is an internalized formula. The
second subgoal verifies that the environment,[r,s] , is well-typed — namely, that
it belongs tolist(Lset(j)) .

The third proof step is this:
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1.
∧

j x. [[L(r); L(s); r ∈ Lset(j); s ∈ Lset(j); x ∈ Lset(j) ]]
H⇒ ( ∃ xa∈Lset(j).

∃ y∈Lset(j).
∃ z∈Lset(j).

pair(**Lset(j), xa, z, x) ∧

( ∃ xy ∈Lset(j).
pair(**Lset(j), xa, y, xy) ∧

( ∃ yz ∈Lset(j).
pair(**Lset(j), y, z, yz) ∧

xy ∈ s ∧ yz ∈ r))) ←→

sats(Lset(j), ?p3(j), [x, r, s])
2.

∧
j. [[L(r); L(s); r ∈ Lset(j); s ∈ Lset(j) ]]
H⇒ [r, s] ∈ list(Lset(j))

3.
∧

j. [[L(r); L(s); r ∈ Lset(j); s ∈ Lset(j) ]]
H⇒ ?p3(j) ∈ formula

Figure 2: Subgoals ready for automatic synthesis of a formula

apply (rule sep rules | simp)+

It applies some theorem ofsep rules , then simplifies, then repeats if possible.
This finishes the proof. All separation proofs have this form, save only that some-
timessep rules needs to be augmented with additional theorems.

Formula synthesis works in a way familiar to all Prolog programmers. Es-
sentially, the theorems insep rules comprise a Prolog program for generating
internalized formulae. Most of the “program clauses” relate real formulae to inter-
nal ones and are derived from the basic properties of the satisfaction relation. For
example, this one relates the real conjunctionP&Qwith the termAnd(p,q) . The
first two subgoals concern the synthesis ofp andq. The third subgoal expresses a
type constraint onenv .

" [[P ←→ sats(A,p,env); Q ←→ sats(A,q,env); env ∈ list(A) ]]
H⇒ (P & Q) ←→ sats(A, And(p,q), env)"

This “program clause” relates the real quantification∀ x∈A. P(x) with the term
Forall(p) . The first subgoal concerns the synthesis ofp in an environment aug-
mented with an arbitraryx∈A:

" [[ !!x. x ∈A H⇒ P(x) ←→ sats(A, p, Cons(x, env)); env ∈ list(A) ]]
H⇒ ( ∀ x∈A. P(x)) ←→ sats(A, Forall(p), env)"

The environment, which initially contains the parameters of the separation formula,
gets longer with each nested quantifier. Each higher-order operator can add several
elements to the environment; as mentioned above in Sect.7.3.

A base case of synthesis relates the formulax∈y with the termMember(i,j) .
The first two subgoals concern the synthesis of the de Bruijn indicesi andj :

" [[nth(i,env) = x; nth(j,env) = y; env ∈ list(A) ]]
H⇒ (x ∈y) ←→ sats(A, Member(i,j), env)"
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Other base cases concern predicates of the relational language. This theorem,
which relates the formulaunion(**A,x,y,z) with the termunion fm(i,j,k) ,
is just a reworking of a theorem shown in Sect.7.2above.

" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A) ]]
H⇒ union(**A, x, y, z) ←→ sats(A, union fm(i,j,k), env)"

Given the subgoalnth(?i,env) = x , Isabelle can synthesize?i . This de Bruijn
index is determined byx , which comes from the original formula, andenv , which
is given in advance. Ifx matches the head of the environment, then?i should be
zero:

"nth(0, Cons(a, l)) = a"

And if it does not match, then we should discard the head and attempt to synthesize
a de Bruijn index using the tail:

" [[nth(n,l) = x; n ∈ nat ]] H⇒ nth(succ(n), Cons(a,l)) = x"

The automatic synthesis of internalized formulae saves much work in proofs of
separation. In principle, we could rewrite every relational formula into its primitive
constituents of membership and equality, removing the need forunion fm and 100
similar constants. But if too few internalized primitives have been defined, formula
synthesis takes many minutes.

8 Absoluteness of Recursive Datatypes

The Isabelle/ZF proofs discussed up to now include the construction of the classL
and the proof that it is a model of the Zermelo-Fraenkel axioms. The next step is to
show thatL satisfiesV = L . That fact follows by the absoluteness of constructibil-
ity, which follows by the absoluteness of satisfaction. Consulting the definition of
satisfies reveals that we must still prove the absoluteness of lists, formulae, the
functionnth , and several other notions.

Isabelle/ZF defines the setslist(A) and formula automatically from their
user-supplied descriptions [14]. These fixedpoint definitions have advantages, but
their use of the powerset operator is an obstacle to proving absoluteness. For a
start,Pow(D) must be eliminated from this definition:

"lfp(D,h) == Inter({X ∈ Pow(D). h(X) ⊆ X})"

We proceed by formalizing standard concepts from domain theory [1, pp. 51–
56]. A set isdirectedif it is non-empty and closed under least upper bounds. A
function iscontinuousif it preserves the unions of directed sets.

"directed(A) == A 6=0 & ( ∀ x∈A. ∀ y∈A. x ∪y ∈ A)"
"contin(h) == ( ∀A. directed(A) −→ h(

⋃
A) = (

⋃
X∈A. h(X)))"
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We can prove that the least fixedpoint of a monotonic, continuous functionh can
be expressed as the union of the finite iterations ofh.

" [[bnd mono(D,h); contin(h) ]] H⇒ lfp(D,h) = (
⋃

n∈nat. hˆn(0))"

This equation not only eliminatesPow(D) , but every occurrence ofD, which is the
“bounding set” [12, §2.2] and is itself typically defined using powersets.

In order to apply this equation, we must prove that standard datatype construc-
tions preserve continuity. The case bases are that the constant function and the
identity function are continuous:

"contin( λX. A)"
"contin( λX. X)"

Sums and products preserve continuity:

" [[contin(F); contin(G) ]] H⇒ contin( λX. F(X) + G(X))"
" [[contin(F); contin(G) ]] H⇒ contin( λX. F(X) × G(X))"

These four lemmas cover all finitely-branching datatypes, including lists and for-
mulae.

