
An Attack on A Traitor Tracing Scheme

Jeff Jianxin Yan1 and Yongdong Wu2

1 Computer Laboratory, University of Cambridge

Jeff.Yan@cl.cam.ac.uk

2 Kent Ridge Digital Labs (KRDL), Singapore

wydong@krdl.org.sg

Abstract. In Crypto’99, Boneh and Franklin proposed a public key

traitor tracing scheme [1], which was believed to be able to catch all

traitors while not accusing any innocent users (i.e., full-tracing and error-

free). Assuming that Decision Diffie-Hellman problem is unsolvable in

Gq, Boneh and Franklin proved that a decoder cannot distinguish valid

ciphertexts from invalid ones that are used for tracing. However, our

novel pirate decoder P3 manages to make some invalid ciphertexts dis-

tinguishable without violating their assumption, and it can also frame

innocent user coalitions to fool the tracer. Neither the single-key nor

arbitrary pirate tracing algorithm presented in [1] can identify all keys

used by P3 as claimed. Instead, it is possible for both algorithms to catch

none of the traitors. We believe that the construction of our novel pirate

also demonstrates a simple way to defeat some other black-box traitor

tracing schemes in general.

Keyword: Security, black-box traitor tracing, copyright protection

1 Introduction

A traitor tracing scheme traces the source of keys used in pirate decoders for

sensitive or proprietary data, such as pay-TV programmes. Those subscribed

users who leak their legitimate keys are traitors. The pirate may reuse original

traitors’ keys, or use new keys generated out of them.

If a pirate decoder is tamper-resistant, a tracer might be unable to extract a

key or keys used by the pirate. Without the key(s), it is impossible for the tracer

to identify any traitor. Therefore, a very practical and important property of



a traitor tracing scheme is to support black-box tracing, where a decoder is

treated as a black box, and its embedded key(s) can be deduced by testing how

it decrypts some chosen ciphertexts.

Since Chor et al [2] introduced the concept of traitor tracing, lots of research

has been done on this topic. However, many proposed schemes like [2] [6] [3]

were probabilistic tracing. They tried to maximize the chance of catching just

one of the traitors while minimizing the chance of accusing any innocent user.

The traitor tracing scheme [1] proposed by Boneh and Franklin provided a de-

terministic tracing approach, and it was believed to able to catch all traitors,

while not accusing any innocent users, as long as the number of traitors is at or

below a collusion threshold k. The Boneh-Franklin scheme supports black-box

tracing.

In this paper, we show a novel pirate decoder P3 that defeats the Boneh-

Franklin black-box traitor tracing algorithms presented in [1]. We also demon-

strate a simple way to defeat some black-box traitor tracing schemes in general

by following the same philosophy of P3. Unless stated explicitly, we only discuss

black-box traitor tracing in this paper.

2 The Boneh-Franklin Public Key Traitor Tracing

Scheme

In the Boneh-Franklin traitor tracing scheme, there is one public encryption

key, but many private decryption keys. Digital contents are encrypted with the

public key and distributed through a broadcast channel, and each legitimate

user can decrypt them by using his own private key. If the ciphertext is “valid”

then all the decoders will produce the same plaintext output, and this is how the

equipment would normally be operated in broadcast mode. However, if a pirate

device appears then a tracer feeds into it “invalid” ciphertexts, that decrypt

differently under different pirate decryption keys. By observing the results, he

hopes to be able to identify the key or keys used by the pirate device.

Assuming that the Decision Diffie-Hellman (DDH) problem is unsolvable

in Gq, Boneh and Franklin proved that a decoder cannot distinguish invalid

ciphertexts from valid ones (and thus cheat), and the only way that an opponent

can construct a valid new key is by taking a convex combination of known keys

2



supplied by traitors. Based on these results, they proposed in [1] two black-

box traitor tracing algorithms for single-key pirates (where only one single key

is embedded in a pirate decoder) and arbitrary pirates (i.e., all non-single-key

pirates) respectively.

