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Abstract  
 
Advances in digital electronics over the last decade have made computers faster, cheaper and 
smaller. This coupled with the revolution in communication technology has led to the 
development of sophisticated networked appliances and handheld devices. “Computers” are no 
longer boxes sitting on a desk, they are all around us, embedded in every nook and corner of our 
environment. This increasing complexity in our environment leads to the desire to design a 
system that could allow this pervasive functionality to disappear in the infrastructure, 
automatically carrying out everyday tasks of the users. 
Such a system would enable devices embedded in the environment to cooperate with one another 
to make a wide range of new and useful applications possible, not originally conceived by the 
manufacturer, to achieve greater functionality, flexibility and utility. 
The compelling question then becomes “what software needs to be embedded in these devices to 
enable them to participate in such a ubiquitous system”? This is the question addressed by the 
dissertation.  
Based on the experience with home automation systems, as part of the AutoHAN project, the 
dissertation presents two compatible but different architectures; one to enable dumb devices to be 
controlled by the system and the other to enable intelligent devices to control, extend and 
program the system.  
Control commands for dumb devices are managed using an HTTP-based   
publish/subscribe/notify architecture; devices publish their control commands to the system as 
XML-typed discrete messages, applications discover and subscribe interest in these events to 
send and receive control commands from these devices, as typed messages, to control their 
behavior. The architecture handles mobility and failure of devices by using soft-state, redundent 
subscriptions and “care-of” nodes. The system is programmed with event scripts that encode 
automation rules as condition-action bindings. Finally, the use of XML and HTTP allows devices 
to be controlled by a simple Internet browser.  
While the publish/subscribe/notify defines a simple architecture to enable interoperability of 
limited capability devices, intelligent devices can afford more complexity that can be utilized to 
support user applications and services to control, manage and program the system. However, the 
operating system embedded in these devices needs to address the heterogeneity, longevity, 
mobility and dynamism of the system.  
The dissertation presents the architecture of an embedded distributed operating system that lends 
itself to safe context-driven adaptation. The operating system is instrumented with four artifacts 
to address the challenges posed by a ubiquitous system. 1) An XML-based directory service 
captures and notifies the applications and services about changes in the device context, as 
resources move, fail, leave or join the system, to allow context-driven adaptation. 2) A Java-based 
mobile agent system allows new software to be injected in the system and moved and replicated 
with the changing characteristics of the system to define a self-organizing system 3) A 
subscribe/notify interface allows context-specific extensions to be dynamically added to the 
operating system to enable it to efficiently interoperate in its current context according to 
application requirements. 4) Finally, a Dispatcher module serves as the context-aware system call 
interface for the operating system; when requested to invoke a service, the Dispatcher invokes the 
resource that best satisfies the requirements given the characteristics of the system.  
Definition alone is not sufficient to prove the validity of an architecture. The dissertation 
therefore describes a prototype implementation of the operating system and presents both a 
quantitative comparison of its performance with related systems and its qualitative merit by 
describing new applications made possible by its novel architecture.  



 

 

6

 Acknowledgments 
 

I would like to thank my supervisor David Greaves whose encouragement and advice 

enabled me to undertake an ambitious thesis in a new field and finish it in time. I would 

also like to thank Daniel Gordon who developed most of the AutoHAN architecture with 

me and was a source of unstinted technical support.  

My thesis benefited greatly by the lively discussions in the weekly AutoHAN group 

meetings. Comments from Alan Blackwell, Peter Robinson, Andrew McNeil, and Gavin 

Bierman helped me identify many interesting research issues.  

I thank all members of Systems Research Group past and present for many helpful 

discussions, in particular Steven Hand, Austin Donnelly, Dave Stewart, Ian Pratt, Tim 

Harris, Kier Fraser and James Bulpin. I also have to thank Jean Bacon and other members 

of Opera Group for many technical discussions, especially about event-driven 

architectures. I have to thank Pawel Wojciechowski and Peter Sewell for their timely 

criticism and advice regarding the use of mobile agents in my operating system.   

I am grateful to David, Jean and Steve who read my several ambitious papers with 

extraordinary sympathy, encouraging me and holding me to the very highest standards.  

I have to thank Naeem Khan for all his sincere advice and help, and for being a good 

friend in a foreign country. 

Many thanks to system administrators in the Computer Laboratory for providing all the 

support I needed to prototype and test my operating system. 

I owe a special debt of gratitude to my parents and my sister. They have been, more than 

anyone else, the reason I have been able to get this far. I cannot express in words what 

their support, love and prayers meant to me. They instilled in me the value of hard work 

and gave me the confidence to overcome life’s disappointments. This difficult and 

rewarding process would not have been possible without their support.  

 

 



 

 

7

Contents 
 

Abstract...................................................................................................................... 5 

Acknowledgments ........................................................................................... 6 

Contents .................................................................................................................... 7 

Figures ..................................................................................................................... 13 

Tables......................................................................................................................... 15 

Chapter 1 ..................................................................................................................... 17 

Introduction ............................................................................................................... 17 

1.1 Motivation ......................................................................................................... 17 
1.1.1 Scenario ................................................................................................................................ 18 

1.2 Economic Considerations ........................................................................... 19 

1.3 Problem Statement ........................................................................................ 21 
1.3.1 Focus..................................................................................................................................... 21 

1.4 Requirements ................................................................................................... 21 
1.4.1 Network Interface ................................................................................................................. 21 
1.4.2 Discovery.............................................................................................................................. 22 
1.4.3 Context-Driven and Application-aware Adaptation ............................................................. 22 
1.4.4 Object Mobility and Lifecycle Management ........................................................................ 23 
1.4.5 Security................................................................................................................................. 23 
1.4.6 Easy Programmability........................................................................................................... 24 

1.5 Challenges ......................................................................................................... 24 
1.5.1 Challenge #1: Heterogeneity................................................................................................. 24 
1.5.2 Challenge #2: Longevity....................................................................................................... 24 
1.5.3 Challenge #3: Mobility ......................................................................................................... 25 
1.5.4 Challenge #4: Dynamism and Context-Awareness............................................................... 25 

1.6 Thesis ................................................................................................................... 25 
1.6.1 Contribution.......................................................................................................................... 26 

1.7 Case Study......................................................................................................... 28 

1.8 What this thesis is not .................................................................................. 28 

1.9 Structure of the Dissertation..................................................................... 28 
 
 



 

 

8

Chapter 2 ................................................................................................................ 31 

Case Study: Home Area Networks ................................................................ 31 

2.1 Overview ............................................................................................................ 31 

2.2 Home Automation Industry ...................................................................... 32 

2.3 Home Area Network Architecture ......................................................... 33 
Control architecture............................................................................................................................. 34 
2.3.1 Physical Media...................................................................................................................... 34 
2.3.2 Networking Technologies .......................................................................................................... 35 
2.3.3 Home Automation Technologies .......................................................................................... 38 

2.3.3.1 Control Interface ....................................................................................................... 39 
2.3.3.2 Home Automation Systems....................................................................................... 40 

2.3.4 Critique of Current Home Automation Systems................................................................... 47 

2.4 AutoHAN ........................................................................................................... 47 
2.4.1 AutoHan Core Services ........................................................................................................ 48 

2.4.1.1 GENA ......................................................................................................................... 49 
2.4.1.2 Romvets: Resilient Mobility-aware Events ............................................................. 50 
2.4.1.3 DHAN: AutoHAN Directory Service....................................................................... 52 

2.4.2 AutoHAN Execution Environments and Event Scripts ........................................................ 58 
2.4.3 AutoHan Operation............................................................................................................... 59 
2.4.4 Internet Access...................................................................................................................... 60 

2.5 Lessons learnt from AutoHAN ................................................................ 63 

2.6 Summary............................................................................................................ 66 

Chapter 3 ..................................................................................................................... 67 

Design Requirements............................................................................................ 67 

3.1 Overview ............................................................................................................ 68 

3.2 Taxonomy of Devices in a Ubiquitous System................................... 68 

3.3 Requirements ................................................................................................... 69 
3.3.1  Engineering Requirements................................................................................................... 70 
3.3.2 Requirements posed by Heterogeneity ................................................................................. 70 
3.3.3 Requirements posed by Longevity........................................................................................ 71 
3.3.4 Requirements posed by Mobility .......................................................................................... 72 
3.3.5 Requirements posed by Dynamism and Context-Awareness ............................................... 72 

3.4 Requirements for Adaptation................................................................... 74 

3.5 Design Goals ..................................................................................................... 75 

3.6 Background ...................................................................................................... 76 

3.7 Conclusion......................................................................................................... 78 
 
 



 

 

9

Chapter 4 ..................................................................................................................... 81 

Related work .............................................................................................................. 81 

4.1 Overview ............................................................................................................ 81 

4.2 Distributed Operating Systems................................................................ 81 
4.2.1 Amoeba................................................................................................................................. 83 
4.2.2 Mach ..................................................................................................................................... 85 
4.2.3 Plan 9 .................................................................................................................................... 86 
4.2.4 Sprite..................................................................................................................................... 88 
4.2.5 Discussion............................................................................................................................. 89 

4.3 Extensible Operating Systems .................................................................. 90 
4.3.1 Dynamically Extensible Operating Systems......................................................................... 92 

4.3.1.1 SPIN............................................................................................................................ 92 
4.3.1.2 VINO .......................................................................................................................... 94 
4.3.1.3 Fox .............................................................................................................................. 96 
4.3.1.4 SLIC ........................................................................................................................... 97 
4.3.1.5 Apertos ....................................................................................................................... 98 
4.3.1.6 MetaOS....................................................................................................................... 98 
4.3.1.7 2K................................................................................................................................ 99 
4.3.1.8 Synthetix................................................................................................................... 100 
4.3.1.9 Discussion................................................................................................................. 100 

4.4 Conclusion....................................................................................................... 102 

Chapter 5 ................................................................................................................... 105 

Context-aware Adaptation in UbiqtOS: A Java-based Embedded 
Distributed Operating System ........................................................................ 105 

5.1 Introduction.................................................................................................... 105 

5.2 Contributions made by UbiqtOS .......................................................... 106 

5.3 Design Goal ..................................................................................................... 107 

5.4 Structure of the rest of the Thesis......................................................... 108 

5.5 System Architecture Overview .............................................................. 108 
5.5.1 Layer 0: Extensible Microkernel ........................................................................................ 110 
5.5.2 Layer 1 ................................................................................................................................ 111 

5.5.2.1 SEMAS: Extensible Java Mobile Agent Engine ................................................... 111 
5.5.2.2 UbiqDir..................................................................................................................... 115 
5.5.2.3 Romvets .................................................................................................................... 118 

5.5.3 Layer 2 ................................................................................................................................ 124 
5.5.3.1 Dispatcher ................................................................................................................ 127 

5.6 Bootstrap.......................................................................................................... 130 

5.7 Summary.......................................................................................................... 133 

5.8 Prelude to following Chapters................................................................ 133 



 

 

10

Chapter 6 ................................................................................................................... 135 

System Components............................................................................................. 135 

6.1 Motivation ....................................................................................................... 136 

6.2 Contributions made by SEMAS ............................................................ 137 
6.2.1 Strong vs. Weak Mobility................................................................................................... 138 
6.2.2 Application-specific Connection Management................................................................... 139 

6.3 Comparison with Related Work............................................................ 140 

6.4 Structure of the Rest of the Chapter ................................................... 142 

6.5 Mobile Agents ................................................................................................ 142 
6.5.1 Reactive Mobility ............................................................................................................... 148 

6.6 Explicit Bindings .......................................................................................... 148 
6.6.1 Context-aware Bindings ..................................................................................................... 151 

6.7 SEMAS: Simple, Extensible Mobile Agent System....................... 152 
6.7.1 Agent Communication Protocol ......................................................................................... 155 
6.7.2 Extensibility........................................................................................................................ 159 
6.7.3 Effective Mobility............................................................................................................... 161 

6.7.3.1 Extensible Load-balancing ..................................................................................... 162 
6.7.3.2 Application-specific connection management....................................................... 164 

6.7.4 Bootstrap Load-Balancing .................................................................................................. 167 
6.7.5 Disconnected Operation...................................................................................................... 167 
6.7.6 Reliability ........................................................................................................................... 168 

6.8 Summary.......................................................................................................... 171 

Chapter 7 ................................................................................................................... 173 

Extensibility, Dynamism and Context-awareness in UbiqDir: An 
XML-based Directory Service for Ubiquitous Systems ................... 173 

7.1 Motivation ....................................................................................................... 174 

7.2 Contributions made by UbiqDir............................................................ 175 

7.3 Ubiquitous Names and Resolution ....................................................... 176 

7.4 Design requirements ................................................................................... 178 
7.4.1 Requirements for Information Model ................................................................................. 178 
7.4.2 Requirements for Functional Model ................................................................................... 178 
7.4.3 Requirements for Distributed-operation Model .................................................................. 179 
7.4.4 Requirements for Security Model ....................................................................................... 180 

7.5 Information Model ...................................................................................... 181 

7.6 Functional Model ......................................................................................... 184 

7.7 Implementation of Romvets .................................................................... 188 

7.8 Extensibility in UbiqDir ............................................................................ 188 



 

 

11

7.9 Distributed-operation model................................................................... 191 

7.10 Discovery and Caching .......................................................................... 191 

7.11 Replication and Consistency ............................................................... 193 

7.12 Load Balancing and Fault Tolerance: Overlay topologies .... 195 

7.13 Context-aware Adaptation and Production Rules .................... 196 

7.14 Security Model .......................................................................................... 197 

7.15 Bootstrap ..................................................................................................... 200 

7.16 Comparison with Related Work ....................................................... 200 

7.17 Summary ..................................................................................................... 202 

Chapter 8 ................................................................................................................... 205 

Implementation ...................................................................................................... 205 

8.1 Background .................................................................................................... 206 

8.2 Implementation of Layer 0 ...................................................................... 206 
8.2.1 Flux OSKit.......................................................................................................................... 207 
8.2.2 Changes made to OSKit...................................................................................................... 207 
8.2.3 Support for Dynamic Extensibility ..................................................................................... 208 
8.2.4 Changes Made to OSKit COM model ................................................................................ 208 
8.2.5 Structure of Layer 0 ............................................................................................................ 211 

8.3 Implementation of Layer 1 ...................................................................... 211 
8.3.1 Kaffe Port for UbiqtOS....................................................................................................... 212 

8.3.1.1 Extensible Scheduling in Kaffe .............................................................................. 214 
8.3.1.2 Optimizations for Fast Event Handling ................................................................ 215 
8.3.1.3 Extensible Protocol Stacks...................................................................................... 218 
8.3.1.4 Connection-oriented Protocols ............................................................................... 221 
8.3.1.5 Adaptation of Protocol Stacks ................................................................................ 222 

8.4 Implementation of UbiqDir ..................................................................... 224 
8.4.1 Default UbiqDir Extensions................................................................................................ 224 

8.5 Implementation of SEMAS...................................................................... 225 
8.5.1 Default SEMAS Extensions................................................................................................ 226 

8.6 Default Distributed Services.................................................................... 228 
8.6.1 Default Dispatcher .............................................................................................................. 228 
8.6.2 Default Extensions for Load-Balancing.............................................................................. 229 
8.6.3 Default Extension for Fault-Tolerance ............................................................................... 231 
8.6.4 Default Extension for High-availability.............................................................................. 232 

8.7 Conclusion....................................................................................................... 232 
 
 
 



 

 

12

Chapter 9 ................................................................................................................... 235 

Evaluation................................................................................................................. 235 

9.1 Evaluation Methodology ........................................................................... 235 

9.2 Performance Evaluation of UbiqtOS Components ....................... 236 
9.2.1 Code size............................................................................................................................. 236 
9.2.2 Cost of extension using UbiqDir......................................................................................... 238 
9.2.3 Cost of Adaptation using Romvets ..................................................................................... 241 
9.2.4 Cost of System Call using Dispatcher................................................................................. 242 
9.2.5 Inter-component Communication ....................................................................................... 243 

9.3 Evaluation of Context-ware Adaptation in UbiqtOS ................... 244 
9.3.1 Follow-me-video Binding................................................................................................... 244 
9.3.2 Flexible Network Support for Mobile devices.................................................................... 248 

9.4 Conclusion....................................................................................................... 250 

Chapter 10 ................................................................................................................ 251 

Conclusion and Future Work........................................................................ 251 

10.1 Contributions............................................................................................. 252 
10.1.1 Conceptual Contributions .............................................................................................. 252 
10.1.2 Architectures .................................................................................................................. 253 

10.1.2.1 AutoHAN ................................................................................................................. 253 
10.1.2.2 UbiqtOS.................................................................................................................... 254 

10.2 Future Work .............................................................................................. 255 
10.2.1 Context-specific Protocols and Policies......................................................................... 255 
10.2.2 Power-driven Adaptation ............................................................................................... 256 
10.2.3 Security .......................................................................................................................... 256 
10.2.4 Application Complexity and Backward Compatibility .................................................. 257 
10.2.5 Embedded Device Implementation ................................................................................ 257 
10.2.6 Active Space Automation Rules .................................................................................... 258 

10.3 Summary ..................................................................................................... 258 

BIBLIOGRAPHY ....................................................................................... 259 

 



 

 

13

List of Figures  
 
 
Fig. 1.1 David Tennenhouse (Intel) talk at LCS, MIT, Anniversary talks ....................... 20 
Fig. 2.1 Expected Home Control Networking Systems Equipment Revenue in the next 3 

years. ......................................................................................................................... 33 
Fig. 2.2 Generic System Architecture of a Home Area Network ..................................... 34 
Fig. 2.3 AutoHAN system Architecture............................................................................ 49 
Fig. 2.4 An Example Device Description Stored in DHAN ............................................. 55 
Fig. 2.5 Internet Access of a camera in AutoHAN ........................................................... 61 
Fig. 3.1 A Typical Middleware Architecture .................................................................... 77 
Fig. 3.2 A Typical Micro-kernel Operating System.......................................................... 77 
Fig. 4.1 Extensible Service Design in the SPIN operating system ................................... 94 
Fig. 5.1 System Architecture for UbiqtOS...................................................................... 110 
Fig. 5.2 Context-awareness in UbiqtOS: UbiqDir notifies interested components about 

changes in the device context using the Romvets Interface.................................... 118 
Fig. 5.3 Installation of new functionality in UbiqtOS using UbiqDir............................. 120 
Fig. 5.4 Extension of services embedded in UbiqtOS using Romvets............................ 120 
Fig. 5.5 Romvets Interface of UbiqtOS: ......................................................................... 122 
Fig. 5.7 An example of Context-aware system-call using the Dispatcher: ..................... 129 
Fig. 5.8 An example bootstrap sequence in UbiqtOS. .................................................... 132 
Fig. 6.1 Mobet Interface. Components implement this interface to participate as first-class 

citizens in the system............................................................................................... 144 
Fig. 6.2 Functional Interface Description........................................................................ 146 
Fig. 6.3 Description of Eventhandler .............................................................................. 146 
Fig. 6.4 Mbox Interface. Interface Implemented by explicit bindings in UbiqtOS. ....... 149 
Fig. 6.5 API for Explicit Bindings. The code fragment shows how an explicit binding is 

looked-up, parameterized and used to add a string title to a video stream ............. 151 
Fig. 6.6 SEMAS Interface. The Interface presented by the UbiqtOS Agent Engine to the 

System Components (mobile agents). ..................................................................... 153 
Fig. 6.7 Bootstrap of an agent in UbiqtOS...................................................................... 154 
Fig. 6.8 ACP Interface. Communication API in UbiqtOS.............................................. 156 
Fig. 6.9 ACP Authentication Header. ............................................................................. 158 
Fig. 6.10 Extensibility in SEMAS. Extensions Interpose functionality between SEMAS 

and ACP .................................................................................................................. 160 
Fig. 6.11 Effective mobility in SEMAS:......................................................................... 165 
Fig. 7.1 An Example Resource Description Registered with UbiqDir ........................... 183 
Fig. 7.2 This figure shows the algorithm to generate IDs in UbiqDir............................. 185 
Fig. 7.3 Events offered by UbiqDir to Request Extensible Distributed Operation......... 189 
Fig. 7.4 Extensible operation of the directory service..................................................... 190 
Fig. 7.5 UbiqDir can support multiple discovery protocols simultaneously, each for a 

different standard and network interface. These discovery protocols are deployed as 
extensions to UbiqDir and subscribe to the “looked-up” event, generated whenever a 
resource description is lookedup in UbiqDir. These extension can then find the 



 

 

14

matching resources in their respective networks and return the descriptions to the 
mobile agent looking up the resource. .................................................................... 192 

Fig. 7.6 An example production rule for events offered by UbiqDir.............................. 197 
Fig. 7.7 Access Control Specification in UbiqDir .......................................................... 198 
Fig. 7.8 An Example Group Membership Hierarchy of Principals  in UbiqDir ............. 199 
Fig. 8.1 OSkit: The COM-based framework and modularized libraries provided by OSKit 

to implement an operating system........................................................................... 207 
Fig. 8.2 Structure of OSKit components to implement layer 0 in UbiqtOS prototype.  

Compare with Figure 8.1 to note that only a minimal set of Oskit components are 
used. The dotted lines between components signify that the COM indirection has 
been removed to improve performance. The list based memory manager, FreeBSD 
packet driver and scheduler were modified to support dynamic extensibility. ....... 210 

Fig. 8.3 Extensible scheduling in UbiqtOS, based on the model proposed in [Harris01]. 
UbiqtOS implementation uses Romvets to route scheduler activations to extend the 
model proposed in [Harris01] to provide dynamic extensibility............................. 214 

Fig. 8.4  An example protocol stack in UbiqtOS. ........................................................... 220 
Fig. 8.5 Performance evaluation of the bandwidth of the UbiqtOS TCP/IP protocol stack 

with traditional architectures. Evaluation was done using two 200 MHz Pentium 
PCs, connected by a 100 Mbit/sec Ethernet ............................................................ 223 

Fig. 8.6 TCP one-byte roundtrip time measured with rtcp to compare latency of UbitOS 
extensible protocol stacks with traditional architectures. Evaluation was done using 
two 200 MHz Pentium PCs, connected by a 100 Mbit/sec Ethernet ...................... 223 

Fig. 8.7 UbiqDir default extensions ensure that UbiqtOS devices can interoperate both 
with IP-based systems and AutoHAN and allow strong consistency for security 
critical information.................................................................................................. 225 

Fig. 8.8 Default extensions for SEMAS.......................................................................... 227 
Fig. 8.9 Architecture of standard UbiqtOS distribution. ................................................. 230 
Fig. 9.1 Comparison of ROM Image of UbiqtOS with embedded linux, winCE and QNX 

operating systems on x86. ....................................................................................... 238 
Fig. 9.2 Comparison of lease traffic for lease update with and without the ID 

optimization. The traffic generated by ID-based scheme remains fixed, while the 
traffic generated by transmitting the whole description of the resource to update its 
description increases with the number of attributes. ............................................... 240 

Fig. 9.3Code snippet from Follow-me-Video Application ............................................. 246 
Fig. 9.4 Code snippet from Follow-me-Video Explicit Binding..................................... 247 
 



 

 

15

List of Tables  
 
 
Table 2.1 Survey of candidate physical layer technologies for HAN................................ 37 
Table 2.2 Corresponding MAC layers for physical layer technologies in table 2.1......... 37 
Table 2.3 Link layer (and above) for HAN physical layers in Table 2.1 .......................... 38 
Table 3.1 Quantitative comparison of capabilities of embedded devices in a ubiquitous 

system ........................................................................................................................ 69 
Table 6.1 ACP frame format. Lingua Franca for inter-UbiqtOS interaction. ................ 156 
Table 9.1 Code size of different components in UbiqtOS prototype ............................... 237 
Table 9.2 Cost of UbiqDir Operations............................................................................ 239 
Table 9.3 Cost of Romvets operations (in msec) for the un-optimized case ................... 242 
Table 9.4 Cost of subscription and notification (in µsec) using the optimizations in Kaffe 

and Romvets. ........................................................................................................... 242 
Table 9.5 Roundtrip RPC in the same address space. Cost measured in cycles on PII 266.

................................................................................................................................. 244 
Table 9.6 Cost of Adaptation in Follow-me-Video Application...................................... 248 
Table 9.7 Cost of Mobile IP protocol adaptation ........................................................... 250 

 
 
 
 
 

 





 

 

“The next revolution in computer science is to make computers disappear.” 
  

Anonymous  

Chapter 1 

Introduction 
 

 

1.1 Motivation 
 

Advances in digital electronics over the last decade have made computers faster, cheaper 

and smaller. This coupled with the revolution in communication technology has led to the 

development and rapid market growth of embedded devices equipped with network 

interfaces. It has also promoted the development and widespread use of portable 

computers, allowing users to carry their computation resources and tasks with them.  

This presents us with the opportunity to define systems that enable these embedded 

devices to cooperate with one another to make a wide range of new and useful 

applications possible, not originally conceived by the manufacturer, to achieve greater 

functionality, flexibility and utility.  

Such a system would allow the computation resources to disappear in the infrastructure to 

define active spaces [Grimm00][Banavar00][Roman00]; buildings, shopping malls, 

theatres, rooms, instrumented with embedded devices that collaborate under users’ 

directions to automatically carry out their everyday tasks.  

The whole system, therefore, would consist of a multitude of, possibly disconnected, 

active spaces to provide ubiquitous access to system resources according to the current 

context of the user.    

Such a system promises a future where computation will be freely available everywhere, 

like batteries and power sockets, or oxygen in the air we breathe. Computation will enter 

the human world, handling our goals and needs. Devices, either handheld or embedded in 

the environment, will bring computation to us, no matter where we are or in what 

circumstances. These devices will personalize themselves in our presence by finding 

whatever information and software we need. We will not need to type or click, nor to 
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learn computer jargon. Instead, we will communicate naturally, using speech, vision, and 

phrases that describe our intent, leaving it to the infrastructure to locate appropriate 

resources and carry out our intent.  

 

1.1.1 Scenario1   
 

Karen starts her morning by reading her on-line news service subscription. When her car 

arrives, she switches to reading the news on her PDA that is equipped with a wide-area 

wireless connection. In the newspaper, she finds an advertisement for a new wireless 

equipped camera and calls her friend David to tell him about it.   

David’s home entertainment system reduces the volume of the currently playing music as 

his phone rings. Karen begins telling David about the camera, and forwards him a copy 

of the advertisement that pops up on his home display. 

David’s decision to buy the camera involves another set of services to be downloaded on 

his PDA. One acts as a shopping agent to verify that the price is the best possible and 

another verifies that the camera manufacturer has a dealer in that area. When the 

purchase of the camera is made, David’s bio-metric identification ring authenticates the 

transaction. His digital camera comes equipped with a short-range radio transceiver as 

well as a removable cartridge. The data watch he wears can communicate with the 

camera as well. The two devices informed each other of their protocols and requirements 

when they were first brought within range of each other. When he snaps a picture, the 

photo data is communicated to the watch where it is held until a connection can be made 

to the rest of the world. David’s watch acts as a personal storage device and as a gateway 

to other connections. 

Eventually, David enters his home and brings his watch close to his mobile network 

terminal. At this point, the photo data from the wristwatch can be injected into the wider-

area network for the next step of its journey. The pictures find their way through the 

network to the photo album service.  When the camera takes the snapshot it included his 

encrypted personal ID (from the ring with bio-metric safeguards) in the data packets. 

Lower-cost data transfer options are always considered automatically based on David’s 

                                                 
1 Adapted from Portolano Project at Washington University 
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past usage patterns and likely future locations (extracted from his schedule). For example, 

if David is near his home (and likely headed there), his cellular phone will not place a call 

to transfer the data, but rather defer the transfer to happen at home where a cheaper 

Internet connection is available through the home’s wireless network and network portal. 

 

 

1.2 Economic Considerations 
 

A practical system of this nature would inevitably consist of devices and networks 

manufactured by different vendors, conforming to different, possibly competing, 

standards. Therefore, at least from an economic point of view, it is natural to ask why 

different vendors would want their devices to interoperate with one another?  

Though this dissertation addresses the technical challenges posed by this heterogeneity, 

presuming the commercial viability of such a model, this section hints at the feasibility of 

such a system in the not so distant future.    

The computer industry differs from traditional manufacturing in that the costs associated 

with a given product decline over time due to cheaper implementation. The trend for 

performance, on the other hand, is relentlessly upward. Hence, the economics of the 

industry enables manufacturers to periodically introduce enhanced models with richer 

feature sets at an affordable price.  

The result has been a proliferation of devices embedded with appreciable computing 

power. Fig. 1.1 shows that 98% of the world’s processors go into embedded devices, and  

not desktop computers; this slide was shown as a motivation for DARPA’s new research 

direction in embedded computing, part of the “proactive computing” project.    

One natural consequence of the growing complexity of the devices is the desire to 

connect them together in order to achieve greater functionality, flexibility and utility.   

This potential has certainly been realized by the computer industry in the last few years 

and an increasing number of efforts are underway to enable interoperation of consumer  
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Fig. 1.1 David Tennenhouse (Intel) talk at LCS, MIT, Anniversary talks 

 

 devices, especially in the context of home and office automation. In addition to the older 

systems like X.10 [X10], and CEBus[CEBus], devices conforming to newer systems like 

Jini [Waldo99], UpnP[UPnP] and OSGi[OSGi] have started to emerge in the market, 

indicating the industry trend towards enabling a ubiquitous system. 

More interestingly, users have also shown keen interest in “programming” their devices 

as long as they can perform useful functions for them, e.g. the “downloadable mobile 

phone tunes and games” industry is estimated at 1.30 billion dollars in the UK 

[Vodafone]. 

These trends indicate that in future device manufacturers would instrument their devices 

to enable a ubiquitous system, in order to provide greater flexibility, functionality and 

utility of their devices.   
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1.3 Problem Statement 
 

The compelling question then becomes “what software needs to go into these devices to 

enable such a ubiquitous system”? More specifically, what software needs to be 

embedded in these devices to allow efficient interoperation with the system? This is the 

question addressed by this thesis. 

  

1.3.1 Focus 
 

The focus of the thesis is on medium to high-end devices participating in a ubiquitous 

system e.g. HiFi, Television. Deeply embedded devices like light-bulbs or doorbells are 

handled by proxies managed by these devices, as proposed by a previous project 

[Greaves98]. Where an event-based architecture is presented to control, monitor and 

program deeply embedded devices as part of the AutoHAN project in chapter 2, the main 

crux of this dissertation is an operating system architecture for medium to high-end 

devices.  

 

 

1.4 Requirements 
 

The aim of the software embedded in these devices is to transform these devices from 

standalone, dedicated pieces of hardware to “universal interactors”, acting as a portal to 

their resources, to allow other resources to make use of them in a ubiquitous system. 

 

1.4.1 Network Interface 
 

In addition to its physical interface, devices need to support a network interface to allow 

interaction with other devices on the network.   

To enable a ubiquitous system, the software embedded in these devices would need to 

allow the device to be  

• controlled  
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• monitored and  

• programmed  

using this network interface.  

The control interface allows other resources in the system to change the behavior of the 

device while the monitoring interface allows other resources to observe and react to 

changes in the system. Finally, devices that can accommodate extra software need to be 

able to host novel user applications to program, extend and control the system in ways 

not originally conceived by device manufacturers. 

   

1.4.2 Discovery 
 

To be able to interoperate with one another, resources first need to be able to find one 

another on the network.  

Resource discovery is imperative, as devices could not know, at time of manufacture, 

about other devices they would need to interact with to define a ubiquitous system. 

Instead other devices in the system could only be discovered dynamically at run time. 

Further, resources frequently fail, join, leave or move in the system and no service can be 

assumed to be available at all times to be statically linked against. Consequently, 

applications cannot define static bindings between system resources at compile time, 

instead useful services can only be composed dynamically using components currently 

accessible in the system [Esler99]. 

 

1.4.3 Context-Driven and Application-aware Adaptation 
 

A ubiquitous system comprises a collection of, possibly disconnected, active spaces each 

with its own requirements, standards, system idiosyncrasies that define the context of a 

resource. Resources in a ubiquitous system can range from limited capability embedded 

devices to high-end servers and can move, fail, leave or join the system. Communication 

infrastructure can be composed of heterogeneous links [Brewer98] with varying 

characteristic, prone to network partitions and disconnection. Resources can conform to 

different standards, and pre-configured support to deploy, locate and manage services 

may not be available [Winoto99][Esler99].  
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This heterogeneity, mobility and dynamism coupled with the changing characteristics of 

wireless links [Brewer98] necessitate adaptation of all those system services that could 

effect interoperability, efficiency or availability of the system in changing contexts.  

The software embedded in the devices needs to be simple enough to be accommodated in 

impoverished devices, while allowing mechanisms to scale to more privileged devices 

and to adapt to changing environment conditions as devices fail, join, leave or move in 

the system, or as the resource is moved from one active space to another.  

This dynamism also implies that bindings, established by applications, between system 

resources cannot be defined statically, instead these bindings need to be able to 

rebind/renegotiate as available resources fail, leave or move in the system or new 

resources join the system.  

Finally, new applications made possible by the system require new services to be 

deployed and adapted with the changing characteristics of the system.  

 

1.4.4 Object Mobility and Lifecycle Management 
 

A system can adapt both by altering existing services and by deploying new services in a 

host to enable it to efficiently interoperate in a new context. This requires support for 

object mobility and life cycle management of services. Object mobility lets context-

specific services be deployed in a device to configure it to interoperate in a new context 

while life-cycle management provides support for installing, upgrading and removing 

software from a device. Object mobility is also required to move services around a 

network for better load balancing, fault tolerance, high-availability. 

 

1.4.5 Security 
 

Resources in such a ubiquitous system would come from different, possibly competing, 

vendors. This openness of the system means that the level of trust would be low in the 

system and strong security measures have to be in place to protect devices from one 

another. Further, components dynamically deployed to configure a device for a specific 

context can corrupt system state, violate system security or cause denial of service 
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[Seltzer94]. Therefore, adaptation of software embedded in a device needs to be type 

safe, to ensure system integrity, and secure, to protect against malicious components.  

 

1.4.6 Easy Programmability  
 

Finally, the software embedded in the devices should leverage easy programmability of 

applications using the device functionality. It should be easy to control and monitor the 

device using the embedded software, and program and extend the device functionality to 

make new applications possible to meet user requirements.    

 

 

1.5 Challenges 
 

These requirements highlight four fundamental challenges to the design of a ubiquitous 

system. 

  

1.5.1 Challenge #1: Heterogeneity  
 

As stated above, a ubiquitous system would consist of devices having varying 

capabilities, connected by networks of different characteristics, conforming to different 

standards and imposing different requirements on the system. Hence, the software 

embedded in these devices would need to address this heterogeneity to allow 

interoperation of resources.  

 

1.5.2 Challenge #2: Longevity 
 

Consumer devices usually have long life times. Therefore, they cannot be manufactured 

to interoperate with all the newer models of other devices that may become part of the 

ubiquitous system. Though economies of scale permit increasing computational 

capability to be embedded in consumer devices to allow additional software to be 

accommodated, they usually have no programming terminal attached that can be used to 

upgrade the software embedded in them. This limits their interoperability with newer 
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devices in the system. Hence, it is desirable to utilize the network interface of a device to 

automatically upgrade its software to enable it to interoperate with newer devices in the 

system. Therefore, to enable ubiquitous interaction of devices, the fixed software 

embedded in the device ROM needs to be minimal that allows suitable extensions to be 

deployed, using the device network interface, to enable interaction of the device with 

other newer devices in the system.   

 

1.5.3 Challenge #3: Mobility  
 

The third fundamental challenge is posed by mobility of resources in such a system. 

Users can carry devices with them from one active space to another or could take them 

“out of the range” of the system. As different active spaces can have different 

requirements, standards and system idiosyncrasies, devices might need to be reconfigured 

as they move between different active spaces. Similarly, varying characteristics of 

wireless links and the possibility of network partitions warrant adaptation of system 

services and applications.  

 

1.5.4 Challenge #4: Dynamism and Context-Awareness  
 

Due to the loose structure, mobility and scale of the system, devices in a ubiquitous 

system join, leave, move and fail more often than in traditional distributed systems. 

Therefore the resources accessible to a device, which define its context, frequently 

change in such a system. Hence, every participating resource needs to be able to discover 

and adapt to its changing contexts to efficiently participate in the system.   

 

 

1.6 Thesis  
 

The thesis of this dissertation is that these requirements warrant a new bottom-up system 

design. The challenges posed by the heterogeneity, longevity, mobility, dynamism and 

context-awareness of a ubiquitous system can only be handled effectively at the operating 

system level.  
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1.6.1 Contribution 
 

This dissertation presents the design and implementation of an embedded, extensible, 

context-aware, distributed operating system. The operating system, referred to as 

UbiqtOS, enables resources to effectively participate in a ubiquitous system by lending 

itself to safe, context-driven adaptation and by leveraging context-aware adaptation of 

applications.  

This dissertation makes the following contributions to address the requirements outlined 

in section 1.4.   

 

• It presents a taxonomy of devices in a ubiquitous system. Although the premise of 

the dissertation is that embedded devices in future will become increasingly 

sophisticated and would be equipped with network interfaces, to allow 

interoperation with other devices, experience with home automation systems 

showed that devices constituting such a system are either “dumb” e.g. electric 

kettles, door bells etc. or “intelligent” e.g. hi-fi systems, microwave ovens, 

handheld computers etc. Dumb devices have limited capability and are only 

capable of accepting and generating simple control commands, whereas 

intelligent devices have additional capacity that can be utilized to control, monitor 

and program other devices in the system as well.  Hence, the dissertation presents 

two compatible but different architectures; one to enable dumb devices to be 

controlled by the system and the other to enable intelligent devices to control, 

extend and program the system.  

 

• The dissertation presents a publish/subscribe/notify event-based architecture to 

manage control-commands for thin devices; devices publish their control 

commands to the system as typed discrete messages, applications discover and 

subscribe interest in these events to send and receive control commands from 

these devices, as typed messages, to control their behavior. This allows 

applications to automate the system to be structured as sets of intuitive logical 

assertions embodied as event scripts that subscribe interest in events generated by 
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devices to trigger condition-action bindings that, in turn, send events to other 

devices to control their behavior. Finally, the proposed architecture also handles 

mobility and failure of devices by allowing events to be delivered to “care of” 

devices in case the device of interest is temporarily disconnected. The “care of” 

device delivers the event to the destination device if it becomes accessible within 

a specified time. Moreover, if the mobility pattern of a device can be bound or is 

known in advance then the event is multicast to all the probable destinations to 

ensure assured, timely delivery. 

• The rest of the dissertation motivates, describes and evaluates the design and 

implementation of an embedded operating system for medium to high-end 

embedded devices.      

• It shows how the architecture of this extensible operating system lends itself to 

safe, dynamic and context-driven adaptation to address the challenges posed by a 

ubiquitous system.  

• It describes how the proposed architecture allows components to be injected into 

the system as mobile agents, extending and adapting the operating system to make 

new applications possible and to suite the idiosyncrasies of a particular context. 

• It proposes a naming framework suitable for describing resources in a ubiquitous 

system, showing how our architecture provides support to meaningfully capture 

and indicate changes in context to system services. It describes how these 

notifications are used to guide a suitable and timely adaptation of the system to 

suite the changing contexts.  

• It introduces effective object mobility and emphasizes explicit, active bindings as 

a key abstraction to make the system self-organizing for load balancing, fault 

tolerance and high-availability.  
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1.7 Case Study 
 

The ubiquity of the system, however, also means that it is difficult to implement and 

validate a system design without focusing on a concrete example. The dissertation 

therefore gives a parallel account of the implementation and evaluation of the system on 

the Cambridge University Computer Laboratory, Home Area Networks Architecture, 

which has served both as concrete example to guide the system design and as a test-bed 

to evaluate its performance. 

This thesis has benefited greatly from our experience with Home Automation 

architectures [Saif01]. Work presented in this dissertation is aimed towards the goal of 

the AutoHAN [Saif01] project to enable a self-configuring home area network, though, as 

the dissertation illustrates, the system design is relevant for ubiquitous systems in general. 

 

 

1.8 What this thesis is not 
 

Ubiquitous systems are, indeed, aimed to help users without being intrusive. Therefore, a 

large portion of research in ubiquitous systems has focused on human computer 

interaction architectures to allow unobtrusive, natural interaction with the system. This 

thesis, however, addresses a more fundamental question of what needs to be embedded in 

these devices that could allow different user interfaces to be supported atop. HCI issues 

of ubiquitous computing are only discussed when relevant to system design and are, 

generally, beyond the scope of this thesis. 

 

 

1.9 Structure of the Dissertation 
 

The remainder of the dissertation is structured as follows.  

Chapter 2 describes the problem domain; Home Area Networks. It delineates the 

problem, presents a survey of some practical home automation systems and presents the 

evolving architecture of AutoHAN [Saif01]. It concludes with a list of lessons learnt from 
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the AutoHAN project that serve as the guiding principles for system design presented in 

the following chapters.  

Chapter 3 starts with a taxonomy of devices in a ubiquitous system. It presents the 

requirements posed by challenges of a ubiquitous system design, and motivates the need 

for an embedded, extensible, context-aware distributed operating system for medium to 

high-end devices.  

Chapter 4 presents a critique of state of the art in the fields of distributed and extensible 

operating systems.  

Chapter 5 introduces the architecture of UbiqtOS, an embedded, extensible distributed 

operating system that provides safe, application-specific and context-aware adaptation.  

Chapter 6 describes the mobile agent engine that allows context-specific software to be 

dynamically deployed in UbiqtOS. A binding architecture to address the dynamism of the 

system is presented. This chapter introduces effective mobility and shows how the mobile 

agent engine and the binding architecture are used to implement effective mobility and 

agile bindings.  

Chapter 7 describes an extensible, XML-based registry that forms the core of UbiqtOS. A 

naming scheme befitting a ubiquitous system is presented, along with the philosophy of a 

context-specific distributed operation of the registry service. The use of the registry 

service as a meta-interface to extend and adapt UbiqtOS and its role as an orthogonal 

persistent store is emphasized. This chapter shows how the proposed registry services 

support context-specific discovery and effectively address the heterogeneity and 

dynamism of the system better than any other currently available system.  

Chapter 8 describes a prototype implementation of the UbiqtOS architecture and chapter 

9 presents an evaluation of the UbiqtOS prototype.  

Finally, chapter 10 gives a summary of the thesis, outlines the limitations of the 

architecture and hints at future work to conclude the dissertation.





 

 

“To boldly connect what no one has connected before” 
  

AutoHAN Research Group, University of Cambridge 
 

Chapter 2  

Case Study: Home Area Networks 
 

 
 
 

Home Area Networks have been a subject of our research for the last five years 

[Greaves98].  During this time, we have designed, prototyped and deployed several home 

automation architectures [Greaves98][Saif01]. Our research has spanned from the 

hardware deign level to the issues of user interaction, leading to our current project 

“AutoHAN” [Saif01]. AutoHAN aims to define a bottom-up design of a self-configuring 

home area network that allows ubiquitous access to home devices. This thesis is based on 

the experience with the AutoHAN project, which has served both as a concrete example 

to motivate and guide the system deign and as a test-bed to validate the proposed 

architecture.   

 

 

2.1 Overview 
 

The rest of the chapter is organized as follows. Section 2.2 justifies the selection of Home 

Area Networks as a case study for the thesis, both commercially and technically. Section 

2.3 covers different aspects of Home Automation and reviews existing home automation 

systems. Section 2.4 describes the architecture of AutoHAN. Section 2.5 presents the 

lessons learnt from the AutoHAN project that led to the requirement to design a new 

architecture for an embedded operating system. Finally, section 2.5 presents a summary 

of the chapter.  
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2.2 Home Automation Industry 
 

Home Automation has received considerable attention from the computer industry in the 

past couple of years. The home control networking systems market is undergoing a 

significant transition from closed-loop solutions to open, IP-aware solutions. The result is 

that the US home automation and controls equipment market is expected to grow from 

$1.1 billion in 1999 to $3 billion in 2005. This is according to the Applied Business 

Intelligence’s (ABI) report on “Home Automation Systems and the IP-Based Control.”  

(fig. 2.1).  

The report cited three factors contributing to why the industry may now be ready to begin 

realizing its true potential. First, the Internet is the leading catalyst to a change in both 

system designs and business models. IP-aware home control systems not only provide 

greater value to consumers, but also represent a means for service providers and 

appliance vendors to create new revenue streams. Utility service providers are 

particularly interested in the possibility of providing an energy-centric bundle of services, 

while appliance vendors are looking to market intelligent appliances that have additional 

functionality and can be managed remotely. 

Second, the immense interest in high-speed home networks is spilling over into control-

oriented applications and services. Key players are looking to enable a more complete 

vision of the intelligent home that extends beyond high-speed data and entertainment 

networks. 

Lastly, there has been a renewed effort to develop and to improve technologies for home 

control applications. New control networking protocols such as the Microsoft-led Simple 

Control Protocol (SCP) effort and emWare’s EMIT architecture promise to enable more 

reliable, lower cost solutions. Additionally, LonWorks technology is meriting a serious 

second look as it has gained impressive traction, particularly in the European residential 

market. These and other home networking technologies are discussed in detail in section 

2.4  

The heterogeneity, dynamism and context-awareness in a home area network design 

makes it a good choice to explore design challenges in the wider scope of ubiquitous  
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Fig. 2.1 Expected Home Control Networking Systems Equipment Revenue in the next 3 
years.  

 

 

systems. Home Control Networks allow embedded devices in a house to cooperate, under 

user direction, to assist users in everyday tasks. These devices and the networks 

connecting them could be both mobile and fixed, would have varying capabilities and 

could be manufactured by different vendors.  Different locations in a house can have 

different requirements, standards, system idiosyncrasies e.g. garage, living room, garden 

would each define an active space with different characteristics. 

Therefore, home automation networks not only provide a commercially feasible example 

of a ubiquitous system, they provide a good case study to get a taste for the technical 

challenges posed by a ubiquitous system design.  

 

 

2.3 Home Area Network Architecture 
 

Home Area networks, like most computer networks, have an inherent layered structure, 

with higher layers augmenting and abstracting the functionality of lower layers. The  
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Application architecture 
Control architecture 

Network architecture 
Physical architecture 

Fig. 2.2 Generic System Architecture of a Home Area Network 

 

conceptual structure of the protocol stack for a generic Home Area Network is as 

depicted in Fig. 2.2.  

This model serves as an architecture which in practice is further refined into sub-layers 

depending on the specific technologies used in different layers.  There will be multiple 

implementations of some sub-layers: for instance both HomePNA and X.10 might be 

used at the physical layer. 

The reason for this basic architecture is to decouple the technologies of networking from 

the control and application architectures. The design issues at all levels are different and, 

in a good design, one technology can be replaced without affecting others.  

 

2.3.1 Physical Media 
 

Home Area Networks are enabled by both wires and wireless media.  Wired media can be 

either newly installed wire, like Coaxial and Plastic Fiber, or existing old wire like POTS 

(Phone line) wiring and power line. Wireless media can be Infrared and radio (RF).   

Wired media is cheap, fast and more reliable than the wireless media. It will be used for 

fixed and portable devices to provide high bandwidth. Among the wired media Plastic 

Optical Fiber (POF) may offer the most promising solution but requires new installation 

in homes. POTS wiring, on the other hand, can be used for bandwidth up to 25 Mbits/sec 

and does not require new installation. Power Line solutions like X.10, might soon be 

eliminated from the race of broadband networking, and would at most be used for simple 

control functions for devices which need a power cable but not high data rate: for 

example, a standard lamp.   

Use of wireless technologies is inevitable in an environment of mobile devices. Both 

radio and infrared technologies would be part of the network, with radio better suited for 

multimedia applications and infrared for control channels. Our testbed at the Computer 
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Laboratory [Greaves98] uses category 5 Unshielded Twisted Pair (UTP), POF and 

Infrared (IR). 

The only conclusion that can be derived from the above analysis is that there is no clear 

winner, at least in the short run. Therefore a practical network would have to support all 

kinds of heterogeneous media in its higher layers.  

 

2.3.2 Networking Technologies 
 

Several networking technologies have emerged in the domain of home networking, each 

suitable for different traffic characteristics and end-host complexity. Tables 2.1, 2.2 and 

2.3 compare the characteristics of different home networking technologies.  

These technologies differ in the traffic streams supported, network topologies used, 

addressing schemes defined, and security provided by the.   

