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Abstract

The proof of the relative consistency of the axiom of choice has been
mechanized using Isabelle/ZF. The proof builds upon a previous mechaniza-
tion of the reflection theoremlp]. The heavy reliance on metatheory in
the original proof makes the formalization unusually long, and not entirely
satisfactory: two parts of the proof do not fit together. It seems impossible
to solve these problems without formalizing the metatheory. However, the
present development follows a standard textbook, Kun8aisTheonyj6],
and could support the formalization of further material from that book. It
also serves as an example of what to expect when deep mathematics is for-
malized.
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6 1 INTRODUCTION

1 Introduction

In 1940, Gdel [3] published his famous monograph proving that the axiom of
choice (AC) and the generalized continuum hypothesis (GCH) are consistent with
respect to the other axioms of set theory. This theorem addresses the first of
Hilbert’s celebrated list of mathematical problems. | have attempted to reproduce
this work in Isabelle/ZF.

When so much mathematics has already been checked mechanically, what is
the point of checking any more? Obviously, the theorem’s significance makes it
a challenge, as does its size and complexity, but the real challenge comes from
its reliance on metamathematics. As | have previously noi&f] fome theo-
rems seem difficult to formalize even in their statements, let alone in their proofs.
Godel’s work is not a single formal theorem. It consists of several different theo-
rems which, taken collectively, can be seen as expressing the relative consistency
of the axiom the choice. At the end of Chapter VIIp@l remarks that given a
contradiction from the axioms of set theory augmented with AC, a contradiction
in basic set theory “could actually be constructesl’d. 87]. This claim is crucial:
logicians prefer consistency proofs to be constructive.

A complication in Gdel’s proof is its use of classes. Intuitively speaking, a
classis a collection of sets that is defined by comprehensfgn, ¢ (x)}. Every
setAis trivially a class, namelyx | X € A}, but aproper clasdgs too big to be a
set. Formal set theories restrict the use of classes in order to eliminate the danger
of paradoxes. Modern set theorists use Zermelo-Fraenkel (ZF) set theory, where
classes exist only in the metalanguage. That is, the ¢bags¢ (x)} is just an
alternative notation for the formula(x), anda € {x | ¢(x)} is just an alternative
notation for¢ (a). The universal clasgd/, corresponds to the formuferue . An
“equation” likeV = |, .oy Ve Stands fovx. Jo. ON(a) AX € V,. Godel worked
in von Neumann-Bernaysdslel (NBG) set theory, which allows quantification
over classes but restricts their use in other ways. With either axiom system, classes
immensely complicate the reasoning.

Why did Godel use classes? Working entirely with sets, he could have used
essentially the same techniques to prove th ils a model of ZF then there ex-
ists a modeL (M) of ZFC. (ZFC refers to the ZF axioms plus AC.) Therefore, if
ZFC has no models, then neither does ZF. But with this approach, he can no longer
claim that if he had a contradiction in ZFC then a contradiction in ZF “could actu-
ally be constructed.” For the sake of this remark, which is not part of any theorem
statement, @del chose a more difficult route. Classes create more difficulties for
formal proof checkers (which have to face foundational issues squarely) than they
do for mathematicians writing in English.

The proof uses metatheoretic reasoning extensivatgeGwrites B, p. 34],

However, the only purpose of these general metamathematical consid-
erations is to show how the proofs for theorems of a certain kind can
be accomplished by a general method. And, since applications to only



a finite number of instances are necessarythe general metamathe-
matical considerations could be left out entirely, if one took the trouble
to carry out the proofs separately for any instance.

| decided to take the trouble, not using metatheory but relying instead on a me-
chanical theorem prover.

This paper describes the Isabelle/ZF proofs. It indicates the underlying math-
ematical ideas and sometimes discusses practical issues such as proof length or
machine resources used. It necessarily omits much material that would be too long
or too repetitious. The paper concerns how existing mathematics is formalized; it
contains no original mathematics.

Overview. The paper begins by outliningd@el’s relative consistency proof4g

After a brief overview of Isabelle/ZF, the paper describes the strategy guiding
the formalization (8) and presents some elementary absoluteness prodfsi{8

then discusses relativization issues involving well-founded recurs®nT8rning

away from absoluteness, the paper proceeds to describe the formalization of the
constructible universe and the proof thasatisfies the ZF axioms 6§ then, it
describes how the reflection theorem is used to proveltisatisfies the separation
axiom (&7). Absoluteness again takes centre stage as the paper presents the rela-
tivization of two essential datatypesg)&nd finally presents the absolutenesk of

itself (89). Finally, the paper presents the Isabelle proof that AC holds (810),

and offers some conclusionsi(B.

2 Proof Outline

Godel's idea is to define a very lean model, callef set theoryL contains just
the sets that must exist because they can be defined by formulae. Then, prove that
L satisfies the ZF axioms and the additional axiom “every set belorigs tehich
is abbreviated/ = L. We now know thalv = L is consistent with ZF, and can
assume this axiom. (The conjunction of ZF and= L is abbreviated ZFL.) We
conclude by proving that AC and GCH are theorems of ZFL and therefore are also
consistent with ZF.

Figurel showsL (shaded) as a subclass of the univekéeThe vertical line
represents the cla§dN of the ordinal numbers.

2.1 The Problem With Class Models

Becausd. is a proper class, we cannot adopt the usual notion of satisfaction. To
formalize the standard Tarski definition of truth [p. 60] requires first defining,

in set theory, a seff to represent the syntax of first-order formulae.is easily
defined, either using @lel-numbering or as a recursive data structureM Iis a
set,p € F represents a formula witk free variables, anthy, ..., mg € M then

M E p(my,..., mk) can be defined by recursion on the structurepofif M is
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Figure 1: The Constructible Univerde,

a proper class, then the obvious definitionvbf= p(m) cannot be formalized in

set theory; the environments that hold the bindings of free variables would have to
belong to a function space whose range was aMof Tarski’'s theorem on non-
definability of truth B, p. 41] asserts that no formupa(p) expresse¥y = p. If

for each formulap we write™ ¢ for the corresponding element &f, thenys <«

—x ("¢ is a theorem for some sentenge Satisfaction cannot be defined, at
leastifM = V.

2.2 Relativization

Godel instead expressed satisfaction for class models syntactically. This approach
abandons the sé&t of formula representatives in favour of real formulae. Settheory
uses a first-order language with no constant symbols, no function symbols and no
relation symbols other thamand=. Variables are the only terms.

Godel's key concept igelativization® If M is a class ang is a formula, define
#M recursively as follows:

(x =y)M abbreviates x = y

(x e yYM abbreviates x € y

(¢ Ay)M  abbreviates oM A yM
(—=p)M  abbreviates —(¢™)

(Ax.¢9)M abbreviates Ix.x € M A ¢pM

Dually (¥x.¢)M abbreviates'x.x € M — ¢M | if universal quantifiers are de-
fined as usual. (When working in ZF, we should wi#gx) instead ofx € M
above.) Relativization bounds all quantifiersgirby M. It is intuitively clear that

»M expresses that is true inM. But while the satisfaction relation=) can be
defined within set theory, relativization can only be defined in the metalanguage: it
combines two argumentg,andM, which lie outside ZF.

1see @del [3, p. 76] or for a modern treatment Kunes) p. 112].



2.3 The Formal Treatment of Terms 9

2.3 The Formal Treatment of Terms

Despite the lack of terms in their formal language, set theorists use elaborate
notational conventions. In other branches of mathematics, an expression like
f(x)g(y) — h(x, y) means what it says: functionf, g andh are applied and

the results combined by multiplication and subtraction. But in set theory, each
expressionE(x) abbreviates a formula (X, y), which reduces the meaning of

y = E(X) to a combination o€ and=. For example, we can express the meaning
of Y = AU B by the predicatenion (A, B, Y), defined by

Vz.zeY < ze AvzeB.

We can similarly definénter (A, B, Y) to expressY = AN B. Combining these
predicates gives meaning to more complex terms; for exaniple, (AU B) N C
abbreviates

3X.union (A, B, X) Ainter (X,C,Y).

Variable binding notation, ubiquitous in set theory, causes complications. In
Uxea B(X), what isB? Syntactically,B(x) is a term with parametex, so we
can take it as an abbreviation for some form¢lé, y). But then( ) becomes
an operation on formulae rather than one on sets. An equally legitimate alterna-
tive [4, p. 34] is to regard as a function in set theory — formally, the set of pairs
{{(x, B(X) [ x € A}.

Set theorists generally say little about these notational conventions and act as
if terms were meaningful in themselves. But relativization forces us to make the
translation from terms to formulae explicit. In the Isabelle formalization, | have
defined relational equivalents of dozens of term formers. | have included a class
argument in each one to perform relativization at the same time; we can express
the relativized ternif(AU B) N C)M as

IX € M. union (M, A, B, X) Ainter (M, X,C,Y)

The hardest tasks were (1) to define relational equivalents of the complicated ex-
pressions generated by Isabelle/ZF for recursively defined sets and functions and
(2) to cope with the sheer bulk of the definitions.

2.4 Godel's Claim Viewed Proof-Theoretically

The purpose of relativization is to express claims of the fognis‘true inM.” To
prove thatL satisfies the ZF axioms and = L, we must provep" for each ZF
axiome¢, and we must provéV = L)-. Now we can consider @lel’s claim that
from a contradiction in ZFL a contradiction in ZF “could actually be constructed.”
His claim is proof-theoretic. A contradiction in ZFL is a prodi, of L from
finitely many ZF axioms anf = L:

¢1 ... é V=L
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Once we have proved thhtsatisfies the axioms of ZFL, we have the- 1 proofs
ZFF¢r ... ZFF¢- (V=L)-.

Verifying Godel's claim reduces to showing that we can always construct a
proof IT- of L~ from the relativized premises:

¢r ... o5 (V=Dt
HL
J_L

For then we get a proof of ZF -, which is just ZR— L.

So how we obtaiI- from IT? To be concrete, suppose we are working with
a natural deduction formalization of first-order logic. By the normal form theo-
rem [17], since the conclusion of the proof is atomic, we can assumeizguplies
only elimination rules. We must modifl so that it accepts relativized versions of
its premises and delivers a relativized version of its conclusion. The only hard cases
involve quantifiers. Wheré&l applies the existential elimination rule #x. ¢ (x),
it delivers the formulap (x) to the rest of the proof. (Assume thathas already
been renamed, if necessary.) At the corresponding positlbrshould apply the
existential and conjunction elimination rules3r. x € L A ¢(X), delivering the
formulaex € L and¢ (x) to the rest of the proof.

Universal quantifiers require a bit more work. First, recall that the language of
set theory has no terms other than variables. Wheepplies the universal elimi-
nation rule tovx. ¢ (x), it delivers the formulap (y) to the rest of the proof, where
y is a variable. At the corresponding positidi; should apply the existential and
conjunction elimination rules tgx. x € L — ¢ (x). But before it can deliver the
formula¢ (y), it requires a proof oy € L. We will indeed havey € L if the vari-
abley is obtained by a previous existential elimination, but what Wfas chosen
arbitrarily? We can handle such cases by inserting at this point an application of the
empty set axiom, which will yield a new variable (sgyand the assumptiane L.
Intuitively, we are replacing all free variableslinby O.

The sketchy argument above cannot be called a rigorous proofodelG
claim. But it is more detailed than standard expositions 0fl&’s proof. Kunen
relegates the relevant lemma to an appendix, and for the proof he merely remarks
“Similar to the easy direction of the @del Completeness Theoren®s, [p. 141].

To Godel, it was all presumably trivial. | have not formalized the argument in
Isabelle/ZF because that would require formalizing the metatheory.

2.5 Defining the Class L

The equationV = |J,.on Vo €Xpresses the universe of sets as the union of
the cumulative hierarchyV,}.con, Which is recursively defined by, = 0,
Vo1 = P(V,) andV, = Uém V: whene is a limit ordinal. We obtairl by
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a similar construction, replacing the powerset oper@dny thedefinable power-
setoperator,D. EssentiallyD(A) yields the set of all subsets & that can be
defined by a formula taking parameters o¥erlIf we define the seF of formu-

lae and the satisfaction relatioh = p as outlined above, then we can make the
definition

DA ={X e P(A) |
dpeF.Ja.. e A X={Xxe A|AEpX, a,...,a)}}.

(The ellipsis can be eliminated in favour of lists owr) Finally, we define the
constructible universeL = |J,.on Lo, WhereLg = 0, Lop1 = D(L,) and
Ly = Ue-, Le Whena is limit.

Kunen proves that satisfies the ZF axioms, remarking, [p. 170] “only the
Comprehension Axiom required any work.” His remark applies to the Isabelle/ZF
proofs.L inherits most of the necessary properties fidnEven the axiom scheme
of replacement can be proved as the theargstacement(L,P) ; the proofisin-
dependent of the formuR. However, the proof of comprehension for the formula
¢ requires an instance of the reflection theorengfarhich requires recursion over
the structure of. Each instance of comprehension therefore has a different proof
from the ZF axioms. At the metalevel, of course, all these proofs are instances of a
single algorithm. For Isabelle/ZF, this means that each instance of comprehension
must be proved separately, although the proof scripts are nearly identical.

2.6 Absoluteness: ProvingV = L)t

Proving thatL satisfiesV = L is a key part of the proof, and despite first ap-
pearances, it is far from trivial. It amounts to saying that the constructianisf
idempotent:L" = L. The underlying concept is callebsolutenesswhich ex-
presses that a given operator or formula behaves the same in a classvnaslél
does inV, the universe. A clashl is transitiveif x € M impliesx € M, and we
shall only be concerned with transitive models below.

Most constructions are absolute. The empty set can only be a set having no
elements, andA € B can only mean that every element Afbelongs toB. If
A and B are sets then their union can only be the set containing precisely the
elements of those sets. Many complicated notions are also absolute: domains and
ranges of relations, bijections, well-orderings, order-isomorphisms, ordinals. With
some effort, we can show the absoluteness of recursively defined data structures
and functions.

Powersets, except in trivial cases, are not absolute. For exafig,might
contain subsets of the natural numbers that cannot be shown to exist. The function
spaceA — B is not absolute because of the obvious connection betf@¢énand
A — {0, 1}. More subtly, cardinality is not absolute: M is a countable model
of set theory, and is an uncountable cardinal accordinghty then obviouslyx
must be really be countable, with the bijections betwe@mdw lying outsideM .

This situation is called Skolem’s paradd p. 141].
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Metamathematical arguments are an efficient means of proving absoluteness.
For example, any concept that is provably equivalent (in ZF) to a formula involving
only bounded quantifiers is absolu& p. 119]. This is the class af" formulae.

The larger class oAF formulae can also be shown to be absolute. Unfortunately,
all such arguments are beyond our reach unless we formalize the metatheory.

2.7 The Consequences of V= L

Once we have proved that is absolute, we obtain ZF (V = L)-. We can

then investigate the consequences of assuiding L. To prove the axiom of
choice, it suffices to prove that every set can be well-ordered. The key step, given
a well-ordering ofA, is to construct a well-ordering d@P(A). It comes from the
lexicographic ordering on tuple9, ai, ..., &) for p € F anday, ...,a € A.

So if L, is well-ordered, so i ,,;. By transfinite induction, each level of the
construction oL is well-ordered.