For the mathematical detail of both the Boneh-Franklin scheme and their

tracing algorithms please refer to the Appendix of this paper or [1].

3 P3: An Intelligent Pirate Decoder

We design an intelligent decoder P3 (“Pirate 3”) to defeat the Boneh-Franklin

scheme. As shown in Fig. 1, P3 has three decoding circuits with distinct keys. It is

unnecessary to construct new keys out of traitors’ keys for P3; these three circuits

may simply reuse any three original keys, say d̄1, d̄2 and d̄3. Any input ciphertext

is multiplexed to all three decoding logic that independently solve S1, S2 and S3

like stand-alone decoders, and then output these values to a comparator. When

any two of S1, S2 and S3 are equal, the comparator will output their value, e.g.

S1 when S1 = S2 6= S3; when S1 6= S2 6= S3, it will output random bits.

On input valid ciphertexts, P3 always has S1 = S2 = S3, so it will work as a

legitimate decoder in normal operation (e.g. content decryption).

 Decoding logic 1  Decoding logic 3

S3

 Decoding logic 2

      Comparing Logic: S1 = S2 = S3 ?

S1

 C C C

S2

Output 

Input ciphertext C

Fig. 1. The structure of a pirate decoder P3

3



3.1 Single-key pirate tracing

The Boneh-Franklin single-key pirate tracing algorithm works as follows. After

2k rounds of invalid ciphertext tests, a tracer gets a 2k-dimensional linear system

with a unique solution. After solving this linear system, he can further work out a

unique vector d̄ = (δ1, . . . , δ2k), which is the embedded key. By error correction

methods the tracer can identify all traitors who contribute to d̄. There is a

one-to-one corresponding relationship between the 2k-dimensional linear system

and the single embedded key. It is impossible for the single-key pirate tracing

to identify all three keys used by P3 by solving a linear system with a unique

solution. Please refer to the Appendix of this paper for the mathematical detail.

3.2 Arbitrary pirate tracing

The Boneh-Franklin arbitrary pirate tracing algorithm relies on a black-box

confirmation algorithm to confirm guilty user coalitions. For example, when the

tracer suspects a coalition, say {d̄1, d̄2, d̄3}, each time he will choose an invalid

ciphertext that decrypts the same under d̄1, d̄2 or d̄3, but differently under any

other keys. By observing the decryption result, he can confirm or reject the

suspected set. The tracer does black-box tracing by running the confirmation

algorithm on all
(
n
k

)
candidate coalitions, where n is the number of users in the

system.

Firstly, we use a simple example (n = 8, k = 3) to show possible black-box

confirmation tests that can be done for P3 as follows. K denotes the set of all

keys used by P3.

Test A. Confirmations on all
(
8
3

)
candidate coalitions

All
(
8
3

)
coalition sets and their corresponding confirmation results are shown in

the following table, where ‘*’ denotes any single element of set ∆ = {all users}
\{d̄1, d̄2, d̄3} (A\B = {x|x ∈ A and x /∈ B}). Confirmation tests on coalitions

that include any two of d̄1, d̄2 and d̄3 as elements confirm that they include K

as a subset.

4



Coalition set Comparator state P3’s Output Confirmation

{d̄1, d̄2, d̄3} S1 = S2 = S3 S1 yes

{d̄1, d̄2, ∗} S1 = S2 6= S3 S1 or S2 yes

{d̄1, d̄3, ∗} S1 = S3 6= S2 S1 or S3 yes

{d̄2, d̄3, ∗} S1 6= S2 = S3 S2 or S3 yes

other sets S1 6= S2 6= S3 random bits no

The naive application of the Boneh-Franklin tracing algorithm now simply

frames innocent users. For example, user d̄1 builds P3 pirates with user d̄2 and

d̄3, and murders these two guys in the process. He then sells P3 pirates, and sends

the tracer an anonymous tip-off that the traitors are d̄2, d̄3 and d̄5. The tracer

buys an instance of the pirate decoder and finds that it does indeed confirm the

use of these three keys when the Boneh-Franklin arbitrary tracing algorithm is

applied. The police now arrest the innocent victim d̄5 and charge him now just

with copyright offences, but quite possibly with the murder of d̄2 and d̄3 as well.

