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Formal verification of the ARM6 micro-architecture

Anthony Fox
Computer Laboratory, University of Cambridge

November 11, 2002

Abstract

This report describes the formal verification of the arm6 micro-architecture using
the hol theorem prover. The correctness of the microprocessor design compares the
micro-architecture with an abstract, target instruction set semantics. Data and temporal
abstraction maps are used to formally relate the state spaces and to capture the timing
behaviour of the processor. The verification is carried out in hol and one-step theorems
are used to provide the framework for the proof of correctness. This report also describes
the formal specification of the arm6’s three stage pipelined micro-architecture.
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1 Introduction

This report describes the formal verification of the arm6 micro-architecture in hol. This work
forms part of a collaborative epsrc funded project on the formal specification and verification
of the arm6. The project has been carried out with the support of arm Ltd. Graham
Birtwistle’s group at Leeds have produced detailed ml specifications of the arm architecture
(Dominic Pajak) and the arm6 micro-architecture (Daniel Schostak). At Cambridge, formal
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verification work has been undertaken using the hol system. The Leeds specifications have
been used as the basis for the production of compact and executable hol models. The arm

instruction set architecture model is presented in [13]. Some simplifications have been made
(with respect to the actual arm6 and Daniel’s high-fidelity specification) for the purposes of
the initial verification attempt described here. Nevertheless, the verification is substantial and
there is scope for carrying out additional more complete verifications in future. The approach
used for the formal verification is based on work done at Swansea [17, 16, 14, 11], which has
been formalised in hol at Cambridge [12]. This approach provides a general and structured
framework for carrying out processor verifications. However, before now only small scale (toy)
case studies have been considered. This project aimed to apply these methods to a commercial
processor design and, in doing so, assess the suitability of hol for this task.

By developing executable models, it has been possible to test the hol specifications with
machine code generated by a gnu assembler. This has allowed sanity checks and extensive
debugging to occur before carrying out the formal verification. The hol specification of
the arm6 micro-architecture is presented in this report. However, it is not the intention of
this report to give a fully extensive account of the arm instruction set or the arm6 micro-
architecture. Rather, the functionality of the arm6 is discussed to give a feel for the nature of
the design and the correctness issues that arise as a consequence. The hol specification of the
arm6 is presented in the appendix, primarily to show how the design is modelled in hol and
to illustrate the complexity of the design. Little attempt is made to explain the intricacies
of the definitions therein. Two slightly different versions of the design (no-clobber and data
forwarding) are presented and these represent two approaches to solving the problem of code
invalidating the pipeline state (self-modifying code).

Section 2 provides a brief overview of processor verification work that was undertaken in
the 1980s and 1990s. The algebraic approach to processor verification, which was developed at
Swansea and used for the arm6 verification, is presented in Section 3. This section provides
an abstract definition of correctness and introduces the one-step theorems, which are used as
the basis for the verification. An overview of the arm instruction set is given in Section 4.
The aim of this section is to highlight that arm is a rich risc architecture designed for writing
compact, general purpose software for embedded systems: it is not a ‘toy’ architecture. The
hol specification of the architecture is documented in [13]. Modifications have been made
to this specification, both in the course of the verification and as subsequent rationalizations;
these changes are outlined in Section 5. The arm6 micro-architecture is presented in Section 6:
the data path is discussed in Section 6.1 and the pipeline control is described in Section 6.2.
The formal verification is then discussed in Section 7. The hol specification of the micro-
architecture is given in the appendix.

2 Related Work

Several verifications of complete processors were undertaken during the 1980s and early 1990s.
Examples include tamarack [24], secd [3, 15], the partial verification of Viper [7, 8, 9], and
Hunt’s fm8501 and fm9001 [21, 22, 23] and Windley [36, 38]. All these processors were
simple uniprocessor fetch-decode-execute engines specifically designed for formal verification.
Following this work, Miller and Srivas verified the implementation of some of the instructions
of a simple real processor called aamp5 [27, 28]. A simplified version of the arm2 processor
was verified in [20].

Processors became much more complex from the later 1980s due to the addition of such
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features as complex multi-stage pipelines, out-of-order execution and co-processors. Archi-
tectures like Alpha, mips, Pentium, and Powerpc were considered too complex for complete
formal verification and the introduction of parallelism made their specifications that much
harder. As a result, the main thrust of hardware verification research work has shifted from
one-off proofs of whole processors to focusing on the analysis of fragments (such as buses,
caches and pipelines) using a variety of techniques including theorem proving, temporal logic
model checking and process algebra.

Various models of correctness have been applied to pipelined designs and a framework for
categorizing these has been proposed in [1]. Burch and Dill [6] developed a pipeline flushing
abstraction to show the equivalence between an instruction set architecture and a pipelined
implementation. The ideas have been further developed by Burch, [5], Windley and Burch,
[37], and Skakkebaek et al. [33], for pipelined microprocessors. Further developments to an
out-of-order processor core have been made by Damm and Pnueli [10] and McMillan [26].
Sawada and Hunt [31] give a formal proof of a pipeline with exceptions which requires in-
variants between successive pipeline stages. Aagaard and Leeser [2] developed the transaction
technique (mirroring how an instruction is decoded and executed down the pipeline stages)
method to cater for pipelines with hazards which has been taken up by Launchbury’s group
at Oregon. The verification of Hennessey and Patterson’s widely used pedagogical dlx risc

processor has been studied, using hol, by Tahar and Kumar [34, 30, 35]. All the above used
mechanized proof tools.

3 The Formal Verification of Processor Designs

This section outlines the approach used in the formal verification of the arm6. A detailed
account of this algebraic framework can be found in [12].

3.1 Approach

This section formalises, in an abstract setting, a definition of correctness. This definition can
be applied to the formal verification of pipelined microprocessor designs (such as the arm6).
The approach is based on comparing two models:

1. The processor’s micro-architecture (ma); and

2. The processor’s instruction set architecture (isa).

These two models occupy different levels of data and temporal abstraction, and this is made
apparent when one formalises state and time. Correctness requires there to be a correspon-
dence in behaviour between these two models. The ma and isa are modelled using state
functions ; these are maps of the form f : time → state → state. The set time is required to
be countable, and consequently it is simply assumed that time = N. The set of states state
is called the state space, and this is a non-empty set. The function f formally specifies the
required behaviour of a design at some level of temporal and data abstraction: the state at
time t, from the pre-initial 1 state a, is f t a. At the isa level, the state will contain only
entities visible to the programmer (typically, memory and registers) and each state transition
marks the execution of a single instruction. At the ma level, the state contains components
from the implementation (for example, the pipeline state) and each state transition normally

1The initialisation function f 0 maps arbitrary, pre-initialised states to valid initial states.
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marks one processor clock cycle. Correctness requires there to be a correspondence between
sequences of isa and ma states.

Correctness is formalised in hol with the following definition:

d̀ef CORRECT (spec:num→α→α) (impl:num→β→β) (imm:β→num→num) (abs:β→α) =

IMMERSION imm ∧

DATA_ABSTRACTION abs (spec 0) (impl 0) ∧

∀ t (a:β). spec t (abs a) = abs (impl (imm a t) a)

The state function impl is the implementation (modelling the ma) and spec is the specifica-
tion (modelling the isa). The state spaces are related using a data abstraction abs. Temporal
abstraction relates the clocks of the two systems, and this is the rôle of the immersion imm.
Note that the temporal abstraction is a function of the pre-initialised state of the implemen-
tation. The DATA ABSTRACTION and IMMERSION conditions are captured using the following
definitions:

d̀ef DATA_ABSTRACTION abs init init’ = ∀ a. ∃ b. abs (init’ b) = init a

d̀ef IMMERSION imm = (∀ a. imm a 0 = 0) ∧ ∀ a t1 t2. t1 < t2 ⇒ imm a t1 < imm a t2

The data abstraction criterion ensures that the implementation is complete with respect to
the specification i.e. each initial state of the specification is an abstraction of an initial im-
plementation state. An immersion is a monotonic increasing function from time, at the spec-
ification level, to time at the implementation level. The immersion is parameterized by the
pre-initialised state of the implementation. The state functions impl and spec are required to
be related with the condition:

∀t a. spec t (abs a) = abs(impl (imm a t) a)

This condition ensures that after executing t instruction at the specification level, the processor
state at time imm a t is equivalent to the specification state, modulo applications of the data
abstraction abs .

Correctness is defined with respect to the maps abs and imm, but it is possible for cor-
rectness to hold with respect to different abstractions. A less prescriptive presentation of
correctness is:

d̀ef IS_CORRECT spec impl = ∃ imm abs. CORRECT spec impl imm abs

The verification of correctness then involves selecting suitable witnesses for the maps imm and
abs .

The correctness framework described above is that used in the verification of the arm6.
This framework can be further enriched, for example, to accommodate input and output, and
to deal with the temporal characteristics of superscalar processors. For a fuller account the
reader is referred to [11, 12].

3.2 One-Step Theorems

This section describes an approach to the verification of correctness. This involves restricting
the way in which state functions and immersions are defined. The following one-step theorem
is used:
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ONE STEP THM

` ∀ spec impl imm abs.

UNIFORM imm impl ∧ TCON spec ∧ TCON_IMMERSION impl imm ⇒

(CORRECT spec impl imm abs =

DATA_ABSTRACTION abs (spec 0) (impl 0) ∧

(∀ a. spec 0 (abs a) = abs (impl (imm a 0) a)) ∧

∀ a. spec 1 (abs a) = abs (impl (imm a 1) a))

This theorem reduces the verification of correctness to a goal in which t has been specialised
to the times 0 and 1. This avoids the need to carry out an explicit induction over time when
verifying the main correctness goal. The conditions on the specification, implementation
and immersion require them to be deterministic. An immersion is uniform with respect to
a state function if, and only if, each interval imm a (t + 1) − imm a t is a function of the
implementation’s state at time imm a t. This is expressed with the following definitions:

d̀ef UNIFORM imm f = ∃ dur. UIMMERSION imm f dur

d̀ef UIMMERSION imm f dur =

(∀ a. 0 < dur a) ∧ (∀ a. imm a 0 = 0) ∧

∀ a t. imm a (SUC t) = dur (f (imm a t) a) + imm a t

The time-consistency property is defined by:

d̀ef TCON f = ∀ t1 t2 a. f (t1 + t2) a = f t1 (f t2 a)

Time-consistent state functions have primitive recursive definitions i.e. they can be modelled
with initialisation and next state functions. Furthermore, a state function f is time-consistent
if, and only if, the initialisation function (f 0) is an identity map on the range of f . This
invariance property forms the basis of the one-step theorem. Time-consistency is also defined
with respect to an immersion:

d̀ef TCON_IMMERSION f imm =

∀ t1 t2 a.

f (imm (f (imm a t2) a) t1 + imm a t2) a =

f (imm (f (imm a t2) a) t1) (f (imm a t2) a)

Here initialisation is only required to be an identity map at times given by the immersion.
It is often the case that spec 0 a = a by definition, therefore proving TCON spec is normally

trivial. Immersions can be constructed so as to be uniform, thus this becomes a relatively
simple condition to prove. Nevertheless, ONE STEP THM would be of little use if were not
possible to verify the TCON IMMERSION property without resorting to an explicit induction
over time. The following theorem is used:

TC IMMERSION ONE STEP THM

` ∀ f imm. IS_IMAP f ∧ UNIFORM imm f ⇒

(TCON_IMMERSION f imm =

(∀ a. f 0 (f (imm a 0) a) = f (imm a 0) a) ∧

∀ a. f 0 (f (imm a 1) a) = f (imm a 1) a)

The constraint IS IMAP requires the state functions to be iterated maps, this is defined by:

d̀ef IS_IMAP f = ∃ init next. IMAP f init next

d̀ef IMAP f init next =

(∀ a. f 0 a = init a) ∧ ∀ t a. f (SUC t) a = next (f t a)
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Figure 1: arm’s visible registers.

The one-step theorems are, therefore, founded on the use of primitive recursive state functions.
Using this approach, the verification of a processor, modelled by an iterated map impl , with
respect to an isa, modelled by an iterated map spec, is dominated by proving that the following
set of equations hold for all processor states a:

impl 0 (impl (imm a 0) a) = impl (imm a 0) a (1)

impl 0 (impl (imm a 1) a) = impl (imm a 1) a (2)

spec 0 (abs a) = abs(impl (imm a 0) a) (3)

spec 1 (abs a) = abs(impl (imm a 1) a). (4)

Equations 1 and 3 are likely to be fairly easy to verify. In the case of the arm6, the functions
impl and spec are complex and the state space is large. This means that verifying equations 2
and 4 is very involved but, nonetheless, conceptually simple.

4 The ARM Architecture

This section gives a brief overview of Version 3 of the arm 32-bit risc architecture. The aim
here is to introduce the main features of the architecture, rather than going into the full details
of the instruction set semantics. A hol specification of the arm instruction set architecture
is presented in [13]. The official arm reference manual is [32].

4.1 Modes and Registers

The arm architecture supports a number of operating modes, allowing privileged access to
different register banks: see Figure 1. The arm6 provides six modes: usr (user), fiq (fast
interrupt), irq (standard interrupt), svc (supervisor call), abt (abort), and und (undefined in-
struction). Each mode provides access to sixteen general purpose registers, some of which are
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Overflow

Carry / Borrow / Extend FIQ disable

Zero IRQ disable

Negative / Less than

flags control

Figure 2: Format of the cpsr.

