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On the support of recursive subdivision

I. P. Ivrissimtzis∗, M. A. Sabin†, N. A. Dodgson‡

September 2002

Abstract

We study the support of subdivision schemes, that is, the area of the subdivision surface that
will be affected by the displacement of a single control point. Our main results cover the regular
case, where the mesh induces a regular Euclidean tessellation of the parameter space. If n is the
ratio of similarity between the tessellation at step k and step k − 1 of the subdivision, we show
that this number determines if the support is polygonal or fractal. In particular if n = 2, as it is in
the most schemes, the support is a polygon whose vertices can be easily determined. If n 6= 2, as
for example in the

√
3-scheme, the support is usually fractal and on its boundary we can identify

sets like the classic ternary Cantor set.

1 Introduction

Recursive subdivision has recently emerged as one of the main tools for fast and efficient generation
of high quality surfaces from an initial set of point data [12]. These points are considered as the
vertices of a mesh, that is, they are connected by edges. An edge represents a path from one point
to the other on an underlying surface in which the mesh is embedded. These paths tessellate the
underlying surface into simply connected facets, encoding topological information. Subdivision
can be described as a sequence of steps, each of which is a refinement operation. That is, in each
step we add some new points, possibly dropping some of the existing ones, and connect them with
edges, also possibly dropping some of the existing ones. This way we get a refined new mesh, and
continuing the procedure, in the limit, we get a surface.

In this paper we deal with the support of recursive subdivision. That is, we are not studying
the exact values of a subdivision surface but the set of non-zero values of the basis functions or,
equivalently, the area of the surface that is affected by the change in position of a single vertex of
the initial mesh. Such questions play an important rôle in both the application and the theoretical
analysis of subdivision schemes.

Many of our methods are general and we will indicate how our results can be generalized to
higher dimensions and irregular meshes, but first we study regular triangular and quadrilateral
meshes.

1.1 Motivation

Our interest in this area was stimulated by preliminary analysis which indicated that Kobbelt’s
√

3
scheme [8] had fractal support. We investigated whether this was true (it is), why it happens, and
then generalized to consider all possible subdivision schemes. This paper presents our results.

The support of a scheme on the regular grid (either triangular or quadrilateral) is important for
three principal reasons:
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1. It shows the region in which the limit surface will change when a single control point is
moved. The larger the support, the wider the influence of each control point. In general,
schemes with compact support are preferred.

2. Its shape indicates the directions in which the scheme may have no lateral artifacts. For a
direction to be free of lateral artifacts it is a necessary condition that there are two opposite
edges to the support parallel to the direction in question.

3. If the scheme has fractal support than the basis function cannot consist of a finite number of
polynomial pieces. We conjecture that this implies that there are no polynomial pieces in the
limit surface except in special case configurations; one such case being where the surface is
locally planar.

1.2 Overview

In Section 2 we give necessary basic definitions, introduce some special terminology, and give a
brief introduction to the Cantor sets, which play an important rôle in the study of the support.

In Section 3 we describe the method we use to calculate the support. We see the parameter space
as a vector space, and the main result is that the points of the support can be written as well-defined
infinite sums of elements of this vector space.

In Section 4 we use this method to prove propositions on the support of univariate schemes.
In Section 5 we use the univariate results to study the boundary of the convex hull of the support

of bivariate schemes. This convex hull gives an outer bound of the support, and then we identify
polygonal areas inside the support, whose union gives an inner bound.

In Section 6 we deal in more detail with two examples illustrating the above.
In the final sections we briefly describe possible generalizations of the method, discuss some

implications of our results into the artifact analysis of subdivision schemes, and conclude with a
brief summary.

2 Terminology and background theory

In this paper we use certain terms with specific meanings:
A polyhedron is a set of vertices, edges and faces. The vertices have position, and the edges

and faces are defined solely by the vertices which they join. It is not quite a geometric polyhedron,
where the faces would need to be planar, nor is it a topological one, where there would be no
geometry at all.

For most of this paper we concern ourselves with the regular situation where every vertex has the
same number of incident edges and faces. We do not concern ourselves here with edge conditions
because the issue we address is a local one.

In addition to considering the regular case, the analysis needs to be extended to polyhedra
which have regions which are not topologically equivalent to a regular tessellation. A polyhedron
of general genus must have extraordinary points, vertices or faces with other than the regular
number of neighbors. This irregular case is dealt with in Section 7.

Subdivision is the process whereby an initial polyhedron is treated as the data from which a
polyhedron with more vertices, edges and faces is set up. The new vertices are affine combinations
of old ones, with coefficients defined by the particular scheme. The new connectivity is also defined
by the scheme.

The coefficients of a scheme can be documented in either of two ways:

• The mask is the set of coefficients by which a given old vertex influences the new ones at each
refinement. It is presented as a diagram showing the non-zero coefficients laid out in the same
arrangement as the new vertices relative to the old one. An example is shown in Figure 1(a).
In the regular grid case, both old and new vertices are laid out in a regular array, either
quadrilateral or triangular, in what we may think of as a parametric space. This provides the
domain for the mask diagram and also for other objects defined in this section.
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Figure 1: (a) the mask and (b) the stencils of the Catmull-Clark subdivision scheme which is used
on the quadrilateral grid [2].