The only reasonable way to work out the set K is to intersect all confirmed

coalition sets. However, the intersection of those sets only leads to K = Φ. That

is to say, the tracer will catch no traitors unless he accuses innocent users.

Test B. Confirmations on all
(
8
2

)
candidate coalitions

Only {d̄1, d̄2}, {d̄1, d̄3} and {d̄2, d̄3} can confirm that they are supersets of K,

and the intersection of these three supersets still only gives out K = Φ. No more

information about the traitors can be obtained.

Test C. Confirmations on all
(
8
1

)
candidate coalitions

The confirmation algorithm does not make sense when it is run upon single-

element coalitions. The tracer obtains no meaningful result from confirmation

tests on all
(
8
1

)
candidate coalitions.

This simple example shows that the arbitrary tracing algorithm fails to iden-

tify all traitors’ keys embedded in P3 without accusing innocent users.

We analyze the applicability of P3 for any k and n (n ≥ 2k+2 as constrained

by the Boneh-Franklin scheme). It is meaningless to discuss P3 in the case of

k = 1 or k = 2. When k = 3, n > 8, Test A for
(
n
3

)
and Test B for

(
n
2

)
coalition

sets still yield the same result as above. When k > 3, n ≥ 2k + 2 and the black-

box confirmation test is run against
(
n
k

)
coalition sets, only sets that have any

5



two of d̄1, d̄2 and d̄3 as elements confirm that they are supersets of K. However,

the intersection of all those supersets is still empty, i.e., K = Φ. That is to say, a

tracer catches no traitor at all, when he tests P3 by running the arbitrary pirate

black-box tracing algorithm, for any n and k ≥ 3.

In any case, neither the single-key nor the arbitrary pirate tracing algorithm

presented in [1] can, as claimed, catch all traitors who contribute to the con-

struction of P3. P3 manages to make some invalid ciphertext distinguishable

without violating the assumption of difficulty of DDH problem in Gq, and it can

maliciously respond to test queries to frame innocent coalitions (e.g., {d̄1, d̄2, ∗}
in the above example). That is why the tracer is fooled.

3.3 Key leakage or “Tracer, are you going to be lucky today?”

P3 is designed to defeat Boneh-Franklin’s black-box tracing algorithms by inter-

fering its own output channel; the logic used by P3’s comparator is the interfering

rules. By “framing” innocent coalitions, this interference always prevents their

black-box confirmation algorithm from identifying any traitor. However, mean-

ingful key information may sometimes leak from the interfered output channel

in the process of single-key pirate tracing. That is where a tracer’s jackpot is.

For the comparator in the P3, there are five possible input combinations, i.e.,

S1 = S2 = S3, S1 = S2 6= S3, S1 = S3 6= S2

S2 = S3 6= S1, S1 6= S2 6= S3

It is easy to prove that neither S1 = S2, S1 = S3 or S2 = S3 always holds in P3

during 2k rounds of tests in the process of single-key pirate tracing. Otherwise,

the single-key pirate tracing will deduce a same vector d̄ for two distinct keys.

In the process of single-key pirate tracing against P3, only when S1 = S2 occurs

i times, and S1 = S3 6= S2 occurs j times and i + j = 2k, the tracer will have

a chance to get correct outputs from P3 to build a meaningful linear system,

which will lead to successful identification of an only key d̄1. In any other case,

there is no such key leakage, since the interference (e.g. S1 6= S2 6= S3 or any

others) works at least once during 2k rounds of tests, and consequently, the

tracer cannot get a meaningful linear system and will catch none of the traitors.

Furthermore, the criteria for choosing invalid ciphertexts for tracing do not gu-

6



rantee that this key leakage always happens. Actually, the leakage happens in a

very small probability.