8.1 Absoluteness for Function Iteration

In the equation above for least fixed points, the termhˆn(0) abbreviates
iterates(h,n,0) . Isabelle/ZF definesiterates(F,n,x) by the obvious
primitive recursion onn∈nat . Absoluteness of datatype definitions will follow
from the absoluteness ofiterates .

Recall that a well-founded function definition consists of a relationr and func-
tion body H ; recall equation (1) of Sect.5.2. Relativizing such a function defi-
nition, requires relativizingH by an Isabelle/ZF relation, sayMH. So to relativize
iterates , we declareis iterates in terms of another predicateiterates MH,
representing the body of the recursion.

"iterates MH(M,isF,v,n,g,z) ==
is nat case(M, v,

λm u. ∃gm[M]. fun apply(M,g,m,gm) & isF(gm,u),
n, z)"

"is iterates(M,isF,v,n,Z) ==
∃ sn[M]. ∃msn[M]. successor(M,n,sn) & membership(M,sn,msn) &

is wfrec(M, iterates MH(M,isF,v), msn, n, Z)"

Incidentally,is nat case(M,a,isb,n,z) expresses case analysis on the natural
numbern. Note that we again work in the general setting of a classM satisfying
certain conditions. Later, we shall prove thatL meets those conditions.

The absoluteness theorem for well-founded recursion requires an instance of
strong replacement for each function being defined. Butiterates is a higher-
order function, so technicallyiterates(F,n,x) involves a separate instance of
well-founded recursion for eachF. The functioniterates replacement can
express each required instance of replacement; its argumentisF is the relational
form of F.
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"iterates replacement(M,isF,v) ==
∀n[M]. n ∈nat −→

wfrec replacement(M, iterates MH(M,isF,v), Memrel(succ(n)))"

Assuming such an instance of replacement, and given thatisF is the relational
version ofF, the absoluteness ofiterates is a corollary of the general theorem
about well-founded recursion.

" [[ iterates replacement(M,isF,v); relation1(M,isF,F);
n ∈ nat; M(v); M(z); ∀ x[M]. M(F(x)) ]]
H⇒ is iterates(M,isF,v,n,z) ←→ z = iterates(F,n,v)"

We similarly find thatM is closed under function iteration.

" [[ iterates replacement(M,isF,v); relation1(M,isF,F);
n ∈ nat; M(v); ∀ x[M]. M(F(x)) ]]
H⇒ M(iterates(F,n,v))"

8.2 Absoluteness for Lists and Formulae

The formal treatment of continuity anditerates enables us to prove that lists
and formulae are absolute.

The definition of lists generated by the Isabelle/ZF datatype [14] is too compli-
cated to relativize easily. Instead, we prove its equivalence to a more abstract (and
familiar) definition.

"list(A) = lfp(univ(A), λX. {0} + A*X)"

The function given tolfp continuous by construction, which lets us replace the
the least fixed point by iteration and eliminate the non-absolute setuniv(A) :

"contin( λX. {0} + A*X)"
"list(A) = (

⋃
n∈nat. ( λX. {0} + A*X)ˆn (0))"

Now the absoluteness oflist(A) is obvious. But each element of this equation
must be formalized in order to prove absoluteness. We begin by introducing an
abbreviation for finite iterations ofλX. {0} + A*X — that is, for finite stages of
the list construction.

"list N(A,n) == ( λX. {0} + A*X)ˆn (0)"

Next, we relativize the functionλX. {0} + A*X . The predicatenumber1 recog-
nizes the number 1, which equals the set{0}.

"is list functor(M,A,X,Z) ==
∃n1[M]. ∃AX[M].

number1(M,n1) & cartprod(M,A,X,AX) & is sum(M,n1,AX,Z)"

Next, we relativize the functionlist N, the finite iterations:

"is list N(M,A,n,Z) ==
∃ zero[M]. empty(M,zero) &

is iterates(M, is list functor(M,A), zero, n, Z)"
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We relativize membership inlist(A) as membership inlist N(A,n) for
somen. The predicatefinite ordinal recognizes the natural numbers.

"mem list(M,A,l) ==
∃n[M]. ∃ listn[M].

finite ordinal(M,n) & is list N(M,A,n,listn) & l ∈ listn"

Finally, we can relativize the set of lists itself:

"is list(M,A,Z) == ∀ l[M]. l ∈ Z ←→ memlist(M,A,l)"

After proving absoluteness oflist N(A,n) , we obtain the absoluteness of
list(A) and prove thatM is closed under list formation.

"M(A) H⇒ M(list(A))"
" [[M(A); M(Z) ]] H⇒ is list(M,A,Z) ←→ Z = list(A)"

Formulae are proved absolute in just the same way. We express the set
formula as an abstract least fixed point of a suitable function, prove that func-
tion to be continuous, and eliminate thelfp operator:

"formula = lfp(univ(0), λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
"contin( λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
"formula =

(
⋃

n∈nat. ( λX. ((nat*nat) + (nat*nat)) + (X*X + X)) ˆ n (0))"

Proceeding as for lists, we define the predicatesis formula functor ,
is formula N, memformula and finally is formula . We obtain the desired
theorems:

"M(formula)"
"M(Z) H⇒ is formula(M,Z) ←→ Z = formula"

8.3 Recursion over Lists and Formulae

We have already seen (Sect.5) that functions defined by well-founded recursion are
absolute. For mathematicians, that is enough to justify the absoluteness of func-
tions defined recursively on lists or formulae. Proof tool users, however, must work
through the details for each instance. Usually automation makes it easy to apply
general results to particular circumstances. However, the Isabelle/ZF translation of
recursive function definitions is rather complicated.2 There are good reasons for
this complexity, such as support for a form of polymorphism. However, it makes
the absoluteness proofs more difficult: the complications have to be taken apart
and relativized one by one.