Class Instructions

Branch and Branch with Link B, BL

Data Processing ADD, ADC, SUB, SBC, RSB, RSC, CMP, CMN,
AND, ORR, EOR, MOV, MVN, BIC, TST, TEQ

Multiply and Multiply Accumulate MUL, MLA

PSR Transfer MRS, MSR

Single Data Transfer LDR, STR

Block Data Transfer LDM, STM

Single Data Swap SWP

Software Interrupt and Exceptions SWI

Table 1: The arm Instruction Classes.

shared with other modes. For example, registers r0 through to r7 and the program counter
r15 are the same for all modes. The cpsr (Current Processor Status Register) is a special
purpose register used to keep track of the operating mode, interrupt status, and four condition
code flags nzcv: see Figure 2. The cpsr is accessible in all modes, and the privileged modes
(non-user modes) have their own spsr (Saved Processor Status Register), and these are used
to store the cpsr when entering the privileged mode. Register r14 in each mode is used as a
link register, this stores the program counter address when taking an exception or sub-routine
call.

4.2 Memory

In the arm architecture, memory may be viewed as a linear array of 232 bytes. Data items
can be accessed either as bytes or as 32-bit words. When accessing words, address-alignment
and byte-ordering are of significance.

4.3 Instruction Classes

The architecture has eight principle instruction classes: see Table 1. Instruction codes that
do not correspond with a valid instruction form the undefined instruction class. Holes in the
instruction space allow the instruction set to be extended for future generations of processors.
Undefined instructions are detected at run time and they cause the processor to raise an
undefined instruction exception. In the arm architecture, all instructions are conditionally
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executed at run time. Instructions that are not executed constitute the dynamic class of
unexecuted instructions. All of the instructions listed in Table 1 are potentially members of
this class.

Data processing instructions are used to perform logical and arithmetic operations, and
data transfer instructions are used to transfer data between registers and memory. Both of
these instruction classes are very flexible. For example, with single data transfers:

• A single byte or word can be transferred.

• Memory addresses are computed using a base address (stored in a register) and an offset.

• The offset can be added (up) or subtracted (down) from the base address.

• Pre- and post-indexing is possible.

• Base register write-back is allowed, facilitating auto-indexing.

• When loading a word from a mis-aligned memory address, the word is rotated right by
8, 16 or 24 places.

With data processing instruction:

• Eight arithmetic and eight logical operations are available.

• One of the source operands can be

– an immediate value,

– a register value,

– a register value shifted by an immediate value,

– a register value shifted by a register value, or

– a register value shifted right one place and extended with the carry bit.

With the exception of shifting by a register value, the offset for a data transfer can be
any of the above.

• The condition code flags nzcv can be set.

• A mechanism for retuning from exceptions (changing mode) is available.

Five types of shifting are possible: Logical shift left (lsl), Logical shift right (lsr), Arithmetic
shift right (asr), Rotate right (ror) and Rotate right extend (rrx).

4.4 Features not Modelled

The following features have not been tackled:

• Thumb instructions.

• Co-processor instructions.

• External interrupts.
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The Thumb instruction set can be viewed as a compressed form of a subset of the arm

instruction set. Thumb instructions are 16-bits long (which allows for a higher code density)
and compliant arm processors can switch to and from Thumb mode (flagged with bit five of
the cpsr) in order to execute these instructions. This instruction set was introduced with the
arm7 family of processors and so it is not considered here.

Co-processor instructions allow the instruction set to be extended through the addition of
co-processors. A strategy for modelling and verifying arm designs with co-processor instruc-
tions has yet to be devised.

The arm architecture supports two types of external interrupts: standard and fast. These
exceptions have not been modelled. Accurately modelling exceptions at the isa level is not
trivial because exceptions tend to expose implementation dependent (pipelined) behaviour.
One must consider exception priority and order, with respect to other (possibly simultaneous)
exceptions and the instruction sequence. The correctness of systems with input has been
studied in an abstract setting, [11], but further work is needed in this area.

5 The ARM Instruction Set Architecture Specification

The hol specification of the arm instruction set is described in [13]. This specification was
used as the basis for the isa model used in the arm6 verification, but a number of modifications
have been made. The specification was ported to the latest version of hol: the Kananaskis
release, instead of Taupo. This release adds a number of new features, some of which have
been used to refine parts of the isa specification. Other changes were made in order to reduce
the verification effort and these features may be reinstated for later verification attempts. This
section outlines the main modifications.

5.1 Unpredictable Behaviour

Some arm instructions give rise to unpredictable (processor dependent) behaviour. For ex-
ample, the instruction

EOR r1, r15, r2 ASR r3

is unpredictable because the first operand is the program counter. This was modelled in hol

by using an arbitrary value ARB to represent an unspecified state. However, this approach is
not suited to processor verification using the definition of correctness presented in Section 3.1.
This is because the arm6 will always be in some concrete state and it does not make sense to
compare these processor states (by equality after data abstraction) with the isa state ARB. For
the purposes of the initial verification attempt the isa model was changed so as to conform
with arm6 behaviour. Other approaches will be considered in due course.

5.2 Words

In [13] the model of 32-bit words (the principle data type for the arm architecture) was not
wholly satisfactory. Words were defined with the following data type declaration:

Hol_datatype ‘w32 = W32 of num‘

This approach is flawed in that term equality does not correspond with word equality. That
is to say, the following one-to-one theorem should not be true, but it is:
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Operation Function Name Symbol Type

One’s Complement word 1comp NOT word32→word32

Two’s Complement word 2comp ~ word32→word32

Addition word add + word32→word32→word32

Subtraction word sub - word32→word32→word32

Multiplication word mul * word32→word32→word32

Bitwise Conjunction word and & word32→word32→word32

Bitwise Disjunction word or | word32→word32→word32

Bitwise Exclusive Disjunction word eor # word32→word32→word32

Logical Shift Left word lsl << word32→num→word32

Logical Shift Right word lsr >>> word32→num→word32

Arithmetic Shift Right word asr >> word32→num→word32

Rotate Right word ror #>> word32→num→word32

Rotate Right with Extend RRX None bool→word32→word32

Table 2: Word operations.

` (W32 a = W32 b) = (a = b)

This precludes a clean presentation of word theorems i.e. some key results (for example, the
commutative ring properties of word arithmetic) must be presented as conditional equations
or with the inclusion of casting maps. This problem has been addressed with the development
of a theory of n-bit words, which has been added to the hol system. Words are constructed
as an equivalence type over the natural numbers and, as such, the following theorem holds for
32-bit words:

` (w32 a = w32 b) = (a MOD (2 EXP 32) = b MOD (2 EXP 32))

where w32:num→word32 maps numbers to words.2 The new word theory supplies numerous
(equational) theorems about the word data type, and these have been used in the verification
of the arm6. Operator overloading is also provided: see Table 2. The pretty-printing of word
ground terms has also been made possible with the Kananaskis release of hol, thus the term
w32 10 is displayed as 0xA.

The same model of words is used at both the instruction set and micro-architecture levels
of abstraction. This reduces the semantic gap between the two levels of abstraction, and
the sharing of primitive functions between isa and ma specifications is advantageous. The
correctness definition covers both the data and control aspects of a design, and hence it is
important to be able to verify the equivalence of word expressions. Having an executable
model of words also provides a means to test specifications through the execution of real code.

5.3 Data Types

Some rationalizations have been made to the specification through making better use of data
types. For example, some nested if statements have been replaced with case statements.

2The function name w32 is actually a pseudonym for n2w in word32Theory.
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Of particular significance is the modelling of the general purpose registers. In the original
isa specification, the register bank state space was modelled using six maps, each correspond-
ing with the registers of a given mode. This has been simplified by using one map from register
names to 32-bit words. The program status registers have also been modelled using a single
map. The following type gives names to each of the registers:

Hol_datatype ‘register = r0 | r1 | r2 | ... | r13_und | r14_und‘

Hol_datatype ‘psrs = CPSR | SPSR_fiq | ... | SPSR_abt | SPSR_und‘

Thus, the register bank is modelled with the type register→word32 and the program status
registers have type psrs→word32. Kananaskis provides a mechanism for type abbreviations,
and this has been used as follows:

type_abbrev("mem", ‘‘:word30→word32‘‘)

type_abbrev("reg", ‘‘:register→word32‘‘)

type_abbrev("psr", ‘‘:psrs→word32‘‘)

This enables the arm registers and main memory to be given the type names mem, reg and
psr. Note that hol will still display these types in a fully expanded form: see [18].

The following data type declaration is made:

Hol_datatype ‘exception = reset | undefined | software | address |

pabort | dabort | interrupt | fast‘

This enables exceptions to be named (improving readability) and, with Kananaskis, one can
utilize the generated functions num2exception and exception2num. Note that the exception
address is redundant with respect to Version 3/4 of the arm instruction set—it is a legacy of
arm’s 26-bit memory addressing. This exception type has been added to the type declaration
because it provides a straightforwards means to compute exception vectors, which in turn
simplifies the specifications.

Instruction classes are named by the following type declaration:

Hol_datatype ‘iclass = swp | mrs_msr | data_proc | reg_shift |

ldr | str | br | swi_ex | undef | unexec‘

The function DECODE INST:num→iclass is used to decode instructions (at both levels of
abstraction), and the isa next state function is modified accordingly. The condition codes are
also given a data type definition:

Hol_datatype ‘condition = EQ | CS | MI | VS | HI | GE | GT | AL‘

There are sixteen condition codes in total but the other eight are simply negations of the above.
The definition of the isa function CONDITION PASSED is changed to be a case expression over
the above data type.

5.4 Memory Access Operations

The following memory access operations are defined:

d̀ef MEMREAD mem addr = mem (TO_W30 addr)

d̀ef MEM_READ b = if b then MEM_READ_BYTE else MEM_READ_WORD

d̀ef MEM_WRITE b = if b then MEM_WRITE_BYTE else MEM_WRITE_WORD

These functions help tidy up the presentation of the isa specification. The function MEMREAD

is used for word aligned memory access and is also used in the arm6 specification, as is the
function MEM WRITE.
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5.5 Features Dropped

The original isa specification had a simplistic memory model, but memory aborts were mod-
elled in the case of address mis-alignment. The modified specification drops all memory abort
handling—it is assumed that abort exceptions are never raised. This means that the only
exceptions that are handled are software interrupts and undefined instructions. Handling all
of the exception types will require a more detailed memory model and a more sophisticated
model of correctness.

It is assumed that little-endian word ordering is used throughout. This is a relatively minor
change and verifying a version with big-endian ordering should not be difficult.

Finally, two instruction classes have been left out: multiply and multiply accumulate; and
block data transfer. The main reason for this is that their verification would not be straight-
forward. Both of these instruction classes are implemented (by the arm6) with an iterated
machine cycle i.e. the same cycle is repeated until completion. Multiplication is implemented
using a modified Booth’s algorithm: the data path is used to carry out additions/subtractions
and shifts. In most modern processors the alu can perform multiplication directly and so the
multiplication algorithm does not encroach upon the main processor control logic. Such an
implementation would be readily verifiable (at the level of abstraction covered by this report)
and, therefore, it is not significant dropping this instruction class. However, verifying the
block data transfer instruction class remains a challenge.

6 The ARM6 Implementation

The arm6 design is split into control and data path components. The data path is presented in
Section 6.1 and the control components are introduced in Section 6.2. The pipeline behaviour
explained in Section 6.2.2.

6.1 The Data Path

The data path performs various data processing operations throughout the course of an in-
struction’s execution. Figure 3 shows the data path for the arm6. The main units are the
field extractor/extender, the shifter and the alu. There are two data buses, labelled A and
B, supplying the inputs to the alu; with bus B passing through the shifter. The behaviour of
the data path is determined by the control unit. This section gives details of this data path
control logic—the pipeline control is covered in Section 6.2. Section 6.1.1 defines the state
space of the data path, and the following sections outline the functionality of the data path.

6.1.1 The Data Path State Space

The state space of the data path is modelled in hol using the following type declaration:

Hol_datatype ‘dp = DP of reg=>psr=>word32=>word32=>word32=>word32‘

The components are named as follows:

DP reg psr areg din alua alub

The components are:
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Function Description

AREG Selects the value to be written to the AREG latch.

AREGN1 Gives the exception vector to be taken on the next cycle.

DIN Selects the value to be written to the DIN latch.

DINWRITE Indicates whether the DIN latch is to be updated.

NBW Indicates whether the next memory access is for a byte or word.

NRW Indicates whether the next memory access is a read or write.

Table 3: Functions used in specifying the memory interface.

reg reg The register bank
psr psr The program status registers
areg word32 The address register
din word32 The data-in register
alua word32 alu source register A
alub word32 alu source register B.

The register bank and program status register types are taken from the isa model (see [13]).
However, the program counter register r15 is treated differently: at the isa level the program
counter stores the address of the instruction being executed, whereas at this level the program
counter is the address of the instruction being fetched. A program status register is concep-
tually a 32-bit word but with version 3/4 of the arm isa many of these bits are redundant.
This means that the arm6 does not use 32-bits in storing each status register. This detail is
omitted in the implementation described here.

6.1.2 The Memory Interface

The main memory is accessed using the address register areg, which is the source/destination
address for memory reads/writes. When writing to memory the data source is always bus
B. When reading from memory the data is fed to the pipeline (see Section 6.2.2) and to the
register din. Multiplexers are used to select the values used in updating the registers din and
areg. The din register can either: (i) remain unchanged, (ii) take the value of the current
instruction code ireg, or (iii) be updated with a word from memory. The areg register can
take one of four values: (i) an exception vector, (ii) the value of register r15, (iii) the output
of the alu, or (iv) the output of the address increment.

The arm6 data path actually contains a byte replicator between bus B and the memory,
which is used when storing single bytes. This detail has been hidden within the definition of
the function MEM WRITE, which is taken from the modified isa specification: see Section 5.4.

Table 3 lists the main functions that are responsible for the memory interface behaviour,
and each of these functions is defined in Appendix A.1.

