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Abstract

This work explores all the phases of developing a query processor for OQL, the Object Query Lan-

guage proposed by the Object Data Management Group (ODMG 3.0). There has been a lot of re-

search on the execution of relational queries and their optimization using syntactic or semantic trans-

formations. However, there is no context that has integrated and tested all the phases of processing

an object query language, including the use of semantic optimization heuristics. This research is mo-

tivated by the need for query execution tools that combine two valuable properties: i) the expressive

power to encompass all the features of the object-oriented paradigm and ii) the flexibility to benefit

from the experience gained with relational systems, such as the use of semantic knowledge to speed

up query execution.

The contribution of this work is twofold. First, it establishes a rigorous basis for OQL by defining

a type inference model for OQL queries and proposing a complete framework for their translation

into calculus and algebraic representations. Second, in order to enhance query execution it provides

algorithms for applying two semantic optimization heuristics: constraint introduction and constraint

elimination techniques. By taking into consideration a set of association rules with exceptions, it is

possible to add or remove predicates from an OQL query, thus transforming it to a more efficient

form.

We have implemented this framework, which enables us to measure the benefits and the cost of

exploiting semantic knowledge during query execution. The experiments showed significant benefits,

especially in the application of the constraint introduction technique. In contexts where queries are

optimized once and are then executed repeatedly, we can ignore the cost of optimization, and it is

always worth carrying out the proposed transformation. In the context of adhoc queries the cost of

the optimization becomes an important consideration. We have developed heuristics to estimate the

cost as well as the benefits of optimization. The optimizer will carry out a semantic transformation

only when the overhead is less than the expected benefit. Thus transformations are performed safely

even with adhoc queries. The framework can often speed up the execution of an OQL query to a

considerable extent.
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Chapter 1

Introduction

Query processing and its optimization have been two of the most popular areas of research in the

database community. A lot of experience has accumulated, mostly on the execution of relational

queries and their optimization using syntactic transformations. Recently, much interesting work has

focused on semantic query optimization, but relatively few frameworks have been built to test the ef-

fectiveness of these techniques. To my knowledge, there is no research context that has developed and

implemented all the phases of processing an object query language; further, relatively few attempts

have been made towards using data mining techniques, e.g. association rules, in order to optimize

queries semantically.

The comparative analysis of relational and object-oriented database systems is one of the most

controversial database issues [CLC95, DD88]. The efficiency of data storage and query execution

is the main advantage of the relational systems; however the advocates of the object-oriented world

claim that their paradigm is more expressive. The vast experience of optimization techniques and

index usage is a strong argument used by the supporters of RDBS; the advent of object-oriented

programming languages and their natural connection with OODBS is an important counter-argument.

Object-relational databases try to offer the best aspects of the two database paradigms [CMN95].

They allow the user to create persistent objects, but they use a relational physical organisation to

store them.

The limited experience in developing purely object-oriented database systems means that many

query processors have limited capabilities and several deficiencies. The work reported in this thesis

was motivated by the lack of query engines that possess two valuable properties: i) the expressive

power to encompass all the features of the object-oriented paradigm and ii) the flexibility to benefit

from experience gained from relational systems, such as the use of semantic knowledge to speed up

query execution.

The objective of this work is to explore all the phases of developing an object query processor

15



16 CHAPTER 1. INTRODUCTION

and to provide algorithms for applying two semantic optimization heuristics. The implementation of

this framework enables us to measure the cost and the benefits of putting semantic knowledge in the

service of query execution. It should be pointed out that the conclusions drawn from the experiments

are equally applicable to relational query processors.

1.1 Relevant Research Areas

Developing a query processing framework and enriching it with semantic optimization techniques

involves using techniques and resolving issues from disparate research areas.

Various aspects of type theory are studied in order to ensure the typability of a query. In particular,

type checking is a means of exploring whether a certain query can be executed against a particular

schema without causing any type-errors. Type inference is used to infer the type of a query without

accessing any particular schema information. It can be used to identify the requirements that a schema

should satisfy to be compatible with a certain query.

Part of this dissertation also involves work in translating a query into various intermediate repre-

sentations before it actually gets executed. This entails not only translating a query from one form to

another, but also optimizing it at each stage. A lot of work has been done in this area in the relational

framework, but relatively few attempts have been made to do the same in an object-oriented context.

Semantic optimization is a third important aspect of our query processing framework. The un-

derlying idea is to optimize a query based on semantic knowledge in the form of association rules.

This first requires identifying the rules using standard data mining methods; these rules must then be

combined into forms suitable for the optimization purposes.

Finally, assessing the performance benefits of semantic optimization requires estimating the cost

and the scalability of the methods developed. In the last part of this thesis we look at the complexity

of the algorithms involved.

1.2 Research Context

The query language used in our framework is OQL, the Object Query Language proposed as part of

the Object Data Standard (version 3.0) published by the ODMG [CBB+00]. This standard provides

specifications for storing and retrieving objects in databases. Its objective is to encompass all the

important features of the OO paradigm and to ensure portability across database systems that comply

with it. It consists of specifications of the following components:

• the Object Model defines the type system of the object paradigm,
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• the Object Definition Language (ODL) is a specification language used to define the classes of

a particular schema,

• the Object Interchange Format (OIF) is a specification language used to dump and load the

state of the database to and from a file,

• the Object Query Language (OQL) is a functional language that allows the user to query ob-

jects,

• C++, Java, Smalltalk bindings enable developers to write code in the respective language to

manipulate persistent objects.

A general criticism of a previous release (1.2) of the Object Standard can be found in [Ala97].

In this thesis, we focus on OQL, since it is the query language studied throughout this dissertation.

It is a functional language, in which queries can be composed to an arbitrary depth, as long as their

operands and results respect the type system defined in the Object Model. Many of the constructs of

OQL are syntactically similar to those of SQL-92; however, OQL has a number of object-oriented

features. First, it deals with complex objects, i.e. objects containing or being related to other objects,

or containing collections (or structures) of objects. Secondly, it enables users to navigate over the

objects using path expressions of arbitrary length. Thirdly, OQL allows the comparison of objects

based on their object identity instead of their content values. Fourthly, it enables method invocations

within a query. Fifthly, it manipulates a series of collections (sets, bags, lists, arrays, dictionaries) with

the aid of additional language constructs. Sixthly, it handles polymorphic collections, i.e. collections

with objects belonging to different classes. The late binding mechanism enables users to perform

generic operations on the elements of these collections. The casting mechanism allows them to

declare explicitly the class of an object, going down the class hierarchy.

The expressive power of OQL makes it an interesting query language to develop. In addition

to its independent use as a query language, it can potentially be embedded in any object-oriented

programming language. The object-oriented nature of OQL makes the gap between the query and

the programming language much narrower than in the relational context. In certain cases, it allows

the programmer to perform exactly the same operation by either using the commands available in the

binding of the programming language, or by embedding an OQL query in it.

1.3 Existing Object-Oriented Database Systems

There currently exist several companies who claim to have designed OODB systems compliant with

the ODMG standard. For instance, SunMicrosystems, POET, Object Design and Objectivity and
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Versant have developed Java Blend, Poet Object Server, ObjectStore, Objectivity/DB and Versant

Developer Suite respectively.

Java Blend enables users to write database applications for any database entirely in the Java

programming language. Developers do not need to know how data are structured in a database, they

should just be aware of the business logic underlying their application. The main idea behind building

this product was to avoid using any query language resembling SQL.

ObjectStore enables the database to be accessed through two language bindings, for Java and for

C++. It can either be used as a middle-tier Data Server that links to a conventional relational database,

or as a real object-oriented database system. The rationale behind its development is similar to Java

Blend. It does not provide an independent object query language, but enables programmers to query,

update or delete objects using the language binding of their choice. Although this allows developers

to access the database without switching to a query language, it deprives them of the expressiveness

and the flexibility of OQL. Query processing in ObjectStore is studied in [OHMS92].

Objectivity/DB also includes C++ and Java bindings that conform to the second release of the

ODMG standard (ODMG 2.0). In addition, it provides a separate query facility called SQL++. This is

an ANSI-standard SQL engine extended with object-oriented features of Objectivity/DB. The design

of SQL++ was intended to preserve the investment in traditional SQL-based tools; the effect of this

was a loss of expressive power compared to OQL, such as the failure to handle multiple collections,

late binding and class casting.

Versant Developer Suite (VDS) 6.0 is an object database management system that provides a

tight binding between the application programming language (C++ or Java) and the underlying object

database model. Versant has also its own proprietary Versant Query Language (VQL). VQL does not

only have select query capabilities, but also supports insert, update and delete operations. Queries

have an SQL-like syntax extended to include a number of object-oriented concepts. However, VQL

does not have the expressive power of OQL.

A more detailed description is given for POET, since it has been used as the basis for develop-

ing the query framework of this research. POET has actually contributed in defining the ODMG

standard. It provides two language bindings (for Java and C++), as well as an OQL query proces-

sor. However, only a subset of OQL constructs is implemented; neither method invocation nor the

group-by operation are supported in queries. The type system of the ODMG object model is not

entirely respected. For instance, the result of a query in POET is either of type Object or of type

Set(Object). According to the standard, it could be any simple type, class or collection like bag, list

or array. The weaknesses of the POET OQL implementation motivated in part the development of a

new OQL engine. Since in most other respects – object model, language bindings – POET conforms

to the ODMG standard, its storage system and Java binding were selected as tools for building and

testing the new query processor.
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1.4 Type Checking vs Type Inference

The ODMG standard presents, rather informally, some details of a type system for checking OQL

queries using type information about the classes, extents, named objects and query definitions from a

given database schema. Recently, there have been some efforts to formalise this type system [Ala99,

BT00]. Their common objective is to ensure that the query execution will not fail due to type errors.

This is also reflected by the following statement in the ODMG standard:

”OQL is a functional language where operators can freely be composed, as long as the

operands respect the type system” ([CBB+00], page 89).

The core of the type checking model [BT00] is a set of typing rules which derive the type of OQL

constructs based on the types of their constituent parts (operands or subqueries). If a subquery is just

an identifier its type is looked up either in the query environment, if it is a local range variable, or in

the database schema, if it is a named object, a query definition or an extent. Hence, knowledge of the

schema type information of a database is essential for type checking.

On the other hand, type inference derives the most general type of a query without accessing any

schema information. Whilst doing that, it establishes restrictions on the properties of a schema, in

order that a certain query may be well-typed with respect to it.

This technique could be exploited in distributed database applications where we often need to

check the typability of a query against multiple schemata. It would also be useful in order to tranform

queries into equivalent forms that fit different schema specifications. Finally, a type inference model

could be exploited in contexts where we have a limited knowledge of schema information (semi-

structured or unstructured databases).

OQL type inference is particularly interesting, because of the complexity of the type model of the

language. Besides class types and simple types, the type model includes structures, as well as multiple

collection types (sets, bags, lists, arrays and dictionaries). The wide variety of OQL constructs leads

to multiple combinations of these types, and thus to a rather complex type system. Type inference is

studied in detail as a part of this thesis.

1.5 Calculus and Algebraic Representations

Most query languages, including OQL, are declarative, i.e. they declare what has to be provided

as the result, without describing how this is going to be achieved. Intermediate representations aid

in bridging the gap between the user-level language and the query engine programs ultimately used

to produce the query result. There are calculus-style and algebra-style intermediate representations

that serve different purposes, but both need to reflect the special characteristics of the query lan-

guage. Calculus-style formalisms support the concept of tuple (for relational models) or object (for
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object models) variables, while algebra-style formalisms are set- (resp. collection-) oriented. The

former allow for nesting of expressions in a natural way; the latter use operators that reflect mutually

independent (context free), but well defined execution steps [SdBB96].

In this thesis, the monoid comprehension calculus is adopted as the initial internal representation

of OQL. This calculus provides a uniform way of expressing a great variety of queries; for instance,

operations over multiple collection types, group-by operations, existential or universal quantification

have very similar calculus representations. The calculus framework of this dissertation has extended

previous research [Afs98, FM95, FM00], in order to deal with several weak points of OQL and to

resolve a number of ambiguities. One of these extensions concerns the introduction of new normal-

ization rules wrt [FM00]. Normalization is the transformation (unnesting) of monoid expressions

to syntactically equivalent ones which are either more efficient, or provide opportunities for further

calculus or algebraic optimization.

A set of algebraic operators (e.g. Reduce, Select, Nest) are proposed as the second internal

representation of OQL. In order to translate a query from the calculus to its algebraic form, one needs

to apply a series of translation rules. Having obtained the algebraic form of a query the next step

is to provide transformation rules that convert an algebraic form to a more efficient form. Note that

the term translation is used to express the conversion from one internal representation to another;

the term transformation denotes the conversion of an expression to an optimized one within the

same internal representation [SdBB96]. The algebraic operators presented in this thesis are similar

to those proposed by Fegaras and Maier [FM00]; however, a great deal of the semantics and the

applied transformations are different in the two contexts. In addition, the respective algorithms for

the translation of calculus to algebraic forms differ to a great extent.

1.6 Semantic optimization using association rules

In general, optimization methods transform a query from one representation to a more efficient one, or

to a form that provides opportunities for further optimization. Calculus normalization and algebraic

optimization, which have traditionally dominated the query evaluation process, involve transforma-

tions that are valid for any database state. In contrast, semantic transformations are valid for any state

satisfying a set of constraints (semantic rules) [SSS92]. These rules differ from database integrity

constraints, in that they are not strictly imposed, that is they do not reject any update that invalidates

them. Such an update would rather cause the relaxation or the deletion of the rules it invalidates.

Association rules reflect correlations between attribute values in a database. They have mainly

been studied in the context of sales transactions databases. A lot of work has focused on the market-

basket problem, i.e. on finding association rules of the form if a set of items appears in a transaction,

then another different set of items is likely to appear as well. These boolean association rules have
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been extended to deal with quantitative and categorical values.

Two measures – support and confidence – express the validity of association rules. Support is the

fraction of data instances satisfying a certain rule, while confidence is the ratio of instances satisfy-

ing the rule to the instances satisfying its antecedent. Semantic rules can be viewed as association

rules with 100% confidence. Semantic optimization could be achieved using association rules, as

long as their exceptions are taken into account in the query transformations. We assume that these

exceptions are maintained in the presence of updates [AFP00, CLK97]. Considering the exceptions

of association rules results in valid but not necessarily advantageous semantic transformations.

Siegel has proposed a series of heuristics for the semantic optimization of queries [SSS92]. The

following two are studied in detail in this thesis:

• if a selection on attribute A is implied by another selection condition on attribute B and A is

not an index attribute, then the selection on A can be removed from the query;

• if a relation R in the query has a restricted attribute A and an unrestricted cluster index attribute

B, then look for a rule where the restriction on A implies a restriction on B.

A number of algorithms proposed in this dissertation enable the application of both heuristics for

the optimization of OQL queries. In addition, an experimental framework has been set up, in order

to measure the complexity of the optimization algorithms and the performance benefits of the query

transformations.

1.7 Dissertation outline

The rest of this thesis is structured as follows: Chapter 2 presents first a series of applications for

which this research is particularly useful. These applications are complex enough to benefit from an

object-oriented paradigm and are rich in meaningful correlations in order to provide the opportunity

for semantic optimization. Further, this chapter reviews previous work related to the various phases of

query processing and optimization. In doing so, it points out the main differences between previous

work and the research presented in this thesis.

Chapter 3 focuses on the first step of query processing, that is the type inference of OQL queries.

Note that there is no discussion about checking the type of an OQL query with respect to a certain

schema. The type-checking algorithm is quite similar to the ones proposed for relational query lan-

guages and is formally presented in [BT00]. Instead this chapter focuses on the following problem:

given an OQL query find its most general type as well as the type requirements that a schema should

satisfy in order to be compatible with the query.

Chapter 4 discusses the translation of an OQL query to its first internal representation, the monoid

comprehension calculus. We argue against the claim of Fegaras and Maier that nearly all OQL
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expressions have a direct translation into their monoid calculus, with the exception of indexed OQL

collections ([FM00],section 3). We extend the calculus syntax and modify the translation rules, in

order to provide a full mapping of OQL queries to their calculus forms. Further, we present additional

rules for the normalization of monoid calculus expressions taking into account the new calculus

expressions.

Chapter 5 is the equivalent of chapter 4 on the algebraic level. That is, it first gives an overview

of the algebraic operators used at this level and explains their functionality; it then presents the rules

for the translation of the calculus representation to the algebraic one. The reader will notice the

differences between the algebraic representation of this thesis and the one proposed in [FM00].

Chapter 6 introduces the interesting topic of semantic optimization. It gives a series of algorithms

for applying two optimization heuristics proposed by Siegel et al. [SSS92]. It then discusses the

contexts in which each of these techniques is expected to speed up query execution.

Chapter 7 evaluates the complexity of the semantic optimization techniques and assesses their

benefits in query execution. These issues are first addressed theoretically, by reasoning about the cost

of each step of the optimization algorithms. Complexity is then evaluated practically, by setting up a

series of experiments that monitor the behaviour of the algorithms under different input conditions.

Chapter 8 discusses the insights and the experience gained from this research. It presents some

weaknesses and suggests directions for future work. Finally, it concludes this dissertation by pointing

out its principal contributions.



Chapter 2

Applications and Related Work

This chapter discusses two important issues relevant to this work. First, it presents application frame-

works that can benefit from the algorithms developed in this research. These applications are ex-

pected to be rich in semantic associations and complex enough to benefit from their deployment in

an object-oriented framework. Second, this chapter reviews previous research done on the various

stages of query execution and optimization. It focuses mostly on the work that has directly influenced

this research, and highlights the novel points of this dissertation.

2.1 Applications that motivate this research

The applications that are particularly interesting in our context are often labelled as ‘data-rich’. This

term has multiple interpretations: first, it requires that an application has large amounts of data that

need to be managed in an intelligent way. Secondly, it implies that this data is inherently complex,

and hence it would benefit from being structured in an object-oriented database. Thirdly, this term

suggests that the data is rich in semantic correlations; the latter could be used either for query opti-

mization or for decision-support purposes.

These applications can be found in both commercial and scientific contexts. Starting with the

commercial world, most organisations are collecting increasing volumes of data about business pro-

cesses and resources. Traditionally, they organise this data in relational databases, representing inter-

connections between tables by means of foreign keys. They query the information in order to produce

long reports referring to aggregates of costs, earnings and various other statistical information. More

complicated queries, aiming at risk analysis or prediction of future trends, are usually performed in a

semi-manual way. Due to the volume of data, queries that range over entire tables (or extents) take a

long time to evaluate; they are typically included in batch jobs and performed overnight.

For instance, consider a banking application that keeps data about all customers that have had a

23
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loan contract with a bank. It would be very convenient if the bank information was organized in an

object-oriented database, since one would be able to navigate easily from customers to their loans and

deposits, their repayments and other obligations, as well as other customers they are related to, e.g.

guarantors or partners in the same company, or suppliers. Apart from inverse relationships and path

navigation, the banking application offers a lot of opportunity for inheritance, since products usually

form hierarchies and so do customers or contracts. Further, this application provides many opportu-

nities for identifying useful semantic knowledge. For example, in order to estimate whether a current

customer is likely to repay his/her loan, it is sensible to look at the behaviour of previous customers

with similar characteristics. This entails queries that range over large amounts of data relating the

propensity of arrears of customers based on their loan application data. Identifying common patterns

of customer behaviour, in the form of association rules, would be of great help to the execution of

similar queries.

Moving to the scientific world, medical applications are representative examples that could ben-

efit from the proposed methods. Given a database of patient histories (symptoms, diagnoses and

treatments), interesting rules can be deduced from the association of exhibited symptoms and pre-

scribed treatments with the evolution of a patient’s condition. In order to reach slightly refined or

more general conclusions, a doctor might want to address queries that are likely to be optimized by

the application of the derived rules. It is worth representing the medical data in an object-oriented

way for two reasons: first, symptoms, diseases and treatments have many attributes and two-way

relationships with each other; doctors are particularly interested in these relationships and often write

queries that navigate across them. In relational databases, this would require many expensive join

operations, whilst in their object counterparts, it would involve pointer traversals. Second, the clas-

sification of symptoms or diseases under more general categories (using the inheritance mechanism

of the object model) might enable high level correlations among medical data to be identified. This

would enable the optimization of a wider variety of queries.

In general, an optimization is considered beneficial when the time saved by executing the opti-

mized query is greater than the cost of applying the optimization. However, in applications where

queries are executed frequently, it is possible to apply the optimization once at compile time and

execute the optimized query several times without any further overhead. The semantic optimization

methods proposed in this dissertation obey this general rule, thus favouring applications that apply a

particular query repeatedly. An important consideration is the dynamics of the database; we should

be able to monitor the validity of prespecified semantic transformations in the presence of database

updates.



2.2. PREVIOUS WORK RELATED TO THIS RESEARCH 25

2.2 Previous work related to this research

As shown in the previous section, there are large families of commercial (e.g. banking) and scientific

(e.g. medical) applications suitable for applying semantic optimization techniques. This fact has

motivated a lot of research in the area of query processing and optimization that has been used as the

basis of the current work. The remainder of this chapter outlines previous research efforts from the

areas involved in this work: type theory, intermediate query representation, data mining and semantic

optimization.

2.2.1 Ensuring the typability of an OQL query - Related Work

The first step towards processing an OQL query is checking its typability, i.e. ensuring that it can

be executed without causing any compile-time type errors. This can be done either with respect

to a specific schema (type checking) or just based on the structure of the query independent of any

schema information (type inference). Both problems have been studied broadly for various languages

during the last 30 years [BO96, Dam85, Gun92, Mil78, Sul00, Tof87]. Typability issues have been

considered for query languages in both relational and object oriented frameworks.

A discussion about type-checking an OQL query can be found in the ODMG standard [CBB+00].

Unfortunately, this presentation of the type system is neither formal nor complete. There is obviously

a need for a more formal, mathematical presentation; the informal English presentation may be elo-

quent but it leaves a lot of space for ambiguity and misinterpretation.

Riedel and Scholl set out to describe the type system underlying the ODMG object model for-

mally [RS97]. However, their approach, reflected in the CROQUE-version of ODL, differs consider-

ably from the type model as defined in the ODMG standard [CBB+00]. They propose a type-based

object model, where object types need not be named, since they are distinguished uniquely by their

set of functions (attributes, relationships and methods). Classes are not considered as the types of

object instances, but rather as extents. Hence, they are treated in queries differently from the way that

they are treated in programming languages. Although Riedel and Scholl define types and subtyping

formally, they provide no formal means of checking the type of an OQL query, e.g. a complete set of

type rules. Finally, they study a much earlier version of the Standard (version 1.2) so some of their

work is no longer relevant.

Following this work, Alagić [Ala99] and Bierman and Trigoni [BT00] made two independent

efforts towards checking the type of an OQL query. Alagić considers a formalisation of the OQL type

system, and claims that ’several negative results are proved about the ability to type-check queries’.

This claim is later questioned by the work of Bierman and Trigoni who give a set of typing rules

adequate for checking the type of all OQL constructs. Alagić also demonstrates a much more serious

problem with the Java language binding. He gives a type rule [ [Ala99], Rule 26], which appears to
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be a rule for typing Java directly, i.e. he considers OQL as a language extension of Java. Clearly

there is a problem here as OQL has parameterised types (e.g. bag(Employee)), but Java does not (all

it has is covariant arrays).

Using the host language type system to type queries has been the dream of OODBMS design-

ers [ZM90]. However, nowhere in the Standard does the ODMG propose that the Java type system

be used to type OQL. The type system of the Object Model should be the basis for OQL type check-

ing. The Standard gives a number of language bindings that enable the user to invoke OQL queries

within a programming language environment. It is the role of these bindings to provide the mapping

between the programming language type system and that of the Object Model.

Bierman and Trigoni address the typing problem from a lower level [BT00]. They give a detailed

account of the typing rules needed to check the type of all OQL constructs, and not only of the select

queries (as is the case in Alagić’s work). Hence they provide rules that deal with grouping and

various collection operations (e.g. union, intersect, except).

Regarding the order operation, the Standard does not specify what happens when the sort criterion

in the order clause does not distinguish completely between results. Presumably the order of elements

in the resulting list is system-dependent. To alleviate this problem, Alagić enforces the limitation that

the ordered elements should implement an interface with an ordering method. Bierman and Trigoni

suggest that the resultant type of a select · . . . · group by clause should be a list of bags of elements

rather than a list of elements. Each bag should include all the elements with the same values for

the sort criteria. If the sort criteria define an absolute order for the elements, then all the bags are

singletons. An additional order flatten operator could be potentially added as part of the OQL

language in order to flatten the list of bags of elements into a list of elements in a system-specific

way.

As far as type inference is concerned, the canonical reference for work on type systems for

database programming languages is the work of Buneman and Ohori [BO96]. The goals of their

type inference algorithm are identical to those when inferring the type of OQL queries, as presented

in the next chapter; both approaches infer the most general type of an expression (if one exists)

without accessing any schema information, and in this sense determine the constraints placed on the

schema by the query. However, the underlying languages, the type systems, and some parts of the

inference algorithms differ to a considerable extent. Buneman and Ohori introduce kinded types to

infer the type of a record based on selections of fields on this record. Instead the type inference work

in this dissertation uses the notion of general types; in this way, it is possible to express general type

information not only for records, but also for parametric collection types, dictionary types, structures

and classes. Moreover, a wider variety of constraints are introduced and hence a different algorithm

is proposed to resolve them.

The work most related to the object nature of OQL arises from studying type systems for object
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oriented programming languages, e.g. [PS91, PC94, AH95]. Palsberg and Schwartzbach [PS91]

present an algorithm that infers the type of an untyped object-oriented language resembling Smalltalk.

They define type as a finite set of classes, and induced type as the set of classes of all possible non-nil

values to which a concrete program may evaluate in any of its executions. There are finitely many

classes in a program and a type of an expression refers to the set of possible classes the expression

is an instance of. However, inferring the type of an OQL query without accessing a specific schema

raises the need to deal with class templates rather than with specific classes. Moreover, the OQL type

system includes several atomic, collection and structure types. Thus, a general type cannot be defined

as a set of classes.

Gunter [Gun92] studies polymorphism and type inference for a calculus language called ML 0.

He presents an algorithm W that infers the most general type of an ML 0 expression. The main

point where his approach differs from that of the current work is the unification mechanism. He uses

substitution as the mechanism to unify two types that should be equal. However, in the OQL setting,

which supports subtyping, the need to unify two types is not simply equivalent to the need for their

equality. In certain cases, it concerns comparing two types using subtype relations or their ability to

be element types in the same collection. Thus, the notion of substitution is not sufficient in resolving

constraints amongst OQL types.

The language Cardelli [Car87] considers for type inference is also a very simple lambda calculus

with constants. He presents inference rules that are applied from left to right and bottom-up. Starting

with initially broad assumptions, he gradually refines them using inference rules. In case an inference

rule requires two types to be equal, he unifies them and in this way he specializes some of the types of

the identifiers. The approach used in chapter 3 is very similar, except that the inference rules generate

two categories of constraint. The first consists of constraints that relate the types of two different

expressions that coexist in the same context (query construct). The second concerns constraints that

relate different information about the type of the same expression. This information might have been

inferred by analyzing different contexts (parts of the query).

2.2.2 Intermediate representations of OQL - Related Work

The next step after ensuring the typability of an OQL query is to transform it into its internal repre-

sentations, i.e. the calculus and the algebraic form.

Fegaras and Maier present a standard of effectiveness for a database calculus, before proposing

monoid calculus as an intermediate representation for OQL queries [Feg94, Feg97, Feg98, FM95,

FM00]. They prove that monoid comprehensions conform to this standard by being expressive

enough to represent OQL’s constructs, manipulable (w.r.t. type checking, rewriting et cetera), evalu-

able (giving opportunities for alternative execution plans) and uniform in handling collection and

primitive types (as monoids). Provided that certain types are viewed as monoids, a query can also
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be considered as a map from a given monoid to another monoid. These maps are known as monoid

homomorphisms. Thus, a framework is proposed in which OQL queries are translated to monoid

comprehensions, which in turn are defined in terms of monoid homomorphisms. The calculus repre-

sentation is eventually translated into a series of algebraic operators, like join, select, unnest and

reduce.

Grust and Scholl also support the concept of monoid comprehension as a calculus representa-

tion [GS98a]. Like Fegaras and Maier, they also underline that monoid calculus expressions are

amenable to normalization. The existence of normal forms constitutes a major advantage for two

reasons. First it enables pattern-matching; secondly, it reduces the number of transformation rules

needed to deal with the repertoire of OQL operators. In spite of that, normalisation should be treated

carefully, because it can sometimes hide optimization opportunities [GS96]. Grust and Scholl map

monoid comprehensions to a combinator algebra (including map, filter, cross, join, semijoin, antijoin

and aggregation operators). The hybrid representation of monoid comprehensions and algebraic com-

binators is treated as pure syntactic sugar for a single basic recursion combinator foldr. The latter

is used in combination with build in order to enable the derivation of streaming programs (cheap

deforestation) [GS98b].

A hybrid representation of monoid comprehensions and a monoid-aware nested algebra (e.g.

semijoins, nestjoins) is discussed in [GKG+97]. The core of the adopted algebra is the opera-

tor fold[⊕; f](E), which applies f to the elements of E. It then uses the merge operation ⊕ of

some monoid M to collect the result. The algebraic operator fold along with certain variations like

crossfold (for the evaluation of joins) are also supported in [Van92].

Buneman et al. propose a comprehension syntax as the starting point for the development of

database languages [BLS+94]. They claim that comprehensions provide a natural way of expressing

structural recursion and a powerful paradigm for manipulating collection types.

Straube et al. also present a framework for the translation of an object query language to calculus

and algebraic representations [SO95a]. A query in their object calculus is of the form {o | ψ(o)}
where o is an object variable and ψ(o) is a formula built from range or predicate atoms. They discuss

safety criteria for the computability of queries and they give an algorithm for the translation of safe

calculus expressions to algebra operator trees. Finally, they present equivalence-preserving rewrite

rules in order to optimize algebraic expressions. The expressiveness and the type system of the query

language considered in their context are less complex than those of OQL.

A sensible question that might be raised at this point is the following. Why are the algebraic rep-

resentations of extended relational and object-oriented query languages (fold, algebraic combinators

and foldr, monoid homomorphisms) not as uniform as those concerning the respective calculus rep-

resentation (monoid comprehensions)? It is tempting to highlight that the main difference of the

algebraic approaches lies in the concept of structural recursion. On the one hand, foldr directly
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corresponds to structural recursion on the insert representation (sri). It is, therefore, naturally associ-

ated with sequential processing of collections. On the other hand, fold and monoid homomorphisms

express structural recursion on the union representation (sru) and are consequently associated with

the parallel processing of collections.

Opting for translating comprehensions to monoid homomorphisms has the advantage that monoid

homomorphisms have the potential for parallel processing via divide-and-conquer methods [Afs98,

HIT97]. This option has already been proved successful for relational query languages in [Afs98].

The query evaluation framework - developed as a part of the architecture - makes use of monoid com-

prehensions which are first translated to monoid homomorphisms and then (after several rewriting

steps) to algorithmic skeletons, e.g. hom, split, pipe and farm. The latter are constructs with well-

defined parallel behaviour and, in particular, the hom skeleton models the behaviour of the monoid

homomorphism and exhibits its potential for parallelism.

However, the use of monoid homomorphisms would prevent us from efficiently evaluating exe-

cution plans using valuable experience from the relational technology. Reordering join operations,

selecting different join algorithms, applying various (index-based) access methods and achieving se-

mantic optimization are some of the optimizations that are hard to apply using the homomorphic

representation.

Hence, queries in this dissertation are first translated to the monoid calculus and then to a set of

algebraic operators that also provide the potential for parallel processing. Although this approach is

similar to the one taken by Fegaras and Maier, it departs from theirs in several respects.

First, the normalization rules within the calculus representation have been extended. Secondly,

the semantics of the algebraic operators have been altered to better suit the needs of query representa-

tion and optimization. Thirdly, the rules for the translation of the calculus to the algebraic formalism

differ to a considerable extent. The calculus and the algebraic representations as well as the transfor-

mations performed within each level are described in chapters 4 and 5.

2.2.3 Association Rules and Semantic Optimization - Related Work

Within the intermediate query representations, there are a lot of opportunities for syntactic calculus

or algebraic transformations. A lot of experience has been gained applying these optimizations in

the relational or object-oriented context [CS96, Cha98, GLR97, Hel98, Ioa96, KPH98, PS96, PS97,

RS93, SdBB96, SO95a, SO95b, WM99]. This thesis focuses on semantic query optimization, i.e.

query transformations based on semantic knowledge rather than syntactic equivalence. In particular,

semantic knowledge is represented by association rules of the form:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ p0 (Exc)
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where pi, i = 0, . . . , n have the form class name.attr name op value and op ∈ {=, <,≤, >,≥}.
Exc is the set of exceptions associated with the rule; it includes all the objects of class class name

that satisfy the antecedent p1 ∧ . . . ∧ pn, without satisfying the consequent p0. Such an associa-

tion rule is often characterized by two measures of interest, confidence and support; we redefine

these measures to fit the object-oriented paradigm. Confidence is the fraction of objects of class

class name satisfying the antecedent, that also satisfy the consequent. Support is the percentage of

objects in the extent of class name satisfying both the antecedent and the consequent.

