
Technical Report
Number 529

Computer Laboratory

UCAM-CL-TR-529
ISSN 1476-2986

The triVM intermediate language
reference manual

Neil Johnson

February 2002

This research was sponsored by a

grant from ARM Limited.

JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2002 Neil Johnson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Contents

1 Introduction 5
1.1 Background . 5
1.2 Aims . 5
1.3 Related Work . 6
1.4 Context . 7
1.5 Structure of this report . 7

2 The triVM Virtual Machine 9
2.1 Virtual Registers . 9
2.2 Condition Flags . 9
2.3 Memory Hierarchy . 12
2.4 Addressing Modes . 13
2.5 Procedure Calling Mechanism . 13

3 Number Formats and Data Storage 16
3.1 Integer Numbers . 16
3.2 Floating Point Numbers . 17
3.3 Accessing Multi-byte Data . 17

4 Single Assignment Behaviour 19
4.1 Conversion into SSA Form . 19
4.2 Variable Renaming . 19
4.3 Control Flow and Phi-Functions 20

5 Intermediate Language Directives 22
5.1 Identifiers . 23
5.2 Structural Directives . 23
5.3 Data Directives . 24
5.4 Complete Scoping Example . 24
5.5 Constants . 24

6 The Virtual Instruction Set 27
6.1 Notation . 27
6.2 add — integer add . 29
6.3 and — bitwise AND . 30
6.4 asr — arithmetic shift right . 31
6.5 bae — branch if above-or-equal (unsigned) 32
6.6 bbl — branch if below (unsigned) 33

3

6.7 beq — branch if equal . 34
6.8 bge — branch if greater-than-or-equal (signed) 35
6.9 blt — branch if less-than (signed) 36
6.10 bne — branch if not-equal . 37
6.11 bra — branch to label (direct and indirect) 38
6.12 call — call a procedure . 39
6.13 cmp — integer compare . 40
6.14 div — integer divide (signed) . 41
6.15 fadd — floating-point add . 42
6.16 fcmp — floating-point compare 43
6.17 fdiv — floating-point divide . 44
6.18 fmul — floating-point multiply 45
6.19 fneg — floating-point negate . 46
6.20 fsub — floating-point subtract 47
6.21 ldb — load sign-extended byte 48
6.22 ldh — load sign-extended half-word 49
6.23 ldi — load immediate . 50
6.24 ldw — load word . 51
6.25 lsl — logical shift left . 52
6.26 lsr — logical shift right . 53
6.27 mod — integer modulus (signed) 54
6.28 mul — integer multiply . 55
6.29 neg — integer negate . 56
6.30 not — bitwise complement . 57
6.31 or — bitwise OR . 58
6.32 phi — phi-merge . 59
6.33 ret — return from a procedure 60
6.34 stb — store byte . 61
6.35 sth — store half-word . 62
6.36 stw — store word . 63
6.37 sub — integer subtract . 64
6.38 udiv — integer divide (unsigned) 65
6.39 umod — integer modulus (unsigned) 66
6.40 vldb — volatile load sign-extended byte 67
6.41 vldh — volatile load sign-extended half-word 68
6.42 vldw — volatile load word . 69
6.43 vstb — volatile store byte . 70
6.44 vsth — volatile store half-word 71
6.45 vstw — volatile store word . 72
6.46 xor — bitwise Exclusive-OR . 73

7 Common Program Structures 74
7.1 Basic Blocks . 74
7.2 Tests . 74
7.3 Loops . 76
7.4 Procedures . 77
7.5 Global and Local Data . 77
7.6 Putting It All Together . 78

Bibliography 82

4

Chapter 1

Introduction

This technical reference manual is the definitive description of the triVM inter-
mediate language. It is written for people interested in triVM, and intended
primarily for code compaction research.

1.1 Background

Program space compaction has become an important and active area of research,
primarily in the field of embedded systems. A typical deeply-embedded system
will consist of a compact code processor (e.g. ARM Thumb [7]), limited runtime
storage (RAM) and limited code storage (EPROM, Flash, etc.), together with
I/O interfaces specified for a particular application. In the majority of cases,
such systems are mass produced in large volumes. Clearly, at these quantities
material costs account for a major part of the total product design cost. As
the size of ROM required to store the program is proportional to the size of the
program, a worthwhile cost reduction can be achieved through reducing the size
of the program code.

The triVM intermediate language has been developed as part of a research
programme concentrating on code space optimization. It is intended to be an
experimental platform to support investigations into code analyses and trans-
formations, providing a high-degree of flexibility and capability.

1.2 Aims

The primary aim in developing the triVM intermediate language is to provide a
language that removes the complexity of high-level languages, such as C or ML,
while maintaining sufficient detail, at as simple a level as possible, to support
research and experimentation into code size optimization.

A secondary aim is to develop an intermediate language that supports graph-
based translation systems, using graph rewrite rules, in a textual, human-
readable format. Experience has shown that text-format intermediate files are
much easier to use for experimentation, while the penalty in translating this
human-readable form to the more compact binary data structure format used
by the software is negligible.

5

Another secondary aim is to provide a flexible language in which features
and innovations can be evaluated. For example, this is one of the first interme-
diate languages (as opposed to data structures) to directly support the Static
Single Assignment property (see Chapter 4). Another feature is the exposing of
condition codes as one of the results obtained from arithmetic operations—an
example is given in Chapter 7.

The basic structure of triVM is a notional three-address machine, wherein
the majority of arithmetic instructions take three registers—two supply the
arguments and the result is placed in the third. This instruction format is
somewhat similar to that of the ARM Thumb [7].

1.3 Related Work

While this paper is concerned solely with the description of the triVM interme-
diate language, we present a brief summary of research on other intermediate
languages. Broadly speaking, the area can be split into two sub-areas: typed
intermediate languages, primarily used in functional language compilers (ML,
Haskell, etc), and untyped intermediate languages which are primarily aimed at
the translation and optimization of imperative languages (C, Pascal, etc).

Starting with the former, one of the most widely known works is Tarditi
et al ’s Typed Intermediate Language TIL [14], which paved the way for the
development of Morrisett’s Typed Assembly Language TAL [11], which is really
another form of typed intermediate language, albeit based on a generic RISC-like
architecture. triVM initially looks similar to TAL in syntax and mnemonics.
However, TAL has additional operations for allocating blocks of memory on
the heap and type packing and unpacking. Target code generators have been
developed for the Intel x86 architecture [6]. The main focus of this work has
been to provide a language and tools to automatically produce and certify code
for safety before being executed.

Another typed intermediate language is Henk [8]. This language is very
closely tied to the Glasgow Haskell Compiler (GHC) [5], the original aim of the
authors to incorporate Henk in the GHC. Henk’s four main benefits are: it is
directly based on typed lambda calculi, it is a small language, it uses a single
syntax for terms, types and kinds, and it has an explicit concrete syntax. Again,
the main focus of attention in on type-safety and type-checking programs as a
means of producing correct programs.

One final example of typed intermediate languages is λCIL [15]. Again, this
research is focused on compiling functional, polymorphically-typed languages,
such as ML, but now with a bias towards optimization through flow-directed
compilation.

In all these three instances, the goal has been compiling functional languages
in a type-safe environment. The second, and arguably more relevant, selection of
intermediate languages are focused on traditional imperative language models.

At IBM, the TOBEY compiler utilizes two intermediate languages: XIL and
YIL [12]. The original intermediate language, XIL, was developed to facilitate
the production of highly optimal scalar code. To support higher-level trans-
formations, XIL was later extended to form YIL, whose primary function was
to provide an abstraction layer above XIL to support optimizations of nests of
loops in the presence of caches.

6

The Sun Microsystems’ Clarity C++ Compiler was built on the MCode
machine-independent intermediate language [10]. The significant difference with
this intermediate language is that it was designed to be compiled into native
code at runtime, the main advantages being that MCode can more compactly
represent a program, and a runtime code generator can be finely tuned for each
platform that it is running on.

Finally, one of the main works in this field is the Stanford SUIF com-
piler suite [4]. Here, the intermediate representation is constructed from an
object-oriented extensible intermediate representation, encapsulating consider-
able high-level program details (e.g loop structures, array indices, field accesses).
The overall structure of the system is of a front-end compiler, a number of plug-
in modules that apply transformations to the intermediate representation, and
a back-end target code generator. This structure is similar to triVM; however,
the intermediate file format is binary rather than the more easily readable tex-
tual format of triVM. Also, the basic premise appears to be program represen-
tation supporting block-based control-flow analysis, rather than the combined
control/data-flow information present in triVM intermediate code.

1.4 Context

The complete triVM compilation flow is illustrated in Figure 1.1. This paper
is concerned with the definition of the triVM language, which sits within the
triVM virtual environment.

1.5 Structure of this report

The remainder of this report is structured as follows. Chapter 2 describes the
triVM virtual machine, covering the machine registers, the memory hierarchy,
addressing modes and the procedure calling mechanism. Chapter 3 then de-
scribes the number formats interpreted by the virtual machine and how they
are stored in memory. Chapter 4 looks at the implementation of static single
assignment in triVM, together with a simple example. Chapter 5 details the
non-executable triVM directives necessary to define the overall structure of a
triVM program, while chapter 6 describes each triVM instruction in detail. Fi-
nally, chapter 7 illustrates a number of common program structures, in both C
and triVM form, as an aid to helping the reader understand the application of
the triVM intermediate language.

7

Global
Optimizer

Target Library
Definition

Libraries
Target

Link

Executable
Target

triVM Object triVM Object triVM Object

Simulation
&

Debug

Code
Generator

Optimizer
Target

Merge

C Compiler

C Source

User Library System Library

triVM Virtual Environment

Target-dependent Region

Figure 1.1: The triVM compilation flow. Whole-program linking is performed
at the triVM source level, prior to optimization and target-dependent resource
allocation. Target linking is performed as the final step to producing the exe-
cutable.

