
Technical Report
Number 531

Computer Laboratory

UCAM-CL-TR-531
ISSN 1476-2986

Verifying the SET registration protocols

Giampaolo Bella, Fabio Massacci,
Lawrence C. Paulson

March 2002

JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2002 Giampaolo Bella, Fabio Massacci, Lawrence C. Paulson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Abstract

SET (Secure Electronic Transaction) is an immense e-commerce
protocol designed to improve the security of credit card purchases.

In this paper we focus on the initial bootstrapping phases of SET,
whose objective is the registration of customers and merchants with a
SET certification authority. The aim of registration is twofold: getting
the approval of the cardholder’s or merchant’s bank, and replacing tra-
ditional credit card numbers with electronic credentials that customers
can present to the merchant, so that their privacy is protected.

These registration sub-protocols present a number of challenges to
current formal verification methods. First, they do not assume that
each agent knows the public keys of the other agents. Key distribution
is one of the protocols’ tasks. Second, SET uses complex encryption
primitives (digital envelopes) which introduce dependency chains: the
loss of one secret key can lead to potentially unlimited losses.

Building upon our previous work, we have been able to model and
formally verify SET’s registration with the inductive method in Isa-
belle/HOL solving its challenges with very general techniques.

3

Contents

1 Introduction 5

2 The SET Registration Protocols 6

3 Modelling the Registration Protocols 11
3.1 Modelling Cardholder Registration in Isabelle/HOL 12
3.2 Modelling Merchant Registration 14

4 Secrecy Proofs for Cardholder Registration 16
4.1 Relations between secrets . 17
4.2 Verification of Secrecy Properties 18

5 Related Work and Conclusions 23

4

1 Introduction

Cryptographic protocols allow people to communicate securely across an
open network, even in the presence of hostile or compromised agents. Such
protocols are hard to design and numerous researchers have developed ways
of finding errors automatically [7, 10] or proving protocols correct [5, 11].
(Many additional references could be given.) Here we report our verifica-
tion of the registration protocols of SET, a giant protocol for electronic
commerce, proposed by Visa and MasterCard as an industry standard [8].

The idea behind the registration protocols of SET is that only registered
customers and merchants can engage in transactions. A registered card-
holder has been cleared by a bank and has a digital certificate to prove it.
Subsequently, he can show his certificates rather than his credit card number
to an equally certified merchant. The merchant will rest assured that there
is a credit card behind the private key signing a bill, and the customer will
be sure that incompetent or dishonest merchants will not publish his credit
card details on the internet.

At a this level of abstraction, the registration protocols look trivial: they
just distribute public key certificates. However, past experience shows that
simplifying a protocol’s encryption mechanisms can hide major errors [13].
SET presents two major challenges to formal methods:

1. it involves several levels of encryption, using many combinations of
symmetric cryptography, asymmetric cryptography and hashing;

2. it does not assume that each agent has his own private key (so that
the only problem is the distribution of the public keys), but allows
customers and merchants to invent asymmetric keys at will.

The first challenge comes from SET’s use of RSA digital envelopes. One
part of a digital envelope is the main body of the message, encrypted using
a fresh symmetric key. The other part contains that key and is encrypted
with the recipient’s public encryption key. The two parts may have some
common data, possibly hashed, in order to confirm that they are tied to-
gether. This combination of symmetric and asymmetric encryption is more
efficient and secure than using either form of encryption alone. However,
it makes a protocol harder to analyze. For instance, assuming that long-
term asymmetric keys are secure, as all verification techniques do, will not
guarantee us that the data in a digital envelope is safe.

Furthermore, digital envelopes can be used to send keys, which are used
to package new envelopes, ad infinitum. A complicated case is in the last
message exchange of cardholder registration, where a digital envelope con-
veys a symmetric key that the recipient uses to encrypt the reply. These
creates dependency chains such that the loss of a secret key can lead to a cas-
cade of losses. Nothing like this can be found in the customary benchmark

5

for protocol verification methods, the Clark-Jacobs library [4]. Therefore,
many protocol verification formalisms [6] assume that to prove secrecy it is
enough to show that the long-term keys encrypting the short-term keys are
safe. Past protocols were too simple to reveal this point.

The second challenging aspect of the SET protocols is the possibility
for cardholders and merchants to invent private and public key pairs at
will for their electronic credentials. The difference with session key and key
agreement protocols is minimal: asymmetric keys join nonces and sessions
keys among the objects that can be invented during a protocol run. We
do not make the usual assumption that each agent knows the other agents’
public keys.

However, all current verification approaches functionally associate asym-
metric and other long-term keys to agents. This modelling choice sub-
stantially eliminates asymmetric keys from the hard part of the modelling:
namely reasoning about what an agent can encrypt and decrypt and the
introduction of fresh values. Once asymmetric keys are fixed from the out-
set, and at most are unknown to the intruder, reasoning about asymmetric
encryption is substantially reduced to an equality check between the agent
holding the message and the agent associated to the key. In model check-
ing, these modelling choices have further advantages: the introduction of
fresh values can be limited to nonces and symmetric keys, thus cutting the
explosion of the state space.

We have not only verified these protocols but found what appears to be
a general method for treating such protocol mechanisms.

This paper presents an introduction to the SET registration protocols
(§2). Next, the formal model of the registration protocols is presented (§3).
The main secrecy proofs for cardholder registration and presented (§4). A
final section discusses related work and presents conclusions (§5).