A lot of research has been devoted to mining association rules that relate values of attributes in a

relational table. The same techniques can equally be used in an object-oriented framework. Agrawal

et al [AIS93] present an algorithm for identifying boolean association rules, i.e. correlations be-

tween boolean attributes. Further, Srikant and Agrawal presented techniques for discovering rules

over quantitative and categorical attributes [SA96]. Later on, Miller and Yang studied the problem of

mining association rules over interval data [MY97] using the Birch clustering algorithm [ZRL96]. A

lot of attempts have been made to improve or to alter slightly the basic algorithm underlying the ap-

proaches discussed above [ASY98, CA97, FMMT96, KMR+94, NLH98, Par95, TUA+98, WYY00].

Chapter 7 presents an experimental framework intended to demonstrate the benefits of semantic op-

timization using association rules. The programs developed to identify these rules are based on

standard algorithms for identifying quantitative rules [SA96] and rules over interval data [MY97].

Semantic knowledge that has been discovered using data mining techniques can be used for

query optimization [HHCF96, Hsu96, HK96, Hsu97, HK98, HK00, Kin81b, LS95, MC96, SHKC93,

YSP97, YS89]. A number of heuristics have been proposed that take advantage of association rules

in order to optimize queries semantically [Bel96, CGM90, GGMR97, GGZ01, Kin81a, SSS92]. We

refer briefly to the heuristics presented by Siegel et al [SSS92].

• If a relation R in the query has a restricted attribute A and an unrestricted cluster index attribute

B, then look for a rule where the restriction on A implies a restriction on B. This heuristic

implies the introduction of the second constraint, which is indexed.

• If the only restriction on relation R is a join condition and R does not have an index on the join

attributes, then look for a selection restriction on this relation. The new selection condition

should be deduced from the selection conditions on the joining relation.

• If a selection condition on attribute A is implied by another selection condition on attribute B

and A is not an index attribute, then the selection on A can be removed from the query.

• If a query contains a restriction on a range attribute, then try to locate a constraint on that

attribute that is a contradiction to the existing restriction.
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• If a restriction on a range attribute implies the answer to a query then the latter can be an-

swered without accessing the database

All of these heuristics make use of association rules to add or remove constraints, or to find contradic-

tions or tautologies. In this dissertation we focus on the application of the first and third conditions,

although the algorithms proposed can be adapted to serve all of the heuristics.

Chakravarthy et al. [CGM90, CGM88] also study the use of semantic knowledge for the trans-

formation of queries into more efficient forms. They use a set of heuristics similar to those de-

scribed above and propose techniques that take advantage of integrity constraints in the form of rules.

Bell [Bel96] has studied the use of constraints in order to identify whether the result of a query con-

tains distinct values. This knowledge is used in order to optimize select · distinct . . . queries or

group by operations.

Beneventano et al. [BBSV97] have developed a semantic query optimizer as part of a broader set

of object-oriented tools (ODB-tools). Their optimizer takes advantage of the constraint introduction

and constraint elimination heuristics, as well as of additional ones, e.g. reducing the scope of a query

to a smaller subclass. These heuristics are presented in detail by Grant et al. [GGMR97].

Cheng et al. describe the implementation of two semantic optimization techniques, namely pred-

icate introduction and join elimination, in DB2 Universal Database [CGK+99, GLQ99]. After an

input query is converted to an intermediate form called query graph model, it is transformed by a

query rewrite engine [PHH92, PLH97] into a more efficient form using a set of integrity constraints.

Most of the approaches above ignore weak association rules, i.e. rules that are not a hundred

per cent valid. In most cases rules represent integrity constraints, allowing no updates that invalidate

them. Godfrey et al [GGZ01] consider the use of absolute soft constraints the exceptions of which

are stored in materialized views. However, they do not consider combining soft constraints (and their

exceptions) to infer new constraints. In general, previous approaches take advantage only of direct

correlations as expressed by single rules. They do not combine rules to identify indirect associations

that might be of use to the semantic optimization process.

In this dissertation, a series of algorithms is given that deals with these two issues. First, these

algorithms take into account the exceptions associated with each rule, so that the result of the opti-

mized query is accurate. Secondly, they combine existing association rules to identify useful indirect

correlations along with their exceptions. Both direct and indirect correlations are combined to a series

of optimization solutions; the criteria according to which the best solution is selected depend on the

optimization heuristic.
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2.3 Extending the previous work - Discussion

This chapter provided an overview of the applications and the previous work relevant to this research.

The variety of applications is definitely a strong motivation for extending the existing work to ad-

dress the problem of query processing and semantic optimization in an object-oriented framework.

Although a lot of research has already been done in these areas, little work has focused on integrating

the various stages of query processing, namely type inference, translation to calculus/algebraic repre-

sentation and semantic optimization using association rules. Very few attempts have actually tried to

measure experimentally the benefits of semantic optimization with respect to the optimization cost.

To our knowledge there has been no implementation of the semantic optimization techniques that

take account of indirect association rules with exceptions.



Chapter 3

Type Inference of OQL

This chapter presents an inference algorithm for OQL which both identifies the most general type of

a query in the absence of schema type information, and derives the minimum type requirements a

schema should satisfy to be compatible with this query. It is the result of joint work with Dr G.M.

Bierman, presented in the proceedings of BNCOD 2001 [TB01]. The proposed algorithm is useful in

any database application where heterogeneity is encountered, for example, schema evolution, queries

addressed against multiple schemata, inter-operation or reconciliation of heterogeneous schemata.

The inference algorithm is technically interesting as it concerns an object functional language with

a rich semantics and complex type system. More precisely, we have devised a set of constraints and

an algorithm to resolve them. The resulting type inference system for OQL should be useful in any

open distributed, or even semi-structured, database environment.

3.1 Introduction

The ODMG Standard [CBB+00] presents, rather informally, some details of a type system for check-

ing OQL queries using type information about the classes, extents, named objects and query defini-

tions from a given database schema. Recently there have been some efforts to formalise this type

system [Ala99, BT00]. The work presented in this chapter builds on earlier work [BT00] and con-

siders the problem of inferring the most general type of an OQL query in the absence of any schema

information.
For example, consider the following OQL definition and query:

define Dept_Managers(dept) as

select e

from Employees as e

where e.position="manager" and e.department=dept;

33
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select d

from Departments as d

where count(Dept_Managers(d))>5

This query yields those departments that have more than five managers. It is interesting to notice that
this information could be drawn by running the query against databases with significantly different
schemata. For instance, consider schema A, which has two classes, Employee and Department,
defined as follows.

class Employee (extent Employees)

{ attribute string name;

attribute string position;

attribute int year_of_birth;

attribute float salary;

attribute Department department;}

class Department (extent Departments)

{ attribute string id;}

On the other hand, consider a second schema B, which has a class Employee and a named collection
object Departments of type List(int).

class Employee (extent Employees)

{ attribute string name;

attribute string position;

attribute int department;}

The query could potentially run against both A and B without causing any type errors. In the case of

schema A, the result of the query would be a bag of Department objects. In a database with schema

B, the result of the query would be a bag of integers. Two vital questions arise at this point. First,

how we can draw limits, or put restrictions, on the properties of a schema, so that a certain query is

well-typed with respect to it? Second, what information can we derive about the type of the result of

the query, supposing that we have no specific schema in mind? Before addressing these questions in

detail, we consider the setting where type inference could be important.

As one example, this information could be exploited in distributed database applications. Suppose

time-critical queries are addressed against multiple schemata. If there are frequent updates on parts

of these schemata, then many of the queries will inevitably fail to be executed. In order to avoid this

situation, a user can register interest in specific updates of each schema –at least in those that would

affect the critical queries– and resolve the type incompatibility at the time the queries get executed.
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Type inference is equally useful in contexts where we need to achieve inter-operation between

heterogeneous sources. There has been a lot of research on reconciling schemata with semantic het-

erogeneity [BHP94, Hul97]. One approach to this problem identifies the semantic inconsistencies of

the ontologies in different domains and creates a global ontology that combines all of them. Another

approach identifies the intersection of domains where the inconsistencies occur and tries to resolve

them by introducing matching rules between them. In both cases, queries that are initially written

to be executed on one domain need to be rephrased to fit the needs of more domains. Knowing the

schema requirements of a query and the schema mappings to a (global or just different) ontology, the

task of rephrasing queries becomes an automatic process. Suppose that a group of airline companies

cooperate to create a single uniform system for booking tickets. In order to do that they define a global

ontology that is very close to each of the distinct ontologies. Each query is initially phrased to con-

form to the global ontology and is then transformed to appropriate queries addressed to the individual

schemata. The transformation is much easier to perform if besides the schema mappings (from one

ontology to the other), we are aware of the query schema requirements. The latter effectively point

out the exact mappings we need to use.

Finally, the work discussed in this chapter enables the use of general query definitions. Version

2.0 of the ODMG standard allowed the user to write query definitions without explicitly defining the

types of their arguments. This feature was changed in version 3.0, presumably either to simplify the

task of type-checking or to complete the latter as much as possible at compile time. However, the

ability to define general queries, which possibly run against several schemata without any change, is

lost. Our inference algorithm enables the use of query definitions with unspecified argument types. It

can infer the most general types of these arguments in exactly the same way as it derives the schema

requirements (class/extent information, named objects or query definitions).

3.2 Core OQL

As mentioned previously, the work in type inference is based on earlier work in checking the type

of an OQL query wrt specific schema information [BT00]. This section gives an overview of the

grammar, the types and the subtyping relation of a core OQL, i.e. a fragment of the language defined

in the Standard, but which has the same expressive power [BT00].

An OQL program consists of a number (maybe zero) of named definitions followed by a query.

The syntax for queries and definitions1, as well as the OQL types are presented in figure 3.1. In what

follows, Col(σ) denotes an arbitrary collection type (set, bag, list or array), with elements of type σ.

Implicit in the ODMG model is a notion of subtyping; the underlying idea is that σ is said to be

a subtype of τ , if a value of type σ can be used in any context in which a value of type τ is expected.

1Naturally as we are interested in inferring types we drop the requirement that definition parameters be explicitly typed.
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Queries q ::= b | f | i | c | s
| x

| bag(q, . . . , q) | set(q, . . . , q) | list(q, . . . , q) | array(q, . . . , q)
| struct(` : q, . . . , ` : q)

| C(` : q, . . . , ` : q) | q.` | (C)q
| q[q] | q in q | q() | q(q, . . . , q)
| forall x in q : q | exists x in q : q

| q binop q | unop(q)

| select [distinct] q

from (q as x, · · · , q as x)
where q

[group by (` : q, · · · , ` : q)]
[having q]

[order by (q asc|desc, · · · , q asc|desc)]

Definitions d ::= define x as q

| define x(x, . . . , x) as q

Here b, f, i, c, s range over booleans, floats, integers, characters and strings respectively, x is taken from a

countable set of identifiers, ` is taken from a countable set of labels, and C ranges over a countable set of class

names. We assume sets of unary and binary operators, ranged over by unop and binop respectively.

Types σ ::= int | float | bool | char | string | void
| σ × · · · × σ → σ

| bag(σ) | set(σ) | list(σ) | array(σ)

| struct(` : σ, · · · , ` : σ)

| C

We assume a distinguished class name Object.

Figure 3.1: Syntax and Types for Core OQL
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Sub-typing

Top
C ≤ Object

C v C′

Sub-Class
C ≤ C′

σ′
1 ≤ σ1 · · ·σ′

k ≤ σk τ ≤ τ ′
Sub-Fun

σ1 × · · · × σk → τ ≤ σ′
1 × · · · × σ′

k → τ ′

σ ≤ τ
Sub-Coll

Col(σ) ≤ Col(τ)

σ1 ≤ τ1 · · · σk ≤ τk
Sub-Struct

struct(`1 : σ1, . . . , `k : σk, . . . , `k+n : σk+n) ≤ struct(`1 : τ1, . . . , `k : τk)

Sub-Refl
σ ≤ σ

σ ≤ σ′ σ′ ≤ σ′′

Sub-Trans
σ ≤ σ′′

Figure 3.2: Subtyping for core OQL

This we shall write σ ≤ τ and define as the least relation closed under the rules given in Figure 3.2.

The v symbol denotes single inheritance between two classes, referred to in the Standard as the

“derives from” relation. To simplify the presentation we do not consider interfaces.

An interesting feature of our subtype relation is the treatment of structures. A structure type

σ = struct(`1 : σ1, . . . , `m : σm) is considered to be a subtype of τ = struct(`1 : τ1, . . . , `n : τn)

if τ is obtained from σ by dropping some labels. (In fact, we generalise this a little and also allow

subtyping between the label types). This so-called width-subtyping is an extension to the Standard,

but we feel it offers considerable flexibility.

The type system and the subtype relation are given in detail in an earlier paper [BT00]. In that

work, we aimed at deriving the type of an OQL query given specific schema information. In order to

do that, we defined typing judgements of the form:

S;D;N ;Q ` q : σ

where S are the class definitions, D are the persistent query definitions and N are the named objects

of a specific schema. Q represents the query typing environment, i.e. it contains the types of any

free identifiers in q. A simple example of the typing rules used to derive the type of a query is the

following:

S;D;N ;Q ` q : list(σ)
First-list

S;D;N ;Q ` first(q) : σ

In the context of inferring the type of an OQL query, we have no information about the classes, the

query definitions, and the named objects, as we have no schema information. The problem addressed
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in this chapter can thus be written ? ` q : ?, i.e. given an arbitrary query q, can we infer its type and

the type of any supporting schemata?

3.3 Type and Schema Inference

This section presents the extended type system behind our inference algorithm and a new relation be-

tween types called Generalisation-Specialisation relation. We also discuss the notions of Least Upper

Bound and Greatest Lower Bound of two types that occur frequently in our inference algorithm.

3.3.1 Extended Type System

It turns out to be convenient to extend the notion of type given in Figure 3.1; an example should make
this clear. Consider the following:

define q1 as select x from Students as x;

define q2 as set(first(Students));

q1 union q2

Considering the query q1 union q2 first, we can infer immediately that q1 and q2 should be

either sets or bags of elements. To represent this we introduce a new type constructor set/bag(−).

Moreover, the elements of this collection cannot be of a function type, since the Standard does not

allow functions to be members of a collection; thus we introduce the types nonfunctional and

function. From the definition q1 we infer that Students is some collection (set, bag, list or

array) of elements of any (non-functional) type. Considering the definition q2 we can infer further

information about Students. As it is the argument of a first operation it must be an ordered

collection, i.e. a list or an array. Again we introduce a new type constructor list/array(−). In

summary, the algorithm should infer that Students is a list or an array of a nonfunctional member

type τ , and that the query q1 union q2 is of type bag(τ).2

The above example motivates our need to extend the initial specific types (given in Figure 3.1)

with the following so-called general types.

{any, nonfunctional, atomic, orderable, int/float}∪
{collection(τ), set/bag(τ), list/array(τ), constructor(`i : τi)}∪
{all types from the core type system with at
least one component type being a general type, e.g. set(any)}

where τ , τi are specific or general types.

2The Standard [§4.10.11] states that merging a set and a bag results in a bag.
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any

function

atomic constructor collection

boolean orderable class struct set/bag

string int/float char set bag list array

list/array

int float

nonfunctional

Figure 3.3: Type Hierarchy

Given these general types the resulting type system is then as follows:

σ ::= int | float | bool | char | string | void
| σ × · · · × σ → σ

| bag(σ) | set(σ) | list(σ) | array(σ) | struct(` : σ, · · · , ` : σ)

| C

| any | nonfunctional
| atomic | orderable | int/float
| constructor(` : σ, · · · , ` : σ)

| collection(σ) | set/bag(σ) | list/array(σ)

This extended type system is coupled with the type hierarchy illustrated in Figure 3.3. It is worth

noting that the general types, which are the internal nodes of the tree, are not types that can be

found in a database schema, but rather abstractions or families of types that encapsulate the common

features of their children.

A type is said to be specific, if it can be derived by the type system given in Figure 3.1. Otherwise,

it is said to be general. All the leaves of the hierarchy tree (in Figure 3.3) are specific types, if they

are nullary (non parametric) types (int, float, char, string, bool) or if they are parametric types

with all the parameter types being specific types (e.g. set(int)).

Given this more general type system, we need to extend our notion of subtyping given earlier. We
define a new relation, GSR (Generalisation-Specialisation Relationship). Given types σ, τ , we write
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σ ⊆ τ to express that σ is more specific than τ .

σ ≤ τ
GSR− Type

σ ⊆ τ

σ′
1 ⊆ σ1 · · ·σ′

k ⊆ σk τ ⊆ τ ′
GSR− Fun

σ1 × · · · × σk → τ ⊆ σ′
1 × · · · × σ′

k → τ ′

coll1 is child of coll2 σ ⊆ τ
GSR− Coll

coll1(σ) ⊆ coll2(τ)

colli, i = 1, 2 are nodes in the subtree (figure 3.3) with root collection and is child of signi-
fies that coll2 is a direct or indirect parent of coll1 or that coll1 and coll2 are the same.

constr1 is child of constr2 σ1 ⊆ τ1 · · ·σk ⊆ τk GSR−
Constrconstr1(`1 : σ1, . . . , `k : σk, . . . , `k+n : σk+n) ⊆ constr2(`1 : τ1, . . . , `k : τk)

constri, i = 1, 2 are nodes in the subtree (figure 3.3) with root constructor and is child of

signifies that constr2 is a direct parent of constr1 or constr1 and constr2 are the same.

atom1 is child of atom2
GSR−Atomic

atom1 ⊆ atom2

atomi, i = 1, 2 are nodes in the subtree (figure 3.3) with root atomic and is child of signifies
that atom2 is direct or indirect parent of atom1 or atom1 and atom2 are the same.

GSR− Refl
σ ⊆ σ

σ1 ⊆ σ2 σ2 ⊆ σ3
GSR− Trans

σ1 ⊆ σ3

σ 6= τ1 → τ2
GSR−NonFun

σ ⊆ nonfunctional

GSR−All
σ ⊆ any

Given this definition, we can define the Greatest Lower Bound (GLB) and the Least Upper Bound

(LUB) of two types τ1 and τ2. Insight into these concepts can be gained through the following simple

example. Consider the types τ1 = set(atomic) and τ2 = set/bag(int). The GLB of the two types

is derived by taking the most specific of the collection constructors, set, and the most specific of

the parameter types, int. Thus GLB(τ1, τ2) = set(int). Likewise, for the LUB, we take the most

general of the two collection constructors, set/bag, and the most general of the two parameter types,

atomic. Thus, LUB(τ1, τ2) = set/bag(atomic).

We may now formally present GLB and LUB. In the following definitions, we assume that constr1,

constr2 are nodes in the subtree (figure 3.3) with root constructor and that constr1 is a child of

constr2 or constr1 = constr2. coll1 and coll2 are nodes in the subtree (figure 3.3) with root

collection and coll1 is a child of coll2 or coll1 = coll2. Although LUB is always defined, this

is not the case for GLB. There is not always a type that is more specific than each possible pair of

OQL types. For instance, it is not possible to define the GLB of a class and an atomic type.



3.4. TYPE COMPATIBILITY - CONSTRAINTS 41

GLB(τ1, τ2)
def
= τ1 if τ1 ⊆ τ2 ∧ τ2 ⊆ atomic

LUB(τ1, τ2)
def
= τ if τ1 ⊆ atomic ∧ τ2 ⊆ atomic∧

(there exists no τ ′ s.t. (τ ′ 6= τ ∧ τ1 ⊆ τ ′ ∧ τ2 ⊆ τ ′ ∧ τ ′ ⊆ τ))

GLB(constr1(`1 : σ1, . . . , `k : σk), constr2(`1 : σ′
1, . . . , `k : σ′

k, . . . , `k+n : σ′
k+n))

def
= constr1(`1 : GLB(σ1, σ

′
1), . . . , `k : GLB(σk, σ

′
k), . . . , `k+n : σ′

k+n)

LUB(constr1(`1 : σ1, . . . , `k : σk), constr2(`1 : σ′
1, . . . , `k : σ′

k, . . . , `k+n : σ′
k+n))

def
= constr2(`1 : LUB(σ1, σ

′
1), . . . , `k : LUB(σk, σ

′
k))

GLB(coll1(σ1), coll2(σ2))
def
= coll1(GLB(σ1, σ2))

LUB(coll1(σ1), coll2(σ2))
def
= coll2(LUB(σ1, σ2))

GLB(τ1 × · · · × τk → σ, τ ′1 × · · · × τ ′k → σ′)
def
=

LUB(τ1, τ
′
1)× · · · × LUB(τk, τ

′
k)→ GLB(σ, σ′)

LUB(τ1 × · · · × τk → σ, τ ′1 × · · · × τ ′k → σ′)
def
=

GLB(τ1, τ
′
1)× · · · × GLB(τk, τ

′
k)→ LUB(σ, σ′)

LUB(σ, τ)
def
= any, if σ ⊆ function ∧ τ ⊆ nonfunctional

LUB(σ1, σ2)
def
= nonfunctional, if ∀τ1, τ2.σ1 ⊆ τ1 ∧ σ2 ⊆ τ2 ∧ τ1 6= τ2∧

τ1, τ2 ∈ {atomic, constructor(), collection(any)}

3.4 Type compatibility - Constraints

The inference algorithm we present in section 3.7 analyses an OQL construct and infers the most

general type of the query and the schema requirements that should be satisfied so that the query

is well-typed. Before being able to present the inference algorithm, we first discuss an important

mechanism that the algorithm is based upon—the generation of constraints. When the inference

algorithm analyses a certain query construct, it often infers several relations or associations amongst

the types of the query and its subqueries. These associations are given in the form of constraints.

For example, the analysis of a query q1 union q2 would generate the constraint that the type τ of

the query is the merge result of the types τ1 and τ2 of the two subqueries (τ = Merge Result(τ1, τ2)).

In section 3.5, we show how this constraint is simplified and is assimilated in the set of the existing

constraints.

Analysing the query exists x in Customers : x.income > 40, 000 our algorithm generates

the following constraints: first, it introduces the constraint τ1 = Member Type(τ2), where τ1 is the

type of x and τ2 is the type of Customers. The type of x should be the same as that of the members of

the collection Customers. Second, the constraint τ3 = Constructor Member Type(τ1, income) is
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generated, where τ3 is the type of x.income. This signifies that x is a constructor type (a structure or

a class) with at least one member income of type τ3. Another interesting constraint is that the types

of x.income (τ3) and of the literal 40, 000 (int) should be compatible in the sense that they than can

be compared for inequality (Greater Less Than Compatible(τ3, int)). Later, we will show how

this constraint is simplified to the constraint τ3 ⊆ int/float.

In section 3.6, we give a set of inference rules, one for each query construct. Each rule starts with

an existing set of constraints and generates a number (possibly zero) of new constraints. The different

kinds of constraints generated by the rules in our inference algorithm are given below:

1. Equality Compatible(τ1, . . . , τn) 6. τ0 = Merge Result(τ1, τ2)

2. Greater Less Than Compatible(τ1, . . . , τn) 7. τ0 = Distinct Result(τ1)

3. τ = Member Type(σ) 8. τ1 = τ2

4. τ = Constructor Member Type(σ, `) 9. τ1 ⊆ τ2
5. τ0 = Arith Result(τ1, τ2)

The constraint Equality Compatible(τ1, . . . , τn) is analysed in section 3.4.1. The second con-

straint Greater Less Than Compatible(τ1, . . . , τn) is useful for ensuring typability for queries

like q1 < q2. τ = Member Type(σ) implies that σ is a collection type and that τ is the type of its

members. τ = Constructor Member Type(σ, `) is used to denote that σ is a class or struct type

with at least one member ` of type τ . If σ is a class type then ` can be any of its properties, relation-

ships or methods. τ0 = Arith Result(τ1, τ2) is needed for the type inference of queries of the form

q1op q2 where op ∈ {+,−, /, ∗}. Likewise, τ0 = Merge Result(τ1, τ2) arises as a constraint from

inferring the type of union, intersect or except expressions. τ0 = Distinct Result(τ1) im-

plies that both τ0 and τ1 are collection types and the collection constructor of τ0 is the distinct equiva-

lent of the collection constructor of τ1. Finally, type equality and GSR (Generalisation-Specialisation

Relationship) are handled by constraints 8 and 9.

3.4.1 Collections - Membership Type Compatibility

The first two constraints refer to type compatibility wrt equality or non-equality comparison. These

constraints arise in OQL constructs that involve a merge of two or more elements, or a membership

test. For instance, the first constraint results from considering a query of the form set(q1, . . . , qn),

which involves the merge of n query results.

First of all, we should stress the fact that in order for two values (objects or literals) to be eligible

as members of the same collection, they should be eligible for equality comparison. If two types are

compatible (membership-wise), two values of these types may be members of a set. In order to insert

an element into a set, we need to test if its value is equal to any existing value. Thus, we need to
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ensure that these values have types which are compatible (equality-wise). Inversely, if two types are

compatible equality-wise, then their values may be inserted into any collection, therefore these types

are also compatible membership-wise.
The Standard [§4.10] defines recursively when two types are compatible, and thus when elements

of these types can be put in the same collection. The Standard then defines the notion of least upper
bound (LUB) of two types to derive the type of the collection elements. In a context where we need
to check and derive the type of a query based on specific type information (from a schema), this
approach is sufficient and straightforward. However, in our context, where we aim to infer the type
of a query without any schema information, the compatibility issue becomes more complicated. The
use of LUB to infer the type of a query like set(q1, . . . , qn) does not yield the appropriate result, for
example consider the following.

define q1 as struct(x:12,y:30);

define q2 as element(select z from People as z where z.x=14);

set(q1,q2)

If we call the inference algorithm on q1 and q2 the inferred types would be struct(x : int, y : int)

and constructor(x : int) respectively. Their least upper bound (LUB) is constructor(x : int).

Thus, the inferred type of the query set(q1,q2) would be set(constructor(x : int)).

However, the correct inferred type should be set(struct(x : int)), since we may not merge

objects and structures in the same collection, and therefore we know that the constructor should

be a struct and not a class.

To overcome this problem we define another relation between types, namely CUB (Compatible

Upper Bound). Intuitively, CUB combines the behaviour of both LUB and GLB (Greatest Lower Bound).

In the previous example, the CUB of the two types IT(q1) and IT(q2) would be derived by taking the

most specific of the two constructor types (constructor and struct), but the least general of the

element types ((x : int) and (x : int, y : int)). Before we define CUB, we define compatibility

(Membership- or Equality- wise) for our typing system.

Compatibility is recursively defined as follows:

• τ is compatible with τ

• If coll1, coll2 ∈ {collection, set/bag, list/array, set, bag, list, array} and either

the collection constructors are the same or one is child of the other in the hierarchy tree and σ

is compatible with τ then coll1(σ) is compatible with coll2(τ).

• Any two class types class id1 and class id2 are compatible.

• If σi is compatible with τi, ∀ i = 1, . . . , n and constr1, constr2 ∈ {constructor, struct}
and no labels other than `1, . . . , `n are common in both constructor types then the constructor
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type constr1(`1 : σ1, . . . , `n : σn, `11 : σ11, . . . , `1k : σ1k) is considered to be compatible with

constr2(`1 : τ1, . . . , `n : τn, `21 : τ21, . . . , `2m : τ2m).

• If σi is compatible with τi, i = 1, . . . , n and Constructor Member Type(class id, `i) = τi,

i = 1, . . . , n, then class id and constructor(`1 : σ1, . . . , `n : σn, `11 : σ11, . . . , `1k : σ1k)

are compatible types, provided that no labels other than `1, . . . , `n are common members in

the two types.

• If σ, τ ∈ {atomic, orderable, int/float, int, float, char, string, bool} and either they

are the same, or one is a child of the other in the hierarchy tree, or one is int and the other is

float then σ is compatible with τ .

• If either of the types is nonfunctional and the other type is not a function type then these

types are compatible.

• If either of two types is any, then these types are compatible.

Note that we do not define compatibility for function types, as no two function values may be

members of the same collection or may be compared for equality. Only the results of function appli-

cation may be considered for compatibility.

Given that two types are compatible (based on the recursive definition above), their CUB is defined

recursively and in accordance with the compatibility category that they fall into.

• CUB(τ, τ) = τ .

• If coll1(σ) is compatible with coll2(τ) and coll1 is a child of (or the same as) coll2, then

CUB(coll1(σ), coll2(τ)) = coll1(CUB(σ, τ)).

• If the types τ1 and τ2 are class types, then CUB(τ1, τ2) is the least common superclass of the

two classes.

• If a constructor type σ = constr1(`1 : σ1, . . . , `n : σn, `11 : σ11, . . . , `1k : σ1k) is compati-

ble with τ = constr2(`1 : τ1, . . . , `n : τn, `21 : τ21, . . . , `2m : τ2m), where constr1, constr2 ∈
{constructor, struct} and constr1 is a child of (or the same as) constr2 then CUB(σ, τ) =

constr1(`1 : CUB(σ1, τ1), . . . , `n : CUB(σn, τn)).

• If σ = class id1 and Constructor Member Type(class id1, `i) = σi, i = 1, . . . , n and

τ = constructor(`1 : τ1, . . . , `n : τn, `21 : τ21, . . . , `2m : τ2m) then CUB(σ, τ) is the least su-

perclass of class id1, say class id2, satisfying the following condition: For all `′j, `′j is a

property or a relationship of class id2, if Constructor Member Type(class id2, `
′
j) = φj

then there exists k, 1 ≤ k ≤ n, s.t. `′j = `k ∧ CUP(τk, σk) ⊆ φj, ∀ j = 1, . . . , m, m ≤ n.
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• If σ is compatible with τ and σ, τ ⊆ atomic then

1. if either of them is int/float or one is int and the other is float then

CUB(σ, τ) = int/float

2. else

CUB(σ, τ) = GLB(σ, τ).

• If σ = nonfunctional and τ ⊆ nonfunctional then CUB(σ, τ) = τ .

• If σ = any then, for any type τ , CUB(σ, τ) = τ .

As discussed earlier, the notion of CUB is used for the inference of the types of queries like

set(q1, . . . , qn). However, the OQL construct q1 in q2 raises another issue of a slighly different

nature. The Standard [§4.10.8.3] states that if the type of q2 is coll(τ) then the type of q1 should

be τ . We explain why this is not the case in our context. Suppose that the type of q2 is inferred

to be bag(struct(x : int, y : string)); then according to the Standard q1 should have the type

struct(x : int, y : string). Since a value of type struct(x : int) could potentially be added in the

collection q2 (that is, since struct(x : int) and struct(x : int, y : float) are compatible types),

there is no reason why q1 could not be of type struct(x : int) or even struct().

The same situation occurs when dealing with a collection of objects of different classes. Suppose
lub class(`1 : σ1, . . . , `n : σn) is the LUB of all classes of the objects in the collection and Object

is the most general class that all other classes derive from (the top of the class hierarchy). We should
be able to check whether an object of type object class(`′1 : σ′1, . . . , `

′
m : σ′m) is a member of the

collection, even if its class is not a subclass of lub class(`1 : σ1, . . . , `n : σn). This allows more
queries to (safely) type-check, for example:

select x

from People as x

where x.father in School_Teachers

This query does not type-check according to the Standard. In order to be type-correct, there should

be an explicit type cast (School_Teacher)x.father. The problem is that this query, de-

spite being well-typed, can generate a run-time error (if the cast does not succeed). We choose

not to enforce that the type of x.father should be more specific than the member type or the

collection School Teachers. Instead we ensure that x.father could potentially be a member of

School Teachers, by adding the constraint Equality Compatible(σ, τ), where σ is the type of

x.father and τ is the member type of School Teachers.



46 CHAPTER 3. TYPE INFERENCE OF OQL

3.5 Resolving constraints

Now that we have studied the kinds of constraints that are generated by our inference algorithm, we

can discuss how these constraints are resolved. When a constraint is generated by an inference rule,

it is added to the set of existing constraints. If this was a simple insertion procedure, we would end

up having a huge set of constraints, that would include redundant and often incomprehensible type

information; there is obviously a need to resolve the inserted constraints. Due to the complexity of

the type system and the expressiveness of the language, we have a wide variety of constraints, that

cannot be solved using a standard unification mechanism alone [Rob65]. In our system, the insertion

of a new constraint in a set of existing constraints may have one of the following effects:

• A constraint is deleted, if it is always satisfied, e.g. the constraint

Equality Compatible(set(int), set(float))

is always true, so it does not need to be maintained.

• A constraint raises a type error or exception, if it is never satisfied, e.g.

set(Employee(name : string)) ⊆ list/array(Employee(name : string)).

• A constraint might be maintained as it is. This usually occurs when some of the types involved

are general; it may be that when refined, these types no longer satisfy the constraint. Therefore,

they must be preserved as required schema information. For instance, if τ1 ⊆ set/bag(τ) and

τ2 ⊆ set/bag(τ) are existing constraints, the constraint τ0 = Merge Result(τ1, τ2) needs to

be preserved.

• A constraint is often simplified, i.e. replaced by one or more simpler constraints. For instance,

the constraint set(σ) = set(τ) is replaced by the simpler one σ = τ .

• A constraint occasionally implies one or more constraints. The latter need to be added to the

set of constraints already produced. For example, Greater Less Than Compatible(τ1, τ2)

is inserted as a new constraint along with the implied constraints τ1 ⊆ orderable and τ2 ⊆
orderable.

The effect varies depending on the constraint kind, the types involved in the constraint and the

already existing constraints on these types.

It is worth pointing out that the resolution of constraints could take place either at the time each

constraint is generated (gradual resolution) or at the time all the constraints have been produced

(accumulative resolution).