8

Chapter 2

The triVM Virtual
Machine

The triVM virtual machine defines the behaviour of triVM programs. It spec-
ifies the width of the virtual registers, the operation of condition flags, the
structure of the memory hierarchy, and the procedure calling mechanism.

This chapter describes each of these in detail, including examples where they
help illustrate a particular point.

2.1 Virtual Registers

An instance of a triVM procedure describes the dynamic existence of a pro-
cedure as opposed to its static existence: there is only one static body of a
procedure’s instructions, while there can be many dynamic instances of a pro-
cedure.

A procedure instance includes not only the body of code that forms the
procedure, but also the set of registers that describes that particular instance of
the procedure. One can draw a comparison between a triVM procedure instance
and the activation record [1] of traditional compilers, in that they both capture
the dynamic behaviour of a procedure. The triVM instance abstracts away
the notion of a stack frame, replacing it with a set of virtual registers that are
unique to each instance of a given procedure.

Each instance of a register within an instance of a procedure is unique —
register r4 in procedure P is distinct from register r4 in procedure P ′, even if
both procedures are instances of the same procedure body.

All of the triVM registers adhere to the single-assignment property of SSA
form (Chapter 4). Each register is assigned by only one instruction (the defini-
tion node) and used one or more times (the use nodes).

2.2 Condition Flags

The triVM virtual machine consists of memory (discussed in the following sec-
tion) and a virtual processor that executes the virtual instructions of the pro-
gram.

9

Information within the virtual processor is of two types: numeric values and
condition flags. Either type of data may be stored in a virtual register. The
difference between the two types is defined by the meaning of the information:
numeric values are the values directly determined and interpreted by the inten-
tion of the programmer (e.g. the sum of two integers), whereas the condition
flags are solely for the purposes of the virtual processor in determining the status
of the result of an arithmetic operation with respect to zero.

The associated bit patterns for numeric values can be directly related to
information relevant to the application (e.g. the ASCII value for the character
‘A’). The bit pattern meaning for the condition flags however, has no meaning
to any software other than to the virtual processor. All we can say is that for
a given condition the relevant conditional instructions will behave as expected;
how this behaviour is achieved is not important.

All the arithmetic and logical operations generate numeric and, optionally,
condition flag values. Where the status of the result is not required the condition
code register can be omitted.

For integer comparisons, exactly one of either blt or bge (or bbl or bae

for unsigned comparisons) will be taken, while for floating-point comparisons at
most one of either blt or bge will be taken1.

For example, the follow instruction calculates the sum of registers r2 and
r3, storing the numeric result in register r4

add r4, r2, r3

Whereas the following instruction repeats the same operation but in addition
stores the status of the result in register r5 (e.g. whether the result was zero,
positive, etc)

add (r4, r5), r2, r3

We can then use the contents of r5 to determine the properties of the numeric
result with respect to zero (i.e. if it was equal or not equal to zero, greater than
zero, or less than zero)2. This compound instruction is semantically equivalent
to computing the numerical result, then comparing that result with zero and
storing the condition codes in the second result register. Figure 2.1 illustrates
two semantically equivalent instruction sequences.

add r3, r1, r2

ldi r4, 0

cmp r5, r3, r4

add (r3, r5), r1, r2

(a) (b)

Figure 2.1: Semantically equivalent instruction sequences. In (a) we show the
original, explicit instruction sequence. However, we do not make any use of the
condition codes implicitly generated by the add instruction. In (b) we explicitly
identify these condition codes, saving two instructions.

1The unsigned branches bbl and bae are always untaken for floating-point comparisons.
2For floating-point operations, a result that generates a non-number (e.g. NaN) will gen-

erate a condition code that causes no conditional branch to take place.

10

Condition Branch Alternative Interpretation
== beq zero
! = bne non-zero
< blt negative (less than zero)
≥ bge positive (greater than or equal to zero)
< (unsigned) bbl

≥ (unsigned) bae

Figure 2.2: The six main condition codes in the triVM machine. The bottom
two tests (bbl and bae) only apply to unsigned integer comparisons of two num-
bers; the other four apply to both signed integer and floating point operations.

2.2.1 Status Information

The contents of the condition register is opaque to user code. This accomplishes
two things: firstly, it forces the programmer to not rely on any particular en-
coding of the condition flags, thus providing a high degree of cross-platform
portability 3, and secondly, the only instructions that use the contents of condi-
tion code registers are the conditional branch instructions. This tight coupling
between condition code registers and conditional instructions helps separate the
two distinct types of information within a triVM program, which will aid in
subsequent target code resource allocation.

There are six properties of a numeric result that can be tested, given in
Table 2.2.

As a means of comparison, Table 2.3 summarises the condition code flags
for four popular microprocessor architectures.

Condition ARM x86 SPARC v9 68000

== Z Z Z Z
! = Z Z Z Z

Signed
< N ! = V N ! = V N ! = V N ! = V
≥ N = V N = V N = V N = V

Unsigned
< C C C C
≥ C C C C

Figure 2.3: Condition codes for four popular microprocessors. The four flags
are: Carry, oV erflow, N egative and Z ero. Note that the interpretation of the
Carry flag in the ARM processor is the opposite of the other three processors.
This is due to the ARM treating the Carry flag as an inverted-borrow flag.

3Not all processors implement the same flags, or indeed interpret them in the same way.

11

triVM Virtual Machine

VM Virtual Processortri

Code Space Data Space Register Space

ldi r2, 1
ldi r3, 2
add r4,r2,r3

ldi r5, 0
cmp r6,r4,r5
beq r6, L2

Table1:
 1,2,3,4,5

Table2:
 2,4,6,8,10

r1
r2
r3
r4
r5

...

... ...

Figure 2.4: The triVM virtual machine components. Note the code space is
considered read-only, while both data- and register-spaces are readable and
modifiable. Each dynamic instance of a procedure has its own register set,
indicated by the stack of register blocks.

2.3 Memory Hierarchy

The memory of the triVM virtual machine is based on the Harvard architec-
ture — both code (“X-space”) and data (“M-space”) are placed in separate
memory spaces. In addition, registers occupy a third region (“R-space”). Fig-
ure 2.4 illustrates the three main memory units and their relation to the virtual
processor.

The data memory directives (data and const) split the data memory into
two further subcategories. The data directive specifies modifiable memory that
would typically be held in RAM, while const specifies immutable memory such
as might be held in ROM.

Data is stored in either R-space or M-space. All local automatic variables
(i.e. those declared within a procedure block without static storage) whose ad-
dress is not computed are located in R-space. Global, static and data objects
whose address is taken are stored in M-space.

Some data memory has the special property of being volatile — accessing
that memory may change some other aspect of the system, and conversely the
contents of that memory may change due to some (external) influence. An
example of this behaviour is a memory-mapped timer: its count increases with
every tick of the timer, and the action of reading the timer resets the count. To
interface the triVM virtual machine to this special type of memory a refined
set of memory access instructions are employed — vld loads from a volatile
pointer4 and vst stores through a volatile pointer.

Traditional processor architectures use the notion of a stack to locate local
automatic variables. Each instantiation of a local variable is unique to each call

4We define a volatile pointer as a memory address pointing to a volatile memory cell.

12

of the procedure, and is typically implemented as pre-computed storage within
the activation record of the procedure. The same process is used for thread-local
storage, where each thread has its own stack, on which the activation records
for the procedures in that thread are stored.

This mechanism is supported in triVM by the scoping rules of the data

directive. The two locations of the data directive specify the storage locality of
the data—at module-scope the data is static (and may also be global), while at
procedure-scope the data is automatic. Note that procedure-scope automatic
data may not have global visibility.

2.4 Addressing Modes

The triVM virtual machine has three addressing modes: register, immediate
and register indirect, defined below.

Register

Both source and destination operands are located in R-space. All computation
operations are register-addressing only. For example,

add r12, r3, r9 ; r12 = r3 + r9

Immediate

Immediate addressing implements the loading of immediate data to R-space—
the data for the operation is encoded within the instruction itself. It is used
exclusively for loading compile-time constants into registers. For example,

ldi r4, 12 ; r4 = 12

Register Indirect

The address of the source or target, in M-space or X-space, is stored in a register.
Six instructions allow for indirectly accessing M-space to implement indirection,
and two instructions allow for computed branches and calls. For example,

bra [r23] ; branch to the address stored in r23

2.5 Procedure Calling Mechanism

Procedures split a large program up into a number of smaller parts, joined
together through procedure calls and returns. The triVM instructions call

and ret provide this facility, allowing a specified number of values to be passed
back and forth between procedures.

The call instruction uses register-indirect addressing to refer to the proce-
dure to be called (the callee). The arguments are supplied in registers, and any
return values are assigned to a matching number of result registers. The ret

instruction returns control to the calling procedure (the caller) with the return
values supplied in registers. The example in Figure 2.5 illustrates all of these
points.

13

proc foo (0), 1

ldi r1, bar

ldi r2, ’a’

ldi r3, 5

call [r1](r2, r3), r4

ret r4

end

proc bar (2), 1

add r3, r1, r2

ret r3

end

(a) (b)

Figure 2.5: Procedure foo (a) calls procedure bar with two arguments and ex-
pects one return value, stored in r4, which is returned to foo’s caller. Procedure
bar (b) takes two arguments, which are initially assigned to registers r1 and
r2, and returns their sum (from r3).

There are no restrictions on the number of arguments or return values a
procedure can handle. The precise details of the call instruction are to be
found in section 6.12. However, the number of arguments supplied and return
values requested must match the numbers given in the procedure definition; any
mismatch is a syntax error.

All procedures that terminate must do so through the ret instruction—
it is not possible to “fall-through” to the next procedure. This is partly due
to the interpretation of the phrase “next procedure”. Certainly, in a target
architecture it is possible to fall-through to the next procedure. However, in
the virtual context of triVM there is no such concept of a next procedure.
Indeed, because there is no locating done on triVM code it is undetermined
which procedure, if any, follows any given procedure. Given the wide variety of
memory architectures it would be an artificial constraint to provide a mechanism
to allow fall-through.