2 The SET Registration Protocols

People normally pay for goods purchased over the Internet by giving the
merchant their credit card details. To prevent eavesdroppers from stealing
the card number, the message is encrypted using the SSL protocol. This
arrangement requires the customer and merchant to trust each other. That
requirement is undesirable even in face-to-face transactions, and across the
Internet it admits unacceptable risks.

• The cardholder is protected from eavesdroppers but not from the mer-
chant himself. Some merchants are dishonest and some merchants are
incompetent at protecting sensitive information.

• The merchant has no protection against dishonest customers who sup-
ply an invalid credit card number or who claim a refund from their

6

bank without cause. Contrary to popular belief, it is the merchant
who has the most to lose from fraud. Legislation in most countries
protects the consumer.

As stated in the Introduction, SET aims to reduce fraud by introduc-
ing a preliminary registration process. Cardholders and merchants must
register with a certificate authority (CA) before they can engage in trans-
actions. The cardholder thereby obtains electronic credentials to prove that
he is trustworthy. The merchant similarly registers and obtains credentials.
Later, when the customer wants to make purchases, he and the merchant ex-
change their credentials. If both parties are satisfied then they can proceed.
SET includes separate subprotocols (called transactions) for cardholder and
merchant registration.

We focus first on cardholder registration (Figure 1), which is the more
complicated of the two. The cardholder proves his identity by giving the CA
personal information previously shared with his issuing bank. He chooses a
private key, which he will use later to sign orders for goods, and registers the
corresponding public key, which merchants can use to verify his signature.
The cardholder receives a certificate, signed by the CA, that associates the
public key to his identity. Notice that the protocol does not assume that
the key submitted by the cardholder is unique, nor that is fresh. The usual
assumption that the cardholder registers his key should be replaced by the
working hypothesis that the cardholder registers some key.

The protocol is complicated because it has many objectives. It must
certify a signature key and associate it with the credit card number, while
keeping the latter secret. In this way the Merchant can be assured that an
order signed by a key certified by Visa’s CA is matched by corresponding
credit card issued by Visa, even if he does not see the credit card number.

Cardholder registration consists of six messages. We have abbreviated
some of the SET terminology, for instance Chall C has become NC1. Note
that SET requires each CA to have separate key pairs for signature and
encryption.

Initiate Request. The Cardholder sends his name to the CA, with a
freshness challenge (NC1).

1. C → CA : C,NC1

Initiate Response. The CA responds to the challenge and returns its
public key certificates, which are signed by the Root Certificate Authority.
The cardholder needs the CA’s public keys for the various SET protocols.

2. CA → C : SignCA(C, NC1), CertRCA(pubEKCA), CertRCA(pubSKCA)

7

Cardholder
Computer

Certificate
Authority (CA)

Process

Cardholder
initiates

registration
Certificate

Authority sends
response

Cardholder
requests

registration
form

Certificate
Authority takes

request and
sends

registration form
Cardholder
completes

registration form
and requests
certificate

Certificate
Authority checks
registration form

and issues
certificate

Cardholder
receives

certificate

Initiate request

Initiate response

Registration form
request

Registration form

Cardholder
certificate request

Cardholder certificate

Figure 1: Cardholder Registration

Registration Form Request. The cardholder requests a registration
form. In this message, he submits his credit card number to the CA. SET
calls this the PAN, for Principal Account Number. This message is our first
example of a digital envelope: some data is encrypted using the key KC1,
which is itself encrypted using the CA’s public key.

3. C → CA : CryptKC1(C, NC2, Hash PAN),
CryptpubEKCA(KC1, PAN, Hash(C, NC2))

Registration Form. The CA uses the credit card number to determine
the cardholder’s issuing bank and returns an appropriate registration form.
SET does not specify the details of such forms, which we therefore omit
from the formalization. The CA again sends its public key certificates.

4. CA → C : SignCA(C, NC2, NCA), CertRCA(pubEKCA),
CertRCA(pubSKCA)

Cardholder Certificate Request. The cardholder chooses an asymmet-
ric signature key pair. He gives the CA the public key, pubSK C, and the
completed registration form. He also encloses CardSecret, a random num-
ber that must be kept secure permanently. This message is another digital
envelope, using the key KC3. Another key, KC2, is sent to the CA to use

8

for encrypting the response. The proliferation of keys complicates reasoning
about this protocol.

5. C → CA : CryptKC3(m, CryptpriSK C(Hash(m, PAN, CardSecret))),

CryptpubEKCA(KC3, PAN, CardSecret)

where m = C, NC3, KC2, pubSK C

Cardholder Certificate. The bank checks the various details, and if sat-
isfied, authorises the CA to complete the registration. The CA signs a
certificate that includes the cardholder’s public signature key and the cryp-
tographic hash of PANSecret: a secret number known to the cardholder.
PANSecret is the exclusive-OR of the CardSecret (chosen by the cardholder)
and NonceCCA (chosen by the CA). The cardholder will use the PANSecret
to prove his identity when making purchases.

6. CA → C : CryptKC2(SignCA C, NC3, CA, NonceCCA,

CertCA(pubSK C), CertRCA(pubSKCA))

The merchant registration protocol (Figure 2) is simpler. No credit card
number is involved. The CA determines the appropriate registration form
merely on the basis of the merchant’s name.1This eliminates one message
exchange: there is no registration form request message. The merchant
chooses two private keys, for signature and encryption, and registers the
corresponding public keys (one at a time). The main goal of this protocol is
to provide the merchant with certificates, signed by the CA, that associate
the public keys to the merchant’s identity. Here are the four messages in
more detail.