The gradual resolution is very simple, since it usually concerns the insertion of a few constraints

whose simplification (resolution) is straightforward. If their simplification produces new constraints

then these are simplified as well, until no more constraints are produced.
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The accumulative resolution starts from the constraints of the form τ1 = τ2. It simplifies them

to constraints of the form type var = τ and replaces type var by τ in all other constraints that

involve type var. Then it proceeds to simplify all other kinds of constraints. If a simplification

leads to more constraints, the latter are added to the set of unprocessed constraints and are simplified

in due course.

3.6 Type Inference Rules

Having explained the type system underlying our inference model and the various constraints gener-

ated and resolved by our algorithm, we are now in a position to present the backbone of our work,

the inference rules. Note that there is a single rule for each OQL construct, and, therefore, the use of

the rules by the inference algorithm is syntax driven. In this section, we present the inference rules

for a substantial part of OQL; the rules for the remaining OQL constructs are given in Appendix A.

In the following rules, H signifies the type environment, that is H = {vari : τi}, and C denotes

the constraints added so far. The inference rules for the literal and the identifier queries are given

first:

H; C ` b : bool⇒ C H; C ` i : int⇒ C H; C ` f : float⇒ C

H; C ` c : char⇒ C H; C ` s : string⇒ C H ∪ {x : σ}; C ` x : σ ⇒ C

There are several rules to deal with various collections (sets, bags, lists, arrays). We just give

one representative rule, that concerns the query construct set(q1, . . . , qn). As expected, the rule

generates a constraint that ensures that the types of the queries are compatible equality-wise (or

membership-wise). We also give the rules for accessing the first, last or i-th member of an ordered

collection, as well as checking whether an element belongs in a certain collection. The constraint

Member Type(σ) = τ denotes that σ is a collection (set, bag, list or array) with members of type τ .

H; C ` q1 : σ1 ⇒ C1 . . . H; Cn−1 ` qn : σn ⇒ Cn
H; C ` set(q1, . . . , qn) : set(CUB(σ1, . . . , σn))⇒ Cn ∧ {Equality Compatible(σ1, . . . , σn)}

H; C ` q1 : σ ⇒ C1
H; C ` first(q1) : φ⇒ C1 ∧ {Member Type(σ) = φ} ∧ {σ ⊆ list/array(φ)}

H; C ` q1 : σ ⇒ C1 H; C1 ` q2 : τ ⇒ C2
H; C ` q1[q2] : φ⇒ C2 ∧ {τ = int} ∧ {Member Type(σ) = φ} ∧ {σ ⊆ list/array(φ)}
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H; C ` q1 : σ ⇒ C1 H; C1 ` q2 : τ ⇒ C2
H; C ` q1 in q2 : bool⇒ C2 ∧ {Equality Compatible(σ, Member Type(τ))}

The rules for constructing a structure or an object, as well as for accessing a member of a structure or

an object are given below. As is explained earlier, the constraint Constructor Member Type(σ, `) = τ

denotes that type σ is a class or a structure with a member called ` of type τ .

H; C ` q1 : σ1 ⇒ C1 . . . H; Cn−1 ` qn : σn ⇒ Cn
H; C ` class name(`1 : q1, . . . , `n : qn) : class name⇒ Cn∧
{σ1 ⊆ Constructor Member Type(class name, `1)} ∧ . . .∧
{σn ⊆ Constructor Member Type(class name, `n)}

H; C ` q1 : σ1 ⇒ C1 . . . H; Cn−1 ` qn : σn ⇒ Cn
H; C ` struct(`1 : q1, . . . , `n : qn) : struct(`1 : σ1, . . . , `n : σn)⇒ Cn

H; C ` q1 : τ ⇒ C1
H; C ` q1.` : σ ⇒ C1 ∧ {Constructor Member Type(τ, `) : σ}

The inference rules for the existential and the universal quantification follow. It is worth noting that

the variable x is bound in query q2 to the member type of the collection q1.

H; C ` q1 : σ1 ⇒ C1 H ∪ {x : φ}; C1 ` q2 : σ2 ⇒ C2
H; C ` exists x in q1 : q2 : bool⇒ C2 ∧ {σ2 = bool} ∧ {Member Type(σ1) = φ}

H; C ` q1 : σ1 ⇒ C1 H ∪ {x : φ}; C1 ` q2 : σ2 ⇒ C2
H; C ` forall x in q1 : q2 : bool⇒ C2 ∧ {σ2 = bool} ∧ {Member Type(σ1) = φ}

An interesting set of rules concerns the application of methods with or without parameters. The

inferred types of the queries used as arguments are not constrained to be the same as the types of the

parameters of the method involved. They only need to be their subtypes.

H; C ` q1 : σ ⇒ C1
H; C ` q1() : φ⇒ C1 ∧ {σ = unit→ φ}

H; C ` q0 : σ0 ⇒ C0 . . . H; Cn−1 ` qn : σn ⇒ Cn
H; C ` q0(q1, . . . , qn) : φ⇒ Cn ∧ {σ0 = τ1 × . . .× τn → φ} ∧ {σ1 ⊆ τ1} ∧ . . . ∧ {σn ⊆ τn}

The rules concerning the query constructs q binop q or unop q are omitted for space reasons.
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We finish by giving the rule for a simple select query; the judgements dealing with the remaining

OQL expressions are presented in appendix A.

H; C ` q1 : σ1 ⇒ C1
H ∪ {x1 : τ1}; C1 ` q2 : σ2 ⇒ C2

. . .

H ∪ {x1 : τ1, . . . , xn−1 : τn−1}; Cn−1 ` qn : σn ⇒ Cn
H ∪ {x1 : τ1, . . . , xn : τn}; Cn ` q01 : σ01 ⇒ C01
H ∪ {x1 : τ1, . . . , xn : τn}; C01 ` q00 : σ00 ⇒ C00

H; C ` select q00 from q1 as x1, . . . , qn as xn where q01 : bag(σ00)⇒ C00∧
{Member Type(σ1) = τ1} ∧ . . . ∧ {Member Type(σn) = τn} ∧ {σ01 = bool}

3.7 Inference Algorithm

Having given an overview of the type system, the constraints and the rules involved in our inference

model, we may now present the core of our work, which is the inference algorithm. The algorithm

takes as input a query q and returns its inferred type, as well as a pair (H, C) of a type environment

and its constraints. This pair is a synopsis of the requirements a schema should satisfy so that the

query q can be executed against it without any type-errors.

1. For each free variable var in the query q,H = H ∪ {var : new type var}. Initially C = {}.

2. Based on the construct of the query q recursively apply the appropriate inference rule.

3. Depending on the unification strategy, either simplify the constraints as soon as they are pro-

duced (gradual resolution) or simplify them all in the end after having applied all the inference

rules. If the resolution process produces a type-error then the query is not typable and the

algorithm is interrupted.

4. The finalH, C include the requirements a schema should have to be compatible with the query

q. The type of q, which is the type inferred by the outer inference rule, also satisfies the

constraints C.

3.8 Discussion

Much research on schema evolution, schema inter-operation, distributed or semi-structured database

applications has pointed out that there is a need to run queries in the presence of changing or hetero-

geneous schemata, or even in the absence of specific schema information [BDHS96]. The problem is

addressed by proposing an inference algorithm for the ODMG query language OQL. This algorithm
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infers the most general type of an OQL query and derives the schema information required so that

the query can be executed against it without any type errors. In contrast to other work, we deal with a

rather complex type system, which includes atomic types, structures, classes, various (parameterised)

collection types (set, bag, list, array) and function types. This, in connection with the rich semantics

of OQL, results in the generation of a wide variety of constraints by the inference rules. We discuss

the semantics of these constraints and provide a mechanism for their solution. Finally, we present

a set of inference rules for OQL, which is the core of our type inference algorithm. Based on our

experience, this algorithm, as well as all the formalisms prior to it, are easy to implement, and hence,

we believe that they could prove to be useful in many applications.



Chapter 4

OQL calculus representation

This chapter presents the translation of OQL into its first intermediate representation the monoid

comprehension calculus. This calculus formalism has a number of advantages. Firstly, it has the ex-

pressive power to cover all OQL constructs. Secondly, being a calculus-style formalism, it supports

the concept of object variables and it allows for nesting of expressions in a similar way to OQL. It

would be hard to translate OQL directly into a collection-oriented algebraic representation. Thirdly,

using forms known as monoid comprehensions, the monoid calculus captures OQL queries in a uni-

form way. This feature enables the optimization of calculus expressions using only a few rules.

The calculus representation adopted in this dissertation is based on the one proposed by Fegaras

and Maier [FM00]. It has also been influenced by the work of Afshar [Afs98] in establishing a the-

oretical basis for his monoid query language (MQL). However, the calculus formalism adopted in

this thesis addresses certain important issues that have not been considered previously. It highlights

certain weak points of OQL and it adds new calculus expressions to deal with them; it proposes dif-

ferent ways of mapping certain OQL queries into their calculus representation (wrt [FM00]); finally,

it introduces a series of new rules to transform calculus expressions into more efficient forms and

gives a detailed algorithm that determines the order in which these rules must be applied.

4.1 Monoid Comprehension Calculus

This section gives an overview of the monoid calculus representation, as presented in previous

work [Afs98, FM00]. It defines the notions of monoid, free monoid, monoid comprehension and

monoid homomorphism and presents examples of how OQL is mapped to its calculus representation.

The role of this section is to set up the theoretical basis for a formal description of our approach

regarding the calculus intermediate representation of OQL.

51
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4.1.1 Monoids

One of the benefits of using the monoid comprehension calculus is the uniform representation of

OQL queries. For instance, this feature is obvious in the manipulation of multiple collection types.

OQL is an expressive language that allows for the use of not only set collections, but also of bags,

lists and arrays. The monoid calculus abstracts the similarities of these collections and allows for

their uniform representation as collection monoids. Likewise, OQL includes a variety of operations

on simple types, like integers and floats. In the context of our calculus, these can also be considered

as primitive monoid types and hence they can be treated accordingly.

Definition 1 A monoid of type T is a pair (⊕,Z⊕), where ⊕ is an associative function of type

T× T→ T and Z⊕ is the left and right identify of ⊕ [FM00].

An alternative notation used for monoids in [Afs98] is (T,⊕,Z). Function ⊕ is known as the

merge operation that takes as parameters two elements of type T and returns an element of type T. The

value Z⊕ is the zero element of the monoid (⊕,Z⊕), i.e. the value such that Z⊕ ⊕ x = x⊕Z⊕ = x

for every x. For instance, integers can be represented by either of the monoids (+, 0) or (×, 1). The

first monoid merges integers based on the addition operation; the zero element is the integer 0. The

second monoid merges integers by multiplying them and the zero (neutral) element is therefore the

integer 1. Likewise booleans can be represented by two different monoids, merging boolean values

using the ∧ or the ∨ operations. These monoids on simple types are known as primitive monoids.

In order to represent collections, we need to define the notion of collection monoids [FM00].

These are monoids for which we need to define an additional unit function U⊕. This function takes as

parameter an element x and returns a singleton collection containing x. Hence, a collection monoid

is denoted by a triple (⊕,Z⊕,U⊕). It may represent any collection parametric type T⊕(τ), such that

τ supports comparison for equality. For instance, the monoid (∪, {}, λx.{x}) corresponds to the

collection type set(a), where a is the type of the elements x.

Monoids are said to be commutative and/or idempotent, if their merge operations are commutative

and/or idempotent respectively. For instance, the set monoid (∪, {}, λx.{x}) is both commutative and

idempotent, the integer monoid +, 0 is just commutative, whilst the list monoid (++, [], λx.[x]) has

neither of the two properties.

Based on these properties, Afshar distinguishes three monoid categories:

1. the (unrestricted) category of monoids, M;

2. the category of commutative monoids, CM;

3. the category of commutative and idempotent monoids, CIM.
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For the purposes of translating OQL queries to calculus formalism, we need to define an addi-

tional category, that of idempotent (but not necessarily commutative) monoids (IM).

Fegaras and Maier define a partial order � between monoids based on their properties. They

define a mapping ψ from monoids to the set {C, I} as: C ∈ ψ(⊕) if and only if⊕ is commutative and

I ∈ ψ(⊕) if and only if ⊕ is idempotent. The partial order � is defined as follows:

⊗ � ⊕ ≡ ψ(⊗) ⊆ ψ(⊕)

As it will be explained later on, both the monoid categories by Afshar, and the partial order by

Fegaras and Maier are useful in order to determine when a mapping from one monoid to another, i.e.

a monoid homomorphism, is well-defined.

4.1.2 Monoid Homomorphisms

Homomorphisms are defined in [Afs98] and [FM95] in slightly different ways. The definition by

Afshar [Afs98] is given below.

Definition 2 A monoid homomorphism between a monoid (T ,×, e) and a monoid (M, ∗, I) is a

function f : T →M which satisfies the following [Afs98]:

f e = I

f(a× b) = f(a) ∗ f(b)

Fegaras and Maier [FM95] define homomorphisms only on collection monoids. They regard ho-

momorphisms as means of expressing OQL queries, none of which corresponds to a homomorphism

from a primitive monoid. Hence although the previous definition by Afshar is more general [Afs98],

the following one by Fegaras and Maier is sufficient in the context of translating OQL [FM95].

Definition 3 A homomorphism hom[⊕,⊗](f)A from the collection monoid (⊕,Z⊕,U⊕) to any monoid

(⊗,Z⊗), where ⊕ � ⊗ is defined by the following inductive equations [FM00]:

hom[⊕,⊗](f)(Z⊕) = Z⊗

hom[⊕,⊗](f)(U⊕(a)) = f(a)

hom[⊕,⊗](f)(x⊕ y) = (hom[⊕,⊗](f)(x))⊗ (hom[⊕,⊗](f)(y))

In the latter definition, the function hom[⊕,⊗](f) maps Z⊕ to Z⊗, U⊕ to f and the merge op-

eration ⊕ to ⊗. The third inductive equation reflects the ”divide-and-conquer” mechanism implicit

in homomorphisms. That is, one may apply the function f on a collection x⊕ y, by applying it

separately on its parts x and y and merging the results using the operation ⊗.

In order for a monoid homomomorphism to be well-defined, Fegaras and Maier require the con-

straint ⊕ � ⊗ be hold. For instance, a homomorphism may map a list to a bag or to a set, but it
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could not possibly map a bag to a list or a set to a bag. Fegaras and Maier set additional restrictions

to ensure that homomorphisms are well-defined. If a monoid (⊕,Z⊕) is not commutative it should

be anti-commutative, i.e. ∀x 6= y 6= Z⊕ : x⊕ y 6= y⊕ x. Likewise, if a monoid is not idempotent

it should be anti-idempotent, i.e. ∀x 6= Z⊕ : x⊕ x 6= x. However, these restrictions are not always

satisfied in their framework. For instance, the primitive monoid (×, 1) is not idempotent. However

there exists an element x = 0 6= 1 such that 0× 0 = 0.

In this thesis, we use the notions of monoid category and free monoid (formally presented

in [Afs98]) in order to express the necessary (but not sufficient) conditions for the well-definedness of

monoid homomorphisms. A slightly rephrased definition of free monoids (found in [[Afs98]),ch.6]

is given below:

Definition 4 A free Monoid (F , ∗, e), where F is generated by the injection map i : S → F , is such

that [Afs98]:
∀f : S →M – where f is a set function andM is a monoid

∃h : F →M – where h is a monoid homomorphism

s.t. h o i = f

In order for a homomorphism f :M→N to be well-formed,N should lie in the same category

asM. In addition to that, if N is a free monoid thenM should also be free.

4.1.3 Monoid Comprehensions

Fegaras and Maier use homomorphisms to define formal semantics for monoid comprehensions. A

monoid comprehension has the form ⊕{e [| q1, . . . , qn}, where ⊕ is called the accumulator of the

comprehension, e is the head and qi are the qualifiers of the comprehension. A qualifier takes either

of the following forms:

• u← e′: a generator binds elements of the collection e′ to the variable u

• u′ ≡ e′′: a binding binds the variable u′ to the value of the expression e′′

• e′′′: a filter may include variables bound in previous generators or bindings.

Definition 5 A monoid comprehension over a primitive or collection monoid ⊕ is defined by the

following inductive equations: (⊗ is the collection monoid associated with the expression u and is

possibly different from ⊕) [FM95]

⊕{e [| } =

{

U⊕(e) for a collection monoid ⊕
e for a primitive monoid ⊕

⊕{e [| x← u, q̄} = hom[⊗,⊕](λx.⊕ {e [| q̄})u
⊕{e [| pred, q̄} = if pred then ⊕ {e [| q̄} else Z⊕
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where q̄ = q1, . . . , qn, n ≥ 0.

An example is given that transforms a select query into its calculus counterpart.

select x

from Countries as x

where x.population > 50, 000, 000

The OQL query above is translated to the following comprehension:

∪{x [| x← Countries, x.population > 50, 000, 000}

Fegaras and Maier present the syntax of their monoid comprehension calculus, as well as the

translation rules for most OQL constructs. The interested reader may refer to [FM95, FM00] for the

detailed rules that map queries into their calculus representation.

The calculus adopted in this thesis departs from their proposal in certain respects. Hence some

of the translation rules from OQL to calculus form and certain optimization rules are different. The

remaining sections highlight the points at which the current approach differs from their work and

explains our reasons for proposing a number of modifications and extensions.

4.2 Extended Calculus: syntax and monoids

4.2.1 Calculus Syntax

The grammar of the monoid comprehension calculus adopted in this thesis is given in figure 4.1. The

calculus expressions that are new in this framework (wrt [FM00]) are:

< class name > (`1 = e1, . . . , `k = ek),

e1[e2], not (e),

bagof(e), listof(e), arrayof(e)

orderof(e), elementof(e)

The construct < class name > (`1 = e1, . . . , `k = ek) has been added in order to deal with the

construction of objects. The second one (e1[e2]) accesses the e2-th element of the collection e1,

whilst not(e) obviously handles boolean negation. The last four expressions bagof(e), listof(e),

arrayof(e) and orderof(e) have been added in order to avoid the problem of ill-formed compre-

hensions. The partial function elementof(e) is the inverse of unit, that is, it takes a singleton

collection and returns its element. If the collection has no elements or more than one element, an

error is generated. If e has type coll(τ), then the types of bagof(e), listof(e), arrayof(e),

orderof(e) and elementof(e) are bag(τ), list(τ), array(τ), list(τ) and τ respectively.



56 CHAPTER 4. OQL CALCULUS REPRESENTATION

e, e1, . . . , en ::= literal (integer, float, boolean, char, string)

| < id > (db object/class/extent name)

| zero[< monoid >]

| unit[< monoid >](e)

| merge[< monoid >](e1, . . . , en)

| < monoid > {e [| qualifiers}
| struct(`1 = e1, . . . , `k = ek)

| < class name > (`1 = e1, . . . , `k = ek)

| e1 < comparison operator > e2

| e1 < arithmetic operator > e2

| e. < attr rltp method >

| e(e1, . . . , ek)

| e1[e2]

| not(e)

| bagof(e)

| listof(e)

| arrayof(e)

| orderof(e)

| elementof(e)

where

• < comparison operator >∈ {<,>,≤,≥,=, 6=},

• < arithmetic operator >∈ {+,−,×, /, mod},

• < attr rltp method > is the name of an attribute, relationship or method of a class,

• < monoid > is either a primitive or a collection monoid,

• zero[< monoid >], unit[< monoid >](e), and merge[< monoid >](e1, . . . , en) are alter-

native representations of the zero element Z⊕, the unit function U⊕ and the merge operation ⊕
of some < monoid > (Z⊕,⊕).

Figure 4.1: Syntax of the calculus OQL representation
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The ODMG standard defines that every collection in the from clause of a select query is con-

verted into a bag ([CBB+00],4.10.9). For instance, consider the query:

select x

from Students as x

where x.grade = 10

Although the extent Students has type set(Student), the result of the from clause is a bag of

students. Hence it would be wrong to translate the query above to the calculus form:

bag{x [| x← Students, x.grade = 10}

This is an ill-formed comprehension, since there is no homomorphic mapping from a set to a bag.

To avoid this problem, we first apply the non-homomorphic function bagof(−) to the set Students.

The resulting calculus expression is:

bag{x [| x← bagof(Students), x.grade = 10}

.

The non-homomorphic function listof(−) is useful in a number of contexts. First it deals with

the non-determinism introduced when ordering the elements of a collection based on insufficient sort

criteria. The Standard [CBB+00] states the following:

”The order by a set of functions (f1, . . . , fn) is performed as follows: First sort according

to function f1, then for all elements having the same f1 value sort them according to f2,

and so on ([CBB+00],ch 4.10.9.4)”.

The question that arises is “what if there are several elements with the same values of f1, . . . , fn?”.

For instance, the result of the following query is not determined in the case that at least two students

have the same grade.
select x.name

from Students as x

order by x.grade

To this question, the ODMG standard does not give an adequate solution. It is implied that whether

the ordering is complete is decided at run-time. If it is not complete, then either the query produces a

non-deterministic result, or alternatively, it raises an error and it is rejected. In the former case, it is

possible that the user gets different results every time s/he submits the same query; in the latter case,

the user needs to wait until execution time to be notified about a possible error.

We suggest a different way of handling non-determinism. First we define the collection monoid

oset, as a means of handling an ordered collection of elements with no duplicates. oset is defined
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over a parametric type τ , such that the values of this type can be compared for equality. Its zero

element and the unit and merge operations are defined as follows:

• zero[oset] =‖ ‖

• unit[oset](e) =‖ e ‖

• merge[oset](‖ e1, . . . , en ‖, ‖ e ‖) is evaluated as follows:

– If there exists i, s.t. ei = e, then merge[oset](‖ e1, . . . , en ‖, ‖ e ‖) =

‖ e1, . . . , en ‖
– Otherwise, merge[oset](‖ e1, . . . , en ‖, ‖ e ‖) =‖ e1, . . . , en, e ‖

• merge[oset](‖ e1, . . . , en ‖, ‖ e′1, . . . , e′m ‖) =

merge[oset](merge[oset](‖ e1, . . . , en ‖, ‖ e′1 ‖), ‖ e′2, . . . , e′m ‖)

Inserting an existing element into an ordered set (oset) has no effect. Inserting a new element in

an ordered set is identical to inserting it into a list. Thus, oset is idempotent, but not commutative.

oset is free in the idempotent category of monoids (IM).

The following proposal for handling non-determinism departs from the Standard significantly:

• A select · distinct · . . . · order by e1, . . . , en clause yields an oset of bags of elements.

Each bag contains elements having the same values for all sort criteria e1, . . . , en. If no two

elements have the same values for all the criteria, then the result is an oset of singleton bags.

• A select · . . . · order by e1, . . . , en clause (without distinct) yields a list of bags of ele-

ments. Each bag contains elements having the same values for all sort criteria e1, . . . , en. If

no two elements have the same values for all the criteria, then the result is a list of singleton

bags.

Intuitively, the result of a select · [distinct·] . . . · order by . . . query is expected to be a list

or an ordered set of elements. However, the solution proposed above returns a list or an ordered set of

bags. Thus, we need a new OQL construct order flatten that flattens this result into the expected

collections. Non-determinism is inevitably introduced by flattening a list of non-singleton bags into a

list of elements. The ordering of elements in the same bag is determined by system-dependent algo-

rithms (listof(set/bag(elements))), and is therefore considered arbitrary in an open distributed

world. Although this approach does not avoid non-determinism, it has the advantage that it avoids

applying the user’s sort criteria and the arbitrary sorting algorithm in one step. The user can see first

the result of his sorting expression. On his conscious request (by the use of order flatten), he can

then get a flattened list or ordered set, especially for presentation or printing purposes.
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The following table illustrates the result of applying the order flatten on different nested
collections. It is defined in a way corresponding to the discussion about flatten in the ODMG
standard [CBB+00]. In what follows the notation coll1/coll2 (e.g. set/bag) denotes alternatives,
not general types.

coll1 coll2 order flatten(coll1(coll2(elem)))

set/bag set/bag coll2(elem)

list/oset/array set/bag coll1(elem)

set/bag list/oset/array coll1(elem)

list/oset/array list/oset/array coll2(elem)

This section presented the calculus expressions used in our framework, and discussed the role of the

nonhomomorphic functions bagof and listof. The functionality of arrayof and orderof remains

to be discussed in section 4.2.3. In order to translate OQL queries into this calculus representation,

we first need to define the monoids involved in the translation. In the following two sections, we pay

particular attention to the new monoids (wrt [FM00]) that have been introduced in this dissertation,

e.g. the group and the dictionary monoids. We also present several translation rules from OQL to

calculus that involve these monoids. The complete set of translation rules is given in Appendix B.

4.2.2 Monoids

The primitive and collection monoids used in our context are the following:

Primitive Monoids Collection Monoids

sum (commutative) set (commutative, idempotent)

avg (commutative) bag (commutative)

some (commutative, idempotent) list

all (commutative, idempotent) array

max (commutative, idempotent) oset (idempotent)

min (commutative, idempotent) dictionary

group (commutative)

Some of the monoids above are identical to those used in relevant calculus frameworks. The

interested reader may refer to [FM00] for their descriptions. The remainder of this section defines

only those monoids that have been introduced in the current framework.

The group monoid

The group monoid in our context is defined over an unordered collection of structures of type

struct(< `1 >: τ1, . . . , < `n >: τn, partition : bag(τ)), such that types τi, are comparable types
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and τ is any nonfunctional type. Informally, group is used to manipulate structures with at least one

label called partition and at least one other label. All labels except partition are called group-by

attributes. All structures in the collection have the same labels. In order to insert a new structure in

the group monoid, we check whether there exists a structure such that its group-by attributes have

the same values as the corresponding attributes of the new structure. If there exists such a structure,

then its partition (which is a bag) is updated, by being merged with the partition of the new

structure. Otherwise, the new structure is inserted, as it would be normally inserted into a bag.

More formally,

• zero[group] =��

• unit[group](struct < `1 = e1, . . . , `j = ej, partition = e >) =

� struct < `1 = e1, . . . , `j = ej, partition = e >�

• Consider structi = struct < `1 = vi1, . . . , `j = vij, partition = vi >, i = 1, . . . , n and

struct′ =< `1 = vk1, . . . , `j = vkj, partition = v >.

- If 1 ≤ k ≤ n, merge[group](� struct1, . . . , structn �,� struct′ �) =

� struct1, . . . , structk−1, struct < `1 = vk1, . . . , `j = vkj, partition =

merge[bag](vk, v) >, structk+1, . . . , structn >�.

- Otherwise, if none of the existing structures has the same values for the group-by attributes

as struct′,

merge[group](� struct1, . . . , structn �,� struct′ �) =

� struct1, . . . , structn, struct
′ �.

• merge[group](� struct1, . . . , structn �,� struct′1, . . . , struct
′
m �) =

merge[group](merge[group](� struct1, . . . , structn �,� struct′1 �),

� struct′2, . . . , struct
′
m �)

group is commutative, since the order in which we merge structures does not make any difference.

We just compare values of the group-by attributes, and if they match we merge their partitions.

The latter are simple bags, so their merging is a commutative operation. group is not idempotent,

since if we merge two singleton group monoids with identical structures, the partition of the result

contains twice the elements of each initial partition.

group is more specific than the corresponding grouped(V× N) monoid defined in [Afs98]. It

accumulates all elements with the same grouping values into a bag, whilst grouped(V× N) groups on

V values into any monoid N. In the case of group the elements are structures, the grouping values are
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paired with corresponding labels and all elements having the same grouping values are merged into

a bag with label partition. Instead, the merge operation of grouped(V× N) accumulates tuples,

that is neither the grouping values nor the grouped elements have corresponding labels. This is not

possible in OQL, the type system of which does not support tuples.

The dictionary monoid

dictionary represents an unordered collection of structures of type struct(key : σ, value : τ),

such that values of type σ can be compared for equality and τ is any nonfunctional type. Before

inserting a new structure into a dictionary, we check whether the latter already contains a structure

with the same key. If this is the case, the existing structure struct(key : k, value : old value) is

replaced by the new one struct(key : k, value : new value). Otherwise, the latter is inserted as it

would be inserted into a bag. The notation (k, v) is often used as an alternative representation of the

expression struct(key : k, value : v). More formally,

• zero[dict] =≺�

• unit[dict]((k, v)) =≺ (k, v) �

• If there exists i, 1 ≤ i ≤ n such that ki = k, then

merge[dict](≺ (k1, v1), . . . , (ki, vi), . . . , (kn, vn) �,≺ (k, v) �)

=≺ (k1, v1), . . . , (ki, v), . . . , (kn, vn) �

• If there is no i, 1 ≤ i ≤ n such that ki = k, then

merge[dict](≺ (k1, v1), . . . , (kn, vn) �,≺ (k, v) �)

=≺ (k1, v1), . . . , (kn, vn), (k, v) �

The merge operation of the monoid dictionary is idempotent. That is, for each pair (k, v)

merge[dict](≺ (k, v) �,≺ (k, v) �) =≺ (k, v) �. dictionary is not a commutative monoid, since

merge[dict](≺ (1, 2) �,≺ (1, 3) �) =≺ (1, 3) �, whilst merge[dict](≺ (1, 3) �,≺ (1, 2) �) =

≺ (1, 2) �.

Notice that the merge operation of dictionary resembles the corresponding operation of the

monoid array, defined by Fegaras and Maier [FM00]. A significant difference is that the key in

their context is always integer, since it reflects the position of the value in the array.

4.2.3 Translation rules

The previous subsections defined the monoids that are novel in this calculus framework. This section

uses these monoids to present a set of translation rules from OQL constructs to their calculus repre-

sentation. In fact, it only presents those translation rules that differ from the corresponding ones in
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OQL Expressions1 Calculus Expressions

select [distinct] f

from q1 as x1, . . . , qk as xk

where p

bag [|set]{|f|∗ [| x1 ← bagof(|q1|∗), . . . ,
xk ← bagof(|qk|∗), |p|∗}

select [distinct] f

from q1 as x1, . . . , qk as xk

where p

order by o1 [asc/desc],

. . . , oj [asc/desc]

list [|oset]{v1.partition [| v1 ← orderof(group{
struct(asc/desc1 = |o1|∗, . . . , asc/descj = |oj|∗,
partition = unit[bag](|f|∗)) [| x1 ← bagof(|q1|∗),
. . . , xk ← bagof(|qk|∗), |p|∗})}

select [distinct] f

from q1 as x1, . . . , qk as xk

where p

group by `1 : g1, . . . , `j : gj

having h

order by o1 [asc/desc],

. . . , on [asc/desc]

list [|oset]{v1.partition [| v1 ← orderof(group{
struct(asc/desc1 = |o1|∗, . . . , asc/descn = |on|∗,
partition = unit[bag](f)) [| v2 ← bagof(group{
struct(`1 = |g1|∗, . . . , `j = |gj|∗, partition =

unit[bag](struct(x1 = x1, . . . , xk = xk)) [| x1 ←
bagof(|q1|∗), . . . , xk ← bagof(|qk|∗), |p|∗}), `1 ≡ v2.`1,

. . . , `j ≡ v2.`j, partition ≡ v2.partition, |h|∗})}

Figure 4.2: Translation of select queries to their calculus representation

other calculus frameworks [FM00, Afs98]. The complete set of translation rules from OQL to the

monoid calculus is given in Appendix B.

We use the notation |q|∗ to denote the calculus equivalent of query q (| − |∗ : OQL→ Calculus).

First the calculus expression e1[e2] enables accessing ordered collections. In order to translate the

query last(q), the primitive monoid sum is used. Since this monoid is not idempotent, the elements

of the collection q are counted after transforming it into a bag.

|first(q)|∗ = |q|∗[0]
|last(q)|∗ = |q|∗[sum{1 [| x← bagof(|q|∗)} − 1]

|q1[q2]|∗ = |q1|∗[|q2|∗]
Second, structures and classes are translated to calculus as follows:

|struct(`1 : q1, . . . , `n : qn)|∗ = struct(`1 = |q1|∗, . . . , `n = |qn|∗)
|C(`1 : q1, . . . , `n : qn)|∗ = C(`1 = |q1|∗, . . . , `n = |qn|∗)

The translation of a dictionary expression is straightforward.

1
f, gi, h, p, qi and oi represent OQL queries in figure 4.2.
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|dictionary((q1, q′1), . . . , (qn, q′n))|∗ = merge[dict](unit[dict]((|q1|∗, |q′1|∗)),
. . . , unit[dict]((|qn|∗, |q′n|∗)))

The translation of select queries is given in figure 4.2. All collections in the from clauses

are first converted to bags. Moreover, the monoid group and a new function orderof are used to

translate queries with a group by and an order by clause. The function orderof operates on a

collection of structures of the form:

struct(< sc1 >= v1, . . . , < scn >= vn, partition = v)

where < sci >::= asci|desci and the types τi of vi are sortable types, for all i = 1, . . . , n.

All structures in the collection have the same labels. The labels < sci > are called sort crite-

ria. By convention, their names start with asc or desc and are followed by the serial number of

the corresponding criterion. For instance, if there are two sort criteria in the structures, the first be-

ing ascending and the second descending, their names would be asc1 and desc2 respectively. The

function orderof sorts these structures based on their sort criteria. It is assumed that there are no

structures with the same values for the sort criteria. The reason why is that orderof always applies

to a group comprehension, such that the group-by attributes coincide with the sort criteria. Being a

nonhomomorphic function, it waits until all the elements of its operand are calculated, before it starts

ordering them.