The effect of fall-through can be easily obtained through a chain-call: the
last action of a procedure (prior to the terminating ret) is to call the next “fall-
through” procedure. Subsequent target-specific optimization may eliminate the
now-redundant ret, and may even translate the call into a fall-through if it
can guarantee that the fall-through procedure will be placed immediately after
the procedure.

2.5.1 Variadic Functions

Variadic functions are functions that take (a) a fixed number of defined argu-
ments, and (b) a set of zero or more optional arguments. The hard constraint
in triVM on the enumeration of the procedure arguments precludes the direct
implementation of variadic functions.

A proposed solution to the implementation of variadic functions is as fol-
lows. The callee procedure is defined as taking the required number of fixed
arguments and one additional argument: a pointer to an array in which the
additional arguments are placed by the caller prior to the call. The callee can
thus maintain an index into the array through which the additional arguments
can be accessed5.

5This mechanism is similar to the indirect method used by some compilers for passing
structures to functions: a temporary memory block is generated for the structure, the structure
is copied into this block, a pointer to the structure is passed to the callee, and the compiler

14

automatically generates an additional level of indirection to “hide” the real location of the
structure. After the call the temporary block is discarded. For returning structures a similar
mechanism is employed, except the contents of the temporary block is copied into the target
structure before it is freed.

15

Chapter 3

Number Formats and Data
Storage

The previous chapter introduced the triVM virtual machine from an execution
perspective. In this chapter we describe the format of numbers and their storage
in the memory space, M-Space. We look at both integer and floating point
number representations, how they are laid out in the byte-aligned memory, and
illustrate data accesses using the M-space interfacing instructions.

3.1 Integer Numbers

The triVM machine is a little-endian machine, whereby the lowest byte of a
multi-byte value is stored at the lowest address. For example, for a two-byte
integer 0x1234, the lowest byte (0x34) is stored at the first byte in memory,
and the highest byte (0x12) is stored at the next byte in memory.

Little-endian behaviour has several advantages over its opposite (big-endian)
when considering numeric compatibility between different-sized number formats.
Consider a half-word integer of value 0x0012. Clearly, if we read this as a single
byte value, we maintain the numeric value of the original number.

The three triVM integer number formats are: byte, half-word and word.
Figure 3.1 shows how these three data formats are aligned with respect to each
other.

01

3 2 1 0 Word

Half-Word

Byte

Address Offsetn+3 n+2 n+1 n

Figure 3.1: The three integer data formats in the triVM virtual machine. The
numbers represent the byte-offset within the multi-byte formats. For example,
for the word format, the lowest byte (the right-hand-most byte) has an offset of
0, while the highest byte has an offset of 3.

16

3.2 Floating Point Numbers

The previous section described the integer number formats, where each bit has
a direct mapping to the numeric value. In contrast, floating point numbers uses
a compact multi-format representation, where several fields of different meaning
fit into the single word-length format.

The triVM virtual machine uses the IEEE-754 standard format for 32-bit
single-precision floating point numbers [3]. The real numeric value is stored in
three fields: sign (1 bit), exponent (8 bits) and significand (23 bits), shown in
Figure 3.2.

1
3 2

3
3 2

20

Sign

0

0123 Byte Storage

Bitfield FormatExponent Significand

Figure 3.2: The IEEE-754 compatible single-precision floating point data format
of triVM.

The three fields of the data format are interpreted as follows. Starting
from the left, the sign bit is 0 for positive values and 1 for negative values.
The exponent is stored as an unsigned integer value with a bias of 127. This
limits the range of the exponent to [−127 . . . 128]1. Finally, the significand is an
unsigned 24-bit value, covering the range [1.0 . . . 2.0). To save storage the most
significant ‘1’ is hidden, and is not stored in memory.

Floating point numbers are stored in memory as if they were 4-byte integer
values. The first byte contains the first eight bits of the significand, the second
byte contains bits 9 to 15, the third byte contains the remaining bits of the
significand and the first bit of the exponent, while the last byte contains the
remaining seven bits of the exponent and the sign bit.

3.3 Accessing Multi-byte Data

All three data sizes (byte, half-word and word) are accessed through size-specific
load/store instructions. For example, in the case of byte-sized data, one would
use the ldb and stb instructions to load and store bytes respectively. The load
instruction also performs a sign-extend, replicating the topmost bit of the source
byte into the rest of the target register. If a zero-extended load is required then
the topmost bits of the register must be explicitly cleared. In the case of a word
load no sign-extend is performed.

Since floating-point values are the same size as word integers, the word load
and store operations are also used for floating-point loads and stores.

There is no requirement to ensure that multi-byte values are aligned to some
boundary, as is often the case in target processors.

The following programs (Figure 3.3) illustrate the use of the load/store in-
structions.

1We use ‘[’ or ‘]’ to denote inclusive range, and ‘(’ or ‘)’ to denote exclusive range.

17

data giVar[4]

proc foo:

...

ldi r1, 1

ldi r2, giVar

stb [r2],r1

ldw r3, [r2]

...

end

data giVar[4]

proc bar:

...

ldi r1, 1

ldi r2, giVar

add r3, r2, r1

ldh r4, [r3]

...

end

const Pi = 3.141593

proc area (1), 1

ldi r2, Pi

ldw r3, [r2]

fmul r4, r1, r1

fmul r5, r4, r3

ret r5

end

(a) (b) (c)

Figure 3.3: In (a) we store a byte in the first element of global integer variable
giVar, then load the entire contents of giVar into register r3. Example (b)
illustrates an unaligned half-word load from the middle of a word variable.
Finally (c) shows how to calculate the circumference of a circle, with the radius
in r1 and the constant Pi held in data ROM, as defined by the const directive.

18

Chapter 4

Single Assignment
Behaviour

Static Single Assignment (SSA) [2] is a representation of a program such that
for each variable there is only one assignment statement. A program in this
form has many nice features, especially concerning data-flow-based analysis and
optimization. Typically, an existing program not in SSA form is translated into
SSA form prior to optimization.

4.1 Conversion into SSA Form

Converting non-SSA form programs into SSA form generally consists of two
steps: (i) renaming all variables to impose the static single assignment property,
and (ii) inserting φ-functionswhere appropriate to merge two or more reaching
definitions of a variable at a merge point within the control-flow graph.

4.2 Variable Renaming

Renaming variables is mostly a matter of appending a subscript of some form
(typically a numeric integer) to a variable name, replacing each instance of
variable access with the name of the reaching definition of that variable, and
incrementing the subscript on every new definition of that variable. Figure 4.1
shows how a basic block of statements can be converted into SSA form.

The renaming approach is sufficient for simple scalar variables but does not
apply to array variables. The approach generally taken for arrays is to apply
two pseudo-operations Access and Update. The simpler of the two, Access, takes
both the name of the array variable and the index into the array, returning the
contents of the indexed array cell. The second operator, Update, takes the names
of the array variable, the index into the array, and the new value for the indexed
array cell, and returns a new variable whose contents is that of the old array
variable but includes the change to the indexed cell. Figure 4.2 illustrates this.

19

1: x = a + b; 7→ x1 = a1 + b1;
2: y = c + d; y1 = c1 + d1;
3: x = e + y; x2 = e1 + y1;
4: z = f(x); z1 = f(x2);

(a) Original (b) SSA Form

Figure 4.1: SSA conversion for a basic block. The subscripts identify each new
variable name, while keeping the name of the original variable for exposition.
For example, consider variable x in (a) which has two assignments (lines 1 and
3). In (b) x is split into two distinct variables x1 and x2 in order to impose the
single assignment property.

1: x = A[5]; 7→ x1 = Access(A1, 5);
2: x = x + 2; x2 = x1 + 2;
3: A[5] = x; A2 = Update(A1, 5, x2);
4: y = A[6]; y1 = Access(A2, 6);

(a) Original (b) SSA Form

Figure 4.2: SSA conversion for arrays. The pseudo-operation Update modifies
the array, which is treated as a single-assignment entity. A new copy of the
array is thus created on every Update operation.

4.3 Control Flow and Phi-Functions

Implementing single assignment in basic blocks is a trivial exercise, as shown
above, since at any point in the block there can only be one valid definition
for each variable. This is clearly shown in Figure 4.1 at line 3: for the new
definition of x there is only one reaching definition of y, from line 2. Thus we
use the current definition of y in the expression.

Where there are several possible paths of execution to a use of a variable
we have several potentially distinct definitions of that variable, and we require
a mechanism to choose one of these definitions. We cannot just implement
multiple stores to a new variable as this would violate the single assignment
rule of SSA form. The solution to this problem is the φ-function.

The φ-function takes as its arguments all the reaching definitions of a vari-
able that reach a merge point in a control-flow graph, and returns the value
of whichever definition reaches that point in the program. Generally, if flow
reaches the φ-function on the first edge, it returns the first argument, if on
the second edge then the second argument, and so on. Figure 4.3 graphically
illustrates the operation of the φ-function in a simple if...then...else case.

The method of determining where to place φ-functions has been the subject
of much research. The interested reader is referred to [2] for an introduction to
the subject.

In triVM φ-functions are implemented with the phi instruction. It is the
only instruction in the entire instruction set that has the property of multiple
assignment. Its purpose is to implement φ-functions in a distributed fashion—
the φ-function is split into a set of phi instructions, each of which is placed at
the root of each edge ending in the target merge node.

20

if (x < 10)

y = 4;

else

y = 5;

if x < 101

y = 41
y = 52

y = (y ,y)3 1 2φ

T F

; x in r1

ldi r2, 10

cmp r3, r1, r2

blt r3, L1

ldi r4, 5

phi r6, r4

bra L2

L1:

ldi r5, 4

phi r6, r5

L2:

; y in r6

(a) C source (b) Control-flow graph (c) triVM code

Figure 4.3: SSA φ-function example. In (a) is the original C source code. The
control-flow graph (b) shows the merge node at the bottom. The φ-function
merges the two reaching definitions of variable y (y1 and y2) into y3. Finally,
the triVM phi instruction can be seen in the intermediate code (c).