For example, the specific addressing scheme used depends on a number of factors. A 

fixed address can only be allocated if the device is complex enough to hold a permanent 

fixed address, and there are sufficient addresses available, in the address space, to 

allocate a fixed, unique address to every device. Ethernet and all modern LANs use fixed 

48-bit MAC addresses, whereas, a dynamic address can only be allocated either if there is 

a central service available that could be contacted any time by any device to acquire a 

dynamic address, or all the devices are ready to cooperate to help each other decide on a 

unique address, thus increasing the complexity of the network.  Finally, topology-based 

addressing can only be used if some device is ready to act as a root or point of reference 

e.g. Warren. This device can mediate as a third party for start-of-day connection setup. 

This technique effectively moves the complexity from a device and to the network.  

Similarly, the network topology depends on the traffic requirements and the complexity 

that the network can afford. Switched schemes, like Warren[Greaves98], require 

additional complexity in the network whereas broadcast networks like HomePNA 

[HomePNA] require arbitration protocols to be embedded in end-hosts. Technologies like 

Bluetooth [Haartsen00] and USB [USB2.0], require a root device in the network to act as 

a master to manage the network, while technologies like HomePNA and FireWire 

[Wickelgren97] define a decentralized peer-to-peer network. Further, serial cables, like 
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FireWire and USB, and short-range wireless technologies like Bluetooth and IrDA 

[Williams00], have limitations on the length of network links they can support, and hence 

require bridged topologies to support networks spanning a home area. 

Finally, these networking technologies differ in the bandwidth, traffic streams and the 

levels of quality of service supported by them. Where all the technologies in the home 

networking domain include support for multiple traffic requirements, they vary in levels 

of services provided for synchronous, asynchronous and isochronous streams. 

Technologies like Warren [Greaves98] and FireWire provide support for both 

asynchronous control commands and multimedia isochronous streams for a range of 

traffic requirements, whereas simpler technologies like HomePNA and IrDA provide 

limited bandwidth and support fewer traffic requirements.   

Additionally, technologies like Bluetooth and IrDA are more than networking 

technologies. These technologies support mechanisms for encryption, compression, and 

authentication, as well as higher-level services like resource discovery and data 

marshalling.   

We believe that all the technologies discussed above would be used in a home area 

network. HomePNA and HomeRF provide sufficient range to cover a typical home area 

network, whereas Bluetooth and fast serial buses would be used within individual rooms 

to define short-range networks. IrDA is finding its use as short-range peripheral 

interconnect for devices that cannot afford the complexity of Bluetooth. Devices 

conforming to all these standards had started to come out at the time of writing of this 

thesis. Apart from the appreciable attention HomeRF and HomePNA have received in the 

home networking domain, FireWire has been chosen by the VESA Home Network Group 

as the link layer for their standard [DiGirolam99] and Bluetooth consortium envisages 

Home Networking to be a sizeable market for their standard. 
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Techonolgies Media Electric Specs Device Distance  Bandwidth 
MediaWire Wired CAT-3, 5, Coax Modulation: Proprietary  

 
 

CAT 3 : 33 m  
CAT 5:  100m 
Coax:    500 m 
(max 4 km) 

100 Mb/sec 

Warren  Wired CAT-5, POF 
Wireless : IR 
 

ATM25 network 
Encoding: 4b5b 

  

USB 2.0 Wired 
2 STP for Signal 
1 UTP for power 

Encoding: Differential NRZI 5 m 1.5 (low) ,12(normal) Mbits/sec, 
480 Mbits/sec (USB2.0)  

FireWire Wired 
2 STP for Signal 
1 UTP for power  

 4.5 m 100,200, 400Mb/sec 

HomePNA Wired POTS CAT-3, 
CAT5 

-Dual Carrier Frequency 
Network 
-Frequency Range:  
2,32 Mbauds/sec 
-Modulation: QAM 256  

500m  
(max 2.5 km) 
 

10 Mb/sec 

IrDA Wireless Infrared -IR range : 0.85 – 0.9 µm 
-Optical encoding: RZI, 4PPM 
-Modulation: SIR,  MIR, FIR 

0-1 m SIR: 9.6 – 115.2Kb/sec 
MIR: 0.576, 1.152 Mb/sec 
FIR:4.0 Mb/sec  

Bluetooth Wireless Radio -Frequency Hopping Network: 
1600 Hops/sec 
-Frequency Range:  
2.402 GHz ISM 
Modulation:  
GFSK 

0-10 m 1 Mb/sec 

HomeRF Wireless Radio -Frequency Hopping Network: 
50 Hops/sec 
-Frequency Range: 2.402 GHz 
ISM Band 
-Modulation: 2FSK, 4FSK 

0-50m 2 FSK: 0.8 Mb/sec 
4 FSK: 1.6 Mb/sec 

Table 2.1 Survey of candidate physical layer technologies for HAN 
 
 
 
 
 
 
Technologies Algorithm  Peer-to-peer QoS Addressing 
MediaWire Token Ring No Yes Fixed: 64 bit GID 
Warren Point-to-point: N/A 

Token tagging 
No Yes Topology based 

USB 1.0 Host (PC) generated Token bus  No Yes(limited) Dynamic: 7 bits  
FireWire (P1394) Synchronous bus, frames 

generated by cycle master 
No Yes(no VBR support) Dynamic: 64 bits 

HomePNA CSMA/CD with 256 priority 
levels 

Yes Limited Fixed: 48 bits 

IrDA NDM: listen for 500 msec, tx 
when idle  
NRM: Master/slave (primary 
station passes token for max 
500 msec)  

No N/A Dynamic: 32 bits 

Bluetooth TDMA (Polling – - negotiable - 
master/slave) ~802.15 
TDD provides full duplex 
comms within each channel 

No Yes Fixed: 48 bits (piconet ID) 
Dynamic: 3 bits AMA  
 8 bit PMA 

HomeRF SWAP (hybrid of ~802.11 i.e. 
CSMA/CA and ~DECT) 

Isochronous: No 
(DECT) 
Asynchronous:yes 
(CSMA/CA)  

Optional: depending on 
mode of operation 

Fixed: 48 bits (network ID) 
Dynamic: 7 bits  

Table 2.2 Corresponding MAC layers for physical layer technologies in table 2.1 
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Technology Traffic types Framing Link Management Compression Security 
MediaWire Isochronous, 

Asynchronous 
Fixed sized (per BW) frames 
generated by Clock Master 
every 20.83µsec 

Token ring (802.5) style management  No No 

Warren Isochronous, 
Synchronous, 
Asynchronous 

ATM25 53 bytes cells ATM management No Nouce based 
Authentication 

USB Isochronous 
Asynchronous: 
Bulk transfer 
(12mb/sec mode), 
interrupt transfer 

No well-defined framing  Command packets from the host No No 

FireWire Isochronous, 
Asynchronous  

Fixed sized (per BW) frames 
generated by Cycle Master 
every 125µsec 

Command packets from the host No No 

HomePNA Asynchronous 802.3 frames appended by an 
extra header and 16 bit CRC, 
3 bits of priority 

No central management No No 

IrDA Asynchronous, 
Synchronous 

Asynchronous: byte stuffing 
with 16 bit CRC (~UART) 
Synchronous: ~HDLC, 
~SDLC  

Command packets from master No No 

Bluetooth Isochronous, 
Asynchronous 

Fixed sized frames generated 
by Primary every 0.625µsec  
Extended frames supported 

Command packets from Primary LZRW3-A 
compression 

Authentication 
+ Encryption 

HomeRF Isochronous, 
Asynchronous  

Hybrid TDMA/CSMA frame 
of 20msec 

Command packets from CP in DECT 
mode 

 128 bit 
encryption 

Table 2.3 Link layer (and above) for HAN physical layers in Table 2.1 
 
 

 

This emphasizes the fact that many networking standards would co-exist in a ubiquitous 

system, both due to technical and commercial reasons. Therefore any ubiquitous system 

design would need to support heterogeneity of underlying networks.  

 

2.3.3 Home Automation Technologies 
 

The Physical and Network architectures, discussed above, provide the infrastructure for 

information to be delivered from the source to the destination. It is the control 

architecture that allows both humans and devices to communicate and control one 

another’s behavior to achieve greater flexibility, functionality and utility.  

The control architecture defines the control interfaces and a corresponding control 

protocol for the devices wishing to interact with one other over the network.  

For this to happen every device needs to be able to 

 

• Find other devices on the network, given a set of attributes 
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• Once found, send them commands to control their behavior. 

 

Devices in such a loosely coupled system often do not know the location of the device 

being looked-up. Indeed, the location of a mobile resource changes frequently in such a 

system. Therefore, location-based lookup protocols, e.g. DNS, are not sufficient to 

discover resources in the system.  

Instead, attribute based lookups need to be supported to allow yellow pages style lookup.  

 

2.3.3.1 Control Interface 
 

A device is controlled by its control interface. It could be as simple as a physical binary 

switch, or as complex as a device driver. 

Home devices usually come equipped with a physical interface e.g. buttons and 

indicators, designed to be controlled by humans. For a device to interact over the 

network, there needs to be an additional software interface, much like the upper API of a 

device driver found in an operating system, to expose its functionality to the network.  

The control interface is based on the functionality of the device. This functionality of the 

device is, in turn, a manifestation of its capabilities. The complexity of the real world 

devices (e.g. HiFi, VCR, security systems etc.) means that attempting to model a whole 

device as a single entity is not a workable solution due to two reasons: 

 

1) The model would be complex, and difficult to manage.  

2) It would not be reusable and there would be a new model required for even a slightly 

different device. 

 

In order to make the problem manageable and efficient, home networks need to model 

the devices at a finer level of granularity, thereby taking a more modular approach. Each 

module has a corresponding set of well-known functions that could be invoked by any 

other module. For instance, an answering machine might be modeled as a telephone set 

and a recording and playback module etc.  The advantage is threefold. A) Any device 

expressed as a collection of these well-known modules could be recognized by other 
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devices without even having the complete knowledge of the device as a whole. B) The 

model of each module is smaller and therefore simpler. C) Depending on the level of 

granularity, there may be scope for reuse of modules across many different devices. 

The first point is one of the keys to interoperatibilty between devices which have no a 

prior knowledge of one another.  

After defining an interface for a device, which allows it to be manipulated by outside 

world, the next step is to define a network protocol for sending control commands to the 

device. 

Clearly, it could be as simple as register read/write instructions [Greaves98] to as 

complex as a Turing complete language [CEBus].  

 

 2.3.3.2 Home Automation Systems 
 

The chapter so far has systematically identified the issues involved in the design of a 

home area network. Using these as the criteria, we now review and discuss different 

technologies targeted for Home Networking.   

 

X.10 
 

The first of its kind, and still very successful, X.10 [X.10] was designed to provide a 

simple control network for electrical appliances. 

X-10 was designed to use the electrical wiring as the physical medium.  

Based on then newly developed Power Line Control (PLC), it used a very simple digital 

encoding scheme to provide a bit rate of 50bit/s (60 bit/s in US) on the most ubiquitous 

wired medium in the house. X-10 used an 8-bit addressing scheme, which is implemented 

by setting DIP switches in the devices.   

X.10 was only designed to control simple devices like light bulbs and did not define a 

device model.  It uses a simple control protocol of a set of eight basic commands, 

compact, but enough for its purpose.   

These commands are broadcast on the shared media (power line) and devices respond to 

the commands addressed to their 8 bit unique identifiers. No registry, transaction or 

asynchronous events service was defined. 
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Echelon LONWORKS 

 

LONWORKS is another proprietary standard, based on using an application specific 

integrated circuit called the Neuron Chip [LONWORKS]. 

It caters to 2kbit/s to 10kbit/s on dedicated UTP cabling, in addition to 5400 bit/sec 

bandwidth over power line.  

LONWORKS can be viewed as a direct evolution of X.10. Its command set drives the 

same purpose as X.10 but provides a richer repertoire of 32 commands. The devices 

respond to the commands addressed to their 15-bit unique identifiers on a broadcast 

medium (UTP, powerline, Coaxial ect). Like X-10, no support for registry, transactions 

or asynchronous events has been provided. 

Both X-10 and LonWorks were just aimed to provide a network design to support a 

simple control protocol, and do not concern themselves with other issues in the design of 

a general-purpose HAN. 

 

European Home Systems 

 

EHS [Kung95] goes a step further in standardizing a network, which can support high-

speed continuous data streams alongside its control streams, therefore taking a more 

unified approach.  

EHS caters to a much wider range of media (IR, Power line, UTP, Coaxial, CT2), while 

still maintaining the main thrust towards power line medium, which operates at 2.4k bit/s. 

EHS defines a synchronous framed physical layer for UTP and wireless (using CT2 and 

DECT), in addition to a contention based CSMA style scheme for UTP and Coaxial 

cable.  

Unlike X.10 and LonWorks, EHS introduced the pioneering concept of the device model. 

An EHS unit is described as a set of entities, each of which has a 16 bit descriptor. The 

top eight bits identify the entity’s general application area (audio, video etc) and the 

bottom 8 bits identify a particular application (audio player, video recorder etc). The 

descriptor defines a minimal set of objects and services, which the unit must support. 

Orthogonal to this descriptor, entities are further classified as Controllers (clients) or 
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Resources (servers). There are a number of feature controllers present in the network, 

each responsible for devices belonging to a particular general application area. Simple 

devices can be handled by intermediate controllers called coordinators. EHS defines 

mechanisms whereby complex devices are enrolled by feature controllers and simple 

devices are contracted to coordinators. A resource can be shared by a token passing 

mechanism.   

The control protocol of EHS also used a different approach than X.10 and LonWorks. It 

defined a command language based on the simple Remote Procedure Call system 

operating at the application layer.  

This simple command protocol language allows resource entities to define so-called 

programs, a sequence of commands, which can be remotely invoked by a control entity. 

There are also provisions for transmitting new programs to a resource entity.  

 

CEBus 
 

CEBus [CEBus] is perhaps the most elaborate standardization effort in Home 

Networking.  

The PLC physical layer for CEBus operates at a higher frequency and provides a variable 

bit rate of up to 7500 bit/s. However, the power-line carrier, like previous networks, does 

not support high-bandwidth data stream channels.  

Other CEBus physical layers include twisted pair, coaxial, optical fibre, wireless radio 

and IR. Each medium can support data channels in addition to CEBus control channels. 

CEBus explicitly defines a resource allocation protocol for each medium. CEBus 

assumes its media to be shared, with different segments linked by link-level frame 

repeaters, unlike network layer routers used by EHS.  

Like EHS, CEBus has its own device model based on an object-oriented approach. 

CEBus devices are modeled at three different levels. At the highest level, a device (node 

in CEBus) is classified by its general type, TV, CD Player etc. At a lower level, the node 

is modeled as a collection of logical separate subsystems called contexts: a TV is 

modeled as a channel tuner (video subsystem) and an amplifier (audio subsystem). These 

contexts are derived from a well-defined context class. The context class defines a 
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number of basic objects that define a particular subsystem: the audio subsystem in a TV 

would be modeled as a multistate switch (the audio source selector) and some analogue 

controls (such as pitch control, audio gain etc.).  

What this approach achieves is a certain degree of reusability, e.g. the audio subsystem in 

TV would essentially have the same subsystems (made of context classes) as the audio 

subsystem in a HiFi.   

The CEBus devices are presented to the outside world by means of metadata. The 

metadata itself is represented in object form and the CEBus application layer protocol 

defines a mechanism for retrieving it remotely.  

The control protocol in CEBus is called the Common Application Language (CAL) 

[CEBus]. The CEBus device model is based on an object-oriented approach and therefore 

CAL is built around the concept of remote method invocation.  

The CAL commands are addressed by context number and CEBus unit address, although 

commands can be broadcast by using wildcards.  

CAL is a Turing complete language allowing assignments, conditions, and iterations. the 

24 commands in its command set provide rich functionality. In addition, it supports 

functions like call back, and conditional execution of remote methods that are very useful 

in monitoring and sensor devices.  

Although CAL defines a language syntax for intercommunication between CEBus 

devices, it does not offer any semantics for its use. Therefore, a high-level scheme called 

HomePnP [CEBus] has been defined by different vendors. It is aimed to provide 

semantics for interoperability between devices from different vendors without a prior 

knowledge of one another.  

Compliant devices have to include contexts from a minimal set of interoperability 

contexts defined by HomePnP. These contexts become automatically bound by 

broadcasting generic discovery messages by type. Once bound, a loosely coupled system 

can be formed in which Status objects report information to Listener objects using the 

typed broadcast messages. Distributed applications can be built using these loosely 

coupled Subsystems.   
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Universal Plug and Play (UPnP) 

 

The systems described above define proprietary architectures to allow control and 

programmability of networked appliances in a home network. To participate in one of 

these systems, devices need to support the physical media used by the system, the 

proprietary addressing scheme defined by it, the control protocol used by it and the 

programming interface required by it. As all of these systems define their own proprietary 

standards, incompatible with one another, devices conforming to any one standard can 

only interoperate with a system that conforms to the same proprietary standard from the 

physical layer to the programming interface exported by it. In particular, these standard 

are incompatible with existing Internet standards and hence cannot be used to allow 

remote access to devices in the home network.  

Therefore, except from their tiny niche markets, none of these systems have been able to 

amass any popular support from home appliance vendors.   

These shortcomings led to the Universal Plug and Play [UPnP] initiative, which is the 

most momentous of all the home automation industrial efforts. Led by Microsoft, UPnP 

consortium includes the majority of players from the home automation market.  

UPnP is based on the philosophy of leveraging the existing Internet standard to control 

and program devices in a home network. UPnP, therefore, uses protocols like IP, DHCP, 

DNS, HTTP and XML and extends them to suit an ad-hoc environment like HANs.  

UPnP uses IP for addressing devices on the network. Devices dynamically acquire IP 

addresses by either a DHCP service, if one is available in the system, or use an ad-hoc 

scheme called AutoIP [UPnP]. Devices using AutoIP simply pick an address from a pool 

of IP addresses and “ping” to check if any other device with that address exists. If there is 

no reply then that address is reserved by that device. Otherwise the process is repeated 

with a new IP, until a free address is found. 

Another protocol called Multicast DNS defines an extension to DNS in an ad-hoc 

environment like a home. In this protocol, the device itself keeps its attribute list and 

responds to any multicast message looking for a device with those attributes. A URL is 

passed in response to a matched query, where the interface of the device can be reached. 

Multicast DNS is used as the basis of SSDP described below.  
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On top of the IP “dialtone”, UPnP rests on three basic protocols, SSDP for device 

discovery, SOAP and GENA for device interaction. Extensible Markup Language (XML) 

is used to both describe device functionality and as a wire format for remote interaction. 

These protocols and their use of XML are described in the rest of this section.  

SSDP [UPnP] is the UPnP resource discovery protocol. It uses IP multicast and extends 

HTTP. Device descriptions are encoded as special HTTP headers and HTTPUDP [UPnP] 

is used to encapsulate these HTTP headers in UDP packets that are transmitted using IP 

multicast. Devices export themselves by periodically transmitting their descriptions on 

the SSDP multicast channel. Devices listen to these advertisements on the well-known 

multicast channel to find out about other resources on the network. Additionally, devices 

can send discovery packets on the multicast channel and the resources with matching 

descriptions respond with their IP addresses.  

Device descriptions in SSDP, placed in extended HTTP headers, are encoded as URIs. 

Although this allows device descriptions to be structured as attribute-value pairs, SSDP 

lacks support for advanced yellow-pages lookups.  

Generic Event Notification Architecture (GENA) [UPnP] enables the UPnP compliant 

devices to send and receive notifications using HTTP over TCP/IP and multicast UDP.  

GENA formats are used in UPnP to create the presence announcements to be sent using 

Simple Service Discovery Protocol (SSDP) and to provide the ability to signal changes in 

service state for UPnP eventing. A control point interested in receiving event 

notifications will subscribe to an event source by sending a request that includes the 

service of interest, a location to send the events to and a subscription time for the event 

notification. 

Simple Object Access Protocol (SOAP) [UPnP] defines the use of XML and HTTP to 

execute remote procedure calls. It is becoming the standard for RPC based 

communication over the Internet. By making use of the Internet’s existing infrastructure, 

it can work effectively with firewalls and proxies. SOAP can also make use of Secure 

Sockets Layer (SSL) for security and use HTTP’s connection management facilities, 

thereby making distributed communication over the Internet as easy as accessing web 

pages.  
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Much like a remote procedure call, UPnP uses SOAP to deliver control messages to 

devices and return results or errors back to control points. 

Each UPnP control request is a SOAP message that contains the action to invoke along 

with a set of parameters. The response is a SOAP message as well and contains the status, 

return value and any return parameters. 

Together GENA and SOAP allow devices to interact with one another to control and 

monitor one another’s behavior. Where SOAP allows synchronous RPC calls to change 

the behavior of devices, GENA is primarily used for de-coupled interaction by 

subscribing interest in events happening in the system to be notified when they happen. 

 

Open Services Gateway Initiative Technology  

 

OSGi consortium, led by SUN Microsystems, has defined a residential gateway standard 

[OSGi] to allow devices in a home network to interoperate and access service outside the 

house. The OSGi standard is based on the Java Embedded Server technology. 

• It defines a collection of APIs that a compliant service gateway needs to support. 

These APIs include a set of Core and Optional APIs that together define an OSG 

compliant gateway. Where possible the OSGi is leveraging existing Java 

standards, such as JINI and JDBC. Where there are standards that apply that are 

not Java-based, the group’s work focuses on integrating with these standards.  

• The core APIs address service delivery, dependency and life cycle management, 

resource management, remote service administration, and device management. 

All of the core APIs are either contributed by a member or developed by the OSG 

technical working groups.  

• The optional set of APIs define mechanisms for client interaction with the 

gateway and data management. In addition, several existing Java APIs are 

included in the optional services. This includes JINI and several other Java 

standards. A vendor implementing the OSGi specifications is not required to 

implement all of the optional APIs and their implementation is certified as such. 
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In addition, if a vendor is implementing the capability defined by an optional 

standard it is required use the optional standard to implement that capability.  

The Open Services Gateway Initiative is still under development as an open standard 

based on Java technology. Being a gateway technology, the focus of OSGi is on 

standardizing the APIs and services to enable external access to the home area network, 

instead of automating a home area network.  

 

2.3.4 Critique of Current Home Automation Systems 
 

UPnP has emerged as the most successful of all the home automation standards described 

above. UPnP’s use of already established open wire protocols and its compatibility with 

Internet standards has made it most popular with the Industry in a short time.  

Among the older proprietary systems, CEBus defines a comprehensive and well-designed 

architecture by addressing most of the issues involved in home networking. Unlike X.10 

and LonWorks it provides support for data channels in addition to low-rate control 

channels. It also provides specifications for a range of wired and wireless media, instead 

of just Power Line. Its object oriented device model and CAL based control protocol is 

better designed and better supported by industry than that of EHS. 

Still, all these networks are incompatible proprietary standards, with low-level designs 

tightly coupled with high-level designs. This means that these products could only be 

used “as is”, with all their shortcomings and weaknesses.  

Therefore, the design of AutoHAN [Saif01] is based on a layered architecture that allows 

interoperation of different low-level technologies and, like UPnP, uses open wire 

protocols to leverage compatibility with other system.  

 

 

2.4 AutoHAN 
 
The goal of the AutoHAN project [Saif01] is twofold. 

  

1)   AutoHAN enables an auto-configuring home area network,  

2) To allow ubiquitous access to embedded devices participating in the system. 



     Chapter 2 – Case Study: Home Area Networks 

 

48

To achieve this, AutoHAN  

• Allows interoperability of heterogeneous networking technologies like 

HomePNA, Bluetooth, ATM etc,  

• It defines a set of middleware services and protocols that allow devices to find 

and interact with one another on the system, while providing compatibility with 

Internet standards to enable ubiquitous access.  

• Finally, it defines a range of execution environments and user interfaces to allow 

programmability of the system.  

 

The AutoHAN system architecture is shown in figure 2.3. 

 

2.4.1 AutoHan Core Services 
 

As stated above, to be able to control entities on a network, there need to be mechanisms 

for the resources to 

a) describe their control interface and attributes (non-functional attributes) 

b) advertise these to the rest of the world   

c) find other resources on the network 

d) interact with other resources on the network.  

 

Additionally, there needs to be support to program the system to meet user requirements 

not originally conceived by device manufacturers.  

AutoHAN devices use an XML-based directory service, called DHAN, to find other 

resources and use Romvets, an extended version of GENA, to control one another. This 

architecture provides basic compatibility with UPnP compliant devices, while providing 

richer functionality than a UPnP system. The use of Internet wire protocols and 

descriptions also allowed us to provide Internet access to AutoHAN [Saif01]. 
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Fig. 2.3 AutoHAN system Architecture 
 

 

2.4.1.1 GENA 
 

AutoHan devices use an extended version of the UPnP Generic Event Notification 

Architecture [UPnP] to send and receive events over the network, presenting a unified 

architecture for monitoring and controlling the device. GENA extends HTTP by the 

addition of three new methods: SUBSCRIBE, UNSUBSCRIBE and NOTIFY. GENA is 

an event notification system that runs over HTTP or HTTP-UDP where devices 

implement a subscription arbiter. Subscription arbiters are used by devices that wish to 

monitor or control the network, such as the AutoHan event scripts (discussed below). 

Since the events need to be generated by a wide variety of hardware devices and software 

entities, not all of which are AutoHan compatible, in our prototype implementation, it is 

also necessary to have device proxies to convert other forms of event to the extended 

GENA format.   

GENA defines a notification type (NT) and a notification sub-type (NTS), both of which 

must be URIs.  The former is used to specify the type of notification required when 

subscribing and the latter gives the parameters of the event when it is notified.   
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The first extension to the GENA architecture in our implementation is the ability to send 

events to the subscription arbiter.  In the standard model, for an entity to receive events, it 

must actively subscribe to the subscription arbiter and then passively wait for 

notifications.  This does not fit well into the AutoHan model as, for example, an event 

engine may want to send as well as receive events from the same device, and for 

simplicity’s sake, it would like to use the same subscription.  It therefore is desirable to 

allow the subscriber to generate events and pass them to the subscription arbiter (using 

the same subscription ID) in the same way as events are received.  The alternative would 

be to have a second subscription arbiter, per device, from which the event engine would 

offer subscriptions, to which the devices would have to subscribe. 

Our implementation of GENA uses HTTP-UDP instead of HTTP, as UDP is sufficient 

and appreciably more efficient for asynchronous event notifications. Lack of reliable 

support at the UDP layer is irrelevant, in fact desirable, due to two reasons. First, most of 

the advanced lower-layers in a HAN are “pretty” reliable e.g. ATM, Bluetooth, even 

Ethernet (HomePNA), and timeouts and acknowledgements are a big overhead at the 

transport layer. Second.  HTTP (and HTTP-UDP) is itself a request response protocol, 

and, hence, reliability can easily be supported on top of this mechanism -- a classical 

example of end-to-end arguments for system design.  

 

2.4.1.2 Romvets: Resilient Mobility-aware Events 
 

Though GENA defines a simple and lightweight events architecture to allow 

interoperability of thin devices, it fails to address the problems arising from the mobility 

and dynamism of the system.  

GENA does not handle the case when a resource subscribing to an event moves to a 

different location, disconnects or fails. Romvets architecture address these issues by 

extending the GENA architecture as follows:- 

 

• GENA subscriptions can only specify a single host to be notified when the event 

happens. In circumstances where the mobility pattern of the subscriber is known, 

subscriptions need to be able to specify a list of locations to allow notifications to 
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be delivered to all the probable locations the subscriber could have moved to. This 

allows subscribers to be mobile agents with predefined itineraries to carry out 

their tasks [Wong97]. This technique, usually exploited by QoS reservation 

protocols for mobile hosts [Talukdar97], is also useful when the mobility space of 

a mobile node can be bounded or predicted. 

• Where the above technique incurs extra overhead of spurious notifications, it 

alleviates the subscriber from having to change its subscription every time it 

moves to a new location. However, there are circumstances when the mobility 

pattern of a subscriber cannot be known, predicted or bound. Hence, there needs 

to be support to update an existing subscription if the subscriber moves to a new 

location. This can only be achieved in GENA by first removing an existing 

subscription and then adding a new one with a different subscriber address. 

Romvets avoid this inefficiency by introducing a new operation UPDATE that 

lets a subscriber to change the callback address of an existing subscription. 

Likewise, Romvets also introduces another method ADD that allows a new 

callback address to be added to an existing subscription. Address additions are 

treated as idempotent; similar additions do not cause multiple entries.  

• The third addition made by Romvets is to enable GENA to handle subscribers that 

fail or disconnect temporarily due to a transient malfunction like low battery 

power or an intermittent network connection. This is handled by allowing the 

subscriber to specify a “care of” address of a node that is notified along with the 

subscriber. From the subscription arbiter’s perspective, the care of node is just 

another member in the subscription address list, except that the “care of” node is 

notified with a special header “CAREOF: Subscriber address”, which specifies 

the address of the subscriber. The “care of” node then probes the subscriber and if 

the subscriber is not accessible then the “care of” node buffers the event. It is the 

responsibility of the “care of” node to periodically probe the subscriber of the 

event, from the time it is notified with a CAREOF header for some period t, and 

deliver the event if the node becomes accessible within that interval. If the 

subscriber does not become accessible within time t then the event is discarded. 

This scheme does not require the subscriber to make a separate request to the 
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“care of” node to take care of its events while it is inaccessible. Instead, the “care 

of” node implicitly finds about its responsibility when notified with a CAREOF 

header. This lazy notification also reduces the time to keep the extra state 

associated with each subscriber in the “care of” node, which takes up its 

responsibility only when the first event for the subscriber is sent and not when the 

subscription is made. This allows “care of” nodes to scale, which we expect to be 

one or two per active space with a wired connection and low probability of 

failure. The subscriber can, of course, name more than one node in its 

subscription address list as “care of” addresses to increase the degree of 

resilience.  

 

These three simple extensions to the basic GENA architecture efficiently address the 

mobility and dynamism of the system, without introducing undue complexity. This 

allows thin devices in our system to support romvets while maintaining compatibility 

with GENA compliant devices. 

 

2.4.1.3 DHAN: AutoHAN Directory Service 
 

DHan is the name of the AutoHan registry service used by different entities to export 

their resources to the network and to lookup other resources to interact with them. DHan 

is an XML-based yellow pages directory service. Its functional model allows objects of 

any sort to be registered, unregistered, updated, and looked up by name and/or attribute 

list. Unlike relational directory services, Dhan’s XML-based information model allows 

objects with varying number and type of attributes to be stored. Each registered object is 

assigned a lease, which if not renewed within the leased time, automatically deregisters 

the object from the directory. HTTP1.1  (and HTTP-U) is used as the Directory Access 

Protocol. XLink and MIME External-Body header allows for Distributed Operation of 

the directory service, where lookup operation only returns a link to another instance of 

the directory service, which might even reside with the object itself. An authentication 

scheme is used to support a fine-grained access control list based security model (see 

section 2.4).  
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Why XML? Entities use XML to describe their resources to be registered with the Dhan 

registry. XML [Bray98] has a number of features that makes it suitable as a meta-

language to capture and present the state of a Home environment.  

 

a) Our experience has shown that most of the entities in a HAN can be grouped in a 

hierarchical structure. Top-level classes are people, rooms, devices, programs, 

bank accounts, event scripts, licenses and so on. Within the device class, a 

potential grouping could be by device functionality or brand name e.g. 

DisplayDevice/Television/ColorTelevison/SonyColorTelevision. This 

hierarchical namespace provides a direct mapping to device modeling [CEBus], 

as well. In this respect XML’s hierarchical namespace is a perfect match. 

However, most of the relationships between different entities in a HAN could be 

sensibly expressed into alternative tag orderings within hierarchical namespace. 

Xlink and XPointer technologies cater for exactly that, and their fine-grained 

linking facilities provided us with an efficient way to describe complex 

relationships between different entities in a HAN.  E.g. 

Person/Owner/PayPerView/Account could be linked to (otherwise unrelated 

hierarchy) Event/WatchMovie/PayPerView to pay for a movie a person might 

have seen.   

b) The competitive and evolving nature of consumer electronics industry leads to 

product differentiation and a high flux rate of newer models with novel features. 

Therefore different entities in a HAN have varying number and types of 

attributes. XML is ideally suited for storing structured but irregular information of  

this nature, and XML’s weak typing and loose matching of tag strings enables 

interoperation between different generations and versions of devices.  

c) XML is supported by all major browsers and XSL allows multiple views of the 

same data, allowing devices of varying display capabilities to view the system 

state. 

 

In AutoHan, an entity can be referenced by a fully-qualified name, called Point, 

somewhat similar to the Distinguished Names (DN) of X.500 [X.500], in its hierarchical 
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structure. It is a concatenation of all the XML tags, starting from the root of the directory, 

that identifies the object according to its place in the object hierarchy and a set of 

attribute/value pairs that delineate the device according to its capabilities. Attributes 

themselves are XML tags (text nodes), and unlike DN, they can only occur at leaves of a 

Point and can only assume one value as shown in Figure 2.4. 

At times, it is desirable to lookup an entity only by its attributes, whereas the exact 

position in the device hierarchy would not be of much interest to the client. Therefore the 

lookup operation permits non-qualified names, as well. A non-qualified name would be 

composed of only a partial Point name, which could just be an attribute/value set, or even 

just a single node in the point name in an extreme case, parallel to a Relative DN in 

X.500. Therefore the above object can be referenced, though not uniquely, by a partial 

Point name of  /ColorCamera and an attribute list of Location/Living Room.  

If a partial Point name is used, then the register function itself determines the right place 

where the object needs to be inserted in the XML tree, by inserting the new element in 

the same sub-tree as any other already registered element of the same type is registered. 

A fully qualified Point name, belonging to no already registered hierarchy will, of course, 

create a new hierarchy. The register function always returns a fully qualified Point name 

of the object just registered, which can then be used to uniquely refer to the object in 

future.  

Clearly there is no one description schema that can be used to group and represent 

entities in a HAN. A good description schema would have minimum redundancies and 

inter-hierarchy relationships for efficient tree search operations. We are currently 

researching different description schemas for representing the state of the HAN.  Having 

said that, our architecture defines a generic framework that can be used to support any 

schema standard, which we believe, would emerge with time as the industry agrees on 

different description standards (e.g. RDF, XRML).   
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Fig. 2.4 An Example Device Description Stored in DHAN 
 

 

 

DHan itself is a first class resource in the HAN, which means that it registers itself with 

itself, and interacts with other devices using Romvets events. Hence, is offers events 

itself corresponding to its access interface, e.g. lease expired, new device registered, 

device updated. Home control platforms, such as the event engines, will typically register 

themselves with the subscription arbiter exported by the DHan registry.  The registry 

notifies the event engines of major changes, such as when a new device has been 

switched on and registered itself, so that event scripts to support these devices can be run. 

This design decision leverages self-organization of the network. 

 

Suitability of HTTP1.1(-UDP) as the Directory Access Protocol:  The next design 

decision is to specify a directory access protocol to access the contents of the directory 

service. The home network comprises many resources that may be limited in their 

capabilities and might come from different manufacturers. This combined with the 

An object belonging to the object hierarchy of  
Camera/StillCamera/ColorCamera/ 

 
And having the following attributes  

SnapFrequency\10 seconds 
Location\LivingRoom 
Capacity\5 requests 

is represented as the Point. 
<Camera> 
 <StillCamera> 
  <ColorCamera> 
   <SnapFrequency> 10 seconds 
</SnapFrequency> 
   <Location> Living Room </Location> 
   <Capacity >5 requests</Capacity> 
  </ColorCamera> 
 </StillCamera> 
</Camera> 
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requirement of ubiquitous access, made us choose Hyper Text Transfer Protocol (HTTP) 

[Fielding99] as a directory access protocol.  

In addition to being a universally accepted protocol, HTTP-(UDP) has many merits as a 

directory access protocol for a directory service accessible over the Internet.  

 

a) HTTP is lightweight, compared to e.g. a full-blown LDAP [Howes97] server, and 

therefore can be supported in low-end embedded devices.   

b) HTTP works both with connection-oriented and connection-less (HTTP-

UDP)[UPnP] underlying protocols, thus satisfying a goal of AutoHan, which is 

that the protocol can run before and after the network (IP) layer is set up and 

working.  

c) HTTP1.1 methods fit in rather well with the model adopted by Internet-

AutoHAN(IHan) registry service to query and update the system state (discussed 

below). 

d) HTTP is supported by all web-browsers and thus leverages access to the directory 

service over the Internet.  

e) It leverages the use of web proxy model to take load off the IHan directory 

service. 

f) The protocol allows new HTTP methods and MIME headers to be defined, 

allowing new services like GENA [UPnP] to be supported.  

 

The HTTP GET method is mapped to the lookup function of DHan, it returns the object 

matching the lookup criterion encoded in the URL, along with its lease in the Date 

header, if it exists and the lease has not already expired. As the Date header contains the 

time stamp of the time until which the registration is valid, this reply can be cached by a 

web cache proxy to serve any future requests until the lease expires and the cached reply 

becomes stale, taking load of DHan. The PUT method is used to register a device with 

the name encoded in the URL and attributes in the body as XML document fragment. 

The Location header of the response returns the fully-qualified Point name with which 

the object was registered. The Date header gives the lease date until which the registry is 

valid. The POST method is used to update an existing entry, by changing its attributes 
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and/or renewing the lease agreement. The DELETE method unregisters an already 

registered object, and the HEAD method only checks if an object exists. It returns its 

fully-qualified Point name in the response Location header, and the lease time-stamp in 

the Date header for a registered object.    

Therefore the five core HTTP methods are mapped to five event types used to interact 

with the directory services i.e GET, PUT, POST, DELETE, HEAD. The attributes of 

these events are encoded as XML and MIME headers.  

Our design prefers HTTP-UDP to HTTP1.1 inside the HAN multicast network for DHan 

as well. For Internet access, the IHan adaptation layer provides the conversion between 

the two.  

 

Advertisement and Discovery: DHAN announces its presence by advertising its IP 

address every 30 sec on a well-known multicast channel. Devices listen to the multicast 

channel to be notified about the location of DHAN. Alternatively, devices can send 

discovery messages on the multicast channel and DHAN replies with its location. In our 

reference implementation, DHAN runs in a central server i.e. the residential gateway.  

 

Security Model: The security model is based on a fine-grained access control list 

approach. Every XML-tag in the DHAN directory also contains the access permissions of 

the group that can access it e.g <ColorCamera Read=Everyone Modify=ColorCamera>. 

The use of loosely matched hierarchical XML strings as group identifiers leverages a 

much more flexible security model than e.g a flat bit set, a la UNIX. The group identifiers 

and membership lists are stored as XML tags, and are managed by the DHAN service, 

just like all the other state of the HAN. Basically it is just another hierarchy in DHAN, 

with the root tag <Access Control>.  

This group membership directory is initialized by the owner of the house, who can add, 

modify or delete any entry.  All other entities, including people and devices, can add new 

entries in this database, but can modify and delete only the group membership lists which 

give them such privileges. By default (when no access control attributes are registered 

with the tag), only the owner of the house and the entity who had registered the entry can 

modify or delete it. Therefore even the read permissions to “everyone” have to be given 
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explicitly; we believe the sensitivity of the information in a HAN warrants this prudent 

approach. A cascading rule applies to the hierarchical entries which, though, can be 

explicitly overridden; access control permissions at the root of any sub-tree apply to all 

the child nodes, but children nodes can override this to have stricter access permissions. 

This design decision greatly increased the speed of directory access operations, and 

allowed for shorter access requests.  

One issue that has not been mentioned as yet, is how an entity is authenticated? This can, 

indeed, be done in a number of ways, depending on the execution environment of the 

DHAN service. For instance, our implementation is done in Java running on Linux. The 

underlying file system is used by the OS to maintain entity accounts and the entities 

authenticate themselves by providing an entity ID and password. This identity is passed 

to the DHAN service for access control. 

 

2.4.2 AutoHAN Execution Environments and Event Scripts 
 

AutoHAN lends itself to programmability by supporting a range of execution 

environments.  

AutoHAN is primarily controlled by event scripts that encode rules to automate the 

everyday operation of the system. The home automation rules are structured as event-

condition-action bindings. These event scripts, written in the Cambridge Event Language 

[Bacon00], subscribe to the events offered by Romvets event arbiters of different devices 

and those of DHAN, to be notified about events happening in the system. These events 

can then trigger actions to automate the home network.  

This allows policies like “if someone enters the room (event by the active badge), then 

switch on the TV (send an event to the TV to switch it on)” to be encoded in a declarative 

style.  

An advantage of using event scripts, which we hope to prove in future work, is that 

merging of applications which interact can be controlled cleanly and various pathological 

error cases can be automatically checked using rules of home consistency. 

AutoHAN architecture also provides support to adaptively place these event-scripts in the 

network, using mobile code, for load-balancing, fault-tolerance, high-availability.   
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The architecture of UbiqtOS, presented in chapter 3, addresses this issue in detail.  

 

  

2.4.3 AutoHan Operation 
 

Every device that wants to send or receive control events either implements a Romvets 

arbiter itself or is supported by a proxy that implements a Romvets arbiter.  

Any new entity that comes up in the network notifies its event arbiter of the event types it 

can offer, corresponding to its embedded functionality. The entity then sends a multicast 

packet on the AutoHan network to locate the DHan service. As the DHan service has 

already registered itself with itself, like any other entity, it returns its IP address and port 

address, two of its registered attributes, in reply to this UDP lookup packet. The new 

entity can then go ahead, authenticate itself, or create a new group, and register its 

attributes along with the location of its subscription arbiter and the event types it can 

entertain via that arbiter, with the directory service. The information registered may 

include location information, but the way in which this information is generated depends 

on many details, for instance, Warren [Greaves98] devices can tell something about their 

location from their physical layer address and infra-red exchanges with other nearby 

devices whose location is already known. The entity may cause the event arbiter to 

advertise multiple classes of event with various allowable ranges for the parameters 

associated with an event. Now any entity can lookup this entity by its attributes and, if 

interested, can subscribe to its events using its event arbiter returned as one of the 

attributes by the DHan service. These events are handled by embedded event handlers to 

control the device and/or to setup data channels to and from the device. Because the 

directory service is itself an entity, it offers a few events itself using its event arbiter e.g. 

entity registered, lease expired, lease updated, entity deleted etc. The AutoHAN event 

scripts could subscribe to these events to provide higher order control functions using 

event scripts. This architecture provides a self-organizing network. Resources can 

discover one another using XML lookups, and can monitor and control other resources by 

using event streams, without any human interventions. Use of XML descriptions e.g. 

instead of strongly typed RMI interfaces, means that any resource can discover and make 
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use of other resources even if it does not understand all of its functionality (by ignoring 

some of the XML tags). Conversely, automatic service degradation can be supported by 

being able to use a resource that supports only a partial functionality expected by another 

resource. For example, a follow-me-video application can automatically bind itself to a 

range of display resources varying from LCD displays to monochrome to color TVs 

depending on what is available in the proximate environment of the user.  We have also 

found this flexibility to be very useful for interoperation of devices from different 

manufacturers. Soft state in Dhan service, implemented by using time leases, ensures that 

resources that have failed or moved to a disconnected region are automatically removed 

from the HAN. The events generated by Dhan can be used to implement different self-

organization policies. For example, if the central heating system fails (lease expired), 

switch off the boiler, as well etc.   

 

2.4.4 Internet Access 
 

The use of established Internet protocols in AutoHAN has also allowed us to extend it to 

allow Ubiquitous Internet Access to the system, by interposing an adaptation layer 

between the home network and the Internet.  

This layer, called the IHan adaptation layer, extracts AutoHAN XML events from a 

number of different types of SDUs encapsulated in either HTTP or HTTP-UDP[UPnP] 

depending on whether the underlying protocol is connection-oriented or connection-less. 

HTTPUDP events are assigned a unique URI for a request and its corresponding 

response.  

HTTP-UDP is used to receive and send events to the entities connected to the AutoHAN 

multicast network which only support connectionless communication, whereas HTTP 

serves TCP/IP Internet connections and other entities supporting connection-oriented 

communication. 

The use of XML and HTTP in the AutoHan design lends itself naturally to web access, 

except that the current web browsers only implement a selection of HTTP methods and 

HTML is not sufficiently rich to specify when these functions need to be performed. The 

current web browsers, of course, do not implement GENA, or Romvets, headers either.  
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Fig. 2.5 Internet Access of a camera in AutoHAN 
 

 

To allow a standard Web browser to connect to an AutoHan network, a mechanism is 

required to encapsulate the HTTP entity header into a URL.  The responses from a server 

likewise need to be encoded in an entity body in XML. A simple scheme is used whereby 

the HTTP method, path name and some of the MIME headers are included in the path 

name of a single HTTP GET request.  This uses a similar encoding scheme as is used by 

an HTML form to specify variable names and values to a CGI script. 

The GENA draft does not specify the contents of the HTTP body in the NOTIFY 

messages.  In our implementation, the body contains the equivalent XML encoding to the 

<Device> and 
attributes  
<DeviceType>CCT
V</DeviceType><L
ocation>Front 
Door</Location> 
<Snaps>10sec</Sna
ps> 

 

 
Subscribed: 
<Snap> 
CallBack:  
http://camera.cl.c
am.ac.uk 

Internet Browser 
<Device><Location>Front 
Door</Location> 
<Snaps>10sec</Snaps> 

    DHAN 

Romvets 

Give me all the attributes of the device with Point 
name /Device and attributes DeviceType/CCTV and 
Location/Front Door 

Please send me events of 
type <snap> from  this 
CCTV every 10 sec 

Notified with a snap shot 
every 10 sec event encoded 
as MIME type Jpeg 

Register me with the 
name <Device> and 
attributes  
<DeviceType>CCTV</De
viceType><Location> 
FrontDoor</Location> 
<Snaps>10sec</Snaps> 

I will send you 
an event of type 
<Snap> every 
10 seconds. 

1 

2 

3 

4 

5 

6 

IHan adaptation layer for 
browser compatibility 
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Notification Type (NT) and Notification Sub-Type (NTS) header fields.  This then gives 

a mechanism for the notification of events to a web browser, in the IHan adaptation layer. 

As HTTP is a client pull protocol and does not fit in the event subscription and 

notification paradigm, this is handled by the IHan adaptation module, as well. The IHan 

adaptation module registers the entity with the attributes which make the DHAN service 

generate XML pages with the Auto Reload HTML tag set to the frequency of the event 

notifications. So now event notifications can simply be done by the browser generating 

an encapsulated GET request to the appropriate event arbiter every n sec, where n is the 

event notification frequency. Asynchronous events are approximated by very short reload 

times in the current implementation, but a stock ticker-like java applet is planned for 

future. The IHan adaptation module provides for tunneling of Romvets events and other 

HTTP headers as described above, and provides for the event notification using client 

pull. Some of these IHan pages will be cached by Web cache proxies till the lease date 

stamp, thus naturally taking the load off the DHAN service for future lookups of the 

entities with no changes in the registration status.  

This scheme makes it possible to control and program the network using nothing more 

than an Internet browser. Fig. 2.5 shows the interactions that occur as a user instructs the 

surveillance camera in his house to deliver snapshots to an Internet browser outside the 

house.  

 

2.4.5 Comparison with Related Work  

 

Though not a home automation standard, Jini [Waldo99] from Sun Microsystems also 

promises to provide the required framework for home networking. Our work differs from 

Jini in two important ways. First, AutoHAN uses a language-independent, text-based, 

XML, directory service which uses an open wire protocol, HTTP, and is therefore not 

bound to any one API. Second, AutoHAN is tailored for home networking, and its 

directory service and access protocol provide “just” the functionality for such a network 

to work. This allows the framework to be supported by highly embedded low-end devices 

in the home. The choice of already pervasive and agreed upon standards for home 
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networking allows the infrastructure to scale to the Internet, and this “standards-

independent” approach makes this design much more palatable to the industry. 

This is exactly what distinguishes our work from HAVi[Lea00] and HomeAPI, as well. 

HAVi’s design is also limited by its highly FireWire (P1394) centric APIs.  

Our work, as mentioned earlier, closely follows the UPnP philosophy of defining modern 

wire protocols rather than the use of standardized APIs. The use of Romvets provides 

compatibility with the UPnP design.  

AutoHAN provides a more flexible alternative to discovery protocols, e.g. 

Salutations[Winoto99], SLP[Veizades97] , and, of course, Jini, by allowing loose-

matching of XML tags for discovery.  