The axiomV = L is very strong. @del proved that it implies the generalized
continuum hypothesis. Others have proved that it implies, for example, the com-
binatorial principle known a$*. But it is important to note that such proofs are
entirely separate from that of 2F (V = L)-. We prove ZFL- AC, ZFL - GCH
and ZFL+ ¢, but we do not prove ZF- AC-, ZF - GCH- and ZF+ ¢‘. Those
results, if we want them, are most easily obtained in the metatheory, using the
general fact that i - v thengt - yt.

3 Introduction to the Isabelle/ZF Formalization

Isabelle[8, 11] is an interactive theorem prover that supports a variety of logics,
including set theory and higher-order logic. Isabelle provides automatic tools for
simplification and logical reasoning. They can be combined with single-step in-
ferences using a traditional tactical style or as structured proof texts.Piidud
Generaluser interface provides an effective interactive environment. Isabelle has
been applied to a huge number of verification tasks, including the semantics of the
Java languagelB] and the correctness of cryptographic protocdl8][ Most of

these proofs use Isabelle/HOL, the version of Isabelle for higher-order logic. Isa-
belle/HOL's polymorphic type system is ideal for modelling problems in computer
science.

Isabelle also supports Zermelo-Fraenkel set theory. Formalized material in-
cludes the traditional concepts of functions, ordinals, order types and cardinals.
Isabelle/ZF also accepts definitions of recursive functions and data structures; in
this it resembles other computational logics, with the important difference of be-
ing typeless. Some problems do call for a typeless logic. Isabelle/ZF is also good
for investigating foundational issues, and, of course, for formalizing proofs in ax-
iomatic set theory.

Previous published work on Isabelle/ZF describes its basic developd@nt [


http://isabelle.in.tum.de/
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and its treatment of recursive functior)] and inductive definitions14]. An-

other paper describes proofs drawn from set theory textbat}s Particularly
noteworthy are the proofs of equivalence between various formulations of the ax-
iom of choice. Those proofs, formalized by Grabczewski, are highly technical,
demonstrating that advanced set theory proofs can be replicated in Isabelle/ZF
given enough time and effort. That is precisely why we should investigatels

proof of the relative consistency of AC: much of the reasoning takes place outside
set theory.

The previous section has presented many reasons why we should formalize
Godel's proof directly in the metatheory. That strategy does not require a set theory
prover. We could use any system that lets us define the first-order formulae, the set
theory axioms, and the set of theorems derivable from any given axioms. We would
enjoy a number of advantages.

o Relativization could easily be defined by recursion on the structure of for-
mulae.

e Metatheorems about absoluteness — for example, thm(z)élformulae are
absolute — could be proved and used to obtain simple proofs of many abso-
luteness results.

e The constructiveness of the consistency result could be stated and proved.

However, the metatheoretical strategy also presents difficulties. We would have
to work in the pure language of set theory, which reduces all concepts to mem-
bership and equality, and is unreadable; an alternative would be to formalize the
familiar term language. We would constantly be reasoning about an explicitly for-
malized inference system for ZF rather than using our prover’s built-in reasoning
tools. | believe this strategy would involve as much work as the strategy | adopted,
although the work would be distributed differently.

The choice resembles the standard one we face when we model a formal lan-
guage: shall we adopt a deep or a shallow embedding? A shallow embedding
maps phrases in the language to corresponding phrases in the prover’s logic. It
works well for reasoning about specific examples, but does not allow metarea-
soning (proofs about the language). A deep embedding involves formalizing the
language’s syntax and semantics in the prover’s logic. The extra mechanism allows
metareasoning but complicates reasoning about specific examples. Compared with
a shallow embedding, the strengths and weaknesses are exchanged.

| have chosen to formalize@lel's theorem in set theory, minimizing any ex-
cursions into the metatheory. This strategy still requires defining relational equiva-
lents for each element of set theory’s term language, while limiting my exposure to
unreadable relational formulae. After all, the critical proofs involve showing that
various concepts are absolute, which means that they do not vary from one model
of set theory to another. Each absoluteness proof justifies replacing some primitive
of the relational language by its counterpart in the term language. Thus Isabelle’s
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simplifier can transform relational formulae into ones using terms, exploiting the
existing formalization of set theory.

This plan worked well for basic concepts such as union, intersection, relation,
function, domain, range, image, inverse image and even ordinal. The absoluteness
proofs for well-orderings, recursive functions and recursive data types were harder:

o If aconceptis defined in terms of non-absolute primitives, such as powerset,
it must be proved equivalent to a suitable alternative definition.

e Much of the theory of well-founded recursion must be formalized from
scratch in the relational language.

e Higher-order functions complicate the relational language.

e Recursive functions generate complicated fixedpoint definitions that must be
converted into relational form manually.

4 Relativization and Absoluteness: Basics

The first step is to define the relational language, introducing predicates for all the
basic concepts of set theory. Each predicate takes a class as an argument so that it
can express relativization. This relational language will later allow appeals to the
reflection theorem. Space permits only a few of the predicates to appear below.
Note that the class quantifications € M and3x € M are writtenyx[M] and

Ix[M] inlIsabelle. For exampl&x[M]. P(x) is definitionally equivalent t¥ x.

M(x) —P() .

4.1 From the Empty Set to Functions

We begin with definitions of trivial concepts such as the empty set and the subset
relation. A setz is empty if it has no elements:

"empty(M,z) == Vx[M]. x ¢ z"
"subset(M,A,B) == VXx[M]. x eA — x € B"

All Isabelle definitions in this paper are indicated by a vertical line, as shown.

A setz is the unordered pair af andb if it contains those two sets and no
others. The Kuratowski definition of ordered pajesb) = {{a, a}, {a, b}} is then
expressed using the predicafsir

"pairM,a,b,z) == Ix[M]. upair(M,a,a,x) &

"upair(M,a,b,z) == a €z&b ez & (YXM]. x €2 — x=a | x=h)"
(3y[M]. upair(M,a,b,y) & upair(M,x,y,z))"

A setz is the union ofa andb if it contains their elements and no others. The
general union_J(A), also written ag J{X | X € A}, has an analogous definition.
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"union(M,a,b,z) == VX[Ml. X €z «— x € a|x €b"
"big _union(M,A,z) == VXM]. x € z «— (3y[Ml.y €A & x € y)"

A setz is the domain of the relation if it consists of each element such that
(xy ) e r for somey.

"is _domain(M,r,z) == VX[M]. X € z «—
(FIw[M]. w er & ( 3y[M]. pair(M,x,y,w)))"
4.2 Relativizing the Ordinals

Now we can define relational versions of ordinals and related concepts. The for-
malization is straightforward.
An ordinal is a transitive set of transitive sets.

"transitive set(M,a) == Vx[M]. x €a —> subset(M,x,a)"
"ordinal(M,a) ==
transitive set(M,a) & ( VX[M]. x ea — transitive _set(M,x))"

A limit ordinal is a non-empty, successor-closed ordinal.

ordinalM,a) & ~ empty(M,a) &

“limit  _ordinal(M,a) ==
(Vx[M]. x ea — (3y[M]. y e€a & successor(M,x,y)))"

A successor ordinal is any ordinal that is neither empty nor limit.

"successor _ordinal(M,a) ==
ordinal(M,a) & ~ empty(M,a) & ~ limit _ordinal(M,a)"
The set of natural numbers, is a limit ordinal that contains no limit ordinals.

"omega(M,a) ==
limit _ordinal(M,a) & ( VXx[M]. x ea — " limit _ordinal(M,x))"

4.3 Defining the Zermelo-Fraenkel Axioms

Formally defining the ZF axioms relative to a clag¢ets us express tha satis-
fies those axioms. Each axiom is relativized so that all quantified variables range
overm.

We begin with extensionality:

"extensionality(M) ==
VX[M]. Vy[M]. ( VZIM]. z € X «<—> z €y) — x=y"

The separation axiom is also known as comprehension:

"separation(M,P) ==
Vz[M]. 3FJy[M]. VXM]. x €y «— x € z & P(X)"
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This only yields a valid instance of separation if the fornRilzbeys certain syntac-
tic restrictions. All quantifiers i must be relativized té and the free variables
in P must range over elements ®f These restrictions prevent us from assuming
separation as a scheme by leavings a free variable. We must separately note
every instance of separation that we need. If it meets the syntactic restrictions, then
later we shall be able to prove thatsatisfies it.

That looks bad when we recall that the native separation axiom in Isabelle/ZF,
and the theorems using it, are schematie.irBut if we formalize Bernays-Gdel
set theory as a new Isabelle logic (creating the system Isabelle/BG) then the same
problem occurs elsewhere. The analogue of separation in BG set theory is the Gen-
eral Existence Theorem, which is a metatheorem: proving each instance requires a
separate construction. To compensate, at least BG has no axiom schemes.

The axioms of unordered pairs, unions and powersets all statdlibatiosed
under the given operation:

"upair _ax(M) == Vx[M]. Vy[M]. 3Jz[M]. upair(M,x,y,z)"
"Union _ax(M) == Vx[M]. 3z[M]. big _union(M,x,z)"
"power _ax(M) == Vx[M]. 3z[M]. powerset(M,x,z)"

The foundation axiom states that every non-empty set hasménimal ele-
ment:

"foundation  _ax(M) ==
VXM]. (  dy[M]. y ex) — (Fy[M]. y ex & “( 3z[M]. z ex & zey))"

Call a formulaunivalentover a set if it describes a class function on that set.
The replacement axiom holds for univalent formulae:

"univalent(M,A,P) ==

VX[M]. x eA — (Vy[M]. Vz[M]. P(x,y) & P(x,z) — y=z)"
"replacement(M,P) ==
VA[M]. univalent(M,A,P) —

(3Y[M]. Vb[M]. ( 3IXM]. X €A & P(xb) — b e Y)"

Intuitively, if F is a class function and ardl is a set, then replacement says that
F* A (the image ofA underF) is a set. However, the axiom formalized above is
weaker: it merely asserts (relative to the clisthat 7“ A € B for some seB.

To get the set we really want, name#y A, we must apply the axiom of separation
to B. The weak form of replacement can be proved schematically.fdhe strong
form cannot be proved schematically because of its reliance on separation.

"strong _replacement(M,P) ==

YV A[M]. univalent(M,A,P) —

(FYM]. VbM]. b €Y «— (IXM]. x €A & P(x,b)))"
4.4 Introducing a Transitive Class Model

The absoluteness proofs are carried out with respect to an arbitrary classivhodel
although they are only needed for Generalizing the proofs over other models
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has two advantages: it separates the absoluteness proofs from reasoning about
and it allows the proofs to be used with other class models.

Isabelle’s locale mechanisnd][makes the generalization possible. A locale
packages the many properties requiredvigfcreating a context in which they are
implicitly available. A proof within a locale may refer to those properties and
to other theorems proved in the same locale. A locale can extend an older one,
creating a context that includes everything available in the ancestor locales.

locale Mtrivial =

fixes M

assumestransM: "lyex; M(x) 1T = M(y)"
and upair _ax: "upair  _ax(M)"
and Union _ax: "Union _ax(M)"
and power _ax: "power _ax(M)"

and replacement: "replacement(M,P)"
and Mnat [iff: "M(nat)"

The clasM is assumed to be transitivegnsM ) and to satisfy some relativized
ZF axioms, such as unordered pairingdir _ax) and replacement. It contains
the set of natural numbensat (which is also the ordinab). This locale does not
assume any instances of separation.

4.5 Easy Absoluteness Proofs

Here is a canonical example of an absoluteness result. The phraseivial
includes the lemma in the locale.

lemma (in Mitrivial) empty _abs [simp]:
"M(z) = empty(M,z) <«— z=0"

apply (simp add: empty _def)

apply (blast intro: transM)

done

The proof refers to the definition of empty set{pty _def ) and to the transitivity
of M (the locale assumptiomansM ); it usesblast , an automatic prover. The
attribute[simp] declaresempty _abs as a simplification rule: the simplifier will
replace any occurrence efnpty(M,z) by z=0 provided it can prové(z) . From
now on, usually just the statements of theorems will be shown, not header lines and
proofs.

Here are some similar absoluteness results, also proved in Idceléal
and declared to the simplifier. Most have trivial proofs like the one shown above.

"M(A) = subsetM,AB) <> A C B"

"M(z) = upair(M,a,b,z) <~ z={a,b}"

"M(z) = pair(M,a,b,z) «~— z=(a,b )"

"IM(n); M(A); M(z) ] = image(M,r,A,z) «~— z = r"A"
"[M(A); M(B); M(z) ] = cartprod(M,A,B,z) «~— z = AxB"

"[M(a); M(b); M(z) ] = union(M,a,b,z) «~—> z=a UuUb"
"[M(A); M(z) ] = big _union(M,A,z) <— z = Union(A)"
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These theorems express absoluteness because thid diaappears from the right-
hand side: the meaning of subset, image, etc., is the same as its meaniriggich
theorem also expresses the correctness of an element of the relational language, for
example thabig _union captures the meaning ofion .

Absoluteness results involving ordinals are also easily proved:
"M(a) = ordinal(M,a) <«~— Ord(a)"
"M(a) = limit _ordinal(M,a) < Limit(a)"
"M(a) — successor _ordinal(M,a) <~

Ord(a) & ( 3b[M]. a = succ(b))"

Thus we see that the simplifier can rewrite relational formulae into term notation,
provided we are able to prove that they refer to elementd. dfor this purpose,
there are many results showing tivits closed under the usual set-theoretic con-
structions. In particular, we can use the separation axiom for a specific formula

"M(A) = M(Union(A))"
"[M(A); M(B) 1 = M(A U B)"
" [separation(M,P); M(A) 1 = M(@{xeA. P(x) D"

Also useful are logical equivalences to simplify assertions invol¥ing

"M{a,b) <« M@ & M(b)"
"M((ab)) <« M@) & M(b)"

4.6 Absoluteness Proofs Assuming Instances of Separation

All the theorems shown above are proved without recourse to the axiom of separa-
tion. Obviously many set-theoretic operators are defined using separation — pos-
sibly in the guise of strong replacement — so we now extend lddalieial
accordingly.

locale Mbasic = M _trivial +
assumeslinter _separation:
"M(A) = separation(M, AX. Vy[ML. y €A — xey)"
and Diff _separation:
"M(B) = separation(M, AX. X ¢ B)"
and cartprod _separation:
"[M(A); M(B) 1
— separation(M, Az, AX[M]. x €A &
(3y[M]. y €eB & pair(M,x,y,2)))"
and image _separation:
"IM(A); M() 1
— separation(M, Ay. 3Ap[M]. p er &
(IX[M]. x €A & pair(M,xy,p))"
and converse _separation:
"M(r) = separation(M, Az. Ap[M]. p er &
(IxM].  3y[M]. pair(M,x,y,p) &
pair(M,y,x,z)))"

Only a few of the 11 instances of separation appear above. Omitted are the more
complicated ones, for example concerning well-founded recursion.
By Inter _separation it follows thatMis closed under intersections.
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lemma (in Mbasic) Inter _closed:
"M(A) = M(Inter(A))"

From the lemma declaration, you can see that the proof takes place in locale
Mbasic . All results proved in local&trivial remain available.

By cartprod _separation it follows that the clas# is closed under Carte-
sian products. The proof is complicated because the powerset operator (which is
not absolute) occurs in the definition. A trivial corollary is tiviis closed under
disjoint sums.