6.1.3 The Field Extractor/Extender

The field extractor/extender takes input from the register din and the result is fed to the
bus B multiplexer (Section 6.1.6). The unit performs the task of extracting (and if necessary
extending) an immediate field from the instruction register (for example, when accessing the
branch offset). It is also used to select the appropriate bits from din when executing byte load
(or swap) instructions. The field extractor/extender is modelled in hol using the function
FIELD, which is defined in Appendix A.2.
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Function Description

PCWA Controls whether the incementor bus updates r15.

RAA Determines which register is written to the RA bus.

RBA Determines which register is written to the RB bus.

RWA Controls the (ALU output) update of the Register Bank.

Table 4: Functions used in specifying general purpose register access.

Function Description

PSRA Indicates whether the CPSR or an SPSR is written to the PSRRD bus.

PSRDAT Selects the value to be written to the PSRDAT bus.

PSRFBWRITE Controls the PSRFB latch update.

PSRWA Controls the updating of the Program Status Register Bank.

Table 5: Functions used in specifying program status register access.

6.1.4 The General Purpose Registers

Three read ports provide access to the general purpose registers, the outputs are labelled
PCBUS, RA and RB. The program counter bus gives direct access to register r15 and is used
when setting areg just prior to an instruction fetch. There are two write ports: one is used
to update the program counter (after incrementing the address), and the other is connected
to the alu output. Table 4 lists the functions used in accessing the registers, and they are
defined in Appendix A.3.

6.1.5 The Program Status Registers

The program status registers are accessed using two read ports and one write port. One of the
read ports is dedicated to the cpsr, which is fed to the control unit. The cpsr status flags
and mode influence the execution of instructions. The carry flag is also fed to the shifter and
the alu. The write port is used to update either the cpsr or an spsr. A multiplexer is used
to construct a new psr word using data from the shifter (i.e. the carry out), the alu and the
control unit. Table 5 lists the functions used in accessing the psrs, and they are defined in
Appendix A.4.

6.1.6 The Data Buses and Shifter

There are two buses: bus A takes a value from a general purpose register or from a program
status register; bus B passes through the shifter and takes a value from the field extrac-
tor/extender (Section 6.1.3) or from the register bank. The 32-bit bus values are stored in
registers alua and alub respectively. The shifter also outputs a carry flag, which is fed to the
control unit and is used in updating the psrs (Section 6.1.5). The (barrel) shifter can perform
one of five types of shift operation (lsl, lsr, asr, ror or rrx). A carry in is input from
the psr unit. The shift amount is either: zero; an immediate value (taken from ireg in the
control unit); a register shift amount (taken from sctrlreg in the control unit); or it is an
alignment amount (constructed from oareg in the control unit). The last case is used when
loading bytes or when reading from a mis-aligned memory address. Table 6 lists the functions
used to specify the shifter and bus behaviour, and they are defined in Appendix A.4.
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Function Description

BUSA Selects the value to be written on bus A.

BUSB Selects the value to be written on bus B.

SCTRLREGWRITE Controls the SCTRLREG latch update.

SHIFTER Gives the output of the barrel shifter, which includes a carry out.

Table 6: Functions used in specifying the shifter and bus behaviour.

Function Description

ALU6 Gives the output of the ALU, which includes the NZCV flags.

ALUAWRITE Controls the ALUA latch update.

ALUBWRITE Controls the ALUB latch update.

Table 7: Functions used in specifying the alu behaviour.

6.1.7 The ALU

The alu performs arithmetic and logical operations on 32-bit words. The operands are read
from alua and alub. The alu also takes the cpsr carry flag, which is needed for executing
the ADC and SBC instructions. The unit outputs a 32-bit word together with four status flags
nzcv. The alu is used to: (i) execute the operations from the data processing instruction
class; (ii) simply select alua or alub; (iii) implement the auto indexing for data transfers;
and (iv) compute branch destination and link register values. Table 7 lists the functions used
in specifying the alu behaviour, and they are defined in Appendix A.6.

6.2 The Control Unit

The behaviour of the pipeline and data path is determined by the control unit. The state
space of this unit is given in Section 6.2.1. The arm6 has a three stage pipeline with fetch,
decode and execute stages. The fetch and decode stages always take one machine cycle to
complete. Some instructions require more than a single machine cycle to execute, and this
means that the fetch and decode stages do not proceed on all cycles. Details of this pipeline
behaviour are given in Section 6.2.2.

6.2.1 The Control State Space

The state space of the control unit is modelled in hol using the following type declaration:

Hol_datatype ‘ctrl = CTRL of word32=>bool=>word32=>bool=>word32=>bool=>word32=>word32=>

bool=>bool=>bool=>iclass=>iseq=>

num=>bool=>bool=>word32=>word32=>num‘

The components are named as follows:

CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

ointstart onewinst opipebll nxtic nxtis

aregn nbw nrw sctrlreg psrfb oareg

The first eight components give the state of the pipeline:
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pipea word32 Stores a fetched instruction code
pipeaval bool Indicates whether pipea has been invalidated
pipeb word32 Stores an instruction code prior to decode
pipebval bool Indicates whether pipeb has been invalidated
ireg word32 Stores the instruction code after decode
iregval bool Indicates whether ireg has been invalidated
apipea word32 The source memory location for pipea
apipeb word32 The source memory location for pipeb.

The components apipea and apipeb are not taken from the actual arm6 design. They have
been added in order to implement correct behaviour (see Section 3.1) when writing to the
memory addresses pc and pc-4: see Examples 3 and 4 in Section 6.2.2.

The next five components control the pipeline behaviour:

ointstart bool Indicates whether an exception has been raised
onewinst bool Indicates whether a new instruction has been decoded
opipebll bool Controls whether an instruction will be fetched
nxtic iclass The class of the next instruction to be executed
nxtis iseq The next instruction sequence (for multi-cycle execution).

The remaining components relate to the data path control:

aregn num An exception vector
nbw bool Controls whether memory access is for a byte or a word
nrw bool Controls whether memory access is read or write
sctrlreg word32 Stores a shift value, which is read from the register bank
psrfb word32 Stores a word read from the psrs
oareg num The two least-significant bits of the address register.

Note that aregn is naturally a 3-bit word3 and oareg is a 2-bit word, but for convenience
natural numbers are used. The instruction class type iclass is defined at the isa level: see
Section 5. The instruction sequence type is declared with:

Hol_datatype ‘iseq = t3 | t4 | t5 | t6‘

These values could be encoded using 2-bit words.

6.2.2 The Pipeline

The behaviour of the pipeline is explained in this section with the aid of some sample code.
This code has been designed to demonstrate some of the intricacies of the design, and is
otherwise without purpose. In fact, it is inadvisable to write code of the form found in
Examples 3 and 4.4 The pipeline has three stages: fetch, decode and execute. A single-cycle
instruction is in the execute stage for just one cycle, and in the pipeline for three cycles in total.
Multi-cycle instructions require more than a single cycle at the execute stage; consequently

3In fact a single bit would suffice here because only two types of exception are modelled: undefined instruc-
tions and software interrupts.

4It is good programming practise, when writing assembly code, to ensure that the program and data address
spaces are clearly demarcated. Ignoring this guideline leads to the production of obfuscated code and in some
cases it will expose (the pipeline) details of a particular processor implementation.
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they are in the pipeline for more than three cycles. The distinction between single- and
multi-cycle instructions should become clear in the following examples.

Instructions are fetched from the current program counter address pc, which is register
r15. Therefore, pc is not the address of the instruction being executed. In general, the
instruction being executed is from address pc-8 and the instruction being decoded is from
address pc-4. This is further complicated with multi-cycle instructions because the program
counter is incremented on the first execute cycle, which means that the execute and decode
instructions then correspond with addresses pc-12 and pc-8 respectively.

Example 1. Consider the following fragment of arm code:

a: sub pc, pc, #4 @ 0xE24FF004

b: swp r0, r1, [r2] @ 0xE1020091

c: add r0, r1, r2, ROR r3 @ 0xE0810372

d: b a @ 0xEAFFFFFB

e: mvn r0, #3 @ 0xE3E00003

f: cmp r0, r1 @ 0xE1500001

The letters to the left of the colon are instruction labels. The commented hexadecimal numbers
to the right (after the @ symbol) are the 32-bit encodings for each of the respective instructions.
When executing the code in hol these values are used to track the flow of instructions through
the pipeline. The instructions have the following affect:

1. The subtract (sub): This instruction causes a branch to address pc-4. This is the
address of the second instruction, and so this is effectively a no-op instruction.

2. The swap (swp): This takes four cycles to execute; involving a read from, and write to,
main memory.

3. The add (add): This takes two cycles to execute. The fist cycle is used to store register
r3 in the control unit component sctrlreg.

4. The branch (b): The pipeline is returned to the initial state i.e. the pipeline state prior
to executing the sub instruction. The mvn and cmp instructions, having been fetched,
are not decoded or executed.

Figure 4 shows the pipeline flow for this sequence of instructions. Instruction mnemonics and
labels are shown on the y-axis and time increases along the x -axis. Each block represents
the operation (fetch, decode or execute) performed on an instruction. Multi-cycle instructions
are emphasised by marking the additional execute stages with a lighter colour. Observe that
during the execution of the swp and add instructions, a fetch occurs on the first execute
cycle and a decode occurs on the last execute cycle. This explains the significance of the
component pipeb, which stores an instruction code prior to decode. (If the fetch and decode
were always simultaneous then pipeb would be redundant.) A fetch occurs on each execute
cycle of the branch. With single-cycle instructions fetch and decode occur simultaneously with
the execute. From Figure 4 it is clear that all but the first instruction is multi-cycle. The first
instruction (sub) is single-cycle, but a further two cycles are needed to re-fill the pipeline after
pc is modified. Strictly speaking, these extra cycles are deemed not to constitute part of the
instruction’s execute stage but they are of significance from a correctness standpoint.

Table 8 shows the pipeline behaviour with respect to the first thirteen components of the
control unit. The instruction labels have been used, in place of the instruction codes, to
indicate the state of the components pipea, pipeb and ireg. Observe that the components
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0 1 2 3 4 5 6 7 8 9 10 11 12
a: sub D E

b: swp F D

c: add F D

b: swp F D E E E E

c: add F D E E

d: b F D E E E

e: mvn F

f: cmp F

a: sub F D

b: swp F

Figure 4: Pipeline flow for Example 1.

State \ Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

pipea,pipeaval b,T c,F b,T c,T d,T d,T d,T d,T e,T e,T f,T a,T b,T
pipeb,pipebval b,T c,F b,T c,T c,T c,T c,T d,T d,T e,T f,T a,T b,T
ireg,iregval a,T b,F c,F b,T b,T b,T b,T c,T c,T d,T d,T d,T a,T
ointstart F F F F F F F F F F F F F

onewinst T T T T F F F T F T F F T

opipebll T T T T F F F T F T T T T

nxtic data proc swp reg shift swp swp swp swp reg shift reg shift br br br data proc

nxtis t3 t3 t3 t3 t4 t5 t6 t3 t4 t3 t4 t5 t3

Table 8: The pipeline behaviour for Example 1.
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pipeaval, pipebval and iregval are used to implement the re-filling of the pipeline (tagging
invalidated instruction codes) after the sub instruction writes to register pc. This differs from
the branch instruction, which takes three cycles to execute, re-filling the pipeline in the process.

The states are grouped together into blocks, with the cycle at the start of each block
underlined. This grouping corresponds with the temporal abstraction used in verifying the
design. The underlined cycles are specified by an immersion, which gives the times at which
data abstraction yields isa states. These states are characterised by the fact that the pipeline
is ready for the first execute cycle of the instruction in ireg.

Example 2. This example considers the pipeline flow for the unexecuted and undefined
instruction classes. When an undefined instruction code is encountered an exception is raised,
causing a branch to memory address 0x4. The following code fragment forms part of a stub
exception handler:

0x0: movs r15,#32 @ 0xE3B0F020 - Reset

0x4: movs r15,r14 @ 0xE1B0F00E - Undefined Instruction

0x8: movs r15,r14 @ 0xE1B0F00E - Software Interrupt

0xC: subs r15,r14,#4 @ 0xE25EF004 - Prefetch Abort

This simplistic exception handler ignores each exception and returns to the link address, which
is stored in register r14.

The code containing the unexecuted and undefined instructions is given below:

a: andnv r0, r0, r0 @ 0xF0000000

b: undef @ 0xE6000010

c: mvn r0, #3 @ 0xE3E00003

d: cmp r0, r1 @ 0xE1500001

e: str r12, [r1,r5, ASR #6]! @ 0xE7A1C345

The first instruction is never5 executed and the second instruction has an undefined instruction
code. Figure 5 shows the pipeline flow and Table 9 shows the state component trace for this
example. The unexecuted instruction andnv is initially decoded and identified as a data
processing instruction. When the instruction comes to being executed the actual instruction
class (ic) is determined to be unexec. The value ic is computed by examining the condition
code (bits 31–28 of the instruction register) and, as appropriate, performing tests on the
program status flags. If the class is determined to be unexec then the execute stage does not
proceed. The undefined instruction gives rise to an exception, which is handled by the swi ex

instruction class; the execution of which is shown in Figure 5 using different coloured boxes
(labelled with an I). Exceptions have a similar behaviour to branch (with link) instructions
and they take three cycles to execute. The control component aregn has value 1 at cycle two
and the exception causes a branch to address aregn*4.

Example 3. This example has been devised to illustrate the execution of self-modifying
code. The arm6 has a von Neumann style architecture—program and data memories are not
separated. This means that it is possible for a program to modify the memory at locations
coincident with the code being executed. Therefore, one must consider what happens when
instructions in the pipeline are overwritten in memory. The following code fragment contains
store and swap instructions, both of which try to modify the code itself:

5Note that using the never (nv) condition code is strongly discouraged by arm because it utilizes an area
of the instruction space reserved for future use.
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0 1 2 3 4 5
a: andnv D

b: undef F D E I I I

c: mvn F D

d: cmp F

e: str F

0x4: movs F D

0x8: movs F

Figure 5: Pipeline flow for Example 2.