At least there is no need to treat recursion over lists. Defining the classL
involves only one list function, namelynth . Given a natural numbern and a
list l , this function returns thenth element ofl , counting from 0. Obviously this

2See §§3.4 and 4.3.1 of Paulson [12].
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amounts to taking the tail of the listn times and returning the head of the result.
The recursion innth is an instance ofiterates .

Isabelle/ZF defines the head and tail functionshd and tl . The absoluteness
proofs use modified versions calledhd’ and tl’ , which extendhd and tl to
return 0 if their argument is ill-formed (the details are unimportant). Relativization
is simpler when a function’s behaviour is fully specified. Now we can prove an
equivalence fornth :

" [[xs ∈ list(A); n ∈ nat ]] H⇒ nth(n,xs) = hd’ (tl’ ˆ n (xs))"

Its relational equivalent,is nth , has an obvious definition in terms of the relational
equivalents ofiterates , tl andhd :

"is nth(M,n,l,Z) ==
∃X[M]. is iterates(M, is tl(M), l, n, X) & is hd(M,X,Z)"

Absoluteness is proved with no effort:

" [[M(A); n ∈ nat; l ∈ list(A); M(Z) ]]
H⇒ is nth(M,n,l,Z) ←→ Z = nth(n,l)"

Recursion over lists is absolute in general. Proving this claim would require
much work, and is unnecessary for proving thatV = L is absolute. The function
satisfies involves recursion over the datatype of formulae, and its absoluteness
proof consists of several stages. Isabelle/ZF expresses recursion on datatypes in
terms of∈-recursion, which is recursion on a set’s rank [12, §3.4]. Absoluteness
for ∈-recursion will follow from that of well-founded recursion once we have es-
tablished the absoluteness of∈-closure. Then we shall be in a position to consider
recursion over formulae.

Five instances of strong replacement are necessary for the proofs sketched
above. There are two each for the absoluteness oflist(A) and formula , and
one for the absoluteness ofnth(n,l) . The localeMdatatypes encapsulates
these additional constraints on the classM. It is one of several locales used to keep
track of instances of separation and replacement in this development.

8.4 Absoluteness for∈-Closure

If A is a set, then its∈-closure is the smallest transitive set that includesA. For-
mally, the∈-closure ofA is

⋃
n∈ω

⋃n
(A). Here

⋃n
(A) denotes then-fold union

of A, defined by
⋃0
(A) = A and

⋃m+1
(A) =

⋃
(
⋃m

(A)). This is just another
instance ofiterates , as we can prove:

"eclose(A) = (
⋃

n∈nat. Unionˆn (A))"

Relativization proceeds as it did for lists. The details are omitted, but they culmi-
nate in the definition of a relational version ofeclose(A) :

"is eclose(M,A,Z) == ∀u[M]. u ∈ Z ←→ memeclose(M,A,u)"

The standard membership and absoluteness results follow:

"M(A) H⇒ M(eclose(A))"
" [[M(A); M(Z) ]] H⇒ is eclose(M,A,Z) ←→ Z = eclose(A)"



8.5 Absoluteness for transrec 47

8.5 Absoluteness fortransrec

The Isabelle/ZF operatortransrec expresses∈-recursion, which includes trans-
finite recursion as a special case:

transrec (a, H) = H(a, λx∈a.transrec (x, H)).

Its definition is a straightforward combination of the operatorseclose , wfrec

(which expresses well-founded recursion), andMemrel (which encodes the
membership relation as a set). Thus the definition of the relational version,
is transrec , is also straightforward. Our previous results lead directly to a proof
of absoluteness:

" [[ transrec replacement(M,MH,i); relativize2(M,MH,H);
Ord(i); M(i); M(z);
∀ x[M]. ∀g[M]. function(g) −→ M(H(x,g)) ]]
H⇒ is transrec(M,MH,i,z) ←→ z = transrec(i,H)"

We similarly find thatM is closed under∈-recursion:

" [[ transrec replacement(M,MH,i); relativize2(M,MH,H);
Ord(i); M(i);
∀ x[M]. ∀g[M]. function(g) −→ M(H(x,g)) ]]
H⇒ M(transrec(i,H))"

In these theorems,transrec replacement abbreviates a specific use of
wfrec replacement , which justifies this particular recursive definition (recall
Sect.5.3).

8.6 Recursion over Formulae

The Isabelle/ZF treatment of recursive functions on datatypes involves non-
absolute concepts, namely the cumulative hierarchy{Vα}α∈ON and the rank func-
tion [12, §3.6]. For proving absoluteness, I proved an equation stating that recur-
sion over formulae could be expressed differently. The new formulation refers to
thedepthof a formula, defined by

"depth(Member(x,y)) = 0"
"depth(Equal(x,y)) = 0"
"depth(Nand(p,q)) = succ(depth(p) ∪ depth(q))"
"depth(Forall(p)) = succ(depth(p))"

Introducing depth seems to be a step backwards, since it requires relativiz-
ing another recursive function on formulae. But we can express the depth
of a formula in terms ofis formula N, which we need anyway (Sect.8.2);
is formula N(M,n,F) holds just ifF is the set of formulae generated byn un-
foldings of the datatype definition — which is all formulae of depth less thann.
A formula p has depthn if it satisfies is formula N(M,succ(n),F) and not
is formula N(M,n,F) :
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"is depth(M,p,n) ==
∃ sn[M]. ∃ formula n[M]. ∃ formula sn[M].

is formula N(M,n,formula n) & p /∈ formula n &
successor(M,n,sn) &
is formula N(M,sn,formula sn) & p ∈ formula sn"

Working from this definition, we find that the depth of a formula is absolute:

" [[p ∈ formula; n ∈ nat ]] H⇒ is depth(M,p,n) ←→ n = depth(p)"

For relativization, I modified the standard Isabelle/ZF treatment of recursion
over formulae, replacing the setVα by formula and the rank of a set by the depth
of a formula. Iff is a recursive function on formulae, then the evaluation off(p)

begins by determining the depth ofp, sayn. Then the recursion equation forf

is unfoldedn + 1 times, using transfinite recursion. The resulting nonrecursive
function is finally applied top. This approach unfortunately needs an explicitλ-
abstraction over formulae and another instance of the replacement axiom. With
the benefit of hindsight, I might have saved much work by seeking simpler ways
of expressing recursion over formulae, such as by well-founded recursion on the
subformula relation.