"[M(A); M(B) ] = M(AxB)"
"[M(A); M(B) 1] = M(A+B)"

| devoted some effort to minimizing the number of instances of separation required.
For example, the inverse image operator is expressed in terms of the image and
converse operators. Then the domain and range operators can be expressed in
terms of inverse image and image. We obtain five closure theorems from the two
assumptiongnage _separation andconverse _separation

"[M(A); M() 1 = M(™A)"

"[M(A); M(r) 1 = M(r-“A)"

"M(r) = M(converse(r))"

"M(r) == M(domain(r))"

"M(r) = M(range(n))"

These five operators are also absolute. Here is the resulbficain :
"[M(r); M(z) ] = is _-domain(M,r,z) <— z = domain(r)"

Although we assume thai satisfies the powerset axiom, we cannot hope to
proveM(A) ==M(Pow(A)) . The powerset oh relative toM is smaller than the
true powerset, containing only those subseta diat belong tavi. Similarly, we
cannot show tha¥l contains all functions from to B. However, it holds for a finite
case, essentially the sBf of n-tuples:

"[nenat; M(B) ] = M(n->B)"

This lemma will be needed later to prove the absoluteness of transitive closure.

4.7 Some Remarks About Functions

In set theory, a function is a single-valued relation and thus is a set of ordered pairs.
Operators such as powerset and union, which apply to all sets, are not functions.
(Strictly speaking, there are no operators in the formal language of set theory, since
the only terms are variables.) Isabelle/ZF distinguishes functions from operators
syntactically.

e The application of the functiof to the argumenk is writtenfx . On
the other hand, application of an operator to its operand is written using
parentheses, as Fow(X) , or using infix notation.
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e Function abstraction over a sefis indicated byix €A, and yields a set of
pairs. For instancey,x cA.x denotes the identity function oa Operators
are essentially abstractions over the universe, as.irow(Pow(x)) . Ab-
straction can also express predicates; for instanc®(x) & Q(x) isthe
conjunction of the two predicaté&sandQ.

Kunen [, p.14] defines function application in the usual wal/:x is “the
uniquey such that(x, y) € f.” Isabelle/ZF originally adopted a formal version
of this definition, using a description operat@f] 87.5]. The relational version of
the operator, namelfun _apply(M,f,x,y) , held if the pair(x,y ) belongs té
for that uniquey.

My original definitions of function application, in its infix and relational forms,
both followed Kunen’s definition. However, the absoluteness theorem relating
them was conditional on the function application’s being well-defined. That made
it harder to simplifyfun _apply(M,f,x,y) tofx = y and often forced proofs
to include what was essentially type information.

Redefining function application bfx = [ J( f“{a}) solved these problems by
eliminating the definite description. The new definition looks peculiar, but it agrees
with the old one when the latter is defined. Its relational version is straightforward:

"fun _apply(M,f,xy) ==
(3Ixs[M].  Ifxs[M].
upair(M,x,x,xs) & image(M.f,xs,fxs) & big -union(M,fxs,y))"

Thus it follows thatM is closed under function application, which is also absolute:

"IM(®); M(@) 1 = M(fa)"
"IM); M(x); M(y) 1 = fun _apply(M,fxy) — fx =y

5 Well-Founded Recursion

The hardest absoluteness proofs concern recursion. Well-founded recursion is the
most general form of recursive function definition. The proof that well-founded
relations are absolute consists of several steps. Well-orderings, which are well-
founded linear orderings, are somewhat easier to prove absolute.

5.1 Absoluteness of Well-orderings

The concept of well-ordering is the first we encounter whose absoluteness proof is
hard. One direction is easy: if relationvell-ordersA, then it also well-orderg\
relative toM. For if every nonempty subset & has arr-minimal element, then
trivially so does every nonempty subsetAthat belongs td; this is Lemma IV

3.14 in Kunen §, p. 123]. For proving the converse direction, Kunen (Theorem
IV 5.4, page 127) reasons that “every well-ordering is isomorphic to an ordinal.”
We can obtain this result by showing that order types exi#t iand are absolute.

The proof requires some instances of separation and replacemét for
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The theory defines various properties of relations, relative to a Ma3san-
sitivity, linearity, and other simple properties have the obvious definitions and are
easily demonstrated to be absolute. The definition of well-founded refers to the
existence of -minimal elements, as discussed above.

"wellfounded _on(M,A,r) ==
VX[M]. x #0 — x C A
— (FyM]. y ex & (3Az[M]. z ex & (zy ) € 1)"

A well-ordering is a well-founded relation that is also linear and transitive.

"wellordered(M,A;r) ==
transitive _rel(M,A,r) & linear relMAyr) &
wellfounded _on(M,A,n)"

Kunen’'s lemma IV 3.14 takes the following form:

"well _ord(A,r) — wellordered(M,A,r)"

The definition of order types is standard; see Theorem | 7.6 of Kus)gn 17].
We use replacement to construct a function that maps elementsoobrdinals,
proving that its domain is the whole #fand that each element of its range is an
ordinal. Its range is the desired order type. But the construction must be done
relative toM. In particular, when we need well-founded inductionrgrwe must
apply a relativized induction rule:

"[aeA; wellfounded _on(M,A,r); M(A);

separation(M, IX. X €A — "P(x));
VxeA. MX) & ( VyeA. (yx ) er — Py) — PX ]
= P@)"

One premise is an instance of the separation axiom involving the negation of the in-
duction formula. Each time we apply induction, we must assume another instance
of separation.

After about 250 lines of proof script, we arrive at Kunen’s Theorem IV 5.4.
The notion of well-ordering is absolute:

"[M(A); M(r) ] = wellordered(M,A,r) <~ well _ord(A,n)"

Order types are absolute. That is,fifis an order-isomorphism from between
(A,r) and some ordinal, theni is the order type ofA,r)

" [wellordered(M,Ar); f € ord _iso(A, r, i, Memrel(i));
M(A); M(r); M(f); M(i); Ord(i) ] = i = ordertype(A,n"

These results are not required in the sequel, but | found their proofs useful prepa-
ration for tackling the more general problem of well-founded recursion.
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5.2 Functions Defined by Well-founded Recursion Are Absolute

It is essential to show that functions can be defined by well-founded recursion in
and that such functions are absolute. This is Kunen’s theorem IV 5.6, page 129.
Letr be a well-founded relation. If is recursively defined overthen f (a) is
derived froma and from varioud (y) wherey ranges over the set ofpredecessors

of a. This set is just ~“{a}, the inverse image ofa} underr, more explicitly
{y | {y,a) er}. Writing the body off asH (x, g), with free variablex andg, we
get the recursion equation:

f@=Ha@ f @) 1)

Note that f | (r~1“{a}) denotes the function obtained by restrictirfigto r -
predecessors @.

If r andH are given, then the existence of a suitable functfofollows by
well-founded induction over, as | have described in previous wok?]. | have
had to repeat some of these proofs relativétol he theorems may assume only
the relativized assumptiomellfounded(M,r) , which for the moment is weaker
thanwf(r) . About 200 lines of proof script are necessary, but fortunately much
of this material is based on earlier proofs. We reach a key result concerning the
existence of recursive functions:

" [wellfounded(M,r); trans(r);
separation(M, Ax. T ( 3fM]. is  _recfun(r,x,H,));

strong _replacement(M, AX Z.

Jy[M].  Fg[M]. z= (xy ) & is _recfun(r,x,H,g) & y = H(x,9));
M(r);  M(a);
Vx[M]. Vvg[M]. function(g) — MMH(x,9)) 1

= 3f[M]. is  _recfun(r,a,H,f)"

The predicatés _recfun(r,a,H,f) expresses thatsatisfies the recursion equa-
tion (1) for the given relationr and bodyH for all r -predecessors af. So the
theorem states thatifis well-founded and transitive then there existis M satis-
fying the recursion equation beloav Obviouslyr anda must belong to the class
M which moreover must be closed undterTwo additional premises list instances
of separation and replacement, which depend up@mdH. Before we can as-
sume such instances, we must express them relative hat in turn requires a
relativized version ofs _recfun

"M_is _recfun(M,MH,r,a,f) ==
VzIMl. z € f <«—
(Ix[M].  3Fy[M]. 3FIxaM]. 3FIsx[M]. 3Fr_sx[M]. 3If_r_sx[M].
pair(M,x,y,z) & pair(M,x,a,xa) & upair(M,x,x,sx) &
pre _image(M,r,sx,r _sX) & restriction(M,f,r sxf rsx) &
xa € r & MH(x, f _r_sx, y))"

This definition is the translation of equatiof) (into relational language. (Ob-
serve how quickly this language becomes unreadable.) In particular, the binary
operatoH becomes the ternary relatioftH The argument makess _recfun a
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higher-order function, which complicates subsequent work. We cannot relativize
is _recfun once and for all, but iMHis expressed in relational language, then so
is Mis _recfun

The predicateelation2 expresses thas f is the relational form off
overM:

"relation2(M,is ff) ==
Vx[M]. Vy[M]. Vz[M]. is _f(x,y,2) «~—> z = f(x,y)"

The predicatés wfrec expresses thatis computed froma andMHby well-
founded recursion over. The body of the definition expresses the existence of a
functionf satisfying equationl), withz = H(a,f)

"is _wfrec(M,MH,r,a,z) ==
If[M]. M _is _recfun(M,MH,r,a,f) & MH(a,f,z)"

We now reach two lemmas, stating thMis _recfun andis _wfrec behave
as intended. The first result is absolutenests afecfun . Among the premises
are thatvis closed undeH and thatViHis the relational form ofi:

"[¥x[M]. Vg[M]. function(g) — M(H(x,9)); M(r); M(a); M();
relation2(M,MH,H) 1
— Mis _recfun(M,MH,r,a,f) <« is _recfun(r,a,H,f)"

Under identical premises, we get the corollary

"is _wfrec(M,MH,r,a,z) <— (3g[M]. is _recfun(r,a,H,g) & z=H(a,g))"

5.3 Making Well-founded Recursion Available

Mathematically speaking, we have already proved the absoluteness of well-
founded recursion. Pragmatically speaking, unfortunately, more work must be
done to package the results so that they can be used in formal proofs. In partic-
ular, we need a theorem relating the predidatenfrec defined above with the
functionwfrec provided by Isabelle/ZF12, 83.1]; wfrec(r,a,H) denotes the
result off(a) , wheref is the function with bodyH defined by recursion over.

The development of well-founded recursion assumeés be transitive. To
apply well-founded recursion to other relations requires a theory of transitive clo-
sure. Isabelle/ZF defines the transitive closure of a relation inducti®@)ygp.5].
Inductive definitions are abstract and elegant, but they do not lend themselves to
absoluteness proofs because they use the powerset operator. We must find an alter-
native definition, and an obvious one is based on the intuition

X<'Y &= X=9<S < <$=Y.

The sequenc®), sy, . . ., $, can be modelled as a finite function: as noted in Section
4.6, finite functions are absolute. Frox<* y it is trivial to define the transitive
closure,x <" y. In the definition belowf is the sequence amlis intended to
represent the field of:
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“rtrancl  _alt(A,r) ==
{p € A*A. 3Tnenat. 3If € succ(n) -> A.
(Ixy. p= Xy )& fO=x&fn=y) &
(Vien. (fi, fsucc(i) )y € n}"

It is easy to prove that this definition coincides with Isabelle/ZF's inductive one:

“rtrancl  _alt(field(r),r) = r™*"

Since every concept used in the new definition is absolute, we merely have to
relativize this definition tavi definingrtran _closure _mem(M,Ar,p) to hold
whenp is an element oftrancl  _alt(A,r) . | omit the definition because the
relational language is unreadable. We cannot even use the coadbamntmust
introduce a variableero and constrain it bympty(M,zero)

The next two predicates relativize the reflexive-transitive and transitive closure
of a relation:

“rtran  _closure(M,r,s) ==

VA[M]. is field(M,r,A) —

(Vp[M]. p € s «— rtran _closure _mem(M,Ar,p))"
"tran _closure(M,r,t) ==

Is[M]. rtran  _closure(M,r,s) & composition(M,r,s,t)"

Once we assume an instance of separation involsiag _closure _mem clo-
sure and absoluteness results follow directly:

"M(r) = M(rtrancl(r))"

"[M(r); M(z) ] = rtran _closure(M,r,z) <«~— z = rtrancl(r)"
"M(r) = M(trancl(r))"
"[M(r); M(z) 1 = tran _closure(M,r,z) <— 2z = trancl(n)"

If a relation is well-founded then so is its transitive closure. The following
lemma use useful because at this point we do not knowitbiéfbunded(M,r)
is equivalent tavf(M,r)

" [wellfounded(M,r); M(r) 1 = wellfounded(M,r+)"

After about 130 lines of proof script, we arrive at some important theorems. One
asserts absoluteness, relating the predisatefrec with the operatowfrec :

"[wf(r); trans(r); relation(r); M(r); M(a); M(2);
wfrec _replacement(M,MH,r); relation2(M,MH,H);
VX[M]. Vg[M]. function(g) — M(H(x,9)) 1
— is _wfrec(M,MH,r,a,z) «~— z=wfrec(r,a,H)"

Another states that the clasds closed under well-founded recursion:

" [wf(r); trans(r); relation(r); M(r); M(a);
wfrec _replacement(M,MH,r); relation2(M,MH,H);
Vx[M]. Vg[M]. function(g) — M(H(x,9)) 1]
= M(wfrec(r,a,H))"
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The theorems fortunately require identical instances of replacement. Both the-
orems assum@ans(r) ; omitted are more general theorems that relax the as-
sumption of transitivity.

Both theorems use the predicatitec _replacement to express a necessary
instance of replacement. Its arguments are the ternary predicatehich repre-
sents the body of the recursive function, and the well-founded relation

"wfrec _replacement(M,MH,r) ==
strong _replacement(M,
Ax z. 3y[M]. pair(M,xy,z) & is _wfrec(M,MH,r,x,y))"

6 Defining First-Order Formulae and the Class L

We pause from proving absoluteness results in order to consider our main objective,
namely the clask and its properties. The most logical order of presentation might
have been to develob first and then to prove that constructibility is absolute.
The order of presentation adopted here better represents how | actually carried
out the proofs. Kunen similarly presents general absoluteness results before he
introduced_.

6.1 Internalized First-Order Formulae

The idea ofL is to introduce, at each stage, the sets that can be defined from ex-
isting ones by a first-order formula with parameters. Neithéd& nor Kunen ac-
tually use first-order formulae, preferring more abstract constructions that achieve
the goal more easily. However, Isabelle/ZF's recursive datatype package automates
the task of defining the set of first-order formulae and the satisfaction relation on
them.