What can a tracer do when he faces a confiscated pirate, say, our P3? Note: we

only consider black-box tracing. The tracer knows his system parameters (n, k),

but does not know how many traitors’ keys are used in the box. Since the Boneh-

Franklin scheme is k-resilient, the tracer knows that there are k possibilities for

the number of traitors. Assume he starts the single-key pirate tracing algorithm

first. If he is not lucky enough so that the interference works once, he obtains

nothing meaningful. He will doubt that this is not a single-key pirate, and then

run the black-box confirmation algorithm. However, Section 3.2 shows that the

black-box confirmation of all
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
k

)
coalitions does not help. So the

unlucky tracer cannot catch any traitor.

If the tracer is lucky, he will obtain a traitor’s key d̄1, by single-key pirate

tracing. On the other hand, as Test C shows in Section 3.2, the black-box con-

firmation algorithm cannot get any meaningful result when it is run against a

single-key pirate. If the tracer doesn’t know the existence of pirates like P3, he

will naively believe that he has caught all traitors, and thus stop after identify-

ing d̄1 only. Even if he doesn’t stop but follows the the black-box confirmation

algorithm, he will still get nothing more.

Therefore, though there is possible key leakage, it is impossible for a

tracer to identify all keys in P3 by following the Boneh-Franklin algo-

rithms, no matter whether he is lucky or not. Instead, it is highly possible

for the tracer to identify none of keys in P3.

3.4 P3-like pirates

When only two decoding circuits are put in a pirate decoder and an appropriate

comparing logic is used, a P2 box is constructed. If the comparator in P2 out-

puts S1 when S1 = S2, but random bits when S1 6= S2, the Boneh-Franklin’s

single-key pirate tracing will fail to identity any embedded keys. However, their

arbitrary pirate tracing is able to catch both d̄1 and d̄2, since only a unique set

{d̄1, d̄2} can confirm that it is the superset of K, when the confirmation test

is run against all
(
n
2

)
coalition sets. If the comparator in P2 outputs S1 when

S1 = S2, and outputs S2 when S1 6= S2, the arbitrary pirate tracing is able to

7



catch d̄2, since only sets that have d̄2 as an element can confirm that they are

the superset of K, and the intersection of all those supersets is {d̄2}.

P2 is not a design as good as P3. However, it shows that P3 is a minimal

best design that defeats the attacked tracing algorithms. On the other hand, the

construction of P2 and P3 shows that different structures or different comparator

logic may lead to pirate decoders that have different properties, and it is easy

to design P3-like pirates such as P4, . . . , Pk.

4 “Traffic Analysis”: A Generic Method to Defeat

Black-box Traitor Tracing

Provided a tracer knows the structure of P3 and its interference rules, it is not

difficult for him to modify the Boneh-Franklin arbitrary pirate tracing algorithm

to catch all traitors. For example, if a lucky tracer catches d̄1 as discussed in

Section 3.3, he can do the black-box confirmation on
(
7
2

)
candidate coalitions

by excluding d̄1 out of the full set. Or the tracer can simply run confirmation

tests on
(
8
2

)
coalition sets, and the union of all sets, which confirm that they

include traitors’ keys, is the set of all traitors’s keys. However, neither is strictly

black-box tracing, since the correctness of tracing results is based on the fact

that the structure of P3 and its interference rules are known to the tracer, oth-

erwise he even cannot be sure that this result is full-tracing and error-free, and

consequently acceptable or not at all. Moreover, it is easy to show that neither

modified algorithm provides a generic full-tracing and error-free method that is

applicable to all P3-like pirates with different comparators (i.e. interfering logic)

or different numbers of decoding circuits.

The key step to catch all traitors in P3-like pirates appears to identify inter-

fering rules used by those pirates. Theoretically, it can be done by brute force

guessing, since the tracer knows keys of all legitimate users in order to do black-

box confirmations, but it is extremely inefficient.