The recursive definition of a functionf is specified by four parametersa, b, c

andd, corresponding to the four desired recursion equations:

f(Member(x,y)) = a(x,y)
f(Equal(x,y)) = b(x,y)
f(Nand(p,q)) = c(p,f(p),q,f(q))
f(Forall(p)) = d(p,f(p))

Given the datatype definition offormula , Isabelle/ZF automatically defines
the operator formula rec for expressing recursive functions. The term
formula rec(a,b,c,d,p) denotes the value of the functionf above applied
to the argumentp. More concisely,formula rec(a,b,c,d) denotes the the
function f itself. The details of the definitions are illustrated elsewhere, using the
example of lists [12, §4.3].

In order to express the recursion theorem, it helps to have first defined an ab-
breviation for its case analysis on formulae.

"formula rec case(a,b,c,d,h) ==
formula case (a, b,

λu v. c(u, v, h ‘ succ(depth(u)) ‘ u,
h ‘ succ(depth(v)) ‘ v),

λu. d(u, h ‘ succ(depth(u)) ‘ u))"

Now we can express recursion on formulae in terms of absolute concepts:

"p ∈ formula H⇒

formula rec(a,b,c,d,p) =
transrec (succ(depth(p)),

λx h. Lambda(formula, formula rec case(a,b,c,d,h))) ‘ p"
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The proof is by structural induction onp. Note that the argumenth of
formula rec case is a partially unfolded recursive function taking two cur-
ried arguments. The second argument is some subformulau and the first is
succ(depth(u)) . The intuition behind this theorem may be obscure, but that
is no obstacle to proving absoluteness. Many routine details must be taken care
of, including relativization and absoluteness for the formula constructorsMember,
Equal , Nand andForall and for the operatorformula case .

Obviously formula rec is a higher-order function. Its absoluteness proof
depends upon absoluteness assumptions for the function argumentsa, b, c andd.
Its relational version needs those arguments to be expressed in relational form as
predicatesis a, is b, is c andis d. The absoluteness theorem depends upon 10
assumptions in all: two for each ofis a, is b, is c andis d and two instances
of replacement. After many intricate but uninteresting details, we arrive at two key
theorems. If the classM is closed under the parametersa, b, c andd then it is
closed under the corresponding recursion:

"p ∈ formula H⇒ M(formula rec(a,b,c,d,p))"

Recursion over formulae is absolute:

" [[p ∈ formula; M(z) ]]
H⇒ is formula rec(M,MH,p,z) ←→ z = formula rec(a,b,c,d,p)"

In this theorem,MHabbreviates the relativization of the argument oftransrec

shown above:

"MH(u::i,f,z) ==
∀ fml[M]. is formula(M,fml) −→

is lambda
(M, fml, is formula case (M, is a, is b, is c(f), is d(f)), z)"

9 Absoluteness for L

In order to proveV = L , we must prove the absoluteness of three main functions:

1. satisfies , the satisfaction function on formulae

2. DPow, the definable powerset function

3. Lset , which expresses the levelsLα of the constructible hierarchy.

Of these functions,Lset is defined by transfinite recursion fromDPow, which in
turn has a straightforward definition in terms ofsatisfies . But proving the
absoluteness ofsatisfies is very complicated.

Absoluteness ofsatisfies is merely an instance of the absoluteness of re-
cursion over formulae, and is therefore trivial. That does not relieve us of the task
of formalizing the details. The file containing thesatisfies absoluteness proof
is one of the largest in the entire development. This file divides into two roughly
equal parts.
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The first half contains internalizations and reflection theorems for operators
such asdepth andformula case . It expresses the four cases ofsatisfies in
both functional and relational form, and proves absoluteness for each case. Six
instances of strong replacement are required: one for each case of the recursion
(because each contains aλ-abstraction), another to justify the use oftransrec ,
and yet another to justify theλ-abstraction informula rec . These axioms are
assumed to hold of an arbitrary class modelM. They are used to show that the for-
malization satisfies the conditions of the absoluteness theorem forformula rec

described in the previous section.
The second half of the file is devoted to proving that the six instances of re-

placement hold inL. The four cases of the recursion (in their relational form) must
each be internalized. This tiresome task involves, as always, translating a defini-
tion involving real formulae into one using internalized formulae. Then, the six
instances of replacement are justified. Finally, the pieces are put together.

9.1 Proving that satisfies is Absolute

Working in the classM, we assume additional instances of the replacement axiom
and apply them to the definition ofsatisfies , which is reproduced here:

"satisfies(A,Member(x,y)) =
( λenv ∈ list(A). bool of o (nth(x,env) ∈ nth(y,env)))"

"satisfies(A,Equal(x,y)) =
( λenv ∈ list(A). bool of o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
( λenv ∈ list(A). not ((satisfies(A,p)‘env) and

(satisfies(A,q)‘env)))"
"satisfies(A,Forall(p)) =

( λenv ∈ list(A). bool of o
( ∀ x∈A. satisfies(A,p)‘(Cons(x,env)) = 1))"

Many additional concepts must be internalized. Consider the predicate
is depth , which formalizes the depth of a formula:

"depth fm(p,n) ==
Exists(Exists(Exists(

And(formula N fm(n#+3,1),
And(Neg(Member(p#+3,1)),

And(succ fm(n#+3,2),
And(formula N fm(2,0), Member(p#+3,0))))))))"

We prove the usual theorem relating the satisfaction ofdepth fm to the truth of
is depth

" [[x ∈ nat; y < length(env); env ∈ list(A) ]]
H⇒ sats(A, depth fm(x,y), env) ←→

is depth(**A, nth(x,env), nth(y,env))"

And we generate yet another instance of the reflection theorem:
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"REFLECTS[λx. is depth(L, f(x), g(x)),
λi x. is depth(**Lset(i), f(x), g(x))]"

The internalization ofis formula case is omitted, but its definition is
15 lines long and contains 11 quantifiers. The theorem statements relating
is formula case to formula case are also long and complicated. And of
course they are higher-order, requiring the methods of Sect.7.3.