21

Chapter 5

Intermediate Language
Directives

The triVM intermediate language also contains a small number of directives for
specifying non-executable content. As for the instruction set, there are three
classes of directives: labels, structural directives, and data directives. They are
summarised in Table 5.1.

Syntax Description

LabelName: Defines a label at the specified
point in the program. Note that
this directive is only valid within
procedure bodies.

module ModuleName Defines the start of a module,
typically a source or library mod-
ule.

endmod Marks the end of a module.

proc ProcName (Nin), Nout Identifies the start of procedure
ProcName and specifies the num-
ber of argument registers Nin and
result registers Nout.

end Marks the end of a procedure.

data DataName〈 [n] 〉〈 = initlist〉 Defines static storage for one or
n bytes of variable memory, with
optional initializer list (where
|initlist| ≤ n).

const ConstName = initlist Defines constant byte-wide data
and the values to be stored at
that location.

Table 5.1: The triVM intermediate language directives. 〈. . .〉 denotes optional
elements.

22

module m

proc foo proc bar

L1: L2:

Figure 5.1: A simple illustration of the triVM scoping rules. Label L1 is only
visible within procedure foo. Likewise, L2 is only visible within procedure bar.
Because both foo and bar are defined in the same module both names are
visible to each other (foo can call bar and vice versa).

5.1 Identifiers

There are two classes of identifiers in triVM: scope identifiers and branch tar-
get identifiers. Module and procedure names explicitly implement the triVM
scoping rules. Procedure names also identify the targets for calls. Labels iden-
tify the target points for intra-procedural branches and conditional branches.
Figure 5.1 indicates the scoping rules for identifiers.

Labels are the targets of branch instructions, and as such are only valid
within the confines of a procedure body. Label names may use the characters
a-z, A-Z, 0-9, (underscore), . (period), $, !, / (forward slash) and &. Label
names are, as for all names in triVM, case-sensitive (e.g. LABEL and label are
distinct). Label and procedure names must start with a non-numeric character.

5.2 Structural Directives

Modules in triVM use a two-level hierarchy to support module-level scoping
required by high-level languages such as C1. The module level is supported by
the module directive, which optionally names the module. If a name is not
provided, the source file name will be used.

The procedure level is supported by the proc directive, which identifies the
procedure by name and indicates the single entry point for that procedure. It
also specified the number of argument and result registers for that procedure.
This information is used during analysis to (a) allocate the first Nin registers to
procedure arguments, and (b) check that each ret instruction returns exactly
Nout result registers.

The boundary between the two levels can only be crossed from inner to outer.
The normal scope for procedure names is within the module in which they are
declared; a $-prefix places the procedure name within the global name-space,
allowing calls to be made from procedures in other modules.

1The Pascal nested-procedure hierarchy is not directly supported, and will require some
extra effort of the part of the high-level language compiler, e.g. name-mangling.

23

data StaticVar
const StaticConst = 1
data $GlobalStaticVar
const $GlobalStaticConst = 2

proc StaticProc (1), 0

module M

data LocalAutoVar1
const LocalConst1 = 3
ret

end

proc $GlobalProc (1), 0

data LocalAutoVar2
const LocalConst2 = 3
ret

end

endmod

Figure 5.2: Complete example of triVM scoping rules. The boxes highlight the
scoping regions.

5.3 Data Directives

The two data directives relate to the two types of data that are available to the
system—variable data (or local data whose address is evaluated) and constant
data.

The scoping rules are similar to those for procedure names with one ex-
ception. Data and constant names with a $-prefix are placed in the global
name-space, except for data directives placed within a procedure body which
are always local to that procedure, and are unique to each instance of that pro-
cedure. For const directives placed within a procedure body there is only one
instance of the constant data, but its visibility is restricted to that procedure.

5.4 Complete Scoping Example

To illustrate the above scoping rules in action, Figure 5.2 shows all the scoping
rules in a hypothetical example. The variable, constant and procedure names
illustrate both the use of the $-prefix, and describe their visibility within the
context of the whole program.

5.5 Constants

As well as labels and procedure names, there are four other types of constants
in triVM assembly language: integer constants, real constants, characters and
strings.

24

5.5.1 Labels and References

All visible labels and procedure names may be used as constants. Within a
procedure this includes: all local labels, the procedure’s own name, all constant,
data and procedure names within the parent module, and all global constant,
data and procedure names.

5.5.2 Integer Constants

All integer constants are processed as signed numbers. The maximum range of
integers is defined by the width of the target processor. They can be written
in decimal or hexadecimal notation (beginning with ‘0x’ or ‘0X’). All integer
constants are stored as 32-bit signed numbers. Large unsigned constants (e.g.
0xDEADBEEF) are written as is, and will be converted into the correct bit pattern.

Additional suffixes are added to the number to indicate the size of constant
integers for const declarations. The suffix begins with a ‘:’ and one of ‘B’, ‘H’
or ‘W’ for byte, half-word and word sizes respectively. All immediate loads via
ldi are treated as word-loads, irrespective of the actual width of the constant
argument: numbers without a unary minus are zero-extended, while those with
a leading minus sign are sign-extended. For example, to load the above large
constant into a register, we would write:

ldi r12, 0xDEADBEEF

whereas to load the signed number -4 into a register would be written as:

ldi r13, -4

5.5.3 Real Constants

Real constants are written with a decimal point and optional exponent, for
example 1.23e12 to represent 1.23× 1012. Valid real constants lie in the range
1.175494 × 10−38 to 3.402823 × 10+38.

5.5.4 Character Constants

All character constants are written as a single character, or standard C escape
sequence [9], enclosed between single quotes.

5.5.5 String Literals

Strings are enclosed between double quotes, and consist of one or more char-
acters or escape codes. Strings in triVM are not null-terminated, as in C. To
null-terminate a string append a null value, either as a separate constant, or
with the escape code ’\0’.

5.5.6 Examples

Some examples of the four constants are shown in Figure 5.3 below:

25

12 ; signed integer word constant

-12 ; another signed integer word constant

12:B ; byte-wide integer constant

384:H ; half-word-wide integer constant

1.23e2 ; real constant, equivalent to 123.0

’c’ ; character constant

’\x41’ ; another character constant, ASCII character ‘A’

"hello" ; string literal, consisting of five characters.

Figure 5.3: Examples of triVM constants.

26

Chapter 6

The Virtual Instruction Set

The triVM processor is a 3-address machine. The majority of the instructions
take three arguments, typically three registers. The procedure call and ret

instructions take a variable number of register arguments.
The triVM instruction set can be categorized into three main classes:

Load/store — for transferring data between R-space and M-space.

Computation — for performing calculations on data in R-space.

Flow control — for transferring control to a different part of the program.

In this section we describe each triVM instruction in alphabetical order. For
each instruction we describe:

Syntax of the instruction

Operation of the instruction in pseudo-code

Description of the instruction

Notes additional information, usage, caveats, etc

Example to illustrate the use of the instruction

6.1 Notation

The following symbols are used in this chapter are shown in Table 6.1.
All the numeric operations can optionally return a condition code, generated

by the condition(operation) expression. This is equivalent to comparing the
result of the operation expression with zero.

For example, consider the add instruction with two source registers whose
contents are 2 and 3. The numeric result of this operation is 5. The condition
code result is made by comparing 5 with 0, producing a code that represents
not-equal, greater-than-or-equal and above-or-equal.

The fcondition provides the equivalent functionality for floating-point oper-
ations.

27

Symbol Meaning
rA Argument register
rC Comparand register or Condition Code register
rD Destination register
rM Modifier register
rR Result register
rS Source register

nConst Numeric constant ‘Const’

M[]:B Byte-wide memory contents
M[]:H Half-word-wide memory contents
M[]:W Word-wide memory contents

Figure 6.1: Symbols used in the instruction descriptions.

28

6.2 add — integer add

6.2.1 Syntax

- add
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.2.2 Operation

rD := rS + rM
rC := condition(rS + rM)

6.2.3 Description

The add instruction adds together the contents of rS and rM, placing the result
in rD. Optionally, the condition codes of the result can be placed in rC.

6.2.4 Notes

This instructions applied to both signed and unsigned values.

6.2.5 Example

ldi r1, 1

ldi r2, 2

add r3, r1, r2 ; r3 = r1 + r2 = 3

add (r4, r5), r1, r2 ; r4 = ...

; r5 = condition(r1 + r2)

29

6.3 and — bitwise AND

6.3.1 Syntax

- and
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.3.2 Operation

rD := rS ∧ rM
rC := condition(rS ∧ rM)

6.3.3 Description

The and instruction bitwise ANDs together the contents of rS and rM, placing
the result in rD. Optionally, the condition codes of the result can be placed in
rC.

6.3.4 Notes

6.3.5 Example

ldi r1, 1

ldi r2, 2

and r3, r1, r2 ; r3 = r1 AND r2 = 0

30

6.4 asr — arithmetic shift right

6.4.1 Syntax

- asr
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.4.2 Operation

rD := rS >> rM
rC := condition(rS >> rM)

6.4.3 Description

The asr instruction shifts the contents of rS by rM places to the right, preserving
the sign bit, and placing the result in rD. Optionally, the condition codes of the
result can be placed in rC.

6.4.4 Notes

This right-shift operation maintains the sign of the argument, unlike lsr which
is safe only for unsigned arguments. Shift values less than or equal to zero have
no effect on the result — rS is copied directly into rD.

6.4.5 Example

ldi r1, -12

ldi r2, 1

asr r3, r1, r2 ; r3 = r1 >> r2 = -6

31

6.5 bae — branch if above-or-equal (unsigned)

6.5.1 Syntax

- bae
²
±

¯
°
- rS - ,

²
±

¯
°
- label -

6.5.2 Operation

if rS = ABOVE-OR-EQUAL then
goto label

fi

6.5.3 Description

The bae instruction branches to the given label if the condition in rS is above-
or-equal.

6.5.4 Notes

The equivalent signed branch is bge.

6.5.5 Example

bae r2, L

...