The obvious representation of first-order formulae is de Bruij]s Where
there are no variable names. Instead, each variable reference is a non-negative
integer, where zero refers to the innermost quantifier and larger numbers refer to
enclosing quantifiers. If the integer is greater than the number of enclosing quan-
tifiers, than it is a free variable. This representation eliminates the danger of name
confusion. It is particularly useful for formulae with parameters, since their order
is determined numerically rather than by name.

datatype  “"formula" = Member ("X € nat", "y € nat")
| Equal ("X € nat", "y € nat")
| Nand ("p € formula", "q e formula)
| Forall ("p e formula™)

Having only four cases simplifies the relativization of functions on formulae. All
propositional connectives are expressed in terni¢antl.
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"Neg(p) == Nand(p,p)"

"And(p,q) == Neg(Nand(p,q))"

"Or(p,q) == Nand(Neg(p).Neg(a))"
"Implies(p,q) == Nand(p,Neg(q))"

"Iff(p,q) == And(Implies(p,q), Implies(q,p))"
"Exists(p) == Neg(Forall(Neg(p)))"

6.2 The Satisfaction Relation

Satisfaction is a primitive recursive function on formulae. Thanks to the nameless
representation, interpretations are simply lists rather than functions from variable
names to values. The familiar list functioth , defined below, looks up variables

in interpretations:

"nth(0, Cons(a, I)) = a"
"nth(succ(n), Cons(a,l)) = nth(n,l)"
"nth(n, Nil) = 0"

The second of these equations is subject to the conditian nat . Note that
element zero is the head of the list. Another useful functidwis _of _o, which
converts a truth value to an integer:

| "bool _of o(P) == (if P then 1 else 0)"

This conversion is necessary because Isabelle/ZF is based on first-order logic. For-
mulae are not values, so we encode them using integers. We thus define a recursive
predicate as a recursive integer-valued function. We are now able to define the
functionsatisfies  , which takes a set (the domain of discourse), a formula and
an interpretation (writteenv for environment). It returns 1 or 0, depending upon
whether or not the formula evaluates to true or false:

"satisfies(A,Member(x,y)) =

(renv € list(A). bool _of _o (nth(x,env) € nth(y,env)))"
"satisfies(A,Equal(x,y)) =
(renv € list(A). bool _of .o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
(renv € list(A). not ((satisfies(A,p)‘env) and
(satisfies(A,q)‘env)))”
"satisfies(A,Forall(p)) =
(renv e list(A). bool _of o
(VxeA. satisfies(A,p)(Cons(x,env)) = 1))"

The abstraction and explicit function applications involving environments are
necessary because the environments can vary in the recursive calls. The last line
of satisfies deserves attention. The universal formetaall(p) evaluates to
1 just if p evaluates to 1 in every environment obtainable fram by adding an
element ofA. Such environments have the fo@ons(x,env)  for x €A

The satisfaction predicatesats , is a macro that refers to the function
satisfies

translations "sats(A,p,env)" == "satisfies(A,p)'env = 1"
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The satisfaction predicate enjoys a number of properties that relate the inter-
nalized formulae to real formulae. All the equivalences are subject to the typing
conditionenv ¢ list(A) . For example, the membership and equality relations
behave as they should:

"sats(A, Member(x,y), env) <«— nth(x,env) € nth(y,env)"
"sats(A, Equal(x,y), env) <— nth(x,env) = nth(y,env)"

The propositional connectives also work:

"sats(A, Neg(p), env) «~— " sats(A,p,env)"
"(sats(A, And(p,q), env)) <« sats(A,p,env) & sats(A,g,env)”
"(sats(A, Or(p,q), env)) <«— sats(A,p,env) | sats(A,g,env)"

Quantifiers work too. Notice how the environment is extended:

"sats(A, Exists(p), env) «— (3IxeA. sats(A, p, Cons(x,env)))"

6.3 The Arity of a Formula

The arity of a formula is, intuitively, its set of free variables.shis(A,p,.env)
if the arity of p does not exceed the lengthafv, then the environment supplies
values to all ofp’s free variables.

Take each de Bruijn reference, adjusted for the depth of quantifier nesting at
that point; the arity is the maximum of the resulting values. The recursive definition
of functionarity  is simpler than this description.

"arity(Member(x,y)) = succ(x) U succ(y)"
"arity(Equal(x,y)) = succ(x) U succ(y)"
"arity(Nand(p,q)) = arity(p) U arity(q)"

"arity(Forall(p)) = Arith.pred(arity(p))"

Note thatm U n = maxm, n} in set theory and thaarith.pred denotes the
predecessor function. Trivial corollaries of this definition tell us how to compute
the arities of other connectives:

“arity(Neg(p)) = arity(p)"
"arity(And(p,q)) = arity(p) U arity(q)"

The following result is more interesting. Extra items in the environment (ex-
ceeding the arity) are ignored. Heg@@is the list “append” operator, senv @
extra isenv with additional items added.

" [arity(p) < length(env); p e formula;
env e list(A); extra e list(A) 1
= sats(A, p, env@extra) «~— sats(A, p, env)"
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6.4 Renaming (Renumbering) Free Variables

If Ais a set, then the subset

{xe Alo(X,a1,...,8m)}

is determined by the choice ¢f and of the parameters,, ..., an, which are
elements ofA. These are the definable subsetof
Now, consider the problem of showing that the definable sets are closed under
intersection. Suppose another subsed &f defined by a formulg and parameters
Am+1, -+« 5 8myn:
{xeAlY¥X, ani1, .-, 8men)}

Then, their intersection can presumably be defined by

{XeA|¢(X’al,-~’am)/\1//(xaam+l’---,am-i-n)}

Our aim is to regard the conjunctignA  as having the free variables ay, . . .,

a,. The occurrences of in both formulae must be identified, while the parameter
lists of the two formulae must be kept disjoint. To achieve our aim may require
renaming one of the formula’s free variables.

The de Bruijn representation refers to variables by number rather than by name.
The variables shown asabove always have the de Bruijn index zero, so they will
be identified automatically. We keep the parameter lists disjoint by renumbering
the free variables in one of the formulae. Sincenust be left alone, we only
renumber the variables having an index greater than zero.

Renumbering functions are often necessary with the de Bruijn approach,
though normally they rename variables during substitution. When efficiency mat-
ters, the renumbering functions take an argument specifying what number should
be added to the variables. Here, the definitions are for reasoning about rather than
for execution, so renaming for us means adding one; repeating this allows renam-
ing by larger integers. In the following definitionsg refers to the number of
quantifiers enclosing the current point. Any de Bruijn index smaller trpmust
not be renamed.

6.4.1 The Renaming Function
First, we need a one-line function that renames a de Bruijn variable:
‘ "incr _var(x,nq) == if x<nq then x else succ(x)"

Now we can define the main renaming function. As wittisfies above, ab-
straction and explicit function applications are necessary: the argumgfiest-

ing of quantifiers”) varies in the recursive calls. In tMember andEqual case, the
variables are simply renamed. TRend case recursively renames the subformulae
using the same nesting depth, while Bueall case renames its subformula using
an increased nesting depth.
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"incr _bv(Member(x,y)) =
(Ang € nat. Member (incr  _var(x,nq), incr _var(y,nq)))"

"incr _bv(Equal(x,y)) =
(Ang € nat. Equal (incr _var(x,nq), incr _var(y,nq)))"

“incr _bv(Nand(p,q)) =
(ang € nat. Nand (incr  _bv(p)'ng, incr _bv(g)'nq))"

“incr  _bv(Forall(p)) =
(Ang € nat. Forall (incr _bv(p) * succ(ng)))”

Recall the example at the start of this section, concerning a set defined by the
conjunctiong A . If we are to conjoin the formula¢ andy» and combine their
sets of parameters, then we need to ensure that some of the parameters are only
visible to ¢ and the rest are only visible . The following lemma makes this
possible:

"[p e formula; bvs € list(A); env e list(A); x e Al
= sats(A, incr _bv(p) ‘ length(bvs), bvs @ Cons(x,env)) “«—>
sats(A, p, bvs@env)"
For the intuition, suppose thats is the list o, ..., Xm_1] (and therefore has
lengthm). Then the conclusion essentially says
sats(A, incr bv(p) * m, [Xo, - - Xm—1s X, Xms « - - Xn]) <«—
sats(A, p, [0, ..., Xm—1,> Xm> - - - » xn])"

and thus the renaming allows an additional value to be put into the environment at
positionm The renamed formula will ignore the new value. By repeated renaming,
we can construct a formula that will ignore a section of the parameter list that is
intended for another formula.
The next result describes the obvious relationship betwegn and renam-

ing. Renaming increases a formula’s arity by one, unless the variable being re-
named does not exist, when renaming has no effect.
"[p € formula; n € nat ]

= arity (incr bv(p) ‘' n) =

(if n < arity(p) then succ(arity(p)) else arity(p))"

Considering how trivial the notion of arity is, many proofs about it (including this
one) are complicated by innumerable case splits. Getting the simplifier to prove
most of them automatically requires some ingenuity. Many other tiresome proofs
about arities are omitted.

6.4.2 Renaming all but the first bound variable

One more thing is needed before we can define sets using conjunctions. As dis-
cussed at the beginning of Se&#, when a formulap defines a set, the variable

with de Bruijn index zero gives the extension of that set, while the remaining free
variables serve as parameters. Therefore, our basic renaming operator must only
rename variables having a de Bruijn index of one or more:
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‘ “incr _bvl(p) == incr  _bv(p)1l"

Finally we reach a lemma justifying our intended use of renaming.

"[p e formula; bvs e list(A); x € A, env € list(A);
length(bvs) = n 1]
= sats(A, iterates(incr _bvl, n, p), Cons(x, bvs@env)) <«

sats(A, p, Cons(x,env))"

If the environment has an initial segmemts of lengthn and if we apply the

incr _bvl n times, then the modified formula ignores thvs part. But the re-
named and original formulae agree on the first element of the environment, shown
above ax.

6.5 The Definable Powerset Operation

The definable powerset operator is callzebw:

"DPow(A) == {X € Pow(A).
Jenv e list(A). dp € formula.
arity(p) < succ(length(env)) &
X = {x €A. sats(A, p, Cons(x,env))}}"

A set X belongs toDPow(A) provided there is an environmerhv (a list
of values drawn fromA) and a formulap. The constraintarity(p) <
succ(length(env)) indicates that the environment should interpret all but one
of p’s free variables. The variable whose de Bruijn index is zero determines the
extension ofX via the satisfaction relatiorsats(A, p, Cons(x,env)) . You
may want to compare this with the informal discussion in the previous section, or
with Definition VI 1.1 of Kunen g, p. 165].

Some consequences of this definition are easy to prove. The empty set is de-
fined by the predicat&x.x # X, and singleton sets byx. x = a.

"0 e DPow(A)"
"a € A = {a} < DPow(A)"

The complement of a s&tis defined by negating the formula used to deffne
Intersection is done by conjoining the defining formulae, using the renaming tech-
niques developed in the previous section. Union is then trivial by de Morgan’s
laws.

"X € DPow(A) = (A-X) € DPow(A)"

"[X € DPow(A); Y € DPow(A)] = X Int Y € DPow(A)"
"[X € DPow(A); Y € DPow(A)] = X Un Y € DPow(A)"

And thusDPowcoincides withPow (the real powerset operator) for finite sets:

"Finite(A) — DPow(A) = Pow(A)"
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6.6 Proving that the Ordinals are Definable

In order to show thaDPow is closed under other operations, we must be able to
code their defining formulae as elements of thef@atula . The treatment of the
subset relation is typical. We begin by encoding the formrMdaz € x — z € .
Below, x andy are de Bruijn indices, which are incrementedstac(x) and
succ(x) because the quantifier introduces a new variable binding.

"subset _fm(x,y) ==
Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"

The arguments are just de Bruijn indices because internalized formulae have no
terms other than variables. It is trivial to prove tlsabset _fm maps a pair of de
Bruijn indices to a formula:

"[x € nat; y € nat] — subset fm(xy) € formula"

The arity of the formula is the maximum of those of its operands:

"[x € nat; y € nat] = arity(subset _fm(x,y)) = succ(x) U succ(y)"

The following equivalence involves absoluteness, since it rekatieset _fm
to the real subset relatior;. To reach this conclusion requires the additional
assumptionTransset(A) , saying thatA is a transitive set. The premise <
length(env) puts a bound orx (which is a de Bruijn index), ensuring that
nth(x,env)  belongs toA.

"[x < length(env); y € nat; env € list(A); Transset(A) 1
— sats(A, subset  _fm(x)y), env) <— nth(x,env) C nth(y,env)"

We must repeat this exercise (details omitted) for the concepts of transitive
set and ordinal. This lets us prove that ordinals are definable, leading to a result
involving ordinals andPow

"Transset(A) = {x € A. Ord(x)} € DPow(A)"

This lemma ultimately leads to a proof tHatontains all the ordinals.

6.7 Defining L, The Constructible Universe

The constaniLset formalizes the family of set§L,}.con. Its definition in
Isabelle/ZF uses a standard operator for transfinite recursion. We also define

L = Useon Lt

"Lset(i) == transrec(i, %x f. Jy ex. DPow(fy))"
"L(x) == 3i. Ord(i) & x € Lset(i)"

Some effort is required before we can transform the cryptic definitiasef into
the usual recursion equations. First, we prove Kune®)'$[167] lemma VI 1.6,
which states the transitivity and monotonicity of thg:
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"Transset(A) = Transset(DPow(A))"
"Transset(Lset(i))"
"I <] —> Lset(i) C Lset())"

Then we reach the 0, successor and limit equations fok the
"Lset(0) = 0"

"Lset(succ(i)) = DPow(Lset(i))"

"Limit(i) = Lset(i) = ( Jyei. Lset(y))"

The basic properties df, as presented in Kunen’s IV §1, are not hard to prove.
For examplel contains the ordinals:

"Ord(i) — i € Lset(succ(i))"
"Ord(i) = L(i)"

6.8 Eliminating the Arity Function

The functionmarity  can be surprisingly hard to reason about, particularly when we
try to encode higher-order operators. Once we have established the basic properties
of L, we can prove its equivalence to a new definition that does not involve arities.
Here is another form of definable powerset:
"DPow'(A) == {X € Pow(A).
Jenv e list(A). dp e formula.
X = {x €A. sats(A, p, Cons(x,env))}}"

This version omits the constraiatity(p) < succ(length(env)) but is oth-
erwise identical tddPow The pointis that if the environment is too short, attempted
variable lookups will yield zero; recall the propertiesntti from Sect6.2. If the
setAis transitive, then it contains zero as an element. So the too-short environment

can be padded to the right with zeroes.
"Transset(A) — DPow(A) = DPow’(A)"

EachLset(i) is atransitive set, so they can be expressed Wiy’ rather than
DPow.

"Lset(i) = transrec(i, %x f. Uyex. DPow’ (f * y))"

The equation above, proved by transfinite induction, lets us relatigizte without
having to formalize the functionsrity andlength . That eliminates a lot of
work.

The following lemma is helpful for proving instances of separation. The first,
quantified, premise asks for an equivalence between the real formaital the
internalized formulg. Often we can derive from P automatically by supplying
a set of suitable inference rules.

"[VxeLset(i). P(x) <« sats(Lset(i), p, Cons(x,env));
env ¢ list(Lset(i)); p e formula ]
= {x eLset(i). P(x)} € DPow(Lset(i))"

Also, the lemma makes no referenceatity , thanks to the equivalence between
DPow’ andDPow
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6.9 The Zermelo-Fraenkel Axioms Hold in L

Following Kunen VI 82, it is possible to prove thatsatisfies the Zermelo-Fraenkel
axioms. Separation is the most difficult case and is considered later.

6.9.1 Basic Properties of L

We begin with simple closure properties. Many of them involve exhibiting an
element oformula  describing the required set. We typically begin by starting in
Lset(i)  and proving that the required set belong&¢et(succ(i))

L is closed under unions:

"X € Lset(i) = Union(X) € Lset(succ(i))"
"L(X) = L(Union(X))"

L is closed under unordered pairs. More work is hecessary because the sets
andb may be introduced at different ordinals:

"a € Lset(i) = {a} e Lset(succ(i))"

"[a € Lset(i); b € Lset(i) ] = {ab} € Lset(succ(i))"

"[a € Lset(i); b € Lset(i); Limit(i) 1 = {ab} € Lset()"
"[L@); L(b) ] = L{a bY)"

Also, L, is closed under ordered pairs provided a limit ordinal. This result
is needed in order to apply the reflection theorenh toSpecifically, it is needed
because my version of the reflection theordrf] uses ordered pairs to cope with
the possibility of a formula having any number of free variables.