• A stencil is the set of coefficients by which a given new vertex is influenced by the old ones1. It
is presented as a diagram showing the non-zero coefficients laid out in the same arrangement
as the old vertices relative to the new one. Examples are shown in Figure 1(b).

There is one stencil for each distinct relationship between the new vertices and the old, whereas
there is only one mask. Masks and stencils form the columns and rows of the subdivision matrix
by which the vector of old vertices is multiplied to give the new ones. This is clear in the univariate
case but still true in the multivariate case. The mask and the stencils therefore contain exactly the
same information. This relationship is illustrated in the example in Figure 1, where it can be easily
seen that each stencil can be extracted from the mask by starting at one of the 2×2 lower left values
and then taking every second element both horizontally and vertically2.

The arity is the ratio of similarity between the edge of the initial regular mesh and the edge
of the mesh after one subdivision step. The schemes with arity 2 are called binary, the schemes
with arity 3 are called ternary, etc. The arity is well-defined because, owing to the symmetry
assumptions underlying a subdivision scheme, the subdivision of a regular mesh is also regular. In
fact, this property was used in [1] and [6] for a classification of all the subdivision schemes. The
arity, usually, is either an integer or the square root of an integer. Here we consider schemes with
integer arity and study the square root schemes by taking double steps. Nevertheless, most of the
propositions and their proofs can handle any arity.

The footprint is the set of points with non-zero coefficients in the mask. Because it is laid out in
the domain in the same way as the mask, we can refer to the convex hull of the footprint without
confusion. It is denoted by F.

The scaled footprint is the footprint scaled up by n
n−1 , where n is the arity. It will be denoted

by F′.
The basis function is the map from positions in the domain to the limit surface of the refinement

corresponding to a single old vertex having a unit value and all the others zero. It may also be
thought of as the limit of a sequence of masks obtained by repeatedly convolving the previous
member of the sequence with the mask.

The support is the closure3 of the points whose values are non-zero in the basis function. It may
also be thought of as the closure of the sequence of footprints of the masks which converge to the
basis function. It will be denoted by S.

The ternary Cantor set was introduced in the 19th century as an example of an infinite, un-
countable set with measure zero. An introduction to it can be found in [7]. The most well-known
construction of the ternary Cantor set is by repeated removal of intervals from the interval (0,1)

1Note that some authors use the term ‘masks’ to refer to what we here call ‘stencils’.
2Technically, one should reflect the mask in the origin before extracting the stencils in this way. In this case, the reflection

produces the same mask.
3Note that the support, defined as the inverse image of IR

n\0 under a continuous map, must be open. The closure is
taken so that the zero contours of the basis functions of interpolating schemes, where the basis function typically has both
positive and negative regions, remain within the support.
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Figure 2: The first four steps in the construction of the ternary Cantor set with repeated removal of
middle third intervals.

of real numbers. In the first step we remove the middle third interval ( 1
3 , 23 ), in the second step we

remove the intervals ( 1
9 , 29 ) and ( 7

9 , 89 ), and, continuing this way, at each step we remove the middle
third interval from each one of the existing intervals. The limit of this process is the ternary Cantor
set. Figure 2 shows four consecutive steps in the construction of the ternary Cantor set by removal
of intervals. Some alternative descriptions of the Cantor set are given in the Appendix at the end of
the paper.

The Cantor like sets are generalizations of the ternary Cantor set. In each case some intervals are
removed from the interval (0,1) and we get a not connected set A. Then, in a self similar fashion,
this process is repeated, with intervals removed from every component of A, or equivalently, by
substituting every component of A with a scaled image of A.

3 Description of the method

In our study of the support, starting from the initial control mesh of the basis function, we create a
sequence

S1, S2, S3, . . . (1)

of subsets of the domain, each one corresponding to one step of the subdivision process. Examples
are shown in Figures 3 and 4.

The first set S1 consists of the points of the domain having non-zero z-coordinate after one
subdivision step. That is, S1 is the footprint of the scheme

S1 = {P0, P1, P2 . . . Pk} (2)

where Pi is the ith point in the mask. Having fixed the origin O, the points of the domain IR2 are
in an 1-1 correspondence with the displacements from the origin. Although the analysis works for
any choice of origin, the assumption that the origin is at the centre of symmetry of the mask is
a convenient one. In particular, the point Pi corresponds to the displacement ~OPi and under this
correspondence the domain IR2 inherits the vector space structure of the displacements, allowing
us to define an addition between points as well as a multiplication of the points by numbers.