L:

...

32

6.6 bbl — branch if below (unsigned)

6.6.1 Syntax

- bbl
²
±

¯
°
- rS - ,

²
±

¯
°
- label -

6.6.2 Operation

if rS = BELOW then
goto label

fi

6.6.3 Description

The bbl instruction branches to the given label if the condition in rS is below.

6.6.4 Notes

The equivalent signed branch is blt.

6.6.5 Example

bbl r2, L

...

L:

...

33

6.7 beq — branch if equal

6.7.1 Syntax

- beq
²
±

¯
°- rS - ,

²
±

¯
°- label -

6.7.2 Operation

if rS = EQUAL then
goto label

fi

6.7.3 Description

The beq instruction branches to the given label if the condition in rS is equal.

6.7.4 Notes

This instruction is applicable to both integer and floating-point comparisons.

6.7.5 Example

beq r2, L

...

L:

...

34

6.8 bge — branch if greater-than-or-equal (signed)

6.8.1 Syntax

- bge
²
±

¯
°
- rS - ,

²
±

¯
°
- label -

6.8.2 Operation

if rS = GREATER-THAN-OR-EQUAL then
goto label

fi

6.8.3 Description

The bge instruction branches to the given label if the condition in rS is greater-
than-or-equal.

6.8.4 Notes

The equivalent unsigned branch is bae. This instruction is also applicable to
floating-point comparisons.

6.8.5 Example

bge r2, L

...

L:

...

35

6.9 blt — branch if less-than (signed)

6.9.1 Syntax

- blt
²
±

¯
°
- rS - ,

²
±

¯
°
- label -

6.9.2 Operation

if rS = LESS-THAN then
goto label

fi

6.9.3 Description

The blt instruction branches to the given label if the condition in rS is less-than.

6.9.4 Notes

The unsigned equivalent is bbl. This instruction is also applicable to floating-
point comparisons.

6.9.5 Example

blt r2, L

...

L:

...

36

6.10 bne — branch if not-equal

6.10.1 Syntax

- bne
²
±

¯
°- rS - ,

²
±

¯
°- label -

6.10.2 Operation

if rS = NOT-EQUAL then
goto label

fi

6.10.3 Description

The bne instruction branches to the given label if the given condition in rS is
not-equal.

6.10.4 Notes

This instruction is applicable to both integer and floating-point comparisons.

6.10.5 Example

bne r2, L

...

L:

...

37

6.11 bra — branch to label (direct and indirect)

6.11.1 Syntax

- bra
²
±

¯
°

- label¯

±- [
²
±

¯
°- rS -]

²
±

¯
°

²

°

-

6.11.2 Operation

goto label
or
goto [rS]

6.11.3 Description

The bra instruction branches to the label identified either by the given label
name, or by the target-dependent label address in rS.

6.11.4 Notes

Indirect branch addresses must be direct references — address calculation is not
permitted.

6.11.5 Example

ldi r1, L

bra [r1]

...

bra L ; the same as above

...

L:

...

38

6.12 call — call a procedure

6.12.1 Syntax

- call
²
±

¯
°- [

²
±

¯
°- rS -]

²
±

¯
°- (

²
±

¯
°̄

± - rA²

± ,
²
±

¯
°
¾

¯

°

²

°

-)
²
±

¯
°̄

± - ,
²
±

¯
°
- rR²

±

¯

°

²

°

-

6.12.2 Operation

if rA then
rA 7→ rcallee

1 , rcallee
2 , . . . , rcallee

N

fi
call rS

6.12.3 Description

The call instruction calls the procedure identified by rS. Arguments, rA, are
passed to the callee. On return (see the ret instruction) results are assigned to
the rR registers.

6.12.4 Notes

The target address pointed to by rS must be the beginning of a procedure
identified by a visible procedure identifier.

6.12.5 Example

ldi r1, putchar

ldi r2, ’a’

call [r1](r2), r3 ; r3 = putchar(’a’)

39

6.13 cmp — integer compare

6.13.1 Syntax

- cmp
²
±

¯
°- rD - ,

²
±

¯
°- rS - ,

²
±

¯
°- rC -

6.13.2 Operation

rD := condition(rS − rC)

6.13.3 Description

The cmp instruction compares two integer values in rS and rC. The resulting
condition codes are stored in rD for subsequent analysis by a conditional branch
instruction.

This instruction is equivalent to subtracting rC from rS and comparing the
result with zero. The numeric result is discarded. Any subsequent conditional
branch test is based on the comparison of rS with rC:

Relation Branches taken
rS < rC bne blt bbl

rS = rC beq bge bae

rS > rC bne bge bae

6.13.4 Notes

The value stored in rD is target-dependent. The only guarantee is that for a
given target the result of the comparison will be correctly interpreted by the
conditional branch instructions.

6.13.5 Example

cmp r1, r2, r3 ; r1 = comparison of r2 with r3

40

6.14 div — integer divide (signed)

6.14.1 Syntax

- div
²
±

¯
°

- rD¯

±- (
²
±

¯
°- rD - ,

²
±

¯
°- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°
- rS - ,

²
±

¯
°
- rM -

6.14.2 Operation

rD := rS ÷ rM
rC := condition(rS ÷ rM)

6.14.3 Description

The div instruction divides the signed contents of rS by rM, placing the result
in rD. Optionally, the condition codes of the result can be placed in rC.

6.14.4 Notes

Division by zero is handled in a target-dependent manner.

6.14.5 Example

ldi r1, -4

ldi r2, 2

div r3, r1, r2 ; r3 = r1 / r2 = -2

41

6.15 fadd — floating-point add

6.15.1 Syntax

- fadd
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.15.2 Operation

rD := rS + rM
rC := fcondition(rS + rM)

6.15.3 Description

The fadd instruction adds together the floating-point contents of rS and rM,
placing the result in rD. Optionally, the condition codes of the result can be
placed in rC.

6.15.4 Notes

6.15.5 Example

ldi r1, 1.5

ldi r2, 2.7

fadd r3, r1, r2 ; r3 = r1 + r2 = 4.2

42

6.16 fcmp — floating-point compare

6.16.1 Syntax

- fcmp
²
±

¯
°- rD - ,

²
±

¯
°- rS - ,

²
±

¯
°- rC -

6.16.2 Operation

rD := fcondition(rS − rC)

6.16.3 Description

The fcmp instruction compares two floating-point values in rS and rC. The re-
sulting condition codes are stored in rD for subsequent analysis by a conditional
branch instruction.

This instruction is equivalent to subtracting rC from rS and comparing the
result with zero. The numeric result is discarded. Any subsequent conditional
branch test is based on the comparison of rS with rC:

Relation Branches taken
rS < rC bne blt

rS = rC beq bge

rS > rC bne bge

Neither bbl nor bae will be taken on a floating-point comparison result.

6.16.4 Notes

The value stored in rD is target-dependent. The only guarantee is that for a
given target the result of the comparison will be correctly interpreted by the
conditional branch instructions.

6.16.5 Example

fcmp r1, r2, r3 ; r1 = comparison of r2 with r3

43

6.17 fdiv — floating-point divide

6.17.1 Syntax

- fdiv
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.17.2 Operation

rD := rS ÷ rM
rC := fcondition(rS ÷ rM)

6.17.3 Description

The fdiv instruction divides the floating-point contents of rS and rM, placing
the result in rD. Optionally, the condition codes of the result can be placed in
rC.

6.17.4 Notes

Division by zero is handled in a target-dependent manner.

6.17.5 Example

ldi r1, 1.5

ldi r2, 2.7

fdiv r3, r1, r2 ; r3 = r1 / r2 = 0.55555556

44

6.18 fmul — floating-point multiply

6.18.1 Syntax

- fmul
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.18.2 Operation

rD := rS ∗ rM
rC := fcondition(rS ∗ rM)

6.18.3 Description

The fmul instruction multiplies together the floating-point contents of rS and
rM, placing the result in rD. Optionally, the condition codes of the result can be
placed in rC.

6.18.4 Notes

6.18.5 Example

ldi r1, 1.5

ldi r2, 2.7

fmul r3, r1, r2 ; r3 = r1 - r2 = 4.05

45

6.19 fneg — floating-point negate

6.19.1 Syntax

- fneg
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS -

6.19.2 Operation

rD := −rS
rC := fcondition(−rS)

6.19.3 Description

The fneg instruction negates the floating-point contents of rS, placing the result
in rD. Optionally, the condition codes of the result can be placed in rC.

6.19.4 Notes

6.19.5 Example

ldi r1, 1.5

fneg r2, r1 ; r2 = -r1 = -1.5

46

6.20 fsub — floating-point subtract

6.20.1 Syntax

- fsub
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.20.2 Operation

rD := rS − rM
rC := fcondition(rS − rM)

6.20.3 Description

The fsub instruction subtracts the floating-point contents of rM from rS, placing
the result in rD. Optionally, the condition codes of the result can be placed in
rC.

6.20.4 Notes

6.20.5 Example

ldi r1, 1.5

ldi r2, 2.7

fsub r3, r1, r2 ; r3 = r1 - r2 = -1.2

47

6.21 ldb — load sign-extended byte

6.21.1 Syntax

- ldb
²
±

¯
°- rD - ,

²
±

¯
°- [

²
±

¯
°- rS -]

²
±

¯
°-

6.21.2 Operation

rD := SignExtend(M [rS] : B)

6.21.3 Description

The ldb instruction loads the byte (8-bit) value addressed by the contents of
rS from memory and sign-extends it to fill rD.

6.21.4 Notes

6.21.5 Example

ldi r1, ByteVar

ldb r2, [r1] ; r2 = sign-extended contents of ByteVar

48

6.22 ldh — load sign-extended half-word

6.22.1 Syntax

- ldh
²
±

¯
°- rD - ,

²
±

¯
°- [

²
±

¯
°- rS -]

²
±

¯
°-

6.22.2 Operation

rD := SignExtend(M [rS] : H)

6.22.3 Description

The ldh instruction loads the half-word (16-bit) value addressed by the contents
of rS from memory and sign-extends it to fill rD.