"[a € Lset(i); b € Lset(i); Ord(i) 1

— (a,b ) e Lset(succ(succ(i)))"

"[a € Lset(i); b € Lset(i); Limit(i) ] = (ab) € Lset(i)"
6.9.2 A Rank Function for L

Some proofs require thie-rank operator. Kunen (VI 1.7) definggx) to denote
the leastr such thatx € L, 1:

| "rank(x) == pi. x € Lset(succ(i)"
Here is one consequence of this definition:
"Ord(i) = X € Lset(i) «— LX) & Irank(x) (i

A more important result, whose proof involveank , states that every set of
constructible sets is included in soineet :

"(VxeA. L(x) = 3i. Ord() & A C Lset(i)"

This theorem is useful in proving thatsatisfies the separation axiom. However,
note thatA C L does not implyA € L, not even ifAis a set of natural numbers.
Thelrank operator is useful for proving thatsatisfies the powerset axiom:
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LX) = Ly € Pow(X). LD"

Note that the powerset of in L comprises all subsets &fthat belong td.. It is
potentially a superset @Pow(X) .

Thelrank operator also assists in the proof thasatisfies the replacement
axiom. The idea is to use replacement on the ranks of the membiers of

"[L(X); univalent(L,X,Q) 1
= 3Y. L(Y) & Replace(X, %x y. Q(x,y) & L(y)) c vy

The proof of replacement is schematic, and therefore independent of the f@mula
But it is the weak form of replacement. It concludes that the range (efewed

as a class function) is included in some constructibleysebtrong replacement,
which is the version we really want, asserts that the range itself is constructible.
Each instance of strong replacement requires proving an instance of the axiom of
separation.

6.9.3 Instantiating the LocaleMtrivial

Now we are ready to show thatsatisfies all the properties we assumed of the
classM which we used to develop the general theory of absoluteness. The.class
is transitive:

"lyex; L(x) 1 = L))"

The facts about proved above can be summarized using the relativized forms of
the ZF axioms:

"Union _ax(L)"
"upair _ax(L)"
"power _ax(L)"
"replacement(L,P)"

We do not need to satisfy the foundation axiom. However, this fact is a trivial
consequence of the foundation axiom:

"foundation  _ax(L)"

The theorems above are all we need to praRROP Mtrivial(L)" . This the-
orem makes all the results proved in locéi trivial” available as theorems
aboutL. In particular, the absoluteness and closure results listed in4Sgabove
apply toL.

7 Comprehensionin L

It remains to show thdt satisfies the axiom of separation. The proof requires the
reflection theorem. As described elsewhdrg,[my formalization of that theorem
applies to any clasM = (J,.on M«, Where the family{M, }qcon is increasing
and continuous. An additional condition is thatdfis a limit ordinal thenM,
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must be closed under ordered pairing. Isabelle’s locale mechanism captures these
requirements, and we can now instantiate the locale with thelclas$ J, .oy La-
However, making it ready for practical use requires additional work.

7.1 The Reflection Relation

The reflection theorem states thabifxy, . . ., Xn) is a formula inn variables then
there exists a closed and unbounded classuch that for ale € C andxq,...,
Xn € M, we have

AM (X1, .. Xn) = dMe(Xq, ..., Xn).

In fact, we only need the weaker conclusion tais unbounded, which enables
us to find a suitable > g given any ordinal5.

Applying the reflection theorem yields an Isabelle formula describing the
classC. These formulae may be interesting in the case of small exampigs [
but in typical applications they are huge. The trivial proofs, which merely refer
to other instances of reflection, take minutes of computer time; the resulting the-
orems amount to pages of text. The obvious solution is to express the reflection
theorem using an existential quantifier, but classes cannot be quantified over: they
are formulae.

Fortunately, Isabelle makes a distinction between the object-logic (here first-
order logic) and the metalogic (a fragment of higher-order lodit) [ was able
to formalize a metaexistential quantifier. It lies outside of first-order logic — in
particular, Isabelle will reject any attempt to use it in comprehensions. However,
it can be used in top-level assertions, which is all we need. We can now define the
reflection relation between two formuleandQ:

"REFLECTS[P,Q] ==
(??C. Closed _Unbounded(C) &
(Va. C(a) — (Vx € Lset(a). P(x) «~— Qax)))"

It relates the formulae just if there exists a cl@ssatisfying the conclusion of the
reflection theorem15]. That is,C is a closed, unbounded class of ordinalsuch
thatP andQ agree orL,. The existential quantifie??C, hides the prohibitively
large formula describing this class. The following lemma illustrates the use of the
reflection relation. Note that the quantification over classes has disappeared.

" [REFLECTS[P,Q]; Ord() 1]
— 3j. i5j & ( Vx e Lset(). P(x) «~— Q(.x)"

If REFLECTS[P,Q] andi is an ordinal then there exists a larger ordipafor
which P andQagree. Our choice af can makg arbitrarily large.

The general form of the reflection theorem uses the relativization operator,
which cannot be expressed in Isabelle/ZF. However, given a specific fogmula
we can generate an instance of the reflection theorem relptimmdg>. Here is
the base case, where normafghould have the formm € yorx = y:
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"REFLECTS[P, a x. P(X)]"

Reflection relationships can be formed over the propositional connectives, here
negation, conjunction and biconditionals:

"REFLECTS[P,Q] = REFLECTSpx. P(X),  *a x. "Q(ax)]"

" [REFLECTS[P,Q]; REFLECTS[P',Q71 1]
= REFLECTSpx. P(x) A P'(x), ra x. Q(a,x) A Q@X)]"

"[REFLECTS[P,Q]; REFLECTS[P',Q71 1]
— REFLECTSPix. P(x) <«— P'(x), ra x. Q(a,x) <~ Q'(ax)"

Reflection relationships can be formed over the quantifiers:

"REFLECTS[ Ax. P(fst(x),snd(x)), ra x. Q(a,fst(x),snd(x))]
— REFLECTS[px. 3z[L]. P(x,2), ra x. FJzelset(a). Qa,x,z)]"

In the conclusion, a quantification overis related to one ovek,, as suggested

by the general form of the reflection theorem. The premise uses the projection
operators for ordered pairs to introduce the new variablesyntactically, Ax.
P(fst(x),snd(x)) is a unary formula.

7.2 Internalized Formulae for Some Set-Theoretic Concepts

Every operator or concept that is used in an instance of the axiom of separation
must be internalized. If the defining formula is complicated, then writing the cor-
responding element dérmula requires a manual (and error-prone) translation
into de Bruijn notation. The Isabelle/ZF development of constructibility theory
contains about 100 such encodings. A typical example resembles that shown in
Sect6.6 above forsubset _fm. First to be internalized are elementary concepts
such as the empty set, unordered and ordered pairs, unions, intersections, domain
and range.

The union predicate was defined in SdcLas

Vz.zeY < ze AvzeB.

In the corresponding formula, the variabley andz range over de Bruijn indices.

"union _fm(x,y,z) ==
Forall(Iff(Member(0,succ(z)),
Or(Member(0,succ(x)), Member(0,succ(y)))))"

As for subset _fm above, we can prove thahion _fm yields an element of
the seformula . The theorem about satisfaction now takes the following form:

"[x € nat; y € nat; z € nat; env € listtA) 1]
= sats(A, union  _fm(x,y,z), env) <~
union(**A, nth(x,env), nth(y,env), nth(z,env))"
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Here,**A is Isabelle syntax for the class given by the Agethat is,{Xx | x €
A}. The theorem above simply expresses the equivalence between the relational
formula union and union _fm, which is its translation into an element of set
formula . Such equivalences are usually trivial: they simply relate two syntaxes
for formulae. They do not express the equivalence betwe@n fm and U,
which would be an instance of absoluteness.

After internalizing a predicate such asion , it makes sense to prove its in-
stance of the reflection theorem too, since both results will be needed when proving
instances of separation.

"REFLECTS[Ax. union(L,f(x),g(x),h(x)),
Al X, union(**Lset(i),f(x),9(x),h(x))]"

Most reflection proofs are trivial two-line scripts:
1. Unfold the concept’s definition (heraion ).
2. Repeatedly apply existing reflection theorems.

Each predicate is internalized similarly. Parts of the declarations and proofs can
be copied from those of another predicate. However, getting the definition right
requires careful attention to the original first-order definition.

7.3 Higher-Order Syntax

Higher-order syntax is ubiquitous in naive set theory.In the ufigp, B(x), the
higher-order variabld3 represents an indexed family of sets. In the function ab-
stractioniye a b(X), the higher-order variablerepresents the function’s body. Isa-
belle/ZF additionally uses higher-order syntax to express many forms of recursion,
and so forth. Although this syntax is indispensable, it is also illegitimate: formal
set theory has no non-trivial terms, let alone higher-order ones. We must formalize
the conventions governing higher-order syntax into the language of set theory.
Converting a higher-order operator suchhagA. b(x) into relational form
yields a higher-order predicate. Among its arguments is a predicakethat ex-
presses the function body, in relational form. Ifis _b is purely relational, then
so is the definiens a§ _lambda .

"is _lambda(M, A, is b, z) ==
VpMl. p € z «—
(FuM]. 3V[M]. u €A & pair(M,u,v,p) & is _b(u,v))"

This definition states that is a A-abstraction provided its elements are ordered
pairs that satisfys _b and whose first component belongsito

The following predicate expresses tligatf represents the relational version
of f for arguments ranging ove.

"Relation1(M,A,is ff ==
VXx[M].  Vy[M]. x €A — is f(x,y) «~— y = f(x)"
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This abbreviation, and similarlgelation2 , etc., are useful for expressing abso-
luteness results. 1§ _b is the relational equivalent &f, and if the clas#/ contains
eachb(m) for meA, thenis _lambda(M,A,is _b,z) is the relational version of
axeA. b(x) . And thusi-abstraction is absolute:

" [Relation1(M,A,is _b,b); M(A); vm[M]. meA — M(b(m)); M(z) 1]
= is lambda(M,Ajis b,z) <«— (z = ixeA. b(x))"

Showing thaMis closed undek.-abstraction requires a separate instance of strong
replacement for eadh

"[strong _replacement(M, AX Y. X €A &y = (X, b(X) ));
M(A);  vVm[M]. meA — M(b(m)) ]
= M(AxeA. b(x))"

Internalizingis _lambda is not completely straightforward. The predicate ar-
gumentjs _b, becomes a variable ranging over thefsetula

"lambda _fm(p,A,z) ==
Forall(Iff(Member(0,succ(z)),
Exists(Exists(And(Member(1,A#+3),
And(pair _fm(1,0,2), p))))"

Given a formula and two de Bruijn indicdambda _fm yields another formula:

"[p € formula; x € nat; y € nat] = lambda _fm(p,x,y) e formula"

But there is no binding mechanism for expressing predicates that take arguments
or refer to local variables. The formupamust refer to its first argument using the
de Bruijn index 1 and to its second using the index 0 (both to be increased in the
usual way ifp contains quantifiers). If we are lucky, then we can arrange matters
such that the actual arguments have the right indices, and otherwise we can force
the indices to agree by introducing quantifiers and equalities: in the internalization
of VX.Vy.x = aAy = b — p, the variable with de Bruijn index 1 will refer
to a and similarly the index 0 will refer tb. If p contains free references to other
variables, their de Bruijn indices must be increased by 3 begaissimserted into
a context enclosed by three quantifiers.

The satisfaction theorem foy _lambda formalizes the remarks above:

lemma sats _lambda _fm:
assumesis _b_iff _sats €

"la0 al a2.

[a0€eA; al €A; a2 €A]

= is b(al,a0) <«— sats(A, p, Cons(a0,Cons(al,Cons(a2,env))))"
shows

"[x € nat; y € nat; env € list(A) ]

— sats(A, lambda _fm(p,x,y), env) >

is _lambda(**A, nth(x,env), is _b, nth(y,env))"

The assumesshowssyntax eases the use of the complicated assumption, which
states thais _b agrees withp for the fixed environmengnv extended with three
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additional elements 4. | have not been able to simplify the form of this theorem
while retaining its generality.

It gets more complicated when one higher-order operator refers to another.
One such operator has a quantifier nesting depth of 12. When an operator uses its
higher-order argument more than once, we must ensure that the two contexts are
similar, adding quantifiers if necessary to make the nesting depths agree.

Instances of the reflection theorem for higher-order operators must take into
account the possibility of the higher-order argument’s referring to local variables.
Althoughis _lambda expectds _b to have only two arguments, below we formal-
ize it with three arguments (plus its class argument). The extra argument is bound
by theREFLECTSoperator, allowing direct reference to elements of Lset(i)
theorem is _lambda _reflection:

assumesis _b_reflection:
"IIf g h. REFLECTS[ Ax. is _b(L, f(x), g(x), h(x)),
Al X is _b(**Lset(i), f(x), g(x), h(x))]"
shows "REFLECTS[Ax. is _lambda(L, A(x), is _b(L,x), f(x)),
Al X. is  _lambda(**Lset(i), A(x), is _b(**Lset(i),x), f(x))]"

The arity of a higher-order function naturally depends upon that its function
argument. | found the properties so unintuitive and their proofs so vexing that |
undertook the work described in Sect. sec:no-arity, which eliminates the need for
theorems concerning arities.

7.4 Proving Instances of Separation

The set comprehensidx € A | ¢(x)} comes from the separation axiom scheme
instantiated to the formul@a. The axiom of replacement yields a set that may be
bigger than we want, again requiring an appeal to separation. Because | have not
formalized the metatheory, the Isabelle/ZF development cannot express the proof
that the separation scheme holdslfofEach instance has to be proved individually.
Fortunately, the proof scripts are nearly identical. Gigethe first step is to prove
instance of the reflection theorem for that formula. The next step is to run a proof
script corresponding to the sketch in Kuné® p. 169]. The formulap will of

course be expressed using the relational language, using predicates suich as
Executing the proof script will automatically generate an internalized formula, with
union _fm in the corresponding place.

The lemmas outlined on the preceding pages suffice to prove many instances
of separation. Consider the instance that justifies the existence of the intersection
Inter(A) . We must first prove the corresponding instance of the reflection theo-
rem:

"REFLECTS[AX. Vy[L]. Yy €A — x €y,
Al X.  Vyelset(i). y eA — x e y]"

Such instances are written manually. A text editor can replace quantificatioh over
by quantification ovet, in the second formula. The proof, almost always, is a
one-line appeal to previous reflection theorems.
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The statement of each instance of separation comes from the corresponding
locale assumption. The locale refers to an arbitrary di&isso we must repladel
by L. The proof scripts are typically three lines long and follow a regular pattern.
Note that any parameters used in the separation formula &)ereist be elements
of L.

"L(A) = separation(L, AX. Vy[L]. y €A — xey)"

The following instance of separation justifies relational composition. | leave
the corresponding instance of reflection to your imagination.
"[L@); Ls) ]
— separation(L, AXz.  IX[L]. y[L]. Az[L]. Axy[L]. Jyz[L].
pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
Xy €s & yzer)"

After proving ten or so instances of separation, we arrive at a cryptic theorem:

"PROP Mbasic(L)"

This asserts thdt satisfies the conditions of the localebasic , hamely all the
instances of separation needed to derive well-founded recursion. The absoluteness
and closure results proved in that locale (described in 868t— now become
applicable td..