If n is the arity of the scheme, and because of the self-similarity of the subdivision process, the
points with non-zero z-coordinate after the second step are given by

S2 =
{

Pi + 1
nPj | i, j = 0, . . . k

}

(3)

The set S2 can be thought of as being obtained from S1 by substituting each of the points of S1

with an image of S1 scaled down by a factor of n. Continuing recursively we define the set

Sm =

{

P +
1

nm−1
Pi | P ∈ Sm−1, i = 0, 1, . . . k

}

(4)
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original point  in S1  in S2  in S3 original point ,  in S1 , ,  in S2 , , ,  in S3
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Figure 3: The first four point sets for (a) Doo-Sabin [5] and (b) Loop [9] schemes. The black dot
in the center represents the original vertex under consideration. The pale grey dots represent other
vertices of the original grid, thereby showing the relationship between the original grid and the
point sets. Note that, in the Loop scheme, S1 contains the vertices in the 1-ring of the original
vertex. Both schemes have polygonal support ((a) square, (b) hexagonal) in the limit.

obtained from Sm−1 by substituting each of its points with an image of S1 scaled down by a factor
of nm−1. Sm can also be written

Sm =

{

Pi1 +
1

n
Pi2 + . . .

1

nm−1
Pim

| i1, i2, . . . im = 0, 1, . . . k

}

(5)

Figure 3 illustrates the point sets S1, S2, and S3 for the Doo-Sabin quadrilateral [5] and Loop
triangular [9] schemes respectively.

To find the total support we have to define a limit for the sequence of sets (1) and then take the
closure, that is

S = lim
m→∞

Sm (6)

Figure 4 shows two interesting cases with S4 offering a good approximation to S. Notice that the
topological operator closure, which adds to a set its points of accumulation, has a double effect.
Firstly, by adding the points of accumulation in general, we make sure that we get a smooth surface
and not a dense cloud of points. Indeed, after taking the closure we do not even need to consider
the limit of a sequence of progressively refined meshes, as it is usually the case in the study of
subdivision. Secondly, by adding the points of accumulation with zero z-coordinate in particular,
we include the zero contours of oscillatory schemes with negative coefficients, complying this way
with the definition of the support we gave in Section 2.

An arithmetic definition of the limit in Eq. (6), analogous to Eq. (5), is given by the infinite sums

S =

{

∞
∑

m=1

1

nm−1
Pim

| im = 0, 1, . . . , k

}

(7)

describing the support as the set of all possible infinite affine combinations of points of the footprint,
with coefficients following a geometric progression with ratio 1

n .
Any of the infinite sums in Eq. (7) is the limit of its initial partial finite sums, that is, the limit of

a sequence of points
p1,p2, . . . with pm ∈ Sm, m = 1, 2, . . . (8)

showing the equivalence of Eq. (6) and Eq. (7). Notice that for n > 1 the partial initial sums in
Eq. (7) converge, and thus the infinite sum is well-defined. Also notice that the set defined in Eq. (7)
is closed and we do not need to use the topological operator closure.
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(a) (b)

Figure 4: The initial control net of the basis function has a unique point with non-zero z-coordinate.
The non-zero points after the first iteration are shown in red. The non zero points after the second
step are shown in green. These green points are obtained by substituting every red point with a
scaled image of the set of red points. Continuing this recursive process we find the non-zero points
after three steps (blue) and four steps (black). The limit of this process is the support. (a) The√

3-scheme with double steps. (b) A ternary butterfly scheme.

Eq. (7) can also be written in terms of the points of the scaled footprint in the scaled form

S =

{

∞
∑

m=1

n − 1

nm
P ′

im
| im = 0, 1, . . . , k

}

(9)

with P ′
i ∈ F′, that is,

P ′
i =

n

n − 1
Pi, i = 0, 1, . . . , k (10)

The coefficients in Eq. (9) sum to 1 and, thus, the points of the support are written as convex
combinations of the points of the scaled footprint. By Eq. (9) the convex hull of the scaled footprint
contains the support S, and we use this convex hull as an outer bound for S. In fact, the converse
inclusion also holds and thus the convex hull of the scaled footprint is the convex hull of the
support. The latter is a direct corollary of Eq. (9) for

i1 = i2 = · · · = im = · · · (11)

Thus Eq. (9) is the basic equation with which we work, describing the support in terms of the
arity and the scaled footprint only. The rest of the paper is devoted to the study of this equation for
different configurations of the scaled footprint and different values of n.

4 The univariate case

Although the support of all the known univariate schemes can be calculated easily, we will give
some formal proofs for univariate schemes, because we will use them in the boundary analysis
of the bivariate schemes, and also as motivation for the bivariate case, where the techniques are
similar.

In the univariate case the domain is IR rather than IR2. It is thus an ordered set. We first assume
that the footprint consists of k + 1 equispaced points. We have:
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Proposition 4.1 If the footprint of a univariate scheme consists of k+1 equispaced points P0, P1, . . . , Pk,
then we have

(i) if k < n − 1 then S is a Cantor like fractal set.