Initiate Request. The merchant sends his name to the CA, with a fresh-
ness challenge (NM1).

1. M → CA : M,NM1

Registration Form. The CA determines the merchant’s bank (known as
the acquirer) and returns an appropriate registration form, along with its
public key certificates.

2. CA → M : SignCA(M, NM2, NCA), CertRCA(pubEKCA),
CertRCA(pubSKCA)

1Observe that there are many more customers than merchants and that becoming an
accredited merchant costs money and time, so that a name search is feasible. As for
privacy, the name of a merchant and his accepted credit cards are public and indeed the
more public the better for the merchant himself.

9

Merchant
Computer

Certificate
Authority (CA)

Process

Certificate
Authority takes

request and
sends

registration form

Initiate request

Merchant certificate
request

Merchant certificates

Merchant
requests

registration
form

Merchant
completes

registration form
and requests
certificates

Registration form

Merchant
receives

certificates

Certificate
Authority checks
registration form

and issues
certificates

Figure 2: Merchant Registration

Merchant Certificate Request. The merchant chooses two asymmetric
public/private key pairs, one for signature, the other for encryption. He sub-
mits the two public keys, pubSK M and pubEK M , along with the completed
registration form to the CA, who forwards it to the bank. This message is
yet another digital envelope, using the session key KM1.

3. M → CA : CryptKM1(SignpriSK M (M,NM2, pubSK M, pubEK M)),

CryptpubEKCA KM1

Merchant Certificates. The bank checks the various details, and if sat-
isfied, authorises the CA to issue certificates. The CA signs two certificates,
one including the merchant’s public signature key and the merchant’s iden-
tity, the other including the merchant’s public encryption key and the mer-
chant’s identity. The CA wraps up the two certificates in a single message
using no hashing, and sends it to the merchant. When the merchant receives
the certificates, he is ready to sell goods over the Internet.

4. CA → M : CryptKC2(SignCA(M, NM3, CA, NonceCCA),
CertCA(pubSK M), CertRCA(pubSKCA))

What is the point of verifying SET’s registration protocols? The sub-
sequent purchase protocols perform the actual E-commerce, and protocol
verifiers often assume that participants already possess all needed creden-
tials. However, the registration protocols are difficult, particularly when it
comes to proving that cardholder registration actually keeps the PANSecret

10

secret, an explicit goal of SET [8]. The digital envelopes introduce many
keys and nonces, with non-trivial dependency chains.

3 Modelling the Registration Protocols

Our models of the registration protocols are largely the work of Piero Tra-
montano, who devoted many hours to help us decipher and interpret 1000
pages of SET documentation [2]. Our aim was to capture the essential pro-
tocol mechanisms while omitting optional parts and needless complications.

We use the inductive method of protocol verification, which has been
described elsewhere [11]. This operational semantics assumes a population
of honest agents obeying the protocol and a dishonest agent (the Spy) who
can steal messages intended for other agents, decrypt them using any keys
at his disposal and send new messages as he pleases. Some of the honest
agents are compromised : the Spy has full access to their secrets. A protocol
is modelled by the set of all possible traces of events that it can generate.
Events are of three forms:

• Says A B X means A sends message X to B.

• Gets A X means A receives message X.

• Notes A X means A stores X in its internal state.

Notice that for the says action we have no guarantee that A’s message will
ever reach B.

We have flattened SET’s hierarchy of certificate authorities [8]. The
Root Certificate Authority is responsible for certifying all the other CAs.
Our model includes compromised CAs, though we assume that the root
is uncompromised. The compromised CAs complicate the proofs — large
numbers of session keys and other secrets fall into the hands of the Spy. But
even if we assumed that all CAs were honest, a realistic model would have
to include the possibility of secrets becoming compromised.

Here is a brief summary of the notation:

• set_cr is the set of traces allowed by cardholder registration;

• set_mr is the set of traces allowed by merchant registration;

• used is the set of items appearing in the trace, to express freshness;

• symkeys is the set of symmetric keys;

• Nonce, Pan, Key, Agent, Crypt and Hash are obvious message construc-
tors;

• {|X1, ..., Xn|} is an n-component message;

11

• sign is the message constructor for signatures, defined by

sign K X == {|X, Crypt K (Hash X) |},

where K is a private signing key.

• certC is the message constructor for a cardholder’s public-key certifi-
cates, which includes his PAN and the PanSecret, PS . It is defined
by

signCert K X == {|X, Crypt K X |}
certC PAN Ka PS T signK ==

signCert signK {|Hash {|Nonce PS, Pan PAN |}, Key Ka, T |}

• cert is the message constructor for public-key certificates of CAs and
merchants:

cert A Ka T signK == signCert signK {|Agent A, Key Ka, T |}

3.1 Modelling Cardholder Registration in Isabelle/HOL

A taster for the formalization is shown in Figure 3. It contains a fragment
of our inductive model for cardholder registration, under the simplifying
assumptions that the Cardholder has a unique public/private key pair func-
tionally associated to his name.

The figure presents the full rules for messages 5 and 6, which are SET_CR5

and SET_CR6 respectively. The rules modelling the early messages of the
protocol and the rules that are common to most protocols, such as the
definition of the Spy’s capabilities, are omitted.

Each rule details how to extend a given trace of the protocol (# is the
list “cons” operator) and refers to a typical CA, namely CA i, and a typical
cardholder C, defined using the Cardholder constructor:

C = Cardholder k.