In order to relativizesatisfies , we must first define constants corresponding
to formula rec ’s parametersa, b, c andd. Here are the two base cases:

"satisfies a(A) ==
λx y. λenv ∈list(A). bool of o (nth(x,env) ∈ nth(y,env))"

"satisfies b(A) ==
λx y. λenv ∈list(A). bool of o (nth(x,env) = nth(y,env))"

In the two recursive cases, the variablesrp andrq denote the values returned on
the recursive calls forp andq, respectively:

"satisfies c(A) ==
λp q rp rq. λenv ∈list(A). not(rp ‘ env and rq ‘ env)"

"satisfies d(A) ==
λp rp. λenv ∈list(A). bool of o ( ∀ x∈A. rp ‘ (Cons(x,env)) = 1)"

Each of these functions is then re-expressed in relational form. Here is the first:

"satisfies is a(M,A) ==
λx y zz. ∀ lA[M]. is list(M,A,lA) −→

is lambda(M, lA,
λenv z. is bool of o(M,
∃nx[M]. ∃ny[M].

is nth(M,x,env,nx) & is nth(M,y,env,ny) & nx ∈ny, z),
zz)"

Once we have done the other three, we can define an instance ofMH for
satisfies , expressing the body of the recursion as a predicate:

"satisfies MH ==
λM A u f z.

∀ fml[M]. is formula(M,fml) −→

is lambda (M, fml,
is formula case (M, satisfies is a(M,A),

satisfies is b(M,A),
satisfies is c(M,A,f),
satisfies is d(M,A,f)),

z)"

Finally, satisfies itself can be relativized:

"is satisfies(M,A) == is formula rec (M, satisfies MH(M,A))"

This lemma relates the fragments defined above to the original primitive recur-
sion insatisfies . Induction is not required: the definitions are directly equal!



52 9 ABSOLUTENESS FOR L

"satisfies(A,p) =
formula rec (satisfies a(A), satisfies b(A),

satisfies c(A), satisfies d(A), p)"

At this point we must assume (by declaring a locale) the six instances of re-
placement mentioned above. That enables us to prove absoluteness for the param-
etersa, b, c andd used to definesatisfies . For example, the classM is closed
undersatisfies a:

" [[M(A); x ∈nat; y ∈nat ]] H⇒ M(satisfies a(A,x,y))"

This theorem states thatsatisfies is a(M,A,x,y,zz) is the relational equiv-
alent ofsatisfies a(A,x,y) providedx andy belong to the setnat .

"M(A) H⇒
Relation2(M, nat, nat, satisfies is a(M,A), satisfies a(A))"

It can be seen as an absoluteness result subject to typing conditions onx andy .
Proofs are obviously easier if the absoluteness results are unconditional, but some-
times typing conditions are difficult to avoid.

Analogous theorems are proved forsatisfies is b, satisfies is c and
satisfies is d. Thus we use the first four instances of replacement. The last
two instances, which are specific tosatisfies , let us discharge the more gen-
eral instances of replacement that are conditions offormula rec ’s absoluteness
theorem. We ultimately obtain absoluteness forsatisfies :

" [[M(A); M(z); p ∈ formula ]]
H⇒ is satisfies(M,A,p,z) ←→ z = satisfies(A,p)"

9.2 Proving the Instances of Replacement for L

Now we must justify those six instances of strong replacement by proving that they
hold inL . Recall that strong replacement is the conjunction of replacement (which
holds schematically inL , but may yield too big a set) and an appropriate instance
of separation (Sect.4.3).

As always, proving instances of separation requires internalizing many formu-
lae. Isabelle can do this automatically, but unless it is given enough internalized
formulae to use as building blocks, the translation requires much time and space. I
internalized many concepts manually, declaring their internal counterparts as con-
stants and proving their correspondence with the original concepts. Here is the
internal equivalent ofsatisfies is a:

"satisfies is a fm(A,x,y,z) ==
Forall(

Implies(is list fm(succ(A),0),
lambda fm(

bool of o fm(Exists(
Exists(And(nth fm(x#+6,3,1),

And(nth fm(y#+6,3,0),
Member(1,0))))), 0),

0, succ(z))))"
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Obviously, the same task must be done for the othersatisfies relations and
for the concepts used in their definitions. We finally can internalize the body of
satisfies :

"satisfies MHfm(A,u,f,zz) ==
Forall(

Implies(is formula fm(0),
lambda fm(

formula case fm(satisfies is a fm(A#+7,2,1,0),
satisfies is b fm(A#+7,2,1,0),
satisfies is c fm(A#+7,f#+7,2,1,0),
satisfies is d fm(A#+6,f#+6,1,0),
1, 0),

0, succ(zz))))"

Now, we can prove the six instances of replacement. Here is the first one, for
theMember case ofsatisfies :

" [[L(A); x ∈ nat; y ∈ nat ]]
H⇒ strong replacement

(L, λenv z. ∃bo[L]. ∃nx[L]. ∃ny[L].
env ∈ list(A) & is nth(L,x,env,nx) & is nth(L,y,env,ny) &
is bool of o(L, nx ∈ ny, bo) &
pair(L, env, bo, z))"

The theorem statement may look big, but the proof has only four commands. The
corresponding instances of the reflection theorem (not shown) is twice as big, but
its proof has only one command.