(ii) if k ≥ n − 1 then S is the interval defined as the convex hull of the scaled footprint, that is,

S =

[

n

n − 1
P0,

n

n − 1
Pk

]

. (12)

Proof: As the scaled footprint is the scaled image of the footprint, its points are also equispaced,
thus, we have

P ′
i =

k − i

k
P ′

0 +
i

k
P ′

k, i = 0, 1, . . . , k. (13)

Then, Eq. (9) becomes

S =

{

∞
∑

m=1

(k − im)(n − 1)

knm
P0 +

∞
∑

m=1

im(n − 1)

knm
P ′

k | im = 0, 1, . . . , k

}

(14)

and the support is the point set
(1 − λ)P0 + λPk (15)

with

λ ∈ A =

{

∞
∑

m=1

im(n − 1)

knm
| im = 0, 1, . . . , k

}

(16)

The self-similarity of the subdivision process can be expressed numerically by writing the infinite
sum in (16) as

∞
∑

m=1

im(n − 1)

knm
=

i1(n − 1)

kn
+

∞
∑

m=2

im(n − 1)

knm
=

i1(n − 1)

kn
+

1

n

∞
∑

m=1

im+1(n − 1)

knm
(17)

or, in a set-theoretic notation

A =

k
⋃

i=0

(

i(n − 1)

kn
+

1

n
A

)

(18)

with each component of the union corresponding to a choice of a value for i1.
If k < n − 1 then the above is a Cantor like fractal set. Indeed, the convex hull of A is the

interval [0,1] and thus, the convex hull of each of the components of (18) is an interval of length
1
n . Figure 5(a) shows the convex hulls of the components of (18). The union of these convex hulls
gives an improved outer bound for A, which is a proper subset of the interval [0,1]. Continuing
this way, choosing i2, i3, . . . and splitting each interval into k + 1 parts, in the limit we obtain a
Cantor like set.

If k = n − 1 then the sets of (18) have convex hull of length 1
n and cover the interval [0, 1]

(Figure 5(b)). In fact, in this case we can observe that Eq. (16) gives the expression of each λ ∈ [0, 1]
in the n-adic system, and so A = [0, 1].

Intuitively, it is obvious that A = [0, 1] also holds for k > n − 1. For a formal proof we notice
that in this case the convex hulls of the sets of (18) again cover the interval [0,1]. Their intersection
is now an interval, while in the case k = n−1 it is just a point (Figure 5(c)). In the next step each of
these intervals is again covered by a set of k +1 intervals, similar to A with ratio 1

n2 , and so on. For
each point of [0,1] we can find a nested sequence of intervals, one interval from each subdivision
step, converging to that point. From this sequence we can obtain the coefficients im giving this
point in the form of Eq. (16). �

The next proposition is a generalization of the previous one for footprints with unequally spaced
points. We will not give an exact description of the resulting sets but we will find when the support
is the interval defined as the convex hull of the scaled footprint and when it is a Cantor like set.
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1 10010

(a) (b) (c)

Figure 5: (a) If k < n − 1 the convex hulls of the components of (18) do not cover the interval
(0, 1). (b) If k = n − 1 the convex hulls do cover (0, 1) and intersect between them on points. (c) If
k > n − 1 they cover (0, 1) and intersect on intervals.

Proposition 4.2 The support is the whole interval [P ′
0, P

′
k] if and only if

|Pi − Pi−1| ≤
|Pk − P0|

n − 1
, i = 1, . . . , k (19)

Proof: We will only outline the proof as the ideas are essentially the same as Proposition 4.1.
By evaluating the first coefficient in Eq. (9) we create a split of S into k subsets similar to it. Their

convex hulls are intervals of length |Pk−P0|
n and they cover [P0, Pk] exactly when (19) holds. If this is

the case, then by consecutively evaluating all the coefficients of (9), and using the self-similarity, we
produce a sequence of coverings of [0,1]. Any point of [0,1] can be lifted in a sequence of intervals,
one interval for each covering, and this sequence gives the coefficients of the point written in the
form (9).

With similar arguments we can see that S is a Cantor like set when (19) does not hold. �

4.1 Example

In [3] a general (n, k) interpolatory univariate scheme was described as the process of inserting
between any two consecutive existing points, n − 1 equally spaced new ones, defined as affine
combinations of the 2k nearest already existing points. In that case we have

S1 =
{

−k + 1
n ,−k + 2

n , . . . , k − 1
n

}

(20)

and by Proposition 4.1 the support of that scheme is the interval
[

n

n − 1
(−k +

1

n
),

n

n − 1
(k − 1

n
)

]

(21)

5 The bivariate case

5.1 The boundary of the convex hull of the support

Going to the bivariate case we start with propositions about the boundary of the convex hull of
the support. Then we study polygonal areas inside the support, trying to find criteria to determine
when they are subsets of the support.