7.5 Automatic Internalization of Formulae

Isabelle’s ability to translate formulae written in the relational language into mem-
bers offormula  simplifies the proofs of separation. Here is an example, from the
proof of the instance shown above (about relational composition).

The first proof step applies a lemma for proving instances of separations.
It yields a subgoal that has the assumptiong Lset(j) ands e Lset() |,
wherej is arbitrary. We have to prove that the comprehension belongs to the next
level of the constructible hierarchy, nam&iPow(Lset(j))

{xz € Lset(j) . Ax eLset(j). Jy elset(j). ...} eDPow(Lset(j))

The second proof step applies a lemma for proving membership in
DPow(Lset(j)) . Ityields three subgoals (Fig). The first is to show the equiva-
lence between the real formula

( IxaceLset()). Jy eLset(j). ...)

andsats(Lset(j), ?p3(j), [x.r,s]) . This is the satisfaction relation ap-
plied to?p3() , a “logical variable” that can be replaced by any expression, pos-
sibly involving the bound variablg. The third subgoal in Fig2, namely?p3(j)
e formula , checks that the chosen expression is an internalized formula. The
second subgoal verifies that the environmgrd] |, is well-typed — namely, that
it belongs tdist(Lset()))

The third proof step is this:
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1. Aj x. [L@); L(s); r € Lset(); s € Lset(j); x e Lset() 1
= (IxaeLset().
Jy eLset()).
Iz eLset()).
pair(**Lset(j), xa, z, X) N
(I xy eLset(j).
pair(**Lset(j), xa, y, Xy) A
(3yz eLset()).
pair(**Lset(j), y, z, yz) N
XY € S AYZ €1) <«—
sats(Lset(j), ?p3(j), [x, r, s])

2. A+ [L@); L(s); r € Lset(j); s € Lset()) 1]
= [r, s] € list(Lset(j))
3. A+ [L@M); L(s); r € Lset(j); s € Lset()) 1]

= ?p3() € formula

Figure 2: Subgoals ready for automatic synthesis of a formula

apply (rule sep  _rules | simp)+

It applies some theorem a&kp _rules , then simplifies, then repeats if possible.
This finishes the proof. All separation proofs have this form, save only that some-
timessep _rules needs to be augmented with additional theorems.

Formula synthesis works in a way familiar to all Prolog programmers. Es-
sentially, the theorems isep _rules comprise a Prolog program for generating
internalized formulae. Most of the “program clauses” relate real formulae to inter-
nal ones and are derived from the basic properties of the satisfaction relation. For
example, this one relates the real conjunct@Qwith the termAnd(p,q) . The
first two subgoals concern the synthesip@ndq. The third subgoal expresses a
type constraint oenv .

"[P «— sats(A,p,env); Q <« sats(A,g,env); env e list(A) 1
= (P & Q) <«— sats(A, And(p,q), env)"

This “program clause” relates the real quantificattoneA. P(x) with the term
Forall(p) . The first subgoal concerns the synthesip af an environment aug-
mented with an arbitrary eA:

"M"x. x €A = P(x) <«— sats(A, p, Cons(x, env)); env e listtA) 1
= (VxeA. P(x)) <«— sats(A, Forall(p), env)"

The environment, which initially contains the parameters of the separation formula,
gets longer with each nested quantifier. Each higher-order operator can add several
elements to the environment; as mentioned above in B&ct.

A base case of synthesis relates the formug with the termMember(i,j)
The first two subgoals concern the synthesis of the de Bruijn indicesl] :

"[nth(i,env) = x; nth(jenv) = y; env e list(A) 1]
= (X €y) <«— sats(A, Member(i,j), env)"
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Other base cases concern predicates of the relational language. This theorem,
which relates the formulanion(**A,x,y,z) with the termunion _fm(i,j,k) ,
is just a reworking of a theorem shown in Sécf above.

"[nth(i,env) = x; nth(j,env) = vy; nth(k,env) = z;

i enat;j € nat k € nat; env e listtA) 1]
= union(**A, X, Y, 2) <«— sats(A, union  _fm(i,j,k), env)"
Given the subgoalth(?i,env) = x , Isabelle can synthesizé . This de Bruijn

index is determined by, which comes from the original formula, aedv, which
is given in advance. Ik matches the head of the environment, tRershould be
ZEero:

"nth(0, Cons(a, l)) = a"

And if it does not match, then we should discard the head and attempt to synthesize
a de Bruijn index using the tail:

"[nth(n,)) = x; n € nat ] = nth(succ(n), Cons(a,l)) = x"

The automatic synthesis of internalized formulae saves much work in proofs of
separation. In principle, we could rewrite every relational formula into its primitive
constituents of membership and equality, removing the neadfon _fm and 100
similar constants. But if too few internalized primitives have been defined, formula
synthesis takes many minutes.

8 Absoluteness of Recursive Datatypes

The Isabelle/ZF proofs discussed up to now include the construction of thd_class
and the proof that it is a model of the Zermelo-Fraenkel axioms. The next step is to
show thatl satisfiesv = L. That fact follows by the absoluteness of constructibil-
ity, which follows by the absoluteness of satisfaction. Consulting the definition of
satisfies reveals that we must still prove the absoluteness of lists, formulae, the
functionnth , and several other notions.

Isabelle/ZF defines the sdist(A) andformula automatically from their
user-supplied description§4]. These fixedpoint definitions have advantages, but
their use of the powerset operator is an obstacle to proving absoluteness. For a
start,Pow(D) must be eliminated from this definition:

‘ "Ifp(D,h) == Inter({X e Pow(D). h(X) < X})"

We proceed by formalizing standard concepts from domain thelomy. 51—
56]. A set isdirectedif it is non-empty and closed under least upper bounds. A
function iscontinuousdf it preserves the unions of directed sets.

"directed(A) == A #0 & (VXxeA. VyeA. x Uy € A)"
"contin(h) == VA. directed(A) — h(UA) = ( UXeA. h(X)))"
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We can prove that the least fixedpoint of a monotonic, continuous funietaam
be expressed as the union of the finite iterations. of

" [bnd _mono(D,h); contin(h) 1 = Ifp(D,h) = ( Unenat. h"n(0))"

This equation not only eliminaté®w(D) , but every occurrence @, which is the
“bounding set” [L2, §2.2] and is itself typically defined using powersets.

In order to apply this equation, we must prove that standard datatype construc-
tions preserve continuity. The case bases are that the constant function and the
identity function are continuous:

“contin( AX. A)"
"contin( AX. X)"

Sums and products preserve continuity:

" [contin(F); contin(G) ] = contin( AX. F(X) + G(X))"

" [contin(F); contin(G) ] = contin( AX. F(X) x G(X))"

These four lemmas cover all finitely-branching datatypes, including lists and for-
mulae.

8.1 Absoluteness for Function Iteration

In the equation above for least fixed points, the temfn(0) abbreviates
iterates(h,n,0) . Isabelle/ZF definesterates(F,n,x) by the obvious
primitive recursion omenat . Absoluteness of datatype definitions will follow
from the absoluteness érates

Recall that a well-founded function definition consists of a relatiand func-
tion body H; recall equationX) of Sect5.2 Relativizing such a function defi-
nition, requires relativizingd by an Isabelle/ZF relation, sayH So to relativize
iterates , we declards _iterates  interms of another predicaterates _MH
representing the body of the recursion.

“iterates  _MH(M,isF,v,n,9,z) ==
is _nat _case(M, v,
Am u. Igm[M]. fun _apply(M,g,m,gm) & isF(gm,u),
n, z)"
"is _iterates(M,isF,v,n,Z) ==
Isn[M]. Imsn[M]. successor(M,n,sn) & membership(M,sn,msn) &
is _wfrec(M, iterates _MH(M,isF,v), msn, n, Z)"

Incidentally,is _nat _case(M,a,isb,n,z) expresses case analysis on the natural
numbern. Note that we again work in the general setting of a cMsstisfying
certain conditions. Later, we shall prove thaneets those conditions.

The absoluteness theorem for well-founded recursion requires an instance of
strong replacement for each function being defined. ilBuites  is a higher-
order function, so technicallgerates(F,n,x) involves a separate instance of
well-founded recursion for eadh. The functioniterates  _replacement can
express each required instance of replacement; its argusfent the relational
form of F.
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"iterates  _replacement(M,isF,v) ==
vnM]. n enat —
wfrec _replacement(M, iterates _MH(M,isF,v), Memrel(succ(n)))"

Assuming such an instance of replacement, and giveristhats the relational
version ofF, the absoluteness @érates  is a corollary of the general theorem
about well-founded recursion.

"[iterates  _replacement(M,isF,v); relation1(M,isF,F);
n e nat; M(v); M(z); Vx[M]. M(F(x)) 1
= is _iterates(M,isF,v,n,z) «~— z = iterates(F,n,v)"

We similarly find thatM is closed under function iteration.
"[iterates  _replacement(M,isF,v); relation1(M,isF,F);

n e nat; M(v);  Vx[M]. M(F(x)) 1]
= M(iterates(F,n,v))"

8.2 Absoluteness for Lists and Formulae

The formal treatment of continuity arttrates  enables us to prove that lists
and formulae are absolute.
The definition of lists generated by the Isabelle/ZF datatgki too compli-
cated to relativize easily. Instead, we prove its equivalence to a more abstract (and
familiar) definition.

"list(A) = Ifp(univ(A), AX. {0} + A*X)"

The function given tdfp continuous by construction, which lets us replace the
the least fixed point by iteration and eliminate the non-absolutenbgi)

"contin( AX. {0} + A*X)"
"list(A) = ( Unenat. ( AX. {0} + A*X)'n (0))"

Now the absoluteness 6ft(A) is obvious. But each element of this equation
must be formalized in order to prove absoluteness. We begin by introducing an
abbreviation for finite iterations ofX. {0} + A*X —that s, for finite stages of

the list construction.

| Wist  N(An) == ( AX. {0} + AX)'n (0)"

Next, we relativize the functionX. {0} + A*X . The predicat@umberl recog-
nizes the number 1, which equals the &8t

"is _list _functor(M,A,X,Z) ==
InlM].  IAX[M].
numberl(M,nl) & cartprod(M,AX,AX) & is _sum(M,n1,AX,Z)"

Next, we relativize the functiolist _N, the finite iterations:
"is _list _N(M,AnZz) ==

dzero[M]. empty(M,zero) &
is _iterates(M, is Jlist _functor(M,A), zero, n, Z)"
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We relativize membership itist(A) as membership idist _N(A,n) for
somen. The predicatdinite _ordinal recognizes the natural numbers.

"memlist(M,A,l) ==
In[M]. 3Flistn[M].
finite  _ordinal(M,n) & is dist  _N(M,A;nlistn) & | € listn"

Finally, we can relativize the set of lists itself:
‘ "is _list(M,A,Z) == VIM]. | € Z <«— memnlist(M,A,)"

After proving absoluteness dist _N(A,n) , we obtain the absoluteness of
list(A)  and prove thamis closed under list formation.

"MA) = M(list(A))"
"[M(A); M2Z) ] = is list(M,A,Z) < Z = list(A)"

Formulae are proved absolute in just the same way. We express the set
formula as an abstract least fixed point of a suitable function, prove that func-
tion to be continuous, and eliminate g operator:

"formula = Ifp(univ(0), AX. ((nat*nat) + (nat*nat)) + (X*X + X))"
"contin( AX. ((nat*nat) + (nat*nat)) + (X*X + X))"
"formula =

(Unenat. ( AX. ((nat*nat) + (nat*nat)) + (X*X + X)) = n (0))"

Proceeding as for lists, we define the predicatesformula _functor |,
is formula _N, memformula and finallyis _formula . We obtain the desired
theorems:

"M(formula)"
"M(Z) = is _formula(M,2) «~— Z = formula"

8.3 Recursion over Lists and Formulae

We have already seen (Segjtthat functions defined by well-founded recursion are
absolute. For mathematicians, that is enough to justify the absoluteness of func-
tions defined recursively on lists or formulae. Proof tool users, however, must work
through the details for each instance. Usually automation makes it easy to apply
general results to particular circumstances. However, the Isabelle/ZF translation of
recursive function definitions is rather complicafedhere are good reasons for
this complexity, such as support for a form of polymorphism. However, it makes
the absoluteness proofs more difficult: the complications have to be taken apart
and relativized one by one.

At least there is no need to treat recursion over lists. Defining the tlass
involves only one list function, namelyth . Given a natural numben and a
list 1, this function returns the™ element ofl, counting from 0. Obviously this

2See §§3.4 and 4.3.1 of Paulsdr?]
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amounts to taking the tail of the listtimes and returning the head of the result.
The recursion imth is an instance dferates

Isabelle/ZF defines the head and tail functitldsandtl . The absoluteness
proofs use modified versions calléd® andtl’ , which extendhd andtl to
return O if their argument is ill-formed (the details are unimportant). Relativization
is simpler when a function’s behaviour is fully specified. Now we can prove an
equivalence fonth :

"[xs e list(A); n € nat] = nth(n,xs) = hd (' © n (xs))"
Its relational equivalents _nth , has an obvious definition in terms of the relational
equivalents ofterates ,tl andhd:

"is _nth(M,n,1,Z2) ==
AX[M]. is _iterates(M, is (M), I, n, X) & is _hd(M,X,2)"

Absoluteness is proved with no effort:
"[M(A); n € nat; | € list(A); M(2Z) 1
= is _nth(M,n,l,2) <«~— Z = nth(n,))"

Recursion over lists is absolute in general. Proving this claim would require
much work, and is unnecessary for proving thlat= L is absolute. The function
satisfies involves recursion over the datatype of formulae, and its absoluteness
proof consists of several stages. Isabelle/ZF expresses recursion on datatypes in
terms ofe-recursion, which is recursion on a set’s raiR,[83.4]. Absoluteness
for e-recursion will follow from that of well-founded recursion once we have es-
tablished the absoluteness@tlosure. Then we shall be in a position to consider
recursion over formulae.

Five instances of strong replacement are necessary for the proofs sketched
above. There are two each for the absolutenedist¢f) andformula , and
one for the absoluteness oth(n,l) . The localeMdatatypes encapsulates
these additional constraints on the clakdt is one of several locales used to keep
track of instances of separation and replacement in this development.

8.4 Absoluteness fore-Closure

If Ais a set, then itg-closure is the smallest transitive set that included~or-
mally, thee-closure ofAis |, U"(A). Here|J"(A) denotes the-fold union

of A, defined byl J°(A) = Aand(J™*(A) = J(U™(A)). This is just another
instance ofterates  , as we can prove:
"eclose(A) = ( [Jnenat. Union™n (A))"

Relativization proceeds as it did for lists. The details are omitted, but they culmi-
nate in the definition of a relational versioneaflose(A)

‘ "is _eclose(M,A,Z) == YuM]. u € Z «— memeclose(M,A,u)"

The standard membership and absoluteness results follow:

"M(A) = M(eclose(A))"
"[M(A); M(Z) 1 — is _eclose(M,A,Z) <— Z = eclose(A)"
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8.5 Absoluteness forransrec

The Isabelle/ZF operataransrec  expresseg-recursion, which includes trans-
finite recursion as a special case:

transrec (@, H) = H(a, Agea.transrec (X, H)).