6.22.4 Notes

6.22.5 Example

ldi r1, ShortVar

ldh r2, [r1] ; r2 = sign-extended contents of ShortVar

49

6.23 ldi — load immediate

6.23.1 Syntax

- ldi
²
±

¯
°- rD - ,

²
±

¯
°- nImm -

6.23.2 Operation

rD := nImm

6.23.3 Description

The ldi instruction loads the immediate constant nImm into rD. Immediate
constants include procedure names and local labels, which are to be computed
by a target linker/loader during the later code generation phases.

6.23.4 Notes

Only procedure names and local labels visible to an ldi instruction may be
referenced. Any use of a non-visible name is an error and will be trapped by
the triVM linker.

6.23.5 Example

ldi r1, 12 ; r1 = 12

50

6.24 ldw — load word

6.24.1 Syntax

- ldw
²
±

¯
°- rD - ,

²
±

¯
°- [

²
±

¯
°- rS -]

²
±

¯
°-

6.24.2 Operation

rD := M [rS] : W

6.24.3 Description

The ldw instruction loads the word value addressed by the contents of rS from
memory into rD.

6.24.4 Notes

6.24.5 Example

ldi r1, WordVar

ldw r2, [r1] ; r2 = contents of WordVar

51

6.25 lsl — logical shift left

6.25.1 Syntax

- lsl
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.25.2 Operation

rD := rS << rM
rC := condition(rS << rM)

6.25.3 Description

The lsl instruction shifts the contents of rS by rM places to the left, inserting
0’s into the rightmost bits, and placing the result in rD. Optionally, the condition
codes of the result can be placed in rC.

6.25.4 Notes

Shift values less than or equal to zero have no effect on the result — rS is copied
into rD.

6.25.5 Example

ldi r1, 3

ldi r2, 2

lsl r3, r1, r2 ; r3 = r1 << r2 = 12

52

6.26 lsr — logical shift right

6.26.1 Syntax

- lsr
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.26.2 Operation

rD := rS >> rM
rC := condition(rS >> rM)

6.26.3 Description

The lsr instruction shifts the contents of rS by rM places to the right, inserting
0’s into the leftmost bits, and placing the result in rD. Optionally, the condition
codes of the result can be placed in rC.

6.26.4 Notes

Shift values less than or equal to zero have no effect on the result — rS is copied
into rD.

6.26.5 Example

ldi r1, 12

ldi r2, 1

lsr r3, r1, r2 ; r3 = r1 >> r2 = 6

53

6.27 mod — integer modulus (signed)

6.27.1 Syntax

- mod
²
±

¯
°

- rD¯

±- (
²
±

¯
°- rD - ,

²
±

¯
°- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°
- rS - ,

²
±

¯
°
- rM -

6.27.2 Operation

rD := rS mod rM
rC := condition(rS mod rM)

6.27.3 Description

The mod instruction calculates the remainder from the signed division of rS by
rM, placing the result in rD. Optionally, the condition codes of the result can be
placed in rC.

6.27.4 Notes

The absolute value of the result of the mod instruction is guaranteed only to be
smaller than the absolute value of the divisor. It always holds that

rS mod rM = rS − rM ∗ brS /rM c

If both operands happen to be non-negative, then the remainder will also be
non-negative.

Modulus by zero is handled in a target-dependent manner.

6.27.5 Example

ldi r1, -3

ldi r2, 2

mod r3, r1, r2 ; r3 = r1 mod r2 = -1

54

6.28 mul — integer multiply

6.28.1 Syntax

- mul
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.28.2 Operation

rD := rS ∗ rM
rC := condition(rS ∗ rM)

6.28.3 Description

The mul instruction multiplies the contents of rM with rS, placing the result in
rD. Optionally, the condition codes of the result can be placed in rC.

6.28.4 Notes

6.28.5 Example

ldi r1, 3

ldi r2, -2

mul r3, r1, r2 ; r3 = r1 * r2 = -6

55

6.29 neg — integer negate

6.29.1 Syntax

- neg
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS -

6.29.2 Operation

rD := −rS
rC := condition(−rS)

6.29.3 Description

The neg instruction calculates the signed 2’s complement value of rS, placing
the result in rD. Optionally, the condition codes of the result can be placed in
rC.

6.29.4 Notes

6.29.5 Example

ldi r1, 3

neg r2, r1 ; r2 = -r1 = -3

56

6.30 not — bitwise complement

6.30.1 Syntax

- not
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS -

6.30.2 Operation

rD := ¬rS
rC := condition(¬rS)

6.30.3 Description

The not instruction calculates the 1’s complement value of rS, placing the result
in rD. Optionally, the condition codes of the result can be placed in rC.

6.30.4 Notes

6.30.5 Example

ldi r1, 1

not r2, r1 ; r2 = ~r1 = 0xFFFFFFFE

57

6.31 or — bitwise OR

6.31.1 Syntax

- or
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.31.2 Operation

rD := rS ∨ rM
rC := condition(rS ∨ rM)

6.31.3 Description

The or instruction bitwise ORs together the contents of rS and rM, placing the
result in rD. Optionally, the condition codes of the result can be placed in rC.

6.31.4 Notes

6.31.5 Example

ldi r1, 1

ldi r2, 2

or r3, r1, r2 ; r3 = r1 OR r2 = 3

58

6.32 phi — phi-merge

6.32.1 Syntax

- phi
²
±

¯
°- rD - ,

²
±

¯
°- rS -

6.32.2 Operation

rD := rS

6.32.3 Description

The phi instruction merges the contents of rS into rD. It directly implements
the φ-function of SSA-form.

6.32.4 Notes

This is the only legal multiple-assignment instruction in triVM.

6.32.5 Example

ldi r1, 0x5678

ldi r2, 0x1234

phi r1, r2 ; r1 = 0x1234

59

6.33 ret — return from a procedure

6.33.1 Syntax

- ret
²
±

¯
°̄

± - rS²

± ,
²
±

¯
°
¾

¯

°

²

°

-

6.33.2 Operation

if rS then

rS 7→ rRcaller

fi
return

6.33.3 Description

The ret instruction returns to the caller. Return values, rS, are mapped to the
caller’s result registers, rR.

6.33.4 Notes

6.33.5 Example

ldi r1, ’a’

ret r1 ; return ’a’

60

6.34 stb — store byte

6.34.1 Syntax

- stb
²
±

¯
°- [

²
±

¯
°- rD -]

²
±

¯
°- ,

²
±

¯
°- rS -

6.34.2 Operation

M [rD] : B := rS

6.34.3 Description

The stb instruction stores the bottom eight bits of rS in the byte addressed by
the contents of rD.

6.34.4 Notes

6.34.5 Example

ldi r1, ByteVar

ldi r2, 0x12345678

stb [r1], r2 ; M[ByteVar] = 0x78

61

6.35 sth — store half-word

6.35.1 Syntax

- sth
²
±

¯
°- [

²
±

¯
°- rD -]

²
±

¯
°- ,

²
±

¯
°- rS -

6.35.2 Operation

M [rD] : H := rS

6.35.3 Description

The sth instruction stores the bottom sixteen bits of rS in the half-word ad-
dressed by the contents of rD.

6.35.4 Notes

6.35.5 Example

ldi r1, ShortVar

ldi r2, 0x12345678

sth [r1], r2 ; M[ShortVar] = 0x5678

62

6.36 stw — store word

6.36.1 Syntax

- stw
²
±

¯
°- [

²
±

¯
°- rD -]

²
±

¯
°- ,

²
±

¯
°- rS -

6.36.2 Operation

M [rD] : W := rS

6.36.3 Description

The stw instruction stores rS in the word addressed by the contents of rD.

6.36.4 Notes

6.36.5 Example

ldi r1, WordVar

ldi r2, 0x12345678

stw [r1], r2 ; M[WordVar] = 0x12345678

63

6.37 sub — integer subtract

6.37.1 Syntax

- sub
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.37.2 Operation

rD := rS − rM
rC := condition(rS − rM)

6.37.3 Description

The sub instruction subtracts the contents of rM from rS, placing the result in
rD. Optionally, the condition codes of the result can be placed in rC.

6.37.4 Notes

6.37.5 Example

ldi r1, 1

ldi r2, 2

sub r3, r1, r2 ; r3 = r1 - r2 = -1

add (r4, r5), r1, r2 ; r4 = r1 - r2 = -1

; r5 = condition(r1 - r2)

64

6.38 udiv — integer divide (unsigned)

6.38.1 Syntax

- udiv
²
±

¯
°

- rD¯

±- (
²
±

¯
°- rD - ,

²
±

¯
°- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°
- rS - ,

²
±

¯
°
- rM -

6.38.2 Operation

rD := rS ÷ rM
rC := condition(rS ÷ rM)

6.38.3 Description

The udiv instruction divides the unsigned contents of rS by rM, placing the
result in rD. Optionally, the condition codes of the result can be placed in rC.

6.38.4 Notes

Division by zero is handled in a target-dependent manner.

6.38.5 Example

ldi r1, 4

ldi r2, 2

mul r3, r1, r2 ; r3 = r1 / r2 = 2

65

6.39 umod — integer modulus (unsigned)

6.39.1 Syntax

- umod
²
±

¯
°

- rD¯

±- (
²
±

¯
°- rD - ,

²
±

¯
°- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°
- rS - ,

²
±

¯
°
- rM -

6.39.2 Operation

rD := rS umod rM
rC := condition(rS umod rM)

6.39.3 Description

The umod instruction calculates the unsigned remainder from the division of rS
by rM, placing the result in rD. Optionally, the condition codes of the result can
be placed in rC.

6.39.4 Notes

It always holds that

rS umod rM = rS − rM ∗ brS /rM c

Modulus by zero is handled in a target-dependent manner.