The non-homomorphic function bagof is applied to the result of group, since there is no ho-

momorphic function from group to bag or between two group monoids with different grouping

attributes (labels).

The result of a select query with an order by clause is not a list of elements, but a list or

oset of bags of elements. As is explained in section 4.2.1 a new OQL construct order flatten

is introduced to flatten the result into a list or oset of elements. The calculus forms of the new

construct are given below:

|order flatten(q)|∗ = list{x [| s← |q|∗, x← listof(s)} q : list(bag(−))

|order flatten(q)|∗ = oset{x [| s← |q|∗, x← listof(s)} q : oset(bag(−))

The ODMG defines that the OQL construct distinct converts a bag into a set. However, the

result of the distinct operation on a list remains a list. In this framework, distinct converts lists

or arrays into ordered sets (osets).

|distinct(q)|∗ = set{x [| x← |q|∗} q : set/bag

|distinct(q)|∗ = oset{x [| x← |q|∗} q : list/oset

|distinct(q)|∗ = oset{x [| x← listof(|q|∗)} q : array
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When applied on an ordered collection, the non-homomorphic function listof converts its

operand into a list respecting the prespecified order of its elements.

Another point at which this framework extends the Standard is handling collection operations,

i.e. union, except and intersect. The Standard allows only sets and bags to be the operands of

such constructs. It is interesting to look at a possible extension of the Standard, that allows the union

operation between lists, arrays and ordered sets. However, we do not attempt to define the operations

except and intersect between lists, ordered sets or arrays. The reason why is that when c1, c2 are

ordered collections, it is difficult to satisfy the following property:

union(except(c1, c2), intersect(c1, c2)) = c1 (4.1)

The following table presents the result of a union operation over different collections.

union : set(a) ∗ set(a)→ set(a)

: set(a)/bag(a) ∗ bag(a)→ bag(a)

: oset(a) ∗ oset(a)→ oset(a)

: array(a) ∗ array(a)→ array(a)

: oset(a)/list(a)/array(a) ∗ list(a)→ list(a)

: oset(a) ∗ array(a)→ list(a)

In addition, if sets or bags are merged with lists, osets or arrays, lists and arrays are converted

into bags and osets into sets (set(a) ∗ list(a)⇔ set(a) ∗ bag(a)). If arrays are merged with other

collection types, they are converted into lists. The only issue that needs to be resolved at this point is

how the union of two arrays is evaluated.

Manipulating arrays

The Standard does not define a union operation between arrays. However, it allows flattening an

array of arrays by merging the elements of the nested arrays. It is not clear whether this implies

a list concatenation, where NULL values are preserved, or a merge operation (2) of vectors, as de-

fined by Fegaras and Maier ([FM00], section 5.3). In the first case, two arrays [1, NULL, 3] and

[2, 5, NULL, 12, NULL] would be merged into [1, NULL, 3, 2, 5, NULL, 12, NULL]. This would make the

use of arrays trivial, since their manipulation in the context of OQL would be exactly the same as that

of lists. In the second case [FM00], vectors (or arrays) are represented as sets of pairs (i, e), where i

is the index of element e. Merging the arrays of the previous example, represented as {(1, 1), (3, 3)}
and {(1, 2), (2, 5), (4, 12)}, would result in the array {(1, 2), (2, 5), (3, 3), (4, 12)}. That is, a new

value in position i of the second array overwrites the old value in the same position of the first

array. Although this approach reflects the way vectors are manipulated in programming languages

(assigning a value to a vector position), it creates practical problems in the context of OQL.
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Consider for instance the OQL query exists x in (q1 union q2) : p(x), where q1, q2 are arrays.

The calculus form of this query is expected to be:

some{|p(x)|∗ [| x← bagof(M2(|q1|∗, |q2|∗))}

The function bagof is used to ensure that the arrays are merged completely, before the elements

of the resulting array are bound to x. Since some is idempotent, one could possibly use a similar

function setof; in practice this would make no difference, since there are no duplicate pairs in the

resulting array. x is bound to elements of the form (i, e) whereas we expect it intuitively to be bound

to e. The practical problem that arises is that we would have to introduce different translation rules

for the same OQL expression. For instance, exists x in q1 : q2, would be translated to two different

calculus forms, depending on whether q1 is an array or not.

In order to avoid this problem, we define that when the non-homomorphic function bagof(−)

(or listof(−)) applies to an array, it creates a bag (or list) with elements the values e correspond-

ing to each pair (i, e) in the initial array. Hence, in this thesis we adopt the monoid introduced

in [FM00] for the manipulation of vectors and we refer to it as array. This monoid is idempotent,

but not commutative. By adjusting the definitions of bagof and listof to handle arrays, we man-

age to manipulate arrays and other collections in a uniform way. Finally, we introduce the function

arrayof : list/oset(a)→ array, which takes each element e in position i of its operand, creates

a pair (i, e) and adds it to the resulting array.

Sections 4.2.1 and 4.2.2 presented the main novel points of the calculus representation adopted

in this thesis. As has already been pointed out, calculus forms can easily be transformed into simpler

and more efficient forms. The next section presents a set of rules for normalizing queries; these

rules are used to unnest complex queries in a number of examples; finally a normalization algorithm

determines the order in which the rules must be applied.

4.3 Normalization of calculus expressions

4.3.1 Normalization Rules

Fegaras and Maier have proposed ten rewrite rules that can be used to transform calculus expressions

into canonical forms:

⊕{e [| u1 ← path1, . . . , un ← pathn, pred}

where pathi is a bound variable, the name of a class extent, the name of an object, or an expression

path′.name. Their set of rewrite rules is extended with new rules that handle the additional features

of the current calculus representation.
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This section presents the set of normalization rules for calculus expressions and pays particular

attention to the rules first introduced in this thesis. In the following rules the letters M and N represent

monoids.

1. M{e [| q̄, u← zero[N], s̄} ⇒ zero[M]

2. M{e [| q̄, u← unit[N](e′), s̄} ⇒ M{e [| q̄, u ≡ e′, s̄}

3. M{e [| q̄, u← merge[N](e1, e2), s̄} ⇒
merge[M](M{e [| q̄, u← e1, s̄}, M{e [| q̄, u← e2, s̄})
For this transformation to be valid, either q̄ should be empty or M should be commutative. Say

for instance that both N and M are list monoids and q̄ evaluates to a list with two elements

[v1, v2]. The left part of the rule first joins v1 with the elements from merge[N](e1, e2) and

then joins v2 with each one of them. The right part of the rule first joins v1 with the elements

from e1, then v2 with the elements from e1, then v1 with the elements from e2 and finally v2

with the elements from e2. The left part of the rule obviously evaluates to a different list than

the right part. This problem does not occur if q̄ is empty. However, for reasons of confluence,

i.e. to ensure that the order of applying normalization rules exhaustively does not affect the

final result, we only apply this rule when M is commutative.

4. (struct(A1 = e1, . . . , An = en)).Ai ⇒ ei

5. (class name(A1 = e1, . . . , An = en)).Ai ⇒ ei

6. M{e [| q̄, u← N{e′ [| r̄}, s̄} ⇒ M{e [| q̄, r̄, u ≡ e′, s̄}

7. M{e [| q̄, some{pred [| r̄}, s̄} ⇒ M{e [| q̄, r̄, pred, s̄}
Notice that M should be idempotent. For example, if for some qi derived from q̄ there are

only two elements r1, r2 from r̄ that satisfy pred, then qi will be considered once in the

initial expression, but twice in the transformed one. If M is idempotent then this will make no

difference in the final result.

8. M{e [| q̄, merge[some](p1, p2), s̄} ⇒
merge[M](M{e [| q̄, p1, s̄}, M{e [| q̄, p2, s̄})
For this transformation to be valid M should be idempotent (as in rule 7).

9. M{M{e [| r̄} [| s̄} ⇒ M{e [| s̄, r̄}
The monoid M should be primitive. If for example M was a set monoid, the result of the initial

expression would be a set of sets of elements, whilst the result of the transformed one would

just be a set of elements.
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10. M{merge[M](e1, e2) [| s̄} ⇒ merge[M](M{e1 [| s̄}, M{e2 [| s̄})

For this transformation to be valid M should be commutative and primitive (as in rules 3 and 9

respectively).

11. M{e [| p̄, u ≡ e′, q̄} ⇒ M{e[e′/u] [| p̄, q̄[e′/u]}

12. M{e [| q̄, merge[all](p1, . . . , pn), r̄} ⇒ M{e [| q̄, p1, . . . , pn, r̄}

13. zero[all]⇒ true

zero[some]⇒ false

zero[sum]⇒ 0

14. M{e [| q̄, true, r̄} ⇒ M{e [| q̄, r̄}

15. M{e [| q̄, false, r̄} ⇒ zero[M]

16. M{e [| } ⇒ unit[M](e), if M is a collection monoid.

M{e [| } ⇒ e, if M is a primitive monoid.

17. merge[M](m̄, zero[M])⇒ merge[M](m̄)

merge[M](mi)⇒ mi

merge[some](m̄, true)⇒ true

merge[all](m̄, false)⇒ false

merge[some](m̄, false)⇒ merge[M](m̄)

merge[all](m̄, true)⇒ merge[M](m̄)

18. merge[M](m̄, merge[M](n̄))⇒ merge[M](m̄, n̄)

19. not(not q)⇒ q

20. not true⇒ false and not false⇒ true.

21. not (q1 comp op q2)⇒ q1 comp op′ q2,

where comp op, comp op′ ∈ {<,>,≤,≥,=, 6=} and

∀e1, e2.((e1 comp op e2) ‖ (e1 comp op′ e2) = true).

22. not (merge[all](p1, . . . , pn))⇒ merge[some](not p1, . . . , not pn)

not (merge[some](p1, . . . , pn))⇒ merge[all](not p1, . . . , not pn)

23. not (all/some{pred [| r̄})⇒ some/all{not pred [| r̄}



68 CHAPTER 4. OQL CALCULUS REPRESENTATION

24. bagof(zero[M])⇒ zero[bag]

bagof(unit[M](e))⇒ unit[bag](e)

bagof(merge[M](e1, . . . , en))⇒ merge[bag](bagof(e1), . . . , bagof(en)),

if M ∈ {bag, list}
bagof(M{e [| r̄})⇒ bag{e [| r̄}, if M ∈ {bag, list}
bagof(e)⇒ bag{u [| u← e}, if e has either of the forms id or e1.id or e1[e2] and e is a list

of elements

bagof(e)⇒ e, if e has either of the forms id or e1.id or e1[e2] and e is a bag of elements

bagof(bagof(e))⇒ bagof(e)

bagof(listof(e))⇒ bagof(e)

bagof(arrayof(e))⇒ bagof(e)

bagof(orderof(e))⇒ bagof(e)

25. M{e [| q̄, u← bagof(merge[N](e1, e2)), s̄} ⇒ M{e [| q̄, u← merge[N](e1, e2), s̄}, if M is idem-

potent and N is either set or oset.

M{e [| q̄, u← bagof(N{e′ [| r̄}), s̄} ⇒ M{e [| q̄, u← N{e′ [| r̄}, s̄}, if M is idempotent and N is ei-

ther set or oset.

M{e [| q̄, u← bagof(e′), s̄} ⇒ M{e [| q̄, u← e′, s̄}, if M is idempotent and e′ has either of the

forms id or e1.id or e1[e2] and e′ is a set or oset of elements .

26. listof(zero[M])⇒ zero[list]

listof(unit[M](e))⇒ unit[list](e)

listof(merge[list](e1, . . . , en))⇒ merge[list](e1, . . . , en)

listof(list{e [| r̄})⇒ list{e [| r̄}
listof(e)⇒ e, if e has either of the forms id or e1.id or e1[e2] and e is a list of elements

listof(listof(e))⇒ listof(e)

listof(arrayof(e))⇒ listof(e)

listof(orderof(e))⇒ orderof(e)

27. M{e [| s̄, u← listof(e′), r̄} ⇒ M{e [| s̄, u← bagof(e′), r̄}, if M ∈ {set, bag, group} (monoid

degeneration)

M{e [| s̄, u← orderof(e′), r̄} ⇒ M{e [| s̄, u← bagof(e′), r̄}, if M ∈ {set, bag, group} (monoid

degeneration)

28. M{e [| p̄, x← bagof(group{struct(`1 = e1, . . . , `n = en, partition = e′) [| q̄}), r̄, y←
x.partition, s̄} ⇒ M{e [| p̄, q̄, r̄, y← e′, s̄}, if x, `1, . . . , `n are not free variables in e, r, s

and M is commutative, that is M ∈ {set, bag, group}.
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29. M{e [| p̄, x← bagof(merge[group](group{struct(`1 = e1, . . . , `n = en, partition = e′) [|
q̄1, u← q21, q̄3}, group{struct(`1 = e1, . . . , `n = en, partition = e′) [| q̄1, u← q22, q̄3})),
r̄, y← x.partition, s̄} ⇒ M{e [| p̄, q̄1, u← merge[bag](q21, q22), q̄3, r̄, y← e′, s̄},
if x, `1, . . . , `n are not free variables in e, r, s and M is commutative, i.e. M ∈ {set, bag, group}.

30. elementof(unit[M](e)) = e

elementof(set/bag/list/array(e)) = e

The rules presented above contain eight of the ten transformations proposed by Fegaras and Maier

(1,2,3,4,6,7,9,11). One of the omitted rules concerns the beta reduction: (λu.e1)e⇒ e1[e/u]. In this

context, method application is denoted by using the name of a method followed by an optional set of

arguments. The second transformation that has been excluded from the normalization rules is:

M{e [| q̄, u← (if e1 then e2 else e3), s̄} ⇒
merge[M](M{e [| q̄, e1, u← e2, s̄}, M{e [| q̄, not(e1), u← e3, s̄}

This rule is valid if M is commutative or q̄ is empty. There is no equivalent of this rule, since ODMG

OQL statements do not use or imply the if statement.

4.3.2 Examples of transforming calculus expressions

We give an example that applies the normalization rules for the optimization of a query with an

order by clause. Assume that the initial OQL query (Q1) is:

order flatten

(select q

from q1 as x1, . . . , qk as xk

where q′

order by q′′1, . . . , q
′′
n)

This would be translated to the following monoid calculus form:

list{u [| v1 ← list{v2.partition|v2 ← orderof(group{struct(
asc1 = |q′′1|∗, . . . , ascn = |q′′n|∗, partition = unit[bag](|q|∗)) [|

x1 ← bagof(|q1|∗), . . . , xk ← bagof(|qk|∗), |q′|∗})}, u← listof(v1)} (4.2)

Based on transformations 6 and 11, expression 4.2 is converted to the following form:
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list{u [| v2 ← orderof(group{struct(asc1 = |q′′1|∗, . . . ,
ascn = |q′′n|∗, partition = unit[bag](|q|∗)) [| x1 ← bagof(|q1|∗),
. . . , xk ← bagof(|qk|∗), |q′|∗}), u← listof(v2.partition)} (4.3)

Consider the query Q2:
select x

from Q1 as x

Based on 4.3, Q2 takes the following calculus form:

bag{x [| x← bagof(list{u [| v2 ← orderof(group{struct(asc1 = |q′′1|∗,
. . . , ascn = |q′′n|∗, partition = unit[bag](|q|∗)) [| x1 ← bagof(|q1|∗),

. . . , xk ← bagof(|qk|∗), |q′|∗}), u← listof(v2.partition)})} (4.4)

After applying the transformations 6, 11 and 24, expression 4.4 becomes:

bag{u [| v2 ← orderof(group{struct(asc1 = |q′′1|∗, . . . ,
ascn = |q′′n|∗, partition = unit[bag](|q|∗)) [| x1 ← bagof(|q1|∗),
. . . , xk ← bagof(|qk|∗), |q′|∗}), u← listof(v2.partition)} (4.5)

Expression 4.5 is transformed through 27 and 24 into 4.6:

bag{u [| v2 ← bagof(group{struct(asc1 = |q′′1|∗, . . . ,
ascn = |q′′n|∗, partition = unit[bag](|q|∗)) [| x1 ← bagof(|q1|∗),

. . . , xk ← bagof(|qk|∗), |q′|∗}), u← v2.partition} (4.6)

This is the point at which transformation 28 is useful. In a commutative monoid comprehension,

if a group monoid forms partitions that are used only to be unnested in later generators, then group

may be replaced by bag. Grouping is avoided in the first place. Thus, expression 4.6 is transformed

to the simplified form:

bag{u [| x1 ← bagof(|q1|∗), . . . , xk ← bagof(|qk|∗), |q′|∗, u← unit[bag](|q|∗))} (4.7)

Rules 2 and 11 finally enable the transformation of 4.7 into the final form 4.8.

bag{|q|∗ [| x1 ← bagof(|q1|∗), . . . , xk ← bagof(|qk|∗), |q′|∗} (4.8)

The normalized calculus form (expression 4.8) of query Q2 is far simpler than the initial expres-

sion 4.4.
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case Query of

. . . : . . .

not e : normalize not

. . . : . . .

M{head [| q1, . . . , qn} : normalize compr

. . . : . . .

Figure 4.3: Normalization Algorithm

4.3.3 Normalization Algorithm

In order to transform a calculus expression into a simpler form, it is not sufficient to know the rules

that guide the transformations. It is important to determine the order in which the rules must be

triggered. The rules that are eligible to be applied depend on the structure of the query. The nor-

malization algorithm consists of a single case step that considers all possible constructs of OQL (see

figure 4.3).

Figure 4.4 presents the normalization algorithm for the construct not (e).

Most of the other OQL constructs are normalized in a similar way. Only the case of monoid

comprehension expressions is slightly more complicated and therefore needs to be explained in detail

(see figure 4.5).

optimize from qualifier(i) optimizes the comprehension starting from qualifier qi to

the last qualifier and then to the head of the comprehension. The transformations applicable to each

qualifier depend on whether the latter is a filter, a generator, or a binding. We study these cases

separately:

• Suppose qualifier qi is a generator u← e. The rules that may be applied are 1, 2, 3, 6, 25, 27,

28 and 29. The algorithm that normalizes a comprehension from its generator in position i is

presented in 4.6.

• Suppose qualifier qi is a filter e. The rules that may be applied are 7, 8, 12, 14 and 15. The

algorithm that normalizes a comprehension from its filter in position i is presented in figure 4.7.

• Suppose qualifier qi is a binding u ≡ e. The only applicable rule is 11. The algorithm that

normalizes a comprehension from its binding in position i is given in figure 4.8.

When all qualifiers have been considered the algorithm invokes a process to optimize the head

of the monoid comprehension. The applicable rules in this case are 9, 10 and 16. Details of the

algorithm are given in figure 4.9.
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normalize not (Rules 19,20,21,22,23)

Input: not (e)

Algorithm

opt e =optimize e

case opt e has the construct

not pred : apply rule 19

true, false : apply rule 20

e1 < comp oper > e2 : apply rule 21

merge[all/some](p1, . . . , pn) : apply rule 22

all/some{pred [| . . .} : apply rule 23

if any rule was applied

optimize the result of the transformation

return the result of the optimization

else

annotate not (opt e) as normalized

return not (opt e)

Figure 4.4: Normalization of the OQL construct not (e)

normalize compr

(Rules 1,2,3,6,7,8,9,10,11,12,14,15,16,25,27,28,29)

Input: M{head [| q1, . . . , qn}
Algorithm

if the comprehension has qualifiers (n > 0)

optimize from qualifier(1)

else

optimize head

annotate result as normalized and return it

Figure 4.5: Normalization of monoid comprehensions
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if e is annotated as normalized

opt e = e

else

opt e = optimize e

case opt e has the construct

zero[N] : apply rule 1;

unit[N](e1) : apply rule 2;

optimize from qualifier(i);

merge[N](e1, e2) : try rule 3

if rule 3 was applicable

optimize its result;

N{e′ [| r̄} : : apply rule 6;

optimize from qualifier(i);

bagof(merge[N](e1, . . . , en)) : try rule 25;

if rule 25 was applicable

optimize from qualifier(i);

bagof(set/oset{e′ [| r̄}) : try rule 25;

if rule 25 was applicable

optimize from qualifier(i);

listof/orderof(e) : try rule 27;

if rule 27 was applicable

optimize from qualifier(i);

bagof(group{. . .}) : try rule 28;

if rule 28 was applicable

optimize from qualifier(i);

bagof(merge[group](. . .)) : try rule 29;

if rule 29 was applicable

optimize from qualifier(i);

if no transformation was applied in the case clause

optimize from qualifier(i + 1)

(or optimize head if i + 1 > n)

Figure 4.6: Normalizing comprehensions from qualifier qi, where qi is a generator (u← e)
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if e is annotated as normalized

opt e = e

else

opt e = optimize e

case opt e has the construct

true : apply rule 14;

optimize from qualifier(i);

false : apply rule 15; optimize result;

some{. . . | . . .} : try rule 7;

if rule 7 was applicable

optimize from qualifier(i);

merge[some](. . .) : try rule 8;

if rule 8 was applicable

optimize its result;

merge[all](. . .) : apply rule 12;

optimize from qualifier(i);

if no transformation was applied in the case clause

optimize from qualifier(i + 1)

(or optimize head if i + 1 > n)

Figure 4.7: Normalizing comprehensions from qualifier qi, where qi is a filter (e)

if e is annotated as normalized

opt e = e

else

opt e = optimize e

apply rule 11

optimize from qualifier(i)

Figure 4.8: Normalizing comprehensions from qualifier qi, where qi is a binding (u ≡ e)



4.3. NORMALIZATION OF CALCULUS EXPRESSIONS 75

if e is annotated as normalized,

opt head = head

else

opt head = optimize head

if opt head has the form M{. . .} (where M is a primitive monoid)

apply rule 9

else if opt head has the form merge[M](. . .)

(where M is a primitive and commutative monoid)

apply rule 10

else if there are no qualifiers

apply rule 16

if any transformation was applied

optimize its result

return optimized result

else

return the comprehension as optimized so far

Figure 4.9: Normalizing the head of a comprehension

The normalization algorithm has the following properties: i) it always terminates; ii) it yields

the same result as the exhaustive iterative application of rules and iii) it yields this result in the most

efficient way.

We first provide an informal proof that the algorithm always terminates. Normalization rules

perform either of the following tasks.

• They push up merge operations (Rules 3, 8, 10, 18 and 22). Neither of the remaining rules

pushes down nor creates new merge operators. Hence, rules 3, 8, 10, 18 and 22 are applicable

only a finite number of times.

• They unnest inner comprehensions pushing up their head and qualifiers (Rules 6, 7 and 9). The

number of inner comprehensions can only be increased finitely by either of the following rules

1. M{e [| q̄, merge[some](p1, p2), s̄} ⇒
merge[M](M{e [| q̄, p1, s̄}, M{e [| q̄, p2, s̄})

M{e [| q̄, u← merge[N](e1, e2), s̄} ⇒
merge[M](M{e [| q̄, u← e1, s̄}, M{e [| q̄, u← e2, s̄})
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M{merge[M](e1, e2) [| s̄} ⇒ merge[M](M{e1 [| s̄}, M{e2 [| s̄})
In this case, the number of additional comprehensions is bounded by the initial number

of merge operators.

2. bagof(e)⇒ bag{u [| u← e}, if e has either of the forms id or e1.id or e1[e2] and e is

a list of elements. Based on this rule, the number of comprehensions can be increased

at most by the initial number of nonhomomorphic functions that could be transformed to

bagof.

3. M{e [| p̄, u ≡ e′, q̄} ⇒ M{e[e′/u] [| p̄, q̄[e′/u]}, where e is a comprehension. In this case,

the number of comprehensions can be increased at most by the number of occurences of

range variables in the tree. This is finite since the number of range variables is increased

only when pushing up merge operators.

• They eliminate, push down or simplify nonhomomorphic functions (Rules 24, 25, 26, 27 and

30). These rules are applicable a finite number of times, since the number of nonhomomorphic

functions is finite and the depth of the tree increases finitely using rules 3, 8 and 11.

• They avoid unnecessary grouping by pushing up the qualifiers of nested group comprehensions

(Rules 28 and 29).

• They push down not operators (Rules 19, 20, 21, 22 and 23).

• They transform calculus expressions to much simpler forms (Rules 1, 2, 4, 5, 12, 13, 14, 15,

16, 17), e.g. by pushing down the zero element (Rule 1).

There is no rule that performing one of these actions causes the reverse effect of another. Hence,

since each one can be applied a finite number of times, the algorithm will eventually not be able to

apply any of the rules and will terminate. The same applies for the exhaustive iterative application of

rules.

We show that our algorithm is also exhaustive in the sense that when it terminates no normaliza-

tion rule is applicable in any of the subexpressions. The algorithm can be viewed as a Depth-First

unnesting algorithm where the children of a node are first normalized, before the node itself is consid-

ered. In a monoid comprehension, each child (qualifier) is normalized as an independent expression

first, and then with respect to the outer comprehension (parent node). If normalization of a qualifier

with respect to the outer comprehension alters only the qualifier, the qualifier is renormalized. If no

transformation takes place, the following qualifier is visited. Finally, if the normalization process

results in a completely different outer expression, which is no longer a comprehension, the new ex-

pression is normalized from the beginning. Hence, the next qualifiers are considered after the current
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one, or all qualifiers are visited as subexpressions of a different calculus expression. In this way, all

subexpressions are eventually normalized.

The question that arises is whether the actual order of applying rules affects the result of the

exhaustive iterative algorithm. If we proved that the exhaustive application of rules (in a random

iterative way) is confluent, we could deduce that our algorithm also yields the same result as the

random iterative process. The reason is that since our algorithm is also exhaustive, it could be viewed

as one of the possible executions of the random iterative process.

All rules (except for Rule 112) modify at most the first two levels of a subtree (subexpression).

Hence, if two transformations do not occur close to each other, the order in which they are applied

does not affect the final result. However, there are two cases in which applying one rule might affect

the result of the other, or might even hide the opportunity to apply the second rule.

1. If the possible transformations occur in two consecutive edges in a path from the root to a leaf.

2. If the possible transformations occur in two sibling edges, i.e. in two edges starting from the

same node.

To prove confluence, we need to consider applying all possible pairs of rules in each one of the

cases above. For space reasons, we only study the application of one pair in each case.

1. Consider the calculus expression M{e [| p̄, u← merge[N](q, merge[N](r, s)), t̄}. If M is com-

mutative then both rules 3 and 18 are applicable in two consecutive edges of the calculus tree.

• If we applied rule 3 first then the expression would be transformed to:

merge[M](M{e [| p̄, u← q, t̄}, M{e [| p̄, u← merge[N](r, s), t̄}.
Another application of rule 3 would then yield the expression:

merge[M](M{e [| p̄, u← q, t̄}, merge[M](M{e [| p̄, u← r, t̄}, M{e [| p̄, u← s, t̄})).
By applying rule 12, we would get the final result:

merge[M](M{e [| p̄, u← q, t̄}, M{e [| p̄, u← r, t̄}, M{e [| p̄, u← s, t̄}).
• If we applied rule 18 first then the expression would be transformed to the following form:

M{e [| p̄, u← merge[N](q, r, s), t̄}.
Using rule 3 we would then get the same final result:

merge[M](M{e [| p̄, u← q, t̄}, M{e [| p̄, u← r, t̄}, M{e [| p̄, u← s, t̄}).

2. Consider the calculus expression M{e [| p̄, u← merge[N](q, r), v← zero[M]}. In this case we

can apply either of the rules 1 or 3 on two sibling edges.

2Rule 11 is just a replacement of a variable by a subexpression and the order in which it is applied should not matter as

long as the order in which the remaining rules are applied does not alter the final result.
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• If rule 1 was applied first then the result would be zero[M].

• If rule 3 was applied first then the expression would take the form:

merge[M](M{e [| p̄, u← q, v← zero[M]}, M{e [| p̄, u← r, v← zero[M]}).
If any of the possible rule sequences [1, 1, 17, 17] or [1, 17, 1, 17] were then applied the

result would be zero[M].

Since the result does not depend on the order in which we apply rules on consecutive, sibling or

isolated edges, the random iterative application of rules is confluent and yields the same result as our

algorithm. Confluence is proven with the aid of a tree representation of rule applications.

Assume that Si = [ri1, . . . , rini ] represents a sequence of rule applications on a calculus expres-

sion e, such that, after it is used, no other rule is applicable. If S = {S1, . . . , Sm} is the set of all

possible sequences applicable to e, S could be represented as a tree. The head of the tree is the ex-

pression e, the leaves represent the final forms of e and each sequence Si is a complete path from the

head (e) to the ith final form of e. The internal nodes represent intermediate forms of e, whilst each

edge can be viewed as a rule application.

We navigate the tree upwards starting from internal nodes e1i, i = 1, . . . , k1, whose direct or

indirect children are either leaves or nodes with one child. All leaves under such an intermediate

expression e1i should have the same form; the reason is that no matter which rule was applied first

to e1i, we maintain the possibility of getting the same result (proof about consecutive, sibling or

isolated transformations). We then consider internal nodes e2i, i = 1, . . . , k2, whose children are

either leaves or internal nodes with one child or nodes in {e11, . . . , e1k1}. In the same way as before,

we prove that the leaves of each one of these nodes e2i have the same form. The same procedure

continues until we reach the root of the tree, which also has the same property. Hence, all possible

exhaustive sequences of rule applications finally yield the same result. We conclude that the random

iterative process is confluent and uields the same result as our algorithm.

When a calculus expressions is normalized (using our algorithm), it is annotated as such, and

needs not be considered again. In addition to that, we consider normalization of monoid comprehen-

sions, every time we visit a subexpression (qualifier) and thus we identify normalization opportunities

as early as possible. Another approach would be to normalize all qualifiers first, before proceeding

to consider the outer comprehension. However, this might burden the normalization process with

redundant steps. By annotating subexpressions as normalized and unnesting expressions as early as

possible, the algorithm normalizes a calculus expression in the least number of steps. Our algorithm

triggers the execution of one of the optimal sequences of rules that could possibly be executed based

on a random exhaustive process.

In this section, we provided a complete framework for normalizing OQL queries. This framework

has been implemented and has been tested for a series of complex OQL queries.
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4.4 Discussion

This chapter gave an overview of the first intermediate representation of OQL, the monoid calculus.

In particular, it presented how OQL queries are translated into calculus expressions, and how the latter

are transformed into more efficient forms. This framework is based on work by Afshar [Afs98] and

Fegaras and Maier [FM00]. However, it has extended the latter with new monoids, several different

translation rules, new normalization rules, and an algorithm that determines the order of applying

these rules. It has also pointed out several weak points of the ODMG standard and has proposed

ways of resolving them.
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Chapter 5

OQL algebraic representation

The previous chapter described how OQL queries are translated into the monoid calculus represen-

tation; it also presented several transformations within this representation. This chapter presents the

second intermediate representation of OQL queries, referred to as the object algebra. We do not use

monoid homomorphisms as the basis of this algebra, since they are difficult to optimize and their

natural implementation involves inefficient nested loops. Instead, we adopt a set of algebraic opera-

tors for two reasons: i) these operators are easy to rearrange and ii) they can be mapped into efficient

physical operators used broadly in the relational systems.

The algebraic operators are similar to those proposed by Fegaras and Maier [FM00]. However,

the mechanism for translating queries from calculus to algebraic form is significantly different. This

chapter presents the translation algorithm in detail, highlights its advantages and gives several exam-

ples that demonstrate its functionality.

5.1 Algebraic Operators

We give an overview of the algebraic operators and explain their functionality. First, we present

those operators that have also been defined in [FM00] and point out subtle differences in the two

approaches. We then define a set of algebraic operators that are novel in this dissertation and explain

their role in the translation process. The complete syntax of the algebraic representation of OQL

is given in Figure 5.1. In particular, Group A (figure 5.1) contains the expressions that have a very

similar calculus equivalent, whilst Group B consists of the algebraic operators described below.

A subtle point in which the current algebraic operators differ from the corresponding ones in [FM00]

is the specification of the additional information mon (monoid). In general, operators iterate over the

elements of a collection, process them in some way, and accumulate the results. The monoid field

specifies the kind of merge operation used to accumulate the results. Fegaras and Maier specify

81
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e ::= / ∗ Group A ∗ /
< literal > (integer, float, boolean, char, string)

| < id > (db object/extent name)
| zero[< monoid >]
| unit[< monoid >](e)
| merge[< prim mon >](e1, . . . , en)
| struct(l1 = e1, . . . , lk = ek)
| class name(l1 = e1, . . . , lk = ek)
| e1 < comp op > e2
| e1 < arithm op > e2
| e1.attr rltp method
| e(e1, . . . , en)
| e1[e2]
| not (e)
| −e

/ ∗ Group B ∗ /
|

mon

π
v

projection

operand

| operand1

mon

./
v1,v2 predicate

operand2

| operand1

mon1 mon2

=./
v1,v2 predicate

operand2

|
mon

Γ
v

gmon
gname

predicate

gproject
gv

operand

|
mon

σ
v

predicate

operand |
mon1 mon2=σ

v

ov
predicate

operand

|
mon

µ
v v′

path
pred

operand |
mon1 mon2
=µ
v v′

path
pred

operand

|
mon

M
mon′

(e1, . . . , en)
|

mon

IM
v v′

mon′

parts

operand

|
mon

B
function

operand |
mon

IB
v v′

function
argument

operand

Figure 5.1: Syntax of the algebraic OQL representation
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this information (accumulator) only for the Reduce and Nest operators. We claim that it would be

equally useful for the other operators.