State \ Cycle 0 1 2 3 4 5

pipea,pipeaval b,T c,T d,T e,T 0x4,T 0x8,T
pipeb,pipebval b,T c,T d,T e,T 0x4,T 0x8,T
ireg,iregval a,T b,T c,T c,T c,T 0x4,T
ointstart F F T F F F

onewinst T T T F F T

opipebll T T T T T T

nxtic data proc undef swi ex swi ex swi ex data proc

nxtis t3 t3 t3 t4 t5 t3

Table 9: The pipeline behaviour for Example 2.
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a: ldr r0, f @ 0xE59F000C

b: adr r1, e @ 0xE28F1004

c: swp r2, r0, [r1] @ 0xE1012090

d: str r2, f @ 0xE58F2000

e: cmp r3, #1 @ 0xE3530001

f: mvn r4, #2 @ 0xE3E04002

g: mov r5, #3 @ 0xE3A05003

The instruction labelled f is first read into register r0. The pseudo-instruction 6 adr causes r1
to take the address of the instruction with label e. The swap instruction stores the instruction
code of f (which is in r0) at address e. The old instruction code at e is stored in r2. The
store instruction then stores this instruction code at address f. At this point the instructions
labelled e and f have been swapped in memory. The remaining instruction perform simple
data-processing operations.

When this sequence of instructions is executed on an arm6, the cmp and mvn instructions
are executed in the original program order, even though the instructions are swapped in
memory. This is because in both cases the instructions are fetched prior to updating the
memory. The hol model of the arm instruction set architecture does not take account of
this. In the abstract isa model the mvn instruction is executed before the cmp instruction.
Consequently there is an inconsistency in behaviour between the two levels of abstraction,
preventing a formal verification of the design. This needs to be addressed, and a number of
options have been considered:

1. Leave the arm6 model unchanged and investigate one of the following:

(a) Modify the isa specification so as to implement (highly abstract) pipeline be-
haviour.

(b) Modify the isa specification—abstracting out details of instruction sequencing.
This would require a small modification to the isa model, but necessitate a more
elaborate definition of correctness.

(c) Deem such self-modifying code to be unpredictable. It would then be necessary to
modify the correctness definition, so as to accommodate unpredictable behaviour.

2. Change the data behaviour of the isa and arm6 models. If the swp and str instructions
do not write over (clobber) the following two instructions, then correctness holds. This
involves minor changes to both specifications and preserves the arm6 pipeline behaviour.

3. Change the pipeline behaviour of the arm6, so as to correctly implement the abstract
isa behaviour. This has been implemented using data forwarding, and consequently it
only affects the timing of str instructions when writing over the following instruction
(one extra cycle is needed).

Options 2 and 3 are implemented with the no-clobber and data forwarding versions of the
arm6 respectively. These versions are very similar and the small differences in the control
logic may be seen in Appendix C. Unless otherwise stated, this report will focus on the no-
clobber implementation. Option 1(a) is not ideal because it would involve changing the state
space of the isa. Options 1(b) and 1(c) are promising and will be investigated in due course.

6Pseudo-instructions are converted by the assembler into a real arm instructions. In this example the adr

becomes an add instruction.
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State \ Cycle 0 1 2 3 4 5 6 7 8 9 10 11

pipea,pipeaval b,T c,T c,T c,T d,T e,T e,T e,T e,T f,T f,T g,T
pipeb,pipebval b,T b,T b,T c,T d,T d,T d,T d,T e,T e,T f,T g,T
ireg,iregval a,T a,T a,T b,T c,T c,T c,T c,T d,T d,T e,T f,T
ointstart F F F F F F F F F F F F

onewinst T F F T T F F F T F T T

opipebll T F F T T F F F T F T T

nxtic ldr ldr ldr data proc swp swp swp swp str str data proc data proc

nxtis t3 t4 t5 t3 t3 t4 t5 t6 t3 t4 t3 t3

(a) Actual arm6 behaviour.

State \ Cycle 0 1 2 3 4 5 6 7 8 9 10 11

pipea,pipeaval b,T c,T c,T c,T d,T e,T e,T [f],T [f],T f,T [e],T g,T
pipeb,pipebval b,T b,T b,T c,T d,T d,T d,T d,T [f],T [f],T [e],T g,T
ireg,iregval a,T a,T a,T b,T c,T c,T c,T c,T d,T d,T f,T [e],T
ointstart F F F F F F F F F F F F

onewinst T F F T T F F F T F T T

opipebll T F F T T F F F T F T T

nxtic ldr ldr ldr data proc swp swp swp swp str str data proc data proc

nxtis t3 t4 t5 t3 t3 t4 t5 t6 t3 t4 t3 t3

(b) With data forwarding.

Table 10: The pipeline behaviour for Example 3.

Figure 6 shows the pipeline flow for this example. In Figure 6(a) the instruction sequence
corresponds with the actual arm6 behaviour. This is also the pipeline flow for Option 2 above.
In Figure 6(b) data forwarding is introduced, which implements the abstract isa behaviour.
Data forwarding is a technique used to resolve dependencies in pipelines—completed compu-
tations are used to update the pipeline state, thus avoiding the need to re-load (modified)
data from its original source. In Figure 6(b) the boxes labelled W-a mark instances where the
word being stored in memory is also forwarded to pipea. This is triggered when there is a
match between the current address register (see Section 6.1.2) and apipea. This could be
implemented in hardware without great difficulty.

The pipeline states for this example are shown in Table 10. The true arm6 behaviour
is shown in Table 10(a) and this can be contrasted with Table 10(b) which shows the data
forwarding behaviour.

Example 4. In the previous example the instruction fetched from address pc (stored in pipea)
is compromised by a memory store to the pc address. The following code fragment is used to
illustrate a memory store to address pc-4.

a: ldr r0, e @ 0xE59F0008

b: str r0, c @ 0xE50F0004

c: cmp r3, #1 @ 0xE3530001

d: mvn r4, #2 @ 0xE3E04002

e: mov r5, #3 @ 0xE3A05003

In this example data forwarding does not provide a simple fix. This is because the cmp

instruction (labelled c) is decoded simultaneously with the memory store; however it then
becomes necessary to decode the mov instruction, as this is forwarded to pipeb replacing the
cmp. The original arm6 pipeline behaviour is modified with the introduction of an extra cycle.
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0 1 2 3 4 5 6 7 8 9 10 11
a: ldr D E E E

b: adr F D E

c: swp F D E E E E

d: str F D E E

e: cmp F D E

f: mvn F D

g: mov F

(a) Actual arm6 behaviour.

0 1 2 3 4 5 6 7 8 9 10 11
a: ldr D E E E

b: adr F D E

c: swp F D E E E E

d: str F D E E

e: cmp F

f: mvn W-a D E

f: mvn F

e: cmp W-a D

g: mov F

(b) With data forwarding.

Figure 6: Pipeline flow for Example 3.
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State \ Cycle 0 1 2 3 4 5 6

pipea,pipeaval b,T c,T c,T c,T d,T d,T e,T
pipeb,pipebval b,T b,T b,T c,T c,T d,T e,T
ireg,iregval a,T a,T a,T b,T b,T c,T d,T
ointstart F F F F F F F

onewinst T F F T F T T

opipebll T F F T F T T

nxtic ldr ldr ldr str str data proc data proc

nxtis t3 t4 t5 t3 t4 t3 t3

(a) Actual arm6 behaviour.

State \ Cycle 0 1 2 3 4 5 6 7

pipea,pipeaval b,T c,T c,T c,T d,T d,T d,T e,T
pipeb,pipebval b,T b,T b,T c,T c,T e,T d,T e,T
ireg,iregval a,T a,T a,T b,T b,T c,F e,T d,T
ointstart F F F F F F F F

onewinst T F F T F T T T

opipebll T F F T F T T T

nxtic ldr ldr ldr str str data proc data proc data proc

nxtis t3 t4 t5 t3 t4 t3 t3 t3

(b) With data forwarding.

Table 11: The pipeline behaviour for Example 4.

In this cycle the mov decode is carried out and the mvn instruction is also re-fetched. The fetch
may seem unnecessary (because the required instruction code is already in the pipeline) but
it keeps the control logic fairly simple.

The pipeline flow for this example, with and without data forwarding, is shown in Figure 7.
The box labelled W-b shows data forwarding to pipeb. Table 11 gives the state changes for
this example.

6.2.3 Formal Specification

The functions used to specify the arm6 pipeline control are listed in Table 12. The formal
specification of these functions is given in Appendix B. Most of these functions are inherently
simple in definition and some have been further simplified by the absence of (most) exceptions,
and by omitting the multiply and block data transfer instruction classes. Daniel Schostak’s
phase level specification is far less abstract but one of the objectives of his work was to provide
formal, high fidelity models.

6.3 The ARM6 State Function

The arm6 state space is modelled in hol with the following type declaration:

Hol_datatype ‘state_ARM6 = ARM6 of mem=>dp=>ctrl‘

where mem is a type abbreviation for word30→word32. The arm6 is modelled with the function
STATE ARM6, which is defined by:

d̀ef STATE_ARM6 0 a = INIT_ARM6 a ∧

STATE_ARM6 (SUC t) a = NEXT_ARM6 (STATE_ARM6 t a)
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0 1 2 3 4 5 6
a: ldr D E E E

b: str F D E E

c: cmp F D E

d: mvn F D

e: mov F

(a) Actual arm6 behaviour.

0 1 2 3 4 5 6 7
a: ldr D E E E

b: str F D E E

c: cmp F D

d: mvn F

e: mov W-b D E

d: mvn F D

e: mov F

(b) With data forwarding.

Figure 7: Pipeline flow for Example 4.
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Function Description

ABORTINST Indicates whether the instruction in execute has failed its condition code or has been invalidated.

IC Gives the instruction class for the current instruction cycle.

INTSEQ Indicates whether an exception vector is to be taken on the next instruction cycle.

IREGVAL Indicates whether the next execute stage has been invalidated by a direct change to r15.

IS Gives the instruction sequence for the current instruction cycle.

NEWINST Indicates whether a new instruction is to be executed.

NXTIC Gives the instruction class for the next instruction cycle. (Provided the condition is passed.)

NXTIS Gives the instruction sequence for the next instruction cycle.

PCCHANGE Indicates whether r15 is changed (other than by a branch or exception vector) in the current
instruction cycle.

PIPEALL Indicates whether the result of instruction fetch is to be latched to PIPEA.

PIPEAVAL Indicates whether instruction fetch has been invalidated by a direct change to r15.

PIPEAWRITE Controls the PIPEA latch update.

PIPEBLL Indicates whether the instruction in predecode is to be preseved in the current instruction cycle.

PIPEBWRITE Controls the PIPEB latch update.

PIPECWRITE Controls the PIPEC latch update.

PIPESTATAWRITE Controls the PIPEAVAL latch update.

PIPESTATBWRITE Controls the PIPEBVAL latch update.

PIPESTATIREGWRITE Controls the IREGVAL latch update.

Table 12: Functions used to specify the pipeline control.

The functions INIT ARM6 and NEXT ARM6 are specified in Appendix C, and they are discussed
in the following sections.

6.3.1 The Initialisation Function

The initialisation function is critical to the verification of a design when using the one-step
theorems of Section 3.2. If the initialisation function is suitably defined then time-consistency
(with respect to an immersion) will hold. The process of defining the initialisation function
can be likened to developing an invariant for an inductive proof. Not all implementation states
are valid and the primary job of the initialisation function is to ensure that the implementation
starts in a suitable state. There must be at least one initial state for each state at the isa

level (this is the DATA ABSTRACTION condition). Non-initial states will either be completely
erroneous (the processor should never exhibit such states) or states that the machine passes
through in the course of instruction execution. Examples of these two cases are:

• Erroneous: any state with nxtic = data proc, iregval = T, onewinst = F and nxtis

= t5.

• Intermediate: a state with nxtic = reg shift, iregval = T, onewinst = F and nxtis

= t4 and the rest of the state corresponding with one cycle through the execution of a
reg shift instruction.

The first case is erroneous because it is inconsistent with control logic i.e. the next instruction
sequence is never t5 for a data processing instruction. The second case could be considered
initial (with the immersion defined accordingly) but to do so would add unnecessary complexity
i.e. the initialisation function would not have a simple definition and more cases would have to
be considered in the verification. The initialisation function forces the processor to be in a state
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for which nxtis = t3 and the pipeline is set so as to be consistent with the program counter
value. In this way, the initial states are those at the beginning of the blocks in Tables 8-11. It
is the job of the duration map to define how many cycles there are between two initial states.
This corresponds with the number of cycles taken at the execute stage, which is a function of
the instruction register.

The function INIT ARM6 is the same for the no-clobber and data forwarding implementa-
tions. After initialisation, the instruction about to executed is in the ireg register and this is
from memory address pc-0x8. The rest of the state is consistent with having fetched and de-
coded this instruction. The instruction at address pc-0x4 is fetched and the next instruction
to be fetched is from address pc.

6.3.2 The Next State Function

The next state function NEXT ARM6 is specified in Appendix C. Two versions are presented and
these correspond with Options 2 and 3 from page 25. The next state function is decomposed
into two functions: PHASE1 and PHASE2. By the end of the first phase the alu registers (alua
and alub) have the right values. The field extractor/extender and shifter have both been
utilized by this point. In the second phase the alu becomes active and results are stored as
appropriate. Instruction decode also occurs in the second phase.

The next state function brings together all of the control logic and data path operations
defined in Sections 6.1 and 6.2.

7 The ARM6 Verification

In Section 7.1 the correctness of the arm6 is formally stated in terms of a data abstrac-
tion (Section 7.1.1) and temporal abstraction (Section 7.1.2). The formal verification of this
correctness statement is discussed in Section 7.2.