In rule SET_CR5, variable evs5 refers to the current event trace. The
preconditions of the rule require the cardholder to issue two fresh nonces
NC3 and CardSecret, and two fresh symmetric keys, KC2 and KC3. Also, two
events must have occurred in evs5 : the Says event signifies that C sent
an appropriate instance of message 3 to the CA; the Gets event signifies
that C received the CA’s reply, which carries a certificate signed by the root
certification authority and establishing EKi to be the CA’s public encryption
key2. Another certificate states that SKi is the CA’s public signature key.

2The flag onlyEnc in the certificate indicates that it refers to an encryption key, while
onlySig indicates a signature key.

12

SET CR5:

" [[evs5 ∈ set cr; C = Cardholder k;

Nonce NC3 /∈ used evs5; Nonce CardSecret /∈ used evs5;

NC3 6= CardSecret;

Key KC2 /∈ used evs5; KC2 ∈ symKeys;

Key KC3 /∈ used evs5; KC3 ∈ symKeys; KC2 6=KC3;

Gets C {|sign (invKey SKi) {|Agent C, Nonce NC2, Nonce NCA |},
cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA) |}
∈ set evs5;

Says C (CA i)

{|Crypt KC1 {|Agent C, Nonce NC2, Hash (Pan (pan C)) |},
Crypt EKi {|Key KC1, Pan (pan C),

Hash {|Agent C, Nonce NC2 |}|}|}
∈ set evs5]]

=⇒ Says C (CA i)

{|Crypt KC3

{|Agent C, Nonce NC3, Key KC2, Key (pubSK C),

Crypt (priSK C)

(Hash {|Agent C, Nonce NC3, Key KC2,

Key(pubSK C), Pan(pan C), Nonce CardSecret |}) |},
Crypt EKi {|Key KC3, Pan (pan C), Nonce CardSecret |}|}

evs5 ∈ set cr"

SET CR6:

" [[evs6 ∈ set cr;

Nonce NonceCCA /∈ used evs6;

KC2 ∈ symKeys; KC3 ∈ symKeys; cardSK /∈ symKeys;

Notes (CA i) (Key cardSK) /∈ set evs6;

Gets (CA i) {|Crypt KC3 {|Agent C, Nonce NC3, Key KC2, Key cardSK,

Crypt (invKey cardSK)

(Hash{|Agent C, Nonce NC3, Key KC2,

Key cardSK, Pan(pan C), Nonce CardSecret |}) |},
Crypt (pubEK (CA i)) {|Key KC3, Pan (pan C),

Nonce CardSecret |}|}
∈ set evs6]]

=⇒ Says (CA i) C (Crypt KC2

{|sign (priSK (CA i))

{|Agent C,Nonce NC3,Agent(CA i), Nonce NonceCCA |},
certC (pan C) cardSK (XOR(CardSecret,NonceCCA))

onlySig (priSK (CA i)),

cert (CA i) (pubSK(CA i)) onlySig (priSK RCA) |})
Notes (CA i) (Key cardSK)

evs6 ∈ set cr"

Figure 3: Modelling cardholder registration (fragment)

13

Then, C encrypts using EKi a message containing his credit card number
(pan C) and the key KC3, and encrypts using KC3 a message containing the
symmetric key KC2 and the public signature key to be certified. The two
encrypted messages constitute a digital envelope, which C sends to the CA.

In rule SET_CR6, variable evs6 refers to the current event trace. The
rule may fire when the CA receives an instance of message 5, requesting a
certificate for the key cardSK . The rule lets CA send protocol message 6, a
digital envelope containing the desired certificate and encrypted by a sym-
metric key received from the cardholder. The certificate also contains the
PANSecret, which is computed as the exclusive-OR of the CardSecret (sent
by the cardholder) and NonceCCA (generated by the CA). While sending the
message, the CA stores the key just certified in order to prevent its being
certified more than once. The rule for message 6 checks that the key cardSK

has not previously been registered by imposing the precondition

Notes (CA i) (Key cardSK) /∈ set.

Since our earlier work on this protocol [2], we have streamlined the
model. For example, the Notes event in SET_CR6 elegantly replaces a stronger
precondition. Other notions, such as the set of crucial keys for decrypting
SET messages have also been eliminated. We have found a simple formal-
ization of the many types of agents and their keys.

Modelling the generation of fresh public/private key pairs is not difficult,
as we have reported already [2]. It involves replacing pubSK C and privSK C
with variables ranging over keys, and extend the preconditions of SET_CR5,
with a new requirement: the newly introduced public keys are not used and
are not equal to any symmetric key.

3.2 Modelling Merchant Registration

The message constructors defined above can be reused to specify merchant
registration. The inductive rules modelling the last two messages of the
protocol appear in Figure 4.

Rule SET_MR3 specifies that the merchant M generates a single session key
KM1 and asks for certification of both his public keys. This differs from the
previous protocol, where cardholder generates two session keys and asks for
certification of his signature key only. The rule may fire only if the merchant
sent message 1 of the protocol, as stated by the Says event, and received
message 2, as stated by the Gets event.