Its definition is a straightforward combination of the operatmiose , wfrec
(which expresses well-founded recursion), axdmrel (which encodes the
membership relation as a set). Thus the definition of the relational version,
is _transrec , is also straightforward. Our previous results lead directly to a proof
of absoluteness:

"[transrec _replacement(M,MH,i); relativize2(M,MH,H);
Ord(i); M(@); M(2);
VX[M]. Vg[M]. function(g) — M(H(x,9)) 1
— is _transrec(M,MH.,i,z) «~— z = transrec(i,H)"

We similarly find thatM is closed undee-recursion:

"[transrec _replacement(M,MH,i); relativize2(M,MH,H);
Ord(i);  M(i);
Vx[M]. Vvg[M]. function(g) —> M(H(x,9)) 1
= M(transrec(i,H))"

In these theoremstransrec _replacement  abbreviates a specific use of
wfrec _replacement , which justifies this particular recursive definition (recall
Sect5.3).

8.6 Recursion over Formulae

The Isabelle/ZF treatment of recursive functions on datatypes involves non-
absolute concepts, namely the cumulative hierafdhy,con and the rank func-

tion [12, 83.6]. For proving absoluteness, | proved an equation stating that recur-
sion over formulae could be expressed differently. The new formulation refers to
thedepthof a formula, defined by

"depth(Member(x,y)) = 0"

"depth(Equal(x,y)) = 0"

"depth(Nand(p,q)) = succ(depth(p) U depth(q))"
"depth(Forall(p)) = succ(depth(p))"

Introducing depth seems to be a step backwards, since it requires relativiz-
ing another recursive function on formulae. But we can express the depth
of a formula in terms ofis formula _N, which we need anyway (Seé&t2);

is formula _N(M,n,F) holds just ifF is the set of formulae generated byn-
foldings of the datatype definition — which is all formulae of depth less than

A formula p has deptm if it satisfiesis _formula _N(M,succ(n),F) and not

is formula _N(M,n,F)
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"is _depth(M,p,n) ==
Jsn[M]. 3Jformula _n[M]. 3Fformula _sn[M].
is formula _N(M,n(formula n) & p ¢ formula n &
successor(M,n,sn) &
is formula _N(M,sn,formula _sn) & p € formula _sn"

Working from this definition, we find that the depth of a formula is absolute:

"[p € formula; n € nat] = is _depth(M,p,n) <«~— n = depth(p)"

For relativization, | modified the standard Isabelle/ZF treatment of recursion
over formulae, replacing the s€t by formula and the rank of a set by the depth
of a formula. Iff is a recursive function on formulae, then the evaluatiofjpf
begins by determining the depth pf sayn. Then the recursion equation fér
is unfoldedn + 1 times, using transfinite recursion. The resulting nonrecursive
function is finally applied tgp. This approach unfortunately needs an explieit
abstraction over formulae and another instance of the replacement axiom. With
the benefit of hindsight, | might have saved much work by seeking simpler ways
of expressing recursion over formulae, such as by well-founded recursion on the
subformula relation.

The recursive definition of a functidnis specified by four parametessb, c
andd, corresponding to the four desired recursion equations:

f(Member(x,y)) = a(x,y)
f(Equal(x,y)) = b(x)y)
f(Nand(p,a)) = c(p.f(p).a,f(a))
f(Forall(p)) = d(p.f(p))

Given the datatype definition dormula , Isabelle/ZF automatically defines
the operatorformula _rec for expressing recursive functions. The term
formula _rec(a,b,c,d,p) denotes the value of the functidnabove applied
to the argumenp. More conciselyformula _rec(a,b,c,d) denotes the the
functionf itself. The details of the definitions are illustrated elsewhere, using the
example of lists12, §84.3].

In order to express the recursion theorem, it helps to have first defined an ab-
breviation for its case analysis on formulae.

"formula _rec _case(a,b,c,d,h) ==
formula _case (a, b,
AU V. c(u, v, h * succ(depth(u)) ‘ u,
h * succ(depth(v)) * v),
AU. d(u, h * succ(depth(u)) * u))"

Now we can express recursion on formulae in terms of absolute concepts:

"p € formula —
formula _rec(a,b,c,d,p) =
transrec (succ(depth(p)),
Ax h. Lambda(formula, formula _rec _case(a,b,c,d,h))) * p"
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The proof is by structural induction op. Note that the argument of
formula _rec _case is a partially unfolded recursive function taking two cur-
ried arguments. The second argument is some subformwdad the first is
succ(depth(u)) . The intuition behind this theorem may be obscure, but that
is no obstacle to proving absoluteness. Many routine details must be taken care
of, including relativization and absoluteness for the formula construstensber,
Equal , Nand andForall and for the operatdormula _case .

Obviously formula _rec is a higher-order function. Its absoluteness proof
depends upon absoluteness assumptions for the function argumentsandd.
Its relational version needs those arguments to be expressed in relational form as
predicate$s _a,is _b,is _c andis _d. The absoluteness theorem depends upon 10
assumptions in all: two for each &f _a, is _b, is _c andis _d and two instances
of replacement. After many intricate but uninteresting details, we arrive at two key
theorems. If the claskl is closed under the parametersb, ¢ andd then it is
closed under the corresponding recursion:

"p € formula = M(formula _rec(a,b,c,d,p))"

Recursion over formulae is absolute:

"[p € formula; M(z) 1
— is _formula _rec(M,MH,p,z) «~— z = formula _rec(a,b,c,d,p)"

In this theoremMH abbreviates the relativization of the argumentrahsrec
shown above:
"MH(u::if,z) ==
vVimIM]. is  _formula(M,fml) —>

is _lambda
M, fml, is  _formula _case (M, is _a, is _b, is c(f), is _d(f), 2)"

9 Absoluteness for L

In order to prove/ = L, we must prove the absoluteness of three main functions:
1. satisfies , the satisfaction function on formulae
2. DPow the definable powerset function
3. Lset , which expresses the levdls, of the constructible hierarchy.

Of these functions|set is defined by transfinite recursion frobPow which in
turn has a straightforward definition in terms stisfies . But proving the
absoluteness afatisfies is very complicated.

Absoluteness ofatisfies is merely an instance of the absoluteness of re-
cursion over formulae, and is therefore trivial. That does not relieve us of the task
of formalizing the details. The file containing thetisfies absoluteness proof
is one of the largest in the entire development. This file divides into two roughly
equal parts.
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The first half contains internalizations and reflection theorems for operators
such aglepth andformula _case . It expresses the four casessatfisfies in
both functional and relational form, and proves absoluteness for each case. Six
instances of strong replacement are required: one for each case of the recursion
(because each contains.abstraction), another to justify the usetafnsrec
and yet another to justify the-abstraction irformula _rec . These axioms are
assumed to hold of an arbitrary class madellhey are used to show that the for-
malization satisfies the conditions of the absoluteness theoreforfoula _rec
described in the previous section.

The second half of the file is devoted to proving that the six instances of re-
placement hold i.. The four cases of the recursion (in their relational form) must
each be internalized. This tiresome task involves, as always, translating a defini-
tion involving real formulae into one using internalized formulae. Then, the six
instances of replacement are justified. Finally, the pieces are put together.

9.1 Proving thatsatisfies  is Absolute

Working in the clas$4 we assume additional instances of the replacement axiom
and apply them to the definition ehtisfies  , which is reproduced here:

"satisfies(A,Member(x,y)) =

(renv € list(A). bool _of _o (nth(x,env) € nth(y,env)))"
"satisfies(A,Equal(x,y)) =
(renv € list(A). bool _of .o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
(renv € list(A). not ((satisfies(A,p)‘env) and
(satisfies(A,q)‘env)))"
"satisfies(A,Forall(p)) =
(renv € list(A). bool of .o
(VxeA. satisfies(A,p)'(Cons(x,env)) = 1))"

Many additional concepts must be internalized. Consider the predicate
is _depth , which formalizes the depth of a formula:

"depth _fm(p,n) ==
Exists(Exists(Exists(
And(formula _N.fm(n#+3,1),
And(Neg(Member(p#+3,1)),
And(succ _fm(n#+3,2),
And(formula _N.fm(2,0), Member(p#+3,0))))))))"

We prove the usual theorem relating the satisfactiodepth _fm to the truth of
is _depth

"[x € nat; y < length(env); env e list(A) ]

— sats(A, depth  _fm(x,y), env) <~
is _depth(**A, nth(x,env), nth(y,env))"

And we generate yet another instance of the reflection theorem:
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"REFLECTS[Ax. is _depth(L, f(x), g(x)),
Al X is  _depth(**Lset(i), f(x), g(X))]"

The internalization ofis formula _case is omitted, but its definition is
15 lines long and contains 11 quantifiers. The theorem statements relating
is formula _case to formula _case are also long and complicated. And of
course they are higher-order, requiring the methods of 3&xt.

In order to relativizesatisfies  , we must first define constants corresponding
toformula _rec ’'s parameters, b, c andd. Here are the two base cases:

"satisfies _a(A) ==
AX y. aenv elist(A). bool _of _o (nth(x,env) € nth(y,env))"

"satisfies b(A) ==
AX y. aenv elist(A). bool _of _o (nth(x,env) = nth(y,env))"

In the two recursive cases, the variablpsandrq denote the values returned on
the recursive calls fop andq, respectively:

"satisfies Cc(A) ==
AP q rp rg.  Aenv elist(A). not(rp * env and rq ‘ env)"

"satisfies d(A) ==
Ap rp.  aenv elist(A). bool of o (VxeA. rp * (Cons(x,env)) = 1)"

Each of these functions is then re-expressed in relational form. Here is the first:

"satisfies _is _a(M,A) ==
AX'y zz. VIAM]. is  _list(M,A,IA) —
is _lambda(M, IA,
renv z. is  _bool _of _o(M,
Anx[M].  Iny[M].
is _nth(M,x,env,nx) & is _nth(M,y,env,ny) & nx eny, z),

z7)

Once we have done the other three, we can define an instan¢&Hdbr
satisfies  , expressing the body of the recursion as a predicate:

"satisfies _MH ==
AM A ufz
vimi[M]. is  _formula(M,fml) —
is _lambda (M, fml,
is formula _case (M, satisfies {is _a(M,A),

satisfies  _is _b(M,A),
satisfies  _is _¢c(M,A,f),
satisfies _is _d(M,Af)),

z)"
Finally, satisfies itself can be relativized:
"is _satisfies(M,A) == is formula _rec (M, satisfies _MH(M,A))"

This lemma relates the fragments defined above to the original primitive recur-
sion insatisfies . Induction is not required: the definitions are directly equal!
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"satisfies(A,p) =
formula _rec (satisfies _a(A), satisfies _b(A),
satisfies  _c(A), satisfies _d(A), p)"

At this point we must assume (by declaring a locale) the six instances of re-
placement mentioned above. That enables us to prove absoluteness for the param-
etersa, b, c andd used to definaatisfies . For example, the clasgis closed
undersatisfies  _a:

"[M(A); x enat; y enat] = M(satisfies _a(Axy)"

This theorem states thadtisfies  _is _a(M,Ax,y,zz) is the relational equiv-
alent ofsatisfies  _a(A,x,y) providedx andy belong to the setat .
"M(A) =

Relation2(M, nat, nat, satisfies _is _a(M,A), satisfies _a(A)"

It can be seen as an absoluteness result subject to typing conditionarahy .
Proofs are obviously easier if the absoluteness results are unconditional, but some-
times typing conditions are difficult to avoid.

Analogous theorems are proved fatisfies  _is _b, satisfies  _is _c and
satisfies ~ _is _d. Thus we use the first four instances of replacement. The last
two instances, which are specific ¢atisfies  , let us discharge the more gen-
eral instances of replacement that are conditionferafula _rec 's absoluteness
theorem. We ultimately obtain absolutenessstisfies

"IM(A); M(2); p e formula ]
— is _satisfies(M,A,p,z) <« z = satisfies(A,p)"

9.2 Proving the Instances of Replacement for L

Now we must justify those six instances of strong replacement by proving that they
hold inL. Recall that strong replacement is the conjunction of replacement (which
holds schematically ih, but may yield too big a set) and an appropriate instance
of separation (Sect.3).

As always, proving instances of separation requires internalizing many formu-
lae. Isabelle can do this automatically, but unless it is given enough internalized
formulae to use as building blocks, the translation requires much time and space. |
internalized many concepts manually, declaring their internal counterparts as con-
stants and proving their correspondence with the original concepts. Here is the
internal equivalent ofatisfies  _is _a:

"satisfies _is _,afm(Axy,z) ==
Forall(
Implies(is  _list _fm(succ(A),0),
lambda _fm(

bool _of _o_fm(Exists(
Exists(And(nth fm(x#+6,3,1),
And(nth _fm(y#+6,3,0),
Member(1,0))))), 0),

0, succ(2))"
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Obviously, the same task must be done for the othtsfies relations and
for the concepts used in their definitions. We finally can internalize the body of
satisfies

"satisfies _MHfm(A,u,f,zz) ==

Forall(
Implies(is  _formula _fm(0),
lambda _fm(

formula _case _fm(satisfies _is _a_fm(A#+7,2,1,0),
satisfies _is _b_fm(A#+7,2,1,0),
satisfies _is _c_fm(A#+7,f#+7,2,1,0),
satisfies _is _d_fm(A#+6,f#+6,1,0),
1, 0),

0, succ(zz)))"

Now, we can prove the six instances of replacement. Here is the first one, for
the Member case ofatisfies

"[L(A); x € nat;y € nat]
— strong _replacement
(L, 2env z. 3Fbo[L]. 3Inx[L]. Any[L].
env € list(A) & is _nth(L,x,env,nx) & is _nth(L,y,env,ny) &
is _bool _of o(L, nx € ny, bo) &
pair(L, env, bo, z))"

The theorem statement may look big, but the proof has only four commands. The
corresponding instances of the reflection theorem (not shown) is twice as big, but
its proof has only one command.

We proceed to prove the fifth instance of replacement:

"[n € nat; L(A) ] = transrec _replacement(L, satisfies _MH(L,A), n)"
Finally, we prove the sixth instance of replacement:

"[L@); L(A) 1 =
strong _replacement (L,
AX y. mem _formula(L,x) &
(3c[L]. is formula _case(L, satisfies Jis _a(L,A),
satisfies {is _b(L,A),
satisfies  _is _c(L,A,9),
satisfies  _is _d(L,A,g), X, ¢) &
pair(L, x, ¢, y)))"

Our reward for this huge effort is that the absolutenessatéfies now
holds forL:

"[L(A); L); p e formula ]
= is _satisfies(L,A,p,z) «~— z = satisfies(A,p)"
9.3 Absoluteness of the Definable Powerset

Conceptually, the absoluteness @Pow is trivial, since it is just a comprehen-
sion involvingsatisfies . The formal details require a modest effort. There are
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more internalizations, such as thatief_formula _rec . Note that concepts only
have to be internalized if they appear in an instance of separation, which may only
happen long after the concept is first relativized. Unfortunafelynula _rec

is a complex higher-order function; in its relational form, one argument gets
enclosed within 11 quantifiers. Completing this task enables us to internalize
is _satisfies

‘ "satisfies fm(x) == formula  _rec _fm(satisfies _MHfm(x#+5#+6,2,1,0))"

Recall thatDPow is the definable powerset operator. It has a variant form,
DPow’, that does not involve the functicarity . The two operators agree on
transitive sets, so in particular we can geow’ to construct.. Now we must rel-
ativize DPow'. Its definition refers to the powerset operator, which is not absolute.