7.1 Correctness Statement

The following correctness statement has been verified:

` CORRECT STATE_ARM STATE_ARM6 IMM_ARM6 ABS_ARM6

The immersion IMM ARM6 and data abstraction ABS ARM6 are defined in Appendix D. The
isa state function STATE ARM was originally defined in [13] but modifications have been made
since, as outlined in Section 5. This correctness statement has been verified for two pairs of
state functions i.e. for the no-clobber and data forwarding implementations. The no-clobber
version requires the isa specification to be modified so as to avoid writing over the pipeline
state; see Section 6.2.2.

7.1.1 Data Abstraction

The data abstraction ABS ARM6 is specified in Appendix D. The map is essentially a projection,
extracting out the memory mem, the general purpose registers reg and program status registers
psr. The later two are taken from the data path unit. However, the program counter is
decremented by eight, and this adjusts for the pipeline. That is to say, the arm6 is about to
execute the instruction from address pc-0x8 and not that from address pc. The isa model
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executes the instruction from address pc and adds eight to this value (as appropriate) when
executing an instruction. This (offset by eight) relationship between the two program counters
must be preserved in order for correctness to hold.

An alternative approach would have been to mimic the ma program counter behaviour at
the isa level. This is illustrated in the following table:

isa model ma model

Execute instruction pc pc-0x8

Reading during execution pc+0x8 pc

pc+0x12 pc+0x4

Writing during execution pc pc+0x8

Data abstraction pc7→pc-0x8 pc7→pc

The data abstraction is a pure projection if one adopts the ma behaviour at the isa level.
However, very little is gained by this approach (at the isa level one must modify pc write
instead of pc read) and it runs contrary to the spirit of the arm architectural reference.

The data abstraction is surjective (and the initialisation function never modifies mem, reg or
psr) and therefore it is possible to verify the DATA ABSTRACTION condition: see Section 7.2.2.
This mean that the arm6 implements all of the isa behaviour.

7.1.2 Temporal Abstraction

The immersion IMM ARM6 is specified in Appendix D. This function is defined so as to be
uniform with respect to STATE ARM6 using a duration map DUR ARM6. The duration map gives
a value from one to six cycles. The data forwarding version has a slightly more complicated
duration map—an extra cycle is needed for str instructions that write to pipeb. In order to
detect such cases the isa functions DECODE LDR STR and ADDR MODE2 are used to determine
the destination address for the store.

7.2 Formal Verification

The formal verification is structured around proving the following results:

1. The immersion IMM ARM6 is uniform with respect to STATE ARM6.

2. The data abstraction ABS ARM6 meets the DATA ABSTRACTION condition.

3. The state function STATE ARM is time-consistent, and the state function STATE ARM6 is
time-consistent with respect to IMM ARM6.

4. The state function STATE ARM6 is correct with respect to STATE ARM, IMM ARM6 and ABS -

ARM6.

These goals are discussed in the following sections.

7.2.1 Uniformity

The duration map DUR ARM6 is used as the witness in proving

` UNIFORM IMM_ARM6 STATE_ARM6

32



It is necessary to prove

` ∀ a. 0 < DUR_ARM6 a

and this can be verified in hol using the simplification tactic RW TAC.

7.2.2 Completeness

For each isa state ARM mem reg psr the processor state

ARM mem (DP (ADD8_PC reg) psr areg din alua alub) ctrl

is a suitable witness for the DATA ABSTRACTION property. Free variables are used for compo-
nents other than mem, reg and psr. The function ADD8 PC is defined by:

d̀ef ADD8_PC reg = SUBST reg (r15,reg r15 + 0x8)

This function is the inverse of SUB8 PC:

` ∀ r. SUB8_PC (ADD8_PC r) = r

This theorem was not verifiable when using the old 32-bit type definition; see Section 5.2. This
meant that it was impossible to prove the data abstraction condition (because it was false)
without resorting to modifying the definitions of SUB8 PC and ADD8 PC. The development of
word32Theory has been of great use in this regard.

7.2.3 Time-Consistency

The state function STATE ARM does not have an initialisation function and therefore the fol-
lowing theorem can be used to derive time-consistency:

` ∀ f next. IMAP f I next ⇒ TCON f

where I is the identity map. This theorem states that any iterated map whose initialisation
function is the identity map is time-consistent.

Establishing the time-consistency of STATE ARM6 with respect to IMM ARM6 is more involved.
The theorem TC IMMERSION ONE STEP THEOREM is used to derive the following equivalence:

` TCON_IMMERSION STATE_ARM6 IMM_ARM6 =

(∀ a. STATE_ARM6 0 (STATE_ARM6 (IMM_ARM6 a 0) a) = STATE_ARM6 (IMM_ARM6 a 0) a) ∧

∀ a. STATE_ARM6 0 (STATE_ARM6 (IMM_ARM6 a 1) a) = STATE_ARM6 (IMM_ARM6 a 1) a

Thus, time-consistency can be verified by term rewriting (with appropriate case splitting)
using the definitions of STATE ARM6 and IMM ARM6, which are in turn defined using NEXT ARM6,
INIT ARM6 and DUR ARM6. The cycle zero case can be discharged quite simply: the initialisation
map INIT ARM6 is applied twice on the left hand side and once on the right hand side. The
results are equal because the three isa components do not change during initialisation. The
cycle one case requires the next state function to be applied between one to six times. This is
because
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IMM ARM6 ONE

` ∀ a. IMM_ARM6 a 1 = DUR_ARM6 (INIT_ARM6 a)

Therefore, the number of cases is primarily dictated by the definition of DUR ARM6, and these
cases are shown in Figure 8. The main branches correspond with the instruction classes and
whether a branch (pc-write) occurs. The function NEXT ARM6 is complex and näıve multi-
cycle expansion of the time-consistency goal is impracticable. A number of steps are taken to
structure the proof and limit the amount of rewriting, and these are discussed below. hol is
an interactive proof tool and the goalstack was used to manage the proof effort.

The overall structure of the (cycle one) proof is as follows:

1. The goal is re-arranged to be of the form:

` ∀ b. (STATE_ARM6 (DUR_ARM6 (INIT_ARM6 b)) b = a) ⇒ (INIT_ARM6 a = a)

This prevents the state from being evaluated twice i.e. on both sides of the equality.
Note that the theorem IMM ARM6 ONE is also applied.

2. The main cases are introduced manually using the Cases on tactic. Each case provides
a context (for the evaluation) in the form of a list of assumptions.

3. The bulk of the evaluation is carried out using the simplifier tactic ASM SIMP TAC. The
simplification set (simpset) used contains the conversion CBV CONV, which is in turn given
a computation set (compset) containing definitions from the specification and this then
carries out call-by-value conversion. This provides fast, symbolic execution of the hol

specification.

4. The previous stage generates a set of leaf goals; these are re-arranged (to undo the
first stage) and the initialisation function is applied. Thus, a set of goals of the form
t1 = t2 are produced, where t1 and t2 are terms denoting state classes. Each state class
is expressed in terms of primitive operations from the specification i.e. the 32-bit word
and register/memory access operations. These remaining goals is discharged using the
tactic RW TAC, which is supplied with a set of lemmas. This tactic automatically carries
out further case splitting as required.

When evaluating each case (Stage 3), a subset of the definitions from the specification
are added to the compset. The definitions added are predominantly those listed in Table 12
because these control the flow of instructions through the pipeline. The conversion CBV CONV

is fairly crude as a rewriting engine—it is not really designed as a general purpose rewriting
tool and is best suited to evaluating ground terms. Therefore, the execution is carried out in
single cycle stages so as to periodically utilize the more general tactic ASM SIMP TAC, which will
rewrite using the assumption list (context). Trade-offs arise in selecting the set of definitions to
rewrite with—a certain amount of experimentation occurred at this point in the proof effort.
The aim is to limit the size (and increase readability—for the interactive proof) of terms, and
yet at the same time to avoid carrying out superfluous rewriting. Only certain parts of the
state space are of real relevance when determining time-consistency. The components of most
significance are the memory and the program counter because these determine the state of the
pipeline during initialisation. The rewriting is, therefore, structured around evaluating these
components.

34



CONDITION PASSED n z c v i

DECODE INST i
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swp
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i[21]

(R bit set)

1 cycle

T (mrs)

i[15:12] = 15

(Rd = PC)

F (msr)

3 cycles

T

1 cycle

F

data proc

¬i[24]∧i[23]
(Test or Compare)

1 cycle

T

i[15:12] = 15

(Rd = PC)

F

3 cycles

T

1 cycle

F

reg shift

¬i[24]∧i[23]
(Test or Compare)

2 cycles

T

i[15:12] = 15

(Rd = PC)

F

4 cycles

T

2 cycles

F

br

3 cycles

swi ex

3 cycles

undef

4 cycles

ldr str

1 cycle

F (unexec)

¬i[24]∨i[21]
(Base Register
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i[19:16] = 15

(Rn = PC)

T
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T

i[15:12] = 15

(Rd = PC)

F

5 cycles
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3 cycles

F
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(Rd = PC)

F

5 cycles

T

3 cycles

F
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(Base Register

Write-back)
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T
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T
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F
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T

2 cycles

F
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F
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Figure 8: Manual case splits for the data forwarding arm6. Without data forwarding
the str instruction class does not case split on the decchange; the two cycle
case prevails.
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In order to speed up the evaluation and increase readability, the tactic ABBREV TAC is used:
see [18]. This tactic replaces all instances of a sub-term in a goal with a variable and an
assumption is added asserting the equality of this variable with the sub-term. For example,
the program counter and instruction code are represented by the variables pc and i. This is
achieved with

ABBREV_TAC ‘pc = REG_READ6 reg usr 15‘

and

ABBREV_TAC ‘i = MEMREAD mem (pc - w32 8)‘

For multi-cycle instruction classes, the sub-term representing the alu output is abbreviated
at the end of each cycle. This greatly reduces term sizes and increases evaluation times: the
alu sub-term is moderately large and occurs repeatedly because the alu output propagates
through the data path and control unit. The precise alu output is of no significance with
regards to time-consistency, and this means that the assumptions for these abbreviations can
be discarded eventually.

The lemmas needed at Stage 4 only become apparent having completed Stage 3. It is
at this point that large, unreadable terms can be a problem; for these sub-goals must be
manually inspected and either: (i) a bug is spotted or (ii) a suitable lemma is constructed.
The majority of lemmas that must be proved relate to the semantics of memory/register read
and write operations. These operations are based on using the map substitution SUBST, which
is defined by

d̀ef SUBST m (a,w) b = (if a = b then w else m b)

For example, consider the following theorem:
MEM WRITE READ

` ∀ m d a1 a2 b.

¬ALIGN_EQ a1 a2 ⇒ (MEMREAD (MEM_WRITE b m d a1) a2 = MEMREAD m a2)

This theorem states that if two 32-bit word addresses, a1 and a2, are not equal after word
alignment (i.e. when ignoring the two least significant bits) then a write to address a1 may be
ignored when reading from address a2. In principle this is a simple theorem to prove, however,
a1 and a2 are 32-bit words and the memory is indexed by 30-bit words. Consequently, one
must reason about the equality of bit sub-strings. Also, the memory write covers byte and
word storage.

There is a similar write-read theorem for registers:
REG WRITE READ

` ∀ r m m2 p n n2.

n < 16 ∧ n2 < 16 ∧ ¬(n = n2) ⇒

(REG_READ6 (REG_WRITE r m n d) m2 n2 = REG_READ6 r m2 n2)

Differing numbers (less than sixteen) access different registers, but it is not the case that a
mode and number pair uniquely identifies a register. This is because the same register can
be accessed in different modes. For example, the program counter is mode invariant. This
theorem cannot be generalised for all values of n and n2 because REG READ6 and REG WRITE

have a peculiar semantics, which is based on the assumption that out-of-bounds indices do
not occur. For example:
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` ∀ r. REG_READ6 r usr 16 = REG_READ6 r fiq 8

Once n is greater than 31 the register accessed by REG READ6 is effectively arbitrary. Indices
are guaranteed to be in range by virtue of the fact that in use the index is either 14, 15 or a
4-bit field of the instruction code.

The theorems MEM WRITE READ and REG WRITE READ are used to establish that the pipeline
state is consistent after re-initialisation. For example, if a branch or pc-write does not occur
then ireg takes the value of pipeb as the pipeline shifts along a stage. Thus, ensuring that
ireg is consistent involves proving that

` MEMREAD m (REG_READ6 r usr 15 - 0x4) = MEMREAD m’ (REG_READ6 r’ usr 15 - 0x8)

where m’ and r’ are the states of the memory and register bank after instruction execution.
The right-hand side represents the ireg state after re-initialisation and the left-hand side
represents the old value of pipeb (the new ireg value). The terms are equivalent provided that
reading the program counter from register bank r’ gives an incremented program counter value
(i.e. REG READ6 r usr 15 + 0x4) and the memory m’ is not altered at this new pc location.
This is where the two theorems above come into play. Note that it is again necessary to be
able to reason about word addition and subtraction. Similar goals have to be verified for the
cases in which branches occur.

In essence, time-consistency involves verifying that the initialisation function INIT ARM6

acts as an invariant, and this entails reasoning about the control logic, in particular the pipeline
control logic.