As we have already seen the convex hull of S is the convex hull of the scaled footprint F′. Its
boundary is a polygon and we can cyclically enumerate the vertices of the scaled footprint that lie
on this boundary (Figure 6). Notice that the convex hull of the points lying on the boundary and
the convex hull of the whole F′ are the same. In fact, the vertices of that polygon would suffice to
describe the convex hull.

The first question is: when is an edge of the boundary part of the support? The main observation
is that, while the points of S in general are convex combinations of the points of F′, the points of
S lying on an edge of the convex hull in particular are convex combinations of the points of F′

lying on that edge. That means that if Q0Ql is an edge of the convex hull, containing the points
Q0, Q1, . . . , Ql of F′, then Eq. (9) becomes

Se =

{

∞
∑

m=1

n − 1

nm
Qim

| im = 0, 1, . . . , l

}

(22)
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Figure 6: An enumeration of the points which lie on the convex hull of the scaled footprint.

where Se is the intersection of S with Q0Ql. The problem is thus reduced to the univariate case.
Hence, from Proposition 4.1 we get

Proposition 5.1 If the points Q0, Q1, . . . , Ql are equispaced, then the edge Q0Ql is contained in S

if and only if l ≥ n − 1. Otherwise, the intersection of Q0Ql and S is a Cantor like set.

Although the points Q0, Q1, . . . , Ql of Proposition 5.1 are aligned on a line of a regular mesh,
they need not be equally spaced, as they can form a proper subset of the intersection of the interval
Q0Ql with the vertices of the regular mesh. For that case, from Proposition 4.2 we have the more
general

Proposition 5.2 The whole edge Q0Ql is contained in S if and only if all pairs of consecutive points
Qi−1, Qi on the edge obey the inequality

|Qi−1Qi| ≤
|Q0Ql|
n − 1

, i = 1, . . . , l (23)

Otherwise the intersection of Q0Ql and S is a Cantor like, not connected set.

As an immediate corollary of the above propositions we have this special case which is very
often met in practice

Corollary 5.1 Let Q0Q1 be an edge of the scaled footprint, that is, there are no other points Qi in
the interior of that edge. If the scheme is binary then the edge Q0Q1 is in S. If n > 2 then the
intersection of S with the edge Q0Q1 is a Cantor like set defined on the that edge.

5.2 Polygonal subsets of the support

The propositions on the convex hull of S and its boundary give us an outer bound for the support,
as well as an indication for the behavior of S near this outer bound. We next try to identify
polygonal areas inside that convex hull that are subsets of S, finding this way an inner bound for
S.

From Eq. (9) we notice that the support corresponding to a subset of F′ is itself a subset of S.
Thus, by finding subsets of F′ with polygonal support we find polygonal areas of the total support.
Then by taking the union of these polygonal areas we can find a polygonal inner bound for S.

We study three particular configurations of scaled footprints, thought of here as subsets of the
original scaled footprint. Namely, the cases where the points of F′ form a parallelogram, a hexagon,
or an equilateral triangle. We find conditions under which the corresponding support is equal to
the convex hull of F′.

The simplest case occurs when the scaled footprint has a tensor product structure, that is, when
the points form a parallelogram. We have
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(a) (b) (c)

Figure 7: The support of a tensor product is the tensor product of the supports. (a) i = j = 1, n = 2.
(b) i = j = 2, n = 3. (c) i = j = 2, n = 4. The first two examples have polygonal support while
the third has fractal support.

Proposition 5.3 Let F′ be the tensor product A × B of two sets of collinear points

A = {A0, A1, . . . , Ai} and B = {B0, B1, . . . , Bj} (24)

with A0 = B0 and ~A0Ai, ~B0Bj linearly independent. Then S is the tensor product of the supports
of A and B.

Proof: Any point of F′ has the form

As + Bt, s = 0, 1, . . . , i t = 0, 1, . . . , j (25)

while the points of S have the form

P = n−1
n

(

As1
+ Bt1 + 1

n (As2
+ Bt2) + 1

n2 (As3
+ Bt3) + · · ·

)

(26)

From (26) we can find the projections

PA = n−1
n

(

As1
+ 1

nAs2
+ 1

n2 As3
+ · · ·

)

(27)

PB = n−1
n

(

Bt1 + 1
nBt2 + 1

n2 Bt3 + · · ·
)

(28)

that belong in the supports of A and B corresponding. Conversely, starting with the points PA, PB

on the supports of A,B, we find the point P = PA + PB in S, by component-wise summation. �

Figure 7 shows some examples for the above proposition.
The hexagonal case can be readily reduced to the tensor product case.

Proposition 5.4 Let the points of F′ form a regular hexagonal mesh with m + 1 vertices on each
edge. The convex hull of F′ is a subset of S if and only if m ≥ n − 1.