6.39.5 Example

ldi r1, 3

ldi r2, 2

umod r3, r1, r2 ; r3 = r1 mod r2 = 1

66

6.40 vldb — volatile load sign-extended byte

6.40.1 Syntax

- vldb
²
±

¯
°- rD - ,

²
±

¯
°- [

²
±

¯
°- rS -]

²
±

¯
°-

6.40.2 Operation

rD := SignExtend(M [rS] : B)

6.40.3 Description

The vldb instruction loads the byte (8-bit) value addressed by the contents of
rS from memory, sign-extends it to fill rD, and potentially changes some other
aspect of the system.

6.40.4 Notes

6.40.5 Example

ldi r1, ByteVar

vldb r2, [r1] ; r2 = sign-extended contents of ByteVar

67

6.41 vldh — volatile load sign-extended half-word

6.41.1 Syntax

- vldh
²
±

¯
°- rD - ,

²
±

¯
°- [

²
±

¯
°- rS -]

²
±

¯
°-

6.41.2 Operation

rD := SignExtend(M [rS] : H)

6.41.3 Description

The vldh instruction loads the half-word (16-bit) value addressed by the con-
tents of rS from memory, sign-extends it to fill rD, and potentially changes some
aspect of the system.

6.41.4 Notes

6.41.5 Example

ldi r1, ShortVar

vldh r2, [r1] ; r2 = sign-extended contents of ShortVar

68

6.42 vldw — volatile load word

6.42.1 Syntax

- vldw
²
±

¯
°- rD - ,

²
±

¯
°- [

²
±

¯
°- rS -]

²
±

¯
°-

6.42.2 Operation

rD := M [rS] : W

6.42.3 Description

The vldw instruction loads the word value addressed by the contents of rS from
memory into rD and potentially changes some aspect of the system.

6.42.4 Notes

6.42.5 Example

ldi r1, WordVar

vldw r2, [r1] ; r2 = contents of WordVar

69

6.43 vstb — volatile store byte

6.43.1 Syntax

- vstb
²
±

¯
°- [

²
±

¯
°- rD -]

²
±

¯
°- ,

²
±

¯
°- rS -

6.43.2 Operation

M [rD] : B := rS

6.43.3 Description

The vstb instruction stores the bottom eight bits of rS in the byte addressed
by the contents of rD and potentially changes some aspect of the system.

6.43.4 Notes

6.43.5 Example

ldi r1, ByteVar

ldi r2, 0x12345678

vstb [r1], r2 ; M[ByteVar] = 0x78

70

6.44 vsth — volatile store half-word

6.44.1 Syntax

- vsth
²
±

¯
°- [

²
±

¯
°- rD -]

²
±

¯
°- ,

²
±

¯
°- rS -

6.44.2 Operation

M [rD] : H := rS

6.44.3 Description

The vsth instruction stores the bottom sixteen bits of rS in the half-word
addressed by the contents of rD and potentially changes some aspect of the
system.

6.44.4 Notes

6.44.5 Example

ldi r1, ShortVar

ldi r2, 0x12345678

vsth [r1], r2 ; M[ShortVar] = 0x5678

71

6.45 vstw — volatile store word

6.45.1 Syntax

- vstw
²
±

¯
°- [

²
±

¯
°- rD -]

²
±

¯
°- ,

²
±

¯
°- rS -

6.45.2 Operation

M [rD] : W := rS

6.45.3 Description

The vstw instruction stores rS in the word addressed by the contents of rD and
potentially changes some aspect of the system.

6.45.4 Notes

6.45.5 Example

ldi r1, WordVar

ldi r2, 0x12345678

vstw [r1], r2 ; M[WordVar] = 0x12345678

72

6.46 xor — bitwise Exclusive-OR

6.46.1 Syntax

- xor
²
±

¯
°- rD¯

±- (
²
±

¯
°
- rD - ,

²
±

¯
°
- rC -)

²
±

¯
°

²

°

- ,
²
±

¯
°- rS - ,

²
±

¯
°- rM -

6.46.2 Operation

rD := rS ⊕ rM
rC := condition(rS ⊕ rM)

6.46.3 Description

The xor instruction bitwise Exclusive-ORs together the contents of rS and rM,
placing the result in rD. Optionally, the condition codes of the result can be
placed in rC.

6.46.4 Notes

6.46.5 Example

ldi r1, 1

ldi r2, 3

xor r3, r1, r2 ; r3 = r1 XOR r2 = 1

73

Chapter 7

Common Program
Structures

We demonstrate a number of typical program structures in C and their triVM
equivalents. The examples are designed to illustrate key features of the triVM
intermediate code for supporting high-level constructs.

We start with basic blocks, including expressions, and reviewing common
sub-expressions. We then illustrate control-flow constructs—tests and loops.
The following section describes the procedure structure and calling mechanism.
We then continue with a look at data, both local and global. Finally, we bring
all of these elements together with a larger example.

The triVM programs presented here are also typical of source code layout.
Each triVM source line is either a const declaration, a data declaration, or
a single line of code, consisting of an optional label followed by an optional
instruction. All triVM source lines free-format—white space (spaces and tabs)
may be freely interspersed between the line components—and are terminated
with a carriage return.

7.1 Basic Blocks

A basic block is defined as having one control-flow entry edge and one control-
flow exit-edge. The example in Figure 7.1 shows an example of a basic block
and its unoptimized triVM translation.

A common sub-expression (CSE) is a sub-expression which is common to two
or more enclosing expressions, and whose arguments are live between all uses
of that sub-expression, i.e. they are not killed by any intervening assignment.
Figure 7.2 shows how a common sub-expression can occur and the triVM code
so generated.

7.2 Tests

An important part of any language is decision-making. In triVM we have the
comparison operators (one for integer values and one for floating-point val-
ues) and a set of conditional branches. These work together to implement the

74

int foo(int x, int y)

{

int a, b, c, d, e, f, g;

a = x + y;

b = x - y;

c = x * y;

d = x / y;

e = a + b;

f = c - d;

g = e % f;

return g;

}

proc foo (2), 1

add r3, r1, r2

sub r5, r1, r2

mul r7, r1, r2

div r9, r1, r2

add r11, r3, r5

sub r13, r7, r9

mod r15, r11, r13

ret r15

end

(a) (b)

Figure 7.1: Example of a basic block. Execution starts at the first statement (a
= x + y) and ends at the last statement (g = e % f), not counting the return
statement. The triVM version confirms this block structure, beginning with the
first add and ending with the mod—there are no labels and no jumps into, out
of, or within this block.

int foo(int x, int y)

{

int a, b, c, d;

a = x + y;

b = x - y;

c = x + y;

d = a + b + c;

return d;

}

proc foo (2), 1

add r3, r1, r2 <-

sub r5, r1, r2

add r7, r1, r2 <-

add r10, r3, r5

add r9, r10, r7

ret r9

end

(a) (b)

Figure 7.2: In this contrived example, we spot the CSE “x + y” in the original
C source (a). This is reflected in the triVM code (b) as an instruction with
both the same operation and the same arguments. In this case, the operation
is add, and the two common arguments are r1 and r2. The SSA property of
triVM ensures that we can easily and safely mark these two triVM statements
as equivalent, and thus candidates for subsequent optimization.

75

int foo(int x, int y)

{

int a;

if (x < 10)

a = 1;

else

a = -1;

return y * a;

}

proc foo (2), 1

ldi r3, 10

cmp r10, r1, r3

bge r10, L2

ldi r4, 1

phi r7, r4

bra L3

L2:

ldi r9, -1

phi r7, r9

L3:

mul r8, r2, r7

ret r8

end
(a) (b)

Figure 7.3: A simple if-then-else program structure. The two branches (the
conditional branch to L2 and the direct branch to L3) implement the two-way
branch, covering both the then- and else-clauses. We also identify the phi-loads,
for r7, which combine the two definitions of variable a into one new triVM
register.

decision-making structures, illustrated in Figure 7.3 for an if-then-else case.
Figure 7.3 also illustrates the use of the phi instruction to handle multiple-

assignment to a register. In this example there are two possible definitions of a
that reach the end of the function, one each from the then- and else-clauses. In
SSA-form this multiple-assignment requirement would be met with a φ-function;
in triVM we use the phi instruction to implement φ-function, placing a phi load
at the root of each path to the merge point. In Figure 7.3 the merge point is at
L3, so we place phi loads at each point that branches to L3: one immediately
prior to the label and one just prior to the direct branch to L3.

An alternative means of generating condition values is through the second
result register pairing for the arithmetic and logic instructions (Figure 7.4).
These provide a means of exposing the behaviour of such operations on the
condition registers found in the majority of modern microprocessor designs.

7.3 Loops

The previous example introduced conditional branches to support decisions.
For selection structures (if-then-else or switch-case) the predicated jumps are
forwards either over the false block (in a true condition) or to the end of the
structure for false conditions. The other major structure involving non-linear
control-flow is the loop, which relies on backwards control-flow.

In general, a loop structure consists of two parts—the loop body and the
loop test1. The body may be executed zero, one or multiple times, while the
test is executed at least once.

1Occasionally the loop test may be simplified to a branch in non-terminating loops, e.g.
the classic “while (TRUE) do ... ;”

76

if (a+b == 0)

foo();

...

add r3, r1, r2

ldi r4, 0

cmp r5, r3, r4

bne r5, L

ldi r6, foo

call [r6]()

L:

...

add (r3, r4), r1, r2

bne r4, L

ldi r6, foo

call [r6]()

L:

...

(a) (b) (c)

Figure 7.4: Example use of condition code registers to expose additional infor-
mation available from arithmetic operations—in this instance add. The trivial
example in (a) illustrates a common pattern, and (b) shows the naive transla-
tion to triVM. In (b) we show that using the additional condition code result
from the addition saves one constant load and one comparison operation.

As for the test code we have potentially multiple definitions of a given vari-
able, in particular any induction variables, for which phi loads will be required.

Figure 7.5 shows a for loop that executes for a variable number of times,
and whose induction variable is not used in the loop body.

7.4 Procedures

The previous sections have illustrated some examples of the basic procedure
structure: the proc and end directives and the ret instruction. In this section
we show, in Figure 7.6, the implementation of the call site from which such
procedures are called, together with argument passing and result handling.