If the CA agrees to certify the merchant’s keys, it must also record
them, as stated by rule SET_MR4. The conclusion of the rule adds the three
corresponding events to the current trace. The merchant’s certificates have
the same form as the CA’s certificate — indeed, all of them are expressed
using the same message constructor, cert. These certificates are sent in
clear, since the message for issuing certificates “shall be signed but not

14

SET MR3:

" [[evs3 ∈ set mr; M = Merchant k; Nonce NM2 /∈ used evs3;

Key KM1 /∈ used evs3; KM1 ∈ symKeys;

Gets M {|sign (invKey SKi) {|Agent X, Nonce NM1, Nonce NCA |},
cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA) |}
∈ set evs3;

Says M (CA i) {|Agent M, Nonce NM1 |} ∈ set evs3]]
=⇒ Says M (CA i)

{|Crypt KM1 (sign (priSK M) {|Agent M, Nonce NM2,

Key(pubSK M), Key(pubEK M) |}),
Crypt EKi (Key KM1) |}

evs3 ∈ set mr"

SET MR4:

" [[evs4 ∈ set mr; M = Merchant k;

merSK /∈ symKeys; merEK /∈ symKeys;

Notes (CA i) (Key merSK) /∈ set evs4;

Notes (CA i) (Key merEK) /∈ set evs4;

Gets (CA i) {|Crypt KM1 (sign (invKey merSK)

{|Agent M, Nonce NM2, Key merSK, Key merEK |}),
Crypt (pubEK (CA i)) (Key KM1) |}

∈ set evs4]]
=⇒ Says (CA i) M {|sign (priSK (CA i))

{|Agent M, Nonce NM2, Agent (CA i) |},
cert M merSK onlySig (priSK (CA i)),

cert M merEK onlyEnc (priSK (CA i)),

cert (CA i) (pubSK (CA i)) onlySig (priSK RCA) |}
Notes (CA i) (Key merSK)

Notes (CA i) (Key merEK)

evs4 ∈ set mr"

Figure 4: Modelling merchant registration (fragment)

15

encrypted if the [certificate recipient] is a Merchant or Payment Gateway” [9,
p.191]. However, SET requires the last message of cardholder registration
to be encrypted.

Merchant registration is simpler than cardholder registration. It involves
fewer sensitive components. There is no equivalent of the PAN or of the
PANSecret, and there are fewer digital envelopes.

4 Secrecy Proofs for Cardholder Registration

For cardholder verification we proved 64 theorems in total; for merchant reg-
istration we proved 31. These include all the main goals for these protocols
and all necessary lemmas. We have space to present only a small selection.
We concentrate on the most difficult and interesting proofs concerning se-
crecy in cardholder registration. Here we have introduced the new methods
to deal with digital envelopes.

A primary goal is that cardholder registration guarantees secrecy of the
PANSecret. No message of the protocol sends this number, not even in en-
crypted form. Rather, both parties compute it as the exclusive-OR of other
numbers. So, do those numbers remain secret? Since they are encrypted us-
ing symmetric keys, the proof requires a lemma that symmetric keys remain
secret.

The first complication is that some symmetric keys do not remain secret,
namely those involving a compromised CA. The second, major complication
is that some symmetric keys are used to encrypt others: the loss of one key
can compromise a second key, leading possibly to unlimited losses.

The problem of one secret depending on another has occurred previously,
with the Yahalom [12] and Kerberos [3] protocols. Both of these are com-
paratively simple: the dependency relation links only two items. Cardholder
registration has many dependency relationships. It also has a dependency
chain of length three: in the last message, a secret number is encrypted
using a key (KC2) that was itself encrypted using another key (KC3).

To solve this problem, we have generalized the method described in ear-
lier work to chains of any length. While the definitions become more com-
plicated than before, they follow a uniform pattern. The idea is to define a
relation, for a given trace, between pairs of secret items: (K, X) are related
if the loss of the key K leads to the loss of the key or nonce X. Two new
observations can be made about the dependency relation:

• It should ignore messages sent by the Spy, since we can only hope
to prove secrecy for honest participants. This greatly simplifies some
proofs.

• It must be transitive, since a dependency chain leading to a compro-
mise could have any length. Past protocols were too simple to reveal

16

KeyCryptKey Nil:

"KeyCryptKey DK K [] = False"

KeyCryptKey Cons:

"KeyCryptKey DK K (ev # evs) =

(KeyCryptKey DK K evs ∨
(case ev of

Says A B Z ⇒
((∃ N X Y. A 6= Spy ∧

DK ∈ symKeys ∧
Z = {|Crypt DK {|Agent A, Nonce N, Key K, X |}, Y |}) ∨

(∃ C. DK = priEK C))

| Gets A’ X ⇒ False

| Notes A’ X ⇒ False))"

Figure 5: Association between keys in cardholder registration

this point.

Secrecy of session keys is proved as it was for Kerberos IV [3], by defining
the relation KeyCryptKey DK K evs that takes two keys DK and K, and an
event trace evs. It holds on a trace containing a message in which the first
key encrypts the second key. As we shall see, reasoning about KeyCryptKey

will allow us to prove that most symmetric keys remain secure.
From that result, one might think it would be easy to prove that nonces

encrypted using those keys remain secret. However, secrecy proofs for nonces
appear to require the same treatment as secrecy proofs for keys. We must
define the dependency relation between keys and nonces. Then the proofs
can be carried forward as it was for Yahalom [12], except that there are
many key-nonce relationships rather than one.

4.1 Relations between secrets

The relation KeyCryptKey DK K evs is defined as a primitive recursive func-
tion in Figure 5. Rule KeyCryptKey Nil, the base case of the recursion, states
that the relation is false on an empty trace. Rule KeyCryptKey Cons formal-
izes the recursive step. For the relation to hold on the extended trace ev#evs

the relation must either hold on the original trace evs, or the new event ev

must have a specific structure. It could be an instance of message 5 in which
some principal who is not Spy uses KC3 to encrypt KC2 in the event trace evs.
Alternatively, ev could be any event in which somebody encrypts KC3 using
a public key. In the latter case, KeyCryptKey holds of the corresponding
private key, which can decrypt the message. In reading the definition, note
that “∨” denotes logical disjunction, while “|” is part of the “case” syntax.