VESA Home networking Committee [DiGiromla98] has proposed a HAN architecture 

based on XML, as well. In the VESA model, each device has its control interface stored 

as an “XML page” in it. Whereas in our case, the devices are only required to implement 

a Romvets interface, and DHAN is used to represent the state of the HAN as XML. This 

alleviates the devices from costly XML manipulation operations, hence accommodating 

low-end embedded devices. This approach of pushing the core HAN services in a general 

purpose high-end node, i.e residential gateway, has also been proposed by OSGi [OSGi], 

but the OSGi design, like Jini, is highly Java API centric due to its basis in the Java 

Embedded Server technology.  

None of the above mentioned related work has paid much attention to the naming and 

addressing issues, or provide a detailed fine-grained security model like AutoHan. To our 

best knowledge, AutoHan is the first architecture to provide a secure framework to 

control a HAN from across the Internet. 

 

 

2.5 Lessons learnt from AutoHAN 
 

Our experience with the AutoHAN project taught us a number of lessons and highlighted 

new requirements for system design.  
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• Warren and AutoHAN primarily focused on the embedded system design for limited 

capability devices. Warren defined an extremely simple register read-write ATM cell 

level protocol, whereas AutoHAN requires participating resources to support nothing 

more than an event loop and a simple directory access protocol to lookup and interact 

with other devices in the network.  

Over the course of the project, there was a growing realization that most of the 

devices in our system could support appreciably more complex software and an 

overly simplistic system design did not make effective use of system resources. 

Instead of just being able to allow their resources to be controlled by the system, more 

privileged devices can also support user applications and system services to control 

the active space. AutoHAN architecture includes support for object mobility to, 

primarily, export event scripts to the devices, but this can be used to deploy user 

applications and system services as well. This issue is discussed in detail in the 

following chapters.  

 

• A home network comprises a collection of active spaces, each built to provide a 

different utility, e.g. living room, kitchen, lawn etc. Therefore, each of these places 

can have different requirements and system idiosyncrasies. Further, as mentioned 

earlier, a home network would inevitably consist of a number of low-level 

networking standards. This means that no single, fixed software embedded in 

participating devices can leverage their efficient interoperability. Instead, the software 

embedded in these device would need to adapt as the device is moved from one active 

space to another or as new resources join, or existing resources move or leave the 

active space, changing the characteristics of the surrounding system. Likewise, user 

applications and external system services residing with the device would need to 

adapt as the surrounding conditions change.  

• Another important lesson learnt from AutoHAN was to avoid single point of failures 

in the system. In an environment where devices frequently fail, move or leave the 

system, no single device can be guaranteed to act as a highly available server. A 

design like Warren, where all the devices are controlled by proxies running in a 

centralized controller, though presents a feasible design for impoverished devices, 
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introduces a single point of failure. Moreover, physically separating the state of the 

device from the proxy managing it introduces issues of maintaining consistency.  

• The initial design of DHAN was based on hard-state, but it was soon obvious to us 

that soft-state is imperative for such a dynamic system to leverage fate-sharing 

[Clark88]. Where soft-state in DHAN, implemented using time leases, introduced 

some extra overhead incurred by periodic lease renewal requests, it effectively 

removed inconsistent state from the system as devices failed or disconnected without 

warning.  

• DHAN lookup service in the reference implementation of AutoHAN is served from a 

central server. Where this made the implementation simpler by avoiding problems of 

maintaining consistency that would have arisen by replicating instances of DHAN, it 

highlighted a novel problem for resource discovery.  

Some of the attributes associated with a device are only meaningful when computed 

relative to the device looking up the resource (client) e.g. the latency to access a 

looked-up resource. If the directory service is physically separated from the client, 

then these attributes exported by a resource would, implicitly, be relative to the 

location of the directory service instead of the resource looking-up the resource. 

Hence, a discovery model where the directory service resides in a physically 

separated host limits the usefulness of the looked-up name.  

• Another novel requirement highlighted by the use of DHAN was dynamism in 

resource descriptions. Some of the attributes of a resource in an active space change 

with time, e.g. current load on the resource, latency to access a mobile host. Hence, 

these attributes are only meaningful when computed on the fly. DHAN’s use of soft-

state addressed this requirement indirectly as lease refresh time puts an upper bound 

on the staleness of the view. Still, where smaller lease interval could limit the 

staleness of the view, it exacerbates the overhead of the lease refresh traffic.  

• Finally, we found that asynchronous publish/subscribe/notify events paradigm is well 

suited to monitor and control such a system. The use of subscribe/notify events 

architecture leverages loose-coupling of the system, allows multiple parties to be 

notified about an event happening in the system, can provide support for mobility, 

handle disconnection and node failures and naturally lends federation of 
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heterogeneous systems. Cambridge Events Architecture [Bacon00] also provides 

support for filtering, aggregation, and federation for conditional notification of 

events. Suitability of events paradigm is presented in the next chapter [Saif01b].  

 

 

2.6 Summary 
 

This chapter described the problem domain of the thesis i.e. home area network 

automation. The suitability of home automation as a practical, feasible and representative 

example of a ubiquitous system is emphasized. A survey of current home networking 

architectures is presented to motivate the need for a generic and flexible system design. 

This chapter presents a detailed description of the AutoHAN architecture and highlights 

the merit of a simple, layered and flexible design to both provide interoperability of 

heterogeneous devices and to leverage ubiquitous access to the system. The chapter 

concludes with a list of lessons learnt from the AutoHAN project that serve as guiding 

principles for the system design presented in the following chapters. 



 

 

 

“Bringing abundant computation and communication, 
as pervasive and free as air, naturally into people's lives”  

Oxygen Research Project Goal [MIT] 

Chapter 3 

Design Requirements 
 

   

 

 

The previous chapter substantiated the vision of a ubiquitous system by giving a practical 

example of one application domain: Home Automation. It verified the claim that future 

consumer devices would be instrumented to interoperate with other resources in the 

system, instead of being standalone pieces of equipment providing dedicated 

functionality.  

It discussed the challenges arising from the longevity, heterogeneity and mobility of 

devices in the system and highlighted the proliferation of networking and high-level 

standards in such a system, each suitable for different requirements and system 

characteristics.  

Finally, it presented the design of AutoHAN to enable interoperability of heterogeneous 

devices in a home. The AutoHAN design highlighted the suitability of XML to describe 

the irregular, still structured, description of devices in the system. Further, it presented a 

simple publish/subscribe/notify architecture to program, control and monitor the system.   

Where the AutoHAN event architecture described in chapter 2 catered for limited 

capability devices, its simplistic design did not make effective use of more privileged 

resources participating in a ubiquitous system. End devices in AutoHAN only need to 

support a simple event-loop that handles Romvets encoded events. These events handlers, 

embedded in the device, are used to control and monitor the device by event scripts, 

written in CEL [Bacon00], hosted by more privileged devices in an active space.  
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However, chapter 2 only described architectures to discover, monitor and control the 

functionality embedded in a device, using events transported by open wire protocols, but 

did not show how the system can be programmed to meet new user requirements.  

This chapter, on the other hand, motivates an architecture that allows device functionality 

to be augmented with new software, like event scripts, to make novel applications 

possible, not originally conceived by device manufacturers.  For example, in the scenario 

presented in chapter 1, this architecture would allow David’s PDA to be equipped with 

new software to purchase a camera for him, would allow his newly acquired camera to be 

configured with additional software to provide interoperability with his wrist-watch, and 

would allow the pictures from his camera to be injected in the network to be displayed by 

the networked photo album service. 

 

 

3.1 Overview 
 

This chapter investigates the requirements for a substrate that can be embedded in 

medium to high-end devices to allow new functionality to be introduced in the device to 

program the system with novel applications. It elaborates upon the requirement to allow 

context-driven adaptation of the software embedded in these devices to address the 

heterogeneity, longevity, mobility and dynamism of the system.  

 

 

3.2 Taxonomy of Devices in a Ubiquitous System 
 

The first two chapters of the dissertation have referred to devices comprising a ubiquitous 

system either as limited capability devices or as privileged devices. Where this gives an 

adequate indication of the device functionality, there needs to be a precise categorization 

of resources in the system on which to base the assumptions for system design.  

Distributed systems have traditionally modeled resources as servers or clients depending 

on whether the resource is providing a service or using it. Lately, clients without any  
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Device category ROM Flash RAM Disk MIPS 

Thin < 32K  None  < 8 K None  < 1 

Fat   

Medium 

High-end 

 

< 300K 

> 300K 

 

<5MB 

N/A 

 

<5MB 

>5MB 

 

None 

None 

 

< 50 

> 50 

Table 3.1 Quantitative comparison of capabilities of embedded devices in a ubiquitous 
system 

 

persistent storage, and with limited capabilities, have been described as “thin clients” 

[Schmidt99]. Our experience with AutoHAN has made us coin the term “ thin server” to 

describe a limited capability device which offers a service corresponding to its embedded 

functionality, using an event-loop, but lacks support to accommodate additional software.  

Where thin clients and thin servers, e.g. electric kettle, doorbell, can only send and 

receive simple control commands corresponding to their embedded functionality, fat 

devices, e.g. PDA, TV, are capable of supporting additional software to program and 

control other resources in the system.  

Table 3.1 presents a quantitative comparison of the typical capabilities of different 

devices that would make up a ubiquitous system. 

 

 

3.3 Requirements 
 

While Romvets define a simple architecture to enable interoperability of thin devices, fat 

devices can afford more complexity that can be utilized to support user applications and 

system services to manage the system.  

For this to happen, devices need to provide a portable execution platform to execute and 

manage additional software as well as the capability to manage their embedded hardware 

resources. Hence, every fat device needs to support an embedded operating system that 

manages and exports its embedded hardware to the system and lends its additional 

computing resources to be used by additional software to program and control an active 

space.  
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3.3.1  Engineering Requirements 
 

Traditionally, consumer devices have fixed software in their ROM to control the 

embedded functionality of the device. Lately, devices conforming to emerging standards 

to allow interoperability of devices, like UPnP [UPnP] and Jini [Waldo98], have 

additional software embedded in the device ROM that exports the embedded resources of 

the device to the network and allow them to be controlled over the network using well-

known protocols and APIs.  

However, to allow additional software to be installed and executed in the device, the 

device also needs to be embedded with mutable storage, like RAM and Flash, to store the 

dynamic state required to manage and execute the additional software.  

Devices with RAM and Flash memory have already started to emerge in the market.  

 

3.3.2 Requirements posed by Heterogeneity  
 

Chapter 2 highlighted the heterogeneity at three levels in a ubiquitous system.  

 

1. Devices in a ubiquitous system can range from limited capability embedded devices 

to high-end servers. Therefore, software designed to be embedded in these wide 

range of devices needs to be simple enough to be accommodated even in limited 

capability fat devices (medium) while providing mechanisms to scale to more 

privileged devices (high-end). 

2. As mentioned earlier, a ubiquitous system comprises a collection of, possibly 

disconnected, active spaces. As these active spaces are built to provide different 

utilities, each has its own requirements, standards, system idiosyncrasies. Hence, the 

software embedded in a device, to enable it to interoperate anywhere in the system, 

needs to be able to adapt according to the requirements of the active space of the 

device.   

3. Chapter 2 highlighted the proliferation of physical media and networking 

technologies for home networks and discussed their suitability for different 

requirements. It concluded with the note that at least a few of these technologies 

would co-exist in the near future. Therefore, the communication infrastructure in a 
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ubiquitous system can be composed of heterogeneous links [Brewer98] with varying 

characteristic, prone to network partitions and disconnections. Hence, the software 

embedded in a device to enable ubiquitous interaction in such a system needs to 

provide flexible communication support to cater to the diverse characteristics of the 

low-level networking infrastructure.    

 

In addition to this heterogeneity in the infrastructure, resources (both hardware devices 

and software services) participating in a ubiquitous system are also of several types, each 

with its own set of interfaces to allow control over its behavior. This poses the following 

requirements.  

 

• Software objects representing these resources need to describe themselves in a 

format that allows other objects in the system to discover and use their 

functionality.  

• Further, in order to allow them to be discovered and used by applications in a 

type-safe programming environment, these objects need to be derived from some 

well-known generic object type that is any object can be assigned to and 

introspected for any special behavior.     

 

3.3.3 Requirements posed by Longevity 
 

Consumer devices have long life times. Hence, the software embedded in these devices 

needs to be able to interoperate with newer models of other devices in the system that 

would emerge over its lifetime. As the novel features of these new models, and their 

corresponding interfaces, cannot be known to the software embedded in a device at 

manufacture time, the software needs to be able to dynamically discover new resources 

joining the system and allow itself to be upgraded to interact with newer models. This, in 

turn, also requires that devices describe their features and interfaces in a future-proof 

way, to allow older devices to recognize and interoperate with them.  
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3.3.4 Requirements posed by Mobility 
 

1. Mobility of the devices means that they can be moved between different active 

spaces with disparate characteristics. Therefore, the software embedded in the device 

needs to be able to dynamically adapt to efficiently interoperate in changing 

environments. 

2. Indeed, the single most important factor towards the vision of a ubiquitous system is 

the rapid emergence and deployment of untethered, wireless access. As the 

characteristics of a wireless link are prone to the changes in the physical 

environment, flexible communication support is required to address the varying 

characteristics of a wireless link [Brewer98]. Moreover, different wireless 

technologies could be bridged together in an overlay to provide ubiquitous 

connectivity [Brewer98], performing vertical handoffs as a device moves from one 

network to another. Therefore, protocol stacks embedded in the software need to 

dynamically reconfigure to adapt to the changing characteristics of the 

communication links as it moves within the same network or between different 

networks.   

 

3.3.5 Requirements posed by Dynamism and Context-Awareness 
 

The mobility of devices introduces dynamism in the system as devices move, join or 

leave the system. The loose structure of the system also means that the system design 

cannot be based on the availability of any particular device to provide a critical service. 

In fact, no pre-configured support to deploy, locate and manage services may be available 

[Winoto99], especially when active spaces are spontaneously formed due to the 

proximity of devices, like in wireless ad-hoc networks e.g Bluetooth [Haartsen00]. The 

set of resources around a device and the characteristics of the surrounding system that 

define the context of the device change dynamically.     

 

1. Therefore, in addition to be able to manage and export the resources of the device to 

the system, the substrate embedded in the devices needs to be able to discover, 

capture and indicate the device context to applications (that program the system) and 
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services (that control and manage the system e.g. load-balancing service).  Changes in 

the device context need to be conveyed to system services to trigger adaptation. 

Context indication needs to be instantaneous and expressive to guide a timely, 

suitable adaptation.  

2. Once notified about changes in resource context, the system could adapt both by 

altering existing services and by deploying new services suitable for the new context. 

For instance, discovery protocol could be changed from SLP [Veizades97] to SSDP 

[Czerwinski99] or a new protocol layer like IPv6 can be deployed to enable efficient 

interoperation with the new context. This requires support for object mobility and 

life-cycle management of services. Object mobility lets context-specific services be 

deployed in a visiting resource while life-cycle management provides support for 

installing, upgrading and removing services from a device.  

3. Further, the changing structure of the system with devices moving, failing, leaving or 

joining active spaces means that the services and applications to control and manage 

an active space cannot be configured statically. Instead, they need to be dynamically 

moved and replicated in the system to provide for load-balancing, fault-tolerance and 

high-availability in the changing system resources.   

4. Dynamically deployed context-specific software, however, can pose threats to system 

integrity and security. Dynamically deployed components can corrupt system state, 

violate system security or cause denial of service [Seltzer94]. Especially in a 

ubiquitous system where components might come from different, possibly competing, 

sources, security becomes a primary concern. Therefore, system adaptation needs to 

safe, to ensure system integrity, and secure, to protect against malicious components.  

5. Similarly, context-specific applications, belonging to different sources need to be  

• Accounted for the resources they use and 

• Protected against each other from denial of service (DoS) attacks.  

6. Finally, the dynamism of the system implies that bindings between different 

components in the system cannot be defined statically. Instead, useful services can 

only be composed dynamically using components currently accessible in the system 

[Esler99]. Hence, dynamic service composition needs to be supported atop resource 

discovery. Moreover, highly available services with long life times would need to 
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reconfigure as constituent components move, fail or leave the system or better 

component choices become accessible. Consequently, component bindings need to be 

flexible to allow application specific rebinding when appropriate. 

 

 

3.4 Requirements for Adaptation 
 

Therefore, the operating system embedded in a device to enable ubiquitous 

interoperability needs to allow all the software that could effect interoperability, 

efficiency, or availability of the system to be deployed and adapted dynamically to 

address the heterogeneity, longevity, mobility, dynamism and context-awareness of the 

system.   

Adaptation, however, takes different forms according to the specific requirements.  

 

1) The fixed part of the operating system needs to be simple enough to be embedded 

in the ROM of a low-end fat device, like a microwave, while adaptation is 

required to extend this minimal substrate to suit the complexity of more 

resourceful devices. 

2) Where the above point can be addressed using a toolkit to construct a family of 

operating systems [Beuche99], tailored to the complexity a device can afford at 

manufacture time, this static adaptation is not sufficient to address the dynamism 

and context-awareness of the system. Context-awareness and dynamism of the 

system requires these extensions to be deployed and adapted dynamically 

according to the requirements of the current active space of the device.  

3) Dynamic adaptation is also warranted to tailor the operating system to suit the 

requirements of the applications and system services placed with the device to 

utilize its additional resources. 

4) Dynamic adaptation is also required as the device is moved from one active space 

to another, changing the set of resources and system characteristics in the context 

of the device.    
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5) Finally, dynamic adaptation is required to tailor the policies of the operating 

system as the utilization of resources embedded in the device changes, such as  

a. CPU cyles i.e. load 

b. Network link Bandwidth 

c. Network link latency 

d. Memory utilization  

e. Area on display screen  

f. Battery life for handheld devices 

 

 

3.5 Design Goals 
 

Therefore an operating system to enable interoperability of fat devices in a ubiquitous 

environment needs to  

 

• Manage resources embedded in the device 

• Export these embedded resources to the system 

• Discover the surrounding resources and  

• Dynamically adapt according to the characteristics of the surrounding system and 

applications resident with it. The adaptation requires  

• New software to be installed  

• Existing software to be extended, upgraded and replaced and 

• Dynamically redistributed among the changing set of system resources to allow 

for load-balancing, fault-tolerance, high-availability.  

 

Adaptation in this distributed operating system needs to be 

 

• Dynamic 

• Application-aware 

• Context-driven 

• Efficient and  
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• Secure 

 

Finally, the kernel needs to be minimal to be accommodated even in low-end fat devices, 

while allowing it to be extended to scale to more privileged devices.  

 

 

3.6 Background 
 

Although the flexibility and modularity in micro-kernel [Liedtke95] and, more recently, 

middleware systems [Bernstein96] lend them to adaptation, they fall short of addressing 

the requirements posed by a ubiquitous system design.  

The term Middleware refers to the software layer interposed between the application and 

the operating system to facilitate distributed programming (figure 3.1). Middleware 

systems define a broker service that abstracts away the problems of distribution and 

heterogeneity of lower layers from the application developer. Their modular structure has 

been exploited by recent research on reflective [Roman99] and adaptive [Blair98] 

middleware designs to allow application-aware [Roman99], and even, context-aware 

[Blair98] customization of middleware services. However, as middleware systems are 

layered on top of the operating system, which itself could be of a fixed monolithic design, 

this adaptation is limited to only a few services in the user space. Hence, functions like 

network communication, scheduling, caching, monitoring, usually embedded inside the 

operating system kernel, cannot be adapted by a middleware. Second, in order to present 

a unified distributed computing environment, the middleware need to duplicate some of 

the operating system functionality if there is a mismatch in the policies implemented by 

the operating system and those promised by the middleware to the applications. Further, 

as the middleware is opaque to the operating system, the mismatch in functionality can 

lead to an inefficient system design [Aniruddha96]. In an embedded environment, where 

resources are limited, this duplication and inefficiency is most undesirable.  

This makes adaptable middleware systems like 2K [Kon00], and [Blair98] insufficient to 

address the requirements posed by a ubiquitous system. 
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Fig. 3.1 A Typical Middleware Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

       
  
 
 
 
 
 

 
Fig. 3.2 A Typical Micro-kernel Operating System 
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A well-designed micro-kernel, on the other hand, allows operating system policies to be 

adapted to avoid the above-mentioned problems, but their strictly layered design 

introduces considerable IPC overhead (fig. 3.2) [Hsieh93]. Further, micro-kernel 

adaptation is, primarily, either at build-time [Bricker91], or at link-time [Leslie97], 

whereas the dynamism of a ubiquitous system warrants run-time adaptation. Although 

some newer micro-kernel architectures like QNX [Hildebrand92] and modules in Linux 

[Beck96] allow some of the operating system services to be replaced at run-time, the 

adaptation is ad-hoc (as described in chapter 4) and does not permit adaptation of core 

operating system services.  

These two shortcomings are addressed by dynamically extensible operating systems 

[Bershad94].  

A dynamically extensible operating system allows software to be linked inside the kernel 

to avoid the IPC overhead and provides facilities to replace these extensions at run-time 

[Bershad94]. However, extensible operating systems have only been researched in the 

past to tailor the operating system policies to suit application requirements [Bershad94]. 

Whereas, the heterogeneity and dynamism of a ubiquitous system necessitate context-

specific adaptation in a resource-constrained environment, as well, to address the 

requirements outlined in this chapter. 

 

 

3.7 Conclusion 
 

This chapter argued that the heterogeneity, longevity, mobility, dynamism and context-

awareness of a ubiquitous system warrant adaptation of the substrate embedded in fat 

devices to enable ubiquitous interaction. Further, this adaptation needs to be dynamic, 

application-aware and context-driven. We argue that the flexibility offered by traditional 

micro-kernel designs and middleware designs is not sufficient to efficiently meet these 

requirements. Instead, dynamically extensible micro-kernels [Bershad94] provide a more 

flexible, efficient and integrated approach to the adaptation warranted by a ubiquitous 

system. However, dynamically extensible kernels have only been researched for 

application-specific adaptation of operating system policies, whereas an operating system 
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for fat devices in a ubiquitous system needs to support context-driven adaptation in a 

resource constrained environment.  

Therefore, we propose an embedded, context-aware, extensible, distributed operating 

system for fat devices in a ubiquitous system.  





 

 

“History is philosophy teaching by example”  

Dionysius  

Chapter 4  

Related work 
 

 

 

 

Chapter 3 motivated the need for a substrate that can be embedded in fat devices to 

transform them from standalone dedicated pieces of hardware to “universal interactors”, 

acting as a portal to their resources, to extend, control and program the system to make 

novel applications possible. It derived the requirements for this substrate design from the 

heterogeneity, longevity, mobility, dynamism and context-awareness of a ubiquitous 

system and highlighted the need for context-driven extension and adaptation of the 

embedded substrate to address these requirements.  Finally, chapter 3 hinted at the 

suitability of extensible micro-kernels to enable fat devices to effectively participate in a 

ubiquitous system.   

 

 

4.1 Overview 

 

This chapter surveys relevant research in distributed operating systems and extensible 

micro-kernels. It covers the salient features of pertinent systems and evaluates their 

suitability against the requirements presented in chapter 3.  

This chapter concludes with an analysis of the shortcomings of current systems to 

motivate the need for a new bottom-up design of an extensible operating system to 

address the requirements for fat embedded devices in a ubiquitous system.  

4.2 Distributed Operating Systems 
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An operating system designed to participate in a ubiquitous system would serve to 

enable, control and coordinate resources distributed in a physical space and present them 

as programmable “universal interactors”, acting as a distributed operating system for the 

active space [Roman00].  

 

Unlike a time-sharing networked operating system like UNIX where applications are 

exposed to the details of any operation over the network, making it difficult to program a 

distributed system, a distributed operating system provides transparent distributed 

operation. However, different distributed operating systems differ in the manner they 

abstract away the details of distributed operation and the level of transparency and 

flexibility they provide to the applications. In particular distributed operating systems 

provide varying degree of support for providing  

• Location transparency: clients do not have to know where resources are located to 

use them  

• Migration: resources can move at will and still be referenced by the same name  

• Concurrency: multiple clients can share resources seamlessly  

• Replication: extra copies especially of heavily used resources can be made 

without clients knowing.  

• Parallelism: the system software will take advantage of the multiple processing 

units and run jobs in parallel without clients having to program this explicitly.  

 

Below we give an overview of four distributed operating systems, chosen because of their 

different approaches to providing transparency and flexibility in a distributed 

environment. We describe how their primitives for process management, naming, 

communication and resource management allow them to achieve some or all of the goals 

listed above.  

We conclude this section with an evaluation of these systems against the requirements set 

out in the last chapter.    
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4.2.1 Amoeba  
 

The amoeba operating system [Tanenbaum90] design caters to the environment where it 

is affordable and possible to provide 10 or even 100 CPUs per user, an assumption that 

was based on the ever-declining prices of processors in early 1990s.  

A typical Amoeba system consists of four types of machines. First, each user has a 

workstation for running the user interface. Second, there exists a pool of processors that 

are dynamically allocated to users as required. Third, there are specialized servers, such 

as file servers and directory servers that run all the time. Finally, there are gateway 

machines that allow multiple Amoeba systems that are far apart to be connected together 

in such a way that to the user, the whole appears to be a single integrated system, rather 

than a collection of different systems. All these components must be connected by a fast 

LAN.  

Amoeba’s model of transparency is based on the concept of processor pools. A processor 

pool consists of a substantial numbers of CPUs, each with its own local memory and 

network connection. Pool processors are not owned by any one user. When a user types a 

command, the operating system dynamically chooses one or more processors on which to 

run the command. When the command completes, the processes are terminated and the 

resources held go back to the pool, waiting for the next command, very likely from a 

different user. Therefore, processes are transparently spawned on a remote host, the least 

loaded one in the processor pool, to perform their task and terminated when finished.   

Amoeba’s later versions implement strong mobility to perform load-balancing, allowing 

a running process to move from an overloaded host to an idle one. However, the 

development team concluded that additional complexity introduced to support migration 

offset the flexibility leveraged by it [Tanenbaum90].    

Amoeba was designed as a microkernel architecture. The kernel supports the basic 

process, communication, and object primitives. It also handles raw device I/O and 

memory management. Everything else is built on top of these fundamentals, usually by 

user space server processes. Some of these are user processes, running application 

programs. Such processes are called clients. Others are server processes, such as the file 



     Chapter 4 – Related Work 

 

84

server, that provides read and write access to files, the directory server, that maps files to 

file handles, and the SOAP server that provides a heart-beat service to ensure that crashed 

servers can be detected and rebooted to provide fault-tolerance.    

 

The basic Amoeba communication mechanism is the remote procedure call (RPC). 

Communication consists of a client thread sending a message to a server thread, then 

blocking until the server thread sends back a return message, at which time the client is 

unblocked. Amoeba has a special language called Amoeba Interface Language (AIL) for 

automatically generating stub routines to marshal parameters and hide the details of the 

communication from the users. 

For many applications, one-to-many communication is needed, in which a single sender 

wants to send a message to multiple receivers. Amoeba provides a basic facility for 

reliable, totally-ordered group communication, in which all receivers are guaranteed to 

get all group messages in exactly the same order. This abstraction simplifies many 

distributed and parallel programming problems.  

Just as there are two unifying concepts in the kernel, threads and communication, there 

are also two unifying concepts in the user-level software: objects and capabilities. 

When an object is created, the server doing the creation constructs a 128-bit value called 

a capability and returns it to the caller. Subsequent operations on the object require the 

user to send its capability to the server to both specify the object and prove the user has 

permission to manipulate the object. Capabilities are protected cryptographically to 

prevent tampering. All objects in the entire system are named and protected using this 

one simple, transparent scheme. 

Objects are looked up in the Amoeba directory server, which returns a capability when 

presented with an ASCII name of the object. These capabilities will be for files, 

directories, and other objects. Since directories may contain capabilities for other 

directories, hierarchical file systems can be easily built.  

The directory service exports a unified view of the object namespace, irrespective of their 

location. Having acquired a capability for an object, applications can send RPC messages 

to it, without being aware of its location in the system.  
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The standard Amoeba file server has been designed for high performance and is called 

the bullet server. It stores files contiguously on disk, and caches whole files contiguously 

in core. Except for very large files, when a user program needs a file, it will request that 

the bullet server send it the entire file in a single RPC. The bullet server does not provide 

naming services. It just reads and writes files, specified by capabilities. A directory server 

maps ASCII strings onto capabilities. 

A directory entry may contain either a single capability or a set of capabilities, to allow a 

file name to map onto a set of replicated files. When the user looks up a name in a 

directory, the entire set of capabilities is returned, to provide high availability. These 

replicas may be on different file servers, potentially far apart (the directory server has no 

idea about what kind of objects it has capabilities for or where they are located). Finally, 

operations are provided for managing replicated files in a consistent way. 

 

4.2.2 Mach 
 

Though, primarily designed for single and multiprocessor systems (SMPs), the modular 

design of the Mach micro-kernel [Accetta86] naturally supports distributed computing, as 

well. The most important contribution made by Mach was a flexible and open design, 

providing only a minimal basis on which other kernels can be emulated. This emulation 

is done by a software layer that runs outside the kernel. Each emulator consists of a part 

that is present in its application programs’ address space, as well a one or more servers 

that run independently from the application programs. Multiple emulators can be running 

simultaneously, so it is possible to run 4.3 BSD, System V, and MS-DOS programs on 

the same machine at the same time.  

Like all other microkernels, the Mach kernel provides process management, memory 

management, communication, and I/O services. Filesystem, directories and other 

traditional operating system functions are handled in user space. The idea behind the 

Mach kernel is to provide the necessary mechanisms for making the system work, but 

leaving the policy to user-level processors.  

A concept that is unique to Mach is the memory object, a data structure that can be 

mapped into a process’ address space. Memory objects occupy one or more pages and 
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form the bass of the Mach virtual memory system. When a process attempts to reference 

a memory object that is not presently in the physical main memory, it gets a page fault. 

As in all operating systems, the kernel catches the page fault. However, unlike other 

systems, the Mach kernel can send a message to a user-level server to fetch the missing 

page.  

Interprocess communication in Mach is based on message passing. To receive a message, 

a user process asks the kernel to create a kind of protected mailbox, called a port, for it. 

The port is stored inside the kernel, and has the ability to queue an ordered list of 

messages. A process can give the ability to send (or receive from) one of its ports to 

another process. This permission takes the form of a capability, and includes not only a 

pointer to the port, but also a list of rights that the other process has with respect to the 

port (e.g. SEND rights). Once this permission has been granted, the other process can 

send messages to the port, which the first process can then read. All communication in 

Mach uses this mechanism. Every Mach process gets a few system ports that are used by 

the kernel to communicate with the process, including a process port, a bootstrap port and 

an exception port. This unified message passing I/O system allows different operating 

system emulators to be supported, without requiring changes to any interface exported by 

the micro-kernel. Further, a special interface compiler, Mach Interface Compiler, 

generates corresponding service interfaces for libraries to relieve the applications from 

having to handle the complexity of message passing interface.  

Initially the Mach mirco-kernel supported a network message server, which implemented 

the TCP/IP communication stack in user space to send messages to non-local processes. 

However, supporting network communication in user space proved unacceptably 

inefficient and the later release pushed this component back inside the kernel.  

. 

 

 

4.2.3 Plan 9 
 

Plan 9 [Pike90] started as an attempt to build a system that was centrally administered 

and cost-effective using cheap computers as its computing elements.  
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The philosophy is much like that of the Cambridge Distributed System. The motto of the 

project was to build a UNIX out of a lot of little systems, not a system out of a lot of little 

UNIXes.  

The transparent view of the system is built upon three principles. First, all resources are 

named and accessed like files in a hierarchical file system. Second, there is a unified, 

single protocol, called 9P, for accessing these resources. Third, the disjoint hierarchies 

provided by different services are joined together into a single private hierarchical file 

name space.  

A typical Plan 9 installation has a number of computers networked together, each 

providing a particular class of service. Shared multiprocessor servers provide computing 

cycles; other large machines offer file storage.  

User terminals all provide access to the resources of the network. When someone uses the 

system, though, the terminal is temporarily personalized to that user by customizing one’s 

view of the system provided by the software. That customization is accomplished by 

giving local, personal names for the publicly visible resources in the network. The 

services available in the network all export file hierarchies. Those important to the user 

are gathered together into a custom name space; those of no immediate interest are 

ignored. This is a novel use from the idea of a ‘uniform global name space’ [Pike92]. In 

Plan 9, there are known names for services and uniform names for files exported by those 

services, but the view is entirely local. This could be explained by considering the 

difference between the phrase ‘my office’ and the precise address of the speaker’s office. 

The latter may be used by anyone but the former is easier to say and makes sense when 

spoken. It also changes meaning depending on who says it, yet that does not cause 

confusion. Similarly, in Plan 9 the name /dev/cons always refers to the user’s terminal and 

/bin/lpr the correct version of the print command to run, but which files those names 

represent depends on circumstances such as the architecture of the machine executing 

/date. Plan 9, then, has local name spaces that obey globally understood conventions; it is 

the conventions that guarantee sane behavior in the presence of local names.  

The 9P protocol is structured as a set of transactions that send a request from a client to a 

(local or remote) server and return the result. 9P controls file systems, not just files: it 

includes procedures to resolve file names and traverse the name hierarchy of the file 
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system provided by the server. On the other hand, the client’s name space is held by the 

client system alone, not on or with the server, a distinction from systems such as Sprite 

[Ousterhout88].  

This approach was designed for traditional files, but can be extended to other resources. 

Plan 9 services that export file hierarchies include I/O devices, backup services, the 

window system, network interfaces, and many others. Files come with agreed-upon rules 

for protection, naming, and access both local and remote, allowing services built this way 

to be ready-made for a distributed system.  

 

4.2.4 Sprite 
 

Sprite [Ousterhout88], much like the amoeba operating system, was designed to provide a 

single, transparent view of a distributed system. However, sprite is based on a model to 

transparently utilize the idle machines belonging to other users on the network, instead of 

using a model of a global pool of resources not owned by anyone, like in ameoba. As a 

consequence, Sprite also includes elaborate support for process migration, primarily used 

to transparently evict a foreign process from a machine to his “home machine” when its 

owner reclaims the machine while the process is still in execution. However, the 

developers report the support for process migration difficult to implement, fragile to 

changes in the system, and the cost of migrations to be too expensive for the majority of 

the tasks [Douglis91].   

The Sprite kernel includes support for multithreading, remote communication using RPC, 

and distributed shared memory to allow easy programmability of distributed resources. 

Further, though plan 9, and amoeba abstract system resources using a unified abstraction 

of a file and provide location transparent namespace for accessing files, files are static 

objects in these operating systems. Sprite operating system, on the other hand, provides 

both location and migration transparency for files; the kernel allows files to be 

dynamically moved from one host to another, transparently to the application using the 

file. Sprite manages the file system with a single hierarchy, a tree structure, which is 

copied for all the domains. Each kernel has a private prefix-table that maintains and 

manages the tree structure of the file system. Files, including I/O devices represented as 
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files, are accessed in the same manner whether they are local or remote. And the notion 

of Name Transparency allows files in Sprite to be moved from one machine to another 

without changing their names. Proc_Migrate, a Sprite system call that will move 

processes from one machine to another machine, is also transparent to programmers. 

Finally, Sprite employs large variable-sized caches on both client and server to leverage 

high-performance.  

 

4.2.5 Discussion 
 

The motivation for this thesis is comparable to the motivation for amoeba. Where amoeba 

was based on the early 90s assumption that several computers would be available to 

execute a user’s tasks, this thesis is motivated by the ubiquitous presence of embedded 

processors that can be utilized to support additional tasks in an active space. However, 

where amoeba was designed for stipulated, stable computer systems, the design of an 

embedded operating system to enable a ubiquitous system needs to address the 

heterogeneity, longevity, mobility, dynamism and context-awareness in the system.   

All three micro-kernels described above, Ameoba, Mach and Sprite, are based on 

flexible, modular designs, making it easier to maintain and alter the system. However, 

any modification to these operating systems requires a system reboot at best and a 

recompilation of software at worst.  Similarly, these operating systems provide a fixed set 

of well-known services and new services, even as user space processes cannot be 

introduced in a straightforward way. Finally, the policies and protocols supported by 

these operating systems are fixed, and cannot be changed independently of the 

mechanisms used to implement them e.g. load-balancing in amoeba.  

Further, where sprite and later versions of amoeba provide support for transparently 

migrating running processes at arbitrary points, developers from both teams suggest that 

supporting this sort of strong migration involves too much work specific to the 

underlying platform and the cost of transparent process migration, including all of its 

related state, is usually too high to be useful for most cases.   

Plan-9 abstracts away the heterogeneity of resources in a distributed system by using a 

unified file abstraction, accessible from a global namespace, much like a UNIX system.  
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However, it is unique in allowing configurable views of that global space to be exported 

to different resources in the system. This makes distributed programming simpler by 

allowing appropriate resources to be easily accessed and allows system policies like 

security to be imposed by just restricting the view of the global space visible to different 

resources.  

However, the use of files to represent all the resources in a system is overly restrictive 

and enforces a singular API that is not sufficient for all purposes. Resources in these 

systems, represented as files, are discovered by presenting a well-known directory service 

with the unqiue ASCII name of the file representing it. Though Plan 9 allows that name 

to be interpreted according to the location of the application, to allow non-qualified 

names to be used by applications, it fails to provide a general-purpose attribute based 

discovery of resources required in a ubiquitous system.    

Finally, the design of Mach and, to a lesser extent, amoeba provides a unified abstraction 

for communication, using message passing via protected mailboxes i.e. ports. Where this 

provides a unified communication paradigm, ports once assigned for the communication 

have fixed properties and cannot be adapted to suit the changing requirement of 

underlying network e.g. in wireless environments.  

However, none of these systems allow run-time adaptation or extension of services 

embedded in the operating system to address the longevity, mobility, dynamism and 

context-awareness of the system.  

Next chapter shows how some of the concepts presented in this chapter are adapted to the 

design of a distributed operating system for a ubiquitous system.  

 

 

 

 

4.3 Extensible Operating Systems 

 

Although the modular design of the micro-kernel operating systems described above 

provides clean fault isolation, improves performance and maintainability, these systems 

do not lend themselves well to adaptation and extension.   
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This shortcoming has been addressed in extensible systems. Extensible kernels allow 

operating system policies to be adapted to address the special requirements of certain 

applications [Bershad95] that cannot be efficiently met by general-purpose operating 

systems.  

Extensible operating systems can be divided into three categories, depending on when 

they can be extended in their lifecycle.  

 

• Build time extensible systems can only accommodate new kernel services while they 

are being built. Once the system is booted, no more changes can be made unless they 

are stopped, rebuilt and rebooted.  

Recent operating systems in this category employ object oriented technology, 

structuring operating system functionality as a set of objects that can be sub-classed 

to specialize operating system policies. Well known systems include Choices 

[Campbell93], and its micro-kernel version µChoices [Franscisco99], Chorus Classix 

[Guillemont 97] which is an object oriented version of Chorus OS [Rozier88] and 

Scout [Hartman94], a communication oriented operating system that allows 

communication paths to be explicitly declared and scheduled to meet the 

communication requirements of different applications.  

• Link time extensible systems (also known as library operating systems) define only a 

very low-level functionality in the kernel. This functionality simply virtualizes the 

hardware in a thin layer of software based protection making it safe to expose to the 

user level. Conventional operating system functions are then implemented by user 

level libraries that link into this minimal substrate. By selecting an appropriate 

library, applications can adapt the system to suit their requirements. However, once a 

library operating system has been linked to by an application, the system cannot be 

adapted further.  

Well-known link time extensible system include exokernel [Engler95] and its 

corresponding library operating systems like Aegis, exOS, XOK, PhOS each 

designed for different application requirements, Cache-kernel [Cheriton94], and 

Nemesis [Leslie97].   
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• However, none of the above mentioned systems allow adaptation of operating system 

at run-time. Run-time extensible systems allow components inside the operating 

system to be replaced while the system is running. This makes them the closest fit to 

the requirements outlined in chapter 3. Below we describe the design of the extensible 

systems that had an impact on the design of our system presented in the following 

chapters.  

 

4.3.1 Dynamically Extensible Operating Systems 
 

Extensibility in dynamically extensible systems can be divided in two categories, ad-hoc 

and reflective. Ad-hoc designs are typically functionally oriented and are characterized 

by the use of different design methods at different points of extension within the kernel. 

Additionally, there are no clear guidelines as to what a service should look like (i.e. they 

lack a service design framework). Reflective designs are object oriented and use the 

principles of introspection and reflection, to standardize the way in which the system 

extensions are designed and inserted in the kernel. Reflection allows the reification of the 

operating system internals and the subsequent adaptation of those internals to a specified 

need. This is achieved through the definition of a Meta Object Protocol (MOP) which 

provides a well-defined interface to query and modify the reified objects inside the 

kernel.  

Allowing user defined code inside the privileged kernel address space clearly presents 

integrity issues. Some of the projects described below implement schemes to address this 

security threat while others simply require those application-specific extensions be 

trusted.  

 

 

 

4.3.1.1 SPIN 
 

SPIN [Berhsad95], from the University of Washington is the most well-know 

dynamically extensible operating system.  
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In SPIN, application defined system services are decomposed (shown in fig 4.1) as 

follows: - 

 

• SPIN Dynamically Linked Extensions (SPINDLEs), that are dynamically 

downloaded into the kernel address space,  

• Libraries, that exist in the same address space as the application and may execute 

autonomously or contact kernel SPINDLEs via systems calls, and  

• User level servers that maintain long-lived state about the extensible service i.e. state 

that outlives the thread of application that instantiated the service.  

 

Applications dynamically augment the default set of SPINDLEs when they introduce 

new services. The role of a SPINDLE is to define policies over the resource usage 

abstractions implemented by the resource controllers part of the fixed kernel substrate. 

Once a SPINDLE has been inserted inside the kernel, its installing application can benefit 

from reduced latency in responding to kernel events, as compared to user level servers, 

and fine-grained hardware access capabilities enjoyed by kernel level code.  

All SPINDLEs are attached to event lists and are invoked when the corresponding event 

occurs. Interest in these events is registered as call-backs and SPINDLEs are upcalled to 

notify them of a service request.  However, these events are not asynchronous as in the 

conventional definition of events [Ma98], instead the event handling routines block and 

return a value once finished executing. The kernel includes, what it calls, a dispatcher 

module that allows SPINDLEs to subscribe to the events offered by the kernel substrate 

and routes the events to the corresponding SPINDLEs when they happen. Extensions can  

download event guards inside the kernel to filter unwanted notifications.  The SPIN 

operating system includes a set of core operating systems services, such as virtual 

memory, networking, scheduling, and storage management, that have interfaces 

amenable to an event-based extension model.  
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Fig. 4.1 Extensible Service Design in the SPIN operating system 
 

 

 

SPIN enforces kernel integrity by requiring that all SPINDLEs must be written in a type 

safe language, Modula-3. Modula-3 has been used to implement much of SPIN kernel 

itself to demonstrate the expressiveness of the language and to enforce clean 

development. SPIN encapsulates kernel data structures in a secure and well-defined 

objects and the modula-3 compiler verifies (by type checking references) that SPINDLEs 

do not access interfaces that they do not have permission for. 

 
4.3.1.2 VINO 
 

VINO [Sletzer94] from Harvard University is of the same maturity as SPIN. It introduced 

the notion of grafts as the unit of kernel extension. Written in C++, grafts are dynamically 

linked into the VINO kernel address space by applications to adapt the kernel policies 

according to their requirements. Grafts are usually installed on a per-application basis, 

but it is possible for an application to replace a global policy. For example, an application 

can just replace the read-ahead caching policy for file access only for its open files or 

globally for the whole system. However, special privileges are required to replace a 
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global policy (c.f. the UNIX superuser). Grafts are linked into the kernel at designated 

graft points, which are of two kinds. The first is called the method overriding graft point 

that replaces a method inside the kernel. The second, called the event handler graft point, 

allows the insertion of application-defined handlers for kernel events, much like SPIN.  

The kernel is structured as a set of objects encapsulating resources and exporting 

fundamental services such as virtual memory mappings and global scheduling algorithms 

for adaptation by inserting grafts.  

VINO design has paid a lot of attention to identify and address threats to system integrity 

posed by dynamically installed extensions.  

VINO kernel protects against two kinds of integrity violations, unprivileged access and 

resource hoarding.  

The first threat with any form of in-kernel extension is the ability to access code and data 

that, if misused, can corrupt the kernel data structures and cause abnormal termination of 

applications belonging to other users. This issue is addressed in VINO at the memory 

protection level and is prevented using Software Fault Isolation (SFI) [Small96] 

techniques that sandbox grafts into dedicated logical regions within the kernel address 

space from which the code cannot arbitrarily escape without going through the pre-

defined interfaces which limit the access of a graft. The VINO team have developed a 

compiler tool (MiSFIT) [Small96] for sandboxing arbitrary graft code at the assembly 

level.  The code is also protected from external tampering by encryption.  

The other integrity threat posed by extensions is the hoarding of resources that the grafts 

acquire. Malicious grafts can deny service to other applications via resource starvation. 

Two types of resource hoarding has been identified; time constrained, involving the 

holding of a resource for too long e.g. a mutex, and quality constrained, in which a graft 

attempts to hold enough shared resources to starve out other applications.  Time 

constrained hoarding is handled by timeouts that are instantiated when a resource is 

contended and the holder is required to release the resource before the timer expires. For 

quality constrained hoarding, experimentally determined physical limits are placed on the 

amount of resources that can be held by a graft. To protect the system when such limits 

are disregarded, each graft invocation is executed within the context of a kernel 

maintained transaction log recording each grafts actions. A transaction rollback protocol 
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can be subsequently executed that deletes the graft and undoes its actions, thus restoring 

the system to a consistent state.  

Though VINO’s elaborate techniques to protect against misbehaving extensions are 

effective, they introduce significant complexity within the kernel and incur their own 

performance overhead. It is possible to develop a graft only to find its benefits are out 

weighted by the overhead of protection.  

 

4.3.1.3 Fox 
 

The Fox project [Harper98] at Carnegie Mellon University is aimed at applying advanced 

language techniques to system software in a variety of fields. Although the primary 

problem domain for the project is active networks where the integrity of the routers needs 

to be protected from the code carried by active packets, the protection techniques 

developed by Fox are also applicable to extensible operating systems. The Fox project 

has explored a number of language-based techniques for securing the actions of untrusted 

code but the approach most applicable to extensible operating system architectures is that 

of Proof Carrying Code (PCC) [Necula97]. Proof Carrying Code relies on (simple) 

formal theorem proving, where the task is split in two parts. The producer of the code 

attaches a proof (in first order logic) with the code to certify its validity, while the client 

is only required to verify the attached proof to ensure the validity of the code. Although 

the Fox team has not deployed the PCC support in their own operating system, PCC has 

been proposed as a generic way of securing arbitrary code execution in extensible 

operating systems.  

A kernel that employs PCC, defines a safety policy that application-defined code must 

adhere to through the provision of an attached proof that conforms to the safety policy. 

The system derives a set of logical predicates for the code by inspecting it at run-time and 

verifying that this predicate is satisfied by the attached code. The novelty of this scheme 

is that it does not rely on encryption; if the proof is tempered with, it cannot satisfy the 

predicate, if the code is tampered with, the predicate generated will not conform to the 

proof. In addition, the PCC verification is done before the code startup; there is no run-

time overhead.  
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However, the expressiveness of PCC language is limited and proofs for more complex 

analysis to protect against denial of service, like discovering loop-invariants, need to be 

inserted manually. We believe that PCC has not reached the maturity where it can be 

used to as a practical, general-purpose solution for resource hoarding problem.   

 

4.3.1.4 SLIC 
 

The SLIC [Ghormley98] (Secure Loadable Interposition Code) project from the 

University of California Berkley, is based on the GLUnix [Ghormley97] operating 

system layer to support NOW [Ghormley97]. In order to unify diverse operating systems, 

GLUnix requires the ability to interpose its own functional units over the underlying 

operating systems. Interposition is the insertion of trusted binary code onto an existing 

kernel interface i.e. within the kernel address space.  

SLIC takes a pragmatic view of the operating system extensibility. The design of SLIC is 

based on the observation that commodity operating systems (UNIX in the case of SLIC) 

will not disappear overnight and hence a new design from scratch would be of little 

practical importance. SLIC uses well-known interfaces exported by UNIX and interposes 

functionality atop these interfaces to extend the operating system.  