Proof: First let m ≥ n− 1. We separate the hexagonal mesh F′ into three parallelograms as shown
in Figure 8(a) for m = 2. By Propositions 4.1 and 5.3 each of them is a subset of S and so the
whole hexagon is a subset of S. If m < n − 1 then by Proposition 4.1 the edges of the hexagon are
not subsets of S and so S does not contain the whole hexagon. �

Figure 8(b) shows an example with fractal support. Figure 8(c), one with polygonal support.
The triangular case is essentially different. We have

Proposition 5.5 Let the points of F′ form a regular triangular mesh with m + 1 vertices on each
edge. Then the support S is equal to the convex hull of F′ if and only if m ≥ 2n − 2.



On the support of recursive subdivision 13

(a) (b) (c)

Figure 8: (a) We divide the hexagon into 3 parallelograms. (b) The support for m = 1, n = 3. (c)
The support for m = 2, n = 3.

Proof: First let m ≥ 2n − 2. We can cover F′, with parallelograms having
⌊

m
2

⌋

+ 1 and
⌈

m
2

⌉

+ 1

vertices on its edges (Figure 9(a)). Then m ≥ 2n− 2 gives
⌊

m
2

⌋

+1 ≥ n− 1, and by Propositions 4.1
and 5.3 each of these parallelograms is a subset of S and so their union is also a subset of S.

Suppose now that m = 2n − 3. Each point of the scaled footprint F′, and indeed each point of
the support S, can be written in a unique way in the form of the barycentric coordinates defined by
the vertices of the triangle:

αA + βB + γC with 0 ≤ α, β, γ and α + β + γ = 1 (29)

The equation β = γ gives the segment with end points A and A′ where A′ is the midpoint of BC.
We will show that Eq. (9) can not generate the subinterval of AA′ defined by

1

2n
≤ β = γ ≤ n − 1

n

1

2n − 3
(30)

See Figure 9(b).
Indeed, first let Pi1 6= A. Then, for all the other points of F′ written in the form (29), we have

1

2n − 3
≤ β or

1

2n − 3
≤ γ (31)

and for the point corresponding to the first component of the infinite sum in (9) we have

n − 1

n

1

2n − 3
≤ β or

n − 1

n

1

2n − 3
≤ γ (32)

Eq. (32) also holds for the total sum in (9), showing that all the points of S given by (9) are outside
the interval defined by (30).

On the other hand, if Pi1 = A then (9) gives

β + γ ≤
∞
∑

m=2

n − 1

nm
=

1

n
(33)

giving,

β ≤ 1

2n
or γ ≤ 1

2n
(34)

showing that it is again outside the interval in (30). �

Figure 10 shows two examples for n = 2 and one for n = 3, all of which have fractal support.
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C

C’

A

A’

B

B’

β=γ

���
� ��

��

CA

B

  

(a) (b)

Figure 9: (a) m = 4, n = 3, we cover the lattice triangle with three parallelograms AC ′A′B′,
BA′B′C ′, CB′C ′A′. (b) The bold line satisfies the equation β = γ. The two thick points on it
define an interval which is not part of the support.

(a) (b) (c)

Figure 10: The support when F′ is a lattice triangle. (a) m = 1, n = 2. (b) m = 2, n = 3. (c)
m = 3, n = 3. Notice that the triangular case is the only one where arity n = 2 may produce a
fractal.
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Figure 11: The red point set shows the footprint S1 of a double step of the
√

3-scheme. The other
point sets are S2, S3 and S4, respectively.

6 Examples

Figures 7, 8 and 10 show simple examples. Figure 3 shows two well-known binary schemes; it is
easy to see that these two schemes have polygonal support. In this section we deal in detail with
two particular examples of subdivision schemes which have more interesting behaviour. Both have
arity n = 3, as we saw that it is trivial to find the support of binary schemes such as those shown in
Figure 3.

6.1 The
√

3 scheme

The
√

3 scheme was recently proposed in [8]. In each step a new vertex is inserted at the barycenter
of each triangle, and every old vertex is relaxed according to a affine combination of itself and
its direct neighbors. After two iterations, and so for any even number of iterations, the scheme
becomes a proper ternary scheme, that is n = 3. Here we study the support of this ternary scheme
defined by double steps of the

√
3 scheme, which is, of course, the same as the support of the

original
√

3-scheme.

Figure 11 shows the sets S1, S2, S3 and S4, that is the non-zero points of the basis function
constructed after 1, 2, 3 and 4 steps, respectively. Figure 4(a) shows a superimposition of these sets.

In Figure 12(a) the red points represent the scaled footprint. The black area represents the
part of the support constructed after four iterations, giving an indication of the shape of the total
support. The blue polygon is the convex hull of the scaled footprint, and so the convex hull of the
support, and it is a polygonal outer bound for the support. This polygon is a dodecagon, which is
not regular as it has 6 shorter edges and 6 longer. There are no other vertices of the scaled footprint
on these twelve edges, so by Proposition 5.2 their intersection with the support are the ternary
Cantor sets defined on them.