We proceed to prove the fifth instance of replacement:

" [[n ∈ nat; L(A) ]] H⇒ transrec replacement(L, satisfies MH(L,A), n)"

Finally, we prove the sixth instance of replacement:

" [[L(g); L(A) ]] H⇒
strong replacement (L,

λx y. mem formula(L,x) &
( ∃ c[L]. is formula case(L, satisfies is a(L,A),

satisfies is b(L,A),
satisfies is c(L,A,g),
satisfies is d(L,A,g), x, c) &

pair(L, x, c, y)))"

Our reward for this huge effort is that the absoluteness ofsatisfies now
holds forL:

" [[L(A); L(z); p ∈ formula ]]
H⇒ is satisfies(L,A,p,z) ←→ z = satisfies(A,p)"

9.3 Absoluteness of the Definable Powerset

Conceptually, the absoluteness ofDPow is trivial, since it is just a comprehen-
sion involvingsatisfies . The formal details require a modest effort. There are
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more internalizations, such as that ofis formula rec . Note that concepts only
have to be internalized if they appear in an instance of separation, which may only
happen long after the concept is first relativized. Unfortunately,formula rec

is a complex higher-order function; in its relational form, one argument gets
enclosed within 11 quantifiers. Completing this task enables us to internalize
is satisfies :

"satisfies fm(x) == formula rec fm(satisfies MHfm(x#+5#+6,2,1,0))"

Recall thatDPow is the definable powerset operator. It has a variant form,
DPow’ , that does not involve the functionarity . The two operators agree on
transitive sets, so in particular we can useDPow’ to constructL. Now we must rel-
ativizeDPow’ . Its definition refers to the powerset operator, which is not absolute.
It can equivalently be expressed using a set comprehension, which here represents
an appeal to the replacement axiom:

"DPow’(A) = {z . ep ∈ list(A) × formula,
∃env ∈ list(A). ∃p ∈ formula.

ep = 〈env,p 〉 &
z = {x ∈A. sats(A, p, Cons(x,env))}}"

Within the comprehension is another comprehension, which appeals to separation.
The formulasats(A, p, Cons(x,env)) needs to be relativized (as the predi-
cateis DPowsats ) and internalized. Then, we again extend the list of assump-
tions about the classM to include these instances of replacement and separation.
Using them, we can prove thatM is closed under definable powersets:

"M(A) H⇒ M(DPow’(A))"

We can also express the equation forDPow’ shown above in relational form, defin-
ing the predicateis DPow’ , and prove absoluteness:

" [[M(A); M(Z) ]] H⇒ is DPow’(M,A,Z) ←→ Z = DPow’(A)"

To make these results available forL, we must first prove thatL satisfies the new
instances of replacement and separation. Here is the latter:

" [[L(A); env ∈ list(A); p ∈ formula ]]
H⇒ separation(L, λx. is DPowsats(L,A,env,p,x))"

9.4 Absoluteness of Constructibility

The proof thatL satisfiesV = L nearly finished. Only the operatorLset , which
denotes the levels of the constructible hierarchy, remains to be proved absolute.
Recall that it can be expressed usingDPow’ :

"Lset(i) = transrec(i, %x f.
⋃

y∈x. DPow’ (f ‘ y))"
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So now we must internalize the predicateis DPow’ . First we must internalize
the operators used in its definition. Among those are the predicateis Collect ,
which recognizes set comprehensions. The equation forLset above involves two
further instances of replacement: one for the use oftransrec and another for the
indexed union. Adding them to our list of constraints onM allows us to prove that
that class is closed under theLset operator:

" [[Ord(i); M(i) ]] H⇒ M(Lset(i))"

We can also define its relational version:

"is Lset(M,a,z) ==
is transrec(M, %x f u. u = (

⋃
y∈x. DPow’ (f ‘ y)), a, z)"

Notice that this definition is not purely relational. That is all right becauseis Lset

is not used in any instance of separation and thus need not be internalized. We can
now prove that the constructible hierarchy is absolute:

" [[Ord(i); M(i); M(z) ]] H⇒ is Lset(M,i,z) ←→ z = Lset(i)"

As remarked earlier, results such as this express absoluteness because the class
model M drops out of the right-hand side. The left-hand side refers to our for-
malization ofLα in M, which by the theorem is equivalent toLα itself. As always,
making this result available toL requires proving the new instances of replacement.
I omit the details, which contain nothing instructive.

We can finally formalizeLM , the relativization ofL . A setx is constructible
(with respect to any classM satisfying the specified ZF axioms) provided there
exists an ordinali and a level of the constructible hierarchyLi such thatx ∈ Li .

"constructible(M,x) ==
∃ i[M]. ∃Li[M]. ordinal(M,i) & is Lset(M,i,Li) & x ∈ Li"

The following theorem is a trivial consequence of the absoluteness results and
the definitions ofconstructible andL.

"L(x) H⇒ constructible(L,x)"

This theorem expresses our goal, namely thatV = L holds inL or more formally
(V = L)L . For this statement is equivalent to(∀x.L(x))L and thus to∀x.L(x)→
LL (x). We can drop the universal quantifier. The antecedent of the implication
is formalized asL(x) and the consequent asconstructible(L,x) . This proof
ends the most difficult part of the development.

10 The Axiom of Choice in L

The formalization confirms thatV = L is consistent with the axioms of set theory.
Obviously any consequence ofV = L , such as the axiom of choice, is consistent
with those axioms too. Proving consequences ofV = L involves working in an
entirely different way, and a much pleasanter one. Dispensing with the relational
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language, relativization, internalization and absoluteness, we can instead work in
native set theory with the additional axiomV = L .

AssumingV = L , the proof of the axiom of choice is simple [6, p. 173]. It
suffices to prove that every set can be well-ordered. In fact, we can well-order
the whole ofL . The set of internalized formulae is countable, and therefore well-
ordered. The well-ordering ofL derives from its cumulative construction and from
the well-ordering of formulae. Forx, y ∈ L , say thatx precedesy if

• x originates earlier thany in the constructible hierarchy — that is, there is
someα such thatx ∈ Lα andy 6∈ Lα.

• x and y originate at the same levelLα, but the combination of defining
formula and parameters forx lexicographically precedes the corresponding
combination fory.