The architecture to support extensibility in SLIC uses three components: - 

 

• Dispatchers that intercept events crossing kernel interfaces, e.g. system calls, signals 

and selectively redirects these events to extensions,  

• extensions implement new functionality over existing kernel interfaces and 

• utility functions that provide extensions with an abstract view of the system internal 

interfaces by hiding platform dependent details.  

 

SLIC demonstrates good performance but suffers from lack of flexibility due to its 

commitment to provide backward compatibility; extensions in SLIC only build upon the 

interfaces provided by the underlying operating system.  
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4.3.1.5 Apertos 
 

The systems described above only provide ad-hoc or semi-structured extension models, 

Apertos [Yokote92], on the other hand, is based on reflection.  

Apertos introduces the concept of meta-object for introspecting and implementing the 

non-functional aspects (including persistence, replication, message handling  etc.) of the 

base objects embedded inside the Apertos micro-kernel, metaCore This separation of 

concerns allows base objects to be developed independently of the orthogonal behavior 

listed above. Each base object is associated with a group of meta-objects providing a 

meta-space for the execution of the base object. As meta-objects are themselves objects, 

they are also associated meta-objects in a potentionally infinite tower of recursion. At the 

base of this tower is a meta-core, which offers microkernel-like primitives providing 

fundamental services available to each meta-object. Base objects communicate with 

meta-objects via methods that they export in their Meta Object Protocols (MOPs).  

Apertos defines reflectors to represent a group of meta objects (i.e. meta space) 

implementing system services with which base objects can associate themselves. The 

process of meta-space migration is the central abstraction for extensibility with Apertos; 

any object can request to have its meta-space descriptor updated by transferring or 

replacing its current meta-object space with that of a new meta space offering different 

non-functional services. In order to migrate to a new meta-space, the source and target 

spaces must agree on a their compatibility levels for the base object to succeed in its 

request.  

However, the immense amount of management information required by the system 

runtime in order to support meta space abstraction and all its involved processes and 

indirection incurs a large overhead (even though the implementation is done in C++). In 

addition, each object is associated with its own address space context, this implying a 

high inter-object communication overhead.  

 

4.3.1.6 MetaOS 
 

MetaOS [Douglas95] addresses these problems in Apertos. MetaOS attempts to adhere to 

the principles of meta level programming whilst enhancing performance and proposing a 
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way of assigning authority over who may introduce extensions to the system. MetaOS 

primarily improves performance by limiting the tower of recursion to just two levels, 

arguing that further levels are inefficient and rarely required. This two level hierarchy is 

split into local meta-spaces and global meta spaces. Local meta spaces allow per-object 

adaptation whereas global meta space can be used to change services that have an effect 

on all object in the system, e.g. the scheduling policy. Access control lists are used to 

ensure that only the designated objects can change the global meta space.  

 

4.3.1.7 2K 
 

As middlware systems are layered on top of an operating system, they, generally, cannot 

allow adaptation of services embedded inside the operating system. However, 2k 

[Kon00] from University of Illinois Urbana Champaign provides an integrated design, in 

which a reflective middlware (2K) is layered on top of a dynamically extensible kernel, 

(Off++, a later version of µChoices) to allow dynamic adaptation.  Although this strict 

coupling of the 2K Object Request Broker  (ORB) with Off++ means that it cannot be 

used with other, non-adaptable, operating systems with different interfaces, the design of 

2K provides an effective solution to address the requirements of dynamic adaptation.   

The key to dynamic adaptation in 2K is architectural awareness i.e. the reification of 

structure, state and the behavior in order to enable the controlled introduction of new 

services. Adapting to changes in the environment is the responsibility of the middleware 

as implemented by a reflective ORB. The ORB admits changes to the system structure 

and uses the interfaces exported by the underlying operating system to adapt the system 

policies. An important part of the reification in 2K is the explicit representation of 

interdependencies between objects. This information can be used to change relationships 

between objects as part of system adaptation.  

2K is being designed with similar goals to the ones presented in this dissertation; active 

space control and automation. Its reflective properties can be used to change internal 

system state to address the changes in the distributed environment.  
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4.3.1.8 Synthetix  
 

The extensibility in above-mentioned systems is application-driven, where applications 

deploy extensions to tailor the operating system policies according to their requirements. 

Synthetix [Pu95], from the Oregon Graduate Institute, on the other hand, defines a self-

extending operating system. The system self monitors the events to determine how 

applications are using resources within the operating system and then incrementally 

specializes the system code (system calls) that interact with those resources according to 

the usage pattern of the applications. To achieve this, Synthetix makes use of partial 

evaluation, using the TEMPO tool [Belkhatir94]. With this technique, system developers 

identify static and quasi-invariant conditions within system control paths according to the 

runtime status of these conditions and differing control paths can be selected (specialized) 

to exploit the optimizations made possible by the invariant conditions (partial evaluation). 

For example, the file write() system call in UNIX, can be optimized when the file is not 

being shared; all the concurrency code can be ignored. If, at a later stage, the file 

becomes shared then the system notes this change of invariant and replaces the 

specialized control path with the original version that supports concurrency. Synthetix 

also defines special replugging protocol that handles the case when the path being 

specialized is already being used by a system call.  

 

4.3.1.9 Discussion 
 

Dynamically extensible kernels have been a subject of appreciable research in the past 

few years. Other systems that have the provision for dynamically loading code into the 

kernel address space include Kea [Alistair96], Paramecium [Doorn95], Fluke [Ford99], 

MMLite [Helander98] and even the mainstream systems like Linux and Windows, 

through the use of application defined modules to extend the kernel functionality.  Other 

systems that employ reflection techniques include DECADE [Kourai98a]. DECADE is 

unique in its use of an in-kernel interpreter to sandbox kernel extensions but its 

implementation suffers from large overhead of run-time interpretation. A weaker scheme, 

relying on the sparseness of a large address space, has been proposed in the recent 

version [Kourai98b].  
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SPIN’s model of extensibility based on the use of synchronous events provides an 

effective scheme to allow the kernel primitives and user extensions to be decoupled from 

one another, enabling extensions to be added and removed as the kernel runs. However, it 

lacks support for reflection and its use of event guards to route events to appropriate 

extensions introduce extra complexity in the kernel and incurs performance overhead.  

VINO provides a more flexible model than SPIN and supports method grafts that allow 

kernel functionality to be adapted at a finer granularity of an individual method, in 

addition to event handlers. However, both SPIN and VINO focus on extension and 

adaptation of primitives embedded inside the kernel, but do not provide support to 

introduce new services inside a kernel. Indeed, the services expected of a conventional 

uni-processor operating system are well-known and this model of extensibility is 

sufficient to adapt operating system services like virtual memory, scheduling and network 

communication. However, services required to manage an active space depend on the 

characteristics and requirements of a particular active space and the applications residing 

with a device. Hence, an operating system designed to manage and control an active 

space requires additional support to allow new services to be introduced in the kernel. 

Consequently, it needs to provide mechanisms to allow applications to discover and 

utilize these dynamically deployed services. Finally, it would need to allow even these 

dynamically deployed services to be extended to adapt their behavior according to the 

characteristics of the context of the device and applications residing with it.  

Reflective architectures allow interfaces to introspect and discover the functionality of 

components and their relationships with each other e.g. Apertos, MetaOS, 2K. However, 

the level of reflection needs to be carefully balanced, or its overhead and complexity of 

use can outweigh the flexibility leveraged. 

Similarly, the techniques to protect the system integrity need to balance between security 

and performance overhead arising from complex techniques e.g. transaction-based 

processing in VINO.   

Apart from SLIC and 2K, none of the systems described above focus on adaptation of 

services in distributed systems. Among these, SLIC only focuses on adaptation of legacy 

systems (UNIX) to make them suitable for tightly coupled parallel processing. 2K is the 
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only system that allows for dynamic adaptation to suit the changing requirements of a 

distributed system.  

Synthetix provides an interesting approach to automatic system-driven adaptation but 

only explores adaptation of system call control paths in a uni-processor environment. 

This approach of monitoring system events and adapting system code to address the 

changing requirements of the system holds promise for a dynamically changing 

distributed system as well.    

However, none of the systems described above allow context-specific extension and 

adaptation warranted by longevity, mobility and dynamism in a ubiquitous system. 

Finally, none of the systems mentioned above has been designed for a resource 

constrained distributed, embedded environment.    

 

 

4.4 Conclusion 

 

This chapter reviewed the state of art in distributed and extensible operating systems and 

evaluated their suitability against the requirements outlined in chapter 3. This chapter 

leads to the following key observations:- 

 

• The transparency provided by distributed operating systems is desirable to manage, 

control and program an active space, but the cost of transparency needs to be 

balanced by application requirements and system characteristics to allow efficient 

operation e.g. transparent process migration.  

• Only dynamically extensible operating systems provide the flexibility to adapt the 

system according to the changing characteristics of a ubiquitous system 

• Synchronous events allow existing operating system services to be extended, while 

reflection is imperative to allow new services to be introduced in the system.  

• Protection of system integrity can incur appreciable overhead. However, it can be 

handled efficiently by limiting and authenticating extension privileges instead of 

imposing runtime checkpoints and recovery.  
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The next chapter presents the design of UbiqtOS, an adaptable, embedded, distributed 

operating system that builds on the observation made in this chapter to meet the 

requirements presented in chapter 3.





 

 

"It is not the strongest of the species that survive, nor the most intelligent, but the ones 
most responsive to change”  

Charles Darwin 

 

Chapter 5 

Context-aware Adaptation in UbiqtOS: 
A Java-based Embedded Distributed Operating System 
 

 

 

 

5.1 Introduction 
 

Chapter 3 delineated the requirements for an operating system to enable fat devices in a 

ubiquitous system to control, manage and program an active space. It concluded that the 

heterogeneity, longevity, mobility and dynamism of the system warrant dynamic, 

application-aware and context-driven adaptation of all the services that could effect the 

interoperability, efficiency or availability of the system. Chapter 4 evaluated the state-of-

art in distributed and extensible systems and motivated the need for a new bottom design 

of an embedded, extensible, distributed operating system to address the unique 

requirements posed by a ubiquitous system design.  

This chapter presents the design of an embedded operating system, UbiqtOS, to enable 

fat devices to control, manage and program an active space with novel applications.  

UbiqtOS comprises: - 

 

• A small fixed part embedded in the ROM of fat devices, that is extended by 

• Context-specific extensions to enable the device to efficiently interoperate in its 

environment.  
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By doing so, UbiqtOS offers context-aware adaptation to address the heterogeneity, 

longevity, mobility and dynamism of a ubiquitous system. The context of the device 

comprises  

 

• Resources accessible to the device and  

• Characteristics of the system that provides access to those surrounding resources 

 

UbiqtOS adapts to the changes in its context by allowing 

  

• Introduction of new services in the operating system according to the requirements of 

its context and 

• Adaptation and extension of 

• Existing services embedded inside the operating system and  

• Applications residing with it 

as the context of the device changes.  

 

 

5.2 Contributions made by UbiqtOS 
 

Chapter 4 presented an overview of extensible operating system designs to enable 

application-specific adaptation of operating system services. However, none of the 

systems provided support for context-aware extension and adaptation necessitated by the 

requirements of a ubiquitous system.  

We propose UbiqtOS, which provides context-aware adaptation and extension using four 

basic constructs: - 

 

• A registry that captures and exports the resources in the device context as a global 

namespace. Components residing with an instance of UbiqtOS export themselves to 

their context by registering themselves with the registry and, conversely, query the 

registry to discover other resources in their context. Therefore, by allowing 

components to discover and extend UbiqtOS, the registry provides a reflection 
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interface over the resources in an active space. More importantly, the registry 

generates events to notify interested components about changes in the device context 

to guide context-driven adaptation.  

• A dispatcher module that imposes context-specific views over the global namespace, 

exported by the registry, to allow context-aware programmability. 

• A subscribe/notify events architecture that serves to route synchronous events (c.f. 

SPIN) between components. Components can subscribe to events of interest 

happening in the system to monitor, extend and adapt the system functionality, and a 

• Mobile agent engine that  

• Allows context-specific extensions and applications to be deployed at a host as 

mobile agents through its network connection and  

• Provides support for distributing services and applications among the resources in 

an active space to provide for load-balancing, fault-tolerance and high-availability 

according to the characteristics of the active space and the application 

requirements.  

 

Context-specific extensions and applications are executed inside a Java Interpreter 

embedded in UbiqtOS, which provides a portable and safe execution environment for 

dynamically deployed code. 

 

 

5.3 Design Goal 
 

The operation of a time-sharing distributed operating system can be divided into two 

parts: - 

 

• A local part that controls and securely multiplexes the hardware resources embedded 

in a device between different applications and 

• A distributed part that provides, usually transparent, access to non-local resources  
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These two parts are tightly coupled in a distributed operating system, as compared to a 

middleware architecture, to provide an integrated, efficient design.   

Though local resource management need to be adapted to tailor the operating system 

according to the requirements of the applications residing with it [Bershad95], it is, 

primarily, the distributed operation that needs to adapt to provide context-aware 

adaptation. Therefore, the fixed part of UbiqtOS only provides the mechanisms to control 

and securely multiplex the hardware resources embedded in the device, while allowing 

local resource management policies, like scheduling and caching, and distribbuted 

operation to be deployed (and adapted) dynamically according to the requirements of a 

particular context. Viewed differently, UbiqtOS is designed to be a simple extensible 

kernel, small enough to embedded in the ROM of embedded devices, that lends itself to 

be dynamically extended into a distributed operating system according to the 

characteristics of the current context of the device and the applications residing with it.  

 

 

5.4 Structure of the rest of the Thesis 
 

This chapter gives an overview of the architecture of UbiqtOS and explains the 

interoperation of different components to enable context-aware extension and adaptation 

of the system. However, this chapter does not describe in detail the internals of different 

components. This is done in the next two chapters that respectively describe the 

architecture of the mobile agent engine and the registry embedded in UbiqtOS. Chapter 8 

describes a prototype implementation of the UbiqtOS design presented in this chapter and 

chapter 9 evaluates the efficacy and performance of UbiqtOS.  

 

 

5.5 System Architecture Overview 
 

Figure 5.1 shows the architecture of UbiqtOS. The system architecture is divided in three 

layers. Layer 0 comprises an extensible microkernel, which contains platform dependent 

code to manage and export the embedded hardware resources to be controlled and 

programmed by higher layers.  
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This microkernel supports the following three components at Layer 1 to allow dynamic, 

application-aware and context-driven adaptation.   

• A Java Virtual Machine, including Java core class libraries [Lindholm96]. The Java 

interpreter runs an extensible Java mobile agent engine, called SEMAS, to allow new 

software to be deployed in a device as mobile code.  SEMAS serves to distribute 

software among the resources in an active space to enable new applications, provide 

interoperability, load-balancing, fault-tolerance and high-availability.  

• An extensible registry that serves as a repository of all the hardware resources 

embedded with the device and the software installed with the corresponding instance 

of UbiqtOS, and as a directory (yellow pages service) to find other resources in the 

context of the device. Further, this registry generates events to notify interested 

components about changes in the set of resources constituting the device context, to 

guide context-driven adaptation.  

• A subscribe/notify events architecture, Romvets (introduced in chapter 2), that routes 

the events happening in the system to interested components.  Extensions to UbiqtOS 

use this interface to subscribe to the events offered by kernel primitives (c.f. SPIN) at 

layer 0, as well as by SEMAS and UbiqDir, to dynamically tailor the policies and 

distributed operation of the operating system.  In particular, it is used by UbiqtOS 

schedule, memory manager, network protocol stacks, SEMAS and UbiqDir to lend 

themselves to dynamic extension and adaptation. The events offered by UbiqDir, 

besides lending UbiqDir to dynamic adaptation, are used to notify interested 

applications (and network bindings, as described later) about changes in the context 

of the device as new resources become accessible or existing resources become 

inaccessible or properties of some of the resource in its context change. Further, it is 

used to monitor, control and program the system e.g. by using event scripts in 

AutoHAN.  
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Fig. 5.1 System Architecture for UbiqtOS 
 

 

This architecture allows new applications and context-specific extensions to be 

dynamically deployed at layer 2, to enable an instance of UbiqtOS to efficiently 

interoperate in its context.   

The colored region in figure 5.1 represents this dynamically deployed software. Among it 

is a special component, called dispatcher, which, though can be replaced, needs to be 

present in an instance of UbiqtOS for proper operation. The dispatcher agent implements 

the default view exported by UbiqDir i.e. it makes the selection of resources, among 

those registered in UbiqDir, when requested to provide a service. Hence, it can be 

replaced to impose a view most suited to the requirements of the current active space of 

the device.  

Below we introduce the three layers of the UbiqtOS architecture in more detail.   

 

5.5.1 Layer 0: Extensible Microkernel 
 

Layer 0 provides a minimal extensible kernel to support a Java virtual machine with a 

subset of core class libraries. The extensible kernel is structured much like SPIN 

[Bershad95]. When asked to provide a service, the kernel generates a corresponding 

synchronous event (c.f. SPIN), which is handled by an extension to provide the desired 

functionality. The kernel sends the events to the Romvets component which routes them 

to the extensions that had subscribed interest in them.  
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The minimal kernel may include an extensible scheduler and an extensible virtual 

memory manager for devices with persistent, mutable storage. Additionally it contains 

device drivers for embedded resources, and platform specific bootstrap-code. Thus, the 

extensible-kernel only implements local resource management mechanisms, allowing 

resource management policies to be deployed dynamically.  

The extensible scheduler generates scheduler activations [Anderson92] that are handled 

by extensions to implement scheduling policies. Similarly, the extensible virtual memory 

manager generates page eviction events that are handled to implement page replacement 

policies for virtual memory. These two operating system policies have already been 

extensively researched in the past to allow application-specific adaptation in systems like 

Mach [Accetta88], SPIN [Berhsed95], VINO [Seltzer94], Exo-kernel [Engler95], 

Nemesis [Leslie97] to name a few.  

Although the design of UbiqtOS kernel is amenable to application-specific extension and 

adaptation of scheduling and memory management policies, the main focus of UbiqtOS 

design is context-specific adaptation of distributed operation supported by layer 1.   

 

5.5.2 Layer 1 
 

The hardware dependent code at Layer 0 supports three components at Layer 1 in 

UbiqtOS. These three components provide the context-aware distributed operation in 

UbiqtOS.  

 

5.5.2.1 SEMAS: Extensible Java Mobile Agent Engine 
 

As mentioned earlier, UbiqtOS needs to enable effective utilization of additional 

resources in fat devices to control, manage and program their context. As embedded 

devices generally do not have a programming terminal attached to them, UbiqtOS needs 

to be able to allow new software to be deployed in the device over its network 

connection. Further, it needs to allow context-specific extensions to be deployed to 

address the heterogeneity, longevity, mobility and dynamism of the system. Once 

injected in the system, the system should be able to move the applications where it could 

best accomplish its task. Moreover, it needs to provide support to discover interfaces of 



     Chapter 5 – Context-aware Adaptations of UbiqtOS 

 

112

the newly deployed software in order to use newly deployed services. Finally, it needs to 

protect the integrity of the system from these dynamically deployed services and 

extensions.  

UbiqtOS addresses these requirements by supporting a minimal Java interpreter on top of 

layer 0. Java addresses the above-mentioned requirements as follows:- 

 

• The Java interpreter masks the heterogeneity of the underlying hardware to provide 

a portable execution environment [Lindholm96]. Hence, software can be developed 

and compiled elsewhere and transferred to the device to deploy new applications and 

to extend and adapt UbiqtOS to enable interoperation with its context.  

• Correspondingly, designed for network programming, Java provides readymade 

facilities for marshalling and unmarshalling [Lindholm96] of data types to allow 

code and data to be transferred over the network.  

• Java also provides a readymade reflection API, which can be used to dynamically 

discover and invoke interfaces of newly deployed software.  

• Java provides dynamic type safety to protect the system integrity from foreign code. 

Note, Java’s dynamic type checking and verification means that it does not need to 

trust the compiler, unlike Modula-3, to ensure type safety. Hence, Java bytecode 

compiled elsewhere can be safely executed on any device. Further, the Java 

interpreter provides a configurable sandbox, to execute the dynamically deployed 

code [Lindholm96], that can restrict access to legal resources.   

 

However, Java suffers from the following shortcomings in addressing these 

requirements:- 

 

1. Being an interpreted language, Java code cannot be executed as fast as native code. 

2. Java in itself only supports pull-style mobility, where applets can be downloaded on a 

host on-demand. However, as we show in chapter 6, the mobility, dynamism and 

context-awareness of a ubiquitous system require push-style, proactive and reactive 

mobility as well.  
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3. Java’s serialization protocol works by taking a closure of all the objects accessible 

from the migrating object and moving them with the object being moved. However, it 

is not desirable to migrate the whole object closure for every application. Instead, an 

application needs to be given the option whether the objects used by it are migrated 

with it, left on the original host or replaced with new objects on the destination host.   

4. Though Java’s reflection API allows introspection of objects, Java’s object interface 

description is purely syntactic and does not support any semantic description that can 

be used to elucidate the functionality provided by an object.  

5. Java does not support persistence of objects; services can only exist while they are 

being used by an application. As extensions to UbiqtOS would need to persist 

independent of their usage, UbiqtOS needs to augment the Java interpreter at layer 1 

to allow persistence of services.     

6. Finally, though Java’s type safety restricts the dynamically deployed software from 

accessing prohibited resources, Java cannot protect against misbehaving extensions 

from hoarding resources. UbiqtOS addresses this shortcoming by requiring that all the 

extensions be authenticated before they are allowed to execute. Though this scheme 

requires pre-defined trust contracts, it avoids the considerable extra-complexity and 

performance overhead incured by more elaborate schemes like transaction-based 

processing (VINO) or PCC (fox).     

 

The design of UbiqtOS addresses these shortcomings as follows: - 

 

1. We note that execution speed is not of critical importance in a ubiquitous 

environment where most of the tasks are I/O oriented i.e. control commands to 

control the embedded devices or soft real-time data streams between different 

devices.  Still, the interpreter at layer of UbiqtOS uses JIT compilation [Tabatabai98] 

to improve performance.  

2. Mobile agents [Lange98] provide the well-known generic component abstraction in 

UbiqtOS i.e. mobile agent serves as the well-known base class for all UbiqtOS 

components to allow interoperability. Mobile agents are objects that can be encoded 

with a task and can move (semi) autonomously between different hosts [Lange98] to 
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accomplish its task. To support this, the UbiqtOS Java Interpreter runs an extensible 

mobile agent engine, called SEMAS, to support proactive mobility, allowing 

software components to autonomously move in and out of the device. Additionally, 

SEMAS also allows mobile agents to migrate reactively, in response to the changes 

in the system, as resources fail, move, join or leave the context of the device to 

address the mobility and dynamism of the system. 

3. SEMAS supports a scheme called effective mobility to allow software components to 

be moved to where they can best accomplish their task. This scheme is implemented 

by a combination of context-specific load-balancing, fault-tolerance and high-

availability policies and application specific connection management that also 

addresses the object closure problem.  

Whenever a software component requests to be connected to another entity, SEMAS 

notifies context-specific extensions for load-balancing, fault-tolerance and high-

availability, that can suggest to migrate or replicate the requesting agent at the 

destination host.  Further, system components (i.e. mobile agents) in UbiqtOS use 

explicit bindings [Leslie91] to communicate with one another and SEMAS informs 

all the bindings associated with the requesting agent whenever it requests to be 

moved to another host. The bindings can then decide whether they move with the 

agent, rebind to another agent or just invalidate themselves to deny access to the 

agent being accessed with the binding. The bindings can also deny the migration if 

they feel that the binding requirements would be violated with the migration. 

Therefore, effective mobility provides a framework to support a self-organizing 

system in which components, once injected in the system, can be automatically 

moved around to best accomplish their task.    

4. SEMAS protects the system integrity by authenticating all the incoming agents. 

Sending SEMAS signs the outgoing agent with its private key allowing the receiving 

SEMAS to verify the incoming agents before they are allowed to execute in the 

system.  

 

SEMAS uses a special protocol, called Agent Communication Protocol (ACP), to move 

agents to other hosts. SEMAS itself is extensible and the protocols and policies for 
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migration, load-balancing, reliability, disconnected-operation, fault tolerance etc. are 

dynamically deployed and adapted to suit agent requirements and the characteristics of 

the context of the device. To support extensibility, SEMAS generates events, using 

Romvets, whenever requested to migrate or replicate a mobile agent. Extensions 

subscribe interest in these events and are notified to implement context-specific 

distributed operation. The operation of SEMAS is described in detail chapter 6.  

Lack of support for meta-data and persistence in Java are addressed by another 

component, UbiqDir, at layer 1 in UbiqtOS, as described below.  

 

5.5.2.2 UbiqDir 
 

The mobility, dynamism and context-awareness of the system mean that applications and 

services can only be dynamically composed from the resources available in the, 

changing, context of a device. Moreover, applications cannot be expected to know the 

location or exact functionality of the resources with which it would need to interact to 

accomplish its task. Hence, applications need to be able to dynamically discover 

resources in its context, based only on intent [Winoto99]; an approximate description of 

the resource sought. Consequently, resources need to export themselves to the system 

such that other entities in the system can discover them by only expressing intent, and 

software resources, once introduced in the system, need to be able to persist independent 

of their execution time. UbiqDir addresses these requirements in UbiqtOS.  

UbiqDir, embedded in every substrate at layer 1, serves as the central repository of all 

the software installed with an instance of UbiqtOS and as a directory (yellow pages 

service) to access all other resources in the context of the device. UbiqDir is essentially a 

simple XML database, allowing XML descriptions of entities to be registered, deleted, 

updated and looked up. UbiqDir allows components to look-up one another by just 

quoting an intent [Winoto99] of the service required; components can look-up one 

another by knowing only a subset of the functionality required. This property is critical 

to address the longevity and heterogeneity of a ubiquitous system where resources 

cannot be expected to know about the location or exact functionality of all the other 

resources in the system that it could be required to interact with to provide a service.      
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A special routine in Layer 0 registers the description, in XML, of both hardware 

resources embedded in the device and software installed with an instance of UbiqtOS, 

with UbiqDir as part of the bootstrap sequence. Subsequently, software components can 

be dynamically added to an instance of UbiqtOS by registering a reference to them with 

UbiqDir. UbiqtOS is dynamically extended and upgraded by, possibly unregistering 

older versions and, registering new components with UbiqDir.  

These software components, structured as mobile agents, export themselves to their 

context by registering their properties, encoded in XML, and a handle to their functional 

interface with the local instance of UbiqDir. UbiqDir, in turn, exports the descriptions of 

the software components (mobile agents) residing with it (and the hardware resources 

embedded in the device) to other instances of UbiqDir (embedded in their respective 

instances of UbiqtOS) in the context of the device, using a protocol suited to the 

characteristics of a particular context. Conversely, components residing at a node can 

find other components in their context by looking them up in the local registry. Hence, 

UbiqDir reflects the state of the context of the device and lets both existing services be 

replaced and new components be introduced in an instance of UbiqtOS. Its interface, 

thus, serves to provide reflection over the resources in the context of a device.  

As services are installed with an instance of UbiqtOS by registering a reference to them 

with UbiqDir, they cannot be garbage collected unless this reference is removed from 

UbiqDir. Hence, services can exist in the system independent of their execution time. 

This coupled with the property that all the components in the system are accessed using 

the interface of UbiqDir, independent of their type or location, UbiqDir serves as an 

orthogonal persistent store [Jordan98] for components registered with an instance of 

UbiqtOS.   

Where the local operation of UbiqtOS allows descriptions of entities to be registered, 

deleted, updated and looked-up, its distributed operation exports these resources to the 

system by disseminates these descriptions to other instances of UbiqDir in its context. 

Conversely, UbiqDir allows non-local components in the context of the device to be 

discovered over the network. However, the scope of a meaningful context and the 

mechanism to discover it depends on the system idiosyncrasies of the current active 

space. Hence, the distributed operation of UbiqDir is extensible and the policies and 
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protocols to discover resources in the device context are dynamically deployed and 

adapted to suit the characteristics of the current context of the device.  

 

5.5.2.2.1 Context-awareness  
 

UbiqDir uses the Romvets architecture (described in section 5.5.2.3) to generate 

notifications for interested components whenever resources are registered, updated or 

deleted with it, indicating a change in the context of the device (shown in fig. 5.2). 

Extensions to UbiqDir subscribe to these events to implement the distributed operation of 

UbiqDir, as described in chapter 7. Further, applications, network-bindings and operating 

system services register interest in these events to be notified whenever the corresponding 

change happens in the context of the device. These notifications about changes in the 

device context are used to provide context-driven adaptation in a variety of ways in 

UbiqtOS.  

 

• The mobility and dynamism of the system means that the suitability of a resource 

to provide a specific service changes as devices move, leave or join the context of 

the device, changing the properties of the resources and making new choices 

available.  Hence, applications subscribe to the events offered by UbiqDir to be 

notified when better choices become available and rebind their bindings 

accordingly.  

• Similarly, network bindings need to adapt as the properties of wireless 

connections change as devices move in the network. Network bindings can adapt 

the fidelity (quality) of data when notified by UbiqDir about changes in the 

bandwidth and latency of the connection to access a device.   

• Finally, operating system services, dynamically deployed at layer 2, can use these 

events about changes in the context of the device to move and replicate mobile 

agents to provide load-balancing, fault-tolerance and high-availability.  

 

Context-aware adaptation leveraged by UbiqDir is covered in more detail in chapter 

7.  
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Fig. 5.2 Context-awareness in UbiqtOS: UbiqDir notifies interested components about 

changes in the device context using the Romvets Interface. 
 

 

5.5.2.3 Romvets 
 

New functionality is installed with an instance of UbiqtOS by registering new mobile 

agents with the registry (UbiqDir) embedded in UbiqtOS. Mobile agents, installed with 

an instance of UbiqtOS, find one another by querying the registry, which returns 

references of the components matching the description.  These references are then used to 

invoke methods on the looked-up agents, using explicit bindings, to request a service.  

However, where this scheme allows operating system functionality to be extended by 

installing new components with it, it, alone, is not sufficient to extend the behavior of the 

existing components embedded within the UbiqtOS substrate e.g. drivers at layer 0, 

UbiqDir, SEMAS.  

These components use a modified version of Romvets architecture, implemented by 

UbiqDir, to generate synchronous events whenever requested to provide a service (c.f. 

SPIN). Extensions for these components are written as event-handlers and register 

themselves by subscribing to these events using the Romvets interface. Hence, context-
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specific extensions for these services are deployed as mobile agents that subscribe to 

relevant events to implement and extend the behavior of the service. The extensible 

service, therefore, just serves to redirect the requests, whenever invoked to provide a 

service, and Romvets routes these requests to the appropriate extensions. In this manner, 

the services that lend themselves to extensibility and their context-specific extensions are  

decoupled from one another, enabling extensions to be added and removed as the kernel 

runs. Further, as UbiqtOS allows new services to be introduced, that might be extensible 

themselves, the events offered by a service are described in its description in UbiqDir. 

Extensions lookup the service description to find out the events offered by it, and 

subscribe to the appropriate events to extend its behavior. Therefore, UbiqDir serves to 

publish the events that Romvets serves to route and, hence, provide a general-purpose 

mechanism to discover and extend, even the dynamically deployed, services. This is 

different from traditional extensible kernels like SPIN, where the events generated by the 

kernel are expected to be well-known to extensions and, hence, which only support 

extensibility of a fixed number of services like scheduling, memory management and 

network communication. UbiqtOS, on the other hand, allows new services to be 

introduced in the system, to address the growing requirements of the users and changing 

characteristics of the system, and the publish/subscribe/notify architecture provided by 

Romvets and UbiqDir provides a general-purpose architecture to allow extensibility of 

any service residing with UbiqtOS.    

These two schemes to support extensibility in UbiqtOS are shown in Fig. 5.3 and 5.4 

respectively.  

The Romvets interface supported in UbiqtOS, shown in figure 5.5, is a modified version 

of the Romvets architecture used in AutoHAN. Though it stores subscriptions in XML 

and implements mechanisms to address the mobility and dynamism of the system, like 

AutoHAN Romvets, it supports synchronous events (c.f. SPIN) instead of asynchronous 

events. Events in UbiqtOS are basically (decoupled) upcalls into subroutines, and the 

Romvets architecture serves to route these procedural invocations to the interested event 

handling routines. The use of XML to publish (using UbiqDir) and subscribe interest in 

events allows extensions to subscribe interest in the events using any 
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Fig. 5.3 Installation of new functionality in UbiqtOS using UbiqDir 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.4 Extension of services embedded in UbiqtOS using Romvets 
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subset of arguments of the up-call (without having to specify all the arguments as in 

SPIN). This allows event handlers to be installed even if some of the arguments of the 

up-call are irrelevant for the event handler. The benefit of this flexibility is shown in 

chapter 8, where protocols(written as event handlers) can handle packets by subscribing 

interest in any one of the attributes of the packet like destination host or address type etc.  

The synchronous events in UbiqtOS mean that extensions block when notified, perform 

the requested operation and return a result for the requesting service. Romvets invokes all 

the extensions that had subscribed interest in an event one by one, collects the values 

returned from all the extensions and passes the results on to the requesting service in a 

collection data type (Vector). It is up to the requesting service to interpret the results 

returned. This scheme is different from traditional event systems where the event service 

either does not support returned values (asynchronous events) or just takes a logical AND 

(even logical OR) of the returned results and returns the resulting boolean value to the 

requesting service [Bershad95]. Our scheme, clearly, offers more flexibility, allowing a 

wider range of services to be extended, as shown in chapters 6, 7 and 8. For instance, our 

scheme can be used by extensions to anonymously vote in response to an event, and the 

service generating the event can decide on the success or failure of the operation by 

counting the votes. Chapter 6 shows how this facility is used to implement effective 

mobility.  

The extensions, indeed, can propagate these events on the network with the appropriate 

header set to address the dynamism of the system i.e. CAREOF. This allows events to be 

delivered to remote hosts as well, allowing programs residing in other devices to be 

notified about events happening in a device. Hence other devices can also control, 

monitor and program the functionality of the device by, per say, using event scripts.  

However, this means that the time spent by an extensible service to perform a requested 

operation actually depends on the number and complexity of extensions deployed to 

handle its corresponding event. Worse, these extensions can block forever either 

maliciously or by error to cause denial of service.     

UbiqtOS addresses this problem as follows.  
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Fig. 5.5 Romvets Interface of UbiqtOS: 
Extensions to UbiqtOS lookup the appropriate service in UbiqDir and subscribe interest 
in the events offered by it using Romvets’ subscribe interface. When the extensible service 

requests a function, Romvets makes an up-call to the extension and returns the value 
returned by the extension to the extensible service. 
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agents to subscribe interest in the events offered by a service for which it has been 

granted permission by the service itself. Where this scheme ensures that only extensions 

from trusted sources can extend and adapt the behavior of the operating system, it is 

based on the assumption that extensions coming from trusted sources will be well-

behaved citizens of the community. Well-behaved extensions are expected to return 

control as soon as they are finished processing the upcall, instead of hoarding resources 

and computation cycles. Further, extensions that do not actually implement the requested 
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operation, but are deployed just to monitor the system e.g. just to collect statistics, are 

expected to return control immediately upon notification, and perform their additional 

functions using a separate thread, instead of incurring the cost of their operations in the 

critical path of service provision.  

Where a more stringent security model, like the one proposed in [Small96], would relax, 

to some extent, the assumption of good behavior from extensions, it would incur 

significant overhead in monitoring and terminating the non-cooperating extensions, as 

concluded in chapter 4. We believe that the hoarding problem in embedded devices is 

handled more feasibly at the authentication level. 

 

 

 

Fig.5.6 Performance comparison of JanosVM with IBM JDK 1.1.8(leftmost bars): 
JanOS process abstraction incurs as much as 50% extra cost to protect against memory 

hoarding attacks. (Flux Research Group, University of Utah) 
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5.5.3 Layer 2 
 

The three above-mentioned constructs in layer 1 support applications and context-specific 

extensions at layer 2 in UbiqtOS. Applications and extensions are written as Java mobile 

agents and migrate or replicate themselves on the device to use its resources. New 

functionality is installed with the device by registering a reference with UbiqDir 

embedded at layer 1, whereas existing services are extended by registering event handlers 

for events offered by extensible services using Romvets.  Finally, components at layer 2 

subscribe to the events offered by UbiqDir to be notified about changes in the context of 

the device to allow context-aware adaptation.  

All of the dynamically deployed components execute inside the single instance of the 

Java Interpreter as Java threads. This scheme provides a lightweight execution 

environment, as opposed to heavyweight processes, and allows efficient inter-component 

communication by avoiding context-switches between different address spaces i.e. 

intercomponent-communication in this scheme is essentially subroutine calls within the 

same address space. Where threads provide a lightweight model for sharing and 

accounting computation cycles between concurrently executing components, Java threads 

share the same pool of resources, e.g. heap, making UbiqtOS more prone to hoarding 

attacks. The alternative is either to execute every layer 2 component in its own instance 

of the Java Interpreter or to extend the Java Interpreter to support a process abstraction, as 

proposed in J-kernel [Eicken99] and Alta[Tullman98]. Spawning a new Interpreter for 

every new component is not feasible in resource constrained devices with limited RAM 

and computation power and negates the advantage of rich sharing of data in the 

lightweight threads model.  Whereas, adding a process abstraction to the Java runtime, 

though a more economical approach [Back00], introduces considerable extra complexity 

within JVM to allocate and reclaim memory, and incurs appreciable overhead for 

intercomponent-communication. This overhead arises from the cost of managing a 

separate heap for every process, to protect against memory hoarding, and by enforcing 

namespace protection to restrict the process from accessing illegal resources in the 

system. Figure 5.6 shows the performance comparison of the JanosVM that supports a 

process abstraction, with a traditional VM, used in UbiqtOS. JanOS VM is as much as 
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50% slower than a traditional VM (compared to IBM JDK1.1.8 in this case). Where this 

extra complexity and performance penalty might be acceptable for high-end nodes, like 

active network routers, we believe that solving the hoarding problem at the authentication 

level is a better approach for resource-constrained environments, where, once 

authenticated, the dynamically deployed software can be trusted not to deny service to 

other components without any runtime overhead. SEMAS places all the mobile agents 

belonging to the same source in a single Java thread group. This allows threads belonging 

to the same source to be managed together. These thread groups can create further child 

thread groups that inherit the properties, and restrictions, of their parents as per the Java 

model.    

However as components can lookup and use other resources in the system by querying 

UbiqDir with only a subset of their attributes, Java’s type safety is not enough to restrict 

the dynamically deployed components from accessing illegal resources. This problem is 

addressed by the security model of UbiqDir. Every resource description registered with 

UbiqDir includes a list of resources that are authorized to access, modify or execute the 

component. UbiqDir authenticates the requesting component’s identity and denies access 

to resources that are not in the access control list of the looked-up resource. This is 

explained in more detail in chapter 7.  

Although the whole purpose of UbiqtOS design is to allow new applications and services 

to be deployed and adapted according to the application requirements and characteristics 

of the current active space of the device, a typical instance of UbiqtOS needs to execute 

some services at layer 2 that implement the distributed operation of the operating system 

to allow effective participation of the device in its context. At layer 2, these services can 

be adapted and replaced, using the artifacts at layer 1, to suit the characteristics of the 

current context of the device and applications residing with it.   

The services provided by these components at layer 2 can be classified in 4 broad 

categories.  

 

1. Interoperability: Components deployed at layer 2 allow resources embedded in 

the device to be efficiently used by other resources in its active space. This 

interoperability is provided by dynamically deploying a common set of context-
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specific services and protocols in the all devices participating in an active space. 

As these protocols and services are dynamically deployed to suit the standards 

and characteristics of an active space, they reside at layer 2 and can be adapted 

and replaced in response to the changes in the context of the device. This means 

that protocols used to communicate with other devices on the network e.g. IP, 

SLP, which are fixed inside a traditional kernel, are placed at layer 2 in UbiqtOS, 

allowing, for instance, IPv4 to be replaced by IPv6 or a new protocol like 

Berkeley Snoop [Balakrishnan95] to be dynamically introduced to suit the 

standards and characteristics of an active space.   

 

2. Load-Balancing: Software deployed at a device can be moved around in an 

active space, using SEMAS, to balance load among the devices participating in 

the system. However, the factors influencing the decision of where to place a 

software component to incur least cost depends on the characteristics of the 

active space and the application requirements. Hence, load-management services, 

which are fixed in traditional distributed operating systems, are placed at layer 2 

in UbiqtOS. These services subscribe to the events offered by the extensible 

scheduler and memory manager at layer 0, to be notified about changes in the 

local load, and by UbiqDir and SEMAS, to be notified about changes in the 

context of the device, and move mobile agents between different devices to 

balance load in the system.  

 

3. Fault-Tolerance: Similarly, services for providing fault-tolerance in a system 

are placed at layer 2 in UbiqtOS. Like load-balancing services, these services 

subscribe to the events generated by SEMAS and UbiqDir to be notified about 

changes in the context of the device, and implement functions like “heart-beat”, 

to indicate well-being of a host, and migrate and replicate software components 

to leverage fault-tolerance.  

 

4. Availability: Likewise, policies for ensuring availability of the system depend on 

the size and characteristics of the system and the requirements of the applications 
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residing with the operating system. A typical instance of UbiqtOS supports 

services to provide reliability, consistency and disconnected operation to ensure 

that the operating system can reliably meet application requirements. 

 

5.5.3.1 Dispatcher  
 

UbiqtOS, by having UbiqDir as a layer 1 service, provides a platform where resources 

can be dynamically discovered, based on their properties, and, hence, applications and 

services can be dynamically composed from the resources available in the system. Where 

this addresses the dynamism and context-awareness of the system, it introduces extra 

complexity within the applications that are now, first, required to 1) dynamically discover 

the resources that provide the desired service and 2) select the most appropriate resource 

among those available in its context, before they can use the desired service. Instead, 

applications should only be required to present only those attributes of the desired service 

that are relevant to their operation, and the system should be able to interpret that 

description in the current environment (context) of the application to make an appropriate 

selection (c.f. Plan 9). Further, selection of the most appropriate resource could depend 

on factors peculiar to the characteristics and the standards of an active space that a 

general-purpose application, written to execute anywhere, could not be expected to know.  

These issues are addressed by the Dispatcher module at layer 3, which, though can be 

replaced, needs to be present in an instance of UbiqtOS for proper operation. The 

dispatcher agent implements the view exported by UbiqDir i.e. it makes the selection of 

resources, among those registered in UbiqDir, when requested to provide a service.  

Hence, where UbiqDir exposes the properties of the resources constituting the context of 

the device to the applications, the Dispatcher module masks some of this additional 

complexity from the applications by allowing them to provide only the attributes that are 

relevant to them and selects the resource, among those returned by UbiqDir, that could 

best satisfy the application requirements given the characteristics and standards of a 

particular active space. This allows applications to be decoupled from the peculiarities of 

a particular active space; an application can be written to execute in any active space by 
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going through the dispatcher whenever it wants to invoke a resource providing a specific 

service.   

Viewed differently, the dispatcher module provides the context-specific system call 

interface for the operating system. When invoked, the dispatcher looks-up the matching 

components in the registry, chooses one according to its configured policy, invokes its 

pertinent procedure (using Java reflection API), and returns the result to the calling 

component. Components at layer 2 send messages to the dispatcher and it routes them to 

the appropriate services. Individual applications, customized to an active space, can of 

course override the default system-wide policy of the dispatcher by accessing UbiqDir 

directly to find the appropriate resource and making its own selection as to what gets 

invoked to provide a specific service. As UbiqtOS is a distributed operating system, the 

services invoked by dispatcher might not be available on the local host, but distributed on 

various nodes within the environment. Dispatcher gives the illusion of a single ubiquitous 

operating system by finding a reference to the desired service (in the local instance of 

UbiqDir) and invoking its pertinent procedure either locally or by making a remote 

procedural call (using ACP, as described in chapter 7). As dispatcher agent implements 

the default view exported by UbiqtOS, it can be adapted to impose context-specific 

views. For example, when an application, executing in a handheld device running 

UbiqtOS, requests to “turn off the light”, the dispatcher can interpret this as “turn off all 

those lights which are located in the current room”. Or if an applications requests to 

“sound an alarm”, the dispatcher can choose the speakers that are placed at a location 

where their sound is audible in most number of rooms in the house -- such information 

cannot be expected to be known to the application or even to the resource itself, and only 

the dispatcher, deployed by the active space itself, can impose such a view on the 

namespace exported by the active space.  

Figure 5.7 shows the use of the Dispatcher module to perform the operation “turn off the 

light”. The dispatcher module is invoked using its (static) method “call” that takes as 

parameters the description of the device, the method to be called and the arguments for 

the method, and returns a boolean value indicating the success or the failure of the 

operation.  
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Fig. 5.7 An example of Context-aware system-call using the Dispatcher: 
The application only requests the lights to be switched_off, leaving the context-aware 

interpretation to the Dispatcher that carries out the request by switching off all the lights 
in the current active space i.e. livingRoom. This Dispatcher, deployed by a pre-

configured device in the living room, is encoded with the policy that if the application 
does not specify the location of a device to be controlled, then invoke the operation on all 
the devices in the current active space by looking them up in UbiqDir and invoking their 

corresponding interfaces. 
 

 

As the requested service might not be available in the device context, the dispatcher, 

instead of completing the system call, can throw an exception to indicate that the 

requested service cannot be provided. Consequently, layer 2 components invoking the 

dispatcher need to declare exception handlers (try catch blocks) before they can be 

compiled, which is natural as dispatcher uses the Java reflection API to dynamically 

discover and invoke the services (and by default throws the Java reflection exception).       

Finally, the dispatcher can cache references to avoid the cost of looking up in UbiqDir 

every time the service needs to be accessed, allowing references to frequently looked-up 

services to be cached to improve performance as described in chapter 9.  

 

 

 
Boolean = acknowlegement 
 
try { 
 acknowledgement = Dispatcher.call(“device/lights”, switch_off, null); 
 
} catch (DispatcherException e) 
 
 
 

 

Vector lights = new Vector();  
lights = UbiqDir.lookup(“device/lights//location/livingRoom”); 
       
for ( int i=0 ; int ++ ; int < lights.size()) 
{  
   try{ 
        Method.invoke(“lights.elementAt(i), “switchOff”, new class{}); 
    }catch (InvocationTargetException methodNotFound) { 

throw methodNotfound ;  
} 

}  
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5.6 Bootstrap 
 

When a device joins a specific context, it needs to be configured with the appropriate 

policies and protocols, according to its capabilities, to enable it to efficiently interoperate 

in the new context. Moreover, components in the system need to be moved and replicated 

to allow for load-balancing, fault-tolerance and high-availability.   

In our architecture, a device is only embedded with layers 0, 1 with its hardware 

resources described in the local instance of UbiqDir. The bootstrap sequence of UbiqtOS 

registers the drivers for the hardware resources embedded in the device with UbiqDir as 

mobile agents. However, these device drivers are special fixed, mobile agents, and deny 

all migration requests. Similarly, the bootstrap sequence also registers SEMAS and 

UbiqDir itself with UbiqDir, as fixed mobile agent. This synergetic model allows 

components in the system to deal with just one component abstraction i.e. a mobile agent; 

all mobile agent operations are parameterized with a single type regardless of whether 

they want to connect/migrate/replicate to a layer 0, layer 1 or layer 2 component.  

Every embedded device wishing to participate in a ubiquitous system is, of course, also 

equipped with a network interface and a corresponding low-level networking technology. 

This interface is used to bootstrap the device to configure it to interoperate in a specific 

environment.  

The presence of a new device in a network is detected by mechanisms part of the low-

level networking technology supported by the device. For technologies with dynamic 

addressing, this bootstrap process also assigns a link layer address to the device. For 

example, FireWire [Wickelgren97] networks can automatically discover and assign 

addresses to new devices attached to its bus, devices in Warren [Greaves98] announce 

their presence by an ATM cell level beacon, Bluetooth[Haartsen00] devices use SDP and 

so on. When the link layer discovers a new device on the network, UbiqtOS generates a 

corresponding event using the subscribe/notify architecture of UbiqDir. Special mobile 

agents, called bootstrap agents, subscribe to this “Bootstrap(String Address)” event and 

request the mobile agent engine to replicate them on the new device. Once replicated on 

the new device, these mobile agents query its UbiqDir to retrieve the descriptions of the 

resources embedded in the device and export these descriptions to the rest of the system 
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according to policies and protocols suitable for the system. Hence, this boostrap allows 

other devices in the system to be notified about the resources of the newly joined device. 