7.5 Global and Local Data

So far, all the previous examples have operated on triVM virtual registers in
R-space. Here we illustrate the use of data held in M-space, both at the local
and global levels.

With reference to Figure 7.7, variable globalVar has global visibility within
this source module, and in triVM is defined with the data directive, together
with a size of four bytes2. In this instance there is no initial value.

The second data declaration is for the local variable localVar. Its scope is
restricted to within foo, and is akin to memory storage on the stack of a target
processor. Its address may be taken and operated on, unlike registers which
may not. It is allocated on entry to the procedure, and destroyed on exit. If
the storage were to be statically qualified, it would be placed outside of foo at
module-level.

A further example, illustrating local data and procedure parameters, is
shown in Figure 7.8.

Within the body of the procedure, accessing the variables is done through
the ldw and stw instructions (load-word and store-word respectively). Support

2We assume that integers are four bytes wide.

77

int foo(int x, int y)

{

int a, b;

b = 0;

for (a = 0; a < x; a++)

b = b + y;

return b;

}

proc foo (2), 1

ldi r3, 0

ldi r5, 0

phi r9, r3

phi r8, r5

bra L5

L2:

add r10, r9, r2

ldi r12, 1

add r11, r8, r12

phi r9, r10

phi r8, r11

L5:

cmp r13, r8, r1

blt r13, L2

ret r9

end
(a) (b)

Figure 7.5: Our example loop, in C (a) and triVM (b). Note the position of
the loop test below the loop body—fewer branches are executed in this form
(n + 2) than compared to the more obvious form (2n + 1), gaining execution
performance with no code size penalty. Also, if we can determine that the
loop body executes at least once we can eliminate the initial branch, saving
one instruction. Note also that registers r3 and r5 could be merged into one
register, again saving one instruction.

for different data sizes (byte and half-word) is through sign-extend loads (ldb
and ldh respectively) and part-word stores (stb and sth respectively).

7.6 Putting It All Together

We conclude with a large example (Figure 7.9) that draws together all of the
elements of the triVM language, including directives, data types and program
structures.

The example chosen is an implementation of the combination operation,
defined as

nCr =
n!

(n − r)!r!

Referring to the C source code in Figure 7.9(a), aside from the enumeration
and manifest constant to aid readability, we have the global variable errno,
which maintains a global error number value, used by the two functions3.

The two procedures, fac and combination, implement the calculation of
the number of combinations of r items from a set of n items. Procedure
fac calculates the factorial of its argument, validating the input prior to the
calculation itself—if the argument is greater than some predetermined limit

3Borrowed from the Standard C Library[13].

78

int foo(int x)

{

return x + 1;

}

int bar(int x, int y)

{

int a;

a = foo(x);

return y + a;

}

proc foo (1), 1

ldi r3, 1

add r2, r1, r3

ret r2

end

proc bar (2), 1

ldi r4, foo

call [r4](r1),r3

add r7, r2, r3

ret r7

end
(a) (b)

Figure 7.6: A complete caller-callee example. Procedure bar calls foo with a
single argument from r1. The single return value is placed in register r3, which
is then added to the second argument of bar (in r2), with the final result passed
back to bar ’s caller.

(MAX FAC ARG) the global error value is set and the procedure returns the
numeric value 1, and likewise for negative arguments.

Procedure combination initially clears errno prior to calling fac twice to
calculate the bottom half of the expression. This will trap incorrect values of
both r and n−r. If there are any errors a result of 0 is returned to the caller, else
the remaining call to fac is made, and the final stage in computation performed.

While this may not be a particularly rigorous example, it does illustrate all
of the previous concepts: basic blocks, tests, loops, procedure bodies and calls,
and global data.

With reference to Figure 7.9(b), the operation of the two procedures should
be evident based on the previous examples. Of note here is that both procedures
have been hand-optimized to minimise their size for this paper. In particular, all
constant loads (ldi rN, C) have been moved to the top of each procedure, effec-
tively parameterizing the main body of code. While not specifically addressed
in this paper, we believe this format to be of benefit in code space optimization.

79

int globalVar;

int foo(int x)

{

int localVar;

localVar = x;

globalVar = localVar + x;

return localVar + globalVar;

}

data globalVar[4]

proc foo (1), 1

data localVar[4]

ldi r2, localVar

stw [r2], r1

ldw r4, [r2]

add r3, r4, r1

ldi r6, globalVar

stw [r6], r3

ldw r8, [r2]

ldw r10, [r6]

add r7, r8, r10

ret r7

end
(a) (b)

Figure 7.7: Accessing M-space data through the ldw and stw instructions.

void bar(int *p)

{

*p = 42;

}

int foo(int i)

{

bar(&i);

return i;

}

proc bar (1), 0

ldi r2, 42

stw [r1], r2

ret

end

proc foo (1), 1

data !p!i

ldi r2, !p!i

stw [r2], r1

ldi r4, bar

call [r4](r2)

ldw r5, [r2]

ret r5

end
(a) (b)

Figure 7.8: This example illustrates taking the address of a parameter. This
forces it to be placed in M-space, whereupon its address can be computed into
a register. In this instance the single argument is stored in local variable !p!i,
whose address is then passed to bar.

80

#define MAX_FAC_ARG (50)

enum {

E_NO_ERROR,

E_FAC_ARG_TOO_BIG,

E_FAC_ARG_NEGATIVE

};

int errno;

int fac(int n)

{

int result = 1;

if (n > MAX_FAC_ARG)

errno = E_FAC_ARG_TOO_BIG;

else if (n < 0)

errno = E_FAC_ARG_NEGATIVE;

else

for (; n; n--)

result *= n;

return result;

}

int combination(int n, int r)

{

int result, bottom;

errno = E_NO_ERROR;

bottom = fac(n - r)*fac(r);

if (errno != E_NO_ERROR)

result = 0;

else

result = fac(n)/bottom;

return result;

}

data errno[4]

proc fac (1), 1

ldi r2, 1

ldi r4, 50

ldi r10, 0

ldi r11, 2

ldi r6, errno

phi r9, r2

cmp r22, r4, r1

bge r22, L3

stw [r6], r2

bra L4

L3: phi r16, r1

cmp r23, r1, r10

bge r23, L10

stw [r6], r11

bra L4

L7: mul r19, r9, r16

sub r20, r16, r2

phi r9, r19

phi r16, r20

L10:cmp r24, r16, r10

bne r24, L7

L4: ret r9

end

proc combination (2), 1

ldi r3, 0

ldi r4, errno

ldi r7, fac

stw [r4], r3

sub r5, r1, r2

call [r7](r5),r6

call [r7](r2),r9

mul r12, r6, r9

ldw r14, [r4]

cmp r29, r14, r3

beq r29, L1

phi r21, r3

bra L2

L1: call [r7](r1),r26

div r28, r26, r12

phi r21, r28

L2: ret r21

end
(a) (b)

Figure 7.9: Complete triVM code example. Refer to text for description.

81

Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

[2] Cytron, R. K., Ferrante, J., Rosen, B. K., Wegman, M. N., and

Zadeck, F. K. Efficiently computing static single assignment form and
the control dependence graph. ACM Trans. Programming Languages and
Systems 13, 4 (October 1991), 451–490.

[3] Goldberg, D. What every computer scientist should know about floating-
point arithmetic. In ACM Computing Surveys (1991), ACM.

[4] Hall, M. W., Anderson, J. M., Amarasinghe, S. P., Murphy,

B. R., Liao, S.-W., Bugnion, E., and Lam, M. S. Maximizing mul-
tiprocessor performance with the SUIF compiler. IEEE Computer 29, 12
(December 1996), 84–89.

[5] imon L. Peyton Jones, Hall, C. V., Hammond, K., Partain, W.,

and Wadler, P. The Glasgow Haskell Compiler: a technical overview.
In Proc. Joint Framework for Information Technology (JFIT) Technical
Conference (March 1993), DTI/SERC.

[6] Intel. i486 Processor Programmer’s Reference Manual. Intel
Corp./Osborne McGraw-Hill, San Fransisco, 1990.

[7] Jaggar, D. ARM Architecture Reference Manual. Prentice Hall, Cam-
bridge, UK, 1996.

[8] Jones, S. P., and Meijer, E. Henk: a typed intermediate language. In
Proc. 1997 ACM SIGPLAN Workshop on Types in Compilation (TIC’97)
(Amsterdam, The Netherlands, 1997), ACM Press.

[9] Kernighan, B. W., and Ritchie, D. M. The C Programming Language,
2nd ed. Prentice Hall, 1988.

[10] Lewis, B. T., Deutsch, L. P., and Goldstein, T. C. Clarity MCode:
A retargetable intermediate representation for compilation. In ACM SIG-
PLAN Workshop on Intermediate Representations (San Francisco, CA
USA, January 1995), ACM Press, pp. 119–128.

[11] Morrisett, G., Walker, D., Crary, K., and Glew, N. From System
F to Typed Assembly Language. ACM Trans. Programming Languages and
Systems 21, 3 (1999), 527–568.

82

[12] O’Brien, K., O’Brien, K. M., Hopkins, M., Shepherd, A., and

Unrau, R. XIL and YIL: The intermediate languages of TOBEY. In ACM
SIGPLAN Workshop on Intermediate Representations (San Francisco, CA
USA, January 1995), ACM Press, pp. 71–82.

[13] Plauger, P. J. The Standard C Library. Prentice Hall, 1992.

[14] Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R.,

and Lee, P. TIL: A type-directed compiler for ML. In ACM SIG-
PLAN Conf. Programming Language Design and Implementation (New
York, 1996), ACM Press, pp. 181–192.

[15] Wells, J. B., Dimock, A., Muller, R., and Turbak, F. A. A
typed intermediate language for flow-directed compilation. In Proc. TAP-
SOFT’97, Theory and Practice of Software Development (LNCS 1214)
(Lille, France, April 1997), Springer-Verlag, pp. 757–771.

83