7.2.4 Correctness

The proof of correctness is very similar in structure to the proof of time-consistency. Correct-
ness is reduced to the following goal using the one-step theorem:

` (∀ a. STATE_ARM 0 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 0) a)) ∧

∀ a. STATE_ARM 1 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 1) a)

The cycle zero case is trivial to prove. The main cases for cycle one are those of Figure 8
but a few more cases are introduced at the leaves. Stage 1 of the time-consistency proof
(re-arranging the goal) is not necessary because sub-terms are not repeated in the left and
right hand sides of the correctness goal. The leaf goals are isa state equivalences, with the
primitive operations being word operations and read and write operations performed on the
three state components: memory, registers and the program status registers. More definitions
must be added to the evaluation compset because is now necessary to consider data aspects of
the design i.e. the shifter and alu units must be evaluated. Additional lemmas are needed to
discharge the leaf goals. The state components are effectively reduced into a canonical form
in order to establish their equivalence. For example, with registers the following two lemmas
are used:

REG WRITE WRITE and REG WRITE COMMUTES

` ∀ r m n d d2. REG_WRITE (REG_WRITE r m n d) m n d2 = REG_WRITE r m n d2

` ∀ r m1 m2 n n2 d d2.

n < 16 ∧ n2 < 16 ∧ ¬(n = n2) ⇒

(REG_WRITE (REG_WRITE r m1 n2 d2) m2 n d = REG_WRITE (REG_WRITE r m2 n d) m1 n2 d2)
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The second of these two lemmas in used with n2 specialised to fifteen; this enables multiple
program counter updates to be reduced to a single write. A series of lemmas are needed to
equate operations performed on the program counter. For example:

` ∀ r m d. INC_PC (SUB8_PC (REG_WRITE r m 15 d)) = SUB8_PC (REG_WRITE r m 15 (d + 0x4))

Again, word arithmetic is needed in order to verify this theorem.
Various other lemmas were required to deal with some of the data manipulations performed

by the arm6. For example, the following lemma was needed to verify the load and swap
instructions:

` ∀ h l a. w32 (SLICEw h l a) #>> l = w32 (BITSw h l a)

This theorem is needed to reason about reading a byte from memory. In the isa specification
the required byte is simply selected using the BITSw function, whereas in the arm6 the field-
extractor selects the required byte (keeping it in place) using SLICEw and this word is then
rotated using the shifter. The operations BITSw, SLICEw and #>> (rotate right) are defined
in terms of natural number division, mod, and addition. In practice, verifying results about
these operation is often tedious to do in hol. Having a well developed and extensive library
of word theorems is clearly of great benefit here. Of course, there is always a temptation
to cheat when such theorems are required. The isa specification could have been modified
(in a number of instances) to correspond with ma functionality. With the theorem above,
logical shift right could have been used instead of rotate right: this would give the same result
and be easier to verify in hol. However, this path was resisted: the isa remains abstract
and the ma is true to the implementation. Verifying tricky word theorems is an important
part of the formal verification. These proof obligations do not arise, as one might expect,
through verifying the data aspects of the isa (for example, when looking at the result of a
data processing instruction) because here the operations performed are identical at both levels
of abstraction. Instead, they are a consequence of relating the disparate ways in which the
two level of abstraction (isa and ma) make use of data operations in the course of instruction
execution. At the isa level succinctness and a clean presentation is important, whereas at the
ma level physical organisation comes into play.

8 Summary and Future Work

The arm6 micro-architecture has been modelled and formally verified in hol. The proces-
sor’s organisation is relatively simple, consisting of a three stage pipeline with multi-cycle
execution. Nevertheless, formal verification is not trivial and subtle correctness issues must
be considered. In particular, it remains to find the best methods to deal with (incorporate
into the algebraic framework) implementation dependent behaviour i.e. the instruction flow
(self-modifying code), exceptions and unpredictable instructions. It should not be necessary to
modify the isa specification or the ma implementation in a manner inconsistent with the spirit
of the arm references. Rather the correctness model should be adapted to reflect fully what
is meant by correctness in the context of processor dependent behaviour. It has been demon-
strated that the abstract definition of correctness presented in Section 3 is extensively suitable
for arm6 correctness. Furthermore, verification with the one-step theorems was shown to be
a good approach: the initialisation function has a straightforward definition and it was not
necessary to explicitly use an invariant.
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It is clear that carrying out complete verifications of commercial micro-processors requires
well developed tools and a good methodology. The hol theorem prover enables one to:

• Formalise the abstract correctness model and one-step theorems.

• Model the isa and ma in a concise manner.

• Carry out fast execution (for testing and verification) using CBV CONV.

• Reason about word arithmetic and logic.

• Provide well structured proofs with the use of lemmas.

One of the disadvantages of using hol is that the proof is not fully automated. Human inter-
action and expertise is required for the verification: one must manually direct the proof effort,
spot bugs and supply necessary lemmas. However, it is worth noting that the structure of the
main proofs are simple (case splitting, evaluation and application of lemmas) and the lem-
mas to be proved are not mathematically deep (equating memory substitutions). Therefore,
for a given architecture, a library of theorems can be developed, which gives great potential
for re-use and semi-automation. The structure of the proof varies little with similar designs.
For example, the data forwarding version of the design was verified relatively quickly after
completing the no-clobber version.

It is also of great advantage to be able to formalise and reason about correctness in an
abstract setting. In this way, different implementations can be related by virtue of conform-
ing with the same correctness condition. There is, therefore, no ambiguity as to precisely
what is meant by correctness from one verification to the next. One correctness condition
is not sufficient for all circumstances (for example, variants arise when one considers input,
output, superscalar designs, error states and non-determinism), but it is clearly advantageous
to develop a small family of correctness statements designed for microprocessor verification.
It could be argued that the modifications made to the arm6 implementations (the no-clobber
and data forwarding versions) are an artifact of an over prescriptive correctness definition.
Equally, one could also take the line that arm should have taken a more purist and formal
line with the arm architecture i.e. stipulate that the program counter should always corre-
spond with the address (in memory) of the instruction to be executed (and this relationship
should be maintained throughout the course of instruction execution). The actual arm6 vio-
lates this condition in two ways: (i) the instruction being executed is from the address pc-0x8;
and (ii) it can execute an instruction that has been over-written in memory. In other words,
ideally the isa should be wholly implementation (pipeline) independent and each processor
should be designed accordingly. However, it should be possible to modify our definition of
correctness to more closely correspond with arm’s approach.

The formal verification brought about proof obligations in which the semantics of word
operations was of importance. In particular, it was necessary to reason about 32-bit addition,
subtraction and bit rotation, as well as bit field manipulations (extraction and concatenation).
A hol theory of bits and words was developed during the course of the verification and this
theory should facilitate further specification and verification work (even outside the domain of
processor verification). The word theory was developed with the arm in mind, and so there
is scope for extending the library with additional theorems and operations.

The verification was carried out on a modest desktop pc (800MHz) and processing power
was not found to be a major problem. During testing the isa could be executed at a rate of
one or two instructions per second, and the ma took up to ten seconds per instruction. This
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is adequate for small scale testing and evaluation. The computation time for the verification
is dominated by the time-consistency and correctness proofs; these involved approximately
two and three million primitive hol inferences respectively. The total cpu time for these
two proofs was approximately fourteen minutes. However, using CBV CONV in a proof is not
as straightforward as it might be and a bespoke tactic for fast contextual evaluation would
be beneficial. Were further instruction classes to be included (for example, the multiple data
transfers) then the existing proof of correctness (for the instructions covered in this report)
would be slowed due to the overhead of executing a more complex specification. The new
instruction class would also have to be verified. The overall proof complexity is proportional
to the number of instruction classes (because this primarily determines the number of cases)
and so pipelined processor verifications of this nature appear to be quite tractable. The proof
script was split into two main files: about 800 lines of lemmas and a thousand lines for the
time-consistency and correctness proofs. It is important to find ways to ensure that the proof
scripts are fairly small, presentable and hence manageable, otherwise it is all too easy to ‘get
lost’ in the proof.

The arm6 specification and verification took about six months (one person), with the time
being split almost equally between specification and verification. The work on the theory of
words represents almost half of the effort. The correctness problems with self-modifying code
was identified prior to carrying out the verification. Two bugs were spotted in the course of the
verification, but by happenstance they combined in a way that made the design correct—they
simply represented an unrealistic implementation and this was rectified.

Future work will focus on the following:

• Changing the definition of correctness to encompass self-modifying code and more ad-
vanced memory models.

• Looking ways to deal with unpredictable instructions.

• Incorporating external interrupts.

• Verification of the multiple data transfer instruction class.

Each of these will build upon the existing verification work. In the long term more advanced
micro-architectures may be studied and there is potential to look at broader systems level
correctness concerns, for example: bus protocols and multi-processor systems.
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A The Data Path Specification

A.1 The Memory Interface

d̀ef AREG ic is ireg aregn inc reg15 aluout =

if (is = t4) ∧ (ic = reg_shift) then

if

(¬BITw 24 ireg ∨ BITw 23 ireg) ∧ (BITSw 15 12 ireg = 15)

then

aluout

else

reg15

else

if (is = t4) ∧ ((ic = ldr) ∨ (ic = str)) then

if

(¬BITw 24 ireg ∨ BITw 21 ireg) ∧ (BITSw 19 16 ireg = 15)

then

aluout

else

reg15

else

if (is = t5) ∧ (ic = ldr) ∨ (is = t6) ∧ (ic = swp) then

(if BITSw 15 12 ireg = 15 then aluout else reg15)

else

if

(is = t3) ∧
((ic = data_proc) ∧ (¬BITw 24 ireg ∨ BITw 23 ireg) ∧
(BITSw 15 12 ireg = 15) ∨
(ic = mrs_msr) ∧ ¬BITw 21 ireg ∧
(BITSw 15 12 ireg = 15) ∨ (ic = ldr) ∨ (ic = str) ∨
(ic = br)) ∨ (ic = swp)

then

aluout

else

if (is = t3) ∧ (ic = swi_ex) then

w32 (aregn * 4)

else

inc

d̀ef AREGN1 intstart = if intstart then 1 else 2

d̀ef DIN ic is ireg data =

if ((ic = ldr) ∨ (ic = swp)) ∧ (is = t4) then data else ireg

d̀ef DINWRITE ic is = ¬((ic = swp) ∧ (is = t5))

d̀ef NBW ic is ireg =

¬(BITw 22 ireg ∧
((is = t3) ∧ ((ic = ldr) ∨ (ic = str) ∨ (ic = swp)) ∨
(is = t4) ∧ (ic = swp)))

d̀ef NRW ic is = (is = t3) ∧ (ic = str) ∨ (is = t4) ∧ (ic = swp)

Notes:

• See Section 6.1.2, page 17. These functions are listed in Table 3.

• AREGN1 only has two cases: software interrupt or undefined instruction.

• NBW evaluates true for word access and false for byte access.

• NRW evaluates true for memory write and false for memory read.
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A.2 The Field Extractor/Extender

d̀ef FIELD ic is ireg oareg din =

if is = t3 then

if ic = br then

SIGN_EX_OFFSET (BITSw 23 0 din)

else

if (ic = ldr) ∨ (ic = str) then

w32 (BITSw 11 0 din)

else

if (ic = mrs_msr) ∨ (ic = data_proc) then

w32 (BITSw 7 0 din)

else

ARB

else

if (is = t5) ∧ (ic = ldr) ∨ (is = t6) ∧ (ic = swp) then

if ¬BITw 22 ireg then

din

else

w32 (SLICEw (8 * oareg + 7) (8 * oareg) din)

else

ARB

Notes:

• See Section 6.1.3, page 17.

• The function SIGN EX OFFSET is defined in [13].

• oareg is required to be ≤ 3, and hence the application of slice selects a byte. This can
implemented quite simply, without the need for the addition or multiplication.
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A.3 The General Purpose Registers

d̀ef PCWA ic is ireg =

(is = t3) ∧
(¬(ic = data_proc) ∨ (BITSw 24 23 ireg = 2) ∨
¬(BITSw 15 12 ireg = 15)) ∧

(¬(ic = mrs_msr) ∨ BITw 21 ireg ∨ ¬(BITSw 15 12 ireg = 15)) ∧
¬(ic = undef) ∨ (ic = br) ∨ (ic = swi_ex)

d̀ef RAA ic is ireg =

if is = t3 then

if (ic = data_proc) ∨ (ic = ldr) ∨ (ic = str) then

BITSw 19 16 ireg

else

if ic = reg_shift then

BITSw 11 8 ireg

else

if (ic = br) ∨ (ic = swi_ex) then 15 else ARB

else

if (is = t4) ∧ (ic = reg_shift) then

BITSw 19 16 ireg

else

ARB

d̀ef RBA ic is ireg =

if

(is = t3) ∧
((ic = data_proc) ∨ (ic = mrs_msr) ∨ (ic = ldr) ∨
(ic = str)) ∨ (is = t4) ∧ (ic = reg_shift) ∨

(is = t5) ∧ (ic = swp)

then

BITSw 3 0 ireg

else

if (is = t3) ∧ (ic = swp) then

BITSw 19 16 ireg

else

if (is = t4) ∧ (ic = str) then

BITSw 15 12 ireg

else

if (is = t5) ∧ ((ic = br) ∨ (ic = swi_ex)) then

14

else

ARB

d̀ef RWA ic is ireg =

if

((is = t3) ∧ (ic = data_proc) ∨
(is = t4) ∧ (ic = reg_shift)) ∧

(¬BITw 24 ireg ∨ BITw 23 ireg) ∨
(is = t3) ∧ (ic = mrs_msr) ∧ ¬BITw 21 ireg ∨
(is = t5) ∧ (ic = ldr) ∨ (is = t6) ∧ (ic = swp)

then

(T,BITSw 15 12 ireg)

else

if

(is = t4) ∧ ((ic = ldr) ∨ (ic = str)) ∧
(¬BITw 24 ireg ∨ BITw 21 ireg)

then

(T,BITSw 19 16 ireg)

else

if

((is = t4) ∨ (is = t5)) ∧
((ic = br) ∧ BITw 24 ireg ∨ (ic = swi_ex))

then

(T,14)

else

(F,ARB)

Notes:

• See Section 6.1.4, page 18. These functions are listed in Table 4.
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• PCWA evaluates true when the program counter takes the value of the incremented address
register.