Additional mobile agents can then be deployed to configure the device to make effective 

use of its resources. These mobile agents subscribe to the events offered by UbiqDir and 

by those by the mobile agent engine to implement context-specific distributed operation. 

Further, these mobile agents are used to implement appropriate policies for the 

Dispatcher to tailor the view exported by UbiqtOS to applications and are used as explicit 

bindings to provide context-specific caching, transcoding, aggregation, and customization 

of traffic streams.  

Note, in this scheme only the configured devices on the same link-layer-network can 

bootstrap a new device. In active spaces where more than one link-layer technologies co-

exist, e.g. Firewire and bluetooth, this scheme can be extended to allow devices on 

different link-layer networks to configure one another. In this case, the bootstrap process 

proceeds in two steps. In the first stage, a configured device on the same link-layer 

network as the new device detects its presence and replicates a bootstrap agent to deploy 

a network layer, IPv4 in our case. This layer provides an inter-network addressing 

scheme and a well-known packet format. Once the network layer is in place, a special 

ACP (described in chapter 6) “advertisement” packet is broadcast on the IPv4 network to 

request for bootstrap agents. Hosts on another link can then replicate the bootstrap agents, 

using IP, on this new device. These agents export the resources of the device, on the IP 

network, using protocols and policies suitable for the system and allow more software to 

be deployed to configure the resources.  

Where the first scheme relies on the plug-n-play mechanisms of the underlying link layer, 

the second scheme uses explicit “advertisement” messages to announce its presence to 

devices on another network. These advertisement packets, and indeed the bootstrap 

agents, are encapsulated in ACP (described in chapter 4). Chapter 6 shows how ACP can 

be configured to use the newly deployed IPv4 layer to proceed with the second stage of 

the bootstrap procedure. 
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Fig. 5.8 An example bootstrap sequence in UbiqtOS. 
A video camera quipped with a firewire network interface joins an active space with a 

firewire equipped TV set that is already configured with IPv4 and DHCP. The IPv4 and 
DHCP agents residing in the TV set replicate themselves on the video camera, when 

notified with a “bootstrap” event, to configure the camera with IPv4 and a 
corresponding network address. ACP advertisements by the camera can then be received 

by a laptop connected with an Ethernet interface to the active space. The SLP agent in 
the laptop uses the ACP advertisements to replicate itself on the Video Camera and 
exports the resources registered with the UbiqDir embedded in the camera to other 

devices in the active space. 
 

 

 

Where the current implementation of UbiqtOS uses IPv4 as the network layer, bootstrap 

mobile agents can, of course, deploy and use any protocol other than IPv4 that suits the 

requirements of a particular active space. Similarly, different schemes can be used to 

acquire a unique address for the network layer. Bootstrap mobile agents can use either an 

ad-hoc protocol like AutoIP [UPnP] or a client-server protocol like DHCP depending on 

whether any host in the network has the capability to store a set of mobile agents and can 
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act as a highly-available server to distribute these addresses or not. Fig. 5.8 shows a two-

step bootstrap procedure that uses IP and DHCP to configure a new device. 

Therefore, once any device is configured on a network, the rest of the devices can be 

automatically configured to allow their resources to be effectively utilized by the system. 

 

 

5.7 Summary 
 

This chapter introduced the architecture of UbiqtOS as a substrate to instrument fat 

devices to effectively interoperate in a ubiquitous system. It outlined the use of mobile 

agents to extend and adapt this minimal substrate to tailor a device according to the 

mechanisms and policies suited to the characteristics of a particular active space. Further, 

it introduced the role of UbiqDir to capture and export the changing context of a resource 

to the mobile agents residing in it. The philosophy of exposing the changing 

characteristics of the system to the component bindings is highlighted and the use of 

explicit bindings to address the object closure problem is introduced.  

This architecture leverages a peer-to-peer system architecture, where every device 

supports an instance of UbiqtOS to participate in the system as a first class citizen. 

Consequently, availability of any single node is not critical to system operation. 

Extensibility in UbiqtOS allows it to adapt according to its context. The complexity of 

the extensions deployed depend on the resources embedded in the device, where more 

privileged devices can support both a larger number of mobile agents and ones requiring 

superior system resources. 

 

 

5.8 Prelude to following Chapters  
 

This chapter introduced the overall architecture of UbiqtOS but did not explain its 

constituent components in detail. The rest of the dissertation discusses each aspect of 

UbiqtOS in detail. 

Chapter 6 describes extensibility in SEMAS to enable context-aware adaptation using 

mobile agents and elaborates upon the concept and utility of explicit bindings. 
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Chapter 7 describes the architecture of UbiqDir and shows how it is used to capture, 

export and indicate the changing contexts of a resource according to the changing 

characteristics of the system. Section 8 describes a protoype implementation of the 

UbiqtOS architecture presented in this chapter. Chapter 9 shows how UbiqtOS is used to 

support novel applications, and presents an analysis of the performance evaluation of the 

prototype implementation to validate the design of UbiqtOS. 



 

 

“Poetry is a rich, full-bodied whistle, cracked ice crunching in pails, the night that 
numbs the leaf, the duel of two nightingales, the sweet pea that has run wild, Creation's 

tears in shoulder blades”.  
Boris Pasternak  

Chapter 6 

System Components  
 

  

 

 

The use of mobile agents to extend and adapt UbiqtOS and their role as the sole 

component abstraction in the system has been mentioned several times.  

 Agent mobility serves four purposes in our architecture. 1) It is used to inject software 

into the system and place it where it can best accomplish its task 2) It is used to 

dynamically extend the capabilities of the participating resources to enable them to 

participate in the ubiquitous system. 3) It provides for load balancing, and hence better 

utilization of system resources and 4) provides fault tolerance by replication and/or 

migration of system services.  

This chapter gives a detailed description of the architecture used to support mobile agents 

in UbiqtOS.  

It motivates the need for mobile agents to extend and adapt UbiqtOS before describing 

the architecture of the mobile agent engine embedded in UbiqtOS. It describes how the 

mobile agent engine embedded in UbiqtOS supports a) proactive mobility b) reactive 

mobility and c) effective mobility to allow context-specific adaptation and self-

organization of the system.   

Further, this chapter elaborates upon the concept of explicit bindings and shows how the 

use of mobile agents to represent bindings provides a flexible, synergetic system design 

to address the mobility and dynamism of the system.  

Finally, this chapter presents examples of application-aware and context-driven 

adaptation of distributed operation in UbiqtOS by describing extensible operation for 

load-balancing, disconnected operation and reliability in SEMAS.    
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6.1 Motivation 
 

Chapter 3 identified the requirement for context-driven extension and adaptation of 

UbiqtOS to address the heterogeneity, longevity, mobility and dynamism of a ubiquitous 

system. It also highlighted the requirement for fat devices to support additional 

applications to allow the system to effectively utilize their additional resources.  

As an embedded device, unlike a PC, does not have a programming terminal attached to 

it, these system extensions and applications can only be deployed remotely on the device 

through its network connection. This requires applications and system extensions to be 

modeled as mobile objects to allow them to be passed to the device over the network.  

Object mobility is also required to redistribute and replicate this software to provide load-

balancing, fault-tolerance and high-availability, as new resources join the system or 

existing resources move, fail or leave the system. 

Further, objects need to be able to migrate and replicate autonomously without human 

intervention in an automated active space.  

This makes the mobile agent paradigm [Lange98] the closet fit to these requirements. 

Mobile agents are software objects that can autonomously migrate from one place to 

another to carry out their tasks. Though this proactive mobility allows new software to be 

deployed in a device, to equip it to interoperate in a new active space, traditional mobile 

agents paradigm falls short of addressing all the requirements posed by a ubiquitous 

system.  

• First, mobile agents in a ubiquitous system need to be able to relocate/replicate 

themselves reactively in response to the changes in the system. Software 

components residing at a device need to migrate and replicate to balance load, 

provide fault-tolerance and ensure high-availability as devices fail, move, join or 

leave the context of the device.  

• Second, mobile agents paradigm proposes a model where all the remote 

interactions are accomplished by moving the mobile agent to the remote host and 

performing the function locally in that host. Clearly, enforcing this approach for 
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all interactions is not optimal. For example, other remote connections of the agent 

can be adversely effected by the migration, or the cost of migration can exceed 

the cost of remote interaction itself. In fact, the number and importance of factors 

influencing the decision to migrate or to carry out a remote interaction using RPC 

depends on the characteristics of a particular active space. Hence, policies 

providing mobility need to allow context-aware adaptation.   

 

 

6.2 Contributions made by SEMAS 
 

The simple extensible mobile agent system (SEMAS) embedded in UbiqtOS addresses 

the above-mentioned requirements by providing the following novel features:- 

 

• It provides support for both proactive and reactive mobility. Proactive mobility allows 

software components to move from one host, to another to accomplish their tasks, 

according to a pre-programmed itinerary, whereas reactive mobility allows software 

components to move/replicate themselves in response to the changes in the context of 

a device (as indicated by UbiqDir).   

 

• Extensibility in SEMAS allows migration and replication policies to be extended and 

adapted according to the characteristics of a particular active space and application 

requirements, to allow context-driven adaptation.  

 

• SEMAS, instead of enforcing remote evaluation for every remote interaction, 

provides a framework to implement effective mobility. This scheme allows migration, 

and replication, to be performed only when it can positively affect the system. Hence, 

mobile agents, once introduced in the system, are automatically moved to the 

appropriate location in the system where they can effectively carry out their task.  

 

Further, SEMAS implements weak mobility and allows application-specific connection 

management as described in the next two sections.  
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6.2.1 Strong vs. Weak Mobility 
 

Migration, or replication, of an object executing in a host requires its execution context to 

be duplicated at the destination host. The execution context includes the code to be 

executed, any data associated with the computation, snapshot of all the registers, the 

runtime stack, heap, accounting information, open file and network connection 

descriptors, signal handlers, environment variables and any other information specific to 

the executing platform required to resume the thread of execution at the destination host 

[Tenenbaum90].  

Strong mobility refers to thread mobility where the entire execution context is transferred 

with the migrating object by the executing platform [Douglis91]. The migrating thread 

can migrate at any arbitrary point during its execution and resume at the destination host.  

Weak mobility, on the other hand, only involves migration of code and data, while other 

execution state and descriptor tables are not migrated with the object [Lange98]. 

Therefore, on a platform that only supports weak mobility, any state required to resume 

execution at the destination host has to be saved and extracted explicitly by the 

application as part of object data [Lange98]. Though the compiler can insert code to save 

and extract state to mask some of this complexity from the application, this is not 

possible in a dynamic environment, with support for reactive mobility, where points of 

migration are not known at compile time.   

Hence, strong mobility, though more flexible, introduces complexity within the platform 

whereas weak mobility pushes most of this complexity to the application itself.  

Keeping with the design goal of keeping the core simple, UbiqtOS only supports weak 

mobility. Weak mobility not only makes the core simple enough to be accommodated in 

embedded devices, it is sufficient for our purposes due to the following reasons:  

• Node failures and disconnections happen without warning in a ubiquitous system and 

hence do not benefit by the considerable extra complexity introduced by supporting 

strong mobility. Even strong mobility cannot guarantee that a mobile agent would be 

able to move out of a node that fails without warning or gets disconnected from the 

rest of the system.  
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• Still, strong mobility clearly offers more flexibility for balancing load in the system as 

it, unlike weak-mobility, allows load-balancing to be performed at any point during 

the execution of the program. However, recent research has shown that system re-

organization decisions for load balancing can benefit from optimistic distributed 

scheduling [Sokol90][Douglis91], which could be supported on top of weak mobility. 

Optimistic distributed scheduling proposes that instead of migrating a thread as soon 

as the load on a machine exceeds a certain value, it is more beneficial to delay the 

decision. This avoids spurious migrations in response to temporary spikes in load 

pattern to give a better performance. Especially in a ubiquitous system, where 

resources join and leave the system frequently to erratically change the system load 

characteristics, optimistic policies provide a more stable approach to load balancing. 

As optimistic load balancing does not require instantaneous migrations at arbitrary 

points, it can be supported on top of weak mobility.  

Load-balancing in UbiqtOS is achieved by the local scheduler and memory manager 

sending notifications to the agents whenever system load exceeds a certain threshold. 

The mobile agents can then prepare themselves to migrate, by saving any desired 

computation state, and request SEMAS to migrate them when they are ready. Where 

this scheme requires cooperation from the mobile agents, to balance load in the 

system, it makes the UbiqtOS core considerably simpler by avoiding the complexity 

required to support preemptive migrations [Tenenbaum90].   

  

6.2.2 Application-specific Connection Management 
 

An important component of the execution-state associated with a migrating agent is its 

bindings with other resources in the system, such as files, network connections and other 

mobile agents. Current mobile agent systems either do not provide support for migrating 

the bindings associated with a mobile agent [Lange98] or perform the migration opaque 

to the migrating application [Wojciechowski99].  

Whereas, the decision to preserve, discard or to substitute the binding with an equivalent 

resource at the destination host depends on the semantics of the application. For example, 

only the application can decide whether it is better to preserve a binding with a particular 
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file on the original host, close the file on migration or replace the binding with a new file 

on the destination host.  

SEMAS addresses these requirements by making two contributions:- 

 

• Bindings are reified as mobile agents to provide a unified, clean programming 

model. 

• These bindings are notified by SEMAS whenever an agent needs to be migrated 

to allow the application to adapt the binding appropriately. 

 

 

6.3 Comparison with Related Work 
 

Mobile agent systems have recently received appreciable attention from the research and 

industrial community alike [Wojciechowski99] [Lange98]. A mobile agent system allows 

medium to small sized objects to autonomously move from one host to another to 

accomplish their task [Lange98]. So, for instance, unlike Java applets that are passive 

objects, downloaded on demand by an application, mobile agents themselves encode an 

application and can move from one host to another to accomplish their task. Viewed 

differently, mobile agent systems offer an application-level alternative to process 

migration [Douglis91] in distributed operating systems. Where distributed operating 

systems use mobility to transparently migrate processes to balance load in the system, 

mobile agent systems expose the mobility API to the applications to allow a wider range 

of choice [Chess95]. The difference between different mobile agent systems is in the API 

offered to the agents. Mobile agent systems that support strong mobility, like ARA 

[Peine97], Nomads [Suri00] and Nomadic-pict [Wojciechowski99], allow agents to 

jump() to another host at an arbitrary point during their execution. However, mobile 

agent systems that only support weak mobility, like Aglets [Lange98], Hive [Minar99], 

Concordia [Wong97] and Ajanta [Karnik98], allow migration at only fixed points during 

the execution of the agent. Systems that support weak mobility come in two flavors. 

Systems like Aglets [Lange98] and Hive [Minar99] present an event-based API whereas 

systems like Concordia [Wong97] and Ajanta [Karnik98] provide a subroutine-based 



6.3 Comparison with Related Work 

 

141

model. The event-based model requires agents to implement an event-handler that is 

called by the agent system, with an event specified by the agent as an argument to the 

migrate() interface, to notify the agent that it has been relocated to the requested host. It is 

up to the event handler to resume execution of the agent, by calling a subroutine, 

depending on the value of the event.  The subroutine-based mobile agent systems provide 

a more direct API, where a migrating agent specifies a subroutine to be called at the 

destination host to resume execution upon migration.  Having programmed with both 

type of systems, we found it much easier to program with subroutine-based systems, 

which preserve the logical flow of execution and do not burden applications with the 

extra complexity of mobility-event-handlers. Hence, SEMAS supports a subroutine-based 

model to support proactive agent mobility.  

However, where existing mobile agent systems allow software to be injected and moved 

in a system to allow them to accomplish their task, they enforce a mobility model where 

agents encode a fixed itinerary to accomplish their task. Where this might be sufficient in 

traditional distributed systems, it, alone, is not enough to address the mobility and 

dynamism of a ubiquitous system.  Software components, in a ubiquitous system, need to 

move as resources move, fail, leave or join the system changing the system 

characteristics. SEMAS address this by supporting reactive mobility. Reactive mobility is 

supported by using events from UbiqDir to notify agents about changes in the system. 

However, it is up to the agents to move or replicate when notified about these changes in 

the system. This combines the best of both worlds; reactive mobility is supported, as in 

distributed operating systems, while exposing the mobility API to applications, as in 

mobile agent systems.  

Further, traditional distributed systems used RPC [Birrell84] to make remote invocations. 

The proactive mobility model in mobile agent systems, on the other hand, enforces a 

paradigm where every remote interaction is carried out by migrating the application to 

the destination and performing the task locally in the destination host. Whereas, the 

mobility and dynamism of a ubiquitous system mean that the characteristics of the system 

change dynamically, and therefore, the decision to accomplish a remote task by migration 

or remote invocation (RPC) can only be made at runtime depending on application 

requirements and system characteristics. SEMAS addresses this problem by providing 
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effective mobility. Effective mobility allows applications to make informed decisions 

about whether to migrate or make a remote invocation depending on the system 

characteristics and application requirements.  

Finally, existing mobile agent systems implement fixed protocols and policies for 

migrating and replicating agents, whereas the heterogeneity, longevity, mobility and 

dynamism of a ubiquitous system require that these policies and protocols be dynamically 

adapted according to the current context of the device and the applications residing with 

it. SEMAS is a runtime extensible mobile agent system and allows its distributed 

operation to be dynamically adapted according to system characteristics and application 

requirements.  

 

 

6.4 Structure of the Rest of the Chapter 
 

Section 6.5 describes the mobile agent interface implemented by software components in 

UbiqtOS to participate in the system as first-class citizens. Section 6.6 describes the role 

of explicit bindings in UbiqtOS and shows how the mobile agent interface is extended to 

support explicit bindings as first-class citizens in UbiqtOS. Section 6.7 describes the 

architecture of the extensible agent system embedded in UbiqtOS and explains how it 

uses Romvets to lends itself to context-driven adaptation. Moreover, Section 6.7 

describes effective mobility and presents examples of how distributed operation is 

adapted in UbiqtOS to tailor the policies for migration and replication. Finally, section 

6.8 concludes the chapter.  

 
 
6.5 Mobile Agents 
 

Every component implements the mobile agent interface (mobet) interface shown in 

figure 18 to become a first-class citizen in the system. By first-class citizen we mean that 

a component implementing the mobet interface can be dynamically  

1) Deployed as a context-specific extension or application  

2) Authenticated by the system, 
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3) Discovered by other components in the system,  

4) Notified about changes in the context of the device, and 

5) Relocated, replicated and removed in response to the changes in the 

context of a device.  

Hence, a first-class citizen when injected in the system, can discover the resources in its 

context and move around to accomplish its task despite the changing characteristics of 

the system.  

The mobet interface, shown in fig 6.1, includes methods to support mobility, 

authentication and life-cycle management of the agent. Additionally, it includes event 

handlers that are invoked to notify an agent about changes in the context of the device to 

allow context-aware adaptation. Different components extend this interface to provide 

specific services.   

Agents are launched in the system by calling the launch method of the agent engine 

embedded in UbiqtOS. SEMAS relocates the agent at the appropriate host, to balance 

load in the system (described in section 6.7), and calls the boostrap method of the agent at 

the new host.  

The boostrap() method initializes the agent state and calls another method to start the task 

of the agent. Therefore, the bootstrap method of the agent is analogous to the constructor 

of a regular Java Object.  

After bootstrap()ing an agent, SEMAS calls the Get_description() method of a newly 

received agent. The Get_description() method returns meta-data, in XML, to describe 1) 

the non-functional attributes of the agent, e.g. location, manufacturer (described in 

chapter 7), 2) any functional interfaces in addition to the mobet interface implemented by  
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Fig. 6.1 Mobet Interface. Components implement this interface to participate as first-
class citizens in the system.  

 

 

the agent, and 3) any events handled by the agent in addition to the event-handlers for 

events generated by UbiqDir. The Get_description() method also returns a reference to 

the functional interface of the agent, by setting the value of the value-result argument 

passed to it by SEMAS.  

SEMAS uses this information to install the new agent with the local instance of UbiqtOS. 

To install the new agent, SEMAS registers the reference to the interface of the newly 

received agent and the XML description of its properties with UbiqDir.  

The XML description returned by Get_description() method, and registered with 

UbiqDir, is used to dynamically discover components in the system. As the whole 

purpose of the UbiqtOS design is extensibility, i.e. new components can be introduced in 

the system to address changing requirements, components cannot be expected to know, a 

priori, the attributes and interfaces of all the components they would interact with in their 

mobet 
 
Boolean Bootstrap(vector arguments) 
 
String Get_description(mobet reference) 
 
Boolean Migrate(mobet requesting_agent, mobet destination, method callThis) 
 
Boolean Replicate(mobet requesting_agent, mobet destination, method callThis) 
 
Boolean Die(mobet requesting_agent) 
 
Vector Get_bindings() 
 
String Get_owner() 
 
event handlers  
 
Boolean Registered(String resource) 
 
Boolean Unregistered(String resource) 
 
Boolean Updated(String resource) 
 
String Looked_up(String resource) 
 
Boolean LeaseExpired(String resource) 
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lifetime. Instead, components in UbiqtOS dynamically discover one another by their 

XML descriptions registered with UbiqDir.    

Where the non-functional attributes are used to discover the properties of a component, 

the meta-description of the functional interface of an agent is used to discover and invoke 

methods on the component.  Applications find the agents with the desired properties and 

use the description of their functional interface to select an appropriate method to invoke 

the service. 

Individual components implement and extend the mobet interface to provide specific 

services, at layer 2, in UbiqtOS. Where, the method and event handlers in the mobet 

interface are expected to be well-known, any additional methods or event handlers are 

described as part of the meta-data returned by the the Get-description() method. The 

signatures of the methods implemented by an agent are described by the name of the 

method followed by a list of its formal arguments, as shown in figure 6.2. The entity 

looking up the agent description can use this reflective information to discover and 

invoke an appropriate method by passing the method name and the type of the arguments 

to the Java reflection API [Javaref98]. 

UbiqDir stores the reference to the interface of an agent in a separate data structure and 

adds the corresponding index, to that data structure, to the XML description stored for the 

agent, in the “Interface” tag.   

The interface index is, however, converted to the corresponding interface reference by 

UbiqDir, and returned along with the XML description of the agent, when the agent is 

looked-up in UbiqDir. Hence, the interface index tag only serves as an internal 

mechanism in UbiqDir to store interface references and is not visible to the entity looking 

up the agent. 

The “Description” tag for an interface reference can be used to store any additional 

information to explain the semantic operation of the method. It could be anything from a 

string of words describing the function provided by the method to a more formal 

representation as a set of pre/post conditions for the method invocation [Kiniry98]. Our 

current implementation uses a simple scheme where the function provided by the method 

is described in English, but a more formal description is clearly more desirable to ensure 

correct operation of the system. 
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Fig. 6.2 Functional Interface Description 
 

 

 

Fig. 6.3 Description of Eventhandler  
 

 

 

Any event handlers, in addition to those in the mobet interface, implemented by the agent 

are also described in a similar format, as shown in figure 6.3.  

Finally, the description of the agent includes the description of all the events (upcalls) 

generated by it to request extensible operation. Other layer 2 components, that implement 

the extensible operation, lookup the events generated by these extensible services, at 

layer 2, and subscribe interest in them using Romvets. This allows new extensible 

services and their extensions to be, independently, added to the system. This is different 

from extensibility in traditional extensible kernels like SPIN, which only support a 

limited number of predefined, fixed extensible services embedded in the kernel and hence 

do not provide a general-purpose mechanism to allow extensibility. UbiqtOS allows 

extensibility of even dynamically deployed services by allowing extensible services to 

publish their events as part of their description registered with UbiqDir, where extensions 

<Interface>index_in_interface_vector</Interface> 
<MethodName> method_name </MethodName> 
<Arguments> 
     <Argument Number=argument_number Type=type_of_argument/> 
     ……….  
</Arguments> 
<Description> Description of the operation performed by the method 
</Description> 
 

 
<EventHandlerName> method_name </EventHandlerName> 
<Arguments> 
     <Argument Number=argument_number Type=type_of_argument/> 
     ……….  
</Arguments> 
<Description> Description of the operation performed by the method 
</Description> 
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can look them up and subscribe interest in them, using Romvets, to implement extensible 

operation.   

The next two methods in the mobet interface support mobility.  

Mobets can be requested to move or copy themselves to another host by calling the 

Migrate() and Replicate() methods of SEMAS (as described in section 6.7). The agent 

engine, in turn, calls the Migrate() or Replicate() method of the specified agent, passing it 

the destination agent, the requesting agent and a value/result argument that is used by the 

agent to return the method to be called to resume its execution at the destination host, if it 

agrees to migration. The mobet requested to migrate or replicate can either deny the 

request by returning a false value, and setting the last argument to null, or honor the 

request by returning a true value to allow the agent engine to perform the transfer (and 

setting the last argument to the appropriate method). As SEMAS only implements weak 

mobility, a call to migrate() or replicate() gives the specified mobet a chance to save any 

state it needs to preserve across migration or replication to the specified host and to name 

a method to be called at the destination to resume its execution.  

An agent can be requested to remove itself from the system by calling the Kill() method 

of the agent engine (described later). The agent engine, in turn, calls the Die() method of 

the specified agent and passes it a reference of the requesting agent. The agent can honor 

the request by cleaning up any state associated with the agent e.g. active bindings and 

returning a true value to the agent engine. It also unregister itself from UbiqtOS by 

removing its reference from UbiqDir before returning a true value. The agent can deny 

the request by returning a false value if the requesting agent cannot be allowed to 

terminate the agent. Hence, the Die method compliments the bootstrap method to faciltate 

life-cycle of software components.  

The Get_owner() method of the agent returns the name of the owner of the agent signed 

by his private key to authenticate the agent.   

Finally, the agent interface provides a method to return the bindings of the agent with 

other components in the system. These bindings can be replaced or adapted as the 

properties of the connected components change, connected components become 

inaccessible or better choices become available.  Section 6.6 describes the role of these 
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explicit bindings in the system and section 6.7.3 shows how this is used by SEMAS to 

support application specific connection management to implement effective mobility.  

 

6.5.1 Reactive Mobility 
 

Where agents call the migrate() or replicate() methods of SEMAS to request migration or 

replication to another host to carry out their pre-programmed task, agents also need to be 

moved in response to the changes in the context of the device as resources move, fail join 

or leave the system.  

These changes in the context of the device are indicated by the events offered by 

UbiqDir. Mobets can subscribe interest in these events to be notified about changes in the 

context of the device. Therefore the mobet interface includes event handlers for events 

offered by UbiqDir to be notified about changes in the context of the device (as described 

in chapter 7).  These events are generated by UbiqDir to notify the agents whenever a 

new resource is registered with the device, or an existing resource is updated or deleted 

from the device context. This allows mobile agents to move or replicate themselves in 

response to changes in the device context, to provide interoperability, load-balancing, 

fault-tolerance, high-availability. This aspect is described in more detail in chapter 7.  

 

 

6.6 Explicit Bindings 
 

Mobile agents in UbiqtOS interact with one another using explicit bindings [Leslie91] 

[ODP95], which are themselves first-class citizens in the system. In UbiqtOS, bindings 

between mobile agents are themselves special mobile agents that extend the mobet 

interface to support additional methods for connecting and passing messages between 

mobile agents. Being executable programs themselves, these bindings allow any 

computation to be interposed in the communication path between two components. 

Therefore applications just nominate the binding that provides the appropriate service (by 

looking up the attributes in UbiqDir) and are decoupled from the details of, possibly 

changing, characteristics of the underlying system. Further, as first class mobile agents,  
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Fig. 6.4 Mbox Interface. Interface Implemented by explicit bindings in UbiqtOS. 
 

 

 

bindings are discovered using UbiqDir, can be relocated to other hosts and are notified 

about changes in the context of the device. 

Explicit bindings implement the mbox interface shown in figure 6.4. 

Where explicit bindings introduce extra application complexity, which arises from the 

need to lookup and parameterize the binding, it does not enforce the “best-effort” level of 

service like an implicit binding, and provides control over the properties of the binding 

over its lifetime [Leslie91][ODP95]. In a ubiquitous system where properties of the 

components, and consequently the characteristics of the context of the device, change 

frequently, the control provided by an explicit binding is most desirable to adapt the 

binding with the changing characteristics of the system. 

The “Connect” method in the mbox interface takes references to two mobile agents and 

connects them together. This method is used to invoke any signaling/handshake protocol 

implemented by the binding. Any arguments to the protocol can be passed using the 

argument vector. If the connection cannot be established then an appropriate exception is 

thrown to the requesting application. A true value indicates the success of connection 

establishment, allowing messages to be exchanged between two agents. Therefore, the 

interface provided by mbox allows a state-full connection-oriented protocol to be 

mbox 
 
Extends mobet 
 
Boolean Connect(mobet src, mobet dest, Vector Arguments, mobet suggestion) throws 
mbox_exception 
 
Object Send_message(Object message) throws mbox_exception 
 
Boolean Close() 
 
Boolean Migration_requested (mobet destination) 
 
Boolean Replication_requested (mobet destination) 
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supported to extend (stateless) ACP (described in section 6.7). Chapter 8 shows how the 

connect method is used to invoke the three-way handshake of TCP.   

Further, as processing like encryption and compression performed by a binding needs to 

be “undone” at the receiving host, such a binding can request SEMAS to replicate its 

receiving part at the destination host as part of the connection set-up process invoked by a 

call to connect().   

The last argument to the connect() method is only supplied by SEMAS when the agent 

requests effective mobility from SEMAS, otherwise it is set to null. This argument 

specifies the name of the least loaded SEMAS in the system and serves as a suggestion to 

the binding that could request to migrate the requesting agent to another host where it can 

better satisfy the connection requirements. Effective mobility is described in section 

6.7.3. 

Once connected, mobile agents can invoke methods on one another using the 

Send_message method of the binding.  The “Send_message” method takes the message 

to be delivered to the destination specified while connecting. An appropriate exception is 

thrown if the binding is not connected. Figure 6.5 shows a code fragment illustrating the 

use of explicit bindings in UbiqtOS. 

The binding can interpose any processing in the path of communication by processing the 

invocation request before calling the Agent Communication Protocol (described in 

section 6.7.1) to deliver the message.  

This allows mechanisms like compression, aggregation, filtering and customization of 

traffic to be interposed in a connection to suit the characteristics of the underlying 

network, for example as proposed in the TACC model [Fox97]. 
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Fig. 6.5 API for Explicit Bindings. The code fragment shows how an explicit binding is 

looked-up, parameterized and used to add a string title to a video stream 
 

  

 

 However, the focus of UbiqtOS is context-driven adaptation of component bindings to 

address the mobility and dynamism of the system. 

 

6.6.1 Context-aware Bindings 
 

Chapter 3 outlined the requirement that bindings between components need to adapt as 

the context of the device changes with resources failing, joining, leaving, or moving in 

the context of the device. Bindings in UbiqtOS, as first-class citizens, implement event 

handlers for the events offered by UbiqDir to indicate changes in the properties and 

accessibility of resources making up the device context. Hence, bindings can adapt and/or 

rebind if a better choice for a resource becomes available or existing resources become 

unavailable. The definition of “Better” depends on the policy encoded with the binding. 

For example, chapter 9 shows how a binding was prototyped to provide 

“follow_me_video” service. This binding rebinds itself to the closet display screen as a 

 
Mobet display = UbiqDir.lookup(“type/mobet//function/display//location/DinningRoom”);  
 
 
Mbox myBinding = UbiqDir.lookup(“type/mbox//function/title”); 
 
If (myBinding != null) 
{ 
 myBinding.Connect(this, display, new Vector(“Display this line”), null); 
 

myBind.Send_message(new Message(video_source.grabframe()));  
} 
 
 

Find a display in the 
dinning Room 

Find a binding that can 
add subtitles 

Connect this agent and 
the agent representing 
the dinning room 
display with this 
binding, and add the 
specified string to 
every frame (no load 
balancing suggestion) Deliver to the agent 

managing the display to 
display the video frame 
augmented with the sub-title  
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video player is moved from one room to the other to display the video stream on the 

nearest display.  

Optionally, the bindings can be configured to throw an exception to the application 

whenever notified about changes in the device context, to allow application to perform 

the adaptation. 

 

6.7 SEMAS: Simple, Extensible Mobile Agent System 
 

The mobile agents are migrated and replicated by the mobile agent system, SEMAS, 

embedded in UbiqtOS which runs as a thread in JVM. SEMAS presents the interface 

show in fig. 6.6 to the mobile agents residing with it.  

The SEMAS interface allows control over lifecycle management and mobility of agents 

by exporting methods to bootstrap, move, replicate and destroy agents. Further, it 

provides methods to list the agents running at a node and to return the corresponding load 

on the agent engine. Finally, it provides an interface to request effective mobility; this 

method allows the agents to leave the decision to be relocated to the system.   

The launch() function is called to bootstrap the specified agent. The agent engine places 

the agent at the most appropriate agent engine in the system and invokes its “bootstrap” 

method to start its execution. Application developers develop and compile an agent at a 

host that has a programming terminal attached to it and then invoke the “launch()” 

method of SEMAS, passing it the agent to be bootstrapped in the system.  SEMAS 

relocates the agent to the most appropriate host in the system and passes the “bootstrap” 

method, with the specified arguments, to be called at the destination host to initialize the 

agent in the system. This function returns a true value if the bootstrapping succeeds, 

whereas an appropriate exception is thrown to indicate that the agent could not be 

initialized. Figure 6.7 shows the bootstrap of a mobile agent using UbiqtOS. 

Migrate() and Replicate() functions are called by mobile agents to request the agent 

system to migrate or replicate the specified agent at the specified agent engine. The 

requesting agent specifies a destination agent with which the agent needs to be collocated 

and a method to be invoked at the destination host. As SEMAS only provides weak 

mobility, the specified method is required to resume execution at the destination host. If 
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Fig. 6.6 SEMAS Interface. The Interface presented by the UbiqtOS Agent Engine to the 
System Components (mobile agents).  

 

 

the requesting agent is different from the agent to be transferred, the agent system asks 

the permission of the specified agent (by calling its migrate()/replicate() method) and the 

destination system (by using Agent Communication Protocol, as described later), and if 

they both agree to it, it transfers/duplicates the agent. If the migration cannot be 

performed due to a network or host failure or because the agent or the destination host did 

not agree to the transfer then an appropriate exception is thrown to the requesting agent. 

A true value is returned to the requesting agent if the transfer succeeds. However, as 

SEMAS only supports weak mobility, if the requesting agent is the same as the specified 

agent, the call to migrate and replicate never returns if the transfer succeeds. The 

execution of the transferred agent proceeds at the destination SEMAS by invoking the 

specified method. 

The destination of a migration or replication request to SEMAS is another agent; SEMAS 

provides the abstraction of data-centric migrations. Agents only need to know the 

functionality provided by the destination to be collocated with it, not its location, which 

could indeed change as agents move around to fulfill their tasks.  Viewed differently, this 

allows intent-based mobility, analogous to intent-based discovery [Winoto99]. Still, an 

 

 

Boolean Launch (mobet agent, Vector arguments) throws AgentEngineException  
 
Boolean Migrate(mobet requesting_agent, mobet this_agent, mobet destination, Method call_this) throws 
AgentEngineException 
 
Boolean Replicate(mobet requesting_agent, mobet this_agent, mobet destination, Method call_this) throws 
AgentEngineException 
 
Boolean Kill (mobet requesting_agent, mobet this_agent) 
 
int Current_load() 
 
Vector List_Running_Agents () 
 
Boolean Do_task(mobet for_this_agent, method task, mobet destination, mbox binding, vector arguments) 
throws AgentEngineException 
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Fig. 6.7 Bootstrap of an agent in UbiqtOS. 
 

 

 

agent can override this abstraction and request to be moved to a specific host by 

specifying a fixed component at the host in its migration/replication request i.e. an agent 

representing the device driver for an embedded hardware resource in the device or the 

instance of SEMAS or UbiqDir at the destination host.   

Further, SEMAS provides an interface to return the current load on the host. The load is 

returned as the length of the ready queue of the extensible scheduler embedded in 

UbiqtOS as in a POSIX based system.  

An agent can also request another agent to commit suicide by invoking the “Kill” method 

of SEMAS. The requesting agent gives its own reference and a reference to the agent to 

be killed. The agent engine, in turn, calls the Die() method of the specified mobet and 

returns true or false depending on whether the agent agrees to commit suicide or not as 

described in section 6.5.  

SEMAS also provides a method to list the mobile agents residing with it. 

List_running_agents() returns a vector of references to the currently residing agents. 

These references can be used to invoke methods on the corresponding mobile agents.  

Finally, SEMAS provides a method that can be used by mobile agents to request for 

“effective mobility”. By invoking the method do_task(), the mobile agent requests 

>javac MyAgent.java 
 
>SEMAS.lanuch(MyAgent)  

SEMAS 
Mobet ReceivedAgent = ACP.GetAgent(agent); 
ReceivedAgent.bootstrap(); 
String ds=ReceivedAgent.GetDescription(); 
UbiqDir.Register(ReceivedAgent, ds); 
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SEMAS to perform a specified task and relocate the requesting agent if necessary. The 

mobile agent engine decides whether the agent needs to be moved to another location to 

better accomplish the task, finds the best location for it and relocates it before performing 

the task.  Section 6.7.3 describes how SEMAS provides a framework to implement 

effective mobility to leverage self-organization of the system.  

 
6.7.1 Agent Communication Protocol 
 

The core of SEMAS implements an Agent Communication Protocol (ACP) that is used to 

transfer agents and messages between different instances of SEMAS.  

This protocol provides the basic framework of communication between hosts supporting 

UbiqtOS. It provides a stateless, unreliable, unordered message delivery protocol that 

every device needs to support to allow interoperation of resources. It serves to transfer 

agents, like the aglets Agent Transfer Protocol [Lange98], and, additionally, to exchange 

messages between hosts. Its simplicity allows it to be embedded even in low-end fat 

devices. The message format is string based, as opposed to a binary one, to allow flexible 

processing, with the header fields delimited with special escape characters. 

The interface offered by ACP to applications is shown in fig. 6.8. It only has two 

methods, one for agent transfer and the other for exchange of messages between agents. 

The return value indicates the success or failure of the transfer request. In the case of a 

failure, an appropriate exception is thrown to present the cause for failure which could be 

due to a network failure, destination failure or authentication failure.  

The arguments to the methods exported by ACP are used to fill in the fields for the two 

frame types used by ACP (shown in table 6.1), as described below.  

The first field in the protocol header authenticates the source SEMAS. The agent engine 

receiving the message looks at this header to decide whether to execute the agent 

transferred, process the message received, or if the source cannot be trusted, throw away 

the frame.  

The second field tells whether the payload encapsulated in the frame is a mobile agent or 

a message for a mobile agent. The next field gives the method to be called for a mobile 

agent to resume its execution or the name of the destination agent if the ACP frame  
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Fig. 6.8 ACP Interface. Communication API in UbiqtOS 
 
 
 
 
 

ATP 
Authentication 
header 

Agent | 
Message 

[Method to be called]| 
[Destination agent] 

[Arguments] 
| [Source 
Agent] 

Payload Checksum 

Table 6.1 ACP frame format. Lingua Franca for inter-UbiqtOS interaction. 
 
 
 

 

 

carries a message. The fourth field gives the arguments to be used for method invocation 

for the former and the name of the source agent for the later. 

The fifth field holds the payload, which could be either an agent or a message, as 

serialized Java objects, as specified by the frame type. The last field of the ACP frame 

gives a checksum over the whole frame to ensure the integrity of the message.  

On the receiving side, SEMAS receives the ACP frame, authenticates the sending 

SEMAS (as described below) and determines the frame type by looking at the second 

field in the header. Agents received from a trusted source are executed by calling the 

method specified in the third field with the arguments specified in the fourth field of the 

ACP header. However, if the ACP frame encapsulates a message for an agent, it requires 

extra processing.  

To allow agents to receive messages, ACP, like UbiqDir and SEMAS, offers an event 

using the Romvets architecture embedded in UbiqtOS. This event is generated whenever 

ACP receives a message. Agents, rather agent bindings, subscribe to this event, 

parameterized with the handle of the receiving agent.  Whenever ACP receives a 

message, it forwards it to the Romvets interface, which routes it, as event notifications, to 

the agents that had subscribed to this event. The handler of the event could be an 

boolean agent_tranfer(mobet agent, mobet destination,  string Method_to_be_called, Vector 
arguments_list) throws ACPexception 
 
boolean message_transfer(Message message, mobet destination, mobet source) throws ACPexception 
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application mobet or a protocol layer mobet. In the case of the later, it is the 

responsibility of the protocol-layer to pass the message higher-up in the stack by 

generating an appropriate event. If there is no event handler for a message, the message is 

simply thrown away.  

An important thing to note in this scheme is the lack of transport layer addressing; ACP 

frames are addressed to agents by name, and not to a Service Access Point at the 

transport layer e.g. a UDP port number. Therefore communication in UbiqtOS is network 

independent i.e. ACP works independent of which protocol stack is dynamically 

deployed to transport the ACP frames over the network.  

Where this stateless operation of ACP makes it simple, events generated by ACP can be 

used to support protocols for reliability, ordering, flow-control and fragmentation 

according to the characteristics of the system and application requirements. In addition to 

the “message_received (destination mobet, mobet source, Message message)” event 

described above, ACP also generates an event when requested to transmit a frame.  This 

“Pkt_transmit(ACP_Frame this, String Address_type, String destination_address)” event 

specifies the ACP frame to be transmitted along with the address of the destination. The 

destination address specifies the network specific address, and its address family (like 

IP), of the destination agent, registered as part of its XML description. ACP resolves this 

address just-in-time, by looking up the agent description in UbiqDir (described in chapter 

7), before transmitting the event to request transmission.  This event is subscribed to by 

network protocols that encapsulate the ACP frame and send it on the wire before 

returning a boolean value to indicate success or failure. If none of the protocols had 

registered interest in an event, or the transmission fails, then the request to transfer the 

agent or the message returns with an appropriate exception.  

As the events are parameterized with the destination address and its type, the protocols 

can subscribe interest at the granularity of a specific destination. More usefully, protocols 

can handle events containing the address type supported by them. So, for instance,  
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Fig. 6.9 ACP Authentication Header.   
 

 

messages meant for destinations running an IP protocol, indicated by IP protocol type, 

can be handled by IP protocol layer to transmit packets.  

Conversely, ACP itself handles an event, “packet_arrived(ACP_frame this)”, that is used 

by networking protocols to deliver a frame to ACP on the receiving side. ACP, in turn, 

generates the above mentioned, ”message_received(mobet destination, mobet source, 

Object message)” event if the message contains a message to be delivered to an agent 

running in SEMAS.   

Chapter 8 shows how this scheme is used to implement extensible protocols stacks to suit 

the characteristics of an active space and the application requirements.  

Finally, ACP authenticates the source SEMAS before entertaining a frame, to protect 

against malicious senders. The source SEMAS adds an authentication header to the ACP 

frame, shown in figure 6.9, that is used by the receiving SEMAS to ensure that it only 

entertains frames from trusted sources.   

The authentication header specifies the message length, the name of the sender and the 

time of sending, signed by the sender’s private key. The private key authenticates the 

sender, the length field ensures the integrity of the message while the timestamp protects 

against replay attacks [Neuman94].  

However, for this scheme to work, the receiving host needs to know the public key of the 

sender a priori. This key could be burnt in the ROM of the device along with the image of 

UbiqtOS. While this could raise a scalability issue, as a device needs to store the public 

keys of all the devices it intends to communicate with in its lifetime, we believe that 

public keys would be manufacturer specific rather than device specific. Therefore, the 

device would only need to know the public keys of its own manufacturer and those of 

other compliant manufacturers with which it intends to interoperate. For example, a 

device manufactured by SONY ™ would store the public key of SONY ™ (along with its 

private key of course) and public key of other manufacturers SONY ™ can trust, maybe 

Sender Private Key(Message, length, from, timestamp)  
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per say, Toshiba™ and Panasonic ™. This scheme guarantees that an ACP frame coming 

from another SEMAS can be authenticated to safely process the message or execute the 

encapsulated agent.  

 

6.7.2 Extensibility 
 

The section above presented a brief overview of the interface presented by SEMAS to the 

mobile agents, but did not cover the details of how the mobile agent engine decides the 

right location for the agent while bootstrapping or when providing effective mobility. 

Likewise, no details were given about how the migration or replication is actually 

performed by the agent engine. 

These details, in lieu with the underlying theme of the thesis, depend on the complexity a 

device can afford, characteristics of the current active space of a device and the 

application requirements. Therefore policies and protocols for migration and replication 

need to match the device capabilities and need to adapt as the characteristics of the 

surrounding active space change or as the device is moved to another active space with 

disparate characteristics.  

SEMAS supports adaptation using the same mechanism as every other component in 

UbiqtOS: SEMAS offers events corresponding to its functional interface and extensions 

subscribe to these events to be up-called to implement the distributed operation. SEMAS 

uses the Romvets subscribe/notify interface to export events and Romvets re-routes them 

to agents subscribing interest in them by up-calling their appropriate methods.  

SEMAS offers 7 events that are used to implement effective mobility and provide 

context-specific protocols and policies for load-balancing, fault-tolerance, high-

availability. Boolean Launch(mobet agent, string method_to_be_called), Boolean 

Migrate(mobet requesting_agent, mobet destination, string method_to_be_called, Vector 

arguments) and Boolean Replicate(mobet requesting_agent, mobet destination, string 

method_to_be_called, Vector arguments) events, corresponding to the three methods in 

the functional interface of SEMAS, are generated by the sending SEMAS when an agent 

invokes the corresponding method to request bootstrap, migration and replication 

respectively.  
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Fig. 6.10 Extensibility in SEMAS. Extensions Interpose functionality between SEMAS and 
ACP 

 

 

 

Context-specific extensions to SEMAS, which are themselves mobile agents, subscribe to 

these events, by calling the subscribe method of Romvets, and are notified whenever the 

corresponding operation is invoked to launch, migrate or replicate the specified agent. 

These extensions perform their respective operations on the agent and call ACP to 

transfer the agent once they are done. Likewise, corresponding events are generated by 

the receiving SEMAS whenever an agent is migrated or replicated on it to allow 

extensions to process the incoming agents. Hence, these extensions allow functionality to 

be interposed between SEMAS and ACP (as shown in Fig. 6.10). The events offered by 

SEMAS are parameterized with the agent name requesting the operation, allowing 

extensions to tailor policies for individual agents. Therefore, different policies can be 

deployed for different agents according to the requirements of the application encoded by 

the agent. 

It is worth noting that “migrate” and “replicate” events are similar and lead to the same 

call to ACP, by context-specific extensions, to transfer the agent. The reason to 
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distinguish between them is to provide flexibility and efficiency by allowing different 

policies to be supported for migration and replication of agents.  

The next section shows how these events can be used to deploy extensions that 

implement protocols and policies for effective mobility, load-balancing, fault-tolerance, 

disconnected operation and reliability according to application requirements and system 

characteristics.   

 

6.7.3 Effective Mobility 
 

The scenario presented in the first chapter led to the requirement that a ubiquitous system 

should allow software to be injected in the system and placed where it can best 

accomplish its task.  

Applications are injected as mobile agents in the system, and UbiqtOS needs to be able to 

place them where they can best accomplish their task. This goal has, indeed, been 

researched by several distributed operating systems like Amoeba [Tanenbaum90], Sprite 

[Dauglis91] and Mach [Accetta86] to name a few, and several load-balancing algorithms 

have been proposed to optimize the placement of communicating processes in distributed 

and parallel systems [Sokol91].  However, as pointed out in [Tanenbaum95], efficacy of 

a load-balancing policy depends on the characteristics of the system and the requirements 

of the application. Hence, any one algorithm cannot be expected to satisfy the diverse 

system characteristics and applications requirements in a ubiquitous system. The most 

suitable host to relocate the process could be the least-loaded one, the one that minimizes 

network traffic for the process, or the most reliable host etc., depending on the system 

characteristics and application requirements. Further, unlike a traditional parallel system, 

where all communicating processes are known a priori, agents in a ubiquitous system 

need to dynamically discover and invoke one another. Hence, balancing load for new 

connections can adversely effect the existing connections with other agents.  