We are not keen in looking for generic black-box full-tracing algorithms,

regardless of efficient or inefficient ones, for the Boneh-Franklin scheme against

arbitrary pirates, since we highly suspect that they are vulnerable to “traffic

analysis” attacks that will be highlighted as follows.

8



Because digital content distribution systems typically use broadcast encryp-

tion schemes in order to disseminate contents such as pay-TV programmes in a

secure and efficient way, the construction of P3 shows a simple way for a pirate

box to automatically distinguish tracing traffic from normal ciphertext traffic:

theoretically, if the current input is a valid ciphertext, S1 = S2 = S3 must hold;

if S1 = S2 = S3 is not true, the current input must be an invalid ciphertext.

With the help of a built-in comparator (like in Fig 1) or a majority voter, a

pirate is capable to analyse the cipertext traffic, and then distinguish tracing

mode from the normal decoding mode.

Following a common assumption of current traitor tracing research, a pirate

box does not need to support a suicide strategy, but it can simply output random

bits to disturb a tracing algorithm, when its auto-sensing component detects

that the tracing algorithm is running against itself. Chor et al provided a traitor

tracing method for their one level scheme [2], which can be used as a black-box

tracing method. Pfitzmann [6] also introduced a probabilistic black-box tracing

method for the same one level scheme. Both methods are vulnerable when a

P3-like pirate is used. This is one kind of simple “traffic analysis”.

Suppose there is an efficient black-box “full-tracing” algorithm for the Boneh-

Franklin scheme against arbitrary pirates. Unfortunately, when any efficient trac-

ing algorithm is running against a pirate decoder, it must present some distin-

guishable traffic patterns that are totally different from normal traffic. It is not

difficult for a pirate box to detect and exploit the same patterns. We may add

into P3 a counter that counts the occurrence of each possible comparator state

and does some statistical analysis of ciphertext traffic. It is easy for the pirate

to output random bits at an appropriate time to disturb and then defeat the

black-box full-tracing. This is another kind of more complicated “traffic analy-

sis”. Although Boneh and Franklin didn’t state explicitly, they always assumed

a pirate box stateless, and did not take account of the fact that the box can be

stateful. However, it is easy to turn a stateless box into stateful by equipping

it with a majority logic voting device, a counter and some memory. A stateful

pirate decoder can easily protect itself from tracing algorithms based on stateless

models.

9



Traitor tracing researchers appear to have used unrealistic threat models,

which unavoidably lead to failures when an intelligent pirate box is used by a

hacker.

5 Conclusion

We presented a novel pirate decoder P3, which contains three keys and reacts

appropriately when a ciphertext decrypt differently under some of them. Al-

though [1] proved that a decoder cannot distinguish valid ciphertexts from in-

valid ones that are used for tracing, P3, with the help of a built-in comparator,

manages to make some of them distinguishable without breaking their DDH

assumption. Furthermore, it adopts a sophisticated strategy designed to frame

innocent users. The tracing algorithms presented in [1] cannot catch all traitors

who contribute keys to P3 as claimed. Instead, it is possible for them to catch

none of the traitors. Using different comparator logic and/or different number

of decoding circuits, an attacker can easily design other P3-like pirates.

“Traffic analysis” following the philosophy of our novel pirate may provide a

simple way to defeat some black-box traitor tracing schemes in general.

Acknowledgement

The work was done by 10 Dec 2000, and presented as [8] at the Oakland rump

session on 15 May 2001, as well as a seminar at HP labs Bristol on 26 June 2001.

The first author thanks Ross Anderson for his valuable comments.