First, it would enable the optimization of the execution plan, as will be explained later on. Second,

it may reduce the number of operators in the algebraic plan. For instance, to filter the elements of a

bag into a set, based on a predicate, one would need a Select operator to apply the predicate, and a

Reduce operator to transform the bag into a set. In our context, it suffices to use a Select operator

with monoid (set).

In the remainder of this section we present the operators in detail.

1.
mon

π
v

projection

operand

Project : This operator iterates over the elements of operand. It binds (the parts of) each

element to the variables v and calculates the expression projection. It corresponds to the

following calculus expression:

mon{projection|u← operand, v1 ≡ u.v1, . . . , vn ≡ u.vn}

where v = {v1, . . . , vn}
The Project operator differs from the similar Reduce operator ( [FM00]) in that it considers

no predicate. That is the Project operator does not perform any filtering on the elements

of operand.

Hereafter the notation v← operand is used as a short form for the binding:

(u← operand, v1 ≡ u.v1, . . . , vn ≡ u.vn)

2.
mon

σ
v

predicate

operand

Select : This operator iterates over the operand and filters its elements using predicate.

Those elements of operand that satisfy predicate are accumulated using the merge operation

of monoid mon. The operator corresponds to the calculus expression:

mon{struct(v1 = v1, . . . , vn = vn)|v← operand, predicate}

where v = {v1, . . . , vn}.
The question that arises at this point is how to identify the monoid mon. In the case of Project

the monoid is defined from the calculus expression that we translate, in a straightforward way.

The same holds for the Nest operator which is defined later on. The following example demon-

strates how the monoid information is derived for all other operators, including Select.
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Say that the query to be executed is

exists j in Priority List : j.priority = 6

where Priority List is an ordered collection (list) containing objects of class Job. This

query would be translated into the calculus form

some{true|j← Priority List, j.priority = 6}

One would expect the algebraic equivalent of this expression to include a Select operator

that tests the predicate j.priority = 6 iterating over the collection Priority List. If this

operator has no knowledge about the monoid information, it respects the ordered nature of

the operand and therefore it filters its elements in the prespecified order. However, knowing

that the result monoid of the comprehension (some) is a commutative monoid, it may consider

Priority List as a bag, and rearrange its elements or make use of indices in an optimal way

for the filtering. In fact, since some is an idempotent monoid, the operator could even decide

to remove duplicates from Priority List before filtering its elements. Thus, the physical

implementation of Select could benefit from the information mon = set/bag. Whilst opti-

mizing the algebraic plan, it is possible to refine the monoid information of several operators,

e.g. from set/bag to set, instead of leaving this decision to the physical implementation.

The example illustrated how the monoid information of Select is derived by looking at the

result monoid of the monoid comprehension. The following table presents this relation in

detail.
Comprehension Monoid Operator Monoid

< IC monoid > set/bag

< C monoid > bag

< I monoid > oset/list

< other > list

where,

• IC is a notation for monoids both idempotent and commutative.

• C stands for idempotent but not commutative monoids.

• I stands for commutative but not idempotent monoids.

• other is the category for monoids that are neither commutative nor idempotent.

The table above is used to derive the monoid information for all algebraic operators, excluding

Project and Nest.
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3.
mon

µ
v v′

path
pred

oper

Unnest : This operator iterates over the operand oper and for each element, it unfolds the path

expression. Each element of the path expression is bound to the new variable v′. The name

of this variable should be different from the names of v. Hence the result of this operation

is a collection of structures with labels named as the variables in v or as v′. In fact, only the

structures that satisfy pred are included in the result. The monoid information (mon) is inferred

in the same way as in the operator Select.

Notice that it is not necessary to include the predicate in the Unnest operator. Instead one could

use a Select operator having Unnest as its operand. However, it is a good decision to include

a predicate, since Unnest often generates a much bigger collection than its operand. Hence, it

is worthwhile to prune this collection before sending it to the output. The same applies for the

Join operator.

The Unnest operator corresponds to the calculus expression:

mon{struct(v1 = v1, . . . , vn = vn, v
′ = v′)|v← oper, v′ ← path, pred}

where v = {v1, . . . , vn}.

4. operand1

mon

./
v1,v2 predicate

operand2

Join : This operator takes the cartesian product of the two operands and selects those elements

that satisfy predicate. It accumulates the results using the merge operation of the monoid

mon. The latter is derived as in the case of the Select operator. The physical implementation

of Join may benefit from the mon information. Indeed, if mon = set/bag, then even if the

operands are both lists, they can be considered as bags or sets. Should they be considered as

bags, they can be rearranged (sorted) to facilitate their joining; if they have many duplicates,

it is even more efficient to convert them to sets before joining them. In the latter case mon

should be refined to set. If mon = list, the optimizer can use metainformation regarding

the ordering of elements in the operands in order to apply optimization techniques studied in

sequence query processing [SLR94].

The Join operator corresponds to the calculus expression:

mon{struct(v11 = v11, . . . , v1n = v1n, v21 = v21, . . . , v2m = v2m)|
v1 ← operand1, v2 ← operand2, predicate}

where v1 = {v11, . . . , v1n} and v2 = {v21, . . . , v2m}.
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5.
mon1 mon2
=µ
v v′

path
pred

operand

OuterUnnest : This operator is used to unfold path expressions in nested (inner) compre-

hensions. Its functionality is similar to Unnest with a single important difference. If for an

element e in operand, the collection path is empty, or none of its elements satisfy pred,

then e is still included in the result, paired with the value NULL [FM00]. There should be

no confusion between this NULL value and the UNDEFINED value; the latter is defined in the

ODMG Standard ([CBB+00],chapter 4.6) as the result of accessing a property of the nil ob-

ject. UNDEFINED is a valid value for any literal or object type.

Notice that OuterUnnest is annotated with information about two monoids. The first monoid

mon1 denotes the merge operation used to accumulate the results. The second one mon2

gives information about how path should be unnested. For instance, if mon1 = bag and

mon2 = list, then although the result is a bag, the elements of collection path should be

annotated with a serial number, based on their order. Hence, if we need to group these ele-

ments later on into a different list, we would be able to know their order despite their being

members of a bag. Since mon1 = bag, the elements of operand should be annotated with

information that distinguishes its duplicates (see discussion about dot equality in Nest).

OuterUnnest is used to translate path expressions that are generators in nested (inner) compre-

hensions. Hence, mon1 is derived based on the monoid of the current (outer) comprehension,

whilst mon2 is inferred by the monoid of the nested (inner) comprehension.

6. operand1

mon1 mon2

=./
v1,v2 predicate

operand2

OuterJoin : This operator is useful in the case of nested comprehensions. It differs from

Join in that if an element from operand1 cannot be matched with at least one element from

operand2, it is preserved in the result by being paired with the NULL value.

Notice that OuterJoin is annotated with information about two monoids. The first monoid

mon1 denotes the merge operation used to accumulate the results. The second one mon2 gives

information about the nature of operand2. They are derived in a similar way as in the case of

OuterUnnest.

7.
mon

Γ
v

gmon
gname

predicate

gproject
gv

operand

Nest : This operator groups elements based on certain grouping variables (gv), or to be accu-

rate, on dot equality between the values of these variables [FM00]. This operator handles the

translation of inner monoid comprehensions. We give an example that shows the importance

of dot equality in the context of the Nest operator.
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Consider the translation of the following monoid calculus expression:

bag{x|x← X, all{y.a|y← Y, p(x, y)}}

The translation algorithm from calculus to algebra first creates an OuterJoin operator, to join

X and Y based on p(x, y). The reason why it would not use a Join operation is that Y is in an

inner comprehension wrt X. For each x in X the algorithm then gathers (through the monoid

all) all the values y.a. This is done using the Nest operation with:

• mon (monoid): bag

• operand: X
bag set/bag

=./
x,y p(x,y)

Y

• gmon (group monoid): all

• gname (group name): new var

• gproject (group project): y.a

• gv (grouping variables): x

• v (vars): x, y

• predicate: true

There is a subtle point here that needs special attention. If there are two pairs (x1, y1), (x2, y2)

in the OuterJoin result, such that x1 = x2, they may have been derived in two ways: i) by

combining the same element x in X with two different elements y1, y2 in Y; ii) by combining

two different elements x1 and x2 in X (s.t. x1 = x2) with the elements y1, y2 respectively. The

Nest operator groups together two (or more) different values y1.a, y2.a if they correspond to

x1, x2, such that x1 = x2 and x1, x2 were the same element x in X. If both conditions are

satisfied then dot equality holds between x1 and x2 (x1
.
= x2) [FM00]. The values y.a that

correspond to the same x (dot equality wise) are merged using ∧, i.e. the merge operation of

the group monoid all. In fact, they are merged only if they satisfy the predicate of the Nest

operation.

The result of Nest is a collection of structures with labels the grouping variables {x} and the

group name new var. The OuterJoin operator between X and Y has the monoid information

mon = bag and the same applies for the Nest operator.

The operators defined so far are similar to those proposed by Fegaras and Maier. The next three

operators are new in our context.

8.
mon1 mon2=σ

v

ov
predicate

operand
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OuterSelect : This operator is similar to Select. The only difference is that if predicate

is not satisfied, then the values of the outer variables ov are preserved; they are appended with

NULL values for the local variables in (v− ov). mon1 indicates the way elements of the outer

comprehension are accumulated, whilst mon2 corresponds to the local (inner) comprehension.

The usefulness of this operator will become evident in the rules for the translation of calculus

to algebraic expressions.

9.
mon

M
mon′

(e1, . . . , en)

Merge : This operator merges the operands e1, . . . , en using the merge operation of mon′. The

results are accumulated using the merge operation of mon. For instance, say we have the

monoid comprehension set{e(x)|x← merge[bag](X1, X2), . . .}, where both X1 and X2 are

bags. The algebraic expression corresponding to the first generator is:

set/bag

M
bag

(X1, X2)

10.
mon

IM
v̄ v′

mon′

parts

operand

NestedMerge : This operator iterates over the operand and for each element, it merges the

parts using the merge operation of monoid mon′. The result of merging them is bound to the

new variable v′. Each structure in operand is extended with the new label v′. The resulting

structures are accumulated using the merge operation of mon.

11.
mon

B
function

operand

Bulk : This operator applies function, e.g. listof, bagof, arrayof or orderof, to operand.

It accumulates the elements of the resulting collection using the merge operation of mon. This

operator applies non-homomorphic bulk functions. For instance, if operand is a set of ele-

ments then the function bagof(operand) waits until the input is complete (all the elements

have been received) and generates a bag containing these elements, but without any duplicates.

Bulk operators are expected to create bottlenecks in any execution plan based on a pipeline

mechanism.

12.
mon

IB
v v′

function
argument

operand

NestedBulk : This operator is similar to Bulk. However, instead of applying function to

operand, it applies it to the collection argument, which is evaluated for each element in
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Monoid Calculus Form Algebraic Form

< literal > < literal >

zero[< monoid >] zero[< monoid >]

unit[< monoid >](e) unit[< monoid >](|e|#)

merge[< prim mon >](e1, . . . , en) merge[< prim mon >](|e1|#, . . . , |en|#)

struct(l1 = e1, . . . , lk = ek) struct(l1 = |e1|#, . . . , lk = |ek|#)

C(l1 = e1, . . . , lk = ek) C(l1 = |e1|#, . . . , lk = |ek|#)

e1 < comp op > e2 |e1|# < comp op > |e2|#
e1 < arithm op > e2 |e1|# < arithm op > |e2|#
e.attr rltp method |e|#.attr rltp method

e(e1, . . . , ek) |e|#(|e1|#, . . . , |ek|#)

e1[e2] |e1|#[|e2|#]

not (e) not (|e|#)

−e −|e|#

Figure 5.2: Translation of calculus to algebraic constructs in Group A (figure 5.1)

operand. Each element in operand is extended with the resulting collection value of the bulk

function, which is bound to the variable v′. The resulting structures are accumulated using the

merge operation of mon.

In this section, we presented the syntax of the algebraic representation of OQL. We reviewed the

algebraic operators proposed by Fegaras and Maier, proposed slight changes and introduced five new

operators. We are now in a position to discuss the translation process from the monoid calculus to the

algebraic level.

5.2 Translating monoid calculus to algebraic expressions

The translation of calculus expressions that have a similar algebraic equivalent (in Group A of fig-

ure 5.1) is straightforward. All we do is replace the constituent parts of these expressions by their

algebraic counterparts. This is shown in table 5.2. The function | − |# : calculus→ algebra is the

generic translation algorithm that takes a monoid calculus expression and converts it to an algebraic

form. Its implementation depends on the calculus expression.

The remaining calculus forms to be considered are the nonhomomorphic functions bagof, listof,

arrayof and orderof, as well as the merge operation and monoid comprehensions. If the argument

of a nonhomomorphic function (e.g. bagof) has no free variables, its algebraic equivalent is derived
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as follows:

|function(e)|# =
mon

B
function

e

where function ∈ {bagof, listof, arrayof, orderof} and mon is the monoid corresponding to

the comprehension which has function(e) as a generator.

Likewise, if the arguments of a merge calculus expression have no free variables, the expression

is translated to the algebraic form:

|merge[< coll mon >](e1, . . . , en)|# =
mon

M
coll mon

|e1|#, . . . , |en|#

where mon is derived as explained in the case of function(e), if merge is a generator. Otherwise

mon = coll mon.

If the calculus expressions translated so far are parts of a comprehension and not all of their

variables are free, then their translation is not so straightforward. It is tackled below in the algorithm

for the translation of monoid comprehensions.

5.2.1 Translation of Monoid Comprehensions

Intuitively, the algorithm builds an algebraic expression by traversing the qualifiers first and the head

afterwards. Initially, the algebraic expression is null. As the qualifiers are processed, it gradually

grows bigger, until it takes its final form at the point it absorbs the head. Before giving a formal

description of the algorithm we demonstrate its functionality through a simple example:

(set{x.address|x← People, x.name = ”Clare”}) ()⇒

(set{x.address| }x)
(

set/bag

σ
x

x.name=”Clare”

(People)

)

⇒

()









set

π
x

x.address
(

set/bag

σ
x

x.name=”Clare”

(People)

)









As we process the qualifiers and the head of the comprehension, we distinguish between the range

variables that have been encountered in an outer comprehension, and those bound in previous gener-

ators of the same comprehension. The former are called outer vars whilst the latter local vars.

Likewise, we distinguish the algebraic query produced so far by the qualifiers of the outer comprehen-

sions, from the one generated by the previous qualifiers of the same comprehension. The first is called
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outer query and the second local query. This is a characteristic point at which our algorithm dif-

fers from that of Fegaras and Maier. Their algorithm gradually develops a single outer query,

while we insist on maintaining a local context of the nested comprehension too. Later on, we will ex-

plain the implications of the two different approaches. At certain critical points, the local query is

merged with the outer query. The local query becomes empty and the local vars are included

in the outer vars. However, we keep storing the initial outer variables in a vector called ext vars.

It is worth noting that if a predicate refers to a combination of outer vars and local vars, we

defer its evaluation until the local- and outer- queries are merged. Meanwhile, we maintain it in a

vector named predicates.

The input of the translation algorithm consists of the outer query already formed and the

outer vars encountered. Obviously, if the comprehension is an external one, both input values

are null, empty respectively. The algorithm has a naturally functional implementation, going along

with recursive descent of a calculus syntax tree. In the remainder of this section, we present a set

of rules that formally define the translation algorithm for monoid comprehensions. These rules are

preceded by the necessary notation.

Notation

Each side of the rules has the following constituent elements:

• the ext vars (external variables), i.e. the variables from outer comprehensions,

• a monoid calculus expression (which has not been converted yet to its algebraic representation),

• the local query already formed,

• the local vars already encountered,

• the outer query already formed,

• the outer vars already encountered,

• the set of predicates that combine local and outer range variables, but have not been absorbed

into either of the algebraic queries (local query or outer query).

Thus, each side of a rule has the form:

< ext vars > < calculus >
< local query >

< local vars >

< outer query >

< outer vars >
predicates

In the monoid calculus expressions, on the bottom of each qualifier, we denote its dependency wrt

the outer and the local variables. If all variables in the qualifier are bound, then dep = null. If the
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free variables are all included in the local vars, then dep = local. However, if any of its free

variables is included in the outer vars, then dep = outer.

In the translation rules from calculus to algebra we broadly use the function S . This function

applies on a pair of queries, one algebraic and one calculus-like. It has a different implementation

depending on the calculus (the second) query. Its goal is to simplify the calculus expression, i.e. to

remove any nested queries from it, by incorporating their algebraic equivalent to the initial algebraic

query.

We only use this function when some of the free variables of the calculus expression are in the

range variables over the algebraic query. Hence, S takes three input parameters: i) an algebraic

expression (AE), ii) a calculus one (CE) and iii) the range variables over the algebraic expression (v).

It returns an extended algebraic expression (AE′), a simplified calculus one (CE′) and an updated set

of range variables (v′) over AE′.

S
{

AE

CE

}

v

=

{

AE′

CE′

}

v′

If expression CE is a comprehension, the extended algebraic query AE′ is derived by calling the

function | − |# on the comprehension with outer vars = v and outer query = AE. The resulting

algebraic query will be a Nest operator and the resulting variables v′ = v ∪ {g}, where g is the name

of the group (gname) in the Nest operator. Also, CE′ = g. This will become evident to the reader

after studying the translation rules in subsections 5.2.1, 5.2.1 and 5.2.1.

If the only expression that allowed nested queries was the monoid comprehension form, then we

would not need to introduce the S function. All we would need is the recursive application of the

translation rules. However, in our context, we need to simplify all kinds of nested queries, beyond

monoid comprehensions. Figure 5.3 shows how S works for various calculus expressions.

We are now in a position to present the rules for the translation of monoid comprehensions to

their algebraic forms.

Generators without any dependency from local or outer variables

< ext vars1 > < M{head|u← e
dep=null

, r, p} > < loc query1 >

< loc vars1 >

< out query >

< out vars >
pred1

⇒ < ext vars2 > < M{head|r, p[û]} > < loc query2 >

< loc vars2 >

< out query >

< out vars >
pred2

where

• p is the calculus expression in which all filters of the comprehension have been assembled,

p[û] is what remains from p after removing the parts of it that refer to u only (denoted as
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IF S
{

AE

e1

}

v

=

{
AE1

e′1

}

v1

, . . . ,S
{

AEn−1

en

}

vn−1

=

{
AEn

e′n

}

vn

S
{

AE

< id >

}

v

=

{
AE

< id >

}

v

S
{

AE

not (e1)

}

v

=

{
AE1

not (e′1)

}

v1

S
{

AE

unit[< mon >](e1)

}

v

=

{
AE1

unit[< mon > (e′1)

}

v1

S
{

AE

e1.attr rltp meth

}

v

=

{
AE1

e′1.attr rltp meth

}

v1

S
{

AE

function(e1)

}

v

=







mon

IB
v1 new

function
e
′

1

AE1

new







v1∪{new}

S
{

AE

e1[e2]

}

v

=

{
AE2

e′1[e
′
2]

}

v2

S
{

AE

e1 op e2

}

v

=

{
AE2

e′1 op e
′
2

}

v2

S
{

AE

merge[< prim >](e1, . . . , en)

}

v

=

{
AEn

merge[< prim >](e′1, . . . , e
′
n)

}

vn

S
{

AE

merge[< coll >](e1, . . . , en)

}

v

=







mon

IM
vn new

coll
e
′

1,...,e
′

n

AEn

new







vn∪{new}

S
{

AE

struct(l1 : e1, . . . , ln : en)

}

v

=

{
AEn

struct(l1 : e′1, . . . , ln : e′n)

}

vn

Figure 5.3: Implementing S for various calculus constructs
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p[u]), or to u and any of the loc vars1 (denoted as p[u, loc vars1]), or to u and any of the

(loc vars1 ∪ out vars) (denoted as p[u, loc vars1, out vars]).

• if there exists p[u] such that p[u] 6= true then

– gener query =
mon

σ
v

simpl p[u]

e′

where S
{

|e|#
p[u]

}

{u}

=

{

e′

simpl p[u]

}

v

otherwise,

– gener query = |e|#

• pred2 = pred1 ∪ p[u, loc vars1, outer vars]

• loc vars2 = loc vars1 ∪ {u} = v1

• if loc query1 6= null then

– if there exists p[u, loc vars1] 6= true then

S







loc query1

mon

./
v1, true

gener query

p[u, loc vars1]







v1

=

{

alg query1

simpl pred1

}

v2

loc query2 =
mon

σ
v2

simpl pred1

alg query1

– Otherwise, if there is no p[u, loc vars1],

loc query2 = loc query1

mon

./
v1, true

gener query

Otherwise, if loc query1 = null, then

– loc query2 = gener query

• ext vars2 =

{

ext vars1, if ext vars1 6= empty vector

out vars, if ext vars1 = empty vector



5.2. TRANSLATING MONOID CALCULUS TO ALGEBRAIC EXPRESSIONS 95

Generators dependent on local (but not outer) variables

< ext vars1 > < M{head|u← e
dep=local

, r, p} > < loc query1 >

< loc vars1 >

< out query >

< out vars >
pred1

⇒ < ext vars2 > < M{head|r, p[û]} > < loc query2 >

< loc vars2 >

< out query >

< out vars >
pred2

where

• S
{

loc query1

e

}

loc vars1

=

{

alg query1

e′

}

v

• alg query2 =
mon

µ
v u

e′

true

alg query1

• Say p[ ̂out vars] = merge[all](p[u], p[u, loc vars1]).

If S
{

alg query2

p[ ̂out vars]

}

v∪{u}

=

{

alg query3

simpl p[ ̂out vars]

}

v1

then loc query2 =
mon

σ
v1

simpl p[ ̂out vars]

alg query3

• loc vars2 = v1

• pred2 = pred1 ∪ p[u, out vars]

• ext vars2 =

{

ext vars1, if ext vars1 6= empty vector

outer vars, if ext vars1 = empty vector

Generators dependent (among others) on outer variables

< ext vars1 > < M{head|u← e
dep=outer

, r, p} > < loc query1 >

< loc vars1 >

< out query1 >

< out vars1 >
pred1

⇒ < ext vars2 > < M{head|r, p[û]} > < loc query2 >

< loc vars2 >

< out query2 >

< out vars2 >
pred2

where

• If loc query1 6= null then

– S







out query1

mon1 mon2

=./
v, true

loc query1

pred1







v

=

{

alg query

simpl pred1

}

v1

where v = out vars1 ∪ loc vars1
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– alg query1 =
mon1 mon2=σ

v1

ext vars1
simpl pred1

alg query

Otherwise,

– alg query1 = out query1 and v1 = out vars1.

• Say S
{

alg query1

e

}

v1

=

{

alg query2

simpl e

}

v2

and

alg query3 =
mon1 mon2
=µ
v2 u

simpl e
true

alg query2

• Let preds on u = merge[all](p[u], p[u, loc vars1], p[u, loc vars1, out vars1]).

S
{

alg query3

preds on u

}

v2∪{u}

=

{

alg query4

simpl p

}

v3

• out query2 =
mon1 mon2=σ

v3

ext vars2
simpl p

alg query4

• out vars2 = v3

• loc vars2 = {}

• loc query2 = null

• pred2 = {}

• ext vars2 =

{

ext vars1, if ext vars1 6= empty vector

out vars, if ext vars1 = empty vector

Absorbing remaining predicates and head of the comprehension

< ext vars1 > < M{head|} > < loc query1 >

< loc vars1 >

< out query1 >

< out vars1 >
pred1

⇒ < ext vars2 > <>
< loc query2 >

< loc vars2 >

< out query2 >

< out vars2 >
pred2

where

• If loc query1 6= null and out query1 6= null then

S







out query1

mon1 mon2

=./
v, true

loc query1

pred1







v

=

{

alg query1

simpl pred1

}

v1
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where v = out vars1 ∪ loc vars1.

Otherwise, if out query1 6= null

alg query1 = out query1 and v1 = out vars1

Otherwise, if loc vars1 6= null

alg query1 = loc query1 and v1 = loc vars1.

• If pred1 6= {}

– alg query2 =
mon1 mon2=σ

v1

ext vars1
simpl pred1

alg query1

Otherwise,

– alg query2 = alg query1.

• S
{

alg query2

head

}

v1

=

{

alg query3

simpl head

}

v2

• If ext vars1 = {} then the resulting algebraic expression is:

–
M

π
v2

simpl head

alg query2

Otherwise (if ext vars1 6= {}), the resulting algebraic expression takes the following form:

–
mon

Γ
v2

M
group id

null

simpl head
ext vars1

alg query2

5.3 Benefits of the algebraic representation: Examples

This section presents the advantages of this algebraic framework with respect to the one proposed by

Fegaras and Maier [FM00]. A number of translation examples are given to show in practice where

the novel points of the current approach are applicable.

1. This framework addresses the non-homomorphic transformations involved in OQL queries,

e.g. bagof and listof. To do that, it introduces the operators Bulk and NestedBulk.
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Consider, for instance the following OQL query:

select x.C + y.D

from X as x,

(select distinct z.A

from x.B as z) as y

(5.1)

If X is a bag or list and x.B is a set, bag, list, or oset (x ∈ X), the query above corresponds to the

following calculus expression:

bag{x.C + y.D|x← X, y← bagof(set{z.A|z← x.B})}

The calculus expression above translates to the algebraic form:

bag

π
x,y

x.C+y.D

bag

µ
x,g′ y

g′

true

bag

IB
x,g g′

bagof
g

bag

Γ
x,z

set
g

true

z.A
x
(

bag set/bag
=µ
x z

x.B
true

(X)

)

2. Nested comprehensions are processed locally as much as possible, before being merged with

the algebraic expressions generated in outer comprehensions. This leaves space for further

algebraic optimization.

Consider, for example, the query:

select x.B

from X as x

where

min (select y1.A from Y1 as y1

where exists y2 in Y2 : y1.C1 < y2.C2

and x.C < y2.C2) > 4

(5.2)

If Y1 and Y2 are bags, the normalized calculus representation of the previous query is:

bag{x.B|x← X, min{y1.A|y1 ← Y1, y2 ← Y2, y1.C1 < y2.C2, x.C < y2.C2} > 4}

This calculus expression takes the algebraic form:

bag

π
x,g

x.B

bag

σ
x,g

g>4

bag

Γ
x,y1,y2

min
g

true

y1.A
x
(

X

bag set/bag

=./
x,y1,y2 x.C<y2.C2

(

Y1

set/bag

./
y1,y2 y1.C1<y2.C2

Y2

))
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Based on the translation rules by Fegaras and Maier [FM00], the sub-expression

E = X

bag set/bag

=./
x,y1.C1,y2.C2 x.C<y2.C2

(

Y1

set/bag

./
y1,y2 y1<y2

Y2

)

would be replaced by:

E′ =

(

X =./
x,y1 true

Y1

)

=./
x,y1,y2 x.C<y2.C2∧y1.C1<y2.C2

Y2

Notice that we have preserved the local context of the inner comprehension by using Join

instead of OuterJoin. E is expected to be more efficient than E′, because the intermediate join

between Y1 and Y2 has a filter that reduces the size of the result. In E′ the first OuterJoin

is likely to generate a big collection. Even if it was restricted by some predicate, being an

OuterJoin it would preserve the values of the left operand independent of whether they

matched any elements of the right operand. Moreover, E′ cannot be transformed to E, since

the two expressions are not syntactically equivalent.

3. This framework handles the merge operations of collection monoids, e.g. union.

Consider the query:
select x.C + y.D

from X as x, (x.A union x.B) as y
(5.3)

Assume that both attributes A and B of the extent X are set collections. The calculus represen-

tation of this query is:

bag{x.C + y.D|x← X, y← bagof(merge[set](x.A, x.B))}

This query cannot be translated in contexts where operators like Merge or OuterMerge are not

supported (e.g. [FM00]). In this framework, it takes the algebraic form:

bag

π
x,new,new′,y

x.C+y.D

bag

µ
x,new,new′ y

new′

true

bag

IB
x,new new′

bagof
new

bag

IM
x new

set
x.A,x.B

(X)

4. The OuterSelect operator allows for filtering the results of a nested comprehension before

processing its head. This is not possible in other contexts, when the predicate is not simple, but

needs to be unnested.
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Consider the OQL query:

select x.D

from X as x

where min (select y1.A1 + y2.A2

from Y1 as y1, Y2 as y2

where (forall y3 in Y3 : y1.B1 < x.B + y3.B3) and

(exists z in x.E : z.C > y2.C2)) > 4

(5.4)

If X is a bag or list and Y1, Y2, Y3 and x.E are sets, bags or lists, this query corresponds to the

following normalized calculus form:

bag{x.D|x← X, min{y1.A1 + y2.A2|y1 ← Y1, y2 ← Y2,

all{y1.B1 < x.B + y3.B3|y3 ← Y3}, z← x.E, z.C > y2.C2} > 4}

This calculus form is translated to the algebraic expression:

bag

π
x,g1

x.D

bag

σ
x,g1

g1>4

(E1)

where

E1 =
bag

Γ
x,y1,y2

min
g1

true

y1.A1+y2.A2
x

bag set/bag
=µ

x,y1,y2 z

x.E
z.C>y2.C2

bag bag

=σ
x,y1,y2,g

x
g

(E2)

where

E2 =
bag

Γ
x,y1,y2,y3

all
g

true

y1.B1<x.B+y3.B3
x,y1,y2

((

X

bag set/bag

=./
x,y1,y2

(

Y1

set/bag

./
y1,y2

Y2

))
bag set/bag

=./
x,y1,y2,y3

Y3

)

5. Annotating operators with monoid information allows for the optimization and the efficient

execution of the physical plan.

This has been discussed in section 5.1.

6. Annotating the Outer· operators with two monoids allows for unnesting non-commutative

collections in a commutative context. This is an issue that has not been considered in previous

research.
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Say that the outer comprehension of a calculus expression has a commutative monoid, e.g.

bag. Assume also that it has a predicate, part of which is a nested comprehension with a non-

commutative monoid, say list. This inner comprehension includes variables bound in the

generators of the outer comprehension. At some point, the generators of the inner compre-

hension are combined with those of the outer comprehension, through an OuterJoin or an

OuterUnnest operator. In our context, these two operators are annotated with two monoids,

one for the outer and one for the inner comprehension. This means that the elements of the

inner comprehension are not simply unnested or joined. They are annotated with a serial num-

ber denoting their order in the original nested collections. This information is essential at the

time a subsequent Nest operator groups these values again into a non-commutative monoid. If

the Outer· operators flattened everything, say into a bag, then the Nest operator would try to

merge elements of a bag into a list in an arbitrary way.

5.4 Conclusion

This chapter presents a framework for the translation of calculus expressions to algebraic forms. This

work is based on related work by Fegaras and Maier. However, the current appoach has extended

their work in several respects. First, new algebraic operators have been proposed to address the trans-

lation of calculus expressions that have not been considered in other contexts. The latter expressions

include bagof(e), listof(e), arrayof(e), orderof(e) and merge[< coll mon >]. Second, op-

erators that have been used in other contexts are annotated with monoid information. This is useful

for three reasons: i) the optimization of the algebraic plan, ii) the efficient execution of physical op-

erators and iii) the ability to outerjoin or outer-unnest elements of a nested comprehension even if

its monoid has different properties from the monoid of the external comprehension. Third, the trans-

lation algorithm from calculus to algebra has been modified in two respects: i) generators of nested

comprehensions are processed locally as long as possible and ii) predicates relating variables of inner

and outer comprehensions are pushed down (using OuterSelect); this is not possible in [FM00] for

predicates that contain nested queries.

Most of the issues that are addressed in this chapter are not found in relational contexts. Many of

them are due to the manipulation of multiple collection types. This feature of OQL adds complexity

to the algebraic framework and requires careful manipulation of the operators borrowed from the

relational algebra.
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Chapter 6

Using Association Rules to Optimize

Queries Semantically

In chapters 3, 4 and 5, we studied various stages of OQL processing, namely type inference, trans-

lation to calculus form, normalization and translation to algebraic form. Unlike the calculus level,

where the focus was on syntactic transformations (normalization rules), the objective at the algebraic

level is to identify opportunities for optimizing queries semantically. This chapter presents joint work

with Dr Ken Moody, which has also been reported in the SSDBM conference [TM01]. The goal of

this work is to study the use of association rules to add or eliminate constraints in the where clause

of a select query. In terms of the algebraic representation of OQL, the goal is to add or remove

constraints in the predicate of a Select operator. We take advantage of the following heuristics

presented by Siegel et al. [SSS92]: i) if a selection on attribute A is implied by another selection

condition on attribute B and A is not an index attribute, then the selection on A can be removed from

the query; ii) if a relation R in the query has a restricted attribute A and an unrestricted cluster index

attribute B, then look for a rule where the restriction on A implies a restriction on B. The contribution

of our work is twofold. First, we present detailed algorithms that apply these heuristics. Hence, our

ideas are easy to implement. Second, we discuss conditions under which it is worth applying these

optimization techniques, and we show the extent to which they speed up query execution.