UbiqtOS addresses these issues by combining two approaches; context-specific load-

balancing and application-specific connection management. Below we describe these two 

in more detail and illustrate how they provide a framework to support effective mobility 

in the system. Where proactive mobility allows agents to move from one host to another 
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to carry out their pre-programmed agendas and reactive mobility allows them to be 

moved in response to the changes in the context of the device, effective mobility makes 

the system self-organizing.  

In order to provide effective mobility, SEMAS requires that tasks be structured as 

functional units i.e. as subroutines that perform a function while being connected to 

another agent. This is analogous to structuring of tasks as mobility units in mobile agent 

systems that support weak mobility, like Concordia [Wong97], that require that one 

subroutine be nominated to be called at each hop of the agent.   

Mobile agents request effective mobility by calling the doTask method of SEMAS (refer 

to figure 6.6). The requesting agent passes SEMAS the name of the method to be invoked 

to carry out the task, the destination agent that needs to be contacted to carry out the task, 

and the binding to use to make the connection.  

Once invoked with the Do_task method, SEMAS finds the binding in UbiqDir, 

instantiates it and calls its connect() method with the arguments provided. It then finds 

the destination agent and passes its references to the instance of the binding to allow the 

binding to pass messages to it. Additionally, SEMAS fills in the last argument of the 

connect() method with a handle for the SEMAS that it deems most suitable for the agent 

to be located to perform its task. It is up to the binding to take this suggestion into the 

account by asking SEMAS to migrate the requesting agent to the suggested host. The 

suggested host is selected by context load-balancing policies and the migration is only 

performed if all the other bindings of the agent agree to it. Finally, SEMAS invokes the 

specified method of the source agent to start the task. Below we describe these operations 

in more detail.  

 

6.7.3.1 Extensible Load-balancing 
 

When invoked with the Do_task() methods, SEMAS generates an event mobet 

Balance_load(mobet src, mobet dst), using Romvets, that is handled by load-balancing 

extensions. These extensions talk to their peers on other hosts and return a handle of the 

SEMAS that they think is the most appropriate to locate the requesting agent. Several 

load-balancing policies can co-exist, each returning the host that optimizes a specific 
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aspect e.g. least loaded host, most reliable host, the host which would incur least network 

traffic between the source and the destination agents etc. Romvets collects all the 

returned values and passes them on to SEMAS. SEMAS applies a simple counting 

scheme, and chooses the host with the most number of votes. If there is only one 

occurrence of each entry, then the first entry in the vector is selected. This simple scheme 

allows the selection of the host that optimizes the most number of metrics, but relies on 

the fact that the first extension installed by the active space is the most important metric 

for the system in the case when each metric is optimized by a different host.  

As the load-balance() event is parameterized with the source and destination agents, the 

extensions can tailor their policy on a per-agent basis; different load-balancing policies 

can be supported depending on the application requirements of the requesting agent.        

In the simplest scheme, the extension handling the balance-load() event selects the agent 

at the least loaded host in the system. Extensions use the “current_load()” method offered 

by SEMAS to measure load at a host and use a group communication protocol on top of 

ACP to exchange this information to decide on the least loaded server.  The extensions 

can use a passive scheme to exchange the load, where idle processors ask their neighbors 

for work, or an active scheme, where tasks are distributed by their creating processor, 

depending on the number of processors in an active space registered with UbiqDir. 

Passive schemes have been shown to be more efficient for medium to small scale 

systems, typically less than 25 processors, whereas active schemes are known to 

effectively reduce the time to select an appropriate host in larger systems [Kouichi91].  

Further, extensions can present the load as an exponentially weighed moving average, 

instead of a snapshot of the length of ready queue, to ensure long-term fairness in load-

distribution in the system. Similarly, simpler algorithms that only interpret load 

information as discrete steps, like high, medium, low, can be supported if devices in an 

active space cannot support complicated algorithms.     

Likewise, load balancing policy used by the extensions could be local, where only the 

local load is compared with the destination, or global where load on all the processors in 

the system is compared to find the least loaded host to relocate an agent. Where global 

policies lead to more informed decisions they require interaction between all the hosts in 

the system and, hence, can only be supported efficiently on networks with multicast 



     Chapter 6 – System Components 

 

164

support like HomePNA. Local policies reduce network traffic and can be supported on 

point-to-point link layers like Warren.  

Finally, extensions can use algorithms to optimize other criteria in addition of balancing 

load in the system. Agents that require network communication could be handled by 

extensions that place them at hosts with high-bandwidth/low-latency network 

connections. Similarly, agents providing services that need to be highly-available can be 

handled by extensions that place them at faster and reliable servers in the active space, as 

indicated by their descriptions in UbiqDir. Reliability of a server can be judged by the 

number of timeouts of its description in the local UbiqDir due to lack of renewal of its 

soft-state entry.  

SEMAS selects the host with the most number of entries in the vector returned by 

Romvets and passes that as the last argument to the connect() method of the binding 

specified for the connection. The binding takes this suggestion into account when making 

the connection with the specified destination, as described below.   

 

6.7.3.2 Application-specific connection management 
 

Where load-balancing extensions find the best location for the agent, only the agent 

binding can decide whether migrating to another host would be beneficial for the new 

connection. Therefore the system finds the best location for the agent but instead of 

transparently relocating the agent at the selected host, as in traditional distributed 

operating systems, it only uses that as a hint to the agent binding. It is up to the agent 

binding to make use of this hint by requesting migration to the suggested host. However, 

the binding can choose not to request migration or even request migration to another host. 

The binding requests the migration by calling the migrate() function of SEMAS, just like 

a mobet, and specifies the requesting agent as the source agent and its own connect() 

method as the method to be invoked at the destination SEMAS. Therefore the connect() 

method of a mbox supporting effective mobility needs to keep some state to detect that its 

connect method has been entered again, indicating that it has been relocated to a new 

host.  
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Fig. 6.11 Effective mobility in SEMAS:  
When invoked with the Do_task interface, SEMAS upcalls context-specific load-

balancing extensions and uses the returned least-loaded host as a suggestion for the 
newly created binding. The binding, in turn, chooses to migrate the requesting agent to 

the suggested host and calls the migrate function of SEMAS. SEMAS seeks permission of 
all the existing bindings by generating the Migration_requested() event and performs the 

migration if all of the agent bindings return a true value. 
 

 

 

Where the above scheme provides a delicate balance between application requirements 

and system characteristics in a dynamically changing environment, the migration 

requested by the new connection can adversely effect existing connections of the agent. 

This is addressed as follows. 

When the agent binding calls the “migrate” function, the agent engine sends a 

“migration_requested (destination agent)” event to all the other active bindings associated 

with the agent, acquired by calling its Get-bindings() method.  When invoked with the 

migration_requested() event, the bindings can either adapt their connection in light of the 

new migration and return a true value or, if any binding decides that its connection 

requirements would be violated by the migration needed by the new connection, veto the 

migration by returning a false value. SEMAS takes a logical AND of the all the returned 

values and the requesting binding is notified about the decision. Hence, even if one of the 
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bindings decides that its connection requirements are violated by a migration, the agent is 

not migrated to the specified host.  

Moreover, if the destination agent is not accessible, or the binding specified for the task 

decides that its requirements cannot be met in the current context, then an appropriate 

exception is thrown to the agent attempting to make the connection and the migration is 

not performed.  It is up to the requesting agent to recover from it, for example, by 

changing the binding to a less demanding one or by postponing or skipping the task all 

together.  

Assuming that the bindings used by an agent cooperate with the system and with each 

other, this framework allows application semantics to be combined with context-specific 

characteristics to provide effective mobility.  Mobility is application specific and used 

only when it is effective to leverage a self-organizing system. Figure 6.11 shows how 

SEMAS supports effective mobility.  

The other primitive offered by the agent engine is “replicate(destination agent, method 

to_be_called)”. This allows agents to replicate themselves at the node hosting the 

indicated agent. The agent is replicated and the specified method is called at the 

destination host. We use this facility for two purposes. 1) To install new components with 

UbiqtOS joining an active space. The indicated method unregisters the component to be 

replaced, registers the new component and sits there waiting to be called. 2) To deploy 

sensor agents. The indicated method is a repetitive task that continuously monitors the 

system. For example, beacon-sensing agents deployed to sense and select the best 

network interface for a mobile host in a wireless overlay network. Likewise, 

“replication_requested(destination agent)” event is sent to all the active bindings of the 

agent requesting to be replicated. The boolean value returned by the binding is taken to 

be its consent to be replicated at new host or not. A false value stops the agent engine 

from replicating the binding at the new host. This allows host-specific bindings from not 

being replicated at the destination host.   

The agent can choose to leave the choice of an appropriate binding to UbiqtOS, which 

defaults to an appropriate context-specific binding. This is indicated by specifying a null 

binding.  
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Apart from leveraging effective mobility, extensibility in SEMAS is used to support 

protocols for context-specific bootstrapping, disconnected operation and reliability, as 

described below.   

 

6.7.4 Bootstrap Load-Balancing  
 

Mobile agents are bootstrapped in UbiqtOS by calling the “launch()” method of SEMAS. 

SEMAS relocates the agent to the most appropriate host in the system and specifies the 

“bootstrap” method of the agent to be called at the destination host to initialize the agent 

in the system.  

This scheme of relocating a process to another host, at startup time, has been proposed in 

distributed operating systems like Ameoba, Mach, and Sprite to provide for balancing of 

load in the system. However, as pointed out above, efficacy of a load-balancing policy 

depends on the characteristics of the system and the requirements of the application.  

Therefore, SEMAS allows bootstrap load-balancing policies to be deployed as context-

specific extensions, as well. Bootstrap load-balancing policies are deployed as event 

handlers for the launch() event generated by SEMAS when requested to bootstrap an 

agent.  

A user introduces a mobile agent in the system by calling the “launch” method of 

SEMAS and passing the agent to be launched as its argument. SEMAS, in turn, generates 

a “launch(mobet agent)” event using the Romvets architecture. Extensions subscribe to 

this event to be notified when the specified agent requests to be launched in the system 

and the return the handle of the SEMAS they deem most suitable to relocate the agent. 

Romvets collects the values returned by the extensions in a vector and passes them on to 

SEMAS. SEMAS migrates the agent to the host with the most number of entries in the 

vector, specifying its bootstrap() method to be called at the destination SEMAS to 

bootstrap the agent in the system.  

 

6.7.5 Disconnected Operation 
 

A major benefit of using mobile agents is their ability to perform remote functions even 

in the face of network disconnection [Lange98]. However, in architectures that employ 
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RPC to transfer agents [Lange98][Wong97], migrations can only be performed if the 

destination host is running and the network link to it is working at the time when the 

migration is requested. Otherwise, either the migration is denied or the agent engine is 

blocked until the agent migration can be carried out. This limits migrations and 

introduces inefficiencies for active spaces where network links fail and hosts go down 

often.  

The events offered by SEMAS can be used to address this problem by deploying 

extensions that facilitate disconnected operation according to the characteristics of an 

active space. The extensions deployed to allow for disconnected operation implement a 

FIFO and subscribe to the “migrate” and “replicate” events generated by SEMAS. When 

notified with the request of an agent to migrate/replicate it on another host, the extension 

places the agent request in its queue. Transfer requests queued in the FIFO are tried one 

by one by attempting a transfer using ACP. If ACP cannot find a route to the destination, 

indicated by failure exception, the extension tries the next agent and then the next, 

transferring agents in a round-robin manner. Therefore, the agents waiting in the queue 

can be served whenever there is a connection available to the destination host without 

holding up other agents or requiring a re-try by the application itself.   

The extension can use any policy to serve its FIFO according to the characteristics of the 

network links. For instance, agents for the same destination can be scheduled together to 

avoid unnecessary retries, the time between attempts for queued agents can be adjusted to 

suit the dynamism of the system etc.   

 

6.7.6 Reliability  
 

The dynamism of a ubiquitous system means that some of the agents can get lost as 

communication links fail, or devices move, disconnect or malfunction. However, if a 

mobile agent holds any important information or possesses unique functionality, it is 

important not to loose the mobile agent. Moreover, the mechanisms to provide this 

reliability depend on the device capability, the application requirements, degree of 

dynamism in the system and the characteristics of a particular active space.  
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Therefore, the extensibility in SEMAS can be used to provide reliability according to 

device capabilities and requirements of a particular active space. We have used the events 

offered by SEMAS to support three schemes to protect important agents from getting lost 

in the system.  

The first scheme provides a simple mechanism to recover an agent lost due to remote 

host or network failure, but only provides at-least-once semantics, suitable for idem-

potent tasks. The second scheme extends the first one to alleviate the source host from the 

complexity of maintaining reliability, making it suitable for fault-prone limited capability 

devices. The third scheme guarantees exactly-once transfer semantics application with 

stringent requirements but can only be supported in hosts that can afford the complexity 

of transaction processing.  

In the first scheme, the extension subscribes to the “migrate/replicate” event of SEMAS 

to be notified whenever a specified agent requests to be migrated/replicated to another 

host. Once notified, it first makes a persistent copy of the agent in the local memory of 

the device before calling ACP to migrate the agent to the destination host.  

This copy serves as the checkpoint of the agent that can be used to recover it, in case the 

agent is lost due to network or destination host failure. The events offered by SEMAS are 

used for failure detection as described below. 

The corresponding extension running at the destination host subscribes to the 

“migrated/replicated” event to be notified when a specified agent is received by the 

destination SEMAS. On the receipt of an agent, it sends an acknowledgement, 

encapsulated in an ACP frame, to the source extension to notify that the agent has 

reached safely. If an acknowledgement is not received by the source agent for some time 

T, it retransmits the agent. T is computed by the source extension by periodically sending 

“echo” messages to the destination extension, and taking a moving average of the round-

trip time.  

This simple scheme ensures reliable network transfer on top of ACP. 

Further, the destination extension subscribes to the “migrate/replicate” event for the same 

agent to be notified when the agent requests to be migrated to another host. Hence, the 

“migrated/replicated” and “migrate/replicate” events for an agent implicitly serve to mark 

the time for which the mobile agent resides at a given host.  
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The destination extension uses this information to generate a heartbeat for the source host 

while the transferred agent resides with its host. If, after migration, the source extension 

does not receive the heartbeat for some time K, it infers that the destination host either 

disconnected or stopped working. If the destination host disconnects, the heartbeat would 

resume when it reconnects and nothing needs to be done. If the destination host fails then 

the transferred agent could be assumed to be lost with it, and the extension uses its 

checkpoint to replicate the agent again, using ACP, when the destination host comes back 

up. This approach ensures that the agent is executed at-least-once at the destination host 

but requires the source host to be running and accessible to provide this reliability. 

This second approach, on the other hand, is suitable when the source host cannot be 

guaranteed to be accessible or running at all times e.g. battery operated mobile devices. 

In this approach, the mobile agent that handles the “migrate/replicate” event makes a 

remote copy of the agent, in a backup server, before migrating/replicating the agent to the 

specified destination. A highly-available server needs to be selected for this purpose and 

deployed with an extension that can receive a mobile agent and a destination SEMAS to 

provide reliability as described above. This alleviates the source host from maintaining 

reliability and hands over the responsibility to the backup server. Moreover, this scheme 

can be extended to achieve a greater degree of resilience by replicating the migrating 

mobile agent to more than one backup server before migrating it to the specified 

destination. Where this scheme introduces additional agent replications and redundant 

heartbeat traffic, it does not require any single host to be running all the time to ensure 

reliable transfer of mobile agents, making it suitable for highly dynamic settings like an 

ad-hoc network .  

The first two schemes, however, only ensure at-least-once reliability for agent transfer. 

The tasks that require exactly-once transfer semantics can be implemented using 

transactional queues proposed in [Rothermel98]. The extensions in this scheme subscribe 

to the “migrate/replicate” and “migrated/replicated” events generated by SEMAS and 

additionally implement a persistent log of agent transfers. Once notified to 

migrate/replicate an agent, the source extension makes a local copy, requests ACP to 

migrate the agent and atomically appends an entry in its log that an agent migration is in 

progress. The extension then blocks instead of returning a boolean value after transferring 
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the agent. On the receiver side, once notified, the corresponding extension makes a 

persistent copy of the agent and makes an atomic append to its log indicating that an 

agent migration is in progress. The extension, however, does not send a commit 

acknowledgment to the source extension. The transaction is only committed when the 

visiting agent requests a migration to the next hop. Based on the assumption proposed in 

[Rothermel98] that the agent performs its task at one host and then moves to the next one, 

or back to the originating host, “migrate/replicate” event on the receiver side is a 

sufficient condition for the receiver extension that the migrating agent has successfully 

performed its task. Hence, when the receiving extension is notified with the 

“migrate/replicate” event for the same agent, it sends a commit message to the sending 

extension, atomically removes the entry from its log and discards its local copy of the 

agent. Likewise, the sending agent on the reception of a commit message discards the 

local copy of the agent, removes the corresponding entry from its log and returns with a 

true value, indicating that the agent has been successfully executed at the specified host.    

If the transaction fails then a false value is returned to the requesting agent, and an 

appropriate exception is thrown to the requesting agent.  

 
 
6.8 Summary 
 

This chapter described how SEMAS, embedded at layer 1 in UbiqtOS, allows context-

specific software to be deployed with an instance of UbiqtOS to enable a device to 

control, manage and program other resources in its context.  

Keeping with the underlying theme of the thesis, distributed operation in SEMAS lends 

itself to context-driven adaptation using upcalls routed through Romvets. Extensibility in 

SEMAS is demonstrated by giving examples of protocols and policies to provide 

effective mobility, bootstrap load-balancing, disconnected-operation and reliability 

according to application requirements and the characteristics of the context of the device.  

In addition to traditional proactive mobility, SEMAS provides reactive mobility, allowing 

agents to be notified and moved in response to the changes in the context of the device to 

address the dynamism of the system. Finally, this chapter proposes a new scheme for 

mobility, called effective mobility, provided by the use of explicit bindings and 
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extensibility in SEMAS, to leverage a self-organizing distributed system. Effective 

mobility allows mobility of components only if it can positively affect the system 

according to application requirements and the characteristics of the current context of the 

device.     



 

 

“Why did you name your son John? Every Tom, Dick and Harry is called John”  

Anonymous 

Chapter 7  

Extensibility, Dynamism and Context-awareness in UbiqDir: 
An XML-based Directory Service for Ubiquitous Systems  
 

 

 

 

This chapter describes the architecture of the extensible registry, UbiqDir, embedded at 

layer 1 in UbiqtOS. UbiqDir is a yellow-pages distributed directory service. Components 

are installed with an instance of UbiqtOS by registering their XML descriptions with the 

corresponding instance of UbiqDir and it exports these components to other instances of 

UbiqDir in its context. Conversely, UbiqDir serves to capture and export the changes in 

the device context, to applications and services residing with it, to allow context-aware 

adaptation.  

UbiqDir serves to extend and adapt the functionality of UbiqtOS as component references 

and their XML descriptions are registered, deleted or upgraded with it.  UbiqDir uses the 

XML meta-data to allow introspection of the properties of the components registered 

with an instance of UbiqtOS, and hence, UbiqDir’s interface serves as a meta-interface 

(c.f. MetaOS) to install, upgrade and delete functionality from UbiqtOS.  

UbiqDir follows the design of UbiqtOS; a bare minimum extensible core adapted by 

context-specific extensions deployed as mobile agents. The core of the directory service 

comprises a simple soft-state based lookup service (integrated with the subscribe/notify 

Romvets architecture) which generates synchronous events to request distributed 

operations. The event handlers for these events implement the distributed operation of the 

directory service by exporting the descriptions registered with one instance of UbiqDir to 

other instances of UbiqDir in its context using protocols and policies most suitable for a 

particular context. This is achieved by the extensions forming a context-specific overlay 

to disseminate and lookup the descriptions of resources in the system.   
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As UbiqtOS only supports one component type (mobet) and all mobets are registered, 

deleted and looked-up with an instance of UbiqtOS using UbiqDir, it not only serves as a 

directory service to locate things in the system, it provides an orthogonal persistent store 

[Jordan98] for software components installed with an instance of UbiqtOS. Hence, 

services (written as Java agents) in the system exist for as long as they are registered with 

an instance of UbiqDir, and not as long as they are being used (as would be case without 

UbiqDir).    

The rest of the chapter focuses on the use of UbiqDir as an attribute-based directory 

service and its use of XML to encode meta-data to describe attributes of the components 

registered with it. It describes how the events generated by UbiqDir are used to support 

context-specific distributed operation and to leverage context-driven adaptation of 

applications and services in UbiqtOS.  

 

 

7.1 Motivation 
 

To interoperate with their environment, resources first need to find other resources in 

their context. Users can move from one active space to another and expect the system to 

provide ubiquitous access to appropriate services. In particular, applications need to be 

able to find the “best” available services that can satisfy their requirements at any point of 

time in the system.  

The problem, of course, is simple. “Find the best service that matches the given 

requirements”. Although this might appear to be a traditional service location issue in 

distributed systems, the heterogeneity and mobility of resources and dynamism 

introduced by resources moving, joining and leaving the system introduce new challenges 

in resource discovery [Banavar00][Czerwinski99].  

First, service discovery needs to be central rather than external to the system, as no 

service can be assumed to be available at all times to allow its reference hardwired in 

applications. Second, the meaning of “best” is no longer static, like in traditional systems, 

instead it needs to address the dynamism and context-awareness inherent in the system. 

Delineation and interpretation of the attributes of a resource might vary as a resource is 
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moved from one active space to the other, or as new resources and services are 

introduced in a system. Third, the directory service needs to support a wide range of 

resources, with arbitrary numbers and types of attributes. Further, the resource 

description format needs to be human understandable yet amenable to machine 

processing to allow users and other devices to be able to discover other resources. Fourth, 

the design of the directory service should not enforce any rigid policies that might 

introduce inefficiencies or hinder interoperability as a resource is moved between 

different active spaces with disparate characteristics. Finally, the core of the directory 

service needs to be simple enough to be accommodated in limited capability devices, 

while allowing mechanisms to scale to more privileged devices and to adapt to changing 

contexts.  

We address these challenges by designing an extensible XML-based directory service. 

The core of the directory service only implements a minimum local operation and allows 

distributed operation mechanisms to be deployed dynamically to suit the characteristics 

of the current context of the resource. The core generates a corresponding event 

whenever a resource description is registered, deleted or updated with it. Context-specific 

extensions, deployed as Java mobile agents, subscribe to these events offered by the core 

to implement mechanisms for discovery, replication, caching, consistency, partitioning, 

load-balancing and fault-tolerance. Mobile agents are also used to evaluate on-demand 

the attributes of a resource that change dynamically. Further, applications can subscribe 

to the events offered by the directory core to be instantly notified about the changes in the 

resource context to leverage application adaptation warranted by system dynamism. 

Finally, these events can be used by AutoHAN event scripts written in Cambridge Event 

Language [Bacon00] to automate the operation of an active space.  

 

7.2 Contributions made by UbiqDir 
 

While distributed directory services like INS [Winoto99], SSDS [Czerwinski99] and 

Chord [Stoica01] all support attribute-based resource discovery, they enforce fixed 

policies for the distributed operation of the directory service and, hence, fail to effectively 

address the dynamism and context-awareness inherent in a ubiquitous system. UbiqDir, 
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on the other hand, allows its distributed operation to be adapted according to 

characteristics of the current context of the device, using upcalls routed by Romvets. The 

unification of a lookup service and a subscribe/notify events interface also bridges the 

gap between service discovery [Winoto99][Czerwinski99] and context-aware application 

adaptation [Esler99][Grimm00][Banavar00]. Applications can subscribe to the events 

offered by the directory service to be notified about changes in the resource context to 

guide timely adaptation.  

This chapter contains the following:   

 

• It presents an analysis of a naming scheme befitting a ubiquitous system and highlight 

three unique characteristics of a ubiquitous name: intent, dynamism and context-

awareness.  

• It shows how these requirements warrant an adaptable system design and present the 

design of an extensible directory service, UbiqDir. It shows how this architecture 

addresses the challenges posed by a ubiquitous system and describes how mobile 

agents are used to deploy context-specific mechanisms for discovery, caching, 

replication, partitioning, load-balancing and fault-tolerance.  

• It proposes a lazy evaluation scheme to compute dynamic attributes on the fly, using 

mobile agents, and presents an adaptive lease-based scheme to implement soft-state.  

These two schemes address the dynamism of the system while effectively reducing 

the overhead of periodic refreshes in a soft-state based system.  

• Finally, it shows how this architecture and our naming scheme efficiently address the 

ubiquity of the system, still keeping the core service simple enough to be 

accommodated in impoverished devices.  

 

7.3 Ubiquitous Names and Resolution 
 

Experience with AutoHAN [Saif01] showed that typical queries in a ubiquitous system 

are as follows. “Show this video stream on the largest display with the least access 

latency”, “use the most reliable and least loaded server that is not in the childern’s room 

to run intrusion detection software”, “find a surveillance camera that is either in the porch 
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or on the entrance door and has snap shot frequency greater than 10 shots /sec” etc. In 

general, a resource lookup query in a ubiquitous system is of the form “Find me the 

“best” resource that provides service X”.  

Mobility, dynamism and heterogeneity in a ubiquitous system introduce new 

requirements to express and resolve the definition of  “best” and the delineation of 

“service X”.  

First, applications in a ubiquitous system often do not know the location [Winoto99] or 

the precise functionality of a service [Hodes97] that could best satisfy their requirements. 

Hence, resources can only give an “intent” about the resource that can best meet their 

requirements. e.g. “Find me the best display”, could be satisfied by “the nearest TV”. 

Second, the description of a resource is not static as in traditional systems, but includes 

dynamic attributes as well. For example, the link latency or reliability of a resource 

accessible by a mobile client changes as the client moves in the environment. Likewise 

attributes like “least-loaded server” change with time and the definition of the “most 

reliable server” changes as resources fail, leave, enter or move in the system. This 

introduces “dynamism” in a ubiquitous name, which means that certain attributes of a 

resource are more useful when calculated on the fly.   

Fourth, resource description in a ubiquitous system includes non-functional attributes in 

addition to the functional interface descriptions. These attributes are acquired by the 

resource due to its context in the system and could include information like location, 

quality of service supported by the underlying network, security information etc. These 

attributes are usually not known to the resource itself at development time, and are 

handled by the system to achieve better selection of appropriate resources.  Hence, 

ubiquitous names are context-aware.  

Due to the dynamism and mobility of resources, lookups in a ubiquitous system are more 

useful when performed relative to the requesting resource and not a directory service 

running in a remote server.  Additionally, most of the lookups in a ubiquitous system tend 

to include context-aware superlative adjectives e.g. “nearest display”, “least-loaded 

server” etc.  Consequently, superlative adjectives need to be supported and resolved in a 

given context, relative to the requesting resource.   
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Finally, queries involving more than one criterion need support for logical (AND, OR, 

NOT) and relational (Less than, Greater than) operators to allow composition of 

composite queries [Saif01].  

 

 

7.4 Design requirements 
 

A directory service should embody an information model, a functional model, a 

distributed-operation model and a security model.  

 

7.4.1 Requirements for Information Model 
 

The information model of the directory service specifies the structure and representation 

of how data is stored in the directory service, thus, defining the name space. This usually 

determines the syntactic structure of the queries as well e.g. relational, hierarchical etc.  

The information model of the directory service for a ubiquitous system should aim to 

provide maximum flexibility to accommodate resources of arbitrary number and type of 

attributes without compromising efficiency for lookups. Second, as ubiquitous systems 

primarily interact with humans, the structure and representation of the data should be 

human readable. Finally, the structure of the stored information should support all three 

characteristics needed to meaningfully describe a resource in a ubiquitous system, 

including dynamic attributes and lookups guided by only an intent (partial desciption) of 

the service required.  

UbiqDir uses XML to support a string-based, flexible and human-readable information 

model.  

 

7.4.2 Requirements for Functional Model 
 

The functional model specifies the interface offered by the directory service to access and 

modify its state. It is usually reflected in the directory access protocol as well e.g. LDAP 

[X.500].   
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The functional interface of the directory service allows entities to register their 

descriptions and to lookup other entities that best satisfy their requirements. Due to the 

heterogeneity of a ubiquitous system, the lookup interface should not enforce any policy 

of resource selection in case of multiple matches. Rather, this should be configurable 

according to system conditions and application requirements.  

Further, the dynamism of the system warrants special consideration for the functional 

model to update and delete the description of a registered resource. Specifically, the 

directory service should be able to self-recover from changes in resource capability and 

accessibility, arising from mobility, disconnection and failure.     

As mentioned above, the directory service defines an integral part of our universal 

substrate, and, hence, needs to be simple enough to be accommodated in impoverished 

devices, still allowing itself to be scaled to more privileged devices.  

The design of UbiqDir meets these requirements by providing an active, extensible 

functional model that allows all but the primitive service to be dynamically configurable 

according to the system requirements. 

 

7.4.3 Requirements for Distributed-operation Model 
 

By embedding the directory service in every participating resource, our architecture 

ameliorates a peer-to-peer distributed operation model, avoiding performance bottlenecks 

and single node vulnerability. 

The distributed operation of a directory service includes policies and protocols for 

discovery, replication, partitioning, caching, consistency, load-balancing and fault 

tolerance.  

Clearly, all of these functions depend on the system requirements and application needs 

that vary from one active space to another in a ubiquitous system. For instance, it might 

be desirable to support strong consistency in environments that are stable and have low 

access latency whereas eventual consistency with periodic updates might suffice in less 

stable environments [Winoto99]. Similarly, it might be more efficient to replicate data in 

certain environments and partition in others [Winoto99].  
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Hence, the distributed operation model should not be part of the core directory service, 

rather the directory service should provide mechanisms to efficiently support different 

distribution operation policies, according to application and system requirements. 

Further, configurable distributed operation protocols could also lead to interoperability in 

the face of different standards. This reiteration of the end-to-end arguments [Saltzer84] 

for system design is most pertinent to address the heterogeneity, dynamism and context-

awareness of a ubiquitous system.    

In UbiqDir, the extensibility in the functional model allows a configurable distributed 

operation to support an efficient end-to-end system design.   

 

7.4.4 Requirements for Security Model 
 

The security model of a directory service ensures secure access and modification of its 

internal state. Encryption and/or integrity checking of the messages generated and 

received by the functional interface achieves secure interaction, while access control lists 

and/or capabilities are used to support authenticated access and modification of internal 

state.       

A ubiquitous system would inevitably comprise a multitude of low-level networking 

protocols, some secure [Haartsen00] others insecure [HomePNA]. Similarly, some active 

spaces could be assumed to define a closed security domain while others might have to 

route packets on insecure links. Hence, encryption need not be embedded in the fixed 

core of the directory service, instead it can be deployed dynamically for environments 

prone to spoofing attacks or where the low-level protocols do not already have support 

for encryption.   

Access control with authentication, however, is a necessity as resources participating in a 

ubiquitous system might come from different manufacturers and belong to different 

users.  Hence, access and modification of descriptions exported by different resources 

could only be allowed to legitimate entities.  

UbiqDir provides a fine-grained access control and authentication to meet these 

requirements.  
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7.5 Information Model 
 

The information model of our directory service is based on XML. Experience with 

AutoHAN showed that XML is ideally suited for storing structured but irregular 

information that is required to capture the state of a ubiquitous system comprising 

resources of varying number and type of attributes.  XML’s string-based representation 

and loose matching of tag strings naturally lends to lookups when only a partial 

description of a resource is known i.e. “intent”.  

While systems like X.500 [X.500] and INS [Winoto99] define their own string-based 

information models that lend to efficient lookups, the raison d'etre for XML in UbiqDir is 

that it is a convenient format for tree-structured data that can be viewed and understood, 

at least to some extent, by a viewer, person or application that does not have full 

knowledge of the formal structure of the tree.  Instead, the recipient may have partial 

knowledge, or knowledge of a previous release of the structure definition, or may infer 

the structure and meaning from the direct use of English and ASCII in the XML format. 

Parts of an XML tree that are not recognized can be ignored while still correctly parsing 

other parts of the same XML document.  An example is that XML can be viewed in a 

web browser with or without style-sheets to define the view.  Therefore, XML is 

potentially a future-proof method of storing structured data, unlike say, early MS Word 

documents, that needed exactly the correct version of Word to read them, and unlike 

CORBA and Java RMI, where access to the same definition file is needed by both the 

sender and receiver of data in these formats. 

An important, and debatable, issue is how to drive the description hierarchy in the 

directory service. Clearly, resource descriptions can be stored in several hierarchical 

ways based on geographic location, multicast scope, access privileges, price, resource 

functionality etc.    

Depending on the distribution of the data stored in the directory, any of these can 

effectively organize the directory hierarchy that is efficient for lookups. UbiqDir can, of 

course, support any hierarchical distribution but we chose to drive the hierarchy is our 

directory service based on resource functionality for two reasons.  
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• Resource descriptions as functional hierarchies, as opposed to, per se, geographic 

location based hierarchies, allows pure names that are efficient to search [Birrell82] 

i.e. names that do not need the client to know the location of the resource as, for 

example, is required by DNS.   

• The decisive factor however is the “general-category” interoperability leveraged by a 

functional hierarchy that is not natural to any other organization of data i.e. if an 

application does not know the exact functionality of a device, it could look it up by 

using an unspecific classification higher up in the hierarchy. For example, 

Output/Audio/HiFi can be looked-up and used just as an Audio or even as an Output 

device if the description HiFi is not known or required. Applications can discover the 

resources using their classification and interface description registered with UbiqDir 

and use the Java reflection API to invoke their interfaces.    

 

Resource descriptions consist of attribute-value pairs, organized in a hierarchy. An entity 

in a ubiquitous system, such as a closed circuit camera, is stored as a fully qualified 

name, or point, which is similar to the distinguished names in X.500 [X.500] in its 

hierarchical structure. A point is a concatenation of all the XML tags, starting from the 

root of the directory, that both identifies the object according to its place in the resource 

hierarchy and lists attribute-value pairs that delineate the device according to its 

functionality and context.  For example, an object belonging to the object hierarchy of 

Input/MultiMedia/Video/Camera/StillCamera/, having static attributes of a 10-sec snap 

shot frequency, a 5-requests capacity and output format of .jpeg, context-aware attribute 

of a location of corridor, and dynamic attributes of current load of requests would be 

represented in the directory service as shown in figure 7.1.  
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Fig. 7.1 An Example Resource Description Registered with UbiqDir 

 
 
 
Although, the whole point of using a string-based information model is to allow arbitrary 

number and form of data to be stored and looked-up with flexibility offered by string 

manipulation operations, UbiqDir requires that every mobet description should include 

description of its functional interface, and events offered by it, conforming to the format 

described in chapter 6.  Additionally, UbiqDir requires that every mobet description 

includes an <address> tag, along with a nested <address type>, to allow other agents to 

get to it. The type of the address indicates the preferred protocol to be used by other 

agents in the system to send message to the looked-up agents e.g. IP, Ethernet. (Chapter 8 

shows how this addressing scheme supports flexible protocol stacks in UbiqtOS 

according to application requirements).  

UbiqDir enforces the description rules by validating the agent descriptions before they 

are allowed to install themselves with an instance of UbiqDir. Mobets not conforming to 

this requirement are denied registration and hence cannot be installed with UbiqtOS. Use 

of XML shows its merit in this respect as well, as the XML parsers can be configured 

with a DTD Schema [Ludascher99] to allow validation (read type-checking) of certain 

tags in an XML document without imposing rules on other tags. UbiqDir Schema allows 

<Input> 
   <Multimedia> 
      <Video> 
         <Camera> 
            <StillCamera> 
                <SnapFrequency type=static> 10 sec </SnapFrequency> 
                <Capacity type=static> 5 </Capacity> 
                <Format type=static> jpeg</Format>  
                <Location type= static context> Corridor</Location> 
                <CurrentLoad type=dynamic arguments=Camera> load.jar </CurrentLoad> 
                <address>255.255.244.255<type>IP</type></address> 
                <Hash> A34C7DBA</Hash> 
           </StillCamera> 
         </Camera> 
     </Video> 
   </Multimedia> 
</Input> 
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the agent description to include any information as long as it allows both local and 

remote agents in the system to discover and invoke its interface to allow dynamic 

composition of services.  

 

 

7.6 Functional Model 
 

The functional model of our core directory service is simple and extensible. The 

functional model allows entities of any sort to be registered, unregistered, updated, and 

looked-up both by qualified point names and “intent”.  

The lookup() interface supports intent-based lookups by allowing non-qualified names, 

somewhat similar to relative distinguished names in X.500 [X.500] i.e. resources can be 

looked-up by any subset of XML tags and values comprising a point. Attributes that are 

required but whose value does not matter are specified by “ANY” for value in the look-

up i.e. a wildcard.  

Two relational operators, greater-than-equal-to and less-than-equal-to, are supported for 

range comparisons in lookups. Ranges are especially useful to express the varying 

properties of a wireless link. Similarly, conjunctions, disjunctions and negations are 

supported to formulate compound queries. Two “superlative operators”, maximum and 

least, are also supported which return the resource with the maximum and least value 

respectively. This expressiveness proved adequate to formulate queries in AutoHAN 

[Saif01].  

Each entry in the directory service is allocated a large, secure ID which both serves to 

distinguish identical resources and as a secure hashed-index for faster lookups. These IDs 

include a 32 bit random portion, to minimize the chances of a collision between IDs 

generated by different instances of UbiqDir. The register() operation returns this ID on 

success. Clients can then use this ID to update() and unregister() a registered resource 

without quoting the full-point name every time.  

The register() operation inserts the resource description at the appropriate location in the 

directory hierarchy according to its qualifying name. If a partial point name is used, then 

the register function inserts the object in the XML tree in the same sub-tree as any other 
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Fig. 7.2 This figure shows the algorithm to generate IDs in UbiqDir. 
An ID comprises the concatenation of the labels of arcs along the fully-qualified point 

name of the resource, augmented with a 32 bit random number. These IDs uniquely 
identify a resource in its context and serve as a secure index to allow fast updates and 

deletes. 
 

 

 

previously registered element of the same category (having the same sub-hierarchy). A 

fully qualified name belonging to no previously registered hierarchy will, naturally, 

create a new section in the hierarchy. The write function includes an ID with the 

description of each resource registered with UbiqDir. This ID uniquely identifies the 

resource and serves as a secure index for faster future lookups and serves to reduce 

network traffic for updating the resource, especially when renewing its lease. The ID is 

generated by a simple algorithm as follows. The register method keeps a simple counter 

and labels every arc in the XML tree using a (monotonically increasing) number; every 

new arc inserted in the XML tree gets a number higher than the last arc inserted in the 

tree.  The ID is simply the concatenation of integers along the point’s fully-qualified 

name; a traversal from the root of UbiqDir namespace to the root of the subtree that 

stores the resource attributes. The ID therefore encodes the path to find the resource 

description in the XML tree and hence serves as unique identifier for the resource. 

Additionally, the ID includes a 32 bit random number to uniquely identify the resource in 

its context so that IDs generated by different instances of UbiqDir in a context do not 

collide with one another. The sparseness of the 32 bit address space also makes the ID 
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secure. This index is returned by UbiqDir when a resource is successfully registered with 

it. Clients can then use this unique ID, instead of quoting the whole XML description of 

the resource, to update and delete the resource. Figure 7.2 illustrates the use of indexes in 

UbiqDir.  

As update() and delete()-ion of a registered resource can then use this ID alone, instead of 

the complete point, to identify the resource: it appreciably reduces network traffic and 

lookup overhead to update the resource.   

The lookup() operation, when presented with a resource description, performs a breadth-

first search of the XML tree and returns the complete fully-qualified point name(s) of the 

matching resource(s) i.e. resource’s place in the hierarchy and all the attribute-value 

pairs, along with the lease of the registered resource. Lookups specifying fully-qualified 

point names yield only the resources that exactly match the query whereas an intent-

based lookup returns all the resources matching the (partial) description of the looked-up 

resource. The resource selection policy is left to the applications or to the Dispatcher 

module. This is much more flexible than white pages lookup services like DNS that just 

resolve a name to an address and restricted yellow pages services like INS [Winoto99] 

that make the resolution and routing decision based on just a single metric. Our 

architecture allows the selection based on configurable policies that could make a choice 

depending on any combination of attributes that could be static, dynamic or context 

driven e.g. least latency, least load, maximum capacity, snap frequency greater than 10 

snaps/sec.    

UbiqDir is based on the principle of soft-state [Clark88]. Where soft-state enables fate-

sharing and leads to self-recovery that helps address the dynamism and mobility in the 

system [Winoto99], it can burden the network with the overhead of refresh messages 

[Winoto99]. We address this issue using adaptive lease intervals, that are adjusted to suit 

the dynamism of an active space. The register() function takes a value-result parameter as 

a second argument that is used by the resource to suggest a lease within which it is happy 

to renew its registration by using update() with a new lease value. The directory service, 

in return, sets this value to an interval that it deems suitable for refresh. It could either be 

equal to the suggested value or a different value that is calculated to be suitable for that 

environment.  The lease suitable for a system depends on a number of factors and, hence, 
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needs to be configurable for an efficient operation. In our architecture, “lease” is itself a 

special entity that is registered by the lease agent, part of the overlay, with a value 

suitable for an active space. This value is looked-up by the directory service to decide a 

lease. In our architecture, a special mobile agent called lease-agent, deployed as an 

extension to UbiqDir, takes into account the network bandwidth to node ratio [Veizadez 

97], network reliability, an average of the suggested lease times, latency in the network, 

and the number of pre-mature failures of resources (lease expires).  These and other 

factors have unequal importance depending on the system conditions e.g. high latency 

increases the lease time as it indicates a wide-area active space, pre-mature failures 

decrease the lease time as this indicates an unstable environment and so on. Configurable 

lease intervals combined with ID based updates reduce the refresh overhead that 

dominates performance in soft-state based systems [Winoto99].  

This leads to the discussion of dynamic attributes in a resource description. Although no 

other directory service has explicitly addressed this issue, directory designs 

[Czerwinski99] [Winoto99], based on soft-state have the provision to get around the issue 

by enforcing short refresh intervals, to place an upper-bound on the staleness of view. 

Clearly, this introduces an undesirable tradeoff of exacerbating the refresh overhead 

against stale-views in the face of dynamism.  

UbiqDir addresses the issue by allowing the dynamic attributes to be executable mobile 

agents written in Java. When a resource is lookup()ed-up, the agents pointed to by its 

dynamic attributes are executed by the directory service (with the arguments registered 

with the agent) and the values computed by them are returned as part of the complete 

point name. As these agents are dynamically deployed by the system according to context 

requirements, they are free, however, to use any caching policy within themselves that 

suits the dynamism of the system. Secondly, this approach allows dynamic attributes to 

be context-driven, unknown to the device, by allowing the system to augment the device 

descriptions with dynamic attributes pointing to mobile agents tailored for that system. 

Finally, this scheme allows the mechanism used to calculate these attributes to be 

configurable e.g. ICMP ping or link layer echo to measure latency, consistent with the 

networking standards of an active space. Update() can be used to change the description 

of a registered resource, in addition to renewing its lease. Unregister() is provided to 
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force an immediate deletion of a resource. Though this operation might appear frivolous 

in a soft-state based design, we have found it to be especially useful in implementing 

distributed policies to ensure stronger consistency between directories, as described under 

distributed operation.  

Finally, the functional interface of the directory service supports a method to check() the 

existence of a resource, given a hashed-index. This interface returns the lease of the 

resource if it exists and null otherwise. We have also found this interface to be especially 

useful to support distributed caching policies as described under distributed operation.  

 

 

7.7 Implementation of Romvets 
 

The search operations implemented by UbiqDir core are used to implement the 

subscribe/notify Romvets architecture described in chapter 5.  

The lookup, register, delete and update operations of UbiqDir are used to implement the 

notify, subscribe, delete and update operations of the Romvets interface respectively.  

Notify operation involves lookup of any matching event-handlers and their invocation 

using optimization implemented with Kaffe. Subscribe is just another interface for the 

register operation in UbiqDir, which allows subscription for events by registering the 

XML description of the desired arguments of the event. Likewise, delete and update 

interfaces for Romvets are implemented by delete and update operations of UbiqDir.  

The soft-state of UbiqDir fits well with the Romvets model allowing automatic purging 

of obsolete subscriptions. 

 

 

7.8 Extensibility in UbiqDir 
 

The design goal of a simple core with configurable policies has already been emphasized 

to effectively address the challenges posed by the heterogeneity and dynamism of the 

system.  
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 Fig. 7.3 Events offered by UbiqDir to Request Extensible Distributed Operation 
 

 

 

Extensibility in UbiqDir, indeed, follows the generic mechanism of extensibility in 

UbiqtOS: UbiqDir generates a synchronous event, using Romvets, corresponding to its 

functional interface to request context-specific distributed operation. 

The directory core generates five events corresponding to its functional interface to 

indicate changes in the description of resources registered with it, as shown in fig. 7.3. 

The “Lease_expired” event is the only event that is generated spontaneously by the 

directory service, triggered by the expiry of a lease. All other events result from the 

corresponding operation on the functional interface of the directory service i.e. register, 

unregister, update and lookup. 

The mobile agent deployed on an instance of UbiqDir use its subscribe(String 

event_name, XML_ResourceDescription) method to register interest in any of the five 

events offered by the directory service to extend  its distributed operation. The 

subscribing agent is notified whenever the corresponding function is invoked or a lease 

expires for a resource matching the XML description specified (as the second argument) 

when subscribing. This allows extensions to support policies on the granularity of an 

individual resource.  

The mobile agents implement the distributed operation of the directory service by 

subscribing and handling these events from one instance of UbiqDir and disseminating 

this information about changes in the local directory to their peers on the network using 

policies and protocols suitable for an active space.  

 

 
Boolean Registered(String resource, Time lease),  
Boolean unregistered(String resource),  
Boolean updated(String resource, Time lease),  
Boolean lease-expired(String resource) 
String looked-up(String resource, Time lease, Boolean exists) 
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Fig. 7.4 Extensible operation of the directory service 
 

 

These mobile agents implement an event-handling interface that is up-called by the 

directory core to deliver a corresponding notification. When notified, these mobile agent 

event-handling routines block and return a value once finished executing. The event 

handlers registered for an event are all executed after the corresponding local operation is 

performed and before the result for the function is returned. The functions corresponding 

to events return only after all of the event handlers for an event have returned a value. 

Romvets collects all the results in a vector and returns it to UbiqDir. This vector is used 

by SEMAS to determine the result of the extensible operation, as described in the next 

section. 

For all event-handling except the lookedup one (which returns a string value), UbiqDir 

takes logical OR of the boolean values returned by the event handlers. “False” value 

forces an error condition to be returned for the corresponding function, while a true value 

causes normal operation to resume with the corresponding values returned. It is the 

responsibility of the event handler to “undo” the action of the corresponding function 

before returning a false value.  

The handlers for looked-up(resource, lease, exists) event return a string value. If the value 

of “boolean exists” is set to false by UbiqDir when generating the event, that indicates 

that the looked up resource was not found in UbiqDir, then the extensions search for the 

agent with the matching description in the device context and, if found, return the XML 
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description as a string. UbiqDir can then return these values as the result of the 

corresponding lookup() operation.   

This basic extensibility provides configurable distributed-operation and allows more 

sophisticated models for application adaptation [Esler99][Banavar00] and production 

rules to be supported on top of this basic model [Ceri96], as discussed in section 7.9. 

 

 

7.9 Distributed-operation model 
 

The peer-to-peer model provided by embedding a directory service in every resource, and 

the extensibility provided by the subscribe/notify events architecture allow sufficient 

flexibility to support configurable distributed operation to suite the requirements of the 

current active space of a resource. This section shows how we have used this model to 

implement a range of distributed-operation policies and protocols to allow context-aware 

adaptation of UbiqDir’s distribution operation, refer to fig. 7.4.  

 

 

7.10 Discovery and Caching 
 

All of the local resources in a device are registered with its local instance of UbiqDir. The 

first consideration for distributed operation is how to make these resources accessible to 

other entities in the system. In other words, how do the resources discover other non-local 

resources in the system? In our system, this translates into how and when do the instances 

of UbiqDir embedded in every device exchange their information? The answer of course, 

as stated above, depends on the active space requirements and networking standards. 

Hence, making such a mechanism part of the core service, like the assumption of well-

known multicast channels in SSDS [Czerwinski99] and SLP [Veizadez97], could lead to 

inefficiency and limit interoperability.  Second, the scope of the context of the device also 

depends on the active space the device happens to be in; the context of the device could 

be all the other devices on the same IP subnet, on the same bluetooth ad-hoc network etc.  