The green dashed polygon is an inner bound that was constructed with the use of Proposi-
tion 5.3. It worth noticing that it is by no means trivial to find the optimal inner bound which the
use of Propositions 5.3, 5.4, 5.5 can give. In fact, it is a very interesting combinatorial problem. For
example, each of the vertices of the boundary dodecagon belongs to a triangle of F′ with 7 vertices
on each edge, which by Proposition 5.5 belongs to the support. These twelve triangles will give a
good inner bound which nevertheless will not be optimal. For a better inner bound we consider the
three parallelograms with 5 and 7 vertices on each edge shown in Figure 12(b). By Proposition 5.3
they belong to the support and give a better inner bound.

If we wanted to improve on this bound we could study the 9-ary scheme with step equal to four
steps of the

√
3-scheme. The footprint of this scheme is shown in Figure 11 (green points). Notice

that now each edge of the boundary of the convex hull contains 4 points of the scaled footprint.
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(a) (b)

Figure 12: (a) The black area (S4) is an approximation to S after four iterations. The red points
are the scaled footprint F′. The blue line and the green dashed line give an outer and an inner
polygonal bound for S. (b) We show three parallelograms that are subsets of the support. Their
union gives the inner polygonal bound of S: the green dashed line in (a).

Figure 13: The red point set shows the footprint S1 of a ternary butterfly scheme. The other point
sets are S2, S3 and S4, respectively.

6.2 A ternary butterfly scheme

The second example (Figures 13 and 4(b)) is a ternary version of the butterfly scheme, contrived
to illustrate the possibility that fractal behaviour may occur on some edges of the support but not
all (this is the scheme described in [4] with the parameter values ν = ε = 0). Here there are some
negative coefficients, so some of the results hold under the assumption that the support also includes
the zero contour lines.

The convex hull of the support S is again a dodecagon with 6 short edges and 6 long. By
Proposition 4.1 the intersection of the short edges with S is a ternary Cantor set, while the long
edges belong to S.

On the scaled footprint we can identify six parallelograms, shown in Figure 14(b), belonging
to the support. Their union gives the optimal inner bound we can obtain with the use of the
propositions we have proved. Notice that one type of parallelogram has non-equispaced points on
one of its edges, therefore, in conjunction with Proposition 5.3 we have to use the more general
Proposition 4.2.
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(a) (b)

Figure 14: (a) The black area (S4) is an approximation to S after four iterations. The red points
are the scaled footprint F′. The blue line and the green dashed line give an outer and an inner
polygonal bound for S. (b) We show six parallelograms that are subsets of the support. Their
union gives the inner polygonal bound of S: the green dashed line in (a). Notice that there are two
types of parallelograms. The more square of the parallelograms have non-equispaced points of F′

on two edges.

7 Generalizations

In this section we consider first the important case of irregular connectivity in the polyhedron and
then look at other generalizations of this work to the study of skew schemes and the study of higher
dimensional schemes.

7.1 The irregular case

The above has considered only the case where the connectivity of the polyhedron is totally regular,
forming either a quadrilateral or a triangular grid.

The main problem in the irregular case, where extraordinary points are present, is that we no
longer have a well-defined domain. Nevertheless, we may make certain observations which we
expect to give true conclusions.

We consider first the mask and support of an isolated extraordinary point. The configuration
has n-fold symmetry around this point rather than the usual 4- or 6-fold. However, the pattern
within each of the 4 or 6 sectors of the regular case now appears within each of the n sectors of the
extraordinary point mask. The parts of the mask at the next subdivision level which influence the
support are not interfered with by the extraordinary vertex itself, and so we assert that the nature
(polygonal or fractal) of the support in each sector will not be different from the regular case.

Rather more complicated is the situation where the extraordinary point lies within the support
of the vertex we are considering but is not the vertex itself.

We now have to carry out subdivision down to the point where the extraordinary point is an
explicit vertex influenced by the initial mask. Once we reach this point, we can express the support
of the original vertex as being the union of the supports of the vertices at this level, and again we
see that the nature of the overall support will be the same as in the regular case.

We thus come to the conclusion that the presence of irregularity in the form of extraordinary
points in the polyhedron does not alter the nature of the support boundary, provided that each
sector of the footprint of the extraordinary point is the same as that for a regular point.

7.2 Skew schemes

In [1] and [6] there is a classification of subdivision schemes which includes skew schemes. In these
schemes the self similarity is expressed not only by a scaling of the footprint but with a rotation
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as well. That is, in each step each already constructed point is substituted with a rotated image of
the footprint. In fact, the

√
3-scheme is an example of a skew scheme but we were able to study it

as a non-skew scheme by taking double steps. That was possible because the rotational symmetry
of the scheme, which is π

3 , is an integer multiple of the rotation of the footprint, which is π
6 . In

general skew schemes, where the rotational symmetry of the scheme is not an integer multiple of
the rotation of the footprint, we have to work with the generalized form of (9):

S =

{

∞
∑

m=1

e(m−1)(iπ/θ)(n − 1)

nm
P ′

im
| im = 0, 1, . . . , k

}

(35)

The term eiπ/θ represents the rotation of the footprint by an angle θ and the points of IR2 can now
be thought as a vector space over the complex numbers C, or, even better, as complex numbers
themselves. In this case (35) is a complex power series.