References

1. D. Boneh and M. Franklin, “An Efficient Public Key Traitor Tracing Scheme”, in

Advances in Cryptology - Crypto’99, M. Wiener (Ed.), Lecture Notes in Computer

Science 1666, 1999, pp 338-353

2. B. Chor, A. Fiat and M. Naor, “Tracing Traitors”, in Advances in Cryptology -

Crypto’94, Y. G. Desmedt (Ed.), Lecture Notes in Computer Science 839, 1994,

pp257-270

3. M. Naor and B. Pinkas, “Threshold Traitor Tracing”, in Advances in Cryptology -

Crypto’98, Springr-Verlag LNCS 1462, 502-517,1998

10



4. T. Okamoto, S. Uchiyama, “A new public key cryptosystem as secure as factoring”,

in Proc. of Eurocrypt ’98, pp. 308-318

5. P. Paillier, “Public-Key Cryptosystems Based on Discrete Logarithm Residues”,

in proc. Eurocrypt ’99, pp. 223-238

6. B. Pfitzmann, “Trails of traced traitors”, Information Hiding Workshop, Cam-

bridge, UK, LNCS 1174, 49-64,1996

7. D. R. Stinson and R. Wei, “Combinatorial properties and constructions of trace-

ability schemes and frameproof codes”, SIAM J. on Discrete Math, Vol.11, 1, 41-

53,1998

8. Jeff Jianxin Yan and Yongdong Wu. “An Attack on Black-box Traitor Tracing

Schemes”. Rump session, IEEE Symposium on Security and Privacy, Oakland,

USA, May 2001. at http://www.cl.cam.ac.uk/˜jy212/oakland01.pdf.

11



Appendix

The Boneh-Franklin Traitor Tracing Scheme

Key Generation: Let Gq be a group of prime order q, and g ∈ Gq be a generator

of Gq. For i = 1, ..., 2k choose a random ri ∈ Zq and compute hi = gri . The

public key is (y, h1, ..., h2k), where y =
∏2k

i=1 hαi
i for random α1, ..., α2k ∈ Zq.

Assume l ≥ 2k + 2, q > max(l, 2k). Define a (l − 2k)× l matrix A as follows.

A =



1 1 1 . . . 1
1 2 3 . . . l

12 22 32 . . . l2

13 23 33 . . . l3

...
...

...
. . .

...
1l−2k−1 2l−2k−1 3l−2k−1 . . . ll−2k−1


(mod q)

Let b1, ..., b2k be a basis of the linear space of vectors satisfying Ax̄ = 0 (mod q).

By regarding these 2k vectors as the columns of a matrix we obtain a l × 2k

matrix B = (b1 b2 . . . b2k). Denote the ith row of B by γ(i) = (γ1, . . . , γ2k), and

θi = (
∑2k

j=1 rjαj)/(
∑2k

j=1 rjγj) (mod q). Multiplying the ith (i = 1, 2, ..., l) row

of B by θi, we get a new matrix B′,

B′ =


δ1,1 δ1,2 . . . δ1,2k

δ2,1 δ2,2 . . . δ2,2k

...
...

. . .
...

δl,1 δl,2 . . . δl,2k


where any row i satisfies

∑2k
j=1 rjδi,j =

∑2k
j=1 rjαj. And d̄i = (δi,1, ..., δi,2k) is

the private key of the ith subscriber.

Encryption: Pick a random element a ∈ Zq, then encrypt a message M in Gq

to ciphertext C = (M · ya, ha
1 , . . . , ha

2k).

Decryption: To decrypt a ciphertext C = (S, H1, ...,H2k) using user i’th private

key d̄i = (δi,1, ..., δi,2k), compute M = S∏2k
j=1 Hδi,j

j

. Since,

2k∏
j=1

H
δi,j

j = (g
∑2k

j=1 rjδi,j )a = (g
∑2k

j=1 rjαj )a = (
2k∏

j=1

grjαj )a = (
2k∏

j=1

h
αj

j )a = ya

12



Tracing Algorithms

Black-box tracing of single-key pirates: For a single-key pirate, the basic

idea of the black-box tracing is to observe the pirate decoder’s behavior on

an invalid ciphertext C̃ = (S, hz1
1 , ..., hz2k

2k ), where the non-constant vector z̄ is

chosen by the tracer. The tracing algorithm deduces from a single-key pirate its

embedded key d̄ = (δ1, . . . , δ2k) as follows. On input C̃, which is invalid since