In UbiqDir, the “looked-up” and “registered” events generated by the UbiqDir core are 

used by the mobile agents to implement different discovery policies. Mobile agents  
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Fig. 7.5 UbiqDir can support multiple discovery protocols simultaneously, each for a 
different standard and network interface. These discovery protocols are deployed as 
extensions to UbiqDir and subscribe to the “looked-up” event, generated whenever a 

resource description is lookedup in UbiqDir. These extension can then find the matching 
resources in their respective networks and return the descriptions to the mobile agent 

looking up the resource.  
 

 

 

deployed to implement discovery policies and protocols subscribe to the “boolean 

looked-up(string resource, Date time-lease, boolean exists)” event to be notified 

whenever a particular resource is being looked-up. They check the “boolean 

exists”argument to determine whether the resource is registered with the local instance of 

UbiqDir. If the value of this argument is set to false by the directory then the event 

handlers for the “looked-up” event block and search for the resource on the network. The 

discovery mobile agents contact their peers on the network, which lookup in their local 

instance of UbiqDir and return the resource if one matches the desired description. 

Further, the requesting agents can selectively cache some of the entries hence discovered, 

by registering the description with the local UbiqDir, to avoid future lookups on the 

network. The core checks the value returned by the discovery mobile agent and if the 

value is not set to null by a discovery agent then the resource description returned by the 
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agent is returned for the corresponding lookup operation. Similarly, the event handlers for 

“registered” event can pre-fetch some of the entries from other remote directories.  

These event handlers, of course, are free to use any low-level networking protocol 

suitable/standardized for that environment.  

Multicast invocations [Bershad95] leveraged by modeling extensions as event handlers, 

allow more than one discovery protocol and policy to be used simultaneously, each, for 

instance, for a different scale in a wireless overlay network [Katz96].  We have also used 

this model to support “ubiquitous-discovery”, where a multi-homed device can discover 

resources on more than one network  (IP and ATM in our case) corresponding to its 

network interfaces. Resources in our test machine can successfully discover resources 

both on the lab wide IP/Ethernet network and Warren [Greaves98] ATM network, 

simultaneously, by deploying two mobile agents, as event handlers for “lookedup” event, 

that transmit discovery packets on the corresponding network layer when notified, as 

shown in figure 7.5.  The IP/Ethernet discovery mobile agent discovers the resources in 

the same IP subnet, while the Warren discovery mobile agent discovers resources on the 

Warren network.  

Likewise, these event handlers can support any high-level discovery protocol. For 

example, we have prototyped a simple SLP [Veizadez97]  style discovery protocol, as an 

extension to UbiqDir, which allows resources to be discovered in the same SLP domain.  

Similarly, other protocols like Salutations [Pascoe99], and SSDP can be supported.   

 

 

7.11 Replication and Consistency 
 

Once discovered, descriptions of the resources can be cached at the local instance of 

UbiqDir to avoid future lookups on the network. However this replication of information 

raises issues of consistency.  

Several consistency algorithms have been proposed in the past, each suitable for a 

different set of system idiosyncrasies and application requirements.  

Stable systems with stringent data integrity requirements warrant strong consistency 

mechanisms like two-phase locking and transaction-based updates like two-phase 
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commit, while eventual consistency sustained by soft-state refresh messages has been 

argued to be sufficient and desirable for dynamically changing systems like mobile 

networks [Brewer98].  

Soft-state in our architecture provides default recovery, while events offered by the active 

core allow stronger consistency policies to be supported. Lease timeouts cause loss of 

remote state, which could lead to on-demand discovery and performance degradation, but 

whatever state is replicated can be managed by different consistency policies for correct 

operation. This architecture provides the desired robustness in the face of system 

dynamism while allowing mechanisms to efficiently meet requirements of stronger 

consistency under varying system conditions.  

We have prototyped two-phase commit style transaction-based updates using this 

architecture. Mobile agents in devices with persistent storage can use registered, updated 

and unregistered events to ensure that changes in the local state are not committed until 

all of the replicated state is updated. The event handlers for these events only return true 

after all of the replicated state is updated, by contacting their peers and using distributed 

transactions to inform them of the changes in the state at the local instance of UbiqDir. It 

is the responsibility of the event-handling agent to rollback the transaction before 

returning an error condition to make the corresponding state modification operation fail. 

We have found eventual consistency sufficient in our home network system for most of 

the services, though stronger consistency is used for security critical services and when 

stale information can adversely affect system performance. For instance, it is imperative 

to quickly disseminate the information that the burglar alarm has been shut down. 

Similarly, it is beneficial to make newly registered resources immediately visible in the 

system to avoid poor choices to be made when new resources can better satisfy the 

indicated requirements.   

Likewise, a range of consistency policies between these two extremes can be supported 

depending on the system requirements. We have found strongly consistent register 

operations with eventually consistent unregisters to be an efficient model for mobile 

clients, as new resources made accessible to the client are usually the nearest ones 

available and often present the “best” choice. Resources that are made inaccessible by 

client mobility already present a poor choice in terms of accessibility, reflected in their 
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dynamic and location attributes, and a false indication of their presence does not lead to 

rebinding that could adversely effect system performance. 

 

 

7.12 Load Balancing and Fault Tolerance: Overlay topologies 
 

The replication of state provided by the events offered by the directory service can be 

used to distribute state for better load balancing and fault tolerance. In the extreme case, 

all of the entries corresponding to local resources can be distributed to every directory in 

the system so that the lookups can be performed locally to protect the source host from 

query overload.  This model works well when eventual consistency is acceptable but 

incurs high overhead of synchronization when stronger consistency is required. 

This architecture is also the key to scalability for wide-area active spaces. Overlay agents 

can be used to dynamically organize the directories in the system in any topology suitable 

for the requirements of an active space. State is replicated, updated and retrieved 

according to this topology to make lookup, register, unregister and update traffic scalable. 

We have prototyped three overlay topologies using our framework.  

In the first topology, the discovery agents organize themselves in a hierarchy and use 

bloom-filters [Mullin83] to route queries, as proposed in [Czerwinski99]. Where bloom-

filters provide a scaleable hierarchical structure, they are prone to generating spurious 

network traffic because of false positives. We have found this scheme to be most 

amenable to intent-based lookups in smaller active spaces, e.g. smaller rooms in our 

reference implementation of a home area network [Saif01], but wastes appreciable 

bandwidth for low-bandwidth ad-hoc wireless network like IrDA. 

In the second approach, the discovery mobile agents organize themselves in a multicast 

spanning tree, as proposed in [Winoto99]. This approach efficiently utilizes network 

bandwidth but provides no fault tolerance, as link disconnections can lead to network 

partitioning. Given that most of the network links in our Home Area Network are 

reliable, we have found this topology to be most suitable.  
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Finally, in the most basic topology, the mobile agents deployed broadcast everything on 

the network. Where it leads to broadcast storms, this topology provides the maximum 

fault tolerance, and is well suited to active spaces with a high degree of dynamism.  

Similarly, other overlay topologies and group communication protocols can be used by 

the mobile agents, suiting the requirements and characteristics of an active space.  

 

 

7.13 Context-aware Adaptation and Production Rules 
 

By unifying the events architecture with the lookup service, our architecture also bridges 

the gap between resource discovery and corresponding application adaptation. 

Applications can subscribe to the events offered by UbiqDir to be notified about changes 

in the resource context. For example, an application that streams video from a virtual 

VCR to the best display available in the active space can subscribe and be notified when 

a new display enters the active space, or the older one becomes inaccessible, to allow it to 

rebind itself to a better display.  

Similarly, when notified about changes in the resources constituting the device context, 

mobile agents can be moved around among the accessible devices for load-balancing, 

fault-tolerance, high-availability. For instance, mobile agents can be moved to newly 

accessible device for load-balancing. Likewise, mobile agents can be replicated on more 

devices if a device with a replica becomes inaccessible (lease expire) to allow for fault-

tolerance and high-availability.  

Similarly, the events offered by the directory service can be used to support production 

rules as part of the overlay [Ceri96]. The production rules can be of varying granularities 

and are used for different purposes.  

We have used this feature to augment the AutoHAN model to automate our reference 

implementation of a home area network. The events generated by the active core can be 

used by AutoHAN event scripts. These production rules written specify event-condition-

action bindings to automatically control a home network [Saif01]. For instance, the lease-

expired and unregistered events can be used to express a home automation  
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Fig. 7.6 An example production rule for events offered by UbiqDir 
 

 

 

policy like “if the heating control stops working then turn off the boiler”, as shown in Fig. 

7.6. 

Similarly, production rules written in a well-specified algebra allow integrity constraints 

to be imposed on system operation and to detect and resolve conflicts in system 

operation. For instance, the system can impose policies to detect and report or 

permanently shut down a faulting resource that comes up and goes down regularly etc. 

Similarly, it could be forbidden to register a resource when some other similar resource is 

already registered with the same attributes by another incompatible manufacturer etc.   

This work is the subject of next phase of research in the AutoHAN project.  

 

 

7.14 Security Model 
 

The security model of UbiqDir ensures legitimate access and modification of its internal 

state. Every entry in the directory service includes a list of entities that are allowed to 

access and modify the entry. 

This access control list is part of the description exported by the registered resource 

(shown in figure 7.7). 

Every tag comprising the resource description can specify its access control list. The 

access control list part of a tag higher up in the hierarchy is cascaded to the tags lower in 

the hierarchy if a successor tag does not specify its own access control. Hence, access 

control specified by a resource is also applied to all of its attributes, though attributes are 

free to override it. This allows a fine-grained access control where some of the sensitive 

attributes can have selective visibility and modification privileges while others have the  

 

 
unregistered(<heatingcontrol>Central</heatingcontrol>)  | 
leaseexpired(<heatingcontrol>Central</heatingcontrol>)  Å boiler.turnoff()
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Fig. 7.7 Access Control Specification in UbiqDir  
 
 
 

same access control as the exporting resource. This implementation is also useful to 

accommodate attributes exported by system context e.g. location service. Context-driven 

attributes are exported by system services and, therefore, need to give modification 

privileges to services other than the resource. 

The access control list comprises names of groups with appropriate privileges. These 

names refer to a group membership hierarchy within the directory service (fig 7.8).  

“None” and “everyone” are well-known keywords known to the directory service. 

Resources are authenticated using a capability-based system. As stated above, a secure ID 

is returned when a resource registers its description with the directory service. This ID 

serves both as a capability to authenticate the resource and as an index into the hierarchy 

for faster updates. The capability is internalized i.e. it is only meaningful to the issuing 

directory service.  

Capabilities in our architecture are transferable and resources can assume the privilege 

levels of one another by exchanging capabilities. The exchange is done outside the 

directory service framework. To be registered at level n in the group membership 

hierarchy, the registering party needs to provide the capability of the resource at level    

n-1. The privilege level of an ancestor in the group membership hierarchy is inherited by 

its successors.  

 

<StillCamera Access=Everyone Modify=StillCamera, Owner> 

   <SnapFrequency type=static> 10 sec </SnapFrequency> 

   <Capacity type=static Access=StillCamera> 5 </Capacity> 

   <Format type=static> jpeg </Format> 

   <Location type=static context Modify=LocationService StillCamera> Corridor </Location> 

   <CurrentLoad type=dynamic Modify=None> load.jar </CurrentLoad> 

   <address> 255.255.244.255 <type> IP </type></address> 

   <Hash Access=none Modify=none> A34C7DBA</Hash> 

</StillCamera> 
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Fig. 7.8 An Example Group Membership Hierarchy of Principals  in UbiqDir 
 

 

This basic authentication and access control scheme is also used to ensure that only 

legitimate agents in the overlay are notified about the events generated due to a resource. 

Agents not in the access control list are not notified with the events corresponding to a 

resource. Extensibility introduces thorny issues of system security and integrity. The 

authentication and access control only provide a rudimentary solution based on the 

assumption that extensions coming from responsible resources would not misbehave. 

Though Java’s type safety and sandbox guarantee that misbehaving extensions cannot 

access and modify arbitrary system components, our security model does not protect 

against extensions that block forever. Terminating these extensions after an arbitrary time 

can leave the system in an inconsistent state [Small96]. The runtime overhead introduced 

by instruction level rollback to undo the wrong doings of a misbehaving extension makes 

this solution infeasible for embedded devices. This is still an open research issue and a 

subject of our current work.  

Encryption is optional in our architecture. Overlay agents can use encryption if the 

underlying network is insecure or the network is prone to active security attacks. This 

also allows different encryption algorithms to be supported suiting the system 

requirements. 

 

 

 

 

 

 

 
<Everyone> 

<Owner> 
<Rob/><David/> 

</Owner> 
<StillCamera/> 

</Everyone> 
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7.15 Bootstrap 
 

As mentioned earlier, every component in UbiqtOS is modeled as a mobile agent and 

registered with UbiqDir to export it to other components in the ubiquitous system. In 

addition to the dynamically deployed extensions, this includes all the device drivers for 

hardware resources embedded in the device and the two components at layer 1 i.e. 

UbiqDir and SEMAS. As these components are fixed, they always return false to any 

mobility or life-cycle management requests (and hence those mobet methods are not 

shown as part of their external interface). However, these components register their 

network addresses and functional interfaces with UbiqDir like all mobets to enable other 

components to discover and make use of them. This allows the handles for layer 0 

components as well as UbiqDir and SEMAS to be used as destinations for migration and 

replication requests.  Indeed, that is how agents request to be migrated to another host; 

agents request to be migrated to a host by giving a handle of a fixed component at that 

host.   

 

 

7.16 Comparison with Related Work 
 

Naming and service discovery has been an issue since the inception of computer systems. 

A resource must have a name to let other things in the system reference it [Birrell82]. 

Classically, names have been divided into pure and impure names [Birrell82]. Where 

pure names provide location independence, their traditional representation as flat bit 

strings can lead to inefficient lookups. Therefore, most of the wide area naming systems 

like DNS and GNS support impure names where names are committed to fixed resolution 

contexts.  

This makes impure names unsuitable for ubiquitous systems [Winoto99], where names 

should mean what and not where [Toole92]. Additionally, resources in a ubiquitous 

system have varying number and type of attributes and can usually only provide an 

indication of the service they are looking for instead of its precise functionality. This 

renders directory systems based on strict type schemas, like Grapevine[Birrell82] and 

X.500 [X.500], overly restrictive to capture and lookup resource descriptions in a 
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ubiquitous system.  Our directory leverages XML’s simple string based representation of 

data and loose-matching of tags to provide a flexible namespace.  

The dynamism of a ubiquitous system cannot be captured by static descriptions alone.  

Further, the dynamic attributes of a resource are only meaningful when resolved from the 

client’s perspective. This aspect has not been explicitly addressed in any of the previous 

distributed system designs where directory services are, often physically separated, 

external repositories of static information. Discovery services based on soft-state, like 

SSDS and INS, can use refresh messages to limit the staleness of information in a 

dynamically changing system but this leads to an undesirable tradeoff between network 

traffic and processing overhead caused by refresh messages and staleness of information. 

UbiqDir addresses these issues by embedding an extensible directory service in every 

participating resource and by allowing dynamic attributes to be attached to context-

specific Java mobile agents that can calculate dynamic information according to system 

and application requirements. Use of active computations to resolve names has been 

explored in active names [Vahdat99] in the past, but the focus of that work has been to 

provide flexibility in wide area discovery and transport. Our architecture uses active 

computations to augment an indication-based lookup system to allow context-specific 

dynamism in resource descriptions.  

XML presents a human understandable description of the system that is not natural to 

other systems that use proprietary encoding of objects [Vinoski97] [Waldo99] to 

represent the state of the components in the system. Additionally, these directory services 

enforce fixed distributed operation policies and, more often than not, language-specific 

APIs to access and modify the directory service.  Examples include Sun’s Jini [Waldo99] 

that solely relies on RMI and java-centric APIs, and IBM T spaces. XML is used as a 

description format in UpnP discovery protocol [UPnP], but it lacks the expressiveness 

offered by our directory service. SSDS [Czerwinski99], on the other hand, provides a rich 

XML searching facility but lacks support for context-specific adaptation.  

Extensibility has been researched in other contexts, especially extensible operating 

system kernels [Bershad95] [Seltzer94], with the aim to provide application-specific 

adaptation of system components for better performance. The primary focus in UbiqDir, 

on the other hand, is context-driven adaptation to address the dynamism of the system 
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and to provide efficient interoperation of heterogeneous system components as a resource 

is moved from one active to another or new resources join an active space, changing the 

system characteristics.   

Active database systems [Ceri96] have been used to support production rules to support 

applications like trigger alarms and to enforce integrity constraints on the data stored in 

the database. Whereas, the events offered by our directory service are used to provide 

extensibility and to automate an active space, as well.  

Finally, UbiqDir allows different discovery protocols like SLP[Veizadez97]  and 

salutations [Pascoe99] to be supported atop the extensible core to leverage 

interoperability with existing services.  

With support for intent-based lookups, context-driven dynamic attributes, self-recovery, 

configurable distribution operation policies and support for production rules, while still 

managing to keep the core service simple enough to be accommodated in limited 

capability devices, UbiqDir addresses the dynamism, heterogeneity and context-

awareness of a ubiquitous system better than any other lookup or discovery service 

available [Veizadez 97] [Winoto 99] [Czerwinski 99]. 

 

 

7.17 Summary 
 

This chapter established the need for a naming system and a directory service to address 

the dynamism, heterogeneity and context-awareness unique to a ubiquitous system. It 

highlighted three characteristics of a ubiquitous name: intent-based lookups, dynamism 

and context-awareness. It then motivated the need for a configurable directory service 

and proposed that it should be part of the universal substrate to allow effective 

participation of resources in a ubiquitous system.  

UbiqDir, like all other extensible components in UbiqtOS, is divided in two parts, an 

extensible core and context-specific extensions. The core of the directory service 

provides the basic directory access operations and is based on soft-state to allow self-

recovery in the face of disconnections and node failures. The functional interface of the 

core offers sufficient expressiveness to register resources with varying number and type 
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of attributes and to lookup resources using any combination of relational and logical 

operators. The events offered by the active core are used to support context-specific 

distributed operation, application adaptation and production rules to leverage self-

organization of active spaces.  The XML-based namespace in our directory service 

provides maximum flexibility to accommodate resources of varying number and type of 

attributes and presents human-understandable representation of the state of a ubiquitous 

system.   

Security in our architecture is provided by fine-grained access control and authentication 

of resources. The overlay consists of Java mobile agents, running in the Java interpreter 

sandbox. This protects against misbehaving extensions from corrupting other system 

resources.  

The core of the directory is small enough to be accommodated in even limited-capability 

devices, as aprt of UbiqtOS, while extensibility allows context-specific scaling.  

We have found this functionality provided by UbiqDir to be adequate in a practical home 

area network, as described in [Saif 01]. 





 

 

“Those who can, build. Others simulate”  

Anonymous 

Chapter 8  

Implementation  
 

 

 

Chapter 5 presented an overview of the architecture of UbiqtOS to enable dynamic, 

application-specific and context-aware adaptation. Chapters 6 and 7 respectively 

described the architecture of SEMAS and UbiqDir to illustrate how distributed operation 

is dynamically adapted in UbiqtOS to suit the characteristics of the current context of the 

device. This chapter describes a prototype implementation of UbiqtOS using Flux Oskit 

[Ford97] and Kaffe [Wilkinson00]. It presents a “standard distribution” of the operating 

system, describing the components of UbiqtOS implemented and evaluated as proof-of-

concept.  

This chapter describes an 

• Implementation of a minimal micro-kernel to implement layer 0 using OSKit 

components 

• Implementation of extensible scheduling and protocol stacks 

• Implementation of Romvets, UbiqDir and SEMAS and 

• Implementation of default extensions for SEMAS and UbiqDir to support a working 

prototype   

 

This chapter also describes an optimization in Kaffe to efficiently execute the event 

handler for events routed by Romvets and shows how this architecture is used to 

efficiently support extensible scheduling policies and network protocol stacks at layer 2 

in the UbiqtOS prototype. Further, this chapter presents an optimization in the Romvets 

implementation to avoid repeated XML tree lookups for operations with low-latency 

requirements, like processing of packets arriving on a network interface, and shows how 
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this allows UbiqtOS extensible protocol stacks to deliver comparable performance to 

traditional operating systems.   

The prototype implementation of UbiqtOS demonstrates that a practical system can be 

built using the artifacts and principles proposed in chapter 5, 6, and 7. The prototype 

implementation shows that it is practical to support traditional operating system services 

atop an (optimized) interpreter to allow safe, dynamic, context-aware adaptation using 

mobile code to address the challenges posed by a ubiquitous system design.   

 

 

8.1 Background 
 

Any realistic OS, in order to be useful even for research, must include many largely 

uninteresting elements such as hardware dependent code for kernel startup, memory 

management, interrupt handling, context-switching, device drivers for embedded 

resources etc.   

As the purpose of implementing UbiqtOS is to demonstrate the benefit of dynamic 

context-aware and application-specific adaptation provided by layer 1, UbiqtOS 

implementation focuses on issues above the platform dependent code at layer 0.  Instead 

of implementing all these low-level details from scratch, UbiqtOS is implemented using 

the Flux OSkit framework from University of Utah [Ford97] to implement layer 0.  

Although, the prototype implementation was done on x86 platform due to the availability 

of prototyping tools (like OSKit), it can clearly be done on any other platform supported 

by embedded devices. The implementation was done on a diskless machine with limited 

RAM (12MB) and multiple network interface cards to emulate an embedded device of 

the future.  

 

8.2 Implementation of Layer 0 
 

Layer 0 of UbiqtOS prototype is implemented using the Flux OSKit from University of 

Utah [Ford97].  
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Fig. 8.1 OSkit: The COM-based framework and modularized libraries provided by OSKit 
to implement an operating system.  

 
 
8.2.1 Flux OSKit 
 

The Flux OSKit (shown in Fig. 8.1) provides a framework and a set of modularized 

libraries with well-specified interfaces to assist in the construction of an operating system 

on the x86 hardware. It provides functionality such as simple bootstrapping, memory 

management, debugging support for kernel development and even high-level subsystems 

such as protocol stacks and filesystems. The OSKit is designed to give developers an 

easy starting point to investigate more-involved issues in operating system research. 

OSKit’s modular structure allows developers to replace the generic functionality 

provided by the framework with their own code to selectively specialize the operating 

system to suit their research goals.  

 

8.2.2 Changes made to OSKit  
 
Where OSKit framework encapsulates and exports hardware resources at an appropriate 

level of abstraction to allow high-level operating system development, it needed to be 
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changed in the following ways to implement the UbiqtOS architecture presented in 

chapter 5. 

  

8.2.3 Support for Dynamic Extensibility 
 

OSKit provides a build-time extensible system where components can be compiled 

together to assemble a custom operating system. Whereas, UbiqtOS is based on dynamic 

extensibility. Though OSKit is primarily used to implement the fixed, hardware-

dependent substrate at layer 0, the following three modules of OSKit needed to be 

changed to allow dynamic extensibility proposed in chapter 5.  

• The OSKit scheduler was changed to allow dynamic adaptation of scheduling 

policies to suit the requirements of the context-specific software deployed with a 

device. The modified scheduler generates scheduler activations[Anderson92], 

using Romvets, whenever required to make a scheduling decision. Extensible 

scheduling policies, deployed as Java mobile agents and executed by SEMAS, 

subscribe interest in these events and make scheduling decisions according to 

application requirements residing with the device.   

• The OSKit network communication framework was changed to allow dynamic 

adaptation of protocol stacks to suit the requirements, characteristics and 

standards of an active space. The packet drivers generate events, using Romvets, 

to notify interested components that a packet has arrived on a network interface. 

Network protocols, deployed as Java mobile agents to suit the characteristics and 

standards of an active space, subscribe to these events to implement network 

protocol stacks at layer 1.     

• Additionally, the OSKit scheduler and memory manager at layer 0 were changed 

to expose the memory and processor utilization to load-balancing agents at layer 

2. 

 

8.2.4 Changes Made to OSKit COM model  
 

Components in OSKit use Component Object Model [Rogerson97] for interface 

definition, discovery and garbage collection. COM model provides implementation 
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independent interface definition; any object can implement an interface to export a 

specific “view”. Each interface has its own independent function table through which 

methods can be invoked on the object implementing the interface.  

Interfaces are identified by algorithmically generated DCE Universally Unique Identifiers 

(UUIDs).  Further, given a pointer to a COM interface the object can be dynamically 

queried to return pointers to the other interfaces implemented by them. Interfaces also 

keep a count of pointers to themselves to allow for automatic garbage collection. Though 

this model allows OSKit components to be modularized as COM objects, it suffers from 

the following shortcomings to implement UbiqtOS.  

A reference to a COM object can be obtained only if its Universally Unique Identifier is 

known a priori. Given an interface UUID, the objects implementing the interface can be 

found using the COM Registry Object. OSKit itself is built around a bunch of COM 

registry objects that are queried to find other objects in the kernel. For instance, there is a 

registry object to find functions that implement the C library (libc) for POSIX 

environment e.g. malloc. As references to objects are obtained by searching the COM 

registry at runtime, this technique reduces static code dependencies even for low-level 

code, allowing existing objects to be replaced with new ones to allow specialization of 

the OSKit kernel. Though the design of UbiqtOS is itself essentially based on the same 

technique, OSKit’s use of dynamic lookups for this fundamental code introduces 

appreciable overhead in the critical path of operating system operation. Hence, two major 

modifications were made to the COM model employed by OSKit to make it suitable for 

implementing UbiqtOS.  

• The low-level functionality like kernel code, memory allocation objects, C library etc. 

were re-coded without the indirection of COM registries. It is worth mentioning that 

the OSKit developers also realized this shortcoming and OSKit code is scattered with 

“Macro-hacks” where the macros used to search the COM registers have been 

replaced by macros that serve to “inline” the code being accessed. In the UbiqtOS 

prototype implementation, all the indirections from the low-level code have been 

removed to integrate the code fundamental for kernel operation.  
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Fig. 8.2 Structure of OSKit components to implement layer 0 in UbiqtOS prototype.  
Compare with Figure 8.1 to note that only a minimal set of Oskit components are used. 

The dotted lines between components signify that the COM indirection has been removed 
to improve performance. The list based memory manager, FreeBSD packet driver and 

scheduler were modified to support dynamic extensibility. 
 

 

 

• Second, the interfaces for the objects used to control the resources embedded in the 

device, i.e. device drivers, are exported to layers 1, 2 in UbiqtOS as follows:- 

• The upper half of the device drivers (c.f. FreeBSD), used to send commands to 

the device, were changed to export themselves to UbiqDir at layer 1.  The device 

drivers export themselves by describing the capabilities of the device in XML 

along with the Java Native Interface (JNI) wrapper for its COM interfaces(c.f. 

agent descriptions in chapter 6) to UbiqDir at layer 1. This allows dynamic 

discovery of the resources embedded in a device without prior knowledge of the 

UUID of the interface implemented by its device driver.   

• The lower half of these device drivers (c.f. FreeBSD), used to handle interrupts 

from the device, were changed to generate corresponding events (upcalls) using 

the Romvets interface to allow extensions at layer 2 to subscribe to them to 

control the device.   
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8.2.5 Structure of Layer 0 
 

OSKit, as the name suggests, provides a range of objects from low-level bootstrapping 

code to high-level subsystems like a filesystem. Whereas, the goal of UbiqtOS is to 

minimize the fixed part at layer 0 and to push high-level services atop layer 1 to allow for 

context-aware adaptation. Hence, only a fraction of the architecture shown in Fig. 30 is 

employed in the UbiqtOS implementation. The purpose of layer 0 in UbiqtOS is to 

provide enough capability to support the three artifacts at layer 1 i.e. SEMAS, UbiqDir, 

Romvets. SEMAS requires a Java Virtual Machine to be ported on layer 0, whereas 

UbiqDir and Romvets are themselves implemented in Java (and compiled to native code 

for efficiency), and therefore do not need any special support from layer 0.   

Therefore, only that minimal set of components of OSKit is used that is just sufficient to 

support a minimal Java Virtual Machine at layer 1. All of the context-specific extensions 

that implement the operation of the operating system are executed within this Java 

Virtual Machine. This Java Virtual Machine supports extensible scheduling and 

extensible network protocol stacks i.e. scheduling and network communication are 

pushed atop layer 1, to allow adaptation by context-specific software deployed as mobile 

agents.  Therefore, essentially, layer 0 in the UbiqtOS prototype only includes the OSKit 

modules that implement hardware-dependent code for network interface cards, physical 

memory and context switching to support extensible protocol stacks, memory 

management and thread scheduling as part of layer 2. Additionally, layer 0 includes a C 

library to support a POSIX interface to allow the Java Virtual Machine to be ported atop. 

The structure of OSkit components at layer 0 in the prototype implementation of 

UbiqtOS is shown in figure 8.2.  

 

 

8.3 Implementation of Layer 1 
 

Layer 1 uses the support at layer 0 to implement its three artifacts that provide safe, 

application-aware and context-specific adaptation of UbiqtOS.  SEMAS requires a Java 

Virtual Machine to be ported atop layer 1, whereas UbiqDir and Romvets are themselves 

implemented in Java and compiled to native code for improved performance.  
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8.3.1 Kaffe Port for UbiqtOS 
 

OSKit comes with a rudimentary port of Kaffe [Ford97], a publicly available 

implementation of Java Virtual Machine, atop OSKit. This port, referred to as Java/PC 

[Ford97] by OSKit, basically resolves all the external calls made by Kaffe, primarily 

using the libc component of OSKit, to allow compilation of Kaffe atop OSKit. Kaffe 

threads are ported on top of POSIX threads component of OSKit and the Kaffe memory 

manager is ported atop the list-based memory manager in OSKit to allow Kaffe to 

execute Java programs.  

Although this Kaffe port for OSKit somewhat works, it is does not fit the UbiqtOS 

design. UbiqtOS is designed to allow context-aware adaptation of all those system 

services that could effect interoperability, efficiency or availability of the system. 

UbiqtOS design pushes all but the hardware dependent code atop layer 1 to allow for 

adaptation of operating system services using mobile agents executed by SEMAS, 

whereas the Java/PC architecture follows the conventional model of running a full blown 

virtual-machine atop a complete, fixed micro-kernel.  Therefore, the rudimentary port of 

Kaffe atop OSKit  

 

• Does not lend to adaptation of the operating system services proposed by UbiqtOS 

and  

• Results in a large memory footprint not suitable for embedded devices.      

 

UbiqtOS implementation addressed these shortcomings as follows. 

Kaffe implementation for UbiqtOS includes only a minimal fixed functionality. In 

addition to the support for JNI and Javah, UbiqtOS implementation has only the core 

Java classes (java.io.* , java.lang.* and java.util.*) statically linked with the Kaffe 

Interpreter. All other classes (like java.sql.*, java.beans.* etc), not needed in an 

embedded environment, are removed from the static image.  

UbiqtOS implementation also removes network protocol stack from layer 0, implemented 

by OSKit, and, consequently, its corresponding support from Kaffe (java.net.*). Network 

communication defines the basis for distributed operation and hence needs to be adapted 
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as the context of the device changes. Further, as UbiqtOS proposes explicit bindings that 

are looked-up and used like other mobile agents to allow communication between two 

agents, the classes that implement the sockets API are also not needed in Kaffe. Instead, 

as mentioned above, the packet drivers used to drive the NICs attached to the host are 

directly exposed, in JNI wrappers, to layer 2 to allow context-specific software to 

implement protocol stacks, as described in chapter 5.   

Further, as prototype implementation is targeted for diskless clients, all the classes 

needed to support a filesystem from java.io.* are removed from Kaffe. Note, the only 

abstraction used in UbiqtOS is that of a mobile agent, including “files”, which are mobile 

agents with additional methods to read and write byte streams.  

Similarly, no virtual memory is supported in the prototype implementation of UbiqtOS. 

Kaffe’s memory manager uses the simple list based memory manager of OSKit to 

allocate memory. However, to avoid ungraceful termination of programs due to abrupt 

exhaustion of physical memory, the list-based memory manager of OSKit is extended to 

support a “warning-scheme”.  In this scheme, the list-based memory manager generates 

an event, using the Romvets architecture, whenever the free memory on its list falls 

below a certain threshold (10% in the prototype implementation). Context-specific 

extensions can subscribe to this event to be notified that the local memory utilization is 

high and can request other mobile agents to migrate to another host to balance load in the 

system. The list-based memory manager of OSKit also exports itself to layer 2 by 

registering itself with UbiqDir to provide a JNI-wrapped COM interface that returns the 

percentage of free blocks on its list. This method can be used by agents that implement 

load-balancing policies, at agent launch time, and the agents that implement effective 

mobility.   

Finally, Kaffe’s scheduler is ported atop an extensible scheduler offered by OSKit to 

allow dynamic adaptation of scheduling policies to suit the requirements of the context-

specific software deployed at a device. Extensible scheduling is described below.   
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Fig. 8.3 Extensible scheduling in UbiqtOS, based on the model proposed in [Harris01]. 
UbiqtOS implementation uses Romvets to route scheduler activations to extend the model 

proposed in [Harris01] to provide dynamic extensibility. 
 

 

8.3.1.1 Extensible Scheduling in Kaffe 
 

Java/PC does not support adaptation of scheduling policies proposed by UbiqtOS design 

In UbiqtOS prototype implementation, Kaffe scheduler is ported atop an extensible 

scheduler part of the OSKit to implement extensible scheduling in UbiqtOS.   

The extensible OSKit scheduler used in the prototype is modeled using scheduler 

activations [Anderson92]. Scheduler activations are upcalls generated by the scheduler 

whenever it has to make a scheduling decision. These upcalls are handled by extensions 

that make the scheduling decision and return the process that should be scheduled next.  

Our UbiqtOS implementation follows the approach proposed in [Harris01]. In this 

approach the Kaffe scheduler maintains a one-to-one mapping between Java threads to 

POSIX threads at layer 0. When invoked to make a scheduling decision, the OSkit 

POSIX scheduler generates an event (scheduler activation) using the Romvets interface. 

The Romvets interface invokes the activation handler of the application-specific 

scheduler, running as a Java program inside the Java interpreter, that make the scheduling 
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decisions. The extensible scheduler at layer 0 presents the application-specific scheduling 

policy with its ready queue and the applications-specific scheduler returns the index of 

the thread that should be scheduled next.  A null return value indicates that the current 

thread should be blocked instead of a new thread being scheduled. A detailed description 

of the approach is presented in [Harris01].  

UbiqtOS implementation extended this link-time extensibility approach to allow dynamic 

adaptation by employing the decoupling leveraged by the Romvets interface. In UbiqtOS 

implementation, the Kaffe scheduler forwards these activations to the Romvets interface, 

which routes them to the programs that had registered interest in them. Hence, scheduling 

policies can be dynamically adapted by replacing the event handlers for these upcalls 

using the Romvets interface. Further, the extensible scheduler of OSKit also exports itself 

to layer 2 by registering itself with UbiqDir and supports a JNI-wrapped COM interface 

that returns the load on the system as the number of processes in its ready queue. This 

method can be used by agents that implement load-balancing policies, at agent launch 

time, and the agents that implement effective mobility to balance load in the system. 

Extensible scheduling in UbiqtOS is shown in figure 8.3. The UbiqtOS distribution 

comes with two schedulers; a simple round-robin scheduler and a proportional stride 

scheduler proposed in [Waldspurger95], for soft-real-time scheduling.  

 

8.3.1.2 Optimizations for Fast Event Handling 
 

The implementation of safe application-specific scheduling described above led us to 

implement an optimization in Kaffe.  

Extensions to UbiqtOS are deployed as Java mobile agents, executing inside the Java 

Interpeter at layer 1. The event-handlers implemented by these extensions, to handle the 

events generated by extensible services, are subroutines that are called by Romvets to 

request extensible operation. Where an ordinary subroutine invocation is satisfactory for 

extensions that implement context-specific distributed operation for UbiqDir and 

SEMAS, extensibility of low-level services like scheduling and network protocols require 

special handling.   
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The optimization resulted from the observation that the cost of a subroutine invocation 

inside the Kaffe interpreter itself incurs appreciable overhead in the critical path of a 

scheduling decision. The overhead is due to the time spent in allocating and pushing a 

stack frame on the interpreter stack, as noted by  [Harris01]. The optimizations proposed 

below reduces this overhead by more than 60%. With this optimization in place, 

extensible scheduling in UbiqtOS incurs an overhead of less than 9% (for the round-robin 

scheduler), which is comparable to other systems like [Harris01].     

 

8.3.1.2.1 Optimization in Kaffe 
 

The Kaffe implementation for executing event handlers for the events generated by the 

Romvets architecture was changed to allow fast-handling of events in order to support 

extensibility of services like scheduling and network communication that require low-

latency.  

First, the Kaffe implementation was changed to accept an additional argument from the 

(native code) calls from Romvets to execute a subroutine inside the interpreter. This extra 

argument specifies the memory blocks to be used by Kaffe to execute the subroutine. 

When invoked like this, Kaffe uses these memory blocks to hold the data structures used 

by the subroutine, instead of requesting Kaffe memory manager to allocate memory. 

The Romvets component is pre-allocated a pool of memory blocks (from the Kaffe 

memory manager) as part of boostrap sequence. Romvets uses these blocks to allocate 

memory for the values of the parameters of the events it generates analogous to fast 

memory management in operating system kernels (e.g. skbuffs). Further, when asked to 

invoke a subroutine as an upcall to deliver an event, Romvets invokes the event handling 

routines by passing these memory blocks to Kaffe. Kaffe uses these blocks to execute the 

specified routine to manipulate the event, instead of incurring the runtime overhead of 

going through the Kaffe memory manager to dynamically allocate a stack frame.  

This optimization is analogous to the interrupt handling scheme used in traditional 

operating systems, where interrupts are handled either on the running process’s stack or 

on a pre-allocated kernel stack, instead of incurring the runtime overhead of creating a 

new stack to execute the interrupt handling routine. However, statically pre-allocating 
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memory blocks wastes precious memory in an embedded device. But, as this scheme is 

only used for extensible scheduling and protocol stacks, only a small fraction of the 

available memory is allocated for this purpose (10% in the prototype implementation).   

This scheme is only slightly different from the deflated execution environment proposed 

in [Harris01]. Deflated execution environment proposes the use of a local variable table, 

instead of using the Kaffe global constant pool table, to speed up the execution. This 

prevents any local state to be preserved internally by event handling routines which is 

over restrictive for the UbiqtOS model where event handling routines may be required to 

keep internal state e.g. TCP protocol. Deflated execution environment, therefore, requires 

inflation (reverting to normal Java stack) to execute more involved code. Whereas, 

nothing in UbiqtOS’s scheme limits the operation performed by the event handlers.  

Using these optimizations Kaffe can invoke an event handling routine using 11 assembly 

language instructions on x86 instead of 34 required in the original Kaffe implementation, 

which is only slightly slower than the deflated execution environment which requires 7 

assembly language instructions.    

 

8.3.1.2.2 Optimization in Romvets  
 

As mentioned in chapter 7, Romvets is implemented using the XML tree search 

operations of UbiqDir. Romvets subscriptions are stored as a separate hierarchy in 

UbiqDir namespace that is looked-up to deliver notifications to the extensions that had 

subscribed interest in an event type. This rich model of storing subscriptions in the same 

way as other resource descriptions allows subscriptions to be parameterized with any 

number and type of attributes, and supports subscriptions based only on partial 

knowledge of the event type (like intent-based lookups). However, this introduces the 

latency of XML tree search in the critical path of every event notification. Where this 

latency is acceptable for extensions that require partial subscriptions in order to 

interoperate with other components, extensions to layer 0 components neither require nor 

afford this latency. Scheduler activations and events from packet drivers are only 

parameterized with a single well-known argument  (scheduler queue, packet type) and 

need to be handled with minimal latency. For these components, Romvets implements an 
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optimized subscription. This optimized subscription stores all the single argument 

subscriptions in a local hashtable, instead of using UbiqDir’s store and search operations. 

This internalized optimization neatly covers subscriptions for scheduler activations and 

packet handlers and reduces the latency to only a hashtable lookup.  

The two optimizations described above provide efficient extensible scheduling and 

allowed UbiqtOS prototype implementation to achieve acceptable performance when 

supporting extensible protocol stacks as described below.  

 

8.3.1.3 Extensible Protocol Stacks  
 

In addition to scheduling policies, the UbiqtOS prototype implements protocol stacks 

amenable to dynamic adaptation.   

To allow adaptation by context-specific software, protocol stacks are removed from layer 

0, implemented by OSKit, along with the corresponding support from Kaffe, and the 

packet drivers for the network interface cards attached to the device are exposed directly 

to context-specific software at layer 2.  

As described in chapter 6, network communication between different instances of 

UbiqtOS is provided by ACP. ACP defines a well-known frame format that every 

instance of UbiqtOS needs to support to be able to transfer agents and exchange messages 

between different devices. However, as ACP is not a network protocol, it needs to be 

encapsulated in other network protocols to transport the ACP frames from one UbiqtOS 

host to another. These ACP frames are transported to the destination SEMAS by context-

specific network protocols at layer 2 that use the packet drivers, at layer 0, to transmit 

packets via the network interface cards (NICs) attached to the device. These network 

protocols are dynamically deployed to suit the characteristics and standards of the current 

network of the device.  

The context-specific network protocols are installed by subscribing to the 

transmit(ACP_Frame this, String Address_type, String destination_address) event 

generated by ACP to request transmission of an ACP frame to the specified destination. 

Requests to ACP to transfer a frame specify an agent name as the destination. ACP 

resolves this address to the network specific address registered as part of the agent 
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description (enclosed in the mandatory <Address> tag). Protocols on the sending side 

register interest in the “transmit” event generated by ACP and specify the address type 

supported by them. On the receiving side, these context-specific protocols subscribe to 

the events offered by the packet drivers, indicating that a packet has arrived through the 

network card. These extensions at the receiving side also specify the protocol type that 

they can handle to allow de-multiplexing of packets arriving at the NIC. The packet 

drivers at layer 0 inspect the protocol type field (e.g. ethertype in Ethernet LANs) of the 

incoming packets and forwards the packets to Romvets as events parameterized with the 

corresponding type. Romvets then forwards these packets to the protocols that had 

subscribed interest in the event type corresponding to its protocol type e.g. IP would 

register interest in event parameterized with (string) “0600” to receive packets from an 

Ethernet packet driver at layer 0.  

Therefore, UbiqtOS protocols are structured slightly differently from protocols in a 

conventional operating system like FreeBSD. First, protocols are, indeed, mobile agents, 

and hence register their descriptions, both functional interfaces and non-functional 

attributes, in XML with UbiqDir. Second, these protocols register interest in the events 

generated by ACP and the packet drivers to send and receive packets. Third, protocols 

themselves generate two special events, using Romvets, “Pkt_trasmit(Byte [] packet, 

String address_type, String destination address)” to request transmission by lower layer 

protocols, and “Pkt_Arrived(Byte [] packet, String address_type)” to request processing 

at the next higher-layer. Protocols register interest in the packets of the corresponding 

type, e.g. IP, Ethernet etc. to indicate interest in processing the packets. A UbiqtOS 

protocol processes the incoming packet, looks at its protocol type field and forwards it to 

the appropriate protocol by generating an event with the protocol type argument set to 

that of the next protocol. The final protocol in the receiving stack generates an event with 

the protocol address type set to ACP. ACP either launches the agent if the ACP carries an 

agent or generates a message_received event for the destination agent specified in the 

ACP frame to deliver the message. An important thing to note in this scheme is the lack 

of transport layer addressing; ACP frames are addressed to agents by name, and not to a 

Service Access Point at the transport layer e.g. a UDP  
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Fig. 8.4  An example protocol stack in UbiqtOS. 
Different protocols can be dynamically deployed to carry the ACP frames on the network 
according to the standards and characteristics of the device context. These dynamically 

deployed protocols run inside the Java Interpreter, and generate events parameterized by 
protocol type to pass the packets along the protocol stack, using the optimized event-

handling support in Romvets. 
 

 

 

port number. Therefore communication in UbiqtOS is network independent i.e. ACP 

works independently of which protocol stack is dynamically deployed to transport the 

ACP frames over the network. This push-style scheme of delivering a message by 

invoking a message handling subroutine (as an event) of the receiver, as opposed to the 

pull-style message delivery in traditional operating systems where messages are queued 

in ports, is similar to the concept of active messages [Eicken92].  

Finally, the messages are actually delivered to the explicit bindings, that the agent 

registers to be notified to deliver the message, and these binding can queue the incoming 
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messages to allow pull-style processing if need be e.g to enforce flow control. A simple 

protocol stack configuration in UbiqtOS is shown in fig. 8.4.    

 

8.3.1.4 Connection-oriented Protocols 
 

The lack of addressing at the transport layer and decoupling of network protocols from 

applications using (connectionless) ACP, however, raises a new problem for supporting 

connection-oriented network protocols e.g. TCP. Connection-oriented protocols require 

extra-messages to be exchanged to set-up the connection before any communication can 

proceed between the two applications.  

This problem is handled by explicit bindings. In UbiqtOS, applications use an explicit 

binding to connect to other agents, by calling the connect method of the binding (mbox). 

This binding interposes the functionality between the agents to provide the desired 

quality of service in the face of changing system characteristics.  

Connection-oriented protocols in UbiqtOS subscribe to two additional events, “ boolean 

connect(mobet protocol, mbox source, source address, destination_address, 

connection_paramater_vector)”, and “boolean close(mobet protocol, mbox source)” 

generated by the binding responsible for the connection to request establishment and tear-

down of a connection respectively.  

If the service provided by a binding warrants a connection-oriented protocol e.g. ordered 

delivery, the binding searches for an appropriate protocol in UbiqDir (with an attribute of 

ordered delivery), and generates a connect event for that protocol, using the Romvets 

interface, when requested to “connect()” the two agents. Once notified, the protocol can 

establish the connection with the properties specified in the connection parameter vector 

and returns a boolean value indicating success or failure. The per-connection state saved 

by the protocol is indexed with the handle of the binding (mbox) generating the 

connection request to identify future packets from that binding. As mobets use a new 

mbox for every new connection, no additional transport level connection identifiers are 

needed to identify the connection. The connection can be torn down by the binding by 

generating the “close(mobet protocol, mbox source)” that requests the specified protocol 

to tear down the connection associated with the binding. 
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UbiqtOS prototype includes both a UDP/IP protocol stack and a “port-less ACP/TCP/IP” 

suit. Applications use a special TCP_binding to use the protocol stack. This binding acts 

as a UNIX port (FIFO), allowing the application to read and write byte streams to it. The 

binding makes ACP frames from the bytestream and sends them to ACP that forwards 

them as events that are handled by TCP. TCP, that provides the traditional ordered and 

reliable delivery, encapsulates these frames in TCP segments and forwards them to IP 

which transmits them using a packet driver at layer 0 as described above.   

The performance of the TCP/IP protocol suit is shown in figure 8.5 and figure 8.6. Figure 

8.5 shows the achieved bandwidth, with measurements done using a modified version of 

TTCP benchmark to suit the APIs offered by UbiqtOS, with a fixed packet size of 4096 

bytes each (52MB total). Whereas, figure 8.6 shows the latency of 1 byte roundtrip time 

to compare the latency of extensible stacks in UbiqtOS with traditional architectures. The 

performance comparison shows that UbiqtOS protocol stack, implemented in Java, using 

Kaffe and Romvets optimizations, performs almost as good as the protocol stack in 

OSKit implemented in the native language. However, the performance is appreciably 

worse than a Linux protocol stack, and to a lesser extent to a FreeBSD protocol stack, due 

to the modular structure of UbiqtOS and the cost of Romvets indirection, in addition to 

the cost of running protocols as Java code. 

 

8.3.1.5 Adaptation of Protocol Stacks 
 

The framework provided by UbiqtOS allows the flexibility to dynamically add and 

remove protocol layers to suit the characteristics of the context of the device. Traditional 

systems with fixed protocol stacks (c.f. FreeBSD) are forced to use even “null-protocols” 

like UDP just to provide a uniform communication framework, whereas communication 

paths in UbiqtOS can be tailored to the characteristic of a particular active space. For 

example, the protocol stack shown in fig. 8.4 avoids the overhead of a null transport layer 

like UDP and uses IP directly to exchange messages. This scheme, indeed, requires that  
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Fig. 8.5 Performance evaluation of the bandwidth of the UbiqtOS TCP/IP protocol stack 
with traditional architectures. Evaluation was done using two 200 MHz Pentium PCs, 

connected by a 100 Mbit/sec Ethernet 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.6 TCP one-byte roundtrip time measured with rtcp to compare latency of UbitOS 
extensible protocol stacks with traditional architectures. Evaluation was done using two 

200 MHz Pentium PCs, connected by a 100 Mbit/sec Ethernet 
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the receiving host be configured with the same protocol stack as the sending host before 

any communication can take place. This is done at the bootstrap stage when all hosts in a 

particular context are configured with the right set of protocols for a particular context. 