• RAA and RBA give values in the range 0–15, or the value is unspecified (ARB).

• RWA gives a pair: the fist component is true when a register is to take the value of the
alu output; the second component is the index of the destination register, which is a
number in the range 0–15.
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A.4 The Program Status Registers

d̀ef PSRA ic is ireg =

(is = t3) ∧
((ic = swi_ex) ∨
¬BITw 22 ireg ∧
((ic = mrs_msr) ∨ (ic = data_proc) ∧ ¬BITw 20 ireg)) ∨

(is = t4) ∧ ¬BITw 22 ireg ∧ (ic = reg_shift) ∧ ¬BITw 20 ireg

d̀ef PSRDAT ic is ireg nbs aregn cpsrl psrfb alu sctlc =

if

BITw 20 ireg ∧
((is = t3) ∧ (ic = data_proc) ∨ (is = t4) ∧ (ic = reg_shift))

then

if BITSw 15 12 ireg = 15 then

if USER nbs then cpsrl else psrfb

else

(let (n,z,c,v) = NZCV alu in

if

¬BITw 23 ireg ∧ ¬BITw 22 ireg ∨
BITw 24 ireg ∧ BITw 23 ireg

then

SET_NZC n z sctlc cpsrl

else

SET_NZCV n z c v cpsrl)

else

if (is = t3) ∧ (ic = mrs_msr) then

if USER nbs then

if ¬BITw 22 ireg ∧ BITw 19 ireg then

w32 (SLICEw 31 28 (ALUOUT alu) + BITSw 27 0 psrfb)

else

ARB

else

if BITw 19 ireg then

if BITw 16 ireg then

w32

(SLICEw 31 28 (ALUOUT alu) + SLICEw 27 8 psrfb +

BITSw 7 0 (ALUOUT alu))

else

w32 (SLICEw 31 28 (ALUOUT alu) + BITSw 27 0 psrfb)

else

if BITw 16 ireg then

w32 (SLICEw 31 8 psrfb + BITSw 7 0 (ALUOUT alu))

else

ARB

else

if (is = t3) ∧ (ic = swi_ex) then

SET_IFMODE T ((aregn = 0) ∨ (aregn = 7) ∨ BITw 6 cpsrl)

(exception2mode (num2exception aregn)) cpsrl

else

if (is = t4) ∧ (ic = swi_ex) then psrfb else ARB

d̀ef PSRFBWRITE ic is = ¬((is = t4) ∧ (ic = swi_ex))

d̀ef PSRWA ic is ireg nbs =

if

BITw 20 ireg ∧
((is = t3) ∧ (ic = data_proc) ∨
(is = t4) ∧ (ic = reg_shift)) ∨ (is = t3) ∧ (ic = swi_ex)

then

(T,T)

else

if (is = t3) ∧ (ic = mrs_msr) then

if

¬BITw 21 ireg ∨ ¬BITw 19 ireg ∧ ¬BITw 16 ireg ∨
USER nbs ∧ (BITw 22 ireg ∨ ¬BITw 19 ireg ∧ BITw 16 ireg)

then

(F,ARB)

else

(T,¬BITw 22 ireg)

else

if (is = t4) ∧ (ic = swi_ex) then (T,F) else (F,ARB)
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d̀ef exception2mode e =

case e of

reset 7→ svc

[] undefined 7→ und

[] software 7→ svc

[] address 7→ svc

[] pabort 7→ abt

[] dabort 7→ abt

[] interrupt 7→ irq

[] fast 7→ fiq

Notes:

• See Section 6.1.5, page 18. These functions are listed in Table 5.

• The functions exception2mode and num2exception are from the modified isa specifi-
cation: see Section 5.

• PSRA evaluates true if the cpsr is to be read and false if an spsr is to be read.

• nbs is the current operating mode.

• The functions SET NZC, SET NZCV and SET IFMODE are defined in [13].

• alu is a 5-tuple, and the functions NZCV and ALUOUT are used to extract the status flags
and output word respectively.

• PSRWA gives a pair: the first component is true when a psr is to be updated; the second
component is true for cpsr update and false for spsr update.
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A.5 The Data Buses and Shifter

d̀ef BUSA ic is psrrd ra =

if is = t3 then

if ic = mrs_msr then

psrrd

else

if

(ic = data_proc) ∨ (ic = ldr) ∨ (ic = str) ∨ (ic = br) ∨
(ic = swi_ex)

then

ra

else

ARB

else

if (is = t4) ∧ (ic = reg_shift) then

ra

else

if (is = t5) ∧ ((ic = br) ∨ (ic = swi_ex)) then

0x3

else

ARB

d̀ef BUSB ic is ireg din’ rb =

if

(is = t3) ∧
((ic = br) ∨
BITw 25 ireg ∧ ((ic = data_proc) ∨ (ic = mrs_msr)) ∨
¬BITw 25 ireg ∧ ((ic = ldr) ∨ (ic = str))) ∨
(is = t5) ∧ (ic = ldr) ∨ (is = t6) ∧ (ic = swp)

then

din’

else

rb

d̀ef SCTRLREGWRITE ic is = (is = t3) ∧ (ic = reg_shift)

d̀ef SHIFTER ic is ireg oareg sctrlreg busb c =

if is = t3 then

if BITw 25 ireg ∧ ((ic = data_proc) ∨ (ic = mrs_msr)) then

ROR busb (2 * BITSw 11 8 ireg) c

else

if

(ic = swp) ∨
¬BITw 25 ireg ∧ ((ic = ldr) ∨ (ic = str) ∨ (ic = mrs_msr))

then

LSL busb 0 c

else

if

¬BITw 25 ireg ∧ (ic = data_proc) ∨
BITw 25 ireg ∧ ((ic = ldr) ∨ (ic = str))

then

SHIFT_IMMEDIATE2 (BITSw 11 7 ireg) (BITSw 6 5 ireg) busb c

else

if ic = br then LSL busb 2 c else ARB

else

if (is = t4) ∧ (ic = reg_shift) then

SHIFT_REGISTER2 (BITSw 7 0 sctrlreg) (BITSw 6 5 ireg) busb c

else

if (is = t5) ∧ (ic = ldr) ∨ (is = t6) ∧ (ic = swp) then

ROR busb (8 * oareg) c

else

if (is = t5) ∧ ((ic = br) ∨ (ic = swi_ex)) then

LSL busb 0 c

else

ARB

Notes:

• See Section 6.1.6, page 18. These functions are listed in Table 6.

• BUSA gives value 0x3 for branches and exceptions, and this is used to compute the link
register value (which is NOT 0x3 + pc).
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• SHIFTER gives a pair: the first component is the carry out; the second component is the
output word.

• The functions LSL, ROR, SHIFT IMMEDIATE2 and SHIFT REGISTER2 are taken from the
modified isa specification.

• LSL busb 0 c = (c,busb).
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A.6 The ALU

d̀ef ALU6 ic is ireg alua alub c =

if

(ic = data_proc) ∧ (is = t3) ∨ (ic = reg_shift) ∧ (is = t4)

then

ALU (BITSw 24 21 ireg) alua alub c

else

if (ic = mrs_msr) ∧ (is = t3) then

ALU_logic (if BITw 21 ireg then alub else alua)

else

if (ic = ldr) ∨ (ic = str) then

if (is = t3) ∧ ¬BITw 24 ireg then

ALU_logic alua

else

if (is = t3) ∨ (is = t4) then

if BITw 23 ireg then ADD alua alub F else SUB alua alub T

else

if (is = t5) ∧ (ic = ldr) then ALU_logic alub else ARB

else

if (is = t3) ∧ (ic = br) then

ADD alua alub F

else

if (ic = br) ∨ (ic = swi_ex) then

if is = t4 then

ALU_logic alua

else

if is = t5 then ADD (NOT alua) alub F else ARB

else

if ic = swp then ALU_logic alub else ARB

d̀ef ALUAWRITE ic is =

¬((is = t4) ∧
((ic = ldr) ∨ (ic = str) ∨ (ic = br) ∨ (ic = swi_ex)))

d̀ef ALUBWRITE ic is =

¬((is = t4) ∧ ((ic = ldr) ∨ (ic = str) ∨ (ic = swp)))

Notes:

• See Section 6.1.7, page 19. These functions are listed in Table 7.

• ALU6 gives a 5-tuple (n,z,c,v,aluout).

• The functions ALU, ALU logic and ADD are defined in [13].
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B Pipeline Control Specification

d̀ef ABORTINST iregval onewinst ointstart ireg n z c v =

¬iregval ∨
onewinst ∧ ¬ointstart ∧
¬CONDITION_PASSED n z c v (BITSw 31 28 ireg)

d̀ef ALIGN_EQ a b = (WORD_ALIGN a = WORD_ALIGN b)

d̀ef IC abortinst nxtic = (if abortinst then unexec else nxtic)

d̀ef INTSEQ ic is = (ic = undef) ∧ (is = t3)

d̀ef IREGVAL pipecval pcchange = pipecval ∧ ¬pcchange

d̀ef IS abortinst nxtis = (if abortinst then ARB else nxtis)

d̀ef NEWINST ic is intstart =

intstart ∨ (ic = data_proc) ∨ (ic = mrs_msr) ∨ (ic = unexec) ∨
((ic = str) ∨ (ic = reg_shift)) ∧ (is = t4) ∨
((ic = ldr) ∨ (ic = br) ∨ (ic = swi_ex)) ∧ (is = t5) ∨
(ic = swp) ∧ (is = t6)

d̀ef NXTIC intstart newinst ic ireg =

if intstart then

swi_ex

else

if ¬newinst then ic else DECODE_INST (w2n ireg)

d̀ef NXTIS ic is newinst =

if newinst then

t3

else

if

(is = t3) ∧
((ic = reg_shift) ∨ (ic = ldr) ∨ (ic = str) ∨ (ic = br) ∨
(ic = swi_ex) ∨ (ic = swp))

then

t4

else

if

(is = t4) ∧
((ic = ldr) ∨ (ic = br) ∨ (ic = swi_ex) ∨ (ic = swp))

then

t5

else

if (is = t5) ∧ (ic = swp) then t6 else ARB

d̀ef PCCHANGE rwa = (let (w,a) = rwa in w ∧ (a = 15))

d̀ef PIPEALL opipebll = opipebll

d̀ef PIPEAVAL pcchange = ¬pcchange

d̀ef PIPEAWRITE pipeall = pipeall

d̀ef PIPEBLL newinst ic = newinst ∨ (ic = br) ∨ (ic = swi_ex)

d̀ef PIPEBWRITE pipebll = pipebll

d̀ef PIPECHANGE areg apipea apipeb =

ALIGN_EQ areg apipea ∨ ALIGN_EQ areg apipeb

d̀ef PIPECWRITE newinst = newinst

d̀ef PIPESTATAWRITE pipeall pcchange = pipeall ∨ pcchange

d̀ef PIPESTATBWRITE pipebll pcchange = pipebll ∨ pcchange

d̀ef PIPESTATIREGWRITE newinst pcchange = newinst ∨ pcchange

Definitions for the data forwarding implementation:

d̀ef IREGVAL pipecval pcchange decchange =

pipecval ∧ ¬(pcchange ∨ decchange)

d̀ef PIPEBWRITE pipebll pipebchange = pipebll ∧ ¬pipebchange

d̀ef PIPECHANGE nrw pcchange areg pipe =

nrw ∧ ¬pcchange ∧ ALIGN_EQ areg pipe

Notes:

• See Section 6.2.3, page 28. These functions are listed in Table 12.

• The functions CONDITION PASSED, DECODE INST, WORD ALIGN and SET BYTE are taken
from the modified isa specification.
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C The Initialisation and Next State Functions

d̀ef REG_READ6 reg mode n =

if n = 15 then FETCH_PC reg else REG_READ reg mode n

d̀ef INIT_ARM6

(ARM6 mem (DP reg psr areg din alua alub)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

ointstart onewinst opipebll nxtic nxtis aregn nbw nrw

sctrlreg psrfb oareg)) =

(let pc = REG_READ6 reg usr 15 in

ARM6 mem (DP reg psr pc (MEMREAD mem (pc - 0x8)) alua alub)

(CTRL (MEMREAD mem (pc - 0x4)) T (MEMREAD mem (pc - 0x4)) T

(MEMREAD mem (pc - 0x8)) T (pc - 0x4) (pc - 0x4) F T T

(DECODE_INST (w2n (MEMREAD mem (pc - 0x8)))) t3 2 nbw F

sctrlreg psrfb oareg))

d̀ef NEXT_ARM6 = PHASE2 o PHASE1

Notes:

• See Section 6.3, page 28.

• The function REG READ6 is used to access registers. This is essentially the same as the
isa function REG READ but it differs when reading the program counter. The isa version
adds eight to the program counter (to compensate for the pipeline), whereas at the ma

level the program counter is naturally running ahead.

• The initialisation function INIT ARM6 preserves the isa state components mem, reg and
psr.

• The address register areg holds the pc value (this is the address of the next instruction
to be fetched).

• Both the instruction register ireg and data-in register din holds the current instruction
code (from address pc-0x8). This ensures that the field extractor/extender processes
the instruction code.

• The pipeline contains the instructions from addresses pc-0x8 and pc-0x4 and these
values are flagged as being valid.

• The next instruction sequence is t3 and the next instruction class is the decoding of the
instruction register.

• The nrw bit is clear because a memory read (instruction fetch) is going to occur. The
nbw bit can have any value because it does not affect memory reads.