Another way to handle skew schemes is to alternate rotation direction on alternate steps. This
allows us to consider double steps without rotation. An interesting feature of such alternating skew
schemes is that they can have polygonal support without any pair of edges being parallel.

7.3 Higher dimensions

In the d-dimensional case the results on the d − 1 dimension become results on the boundary and
similar proof techniques are expected to apply. The main equation becomes

S =

{

∞
∑

m=1

(n − 1)

nm
Tm−1P ′

im
| im = 0, 1, . . . , k

}

(36)

where T is an isometry of IRd fixing the origin.

8 Discussion: support, artifacts and structure

The nature of the support influences the operational performance of a scheme through the question
of lateral artifacts. It is well known that, if an attempt is made to run a feature skew to the
isoparametric lines in a tensor-product patch system, it will be reproduced unevenly. To get a nice
extruded feature it has to be run in one of the two isoparametric directions. Three-direction box-
spline based schemes, such as Loop [9], have three directions in which features may safely be run,
and the four-direction box-splines such as ‘simplest’ [10] and ‘4–8’ [11] have four.

For a direction to be safe, it is a necessary condition that the support should have a parallel pair
of long enough4 straight boundaries in that direction. If a scheme has a totally fractal boundary
there will be no directions in which features can be extruded exactly. We have examples of schemes
(1) which are polygonal with pairs of parallel edges (e.g. Figure 3), (2) which have polygonal
support without any parallelism between ‘opposite’ sides (e.g. some alternating skew schemes), (3)
which are totally fractal (e.g. Figure 4(a)) and (4) which are fractal in parts of the boundary and
straight in others (e.g. Figure 4(b)).

The support may also be a convenient way of establishing results about the structure of the
limit surface. The best known schemes have a piecewise polynomial structure in regular regions,
with nested rings of such pieces around extraordinary vertices. If a scheme has a fractal support
boundary, it can at best have pieces meeting at fractal boundaries, and we speculate that it cannot
have polynomial pieces at all.

9 Summary

We have studied the support of subdivision in terms of the arity and the non-zero values of the basis
function after the first iteration of the scheme. In the cases where we were not able to calculate the

4Clearly, such boundaries will need to have a length at least equal to the distance between old vertices in the mesh.
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support explicitly we studied its convex hull, the boundary of the convex hull and its interior,
finding polygonal outer and inner bounds for the support. Our results provide useful insights into
the behaviour of subdivision schemes.
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Appendix

For an alternative arithmetic description of the ternary Cantor set we write the numbers of the
interval (0,1) in the triadic arithmetic system

x = .d1d2d3 . . . di ∈ {0, 1, 2} i = 1, 2, 3, . . . (37)

The first step, that is, the removal of the middle third interval ( 1
3 , 2

3 ) will erase the numbers with
d1 = 1. The second step, that is the removal of the intervals ( 1

9 , 2
9 ) and ( 7

9 , 8
9 ) will erase the numbers
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O

P Pi+1i

Figure 15: A description of Cantor’s ternary set with the use of vectors.

with d2 = 1 that were not erased in the first step. Continuing this way we remove all the numbers
that have any 1 in their triadic expansion. Thus the ternary Cantor set can be thought of as the
set of numbers in the interval (0,1) with only 0s and 2s in their triadic expansion. This alternative
description of the Cantor set was used in a part of the proof of Proposition 4.1.

For a third description of the Cantor set, we start with two linearly independent vectors ~OPi

and ~OPi+1 and create the sets

{

1
3i

~OPi,
1
3i

~OPi+1

}

i = 0, 1, . . . (38)

Then we choose one element from each one of these sets and add them up. We notice that because

1 + 1
3 + 1

32 + · · · = 3
2

all the points we can generate this way have the form

λ1
~OPi + λ2OPi+1, 0 ≤ λ1, λ2, λ1 + λ2 = 3

2 (39)

that is, they are points of the segment P ′
iP

′
i+1 defined by the endpoints of 3

2
~OPi and 3

2
~OPi+1.

Nevertheless, not all the points of P ′
iP

′
i+1 are generated this way. For example, if we choose the

vector ~OPi from the first set then we have λ1 ≥ 1 while if we choose ~OPi+1 we will have λ1 ≤ 1
2 .

Thus, in any case we cannot generate the points with 1
2 < λ1 < 1, which are the points of the

middle third interval of P ′
iP

′
i+1. Generally, the choice from the first k sets determines an interval

of length 1
3k in which the final point lies, while the choice from the next set determines if the final

point lies in the right third or in the left third of that interval. It is not difficult to see that the
subset of points of P ′

iP
′
i+1 we can reach in this process is the ternary Cantor set defined on P ′

iP
′
i+1

(Figure 15). This third description of the ternary Cantor can be used as an intuitive illustration of
the way the boundary of a bivariate ternary scheme is constructed.