the hi’s are raised to different powers, the pirate decoder must respond with A,

where A = S∏2k
j=1 h

δjzj
j

, since it cannot distinguish C̃ from a valid ciphertext. By

querying with invalid ciphertexts the tracer learns the value
∏2k

j=1 h
δjzj

j = S/A

for vectors z̄ of its choice. After 2k rounds of invalid ciphertext tests, a tracer

gets a following 2k simultaneous equations,

∏2k
j=1 h

δjz1,j

j = c1∏2k
j=1 h

δjz2,j

j = c2

. . .∏2k
j=1 h

δjz2k,j

j = c2k

(1)

where z̄1, . . . , z̄2k are linearly independent vectors, which are randomly chosen

by the tracer; c1, . . . , c2k are values of S/A for each round. (1) is equivalent to a

following linear system that has lnhδ1
1 , lnhδ2

2 , . . . , lnhδ1
1 as variables.

z1,1 z1,2 . . . z1,2k

z2,1 z2,2 . . . z2,2k

...
...

. . .
...

z2k,1 z2k,2 . . . z2k,2k




lnhδ1

1

lnhδ2
2

...

lnhδ2k

2k

 =


ln c1

ln c2

...

ln c2k

 (2)

If ln c1 = ln c2 = · · · = ln c2k = 0, (2) is a homogeneous linear system; otherwise,

it is a non-homogeneous linear system. Since z̄1, z̄2, . . . , z̄2k are linearly indepen-

dent, the 2k × 2k matrix H = (z̄1 z̄2 . . . z̄2k)T has a rank of 2k. When (2) is a

homogeneous system, it has only a trivial solution, i.e., lnhδ1
1 = lnhδ2

2 = · · · =

lnhδ1
1 = 0, so (δ1, δ2, . . . , δ2k) = (0, 0, . . . , 0) is the embedded key. When (2)

is a non-homogeneous system, H guarantees that it has a unique (non-trivial)

solution,

(lnhδ1
1 lnhδ2

2 . . . lnhδ1
1 )T = H−1(ln c1 ln c2 · · · ln c2k)T .

The tracer can solve a unique solution for hδ1
1 , ..., hδ2k

2k . Since he also knows the

discrete log of the hi’s to the base g, he can compute gδ1 , ..., gδ2k . Afterwards,

13



he can recover a unique vector d̄ = (δ1, . . . , δ2k), which is the embedded key,

from (gδ1 , ..., gδ2k) by using recent number theory results on trapdoors of the

discrete log modulo p2q and modulo N2 [4] [5].

After holding d̄, the tracer can identify all traitors (without accusing any

innocent users) by error correction methods, since the set of rows of matrix B

is actually l codewords over Z2k
q of a Reed-Solomon code.

Note: Running the above algorithm on P3, a tracer gets a linear system like

(1), which is impossible to lead to identify all the three distinct keys in P3.

Black-box tracing of arbitrary pirates: For an arbitrary pirate, the traitor

tracing is based on a black-box confirmation algorithm. The tracer suspects a

particular set T of at most k traitors. Let d̄1, ..., d̄k be the keys of those k traitors.

To confirm his suspicion of T , the tracer queries the decoder with an invalid

ciphertext C̃ = (S, gz1 , . . . , gz2k), where the vector z̄ = (z1, . . . , z2k) satisfies

z̄ · d̄i = w for all i ∈ T . The decoder cannot distinguish this invalid ciphertext

from a valid one, and it will respond with A = S/
∏

gziδi where (δ1, . . . , δ2k)

is some representation of y. If, for a suspect coalition T , the pirate box always

responds with A = S/gw, then the pirate must possess a subset of the keys

belonging to T . Suppose n is the number of subscribed users in the system. The

tracer does black-box tracing to catch all traitors contributing to an arbitrary

pirate by running the confirmation algorithm on all
(
n
k

)
candidate coalitions.

Though it is public-key based, the Boneh-Franklin scheme doesn’t guarantee

the non-repudiation property defined by [6] in case the tracer needs black-box

confirmation.

14