Figure 6 defines the dependency relation for nonces. Here are some hints

17

KeyCryptNonce DK N (ev # evs) =

(KeyCryptNonce DK N evs ∨
(case ev of

Says A B Z ⇒
A 6= Spy ∧
((∃ X Y. Z = {|Crypt DK {|Agent A, Nonce N, X |}, Y |}) ∨
(∃ K i X Y.

Z = Crypt K {|sign (priSK i) {|Agent B, Nonce N, X |}, Y |} ∧
(DK=K ∨ KeyCryptKey DK K evs)) ∨

(∃ K i NC3 Y.

Z = Crypt K

{|sign(priSK i) {|Agent B, Nonce NC3, Agent(CA i), Nonce N |},
Y |} ∧

(DK=K ∨ KeyCryptKey DK K evs)) ∨
(∃ i. DK = priEK i))

| Gets A’ X ⇒ False

| Notes A’ X ⇒ False))

Figure 6: Association between keys and nonces in cardholder registration

towards understanding this definition. The only important case involves
Says events. The first disjunct refers to message 5 (shown above in §3),
where key KC3 encrypts nonce NC3 ; it also covers a similar encryption in
message 3. The second and third disjuncts refer to message 6; they involve
KeyCryptKey because that encryption uses a key received from outside. The
fourth disjunct essentially says that we are not interested in asymmetric
keys (they are never sent, so there is no risk of compromise).

4.2 Verification of Secrecy Properties

Now we outline the verification of cardholder registration. The handling of
fresh public keys does not add technical difficulties thanks to Isabelle’s level
of automation. So, we have streamlined the model in this section to the
case where the public/private key pair proposed by the cardholder is not
invented but rather functionally assigned to him in the model. However, no
agent knows another agent’s public keys at the start of a run, but instead
uses keys supplied in public key certificates.

Secrecy properties cause all our difficulties and we concentrate on them
here. We first sketch the key steps of the proof informally to give an overview
of the proof effort. We begin with three major lemmas:

• keys can be compromised only through the disclosure of other keys;

• keys sent by cardholders to uncompromised CAs are never disclosed;

• nonces cannot be compromised through the disclosure of keys;

18

Building on these lemmas, we are able to prove our key theorems:

• the CardSecret is secure, if the cardholder sends the certificate re-
quest message to an uncompromised CA;

• the NonceCCA is secure, if it is contained in a cardholder certificate
received by the cardholder from an uncompromised CA;

• the PAN is secure, unless the cardholder has sent a certificate re-
quest message to a compromised CA.

Obviously, we have to trust the certification authority. The CA’s task is to
certify that there is a correspondence between a certificate and a credit card
number. To obtain this goal, the CA must be able to see the credit card
number.

In the sequel, each theorem is stated first in English and then using
Isabelle notation. Each has been mechanically verified with Isabelle/HOL,
typically by some form of induction. Some of them are so-called regularity
properties, which are easy to prove [11]. For example, one protocol goal is
almost trivial: if a certificate bears the signature of an uncompromised CA,
then it was sent by the CA.

To prove our main results we need a number of preliminary technical
lemmas. For example, we never have KeyCryptKey DK K evs where DK is
fresh (in the trace evs), since a fresh key cannot have been used to encrypt
anything. Several other obvious properties of KeyCryptKey turn out to be
needed in the proofs below.

We can then move on to the session key compromise theorem. It states
that a key can be lost only by the keys related to it by KeyCryptKey. It is
used in other proofs to reason about situations in which some session keys
might be compromised.

Lemma 1 (symKey compromise) No symmetric key can be compromised
through the disclosure of other keys except in trivial cases.

[[evs ∈ set cr; SK ∈ symKeys; ∀ K∈KK. ¬ KeyCryptKey K SK evs]]
=⇒ (Key SK ∈ analz (Key ‘ KK ∪ knows Spy evs)) =

(SK ∈ KK ∨ Key SK ∈ analz (knows Spy evs))

We can interpret this theorem as asserting that KeyCryptKey expresses all
circumstances in which a symmetric key can become compromised. The
proof is a big, difficult induction consisting of 10 proof commands. The sim-
plification step requires a specialized set of rewrite rules, including lemmas
about KeyCryptKey, and is relatively slow (14 seconds). The peculiar form
of the lemma represents the generalization needed to make the induction
succeed. Here are the preconditions in detail:

19

• evs ∈ set cr simply means that evs is a trace of cardholder registra-
tion. All proofs about the protocol will include this assumption.

• SK ∈ symKeys means that SK is a symmetric key.

• ∀ K∈KK. ¬ KeyCryptKey K SK evs means that KK is a set of keys, none
of which immediately compromises SK in the trace evs.

In the conclusion, Key SK ∈ analz (Key ‘ KK ∪ knows Spy evs) means that
SK can be derived from KK together with the Spy’s knowledge (which mainly
consists of observable traffic). The right-hand side of the conclusion is

(SK ∈ KK ∨ Key SK ∈ analz (knows Spy evs))

which means that either SK is itself a member of the set KK or SK is already
derivable from the Spy’s knowledge alone.