6.1 Introduction

Rules that correlate values of data attributes in large databases have been investigated for two main

purposes. The first is to aid management and decision-making in large companies with great amounts

of data. The second relates to query optimization, by exploiting the semantic knowledge expressed

in rules [CGM90, GGMR97, SSS92, Yoo94, YSP95]. Siegel et al. [SSS92] have proposed several

103
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heuristics to guide rule generation and so help to transform queries to more efficient forms. In this

chapter we investigate algorithms for applying two of these heuristics to optimize range queries. Al-

though we are interested in optimizing OQL, our algorithms and optimization techniques are also

applicable in any relational or object-relational database system. The form of queries under consid-

eration is:

select e(x)

from Extent X as x

where p1(x) and . . . and pn(x)

The first heuristic (H1) aims to eliminate as many predicates (or constraints) pi(x) as possible,

when they are implied by other existing predicates. The second heuristic (H2) finds implications from

one or more existing predicates to a new predicate on a cluster index attribute. If the latter is added

to the where clause of the query and is tested first, then the existing predicates will be tested on a

smaller number of objects. In order to take advantage of either of these heuristics, we use association

rules that are relevant to Extent X.

In our context, association rules express semantic correlations between the values of the attributes

of all objects belonging to a certain extent. They consist of the antecedent, which has one or more con-

straints, and the consequent, which has just one constraint: constr1 ∧ . . . ∧ constrn ⇒ constr0.

The constraints constri are of the form class name.attributei comp opi valuei, where for all

0 <= i <= n, comp opi ∈ {<,>,<=, >=,=, 6=}. Association rules are typically ranked by two

measures of interest: confidence and support. Confidence indicates how accurate or reliable a rule

is, since it is defined as the fraction of all objects satisfying the antecedent that also satisfy the con-

sequent. Support measures the popularity of a rule, since it reflects the percentage of objects of the

extent satisfying both the antecedent and the consequent. A number of algorithms have been pro-

posed for mining association rules over categorical or quantitative data [AIS93, SA96, MY97, Par95,

TUA+98]. In the remainder of the chapter, we assume that the process of mining rules has been

completed and that we already have a warehouse with a set of rules for each extent in the database.

Further, in this warehouse we store the exceptions to each rule, i.e. those objects that satisfy its

antecedent but not its consequent. We also assume that the rules and their exceptions are correctly

maintained when the database is updated.

The automatic use of these rules by the OQL optimizer raises many issues. The first concerns

mapping the predicates in the where clause of a select query to constraints that could potentially

be found in the antecedent (or the consequent) of association rules. This is a step towards identifying

the templates of association rules that could help in our optimizations; this task is slightly different

for heuristics H1 and H2. The next step is to present a common graph algorithm that goes through

all existing association rules and discovers the ones that fit the templates along with their exceptions.

Another graph algorithm should combine these rules to discover the possible optimization solutions,
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i.e. the sets of constraints that could be omitted from (H1) or added to (H2) the query. Using the opti-

mal optimization solution, we then present the actual transformations of OQL queries for each of the

two optimization techniques. Finally, we investigate the conditions under which it is worth applying

the optimizations and show the extent to which they are expected to speed up query execution.

6.2 Converting query predicates to rule constraints

The first step towards applying either of the heuristics is to map the predicates found in the where

clause of a select query to constraints found in the existing association rules. Consider the following

OQL query:

select x from Employees as x

where x.salary > 35, 000 and x.salary < 55, 000 and

x.position = “associate” and

x.birthYear <= 1975 and x.birthYear >= 1955

and x.emplYear <= 1990 and

x.emplYear > 1970

(6.1)

We first need to gather all predicates that refer to the same attribute into one predicate, and form

constraints of the form attribute name in range. The resulting constraints in our example are

given below:

salary in {(35, 000, 55, 000)} CA

position in {“associate”} CB

birthYear in {[1955, 1975]} CC

emplYear in {(1970, 1990]} CD

Based on these query constraints, the next step is to search for similar constraints in the associa-

tion rules. Suppose that the warehouse contains the association rules illustrated in figure 6.1, which

are relevant to the class Employee. The constraints in the antecedent and the consequent of the rules

are labeled with short names, e.g. Ck.Rkj is a constraint limiting the values of attribute k to the range

Rkj. Here a range is a specified set of values of some attribute. The set of ranges associated with a

particular attribute is partially ordered under inclusion in the usual way.

To distinguish constraints that are derived from the where clause of our query from those in the

antecedent or consequent of the association rules, we refer to the former as query constraints, and

to the latter as rule constraints. For each heuristic we look for rule constraints corresponding to the

query constraints.
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birthYear in {[1955, 1975]}(C1.R11) ⇒ salary in {[35, 000, 50, 000]}(C2.R21)
position in {“associate”}(C4.R41) ⇒ salary in {[30, 000, 60, 000]}(C2.R22)
position in {“manager”}(C4.R42) ⇒ birthYear in {[1955, 1980]}(C1.R12)

birthYear in {[1950, 1970]}(C1.R13) ⇒ position in {“associate”}(C4.R41)
emplYear in {[1975, 1990]}(C5.R53) ⇒ position in {“associate”}(C4.R41)
emplYear in {[1965, 1985]}(C5.R52) ⇒ efficiency in {[3, 6]}(C3.R31)

salary in {[30, 000, 65, 000]}(C2.R23)
position in {“manager”}(C4.R42)

}

⇒ emplYear in {[1970, 1985]}(C5.R51)

salary in {[30, 000, 60, 000]}(C2.R22)
efficiency in{[3, 6]}(C3.R31)

}

⇒ birthYear in {[1955, 1975]}(C1.R11)

salary in {[30, 000, 60, 000]}(C2.R22)
efficiency in{[3, 6]}(C3.R31)

}

⇒ position in {“associate”}(C4.R41)

birthYear in {[1955, 1980]}(C1.R12)
salary in {[35, 000, 50, 000]}(C2.R21)

}

⇒ efficiency in{[3, 6]}(C3.R31)

Figure 6.1: Association rules relevant to the class Employee

6.2.1 Heuristic H1

We first discuss rule constraints relevant to the constraint elimination heuristic. For each constraint C

on attribute name with range R, identify the following rule constraints:

Category 1 - relaxed constraints First, identify the constraints whose ranges are the next more gen-

eral than (or the same as) the range of the original constraint C. If there exists such a constraint

C0 with a range R0, then for all other constraints Ci i 6= 0 on attribute name with ranges Ri,

if R ⊆ Ri then not(Ri ⊆ R0). That is, R0 is one of the least supersets of R among all ranges of

constraints referring to the same attribute.

Category 2 - relaxed combinations of constraints Second, identify minimal combinations of con-

straints which have the property that the union of their ranges is a superset of the range of the

original constraint C. The constraints in any combination must satisfy the following conditions:

firstly, none of the constraints can be the same as (or with a wider range than the range of) any

constraint identified previously in category 1; secondly, no combination must include all the

constraints of a smaller combination; thirdly, if either of two constraints on the same attribute

may take part in a combination, and the range of the one is a subset of the range of the other,

then the one with the smaller range is selected.
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Category 3 - tightened constraints Third, identify the constraints whose ranges are the next more

specific than (or the same as) the range of the original constraint. If there exists such a constraint

C0 with a range R0, it means that for all other constraints Ci i 6= 0 on attribute name with

ranges Ri, if R ⊇ Ri then not(Ri ⊇ R0). That is, R0 is one of the greatest subsets of R among

all ranges of constraints referring to the same attribute.

Category 4 - tightened combinations of constraints Fourth, identify maximal combinations of con-

straints which have the property that the intersection of their ranges is a subset of the range of

the original constraint C. The constraints in any combination must satisfy the following condi-

tions: firstly, none of the constraints can be the same as (or with a range contained in the range

of) any constraint identified previously in category 3: secondly, no combination must include

all the constraints of a smaller combination: thirdly, if either of two constraints on the same

attribute may take part in a combination, and the range of the one is a superset of the range of

the other, then the one with the wider range is selected.

In the example of query 6.1, the query constraints CA, CB, CC and CD correspond to the following

rule constraints:

Relaxed Constraints Tightened Constraints

CA salary in {[30, 000, 60, 000]}(C2.R22) salary in {[35, 000, 50, 000]}(C2.R21)
CB position in {“associate”}(C4.R41) position in {“associate”}(C4.R41)
CC birthYear in {[1955, 1975]}(C1.R11) birthYear in {[1955, 1975]}(C1.R11)
CD emplYear in {[1970, 1985]}(C5.R51)

emplYear in {[1975, 1990]}(C5.R53)
Relaxed Combinations of Constraints Tightened Combinations of Constraints

CC {birthYear in {[1955, 1980]}(C1.R12)
birthYear in {[1950, 1970]}(C1.R13)}

CD {emplYear in {[1970, 1985]}(C5.R51)
emplYear in {[1975, 1990]}(C5.R53)}

For each tightened combination of constraints we generate a new constraint whose range is the inter-

section of the ranges of the constraints in the combination. We add this new constraint to the category

of tightened constraints and create a temporary rule with the initial constraints in the antecedent

and the new tightened constraint in the consequent. For instance, based on the tightened combina-

tion {birthYear in {[1955, 1980]}(C1.R12), birthYear in {[1950, 1970]}(C1.R13)}, we create the

constraint {birthYear in {[1955, 1970]}(C1.R1.23). Repeating this procedure for all tightened com-

binations of constraints, we generate a new set of tightened constraints.
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Ccomp3 C5.R51

C4.R41Ccomp2

C2.R22

C5.R52C2.R23C4.R42

Ccomp1

C1.R1(23)

C1.R11

C2.R21

C1.R12 C3.R31

C1.R13

C5.R53

Figure 6.2: Graph of Constraints

The rationale behind finding the constraints in categories 1 to 3 is the following. By definition, the

query constraints imply their corresponding relaxed constraints. Likewise, the tightened constraints

imply the initial query constraints. Hence if we can find association rules that relate constraints in the

first two categories to those in the third, it is equivalent to finding rules that correlate the initial query

constraints with each other.

6.2.2 Heuristic H2

For the purposes of applying the constraint introduction heuristic, we identify the following rule

constraints:

Category 1 - relaxed constraints These are identical to the relaxed constraints described in sec-

tion 6.2.1.

Category 2 - relaxed combination of constraints This category is the same as its counterpart in

section 6.2.1.

Category 3 - index constraints If the extent has a cluster index on attribute attri, then this cate-

gory includes all the constraints on this attribute that occur as consequents in the existing rules.

Assume that the cluster index of the extent Employees is the attribute efficiency. Based on

the rules of figure 6.1, the only index constraints is the constraint efficiency in{[3, 6]}.
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Relaxed constraints
Constraints in relaxed combinations
Tightened constraints

Graph of rule constraints

Annotate relaxed constraints with

Combine path annotations to derive indirect

INPUT

OUTPUT

paths to target constraints

Query constraints

for the optimization, along with their exceptions
Select or combine these rules to identify useful rules

A set of association rules
along with their exceptions

rules from relaxed constraints to target ones

Figure 6.3: An abstract view of the algorithm

Rule constraints imply relaxed (combinations of) constraints, by definition. If we succeed in

finding paths from relaxed (combinations of) constraints to an index constraint, then we can add the

latter to the where clause of the query. This allows us to reduce the disc access overhead without

altering the results of the query.

6.2.3 Discussion

Constraints in categories 1 and 2 play an identical role for heuristics H1 and H2. However, the

other categories play a different role in the two cases. Tightened constraints are similar to existing

query constraints that can potentially be eliminated. Index constraints are new constraints that can

potentially be added to the where clause of the query. In the next section we present a graph algorithm

that finds associations from the relaxed constraints to the tightened (H1) or the index (H2) constraints

respectively. Since the algorithm is common to both heuristics, tightened and index constraints are

hereafter referred to as target constraints.

6.3 Identifying associations between constraints

In this section, we present an algorithm that goes through the association rules in the warehouse and

identifies direct or indirect correlations between the relaxed and the target constraints discussed in

the previous section. Before presenting this algorithm, we discuss an alternative graphical represen-

tation of the association rules. Consider for example the association rules in figure 6.1. They can be

represented using a directed graph of constraints, see figure 6.2.

A rule having a single constraint in its antecedent (e.g. C1.R11 ⇒ C2.R21) is represented by two

vertices, labeled with the constraints (C1.R11 and C2.R21) and linked together by an edge from the an-
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tecedent constraint (C1.R11) to the consequent constraint (C2.R21). A rule with more than one constraint

in its antecedent uses an additional vertex to denote the conjunction. The link ; denotes the fact

that a constraint in the antecedent of a rule implies the consequent only in combination with the other

conjuncts forming the antecedent. The dashed edges link pairs of nodes that represent constraints on

the same attribute, with the source constraint implying the destination constraint.

The notion of path in our context requires one extension to the standard notion for a directed

graph. A path from a constraint Csource to a constraint Cdest is any sequence of vertices linked

by directed edges, provided that no vertex represents a composite constraint. If a path contains a

composite constraint, say C = C1 ∧ . . . ∧ Cn, then there must be n paths from Csource, one to each of

the conjuncts Ci. These subpaths merge at the node representing the composite constraint, and from

there the path continues towards Cdest.

We consider also paths from a set of constraints {C1, . . . Cn} to a single constraint. Such a path

consists of subpaths starting from the source constraints {C1, . . . Cn} which merge at various com-

posite constraints before reaching the destination constraint.

We can now develop an algorithm that navigates over a graph of constraints, finds paths linking

relaxed (combinations of) constraints to target constraints and combines them to derive association

rules useful for the purposes of optimization. It consists of three basic steps as shown in figure 6.3.

The algorithm is discussed in detail in section 6.3.1. At the end of each step we give an example to

show how it can be applied for heuristic H1. It is equally applicable to heuristic H2.

Relaxed constraints and constraints in relaxed combinations often play the same role in the fol-

lowing algorithm, and we use the term source constraint in such contexts.

6.3.1 Algorithm

For each constraint Ck.Rkj in the target constraints take the following steps:

Step 1

Navigate backwards from Ck.Rkj in the graph of constraints, i.e. navigate against the direction of

the edges and annotate any source constraints encountered with information about the reverse path

traversed so far. On encountering a composite constraint navigate backwards from all of its con-

juncts. If a particular constraint is encountered more than once, or if there is no incoming link, then

backtracking from the current constraint terminates.

Step 1 may be implemented as a recursive method backtrack on a class Constraint. We

demonstrate its functionality by an example. Consider the target constraint C4.R41 in the constraint

graph (figure 6.2). We recursively apply backtrack to all the constraints leading to it, i.e. C1.R13 ,

C5.R53 and Ccomp2 . The argument for the method is the path traversed so far, i.e. {C4.R41}. C1.R13 is
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Relaxed

Constraints
Path Annotations

C2.R22 {C2.R22 ; Ccomp2 → C4.R41}
{C2.R22 → C2.R23 ; Ccomp3 → C5.R51 → C5.R52 → C3.R31 ;

; Ccomp2 → C4.R41}
C4.R41

C1.R11 {C1.R11 → C2.R21 → C2.R22 ; Ccomp2 → C4.R41}
{C1.R11 → C2.R21 → C2.R22 → C2.R23 ; Ccomp3 → C5.R51 →

→ C5.R52 → C3.R31 ; Ccomp2 → C4.R41}
{C1.R11 → C2.R21 ; Ccomp1 → C3.R31 ; Ccomp2 → C4.R41}
{C1.R11 → C1.R12 ; Ccomp1 → C3.R31 ; Ccomp2 → C4.R41}

Constraints

in Relaxed

Combinations

Path Annotations

C5.R51 {C5.R51 → C5.R52 → C3.R31 ; Ccomp2 → C4.R41}
C5.R53 {C5.R53 → C4.R41}

Figure 6.4: Paths from relaxed constraints to the target constraint C4.R41

not a source constraint, so no path annotation is assigned to it. No constraint leads to it (there is no

incoming link), so there is no further recursive call from it. However, C5.R53 is a constraint in a relaxed

combination, so it is annotated with the path {C4.R41}. No recursive call occurs from it either. Ccomp2 is

a composite constraint, so we recursively call backtrack on each of the conjuncts C2.R22 and C3.R31 ,

passing as argument the updated path traversed {Ccomp2 → C4.R41}. Recursive calls of backtrack

continue until the constraint on which a call is made has no incoming link or the constraint appears

in the argument path annotation. In figure 6.4, we present the path annotations assigned to source

constraints by the time Step 1 is completed for the target constraint C4.R41 .

Discussion of step 2

The objective of step 2 is to combine the annotations of source constraints to identify complete

paths from sets of these constraints to a target constraint Ck.Rkj . The first step of the algorithm an-

notated the source constraints with complete or incomplete paths from them to a particular target

constraint. For instance, C1.R11 , which is a relaxed constraint, is annotated with four paths, as shown

in figure 6.4. Paths that include ; links are called incomplete; they are useful only in combination
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A(e) B(e) C(e)
e in

E(A⇒ B)

e in

E(B⇒ C)

e in

E(A⇒ C)

T T T F F F

T T F F T T

T F T T F F

T F F T F T

F T T F F F

T T F F T F

F F T F F F

F F F F F F

Figure 6.5: Truth table which shows the correctness of formula 6.2

with other incomplete paths that include the related conjuncts. One of the objectives of step 2 is to

combine incomplete paths in order to identify (complete) paths from a source constraint like C1.R11 to

a target constraint like C4.R41 . In fact, we can combine paths from more than one source constraint to

a destination constraint.

Each edge → stands for an association rule which possibly has a list of exceptions E. A series

of consecutive edges→ corresponds to an indirect association from the source constraint to the des-

tination one. The exceptions to this rule are evaluated from the exceptions of the association rules

involved. In particular, if constraint A leads to constraint B based on a rule with exceptions EA⇒B, and

B leads to C based on a rule with exceptions EB⇒C, then the exception set of the indirect path A→ C

(or the indirect rule A⇒ C) is:

E = {exc|exc← EA⇒B, not C(exc)}
∪{exc|exc← EB⇒C, A(exc)} (6.2)

Note that EA⇒B ∩ EB⇒C = {}, since all exceptions of EA⇒B satisfy A, but do not satisfy B. Therefore

they are not exceptions of EB⇒C. The correctness of formula 6.2 is proved by the truth table in fig-

ure 6.5.

Step 2

Path annotations derived from step 1 are combined to form complete paths by repeating steps 2.1

and 2.2:

Step 2.1 For all path annotations we omit all the initial constraints, until the first constraint which is

followed by a ; edge (this constraint is maintained). To omit these initial constraints, we must
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first evaluate the exceptions involved in the rules until the ; link (equation 6.2). The resulting

paths are either empty or start with sub-constraints leading to composite constraints.

When this step is executed for the first time the resulting paths in our example are the following:

C2.R22 P1 : {C2.R22 ; Ccomp2 → C4.R41}
E1 = {}

C2.R22 P2 : {C2.R23 ; Ccomp3 → C5.R51 → C5.R52 → C3.R31 ; Ccomp2 → C4.R41}
E2 = E(C2.R22 ⇒ C2.R23) = {}

C1.R11 P3 : {C2.R22 ; Ccomp2 → C4.R41}
E3 = {e|e← E(C1.R11 ⇒ C2.R21), not C2.R22(e)}

C1.R11 P4 : {C2.R23 ; Ccomp3 → C5.R51 → C5.R52 → C3.R31 ; Ccomp2 → C4.R41}
E4 = {e|e← E(C1.R11 ⇒ C2.R21), not C2.R22(e), not C2.R23(e)}

= {e|e← E(C1.R11 ⇒ C2.R21), not C2.R23(e)}
C1.R11 P5 : {C2.R21 ; Ccomp1 → C3.R31 ; Ccomp2 → C4.R41}

E5 = E(C1.R11 ⇒ C2.R21)

C1.R11 P6 : {C1.R12 ; Ccomp1 → C3.R31 ; Ccomp2 → C4.R41}
E6 = {}

C5.R51 P7 : {C3.R31 ; Ccomp2 → C4.R41}
E7 = {} ∪ {e|e← E(C5.R52 ⇒ C3.R31), C5.R51(e)}

C5.R53 P8 : {}
E8 = E(C5.R53 ⇒ C4.R41)

If a path annotation is empty, it means that there is a complete path from the source constraint

(e.g. C5.R53) to the destination one (C4.R41). A new rule is created from the former to the latter

(C5.R53 ⇒ C4.R41) and the exceptions evaluated so far for this path annotation (E8) are assigned to

the new association rule. The path annotation and its exceptions are deleted. If an empty annota-

tion corresponds to more than one source constraint then the rule that is generated has a composite

antecedent, i.e. it is of the form: C1 ∧ . . . ∧ Cn ⇒ C0.

When using equation 6.2 to determine exceptions during step 2.1 we must take note of the excep-

tion sets arising from earlier iterations of steps 2.1 and 2.2.

Step 2.2 For each composite constraint Ccomp at the second position of some path annotation, we

try to find a set of path annotations having at their first positions the component constraints

of Ccomp. These path annotations are combined into new path annotations as follows: i) the

subconstraints at their first positions are omitted; ii) the resulting exceptions of the remaining

paths are the union of the exceptions evaluated so far for each combined path that satisfy the
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source constraints of the other combined paths. If C = C1 ∧ C2,

E(CA ∧ CB ⇒ C) =

{e|e← E(CA ⇒ C1), CB(e)}∪
{e|e← E(CB ⇒ C2), CA(e)} (6.3)

When step 2.2 is executed for the first time in our example, the following path annotations are

generated:

C2.R22 , C5.R51 P9 : {Ccomp2 → C4.R41}
E9 = {e|e← E7, C2.R22(e)}

C1.R11 , C5.R51 P10 : {Ccomp2 → C4.R41}
E10 = {e|e← E3, C5.R51(e)}
∪{e|e← E7, C1.R11(e)}

C1.R11 P11 : {Ccomp1 → C3.R31 ; Ccomp2 → C4.R41}
E11 = {e|e← E5, C1.R11(e)}

= E(C1.R11 ⇒ C2.R21)

If two path annotations which are combined do not have the same paths after the composite

constraint (after the second position), then two combinations of paths should be generated, one for

each annotation.

We retain path annotations P1 to P8 in order to combine them with new annotations at a later

execution of step 2.2.

Substeps 2.1 and 2.2 are repeated until neither of them has any effect on the path annotations.

This happens when all paths that have not been converted to rules in step 2.1 cannot be further com-

bined in step 2.2.

Step 3

Not all the rules derived in step 2.1 are useful for optimization purposes. The aim of this step is

to filter and combine the rules derived from the previous step, referred to as RA, in order to generate

rules relating query constraints with each other (H1), or query constraints to new index constraints

(H2). The resulting set of rules is referred to as RB. We first give a detailed account of step 3 in the

context of heuristic H1. We then point out a detail that should be changed so that the step is also

applicable for H2.

We look for (sets of) rules in RA of the following kinds:

• A rule from a relaxed constraint to the target constraint Ci, i.e. of the form C⇒ C0. Such a rule

is used to generate a new rule C′ ⇒ C′0, such that C′, C′0 are the query constraints that refer to
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the same attributes as C and C0 respectively, C is one of the relaxed constraints of C′ and C0 is

one of the target constraints of C′0. Indeed,

C′ ⇒ C

C⇒ C0 (existing rule)

C0 ⇒ C′0







C′ ⇒ C′0

If C⇒ C0 has exceptions E, the exceptions of the new rule C′ ⇒ C′0 are E′ = {e|e← E, C′(e)}.

• A set of rules of the form Ci ⇒ C0, i = 1, . . . , n, such that Ci are all constraints in the same

relaxed combination of size n. This set of rules is used to generate the new rule C′ ⇒ C′0,

in which C′, C′0 are the query constraints that refer to the same attribute as the Ci and C0

respectively. If the corresponding exception lists of the rules Ci ⇒ C0, i = 1, . . . , n are Ei,

the exceptions of the new rule are E = {e|e← E1 ∪ . . . ∪ En, C′(e)}.

• A rule from a set of relaxed constraints to a target one, i.e. C1 ∧ . . . ∧ Cn ⇒ C0. This rule

is converted to the corresponding rule C′1 ∧ . . . ∧ C′n ⇒ C′0, such that C′0, . . . , C
′
n are the query

constraints on the same attributes as C0, . . . , Cn respectively. The exceptions of the new rule

are those of the initial rule that satisfy C′1 ∧ . . . ∧ C′n, i.e. E′ = {e|e← E, C′1(e), . . . , C
′
n(e)}.

• A set of rules whose antecedents contain both relaxed constraints and constraints in relaxed

combinations is useful if it consists of all rules of the form:

Relaxed constraints
︷ ︸︸ ︷

C1 . . . Ck

Constraints in relaxed combinations
︷ ︸︸ ︷

C(k+1).j1 . . . C(k+m).jm ⇒ C0

where 1 ≤ ji ≤ ni for all 1 ≤ i ≤ m.

Constraints C(k+i).1, . . . , C(k+i).ni form the relaxed combination i. The set contains N =

n1 × . . .× nm rules, such that each constraint in a relaxed combination occurs in all possi-

ble combinations with constraints from the other relaxed combinations. In some of the rules

some (or all) of the relaxed constraints C1 . . . Cn may not be present.

If such a set of rules occurs in RA we derive C′1 ∧ . . . ∧ C′k ∧ C′k+1 ∧ . . . ∧ C′k+m ⇒ C′0, such that

C′1, . . . , C
′
k+m, C

′
0 are the query constraints that refer to the same attributes as C1, . . . , C(k+m).jm , C0

respectively. If the original rules have exception lists E1, . . . , EN, then the resulting rule has ex-

ceptions E = {e|e← E1 ∪ . . . ∪ EN, C′1(e), . . . , C′k+m(e)}.

Evaluating exceptions appears very expensive in this case. However, in the common situation

that m = 1, the cost of finding exceptions to the new rule is similar to the cost in the second

case of step 3.
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Figure 6.6: Correlations of query constraints

Note that in the context of heuristic H2, C0 is a constraint on the cluster index attribute; it does

not correspond to any of the existing query constraints. Hence, step 3 is applicable to H2, provided

that in all four cases above, C′0 = C0.

6.4 Identifying optimization solutions

In the previous section, we gave an algorithm that navigates over a constraint graph and extracts a set

of useful association rules along with their exceptions. This section combines these rules to identify

all possible solutions to the constraint elimination or constraint introduction problem.

Consider an OQL select query with say 15 predicates. We combine all predicates referring

to the same attribute into a single constraint attri in rangei (Ci.Ri). Assume that we derive the

following set of constraints: C1.R1 , . . . , C12.R12 , say. Since there is just one range for each attribute,

ranges are presented as Ri instead of Rij. We first identify the rule constraints of possible interest

for H1 or H2, then apply the graph algorithm presented in section 6.3. The next step is discussed

separately for each heuristic.

6.4.1 Heuristic H1

Say that the graph algorithm (section 6.3) results in the associations illustrated in figure 6.6. Not all

query constraints need be related; in our example only the first nine are. Note that the association

graph (figure 6.6) is transitive; if there is a direct link from constraint A to constraint B, and another

one from B to C, then A and C are also directly connected. This is a property of the graph algorithm

in section 6.3. We now define an algorithm that produces a set of constraint elimination solutions

{(Mi, Ei)}, where Mi, Ei stand for Maintained Constraints and Exceptions respectively. Each pair

(Mi, Ei) is a solution with the following explanation:
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We may eliminate all but the constraints Mi from the where clause of the query, given

that we take into account the exceptions Ei.

Algorithm

Step 1 Identify all constraints that do not have any incoming links. These constraints should be main-

tained (not eliminated), since no other constraint implies them. In figure 6.6, these constraints

are C1.R1 , C6.R6 , C7.R7 .

Step 2 Identify all cyclic paths that have no incoming link from any external constraint. If two

cyclic paths have at least one common constraint, they are considered as a single cyclic path.

This case does not occur in our example. Form combinations of constraints by choosing one

constraint from every cyclic path identified. In our example there is just one such path contain-

ing the constraints C5.R5 , C8.R8 , C9.R9 ; therefore the combinations consist of just one element:

{C5.R5}, {C8.R8}, {C9.R9}. Extend each of these combinations with the constraints without in-

coming links, identified in step 1. The resulting combinations are {C5.R5 , C1.R1 , C6.R6 , C7.R7},
{C8.R8 , C1.R1 , C6.R6 , C7.R7} and {C9.R9 , C1.R1 , C6.R6 , C7.R7}. Each combination is a minimal set of

constraints that implies all the remaining constraints in the graph (figure 6.6).

Step 3 For each combination evaluate the exceptions that are involved in removing the implied con-

straints. If a constraint is implied by more than one constraint in a combination, then consider

the exceptions of the strongest implication (the implication with the fewest exceptions). For

example, the exceptions corresponding to the combination {C5.R5 , C1.R1 , C6.R6 , C7.R7} are evalu-

ated by forming the union of the exception lists: E1 for the elimination of C2; min set{E2, E5}
for the elimination of C3; min set{E3, E6, E7} for the elimination of C4; E8 for the elimination

of C8; E12 for the elimination of C9.

Step 4 Form the final solutions to the elimination problem by adding to each combination the remain-

ing query constraints that are not related to each other (C10.R10 , C11.R11 , C12.R12). The exceptions

corresponding to each solution are filtered so that they satisfy all the maintained constraints,

i.e. all the constraints in the combination.

Note that all the solutions identified in the algorithm have the same number of constraints. We

assume that the cardinality of the extent against which the query is run is far greater than any of the

exception lists annotating the optimization solutions. Therefore, there is no advantage in eliminating

only a subset of the constraints in a solution in order to decrease the number of exceptions involved.

6.4.2 Heuristic H2

Assume that in the context of H2 the graph algorithm (section 6.3) results in the associations il-

lustrated in figure 6.7. The constraints of the form Ci.Ri are existing query constraints, while the
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C0.R01C1.R1

C3.R3

E1
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Figure 6.7: Correlations between query constraints and new indexed constraint

constraints C0.R0j , j = 1, . . . , 3 are new constraints on the cluster index attribute. The additional

subscript j is needed because the constraints on the index attribute may have different ranges. We

identify all possible constraint introduction solutions as follows:

Algorithm

For each constraint on the index attribute C0.R0j

Step 1 find the least expensive association from a query constraint to C0.R0j , i.e. find the incoming

link Ci.Ri ⇒ C0.R0j with the fewest exceptions. For example if the cardinalities of E1, . . . , E5 are

n1, . . . , n5 and n4 ≤ n2 ≤ n3, then the least expensive rule for C0.R0j is C6.R6 ⇒ C0.R02(E = E4).

Step 2 filter out all the exceptions that do not satisfy at least one of the constraints C1.R1 , . . . , C12.R12 .

We do not need to test the exceptions for the antecedent of the corresponding rule, since they

satisfy it by definition.

The constraint introduction solutions identified in our example are the following:

Introduced

Constraints
Exceptions

C0.R01 {e|e← E1, C2.R2(e), . . . , C12.R12(e)}
C0.R02 {e|e← E4, C1.R1(e), . . . , C5.R5(e), C7.R7(e), . . . , C12.R12(e)}
C0.R03 {e|e← E5, C1.R1(e), . . . , C5.R5(e), C7.R7(e), . . . , C12.R12(e)}

6.5 Optimizing OQL queries

In the previous sections, a series of algorithms were given to find a collection of constraint elimination

or constraint introduction solutions. In this section, we show how the original query is transformed

to its optimized form using the optimal solution. Consider the OQL query:

select x

from Extent X as x

where C1.R1 and . . . and Cn.Rn
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6.5.1 Heuristic H1

Let < {Ci1, . . . , Cim}, Ei > be the maintained constraints and the exceptions of a solution i. Only

the maintained constraints of the optimization solution should be tested on the objects of the whole

extent; however, all the constraints should be tested on the exception cases and the objects that satisfy

the maintained constraints but not the ones omitted should be removed from the result. Hence, the

original query should be converted to the following one:

(select x from Extent X as x

where Ci1 and . . . and Cim)

except Ei

If we assume that tests on the query constraints take roughly the same time, the optimal solution

is the one with fewest exceptions Ei.

6.5.2 Heuristic H2

Let < C0.R0i , Ei > be the index constraint and the corresponding exceptions of a constraint introduc-

tion solution. Instead of testing the query constraints C1.R1 , . . . , Cn.Rn on the entire extent Extent X,

we apply them only on the results of the subquery

select x

from Extent X as x (Q0i)

where C0.R0i

Since C0.R0i is a constraint on a cluster index attribute, the select operation is expected to be quite fast.

The original query is transformed to its more efficient form:

(select x

from Q0i as x

where C1.R1 and . . . and Cn.Rn)

union Ei

The exceptions Ei are merged to the result because they satisfy the query constraints, but not the

new index constraint C0.R0i . The optimal solution is the one that introduces the index constraint with

the highest selectivity and the least exceptions, i.e. the solution that minimizes |Q0i|+ |Ei|.

6.6 Discussion

We now look at two different scenarios, and estimate the extent to which heuristics H1 and H2 speed

up query execution.
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The first scenario concerns frequently executed queries. Assume that the association rules which

are used by algorithm 6.3 are not modified. We may optimize a query once at compilation time, then

execute its optimized form. It is worth optimizing provided that the execution time of the optimized

query is less than the execution time of the original query. For heuristic H1 this happens only if the

time saved by omitting some constraints is greater than the time needed to remove the exceptions from

the result (except operation). The more the eliminated constraints and the fewer the exceptions, the

better the optimization. It is worth pointing out that the time saved by the elimination of constraints

is CPU-related. Since query execution is dominated by data access time, this optimization is not

expected to alter performance significantly. It would help only in contexts rich in associations with

few exceptions, in which users express many constraints in their queries.