• The phase functions are defined in the following sections.
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C.1 Version 1 (No-Clobber)

d̀ef PHASE1 (ARM6 mem (DP reg psr areg din alua alub)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

ointstart onewinst opipebll nxtic nxtis aregn nbw nrw sctrlreg psrfb oareg)) =

let cpsr = CPSR_READ psr

in

let (n,z,c,v,nbs) = DECODE_PSR cpsr

in

let abortinst = ABORTINST iregval onewinst ointstart ireg n z c v

in

let ic = IC abortinst nxtic

and is = IS abortinst nxtis

in

let pcwa = PCWA ic is ireg

and rwa = RWA ic is ireg

in

let intseq = INTSEQ ic is

and pcchange = PCCHANGE rwa

in

let newinst = NEWINST ic is intseq

in

let pipeall = PIPEALL opipebll

and pipebll = PIPEBLL newinst ic

and pipec = if PIPECWRITE newinst then pipeb else ireg

and pipecval = pipebval

in

let psrrd = if PSRA ic is ireg then cpsr else SPSR_READ psr nbs

in

let psrfb’ = if PSRFBWRITE ic is then psrrd else psrfb

in

let raa = RAA ic is ireg

and rba = RBA ic is ireg

in

let ra = REG_READ6 reg nbs raa

and rb = REG_READ6 reg nbs rba

and din’ = FIELD ic is ireg oareg din

in

let busa = BUSA ic is psrrd ra

and busb = BUSB ic is ireg din’ rb

and sctrlreg’ = if SCTRLREGWRITE ic is then ra else sctrlreg

in

let shifter = SHIFTER ic is ireg oareg sctrlreg busb c

in

let shcout = FST shifter

and shout = SND shifter

in

let alua’ = if ALUAWRITE ic is then busa else alua

and alub’ = if ALUBWRITE ic is then shout else alub

in

(busb,c,shcout,rwa,cpsr,nbs,ic,is,pcwa,pcchange,pipeall,pipec,pipecval,

ARM6 mem (DP reg psr areg din alua’ alub’)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

intseq newinst pipebll nxtic nxtis aregn nbw nrw sctrlreg’

psrfb’ oareg))

Notes:

• The functions CPSR READ, SPSR READ and DECODE PSR are taken from the isa specifica-
tion.
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d̀ef PHASE2 (busb,c,shcout,rwa,cpsr,nbs,ic,is,pcwa,pcchange,pipeall,pipec,pipecval,

ARM6 mem (DP reg psr areg din alua alub)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea

apipeb intseq newinst pipebll nxtic nxtis aregn nbw nrw

sctrlreg psrfb oareg)) =

let alu = ALU6 ic is ireg alua alub c

in

let aluout = ALUOUT alu

and inc = areg + 0x4

and pcbus = REG_READ6 reg usr 15

and psrwa = PSRWA ic is ireg nbs

in

let psrdat = PSRDAT ic is ireg nbs aregn cpsr psrfb alu shcout

and data = if nrw then ARB else MEMREAD mem areg

in

let mem’ = if nrw ∧ (pcchange ∨ ¬PIPECHANGE areg apipea apipeb)

then MEMWRITE mem busb areg nbw else mem

and reg’ = if pcwa then REG_WRITE reg nbs 15 inc else reg

and psr’ = if FST psrwa then

if SND psrwa then CPSR_WRITE psr psrdat else SPSR_WRITE psr nbs psrdat

else psr

in

let reg’’ = if FST rwa then REG_WRITE reg’ nbs (SND rwa) aluout else reg’

in

let oareg’ = BITSw 1 0 areg

and areg’ = AREG ic is ireg aregn inc pcbus aluout

and pipea’ = if PIPEAWRITE pipeall then data else pipea

and apipea’ = if PIPEAWRITE pipeall then areg else apipea

in

let pipeb’ = if PIPEBWRITE pipebll then pipea’ else pipeb

and apipeb’ = if PIPEBWRITE pipebll then apipea’ else apipeb

and pipeaval’ = if PIPESTATAWRITE pipeall pcchange then PIPEAVAL pcchange else pipeaval

in

let pipebval’ = if PIPESTATBWRITE pipebll pcchange then pipeaval’ else pipebval

and iregval’ = if PIPESTATIREGWRITE newinst pcchange then IREGVAL pipecval pcchange

else iregval

in

let nxtic’ = NXTIC intseq newinst ic pipec

and nxtis’ = NXTIS ic is newinst

and din’ = if DINWRITE ic is then DIN ic is pipec data else din

and aregn’ = AREGN1 intseq

and nbw’ = NBW ic is ireg

and nrw’ = NRW ic is

in

ARM6 mem’ (DP reg’’ psr’ areg’ din’ alua alub)

(CTRL pipea’ pipeaval’ pipeb’ pipebval’ pipec iregval’ apipea’

apipeb’ intseq newinst pipebll nxtic’ nxtis’ aregn’ nbw’ nrw’

sctrlreg psrfb oareg’)

Notes:

• The functions CPSR WRITE, SPSR WRITE and REG WRITE are taken from the isa specifica-
tion.

• In order to avoid writing over the pipeline, an extra condition is added to the memory
write condition i.e. pcchange ∨ ¬PIPECHANGE areg apipea apipeb. Removing this
condition would make the specification more faithful to the actual arm6 behaviour.
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C.2 Version 2 (Data Forwarding)

d̀ef PHASE1 (ARM6 mem (DP reg psr areg din alua alub)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

ointstart onewinst opipebll nxtic nxtis aregn nbw nrw sctrlreg psrfb oareg)) =

let cpsr = CPSR_READ psr

in

let (n,z,c,v,nbs) = DECODE_PSR cpsr

in

let abortinst = ABORTINST iregval onewinst ointstart ireg n z c v

in

let ic = IC abortinst nxtic

and is = IS abortinst nxtis

in

let pcwa = PCWA ic is ireg

and rwa = RWA ic is ireg

in

let intseq = INTSEQ ic is

and pcchange = PCCHANGE rwa

in

let pipeachange = PIPECHANGE nrw pcchange areg apipea

and pipebchange = PIPECHANGE nrw pcchange areg apipeb

and newinst = NEWINST ic is intseq

in

let pipecwrite = PIPECWRITE newinst

in

let pipeall = PIPEALL opipebll

and pipebll = PIPEBLL newinst ic

and pipec = if pipecwrite then pipeb else ireg

and pipecval = pipebval

and decchange = pipecwrite ∧ pipebchange

in

let psrrd = if PSRA ic is ireg then cpsr else SPSR_READ psr nbs

in

let psrfb’ = if PSRFBWRITE ic is then psrrd else psrfb

in

let raa = RAA ic is ireg

and rba = RBA ic is ireg

in

let ra = REG_READ6 reg nbs raa

and rb = REG_READ6 reg nbs rba

and din’ = FIELD ic is ireg oareg din

in

let busa = BUSA ic is psrrd ra

and busb = BUSB ic is ireg din’ rb

and sctrlreg’ = if SCTRLREGWRITE ic is then ra else sctrlreg

in

let shifter = SHIFTER ic is ireg oareg sctrlreg busb c

in

let shcout = FST shifter

and shout = SND shifter

in

let alua’ = if ALUAWRITE ic is then busa else alua

and alub’ = if ALUBWRITE ic is then shout else alub

in

(busb,c,shcout,rwa,cpsr,nbs,ic,is,pcwa,pcchange,

pipeachange,pipebchange,decchange,pipeall,pipec,pipecval,

ARM6 mem (DP reg psr areg din alua’ alub’)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

intseq newinst pipebll nxtic nxtis aregn nbw nrw sctrlreg’ psrfb’ oareg))

Notes:

• This definition is similar to that of version 1. In order to implement the data forwarding,
three additional values are computed: pipeachange, pipebchange and decchange. The
first two are determined by comparing apipea and apipeb with areg (the address of
the memory write). The value decchange indicates whether or not pipeb is going to be
overwritten in parallel with a decode of the old pipeb.
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d̀ef PHASE2 (busb,c,shcout,rwa,cpsr,nbs,ic,is,pcwa,pcchange,pipeachange,pipebchange,decchange,

pipeall,pipec,pipecval,ARM6 mem (DP reg psr areg din alua alub)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

intseq newinst pipebll nxtic nxtis aregn nbw nrw sctrlreg psrfb oareg)) =

let alu = ALU6 ic is ireg alua alub c

in

let aluout = ALUOUT alu

and inc = areg + 0x4

and pcbus = REG_READ6 reg usr 15

and psrwa = PSRWA ic is ireg nbs

in

let psrdat = PSRDAT ic is ireg nbs aregn cpsr psrfb alu shcout

and data = if nrw then ARB else MEMREAD mem areg

and oareg’ = BITSw 1 0 areg

in

let areg’ = if decchange then apipea else AREG ic is ireg aregn inc pcbus aluout

and nxtic’ = NXTIC intseq newinst ic pipec

and nxtis’ = NXTIS ic is newinst

and din’ = if DINWRITE ic is then DIN ic is pipec data else din

and aregn’ = AREGN1 intseq

and nbw’ = NBW ic is ireg

and nrw’ = NRW ic is

in

let mem’ = if nrw then MEMWRITE mem busb areg nbw else mem

and reg’ = if decchange then REG_WRITE reg nbs 15 apipea

else

if pcwa then REG_WRITE reg nbs 15 inc else reg

and psr’ = if FST psrwa then

if SND psrwa then CPSR_WRITE psr psrdat else SPSR_WRITE psr nbs psrdat

else psr

in

let reg’’ = if FST rwa then REG_WRITE reg’ nbs (SND rwa) aluout else reg’

in

let pipea’ = if PIPEAWRITE pipeall then data else

if pipeachange then

if nbw then busb else SET_BYTE oareg’ busb pipea

else pipea

and apipea’ = if PIPEAWRITE pipeall then areg else apipea

in

let pipeb’ = if PIPEBWRITE pipebll decchange then pipea’ else

if pipebchange then

if nbw then busb else SET_BYTE oareg’ busb pipeb

else pipeb

and apipeb’ = if PIPEBWRITE pipebll decchange then apipea’ else apipeb

and pipeaval’ = if PIPESTATAWRITE pipeall pcchange then PIPEAVAL pcchange else pipeaval

in

let pipebval’ = if PIPESTATBWRITE pipebll pcchange then pipeaval’ else pipebval

and iregval’ = if PIPESTATIREGWRITE newinst pcchange then IREGVAL pipecval pcchange decchange

else iregval

in

ARM6 mem’ (DP reg’’ psr’ areg’ din’ alua alub)

(CTRL pipea’ pipeaval’ pipeb’ pipebval’ pipec iregval’ apipea’

apipeb’ intseq newinst pipebll nxtic’ nxtis’ aregn’ nbw’ nrw’

sctrlreg psrfb oareg’)

Notes:

• The memory write is restored in accordance with the actual arm6 behaviour i.e. the
pipe change condition is dropped.

• The pipeline behaviour is now more complicated: the busb value (to be stored in mem-
ory) is conditionally forwarded to pipea or pipeb. The function SET BYTE (from the isa

specification) is needed to cope with a byte store i.e. the least significant byte of busb
overwrites a single byte in pipea or pipeb.

• If decchange is set then the ireg register is flagged as being invalid because pipeb needs
to be decoded.
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D The Data and Temporal Abstractions

d̀ef SUB8_PC reg = SUBST reg (r15,reg r15 - 0x8)

d̀ef ABS_ARM6 (ARM6 mem (DP reg psr areg din alua alub) ctrl) =

ARM mem (SUB8_PC reg) psr

d̀ef DUR_ARM6 (ARM6 mem (DP reg psr areg din alua alub)

(CTRL pipea pipeaval pipeb pipebval ireg iregval apipea apipeb

ointstart onewinst opipebll nxtic nxtis aregn nbw nrw sctrlreg psrfb oareg)) =

let (n,z,c,v,nbs) = DECODE_PSR (CPSR_READ psr) in

let abortinst = ABORTINST iregval onewinst ointstart ireg n z c v in

let ic = IC abortinst nxtic in

let pcchange = PCCHANGE (RWA ic t3 ireg)

in

if ic = undef then

4

else

if (ic = mrs_msr) ∨ (ic = data_proc) then

if pcchange then 3 else 1

else

if ic = reg_shift then

if (BITSw 15 12 ireg = 15) ∧ (¬BITw 24 ireg ∨ BITw 23 ireg) then 4 else 2

else

if ic = ldr then

if (BITSw 15 12 ireg = 15) ∨
(BITSw 19 16 ireg = 15) ∧ (¬BITw 24 ireg ∨ BITw 21 ireg) then 5 else 3

else

if ic = str then

if (BITSw 19 16 ireg = 15) ∧ (¬BITw 24 ireg ∨ BITw 21 ireg) then 4 else 2

else

if (ic = br) ∨ (ic = swi_ex) then

3

else

if ic = swp then

if BITSw 15 12 ireg = 15 then 6 else 4

else

1

d̀ef IMM_ARM6 a 0 = 0 ∧
IMM_ARM6 a (SUC t) = DUR_ARM6 (STATE_ARM6 (IMM_ARM6 a t) a) + IMM_ARM6 a t

With the data forwarding implementation, the function DUR ARM6 is refined for the case of
store instructions:

...

if ic = str then

if (BITSw 19 16 ireg = 15) ∧ (¬BITw 24 ireg ∨ BITw 21 ireg) then 4 else

if (let (Im,P,U,B,W,L,Rn,Rd,offset) = DECODE_LDR_STR (w2n ireg) in

ALIGN_EQ (FST (ADDR_MODE2 (SUB8_PC reg) nbs c Im P U Rn offset)) apipeb) then 3 else 2

else ...

Notes:

• See Section 7.1, page 31.

• The function SUB8 PC subtracts eight from the program counter and is used in the
definition of ABS ARM6.

• The duration map DUR ARM6 gives a value based on the instruction class (ic) and whether
or not the program counter is a destination register.

• The map DUR ARM6 is only ever applied to initial cycles i.e. for states part way through
the execution of an instruction, it does not determine how many cycles remain.

• The immersion IMM ARM6 is constructed so as to be uniform with respect to DUR ARM6

and STATE ARM6.
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