We could simplify the right-hand side above, and many other formulas,
by defining KeyCryptKey to be reflexive. The intuition is attractive, for then
KeyCryptKey would hold when there was a chain of decryptions from one key
to another, of length possibly zero. However, this change would strengthen
the precondition of Lemma 1, making it harder to prove (when we need to
use the induction hypothesis) and harder to apply.

Lemma 2 (symKey secrecy) Symmetric keys sent by cardholders to un-
compromised CAs are never disclosed.

[[CA i /∈ bad; K ∈ symKeys; evs ∈ set cr;

Says (Cardholder k) (CA i) X ∈ set evs; Key K ∈ parts {X}]]
=⇒ Key K /∈ analz (knows Spy evs)

This result follows from Lemma 1, but not trivially. It states a general law
for any symmetric key that is part of (Key K ∈ parts {X}) any message sent
by the cardholder:

Says (Cardholder k) (CA i) X ∈ set evs

Since the proof requires examination of all protocol steps, it involves another
induction and the simplification again needs special rewrite rules concerning
secrecy. It is not an explicit protocol goal — symmetric keys are just part
of the underlying machinery — but it is obviously desirable.

Lemma 3 (Nonce compromise) No nonce can be compromised through
the disclosure of keys except in trivial cases.

[[evs ∈ set cr; ∀ K∈KK. ¬ KeyCryptNonce K N evs]]
=⇒ (Nonce N ∈ analz (Key ‘ KK ∪ knows Spy evs)) =

(Nonce N ∈ analz (knows Spy evs))

20

In both statement and proof, this result resembles Lemma 1. In par-
ticular, the precondition ∀ K∈KK. ¬ KeyCryptNonce K N evs means that KK

is a set of keys, none of which immediately compromises the nonce N . The
conclusion is that the Spy could derive N with the help of the set KK only if
he could have derived N without using that set. The situation is complicated
by the many different nonces used in cardholder registration, only some of
which are kept secret. So the proof is even longer than that of Lemma 1,
despite its appealing to that lemma; it requires 14 proof steps and involves
reasoning about both KeyCryptKey and KeyCryptNonce.

Theorem 1 (CardSecret secrecy) If a cardholder sends the certificate
request message to an uncompromised CA, then the chosen CardSecret will
remain secure.

[[CA i /∈ bad;

Says (Cardholder k) (CA i)

{|X, Crypt EKi {|Key KC3, Pan p, Nonce CardSecret |}|} ∈ set evs;

Gets A {|Z, cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA) |} ∈ set evs;

KC3 ∈ symKeys; evs ∈ set cr]]
=⇒ Nonce CardSecret /∈ analz (knows Spy evs)

This is an important goal: SET purchases are safe only if CardSecret is
uncompromised. The proof involves another complicated induction despite
its use of Lemmas 1 and 3. In the preconditions, note that the cardholder
builds the digital envelope using any symmetric key KC3 ; the public key,
EKi, is bound to the CA through a certificate signed by RCA . The main
body of the argument is an induction that additionally assumes KC3 to be
uncompromised; later, an appeal to Lemma 2 removes that assumption.

Theorem 2 (NonceCCA secrecy) If a cardholder sends the certificate
request message to an uncompromised CA and receives in response the
cardholder certificate, then the value of NonceCCA contained in the latter
will remain secure.

[[CA i /∈ bad;

Gets (Cardholder k)

(Crypt KC2

{|sign(priSK(CA i)) {|Agent C, Nonce N, Agent(CA i), Nonce NonceCCA |},
X, Y |}) ∈ set evs;

Says (Cardholder k) (CA i)

{|Crypt KC3 {|Agent C, Nonce NC3, Key KC2, X’ |}, Y’ |} ∈ set evs;

Gets A {|Z, cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA) |} ∈ set evs;

KC2 ∈ symKeys; evs ∈ set cr]]
=⇒ Nonce NonceCCA /∈ analz (knows Spy evs)

21

This result is as important as Theorem 1, since both CardSecret and
NonceCCA are ingredients of the all-important PANSecret. The proof re-
sembles that of Theorem 1 but is a bit more complicated, since it refers to
two protocol messages. Variables such as X and Y refer to irrelevant parts of
messages.

This theorem is a guarantee to the cardholder: it is expressed in terms
of events that the cardholder can verify. We have not proved the analogous
guarantees for the CA. Although NonceCCA originates with the CA, its
compromise would do the CA no harm.

Theorems 1 and 2 are as close as we can come to expressing the secrecy of
the PANSecret, since our model does not let us reason about exclusive-OR.
Our next goal is to prove secrecy of the PAN: the credit card number.

Lemma 4 (analz insert pan) No PAN can be compromised through the
disclosure of symmetric keys.

[[evs ∈ set cr; K /∈ invKey ‘ pubEK ‘ range CA]]
=⇒ (Pan P ∈ analz (insert (Key K) (knows Spy evs))) =

(Pan P ∈ analz (knows Spy evs))

This result resembles Lemma 3 but is much easier to prove because PANs
are encrypted only with public keys. As the model does not allow public
keys to be broken during a trace, no key dependency chains complicate
the reasoning. In essence, the inductive argument examines all protocol
messages to confirm that symmetric keys are never used to encrypt PANs.

The obscure premise K /∈ invKey ‘ pubEK ‘ range CA states that the
key K is not the private encryption key of any CA. The lemma says that if
the Spy can discover a PAN with the help of K, then he could have discovered
the PAN without using K. To make the induction work, we had to prove a
stronger statement (not shown); it generalizes the lemma above to replace
K by a set of symmetric keys. The final guarantee about the PAN says that
it remains secure unless it is sent to a compromised CA (for its private keys
are known to the Spy).