Each element ofLα+1 is a subset ofLα that can be defined by a formula, pos-
sibly involving parameters fromLα. We can assume the induction hypothesis that
Lα is well-ordered. Before we can undertake this transfinite induction, we must
complete several tasks:

1. exhibiting a well-ordering on lists, for the parameters of a definable subset

2. exhibiting a well-ordering on formulae

3. combining these to obtain a well-ordering of the definable powerset

4. show how to extend our well-ordering to the limit case of the transfinite
induction

10.1 A Well-Ordering for Lists

First we inductively define a relation on lists: the lexicographic extension of a
relation on the list’s elements. Letr denote a relation over the setA. Then the
relationrlist(A,r) is the least set closed under the following rules:

" [[ length(l’) < length(l); l’ ∈ list(A); l ∈ list(A) ]]
H⇒ 〈l’, l 〉 ∈ rlist(A,r)"

" [[ 〈l’,l 〉 ∈ rlist(A,r); a ∈ A]]
H⇒ 〈Cons(a,l’), Cons(a,l) 〉 ∈ rlist(A,r)"

" [[ length(l’) = length(l); 〈a’,a 〉 ∈ r;
l’ ∈ list(A); l ∈ list(A); a’ ∈ A; a ∈ A]]

H⇒ 〈Cons(a’,l’), Cons(a,l) 〉 ∈ rlist(A,r)"

Informally, the listl’ precedes another listl if

1. l’ is shorter thanl , or

2. the lists have the same head and the tail ofl’ precedes that ofl , or
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3. the lists have the same length and the head ofl’ precedes that ofl under
the ordering on list elements.

If the element ordering is linear, then so is the list ordering. This theorem has a
14-line proof script involving a double structural induction on lists.

"linear(A,r) H⇒ linear(list(A),rlist(A,r))"

If the element ordering is well-founded, then so is the list ordering. This theo-
rem is proved by induction on the length of the list followed by inductions over the
element ordering and the list ordering. The proof script is under 20 lines, but the
argument is complicated.

"well ord(A,r) H⇒ well ord(list(A), rlist(A,r))"

10.2 A Well-Ordering on Formulae

Gödel-numbering is the obvious way to well-order the set of formulae. An injec-
tion from the set of formulae into the set of natural numbers is easily defined by
recursion on the structure of formulae. However, it requires an injection from pairs
of natural numbers to natural numbers. The enumeration function for formulae
takes this injection as its first argument,f :

"enum(f, Member(x,y)) = f ‘ 〈0, f ‘ 〈x,y 〉〉"
"enum(f, Equal(x,y)) = f ‘ 〈1, f ‘ 〈x,y 〉〉"
"enum(f, Nand(p,q)) = f ‘ 〈2, f ‘ 〈enum(f,p), enum(f,q) 〉〉"
"enum(f, Forall(p)) = f ‘ 〈succ(2), enum(f,p) 〉"

There are several well-known injections fromω×ω intoω, but defining one of
them and proving it to be injective would involve some effort. Instead we can ap-
peal to a corollary ofκ⊗ κ = κ, which is already available [16, §5] in Isabelle/ZF:

[[well ord(A,r); InfCard(|A|) ]] H⇒ A × A ≈ A

Thus we haveω × ω ≈ ω: there is a bijection, which is also an injection, between
ω× ω andω. However, although an injection exists, we have no means of naming
a specific bijection. Therefore, we conduct the entire proof of the axiom of choice
under the assumption that some injection exists. The final theorem is existential,
which will allow the assumption to be discharged.

We declare a locale to express this new assumption, calling the injectionfn .
Recall thatnat is Isabelle/ZF’s name for the ordinalω:

locale Nat Times Nat =
fixes fn
assumes fn inj: "fn ∈ inj(nat*nat, nat)"

Proving thatenum(fn,p) defines an injection from formulae into the naturals
requires a straightforward double induction over formulae:

"( λp ∈ formula. enum(fn,p)) ∈ inj(formula, nat)"
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Using the enumeration as a measure function, we find that the set of formulae is
well-ordered:

"well ord(formula, measure(formula, enum(fn)))"

The functions defined below all have an argumentf , which should range over
injections fromω×ω intoω. In proofs, this injection will always befn from locale
Nat Times Nat . The definiens of a constant definition cannot refer tofn because
it is a variable.

10.3 Defining the Well-ordering onDPow(A)

The setDPow(A) consists of those subsets ofA that can be defined by a formula,
possibly using elements ofA as parameters (Sect.6.5). We can define a well-
ordering onDPow(A) from one onA. We get a well-ordering on formulae from
their injection into the natural numbers. To handle the parameters, we define a well-
ordering for environments — lists overA — and combine it with the well-ordering
of formulae. A subset ofA might be definable in more than one way; to make a
unique choice, we map environment/formula pairs to ordinals. The well-ordering
on environment/formula pairs is the lexicographic product (given byrmult ) of the
well-orderings on lists (rlist ) and formulae (measure ).

"env form r(f,r,A) ==
rmult(list(A), rlist(A, r),

formula, measure(formula, enum(f)))"

Using existing theorems, it is trivial to prove that this construction well-orders the
setlist(A) × formula :

"well ord(A,r) H⇒ well ord(list(A) × formula, env form r(fn,r,A))"

The order type of the resulting well-ordering yields a map (given by
ordermap ) from environment/formula pairs into the ordinals. For each member of
DPow(A) , the minimum such ordinal will determine its place in the well-ordering.

"env form map(f,r,A,z) ==
ordermap(list(A) × formula, env form r(f,r,A)) ‘ z"

If r well-orders A and X is a definable subset ofA, then let us define
DPoword(f,r,A,X,k) to hold if k corresponds to some definition ofX — infor-
mally, k definesX:

"DPow ord(f,r,A,X,k) ==
∃env ∈ list(A). ∃p ∈ formula.

arity(p) ≤ succ(length(env)) &
X = {x ∈A. sats(A, p, Cons(x,env))} &
env form map(f,r,A, 〈env,p 〉) = k"

Similarly, let us defineDPowleast(f,r,A,X) to be the smallest ordinal
definingX:
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"DPow least(f,r,A,X) == µk. DPow ord(f,r,A,X,k)"

Sincek determinesenv and p, we find that an ordinal can define at most one
element ofDPow(A) :

" [[DPoword(fn,r,A,X,k); DPow ord(fn,r,A,Y,k); well ord(A,r) ]]
H⇒ X=Y"

We also find that every element ofDPow(A) is defined by some ordinal, given by
DPowleast :

" [[X ∈ DPow(A); well ord(A,r) ]]
H⇒ DPoword(fn, r, A, X, DPow least(fn,r,A,X))"

Now DPowleast can serve as a measure function to define the well-ordering
on DPow(A) .