Heuristic H2 is expected to bring more significant benefits. Firstly, this optimization involves a

union operation, which is much cheaper than the except operation used in H1. Secondly, instead

of retrieving all the objects of an extent from the database, we need only look at the subset retrieved

through an indexed constraint. Hence, we save a considerable amount of data access time, spending

a negligible amount of CPU time in evaluating the additional constraint.

The second scenario concerns queries which are executed only once. In this case, the time re-

quired for optimization is important. This time depends on the algorithm that finds associations

between relaxed constraints and tight constraints (see section 6.3), since this is the most expensive

step in the optimization process. This algorithm finds paths in a directed graph, and combines the ex-

ceptions associated with each edge of the path to derive the total exceptions for the path. In chapter 7

we propose a number of optimizations for this algorithm and study its complexity in detail.

6.7 Conclusion

The use of association rules for query optimization is relevant to both relational and object-oriented

database systems. There has been a lot of research on generating association rules and maintaining

them in the presence of updates. Research has also focused on finding heuristics that take advan-

tage of rules in order to optimize a query. Most of this work ([CGM90, GGMR97]) has considered

integrity rules, rather than association rules with exceptions. Semantic optimization heuristics were

also applied without considering indirect associations. In this chapter, we propose algorithms that

apply two optimization heuristics presented by Siegel et al., taking account of both exceptions and

indirect associations. We show how to use these heuristics to optimize an OQL query.

The complexity of the optimization process is closely related to the complexity of the constraint

graph, which represents the set of association rules in the data. It also depends on the number of

exceptions associated with each rule. In chapter 7, we study these dependencies in detail and set

up an experimental framework to assess the benefits of the semantic optimization techniques. We
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also propose a number of changes to the proposed algorithms that are expected to reduce the cost of

semantic optimization significantly.
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Chapter 7

Complexity and Optimization

The constraint introduction and elimination heuristics suggest the use of association rules to optimize

queries semantically (chapter 6). In this chapter we assess the complexity of the algorithm that navi-

gates over the existing association rules and identifies indirect paths from sources to target constraints

along with their exceptions. In particular, we look at its first two steps, since the cost of the third step

is negligible. Recall that step 1 backtracks from a target constraint in order to find incomplete paths

from sources to targets. The path annotations resulting from step 1 are then combined in step 2 to

form (complete) direct or indirect paths along with their exceptions.

Studying the cost of these steps does not only tell us whether it is worth executing the algorithm. It

also helps us to locate expensive parts that could possibly be optimized, deferred, or even completely

avoided. In this chapter, we propose a number of optimizations that reduce the cost of the algorithm

significantly.

Having implemented the optimized version of the algorithm, we set up a number of experiments

to measure the benefits and the cost of exploiting semantic knowledge during query execution. In our

experimental framework, we use the algorithm in order to add index constraints in the predicate of a

Select algebraic operator. Consequently, we are interested in associations that relate the constraints

of a query with any constraint on the existing index attribute. By running a variety of queries and

changing the cluster index attribute on which data organisation is based, we manage to monitor the

behaviour of the algorithm under different input conditions.

7.1 Experimental Framework

The theoretical analysis of the cost of steps 1 and 2 is supported by experimental results of running

OQL queries in the following context. Queries are executed on a Pentium III processor, running

at 450 MHz with 256 Mbytes of SDRAM. The OQL processor, which has been developed for the

123
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purposes of this thesis, consists of the following components:

• a type checker that ensures the typability of a query against a database schema [BT00],

• a module that converts OQL to calculus representation (chapter 4),

• a module that normalizes calculus expressions based on a set of rules (chapter 4),

• a module that converts calculus expressions to their algebraic forms (chapter 5),

• a semantic optimizer that takes advantage of direct or indirect association rules (with their

exceptions) in order to add or eliminate constraints from a predicate of a Select algebraic

operator (chapter 6),

• a physical execution module that takes the optimized algebraic plan and executes it.

This OQL processor has been implemented on top of the storage manager of POET OSS 6.1.

The data set to which queries are addressed has been downloaded from the site of the U.S. Census

Bureau (Department of Commerce). Each object represents a respondent to a census survey with 48

attributes. We have downloaded the survey data in the period 1973-1994 which consists of approxi-

mately 64,000 objects.

We also implemented a rule mining module based on the algorithms by Agrawal et al. [AIS93]

and Srikant et al. [SA96]. This module identifies association rules of the form

attr1 ∈ R1 ∧ . . . ∧ attrn ∈ Rn ⇒ attr0 ∈ R0 (Exc)

That is, for all objects (except those in Exc) such that the value of attr1 is in range R1 and . . . and

the value of attrn is in range Rn, it is expected that the value of attr0 be in R0. The objects that do

not satisfy the rule above, i.e. that satisfy the antecedent condition without satisfying the consequent,

are included in the set of exceptions Exc.

Each rule has a certain confidence and support, which reflect its strength and popularity in the

dataset. When running the rule mining algorithm, we may specify the minimum values of support and

confidence for the derived rules. Depending on these values, the rule mining algorithm generates dif-

ferent sets of association rules along with their exceptions. For instance, low values of confidence and

support are expected to yield numerous rules with many exceptions on average, and high connectivity

of the graph of constraints that represents the association rules.

For each experiment to be presented in the remainder of this chapter, we specify the confidence

and the support that were passed as parameters to the rule mining algorithm, as well as the number of

resulting association rules. Both the strength and the number of existing association rules affect sig-

nificantly the cost of semantic optimization of OQL queries, as will become evident in the complexity

analysis.
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Target
Constraint

Figure 7.1: Graph of constraints forming a tree towards the target constraint

The rule mining algorithm and the OQL processor have been implemented in Java (JDK 1.2.2).

In order to evaluate the cost of the semantic optimizer, we use a Java profiling tool called OptimizeIt.

This tool provides the means of monitoring both the memory and the CPU usage of a Java program.

We use its CPU profiler to measure the cost of running the OQL processor, paying particular attention

to the semantic optimizer. The monitored times are slightly greater than the real times, because of

the small overhead imposed by the CPU profiler. Time measurements are also slightly inconsistent

in multiple executions of the same query. This is mainly due to the random effect of the garbage

collection mechanism of the Java virtual machine and the caching mechanism of the object storage

manager. In order to handle this problem, we execute each query at least five times. Hence, each time

measurement in the experiments of this chapter is the average of the times monitored during multiple

executions of the same query.

Despite the inaccuracy of time measurements the experimental results provide sufficient evidence

to support the theoretical claims about the complexity of the semantic optimization algorithm.

7.2 Complexity of step 1

7.2.1 Initial version of step 1

This step backtracks from each target constraint, in order to find all (incomplete) paths from sources

to targets. This problem is equivalent to finding all maximum-length acyclic paths leading to the

target constraints.

If the graph of constraints had the form of a tree as illustrated in figure 7.1, then step 1 would

access the edges of the graph (E) at most once for each target constraint. The target constraints are

at most as many as the constraints of the graph (V). Hence, in the worst case, the complexity of this

step would simply be O(V ∗ E).
However, in the general case, the backtracking algorithm traverses certain edges of the graph a
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number of times. In order to evaluate the cost of step 1, we need to evaluate the maximum number of

edge traversals given a graph with V vertices and E edges.

In appendix C we show that given a number of vertices V, the maximum number of edge traversals

is given by the following formula:

TE =
V−1∑

i=1

(
i∏

j=1

(V− j)) (7.1)

We also show that given a number of edges E, the maximum number of edge traversals is:

TE = (m + 1) + (m + 1)(m) + (m + 1)(m)(m− 1) + . . .+ (m + 1)! (7.2)

where dm = (−3 +
√
1 + 8E)/2e.

The maximum number of edge traversals given both V and E is derived based on formulae 7.1 and

7.2.

TE(V, E) ≤ min{TE1(V), TE2(E)} (7.3)

The cost of step 1 is linear in the number of traversed edges (TE). At each edge of the graph of

constraints a path annotation of average length ` is propagated, i.e. it is copied and extended with one

more constraint. Since `� TE, we may deduce that the cost of step 1 is O(TE).

In practice, the number of edges traversed in step 1 (TE) is much smaller than the theoretical

maximum given in 7.3. TE does not depend only on the number of edges and the number of vertices; it

is very strongly related to the index (target) constraints and their connectivity to the rest of constraints.

For instance, consider a graph of constraints with 51 vertices and 223 edges, that corresponds to 186

association rules with minimum confidence 73% and support 31.25%. Using as index the attribute

race led to step 1 traversing 1,670,103 edges. However, using as index the attribute spwrkslf

resulted in traversing 2,098,510 edges. Given a set of association rules, the number of TE varies with

the selected index, but remains the same for each query execution. Hence, the optimizer can estimate

the complexity of step 1 by optimizing a single query, and select a different index attribute in case the

cost is not acceptable.

7.2.2 Optimization of Step 1

The great number of traversed edges makes the execution of step 1 prohibitively expensive. The

original version of step 1 is inefficient since it may traverse a certain edge of the graph of constraints

multiple times (at most as many as the number of path annotations). Another reason is that it only

stops the backtracking procedure when it finds a constraint already included in the path or a constraint
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Figure 7.2: Cost of finding incomplete paths from sources to targets in step 1

without any incoming links. However, it would be sufficient to stop when a source constraint is

encountered.

Based on these two remarks, we propose an optimized version of step 1. We start from a target

constraint CT and we apply the following steps recursively.

1. Annotate the current constraint Ccur as visited.

2. If Ccur is a source constraint, annotate it with a path consisting only of itself.

3. Otherwise, for each constraint Ci such that there is an edge from Ci to Ccur,

• if Ci is not visited apply the procedure on it recursively. This results in Ci being annotated

with zero or more paths from sources to Ci. (If Ci has already been visited then it has

already been annotated with these paths.)

• Extend each one of these paths with the current constraint Ccur and add the new paths to

the annotations of Ccur.

The algorithm above shows that backtracking is interrupted when a source constraint is encoun-

tered. The use of the flag visited prevents us from traversing the same edge more than once. The

downside is that all constraints in the paths from sources to targets are annotated with paths from

sources to themselves. These annotations are first created and stored in the source constraints; they

are gradually extended and propagated towards the targets.
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Let us consider the cost of the new version of step 1. This does not depend only on the number

of traversed edges, but also on the number and the length of path annotations propagated across the

graph of constraints. Propagating a number of annotations across an edge implies copying them

and extending each one of them with an additional constraint. The cost of copying the annotations

at each stage (across a certain edge) is bounded by the total length of path annotations derived as

a result of step 1 (TLPA). If TE is the number of edges traversed during the execution of step 1,

the cost of the latter should be O(TLPA ∗ TE). Figure 7.2 shows the cost of the optimized version

of step 1 for 23 queries, which are optimized by adding constraints on different index attributes.

The graph of constraints is generated by 186 association rules with minimum confidence 73% and

support 31.25%. The optimization of the same 23 queries have been used to monitor times relevant

to following experiments (figures 7.2, 7.3, 7.4, 7.5, 7.6, 7.7). The optimized version of step 1 is

considerably faster than the original one.

7.3 Complexity of Step 2

As a result of the first (backtracking) step the source constraints are annotated with paths leading

to the target constraints. Based on these path annotations, the second step of the algorithm per-

forms two operations iteratively. It first absorbs all simple constraints in the paths until a pair of

simple-composite constraints is reached. It then finds combinations of annotations having the same

composite constraint, such that the preceding simple constraints are all the conjuncts of the composite

one. If new annotations result from the combinations they are added to the existing annotations and

the two substeps are repeated until no more combinations are generated.

An important issue that should be stressed is the handling of exceptions during the iteration of the

two substeps. Substep 1 absorbs the simple constraints in the path annotations, by going through the

edges (i.e. the direct associations) that link them. The exception sets associated with each edge are

taken into consideration whilst going through the edges. If constraint A leads to constraint B based

on a rule with exceptions EA⇒B, and B leads to C based on a rule with exceptions EB⇒C, then the

exception set of the indirect path A→ C (or the indirect rule A⇒ C) is:

E = {exc|exc← EA⇒B, not C(exc)}
∪{exc|exc← EB⇒C, A(exc)} (7.4)

Substep 2 combines path annotations that pass from the same composite constraint through dif-

ferent conjuncts. Doing so, it also combines the exception sets evaluated so far for each of the

annotations; that is, it creates the union of the exceptions evaluated so far for each combined path that
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satisfy the source constraints of the other combined paths. If C = C1 ∧ C2,

E(CA ∧ CB ⇒ C) =

{e|e← E(CA ⇒ C1), CB(e)}∪
{e|e← E(CB ⇒ C2), CA(e)} (7.5)

The original algorithm implies the application of the two formulae (7.4, 7.5) at each iteration of

the substeps 2.1 and 2.2.. This results in filtering many exception sets against various constraints,

even if the resulting path annotations do not eventually lead to complete paths from a source to a

target constraint. It is indicative to say that measuring the time of step 2 in the context of rules with

90 percent confidence, the prevailing cost of both substeps was the filtering of exceptions. This is

because filtering implies resolving the references of the exceptions, fetching the actual instances from

the database and checking their values against certain constraints.

To avoid this overhead we optimize step 2 by deferring the filtering of exceptions as much as

possible. Instead of applying formulae 7.4 and 7.5, we just accumulate the sets of exceptions both

while absorbing simple constraints (substep 2.1) and while combining path annotations (substep 2.2).

This is a relatively cheap operation since it does not involve resolving exceptions, and therefore

accessing the database.

The resolution and filtering of exceptions will take place only for those exceptions that are rel-

evant to the complete paths from sources to target constraints. Hence, annotations that do not form

complete paths should not burden the optimization process with exception filtering. Further, the ex-

ceptions do not need to be tested against the intermediate constraints of the path annotations, as is

implied by the formulae 7.4 and 7.5, but only against the sources and the target constraints.

The optimization of step 2 - by deferring exception filtering and actually doing it only against the

sources and the target constraints - led to significant performance improvements. In the remainder of

this section, we reason about the complexity of step 2 (in its optimized form) and test its performance

by running a series of queries.

7.3.1 Substep 2.1 - Absorbing simple constraints in path annotations

The nature of substep 2.1 denotes that its cost should be linear to the number of absorbed constraints.

This is explained by the fact that absorbing each constraint, by traversing a simple edge, involves a

constant cost as is explained below. Each annotation is associated with a set of exception sets which

is initially empty. Absorbing a constraint involves i) traversing a simple edge (i.e. a direct association

rule) and ii) adding the exception set of this edge to the set (of exception sets) associated with the

annotation.

The linearity of the relation between the number of absorbed constraints and the cost of step 2.1

is demonstrated in figure 7.3.
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Figure 7.3: Relating the cost of step 2.1 to the number of absorbed constraints

Proposition 1 The number of absorbed constraints is not bounded by the total length of path anno-

tations.

Proof. This proposition is easy to prove by the use of a simple example. Consider six path
annotations containing the same composite constraint. In two of them the composite constraint is
preceded by its first conjunct; the other four annotations reach the composite constraint through its
second conjunct.

C1 → . . . Cconj1 ; Ccomp → C7 → C8 → C9

C2 → . . . Cconj1 ; Ccomp → C7 → C8 → C9

C3 → . . . Cconj2 ; Ccomp → C7 → C8 → C9

C4 → . . . Cconj2 ; Ccomp → C7 → C8 → C9

C5 → . . . Cconj2 ; Ccomp → C7 → C8 → C9

C6 → . . . Cconj2 ; Ccomp → C7 → C8 → C9

Combining these annotation results in eight new annotations. Hence, the edges following the com-

posite constraint will be traversed eight instead of six times. The total traversed edges will obviously

be more than the total length of path annotations.

Proposition 2 The number of absorbed constraints is bounded by the following formula:

(New Annotations + Initial Annotations)× Composite Distance,

where Composite Distance is the maximum number of consecutive simple constraints preceding

or following a composite constraint.
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Proof. New Annotations is the number of paths generated by combining existing annotations in

step 2.2. These along with the Initial Annotations, generated by the backtracking algorithm in

step 1, are all the annotations to which the absorbing algorithm may apply. The maximum number

of constraints absorbed in each annotation is Composite Distance. Hence, the number of absorbed

constraints never exceeds

(Combined Annotations + Initial Annotations)× Composite Distance

7.3.2 Substep 2.2 - Combining path annotations

Substep 2.2 involves the following costs:

Sorting Cost: The path annotations resulting from substep 2.1 have a simple constraint at their

first position and a composite one at their second. It would be convenient to sort these annotations

in order to facilitate their combination. The initial implementation of step 2.2 sorted paths based

first on the composite and then on the simple constraints. It then found combinations of annotations

satisfying two conditions: i) their initial composite constraint should be the same and ii) the simple

constraints preceding the common composite constraint should form all its conjuncts. This method

had two basic disadvantages. First it resulted in great numbers of new annotations that needed to be

sorted and then combined. Second, the new annotations contained many duplicates that needed to be

removed. In short, this method made the cost of step 2.2 prohibitively expensive.

A simple observation optimized the implementation of step 2.2 significantly. A number of paths

should be combined only if they are identical from their first composite constraint onwards. For

instance, say we have the following path annotations:

C1 ; Ccomp → C3 → C4 → C5

C2 ; Ccomp → C3 → C4 → C5

C2 ; Ccomp → C5

C1 ; Ccomp → C5

C1 ; Ccomp → C6 ; C′comp → C5

C2 ; Ccomp → C6 ; C′comp → C5

In the original implementation the first annotation would be combined with the second, the third

and the sixth, since they have the same first composite constraint and different simple constraints

(conjuncts) preceding the composite one. However in the current implementation, the first annotation

is combined only with the second, because it has the same body from the first composite constraint

onwards. This method of combining annotations yields a smaller number of new annotations, without

limiting the ability to find indirect association rules. It also avoids the generation of duplicate new

annotations.
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Figure 7.4: Cost of sorting initial and new path annotations

In order to facilitate combining paths, we sort them based on:

1. the number of composite constraints in each of them (desc)

2. their body from the first composite constraint onwards (asc)

3. the simple constraint preceding the first composite constraint (asc)

The paths of the previous example would be sorted as follows:

C1 ; Ccomp → C6 ; C′comp → C5

C2 ; Ccomp → C6 ; C′comp → C5

C1 ; Ccomp → C3 → C4 → C5

C2 ; Ccomp → C3 → C4 → C5

C1 ; Ccomp → C5

C2 ; Ccomp → C5

Consider the general case in which Step 1 yields IA initial annotations. At the first iteration,

step 2.1 absorbs the single constraints preceding the first composite constraint of each path. The

resulting annotations are inserted into a sorted vector and duplicate paths are eliminated. This results

in a vector of DA distinct ordered annotations. The cost of inserting/sorting the initial annotations is

O(IA ∗ log(DA)). Step 2.2 then combines these annotations into new ones that are also inserted in the
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ordered vector. The total number of annotations in the final sorted vector is TA = DA + NA, where NA

are the new annotations generated during all iterations of step 2.2. The cost of inserting/sorting the

new annotations is therefore O(NA ∗ log(TA)).
The total sorting cost of step 2.2 is O(IA ∗ log(DA) + NA ∗ log(TA))(fig 7.4). We must take

into account that comparing path annotations, in order to sort them, resembles comparing strings.

The maximum number of operations per comparison is bounded by the maximum length of path

annotations. If this is a constant k� IA ∗ log(DA) + NA ∗ log(TA) then we may still assume that

Sorting Time = O(IA ∗ log(DA) + NA ∗ log(TA)).

In order to predict the sorting cost of step 2, we need to evaluate IA, DA, NA and TA. The number

of initial annotations (IA) is determined at the end of step 1, whilst the number of distinct annotations

(DA) is known by the end of the first iteration of step 2.1. If we managed to predict the number of new

annotations (NA), then the total anotations would be TA = DA + NA.

Assume that after sorting the initial path annotations, we have

• p1 annotations containing `1 composite constraints,

• p2 annotations containing `2 composite constraints,

• . . .

• pn annotations containing `n composite constraints,

where DA = p1 + . . .+ pn.

We assume for simplicity that composite constraints consist of two conjuncts. If s is the number

of source constraints, then each composite constraint can be reached by at most 2s − 1 combinations

of sources. The minimum number of paths that can generate 2s − 1 combinations is 2 ∗ √2s − 1

(
√
2s − 1 paths reach the composite constraint through each one of its conjuncts). Hence, by com-

bining p1 annotations, we derive at most (p1 ∗
√
2s − 1)/2 new paths.

If `2 = `1 − 1 then the new paths (p1 ∗
√
2s − 1)/2 are added to p2. Combining the annotations

with `2 composite constraints (p′2 = p2 + (p1 ∗
√
2s − 1)/2) results in at most (p′2 ∗

√
2s − 1)/2

new paths.

If `2 < `1 − 1 then only p′1 = (p1 ∗
√
2s − 1)/2 paths are combined into (p′1 ∗

√
2s − 1)/2 new

annotations. These have `1 − 2 composite constraints.

This procedure continues in a similar way. If `1 = `2 + 1 = . . . = `n + n− 1 then

NA =
n∑

i=1

New Annoti (7.6)

where New Annoti = (p′i ∗
√
2s − 1)/2 and p′i = pi + New Annoti−1.
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Figure 7.5: Cost of finding new combinations in step 2.2
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Figure 7.6: Cost of forming combinations in step 2.2
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Cost of Combining Annotations: This cost involves iterating over the ordered vector of paths in

order to combine annotations with the same initial composite constraint, different conjuncts preceding

it and the same body from the composite constraint onwards. This is easy to do since the vector is

already sorted based on these three criteria.

Consider a composite constraint as having n positions, one for each conjunct. By browsing the

sorted vector of annotations, we can linearly determine which paths can fill the first, second, or nth

position of the composite constraint. Groups of n annotations that can fill all different positions

of a composite constraint are combined to form a new path annotation. Hence the cost of finding

combinations is linear in the total number of path annotations TA (figure 7.5).

The total number of combinations equals the number of new annotations. For each combination

the sources of the constituent paths are checked that they have compatible ranges. The exceptions of

these paths are then merged to form the exceptions of the new path. The cost of forming combinations

is therefore linear in the number of new annotations NA (figure 7.6).

The total cost of combining sorted annotations is given by a function of the form:

Combining Cost = a ∗ TA + b ∗ NA + c, a, b, c > 0

Based on this equation, we can predict the worst-case cost of combining annotations by predicting

NA and setting TA = DA + NA.

7.4 Combining steps 1 and 2 optimizes the algorithm significantly

Extending and propagating path annotations across the graph of constraints is the most expensive

operation of step 1. Likewise, sorting path annotations in order to facilitate their combination is the

dominant cost of step 2. It is possible to avoid both of these expensive operations by combining the

functionality of steps 1 and 2.

In the new optimized algorithm, we avoid storing in each constraint Ccur (step 1) long paths from

source constraints. Instead we store pairs of the form (Cs, SE), which means that there is a complete

(indirect) path from the source constraint Cs to Ccur that involves the sets of exceptions Ei ∈ SE. Here

Ei, i = 1, . . . , n correspond to the sets of exceptions of the direct edges (rules) that form the path

Cs → . . .→ Ccur. Based on this remark, we present the combined version of steps 1 and 2.

We start from a target constraint CT and we apply the following steps recursively:

1. Annotate the current constraint Ccur as visited.

2. If Ccur is a source constraint, annotate it with the pair (Ccur, {}).

3. Otherwise, if Ccur is a simple constraint (not a conjunction of constraints)
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• for each constraint Ci such that there is an edge from Ci to Ccur,

– If Ci is not visited apply the procedure to it recursively. This results in Ci being

annotated with zero or more pairs of the form Cs, SE (if Ci has already been visited

then it has already been annotated with these pairs).

– Let Ei be the set of exceptions of the association rule Ci → Ccur.

– Take copies of the annotations {(Cj, SEj)}, j = 1, . . . , m of Ci and update their sets

of exceptions with Ei: SE′j = SEj ∪ {Ei}, j = 1, . . . , m. Add the updated copies

{(Cj, SE′j)} to the annotations of Ccur.

• Remove duplicate annotations of Ccur

4. Otherwise, (if Ccur is a composite constraint)

• for each conjunct Ci, i = 1, . . . , n such that Ci ; Ccur,

– If Ci is not visited apply the procedure to it recursively. This results in Ci being

annotated with zero or more pairs of the form Cs, SE (if Ci has already been visited

then it has already been annotated with these pairs).

• Combine the annotations of conjuncts Ci to form new annotations {(C′j, SE′j)} that reflect

complete paths that pass through all conjuncts of Ccur. For instance, if each conjunct Ci
is annotated with a single pair (Csi , SEi), these pairs are combined to the new annotation

(Cs1 ∧ . . . ∧ Csn , SE1 ∪ . . . ∪ SEn).
• Remove duplicate annotations of Ccur

The algorithm above propagates pairs of the form (source, exception sets) instead of long

path annotations that include all intermediate constraints. There is also no need to sort path annota-

tions before combining them, since combinations are formed on the fly at the composite constraint, as

soon as the indirect paths from sources to its conjuncts have been identified. The cost of the algorithm

depends on the number of edges traversed in the graph of constraints (TE). Note that TE is bounded by

the total number of edges E in the graph. The length of path annotations no longer plays an important

role (as in the previous version of step 1), since for each indirect path we store only its source and

target constraint. The number of tuples (source, exception sets) propagated across each edge (or

combined in composite constraints) is very small compared to the number of traversed edges. These

tuples represent complete paths from sources to a particular constraint and are considerably fewer

than the incomplete paths propagated across the graph in the previous version of the algorithm.

To be more specific, if s is the number of source constraints, the maximum number of annotations

propagated across an edge (or stored in a constraint) is 2s − 1. For instance, given two sources C1
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Figure 7.7: Cost of optimized algorithm

and C2, the annotations of any other constraint can be at most 22 − 1 = 3:

(C1, E1) (C2, E2) (C1 ∧ C2, E3)

Consider PA as the total number of annotations propagated towards simple (non-composite)

constraints. Assume that NA is the number of new annotations that are formed in composite con-

straints by combining the annotations of the conjuncts. For each one of the PA + NA annotations,

we evaluate the corresponding sets of exceptions. Then we add each tuple (C, E) to the annota-

tions of a constraint ensuring that we eliminate duplicates. Since the maximum number of an-

notations per constraint is 2s − 1, the cost of forming annotations and removing duplicate ones is

O((PA + NA) ∗ log(2s − 1)) = O((PA + NA) ∗ s) (figure 7.7).

We monitored the cost of the algorithm by optimizing 23 queries (the same ones used in previous

experiments) using first 186 association rules and then 290 rules (figure 7.7). The first set of rules

was generated by running the rule mining algorithm with confidence 73% and support 31.25%. The

second set was generated based on 70% confidence and 27.5% support. Optimizing queries using

186 association rules is cheaper than using 290 rules, since the generated graph of constraints has
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fewer edges in the first case (223 edges) than in the second (317 edges). This implies that there are

more complete paths from source constraints to a certain constraint C, i.e. C has more annotations.

The cost of removing duplicate annotations, and hence the total cost of the algorithm, is increased.

This explains why optimizing queries with the same value for (PA + NA) ∗ s is more expensive when

the number of association rules, and thus the number of edges, is increased. The factor s provides an

upper bound for the cost of removing duplicates at each constraint, but in practice this factor depends

on the connectivity of the graph.

If E is the number of edges in the graph of constraints then the total number of annotations

propagated towards simple constraints is:

PA ≤ E ∗ (2s − 1)

If the graph contains comp composite constraints, each one having at most conj conjuncts, then the

total number of annotations generated in composite constraints is:

NA ≤ comp ∗ (2s − 1)conj

Hence, the complexity of the new optimized algorithm is the following:

Cost = O((E ∗ (2s − 1) + comp ∗ (2s − 1)conj) ∗ s) (7.7)

The number of sources s reflects the number of predicates in the where clause of the initial

query. Hence, formula 7.7 shows that the complexity of the query affects the cost of optimization

exponentially. The number of edges E, composite constraints comp and conjuncts per composite

constraint conj reflect the connectivity of the graph of constraints. Hence, the optimization cost

also depends on the number and the nature of association rules which are represented in the graph of

constraints. For a particular query, we can bound the cost of the algorithm by selecting an appropriate

set of association rules as the basis for the optimization.

7.5 Overall performance of optimizing queries semantically

In this chapter, we studied the complexity of the algorithm that navigates over a graph of constraints

and finds direct or indirect paths along with their exceptions. Having implemented various versions

of this algorithm, we used it in order to optimize queries semantically. Our intention was to identify

association rules that would help us add index constraints in the where clauses of the queries. A

series of time measurements on the various (sub)steps of the algorithm were carried out in order to

shed light on the analysis of complexity.

Studying the complexity of the algorithm led us to a number of optimizations that improved its

performance significantly. In the final version of the algorithm, the cost of steps 1 and 2 is negligible,
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Figure 7.8: Relating the query execution benefits to the optimization cost and the evaluation benefits

(top view)

compared to the operations that fetch objects from the database. These operations include i) fetching

the association rules in order to generate the graph of constraints and ii) filtering the exceptions

involved in the (indirect) paths that contribute to the query optimization. The cost of the first operation

is ignored, since the OQL processor can load the association rules into a graph of constraints once

in order to avoid burdening the execution of each individual query. Since the cost of resolving and

filtering exceptions is linear in the number of exceptions, the optimizer decides whether to optimize

a query semantically, as soon as it evaluates the number of exceptions Ei corresponding to each

useful indirect association i. The consequent (index) constraint of an association i can be used to

retrieve Si instead of N objects from the extent. The optimal association is the one that minimizes

Ei + Si. The optimizer applies this association to transform a query semantically only provided that

N > Eopt + Sopt. Otherwise, the optimization algorithm is interrupted and the query is executed in

its initial form.

The surface in figure 7.8 demonstrates the benefits of the algorithm in the optimization of OQL

queries. The x-axis ((N− E− S)/N) represents the percentage of objects that we avoided retriev-

ing from the extent by introducing the index constraint. It shows the benefits of the optimization

solution at evaluation time. The y-axis represents the fraction of the optimization cost to the unop-

timized total execution time (OC∗/UET). Note that the optimization cost (OC∗) does not include the

cost of resolving exceptions from the database. It only involves loading the association rules into
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Figure 7.9: Relating the query execution benefits to the optimization cost and the evaluation benefits

(1st side view)
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Figure 7.10: Relating the query execution benefits to the optimization cost and the evaluation benefits

(2nd side view)
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a graph of constraints and finding the constraint introduction solution. OC∗ should be distinguished

from the optimization cost measured in figure 7.7, which does not include the cost of loading rules

in memory. The z-axis represents the percentage of the total execution time saved by the optimiza-

tion (UET− OET)/UET. It is evident that as we decrease the cost factor (OC∗/UET) and increase the

evaluation benefit (N− E− S)/N, the total benefit of the optimization (UET− OET)/UET is increased.

We optimized 40 queries using a variety of index constraints with different selectivities. We also

used different sets of association rules by running the rule mining algorithm with the following values

of confidence and support {(c = 50%, s = 10%), (c = 60%, s = 10%), (c = 70%, s = 18.75%),

(c = 73%, s = 25%), (c = 73%, s = 31.25%)}. Although queries were evaluated over a small ex-

tent (4000 objects) the benefits of applying the constraint introduction heuristic were often significant.

For large extents the cost factor OC∗/UET is expected to be negligible and the total execution benefit to

be linear in the evaluation benefit ((N− E− S)/N). This is also the case for queries that are optimized

once at compile time, and are then executed multiple times.

The side views of the same surface (figures 7.9 and 7.10) show that its shape is almost planar, as

is expected theoretically:

Total Optimization Benefit = Evaluation Benefit− Semantic Optimization Cost

⇒ UET− OET = a ∗ (N− E− S)− OC∗

⇒ (UET− OET)/UET = a ∗ (N− E− S)/UET− OC∗/UET

⇒ (UET− OET)/UET = a ∗ (N− E− S)/(a ∗ N + b)− OC∗/UET

where a reflects the time of fetching and processing a single object and b reflects the cost of checking

the type of a query, translating it into its intermediate representations and applying syntactic trans-

formations. If b is much smaller than the evaluation time (a ∗ N), we may assume that UET ≈ a ∗ N.

Hence,

(UET− OET)/UET ≈ (N− E− S)/N− OC∗/UET

The anomalies of the surface in figures 7.8, 7.9 and 7.10 are partly caused by the inaccuracy of time

measurements, as well as by the assumption UET ≈ a ∗ N. The surface is the result of interpolating

the irregularly sampled data to a regularly spaced grid and then plotting the interpolated and the

non-uniform data (using MATLAB).

There are cases when the optimization has a negative effect on the query execution time. This

may be due to either of the following reasons: i) the optimizer may have decided that the optimization

is not worth applying, but cannot undo the optimization cost incurred so far; ii) the optimization was

worth applying, but its benefits were not greater than the optimization cost. In both cases the negative

effect is negligible, provided that the optimization cost does not include fetching the association rules

from the database at each query execution.
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7.6 Discussion

In chapter 6, we proposed an algorithm that navigates through a set of existing association rules,

and identifies indirect associations between certain source and target constraints. This algorithm was

proposed as part of the overall algorithm for optimizing queries using the constraint introduction

(or elimination) heuristic. In this chapter, we reasoned about the complexity of the algorithm by

looking at its functionality step by step. The complexity analysis highlighted aspects of the algorithm

that needed to be improved and hence contributed to its optimization. Having implemented various

versions of the algorithm we tested its performance by running a series of OQL queries. The benefits

of applying the constraint introduction heuristic depend on the selectivity of the index constraint and

the exceptions involved in the useful associations. Our experience is that this heuristic often reduces

the time of query execution significantly. The constraint elimination heuristic is worth applying only

when the associations involved have practically no exceptions.