Chapter 9 shows how protocol stacks are adapted to provide flexible communication 

support for mobile hosts.  

 

 

8.4 Implementation of UbiqDir 
 

Our UbiqDir is implemented using an XML parser by SUN Project X to implement the 

register, update, delete and lookup operation. However to support a working prototype, 

UbiqDir implementation needs to support default extensions that implement its 

distributed operation.  

 

 

8.4.1 Default UbiqDir Extensions 
 

UbiqtOS distribution comes with three default extensions for UbiqDir to illustrate the 

flexibility of the architecture. These extensions implement two discovery protocols using 

different overlay topologies and employ different consistency protocols for different 

resource descriptions. The default UbiqDir distribution is shown in figure 8.7.   

The distribution supports both an IETF Service Location Protocol to allow 

interoperability with IP-based networks and the in-house DHAN discovery protocol, 

presented in Chapter 2, to support interoperability with the AutoHAN system.  SLP 

operates in an active mode, broadcasting all the queries on the local Ethernet using the 

SLP multicast address and supports eventual consistency with its periodic soft-state 

refresh messages every 30 sec. On the other hand, the DHAN discovery protocol uses 

HTTP messages to route all the queries to the central DHAN server running in the 

network to enable discovery of resources in the AutoHAN system. Both these extensions 

use the UDP/IP protocol suit in the UbiqtOS distribution.  
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Fig. 8.7 UbiqDir default extensions ensure that UbiqtOS devices can interoperate both 
with IP-based systems and AutoHAN and allow strong consistency for security critical 

information.  
 

 

However, both these protocols only support eventual consistency, not guaranteeing that 

any changes in the system would be visible to all the devices in the system. Where this is 

acceptable for most applications in a dynamic network, the distribution includes another 

extension that uses two-phase-commit to guarantee strong consistency for selected 

resource descriptions. This extension ensures that any changes in the home surveillance 

system (resources with <surveillance> tag as part of their description) are committed to 

all the participating devices in the system by the DHAN server to ensure that security 

critical information is disseminated reliably in the system. This extension uses 2PC on 

top of HTTP to disseminate information from DHAN to UbiqtOS devices. 

 

 

8.5 Implementation of SEMAS 
 

SEMAS executes as a thread in Kaffe, part of layer 1. In the default implementation, the 

default IP agent part of the UbiqtOS distribution subscribes to the events generated by 

SEAMS Agent Communication Protocol to transmit and receive frames on the network. 

The structure of this protocol stack is shown in figure 8.4; notice the lack of a transport 
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layer. Agent bindings register interest in the events generated by ACP to receive 

messages (instead of using a transport layer identifier).  

A working prototype of SEMAS requires extensions at layer 2 to interpose functionality 

between SEMAS and ACP to enable transmission of agents according to characteristics 

of the network and the agent requirements. UbiqtOS default distribution includes the 

following SEMAS extensions.  

  

8.5.1 Default SEMAS Extensions 
 

Default implementation of SEMAS includes three extensions to allow transfer of agents 

and to balance load in the system, as shown in figure 8.8.   

The default distribution of UbiqtOS includes two extensions that serve to transfer agents 

with different reliability semantics. One of these extensions supports disconnected 

operation by allowing agents to be queued if they cannot be migrated at the time of the 

request due to an intermittent connection or temporary destination host failure. This 

queue is then served in a round-robin fashion, trying to migrate every agent at 30 sec 

intervals, for a maximum of 10 times, after which the agent is discarded and a false value 

is returned. Additionally, the queue is kept sorted according to agent destinations so that 

if a link becomes usable all the agents queued to use that link can be transferred 

consecutively. Finally, queue size is fixed to 10 in the prototype implementation based on 

practical experience; if a device cannot honor 10 migrations requests then it is 

disconnected from the network for a longer time, and this fault should be exposed to 

applications. Hence, when the queue fills up, further agent requests are denied migrations 

instantaneously instead of deferring it for later.  

However, this extension provides only at-least-once reliability guarantees at the best. 

Agents that require exactly-once-reliable migrations are handled by the second extension 

in SEMAS distribution. This extension implements a transactional queue, proposed in 

[Rothermel98], as described in section 6.7.6. The extension returns a false value to the 

requesting agent if the transaction fails, leaving the recovery to the agent itself.  
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Fig. 8.8 Default extensions for SEMAS.  
The default distribution of SEMAS uses IPv4 to transfer agents between different hosts 
and includes three extensions to provide load-balancing, disconnected operation and 

reliability. 
 

 

 

Finally, the SEMAS distribution includes an extension that returns the least-loaded host 

on the same network. This extension subscribes to the events generated by SEMAS to 

request bootstrap load-balancing and effective mobility. When invoked, it finds the least 

loaded host by broadcasting the length of the ready queue of the local scheduler at layer 0 

(by invoking its Current_load() method) with the IP destination address set to local 

network. Other extensions on the network listen to this message and reply with the length 

of their ready queue (and a handle of their SEMAS) only if the length of the ready queue 

on their host is less than that of the received message. The extension collects the result 

and returns the handle of the SEMAS with the shortest ready queue.   
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8.6 Default Distributed Services 
 

In addition to the extensions to SEMAS and UbiqDir, UbiqtOS’s default distribution 

includes a dispatcher module, which when invoked makes default selection if more than 

one resource provides the requested service. Additionally, it includes four extensions for 

providing default support for load-balancing, fault-tolerance and high-availability, 

making UbiqtOS a complete distributed operating system. The components included in 

the default distribution of UbiqtOS are shown in figure 8.9. Applications discover these 

services and invoke their methods using their descriptions in UbiqDir.  

These extensions take the context of the device as all the devices on the same IP 

subnetwork, like traditional distributed operating systems.   

 

8.6.1 Default Dispatcher  
 

The dispatcher module implements the context-specific view of the resources registered 

with UbiqDir. When invoked with (an intent-based) description of the required service, 

the dispatcher looks-up all the matching resources in UbiqDir, and selects one according 

to its (context-specific) policy. The default dispatcher provided with the UbiqtOS 

standard distribution implements the simple policy that if there are more than one 

resources providing the requested service in a subnet, then select the one in the current 

room. It does that by augmenting the service invocation request with the location attribute 

set to the current room. This implementation assumes that every resource exports a 

location attribute along with its description registered with UbiqDir, acquired by a 

location service in the active space e.g. active badges [Want92] (used in our lab), Cricket 

Location System [Priyantha00] etc. The dispatcher contacts the location service to find 

out about the location of the device. The protocol to contact the location service is 

expected to be known to the Dispatcher as it is deployed in the device by the context 

itself. In the implementation, the Dispatcher contacts the DHAN service in Trojan room 

(the AutoHAN test-bed room, using 802.11 Wirless LAN) with an HTTP query to find 

“location” and the DHAN service responds with the string “Trojan Room”.   
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8.6.2 Default Extensions for Load-Balancing 
 

In addition to load-balancing at agent bootstrap, and as part of effective mobility, the 

UbiqtOS distribution includes two extensions to support reactive load-balancing. 

Reactive load-balancing is implemented by monitoring the load on the local host and 

requesting agents to move to another host when load exceeds a threshold.  

The default extensions monitor two different metrics; processor utilization and memory 

utilization. One extension calls the Current_load() method of SEMAS every 30 sec to 

measure load on the local host, and normalizes the value by total length of the process 

queue length to measure process utilization. If this average exceeds 0.8 (80% load), the 

extension picks a random agent from the list of agents executing with SEMAS (by calling 

its List_Running_Agents() method) and generates the Balance-load() event (the same 

event SEMAS generates to elicit suggestions for load-balancing in effective mobility). In 

the default implementation, this event is handled by the default load-balancing extension 

of SEMAS described above, which returns the least-loaded host in the same network. The 

reactive load-balancing extension then requests SEMAS to migrate the randomly picked 

agent to the least-loaded host in the network. It is up to the agent being requested to 

honor or deny the request, which either saves its state, specifies the method to be called at 

the destination host to resume execution and returns a true value to allow SEMAS to 

perform the migration, or returns a false value to deny the request. If the agent denies 

migration, perhaps because it is in the middle of a computation and cannot move, the 

reactive load-balancing agent picks another agent and repeats the process until an agent 

agrees to migrate to another host or the local load falls below 80%, by some agent 

moving by itself or committing suicide after finishing its task.  

The other default load-balancing extension part of the UbiqtOS distribution triggers 

migrations if the local memory utilization exceeds 80%. Traditional distributed operating 

systems do not implement such load-balancing as they are designed for hosts with large 

secondary memories to support large virtual memories. Embedded devices, however, 

have limited or no persistent storage to support virtual memory. Hence, UbiqtOS needs to 

balance memory utilization in the system.  
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Fig. 8.9 Architecture of standard UbiqtOS distribution.  
In addition to the OSKit components to implement hardware dependent layer 0, and core 
SEMAS, Romvets and UbiqDir at layer, the standard distribution includes the following 

mobile agents at layer 2. 1) IP, ARP, UDP and “portless” TCP protocol suit 2) Two 
default schedulers; a round-robin scheduler and a proportional share stride scheduler 3) 

default extensions for SEMAS to provide disconnected operation, load-balancing, and 
reliability 4) default extensions for UbiqDir for discovery on SLP system, discovery on 
AutoHAN networks and 2PC consistency 5) Default services to support reactive load-

balancing, fault-tolerance and high-availability. 
 

 

The memory-balancing extensions monitors the memory utilization of the local host by 

subscribing to the “memory-warning()” event generated by the layer 0 list-based memory 

manager used in UbiqtOS implementation. On receiving this event, this extension 
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contacts its peers on the same subnet and finds the host with the least memory utilization, 

just as the load-balancing extension finds the least-loaded processor. Having found the 

host, it chooses a random agent among the ones executed by SEMAS and requests it to be 

migrated to the host with maximum available memory, and repeats the process until one 

of the agents agrees to migrate or the memory utilization falls below 80 %.  

 

8.6.3 Default Extension for Fault-Tolerance 
 

The UbiqtOS distribution also includes a default extension to provide fault-tolerance for 

services that need to be highly available in the system. Agents can register with this 

service by calling its Fault_tolerance(mobet source, int K) method, where K is the degree 

of resilience they require. The extension talks to its peers on the same subnetwork, asks 

them the load on their hosts, and chooses (K-1) least loaded nodes in the network. The 

extension then requests SEMAS to replicate the requesting agent on the selected (K-1) 

nodes and informs its peers about the decision. Once the agent is replicated, the default 

fault-tolerance extensions on the selected hosts generate a heartbeat for the requesting 

extension, at 1-minute intervals in the default implementation. If the requesting 

extension, acting as a master in this case, does not receive a heartbeat message from a 

host for more than 1 minute, indicating that the host has become inaccessible, it selects 

another host in the subnetwork and asks SEMAS to make another copy of the agent. This 

simple scheme ensures that there are always K copies of the agent running in the system.  

However, the master device itself could fail or move from one network to another one. 

This is handled by the master extension sending a heartbeat to all its slaves at 3 minutes 

intervals. If the slave does not receive the heartbeat for more than 3 minutes, it asks its 

SEMAS to kill() the replicated agent. SEMAS in turn invokes the Die() method of the 

agent. It is up to the agent to honor or deny the request, depending on whether it would 

like to linger in the network or not in the absence of the master service.  

If the master extension misses three consecutive heartbeat messages from its slaves, it 

assumes that it has moved to another subnet and restarts the whole process of selecting 

(K-1) least hosts and replicating the agent to provide fault-tolerance on the new subnet.  
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8.6.4 Default Extension for High-availability 
 

Like the fault-tolerance extension, the standard distribution of UbiqtOS includes a default 

extension that leverages hi-availability of interested services. Agents register with this 

service by calling its Hi_availability(mobet source, int number_of_requests_per_minute) 

method.  Once registered with it, the extension monitors the incoming requests to the 

agent, by subscribing interest in the messages it receives with Romvets, and takes a 

weighed moving average of the number of messages received by the agent over the last 5 

minutes (with equal weights of 0.5). If this average increases the value specified by the 

agent, the extension selects the least-loaded host on the same subnet and requests 

SEMAS to replicate the agent on that host. Therefore, if the service provided by the agent 

gets overloaded, the system makes another copy of the service in the network to share 

some load. Given that services are discovered by intent and not by location in UbiqtOS, 

this scheme effectively leverages hi-availability of services that are not tethered to some 

embedded hardware resource. The use of an epoc-based scheme to measure the load on 

the service avoids reacting to temporary load spikes.  

 

 

8.7 Conclusion 
 

This chapter described the implementation of a UbiqtOS prototype using OSKit and 

Kaffe. It described how the implementation of UbiqtOS architecture led to optimizations 

within Kaffe and Romvets to support scheduling and network communication at layer 2 

and described the implementation and evaluation of extensible scheduling policies and 

protocol stacks. Moreover, it described the implementation of default extensions for 

SEMAS and UbiqDir to produce a working prototype system. Finally, it presented the 

implementation of default extensions to provide load-balancing, fault-tolerance and high-

availability in the system as an example of extensible distributed operation leveraged by 

UbiqtOS architecture.  

The prototype implementation shows that it is practical to support traditional distributed 

operating system services atop an (optimized) interpreter to allow safe, dynamic, 
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application-aware and context-specific adaptation to address the challenges posed by a 

ubiquitous system design.  

However, this chapter did not present an evaluation of the UbiqtOS design. The issue was 

deliberately avoided as evaluating a novel bottom-up architecture like UbiqtOS is a topic 

in itself and forms the basis for the next chapter. 





 

 

“There are lies, damned lies, and statistics” 

Mark Twain 

 

Chapter 9 

Evaluation 
 

 

 

 

This chapter presents the performance evaluation of different components of the 

prototype implementation and gives examples of how UbiqtOS can be used to efficiently 

support novel applications in a ubiquitous system.  

Two different applications are presented and evaluated to illustrate the flexibility and 

performance of context-aware adaptation in UbiqtOS.  

 

 

9.1 Evaluation Methodology  
 

Traditional operating systems are often evaluated purely in terms of quantitative 

performance e.g. round-trip RPC across protection domains, network communication 

throughput etc. Though such traditional benchmarks meaningfully indicate the efficiency 

of operating systems designed to provide traditional services, they, alone, are not 

sufficient to evaluate the different aspects of UbiqtOS. As UbiqtOS is a language-based, 

embedded, extensible distributed operating system, the benchmarks chosen to validate its 

design need to evaluate all these aspects. Additionally the evaluation methodology needs 

to evaluate the efficacy of dynamic context-aware adaptation in UbiqtOS. However, 

context-aware adaptation offers benefits other than performance; the flexibility and 

dynamism offered by UbiqtOS addresses new problems. Finally, there are no well-known 

traditional benchmarks to evaluate adaptive systems.   
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Hence, the performance evaluation of the prototype implementation of UbiqtOS is 

divided in two parts:- 

 

• The first part evaluates the performance of the prototype implementation to enable 

comparison with traditional systems, using the following:- 

• Code size of the prototype implementation to evaluate suitability for embedded 

devices 

• Cost of installing, deleting, upgrading and looking up components in UbiqtOS 

(using UbiqDir) 

• Latency of notifications to indicate changes in the context using the Romvets 

Interface  

• Cost of invoking a system call using the Dispatcher module 

• Cost of inter-component communication  

• In the second part, context-aware adaptation is UbiqtOS is evaluated using two new 

applications made possible by UbiqDir architecture.  

• Adaptation of context-aware bindings proposed in chapter 6 is evaluated using a 

soft real-time multimedia application to provide a “follow-me-video” service. 

• Adaptation of network protocol stacks implementation presented in chapter 8 is 

evaluated using flexible support for mobile IP proposed in [Zhao98].  

 

 

9.2 Performance Evaluation of UbiqtOS Components 
 

9.2.1 Code size 
 

UbiqtOS is designed for medium to high-end embedded devices and hence needs to be 

small enough to be embedded in the ROM of such a device.  

Most existing embedded operating systems are customized to the fixed functionality 

provided by proprietary device hardware architectures and, hence, do not provide a good  
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Layer 0 112.3 KB 
                   Oskit     67.2 KB 
                   Kaffe      45.1KB 
Layer 1 23.2 KB 
                     SEMAS   + ACP     9.5K 

      UbiqDir + Romvets     13.7K 
Layer 2 26.4 KB 
                   Default System Dispatcher     2.3K 
                   Default scheduler     6.7K 
                   Protocol stacks     6.1K 
                   UbiqDir Extensions     5.7 K 
                   SEMAS extensions     6.4 K 
                   Default Distributed Services     5.9 K 

Total 168.6KB 
Table 9.1 Code size of different components in UbiqtOS prototype 

 
 

reference to compare the code size of UbiqtOS, which is a general purpose operating 

system designed to execute applications dynamically introduced in the device. Second, 

traditional embedded operating systems, designed for standalone, dedicated pieces of 

hardware, do not provide distributed services.  

UbiqtOS’s runtime extensible architecture allows it to be embedded in limited capability 

devices and scaled to more privileged devices to address the heterogeneity of the system. 

Additionally, layer 1 in UbiqtOS supports context-aware distributed operation to address 

the heterogeneity, mobility and dynamism of the system.   

Table 9.1 shows the breakdown of the size of the fixed part of the UbiqtOS prototype that 

needs to be embedded in the ROM of a device. All of the code for layer 0 and layer 1 has 

been compiled to statically linked native code (.ar), instead of position independent 

shared libraries to reduce code size and to improve performance. Code for layer 1 was 

written in Java and compiled to native code using gcj.  

Figure 9.1 compares the code size of UbiqtOS standard distribution with WinCE 

[Murray99], Embedded Linux [Linux] and QNX [Hildebrand94].  

The size of embedded Linux is essentially a Linux kernel and glibc, without X11 libraries 

and command shells. However, not designed for embedded devices, its code size is 

significantly larger than WinCE. However, WinCE, like embedded linux, includes a  
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Fig. 9.1 Comparison of ROM Image of UbiqtOS with embedded linux, winCE and QNX 

operating systems on x86.   
 
 
filesystem and its windows-based GUI support not needed in an embedded device. QNX, 

on the other hand, is a commercial operating system designed for embedded devices. Its 

build-time extensible microkernel does not include a filesystem, GUI or even network 

protocol stacks.  These services are optional and can be includes at build-time. The code 

size shown in figure 9.1 includes protocol stacks but not filesystem or GUI. UbiqtOS 

size, even with a Java Virtual Machine and distributed services is comparable to QNX. 

The small code size of UbiqtOS is primarily because of the better code density of Java 

bytecode. In UbiqtOS most of the components that are inside a traditional kernel are 

pushed atop layer 1 as Java byte-code which is more dense than x86 native code.  

 
9.2.2 Cost of extension using UbiqDir 
 
New components are installed with an instance of UbiqtOS by registering their functional 

interfaces and non-functional attributes in XML with UbiqDir. Components find one 

another by looking up these descriptions in XML and retrieving a reference to their 

interface to invoke operations on one another (using Java reflection API).  

  

Comparison of size 

0

100

200

300

400

500

600

700

800

1 2 3 4

S
iz

e 
K

B
yt

es

Embedded Linux         WinCE                    QNX                    UbiqtOS 



9.2 Performance Evaluation of UbiqtOS Components 

 

239

                              Entities registered with UbiqDir 
Operation 10 100 

Update 1.3 2.1 
Lookup 3 4.7 
Register 2 3.2 

Unregister 0.9 1.2 
Table 9.2 Cost of UbiqDir Operations. 

 
 

Table 9.2 shows the average cost, in milliseconds, of registering, deleting, updating and 

looking descriptions with UbiqDir. The costs, indeed, depend on the number of attributes 

being looked up, registered or updated, the costs shown are for average components in 

UbiqtOS with 7-10 attributes. The costs were measured by running a trace for 100 

simulated devices, and taking an average of the times for different operations.   

UbiqDir uses a modified version of XML parser by Java Project X, which uses breadth-

first search to search the XML tree. The parser was modified to optimize the update and 

delete operation with the ID-based optimization described in chapter 7. The cost for these 

operations shown in table 9.2 include the generation and checking of indexes to 

authenticate and speed up the update, and unregister operations. The measurements were 

made on Intel Pentium 200 MHz PC. 

The cost of these operations compares favorably to other directory services like SSDS 

[Czerwinski99] and INS [Winoto99]. SSDS uses the XSET parser to search XML trees, 

and takes, on average, 8.9 msec to perform an XML search, and as much as 82 msec to 

respond to a secure-RMI query [Czerwinski99].  XSET uses treaps (probabilistic self-

balancing trees) to store the XML trees to allow efficient searches, but that distorts the 

view of the natural hierarchical distribution of resources in the tree. In UbiqDir, the 

register function inserts a new resource at its “right place” in the hierarchy, e.g. a 

video/movie_camera would be placed as a sibling to video/still_camera   under the root 

“video”, producing a very user-friendly view of the state of the system to allow 

introspection. Still, UbiqDir outperforms SSDS as it has been compiled to native code, as 

opposed to SSDS that runs as interpreted Java code.     

 

 

 



     Chapter 9 - Evaluation 

 

240

 

 

 

 

 

 

 

 

 

 

 
Fig. 9.2 Comparison of lease traffic for lease update with and without the ID 

optimization. The traffic generated by ID-based scheme remains fixed, while the traffic 
generated by transmitting the whole description of the resource to update its description 

increases with the number of attributes.  
 

 

INS, instead of using XML, uses its own data format and tree organization algorithm, 

called graft, to allow highly optimized searches [Winoto99]. INS can perform, with 3 on 

average 800 lookups/sec with 3 attributes in the query, which is comparable to the 

performance of UbiqDir.  

Further, SSDS and INS use the same search methods for updating the description of the 

resource as well. In a soft-state system, where updates are made periodically at short-

intervals, the network traffic generated by update messages dominates the performance of 

the system [Winoto99]. The ID-based search algorithm also improves performance by 

more than 50%, as compared to an intent-based lookup, as shown in table 9.2.  

Further, UbiqDir’s use of ID-based updates, reduces the network traffic to an ID plus the 

attributes that need to be changed in the general case, or just an ID to refresh the soft-

state entry. Figure 9.2 shows the network traffic comparisons of a 10-node simulation, 

with and without the ID-scheme, as the number of attributes, encoded as 16-bit Unicode 

characters, in the resource description are increased from 5 to 10 each assumed to be 20 

bytes each. The lease-interval is fixed at 5 sec (instead of 30 sec to illustrate the benefit of 

the ID scheme), with the protocol used to transport messages is assumed to incur an 
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overhead of 27 bytes per refresh message. The nodes exchange descriptions of 10 

resources at every 5 seconds to refresh their entries.   

 

9.2.3 Cost of Adaptation using Romvets  
 

Components installed with an instance of UbiqtOS lend themselves to adaptation by 

generating events (upcalls) that are handled by extensions to implement their behavior 

according to the requirements of the applications and the characteristics of the context of 

the device.  

Romvets is implemented using UbiqDir and its lookup, register, delete and update 

operations are used to implement the notify, subscribe, delete and update operations of 

the Romvets interface respectively.  

The Notify operation involves lookup of any matching event-handlers and their 

invocation. Subscribe is just another interface for the register operation in UbiqDir, which 

allows subscription of events by registering the XML description of the desired 

arguments of the event. Likewise, delete and update interfaces for Romvets are 

implemented by delete and update operations of UbiqDir.  

Table 9.3 shows the cost, in milliseconds, of subscription and notification of events using 

the Romvets interface. The costs, indeed, depend on the number of arguments to be 

subscribed, registered or updated, the costs shown are for average event-handlers in 

UbiqtOS with 2-3 arguments. 

However, the cost of notification is critical for high-performance components like 

scheduling and networking protocol stacks. However, it is slower by almost a factor of 2 

from the SPIN dispatcher, which routes the upcalls in SPIN operating system 

[Bershad95]. This results from the high cost of an XML-tree search within the critical 

path of notify, as well as the time spent by Kaffe to allocate and push a stack frame to 

execute the event handler. These two problems were addresses by the optimizations in 

Romvets and Kaffe presented in chapter 8. These optimizations store single attribute-

based subscriptions, like those for network protocols and scheduler, in a hash-table, much 

like a protocol switch table in FreeBSD, and avoid the cost of 
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                   Subscriptions stored by Romvets 
Operation 10 50 
Subscribe 0.9 1.5 
Notify 1.02  1.53 

 
Table 9.3 Cost of Romvets operations (in msec) for the un-optimized case 

 
 
 

                    Subscriptions stored by Romvets 
Operation 5 10 
Subscribe 135 142 
Notify 154 159 

 
Table 9.4 Cost of subscription and notification (in µsec) using the optimizations in Kaffe 

and Romvets. 
 

 

 

allocating a new stack frame for every invocation. Table 9.4 shows the improvement in 

the performance using these two optimizations (cost is shown in microseconds).   

This allows acceptable performance for extensible scheduling and protocol stacks, as 

shown in chapter 8.   

 

9.2.4 Cost of System Call using Dispatcher 
 

The system call interface is provided by the dispatcher module in UbiqtOS. Dispatcher 

looks up the components matching the description of the service requested, in UbiqDir, 

makes a selection according to its policy, and invokes its pertinent methods using the 

Java reflection API and returns the results to the requesting application. The component 

can be local or remote; the dispatcher presents a single view of the distributed system.  

A system call using a trivial dispatcher that invokes the first matching service and returns 

the result takes, on average, 2 milliseconds. However, this can be improved by internal 

caching by the dispatcher. An optimized version of dispatcher of UbiqtOS caches the 

components recently looked-up using probablistically balances trees (treaps), allowing 

system calls to be dispatched as fast as 300 µsec. Note, system calls in UbiqtOS are 
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different from the system calls in traditional systems where services are well-known and 

fixed, and do not need to be dynamically looked-up at runtime.   

 

9.2.5 Inter-component Communication 
 

Security in UbiqtOS is based on dynamic type safety of the Java Language and runtime 

system. Further, components in UbiqtOS are modeled as passive objects i.e. components 

do not block on a thread to wait for messages. Instead they are either looked-up in 

UbiqDir and invoked by making a subroutine call on their functional interface or they are 

executed in response to an event generated by Romvets as event handlers. Hence, 

intercomponent communication, given a handle to an object, is merely a Java subroutine 

call. However, interaction between components at layers 0,1 and layer 2 incurs the 

overhead of the Java Native Interface. This cost is critical for event handlers for systems 

like virtual memory, scheduling and network communication.  The optimization 

implemented in Kaffe, by allowing execution in pre-allocated blocks, reduces the cost 

from 34 assembly instructions, needed to allocate a frame and move operands between 

the Java and the native stack, to 11 instructions only.    

Table 9.5 shows the cost of a null round-trip-RPC in UbiqtOS both within the same layer 

and between different layers. Performance measurements were done using PII 266 to 

compare with one of the fastest micro-kernels L4 [Hartig97]. Software protection 

provided by Java runtime environment, as opposed to hardware security domains, speeds 

up inter-component interaction by a factor of 10 for components at layer 2, and, with 

Kaffe optimization in place, by a factor of 2 between different layers.  

However, if an agent makes an explicit connection with another agent, instead of making 

a default invocation using the Dispatcher artifact, the interposition of the binding adds to 

the cost of communication. The cost, indeed, depends on the functionality provided by 

the binding.  
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L4 242 
UbiqtOS inter-layer 97 

UbiqtOS layer 2 23 
 
Table 9.5 Roundtrip RPC in the same address space. Cost measured in cycles on PII 266. 
 
 

As an example, the cost of a simple FIFO binding, a binding that allows pull-style 

message delivery like a UNIX port, is two synchronized subroutine invocations; one 

subroutine call to enqueue the message in the FIFO and the other by the agent to dequeue 

the message.  

 

9.3 Evaluation of Context-ware Adaptation in UbiqtOS 
 

UbiqtOS enables dynamic, application-specific, and context-aware adaptation to address 

the challenges posed by a ubiquitous system design. The following two sections present 

two different applications to demonstrate and evaluate adaptation in UbiqtOS.  

 

9.3.1 Follow-me-video Binding 
 

The Follow-me-video application allows the user to carry his, UbiqtOS enabled, DVD 

player from one room to another and automatically display the video stream played by 

the player on the nearest screen available, instead of showing it on the tiny display built-

in the device.    

The use of explicit bindings in UbiqtOS allows the application to be structured, and 

deployed, using two components.  

 

• An application (mobet) that fetches the video stream from the DVD player and passes 

it to the follow-me-video binding.  

• A follow-me-video binding (mbox) that chooses the correct display to show the video 

stream according to the protocols and policy suitable for the characteristics of the 

surrounding system.   
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Therefore, the application agent just requests that it requires a follow-me-video 

connection with its context and the binding decouples it from details of, possibly 

changing, characteristics of the underlying system to provide context-aware adaptation.  

 

Figure 9.3 and 9.4 show the relevant code snippet for the application agent and the 

follow-me-binding respectively.   

The application code performs the following operations. It first looks up the two 

bindings; the Follow-me-Binding to connect to the display device driver (a mobile agent 

as well) of any nearby display device and a null binding, that just invokes the specified 

method and returns the results, to connect to the local DVDplayer device driver.  It then 

looks-up the mobets representing the display device and the local DVDplayer and calls 

the SEMAS do_Task method to request the task. To this method, its passes its reference, 

the reference to the display mobet and the binding to be used. The mobile agent engine 

calls the connect method of the specified binding to request connection of two agents, 

allowing the binding to bootstrap itself. It then calls the displayVideo method specified in 

the doTask invocation. The DisplayVideo method reads the video frame by frame, from 

the DVD binding, and sends it to the display driver binding to be rendered on the display 

device.   

So far, this just demonstrates how things are dynamically discovered and used in 

UbiqtOS.  

The context-aware adaptation is performed by the binding. Its connect method, when 

invoked by SEMAS in response to a call to doTask(), first checks whether a counterpart 

binding exists on the destination host or not. If it does not then the binding requests itself 

to be replicated on the destination host and requests its prepare-receive method to be 

called at the destination host to indicate to its replica that it is the receiving side. This 

method, not shown in the code, registers itself with Romvets to receive ACP frames from 

the sending binding. Additionally, the connect methods requests to be notified, by the 

Romvets interface, if any display device joins the device context. Consequently, the 

“Registered()” event handler implemented as part of the mbox interface is invoked by 

Romvets if any display device becomes accessible in the device context. Once notified,  

 



     Chapter 9 - Evaluation 

 

246

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 9.3Code snippet from Follow-me-Video Application 
 
 
 
 
 
 
 
 
 
 
 

Mbox FollowMeVideo = UbiqDir.lookup(“type/mbox//service/follow-me-video”); 
Mbox NullBinding = UbiqDir.lookup(“type/mbox//service/null”); 
Mobet Display = UbiqDir.lookup(“type/mobet//service/Display”); 
Mobet DVDplayer = UbiqDir.lookup(“type/mobet//service/DVDPlayer”); 
 
 
Try{ 
SEMAS.doTask(this, DisplayVideo, Display, FollowMeVideo, null); 
      }catch (AgentEngineException AEB){} 
 
void DisplayVideo(mbox AgileBinding) 
{ 
 
 
    while (//not end of video stream)  
   {  
      try{ 
         agileBinding.Send_message(new Message(NullBinding.Send_message(Get_frame, new  Vector()))); 
           }catch(mboxException ec){}  
    } 
} 

Display my videostream on 
the specified display using 
the follow-me-video 
binding with no arguments 

Called by SEMAS after bootstrapping the specified 
binding (and possible relocation of the agent) with a 
handle to the binding that is used to send messages to 
the destination agent (Display) 

Lookup display, Binding 
and DVD player in 
UbiqDir 
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Fig. 35 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.4 Code snippet from Follow-me-Video Explicit Binding  
 
 
 
 
 
 
 
 

 
// class data  
 
mobet source  
mobet destination 
 
Boolean Connect(mobet src, mobet dest, Vector arg, mobet suggestion ) 
{ 
 source =  src; 
 destination = dest; 
   // if the binding does not exist on the destination host 

SEMAS.Replicate(this, this, destination, prepare_receive);  
UbiqDir.Subscribe(“service/display”, “Registered”, this);  

} 
 
Boolean Send_message(Message msg) 
{ 
 Message message = msg; 
 ACP.message_transfer(destination, source , message); 
} 
 
void Registered (String resource) 
{ 
 
   // if the resource is a display 
   // look at its latency  
   // if latency is less than current latency 
 mobet newDisplay = UbiqDir.lookup (resource) 
 this.Connect (source, newDisplay) 
} 
 

Called by SEMAS to allow 
bootstrap of the binding. The 
binding replicates its receiving 
side on the destination and 
subscribes interest to be notified 
if and when a new display 
becomes available 

Called by UbiqDir (via Romvets) to 
notify when a new display becomes 
accessible. Upon notification, it checks 
the latency to access the new display 
and if it is less than that of the current 
display it rebinds to the new display 
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Time to replicate (1.4KB bytes in size) 11.3  
Context change notification 1.3  
Time taken to change to a new display (without a binding) after it becomes visible 59.4 

 
Table 9.6 Cost of Adaptation in Follow-me-Video Application 

 
 
the binding checks the latency to access the new device, as exported by a dynamic 

attribute of the device description, and if the latency of the newly registered device is less 

than the latency of the currently connected display device, the binding connects the DVD 

player to the new device. 

Table 9.6 evaluates the context-awareness of the binding by giving a breakdown of the 

time spent, in milliseconds, taken by a prototype implementation of the application. The 

performance measurements were done on Intel 200 MHz machine using its 1MB/sec 

IrDA connection. 

 

9.3.2 Flexible Network Support for Mobile devices 
 

Chapter 8 described how protocol stacks are supported at layer 2 in UbiqtOS to allow 

context-aware adaptation of network communication. This section demonstrates how this 

flexibility in UbiqtOS design can be used to provide efficient network support for mobile 

devices, proposed in [Zhao98].    

Zhao et al argue in [Zhao98] that a single, fixed solution like the triangle routing in IETF 

mobile IP [Perkins97] does not efficiently solve the problem of packet delivery for 

mobile hosts due to following reasons:- 

 

• Mobile IP is not needed for short-lived connectionless applications that are unlikely 

to move to another network midst an interaction e.g. web browsing. Hence, devices 

that do not have any alive connections to other hosts, or that do not provide a service 

on a well-known IP, do not need to incur the overhead of triangular routing used by 

IETF Mobile IP [Perkins97]. Instead, they are better off with normal IP layer 

configured with a local IP address.  

• If the network is connected via secure routers that do source IP address filtering for 

incoming packets, then the mobile device cannot send packets with the source address 
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set to its home agent, and, hence, triangular routing used by IETF Mobile IP cannot 

be used. This problem requires support for bi-directional tunneling at the network 

layer [Montegnero96].  

• The applications that need to join any mutlicast IP groups can either join them 

transiently using a local IP address or permanently by using the home IP address and 

paying the price of triangular routing, depending on their requirements.  

• Finally, the networks that support route optimizations for Mobile IP can use route 

optimized mobile IP to avoid the overhead of triangular routing, which would not be 

possible with a fixed IETF mobile IP stack.  

 

UbiqtOS solves this problem by allowing a suitable IP layer to be deployed according to 

the application requirements and the characteristics of the current network of the device.  

As the device joins an active space, a configured device on the network replicates the 

appropriate network layer as part of the device bootstrap described in chapter 5. The 

network layer installs itself in the device by subscribing to the events offered by ACP and 

the device network drivers.  

Table 9.7 shows the breakdown of the cost, in milliseconds, of replacing IETF Mobile IP 

installed with a device with a version that supports bi-directional tunneling as the device 

moves to a network connected with a secure gateway equipped with source IP address 

filtering. The performance measurements were done on Intel 200 MHz machine using its 

1MB/sec IrDA connection.  
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Time to replicate mobile IP (2.3 KB) 14.2  
Time to “update” UbiqDir  1.5 (30 entries) 
Time to subscribe to Romvets 0.142 (10 entries) 

 
Table 9.7 Cost of Mobile IP protocol adaptation  

 
 

 

9.4 Conclusion 
 

This chapter answered two questions: - 

 

• Is UbiqtOS an efficient system for embedded devices? 

• How efficient is adaptation in UbiqtOS?  

 

The first question was answered by comparing the code size and the efficiency of 

different components in UbiqtOS with other related systems, while the second question is 

answered by evaluating two adaptive applications made possible by UbiqtOS.   

The fixed part of UbiqtOS is comparable to commercial embedded operating systems. 

However the need to dynamically lookup components at runtime makes UbiqtOS slower 

than traditional systems that provide fixed services.  

The need to lookup components and the use of explicit bindings, where make the system 

flexible, increase the complexity of applications as shown in the Follow-me-Video 

application.      

Still, UbiqtOS meets its design goals by providing efficient context-aware adaptation, not 

provided by any previous system, to address the heterogeneity, longevity, mobility and 

dynamism of a ubiquitous system. 



 

 

"We have not succeeded in answering all your questions.  The answers 
 we have found only serve to raise a whole set of new questions.  In 

 some ways we feel we are as confused as ever, but we believe we are 
 confused on a higher level and about more important things." 

                        Guido Van Rossum 
 

Chapter 10  

Conclusion and Future Work 
 

 

 

 

 

Advances in digital electronics and rapid convergence between communication 

technology and consumer electronics have led to the development of sophisticated 

network appliances. This trend coupled with the emergence and widespread use of 

wireless, portable computers, presents with an opportunity to enable a ubiquitous system.  

Such a system would allow the computation resources to disappear in the infrastructure to 

define active spaces; buildings, shopping malls, theatres, rooms, instrumented with 

embedded devices that collaborate under user’s directions to automatically carry out their 

everyday tasks.  

The whole system, therefore, would consist of a multitude of, possibly disconnected, 

active spaces to provide ubiquitous access to system resources according to the current 

context of the user.  

This dissertation has presented architectures to make such a system possible.  

It investigated the challenges posed by heterogeneity, longevity, mobility and dynamism 

of the system, and showed how dynamic, application-specific and context-aware 

adaptation in UbiqtOS addresses these challenges. Additionally, it presented a simple 

event-based architecture to allow interoperability of low-end devices.   
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The reader is encouraged to go back and read the motivational scenario presented in 

chapter 1 to appreciate how close the architectures presented in this dissertation come to 

enabling such a ubiquitous system. 

  

This chapter outlines the contributions made by the thesis and discusses the avenues 

opened by this research in a field that is still in its infancy; ubiquitous systems.   

 

 

10.1 Contributions 
 

This dissertation makes contributions in three broad areas. The first consists of 

conceptual ideas underpinning the work. The second consist of the architectures created 

in the course of the dissertation. The third set of contributions are the lessons learnt from 

the qualitative and quantitative evaluation of these architectures.  

Each of these areas is discussed in the following sections.  

 

10.1.1 Conceptual Contributions 
 

Many researchers and industrial consortiums have started to realize the potential of 

enabling a ubiquitous system that could allow computation resources to disappear in the 

infrastructure to automate everyday tasks of the users. Research efforts like Portolano 

[Esler99], Gaia [Kon00], and most noticeably Oxygen [Oxygen] from MIT are all in their 

initial stages towards the vision to enable a ubiquitous system. Similarly, emerging 

industrial standards like UPnP from Microsoft™, Jini from Sun™ , along with a whole 

barrage of other proprietary solutions, especially in the field of home and office 

automation, indicate the trend towards the vision of an infrastructure that could enable 

interoperability of embedded devices to automate user tasks.  

However, the work presented in this thesis is the first to present a universal substrate that 

could be embedded in participating devices to enable efficient ubiquitous interaction. It 

identifies the challenges posed by such a system design and highlights the requirement 

for dynamic, application-specific and context-aware adaptation of the enabling system to 

address these challenges.  
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The second conceptual contribution made by this thesis is the taxonomy of devices in a 

ubiquitous system. The taxonomy is based on whether the devices can just export their 

embedded resources to be controlled by other devices or can support additional software 

to control, manage and program the system as well. This taxonomy led to two related, 

though different, control architectures for the system. An events approach to control, and 

monitor the limited capability devices and an embedded operating system to allow 

programmability of the system with novel applications.  

The final conceptual contribution of the work was its evaluation strategy. As UbiqtOS is 

a language-based, embedded, extensible distributed operating system, the benchmarks 

chosen to validate its design evaluate all these aspects.  However, UbiqtOS addresses 

new problems and makes novel applications possible and its context-aware adaptation 

cannot be evaluated by traditional operating system performance benchmarks. Therefore, 

the evaluation strategy proposes the use of novel applications to evaluate the design of 

UbiqtOS along with traditional measurements to enable comparison with related systems.  

 

10.1.2 Architectures 
 

This dissertation has presented two related but different systems, AutoHAN and 

UbiqtOS.  

 

10.1.2.1 AutoHAN 
 

AutoHAN proposes the use of events as a unified model to control, monitor and program 

devices in an active space. Event scripts not only allow a clean declarative style 

programmability of an active space, the home automation rules encoded by them are 

amenable to formal verification to allow to allow detection of pathological errors. 

Further, its design relies on the use of well-known open wire protocols instead of fixed 

APIs to allow future-proof interoperability with other systems. Devices can support any 

execution environment, but as long as they understand the open wire protocols of 

AutoHAN they can participate in the AutoHAN system. The use of XML to describe 

resources and HTTP as the transport protocol to carry events and access DHAN allowed 
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the AutoHAN architecture to be extended to allow users to control their home network 

using the Internet.  

Finally, the use of events to monitor and control the device only requires the devices to 

support an event-loop, allowing even limited capability devices to participate in the 

system. AutoHAN proposes three simple additions to the GENA architecture that address 

the mobility and dynamism of the system without compromising simplicity.  

The experience with AutoHAN led to the design of an embedded operating system for fat 

devices that allows their additional capacity to be used to control, manage and program 

an active space with novel applications.  

 

10.1.2.2 UbiqtOS 
 

The rest of the thesis described in detail the requirements, design, implementation and 

evaluation of UbiqtOS, an embedded adaptable distributed operating system. The design 

of UbiqtOS addresses the heterogeneity, longevity, mobility, and dynamism of the system 

by providing  

 

• Dynamic 

• Application-specific and  

• Context-aware adaptation 

 

This is enabled by four artifacts in its design.  

 

• A Java-based extensible agent engine (SEMAS) to allow context-specific software to 

be injected in the system, executed securely in a device and moved around to 

accomplish its task. 

• An extensible registry (UbiqDir) to allow components to be dynamically discovered 

in the system using intent-based lookups. UbiqDir serves to capture and export the 

changing context of the device to components residing with it to provide context 

aware adaptation.  
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• A synchronous-events routing system (Romvets) to allow dynamic, application-

specific and context-specific extension of components installed with UbiqtOS.  

• Finally, a dispatcher module that exports context-specific views of distributed 

resources in an active space.  

 

These four artifacts provided the building blocks to enable dynamic, application-specific 

and context-aware adaptation in UbiqtOS.  

Further, the use of explicit bindings and extensibility provided application-specific and 

context-aware “effective mobility” in UbiqtOS.  

An implementation of UbiqtOS architecture was presented and evaluated to demonstrate 

the feasibility and efficacy of the artifacts proposed in UbiqtOS design. The 

implementation required optimizations to be introduced in the Romvets subscribe/notify 

architecture and the event handling mechanisms in Kaffe to allow fast handling of events 

to achieve acceptable performance. With this optimization in place, UbiqtOS prototyped 

delivered acceptable performance for application-specific scheduling and context-aware 

protocol stacks.  

Finally, the merit of UbiqtOS design was demonstrated by evaluation of two novel 

applications; context-aware bindings and context-specific mobile IP support.  

Where the flexibility offered by UbiqtOS addresses the challenges posed by a ubiquitous 

system, it exposes the dynamism of the system to applications, which results in increased 

code complexity.  

 

 

10.2 Future Work  
 

This dissertation has opened many avenues for future work in several areas.  

 

10.2.1 Context-specific Protocols and Policies 
 

UbiqtOS is infrastructure. It defines a system framework that lends itself to safe, 

dynamic, application-specific and context-driven adaptation. Where this approach is 

clearly a step in the right direction to solve the unique challenges posed by a ubiquitous 
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system design, only a limited number of policies and applications were described in the 

dissertation to use this infrastructure.  

The dissertation leads to the whole new field of research to investigate the suitability of 

different system policies and protocols suitable for different system characteristics.  

 

10.2.2 Power-driven Adaptation 
 

Battery operated mobile devices need to economize on the power consumed by the 

system. The current implementation of UbiqtOS does not provide support for power-

driven adaptation. Where power-driven adaptation for policies like scheduling and I/O 

access requires support from hardware, to allow system clock and disk-access policies to 

be adjusted, some policies for power-driven adaptation can be implemented in software 

alone. For example, routing protocols in ad-hoc networks can adjust their willingness to 

route depending on the power left in their batteries, load-balancing policies can take into 

account the power left in the device as one of the factors to balance load in the system, 

services to provide fault-tolerance in the system can judge the reliability of the device by 

the power left in its batteries etc.   

Simple power-driven adaptation in UbiqtOS can be supported by the same scheme as the 

“warning-memory” system is implemented. The power monitoring services can generate 

low-battery warnings for dynamically deployed services using Romvets, and they can 

adapt their policies accordingly.    

 

10.2.3 Security 
 

Though Java’s dynamic safety and the access control implemented by UbiqDir protect 

system integrity against illegal access to system services, UbiqtOS relies on the 

assumption that agents coming from trusted entities would not hoard system resources to 

pose denial of service threats. Where this scheme makes the implementation of UbiqtOS 

simple to be accommodated in embedded devices, it limits the interoperability and future-

proof-ness of the system by requiring every device to know a priori the security keys of 

every other trusted host.  
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A self-authenticating scheme like proof carrying code holds promise to address this 

shortcoming but PCC research is still in its early stages. Security in such an open system 

is still an open research issue.  

 

10.2.4 Application Complexity and Backward Compatibility 
  

As mentioned earlier, UbiqtOS exposes the dynamism and context-awareness of the 

system to applications, resulting in increased code complexity. Second, the new APIs 

offered by UbiqtOS are not compatible with traditional systems like POSIX based 

systems, requiring applications be re-written to make use of UbiqtOS. This shortcoming 

can be addressed by development of appropriate libraries that hide the unwanted details 

of the system and allow existing applications to be executed by UbiqtOS. Explicit 

bindings and the Dispatcher allow “glue code” to be interposed between the context-

aware interface of UbiqDir, SEMAS, Romvets and the applications. For example, the the 

follow-me-video binding in the example presented in chapter 9 hides the context-

awareness of the system from the application; the application only names the right 

binding to use and the application hides the details of UbiqDir and Romvets from the 

application.  

 

10.2.5 Embedded Device Implementation 
 

The prototype implementation was done on x86 due to the easy availability of 

prototyping tools like OSKit and Kaffe. Where a resource constraint device was used to 

emulate an embedded device, it is clearly desirable to implement the UbiqtOS 

architecture on an embedded device. The current implementation of UbiqtOS is used in 

x86-based devices like the Warren Controller in our testbed. AutoHAN project will port 

the implementation to new ARM-based custom-made networked devices as part of the 

AutoHAN project, over the next year.   
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10.2.6 Active Space Automation Rules 
 

The use of event scripts, written in a formal algebra, not only allows a clean declarative 

style programmability of an active space, the automation rules encoded by them are 

amenable to formal verification to allow detection of pathological errors. However, the 

techniques for formal verification of event rules are still under research in the AutoHAN 

group.  

 

10.3 Summary 
 

This thesis proposed, presented and evaluated two architectures to enable a ubiquitous 

system. AutoHAN defines an event-based system to control, monitor and program 

limited capability devices and UbiqtOS allows medium to high-end devices to control, 

extend and program the system. UbiqtOS is a radically new architecture for embedded 

operating systems, which is viable given the processing power now affordable, and 

addresses the challenges posed by heterogeneity, longevity, mobility and dynamism to 

enable a ubiquitous system. 
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