It can equivalently be expressed using a set comprehension, which here represents
an appeal to the replacement axiom:

"DPow'(A) = {z . ep € list(A) x formula,
Jenv e list(A). dp e formula.
ep = (env,p ) &
z = {x €A. sats(A, p, Cons(x,env))}}"

Within the comprehension is another comprehension, which appeals to separation.
The formulasats(A, p, Cons(x,env)) needs to be relativized (as the predi-
cateis _DPowsats ) and internalized. Then, we again extend the list of assump-
tions about the clasel to include these instances of replacement and separation.
Using them, we can prove thisttis closed under definable powersets:

"M(A) = M(DPow'(A))"

We can also express the equationd®&row’ shown above in relational form, defin-
ing the predicatés _DPow’, and prove absoluteness:

"[MA); M@Z) ] = is DPoW(M,AZ) <« Z = DPow'(A)"

To make these results available fgrwe must first prove thdt satisfies the new
instances of replacement and separation. Here is the latter:

"[L(A); env € list(A); p e formula ]
= separation(L, AX. is _DPowsats(L,A,env,p,x))"
9.4 Absoluteness of Constructibility

The proof thalL satisfiesV = L nearly finished. Only the operatbset , which
denotes the levels of the constructible hierarchy, remains to be proved absolute.
Recall that it can be expressed usibigow’:

“Lset(i) = transrec(i, %x f. Uyex. DPow’ (f * y))"
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So now we must internalize the predicade DPow’. First we must internalize
the operators used in its definition. Among those are the predica@llect
which recognizes set comprehensions. The equatiobstir above involves two
further instances of replacement: one for the useanbrec  and another for the
indexed union. Adding them to our list of constraintsallows us to prove that
that class is closed under theet operator:

“[Oord(@); M@ ] = M(Lset(i))"
We can also define its relational version:

"is _Lset(M,a,z) ==
is _transrec(M, %x f u. u = ( Uyex. DPow' (f * vy)), a, 2)"

Notice that this definition is not purely relational. That is all right becasuseset
is not used in any instance of separation and thus need not be internalized. We can
now prove that the constructible hierarchy is absolute:

"[Ord(i): M(@); M(2) ] = is _Lset(M,i2) <« 7 = Lset()"

As remarked earlier, results such as this express absoluteness because the class
model M drops out of the right-hand side. The left-hand side refers to our for-
malization ofL, in M which by the theorem is equivalent Lg, itself. As always,
making this result available torequires proving the new instances of replacement.
| omit the details, which contain nothing instructive.

We can finally formalize™, the relativization ol. A setx is constructible
(with respect to any clasil satisfying the specified ZF axioms) provided there
exists an ordinal and a level of the constructible hierarchy such thak < Li .

"constructible(M,x) ==
Ji[M].  3Li[M]. ordinal(M,i) & is _Lset(M,i,Li) & X e Li"

The following theorem is a trivial consequence of the absoluteness results and
the definitions otonstructible andL.

"L(x) = constructible(L,x)"

This theorem expresses our goal, namely that L holds inL or more formally

(V = L)-. For this statement is equivalent@ex. L (x))- and thus to7x. L (x) —
LL(x). We can drop the universal quantifier. The antecedent of the implication
is formalized as.(x) and the consequent asnstructible(L,x) . This proof
ends the most difficult part of the development.

10 The Axiom of Choice in L

The formalization confirms that = L is consistent with the axioms of set theory.
Obviously any consequence ¥f= L, such as the axiom of choice, is consistent
with those axioms too. Proving consequence¥ of L involves working in an
entirely different way, and a much pleasanter one. Dispensing with the relational
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language, relativization, internalization and absoluteness, we can instead work in
native set theory with the additional axiovh= L.

AssumingV = L, the proof of the axiom of choice is simpl6,[p.173]. It
suffices to prove that every set can be well-ordered. In fact, we can well-order
the whole ofL. The set of internalized formulae is countable, and therefore well-
ordered. The well-ordering @f derives from its cumulative construction and from
the well-ordering of formulae. Fot, y € L, say thatx precedey if

e X originates earlier thay in the constructible hierarchy — that is, there is
somewx such thak € L, andy € L,,.

e X andy originate at the same levél,, but the combination of defining
formula and parameters farlexicographically precedes the corresponding
combination fory.

Each element ok, ., is a subset of_, that can be defined by a formula, pos-
sibly involving parameters frorh,. We can assume the induction hypothesis that
L, is well-ordered. Before we can undertake this transfinite induction, we must
complete several tasks:

1. exhibiting a well-ordering on lists, for the parameters of a definable subset
2. exhibiting a well-ordering on formulae
3. combining these to obtain a well-ordering of the definable powerset
4. show how to extend our well-ordering to the limit case of the transfinite
induction
10.1 A Well-Ordering for Lists

First we inductively define a relation on lists: the lexicographic extension of a
relation on the list's elements. Letdenote a relation over the s&t Then the

relationrlist(A,r) is the least set closed under the following rules:
"[length(I) < length(l); I e list(A); | e list(A) ]

= (I | ) € rlist(An)"

"Ly e rlist(Ar); a e Al

= (Cons(a,l'), Cons(a,l) y € rlist(A,n"

"[length(I") = length(l); (@,a ) ern

I e list(A); | e list(A); a’ e Ay a € A
= (Cons(a’,l’), Cons(a,l) ) € rlist(A,n)"

Informally, the listl’ precedes another listif
1. I isshorter thanh, or

2. the lists have the same head and the tall oprecedes that af, or
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3. the lists have the same length and the heali oprecedes that df under
the ordering on list elements.

If the element ordering is linear, then so is the list ordering. This theorem has a
14-line proof script involving a double structural induction on lists.

"linear(A,r) = linear(list(A),rlist(A,r))"

If the element ordering is well-founded, then so is the list ordering. This theo-
rem is proved by induction on the length of the list followed by inductions over the
element ordering and the list ordering. The proof script is under 20 lines, but the
argument is complicated.

"well _ord(A,r) — well _ord(list(A), rlist(A,r))"

10.2 A Well-Ordering on Formulae

Godel-numbering is the obvious way to well-order the set of formulae. An injec-
tion from the set of formulae into the set of natural numbers is easily defined by
recursion on the structure of formulae. However, it requires an injection from pairs
of natural numbers to natural numbers. The enumeration function for formulae
takes this injection as its first argument,

"enum(f, Member(x,y)) = f * O, f xy n"

"enum(f, Equal(x,y)) = f* Lt xyn"

"enum(f, Nand(p,q)) = f* (2, £+ (enum(f,p), enum(f,q) n"
"enum(f, Forall(p)) = f" (succ(2), enum(f,p) )"

There are several well-known injections framx w into w, but defining one of
them and proving it to be injective would involve some effort. Instead we can ap-
peal to a corollary of ® k = «, which is already availablelp, 85] in Isabelle/ZF:

[well _ord(A,r); InfCard(]A|) ] = Ax AxA

Thus we haver x w = w: there is a bijection, which is also an injection, between
w X w andw. However, although an injection exists, we have no means of naming
a specific bijection. Therefore, we conduct the entire proof of the axiom of choice
under the assumption that some injection exists. The final theorem is existential,
which will allow the assumption to be discharged.

We declare a locale to express this new assumption, calling the injdation
Recall thanhat is Isabelle/ZF’'s name for the ordinat

locale Nat _Times _Nat =
fixes fn
assumesfn _inj: "fn € inj(nat*nat, nat)"

Proving thaienum(fn,p)  defines an injection from formulae into the naturals
requires a straightforward double induction over formulae:

"( Ap € formula. enum(fn,p)) € inj(formula, nat)"
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Using the enumeration as a measure function, we find that the set of formulae is
well-ordered:

"well _ord(formula, measure(formula, enum(fn)))"

The functions defined below all have an argunfenwhich should range over
injections fromw x w into w. In proofs, this injection will always bfa from locale
Nat _Times _Nat . The definiens of a constant definition cannot reféntdecause
it is a variable.

10.3 Defining the Well-ordering onDPow(A)

The setbPow(A) consists of those subsets®that can be defined by a formula,
possibly using elements & as parameters (Seéth). We can define a well-
ordering onDPow(A) from one onA. We get a well-ordering on formulae from
their injection into the natural numbers. To handle the parameters, we define a well-
ordering for environments — lists ovar— and combine it with the well-ordering

of formulae. A subset oA might be definable in more than one way; to make a
unique choice, we map environment/formula pairs to ordinals. The well-ordering
on environment/formula pairs is the lexicographic product (givemint ) of the
well-orderings on listsrlist ) and formulaeeasure ).

"env _form _r(f,r,A) ==
rmult(list(A), rlist(A, ),
formula, measure(formula, enum(f)))"

Using existing theorems, it is trivial to prove that this construction well-orders the
setlist(A) x formula

"well _ord(A,r) = well _ord(list(A) x formula, env  _form _r(fn,r,A))"

The order type of the resulting well-ordering yields a map (given by
ordermap ) from environment/formula pairs into the ordinals. For each member of
DPow(A) , the minimum such ordinal will determine its place in the well-ordering.

"env _form _map(f,r,A,z) ==
ordermap(list(A) x formula, env  _form _r(fr,A)) * z"

If r well-ordersA and X is a definable subset of, then let us define
DPoword(f,r,A,X,k) to hold ifk corresponds to some definitionf— infor-
mally, k definesx:

"DPow_ord(f,r,A,X,k) ==
Jenv e list(A). dp e formula.
arity(p) < succ(length(env)) &

X = {x €A. sats(A, p, Cons(x,env))} &
env form _map(f,r,A, (env,p )) = k"

Similarly, let us defineDPowleast(f,r,A,X) to be the smallest ordinal
definingX:
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‘ "DPow_least(f,r,A,X) == wk. DPow _ord(f,r,A,X,k)"

Sincek determinesnv andp, we find that an ordinal can define at most one
element oDPow(A) :

" [DPoword(fn,r,A,X,k); DPow _ord(fn,r,A,Y,k); well _ord(A,r) ]
— X=Y"

We also find that every element DPow(A) is defined by some ordinal, given by
DPowleast

"[X € DPow(A); well _ord(Ar) 1
— DPoword(fn, r, A, X, DPow _least(fn,r,A,X))"

Now DPowleast can serve as a measure function to define the well-ordering
onDPow(A) .

‘ "DPow_r(f,r,A) == measure(DPow(A), DPow _least(f,r,A))"

Using general facts about relations defined by measure functions, we easily find
thatDPow(A) is well-ordered:

"well _ord(A,r) — well _ord(DPow(A), DPow _r(fn,r,A))"

10.4 Well-Ordering L, in the Limit Case

The proof that_,, is well-ordered appeals to transfinite induction on the ordinal
The induction hypothesis is that; is well-ordered ifé < «. In the limit case,
Ly = U, Le. Recall (Sect6.9.9 thatL-rank p(x) of x is the leastr such that
X € Lgy1. If @ is a limit ordinal then we order elements b, first by theirL-
ranks; if two elements have the sameank, say, then we order them using the
existing well-ordering oL; ;.

In the Isabelle formalization, is the limit ordinal and(j)  denotes the well-
ordering ofLset(j)

"rlimit(i,r) ==
if Limit(i) then
{z € Lset(i) x Lset(i).

ix x.z = (Xx ) &
(Irank(x’) < Irank(x) |
(Irank(x’) = Irank(x) & (X',x ) € r(succ(Irank(x)))))}
else 0"

We can prove that the limit ordering is linear provided the orderings of previous
stages are also linear:

" [Limit(i); Vi<i. linear(Lset(j), r(j)) 1
= linear(Lset(i), rlimit(i,r))"

Under analogous conditions, thiamit(i,r) is a well-ordering ofLset(i)
The proofs are straightforward, and | have omitted many details.
" [Limit(i); Vi<i. well  _ord(Lset(j), r(j)) 1

= well _ord(Lset(i), rlimit(i,r))"
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10.5 Transfinite Definition of the Well-Ordering for L

The well-ordering orL is defined by transfinite recursion. The Isabelle definition
refers to the cryptitcransrec  operator, so let us pass directly to the three imme-
diate consequences of that definition. For the base case, the well-ordering is the
empty relation:

| "L x(0) = 0

For the successor case, the well-ordering is given by applyRmur to the pre-
vious level.

‘ "L _r(f, succ(i)) = DPow oa(f, L r(fi), Lset(i))"
For the limit case, the well-ordering is given biynit
\ "Limit(i) = L(fi) = rimit(i, L ()"

Thanks to the results proved above, a simple transfinite induction proves that
L_r(fn,i) well-orders the constructible leviset(i)

"Ord(i) = well _ord(Lset(i), L _r(fn,i)"

Note that this theorem refers fa , an injection fromw x w into w. Recall
(Sect.10.2 that we know such that such functions exist but have not defined a
specific one. We have been able to prove our theorems by working in a locale that
assumes the existencefaf. Now, we can eliminate the assumption. We use an
existential quantifier to hide the well-ordering in the previous theorem, sdrthat

no longer appears. Then, by the mere existence of such an injection, it follows that
everyLset()  can be well-ordered:

"Ord(i) = 3r. well _ord(Lset(i), )"
To wrap things up, let us package the axivm= L as a locale:

locale V_equals _L =
assumesVL: "L(x)"

The axiom of choice — in the guise of the well-ordering theorem — is a trivial
consequence of the previous results.

theorem (in V_equals _L) AC: " 3r. well _ord(x,n)"

11 Conclusions

What has been accomplished? | have mechanized the proof of the relative consis-
tency of the axiom of choice, largely following a standard textbook presentation.
The formal proof is much longer than the textbook version because it is complete
in all details and uses no metatheoretical reasoning. The proof consists of three
parts:
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1. defining the clask

2. proving thatl satisfies the ZF axioms

3. proving thatL satisfiesv = L

4. proving thatV = L implies the axiom of choice

The proof ofV = L is by far the largest and most difficult part of the development.

It involves provingL to be absolute, which requires converting every concept used
in its definition into relational form and proving absoluteness. The sheer number
of concepts is an obstacle, and some of them are hard to express in relational form,
especially those involving recursion. Most of the relations have to be re-expressed
using an internal datatype of formulae.

My formalization has two limitations. First, | am not able to prove thaatis-
fies the axiom scheme of comprehension. Although Isabelle/ZF handles schematic
proofs easily, the proof of comprehension for the formpileequires an instance
of the reflection theorem fap. Each instance of comprehension therefore has a
different proof and must be proved separately. The reflection theorem is proved by
induction (at the metalevel) on the structureothus, all these proofs are instances
of one algorithm, and they are generated by nearly identical proof sctifjtsilhe
inability to prove the comprehension scheme makes the absoluteness proofs harder:
every necessary instance of comprehension is listed. Instantiating these proofs to
L has required proving that each of those instances hdld ifhere are about 35
such instances.

My formalization has another limitation. The proof tHatsatisfiesV = L
cannot be combined with the proof thdt= L satisfies the axiom of choice in
order to conclude thdt satisfies the axiom of choice. The reason is that the two
instances o = L are formalized differently: one is relativized and the other is
not. Here | have followed the textbook proofs, which prave- L, declare that the
axiom of constructibility can be assumed, and proceed to derive the consequences
of that axiom.

We could remedy both limitations by tackling the whole problem in a quite
different way, by formalizing set theory as a proof system and working entirely in
the metatheory. | leave this as a challenge for the theorem-proving community. A
by-product of the work is a general theory of absoluteness for arbitrary class mod-
els of ZF. It could be used for other formal investigations of inner models. Future
investigators might also try formalizing the proof tHatsatisfies the generalized
continuum hypothesis and the combinatorial principfe
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