"DPow r(f,r,A) == measure(DPow(A), DPow least(f,r,A))"

Using general facts about relations defined by measure functions, we easily find
thatDPow(A) is well-ordered:

"well ord(A,r) H⇒ well ord(DPow(A), DPow r(fn,r,A))"

10.4 Well-Ordering Lα in the Limit Case

The proof thatLα is well-ordered appeals to transfinite induction on the ordinalα.
The induction hypothesis is thatLξ is well-ordered ifξ < α. In the limit case,
Lα =

⋃
ξ<α Lξ . Recall (Sect.6.9.2) thatL -rankρ(x) of x is the leastα such that

x ∈ Lα+1. If α is a limit ordinal then we order elements ofLα first by theirL -
ranks; if two elements have the sameL -rank, sayξ , then we order them using the
existing well-ordering ofLξ+1.

In the Isabelle formalization,i is the limit ordinal andr(j) denotes the well-
ordering ofLset(j) :

"rlimit(i,r) ==
if Limit(i) then

{z ∈ Lset(i) × Lset(i).
∃ x’ x. z = 〈x’,x 〉 &

(lrank(x’) < lrank(x) |
(lrank(x’) = lrank(x) & 〈x’,x 〉 ∈ r(succ(lrank(x)))))}

else 0"

We can prove that the limit ordering is linear provided the orderings of previous
stages are also linear:

" [[Limit(i); ∀ j<i. linear(Lset(j), r(j)) ]]
H⇒ linear(Lset(i), rlimit(i,r))"

Under analogous conditions, therlimit(i,r) is a well-ordering ofLset(i) .
The proofs are straightforward, and I have omitted many details.

" [[Limit(i); ∀ j<i. well ord(Lset(j), r(j)) ]]
H⇒ well ord(Lset(i), rlimit(i,r))"
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10.5 Transfinite Definition of the Well-Ordering for L

The well-ordering onL is defined by transfinite recursion. The Isabelle definition
refers to the cryptictransrec operator, so let us pass directly to the three imme-
diate consequences of that definition. For the base case, the well-ordering is the
empty relation:

"L r(f,0) = 0"

For the successor case, the well-ordering is given by applyingDPowr to the pre-
vious level.

"L r(f, succ(i)) = DPow r(f, L r(f,i), Lset(i))"

For the limit case, the well-ordering is given byrlimit .

"Limit(i) H⇒ L r(f,i) = rlimit(i, L r(f))"

Thanks to the results proved above, a simple transfinite induction proves that
L r(fn,i) well-orders the constructible levelLset(i) .

"Ord(i) H⇒ well ord(Lset(i), L r(fn,i))"

Note that this theorem refers tofn , an injection fromω × ω into ω. Recall
(Sect.10.2) that we know such that such functions exist but have not defined a
specific one. We have been able to prove our theorems by working in a locale that
assumes the existence offn . Now, we can eliminate the assumption. We use an
existential quantifier to hide the well-ordering in the previous theorem, so thatfn

no longer appears. Then, by the mere existence of such an injection, it follows that
everyLset(i) can be well-ordered:

"Ord(i) H⇒ ∃ r. well ord(Lset(i), r)"

To wrap things up, let us package the axiomV = L as a locale:

locale V equals L =
assumesVL: "L(x)"

The axiom of choice — in the guise of the well-ordering theorem — is a trivial
consequence of the previous results.

theorem ( in V equals L) AC: " ∃ r. well ord(x,r)"

11 Conclusions

What has been accomplished? I have mechanized the proof of the relative consis-
tency of the axiom of choice, largely following a standard textbook presentation.
The formal proof is much longer than the textbook version because it is complete
in all details and uses no metatheoretical reasoning. The proof consists of three
parts:
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1. defining the classL

2. proving thatL satisfies the ZF axioms

3. proving thatL satisfiesV = L

4. proving thatV = L implies the axiom of choice

The proof ofV = L is by far the largest and most difficult part of the development.
It involves provingL to be absolute, which requires converting every concept used
in its definition into relational form and proving absoluteness. The sheer number
of concepts is an obstacle, and some of them are hard to express in relational form,
especially those involving recursion. Most of the relations have to be re-expressed
using an internal datatype of formulae.

My formalization has two limitations. First, I am not able to prove thatL satis-
fies the axiom scheme of comprehension. Although Isabelle/ZF handles schematic
proofs easily, the proof of comprehension for the formulaφ requires an instance
of the reflection theorem forφ. Each instance of comprehension therefore has a
different proof and must be proved separately. The reflection theorem is proved by
induction (at the metalevel) on the structure ofφ; thus, all these proofs are instances
of one algorithm, and they are generated by nearly identical proof scripts [15]. The
inability to prove the comprehension scheme makes the absoluteness proofs harder:
every necessary instance of comprehension is listed. Instantiating these proofs to
L has required proving that each of those instances held inL . There are about 35
such instances.

My formalization has another limitation. The proof thatL satisfiesV = L
cannot be combined with the proof thatV = L satisfies the axiom of choice in
order to conclude thatL satisfies the axiom of choice. The reason is that the two
instances ofV = L are formalized differently: one is relativized and the other is
not. Here I have followed the textbook proofs, which proveV = L , declare that the
axiom of constructibility can be assumed, and proceed to derive the consequences
of that axiom.

We could remedy both limitations by tackling the whole problem in a quite
different way, by formalizing set theory as a proof system and working entirely in
the metatheory. I leave this as a challenge for the theorem-proving community. A
by-product of the work is a general theory of absoluteness for arbitrary class mod-
els of ZF. It could be used for other formal investigations of inner models. Future
investigators might also try formalizing the proof thatL satisfies the generalized
continuum hypothesis and the combinatorial principle♦+
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