Chapter 8

Conclusion and Future Work

In this dissertation we developed an OQL processing framework that encompasses all features of the

object-oriented paradigm and is flexible enough to benefit from semantic knowledge in the form of

association rules. This was achieved by extending previous work on type inference, calculus and

algebraic intermediate representations, as well as on the use of semantic optimization heuristics. The

proposed OQL framework is useful for a number of commercial or scientific applications that handle

large amounts of complex data rich in semantic correlations (chapter 2). We give a summary of the

contributions of this dissertation in the various stages of OQL processing.

8.1 Summary

We first proposed a type inference model (chapter 3) in order to ensure that an OQL query is well-

typed. The inference algorithm, which is the core of this model, identifies the most general type of

an OQL query in the absence of schema information; it also derives the minimum type requirements

that a schema should satisfy to be compatible with this query. The expressiveness and the complex

type system of OQL raised issues that could not be handled by previous work on type inference.

Hence, by developing a type inference model for OQL, we gained a lot of experience in dealing with

polymorphic collection types, structures and classes all being related through a complex subtype re-

lationship and being manipulated using a variety of constructs. It was shown that the unification

mechanism used to resolve constraints in previous models is not sufficient in our context. The infer-

ence rules defined in this thesis generate a variety of constraints specific to OQL and a mechanism is

provided to resolve them. The proposed inference model should be useful in any distributed or even

semi-structured database environment.

Having ensured the typability of an OQL query, we then investigated its translation into the

monoid calculus intermediate representation (chapter 4). In the translation process, we identified
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several weak points of ODMG OQL [CBB+00], e.g. the nondeterministic behaviour of the order by

clause, and proposed ways of dealing with them. We pointed out that not all OQL queries reflect

homomorphic mappings, and hence, their translation using monoid comprehensions is not always

possible. Nonhomomorphic functions like bagof, listof, arrayof and sortof were introduced

in order to resolve this problem. The resulting translation rules, which cover all OQL constructs,

differ from those defined in related contexts [Afs98, FM00]. In [FM00], a set of normalization

rules is defined in order to simplify calculus expressions. In this dissertation, we extended this set

with additional rules and we proposed a normalization algorithm that determines the order of their

application.

We then investigated the translation of calculus expressions to the monoid algebra (chapter 5).

Following the approach of Fegaras and Maier [FM00], we adopted a set of algebraic operators (e.g.

Select, Join) similar to the ones used in relational contexts. However, we realised that new op-

erators should be introduced in order to translate calculus expressions containing nonhomomorphic

functions. We also pointed out that nested comprehensions should be processed locally before being

merged with the algebraic expressions generated in outer comprehensions. Our approach provides

opportunities for further optimization compared to the approach in [FM00]. New algebraic opera-

tors were added in order to handle merge operations of collections. We highlighted the need for the

OuterSelect operator, which enables the OQL processor to filter the results of a nested compre-

hension before processing its head. At the physical level, this implies reducing the volume of data

to be processed at an early stage. Finally, by annotating all algebraic operators with monoid infor-

mation, we provided opportunities for optimizing the physical execution plan. The translation rules

proposed in this thesis provide a complete mapping from the monoid calculus to the algebraic query

representation.

In chapter 6, we proposed an algorithm that uses association rules in order to optimize queries

semantically. This algorithm is the main step towards applying the constraint introduction and elimi-

nation heuristics presented in [SSS92]. It is assumed that a rule mining algorithm is used in order to

generate a set of association rules along with their exceptions. The number of derived rules depends

on the minimum support and confidence that are passed as parameters. The exceptions to the rules,

i.e. the objects that satisfy the antecedent but not the consequent, are maintained properly in the pres-

ence of database updates. Given a particular query, we showed how query predicates are mapped into

source or target constraints found in association rules. We then proposed an algorithm that identifies

direct or indirect correlations between source and target constraints along with their exceptions. Us-

ing these correlations, a set of optimization solutions is identified, and the optimal one is selected for

the query transformation. Previous work on semantic optimization has mainly considered integrity

rules rather than association rules with exceptions [CGM90, GGMR97]. There has also been no pre-

vious effort to identify indirect correlations that could be useful for semantic transformations. The
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algorithm proposed in this thesis has two valuable properties: i) it is flexible enough to take advantage

of weak or indirect correlations and ii) it can be used to apply a variety of heuristics besides the ones

that suggest the introduction or elimination of constraints. For instance, the proposed algorithm is

equally useful for the following two heuristics proposed by Siegel et al. [SSS92]:

• If a query contains a restriction on a range attribute, then try to locate a constraint on that

attribute that is a contradiction to the existing restriction (contradiction heuristic).

• If a restriction on a range attribute implies the answer to a query then the latter can be answered

without accessing the database (tautology heuristic).

In order to assess the benefits of semantic optimization, we evaluated the cost of the algorithm

that finds indirect correlations between source and target constraints. The complexity of the algorithm

was estimated from a theoretical point of view and was confirmed by optimizing a number of queries

using the constraint introduction heuristic. The complexity analysis led us to identify expensive

tasks of the algorithm that could be changed, deferred or avoided. A number of optimizations were

proposed that reduced the cost of the algorithm considerably.

Our experience from implementing the algorithm showed that a significant amount of time could

be saved if the association rules are loaded in memory (into a graph of constraints) once and not

every time a query is optimized. Given a graph of constraints, the semantic optimizer navigates over

its edges and identifies indirect associations that could be used to apply the constraint introduction

heuristic. We decided that the exceptions involved in the indirect associations should be accumulated

but not resolved, until the OQL processor decides on whether to apply the optimization. A query is

optimized, if the sum of exceptions and objects retrieved using the index constraint is smaller than

the cardinality of the extent. Hence, instead of resolving all objects from the original extent, the

OQL processor only fetches a subset of them, and thus saves significant data-access time. If the

optimization is not applicable, the query execution is burdened with a negligible CPU-related cost. It

is shown that this cost is bounded by the number of edges in the graph of constraints.

The constraint elimination heuristic is worth applying when the number of exceptions involved

in the optimization solution is very small. In a relational context, the cost of resolving these ex-

ceptions may easily outbalance the CPU-related benefits of applying the heuristic. However, in an

object-oriented context, where constraints may potentially include expensive method invocations, the

optimizer may decide to apply the heuristic despite the great number of exceptions involved.

In the case of the tautology and contradiction heuristics, a potential optimization solution is ben-

eficial independent of the number of exceptions involved. The optimized queries can be executed

by resolving only the exceptions of the solution, which are always fewer than the cardinality of the

extent to which the query is addressed.
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8.2 Future work

The areas studied in this dissertation include type inference of OQL, calculus representation, normal-

ization of calculus expressions, algebraic representation and semantic optimization using association

rules. This work can be extended in the last two phases of OQL processing, namely the algebraic

level and the semantic optimization techniques.

In particular, in this dissertation we defined a complete mapping from calculus expressions to the

monoid algebra. However, we did not consider syntactic transformations at the algebraic level. It

would be interesting to identify a set of rules that optimize the algebraic plan, taking into account

the new algebraic operators introduced in this thesis. Further work could focus on optimizing the

physical execution plan based on the monoid information associated with the algebraic operators.

Future research might also concern the semantic optimization of OQL queries. In this dissertation

we presented in detail all the steps of applying the constraint introduction and elimination heuristics

(chapter 6). The most important step is an algorithm that navigates over a graph of constraints and

finds direct or indirect associations along with their exceptions. The heuristics considered so far are

applicable to both relational and object-oriented systems. Future work could investigate the use of

the proposed algorithm to apply heuristics specific to the object-oriented paradigm. For instance, the

query optimizer could benefit from association rules with the following kinds of constraints:

C ≡ x1 ∈ extent

| x1.relationship = x2

| x1 ∈ x2.relationship

| x1.attribute1 < comp op > x2.attribute2

| x1.method(y1, ..., yk) < comp op > x2.attr

| x1.method(y1, ..., yk) < comp op > value

where x1, x2 represent objects and y1, . . . , yk may be instances of any OQL type (chapter 3). It is

assumed that in the beginning of a rule, each variable xi (or yi) is annotated with the most general

type for which the rule is applicable.

Examples of rules containing constraints on the attributes, methods, relationships or extents of

one or more objects are given below:
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λ x : Employee.

x.salary > 50, 000⇒ x ∈ Managers

λ x : Company.

x.revenues > x.expenses⇒ x.profits() > 0

λ x : Person, y : Person.

x ∈ Unemployed ∧ y ∈ Employees⇒ x.expenses < y.expenses

λ x : Hotel, month : integer.

x.stars = 3 ∧ month < 9 ∧ month > 5⇒ x.revenues(month) > 200, 000

In order to benefit from such semantic knowledge, new data mining algorithms should be devised

to identify correlations between the values of attributes, relationships and methods of objects belong-

ing to the same or different classes. Mechanisms like the use of join indices should be considered in

order to optimize the execution of mining algorithms [ST95, JS97]. Standard procedures for defining

semantics about method invocations (e.g. relating parameters to their results or restricting the range

of the results) are also worth studying.

Assuming that we have the means of deriving complex association rules, the next issue that arises

is how we could possibly generate a graph of constraints that reflects these associations. For instance,

information about the class hierarchy of a particular schema is necessary in order to add a link from a

constraint x ∈ extent1 towards x ∈ extent2, where extent1 ⊆ extent2 (class1 corresponding

to extent1 is a subclass of class2 corresponding to extent2).

Association rules have traditionally been used to define positive correlations between the values

of data. For instance, if the values of an attribute A are in a range R1 the values of attribute B are

in range R2. However, query optimization could take advantage of association rules that contain

negations and thus express the fact that certain ranges of attributes never appear together [EGLM01].

It would be interesting to study how we could identify indirect associations with exceptions in the

presence of such rules.

We might wish to define indirect relationships between objects, for example, if x.father = y

and y.father = z then x.grandfather = z. This is a typical rule that expresses intensional in-

formation in a deductive database. It could be implemented as a deductive method attached to a

class in an object-oriented system [Sam00, SP00]. Hence, a node which represents the constraint

x.grandfather = z might be an abstraction of a subgraph which needs to be traversed. The nodes

of the subgraph would be variables instead of constraints, whilst the edges would denote the relation-

ships traversed. Combining known traversal techniques for the subgraphs [Pul96] with the traversal
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techniques proposed in this thesis, we could take advantage of associations involving intentional and

extensional information.

Given that the previous problems are solved, the proposed algorithm navigates over the graph of

constraints and finds paths from source to target constraints. Identifying which constraints are used

as sources and targets is another open problem, the answer to which depends on the optimization

heuristic.

Finally, future research could consider combining data mining with warehousing techniques. If

we were able to identify association rules that involve aggregate values (stored in a warehouse), then

it would be possible to optimize expensive select . . . group by queries [AHLS00].

8.3 Conclusion

This dissertation presents a framework for the efficient execution of OQL queries. Starting from

inferring the type of an OQL query, we proceed to translate it into a calculus form, normalize it at

this level and translate it into an algebraic representation. We then demonstrate how OQL queries can

be optimized semantically with the aid of association rules. Many optimization heuristics, e.g. the

constraint introduction and elimination heuristics, suggest the use of semantic knowledge expressed

in (direct) integrity rules. We point out that optimization opportunities would be increased if we used

indirect associations that are not necessarily 100% valid. An algorithm is proposed that navigates over

existing association rules and identifies indirect associations along with their exceptions. We assess

the cost and the benefits of this algorithm in the context of two optimization heuristics applicable in

both object-oriented and relational systems. It is expected that the algorithm be equally useful for

applying heuristics specific to the object-oriented paradigm. We implemented and tested the ideas

reported in this thesis by developing an OQL engine and enhancing it with a semantic optimizer.



Appendix A

Inference Rules

This appendix presents the inference rules for OQL that have not been discussed in chapter 3 of the

dissertation:

H; C ` q1 : σ ⇒ C1 H; C1 ` q2 : τ ⇒ C2
H; C ` q1 and q2 : bool⇒ C2 ∧ {σ = bool} ∧ {τ = bool}

H; C ` q1 : σ1 ⇒ C1 H; C1 ` q2 : σ2 ⇒ C2
H; C ` q1 union q2 : σ ⇒ C2 ∧ {σ = Merge Result(σ1, σ2)}∧
{Equality Compatible(Member Type(σ1), Member Type(σ2))}

H; C ` q1 : σ1 ⇒ C1 H; C1 ` q2 : σ2 ⇒ C2
H; C ` q1 = q2 : bool⇒ C2 ∧ {Equality Compatible(σ1, σ2)}

H; C ` q1 : σ1 ⇒ C1 H; C1 ` q2 : σ2 ⇒ C2
H; C ` q1 < q2 : bool⇒ C2 ∧ {Greater Less Than Compatible(σ1, σ2)}

H; C ` q1 : σ1 ⇒ C1 H; C1 ` q2 : σ2 ⇒ C2
H; C ` q1 + q2 : σ0 ⇒ C2 ∧ {σ0 = Arith Result(σ1, σ2)}

H; C ` q1 : σ1 ⇒ C1 H; C1 ` q2 : σ2 ⇒ C2
H; C ` q1 mod q2 : int⇒ C2 ∧ {σ1 = int} ∧ {σ2 = int}
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H; C ` q : σ ⇒ C1
H; C ` −q : σ ⇒ C1 ∧ {σ ⊆ int/float}

H; C ` q : σ ⇒ C1
H; C ` not q : bool⇒ C1 ∧ {σ = bool}

H; C ` q : σ ⇒ C1
H; C ` abs(q) : σ ⇒ C1 ∧ {σ ⊆ int/float}

H; C ` q : σ ⇒ C1
H; C ` min(q) : φ⇒ C1 ∧ {φ ⊆ orderable} ∧ {Member Type(σ) = φ}

H; C ` q : σ ⇒ C1
H; C ` sum(q) : φ⇒ C1 ∧ {φ ⊆ int/float} ∧ {Member Type(σ) = φ}

H; C ` q : σ ⇒ C1
H; C ` avg(q) : float⇒ C1 ∧ {σ ⊆ collection(int/float)}

H; C ` q : σ ⇒ C1
H; C ` count(q) : int⇒ C1 ∧ {σ ⊆ collection(nonfunctional)}

H; C ` q : σ ⇒ C1
H; C ` distinct(q) : φ⇒ C1 ∧ {φ = Distinct Result(σ)}

H; C ` q : σ ⇒ C1
H; C ` listtoset(q) : set(φ)⇒ C1 ∧ {σ = list(φ)}

H; C ` q : σ ⇒ C1
H; C ` element(q) : φ⇒ C1 ∧ {Member Type(σ) = φ}



Appendix B

Translating OQL to the monoid calculus

This appendix presents the full mapping from OQL constructs to their calculus forms. The notation

|q|∗ stands for the calculus equivalent of an OQL query q (| − |∗ : OQL→ Calculus).

OQL Expressions Calculus Expressions

id id

literal literal

q.id |q|∗.id
q(q1, . . . , qn) |q|∗(|q1|∗, . . . , |qn|∗)
q1 union q2 merge[M](|q1|∗, |q2|∗), (to determine M see 4.2.3)

q1 intersect q2, bag{x [| x← bagof(|q1|∗), some{x = y [|
(q1 or q2 : bag(−)) y← bagof(|q2|∗)}}
q1 intersect q2, set{x [| x← |q1|∗, some{x = y [|
(q1 and q2 : set(−)) y← |q2|∗}}
q1 except q2 bag{x [| x← bagof(|q1|∗), all{x 6= y [|
(q1 or q2 : bag(−)) y← bagof(|q2|∗)}}
q1 except q2 set{x [| x← |q1|∗, all{x 6= y [| y← |q2|∗}}
(q1 and q2 : set(−))

first(q) |q|∗[0]
last(q) |q|∗[sum{1 [| x← bagof(|q|∗)} − 1]

q1[q2] |q1|∗[|q2|∗]
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OQL Expressions Calculus Expressions

set(q1, . . . , qn) merge[set](unit[set](|q1|∗), . . . ,
unit[set](|qn|∗))

bag(q1, . . . , qn) merge[bag](unit[bag](|q1|∗), . . . ,
unit[bag](|qn|∗))

list(q1, . . . , qn) merge[list](unit[list](|q1|∗),
. . . , unit[list](|qn|∗))

array(q1, . . . , qn) arrayof(merge[list](unit[list](|q1|∗),
. . . , unit[list](|qn|∗)))

dictionary((q1, q
′
1), . . . , merge[dict](unit[dict](|q1|∗, |q′1|∗),

(qn, q
′
n)) . . . , unit[dict](|qn|∗, |q′n|∗))

flatten(q), (q : col1(set(−))) set{x [| s← bagof(|q|∗), x← s}
flatten(q), (q : col1(bag(−))) bag{x [| s← bagof(|q|∗), x← s}
flatten(q), (q : set(list/oset/array(−))) set{x [| s← |q|∗, x← bagof(s)}
flatten(q), (q : bag(list/oset/array(−))) bag{x [| s← |q|∗, x← bagof(s)}
flatten(q), (q : list/oset(oset(−))) oset{x [| s← |q|∗, x← s}
flatten(q), (q : array(oset(−))) oset{x [| s← listof(|q|∗), x← s}
flatten(q), (q : list(list(−))) list{x [| s← |q|∗, x← s}
flatten(q), (q : oset/array(list(−))) bag{x [| s← list(|q|∗), x← s}
flatten(q), (q : list/oset(array(−))) array{x [| s← arrayof(|q|∗),

x← bagof(s)}
flatten(q), (q : array(array(−))) {x [| s← |q|∗, x← s}
order flatten(q), q : list(bag(−)) list{x [| s← |q|∗, x← listof(s)}
order flatten(q), q : oset(bag(−)) oset{x [| s← |q|∗, x← listof(s)}
distinct(q) (q : set/bag(−)) set{x [| x← |q|∗}
distinct(q) (q : oset/list(−)) oset{x [| x← |q|∗}
distinct(q) (q : array(−)) oset{x [| x← listof(|q|∗)}
q1 < comp op > q2 |q1|∗ < comp op > |q2|∗
(< comp op >∈ {<,>,≤,≥,=, 6=})
q1 < comp op > all q2 all{|q1|∗ < comp op > x2 [|
(< comp op >∈ {<,>,≤,≥,=, 6=}) x2 ← bagof(|q2|∗)}
q1 < comp op > any/some q2 some{|q1|∗ < comp op > x2 [|
(< comp op >∈ {<,>,≤,≥,=, 6=}) x2 ← bagof(|q2|∗)}
q1 < arithm op > q2 |q1|∗ < arithm op > |q2|∗
(< arithm op >∈ {+,−, ∗, /, mod})
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OQL Expressions Calculus Expressions

−q −|q|∗

not (q) not (|q|∗)
q1 and q2 merge[all](|q1|∗, |q2|∗)
q1 or q2 merge[some](|q1|∗, |q2|∗)
element(q) elementof(|q|∗)
listtoset(q) set{x [| x← q}
max(q) max{x [| x← bagof(|q|∗)}
min(q) min{x [| x← bagof(|q|∗)}
avg(q) unit[avg](< avg sum = sum{x [| x← bagof(|q|∗)},

avg count = sum{1 [| x← bagof(|q|∗)} >}
count(q) sum{1 [| x← bagof(|q|∗)}
sum(q) sum{x [| x← bagof(|q|∗)}
q1 in q2 some{x = |q1|∗ [| x← bagof(|q2|∗)}
for all x in q1 : q2 all{|q2|∗ [| x← bagof(|q1|∗)}
exists x in q1 : q2 some{|q2|∗ [| x← bagof(|q1|∗)}
exists(q) some{true [| x← |q|∗}
unique(q) sum{1 [| x← bagof(|q|∗)} = 1

struct(`1 : q1, . . . , `n : qn) struct(`1 = |q1|∗, . . . , `n = |qn|∗)
C(`1 : q1, . . . , `n : qn) C(`1 = |q1|∗, . . . , `n = |qn|∗)
select [distinct] q′

from q1 as x1, . . . , qk as xk

where q′′

bag [|set]{|q′|∗ [| x1 ← bagof(|q1|∗), . . . ,
xk ← bagof(|qk|∗), |q′′|∗}

select [distinct] q′

from q1 as x1, . . . , qk as xk

where q′′

order by q′′′1 [asc/desc],

. . . , q′′′j [asc/desc]

list [|oset]{v1.partition [| v1 ← orderof(group{
struct(asc/desc1 = |q′′′1 |∗, . . . , asc/descj = |q′′′j |∗,
partition = unit[bag](|q′|∗)) [| x1 ← bagof(|q1|∗),
. . . , xk ← bagof(|qk|∗), |q′′|∗})}

select [distinct] q′

from q1 as x1, . . . , qk as xk

where q′′

group by `1 : q′′′1 , . . . , `j : q′′′j

having q′′′′

order by q′′′′′1 [asc/desc],

. . . , q′′′′′n [asc/desc]

list [|oset]{v1.partition [| v1 ← orderof(group{
struct(asc/desc1 = |q′′′′′1 |∗, . . . , asc/descn = |q′′′′′n |∗,
partition = unit[bag](v2)) [| v2 ← bagof(group{
struct(`1 = |q′′′1 |∗, . . . , `j = |q′′′j |∗, partition =

unit[bag](struct(x1 = x1, . . . , xk = xk)) [| x1 ←
bagof(|q1|∗), . . . , xk ← bagof(|qk|∗), |q′′|∗}), `1 ≡ v2.`1,

. . . , `j ≡ v2.`j, partition ≡ v2.partition, |q′′′′|∗})}
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Appendix C

Edge traversals in the backtracking

algorithm

C.1 Edge traversals given a graph with V vertices

Given a number of vertices V, the more connected the graph, the more the edge traversals in step 1.

Hence, the worst case scenario occurs when the graph is fully connected. For a directed graph, this

implies that E = V ∗ (V− 1). Each constraint has V− 1 incoming links from all other constraints and

V− 1 outgoing edges towards them.

Assume that backtracking starts from a certain target constraint. Backtracking can be imple-

mented both as a depth-first-search (DFS) and as a breadth-first-search (BFS) method, both having

the same complexity. Starting from the target constraint, the first level of BFS traverses V− 1 edges.

The paths traversed so far consist of two constraints or vertices. The second time, each one of the

V− 1 vertices traverses V− 2 edges, thus forming acyclic paths containing three vertices. This pro-

cedure continues until the V− 1 level of BFS, that is, until the traversed paths have V constraints. The

table below shows the number of edges traversed at each level.

Level TraversedEdges

1 (V− 1)

2 (V− 1)(V− 2)

3 (V− 1)(V− 2)(V− 3)

4 (V− 1)(V− 2)(V− 3)(V− 4)

. . . . . .

n = V− 1 (V− 1)(V− 2)(V− 3) . . . (V− (V− 1))
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Target
Constraint

n0

1
2

3
C3

Cn0

C2

C1

Figure C.1: The target constraint has n0 incoming links

The total number of traversed edges is:

TE =
V−1∑

i=1

[(V− 1)(V− 2) . . . (V− i)]

⇒ TE =
V−1∑

i=1

(
i∏

j=1

(V− j)) (C.1)

C.2 Edge traversals given a graph with E edges

Let us consider the backtracking algorithm for a target constraint C0. Assume that C0 has n0 incoming

links, as illustrated in figure C.1. The maximum number of edges traversed backwards starting from

C0, in a graph of E edges, is denoted as TE(C0, E), or simply TE(E). It is the sum of the following

edges:

• n0 (the incoming links to C0)

• ∑n0
i=1 TE(E− n0) (the traversed edges from the Ci, i = 1, . . . , n0 backwards).

Notice that the traversed edges from the constraints Ci, i = 1, . . . , n0 do not consider the initial

n0 edges. The latter will never be traversed again, since they are incoming links to a vertex that

has already been encountered. We refer to Ci, i = 1, . . . , n0 as first-level constraints, because they

would be encountered at the first level in a breadth-first-search implementation of the algorithm.

Assume that the first-level constraints have on average n1 incoming links. It can be easily inferred

that

TE(E) = n0 +
∑n0

i0=1(TE(E− n0)) = n0 +
∑n0

i0=1(n1 +
∑n1

i1=1(TE(E− n0 − n1)))⇒

TE = n0 +
∑n0

i0=1(n1) + . . .+
∑n0

i0=1

∑n1
i1=1 . . .

∑nm−1

im−1=1(nm)+

+
∑n0

i0=1

∑n1
i1=1 . . .

∑nm
im=1(TE(E− n0 − . . .− nm))
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where the last term
∑n0

i0=1

∑n1
i1=1 . . .

∑nm
im=1(TE(E− n0 − . . .− nm)) = 0. Hence,

TE = n0 + n0 ∗ n1 + n0 ∗ n1 ∗ n2 + . . .+ n0 ∗ . . . ∗ nm (C.2)

E = n0 + n1 + . . .+ nm (C.3)

The value of TE in formula C.2 is maximized when n0 > n1 > . . . > nm and in particular when

ni = ni−1 + 1. If we set n = n0, then the formulae C.2, C.3 take the following forms:

TE = n + n(n− 1) + . . .+ n(n− 1) . . . (n− m) (C.4)

E = n(m + 1)− m(m + 1)/2 (C.5)

The question that arises at this point is which is the combination of n and m that maximizes the

bound TE on the number of traversed edges. The example in the following table shows that TE is

maximized when m is maximized.

Edges = 15

n0 n1 n2 n3 n4
∑

ni TE

5 4 3 2 1 15 325

6 5 4 15 156

8 7 15 64

Hence, TE is maximized if n = m + 1. This enables the following transformations:

E = (m + 1)(m + 1)− m(m + 1)/2⇒
m2 + 3m + 2(1− E) = 0⇒
m = (−3 +

√
1 + 8E)/2

The formula that calculates the traversed edges becomes:

TE = (m + 1) + (m + 1)(m) + (m + 1)(m)(m− 1) + . . .+ (m + 1)! (C.6)

where m = d(−3 +
√
1 + 8E)/2e.

For instance, when E = 3, m = (−3 +
√
1 + 24)/2 = 1 and TE = 2 + 2 ∗ 1 = 4. In fact, when

E = 3 the maximum number of traversed edges is 3 ≤ 4.

When E = 6, m = (−3 +
√
1 + 48)/2 = 2 and TE = 3 + 3 ∗ 2 + 3 ∗ 2 ∗ 1 = 15. Indeed, when

E = 6 the maximum number of traversed edges is 9 ≤ 15.

Notice that it is wrong to assume that the maximum number of traversed edges occurs when the

edges form a fully connected graph. If this was true, then we would calculate the number of vertices

using the formula V(V− 1) = E; given V, the maximum traversed edges would be evaluated as in

section C.1.
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Appendix D

Implementation of OQL Processor

This appendix gives an overview of the OQL processor developed to test the ideas and to perform the

experiments discussed in this thesis.

An OQL interpreter was developed that performs the following tasks:

• lexical analysis

• parsing

• type checking and type inference

• translation of OQL into calculus representation

• normalization at the calculus level

• translation of calculus into algebraic representation

• semantic optimization

• query evaluation

The query interpreter uses the object storage manager and the Java binding of POET OSS 6.1.

The first step towards developing an OQL interpreter is to write a specification file for OQL

terminals (OQL keywords, atomic literals and variables). This file is used by JLex, a lexical analyzer

generator for Java, in order to produce a class that takes a query and whenever invoked, returns the

next terminal encountered.

A set of Java classes are then defined corresponding to the various OQL constructs. For instance,

the classes Select Query, Ref Access Query, Index Access Query correspond to the select
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clause, e.label and e1[e2] respectively. The class Main Query corresponds to the outer OQL ex-

pression, which potentially includes query definitions. All classes inherit from the general class

Query.

A second specification file includes the grammar of OQL, i.e. the query expressions that are

syntactically acceptable. Each OQL expression is paired with the action that should be taken when

the expression is encountered. CUP, an LALR Parser Generator for Java, takes as input the OQL

grammar specification and produces a parser for it. The generated parser takes a query string and, with

the aid of the lexical analyzer, it generates a Query object for each query subexpression encountered.

When the whole query is parsed a Main Query object is created and its method process is invoked.

This method checks the type of the query, translates it to calculus form, normalizes it, translates it to

algebraic form, optimizes it semantically and evaluates its result.

All subclasses of Query, including Main Query, define the methods checkType, inferTypes

and toMonoidCalculus. Their implementation varies depending on the specific OQL construct that

they represent.

In the processmethod of Main Query, we first invoke the method checkType. In order to derive

the type of a query, we need to identify the types of its operands; hence, checkType is recursively

called on its subqueries. Access to the database schema is eventually required when checkType is

invoked on objects that represent identifiers that are not range variables. Since the Java binding of

POET OSS 6.1 does not provide an interface to the schema information, we needed to define and use

a method getType for all classes in the schema. The method inferTypes is also called recursively,

but it is used only when the input OQL expression includes query definitions with untyped parameters.

Only the types of the parameters are inferred, whilst the remaining identifiers are type-checked in the

usual way.

After ensuring that the input query is well-typed, the method toMonoidCalculus is invoked

in order to translate the query into its monoid calculus form. The latter is invoked recursively on

the subqueries (operands or attributes), in a similar way as in the case of checkType. For each

monoid calculus expression, we define a corresponding class, whose name starts with MC , e.g.

MC Comprehension, MC Ref Access, MC Identifier. All MC classes inherit from the general

monoid calculus class MC Query. Hence, the method toMonoidCalculus returns an object of type

MC Query, referred to hereafter as the calculus object.

All subclasses of MC Query implement the method normalize, based on the normalization algo-

rithm defined in chapter 4. They also define a method toALG for the translation of calculus constructs

to algebraic representation (chapter 5). The implementation of both methods depends on the calculus

construct (subclass).

We first invoke the method normalize on the calculus object and then the method toALG on

the normalized calculus object. For each algebraic expression we define a corresponding class whose
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name starts with ALG , e.g. ALG Selection, ALG Nest. All algebraic classes inherit from the general

class ALG Query. Hence, the method toALG returns an object of type ALG Query, referred to as the

algebraic object.

A method that performs semantic optimization is defined in the class ALG Query and has been

implemented to apply the constraint introduction or elimination heuristic whenever possible. Hence,

it is only implemented in subclasses of ALG Query that represent algebraic expressions with predi-

cates, e.g. ALG Selection. This method uses the association rules that refer to the operand of the

algebraic object and finds direct or indirect associations (with exceptions) in order to add a constraint

on an index attribute, or to eliminate any redundant non-index constraints.

We have implemented a rule mining module based on the algorithms by Agrawal et al. [AIS93]

and Srikant et al. [SA96]. This module identifies association rules corresponding to a specific extent,

which are stored in the database along with their exceptions. The input values of the rule mining

algorithm are the minimum support and the minimum confidence required for the resulting rules. In

order to find rules between quantitative attributes of an extent, we first apply a clustering algorithm

on their values. The Birch algorithm [ZRL96] has been implemented to distribute the values of an

attribute into a number of clusters. For each quantitative attribute we define a mirror attribute in order

to store cluster identifiers. Hence, instead of finding association rules between individual values by

looking at the quantitative attributes, we discover rules relating clusters. That is, we run the rule

mining algorithm over the corresponding mirror attributes that hold cluster information.

After an algebraic query has been optimized semantically, it is evaluated using the Java binding to

access the POET object database. All algebraic operators (queries) implement the following method.

public void exec (ALG Basket initiator basket, Thread initiator exec thread)

{
this.start resource input ();

this.consume resources (initiator basket, initiator exec thread);

}
The initiator basket is the structure where the current operator is expected to put its results.

This structure is initialized by the parent operator. The first method (start resource input) ini-

tializes the baskets of the operands; the latter may then start populating these baskets with objects

that the current operator will use as input. The next method (consume resources) is invoked on the

current operator in order to start processing the objects retrieved from the baskets of the operands.

The output of this processing is accumulated into the initiator basket.

If the operand of an algebraic query is an extent, a database name or an index constraint on

an extent, the method consume resources accesses the database using the Java binding of POET.

In case the operand is an extent, an iterator is started and the method Iterator.next() is used

to fetch the next object from the database. Indices are implemented as objects containing a list of
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values and a list of objects. Hence, accessing an extent using an index implies resolving the index

object using the method Transaction.lookup(index name) and then invoking on it the method

Index.select(range), that fetches from the database all objects for which the value of the index

attribute is in the given range. Named objects are also resolved from the database using the built-in

method Transaction.lookup(object name).

The implementation of the method consume resources depends on the algebraic construct (se-

lect, join, project, nest etc). Although the focus of this dissertation was not on syntactic algebraic

optimization and efficient physical execution plans, this framework provides the opportunity to im-

plement the method consume resources efficiently. For instance, the algebraic operator Join could

be implemented as a SemiJoin, i.e. it could store only the instances of the left operand in the result;

this would be possible if the right operand is only referred to only in the predicate of Join and in

none of the parent operators.

If algebraic operators (objects) are viewed as nodes and their relationships to operand objects as

edges, the outer algebraic object can be viewed as the root of an algebraic tree that can potentially

be rearranged and optimized using well-known techniques from relational databases. However, the

use of new and monoid-aware algebraic operators in our context provides opportunities for further

research in order to identify algebraic syntactic transformations and efficient execution plans for

OQL.
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