Theorem 3 (pan confidentiality) If a PAN has been disclosed, then the
cardholder has sent a certificate request message to a compromised CA.

[[Pan (pan C) ∈ analz(knows Spy evs); C 6= Spy; evs ∈ set cr]]
=⇒ ∃ i X K HN.

Says C (CA i) {|X, Crypt (pubEK(CA i)) {|Key K, Pan(pan C), HN |}|}
∈ set evs

∧ (CA i) ∈ bad

This result is proved by induction, using Lemma 4 and the usual rewriting
rules for secrecy proofs.

22

Merchant registration is much easier to analyze than cardholder registra-
tion. The simpler form of the certificate request message eliminates the
dependence between symmetric keys. The lack of the fields PAN, CardSecret
and NonceCCA leaves us with little to prove secret.

5 Related Work and Conclusions

The general treatment of secrecy proofs, as exemplified in KeyCryptKey and
KeyCryptNonce, is a major outcome of our work. The definitions of these
relations are complicated but conform to an obvious pattern that could be
automated. Verifying the registration protocols was valuable preparation
for our later verification of the purchase protocols [1].

As far as we are aware, no other group has attempted to verify the SET
registration protocols. Of the many other efforts into protocol verification,
the most relevant is TAPS by Ernie Cohen [5]. Given a protocol, Cohen’s
system automatically generates a secrecy invariant, which serves the same
purpose as the relations KeyCryptKey and KeyCryptNonce. Potentially, TAPS
could verify cardholder registration, though the protocol’s size and complex-
ity may present difficulties in the automatic generation of invariants.

The complicated RSA digital envelopes and signature conventions make
proofs difficult and slow. Compared with other protocols that researchers
have verified, cardholder registration uses encryption heavily, resulting in
gigantic terms or complex case splits. Sometimes Isabelle presents the user
with subgoals spanning several pages of text. One should not attempt to
prove such a monstrosity directly. One useful strategy is to look for terms
that can be simplified and prove the corresponding rewrite rules. This may
cut the monstrosity down to size.

Our model does not include the algebraic properties of exclusive-OR,
such as X ⊕ Y ⊕X = Y , and this prevents us from proving the security of
the PANSecret. We assume that X ⊕ Y is secure if both X and Y are. Our
treatment of the PANSecret amounts to assuming that it is computed as the
hash of X and Y , which would certainly be an improvement over exclusive-
OR. A bad CA can force the PANSecret to take on a chosen value N by
setting NonceCCA to be CardSecret ⊕ N . The cardholder has no defence
against this attack unless he knows the value of N .

Acknowledgments

F. Massacci was supported by CNR and MURST grants. Part of this work
was done while P. Tramontano was visiting the Computer Laboratory in
Cambridge under a visiting scholarship for masters students by the Univer-
sity of Roma I “La Sapienza.” The work at Cambridge was funded by the
epsrc grant GR/R01156/R01 Verifying Electronic Commerce Protocols.

23

References

[1] G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase
protocols. Technical Report 524, Computer Laboratory, University of
Cambridge, Nov. 2001.

[2] G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal verification
of cardholder registration in SET. In F. Cuppens, Y. Deswarte, D. Gollman,
and M. Waidner, editors, Computer Security — ESORICS 2000, LNCS 1895,
pages 159–174. Springer, 2000.

[3] G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the
secrecy goals. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors, Computer Security — ESORICS 98, LNCS 1485,
pages 361–375. Springer, 1998.

[4] J. Clark and J. Jacob. A survey of authentication protocol literature: Version
1.0. Technical report, University of York, Department of Computer Science,
November 1997. Available on the web at
http://www-users.cs.york.ac.uk/~jac/. A complete specification of the
Clark-Jacob library in CAPSL is available at
http://www.cs.sri.com/~millen/capsl/.

[5] E. Cohen. TAPS: A first-order verifier for cryptographic protocols. In Proc.
of the 13th IEEE Comp. Sec. Found. Workshop, pages 144–158. IEEE Comp.
Society Press, 2000.

[6] J. Guttman. Security goals: Packet trajectories and strand spaces. In
R. Focardi and F. Gorrieri, editors, Foundations of Security Analysis and
Design - Tutorial Lectures, volume 2171 of Lecture Notes in Comp. Sci.,
pages 197–261. Springer-Verlag, 2001.

[7] G. Lowe. Casper: A compiler for the analysis of security protocols. J. of
Comp. Sec., 6(18-30):53–84, 1998.

[8] Mastercard & VISA. SET Secure Electronic Transaction Specification:
Business Description, May 1997. Available electronically at
http://www.setco.org/set specifications.html.

[9] Mastercard & VISA. SET Secure Electronic Transaction Specification:
Programmer’s Guide, May 1997. Available electronically at
http://www.setco.org/set specifications.html.

[10] C. Meadows. Analysis of the Internet Key Exchange protocol using the NRL
Protocol Analyzer. In SSP-99, pages 216–231. IEEE Comp. Society Press,
1999.

[11] L. C. Paulson. The inductive approach to verifying cryptographic protocols.
J. of Comp. Sec., 6:85–128, 1998.

[12] L. C. Paulson. Relations between secrets: Two formal analyses of the
Yahalom protocol. J. of Comp. Sec., 9(3):197–216, 2001.

[13] P. Ryan and S. Schneider. An attack on a recurive authentication protocol. a
cautionary tale. Inform. Processing Lett., 65(15):7–16, 1998.

24

